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Preface

Theory and Applications of Models of Computation (TAMC) is an interna-
tional conference series with an interdisciplinary character, bringing together
researchers working in computer science, mathematics (especially logic), and
the physical sciences. This crossdisciplinary character, together with its focus on
algorithms, complexity, and computability theory, gives the conference a special
flavor and distinction.

TAMC 2008 was the fifth conference in the series. The previous four meetings
were held during May 17–19, 2004 in Beijing, May 17–20, 2005 in Kunming, May
15–20, 2006 in Beijing, and May 22–25, 2007 in Shanghai. TAMC 2008 was held
in Xi’an, during April 25–29, 2008.

At TAMC 2008 we had two plenary speakers, Bernard Chazelle and Cynthia
Dwork, giving one-hour talks each. Bernard spoke on “Why Algorithms Matter”
and Cynthia on “Differential Privacy: A Survey of Results.” Their respective
papers accompanying the talks are included in the proceedings.

In addition, there were two special sessions organized by Barry Cooper and
Ying Jiang on “Models of Computation” and by Jianer Chen on “Algorithms
and Complexity.” The invited speakers in the first session were Jose Felix Costa,
Vincent Danos, Luke Ong, Mingsheng Ying, Miklos Santha, and Gilles Dowek.
Invited speakers in the second session were Daniel Brown, Dieter Kratsch, Xi-
aotie Deng, and Jianer Chen.

The TAMC conference series arose naturally in response to important scien-
tific developments affecting how we compute in the twenty-first century. At the
same time, TAMC is already playing an important regional and international
role, and promises to become a key contributor to the scientific resurgence seen
throughout China and other parts of Asia.

For TAMC 2008, we received 192 submissions from all over the world, one
of which was withdrawn. The Program Committee finally selected 50 papers for
presentation at the conference and inclusion in this LNCS volume.

We are very grateful to the Program Committee, and the many outside refer-
ees they called on, for their hard work and expertise during the difficult selection
process. We also wish to thank all those authors who submitted their work for
our consideration. The Program Committee could have accepted many more
submissions without compromising standards, and were only restrained by the
practicalities of timetabling so many talks, and by the inevitable limitations on
the size of this proceedings volume.

Finally, we would like to thank the members of the Editorial Board of Lecture
Notes in Computer Science and the Editors at Springer for their encouragement
and cooperation throughout the preparation of this conference.



VI Preface

Of course TAMC 2008 would not have been possible without the support of
our sponsors, and we therefore gratefully acknowledge their help in the realiza-
tion of this conference.

April 2008 Manindra Agrawal
Dingzhu Du

Zhenhua Duan
Angsheng Li
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Differential Privacy: A Survey of Results

Cynthia Dwork

Microsoft Research
dwork@microsoft.com

Abstract. Over the past five years a new approach to privacy-preserving
data analysis has born fruit [13, 18, 7, 19, 5, 37, 35, 8, 32]. This approach
differs from much (but not all!) of the related literature in the statistics,
databases, theory, and cryptography communities, in that a formal and
ad omnia privacy guarantee is defined, and the data analysis techniques
presented are rigorously proved to satisfy the guarantee. The key privacy
guarantee that has emerged is differential privacy. Roughly speaking, this
ensures that (almost, and quantifiably) no risk is incurred by joining a
statistical database.

In this survey, we recall the definition of differential privacy and two
basic techniques for achieving it. We then show some interesting appli-
cations of these techniques, presenting algorithms for three specific tasks
and three general results on differentially private learning.

1 Introduction

Privacy-preserving data analysis is also known as statistical disclosure control,
inference control, privacy-preserving datamining, and private data analysis. Our
principal motivating scenario is a statistical database. A statistic is a quantity
computed from a sample. Suppose a trusted and trustworthy curator gathers
sensitive information from a large number of respondents (the sample), with
the goal of learning (and releasing to the public) statistical facts about the un-
derlying population. The problem is to release statistical information without
compromising the privacy of the individual respondents. There are two settings:
in the noninteractive setting the curator computes and publishes some statis-
tics, and the data are not used further. Privacy concerns may affect the precise
answers released by the curator, or even the set of statistics released. Note that
since the data will never be used again the curator can destroy the data (and
himself) once the statistics have been published.

In the interactive setting the curator sits between the users and the database.
Queries posed by the users, and/or the responses to these queries, may be modified
by the curator in order to protect the privacy of the respondents. The data can-
not be destroyed, and the curator must remain present throughout the lifetime of
the database. Of course, any interactive solution yields a non-interactive solution,
provided the queries are known in advance: the curator can simulate an interaction
in which these known queries are posed, and publish the resulting transcript.

There is a rich literature on this problem, principally from the satistics com-
munity (see, e.g., [10, 14, 27, 28, 29, 38, 40, 26, 39] and the literature on controlled

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 1–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 C. Dwork

release of tabular data, contingency tables, and cell suppression), and from such
diverse branches of computer science as algorithms, database theory, and cryp-
tography, for example as in [3, 4, 21, 22, 23, 33, 34, 41, 48], [1, 24, 25, 31], and
[6, 9, 11, 12, 13, 18, 7, 19]; see also the survey [2] for a summary of the field prior
to 1989.

This survey is about differential privacy. Roughly speaking, differential pri-
vacy ensures that the removal or addition of a single database item does not
(substantially) affect the outcome of any analysis. It follows that no risk is in-
curred by joining the database, providing a mathematically rigorous means of
coping with the fact that distributional information may be disclosive.

We will first describe three differentially private algorithms for specific, un-
related, data analysis tasks. We then present three general results about com-
putational learning when privacy of individual data items is to be protected.
This is not usually a concern in the learning theory literature, and signals the
emergence of a new line of research.

2 Differential Privacy

In the sequel, the randomized function K is the algorithm applied by the curator
when releasing information. So the input is the data set, and the output is the
released information, or transcript. We do not need to distinguish between the
interactive and non-interactive settings.

Think of a database as a set of rows. We say databases D1 and D2 differ in at
most one element if one is a proper subset of the other and the larger database
contains just one additional row.

Definition 1. A randomized function K gives ε-differential privacy if for all
data sets D1 and D2 differing on at most one element, and all S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S] (1)

The probability is taken is over the coin tosses of K.

A mechanism K satisfying this definition addresses concerns that any participant
might have about the leakage of her personal information: even if the participant
removed her data from the data set, no outputs (and thus consequences of out-
puts) would become significantly more or less likely. For example, if the database
were to be consulted by an insurance provider before deciding whether or not to
insure a given individual, then the presence or absence of that individual’s data
in the database will not significantly affect her chance of receiving coverage.

Differential privacy is therefore an ad omnia guarantee. It is also a very strong
guarantee, since it is a statistical property about the behavior of the mechanism
and therefore is independent of the computational power and auxiliary informa-
tion available to the adversary/user.

Differential privacy is not an absolute guarantee of privacy. In fact, Dwork
and Naor have shown that any statistical database with any non-trivial utility
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compromises a natural definition of privacy [15]. However, in a society that has
decided that the benefits of certain databases outweigh the costs, differential
privacy ensures that only a limited amount of additional risk is incurred by
participating in the socially beneficial databases.

Remark 1. 1. The parameter ε in Definition 1 is public. The choice of ε is essen-
tially a social question and is beyond the scope of this paper. That said, we
tend to think of ε as, say, 0.01, 0.1, or in some cases, ln 2 or ln 3. If the prob-
ability that some bad event will occur is very small, it might be tolerable to
increase it by such factors as 2 or 3, while if the probability is already felt to
be close to unacceptable, then an increase by a factor of e0.01 ≈ 1.01 might be
tolerable, while an increase of e, or even only e0.1, would be intolerable.

2. Definition 1 discusses the behavior of the mechanism K, and is indepen-
dent of any auxiliary knowledge the adversary, or user, may have about the
database. Thus, a mechanism satisfying the definition protects the privacy
of an individual row in the database even if the adversary knows every other
row in the database.

3. Definition 1 extends to group privacy as well (and to the case in which an
individual contributes more than a single row to the database). A collection
of c participants might be concerned that their collective data might leak
information, even when a single participant’s does not. Using this definition,
we can bound the dilation of any probability by at most exp(εc), which may
be tolerable for small c. Of course, the point of the statistical database is
to disclose aggregate information about large groups (while simultaneously
protecting individuals), so we should expect privacy bounds to disintegrate
with increasing group size.

3 Achieving Differential Privacy in Statistical Databases

We will presently describe an interactive mechanism, K, due to Dwork, McSherry,
Nissim, and Smith [19], for the case of continuous-valued queries. Specifically, in
this section a query is a function mapping databases to (vectors of) real numbers.
For example, the query “Count P” counts the number of rows in the database
having property P .

When the query is a function f , and the database is X , the true answer is
the value f(X). The mechanism K adds appropriately chosen random noise to
the true answer to produce what we call the response. The idea of preserving
privacy by responding with a noisy version of the true answer is not new, but
this approach is delicate. For example, if the noise is symmetric about the origin
and the same question is asked many times, the responses may be averaged,
cancelling out the noise1. We must take such factors into account.
1 We do not recommend having the curator record queries and their responses so that if

a query is issued more than once the response can be replayed: If the query language
is sufficiently rich, then semantic equivalence of two syntactically different queries is
undecidable; even if the query language is not so rich, the devastating attacks demon-
strated by Dinur and Nissim [13] pose completely random and unrelated queries.
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Definition 2. For f : D → Rk, the sensitivity of f is

Δf = max
D1,D2

‖f(D1) − f(D2)‖1 (2)

for all D1, D2 differing in at most one element.

In particular, when k = 1 the sensitivity of f is the maximum difference in the
values that the function f may take on a pair of databases that differ in only
one element.

For many types of queries Δf will be quite small. In particular, the simple
counting queries discussed above (“How many rows have property P?”) have
Δf = 1. Our techniques work best – introduce the least noise – when Δf is small.
Note that sensitivity is a property of the function alone, and is independent of
the database. The sensitivity essentially captures how great a difference (between
the value of f on two databases differing in a single element) must be hidden by
the additive noise generated by the curator.

The scaled symmetric exponential distributionwith standarddeviation
√

2Δf/ε
denoted Lap(Δf/ε), has mass at x proportional to exp(−|x|(ε/Δf)). More pre-
cisely, let b = Δf/ε. The probability density function is p(x) = exp(−|x|/b)/2b and
the cumulative distribution function is D(x) = (1/2)(1 + sgn(x)(1 − exp(|x|/b))).

On query function f the privacy mechanism K responds with

f(X) + (Lap(Δf/ε))k

adding noise with distribution Lap(Δf/ε) independently to each of the k com-
ponents of f(X). Note that decreasing ε, a publicly known parameter, flattens
out the Lap(Δf/ε) curve, yielding larger expected noise magnitude. When ε is
fixed, functions f with high sensitivity yield flatter curves, again yielding higher
expected noise magnitudes.

For simplicity, consider the case k = 1. The proof that K yields ε-differential
privacy on the single query function f is straightforward. Consider any subset
S ⊆ Range(K), and let D1, D2 be any pair of databases differing in at most one
element. When the database is D1, the probability mass at any r ∈ Range(K) is
proportional to exp(−|f(D1)−r|(Δf/ε)), and similarly when the database is D2.
Applying the triangle inequality in the exponent we get a ratio of at most exp
(−|f(D1) − f(D2)|(Δf/ε)). By definition of sensitivity, |f(D1) − f(D2)| ≤ Δf ,
and so the ratio is bounded by exp(−ε), yielding ε-differential privacy.

It is easy to see that ε-differential privacy can be achieved for any (adaptively
chosen) query sequence f1, . . . , fd by running K with noise distribution Lap(

∑
i

Δfi/ε) on each query. In other words, the quality of each answer deteriorates with
the sum of the sensitivities of the queries. Interestingly, it is sometimes possible to
do better than this. Roughly speaking, what matters is the maximum possible
value of Δ = ||(f1(D1), f2(D1), . . . , fd(D1)) − (f1(D2), f2(D2), . . . , fd(D2))||1.
The precise formulation of the statement requires some care, due to the po-
tentially adaptive choice of queries. For a full treatment see [19]. We state the
theorem here for the non-adaptive case, viewing the (fixed) sequence of queries
f1, f2, . . . , fd, with respective arities k1, . . . , kd, as a single k =

∑d
i=1 ki-ary query

f , and recalling Definition 2 for the case of arbitrary k.
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Theorem 1 ([19]). For f : D → Rk, the mechanism Kf that adds indepen-
dently generated noise with distribution Lap(Δf/ε) to each of the k output terms
enjoys ε-differential privacy.

The mechanism K described above has excellent accuracy for insensitive queries.
In particular, the noise needed to ensure differential privacy depends only on the
sensitivity of the function and on the parameter ε. Both are independent of the
database and the number of rows it contains. Thus, if the database is very
large, the errors for many typical queries introduced by the differential privacy
mechanism is relatively quite small.

We can think of K as a differential privacy-preserving interface between the an-
alyst and the data. This suggests a general approach to privacy-preserving data
analysis: find algorithms that require few, insensentitive, queries. See, e.g.,
[7, 8, 32]. Indeed, even counting queries are extremely powerful, permitting accu-
rate and differentially private computations of many standard datamining tasks
including principal component analysis, k-means clustering, perceptron learning
of separating hyperplanes, and generation of an ID3 decision tree [7], as well as
(nearby) halfspace learning [8] (see Section 4.3 below).

Among the many applications of Theorem 1, of particular interest is the class
of histogram queries. A histogram query is an arbitrary partitioning of the do-
main of database rows into disjoint “cells,” and the true answer is the set of
counts describing, for each cell, the number of database rows in this cell. Al-
though a histogram query with k cells may be viewed as k individual counting
queries, the addition or removal of a single database row can affect the entire
k-tuple of counts in at most one location (the count corresponding to the cell to
(from) which the row is added (deleted); moreover, the count of this cell is af-
fected by at most 1, so by Definition 2, every histogram query has sensitivity 1.
Many data analyses are simply histograms; it is thus particularly encourag-
ing that complex histograms, rather than requiring large variance in each cell,
require very little.

3.1 When Noise Makes No Sense

In some tasks, the addition of noise makes no sense. For example, the function f
might map databases to strings, strategies, or trees. In a recent paper McSherry
and Talwar address the problem of optimizing the output of such a function while
preserving ε-differential privacy [35]. Assume the curator holds a database X and
the goal is to produce an object y. In a nutshell, their exponential mechanism
works as follows. There is assumed to be a utility function u(X,y) that measures
the quality of an output y, given that the database is X . For example, if the
database holds the valuations that individuals assign a digital good during an
auction, u(X, y) might be the revenue, with these valuations, when the price is
set to y. Auctions are a good example of where noise makes no sense, since an
even slightly too high price may prevent many bidders from buying.

McSherry and Talwar’s exponential mechanism outputs y with probability
proportional to exp(−εu(X, y)/2). This ensures εΔu-differential privacy, or
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ε-differential privacy whenever Δu ≤ 1. Here Δu is defined slightly differently
from above; it is the maximum possible change to the value of u caused by
changing the data of a single row (as opposed to removing or adding a row; the
notions differ by at most a factor of two); see [35].

With this approach McSherry and Talwar obtain approximately-truthful
auctions with nearly optimal selling price. Roughly speaking, this says that a
participant cannot dramatically reduce the price he pays by lying about his valu-
ation. Interestingly, they show that the simple composition of differential privacy
can be used to obtain auctions in which no cooperating group of c agents can
significantly increase their utility by submitting bids other than their true valu-
ations. This is analagous to the situation of Remark 1 above, where composition
is used to obtain privacy for groups of c individuals,

4 Algorithms for Specific Tasks

In this section we describe differentially private algorithms for three unrelated
tasks.

4.1 Statistical Data Inference

The results in this Section are due to Dwork and Nissim [18].
Consider a setting in which each element in the database is described by a set

of k Boolean attributes α1, . . . αk, and the rows are independently sampled from
some underlying distribution on {0, 1}k. Let 1 ≤ � ≤ k/2 be an integer. The
goal here is to use information about the incidence of settings of any � attribute
values to learn the incidence of settings of any 2� attribute values.

Although we use the term “queries,” these will all be known in advance,
and the mechanism will be non-interactive. From something like

(
k
�

)
2� pieces

of released information it will be possible to compute approximations to the
incidence of all

(
k
2�

)
22� minterms. This will allow the data analyst to approximate

the probabilities of all 2( k
2�)2� subsets of 2�-ary minterms of length 2�, provided

the initial approximations are sufficiently accurate.
We will identify probability with incidence, so the probability space is over

rows in the database. Fix any set of � attributes. The incidence of all possible
settings of these attribute values is described by a histogram with 2� cells, and
histograms have sensitivity 1, so we are going to be working with a query se-
quence of overall sensitivity proportional to

(
k
�

)
(in fact, it will be worse than

this by a factor t, discussed below).
Let α and β be attributes. We say that α implies β in probability if the condi-

tional probability of β given α exceeds the unconditional probability of β. The
ability to measure implication in probability is crucial to datamining. Note that
since Pr[β] is simple to estimate well using counting queries, the problem of mea-
suring implication in probability reduces to obtaining a good estimate of Pr[β|α].
Moreover, once we can estimate Pr[β|α], Pr[β], and Pr[a], we can use Bayes’ Rule
and de Morgan’s Laws to determine the statistics for any Boolean function of
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attribute values. For example, Pr[α ∧ β] = Pr[α] Pr[β|α], so if we have estimates
of the two multiplicands, within an additive η, we have an estimate for the
products that is accurate within 3η.

As a step toward the non-interactive solution, consider the interactive case and
assume that we have a good estimate for Pr[α] and Pr[β]. The key to determining
Pr[β|α] is to find a heavy set for α, that is, a set q ⊆ [n] such that the incidence
of α is at least, say, a standard deviation higher than expected, and then to
determine whether the incidence of β on this heavy set is higher than the overall
incidence of β. More specifically, one can test whether this conditional incidence
is higher than a given threshold, and then use binary search to find the “right”
threshold value. Finding the heavy set is easy because a randomly chosen subset
of [n] has constant probability of exceeding the expected incidence of α by at
least one standard deviation.

To “simulate” the interactive case, the curator chooses some number of ran-
dom subsets and for each one releases (noisy) estimates of the incidence of α
and the incidence of β within this subset. With high probability (depending on
t), at least one of the subsets is heavy for α.

Putting the pieces together: for t random subsets of [n] the curator releases
good approximations to the incidence of all m =

(
k
�

)
2� conjunctions of � literals.

Specifically, we require that with probability at least 1 − δ/m2 a computed
implication in distribution Pr[α|β] is accurate to within η/3m2, where α and β
are now minterms of � literals. This ensures that with probability least 1 − δ
all computed implications in distribution are accurate to within η/3m2, and
so all estimated probabilities for minterms of 2� literals are accurate to within
η/m2. The number t is rather large, and depends on many factors, including
the differential privacy parameter ε as well as η, δ, k and �. The analysis in [18]
shows that, when η and δ are constant, this approach reduces the number of
queries from

(
k
2�

)
(one histogram for each 2�-tuple of variables (not literals!)), to

O(24�k��2 log k). Note the interesting tradeoff: we require accuracy that depends
on m2 in order to avoid making m2 queries. When the database is sufficiently
large this tradeoff can be accomplished.

4.2 Contingency Table Release

The results in this Section are due to Barak, Chaudhuri, Dwork, Kale, McSherry,
and Talwar [5]. A contingency table is a table of counts. In the context of a census
or other survey, we think of the data of an individual as a row in a database.
We do not assume the rows are mutually independent. For the present, each
row consists of k bits describing the values of k binary attributes a1, . . . , ak.2

Formally, the contingency table is a vector in R
2k

describing, for each setting
of the k attributes, the number of rows in the database with this setting of the
attribute values. In other words, it is a histogram with 2k cells.

Commonly, the contingency table itself is not released, as it is likely to be
sparse when k is large. Instead, for various subsets of attributes, the data curator
2 Typically, attributes are non-binary. Any attribute with m possible values can be

decomposed into log(m) binary attributes.
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releases the projection of the contingency table onto each such subset, i.e., the
counts for each of the possible settings of the restricted set of attributes. These
smaller tables of counts are called marginals, each marginal being named by
a subset of the attributes. A marginal named by a set of j attributes, j ≤ k,
is called a j-way marginal. The data curator will typically release many sets
of low-order marginals for a single contingency table, with the goal of revealing
correlations between many different, and possibly overlapping, sets of attributes.

Since a contingency table is a histogram, we can add independently generated
noise proportional to ε−1 to each cell of the contingency table to obtain an ε-
differentially private (non-integer and not necessarily non-negative) table. We
will address the question of integrality and non-negativity later. For now, we
simply note that any desired set of marginals can be computed directly from
this noisy table, and consistency among the different marginals is immediate. A
drawback of this approach, however, is that while the noise in each cell of the
contingency table is relatively small, the noise in the computed marginals may
be large. For example, the variance in the 1-way table describing attribute a1 is
2k−1ε−2. We consider this unacceptable, especially when n 
 2k.

Marginals are also histograms. A second approach, with much less noise in the
(common) case of low-order marginals, but not offering consistency between
marginals, works as follows. Let C be the set of marginals to be released. We
can think of a function f that, when applied to the database, yields the desired
marginals. Now apply Theorem 1 with this choice of f , (adding noise to each cell
in the collection of tables independently), with sensitivity Δf = |C|. When n
(the number of rows in the database) is large compared to |C|/ε, this also yields
excellent accuracy. Thus we would be done if the small table-to-table inconsisten-
cies caused by independent randomization of each (cell in each) table are not of
concern, and if the user is comfortable with occasionally negative and typically
non-integer cell counts.

We have no philosophical or mathematical objection to these artifacts – incon-
sistencies, negativity, and non-integrality – of the privacy-enhancing technology,
but in practice they can be problematic. For example, the cell counts may be
used as input to other, possibly off-the-shelf, programs that anticipate positive
integers, giving rise to type mismatch. Inconsistencies, not to mention negative
values, may also be confusing to lay users, such as casual users of the American
FactFinder website.

We now outline the main steps in the work of Barak et al [5].

Move to the Fourier Domain. When adding noise, two natural solutions present
themselves: adding noise to entries of the source table (this was our first proposal;
accuracy is poor when k is large), or adding noise to the reported marginals (our
second proposal; consistency is violated). A third approachbegins by transforming
the data into the Fourier domain. This is just a change of basis. Were we to com-
pute all 2k Fourier coefficients we would have a non-redundant encoding of the
entire consistency table. If we were to perturb the Fourier coefficients and then
convert back to the contingency table domain, we would get a (different, possibly
non-integer, possibly negative) contingency table, whose “distance” (for example,
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�2 distance) from the original is determined by the magnitude of the perturbations.
The advantage ofmoving to the Fourier domain is that if only a setC ofmarginals is
desired then we do not need the full complement of Fourier coefficients. For exam-
ple, if C is the set of all 3-way marginals, then we need only the Fourier coefficients
of weight at most 3, of which there are

(
k
3

)
+

(
k
2

)
+ k + 1. This will translate into

a much less noisy set of marginals.
The Fourier coefficients needed to compute the marginals C form a model of the

dataset that captures everything that can be learned from the set C of marginals.
Adding noise to these coefficients as indicated by Theorem 1 and then convert-
ing back to the contingency table domain yields a procedure for generating syn-
thetic datasets that ensures differential privacy and yet to a great (and measurable)
extent captures the information in the model. This is an example of a concrete
method for generating synthetic data with provable differential privacy.

The Fourier coefficients exactly describe the information required by the
marginals. By measuring exactly what is needed, Barak et al. add the least
amount of noise possible using the techniques of [19]. Moreover, the Fourier ba-
sis is particularly attractive because of the natural decomposition according to
sets of attribute values. Even tighter bounds than those in Theorem 4 below can
be placed on sub-marginals (that is, lower order marginals) of a given marginal,
by noting that no additional Fourier coefficients are required and fewer noisy
coefficients are used in computing the low-order marginal, improving accuracy
by reducing variance.

Use Linear Programming and Rounding. Barak et al. [5] employ linear program-
ming to obtain a non-negative, but likely non-integer, data set with (almost) the
given Fourier coefficients, and then round the results to obtain an integer so-
lution. Interestingly, the marginals obtained from the linear program are no
“farther” (made precise in [5]) from those of the noisy measurements than are
the true marginals of the raw data. Consequently, the additional error intro-
duced by the imposition of consistency is no more than the error introduced by
the privacy mechanism itself.

Notation and Preliminaries. Recall that, letting k denote the number of
(binary) attributes, we can think of the data set as a vector x ∈ R

2k

, indexed
by attribute tuples. For each α ∈ {0, 1}k the quantity xα is the number of data
elements with this setting of attributes. We let n = ‖x‖1 be the total number of
tuples, or rows, in the data set.

For any α ∈ {0, 1}k, we use ‖α‖1 for the number of non-zero locations. We
write β � α for α, β ∈ {0, 1}k if every zero location in α is also a zero in β.

The Marginal Operator. Barak et al. describe the computation of a set of
marginals as the result of applying a marginal operator to the contingency table
vectorx. The operatorCα : R

2k → R
2‖α‖1 for α ∈ {0, 1}k maps contingency tables

to the marginal of the attributes that are positively set in α (there are 2‖α‖1 pos-
sible settings of these attributes). Abusing notation, Cαx is only defined at those
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locations β for which β � α: for any β � α, the outcome of Cαx at position β is
the sum over those coordinates of x that agree with β on the coordinates described
by α:

(Cα(x))β =
∑

γ:γ∧α=β

xγ (3)

Notice that the operator Cα is linear for all α.

Theorem 2. The fα form an orthonormal basis for R
2k

.

Consequently, one can write any marginal as the small summation over relevant
Fourier coefficients:

Cβx =
∑

α�β

〈fα, x〉Cβfα . (4)

The coefficients 〈fα, x〉 are necessary and sufficient data from x for the compu-
tation of Cβx.

Theorem 3 ([5]). Let B ⊆ {0, 1}k describe a set of Fourier basis vectors. Re-
leasing the set φβ = 〈fβ , x〉 + Lap(|B|/ε2k/2) for β ∈ B preserves ε-differential
privacy.

Proof: Each tuple contributes exactly ±1/2k/2 to each output coordinate, and
consequently the L1 sensitivity of the set of |B| outputs is at most |B|/2k/2. By
Theorem 1, the addition of symmetric exponential noise with standard deviation
|B|/ε2k/2 gives ε-differential privacy.

Remark: To get a sense of scale, we could achieve a similar perturbation to each
coordinate by randomly adding or deleting |B|2/ε individuals in the data set, which
can be much smaller than n.

Putting the Steps Together. To compute a set A of marginals, we need all
the Fourier coefficients fβ for β in the downward closure of A uner �.

Marginals(A ⊆ {0, 1}k, D):
1. Let B be the downward closure of A under �.
2. For β ∈ B, compute φβ = 〈fβ , D〉 + Lap(|B|/ε2k/2).
3. Solve for wα in the following linear program, and round to the nearest inte-

gral weights, w′
α.

minimize b

subject to:
wα ≥ 0 ∀α

φβ −
∑

α

wαfβ
α ≤ b ∀β ∈ B

φβ −
∑

α

wαfβ
α ≥ −b ∀β ∈ B

4. Using the contingency table w′
α, compute and return the marginals for A.
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Theorem 4 ([5]). Using the notation of Marginals(A), with probability 1− δ,
for all α ∈ A,

‖Cαx − Cαw′‖1 ≤ 2‖α‖12|B| log(|B|/δ)/ε + |B| . (5)

When k is Large. The linear program requires time polynomial in 2k. When k
is large this is not satisfactory. However, somewhat surprisingly, non-negativity
(but not integrality) can be achieved by adding a relatively small amount to
the first Fourier coefficient before moving back to the data domain. No linear
program is required, and the error introduced is pleasantly small. Thus if poly-
nomial in 2k is an unbearable cost and one can live with non-integrality then this
approach serves well. We remark that non-integrality was a non-issue in a pilot
implementation of this work as counts were always converted to percentages.

4.3 Learning (Nearby) Halfspaces

We close this Section with an example inspired by questions in learning theory,
appearing in a forthcoming paper of Blum, Ligett, and Roth [8]. The goal is
to give a non-interactive solution to half-space queries. At a high level, their
approach is to publish information that (approximately) answers a large set of
“canonical” queries of a certain type, with the guarantee that for any (possibly
non-canonical) query of the given type there is a “nearby” canonical query.
Hence, the data analyst can obtain the answer to a query that in some sense is
close to the query of interest.

The queries in [8] are halfspace queries in R
d, defined next. Throughout this

section we adopt the assumption in [8] that the database points are scaled into
the unit sphere.

Definition 3. Given a database D ⊂ R
d and unit length y ∈ R

d, a halfspace
query Hy is

Hy(D) =
|{x ∈ D :

∑d
i=1 xi · yi ≥ 0}|
|D| .

Note that a halfspace query can be estimated from two counting queries: “What
is |D|?” and “What is |{x ∈ D :

∑d
i=1 xi · yi ≥ 0}|?” Thus, the halfspace query

has sensitivity at most 2.
The distance between halfspace queries Hy1 and Hy2 is defined to be the sine

of the angle between them, sin(y1, y2). With this in mind, the algorithm of Blum,
Ligett, and Roth, ensures the following notion of utility:

Definition 4 ([8]). A database mechanism A is (ε, δ, γ)-useful for queries in
class C according to some metric d if with probability 1 − δ, for every Q ∈ C
and every database D, |Q(A(D)) − Q′(D)| ≤ ε for some Q′ ∈ C such that
d(Q, Q′) ≤ γ.

Note that it is the queries that are close, not (necessarily) their answers.
Given a halfspace query Hy1 , the algorithm below will output a value v such

that |v − Hy2(D)| < ε for some Hy2 that is γ-close to Hy1 . Equivalently, the
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algorithm arbitrarily counts or fails to count points x ∈ D such that cos(x, y1) ≤
γ. Blum et al. note that γ plays a role similar to the notion of margin in machine
learning, and that even if Hy1 and Hy2 are γ-close, this does not imply that true
answers to the queries Hy1(D) and Hy2(D) are close, unless most of the data
points are outside a γ margin of Hy1 and Hy2 .

Definition 5 ([8]). A halfspace query Hy is b-discretized if for each i ∈ [d], yi

can be specified with b bits. Let Cb be the set of all b-discretized halfspaces in R
d.

Consider a particular k < d dimensional subspace of R
d defined by a random

d × k matrix M with entries chosen independently and uniformly from {−1, 1}.
Consider the projection PM (x) = (1/

√
k)x · M , which projects database points

into the subspace and re-scales them to the unit sphere. For a halfspace query
Hy, the projection PM (Hy) is simply the k-dimensional halfspace query defined
by the projection PM (y). The key fact is that, for a randomly chosen M , pro-
jecting a database point x and the halfspace query specifier y is very unlikely to
significantly change the angle between them:

Theorem 5 (Johnson-Lindenstrauss Theorem). Consider a projection of
a point x and a halfspace Hy onto a random k-dimensional subspace as defined
by a projection matrix M . Then

Pr[| cos(x, Hy) − cos(PM (x), HPM (y))| ≥ γ/4] ≤ 2e−((γ/16)2−(γ/16)3)k/4.

The dimension k of the subspace is chosen such that the probability that pro-
jecting a point and a halfspace changes the angle between them by more than
γ/4 is at most ε1/4. This yields

k ≥ 4 ln(8/ε1)
(γ/16)2 − (γ/16)3

.

Thus, the answer to the query Hy can be estimated by a privacy-preserving
estimate of the answer to the projected halfspace query, and overall accuracy
could be improved by choosing m projection matrices; the angle between x and
y would be estimated by the median of the angles induces by the m resulting
pairs of projections of x and y.

Of course, if the goal were to respond to a few half-space queries there would
be no point in going through the projection process, let alone taking several pro-
jections. But the goal of [8] is more ambitious: an(ε, δ, γ)-useful non-interactive
mechanism for (non-discretized) halfspace queries; this is where the lower di-
mensionality comes into play.

The algorithm chooses m projection matrices, where m depends on the
discretization parameter b, the dimension d, and the failure probability δ (more
specifically, m ∈ O(ln(1/δ)+ln(bd))). For each random subspace (defined by a pro-
jection matrix M), the algorithm selects a net NM of “canonical” halfspaces (de-
fined by canonical vectors in the subspace) such that for every vector y ∈ Rk there
is a nearby canonical vector, specifically, of distance (induced sine) at most (3/4)γ.
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The number of canonical vectors needed is O(1/γk−1). For each of these, the cura-
tor publishes a privacy-preserving estimate of the projected halfspace query. The
mechanism is non-interactive and the curator will play no further role.

To handle an arbitrary query y, the analyst begins with an empty multiset.
For each of the m projections M , the analyst finds a vector ŷ ∈ NM closest to
PM (y), adding to the multiset the answer to that halfspace query. The algorithm
outputs the median of these m values.

Theorem 6 ([8]). Let

n ≥ log(1/δ) + log m + (k − 1) log(1/γ) + mO(1/γ)k−1

ε2α

Then the above algorithm is (ε, γ, δ)-useful while maintaining α-differential pri-
vacy for a database of size n. The algorithm runs in time poly(log(1/δ),
1/ε, 1/α, b, d) for constant γ.

5 General Learning Theory Results

We briefly outline three general results regarding what can be learned privately
in the interactive model.

We begin with a result of Blum, Dwork, McSherry and Nissim, showing that
anything learnable in the statistical queries learning model can also be effi-
ciently privately learned interactively [7]. We then move to results that ignore
computational issues, showing that the exponential mechanism of McSherry and
Talwar [35] can be used to

1. Privately learn anything that is PAC learnable [32]; and
2. Generate, for any class of functions C with polynomial VC dimension, a

differentially private “synthetic database” that gives “good” answers to any
query in C [8].

The use of the exponential mechanism in this context is due to Kasiviswanathan,
Lee, Nissim, Raskhodnikova, and Smith [32].

5.1 Emulating the Statistical Query Model

The Statistical Query (SQ) model, proposed by Kearns in [10], is a framework for
examining statistical algorithms executed on samples drawn independently from
an underlying distribution. In this framework, an algorithm specifies predicates
f1, . . . , fk and corresponding accuracies τ1, . . . , τk, and is returned, for 1 ≤ i ≤
k, the expected fraction of samples satisfying fi, to within additive error τi.
Conceptually, the framework models drawing a sufficient number of samples so
that the observed count of samples satisfying each fi is a good estimate of the
actual expectation.

The statistic/al queries model is most commonly used in the computational
learning theory community, where the goal is typically to learn a (in this case,
Boolean) concept, that is, a predicate on the data, to within a certain degree of
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accuracy. Formally, an algorithm δ-learns a concept c if it produces a predicate
such that the probability of misclassification under the latent distribution is at
most 1 − δ.

Blum, Dwork, McSherry, and Nissim have shown that any concept that is
learnable in the statistical query model is privately learnable using the equivalent
algorithm on a so-called “SuLQ” database [7]; the proof is not at all complicated.
Reformulting these results using the slightly different technology presented in the
current survey the result is even easier to argue.

Assume we have an algorithm in the SQ model that makes the k statistical
queries f1, . . . , fk, and let τ = min{τ1, . . . , τk} be the minimum required toler-
ance in the SQ algorithm. Assume that n, the size of the database, is known.
In this case, we can compute the answer to fi by asking the predicate/counting
query corresponding to fi, call it pi, and dividing the result by n. Thus, we are
dealing with a query squence of sensitivity at most k.

Let b = k/ε. Write τ = ρ/n, for ρ to be determined later, so that if the noise
added to the true answer when the counting query is pi has magnitude bounded
by ρ, the response to the statistical query is within tolerance τ .

We want to find ρ so that the probability that a response has noise magnitude
at least ρ is bounded by δ/k, when the noise is generated according to Lap(k/ε).
The Laplace distribution is symmetric, so it is enough to find x < 0 such that
the cumulative distribution function at x is bounded by δ/2k:

1
2
e−|x|/b <

δ

2k

By a straightforward calculation, this is true provided |x| > b ln(k/δ), ie, when
|x| > (k/ε) ln(k/δ). We therefore set ρ > (k/ε) ln(k/δ). So long as ρ/n < τ , or,
more to the point, so long as n > ρ/τ , we can emulate the SQ algorithm.

This analysis only takes into account noise introduced by K; that is, it assumes
1
n

∑n
i=1 fj(di) = Prx∈RD[fj(x)], 1 ≤ j ≤ k, where D is the distribution on

examples. The results above apply, mutatis mutandis, when we assume that the
rows in the database are drawn iid according to D using the well known fact that
taking n > τ−2 log(k/δ) is sufficient to ensure tolerance τ with probability at
least 1 − δ for all fj, 1 ≤ j ≤ k, simultaneously. Replacing τ by τ/2 everywhere
and finding the maximum lower bound on n handles both types of error.

5.2 Private PAC Learning

The results in this section are due to Kasiviswanathan, Lee, Nissim, Raskhod-
nikova, and Smith [32]. We begin with an informal and incomplete review of
the concept of probably-appproximately-correct (PAC) learning, a notion due to
Valiant [47].

Consider a concept t : X −→ Y that assigns to each example taken from
the domain X a label from the range Y . As in the previous section, a learning
algorithm is given labeled examples drawn from a distribution D, labeled by a
target concept; the goal is to produce an hypothesis h : X −→ Y from a specified
hypothesis class, with small error, defined by:
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error(h) = Pr
x∈RD

[t(x) �= h(x)].

A concept class is a set of concepts. Learning theory asks what kinds of
concept classes are learnable. Letting α, β denote two error bounds, if the target
concept belongs to C, then the goal is to minimize error, or at least to ensure
that with probability 1 − β the error is bounded by α. This is the setting of
traditional PAC learning. If the target concept need not belong to C, the goal
is to produce an hypothesis that, intuitively, does almost as well as any concept
in C: Letting OPT = minc∈C{error(c)}, we want

Pr[error(h) ≤ OPT + α] ≥ 1 − β,

where the probability is over the samples seen by the learner, and the learner’s
randomness. This is known as agnostic learning.3

Following [32] we will index concept classes, domains, and ranges by the length
d of their binary encodings. For a target concept t : Xd → Yd and a distribution
D over Xd, let Z ∈ Dn be a database containing n labeled independent draws
from D. That is, Z contains n pairs (xi, yi) where yi = t(xi), 1 ≤ i ≤ n. The
goal of the data analyst will be to agnostically learn a hypothesis class C; the
goal of the curator will be to ensure ε-differential privacy.

Theorem 7 ([32]). Every concept class C is ε-differentially pivately agnosti-
cally learnable using hypothesis class H = C with n ∈ O(log Cd + log(1β) ·
max{ 1

εα , 1
α2 }). The learner may not be efficient.

The theorem is proved using the exponential mechanism of McSherry and Tal-
war, with utility function

u(Z, h) = −|{i : t(xi) �= h(xi)}|

for Z ∈ (X × Y )n, h ∈ Hd. Note that u has sensitivity 1, since changing any
element in the database can change the number of misclassifications by at most
1. The (inefficient) algorithm outputs c ∈ Hd with probability proportional to
exp(εu(Z, c)/2). Privacy follows from the properties of the exponential mecha-
nism and the small sensitivity of u. Accuracy (low error with high probablity) is
slightly more difficult to argue; the proof follows, intuitively, from the fact that
outputs are produced with probability that falls exponentially in the number of
misclassifications.

5.3 Differentially Private Queries of Classes with Polynomial VC
Dimension

Our last example is due to Blum, Ligett, and Roth [8] and was inspired by the
result of the previous section, This learning result again ignores computational
3 The standard agnostic model has the input drawn from an arbitrary distribution

over labeled examples (x, y) (that is, the label need not be a deterministic function
of the example). The error of a hypothesis is defined with respect to the distribution
(i.e. probability that y �= h(x)). The results (and proofs) of Kasiviswanathan et al.
stay the same in this more general setting.
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efficiency, using the exponential mechanism of McSherry and Talwar. The ob-
ject here is to release a “synthetic dataset” that ensures “reasonably” accurate
answers to all queries in a specific class C. The reader is assumed to be familiar
with the Vapnick-Chervonenkis (VC) dimension of a class of concepts. Roughly
speaking, it is a measure of how complicated a concept in the class can be.

Definition 6 ([8]). A database mechanism A is (γ, δ)-useful for queries in class
C if with probability 1−δ, for every Q ∈ C and every database D, for D̂ = A(D),
|Q(D̂) − Q(D)| ≤ γ.

Let C be a fixed class of queries. Given a database D ∈ ({0, 1}d)n of size n,
where n is sufficiently large (as a function of the VC dimension of C, as well
as of ε and δ), the goal is to produce produce a synthetic dataset D̂ that is
(γ, δ)-useful for queries in C, while ensuring ε-differential privacy.

The synthetic dataset will contain m = O(VC dim(C)/γ2) d-tuples. It is
chosen according to the exponential mechanism using the utility function

u(D, D̂) = − max
h∈C

∣
∣
∣h(D) − n

m
h(D̂)

∣
∣
∣ .

Theorem 8 ([8]). For any class of functions C, and any database D ⊂ {0, 1}d

such that

|D| ≥ O

(
d · VC dim(C)

γ3ε
+

log(1/δ)
εγ

)

we can output an (γ, δ)-useful database D̂ that preserves ε-differential privacy.
Note that the algorithm is not necessarily efficient.

Blum et al.note that this suffice for (γ, δ)-usefulness because the set of all databases
of this size forms a γ-cover with respect to C of the set of all possible databases.
One can resolve the fact that, since |D̂| < |D|, the number of database entries
matching any query will be proportionately smaller by considering the fraction of
entries matching any query.

6 Concluding Remarks

The privacy mechanisms discussed herein add an amount of noise that grows
with the complexity of the query sequence applied to the database. Although
this can be ameliorated to some extent using Gaussian noise instead of Laplacian,
an exciting line of research begun by Dinur and Nissim [13] (see also [17, 20])
shows that this increase is essential. To a great extent, the results of Dinur and
Nissim drove the development of the mechanism K and the entire interactive
approach advocated in this survey. A finer analysis of realistic attacks, and a
better understanding of what failure to provide ε-differential privacy can mean
in practice, are needed in order to sharpen these results – or to determine this
is impossible, in order to understand the how to use these techniques for all but
very large, “internet scale,” data sets.
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Abstract. If we measure the position of a point particle, then we will
come about with an interval [an, bn] into which the point falls. We make
use of a Gedankenexperiment to find better and better values of an

and bn, by reducing their relative distance, in a succession of intervals
[a1, b1] ⊃ [a2, b2] ⊃ . . . ⊃ [an, bn] that contain the point. We then use such
a point as an oracle to perform relative computation in polynomial time,
by considering the succession of approximations to the point as suitable
answers to the queries in an oracle Turing machine. We prove that, no
matter the precision achieved in such a Gedankenexperiment, within the
limits studied, the Turing Machine, equipped with such an oracle, will be
able to compute above the classical Turing limit for the polynomial time
resource, either generating the class P/poly either generating the class
BPP//log∗, if we allow for an arbitrary precision in measurement or just
a limited precision, respectively. We think that this result is astonishingly
interesting for Classical Physics and its connection to the Theory of Com-
putation, namely for the implications on the nature of space and the per-
ception of space in Classical Physics. (Some proofs are provided, to give
the flavor of the subject. Missing proofs can be found in a detailed long
report at the address http://fgc.math.ist.utl.pt/papers/sm.pdf.)

1 Introducing a Gedankenexperiment

If a physical experiment were to be coupled with algorithms, would new functions
and relations become computable or, at least, computable more efficiently?
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To pursue this question, we imagine using an experiment as an oracle to
a Turing machine, which on being presented with, say, xi as its i-th query,
returns yi to the Turing machine. In this paper we will consider this idea of
coupling experiments and Turing machines in detail. The first thing to note is
that choosing a physical experiment to use as an oracle is a major undertaking.
The experiment comes with plenty of theoretical baggage: concepts of equipment,
experimental procedure, instruments, measurement, observable behaviour, etc.

In earlier work [5], an experiment was devised to measure the position of the
vertex of a wedge to arbitrary accuracy, by scattering particles that obey some
laws of elementary Newtonian kinematics. Let SME denote this Scatter Machine
Experiment. The Newtonian theory was specified precisely and the SME was
put under a theoretical microscope: theorems were proved that showed that the
experiment was able to compute positions that were not computable by algorithms.
Indeed, the SME could, in principle, measure any real number. Thus, [5] contains
a careful attempt to answer the question above, in the positive; it does so using
a methodology developed and applied in earlier studies [3,4]. To address the
question, here we propose to use the SME as an oracle to a Turing machine and
to classify the computational power of the new type of machine, which we call
an analogue-digital scatter machine. Given the results in [5], we expect that the
use of SME will enhance the computational power and efficiency of the Turing
machine.

To accomplish this, we must establish some principles that do not depend upon
the SME. In a Turing machine, the oracle is normally specified very abstractly
by a set. Here we have to design a new machine where the oracle is replaced by
a specification of some physical equipment and a procedure for operating it. The
design of the new machine depends heavily upon the interface and interaction
between the experiment and the Turing machine.

Following some insights provided by the work of Hava T. Siegelmann and
Eduardo Sontag [6], we use non uniform complexity classes of the form B/F ,
where B is the class of computations and F is the advice class. Context and proofs
are, however, different. Examples of interest for B are P and BPP ; examples
for F are poly and log. The power of the machines correspond with the choice
of different B/F .

2 The Scatter Machine

Experiments with scatter machines are conducted exactly as described in [5],
but, for convenience and to use them as oracles, we need to review and clar-
ify some points. The scatter machine experiment (SME) is defined within the
Newtonian mechanics, comprising of the following laws and assumptions: (a)
point particles obey Newton’s laws of motion in the two dimensional plane, (b)
straight line barriers have perfectly elastic reflection of particles, i.e., kinetic en-
ergy is conserved exactly in collisions, (c) barriers are completely rigid and do
not deform on impact, (d) cannons, which can be moved in position, can project
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Fig. 1. A schematic drawing of the scatter machine

a particle with a given velocity in a given direction, (e) particle detectors are
capable of telling if a particle has crossed a given region of the plane, and (f) a
clock measures time.

The machine consists of a cannon for projecting a point particle, a reflecting
barrier in the shape of a wedge and two collecting boxes, as in Figure 1.

The wedge, our motionless point particle, can be at any position. But we
will assume it is fixed for the duration of all the experimental work. Under the
control of a Turing machine, the cannon will be moved and fired repeatedly to
find information about the position of the wedge. Specifically, the way the SME is
used as an oracle in Turing machine computations, is this: a Turing machine will
set a position for the canon as a query and will receive an observation about the
result of firing the cannon as a response. For each input to the Turing machine,
there will be finitely many runs of the experiment.

In Figure 1 the parts of the machine are shown in bold lines, with description
and comments in narrow lines. The double headed arrows give dimensions in
meters, and the single headed arrows show a sample trajectory of the particle
after being fired by the cannon. The sides of the wedge are at 45◦ to the line
of the cannon, and we take the collision to be perfectly elastic, so the particle
is deflected at 90◦ to the line of the cannon, and hits either the left or right
collecting box, depending on whether the cannon is to the left or right of the
point of the wedge. Since the initial velocity is 10 m/s, the particle will enter
one of the two boxes within 1 second of being fired. Any initial velocity v > 0
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will work with a corresponding waiting time. The wedge is sufficiently wide so
that the particle can only hit the 45◦ slopping sides, given the limit of traverse
of the cannon. The wedge is sufficiently rigid so that the particle cannot move
the wedge from its position. We make the further assumption, without loss of
generality (see the report mentioned in the abstract) that the vertex of the wedge
is not a dyadic rational.

Suppose that x is the arbitrarily chosen, but non dyadic and fixed, position
of the point of the wedge. For a given cannon position z, there are two outcomes
of an experiment: (a) one second after firing, the particle is in the right box —
conclusion: z > x —, or (b) one second after firing, the particle is in the left box
— conclusion: z < x. The SME was designed to find x to arbitrary accuracy
by altering z, so in our machine 0 ≤ x ≤ 1 will be fixed, and we will perform
observations at different values of 0 ≤ z ≤ 1.

Consider the precision of the experiment. When measuring the output state
the situation is simple: either the ball is in one tray or in the other tray. Errors
in observation do not arise. Now consider some of the non-trivial ways in which
precision depends on the positions of the cannon. There are different postulates
for the precision of the cannon, and we list some in order of decreasing strength:

Definition 2.1. The SME is error-free if the cannon can be set exactly to any
given dyadic rational number. The SME is error-prone with arbitrary precision
if the cannon can be set only to within a non-zero, but arbitrarily small, dyadic
precision. The SME is error-prone with fixed precision if there is a value ε > 0
such that the cannon can be set only to within a given precision ε.

The Turing machine is connected to the SME in the same way as it would be
connected to an oracle: we replace the query state with a shooting state (qs), the
“yes” state with a left state (ql), and the “no” state with a right state (qr). The
resulting computational device is called the analog-digital scatter machine, and
we refer to the vertex position of an analog-digital scatter machine when mean
to discuss the vertex position of the corresponding SME.

In order to carry out a scatter machine experiment, the analog-digital scatter
machine will write a word z in the query tape and enter the shooting state.
This word will either be “1”, or a binary word beginning with 0. We will use z
indifferently to denote both a word z1 . . . zn ∈ {1} ∪ {0s : s ∈ {0, 1}∗} and the
corresponding dyadic rational

∑n
i=1 2−i+1zi ∈ [0, 1]. In this case, we write |z| to

denote n, i.e., the size of z1 . . . zn, and say that the analog-digital scatter machine
is aiming at z. The Turing machine computation will then be interrupted, and
the SME will attempt to set the cannon at z. The place where the cannon is
actually set at depends on whether the SME is error-free or error-prone. If the
SME is error-free, the cannon will be placed exactly at z. If the SME is error-
prone with arbitrary precision, then the cannon will be placed at some point in
the interval [z − 2−|z|−1, z +2−|z|−1] with a uniform probability distribution over
this interval. This means that for different words representing the same dyadic
rational, the longest word will give the highest precision. If the SME is error-
prone with fixed dyadic precision ε, then the cannon will be placed somewhere
in the interval [z − ε, z + ε], again with a uniform probability distribution.
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After setting the cannon, the SME will fire a projectile particle, wait one
second and then check if the particle is in either box. If the particle is in the
right collecting box, then the Turing machine computation will be resumed in
the state qr. If the particle is in left box, then the Turing machine computation
will be resumed in the state ql. With this behaviour, we obtain three distinct
analog-digital scatter machines.

Definition 2.2. An error-free analog-digital scatter machine is a Turing ma-
chine connected to an error-free SME. In a similar way, we define an error-
prone analog-digital scatter machine with arbitrary precision, and an error-prone
analog-digital scatter machine with fixed precision.

The error-free analog-digital scatter machine has a very simple behaviour. If such
a machine, with vertex position x ∈ [0, 1], aims at a dyadic rational z ∈ [0, 1],
we are certain that the computation will be resumed in the state ql if z < x,
and that it will be resumed in the state qr when z > x. We define the following
decision criterion.

Definition 2.3. Let A ⊆ Σ∗ be a set of words over Σ. We say that an error-
free analog-digital scatter machine M decides A if, for every input w ∈ Σ∗, w
is accepted if w ∈ A and rejected when w /∈ A. We say that M decides A in
polynomial time, if M decides A, and there is a polynomial p such that, for
every w ∈ Σ∗, the number of steps of the computation is bounded by p(|w|).

The error-prone analog-digital scatter machines, however, do not behave in a
deterministic way. If such a machine aims the cannon close enough to the vertex
position, and with a large enough error, there will be a positive probability for
both the particle going left or right. If the vertex position is x, and the error-prone
analog-digital scatter machine M aims the cannon at z, then the probability of
the particle going to the left box, denoted by P(M ← left), is given by:

P(M ← left) =

⎧
⎨

⎩

1 if z < x − ε
1
2 + x−z

2ε if x − ε ≤ z ≤ x̃ + ε
0 if z > x̃ + ε

The value ε will be either 2−|z|−1 or a fixed value, depending on the type of
error-prone analog-digital scatter machine under consideration. The probability
of the particle going to the right box is P(M ← right) = 1 − P(M ← left).
We can thus see that a deterministic decision criteria is not suitable for these
machines. For a set A ⊆ Σ∗, an error-prone analog-digital scatter machine M,
and an input w ∈ Σ∗, let the error probability of M for input w be either the
probability of M rejecting w, if w ∈ A, or the probability of M accepting w, if
w �∈ A.

Definition 2.4. Let A ⊆ Σ∗ be a set of words over Σ. We say that an error-
prone analog-digital scatter machine M decides A if there is a number γ < 1

2 ,
such that the error probability of M for any input w is smaller than γ. We say
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that M decides A in polynomial time, if M decides A, and there is a polyno-
mial p such that, for every input w ∈ Σ∗, the number of steps in every correct
computation is bounded by p(|w|).

3 The Relevant Computational Classes

We will see, in the sections that follow, that the non-uniform complexity classes
give the most adequate characterisation of the computational power of the
analog-digital scatter machine. Non-uniform complexity classifies problems by
studying families of finite machines (e.g., circuits) {Cn}n∈N, where each Cn de-
cides the restriction of some problem to inputs of size n. It is called non-uniform,
because for every n �= m the finite machines Cn and Cm can be entirely unrelated,
while in uniform complexity the algorithm is the same for inputs of every size.
A way to connect the two approaches is by means of advice classes: one assumes
that there is a unique algorithm for inputs of every size, which is aided by cer-
tain information, called advice, which may vary for inputs of different sizes. The
advice is given, for each input w, by means of function f : N → Σ∗, where Σ∗ is
the input alphabet.

Definition 3.1. Let B be a class of sets and F a class of functions. The advice
class B/F is the class of sets A for which some B ∈ B and some f ∈ F are such
that, for every w, w ∈ A if and only if 〈w, f(|w|)〉 ∈ B.

F is called the advice class and f is called the advice function. Examples for B are
the well known classes P , or BPP (see [1, Chapter 6]). We will be considering
two instances for the class F : poly is the class of functions with polynomial
size values, i.e., poly is the class of functions f : N → Σ∗ such that, for some
polynomial p, |f(n)| ∈ O(p(n)); log is the class of functions g : N → Σ∗ such
that |g(n)| ∈ O(log(n)). We will also need to treat prefix non-uniform complexity
classes. For these classes we may only use prefix functions, i.e., functions f such
that f(n) is always a prefix of f(n + 1). The idea behind prefix non-uniform
complexity classes is that the advice given for inputs of size n may also be used
to decide smaller inputs.

Definition 3.2. Let B be a class of sets and F a class of functions. The prefix
advice class B/F∗ is the class of sets A for which some B ∈ B and some prefix
function f ∈ F are such that, for every length n and input w, with |w| ≤ n,
w ∈ A if and only if 〈w, f(n)〉 ∈ B.

For the non-deterministic classes we need a refined definition:

Definition 3.3. BPP//poly is the class of sets A for which a probabilistic poly-
nomial Turing machine M, a function f ∈ poly, and a constant γ < 1

2 exist
such that M rejects 〈w, f(|w|)〉 with probability at most γ if w ∈ A and accepts
〈w, f(|w|)〉 with probability at most γ if w /∈ A. A similar definition applies to
the class BPP// log ∗.
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It can be shown that BPP//poly = BPP/poly, but it is unknown whether
BPP/ log ∗ ⊆ BPP// log ∗. It is important to notice that the usual non-uniform
complexity classes contain undecidable sets, e.g., P/poly contains the halting set.

4 Infinite Precision

first gedankenexperiment: the cannon can be placed at some dyadic rational
with infinite precision. I.e., we began by investigating the error-free machine,
which gives the simplest situation.

For every n ∈ N and x ∈ R, let x�n be the rational number obtained by
truncating x after the first n digits in its binary expansion. Then we showed the
following result:

Proposition 4.1. Let M be an error-free analog-digital scatter machine with
the vertex placed at the position x. Let M̃ be the same machine, but with the
vertex placed at the position x̃ = x �t. Then, for any input w, M and M̃, after
t steps of computation, make the same decisions.

We may now sketch the proof of the following main theorem of this section.

Theorem 4.1. The class of sets decided by error-free analog-digital scatter ma-
chines in polynomial time is exactly P/poly.

The sketch of the proof is done by the way of polynomial advice. Let A be a
set in P/poly, and, by definition, let B ∈ P , f ∈ poly be such that w ∈ A ⇐⇒
〈w, f(|w|)〉 ∈ B. Let f̃ : N → Σ∗ be a function, also in poly, such that, if the
symbols of f(n) are ξ1ξ2 . . . ξp(n), then f̃(n) = 0ξ10ξ2 . . . 0ξp(n) We can create
an error-free analog-digital scatter machine which also decides A, setting the
vertex at the position x = 0.f̃(1)11f̃(2)11f̃(3)11 . . . Given any input w of size
n, the error-free analog-digital scatter machine Sx can use the bisection method
to obtain f(n) in polynomial time. Then the machine uses the polynomial-time
algorithm which decides B, and accepts if and only if 〈w, f(n)〉 is in B. Thus we
have shown that an error-free analog-digital scatter machine can decide any set
in P/poly in polynomial time.

As for the converse, let C be any set decided in polynomial time by an error-
free analog-digital scatter machine with the vertex at the position x. Proposition
4.1 ensures that to decide on any input w, the machine only makes use of p(|w|)
digits of x, where p is a polynomial. Thus we can see that the set must be in
P/poly, using the advice function g ∈ poly, given by g(n) = x�p(n).

We then conclude that measuring the position of a motionless point particle in
Classical Physics, using a infinite precision cannon, 1 in polynomial time, we are
deciding a set in P/poly. Note that, the class P/poly includes the Halting Set.
But, most probably, if we remove the infinite precision criterion for the cannon,
we will loose accuracy of observations, and we will loose the computational power
of our physical oracle...
1 Remember that by infinite precision we mean the cannon to be settle at a rational

point with infinite precision.
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5 From Infinite to Unlimited Precision

second gedankenexperiment: the cannon can be placed at some dyadic ra-
tional z up to some dyadic arbitrary precision ε, let us say ε = 2−|z|−1. I.e.,
we will be investigating the error-prone machine, which gives the next sim-
plest situation. We will conclude that the computational power of these ma-
chines is not altered by considering such a small error, since they decide exactly
BPP//poly = BPP/poly = P/poly in polynomial time. As in Section 4, we
showed that only a number of digits of the vertex position linear in the length of
computation influences the decision of such an error-prone analog-digital scat-
ter machine. Notice that the behaviour of the error-prone analog-digital scatter
machines is probabilistic, because if the machine shoots close enough to the mo-
tionless point particle position — the vertex —, and with a large enough error
ε, the projectile can go both left or right with a non-zero probability. Thus, we
can not ensure that when we truncate the vertex position to O(t(n)) digits, the
state of the machine will be exactly the same after t(n) steps. Instead we showed
that if a machine decides in time t(n), then by truncating the vertex position to
O(t(n)) digits, the machine will decide the same set for inputs up to size n. In the
following statement, note that if a set is decided by an error-prone analog-digital
scatter machine with error probability bounded by γ, we may assume without
loss of generality that γ < 1

4 .

Proposition 5.1. Let M be an error-prone analog-digital scatter machine with
arbitrary precision, with the vertex at x, deciding some set in time t(n) with
error probability bounded by γ < 1

4 . Let M̃ be an error-prone machine with
arbitrary precision, with the same finite control as M and with the vertex placed
at x̃ = x �5t(n). Then M and M̃ make the same decision on every input of size
smaller or equal to n.

This allows us to show the following.

Proposition 5.2. Every set decided by an error-prone analog-digital scatter
machine with arbitrary precision in polynomial time is in BPP//poly.

Let A be a set decided by a precise error-free analog-digital scatter machine
M in polynomial time p, and with a error probability bounded by 1

4 . Let x be
the position of the vertex of M. We use the advice function f ∈ poly, given by
f(n) = x�5p(n), to construct a probabilistic Turing machine M̃ which decides A
in polynomial time.

Given any dyadic rational x̃ ∈ [0, 1], the machine M̃ can carry out a Bernoulli
trial X with an associated probability P(X = 1) = x̃. If x̃ has the binary expan-
sion ξ1 . . . ξk, the machine M̃ tosses its balanced coin k times, and constructs
a word τ1 . . . τk, where τi is 1 if the coin turns up heads and 0 otherwise. The
Bernoulli trial will have the outcome 1 if ξ1 . . . ξk < τ1 . . . τk, and 0 otherwise,
and this will give the desired probability.

The probabilistic machine M̃ will decide if w ∈ A by simulating M on the
input w with the vertex placed at the position x̃ = x� 5p(n). In order to mimic
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the shooting of the cannon from the position z, which should have an error
ε = 2−|z|−1, the machine will carry out a Bernoulli trial X with an associated
dyadic probability.

Then M̃ will simulate a left hit when X = 1 and a right hit when X = 0.
As we have seen in the previous Proposition 5.1, M will, when simulated in this
way, decide the same set in polynomial time and with bounded error probability.

In a way similar to the first part of the proof of Theorem 4.1 we can prove
the statement:

Proposition 5.3. An error-prone analog-digital scatter machine with arbitrary
precision can obtain n digits of the vertex position in O(n2) steps.

The conclusion for this section comes with the following theorem.

Theorem 5.1. The class of sets decided by error-prone analog-digital scatter
machines with arbitrary precision in polynomial time is exactly BPP//poly =
P/poly.

It seems that measurement in more reasonable conditions do not affect the com-
putational power of a motionless point particle position taken as oracle. I.e.,
making measurements in Classical Physics with incremental precision decide
languages above the Turing limit, namely the halting set. But, surely, the com-
putational power of a fuzzy motionless point particle position, i.e., a point to
which we have access only with a finite a priori precision in measurement, will
drop above the Turing limit...

6 A Priori Finite Precision

third gedankenexperiment: the cannon can be placed at some dyadic ratio-
nal z up to some dyadic fixed precision ε. We will show that such machines may,
in polynomial time, make probabilistic guesses of up to a logarithmic number of
digits of the position of the vertex. We will then conclude that these machines
decide exactly BPP// log ∗.

Proposition 6.1. For any real value δ < 1
2 , prefix function f ∈ log, there is

an error-prone analog-digital scatter machine with fixed precision which obtains
f(n) in polynomial time with an error of at most δ.

The proof will take two steps. First we show that if f is a prefix function in log,
then there is a real value 0 ≤ r ≤ 1 such that it is possible to obtain the value
f(n) from a logarithmic number of digits of r. Then we will show that by carefully
choosing the vertex position, we can guess a logarithmic number of digits of r
with an error rate δ. If f(n) is ultimately constant, then the result is trivial, and
so we assume it is not so. After the work of [2], we can assume, without loss of
generality, that there exist a, b ∈ N such that |f(n)| = �a log n + b�.

Since f is a prefix function, we can consider the infinite sequence ϕ which is
the limit of f(n) as n → ∞. Let ϕn be the n-th symbol (1 or 0) in this sequence,
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and set r =
∑∞

n=1 ϕn2−n. Then, since f is not ultimately constant, the digits in
the binary expansion of r are exactly the symbols of ϕ. Then the value f(n) can
be obtained from the first �a logn + b� digits of r.

The real number r is a value strictly between 0 and 1. Now suppose that ε is the
error when positioning the cannon. We then set the vertex of our analog-digital
scatter machine at the position x = 1

2 − ε + 2rε. Our method for guessing digits
of r begins by commanding the cannon to shoot from the point 1

2 a number z of
times. If the scatter machine experiment is carried out by entering the shooting
state after having written the word 01 in the query tape, the cannon will be
placed at some point in the interval [12 − ε, 1

2 + ε], with a uniform distribution.
Then we conclude that the particle will go left with a probability of r and go
right with a probability of 1 − r.

After shooting the cannon z times in this way, we count the number of times
that the particle went left, which we denote by L. The value r̃ = L

z will be our
estimation of r. In order for our estimation to be correct in the sufficient number
of digits, it is required that |r− r̃| ≤ 2−|f(n)|−1. By shooting the cannon z times,
we have made z Bernoulli trials. Thus L is a random variable with expected value
μ = zr and variance ν = zr(1−r). By Chebyshev’s inequality, we conclude that,
for every Δ,

P(|L − μ| > Δ) = P(|zr̃ − zr| > Δ) = P

(

|r̃ − r| >
Δ

z

)

≤ ν

Δ2
.

Choosing Δ = z2−|f(n)|−1, we get

P(|r̃ − r| > 2−|f(n)|−1) ≤ r(1 − r)22|f(n)|+2

z

And so, the probability of making a mistake can be bounded to δ by making
z > δ−1r(1 − r)22a log n+2b+2 ∈ O(n2a) experiments.

The proposition above will guarantee us that for every fixed error ε we can
find a vertex position that will allow for an SME to extract information from this
vertex position. It does not state that we can make use of any vertex position
independently of the fixed error ε. It can be shown, however, that if ε is a dyadic
rational, then we may guess O(log n) digits of the vertex position in polynomial
time.

Proposition 6.2. The class of sets decided in polynomial time by error-prone
analog-digital scatter machines with a priori fixed precision is exactly BPP//log ∗.
Since the class BPP// log ∗ include non-recursive sets, measurements in this
more realistic condition still decide super-Turing languages.

We can even think about changing the (uniform) probability distribution in
the last two sections, making experiments closer and closer to reality...

7 Conclusion

We have seen that every variant of the analogue-digital scatter machine has a hy-
percomputational power. For instance, if K = {0n : the Turing machine coded
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by n halts on input 0}, then K can be decided, in polynomial time, either by
an error-free analog-digital scatter machine, or by an error-prone analog-digital
scatter machine with arbitrary precision. It is obvious that the hypercomputa-
tional power of the analog-digital scatter machine arises from the precise nature
of the vertex position. If we demand that the vertex position is a computable
real number, then the analog-digital scatter machine can compute no more than
the Turing machine, although it can compute, in polynomial time, faster than
the Turing machine, namely REC

⋂
P/poly, the recursive part of P/poly.

In order to use the scatter machine experiment as an oracle, we need to assume
that the wedge is sharp to the point and that the vertex is placed on a precise
value x. Without these assumptions, the scatter machine becomes useless, since
its computational properties arise exclusively from the value of x. The existence
of an arbitrarily sharp wedge seems to contradict atomic theory, and for this
reason the scatter machine is not a valid counterexample to the physical Church–
Turing thesis. If this is the case, then what is the relevance of the analog-digital
scatter machine as a model of computation? The scatter machine is relevant when
it is seen as a Gedankenexperiment. In our discussion, we could have replaced
the barriers, particles, cannons and particle detectors with any other physical
system with this behaviour. So the scatter machine becomes a tool to answer the
more general question: if we have a physical system to measure an answer to the
predicate y ≤ x, to what extent can we use this system in feasible computations?

As an open problem, besides a few other aspects of the measurement appara-
tus that we didn’t cover up in this paper, we will study a point mass in motion,
according to some physical law, like a Newtonian gravitation field, and we will
apply instrumentation to measure its position and velocity.
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Abstract. In this survey paper we give an intuitive treatment of the
discrete time quantization of classical Markov chains. Grover search and
the quantum walk based search algorithms of Ambainis, Szegedy and
Magniez et al. will be stated as quantum analogues of classical search
procedures. We present a rather detailed description of a somewhat sim-
plified version of the MNRS algorithm. Finally, in the query complexity
model, we show how quantum walks can be applied to the following
search problems: Element Distinctness, Matrix Product Verification, Re-
stricted Range Associativity, Triangle, and Group Commutativity.

1 Introduction

Searching is without any doubt one of the major problems in computer science.
The corresponding literature is tremendous, most manuals on algorithms include
several chapters that deal with searching procedures [22,14]. The relevance of
finite Markov chains (random walks in graphs) to searching was recognized from
early on, and it is still a flourishing field. The algorithm of Aleliunas et al. [4]
that solves s–t connectivity in undirected graphs in time O(n3) and in space
O(log n), and Schöning’s algorithm [33] that provides the basis of the currently
fastest solutions for 3-SAT are among the most prominent examples for that.

Searching is also a central piece in the emerging field of quantum algorithms.
Grover search [16], and in general amplitude amplification [11] are well known
quantum procedures which are provably faster than their classical counter-
part. Grover’s algorithm was used recursively by Aaronson and Ambainis [2]
for searching in grids.

Discrete time quantum walks were introduced gradually by Meyer[27,28] in
connection with cellular automata, and by Watrous in his works related to
space bounded computations [37]. Different parameters related to quantum walks
and possible speedups of classical algorithms were investigated by several re-
searchers [30,8,3,29,19,32].

The potential of discrete time quantumwalkswith respect to searching problems
was first pointed out by Shenvi, Kempe, and Whaley [34] who designed a quan-
tum walk based simulation of Grover search. Ambainis, in his seminal paper [7],

� Research supported by the European Commission IST Integrated Project Qubit
Applications (QAP) 015848, and by the ANR Blanc AlgoQP grant of the French
Research Ministry.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 31–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



32 M. Santha

used quantum walks on the Johnson graphs to settle the query complexity of the
Element Distinctness problems. Inspired by the work of Ambainis, Szegedy [35]
designed a general method to quantize classical Markov chains, and developed a
theory of quantum walk based search algorithms. A similar approach for the spe-
cific case of searching in grids was taken by Ambainis, Kempe and Rivosh [9]. The
frameworks of Ambainis and Szegedy were used in various contexts to find algo-
rithms with substantial complexity gains over simple Grover search [26,12,23,15].
In a recentwork,Magniez,Nayak,Roland andSantha [25] proposed a newquantum
walk based searchmethod that expanded the scope of the previous approaches.The
MNRS search algorithm is also conceptually simple, and improves various aspects
of many walk based algorithms.

In this survey paper we give an intuitive (though formal) treatment of the
quantization of classical Markov chains. We will be concerned with discrete time
quantum walks, the continuous case will not be covered here. Grover search and
the quantum walk based search algorithms of Ambainis, Szegedy and Magniez et
al. will be stated as quantum analogues of classical search procedures. We present
a rather detailed description of a somewhat simplified version of the MNRS al-
gorithm. Finally, in the query complexity model, we show how quantum walks
can be applied to the following search problems: Element Distinctness, Matrix
Product Verification, Restricted Range Associativity, Triangle, and Group Com-
mutativity. For a detailed introduction to quantum walks the reader is referred
to the excellent surveys of Kempe [20] and Ambainis [5]. Another survey on
quantum search algorithms is also due to Ambainis [6].

2 Classical Search Algorithms

At an abstract level, any search problem may be cast as the problem of finding
a marked element from a set X . Let M ⊆ X be the set of marked elements,
and let ε be a known lower bound on |M |/|X |, the fraction of marked elements,
whenever M is non-empty. If no further information is available on M , we can
choose ε as 1/|X |. The simplest approach, stated in Search Algorithm 1, to
solve this problem is to repeatedly sample from X uniformly until a marked
element is picked, if there is any.

Search Algorithm 1
Repeat for t = O(1/ε) steps
1. Sample x ∈ X according to the uniform distribution.
2. If x is in M then output it and stop.

More sophisticated approaches might use a Markov chain on the state space
X for generating the samples. In that case, to generate the next sample, the
resources expended for previous generations are often reused.

Markov chains can be viewed as random walks on directed graphs with
weighted edges. We will identify a Markov chain with its transition matrix
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P = (pxy). A chain is irreducible if every state is accessible from every other
state. An irreducible chain is ergodic if it is also aperiodic. The eigenvalues of a
Markov chain are at most 1 in magnitude. By the Perron-Frobenius theorem, an
irreducible chain has a unique stationary distribution π = (πx), that is a unique
left eigenvector π with eigenvalue 1 and positive coordinates summing up to 1. If
the chain is ergodic, the eigenvalue 1 is the only eigenvalue of P with magnitude
1. We will denote by δ = δ(P ) the eigenvalue gap of P , that is 1 − |λ|, where
λ is an eigenvalue with the second largest magnitude. It follows that when P is
ergodic then δ > 0.

The time-reversed Markov chain P ∗ of P is defined by the equations πxpxy =
πyp∗yx. The Markov chain P is said to be reversible if P ∗ = P . Reversible chains
can be viewed as random walks on undirected graphs with weighted edges, and
in these chains the probability of a transition from a state x to another state y in
the stationary distribution is the same as the probability of the transition in the
reverse direction. The Markov chain P is symmetric if P = P t where P t denotes
the transposed matrix of P . The stationary distribution of symmetric chains
is the uniform distribution. They can be viewed as random walks on regular
graphs, and they are time-reversible.

We consider two search algorithms based on some ergodic and symmetric chain
P . Search Algorithm 2 repeatedly samples from approximately stationary
distributions, and checks if the element is marked. To get a sample the Markov
chain is simulated long enough to mix well. Search Algorithm 3 is a greedy
variant: a check is performed after every step of the chain.

Search Algorithm 2
1. Initialize x to a state sampled from the uniform distribution over X .
2. Repeat for t2 = O(1/ε) steps

(a) If the element reached in the previous step is marked then output
it and stop.

(b) Simulate t1 = O(1/δ) steps of P starting with x.

Search Algorithm 3
1. Initialize x to a state sampled from the uniform distribution over X .
2. Repeat for t = O(1/εδ) steps

(a) If the element reached in the previous step is marked then output
it and stop.

(b) Simulate one step of P starting with x.

We state formally the complexity of the three algorithms to clarify their differ-
ences. They will maintain a data structure d that associates some data d(x) with
every state x ∈ X . Creating and maintaining the data structure incurs a certain
cost, but the data d(x) can be helpful to determine if x ∈ M . We distinguish
three types of cost.
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Setup cost S: The cost to sample x ∈ X according to the uniform distri-
bution, and to construct d(x).
Update cost U: The cost to simulate a transition from x to y according
to P , and to update d(x) to d(y).
Checking cost C: The cost of checking if x ∈ M using d(x).

The cost may be thought of as a vector listing all the measures of complexity of
interest, such as query and time complexity. The generic bounds on the efficiency
of the three search algorithms can be stated in terms of the cost parameters.

Proposition 1. Let P be an ergodic and symmetric Markov chain on X. Then
all three algorithms find a marked element with high probability if there is any.
The respective costs incurred by the algorithms are of the following order:

1. Search Algorithm 1: (S + C)/ε,
2. Search Algorithm 2: S + (U/δ + C)/ε,
3. Search Algorithm 3: S + (U + C)/δε.

The generic bound of O(1/δε) in Search Algorithm 3 on the hitting time is
not always optimal, which in some cases, for example in the 2-dimensional grid,
can be significantly smaller.

3 Quantum Analogue of a Classical Markov Chain

We define a quantum analogue of an arbitrary irreducible Markov chain P as it is
given by Magniez et al. [25]. This definition is based on and slightly extends the
concept of quantum Markov chain due to Szegedy [35]. The latter was inspired
by an earlier notion of quantum walk due to Ambainis [7]. We also point out
that a similar process on regular graphs was studied by Watrous [37].

The quantum walk may be thought of as a walk on the edges of the original
Markov chain, rather than on its vertices. Thus, its state space is a vector sub-
space of H = C

X×X ∼= C
X ⊗ C

X . For a state |ψ〉 ∈ H, let Πψ = |ψ〉〈ψ| denote
the orthogonal projector onto Span(|ψ〉), and let ref(ψ) = 2Πψ − Id denote the
reflection through the line generated by |ψ〉, where Id is the identity operator
on H. If K is a subspace of H spanned by a set of mutually orthogonal states
{|ψi〉 : i ∈ I}, then let ΠK =

∑
i∈I Πψi be the orthogonal projector onto K, and

let ref(K) = 2ΠK−Id be the reflection through K. Let A = Span(|x〉|px〉 : x ∈ X)
and B = Span(|p∗y〉|y〉 : y ∈ X) be vector subspaces of H, where

|px〉 =
∑

y∈X

√
pxy |y〉 and |p∗y〉 =

∑
x∈X

√
p∗yx |x〉.

Definition 1 (Quantum walk). The unitary operation W (P ) = ref(B)·ref(A)
defined on H by is called the quantum walk based on the classical chain P .

Let us give some motivations for this definition. Classical random walks do not
quantize in the space of the vertices. The standard way advocated by several
papers (see the survey [20]) is to extend the vertex space X by a coin space C,
and define the state space of the walk as X×C. Then a step of the walk is defined
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as the product of two unitary operations. The first one is the flip operation F
controlled by the vertex state, which means that for every x ∈ X , it performs
a unitary coin flip F x on the states {|x, c〉 : c ∈ C}. For d-regular undirected
graphs, C can be taken as the set {1, . . . , d}, and in that case the coin flip F x is
independent from x. The second one is the shift operation S which is controlled
by the coin state, and takes a vertex to one if its neighboring vertices. For d-
regular graphs the simplest way to define it is via a labeling of the directed edges
by the numbers between 1 and d such that for every 1 ≤ i ≤ d, the directed
edges labeled by i form a permutation. Then, if the coin state is i, the new vertex
is the ith neighbor according to the labeling. For general walks it is practical to
take the coin space also to be X , then the state space of the walk corresponds
naturally to the directed edges of the graph. In this case there is a symmetry
between the two spaces, and the shift operation simply exchanges the vertices,
that is S|x, y〉 = |y, x〉, for every x, y ∈ X .

Let us pause here for a second and consider how a classical walk defined
by some Markov chain P can be thought of as a walk on the directed edges
of the graph (instead of the vertices). Let’s think about an edge (x, u) as the
state of the walk P being at x, where the previous state was u. According to
this interpretation, in one step the walk on edges should move from state (x, u)
to state (y, x) with probability pxy. This move can be accomplished by the
stochastic flip operation F controlled by the left end-point of the edge, where
F x

uy = pxy for all x, u, y ∈ X , followed by the shift S defined previously. If we
define the flip F ′ as F but controlled by the right end-point of the edge, then
it is not hard to see that SFSF = F ′F . Therefore one can get rid of the shift
operations, and two steps of the walk can be accomplished by two successive
flips where the control and the target registers alternate.

Coming back to the quantization of classical walks, we thus want to find uni-
tary coin flips which mirror the walk P , and which alternately mix the right
end-point of the edges over the neighbors of the left end-point, and then the
left end-point of the edges over the neighbors of the new right end-point. The
reflections ref(A) and ref(B) are natural choices for that. They are also gener-
alizations of the Grover diffusion operator [16]. Indeed, when the transition to
each neighbor is equally likely, they correspond exactly to Grover diffusion. In
Szegedy’s original definition the alternating reflections were ref(A) and ref(B′)
with B′ = Span(|py〉|y〉 : y ∈ X), mirroring faithfully the classical edge based
walk. The reason why the MNRS quantization chooses every second step a re-
flection based on the reversed walk P ∗ is explained now.

The eigen-spectrum of the transition matrix P plays an important role in the
analysis of a classical Markov chain. Similarly, the behaviour of the quantum
process W (P ) may be inferred from its spectral decomposition. The reflections
through subspaces A and B are (real) orthogonal transformations, and so is
their product W (P ). An orthogonal matrix may be decomposed into a direct
sum of the identity, reflection through the origin, and two-dimensional rotations
over orthogonal vector subspaces [17, Section 81]. These subspaces and the cor-
responding eigenvalues are revealed by the singular value decomposition of the
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product ΠAΠB of the orthogonal projection operators onto the subspaces A and
B. Equivalently, as done by Szegedy, one can consider the singular values of the
discriminant matrix D(P ) = (

√
pxyp∗yx). Since

√
pxyp∗yx =

√
πxpxy/

√
πy, we

have
D(P ) = diag(π)1/2 · P · diag(π)−1/2,

where diag(π) is the invertible diagonal matrix with the coordinates of the dis-
tribution π in its diagonal. Therefore D(P ) and P are similar, and their spectra
are the same. When P is reversible then D(P ) is symmetric, and its singular
values are equal to the absolute values of its eigenvalues. Thus, in that case we
only have to study the spectrum of P .

Since the singular values of D(P ) all lie in the range [0, 1], they can be ex-
pressed as cos θ, for some angles θ ∈ [0, π

2 ]. The following theorem of Szegedy
relates the singular value decomposition of D(P ) to the spectral decomposition
of W (P ).

Theorem 1 (Szegedy [35]). Let P be an irreducible Markov chain, and let
cos θ1, . . . , cos θl be an enumeration of those singular values (possibly repeated)
of D(P ) that lie in the open interval (0, 1). Then the exact description of the
spectrum of W (P ) on A + B is:

1. On A + B those eigenvalues of W (P ) that have non-zero imaginary part are
exactly e±2iθ1 , . . . , e±2iθl , with the same multiplicity.

2. On A ∩ B the operator W (P ) acts as the identity Id. A ∩ B is spanned by
the left (and right) singular vectors of D(P ) with singular value 1.

3. On A∩B⊥ and A⊥∩B the operator W (P ) acts as −Id. A∩B⊥ (respectively,
A⊥ ∩ B) is spanned by the left (respectively, right) singular vectors of D(P )
with singular value 0.

Let us now suppose in addition that P is ergodic and reversible. As we just said,
reversibility implies that the singular values of D(P ) are equal to the absolute
values of the eigenvalues of P . From the ergodicity it also follows that D(P ) has
a unique singular vector with singular value 1. We have therefore the following
corollary.

Corollary 1. Let P be an ergodic and reversible Markov chain. Then, on A+B
the spectrum of W (P ) can be characterized as:

|π〉 =
∑

x∈X

√
πx |x〉|px〉 =

∑

y∈X

√
πy |p∗y〉|y〉

is the unique 1-eigenvector, e±2iθ are eigenvalues for every singular value cos θ ∈
(0, 1) of D(P ), and all the remaining eigenvalues are -1.

The phase gap Δ(P ) = Δ of W (P ) is defined as 2θ, where θ is the smallest angle
in (0, π

2 ] such that cos θ is a singular value of D(P ). This definition is motivated
by the previous theorem and corollary: the angular distance of 1 from any other
eigenvalue of W (P ) on A+B is at least Δ. When P is ergodic and reversible, there
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is a quadratic relationship between the phase gap Δ of the quantum walk W (P )
and the eigenvalue gap δ of the classical Markov chain P , more precisely Δ ≥
2
√

δ. Indeed, let δ ∈ (0, π
2 ] such that δ = 1 − cos θ and Δ = 2θ. The following

(in)equalities can easily be checked: Δ ≥
∣
∣1 − e2iθ

∣
∣ = 2

√
1 − cos2 θ ≥ 2

√
δ. The

origin of the quadratic speed-up due to quantum walks may be traced to this
phenomenon.

4 Quantum Search Algorithms

As in the classical case, the quantum search algorithms look for a marked ele-
ment in a finite set X . We suppose that the elements of X are coded by binary
strings and that 0̄, the everywhere 0 string is in X . A data structure attached to
both vertex registers is maintained during the algorithm. Again, three types of
cost will be distinguished, generalizing those of the classical search. In all quan-
tum search algorithms the overall complexity is of the order of these specific
costs, which justifies their choices. The operations not involving manipulations
of the data will be charged at unit cost. For the sake of simplicity, we do not
formally include the data into the description of the unitary operations defining
the costs. The initial state of the algorithm is explicitly related to the stationary
distribution π of P .

(Quantum) Setup cost S: The cost for constructing the state∑
x∈X

√
πx|x〉|0̄〉 with data.

(Quantum) Update cost U: The cost to realize any of the unitary
transformations and inverses with data

|x〉|0̄〉 �→ |x〉
∑

y∈X

√
pxy|y〉,

|0̄〉|y〉 �→
∑

x∈X

√
p∗yx|x〉|y〉.

(Quantum) Checking cost C: The cost to realize the unitary transforma-
tion with data, that maps |x〉|y〉 to −|x〉|y〉 if x ∈ M , and leaves it unchanged
otherwise.

In the checking cost we could have included the cost of the unitary transfor-
mation which realizes a phase flip also when y ∈ M , our choice was made just
for simplicity. Observe that the quantum walk W (P ) with data can be imple-
mented at cost 4U + 2. Indeed, the reflection ref(A) is implemented by mapping
states |x〉|px〉 to |x〉|0̄〉, applying ref(CX ⊗ |0̄〉), and undoing the first transfor-
mation. In our accounting we charge unit cost for the second step since it does
not depend on the database. Therefore the implementation of ref(A) is of cost
2U + 1. The reflection ref(B) may be implemented similarly.

Let us now describe how the respective algorithms of Grover, Ambainis and
Szegedy are related to the classical search algorithms of Section 2. We suppose
that ε, a lower bound on the proportion of marked elements is known in advance,
though the results remain true even if it is not the case. Grover search (which
we discuss soon in detail) is the quantum analogue of Search Algorithm 1,
and it doesn’t involve my specific data structure.
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Theorem 2 (Grover [16]). There exists a quantum algorithm which with high
probability finds a marked element, if there is any, at cost of order S+C√

ε
.

In the original application of Grover’s result to unordered search there is no data
structure involved, therefore S + C = O(1), and the cost is of order 1√

ε
.

The algorithm of Ambainis is the quantum analogue of Search Algorithm 2
in the special case of the walk on the Johnson graph and for some specific marked
sets. Let us recall that for 0 < r ≤ n/2, the vertices of the Johnson graph J(n, r)
are the subsets of [n] of size r, and there is an edge between two vertices if the
size of their symmetric difference is 2. In other words, two vertices are adjacent
if by deleting an element from the first one and adding a new element to it we
get the second vertex. The eigenvalue gap δ of the symmetric walk on J(n, r)
is n/r(n − r) = Θ(1/r). If the set of marked vertices in J(n, r) is either empty,
or it consists of vertices that contain a fixed subset of constant size k ≤ r then
ε = Ω( rk

nk ).

Theorem 3 (Ambainis [7]). Let P be the random walk on the Johnson graph
J(n, r) where r = o(n), and let M be either empty, or the class of vertices that
contain a fixed subset of constant size k ≤ r. Then there is a quantum algorithm
that finds, with high probability, the k-subset if M is not empty at cost of order
S + 1√

ε
( 1√

δ
U + C).

Szegedy’s algorithm is the quantum analogue of Search Algorithm 3 for the
class of ergodic and symmetric Markov chains. His algorithm is therefore more
general than the one of Ambainis with respect to the class of Markov chains and
marked sets it can deal with. Nonetheless, the approach of Ambainis has its own
advantages: it is of smaller cost when C is substantially greater than U, and it
also finds a marked element.

Theorem 4 (Szegedy [35] ). Let P be an ergodic and symmetric Markov
chain. There exists a quantum algorithm that determines, with high probability,
if M is non-empty at cost of order S + 1√

δε
(U + C).

The MNRS algorithm is a quantum analogue of Search Algorithm 2 for er-
godic and reversible Markov chains. It generalizes the algorithms of Ambainis
an Szegedy, and it combines their benefits in terms of being able to find marked
elements, incurring the smaller cost of the two, and being applicable to a larger
class of Markov chain.

Theorem 5 (Magniez et al. [25]). Let P be an ergodic and reversible Markov
chain, and let ε > 0 be a lower bound on the probability that an element chosen
from the stationary distribution of P is marked whenever M is non-empty. Then,
there exists a quantum algorithm which finds, with high probability, an element
of M if there is any at cost of order S + 1√

ε
( 1√

δ
U + C).

There is an additional feature of Szegedy’s algorithm which doesn’t fit into the
MNRS algorithmic paradigm. In fact, the quantity 1√

δε
in Theorem 4 can be



Quantum Walk Based Search Algorithms 39

replaced by the square root of the classical hitting time [35]. The search algorithm
for the 2-dimensional grid obtained this way, and the one given in [9] have smaller
complexity than what follows from Theorem 5.

5 The MNRS Search Algorithm

We give a high level description of the MNRS search algorithm. Assume that
M �= ∅. Let M = C

M×X denote the marked subspace, that is the subspace
with marked items in the first register. The purpose of the algorithm is to ap-
proximately transform the initial state |π〉 to the target state |μ〉, which is the
normalized projection of |π〉 onto M:

|μ〉 =
ΠM|π〉

‖ΠM|π〉‖ =
1√
ε

∑

x∈M

√
πx |x〉|px〉,

where ε = ‖ΠM|π〉‖2 =
∑

x∈M πx is the probability of the set M of marked
states under the stationary distribution π. Let us recall that Grover search [16]
solves this problem via the iterated use of the rotation ref(π) · ref(μ⊥) in the
two-dimensional real subspace S = Span(|π〉, |μ〉), where |μ⊥〉 is the state in S
orthogonal to |μ〉 making some acute angle ϕ with |π〉. The angle ϕ is given
by sinϕ = 〈μ|π〉 =

√
ε. Then ref(π) · ref(μ⊥) is a rotation by 2ϕ within the

space S, and therefore O(1/ϕ) = O(1/
√

ε) iterations of this rotation, starting
with |π〉, approximates well |μ〉. The MNRS search basically follows this idea.

Restricted to the subspace S, the operator ref(μ⊥) is identical to −ref(M).
Therefore, if the state of the algorithm remains close to the subspace S through-
out, it can be implemented at the price of the checking cost. The reflection ref(π)
is computationally harder to perform. The idea is to apply the phase estimation
algorithms of Kitaev [21] and Cleve at al. [13] to W (P ). Corollary 1 implies
that |π〉 is the only 1-eigenvector of W (P ), and all the other eigenvectors have
phase at least Δ. Phase estimation approximately resolves any state |ψ〉 in A+B
along the eigenvectors of W (P ), and thus distinguishes |π〉 from all the others.
Therefore it is possible to flip the phase of all states with a non-zero estimate
of the phase, that is simulate the effect of the operator ref(π) in A + B. The
following result of [25] resumes this discussion:

Theorem 6. There exists a uniform family of quantum circuits R(P ) that uses
O(k log(Δ−1)) additional qubits and satisfies the following properties:

1. It makes O(kΔ−1) calls to the controlled quantum walk c−W (P ) and its
inverse.

2. R(P )|π〉 = |π〉.
3. If |ψ〉 ∈ A + B is orthogonal to |π〉, then ‖(R(P ) + Id)|ψ〉‖ ≤ 2−k.

The essence of the MNRS search algorithm is the following simple procedure
that satisfies the conditions of Theorem 5, but with a slightly higher complexity,
of the order of S + 1√

ε
( 1√

δ
log 1√

ε
U + C). Again, we suppose that ε is known.
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Quantum Search(P )
1. Start from the initial state |π〉.
2. Repeat O(1/

√
ε)–times:

(a) For any basis vector |x〉|y〉, flip the phase if x ∈ M .
(b) Apply circuit R(P ) of Theorem 6 with k = O(log(1/

√
ε)).

3. Observe the first register and output if it is in M .

To see the correctness, let |φi〉 be the result of i iterations of ref(π) · ref(μ⊥)
applied to |π〉, and let |ψi〉 be the result of i iterations of step (2) in Quantum
Search(P ) applied to |π〉. It is not hard to show by induction on i, using a
hybrid argument as in [10,36], that ‖|ψi〉 − |φi〉‖ ≤ O(i2−k). This implies that
‖|ψk〉−|φk〉‖ is an arbitrarily small constant when k is chosen to be O(log(1/

√
ε))

and therefore the success probability is arbitrarily close to 1.
The cost of the procedure is simple to analyze. Initialization costs S + U, and

in each iteration the single phase flip costs C. In the circuit R(P ), the controlled
quantum walk and its inverse can be implemented, similarly to W (P ), at cost
4U + 2, simply by controlling ref(CX ⊗ |0̄〉) and ref(|0̄〉 ⊗ C

Y ). The number of
steps of the controlled quantum walk and its inverse is O((1/Δ) log(1/

√
ε)). Since

Δ ≥ 2
√

δ, this finishes the cost analysis. Observe that the log(1/
√

ε)-factor in the
update cost was necessary for reducing the error of the approximate reflection
operator. In [25] it is described how it can be eliminated by adapting the recursive
amplitude amplification algorithm of Høyer et al. [18]

6 Applications

We give here a few examples where the quantum search algorithms, in particular
the MNRS algorithm can be applied successfully. All examples will be described
in the query model of computation. Here the input is given by an oracle, a query
can be performed at unit cost, and all other computational steps are free. A
formal description of the model can be found for example in [23] or [26]. In fact,
in almost all cases, the circuit complexity of the algorithms given will be of the
order of the query complexity, with additional logarithmic factors.

6.1 Grover Search

As a first (and trivial) application, we observe that Grover’s algorithm [16] for
the unordered search problem is a special case of Theorem 5.

Unordered Search

Oracle Input: A boolean function f defined on [n].
Output: An element i ∈ [n] such that f(i) = 1.

Theorem 7. Unordered Search can be solved with high probability in quan-
tum query complexity O((n/k)1/2), where |{i ∈ [n] : f(i) = 1}| = k.
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Proof. Consider the symmetric random walk in the complete graph on n vertices,
where an element v is marked if f(v) = 1. The eigenvalue gap of the walk is
1 − 1

n−1 , and the probability ε that an element is marked is k/n. There is no
data structure involved in the algorithm, the setup, update and checking costs
are 1.

6.2 Johnson Graph Based Algorithms

All these examples are based on the symmetric walk in the Johnson graph J(n, r),
with eigenvalue gap Θ(1/r).

Element Distinctness. This is the original problem for which Ambainis in-
troduced the quantum walk based search method [7].

Element Distinctness

Oracle Input: A function f defined on [n].
Output: A pair of distinct elements i, j ∈ [n] such that f(i) = f(j) if
there is any, otherwise reject.

Theorem 8. Element Distinctness can be solved with high probability in
quantum query complexity O(n2/3).

Proof. A vertex R ⊆ [n] of size r is marked if there exist i �= j ∈ R such
f(i) = f(j). The probability ε that an element is marked, if there is any, is in
Ω((r/n)2). For every R, the data is defined as {(v, f(v)) : v ∈ R}. Then the setup
cost is in O(r), the update cost is O(1), and the checking cost is 0. Therefore
the overall cost is O(r + n/r1/2) which is O(n2/3) when r = n2/3. This upper
bound is tight, the Ω(n2/3) lower bound is due to Aaronson and Shi [1].

Matrix Product Verification. This problem was studied by Buhrman and
Spalek [12], and the algorithm in the query model is almost identical to the
previous one.

Matrix Product Verification

Oracle Input: Three n × n matrices A, B and C.
Output: Decide if AB = C and in the negative case find indices i, j such
that (AB)ij �= Cij .

Theorem 9. Matrix Product Verification can be solved with high proba-
bility in quantum query complexity O(n5/3).

Proof. For an n × n matrix M and a subset of indices R ⊆ [n], let M |R denote
the |R| × n submatrix of M corresponding to the rows restricted to R. The
submatrices M |R and M |RR are defined similarly, when the restriction concerns
the columns and both the rows and columns. A vertex R ⊆ [n] is marked if
there exist i, j ∈ R such that ABij �= Cij . The probability of being marked, if
there is such an element, is in Ω((r/n)2). For every R, the data is defined as the
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set of entries in A|R, B|R and C|RR. Then the setup cost is in O(rn), the update
cost is O(n), and the checking cost is 0. Therefore the overall cost is O(n5/3)
when r = n2/3. The best known lower bound is Ω(n3/2), and in [12] an O(n5/3)
upper bound was also proven for the time complexity with a somewhat more
complicated argument.

Restricted Range Associativity. The problem here is to decide if a binary
operation ◦ is associative. The only algorithm known for the general case is
Grover search, but Dörn and Thierauf [15] have proved that when the range of
the operation is restricted, Theorem 5 (or Theorem 3) give a non-trivial bound.
A triple (a, b, c) is called non associative if (a ◦ b) ◦ c �= a ◦ (b ◦ c).

Restricted Range Associativity

Oracle Input: A binary operation ◦ : [n] × [n] → [k] where k ∈ O(1).
Output: A non associative triple (a, b, c) if there is any, otherwise reject.

Theorem 10. Restricted Range Associativity can be solved with high
probability in quantum query complexity O(n5/4).

Proof. We say that R ⊆ [n] is marked if there exist a, b ∈ R and c ∈ [n] such
that (a, b, c) is non associative. Therefore ε is in Ω((r/n)2), if there is a marked
element. For every R ⊆ [n], the data structure is defined as {(a, b, a ◦ b) : a, b ∈
R ∪ [k]}. Then the setup cost is O((r + k)2 = O(r2) and the update cost is
O(r + k) = O(r). Observe that if b ∈ R and c ∈ [n] are fixed, then computing
(a◦b)◦c and a◦(b◦c) for all a ∈ R requires at most k+1 queries with the help of
the data structure. Thus using Grover search to find b and c, the checking cost is
O(k

√
rn) = O(

√
rn). The overall complexity is then O(r2+ n

r (
√

rr+
√

rn)) which
is O(n5/4) when r =

√
n. The best lower bound known both in the restricted

range and the general case is Ω(n).

Triangle. In an undirected graph G, a complete subgraph on three vertices is
called a triangle. The algorithm of Magniez et al. [26] for finding a triangle uses
the algorithm for Element Distinctness in the checking procedure.

Triangle

Oracle Input: The adjacency matrix f of a graph G on vertex set [n].
Output: A triangle if there is any, otherwise reject.

Theorem 11. Triangle can be solved with high probability in quantum query
complexity O(n13/10).

Proof. We show how to find the edge of a triangle, if there is any, in query
complexity O(n13/10). This implies the theorem since given such an edge, Grover
search finds the third vertex of the triangle with O(n1/2) additional queries.

An element R ⊆ [n] is marked if it contains a triangle edge. The probability ε
that an element is marked is in Ω((r/n)2), if there is a triangle. For every R, the
data structure is the adjacency matrix of the subgraph induced by R. defined
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as {(v, f(v)) : v ∈ R}. Then the setup cost is O(r2), and the update cost is
O(r). The interesting part of the algorithm is the checking procedure, which is
a quantum walk based search itself, and the claim is that it can be done at cost
O(

√
n × r2/3).

To see this, let R be a set of r vertices such that the graph G restricted to
R is explicitly known, and for which we would like to decide if it is marked.
Observe that R is marked exactly when there exists a vertex v ∈ [n] such that
v and an edge in R form a triangle. Therefore for every vertex v, one can define
a secondary search problem on R via the boolean oracle fv, where for every
u ∈ R, by definition fv(u) = 1 if {u, v} is an edge. The output of the problem is
by definition positive if there is an edge {u, u′} such that fv(u) = fv(u′) = 1. To
solve the problem we consider the Johnson graph J(r, r2/3), and look for a subset
which contains such an edge. In that search problem both the probability of being
marked and the eigenvalue gap of the underlying Markov chain are in Ω(r−2/3).
The data associated with a subset of R is just the values of fv at its elements.
Then the setup cost is r2/3, the update cost is O(1), and the checking cost is
0. Therefore by Theorem 5 the cost of solving a secondary search problem is in
O(r2/3). Finally the checking procedure of the original search problem consists
of a Grover search for a vertex v such that the secondary search problem defined
by fv has a positive outcome. Putting things together, the problem can be solved
in quantum query complexity O(r2 + n

r (
√

r × r+
√

n× r2/3)) which is O(n13/10)
when r = n3/5. The best known lower bound for the problem is Ω(n).

6.3 Group Commutativity

The problem here is to decide if a group multiplication is commutative in the
(sub)group generated by some set of group elements. It was defined and studied
in the probabilistic case by Pak [31], the quantum algorithm is due to Magniez
and Nayak [23].

Group Commutativity

Oracle Input: The multiplication operation ◦ for a finite group whose
base set contains [n].
Output: A non commutative couple (i, j) ∈ [n]× [n] if G, the (sub)group
generated by [n], is non-commutative, otherwise reject.

Theorem 12. Group Commutativity can be solved with high probability in
quantum query complexity O(n2/3 log n).

Proof. For 0 < r < n let S(n, r) be the set of all r-tuples of distinct elements
from [n]. For u = (u1, . . . , ur) in S(n, r), we set ū = u1 ◦ · · · ◦ ur. We define
a random walk over S(n, r). Let u = (u1, . . . , ur) be the current vertex. Then
with probability 1/2 stay at u, and with probability 1/2 pick uniformly random
i ∈ [r] and j ∈ [n]. If j = um for some m then exchange ui and um, otherwise
set ui = j. The random walk P at the basis of the quantum algorithm is over
S(n, r) × S(n, r), and it consists of two independent simultaneous copies of the
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above walk. The stationary distribution of P is the uniform distribution, and it
is proven in [23] that its eigenvalue gap is Ω(1/(r log r)).

A vertex (u, v) is marked if ū ◦ v̄ �= v̄ ◦ ū. It is proven again in [23] that when
G is non-commutative and r ∈ o(n), then the probability ε that an element is
marked is Θ(r2/n2). For u ∈ S(n, r) let Tu be the balanced binary tree with r
leaves that are labeled from left to right by u1, . . . , ur, and where each internal
node is labeled by the product of the labels of its two sons. For every vertex
(u, v) the data consists of (Tu, Tv). Then the setup cost is r, and the update cost
is O(log r) for recomputing the leaf–root paths. The checking cost is simply 2 for
querying ū◦ v̄ and v̄◦ū. Therefore the query complexity to find a marked element
is O(r + n

r (
√

r log r log r + 1)) which is O(n2/3 log n) when r = n2/3 log n. Once
a marked element is found, Grover search yields a non-commutative couple at
cost O(r). In [23] an Ω(n2/3) lower bound is also proven. And, it turns out that
a Johnson graph based walk can be applied to this problem too [24], yielding an
algorithm of complexity O((n log n)2/3).
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Abstract. This paper investigates the language class defined by Propo-
sitional Projection Temporal Logic with star (PPTL with star). To this
end, Büchi automata are first extended with stutter rule (SBA) to accept
finite words. Correspondingly, ω-regular expressions are also extended
(ERE) to express finite words. Consequently, by three transformation
procedures between PPTL with star, SBA and ERE, PPTL with star is
proved to represent exactly the full regular language.

Keywords: Propositional Projection Temporal Logic, Büchi automata,
ω-regular expression, expressiveness.

1 Introduction

Temporal logic is a useful formalism for describing sequences of transitions be-
tween states in a reactive system. In the past thirty years, many kinds of temporal
logics are proposed within two categories, linear-time and branching-time logics.
In the community of linear-time logics, the most widely used logics are Linear
Temporal Logic (LTL) [?] and its variations. In the propositional framework,
Propositional LTL (PLTL) has been proved to have the expressiveness of star-
free regular expressions [12,16]. Considering the expressive limitation of PLTL,
extensions such as Quantified Linear Time Temporal Logic (QLTL) [13], Ex-
tended Temporal Logic (ETL) [9,14] and Linear mu-calculus (νTL) [15] etc, were
introduced to PLTL to express the full regular language. Nevertheless, results
[17,18,19,20] have shown that temporal logic needs some further extensions in
order to support a compositional approach to the specification and verification of
concurrent systems. These extensions should enable modular and compositional
reasoning about loops and sequential composition as well as about concurrent
ones. Therefore, kinds of extensions are proposed. Prominently, one of the im-
portant extensions is the addition of the chop operator. The work in [9] showed
that process logic with both chop operator and its reflexive-transitive closure
(chop star), which is called slice in process logic, is strictly more expressive. The
resulting logic is still decidable and in fact has the expressiveness of full regular
expressions.
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Interval Temporal Logic (ITL) [4] is an easily understood temporal logic with
next, chop and a projection operator proj. In the two characteristic operators,
chop implements a form of sequential composition while proj yields repetitive be-
haviors. ITL without projection has similar expressiveness as Rosner and Pnueli’s
choppy logic [3]. Further, addition of the proj operator will brings more power-
ful expressiveness, since repetitive behaviors are allowed. However, no systematic
proofs have been given in this aspect. Projection Temporal Logic (PTL) [5] is an
extension of ITL. It extends ITL to include infinite models and a new projection
construct, (P1, ..., Pm) prj Q, which is much more flexible than the original one.
However, in the propositional case1, the projection construct needs further to
be extended to projection star, (P1, ..., (Pi, ..., Pj)�, ..., Pm) prj Q, so that it can
subsume chop, chop star, and the original projection (proj ) in [4]. This extension
makes the underlying logic more powerful without the lose of decidability [22].

Within PTL, plenty of logic laws have been formalized and proved [5], and
a decision procedure for checking the satisfiability of Propositional Projection
Temporal Logic (PPTL) formulas are given in [6,7]. Based on the decision pro-
cedure, a model checking approach based on SPIN for PPTL is proposed [8].
Further, in [22], projection star is introduced to PPTL, and the satisfiability
for PPTL with star formulas is proved to be still decidable. Instinctively, PPTL
with star is powerful enough to express the full regular expression. Thus, by
employing PPTL with star formulas as the property specification language, the
verification of concurrent systems with the model checker SPIN will be com-
pletely automatic. This will overcome the error-prone hand-writing of a never
claim in the original SPIN since some properties cannot be specified by PLTL
formulas. Further, since PPTL with star can subsume chop construct, composi-
tional approach for the specification and verification of concurrent systems with
SPIN will be allowed. Therefore, we are motivated to give a systematic proof
concerning the expressiveness of PPTL with star formulas. To this end, stutter
Büchi automata and extended ω-regular expressions are introduced first. Subse-
quently, by three transformation procedures beteen PPTL with star, SBA, and
ERE, PPTL with star is proved to represent exactly the full regular language.

The paper is organized as follows. The syntax and semantics of PPTL with
star are briefly introduced in the next section. Section 3 and Section 4 present
the definition of stutter Büchi automata and extended regular expressions re-
spectively. Section 5 is devoted to proving the expressiveness of PPTL with star
formulas. Precisely, three transformations between PPTL with star, SBA and
ERE are given. Finally, conclusions are drawn in Section 6.

2 Propositional Projection Temporal Logic with Star

Our underlying logic is propositional projection temporal logic with star. It
extends PPTL to include projection star. It is an extension of propositional
interval temporal Logic (PITL).

1 In the first order case, projection star is a derived formula.
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Syntax: Let Prop be a countable set of atomic propositions. The formula P of
PPTL with star is given by the following grammar:

P ::= p | © P |¬P |P ∨ Q|(P1, ..., Pm) prj Q|(P1, ..., (Pi, ..., Pj)�, ..., Pm) prj Q

where p ∈ Prop, P1, ..., Pm, P and Q are all well-formed PPTL formulas. ©
(next), prj (projection) and prj� (projection star) are basic temporal operators.

The abbreviations true, false, ∧, → and ↔ are defined as usual. In particu-
lar, true

def= P ∨ ¬P and false
def= P ∧ ¬P . In addition, we have the following

derived formulas.
empty

def= ¬ © true more
def= ¬empty

©0P
def= P ©nP

def= ©(©n−1P ), n ≥ 1
len(0) def= empty len(n) def= ©n empty, n ≥ 1

skip
def= len(1)

⊙
P

def= empty ∨ ©P

P ; Q def= (P, Q) prj empty �P
def= true; P

�P
def= ¬�¬P P 0 def= empty

P 1 def= P Pn def= (P (n)) prj empty, n ≥ 1
P ∗ def= (P�) prj empty P+ def= (P⊕) prj empty

(P1, ..., Pi−1, (Pi, ..., Pj)(0), Pj+1, ..., Pm) prj Q
def= (P1, ..., Pi−1, Pj+1, ..., Pm) prj Q

(P1, ..., Pi−1, (Pi, ..., Pj)(1), Pj+1, ..., Pm) prj Q
def= (P1, ..., Pi−1, Pi, ...Pj , Pj+1, ..., Pm) prj Q

(P1, ..., Pi−1, (Pi, ..., Pj)(n), Pj+1, ..., Pm) prj Q
def= (P1, ..., Pi−1, Pi, ...Pj , (Pi, ..., Pj)n−1, Pj+1, ..., Pm) prj Q, n ≥ 1

(P1, ..., Pi−1, (Pi, ..., Pj)⊕, Pj+1..., Pm) prj Q
def= (P1, ..., Pi−1, Pi, ...Pj , (Pi, ..., Pj)�, Pj+1, ..., Pm) prj Q

where
⊙

(weak next), � (always), � (sometimes), ; (chop), prj⊕ (projection
plus), ∗ (chop star) and + (chop plus) are derived temporal operators; empty
denotes an interval with zero length, and more means the current state is not
the final one over an interval.

Semantics: Following the definition of Kripke’s structure [2], we define a state s
over Prop to be a mapping from Prop to B = {true, false}, s : Prop −→ B. We
will use s[p] to denote the valuation of p at state s. An interval σ is a non-empty
sequence of states, which can be finite or infinite. The length, |σ|, of σ is ω if σ is
infinite, and the number of states minus 1 if σ is finite. To have a uniform notation
for both finite and infinite intervals, we will use extended integers as indices. That
is, we consider the set N0 of non-negative integers and ω, Nω = N0 ∪ {ω}, and
extend the comparison operators, =, <, ≤, to Nω by considering ω = ω, and for
all i ∈ N0, i < ω. Moreover, we define � as ≤ −{(ω, ω)}. To simplify definitions,
we will denote σ by < s0, ..., s|σ| >, where s|σ| is undefined if σ is infinite. With
such a notation, σ(i..j) (0 ≤ i � j ≤ |σ|) denotes the sub-interval < si, ..., sj >
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and σ(k) (0 ≤ k � |σ|) denotes < sk, ..., s|σ| >. Further, the concatenation (·) of
two intervals σ and σ′ is defined as follows,

σ · σ′ =
{

σ, if |σ| = ω
< s0, ..., si, si+1, ... > if σ =< s0, ..., si >, σ′ =< si+1, ... >, i ∈ N0

And the fusion of two intervals σ and σ′ is also defined as below,

σ ◦ σ′ =
{

σ, if |σ| = ω
< s0, ..., si, ... > if σ =< s0, ..., si >, σ′ =< si, ... >, i ∈ N0

Moreover, σ·ω means infinitely many interval σ are concatenated, while σ◦ω

denotes infinitely many σ are fused together.
Let σ =< s0, s1, . . . , s|σ| > be an interval and r1, . . . , rh be integers (h ≥ 1)

such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ|. The projection of σ onto r1, . . . , rh is
the interval (namely projected interval)

σ ↓ (r1, . . . , rh) =< st1 , st2 , . . . , stl
>

where t1, . . . , tl is obtained from r1, . . . , rh by deleting all duplicates. That is,
t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh. For instance,

< s0, s1, s2, s3, s4 >↓ (0, 0, 2, 2, 2, 3) =< s0, s2, s3 >
We need also to generalize the notation of σ ↓ (r1, ..., rm) to allow ri to be ω.
For an interval σ =< s0, s1, ..., s|σ| > and 0 ≤ r1 ≤ r2 ≤ ... ≤ rh ≤ |σ| (ri ∈ Nω),
we define σ ↓ () = ε, σ ↓ (r1, ..., rh, ω) = σ ↓ (r1, ..., rh). This is convenient to
define an interval obtained by taking the endpoints (rendezvous points) of the
intervals over which P1, . . . , Pm are interpreted in the projection construct.

An interpretation is a tuple I = (σ, k, j), where σ is an interval, k is an
integer, and j an integer or ω such that k � j ≤ |σ|. We use the notation
(σ, k, j) |= P to denote that formula P is interpreted and satisfied over the
subinterval < sk, ..., sj > of σ with the current state being sk. The satisfaction
relation (|=) is inductively defined as follows:

I − prop I |= p iff sk[p] = true, for any given proposition p
I − not I |= ¬P iff I �|= P
I − or I |= P ∨ Q iff I |= P or I |= Q
I − next I |= ©P iff k < j and (σ, k + 1, j) |= P
I − prj I |= (P1, ..., Pm) prj Q, if there exist integers r0 ≤ r1 ≤ ... ≤ rm

≤ j such that (σ, r0, r1) |= P1, (σ, rl−1, rl) |= Pl, 1 < l ≤ m,
and (σ′, 0, |σ′|) |= Q for one of the following σ′ :
(a) rm < j and σ′ = σ ↓ (r0, ..., rm) · σ(rm+1..j) or
(b) rm = j and σ′ = σ ↓ (r0, ..., rh) for some 0 ≤ h ≤ m

I − prj� I |= (P1, ..., (Pi, ..., Pj)�, ..., Pm) prj Q iff ∃n ∈ N0, I |= (P1, ..., (Pi, ...,
Pj)n, ..., Pm) prj Q or there exist integers r0 ≤ r1 ≤ ... ≤ ri ≤ ...
≤ rj ≤ r2i ≤ ... ≤ r2j ≤ r3i... ≤ rk � ω, limk→ωrk = ω, such that
(σ, rl−1, rl) |= Pl, 0 < l < i, (σ, rl−1, rl) |= Pt, l ≥ i, t = i + (l mod
(j − i + 1)), and (σ′, 0, |σ′|) |= Q, where σ′ = σ ↓ (r0, ..., rk, ω),
l mod 1 = 0.

Satisfaction and Validity: A formula P is satisfied by an interval σ, denoted
by σ |= P , if (σ, 0, |σ|) |= P . A formula P is called satisfiable if σ |= P for some
σ. A formula P is valid, denoted by |= P , if σ |= P for all σ.
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3 Büchi Automata with Stutter

Definition 1. A Büchi automaton is a tuple B = (Q, Σ, I, δ, F ), where,

– Q = {q0, q1, ..., qn} is a finite, non-empty set of locations;
– Σ = {a0, a1, ..., am} is a finite, non-empty set of symbols, namely alphabet;
– I ⊆ Q is a non-empty set of initial locations;
– δ ⊆ Q × Σ × Q is a transition function;
– F ⊆ Q is a set of accepting locations.

An infinite word w over Σ is an infinite sequence w = a0a1... of symbols, ai ∈ Σ.
A run of B over an infinite word w = a0a1... is an infinite sequence ρ = q0q1...
of locations qi ∈ Q such that q0 ∈ I and (qi, ai, qi+1) ∈ δ holds for all i ∈ N0. In
this case, we call w the word associated with ρ, and ρ the run associated with w.
The run ρ is an accepting run iff there exists some q ∈ F such that qi = q holds
for infinitely many i ∈ N0. The language L(B) accepted by a Büchi automaton
B is the set of infinite words for which there exists some accepting run ρ of B.

Similar to the approach adopted in SPIN [10] for modeling finite behaviors
of a system with a Büchi automaton, the stuttering rule is adopted so that the
classic notion of acceptance for finite runs (thus words) would be included as a
special case in Büchi automata. To apply the rule, we extend the alphabet Σ
with a fixed predefined null-label ε, representing a no-op operation that is always
executable and has no effect. For a Büchi automaton B, the stutter extension of
finite run ρ with final state qn is the ω-run ρ such that (qn, ε, qn)ω is the suffix
of ρ. The final state of the run can be thought to repeat null action ε infinitely.
It follows that such a run would satisfy the rules for Büchi acceptance if and
only if the original final location qn is in the set F of accepting locations. This
means that it indeed generalizes the classical definition of the finite acceptance.
In what follows, we denote Büchi automata with the stutter extension, simply
as stutter-Büchi automata (SBA for short).

4 Extended Regular Expression

Corresponding to the stutter-Büchi automata, we define a kind of extended ω-
regular expression (ERE) which is capable of defining both finite and infinite
strings. Let Υ = {r1, ..., rn} be a finite set of symbols, namely alphabet. The
extended ω-regular expressions are defined as follows,

ERE R ::= ∅ | ε | r | R + R | R • R | Rω | R∗

where r ∈ Υ , ε denotes an empty string; +, • and ∗ are union, concatenation and
Kleene (star) closure respectively; Rω means infinitely many R are concatenated.
In what follows, we use ERE to denote the set of extended regular expressions.

Before defining the language expressed by the extended regular expressions,
we first introduce strings and operations on strings. A string is a finite or infinite
sequence of symbols, a0a1...ai..., where each ai is chosen from the alphabet Υ .
The length of a finite string w, denoted by |w|, is the number of the symbols in
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w while the length of an infinite string is ω. For two strings w and w′, w • w′,
w∗ and wω are defined as follows,

w • w′ =
{

w, if |w| = ω
a0...aiai+1..., if w = a0...ai, and w′ = ai+1...

wω =

⎧
⎨

⎩

w, if |w| = ω
a0...ai...a0...ai...︸ ︷︷ ︸

ω times

, if w is finite and w = a0...ai

w∗ =

⎧
⎨

⎩

w, if |w| = ω
∃n ∈ Nω, a0...ai...a0...ai︸ ︷︷ ︸

n times

, if w is finite and w = a0...ai

Further, if W and W ′ are two sets of strings. Then W • W ′, Wω and W ∗ are
defined as follows,

W • W ′ = {w • w′ | w ∈ W and w′ ∈ W ′}
Wω = {wω | w ∈ W}
W ∗ = {w∗ | w ∈ W}

Accordingly, the language L(R) expressed by extended regular expression R is
given by,

Lr1 L(∅) = ∅ Lr2 L(r) = {r}
Lr3 L(ε) = {ε} Lr4 L(R+R) = L(R) ∪ L(R)
Lr5 L(R • R) = L(R) • L(R) Lr6 L(Rω) = L(R)ω

Lr7 L(R∗) = L(R)∗

For a string w, if w ∈ L(R), w is called a word of expression R.
For convenience, we use PPTL* to denote the set of all PPTL with star

formulas, SBA the set of all Stutter Büchi Automata, and ERE the set of all
Extended ω-Regular Expressions. Further, the language classes determined by
PPTL*, SBA and ERE are represented by L(PPTL*), L(SBA) and L(ERE)
respectively. That is,

L(PPTL∗) = {L(P )|P ∈ PPTL∗}
L(SBA) = {L(B)|B ∈ SBA}
L(ERE) = {L(R)|R ∈ ERE}

5 Relationship between PPTL*, ERE and SBA

Even though the extended ω-regular expressions, PPTL with star formulas, and
stutter-Büchi automata describe languages fundamentally in different ways, how-
ever, it turns out that they represent exactly the same class of languages, named
the “full regular languages” as concluded in Theorem 1.

Theorem 1. PPTL with star formulas, extended regular expressions and stut-
ter Büchi automata have the same expressiveness. �
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L(PPTL
∗)

L(SBA) L(ERE )

Fig. 1. The relationship between three language classes

In order to prove this theorem, we will show the following facts: (1) For any P ,
there is an SBA B such that L(B) = L(P ); (2) For any SBA B, there is an
ERE R such that L(R) = L(B); (3) For any ERE R, there is a PPTL with star
formula P such that L(P ) = L(R). The relationship is depicted in Fig.1, where
an arc from language class X to Y means that each language in X can also be
defined in Y . This convinces us that three language classes are equivalence.

For the purpose of transformations between PPTL*, SBA and ERE, we de-
fine the set Qp of atomic propositions appearing in PPTL with star formula Q,
|Qp | = l , and further need define alphabets Σ and Υ for SBA and ERE. To do
so, We first define sets Ai, 1 ≤ i ≤ l, as follows,

Ai = {{ ˙qj1 , ..., ˙qji} | qjk
∈ Qp , ˙qjk

denotes qjk
or ¬qjk

, 1 ≤ k ≤ i}
Then, Σ =

⋃l
i=1 Ai ∪ {true} ∪ {ε}, and Υ =

⋃l
i=1 Ai ∪ {true}. For instance, if

Qp = {p1, p2, p3}, it is obtained that, A1 ={{ṗ1}, {ṗ2}, {ṗ3}}, A2 ={{ṗ1, ṗ2}, {ṗ1,

ṗ3}, {ṗ2, ṗ3}}, A3 = {{ṗ1, ṗ2, ṗ3}}. So, we have,Σ =
⋃3

i=1 Ai ∪ {true} ∪ {ε} =
{{ṗ1}, {ṗ2}, {ṗ3}, {ṗ1, ṗ2}, {ṗ1, ṗ3}, {ṗ2, ṗ3}, {ṗ1, ṗ2, ṗ3}, true, ε}, Υ =

⋃3
i=1 Ai ∪

{true} = {{ṗ1}, {ṗ2}, {ṗ3}, {ṗ1, ṗ2}, {ṗ1, ṗ3}, {ṗ2, ṗ3}, {ṗ1, ṗ2, ṗ3}, true}. Obvi-
ously, for each r ∈ Υ , r is a set of atomic propositions or their negations, denoted
by true or {q̇i, ..., q̇j}, where 1 ≤ i ≤ j ≤ l.

5.1 From PPTL with Star Formulas to SBAs

For PPTL with star formulas, their normal forms are the same as for PPTL
formulas [6,7]. In [22], an algorithm was given for transforming a PPTL with
star formula to its normal form. Further, based on the normal form, labeled
normal form graph (LNFG) for PPTL with star formulas are constructed to
precisely characterize the models of PPTL with star formulas. Also an algorithm
was given to construct the LNFG of a PPTL with star formula [22]. The details
about normal forms and LNFGs can be found in [7,22]. Here we focus on how
to transform an LNFG G to an SBA B (corresponding SBA of G). For the clear
presentation of the transformation, LNFGs are briefly introduced first.

The LNFG of formula P can be expressed as a graph, G = (V, E, v0, Vf ),
where V denotes the set of nodes in the LNFG, E is the set of directed edges
among V , v0 ∈ V is the initial (or root) node, and Vf ⊆ V denotes the set
of nodes with finite label F . V and E in G can inductively be constructed by
algorithm LNFG composed in [7]. Actually, in an LNFG, a node v ∈ V denotes
a PPTL with star formula and initial node is P itself while an edge from node
vi to vj is a tuple (vi, Qe, vj) where vi and vj are PPTL with star formulas and
Qe ≡

∧
i q̇i, qi is an atomic proposition, q̇i denotes qi or ¬qi. The following is an

example of LNFG.
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v0 : ¬(true;¬© q) ∨ p ∧©q

v1 : q ∧ ¬(true;¬© q)
v2 : q

v3 : true

v0

v1 v2

v3
v4

true

q

p

qq

true

true v4 : ε

Fig. 2. LNFG of formula ¬(true; ¬ © q) ∨ p ∧ ©q

Example 1. The LNFG of formula ¬(true; ¬ © q) ∨ p ∧ ©q.
As shown in Fig.2, the LNFG of formula ¬(true; ¬©q)∨p∧©q is G={V, E, v0,

Vf}, where V ={v0, v1, v2, v3, v4}; E = {(v0, true, v1), (v0, p, v2), (v1, q, v1), (v2, q,
v4), (v2, q, v3), (v3, true, v3), (v3, true, v4)}; the root node is v0; and Vf = ∅. �

Factually, an LNFG contains all the information of the corresponding SBA. The
set of nodes is in fact the set of locations in the corresponding SBA; each edge
(vi, Qe, vj) forms a transition; there exists only one initial location, the root node;
the set of accepting locations consists of ε node and the nodes which can appear
in infinite paths for infinitely many times. Given an LNFG G = (V, E, v0, Vf ) of
formula P , an SBA of formula P , B = (Q, Σ, I, δ, F ), over an alphabet Σ can
be constructed as follows.

• Sets of the locations Q and the initial locations I: Q = V , and I = {v0}.
• Transition δ: Let q̇k be an atomic proposition or its negation. We define a
function atom(

∧m0
k=1 q̇k) for picking up atomic propositions or their negations

appearing in
∧m0

k=1 q̇k as follows,

atom(true) = true

atom(q̇k) =
{

{qk}, if q̇k ≡ qk 1 ≤ k ≤ l
{¬qk}, otherwise

atom(
∧m0

k=1 q̇k) = atom(q̇1) ∪ atom(
∧m0

k=2 q̇k)

For each ei = (vi, Qe, vi+1) ∈ E, there exists vi+1 ∈ δ(vi, atom(Qe)). For node
ε, δ(ε, ε) = {ε}.
• Accepting locations F : We have proved in [6,7] that infinite paths in an LNFG
precisely characterize the infinite models of the corresponding formula. In fact,
there exists an infinite path if and only if there are some nodes appearing in the
path for infinitely many times. Therefore, the nodes appearing in infinite paths
for infinitely many times are defined as the accepting locations in the SBA. In
addition, by employing the stutter extension rule, ε node is also an accepting
location.

Lemma 1. For any PPTL with star formula P , there is an SBA B such that
L(B) = L(P ). �

Formally, algorithm Lnfg-Sba is useful for transforming an LNFG to an SBA.
Also Example 2 is given to show how the algorithm works.
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init

q0

q1 q2

q3

q4

a0a1 a2

a1

a1

a3

a0

a0

a0 = {true}
a1 = {q}
a2 = {p}
a3 = {τ}

Fig. 3. Stutter-Büchi automaton of formula P ≡ ¬(true; ¬ © q) ∨ p ∧ ©q

Example 2. Constructing the SBA, B=(Q, Σ, I, δ, F ), from the LNFG in Ex-
ample 1.

As depicted in Fig.3, the set of locations, Q={q0, q1, q2, q3, q4}, comes from
V directly. The set of initial locations I={q0} is root node v0 in G. The set of
the accepting locations F={q1, q3, q4} consists of nodes v1, v3 appearing in loops
and ε node in V . The transitions, δ(q0, a0)={q1}, δ(q0, a2)={q2}, δ(q1, a1)={q1},
δ(q2, a1)={q3, q4}, δ(q3, a0)={q3, q4}, δ(q4, a3)={q4} are formalized according to
the edges in E. �

Function Lnfg-Sba(G)
/* precondition: G = (V, E, v0, Vf ) is the LNFG of PPTL formula P*/
/* postcondition: Lnfg-Sba(G) computes an SBA B = (Q, Σ, I, δ, F ) from G*/

begin function
Q = ∅; F = φ; I = ∅;
for each node vi ∈ V ,

add a state qi to Q, Q = Q ∪ {qi};
if vi is ε, F = F ∪ {qi}; δ(qi, ε) = {qi};
else if vi appears in loops and vi �∈ Vf , F = F ∪ {qi};

end for
if q0 ∈ Q, I = I ∪ {q0};
for each edge e = (vi, Pe, vj) ∈ E,

qj ∈ δ(qi, atom(Pe));
end for
return B = (Q, Σ, I, δ, F )

end function

5.2 From SBAs to EREs

For the proof of the language L(A) of any finite state automaton A being regular
[24], Arden’s rule [11] plays an important role.

Lemma 2. (Arden’s Rule) For any sets of strings S and T , the equation X=S •
X + T has X = S∗ • T as a solution. Moreover, this solution is unique if ε �∈ S. �

From now on we shall often drop the concatenation symbol •, writing SX for
S • X etc. In the following, we show how Arden’s rule is used to equivalently
transform an SBA to an ERE.

Given a stutter-Büchi automaton B with Q = {q0, ..., qn} and the starting lo-
cation q0. For 1 ≤ i ≤ n, let Xi denote the ERE where L(Xi) equals to the
set of strings accepted by the sub-automaton of B starting at location qi; thus
L(B) = L(X0). We can write an equation for each Xi in terms of the languages
defined by its successor locations. For example, for the stutter-Büchi automaton
B in Example 2, we have,
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(0) X0 = a0X1 + a2X2 (1) X1 = a1X1 + aω
1

(2) X2 = a1X4 + a1X3 (3) X3 = a0X3 + a0X4 + aω
0

(4) X4 = a3X4 + aω
3

Note that X1, X3 and X4 contains aω
1 , aω

0 and aω
3 respectively because q1, q3

and q4 are accepting states with self-loops2. Now we use Arden’s rule to solve
the equations. First, for (4), since a3 is ε,

X4 = a3X4 + aω
3 = a∗

3a
ω
3 = aω

3 = ε
Replacing X4 in (3),
X3 = a0X3 + a0X4 + aω

0 = a0X3 + a0 + aω
0 = a∗

0a0 + a∗
0a

ω
0 = a∗

0a0 = true∗true
Replacing X3 and X4 in (2),

X2 = a1X4 + a1X3 = {q} + {q}true∗true
For (1),

X1 = a1X1 + aω
1 = a∗

1a
ω
1 = aω

1 = {q}ω

Finally, replacing X1 and X2 in (0), we have,
X0 = a0X1 + a2X2 = a0{q}ω + a2({q} + {q}true∗true)

= true{q}ω + {p}{q} + {p}{q}true∗true

Lemma 3. For any SBA B, there is an ERE R such that L(R) = L(B). �

5.3 From EREs to PPTL with Star Formulas

Let Γ be the set of all models of PPTL with star. For any extended regular
expression R ∈ ERE, we can construct a PPTL with star formula FR such that,
(1) for any model σ ∈ Γ , if σ |= FR, then Ω(σ) ∈ L(R); and (2) for any word
w ∈ L(R), there exists σ ∈ Γ , σ |= FR and Ω(σ) = w. The mapping function
Ω : Γ → Υ ∗ from models of PPTL formulas to words of extended regular ex-
pression is defined as follows,

Ω(σ) =

⎧
⎨

⎩

ε, if |σ| = 0
A(s0)...A(sj−1) if σ is finite and σ =< s0, ..., sj >, j ≥ 1
A(s0)...A(sj)... if σ is infinite and σ =< s0, ..., sj , ... >

where A(si) denotes true, or the set of propositions and their negations hold-
ing at state si. It is not difficult to prove that Ω(σ1 ◦ σ2) = Ω(σ1) • Ω(σ2),
Ω(σ◦ω) = Ω(σ)ω and Ω(σ◦∗) = Ω(σ)∗. FR is constructed inductively on the
structure of R.

F∅
def= false

Fε
def= empty

Fr
def=

{
ṗi ∧ ... ∧ ṗj ∧ skip, if r = {ṗi, ..., ṗj}, 1 ≤ i ≤ j ≤ l
true ∧ skip, if r = true

where r ∈ Υ . Inductively, if R1 and R2 are extended regular expressions, then
FR1+R2

def= FR1 ∨ FR2

FR1•R2

def= FR1 ; FR2

FRω
def= F ∗

R ∧ �more

FR∗
1

def= F ∗
R1

2 For finite state automata, Xi contains ε if qi is accepted.
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Now we need to prove that, for any R ∈ ERE and σ ∈ Γ , if σ |= FR, then
Ω(σ) ∈ L(R); for any w, if w ∈ L(R), then there exists σ ∈ Γ such that Ω(σ) = w
and σ |= FR.

Lemma 4. For any ERE R, there is a PPTL with star formula P such that
L(P ) = L(R). �

Example 3. Constructing PPTL with star formula from the extended regular
expression, true{q}ω + {p}{q} + {p}{q}true∗true obtained in Example 2.

Ftrue{q}ω+{p}{q}+{p}{q}true∗true

≡ Ftrue{q}ω ∨ F{p}{q} ∨ F{p}{q}true∗true

≡ Ftrue; F{q}ω ∨ F{p}; F{q} ∨ F{p}; F{q}; Ftrue∗ ; Ftrue

≡ true ∧ skip; F{q}∗ ∧ �more ∨ p ∧ skip; q ∧ skip ∨ p ∧ skip; q ∧ skip;
(true ∧ skip)∗; true ∧ skip

≡ skip; (q ∧ skip)∗ ∧ �more ∨ p ∧ skip; q ∧ skip ∨ p ∧ skip; q ∧ skip;
skip∗; skip �

6 Conclusions

Further, it is readily to prove the following useful conclusions concerning char-
acters of fragments of PPTL with star. To avoid abuse of notations, we use an
expression like L(next, chop) to refer to the specific fragment of PPTL with star
with temporal operators next, chop and the basic connections in the typical
propositional logic.
1 L(chop) has the same expressiveness as star-free regular expressions without ε.
2 L(next, chop) has the same expressiveness as star-free regular expressions.
3 L(next, prj) has the same expressiveness as regular expressions without ω.
4 L(next, chop, chop∗) has the same expressiveness as full regular expressions.

In this paper, we have proved that the expressiveness of PPTL with star is the
same as the full regular expressions. Also, the proof itself provides approaches to
translate a PPTL with star formula to an equivalent Buchi automaton, a Buchi
automaton to an equivalent extended ω-regular expression, and an extended
ω-regular expression to a PPTL with star formula. This enables us to specify
and verify concurrent systems by compositional approach with PPTL with star.
Further, we have developed a model checker based on SPIN for PPTL with star.
Therefore, any systems with regular properties can be automatically verified
within SPIN using PPTL with star.
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Abstract. Reversal, transposition and transreversal are common events in genome
rearrangement. The genome rearrangement sorting problem is to transform one
genome into another using the minimum number of rearrangement operations.
Hannenhalli and Pevzner discovered that singleton is the major obstacle for un-
signed reversal sorting. They also gave a polynomial algorithm for reversal sorting
on those unsigned permutations with O(log n) singletons. This paper involves two
aspects. (1) We describe one case for which Hannenhalli and Pevzner’s algorithm
may fail, and propose a corrected algorithm for unsigned reversal sorting. (2) We
propose a (1��)-approximation algorithm for the weighted sorting problem on un-
signed permutations with O(log n) singletons. The weighted sorting means: sorting
a permutation by weighted reversals, transpositions and transreversals, where re-
versal is assigned weight 1 and transposition(including transreversal) is assigned
weight 2.

1 Introduction

The genome rearrangement problem is to find a shortest sequence of evolutionary events
(such as reversals, transpositions, and transreversals) that transform one genome into
another. Genomes can be represented as signed or unsigned permutations, depending
on the data got from experiments. It is well known that this problem is equivalent to that
of sorting a permutation by the same set of operations into the identity permutation.

Sorting unsigned permutations by reversals is proved to be NP-hard by Caprara [4].
This problem can be approximated to 1.375 [2] as we know. However, sorting signed
permutations by reversals can be solved exactly in polynomial time [6]. Hannenhalli
and Pevzner discovered that singleton is the major obstacle for sorting unsigned permu-
tations by reversals. They designed a polynomial algorithm for unsigned permutations
with O(log n) singletons [7]. However, there is one case for which Hannenhalli and
Pevzner’s algorithm may fail. We describe the case and propose a corrected algorithm.

Bafna and Pevzner suggested the sorting problem that considers reversals and trans-
positions simultaneously helps to understand the genome rearrangements related to the
evolution of mammalian and viral [3]. Eriksen observed that an algorithm looking for the
minimal number of such operations will produce a solution heavily biased towards trans-
position. Instead, he studied the weighted reversal� transposition� transreversal sorting

� Supported by (1) National Nature Science Foundation of China, 60573024. (2) Chinese
National 973 Plan, previous special, 2005cca04500.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 59–69, 2008.
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problem, which assigns 1 to reversal and 2 to transposition or transreversal. The task
is to sort a permutation by reversals or transpositions or transreversals with the min-
imum value of rev�2trp, where rev and trp is the number of reversals and transposi-
tions� transreversals respectively. Eriksen designed a (1��)-approximation algorithm for
the weighted sorting of signed permutations [5].

In this paper, we focus on the same weighted sorting problem for unsigned permu-
tations. We present a (1��)-approximation algorithm for the sorting of unsigned per-
mutations by weighted reversal� transposition� transreversals, where the permutation is
restricted to containing O(log n) singletons.

2 Preliminaries

Let ��[g1� � � � � gn] be a permutation of �1� � � � � n�. It is also known as an unsigned per-
mutation because each element of � has no signs. If each element of � has been added
a sign of ‘�’ or ‘�’ to represent gene’s direction, then it is called a signed permuta-
tion. Let ��[g1� � � � � gn] be an unsigned permutation and ���[g�

1� � � � � g
�

n] be a signed
permutation. We say �� is a spin of � if either g�

i��gi or g�

i��gi for 1�i�n. A seg-
ment of � is a sequence of consecutive elements in �. For example, segment [gi� � � � � g j]
(i� j) of � contains all the elements from gi to g j. We consider three kinds of rear-
rangement operations: reversal, transposition and transreversal. A reversal r(i� j) (i� j)
cuts the segment [gi�1� � � � � g j] out of �, reverses it, and then pastes it back to exactly
where it is cut; hence the permutation becomes ��[g1� � � � � gi� g j� � � � � gi�1� g j�1� � � � � gn].
A transposition t(i� j� k) (i� j�k) exchanges two consecutive segments [gi�1� � � � � g j] and
[g j�1� � � � � gk] of �, and the permutation becomes��[g1� � � � � gi� g j�1� � � � � gk� gi�1� � � � � g j,
gk�1� � � � � gn]. A transreversal tr(i� j� k) (i� j�k) reverses the segment [gi�1� � � � � g j] while
exchanging the two consecutive segments [gi�1� � � � � g j] and [g j�1 � � � gk], and the permu-
tation becomes ��[g1� � � � � gi� g j�1� � � � � gk� g j� � � � � gi�1� gk�1� � � � � gn]. Reversing a seg-
ment of �� changes the direction of each element in the segment. Thus for a signed
permutation ��, each element in the reversed segment also has its sign flipped.

The reversal sorting problem asks to transform � into the identity permutation � by
the minimum number of reversals, where the signed identity permutation is ��[�1��2,
� � � ��n], the unsigned identity permutation is ��[1� 2� � � � � n]. And this number is called
the reversal distance of �, denoted by dr(�). A reversal scenario is a sequence of re-
versal operations that transform � into �. The weighted sorting problem asks to trans-
form � into � by the minimum weighted sum number of reversals, transpositions, and
transreversals, where one reversal counts for once and one transposition or transrever-
sal counts for twice. A weighted scenario is a sequence of such rearrangement op-
erations that transform � into �. Formally, the weighted distance of � is defined as:
dr�t(�)�min����rev(�) � 2trp(�)�, where � is the set of weighted scenarios sorting �,
rev(�) and trp(�) is the number of reversals and transposition�transreversals in a certain
weighted scenario � respectively. Among all the 2n spins of an unsigned permutation �,
if there is a spin �� satisfying dr(��)�dr(�), call �� an optimal r-spin; if there is a spin ��

satisfying dr�t(��)�dr�t(�), call �� an optimal rt-spin.
Write i� j if �i� j��1. For an unsigned permutation �, a pair of consecutive elements

(gi� gi�1) form an adjacency if gi�gi�1; otherwise a breakpoint. A segment [gi� � � � � g j]
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of � is called a strip if each (gk� gk�1) is an adjacency for i�k� j, but both (gi�1� gi) and
(g j� g j�1) are breakpoints. A strip of one element is a singleton; a strip of two elements is
called a 2-strip; and otherwise a long strip. If � has no singletons, call it a singleton-free
permutation. A strip s�[gi� � � � � g j] is increasing (decreasing) if gi�g j (gi	g j). Let �� be
a spin of �, an increasing (decreasing) strip s of � is canonical in �� if all elements of
s are positive (negative) in ��. An increasing (decreasing) strip s of � is anti-canonical
in �� if all elements of s are negative (positive) in ��. An anti-canonical 2-strip is called
an anti-strip. If every strip in �� is canonical, then call �� a canonical spin of �. Two
spins ��1 and ��2 are twins(with respect to segment s�[gi� � � � � g j]) if they di�er only in
the signs of elements in s.

For a signed permutation ��, there exists a polynomial algorithm computing the
reversal distance. Here are some details. First, transform a signed permutation �� �

[g�

1� � � � � g
�

n] of order n to a permutation of order 2(n�1) as follows: replace the positive
element �x by (2x�1� 2x), and the negative element �x by (2x� 2x�1). Then add 0 at the
beginning and 2n�1 at the end. Such a permutation is called the extended permutation
of ��, denoted as ���. The reversal operation on ��� never touches 0 and 2n�1, and never
breaks the pair (2x�1� 2x) or (2x� 2x�1). Therefore, it has the same e�ect of operating
on ��. The breakpoint graph G(���) of ��� is defined as follows: set a vertex of G(���) for
each element of ���; draw a gray edge between vertices 2x and 2x�1 if their positions
are not consecutive in ���; draw a black edge between vertices g2i and g2i�1 if they form
a breakpoint. Note that every vertex has degree 2 in G(���), so it can be uniquely de-
composed into alternating cycles, i.e., cycle with every two consecutive edges having
distinct colors. We use l-cycle to denote an alternating cycle with l black edges. Note
that the length of a cycle is at least 2. A cycle is oriented if, when we travel along it,
at least one black edge is traveled from left to right and at least one black edge is trav-
eled from right to left; otherwise, an unoriented cycle. Two gray edges e1�(gi1 � gi2 ) and
e2�(g j1 � g j2) are crossing if i1� j1�i2� j2 or j1�i1� j2�i2. Cycles C1 and C2 are crossing
if there exist crossing gray edges e1�C1 and e2�C2. If we take each alternating cycle
of G(���) as a vertex, and draw an edge between two vertices if the cycles they present
are crossing, we get another graph G�. Those alternating cycles of G(���) denoted by
vertices belonging to the same connected component of G� together are referred to as a
component of G(���). For every component of G(���), if it contains at least one oriented
cycle, call it an oriented component; otherwise, an unoriented component. Imagining
we bend a permutation into a circle of counterclockwise order and make (0, 2n�1) an
adjacency. If there is an interval on the circle which contains one and only one unori-
ented component, then this component is called a hurdle. If an unoriented component
is not a hurdle, call it a non-hurdle. Note that a non-hurdle always stretches over an
interval that contains a hurdle. A hurdle is called a super hurdle if removing it will turn
a non-hurdle into a hurdle [5][6]. If G(���) has an odd number of hurdles and all these
hurdles are super hurdles , then the permutation �� is referred to as a fortress. Let b(��),
c(��), h(��) denote the number of breakpoints, cycles and hurdles in G(���), respectively.
If �� is a fortress, let f (��)�1; otherwise, f (��)�0. It is proved in [6] that:

dr(��) � b(��) � c(��) � h(��) � f (��) (1)
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K1 K2 K3 K4 K5 K6

Fig. 1. A breakpoint graph with six unoriented components

Fig. 1 gives an example of a breakpoint graph with six components K1� � � � � K6. All
these components are unoriented components, where K3, K4 and K6 are simple hurdles,
K1 is a super hurdle, K2 and K5 are non-hurdles.

For a signed permutation ��, there exists a (1��)-approximation algorithm to sort ��

by weighted reversals, transpositions, and transreversals. First construct G(���) from ��

as aforementioned. For a component K of the breakpoint graph, we use b(K) and c(K) to
denote the number of breakpoints and cycles in K respectively. If K is oriented, we can
use b(K)�c(K) times of reversals to transform K into b(K) disjoint adjacencies, which
is just an optimal weighted scenario sorting K. However, for an unoriented component,
we cannot always have a method to sort it optimally by the weighted operations. Thus
if dr�t(K)	b(K)�c(K), call K a strongly unoriented component (SUC). If an unoriented
component is not a SUC, call it a non-SUC. Again imagine bending a permutation into
a circle, if there is an interval on the circle which contains one and only one SUC, then
the SUC is a strong hurdle. A strong hurdle is a super-strong-hurdle if removing it will
make another SUC become a strong hurdle. If a strong hurdle is not a super-strong-
hurdle, call it a simple-strong-hurdle. If G(���) has an odd number of strong hurdles and
all these strong hurdles are super-strong-hurdles, the permutation �� is called a strong
fortress. Let b(��), c(��) and ht(��) denote the number of breakpoints, cycles and strong
hurdles in G(���), respectively. If �� is a strong fortress, let ft(��)�1; otherwise ft(��)�0.
It is proved in [5] that:

dr�t(��) � b(��) � c(��) � ht(��) � ft(��) (2)

Since ht(��) and ft(��) cannot be computed exactly, only an approximation algorithm
is available [5]. As an example, in Fig. 1, K1, K2, K4 and K5 are all SUC’s, K3 and
K6 are non-SUC’s, since each of them can be removed by one transposition, thus
d(K3)�2�b(K3)�c(K3). And both K1 and K4 are super-strong-hurdles.

3 Corrected Algorithm for Unsigned Reversal Sorting

Using formula (1), Hannenhalli and Pevzner proved:

Lemma 1. [7] For any unsigned permutation �, there exists an optimal r-spin �� of �
such that all the long strips of � are canonical in ��; every 2-strip of � is either canonical
or anti-canonical in �� .
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Lemma 2. [7] For any unsigned permutation �, there exists an optimal r-spin �� of �
such that (I) an unoriented component in �� does not contain any anti-strip, and (II) an
oriented component in �� contains at most one anti-strip.

Definition 1. super spin [7]: Suppose �� is a canonical spin of �, for every unoriented
component K of G(���), if K contains 2-strips, arbitrarily select any one of them and
transform it into an anti-strip, all the other 2-strips remain canonical. Such a spin of �
is called a super spin.

Hannenhalli and Pevzner proved that every super spin of a singleton-free permuta-
tion is an optimal r-spin. However, such a super spin is not always optimal. Here is
an example: Suppose � �[5, 6, 3, 4, 1, 2], the canonical spin of � is ��1�[�5, �6,
�3, �4, �1, �2] and consists of one unoriented component. According to their algo-
rithm, suppose we select 2-strip [�5,�6] to be turned into anti-strip and get a super spin
��2�[�5��6��3��4��1��2]. From formula (1), dr(��1)�4�2�1�3, dr(��2)�5�1�0�4 	

dr(��1); thus ��2 can not be an optimal r-spin. Moreover, if we select the canonical 2-strip
[�3,�4] or [�1,�2] to be turned into an anti-strip, the resulted super spin cannot be
optimal either. The breakpoint graphs of G(���1 ) and G(���2 ) are shown in Fig. 2.

0 11 12 13410 1 9 5 6 7 8 2 3 0 12 11 1349 1 10 5 6 7 8 2 3 

Fig. 2. Breakpoint graph G(���

1 ) and G(���

2 )

In fact, from lemma 1 and 2, to get an optimal r-spin from the canonical spin, it
only needs to decide which canonical 2-strips of the canonical spin have to be turned
into anti-strips. If one choose a canonical 2-strip which belongs to two cycles of the
same unoriented component to be turned into anti-strip, the reversal distance will be
increased. And this case is not considered in [7].

The following will consider rectifying Hannenhalli and Pevzner’s algorithm. Without
lose of generality, let s�[gi� gi�1] (gi�gi�1) be a 2-strip of an unsigned permutation �,
its canonical form in a canonical spin �� is s�[�gi��gi�1], which is transformed to
[2gi�1� 2gi� 2gi�1�1� 2gi�1] in ��’s extended permutation ���. If 2gi�1 and 2gi�1 belong
to the same cycle of G(���), call s a satisfied 2-strip. Using this definition, we correct
the definition of super spin as follows:

Definition 2. super-r-spin: Suppose �� is a canonical spin of �, for every unoriented
component K of G(���), if K contains satisfied 2-strips, arbitrarily select only one of
them and transform it into an anti-strip; otherwise, all the strips of K remain canonical.
We call such a spin a super-r-spin.

The di�erence between super spin and super-r-spin is that only those satisfied 2-strips
can be turned into anti-strips. In order to prove the super-r-spin’s optimality, we present
some simple lemmas firstly. In what follows, we use f lip(s) to denote flipping the sign
of every element in s.
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Lemma 3. Let s be a canonical 2-strip, flip(s) will increase the number of breakpoints
by 1.

Proof. Let s�[gi� gi�1] (0�gi�gi�1), its extended form is [2gi�1� 2gi� 2gi�1�1� 2gi�1]. We
use b1�(x� 2gi�1) and b2�(2gi�1� y) to denote the two black edges incident to s. The
anti-strip s� of s is [�gi��gi�1], its extended form is [2gi� 2gi�1� 2gi�1� 2gi�1�1], where
(2gi�1� 2gi�1) forms a new breakpoint, (x� 2gi) and (2gi�1�1� y) replace the old black
edges incident to s. So the overall number of breakpoints will increase by 1. �	

Lemma 4. Let s be a canonical 2-strip of an unoriented component K, flip(s) will turn
K into one oriented component K�.

Proof. Let s�[2gi�1� 2gi� 2gi�1�1� 2gi�1] in the extended form and b1 and b2 (n1 and
n2) denote the two black edges (gray edges) incident to 2gi�1 and 2gi�1 respectively.
From lemma 3, f lip(s) always adds a new black edge m1�(2gi�1� 2gi�1) and a new gray
edge m2�(2gi� 2gi�1�1) to the breakpoint graph. After f lip(s), black edge m1 connects
n1 with n2, and gray edge m2 connects the altered b1 with b2.

Since K is unoriented, we can suppose that all the black edges of K are traveled from
left to right, see Fig. 3. For convenience, we add an arrow to each edge, the head and tail
of the arrow are called the head and tail of the edge. If we retain the direction of b1, b2,
n1, n2, then in K�, no matter s is a satisfied 2-strip or not, the newly created black edge
m1 joins n2’s head with n1’s tail, and the new gray edge m2 joins b1’s head with b2’s
tail. To see it clearly, we stretch out the alternating cycle into a circle, Fig. 4(a) shows

2gi–1 2gi 2gi+1–1 2gi+1 2gi 2gi+1

n1 n2 n2m1n1

2gi–1 2gi+1–1 

flip(s)b1 b1
b2 b2

x x yy

m2

Fig. 3. Transform a 2-strip into an anti-strip, b1 has the same direction with b2
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Fig. 4. Stretched circle
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the case when s is a satisfied 2-strip, and Fig. 4(b) shows the case when s belongs to
two cycles. Note that the newly created edges m1 and m2 can not form a 1-cycle, and
all the cycles in K� must be alternating cycles. So the configuration of stretched cycles
in K� must be the one shown in Fig. 4(a�) and Fig. 4(b�) correspondingly. It is clear that
in each case, m1 is directed from n2’s head to n1’s tail and the directions of all the other
edges remain the same. What’s more, in K�, m2 crosses with both n1 and n2, which
makes K� remain one component. From Fig. 3, we know that in both cases, K� is an
oriented component. �	

Lemma 5. Let s be a canonical 2-strip of �, the two black edges incident to it be b1 and
b2. If s belongs to two cycles, f lip(s) will decrease c(�) by 1; if s is a satisfied 2-strip,
f lip(s) will increase c(�) by 1 if b1 has the same direction with b2, or retain c(�) if b1

has the opposite direction with b2.

Proof. Let s�[2gi�1� 2gi� 2gi�1�1� 2gi�1], its two incident black edges be b1�(x� 2gi�1)
and b2�(2gi�1� y). If s belongs to two cycles, i.e., gray edge n1 joins black edge b1 through
one more edges and gray edge n2 joins b2 through one more edges. After f lip(s), although
b1 and b2 are altered, n1 still joins x through one more edges and n2 joins y through one
more edges. On the other hand, in K�, n1 and n2 are joined by the newly created black
edge m1�(2gi�1� 2gi�1), the altered b1 and b2 are joined by the newly created gray edge
m2�(2gi� 2gi�1�1), so the two cycles are merged into one. Fig. 4(b) and (b�) shows the
stretched cycle transformation when b1 has the same direction with b2.

2gi–1 2gi 2gi+1–1 2gi+1 2gi 2gi+1

n1 n2 n2m1n1

2gi+1–1 x y x y

flip(s)

2gi–1

b1 b2 b2b1

m2

Fig. 5. Transform a 2-strip into an anti-strip, b1 has the opposite direction with b2

If s belongs to the same cycle, the change of c(�) depends on the relative direction
of b1 and b2. Case 1: b1 and b2 have the same direction, as shown in lemma 4 and
Fig. 4(a�), in K�, the new black edge m1 is directed from n2’s head to n1’s tail, and the
new gray edge m2 is directed from b1’s head to b2’s tail, each in a closed cycle, thus
increasing c(�) by 1. Case 2: b1 and b2 have the opposite direction, see Fig. 5. If we
retain the direction of b1, b2, n1, n2, then in K�, m1 joins two tails of gray edge n1 and
n2, m2 joins two heads of black edge b1 and b2. So the direction of some edges must
change in K�. The corresponding stretched cycle is shown in Fig. 4(c). Since the newly
created edges m1 and m2 can not form a 1-cycle, the cycle configuration of K� must be
the one shown in Fig. 4(c�). It is clear that c(�) remains the same. �	

Theorem 1. For a singleton-free unsigned permutation �, every super-r-spin �� of � is
an optimal r-spin of �.

Proof. Let ��1 be an optimal r-spin of � containing the minimum number of anti-strips
among all the optimal r-spins satisfying the conditions (I) and (II) of lemma 2. Let s
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be an anti-strip of ��1, and let ��2 be the twin of ��1 with canonical 2-strip s, i.e., ��1 �

��2 
 f lip(s). Then ��2 also satisfies the conditions (I) and (II) of lemma 2. From lemma
3, b(��1)�b(��2)�1. Note that a 2-strip s can belong to two cycles of ��2, or belong to the
same cycle of ��2. The following will discuss them respectively.

Case 1: If s belongs to two cycles of ��2. From lemma 5, c(��1)�c(��2)�1. Since f lip(s)
can a�ect at most two hurdles of ��2, and when f lip(s) removes two hurdles, they
must both be simple hurdles. From the definition of fortress, we know (h� f )(��1) �

(h� f )(��2)�2. 1 From formula (1), dr(��2)�dr(��1). This implies that ��2 is an optimal
r-spin of � satisfying conditions (I) and (II) of lemma 2, and that ��2 contains fewer
anti-strips than ��1, a contradiction.

Case 2: If s belongs to the same cycle of ��2. From lemma 5, the change of cycle
number due to f lip(s) on ��2 depends on the relative direction of black edges b1 and b2

which are incident to s.
Case 2.1 If b1 and b2 have the opposite direction, then c(��1)�c(��2). Since s is in an

oriented component of ��2, (h� f )(��1)�(h� f )(��2). From formula (1), dr(��1)	dr(��2), a
contradiction.

Case 2.2 If b1 and b2 have the same direction, then c(��1)�c(��2)�1. If b1 and b2

are in an oriented component of G(���2 ), then (h� f )(��1)�(h� f )(��2). From formula (1),
dr(��1)�dr(��2). This implies that ��2 is an optimal r-spin of � satisfying conditions (I)
and (II) of lemma 2, and that ��2 contains fewer anti-strips than ��1, a contradiction. So
b1 and b2 must belong to one cycle of an unoriented component K of G(���2 ), i.e., s is a
satisfied 2-strip of K. In this case, f lip(s) will never increase (h� f )(��2), and can at most
decrease (h� f )(��2) by 1. If (h� f )(��1)�(h� f )(��2), then dr(��1)�dr(��2), a contradiction.
Therefore (h� f )(��1)�(h� f )(��2)�1 and dr(��1)�dr(��2)�1.

The above analysis shows that if ��1 is an optimal r-spin of � containing the minimum
number of anti-strips among all the optimal r-spins satisfying the conditions (I) and (II)
of lemma 2, then its twin ��2 with canonical s must have s in one cycle of an unoriented
component of G(���2 ) and (h� f )(��1)�(h� f )(��2)�1 holds.

Suppose that ��1 contains t anti-strips s�1� s�2� � � � � s�t . Applying f lip(s) to all of them
will turn them into canonical 2-strips s1� s2� � � � � st, thus turning ��1 into a canonical
spin, denoted as Æ. Note that dr(Æ)�dr(��1)�t must hold, and each si (1�i�t) must be a
satisfied 2-strip of Æ. Let K1� K2� � � � � Kt be the t unoriented components of Æ contain-
ing satisfied 2-strips s1� s2� � � � � st. Let ��3 be a spin of � obtained from Æ by arbitrarily
choosing a satisfied 2-strip of Ki (for 1�i�t), and transforming it into an anti-strip.
From lemma 3, b(��3)�b(Æ)�t�b(��1), from lemma 5, c(��3)�c(Æ)�t�c(��1). Moreover,
(h� f )(��1)�(h� f )(��3). This is because for an unoriented component Ki, if it contains
more than one satisfied 2-strips, turning any one of them into an anti-strip has the same
e�ect of turning Ki into an oriented component, thus having the same e�ect on h� f .
Therefore, dr(��3)�dr(��1).

If ��3 does not have additional unoriented components containing satisfied 2-strips,
��3 is a super-r-spin of �. Otherwise, suppose ��3 has unoriented components Kt�1,...,
Kx, each of them contains satisfied 2-strips. Then for every Kj (t�1� j�x), arbitrar-
ily select a satisfied 2-strip s j�Kj, performing f lip(s j) will transform Kj into an ori-
ented component without increasing the value of (b�c)(��3) and (h� f )(��3), which means

1 (h� f )(��

1) is a simplified notation of h(��

1)� f (��

1).
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dr(��3 
 f lip(s j)) � dr(��3). Let ��4 � ��3 
 f lip(st�1) 
 � � � 
 f lip(sx). Then ��4 is a super-r-spin
of �, and dr(��4) � dr(��3) � dr(��1), which implies that ��4 is an optimal r-spin. This
completes the proof of the theorem. �	

The corrected algorithm is given as Reversal Sorting(�). For an unsigned permutation
with k singletons, there are 2k possible canonical spins. Reversal Sorting(�) first gets the
super-r-spin of each canonical spin, then computes the reversal distance of each super-
r-spin, and finally takes the super-r-spin which has the minimum distance as the optimal
r-spin. To decide whether a 2-strip is satisfied takes O(n) time. Step 10 can be completed
in O(n) time [1], step 16 can be completed in O(n

�
nlogn) time [8]. Thus the time com-

plexity of Reversal Sorting(�) can reach O(2k
n�n
�

nlogn). If the number of singletons,
k, is O(logn), the computation can be completed in polynomial time.

Algorithm Reversal Sorting(�)
1 dr(�) � n;
2 for every canonical spin �

� of ��
3 construct G(���);
4 for every unoriented component Ki of G(���)�
5 if Ki has satisfied 2-strips�
6 arbitrarily select one of them, denoted as s;
7 �

� � �
� � f lip(s);

8 ���endif
9 ���endfor

10 compute dr(��) according to formula (1);
11 if dr(��)�dr(�) �
12 dr(�) � dr(��);
13 �

� � �
�;

14 ���endif
15 ���endfor
16 sort ��;
17 sorting of �� mimics optimal sorting of � by dr(�) reversals.

4 Approximation Algorithm for Unsigned Weighted Sorting

4.1 Algorithm for Singleton-Free Permutations

In this section, we consider sorting a singleton-free unsigned permutation � by weighted
reversals, transpositions and transreversals. The weighted distance is defined as dr�t(�)�
min��� �rev(�)�2trp(�)�. Eriksen studied the signed version of this problem, and gave
a (1��)-approximation algorithm [5].

For a signed permutation ��, a component K of G(���) is either an oriented
component or an unoriented component, and an unoriented component is either a SUC
or a non-SUC. If K is an oriented component, one can eliminate it using b(K)�c(K)
reversals. If K is a non-SUC, one can eliminate it using ((b(K)�c(K))
2 transposi-
tions, which contributes b(K)�c(K) to the weighted distance, while it costs more than
b(K)�c(K) to eliminate a non-SUC by reversals. If K is a SUC, it takes more than
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((b(K)�c(K))
2 transpositions to eliminate, while just b(K)�c(K)�1 reversals will do
the job. However, it is diÆcult to distinguish between a SUC and a non-SUC, only
approximation algorithm is available. The reason we do not mention transreversals is
that in both signed case and unsigned case, each transreversal can be replaced by two
reversals, without a�ecting the objective function [5]. So we only consider reversals
and transpositions. Details about formula (2) see [5].

For an arbitrary unsigned permutation � of order n, let � be the set of all 2n spins
of �. Using the same idea as reversal sorting, we can get the following lemmas and
theorem. The proofs are similar to the those proved for reversal sorting and are given in
the full version of this paper.

Lemma 6. For any unsigned permutation �, dr�t(�)�min��
��dr�t(��).

Lemma 7. Let ��1 be a spin of � with canonical 3-element strip s�[gi� gi�1� gi�2], and
let ��2 be a twin of ��1 with respect to s. Then dr�t(��1)�dr�t(��2)

Lemma 8. For any unsigned permutation �, there exists an optimal rt-spin �� of � such
that all the long strips of � are canonical in ��.

Lemma 9. For any unsigned permutation �, there exists an optimal rt-spin �� of � such
that every 2-strip of � is either canonical or anti-canonical in �� .

Lemma 10. For any unsigned permutation �, there exists an optimal rt-spin �� of �
such that (I) an unoriented component in �� does not contain any anti-strip, and (II) an
oriented component in �� contains at most one anti-strip.

Theorem 2. For a singleton-free unsigned permutation �, every super-r-spin �� of � is
an optimal rt-spin of �.

According to theorem 2, by running Eriksen’s algorithm on the super-r-spin of �,
we can also get a (1��)-approximation solution for sorting � by weighted reversal�
transposition� transreversals. The algorithm is given as Weighted Sorting(�).

Algorithm Weighted Sorting(�)
1 construct the canonical spin �

� of � and G(���);
2 for every unoriented component Ki of G(���) �
3 if Ki has satisfied 2-strips
4 arbitrarily select one of them and turn it into an anti-strip;
5 � �� endfor
6 run the (1��)-approximation algorithm (Eriksen [5]) on the resulting �

�.

4.2 Algorithm for Permutations with O(log n) Singletons

We show that algorithm Weighted Sorting can be applied to permutations with O(log n)
singletons simply by enumerating of all the singleton’s signs and guarantee the (1��)-
approximation ratio.

Theorem 3. For any unsigned permutation �with O(log n) singletons, a (1��)-approxi-
mation solution for sorting � by weighted reversal� transposition� transreversals can be
computed in polynomial time.
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Proof. First we can enumerate all the singleton’s signs to get the set of all the canonical
spins of �. Let P����1� �

�

2� � � � � �
�

m� denote the set of canonical spins by the enumeration,
Æi denote the super-r-spin of ��i , and Ar�t(Æi) denote the distance of Æi computed by
running Eriksen’s algorithm on Æi. By running Weighted Sorting on every canonical
spin in P and taking the minimum value, we can get the approximation distance for
sorting �, i.e., Ar�t(�)�min�Ar�t(Æ1)� Ar�t(Æ2)� � � � � Ar�t(Æm)��Ar�t(Æx)(1�x�m). On the
other hand, from theorem 2, the optimal weighted distance for sorting � is dr�t(�) �
min�dr�t(Æ1)� dr�t(Æ2)� � � � � dr�t(Æm)�. Let dr�t(�)�dr�t(Æy)(1�y�m). Since Ar�t(Æi)

dr�t(Æi)
�1�� for

1�i � m, we have:

Ar�t(�)
dr�t(�)

�
min�Ar�t(Æ1)� Ar�t(Æ2)� � � � � Ar�t(Æm)�
min�dr�t(Æ1)� dr�t(Æ2)� � � � � dr�t(Æm)�

�
Ar�t(Æx)
dr�t(Æy)

�
Ar�t(Æy)

dr�t(Æy)
� 1��

When there are O(log n) singletons in the permutation, the size of set P is O(nk),
where k is a fixed constant. Similarly to section 3, we can get a polynomial time
algorithm on such permutations and guarantee the (1��)-approximation ratio. �	
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Abstract. We show that several problems that figure prominently in
quantum computing, including Hidden Coset, Hidden Shift, and Or-

bit Coset, are equivalent or reducible to Hidden Subgroup. We also
show that, over permutation groups, the decision version and search ver-
sion of Hidden Subgroup are polynomial-time equivalent. For Hidden

Subgroup over dihedral groups, such an equivalence can be obtained if
the order of the group is smooth. Finally, we give nonadaptive program
checkers for Hidden Subgroup and its decision version.

1 Introduction

The Hidden Subgroup problem generalizes many interesting problems that
have efficient quantum algorithms but whose known classical algorithms are inef-
ficient. While we can solve Hidden Subgroup over abelian groups satisfactorily
on quantum computers, the nonabelian case is more challenging. Although there
are many families of groups besides abelian ones for which Hidden Subgroup

is known to be solvable in quantum polynomial time, the overall successes are
considered limited. People are particularly interested in solving Hidden Sub-

group over two families of nonabelian groups, permutation groups and dihedral
groups, since solving them will immediately give solutions to Graph Isomor-

phism [Joz00] and Shortest Lattice Vector [Reg04], respectively.
To explore more fully the power of quantum computers, researchers have

also introduced and studied several related problems. Van Dam, Hallgren, and
Ip [vDHI03] introduced the Hidden Shift problem and gave efficient quan-
tum algorithms for some instances. Their results provide evidence that quantum
computers can help to recover shift structure as well as subgroup structure.
They also introduced the Hidden Coset problem to generalize Hidden Shift

and Hidden Subgroup. Recently, Childs and van Dam [CvD07] introduced
the Generalized Hidden Shift problem, extending Hidden Shift from a
� Partially supported by NSF grant CCF-0515269.
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different angle. In an attempt to attack Hidden Subgroup using a divide-and-
conquer approach over subgroup chains, Friedl et al. [FIM+03] introduced the
Orbit Coset problem, which they claimed to be an even more general problem
including Hidden Subgroup and Hidden Shift

1 as special instances. They
called Orbit Coset a quantum generalization of Hidden Subgroup and Hid-

den Shift, since the definition of Orbit Coset involves quantum functions.
In Section 3, we show that all these related problems are equivalent or re-

ducible to Hidden Subgroup with different underlying groups. In particular,

1. Hidden Coset is polynomial-time equivalent to Hidden Subgroup,
2. Orbit Coset is equivalent to Hidden Subgroup if we allow functions in

the latter to be quantum functions, and
3. Hidden Shift and Generalized Hidden Shift reduce to instances of

Hidden Subgroup over a family of wreath product groups.2

There are a few results in the literature about the complexity of Hidden Sub-

group. Hidden Subgroup over abelian groups is in class BQP [Kit95, Mos99].
Ettinger, Hoyer, and Knill [EHK04] showed that Hidden Subgroup (over arbi-
trary finite groups) has polynomial quantum query complexity. Arvind and Ku-
rur [AK02] showed that Hidden Subgroup over permutation groups is in the
class FPSPP and is thus low for the counting complexity class PP. In Section 4
we study the relationship between the decision and search versions of Hidden

Subgroup, denoted as Hidden SubgroupD and Hidden SubgroupS , respec-
tively. It is well known that NP-complete sets such as SAT are self-reducible,
which implies that the decision and search versions of NP-complete problems
are polynomial-time equivalent. We show this is also the case for Hidden Sub-

group and Hidden Shift over permutation groups. There are evidences in
the literature showing that Hidden SubgroupD over permutation groups is
difficult [HRTS03, GSVV04, MRS05, KS05, HMR+06, MRS07]. In particular,
Kempe and Shalev [KS05] showed that under general conditions, various forms
of the Quantum Fourier Sampling method are of no help (over classical ex-
haustive search) in solving Hidden SubgroupD over permutation groups. Our
results yield evidence of a different sort that this problem is difficult—namely,
it is just as hard as the search version. For Hidden Subgroup over dihedral
groups, our results are more modest. We show the search-decision equivalence
for dihedral groups of smooth order, i.e., where the largest prime dividing the
order of the group is small.

Combining our results in Sections 3 and 4, we obtain nonadaptive program
checkers for Hidden Subgroup and Hidden SubgroupD over permutation
groups. We give the details in Section 5.

1 They actually called it the Hidden Translation problem.
2 Friedl et al. [FIM+03] gave a reduction from Hidden Shift to instances of Hidden

Subgroup over semi-direct product groups. However, their reduction only works
when the group G is abelian.
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2 Preliminaries

2.1 Group Theory

Background on general group theory and quantum computation can be found
in textbooks [Sco87] and [NC00]. A special case of the wreath product groups
plays an important role in several proof.

Definition 1. For any finite group G, the wreath product G �Zn of G and Zn =
{0, 1, . . . , n − 1} is the set {(g1, g2, . . . , gn, τ) | g1, g2, . . . , gn ∈ G, τ ∈ Zn}
equipped with the group operation ◦ such that

(g1, g2, . . . , gn, τ) ◦ (g′1, g
′
2, . . . , g

′
n, τ ′) = (gτ ′(1)g

′
1, gτ ′(2)g

′
2, . . . , gτ ′(n)g

′
n, ττ ′).

We abuse notation here by identifying τ and τ ′ with permutations over the set
{1, . . . , n} sending x to x + τ mod n and to x + τ ′ mod n, respectively.

Let Z be a set and SZ be the symmetric group of permutations of Z. We define
the composition order to be from left to right, i.e., for g1, g2 ∈ SZ , g1g2 is the
permutation obtained by applying g1 first and then g2. For n ≥ 1, we abbreviate
S{1,2,...,n} by Sn. Subgroups of Sn are the permutation groups of degree n. For
a permutation group G ≤ Sn and an element i ∈ {1, . . . , n}, let G(i) denote the
stabilizer subgroup of G that fixes the set {1, . . . , i} pointwise. The chain of the
stabilizer subgroups of G is {id} = G(n) ≤ G(n−1) ≤ · · · ≤ G(1) ≤ G(0) = G. Let
Ci be a complete set of right coset representatives of G(i) in G(i−1), 1 ≤ i ≤ n.
Then the cardinality of Ci is at most n−i and ∪n

i=1Ci forms a strong generator set
for G [Sim70]. Any element g ∈ G can be written uniquely as g = gngn−1 · · · g1

with gi ∈ Ci. Furst, Hopcroft, and Luks [FHL80] showed that given any generator
set for G, a strong generator set can be computed in polynomial time. For X ⊆ Z
and G ≤ SZ , we use GX to denote the subgroup of G that stablizes X setwise.
It is evident that GX is the direct sum of SX and SZ\X . We are particularly
interested in the case when G is Sn. In this case, a generating set for GX can be
easily computed.

Let G be a finite group. Let Γ be a set of mutually orthogonal quantum
states. Let α : G × Γ → Γ be a group action of G on Γ , i.e., for every x ∈ G
the function αx : Γ → Γ mapping |φ〉 to |α(x, |φ〉)〉 is a permutation over Γ ,
and the map h from G to the symmetric group over Γ defined by h(x) = αx is a
homomorphism. We use the notation |x · φ〉 instead of |α(x, |φ〉)〉, when α is clear
from the context. We let G(|φ〉) denote the orbit of |φ〉 with respect to α, i.e.,
the set {|x · φ〉 : x ∈ G}, and we let G|φ〉 denote the stabilizer subgroup of |φ〉
in G, i.e., {x ∈ G : |x · φ〉 = |φ〉}. Given any positive integer t, let αt denote the
group action of G on Γ t = {|φ〉⊗t : |φ〉 ∈ Γ} defined by αt(x, |φ〉⊗t) = |x · φ〉⊗t.
We need αt because the input superpositions cannot be cloned in general.

Definition 2. Let G be a finite group.

– Given a generating set for G and a function f that maps G to some finite
set S, where the values of f are constant on a subgroup H of G and distinct
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on each left (right) coset of H . The Hidden Subgroup problem is to find a
generating set for H . The decision version of Hidden Subgroup, denoted
as Hidden SubgroupD, is to determine whether H is trivial. The search
version, denoted as Hidden SubgroupS , is to find a nontrivial element, if
there exists one, in H .

– Given a generating set for G and n injective functions f1, f2, . . . , fn defined
on G, with the promise that there is a “shift” u ∈ G such that for all g ∈ G,
f1(g) = f2(gu), f2(g) = f3(gu), . . . , fn−1(g) = fn(gu), the Generalized

Hidden Shift problem is to find u. If n = 2, this problem is called the
Hidden Shift problem.

– Given a generating set for G and two functions f1 and f2 defined on G such
that for some shift u ∈ G, f1(g) = f2(gu) for all g in G, the Hidden Coset

problem is to find the set of all such u.
– Given a generating set for G and two quantum states |φ0〉, |φ1〉 ∈ Γ , the

Orbit Coset problem is to either reject the input if G(|φ0〉)∩G(|φ1〉) = ∅,
or else output both a u ∈ G such that |u · φ1〉 = |φ0〉 and also a generating
set for G|φ1〉.

2.2 Program Checkers

Let π be a computational decision or search problem. Let x be an input to π
and π(x) be the output of π. Let P be a deterministic program (supposedly)
for π that halts on all inputs. We are interested in whether P has any bug, i.e.,
whether there is some x such that P (x) = π(x). A efficient program checker C for
P is a probabilistic expected-polynomial-time oracle Turing machine that uses P
as an oracle and takes x and a positive integer k (presented in unary) as inputs.
The running time of C does not include the time it takes for the oracle P to do
its computations. C will output CORRECT with probability ≥ 1 − 1/2k if P is
correct on all inputs (no bugs), and output BUGGY with probability ≥ 1−1/2k

if P (x) = π(x). This probability is over the sample space of all finite sequences
of coin flips C could have tossed. However, if P has bugs but P (x) = π(x), we
allow C to behave arbitrarily. If C only queries the oracle nonadaptively, then we
say C is a nonadaptive checker. See Blum and Kannan [BK95] for more details.

3 Several Reductions

The Hidden Coset problem is to find the set of all shifts of the two functions
f1 and f2 defined on the group G. In fact, the set of all shifts is a coset of a
subgroup H of G and f1 is constant on H (see [vDHI03] Lemma 6.1). If we let f1

and f2 be the same function, this is exactly Hidden Subgroup. On the other
hand, if f1 and f2 are injective functions, this is Hidden Shift.

Theorem 1. Hidden Coset is polynomial-time equivalent to Hidden Sub-

group.
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Proof. Let G and f1, f2 be the input of Hidden Coset. Let the set of shifts
be Hu, where H is a subgroup of G and u is a coset representative. Define a
function f that maps G � Z2 to S × S as follows: for any (g1, g2, τ) ∈ G � Z2,

f(g1, g2, τ) =
{

(f1(g1), f2(g2)) if τ = 0,
(f2(g2), f1(g1)) if τ = 1.

The values of f are constant on the set K = (H × u−1Hu × {0}) ∪ (u−1H ×
Hu × {1}), which is a subgroup of G � Z2. Furthermore, the values of f are
distinct on all left cosets of K. Given a generating set of K, there is at least one
generator of the form (k1, k2, 1). Pick k2 to be the coset representative u of H .
Form a generating set S of H as follows. S is initially empty. For each generator
of K, if it is of the form (k1, k2, 0), then add k1 and uk2u

−1 to S; if it is of the
form (k1, k2, 1), then add uk1 and k2u

−1 to S.

Corollary 1. Hidden Coset has polynomial quantum query complexity.

It was mentioned in Friedl et al. [FIM+03] that Hidden Coset in general is of
exponential (classical) query complexity.

Recently Childs and van Dam [CvD07] proposedGeneralized Hidden Shift

where there are n injective functions (encoded in a single function). Using a similar
approach, we show Generalized Hidden Shift essentially addresses Hidden

Subgroup over a different family of groups.

Proposition 1. Generalized Hidden Shift reduces to Hidden Subgroup

in time polynomial in n.

Proof. The input for Generalized Hidden Shift is a group G and n injective
functions f1, f2, . . . , fn defined on a group G such that for all g ∈ G, f1(g) =
f2(gu), . . . , fn−1(g) = fn(gu). Consider the group G � Zn. Define a function
f such that for any element in (g1, . . . , gn, τ) ∈ G � Zn, f((g1, . . . , gn, τ)) =
(fτ(0)(g0), . . . , fτ(n)(gn)). The function values of f are constant and distinct for
left cosets of the n-element cyclic subgroup generated by (u−(n−1), u, u, · · · , u, 1).

Van Dam, Hallgren, and Ip [vDHI03] introduced the Shifted Legendre Symbol
problem as a natural instance of Hidden Shift. They claimed that assuming a
conjecture this problem can also be reduced to an instance of Hidden Subgroup

over dihedral groups. By Proposition 1, this problem can be reduced to Hidden

Subgroup over wreath product groups without any conjecture.
Next we show Orbit Coset is not a more general problem either, if we allow

the function in Hidden Subgroup to be a quantum function. We need this
generalization since the definition of Orbit Coset involves quantum functions,
i.e., the ranges of the functions are sets of orthogonal quantum states. In Hid-

den Subgroup, the function is implicitly considered by most researchers to be
a classical function, mapping group elements to a classical set. For the purposes
of quantum computation, however, this generalization to quantum functions is
natural and does not affect any existing quantum algorithms for Hidden Sub-

group.
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Proposition 2. Orbit Coset is quantum polynomial-time equivalent to Hid-

den Subgroup.

Proof. Let G and two orthogonal quantum states |φ0〉, |φ1〉 ∈ Γ be the inputs of
Orbit Coset. Define the function f : G � Z2 → Γ ⊗ Γ as follows:

f(g1, g2, τ) =
{

|g1 · φ0〉 ⊗ |g2 · φ1〉 if τ = 0,
|g2 · φ1〉 ⊗ |g1 · φ0〉 if τ = 1.

The values of the function f are identical and orthogonal on each left coset of
the following subgroup H of G �Z2: If there is no u ∈ G such that |u · φ1〉 = |φ0〉,
then H = G|φ0〉 × G|φ1〉 × {0}. If there is such a u, then H = (G|φ0〉 × G|φ1〉 ×
{0}) ∪ (G|φ1〉u

−1 × uG|φ1〉 × {1}). For i, j ∈ {0, 1}, let gi ∈ G be the i’th coset
representative of G|φ0〉 (i.e., |gi · φ0〉 = |φi〉), and let gj ∈ G be the j’th coset
representative of G|φ1〉 (i.e., |gj · φ1〉 = |φj〉). Then elements of the left coset of
H represented by (gi, gj, 0) will all map to the same value |φi〉 ⊗ |φj〉 via f .

4 Decision Versus Search

For NP-complete problems, the decision and search version are polynomial-time
equivalent. This equivalence was also obtained for problems which are not known
to be NP -complete, such as Graph Isomorphism [Mat79] and Group Inter-

section [AT01]. Since both problems reduce to instances of Hidden Subgroup,
we ask the question whether Hidden Subgroup has such property. In this sec-
tion we show that over permutation groups Sn, this decision-search equivalence
can actually be obtained for Hidden Subgroup and also Hidden Shift. On
the other hand, over dihedral groups Dn, this equivalence can only be obtained
for Hidden Subgroup when n has small prime factors.

Lemma 1. Given (generating sets for) a group G ≤ Sn, a function f : G → S
that hides a subgroup H ≤ G, and a sequence of subgroups G1, . . . , Gk ≤ Sn,
an instance of Hidden Subgroup can be constructed to hide the group D =
{(g, g, . . . , g) | g ∈ H ∩ G1 ∩ · · · ∩ Gk} inside G × G1 × · · · × Gk.

Proof. Define a function f ′ over the direct product group G × G1 × · · · × Gk so
that for any element (g, g1, . . . , gk), f ′(g, g1, . . . , gk) = (f(g), gg−1

1 , . . . , gg−1
k ).

The values of f ′ are constant and distinct over left cosets of D.

In the following, we will use the tuple 〈G, f〉 to represent a standard Hidden

Subgroup input instance, and 〈G, f, G1, . . . , Gk〉 to represent a Hidden Sub-

group input instance constructed as in Lemma 1.
We define a natural isomorphism that identifies Sn �Z2 with a subgroup of SΓ ,

where Γ = {(i, j) | i ∈ {1, . . . , n}, j ∈ {1, 2}}. This isomorphism can be viewed
as a group action, where the group element (g1, g2, τ) maps (i, j) to (gj(i), τ(j)).
Note that this isomorphism can be efficiently computed in both directions.

Theorem 2. Over permutation groups, Hidden SubgroupS is truth-table re-
ducible to Hidden SubgroupD in polynomial time.
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Proof. Suppose f hides a nontrivial subgroup H of G, first we compute a strong
generating set for G, corresponding to the chain {id} = G(n) ≤ G(n−1) ≤
· · · ≤ G(1) ≤ G(0) = G. Define f ′ over G � Z2 such that f ′ maps (g1, g2, τ)
to (f(g1), f(g2)) if τ is 0, and (f(g2), f(g1)) otherwise. It is easy to check that
for the group G(i) � Z2, f ′|G(i)�Z2

hides the subgroup H(i) � Z2.
Query the Hidden SubgroupD oracle with inputs

〈
G(i) � Z2, f

′|G(i)�Z2
, (SΓ ){(i,1),(j,2)}, (SΓ ){(i,2),(j′,1)}, (SΓ ){(k,1),(�,2)}

〉

for all 1 ≤ i ≤ n, all j, j′ ∈ {i + 1, . . . , n}, and all k, � ∈ {i, . . . , n}.

Claim. Let i be such that H(i) = {id} and H(i−1) = {id}. For all i < j, j′ ≤ n
and all i ≤ k, l ≤ n, there is a (necessarily unique) permutation h ∈ H(i−1) such
that h(i) = j, h(j′) = i and h(k) = � if and only if the query

〈
G(i−1) � Z2, f

′|G(i−1)�Z2
, (SΓ ){(i,1),(j,2)}, (SΓ ){(i,2),(j′,1)}, (SΓ ){(k,1),(�,2)}

〉

to the Hidden SubgroupD oracle answers “nontrivial.”

Proof of Claim. For any j > i, there is at most one permutation in H(i−1) that
maps i to j. To see this, suppose there are two distinct h, h′ ∈ H(i−1) both of
which map i to j. Then h′h−1 ∈ H(i) is a nontrivial permutation, contradicting
the assumption H(i) = {id}. Let h ∈ H(i−1) be a permutation such that h(i) = j,
h(j′) = i, and h(k) = �. Then (h, h−1, 1) is a nontrivial element in the group
H(i−1) �Z2∩(SΓ ){(i,1),(j,2)}∩(SΓ ){(i,2),(j′,1)}∩(SΓ ){(k,1),(�,2)}, and thus the oracle
answers “nontrivial.”

Conversely, if the oracle answers “nontrivial,” then the nontrivial element
must be of the form (h, h′, 1) where h, h′ ∈ H(i−1), since the other form (h, h′, 0)
will imply that h and h′ both fix i and thus are in H(i) = {id}. Therefore, h will
be a nontrivial element of H(i−1) with h(i) = j, h(j′) = i, and h(k) = �. This
proves the Claim.

Find the largest i such that the query answers “nontrivial” for some j, j′ > i and
some k, � ≥ i. Clearly this is the smallest i such that H(i) = {id}. A nontrivial
permutation in H(i−1) can be constructed by looking at the query results that
involve G(i−1) � Z2.

Corollary 2. Hidden SubgroupD and Hidden SubgroupS are polynomial-
time equivalent over permutation groups,.

Next we show that the search version of Hidden Shift, as a special case of
Hidden Subgroup, also reduces to the corresponding decision problem.

Definition 3. Given a generating set for a group G and two injective functions
f1, f2 defined on G, the problem Hidden ShiftD is to determine whether there
is a shift u ∈ G such that f1(g) = f2(gu) for all g ∈ G.
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Theorem 3. Over permutation groups, Hidden ShiftD and Hidden ShiftS

are polynomial-time equivalent.

Proof. We show that if there is a translation u for the two injective functions
defined on G, we can find u with the help of an oracle that solves Hidden

ShiftD. First compute the strong generator set ∪n
i=1Ci of G using the procedure

in [FHL80]. Note that ∪n
i=kCi generates G(k−1) for 1 ≤ k ≤ n. We will proceed in

steps along the stabilizer subgroup chain G = G(0) ≥ G(1) ≥ · · · ≥ G(n) = {id}.

Claim. With the help of the Hidden ShiftD oracle, finding the translation
ui for input (G(i), f1, f2) reduces to finding another translation ui+1 for input
(G(i+1), f ′

1, f
′
2). In particular, we have ui = ui+1σi.

Proof of Claim. Ask the oracle whether there is a translation for the input
instance (G(i+1), f1|G(i+1) , f2|G(i+1)). If the answer is yes, then we know ui ∈
G(i+1) and therefore set σi = id and ui = ui+1σi.

If the answer is no, then we know that u is in some right coset of G(i+1)

in G(i). For every τ ∈ Ci+1, define a function fτ such that fτ (x) = f2(xτ)
for all x ∈ G(i+1). Ask the oracle whether there is a translation for input
(G(i+1), f1|G(i+1) , fτ ). The oracle will answer yes if and only if u and τ are in the
same right coset of G(i+1) in G(i), since

u and τ are in the same right coset of G(i+1) in G(i)

⇐⇒ u = u′τ for some τ ′ ∈ G(i+1)

⇐⇒ f1(x) = f2(xu) = f2(xu′τ) = fτ (xu′) for all x ∈ G(i)

⇐⇒ u′ is the translation for (G(i+1), f1|G(i+1) , fτ ).

Then we set σi = τ .

We apply the above procedure n − 1 times until we reach the trivial subgroup
G(n). The translation u will be equal to σnσn−1 · · ·σ1. Since the size of each Ci

is at most n − i, the total reduction is in classical polynomial time.

For Hidden Subgroup over dihedral groups Dn, we can efficiently reduce search
to decision when n has small prime factors. For a fixed integer B, we say an
integer n is B-smooth if all the prime factors of n are less than or equal to B.
For such an n, the prime factorization can be obtained in time polynomial in
B + log n. Without loss of generality, we assume that the hidden subgroup is an
order-two subgroup of Dn [EH00].

Theorem 4. Let n be a B-smooth number, Hidden Subgroup over the di-
hedral group Dn reduces to Hidden SubgroupD over dihedral groups in time
polynomial in B + log n.

Proof. Without loss of generality, we assume the generator set for Dn is {r, σ},
where the order of r and σ are n and 2, respectively. Let pe1

1 pe2
2 · · · pek

k be the
prime factorization of n. Since n is B-smooth, pi ≤ B for all 1 ≤ i ≤ k. Let the
hidden subgroup H be {id, raσ} for some a < n.
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First we find a mod pe1
1 as follows. Query the Hidden SubgroupD oracle

with input groups (we will always use the original input function f) 〈rp1 , σ〉,
〈rp1 , rσ〉, . . . , 〈rp1 , rp1−1σ〉. It is not hard to see that the Hidden SubgroupD

oracle will answer “nontrivial” only for the input group 〈rp1 , rm1σ〉 where m1 =
a mod p1. The next set of input groups to the Hidden SubgroupD oracle are
〈rp2

1 , rm1σ〉, 〈rp2
1 , rp1+m1σ〉, . . . , 〈rp2

1 , r(p1−1)p1+m1σ〉. From the oracle answers we
obtain m2 = a mod p2

1. Repeat the above procedure until we find a mod pe1
1 .

Similarly, we can find a mod pe2
2 , . . . , a mod pek

k . A simple usage of the Chinese
Remainder Theorem will then recover a. The total number of queries is e1p1 +
e2p2 + · · · + ekpk, which is polynomial in log n + B.

5 Nonadaptive Checkers

An important concept closely related to self-reducibility is that of a program
checker, which was first introduced by Blum and Kannan [BK95]. They gave
program checkers for some group-theoretic problems and selected problems in
P. They also characterized the class of problems having polynomial-time check-
ers. Arvind and Torán [AT01] presented a nonadaptive NC checker for Group

Intersection over permutation groups. In this section we show that Hidden

SubgroupD and Hidden Subgroup over permutation groups have nonadap-
tive checkers.

For the sake of clarity, we give the checker for Hidden SubgroupD first.
Let P be a program that solves Hidden SubgroupD over permutation groups.
The input for P is a permutation group G given by its generating set and a
function f that is defined over G and hides a subgroup H of G. If P is a correct
program, then P (G, f) outputs TRIVIAL if H is the trivial subgroup of G, and
NONTRIVIAL otherwise. The checker CP (G, f, 0k) checks the program P on
the input G and f as follows:

Begin
Compute P (G, f).
if P (G,f) = NONTRIVIAL, then

Use Theorem 2 and P (as if it were bug-free) to search for a nontrivial element
h of H .

if f(h) = f(id), then
return CORRECT

else
return BUGGY

if P (G,f) = TRIVIAL, then
Do k times (in parallel):

generate a random permutation u ∈ G.
define f ′ over G such that f(g) = f ′(gu) for all g ∈ G, use (G, f, f ′) to be

an input instance of Hidden Shift

use Theorem 1 to convert (G, f, f ′) to an input instance (G�Z2, f
′′) of Hidden

Subgroup
3

3 Using the natural isomorphism we define in Section 4, the group G � Z2 is still
considered as a permutation group.



On the Complexity of the Hidden Subgroup Problem 79

use Theorem 2 and P to search for a nontrivial element h of the subgroup of
G � Z2 that f ′′ hides.

if h �= (u−1, u, 1), then return BUGGY
End-do
return CORRECT

End

Theorem 5. If P is a correct program for Hidden SubgroupD, CP (G, f, 0k)
always outputs CORRECT. If P (G, f) is incorrect, the probability of CP (G, f, 0k)
outputting CORRECT is ≤ 2−k. Moreover, CP (G, f, 0k) runs in polynomial time
and queries P nonadaptively.

Proof. If P is a correct program and P (G, f) outputs NONTRIVIAL, then
CP ((G, f, 0k) will find a nontrivial element of H and outputs CORRECT. If P is
a correct program and P (G, f) outputs TRIVIAL, the function f ′ constructed by
CP (G, f, 0k) will hide the two-element subgroup {(id, id, 0), (u, u−1, 1)}. There-
fore, CP (G, f, 0k) will always recover the random permutation u correctly, and
output CORRECT.

On the other hand, if P (G, f) outputs NONTRIVIAL while H is actually
trivial, then CP (G, f, 0k) will fail to find a nontrivial element of H and thus
output BUGGY. If P (G, f) outputs TRIVIAL while H is actually nontrivial,
then the function f ′′ constructed by CP (G, f, 0k) will hide the subgroup (H ×
u−1Hu × {0}) ∪ (u−1H × Hu × {1}). P correctly distinguishes u and other
elements in the coset Hu only by chance. Since the order of H is at least 2, the
probability that CP (G, f, 0k) outputs CORRECT is at most 2−k.

Clearly, CP (G, f, 0k) runs in polynomial time. The nonadaptiveness follows
from Theorem 2.

Similarly, we can construct a nonadaptive checker CP (G, f, 0k) for a program
P (G, f) that solves Hidden Subgroup over permutation groups. The checker
makes k nonadaptive queries.

Begin
Run P (G, f), which outputs a generating sets S.
Verify that elements of S are indeed in H .
Do k times (in parallel):

generate a random element u ∈ G.
define f ′ over G such that f(g) = f ′(gu) for all g ∈ G, use (G, f, f ′) to be an

input instance of Hidden Coset

use Theorem 1 to convert (G, f, f ′) to an input instance (G � Z2, f
′′) of Hidden

Subgroup

P (G � Z2, f
′′) will output a set S′ of generators and a coset representative u′

if S and S′ don’t generate the same group or u and u′ are not in the same coset
of S, then

return BUGGY
End-do
return CORRECT

End

The proof of correctness for the above checker is similar to the proof of
Theorem 5.



80 S. Fenner and Y. Zhang

6 Discussion

The possibility of achieving exponential quantum savings is closely related to
the underlying algebraic structure of a problem. Some researchers argued that
generalizing from abelian groups to nonabelian groups may be too much for
quantum computers [qua], since nonabelian groups exhibit radically different
characteristics comparing with abelian groups. The results in this paper seem to
support this point of view. Given the rich set of nonabelian group families, such
as wreath product groups, Hidden Subgroup is indeed a “robust” and difficult
problem. Recently Childs, Schulman, and Vazirani [CSV07] suggested an alter-
native generalization of abelian Hidden Subgroup, namely to the problems
of finding nonlinear structures over finite fields. They gave two such problems,
Hidden Radius and Hidden Flat of Centers, which exhibit exponential
quantum speedup. An interesting open problem is whether these two problems
are instances of Hidden Subgroup over some nonabelian group families.
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[HMR+06] Hallgren, S., Moore, C., Rötteler, M., Russell, A., Sen, P.: Limitations
of quantum coset states for graph isomorphism. In: STOC 2006: Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing, pp. 604–617
(2006)

[HRTS03] Hallgren, S., Russell, A., Ta-Shma, A.: The hidden subgroup problem and
quantum computation using group representations. SIAM Journal on Comput-
ing 32(4), 916–934 (2003)

[Joz00] Jozsa, R.: Quantum factoring, discrete algorithm and the hidden subgroup
problem (manuscript, 2000)

[Kit95] Kitaev, A.Y.: Quantum measurements and the Abelian Stabilizer problem,
quant-ph/9511026 (1995)

[KS05] Kempe, J., Shalev, A.: The hidden subgroup problem and permutation group
theory. In: Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-
crete algorithms, Vancouver, British Columbia, January 2005, pp. 1118–1125
(2005)

[Mat79] Mathon, R.: A note on the graph isomorphism counting problem. Information
Processing Letters 8, 131–132 (1979)

[Mos99] Mosca, M.: Quantum Computer Algorithms. PhD thesis, University of Oxford
(1999)

[MRS05] Moore, C., Russell, A., Schulman, L.J.: The symmetric group defies strong
fourier sampling. In: FOCS 2005: Proceedings of the 46th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 479–490 (2005)

[MRS07] Moore, C., Russell, A., Sniady, P.: On the impossibility of a quantum sieve
algorithm for graph isomorphism. In: STOC 2007: Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pp. 536–545 (2007)

[NC00] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Cambridge (2000)

[qua] Quantum pontiff, http://dabacon.org/pontiff/?p=899
[Reg04] Regev, O.: Quantum computation and lattice problems. SIAM Journal on

Computing 33(3), 738–760 (2004)
[Sco87] Scott, W.R.: Group Theory. Dover Publications, Inc. (1987)
[Sim70] Sims, C.C.: Computational methods in the study of permutation groups. In:

Computational problems in abstract algebra, pp. 169–183 (1970)
[vDHI03] van Dam, W., Hallgren, S., Ip, L.: Quantum algorithms for some hidden shift

problems. In: Proceedings of the 14th annual ACM-SIAM symposium on Discrete
algorithms, pp. 489–498 (2003)

http://dabacon.org/pontiff/?p=899


An O∗(3.523k) Parameterized Algorithm for

3-Set Packing�

Jianxin Wang and Qilong Feng

School of Information Science and Engineering, Central South University
jxwang@mail.csu.edu.cn

Abstract. Packing problems have formed an important class of NP-
hard problems. In this paper, we provide further theoretical study on the
structure of the problems, and design improved algorithm for packing
problems. For the 3-Set Packing problem, we present a deterministic
algorithm of time O∗(3.523k), which significantly improves the previous
best algorithm of time O∗(4.613k).

1 Introduction

In the complexity theory, packing problem forms an important class of NP-hard
problems, which are used widely in scheduling and code optimization fields. We
first give some related definitions [1].

Assume all the elements used in this paper are from U .

Set Packing: Given a pair (S, k), where S is a collection of n sets and k is an
integer, find a largest subset S′ such that no two sets in S′ have the common
elements.

(Parameterized) 3-Set Packing: Given a pair (S, k), where S is a collection of n
sets and k is an integer, each set contains 3elements, either construct a k-packing
or report that no such packing exists.

3-Set Packing Augmentation: Given a pair (S, Pk), where S is a collection of n
sets and Pk is a k-packing in S, either construct (k + 1)-packing or report that
no such packing exists.

Recently, Downey and Fellows [2] proved that the 3-D Matching problem is
Fixed Parameter Tractable (FPT), and gave an algorithm with time complexity
O∗((3k)!(3k)9k+1), which can be applied to solve 3-Set Packing problem. Jia,
Zhang and Chen [3] reduced the time complexity to O∗((5.7k)k) using greedy
localization method. Koutis [4] proposed a randomized algorithm with time
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complexity O∗(10.883k) and a deterministic algorithm with time complexity at
least O∗(320003k). Fellows et al [5] gave an algorithm with time complexity at
least O∗(12.673kT (k)) for the 3-D Matching problem, (based on current tech-
nology, T (k) is at least O∗(10.43k)). Kneis, Moelle, S.R and Rossmanith [6]
presented a deterministic algorithm of time O∗(163k) using randomized divide
and conquer. Chen, Lu, S.H.S and Zhang [7] gave a randomized algorithm with
time complexity O∗(2.523k) based on the divide and conquer method, whose
deterministic algorithm is of time complexity O∗(12.83k). Liu, Lu, Chen and
H Sze [1] gave a deterministic algorithm of time O∗(4.613k) based on greedy
localization and color coding, which is currently the best result in the world.

In this paper, we will discuss how to construct a (k + 1)-packing from a k-
packing, so as to solve the 3-Set Packing problem. After further analyzing the
structure of the problem, we can get the following property: if the 3-Set Packing
Augmentation problem can not be solved in polynomial time, then each set in
Pk+1 should contain at least one element of Pk. Based on the above property, we
can get a randomized algorithm of time O∗(3.523k) using randomized divide and
conquer. According to the structure analysis and the derandomization method
given in [8], we can get a deterministic algorithm with the same time complexity
O∗(3.523k), which greatly improves the current best result O∗(4.613k).

2 Related Terminology and Lemmas

We first introduce two important lemmas [1].

Lemma 1. For any constant c > 1, the 3-Set Packing Augmentation problem
can be solved in time O∗(ck) if and only if the 3-Set Packing problem can be
solved in time O∗(ck).

Lemma 2. Let (S, Pk) be an instance of 3-Set Packing Augmentation, where
Pk is a k-packing in S. If S also has (k +1)-packings, then there exists a (k +1)-
packing Pk+1 in S such that every set in Pk contains at least two elements in
Pk+1.

By lemma 1, reducing the time complexity of 3-Set Packing Augmentation prob-
lem is our objective.

For the convenience of analyzing the structure of the 3-Set Packing Augmen-
tation problem, we give the following definitions.

Definition 1. Let (S, Pk) be an instance of 3-Set Packing Augmentation prob-
lem, where Pk is a k-packing in S. Assume there exists Pk+1, for a certain
(k + 1)-packing P and a set ρi in Pk, if only one element of ρi is contained in
P , ρi is called 1-Set; if no element of ρi is contained in P , it is called 0-Set.
The collection of all the 1-Set and 0-Set in Pk is called (1, 0)-Collection of the
(k+1)-packing P . If the (1, 0)-Collection of P is null, then P is called a (0, 1)-free
packing.
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We need to point out that: different (k +1)-packing may have different (1, 0)-
Collection.

It is easy to get the following lemma from relation between Pk and Pk+1.

Lemma 3. Let (S, Pk) be an instance of 3-Set Packing Augmentation problem,
where Pk is k-packing in S. Assume there exists Pk+1, any (k + 1)-packing can
be transformed into a (0, 1)-free packing in polynomial time.

Proof. For an instance of 3-Set Packing Augmentation problem (S, Pk). Assume
there exists Pk+1, for any (k + 1)-packing P , do the following process.

Find out all the 1-Set and 0-Set in Pk, denoted by W . For each set ρi in W ,
discuss it in the following two cases.

Case 1: ρi is a 1-Set. Assume one element a in ρi is contained in P and the set
ρ′j in P contains the element a. Use ρi to replace ρ′j in P such that the number
of 1-Set in Pk is reduced by one. Because of the replacement, there may produce
new 1-Set or 0-Set in Pk. Find out all the new 1-Set and 0-Set in Pk. If a new
1-Set or 0-Set has not existed in W , add this set into W .

Case 2: ρi is a 0-Set. Since Pk has k sets and Pk+1 has k + 1 sets, there must
exists one set ρ′j in P that is not contained in Pk. Use ρi to replace ρ′j in P such
that the number of 0-Set in Pk is reduced by one. Because of the replacement,
there may produce new 1-Set or 0-Set in Pk. Find out all the new 1-Set and
0-Set in Pk. If a new 1-Set or 0-Set has not existed in W , add this set into W .

After processing all the sets in W , there are no 1-Set and 0-Set in Pk. There-
fore, the (k + 1)-packing P is converted into a (0, 1)-free packing.

Now, we prove that the above process can be done in polynomial time.
In order to find out all the 1-Set and 0-Set, for each set ρi in Pk, we need

to consider all the sets in P . Obviously, the time complexity of this process is
bounded by O(k2). When a set in P is replaced by 1-Set or 0-Set,it needs to
redetermine the 1-Set and 0-Set in Pk. The whole time complexity of this process
is bounded by O(k3). This completes the proof of the lemma. ��
Based on the lemma 3, we can get following lemma.

Lemma 4. Let (S, Pk) be an instance of 3-Set Packing Augmentation problem,
where Pk is a k-packing in S. Assume there exists Pk+1, for any (k +1)-packing
P , if P is a (0, 1)-free packing, then each set in Pk should have at least 2 elements
be contained in P .

Proof. Assume there exists Pk+1 in S, for any (k+1)-packing P , if P is a (0, 1)-free
packing, the (1, 0)-Collection of P is null, that is, there is no 1-Set or 0-Set in Pk.
Therefore, each set in Pk should have at least 2 elements be contained in P . ��
Combing lemma 4 with the structure analysis of Pk+1, we can get the following
lemma.

Lemma 5. Given an instance of 3-Set Packing Augmentation problem (S, Pk),
where Pk is k-packing in S. For any (0, 1)-free packing P , assume there are 2k+x
(0 ≤ x ≤ k) elements from Pk contained in P , if the 3-Set Packing Augmentation
problem can not be solved in polynomial time, each set in P should contain at
least one of those 2k + x elements.
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Proof. By the lemma 4, each (0, 1)-free packing contains at least 2k elements of Pk.
We use contradiction method to prove. Assume that: although the 3-Set Pack-

ing Augmentation problem can not be solved in polynomial time, one or more
sets in P contain none of those 2k + x elements.

Assume that there is a set α in P containing none of those 2k + x elements.
Except those 2k + x elements, other elements in Pk are definitely not in P .
Therefore, α and all sets in Pk have no common elements.

According to the relation between elements and sets, construct the bipartite
graph G = (V1 ∪ V2, E), where the vertices in V1 correspond to the elements
in U , and the vertices in V2 denote the sets in S. If an element is contained in
a set, then the corresponding vertices will be connected by an edge. In graph
G, we can find out all the sets having no common elements with Pk, thus, α
is definitely in those sets. A (k + 1)-packing can be constructed by the k sets
in Pk and α, which can be done in polynomial time. This contradicts with the
assumption. This completes the proof of the lemma. ��

3 The Randomized Algorithm

In this part, randomized divide and conquer will be used efficiently to solve the
3-Set Packing Augmentation problem. Based on the lemma 3, we can assume
that all the (k + 1)-packing used in the following are (0, 1)-free packing.

By lemma 5, we can get the following lemma.

Lemma 6. Given an instance of 3-Set Packing Augmentation problem (S, Pk),
where Pk is a k-packing in S. Assume there exists Pk+1, for a (k+1)-packing P ,
if P can not be found in polynomial time, P is composed of the following there
parts.

(1) P has r sets, each of which contains only one element of Pk, 0 ≤ r ≤
�k+3

2 �.
(2) P has s sets, each of which contains only two elements of Pk, 0 ≤ s ≤ k+1.
(3) P has t sets, each of which contains three elements of Pk, 0 ≤ t ≤ k − 1.
where r + s + t = k + 1.

Proof. By lemma 5, if there exists Pk+1 and could not find a (k + 1)-packing in
polynomial time, each set in Pk+1 should contains at least one element of Pk.
Therefore, for the (k+1)-packing P , each set in P may contain 1, 2 or 3 elements
of Pk, which is one of the three types given in the lemma.

Now we will prove that there are at most �k+3
2 � sets in P , each of which

contains only one element of Pk. Assume that P contains 2k + x (0 ≤ x ≤ k)
elements of Pk. If s = 0 and each set in P has already contained one of those
2k + x elements. When the remaining 2k + x − (k + 1) = k + x − 1 elements
are used to form the sets containing three elements of Pk, r gets the maximum
value: k + 1 − �k+x−1

2 	 ≤ �k+3
2 �.

When each set in P contains only two elements of Pk, s gets the maximum
value k + 1, thus, s ≤ k + 1.

Because each set in P contains at least one element of Pk, the maximum
number of sets in P containing three elements of Pk is k − 1, thus, t ≤ k − 1. ��
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Let Ci (1 ≤ i ≤ 3) denote all the sets having i common elements with Pk,
which can be found in polynomial time based on the relation of elements and
sets. Assume UPk

denotes the 3k elements in Pk and US−Pk
denotes the elements

in S − Pk. Therefore, each set in C2 contains 2 elements from UPk
, and each set

in C3 contains 3 elements from UPk
. Let UC2−Pk

denote the elements in C2 but
not in UPk

, then UC2−Pk
⊆ US−Pk

.
By lemma 6, if Pk+1 exists, there are r sets in Pk+1 such that each of which

contains only one element of Pk, which are obviously included in C1. To find the
r elements from UPk

, there are
(
3k
r

)
enumerations. Let H be the collection of

sets in C1 containing one of those r elements.
Assume UPk+1−Pk

denotes all the elements in Pk+1 but not in Pk, and the
size of the UPk+1−Pk

is denoted by y = |UPk+1−Pk
|. By lemma 5, Pk+1 contains

at least 2k elements of UPk
, thus, UPk+1−Pk

contains at most k + 3 elements of
US−Pk

, that is, y ≤ k+3. It can be seen that the elements in UPk+1−Pk
are either

in H or in C2 ∪ C3. Assume that U ′
Pk+1−Pk

denotes the elements of UPk+1−Pk

belonging to H . When the elements in UPk+1−Pk
are partitioned, the probability

that the elements in U ′
Pk+1−Pk

are exactly partitioned into H is 1
2y .

The general ideal of our randomized algorithm is as follows:
Divide Pk+1 into two parts to handle, one of which is in H and the other in

C2 ∪C3. For the part contained in C2 ∪C3, we use dynamic programming to find
a (k + 1 − r)-packing; For the part in H , we use randomized divide and conquer
to handle.

3.1 Use Dynamic Programming to find a (k + 1 − r)-Packing in
C2 ∪ C3

For the convenience of describing the algorithm, we first give the concept of
symbol pair. For each set ρi ∈ C2, the elements from UPk

in set ρi is called a
symbol pair.

The algorithm of finding a k′ = k + 1 − r (k′ ≤ k + 1) packing in C2 ∪ C3 is
given in figure 1.

Theorem 1. If there exists k′-packing in C2 ∪ C3, algorithm SP will definitely
return a collection of symbol pairs and 3-sets with size k′, and the time complexity
is bounded by O∗(23k).

Proof. If there exists k′-packing in C2 ∪ C3, assume that the number of sets in
C2 contained in the k′-packing is k′′, 0 ≤ k′′ ≤ k′. Therefore, the k′′ sets of
k′-packing in C2 can form a k′′-packing. We need to prove the following two
parts.

(1) After the execution of the for-loop in step 3, Q1 must contain a collection
of symbol pairs with size k′′.

(2) After the execution of the for-loop in step 5, Q1 must contain a collection
of symbol pairs and 3-sets with size k′.

The proof of the first part is as follows.
It can be seen from step 3.1-3.4 that the C′ added into Q1 in the step 3.7 is a

collection of symbol pairs from the right packing. We get a induction for the i in
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Algorithm SP
Input: C2, C3, k′, UPk

Output: if there exists k′-packing in C2 ∪ C3, return a collection of symbol
pairs and 3-sets with size k′

1. assume the elements in UC2−Pk are x1, x2, . . . xm;
2. Q1={φ}; Qnew={φ};
3. for i = 1 to m do
3.1 for each collection C in Q1 do
3.2 for each 3-set ρ in C2 having element xi do
3.3 if C has no common element with ρ then
3.4 C′ = C ∪ {elements in ρ belonging to UPk};
3.5 if C′ is not larger than k′ and no collection in Qnew has used

exactly the same elements as that used in C′ then
3.6 add C′ into Qnew;
3.7 Q1 = Qnew;
4. assume the 3-sets in C3 are z1, z2, . . . zl;
5. for h = 1 to l do
5.1 for each collection C in Q1 do
5.2 if C does not have common elements with zh thenC′ = C ∪ {zh};
5.4 if C′ is not larger than k′ and no collection in Qnew has used

exactly the same elements as that used in C′

then add C′ into Qnew;
5.6 Q1 = Qnew;
6. if there is a collection of symbol pairs and 3-sets with size k′ in Q1 then

return the collection.

Fig. 1. Use dynamic programming to find a (k + 1 − r)-packing in C2 ∪ C3

the step 3 so as to prove that: if there exists k′′-packing in C2, Q1 must contain
a collection of symbol pairs with size k′′.

There are m different elements in UC2−Pk
: x1, x2, . . . xm. For any arbitrary

i (1 ≤ i ≤ m), assume that Xi denotes all the sets containing the element in
{x1, x2, . . . xi}. Therefore, we only need to prove the following claim.

Claim 1. If there exists a j-packing symbol pairs collection Pj in Xi, then after
i-thexecution of the for-loop in step 3, Q1 contains a j-packing symbol pairs
collection P ′

j , which uses the same 2j elements with Pj .
In the step 2, Q1={φ}. Thus, if Xi has a 0-packing, the claim is true.
When i ≥ 1, assume there exists a j-packing symbol pair collection Pj =

{ϕl1 , ϕl2 , . . . , ϕlj }, where 1 ≤ l1 < l2 < · · · < lj ≤ i, then there must exists
a (j − 1)-packing symbol pair collection Pj−1 = {ϕl1 , ϕl2 , . . . , ϕlj−1} in Xlj−1.
By the induction assumption, after the (lj − 1)-th execution of for-loop in step
3, Q1 contains a (j − 1)-packing symbol pairs collection P ′

j−1, which use the
same 2(j − 1) elements of UPk

with Pj−1. By the assumption, Xi contains a j-
packing symbol pair collection Pj . Therefore, when the set containing the ϕlj is
considered in step 3.2, the elements belonging to UPk

in P ′
j−1 are totally different

from the elements in ϕlj . As a result, if there is no collection of symbol pairs
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in Q1 containing the same 2j elements with P ′
j−1 ∪ {ϕlj }, the j-packing symbol

pairs P ′
j−1 ∪ {ϕlj } will be added into Q1. Because all the collection of symbol

pairs in Q1 are not removed from Q1 and lj ≤ i, after the i-th execution of the
for-loop in step 3, Q1 must contains a j-packing symbol pairs collection using
the same 2j elements with Pj . When i = m, if there exists k′′-packing Pk′′ in
C2, Q1 must contain a collection of symbol pairs using the same 2k′′ elements
of UPk

with Pk′′ .
The proof of the second part is similar to the first part, which is neglected

here.
At last, we analyze the time complexity of algorithm SP. If considering C2

only, for each j (0 ≤ j ≤ k′) and any subset of UPk
containing 2j elements,

Q1 record at most one collection symbol pairs using those 2j elements, thus,
Q1 contains at most

∑k′+1
j=0

(
3k
2j

)
collections. If considering C3 only, for each j

(0 ≤ j ≤ k′) and any subset of containing 3j elements, Q1 record at most one
collection of 3-sets using those 3j elements, thus, Q1 contains at most

∑k′−1
j=0

(
3k
3j

)

collections. Therefore, the time complexity of algorithm SP is bounded by
max{O∗(

∑k′+1
j=0

(
3k
2j

)
), O∗(

∑k′−1
j=0

(
3k
3j

)
)} = O∗(23k). ��

If there exists k′-packing in C2 ∪ C3, the collection returned by algorithm SP
may contain symbol pairs, which can be converted into 3-sets using the bipartite
maximum matching.

3.2 Use Randomized Divide and Conquer to find a r-Packing in H

Assume that we have already picked r (0 ≤ r ≤ �k+3
2 �) elements from UPk

, and
let H be the collection of sets in C1 containing one of those r elements. The
algorithm of finding a r-packing in H is given in figure 2.

Theorem 2. If H has r-packing, algorithm RSP will return a collection D con-
taining the r-packing with probability larger than 0.75, and the time complexity
is bounded by O∗(42r).

Proof. Algorithm RSP divides H into two parts to handle: H1, H2. If there
exists r-packing Pr, Pr has 2r elements of US−Pk

, denoted by UPr−Pk
. Assume

that U ′
Pr−Pk

denotes the elements belonging to UPr−Pk
in H1, thus, the elements

belonging to UPr−Pk
in H2 can be denoted by UPr−Pk

− U ′
Pr−Pk

. Mark all the
elements from US−Pk

in H1 and H2 with red and blue colors. When elements
in U ′

Pr−Pk
are exactly marked with red and elements in UPr−Pk

− U ′
Pr−Pk

are
marked with blue, it is called that elements in H1 and H2 are rightly marked,
which occurs with probability 1

22r . Therefore, the probability that the elements
in H1 and H2 are not rightly marked is 1 − 1

22r .
If there exists r-packing in H , let δr be the probability that algorithm RSP

can not find the r-packing. In the step 3, H is divided into two parts: H1,
H2. Therefore, the probability that RSP(H1) and RSP(H2) can not find the
corresponding packing respectively is δr/2. After 3 ·22r iterations, the probability
that algorithm RSP could not find the Pk+1 is (1− 1

22r + 1
22r−1 ·δr/2)3·2

2r

. We need
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Algorithm RSP
Input: H , r
Output: return a collection D of packings

1. if r = 0 then return φ;
2. if r = 1 then return H ;
3. randomly pick � r

2 � elements from the r elements, and let H1 denote all
the sets containing one of those � r

2� elements;
4. H2 = H − H1; D = φ;
5. for 3 · 22r times do
5.1 mark all the elements from US−Pk in H1 and H2 with red and blue;

for each set ρ in H1, if the colors of the elements belonging to US−Pk

are not both red, delete the set ρ;
for each set ρ′ in H2, if the colors of the elements belonging to US−Pk

are not both blue, delete the set ρ′;
5.2 D1=RSP(H1, � r

2 �);
5.3 D2=RSP(H2, � r

2 �);
5.4 for each packing α in D1 do

for each packing β in D2 do
if there does not exist α ∪ β in D, add α ∪ β into D;

6. return D;

Fig. 2. Use randomized divide and conquer to find a r-packing in H

to prove that: for any r, δr ≤ 1/4. It is obvious that δ1 = 0. Assume δr/2 ≤ 1/4.
By the induction assumption, we can get that: δr = (1− 1

22r + 1
22r−1 ·δr/2)3·2

2r ≤
(1 − 1

22r + 1
22r−1 · 1/4)3·2

2r

= (1 − 1
22r+1 )

3
2 ·22r+1 ≤ e−3/2 < 1/4.

Let Tr denote the number of recursive calls in algorithm RSP, then Tr ≤
3·22r ·(T� r

2 �+T� r
2 �) ≤ 3·22r+1 ·T� r

2 � = O(3log 2r42r) = O((2r)log 342r) = O∗(42r).
��

3.3 The General Algorithm for 3-Set Packing Augmentation

Based on the above two algorithm, the general algorithm for 3-Set Packing Aug-
mentation problem is given in figure 3.

Theorem 3. If S has (k + 1)-packing, algorithm GSP will return the (k + 1)-
packing with probability larger than 0.75, and the time complexity is bounded by
O∗(3.523k).

Proof. In the above algorithm, we need to consider all the enumeration of r. If
S has a (k + 1)-packing, there must exist a r and an enumeration satisfying the
condition. The algorithm divides Pk+1 into two parts to handle, one of which is
in H and the other in C2 ∪ C3. When elements in U ′

Pr−Pk
are exactly marked

with white and elements in UPr−Pk
− U ′

Pr−Pk
are marked with black, it is called

that elements in US−Pk
are rightly marked, which occurs with probability 1

2y .
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Algorithm GSP
Input: S, k
Output: whether there is a (k + 1)-packing in S

1. for r = 0 to �k+3
2 � do

1.1 enumerate r elements from UPk , and get
(3k

r

)
enumerations;

1.2 for each enumeration do
let H be the collection of sets in C1 containing one of those r
elements;

1.3 for 24 · 2k times do
C′

2 = C2; C′
3 = C3;

for each element a in UPk , if a belongs to H , then delete all
the sets in C′

2 ∪ C′
3 containing a;

use colors black and white to mark all the elements in US−Pk ;
for each set ρ in C′

2, if the color of the element belonging to
US−Pk is not black, delete the set ρ;
for each set ρ′ in H , if the colors of the elements belonging to
US−Pk are not both white, delete the set ρ′;
Q2 =SP(C′

2, C
′
3, k + 1 − r,UPk );

Q3 =RSP(H,r);
use the bipartite maximum matching algorithm to convert the
symbol pairs in Q2 into 3-sets;
if Q2 is a (k + r − 1)-packing and Q3 has a r-packing
then return the (k + 1)-packing; stop;

2. return no (k + 1)-packing in S;

Fig. 3. The general algorithm for 3-Set Packing Augmentation

Therefore, the probability that the elements in US−Pk
are not rightly marked is

1 − 1
2y . If S has Pk+1, let δk denote the probability that algorithm GSP can not

find the Pk+1. If H has r-packing, let δr denote the probability that algorithm
RSP can not find the r-packing. By theorem 3, we know that δr ≤ 1/4. If Pk+1

exists, for a certain r and an enumeration, after 24 · 2k iterations of step 1.3, the
probability that algorithm GSP could not find the Pk+1 is (1− 1

2y + 1
2y−1 ·δr)24·2

k

,
that is,

δk = (1 − 1
2y + 1

2y−1 · δr)24·2
k ≤ (1 − 1

2y + 1
2y−1 · 1

4 )24·2
k

= (1 − 1
2y+1 )24·2

k ≤
e−3/2 < 1/4.

By theorem 1, If there exists (k + 1 − r)-packing in C2 ∪ C3, algorithm SP
will definitely return a collection of symbol pairs and 3-sets with size k + 1 − r.
By theorem 2, if H has r-packing, algorithm RSP will return the r-packing with
probability larger than 0.75. Therefore, if S has (k +1)-packing, algorithm GSP
will return the (k + 1)-packing with probability larger than 0.75.

Now we analyze time complexity of the above algorithm. For each r, there are(
3k
r

)
ways to enumerate r elements from UPk

. By theorem 1, the time complexity
of algorithm SP is bounded by O∗(23k). By theorem 2, the time complexity of
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algorithm RSP is O∗(42r). Because of 0 ≤ r ≤ �k+3
2 �, the running time of algo-

rithm RSP is bounded by O∗(4k). Using bipartite maximum matching algorithm
to covert symbol pairs in Q2 can be done in polynomial time. Therefore, the total

time complexity of algorithm GSP is
∑� k+3

2 �
r=0

(
3k
r

)
(2k(23k−r +4k)) = O∗(3.523k).

��

4 Derandomization

When there exists (k + 1)-packing, in order to make failure impossible, we need
to derandomize the above algorithm. We first point out that: partitioning a set
means dividing the set into two parts.

Because the size of the UPk+1−Pk
is y, there are 2y ways to partition UPk+1−Pk

.
Therefore, there must exist a partition satisfying the following property: elements
in U ′

Pk+1−Pk
are exactly partitioned into H , and elements in UPk+1−Pk

−U ′
Pk+1−Pk

are exactly in C2 ∪ C3. However, the problem is that: UPk+1−Pk
is unknown.

Naor, Schulman and Srinivasan [9] gave the solution for the above problem.
Moreover, Chen and Lu [8] presented a more detailed description of that method.

Now we introduce a very important lemma in [10].

Lemma 7. Let n, k be two integers such that 0 < k ≤ n. There is an (n, k)-
universal set P of size bounded by O(n2k+12 log2 k+12 log k+6), which can be con-
structed in time O(n2k+12 log2 k+12 log k+6).

The (n, k)-universal set in the above lemma is a set F of splitting functions, such
that for every k-subset W of {0, 1, · · · , n − 1} and any partition (W1, W2) of W ,
there is a splitting function f in F that implements (W1, W2).

In the construction of the above lemma, Chen and Lu [8] constructed a fuction
h(x)=((ix mod p)mod k2) from {0, 1, · · · , n − 1} to {0, 1, · · · , k2 − 1}, and used
the fact that there are at most 2n h(x) to get the above lemma. However, the
bound 2n is not tight. Now, we introduce an important lemma in [9].

Lemma 8. There is an explicit (n, k, k2)-splitter A(n, k) of size
O(k6 log k log n).

In the above lemma, the (n, k, k2)-splitter A(n, k) denotes the function from
{0, 1, · · · , n − 1} to {0, 1, · · · , k2 − 1}. Thus, the number of functions from
{0, 1, · · · , n − 1} to {0, 1, · · · , k2 − 1} are bounded by O(k6 log k log n).

Based on lemma 7, lemma 8, we can get the following lemma.

Lemma 9. Let n, k be two integers such that 0 < k ≤ n. There is an (n, k)-
universal set P of size bounded by O(log n2k+12 log2 k+18 log k), which can be con-
structed in time O(log n2k+12 log2 k+18 log k).

By the lemma 9, we can get the following theorem.
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Theorem 4. 3-Set Packing Augmentation problem can be solved deterministi-
cally in time O∗(3.523k).

Proof. Given an instance of 3-Set Packing Augmentation problem (S, Pk), if
there exists Pk+1, by lemma 5, Pk+1 contains at least 2k elements of UPk

,
thus, UPk+1−Pk

contains at most k + 3 elements of US−Pk
. After picking r

elements from UPk
, Pk+1 is divided into two parts to handle in the random-

ized algorithm, one of which is in H and the other in C2 ∪ C3. By lemma 9,
we can construct the (S − Pk, k + 3)-universal set, whose size is bounded by
O(log n2k+3+12 log2(k+3)+18 log(k+3)).

For each partition to US−Pk
in the (S − Pk, k + 3)-universal set, let

UH−Pk
denote the elements partitioned into H . If H has a r-packing Pr, there

are 2r elements of US−Pk
in Pr, denoted by UPr−Pk

. Assume U ′
Pr−Pk

de-
notes the elements of UPr−Pk

in H1. In order to find Pr, U ′
Pr−Pk

should
be partitioned into H1, and UPr−Pk

− U ′
Pr−Pk

should be in H2. By lemma
9, we can construct (UH−Pk

, 2r)-universal set, whose size is bounded by
O(log n2k+3+12 log2(k+3)+18 log(k+3)).

In the derandomization of algorithm RSP, the time complexity is:
Tr ≤ log n2k+3+12 log2(k+3)+18 log(k+3)(T� r

2 � + T� r
2 �)

≤ log n2k+3+12 log2(k+3)+18 log(k+3)+1T� r
2 �

= O((k + 3)log log n22(k+3)+4 log3(k+3)+15 log2(k+3)+13 log(k+3)).
In the practical point of view, Tr is bounded by:

O(22(k+3)+4 log3(k+3)+15 log2(k+3)+11 log(k+3)).
If there exists Pk+1, on the basis of (S −Pk, k+3)-universal set and the above

result, we can get the Pk+1 deterministically with time complexity:
∑� k+3

2 �
r=0

(
3k
r

)
(log n2k+3+12 log2(k+3)+18 log(k+3)

(23k−r + 22(k+3)+4 log3(k+3)+15 log2(k+3)+13 log(k+3))) = O∗(3.523k). ��

By lemma 1 and theorem 4, we can get the following corollary.

Corollary 1. 3-Set Packing can be solved in O∗(3.523k).

5 Conclusions

For the 3-Set Packing problem, we construct a (k + 1)-packing Pk+1 from a k-
packing Pk. After further analyzing the structure of the problem, we can get the
following property: for any (0, 1)-free packing P , if the 3-Set Packing Augmenta-
tion problem can not be solved in polynomial time, each set in P should contains
at least one element of Pk. On the basis of the above property, we get a ran-
domized algorithm of time O∗(3.523k). Based on the derandomization method
given in [10], we can get a deterministic algorithm with the same time complex-
ity, which greatly improves the current best result O∗(4.613k). Our results also
imply improved algorithms for various triangle packing problems in graphs [10].
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Abstract. The “richness” of properties that are indistinguishable from
first-order properties is investigated. Indistinguishability is a concept of
equivalence among properties of combinatorial structures that is appro-
priate in the context of testability. All formulas in a restricted class of
second-order logic are shown to be indistinguishable from first-order for-
mulas. Arbitrarily hard properties, including RE-complete properties,
that are indistinguishable from first-order formulas are shown to exist.
Implications on the search for a logical characterization of the testable
properties are discussed.

Keywords: Property testing, logic, graph theory, descriptive complexity.

1 Introduction

In property testing we are interested in efficiently deciding whether a given struc-
ture possesses, or is far from possessing, a desired property. Although algorithmic
efficiency is often defined as polynomial time, this is not always ideal. For exam-
ple, we may not have an explicit representation of the input but instead only the
ability to query an oracle for individual bits. These queries may be expensive
and even a linear-time algorithm, which requires us to compute the entire input
explicitly, may be unacceptable. If we are only concerned about distinguishing
with high probability between the input satisfying and being far from satisfying
a property, a sub-linear number of queries may be sufficient.

Testers are randomized algorithms that, given the size of the input, are re-
stricted to a certain number of queries which does not depend on the input size.
We shall give formal definitions below, but mention here that such algorithms
are probabilistic approximation algorithms.

In a certain sense, the whole area can be traced back to Freivalds [14] who
introduced a program result checker for matrix multiplication over a finite field.
Subsequently, the study of property testing originally arose in the context of
program verification (see Blum et al. [7] and Rubinfeld and Sudan [22]), and the
first explicit definition appears to be in [22]. For surveys of the field see e.g.,
Fischer [12] and Ron [21].

Characterizing the testable properties has been called the most important
problem in the area (see Alon and Shapira [5]). The class of regular languages
was shown to be testable in Alon et al. [4], a result that was extended in Chock-
ler and Kupferman [8]. However, there are context-free languages that are not

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 94–104, 2008.
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testable [12]. It is then perhaps at first surprising that there are many natural,
testable properties that are considerably harder. Testers for NP-complete graph
properties including k-color were given in Goldreich et al. [16].

Restricting ourselves to characterizations of testable graph properties, the
first step towards a logical characterization was obtained by Alon et al. [2], later
extended by Fischer [13]. They show that all properties expressible in first-order
logic (FO) with all quantifier alternations of type “∃∀” are testable, whereas
there exists a property expressible with a single quantifier alternation of type
“∀∃” that is not testable. It is useful to note the equivalence of first-order logic
with arithmetic and uniform AC0 (see Barrington et al. [6]). Later, a character-
ization of the graph properties testable with one-sided error by algorithms that
are unaware of the input size was given in [5], a result that was extended to
hypergraphs by Rödl and Schacht [20]. An exact combinatorial characterization
of the graph properties testable with a constant number of queries has been
obtained by Alon et al. [3].

In the present paper we focus on a question raised in [13]: the expressive power
of first-order logic in the context of indistinguishability and testing. The concept
of indistinguishability was introduced by Alon et al. [2] as a suitable form of
equivalence in the context of testing. First-order logic with arithmetic is equiva-
lent to uniform AC0, and so it is strictly contained in NP (see Furst et al. [15]).
Therefore, properties that are complete for NP under first-order reductions such
as k-color cannot be expressed in FO (see Allender et al. [1]). However, it has
been noted in Alon et al. [2] that there are first-order expressible properties that
are indistinguishable from such properties, including k-color. In this sense, the
descriptive power of first-order logic with indistinguishability is surprisingly rich.
We examine the set of properties that are indistinguishable from FO-expressible
properties and show that this set is larger than was previously known.

The paper is organized as follows. We begin by giving more formal defini-
tions. In Section 3 we show that all graph properties expressible in a restriction
of monadic second-order existential logic (MSO∃) are indistinguishable from FO
properties. We next prove that there are arbitrarily-hard properties, including
RE-complete properties, that are indistinguishable from FO properties (cf. Sec-
tion 4). In fact, we can construct arbitrarily-hard testable properties. Finally, we
discuss the implications of the results obtained (cf. Section 5).

2 Preliminaries

We generally restrict our attention to graph properties, and so give the following
definitions for graphs. We consider only finite, undirected graphs without loops.
We use G and H to refer to graphs, n = |G| as the number of vertices in a graph,
and P , Q and R to refer to properties.

Let G and G′ be two graphs having the same vertex set and let ε > 0. If G′

can be constructed from G by adding and removing no more than εn2 edges
then we say that G and G′ differ in no more than εn2 places.
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Definition 1 (Alon et al. [2]). Let P be a property of graphs and let ε > 0.

(1) A graph G with n vertices is called ε-far from satisfying P if no graph G′

with the same vertex set, which differs from G in no more than εn2 places,
satisfies P .

(2) An ε-test for P is a randomized algorithm which, given the quantity n and
the ability to make queries whether or not a desired pair of vertices of an
input graph G with n vertices are adjacent, distinguishes with probability at
least 2

3 between the case of G satisfying P and the case of G being ε-far from
satisfying P .

Note that in Definition 1 the choice of 2
3 is of course traditional and arbitrary.

Any probability strictly greater than 1
2 can be chosen and the resulting test can

be iterated a constant number of times to achieve any desired accuracy strictly
less than one, see e.g., Hromkovič [19].

Definition 2 (Alon et al. [2]). The property P is called testable if for every
fixed ε > 0 there exists an ε-test for P whose total number of queries is bounded
only by a function of ε, which is independent of the size of the input graph.

We allow the tester to know the size of the input, and to make its queries in
any computable fashion. In [17] this was shown to be equivalent to the “non-
adaptive” model, where a tester uniformly chooses a set of vertices, receives the
induced subgraph, and makes a decision based on whether that subgraph has
some fixed property. We note that this definition of testability is not an o(n)
number of queries and that “ε-far” clearly depends on n.

In general we do not require a uniformity condition. However, it is very natural
to require the ε-tests for P in the above definition to be computable given ε.
We refer to properties satisfying this additional condition as uniformly testable
where the uniform and non-uniform cases differ (Proposition 1).

We note that testers given in the literature are generally presented as a single
algorithm that takes ε as a parameter and therefore uniform.

Definition 3 (Alon et al. [2]). Two graph properties P and Q are called in-
distinguishable if for every ε > 0 there exists N = N(ε) satisfying the following.
For every graph G having n > N vertices that satisfies P there exists a graph
G′ with the same vertex set, differing from G in no more than εn2 places, which
satisfies Q; and for every graph H with n > N vertices satisfying Q there exists a
graph H ′ with the same vertex set, differing from H in no more than εn2 places,
which satisfies P .

As notation, we use φ, ψ and γ to refer to logical formulas. Whether these for-
mulas are first- or second-order will be clear from context. We use Φ to denote
a logical interpretation of variables. First-order variables are denoted by xi, yi

and ti while second-order variables are denoted by Ci. Members of the universe
(nodes in the graph) are referred to as ui when we wish to distinguish between
variables and the nodes bound to them. We write E(x, y) to denote the predicate
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“there is an edge between x and y.” Since we consider only finite, undirected
graphs without loops, it follows that E(x, y) implies E(y, x) for all x, y and that
E(x, x) is false for all x.

Logical structures such as graphs allow us to interpret predicate symbols.
The combination of structures and interpretations, e.g., (G, Φ), then allows us
to interpret formulas. We write G |= φ, read G models φ, if formula φ holds when
interpreting the edge predicate according to G. Inductively we use interpretations
to interpret bound variables, and write (G, Φ) |= φ if formula φ holds when
interpreting bound variables according to Φ and the edge predicate (assuming
it isn’t bound by a second-order quantifier) according to G. For a more formal
introduction to the logics used, see e.g., Enderton [9].

We assume that ordering and arithmetic are not present in the logics consid-
ered, however ordering and arithmetic can be defined in logics containing exis-
tential second-order. In proofs we treat the universal quantifier (∀) as the dual of
the existential quantifier (∃). Although properties are often implicitly assumed
to be computable, we shall see that there are implications to this assumption,
and so explicitly state that we do not make this assumption.

Finally, we define DTIME(f(n)) in the usual manner as the set of decision
problems computable on a deterministic Turing machine in f(n) steps.

3 Monadic Second-Order Existential Logic

In this section we show that all graph properties expressible in a restriction of
monadic second-order existential logic (see Definition 4 below) are indistinguish-
able from FO properties.

Definition 4. Let rMSO∃ denote the graph properties expressible in monadic
second-order existential logic that satisfy the following. For all P ∈rMSO∃ ex-
pressible with r second-order quantifiers, there exists an N such that in all graphs
G satisfying P with n > N vertices

(1) there exists a set of r vertices such that removing them does not affect P ,
and

(2) adding r disconnected vertices to the graph does not affect P .

Note that rMSO∃ contains natural problems such as k-color. The first restriction
is similar to but weaker than hereditariness. The proof of the following theorem
is a generalization of a result regarding the indistinguishability of k-color from
FO properties (see, e.g., Alon et al. [2]).

Theorem 1. All properties expressible in rMSO∃ are indistinguishable from
properties expressible in FO.

Proof. Let P be the rMSO∃ property expressed by formula φ := ∃C1C2 . . . Crψ,
where ψ is first-order. We construct a first-order formula φ′ expressing property
Q such that P and Q are indistinguishable.

φ′ := ∃t1t2 . . . trψ
′,
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where the symbols ti do not occur in ψ (if they do occur, simply rename them).
Formula ψ′ is derived from ψ with the following changes:

1. Replace all occurrences of Ci(x) with E(ti, x).
2. Replace all quantifiers with restricted quantifiers:

∃x : γ with ∃x : (x �= t1 ∧ . . . ∧ x �= tr) ∧ γ and
∀x : γ with ∀x : (x �= t1 ∧ . . . ∧ x �= tr) → γ.

First, let ε > 0 be arbitrary and let G model φ. Assume |G| = n > N . Choose
the set of r vertices guaranteed to exist by Restriction (1) of Definition 4, call
them u1 . . . ur and remove them. Call this graph G−. Take an interpretation Φ
under which G− models φ. Replace the ui as disconnected vertices. Connect ui

and x iff Ci(x) holds in Φ. Call the resulting graph G′. Note that we have changed
at most r(n − 1) edges, which is less than εn2 for sufficiently large n.

Claim 1. Graph G′ models φ′.

Proof. We construct a satisfying interpretation Φ′ from Φ. The only change is to
bind ti to ui. Recall that the ti appear only where we added them above and
thus the ui are only referred to in these contexts.

Note that:

– (G−, Φ) |= x = y ⇐⇒ (G′, Φ′) |= x = y,
because the ui cannot appear here and all other members are retained.

– (G−, Φ) |= Ci(x) ⇐⇒ (G′, Φ′) |= E(ti, x), by construction.
– Logical operators ∧, ¬ are preserved inductively.
– (G−, Φ) |= ∃x : γ ⇐⇒ (G′, Φ′) |= ∃x : (x �= t1 ∧ . . . ∧ x �= tr) ∧ γ,

because G− does not contain the vertices referred to by the ti.

Therefore, G′ models φ′ and thus has the first-order property Q. 
�Claim 1

Next, let ε > 0 be arbitrary and assume that graph H models φ′. Assume further
that |H | > N . Let Φ′ be an interpretation satisfying ψ′. Let the vertices bound
to the ti be called ui. Recall that because of the restricted quantifiers in φ′, the
ui are referred to only as ti, and the ti only occur where we explicitly added
them.

Remove the ui from H and call this graph H−. Next, re-add the ui as r
isolated vertices and call this graph H ′. We claim that both H− and H ′ model
φ, and construct a satisfying interpretation Φ from Φ′. Because of Restriction (2)
in Definition 4, it is sufficient to prove that H− models φ as adding r isolated
vertices will not affect property P .

We set Ci(x) to be true in Φ iff there is an edge between ui and x in H .

Claim 2. (H−, Φ) |= φ.

Proof. Note that:

– (H−, Φ) |= x = y ⇐⇒ (H, Φ′) |= x = y,
because x and y cannot be bound to ui on the right.

– (H−, Φ) |= Ci(x) ⇐⇒ (H, Φ′) |= E(ti, x), by construction.
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– Logical operators ∧, ¬ are preserved inductively.
– (H−, Φ) |= ∃x : γ ⇐⇒ (H, Φ′) |= ∃x : (x �= t1 ∧ . . . ∧ x �= tr) ∧ γ,

because H− does not contain the vertices referred to by the ti.


�Claim 2
Therefore, H− has property P and by Restriction (2) of Definition 4, H ′ does
too. We have changed at most r(n−1) edges, which is less than εn2 for sufficiently
large n.

Properties P and Q are therefore indistinguishable. 
�

4 Hard Properties

In the previous section, we showed that every property expressible in a restric-
tion of monadic second-order existential logic is indistinguishable from some
FO-expressible property. All properties expressible in this logic are contained
in NP by Fagin’s [10] theorem. For graphs it is known that MSO∃ is strictly less
expressive than SO∃: there are graph properties in NP that are not expressible
in MSO∃ (see, Fagin et al. [11]). In this section we continue our study of the set
of properties indistinguishable from FO-expressible properties, and show that it
contains much harder properties. We show that this set contains uncomputable
properties, and also, for every f(n), computable (and testable) properties that
are not computable in time f(n). In this sense, the power of first-order logic in
the context of indistinguishability is even larger than previously known. How-
ever, we also show that there exist computable properties that are distinguishable
from every first-order expressible property.

In the next proof we use the concept of RE-completeness. A decision problem
is in RE (recursively enumerable) iff there exists a Turing machine that halts
and accepts all positive instances and does not accept negative instances. The
machine is not required to halt on negative instances. A decision problem D
is RE-complete iff it is in RE and all other problems in RE can be decided
by machines given an oracle for D. The halting problem is the canonical RE-
complete problem.

Theorem 2. There exists an RE-complete graph property that is indistinguish-
able from a FO-expressible property.

Proof. We define property P such that graph G satisfies it iff

(1) there is a vertex i such that all edges are incident to i, and
(2) taking the degree d of vertex i as the number of a Turing machine Md in

some canonical enumeration (Mi)i∈N of Turing machines where every Turing
machine appears at least once, provided Md halts on the empty string.

If Md does not halt on the empty string, then graph G does not have prop-
erty P . For convenience, we require that machine M0 in the enumeration halts
on the empty string. We shall show that P is an RE-complete property that is
indistinguishable from the FO-expressible property of being an empty graph.
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Lemma 1. P is RE-complete.

Proof. Let HALT={a | Ma halts on the empty string}. We show that P is RE-
complete by reducing HALT to it. On input a, representing Turing machine Ma

in the enumeration, we output a graph on a+1 vertices. There is an edge between
vertices i and j iff exactly one of them is zero. All edges are then incident to the
zero vertex, and as the degree of vertex zero is n−1 = a, the graph has property
P iff machine Ma halts on the empty string. 
� Lemma 1

Lemma 2. P is indistinguishable from the FO property of being an empty graph
(∀x, y : ¬E(x, y)).

Proof. Assume graph G satisfies property P and let ε > 0 be arbitrary. Let i
denote the vertex that is mentioned in Property (1) of the Theorem, and let d
be its degree. Remove the d ≤ n−1 edges incident to i. By assumption, all edges
in G were incident to i, and so the resulting graph is empty. For n sufficiently
large, n − 1 < εn2.

Now assume graph G is an empty graph. By assumption, M0 halts. Choose an
arbitrary vertex i and note that all zero edges are incident to it. Consequently,
G has property P . We have not changed any edges, and therefore 0 < εn2 for
all non-zero n. 
� Lemma 2

Lemma 1 and 2 directly yield the theorem. 
�

The following proposition is essentially obvious: an ε-tester is a probabilistic
machine. It remains only to mention that we can, by choosing ε > 0 appropriately
as a function of n, remove the “approximation” in “probabilistic approximation
algorithm.” Of course, we then make a number of queries that depends on the
input size.

It is important to note that this proposition does not hold in the non-uniform
case.

Proposition 1. All uniformly testable graph properties can be decided by a prob-
abilistic Turing machine with success probability at least 2

3 .

Proof. Assume graph property P is testable. We construct a probabilistic ma-
chine deciding P . On input G of size n, choose ε such that εn2 < 1, for example,
ε = 1

n2+1 . Run the ε-test on G and output the result. Because εn2 < 1, being
at most ε-far from G implies that we may not change any edges. We therefore
distinguish with probability at least 2

3 between the case of G satisfying P and
G not satisfying P . 
�

Corollary 1. All uniformly testable properties are decidable by probabilistic
machines.

Proof. Simply modify εn2 in the proof to the appropriate definition of ε-far for
the vocabulary in question. 
�

The following also follows immediately, as randomization does not allow us to
compute uncomputable functions. We provide a proof sketch for completeness.
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Corollary 2. All uniformly testable properties are recursive.

Proof. We convert the probabilistic machine into a deterministic machine using
the following generic construction.

All probabilistic machines can be modified such that their randomness is taken
from a special binary “random tape” that is randomly fixed when the machine
is started, in which each digit is 0 or 1 with equal probability.

All halting probabilistic machines must eventually halt, regardless of the ran-
dom choices made. We can then simulate the machine over all initial segments of
increasing lengths, keeping track of “accepting,” “rejecting” and “still running”
states. Once any given segment has halted, all random strings beginning with
that initial segment must also halt. Therefore, the percentage of halting paths is
increasing, and we shall eventually reach a length such that at least 70% of the
paths have halted. Our error probability is at most 1

3 , strictly less than half of
70% and so we can output the decision of the majority of the halting paths. 
�

Theorem 3 (Alon et al. [2]). Every first-order property P of the form

∃x1, . . . , xt∀y1, . . . , ys : A(x1, . . . , xt, y1, . . . , ys),

where A is quantifier-free, is testable.

Note that our RE-complete property P defined in the proof to Theorem 2, is
indistinguishable from a first-order property of this form (t = 0).

Theorem 4 (Alon et al. [2]). If P and Q are indistinguishable graph proper-
ties, then P is testable if and only if Q is testable.

However, we now see a contradiction in the uniform case. Our RE-complete
property P , defined in the proof to Theorem 2, is indistinguishable from a FO-
property that, according to Theorem 3, is testable (which it is). Theorem 4 then
implies that this RE-complete property P is also testable, which contradicts
Corollary 2. Therefore, Theorem 4 is not strictly correct in the uniform case.
The proof given in [2] assumes that if input G has strictly less than N = N(ε)
vertices, there exists a decision procedure that gives “accurate output according
to whether it satisfies” the property in question. Of course, no such (uniform)
procedure exists for RE-complete properties. Theorem 4 holds in the uniform
case when restricted to recursive properties.

We can however use a similar construction to Theorem 2 to obtain the follow-
ing, restricting ourselves to recursive properties. By the time hierarchy theorem,
for every computable f(n) there exist computable properties that cannot be
decided in time f(n), see Hartmanis and Stearns [18].

We define arbitrarily-hard properties to be any set of computable properties
that “for each computable f(n), contains properties that cannot be computed
in DTIME(f(n)).”

It is of course possible to use other complexity measures. We have restricted
these sets to computable properties and so they are obviously infinite.
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The reduction in the following proof increases the input length by an exponen-
tial factor. However, because we are interested in arbitrarily-hard properties and
by the time hierarchy theorem, we can choose Q such that it is not computable
in, e.g., DTIME(2f(n)). Then, after the input length is increased exponentially,
we have a property that cannot be computed in DTIME(f(n)). This can be done
for all f(n).

Theorem 5. There are arbitrarily-hard testable properties.

Proof. Let Q be an arbitrarily-hard property. We define property R such that
Q is reducible to R. Let q(x) be the characteristic function for Q with an ap-
propriate encoding of the input. Similar to Theorem 2, we define R to hold in
graph G of size n iff

1. there is a vertex i such that all edges are incident to i,
2. and either the degree of i is zero or q(n) = 1.

We can obviously reduce Q to R by computing the encoding x, and outputting
a graph on x vertices with one edge. We can therefore construct arbitrarily hard
properties R.

Using the same proof as that used for Theorem 2, we see that all such R are
also indistinguishable from the empty graph. The property of being the empty
graph is testable by Theorem 3, and so R is testable by Theorem 4, if it is
decidable. We can therefore construct arbitrarily hard, testable properties. 
�

Computable graph properties that are distinguishable from all first-order prop-
erties do exist however. We show the following by a simple diagonalization ar-
gument. We define distinguishable as “not indistinguishable.”

Theorem 6. There exist computable graph properties that are distinguishable
from all first-order properties.

Proof. We let first-order formula φi denote the i’th formula in some enumeration
of first-order formulas on graphs, in which all such formulas occur infinitely often.
We define property Q such that G has property Q iff φ|G| does not hold on any
graph with |G| = n vertices.

We show that Q is distinguishable from all first-order properties by contra-
diction. Assume that first-order ψ expresses a property that is indistinguishable
from Q. Find the first i > N such that ψ = φi. There are two cases. First,
assume that there is a graph G on i vertices such that G satisfies ψ. Then, there
is no graph on i vertices with property Q, by construction. We therefore cannot
obtain a graph G′ on i vertices with property Q by changing at most εn2 edges
in G, because no such graph exists.

There must then be no such graph G on i vertices satisfying ψ. In this case, by
definition all graphs on i vertices have property Q. Taking any of them, we see
that we cannot obtain a graph on i vertices satisfying ψ by modifying at most
εn2 edges, because again no such graph exists. There must then be no first-order
ψ expressing a property indistinguishable from Q. 
�
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5 Discussion

The descriptive power of first-order logic with indistinguishability is surprisingly
large. As we have seen, we can construct testable properties of arbitrary hardness.
However, as seen in [2], there are problems in FO with quantifier alternations
“∀∃” that are not testable. So, although the class of testable properties contains
arbitrarily hard properties, it does not strictly contain uniform AC0 or even the
context-free languages. In this sense, it is a rather odd class.

A complete, logical characterization of the testable properties must then not
contain FO entirely, but must contain arbitrarily hard properties. However, in
the uniform case we have seen that all testable properties are recursive, and so a
characterization of the uniformly testable properties must not be able to express
e.g. RE-complete properties.

We also believe that the distinction between the uniformly testable and non-
uniformly testable properties is important. In particular, given our motivation
of searching for a class that is very efficiently computable, it seems undesirable
to admit uncomputable properties. In this sense, the uniform case is preferable
(Proposition 1). It would also be worthwhile to consider other possible definitions
of uniformity.

Acknowledgements. We wish to thank Osamu Watanabe for an inspiring
discussion regarding the importance of uniformity conditions.
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Abstract. In this article, we study the randomness-efficient graph tests
for homomorphism over arbitrary groups (which can be used in locally
testing the Hadamard code and PCP construction). We try to optimize
both the amortized-tradeoff (between number of queries and error prob-
ability) and the randomness complexity of the homomorphism test si-
multaneously. For an abelian group G = Z

m
p , by using the λ-biased set

S of G, we show that, on any given bipartite graph H = (V1, V2; E),
the graph test for linearity over G is a test with randomness com-
plexity |V1| log |G| + |V2|O(log |S|), query complexity |V1| + |V2| + |E|
and error probability at most p−|E| + (1 − p−|E|) · δ for any f which

is 1 − p−1(1 +

√
δ2−λ

2 )-far from being affine linear. For a non-abelian
group G, we introduce a random walk of some length, � say, on ex-
pander graphs to design a probabilistic homomorphism test over G with
randomness complexity log |G| + O(log log |G|), query complexity 2� + 1

and error probability at most 1 − δ2�2

(δ� + δ2�2 − δ2�) + 2ψ(λ, �)
for any f

which is 2δ/(1 − λ)-far from being affine homomorphism, here ψ(λ, �) =∑
0≤i<j≤�−1 λj−i−1.

1 Introduction

For any two finite groups G and Γ , a homomorphism is a function f : G → Γ
such that for every g1, g2 ∈ G we have f(g1 · g2) = f(g1) · f(g2). If G and Γ are
abelian groups, we may also call f as linear function. An affine homomorphism is
a function f such that f(0)−1 ·f is a homomorphism, here 0 is the unit element of
group G. For two functions f and g, define the distance d(f, g) = Prx∈G[f(x) �=
g(x)].

A homomorphism test, which tests the proximity of a function to a family of
homomorphism functions, was first raised by Blum, Luby and Rubinfeld [2]. In
the last decade, some interesting results about the test focused on two different
objects have been achieved: one is the graph test of Samorodnitsky and Trevisan
[4] which tried to optimize the tradeoff between the number of queries and the
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error probability of the test. Another is the randomness-efficient version of lin-
earity test of Ben-Sasson et al [11], which tried to save the randomness used by
the test.

1.1 The Affine Homomorphism Testing

A (δ, ε, q, r)-test for (affine) homomorphisms from G to Γ is a test which queries
q values of f , uses r random bits, always accepts homomorphism f and rejects
any f which is ε-far from being a (affine) homomorphism with probability at
least δ.

Blum, Luby and Rubinfeld [2] first gives a (δ, 9δ/2, 3, 2 log |G|)-test (condi-
tioned on δ < 2/9) for functions over abelian groups, so we always call the basic
linearity test BLR-test. The BLR-test just picks two random elements x, y from
the abelian group G and checks whether f(x)f(y) = f(xy). Ben-Or et al [1] ex-
tended the result and showed that the test works for functions over any general
group, they showed that:

Theorem 1. For any δ < 2/9, there is a (δ, τ, 3, 2 log |G|)-test for homomor-
phism over any group G, where τ is the smaller root of 3x − 6x2 = δ.

Note that τ = δ/3 + O(δ2) and the analysis is nearly optimal since the best
possible τ is at least δ/3.

1.2 The Graph Test for Linearity

In order to reuse the queried bits and get better tradeoff between the number
of queries and the error probability of the test, Samorodnitsky and Trevisan [4]
introduced a notion of graph test and obtained very strong results for linearity
test (for PCP construction too). Given a graph H = (V, E), the graph test for
linearity chooses a random element from the group G = Z

m
p for each vertex

v ∈ V , implements a basic BLR-test on each edge (x, y) = e ∈ E using the
values of f at x, y and xy. Samorodnitsky and Trevisan [4] used Fourier analysis
and proved (the analysis was simplified by H̊astad and Wigderson [6] later):

Theorem 2. For a graph H = (V, E), if the graph test for linearity over abelian
group G = Z

m
p accepts f : G → μp with probability p−|E| + ε, then |f̂α| ≥ ε for

some α ∈ Z
m
p . In particular, f has agreement ≥ p−1(1 + ε/2)-with some affine

linear function. Moreover, the test queries |V | + |E| values from f and uses
|V |log|G| random bits.

1.3 The Randomness-Efficient Linearity Test

Reducing the number of random bits required by the homomorphism test is
also a very intriguing problem. Several authors have supplied methods for this
purpose. Ben-Sasson et al [11] used ε-biased sets to derandomize the BLR-test for
linearity over abelian group G = Z

m
p , which uses only (1 + o(1)) log |G| random

bits whereas the original test uses 2 log |G| random bits, while just lost a quite
small quantity in soundness.
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Theorem 3. For group G = Z
m
p and λ > 0, f : G → μp, let S be a λ-biased set

in G, the test randomly chooses x ∈ G, y ∈ S and checks whether f(x)f(y) =
f(xy). If Pr( test accepts ) ≥ 1

p + (1 − 1
p ) · δ, then |f̂a

α| ≥
√

δ2 − λ for some
α ∈ Z

m
p and 1 ≤ a ≤ p−1, here fa(x) = (f(x))a. In particular, f has agreement

≥ p−1(1 +
√

δ2−λ
2 ) with some affine linear function. Moreover, the test queries 3

values of f and uses log|G| + log|S| random bits.

The main technique for analysis of Ben-Sasson et al [11] is Fourier analysis,
which seems hard to be generalized to non-abelian groups. Recently Shpilka and
Wigderson [3] extended the result of Ben-Sasson et al [11] to general groups
by using combinatorial arguments and properties of expanding Cayley graphs.
They showed:

Theorem 4. For any group G, Γ and any λ > 0, let S ⊆ G be an expanding
generating set with λ(Cay(G; S)) < λ, there is a

(
δ, 4δ/(1−λ), 3, log|G|+log|S|

)
-

test for affine homomorphism from G to Γ , given that 12δ/(1 − λ) < 1.

1.4 Our Results

For the linearity test over abelian groups, Samorodnitsky and Trevisan [4] and
Ben-Sasson et al [11] tried to optimize different parameter but fail to consider
the other one. A natural question asks how about trying to optimize both the
amortized-tradeoff (between number of queries and error probability) and the
randomness complexity simultaneously. In this paper we study this problem, we
extend the result of [4] to a derandomized version. We show the following

Theorem 5. For any δ > 0, group G = Z
m
p with a λ-biased set S and bipartite

graph H = (V1, V2; E), there is a derandomized graph test for f : G → μp on
graph H, if the test accepts f with probability p−|E| + (1 − p−|E|) · δ, then f has
agreement ≥ p−1(1+

√
δ2−λ
2 ) with some affine linear function. Moreover, the test

queries |V1| + |V2| + |E| values from f and uses |V1| log |G| + |V2| log |S| random
bits.

Note that for group G = Z
m
p , λ-biased set of size O(log |G|) can be efficiently

constructed (see [13], [12]). Specifically, when graph H is a star graph with k
leaves, we only use log |G| + k log log |G| random bits compared to the original
graph test uses (k + 1) log |G| random bits. We are able to extend this result to
graph test on graphs which is the union of a bipartite graph H = (V1, V2; E′)
and the clique graph over V1 easily.

We also try to extend the derandomized graph test for homomorphism to
general groups. We partially realized this goal. The main technique we use is the
random walk of length � over an expanding Cayley graph, and for each edge on
the walk, we do a basic homomorphism test. � is a parameter to be fixed later.
It can be thought that the test is a graph test on a path.
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Theorem 6. For groups G, Γ , δ > 0 and a symmetric subset S of G. Let X0 be
chosen uniformly at random and X0, ..., X� be a random walk on the expanding
Cayley graph Cay(G; S) starting at X0, the test checks whether f(xi)f(x−1

i xi+1)
= f(xi+1) for each edge (Xi, Xi+1). Then if

Pr( test accepts f ) ≥ 1 − δ2�2

(δ� + δ2�2 − δ2�) + 2ψ(λ, �)

then f is
2δ

1 − λ
-close to some affine homomorphism, here ψ(λ, �) =

∑
0≤i<j≤�−1

λj−i−1. Moreover, the test queries 2� + 1 values from f and uses log |G| +
�O(log log |G|) random bits.

In order to keep the randomness complexity of the test to be (1 + o(1)) log |G|,
we may let � = O(log log |G|). Note that the test of Shpilka and Wigderson [3]
is just the case of � = 1.

We remark that the error probability bound of derandomized homomorphism
test of Shpilka and Wigderson [3] can be improved slightly. We have (compare
to Theorem 4):

Theorem 7. For any groups G, H ,δ > 0 and let S ⊆ G be an expanding
generating set with λ(Cay(G; S) < λ, the test that picks uniformly an edge e =
(x, y) in Cay(G; S) and checks whether f(x)f(x−1y) = f(y) is a (δ, 2δ/(1 −
λ)), 3, log |G| + O(log log |G|)

)
-test for homomorphism given 6δ/(1 − λ) < 1.

By using a little more random bits (but still log |G| + O(log log |G|)), we can
decrease the part corresponding to λ in the error probability exponentially. It’s
easy to have

Theorem 8. For any groups G, H ,δ > 0 and let S ⊆ G be an expanding
generating set with λ(Cay(G; S) < λ, the test that picks uniformly a random
walk of lengh � on Cay(G; S) (with starting and ending points x and y respec-
tively) and checks whether f(x)f(x−1y) = f(y) is a (δ, 2δ/(1 − λ�)), 3, log |G| +
�O(log log |G|)

)
-test for homomorphism given 6δ/(1 − λ�) < 1.

2 Preliminaries

In this section, we give some necessary background.

2.1 Fourier Transformation over Abelian Groups, λ-Biased Sets

Let G be an Abelian group with |G| = k. Let

F =
{
f |G → C∗}

where C∗ is the multiplicative group of complex numbers. We define the standard
inner product over F :

〈f, g〉 = |G|−1
∑

x∈G

f(x)g(x)

where a is the conjugation of a in C∗.
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A character of G is a homomorphism

χ : G → C∗ ,

it is easy to verify that the set of characters forms an orthonormal basis for the
vector space F , so for any f ∈ F , we can represent it as

f =
∑

χ

f̂χχ

where f̂χ = 〈f, χ〉 is the Fourier coefficient corresponding to χ.
Let G be a group, a set S ⊆ G is called symmetric if it is closed under inverses,

that is s ∈ S iff −s ∈ S.

Definition 1. For G a finite abelian group, let S ⊆ G be a symmetric multiset.
We call S λ-biased if for all nontrivial characters χ, we have

|S|−1|
∑

x∈S

χ(x)| ≤ λ

We note that G is 0-biased set. We can define inner product 〈f, g〉S = |S|−1
∑

x∈S f(x)g(x) and �2-norm ‖f‖S =
√

〈f, f〉S on vector space CS similar to
that in G.

Naor and Naor [13] first defined and gave a construction of λ-biased sets. Since
then many other constructions appeared for various groups (see [13], [12]).

2.2 Random Walk on Expanding Cayley Graphs

Let H = (V, E) be a graph on n vertices. Let AH be its adjacency matrix. For two
sets A, B ∈ V denote E(A, B) = {(u, v)|u ∈ A, v ∈ B}. Let e(A, B) = |E(A, B)|.
Denote with λ1 ≥ ... ≥ λn the normalized eigenvalues of AH . If G is a d-regular
graph, then λ1 = 1 . Let

λ(H) = max(λ2, |λn|)

We denote λ = λ(H) sometimes when H is obviously known.

Definition 2. An (n, d, α)-expanding graph is an n-vertice, d-regular graph with
max(λ2, |λn|) ≤ α .

Definition 3. For G a finite group, let S ⊆ G be a symmetric generating set
for G. Define the expanding Cayley graph Cay(G; S) = (V, E) as follows: let the
vertices be the elements of G and the edges be the pairs (g, gs) for any g ∈ G
and s ∈ S.

It is easy to see that if (g1, g2) ∈ E, then (xg1, xg2) ∈ E for any x ∈ G.



110 A. Li and L. Tang

Lemma 1. [WX [12]] Given a group G of size n and λ < 1, there exists an
algorithm running in time poly(n, λ), constructs a symmetric set S ⊆ G of size
O(log n) such that λ(Cayley(G; S)) ≤ λ.

For the relation between the expansion of H and λ(H), Alon and Chung [9]
proved the following:

Lemma 2. [expander mixing lemma] Given an (n, d, α)-expanding graph H =
(V, E), for any two sets A, B ⊆ V we have

∣
∣
∣e(A, B) − d(|A| · |B|)

n

∣
∣
∣ ≤ λ · d ·

√
|A| · |B|

Specifically, Shpilka and Wigderson showed that (as Corollary 2 in [3])

Lemma 3. Let H = (V, E) be an (n, d, α)-expanding graph, then:

1. For set A ⊆ V we have

min(|A|, n − |A|) ≤ 2
1 − λ

· e(A, Ac)
d

2. There exists a connected component of size at least (1 − 4δ
1−λ) · n in G if

removing only 2δdn < 1−λ
6 ·dn edges from it (here conditioned on 12δ

1−λ < 1).

If we regard the expanding Cayley graph Cay(G; S) = (V, E) as a directed
graph, i.e., there is an directed edge (y, ys) from y to ys for any y ∈ G and
s ∈ S, then each vertex in Cay(G; S), since S is symmetric, has both out-degree
and in-degree to be d. As usual, we say a directed graph is weakly connected if it
is possible to reach any node starting from any other node by traversing edges
in some direction (i.e., not necessarily in the direction they point).

We remark that there is a similar result as Lemma 3 for the size of weakly
connected component in Cay(G; S).

Lemma 4. There exists a weakly connected component of size at least
2δ

1 − λ
· n

in Cay(G; S) if removing only 2δdn directed edges from it (here conditioned on
6δ

1 − λ
< 1).

We delay the proof of Lemma 4 to the full version.
A random walk on an expanding Cayley graph H = (V, E) is a stochastic

process (X0, X1, ...): chooses a vertex X0 from some initial distribution on V
and Xi+1 uniformly from the neighbors of Xi.

Recently, Dinur [8] proved:

Proposition 1. Let H = (V, E) be a d-regular graph with λ(H) = λ. Let F ⊆ E
be a set of edges, and let K be the distribution on vertices induced by selecting a
random edge in F , and then a random endpoint. The probability p that a random
walk that starts with distribution K takes the i + 1st step in F , is bounded by
|F |
|E| + λi.
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Corollary 1. Let H = (V, E) be a (n, d, λ)-graph and F ⊂ E be of size μ|E|,
X0, ...X� is a random walk on G with X0 uniformly chosen from V , then for
i < j, we have

Pr( edge (Xj , Xj+1) is in F | edge (Xi, Xi+1) is in F ) ≤ μ + λj−i−1 .

3 Derandomized Graph Test for Linearity in Abelian
Groups

In this section, we prove Theorem 5. Let G = Z
m
p be an abelian group, S be a

λ-biased set of G. f : G → μp is the function needs to be tested, where μp is the
group of p’th roots of unity.

Given a graph H = (V1, V2; E) with |V1| = k1 and |V2| = k2 , the graph test
(Test 1) works as follows:

1. For each vertex u ∈ V1, chooses a random element xu from G uniformly.
2. For each vertex v ∈ V2, chooses a random element yv from S uniformly.
3. For each edge e = (u, v) ∈ V1 × V2, checks whether f(xu)f(yv) = f(xuyv).

The test accepts iff it’s true for all edges in E.

Now we analyze the accept probability of the above test. It is straightforward
that the test always accept a linear function. Moreover, we have the following:

Lemma 5. If Test 1 accepts f with probability at least p−|E| + (1 − p−|E|)δ,
then there exists some character χ of G and some 1 ≤ a ≤ p − 1 such that
f̂a

χ ≥
√

δ2 − λ, here f̂a
χ = 〈fa, χ〉 and fa(x) = (f(x))a.

We delay the proof of Lemma 5 to the appendix. Note that Ben-Sasson et al [11]
have showed that (lemma 3.3 in [11])

Lemma 6. If |f̂a
χ| ≥

√
δ2 − λ, then f has agreement ≥ p−1(1 +

√
δ2−λ
2 ) with

some affine function.

Theorem 5 follows from the combining of the above two lemmas.

4 Derandomized Homomorphism Test by Random Walk
on Expander Graphs

4.1 Proof Theorem 7

Proof. We divided the proof into three claims. Define function φ(x) =
Pluralityy∈Gf(xy)f(y)−1.

Claim 1. For any x ∈ G, Pry∈G[f(xy)f(y)−1 = φ(x)] ≥ 1 − 2δ/(1 − λ).

Proof. For a fixed x ∈ G, we know

Pry∈G,s∈S [f(y)f(s) �= f(ys)] = δ

Pry∈G,s∈S [f(xy)f(s) �= f(xys)] = δ.
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Construct a subgraph of Cay(G, S) as follows: delete edge y → ys from the
Cay(G; S) (take it as directed graph) if f(y)f(s) �= f(ys) or f(xy)f(s) �= f(xys).
By the above two equations, we delete at most 2δdn directed edges, by lemma 4
we know that the remaining graph Hx contains a weakly connected component
Cx of size at least

(
1 − 2δ/(1 − λ)

)
n. We claim that for every two elements

u, v ∈ Cx, we have f(xu)f(u)−1 = f(xv)f(v)−1, then since |Cx| > |G|/2, claim 1
follows. For the last claimed equation, we may assume v = v1, ..., vt = u be a path
(do not consider the direction of edges) between v and u in Cx, since Cx is weakly
connected, such path always exists. W.l.o.g., we may assume the direction is vi →
vi+1 for edge 〈vi, vi+1〉, i.e., vi+1 = vi ·si for some si. Since the edge 〈vi, vi+1〉 is in
Cx, we know that f(vi)f(si) = f(visi) = f(vi+1) and f(xvi)f(si) = f(xvisi) =
f(xvi+1), then f(vi)−1f(vi+1) = f(si) = f(xvi)−1f(xvi+1) and f(xvi)f(vi)−1 =
f(xvi+1)f(vi+1)−1 . So f(xv)f(v)−1 = f(xu)f(u)−1 follows.

Claim 2. φ is a homomorphism.

Claim 3. There exists γ ∈ Γ such that Prx∈G[φ(x) = f(x)γ] ≥ 1− 2δ/(1−λ) .
The proof of claim 2 and claim 3 is same as that in Shpilka and Wigderson

[3]. We omit it here.
We finish our proof by combining the three claims.

4.2 Proof Theorem 8

We do the following test: Choose a random vertex x in G, then independently
choose � elements s1, ..., s� from S, check whether f(x)f(s1·...·s�) = f(x·s1·...·s�),
the test accepts if it is true. The above test may be thought as taking a random
walk of length � on Cayley graph Cay(G; S), then use the values of f at the
starting point and the terminal point of the random walk to check whether the
homomorphism condition is satisfied. We construct a new graph H ′ = (V ′, E′)
as follows: The vertex set V ′ is still all the group elements. For each path of
length � from u to v in Cay(G; S), construct a corresponding edge (u, v) in E′

(parallel edges are permitted).
Since graph Cay(G; S) is d-regular graph with λ(Cay(G; S)) = λ, it is easy

to see that graph H ′ is an (n, d�, λ�)-expander. The new test we defined is just
taking a random edge from H ′, and tests whether it satisfies the homomorphism
property. So we just need similar analysis to that in proving Theorem7, to prove
that the test is a (δ, 2δ/(1 − λ�), 3, log|G| + O(log|S|)-test for affine homomor-
phism, which proves Theorem 8.

5 Derandomized Graph Test for Homomorphism in
General Groups

5.1 Proof of Theorem 6

Ben-or et al [1] proved that the BLR-test works over non-abelian groups too. Later
Shpilka and Wigderson [3] used the Expanding Cayley graphs to derandomize the
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homomorphism testing in general groups. However, derandomized graph test for
homomorphism over non-abelian groups seems untouched till now. We will try to
go further in this area.

However, in order to maintain the quantity of random bits used by the test to
be log |G| + O(log log |G|), we are only able to analyze the case that the test for
homomorphism uses a random walk of length �, queries � + 1 values of f , and
runs � basic tests.

For any group G, Γ , and subset S of G. Let X0 be chosen uniformly at random
and X0, ..., X� be a random walk on the expanding Cayley graph Cay(G; S)
starting at X0. We define a homomorphism test (Test 2) as follows: checks
whether f(xi)f(x−1

i xi+1) = f(xi+1) for each edge (Xi, Xi+1) met on the random
walk. It may be viewed as a graph test for homomorphism on a path of length �.

First we introduce a useful lemma for our proof.

Lemma 7. [MU [7]] Let Xi be a 0-1 random variable and X =
∑�−1

i=0 Xi, then

Pr[X > 0] ≥
�−1∑

i=0

Pr(Xi = 1)
E[X |Xi = 1]

.

Now we proof the following key lemma for Theorem 6.

Lemma 8. If Pr( Test 2 accepts f ) ≥ 1−A(δ, λ), then f is 2δ/(1−λ)-close to

some affine homomorphism, where A(δ, λ) = δ2�2

(δ� + δ2�2 − δ2�) + 2δψ(λ, �)
and

ψ(λ, �) =
∑

0≤i<j≤�−1 λj−i−1 =
∑�−1

t=0 t · λ�−1−t.

Proof. Define random variables Xi for i = 0, ..., � − 1 such that:

Xi =
{

1 if f(xi)f(x−1
i xi+1) �= f(xi+1)

0 otherwise

and X =
∑�−1

i=0 Xi.
Define set F =

{
(x, xs) ∈ Cay(G; S)|f(x)f(s) �= f(xs)

}
and let

μ = |F |
|E(Cay(G;S)| , then we know

E[Xi] = Pr(Xi = 1) = μ

E[X ] =
�−1∑

i=0

E(Xi) = μ�

Pr[ test rejects f ] = Pr[X > 0]

≥
�−1∑

i=0

Pr(Xi = 1)
E[X |Xi = 1]

=
�−1∑

i=0

μ

E[X |Xi = 1]

≥ �2μ
∑�−1

i=0 E[X |Xi = 1]
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where the first inequality is from lemma 7 and the last inequality is from Jensen’s
inequality. And

�−1∑

i=0

E[X |Xi = 1] =
�−1∑

i,j=0

E[Xj=1|Xi = 1]

=
�−1∑

i,j=0

Pr(Xj=1|Xi = 1) = μ−1
�−1∑

i,j=0

Pr(Xj=1, Xi = 1)

= μ−1E[X2].

Moreover

E[X2] =
�−1∑

i,j=0

E[XiXj ] =
�−1∑

i=0

E[X2
i ] + 2

∑

0≤i<j≤�−1

E[XiXj ]

Since each Xi is 0-1 variable, so E[X2
i ] = E[Xi] = μ and for i < j

E[XiXj ] = Pr(Xi = 1) · Pr(Xj = 1|Xi = 1) ≤ μ(μ + λj−i−1)

where the last inequality is from corollary 1. It implies

E[X2] ≤ μ�+2
∑

0≤i<j≤�−1

μ(μ+λj−i−1) = (μ�+μ2�2−μ2�)+2μ
∑

0≤i<j≤�−1

λj−i−1

Define ψ(λ, �) =
∑

0≤i<j≤�−1 λj−i−1 =
∑�−1

t=0 t · λ�−1−t then

E[X2] ≤ (μ� + μ2�2 − μ2�) + 2μψ(λ, �)

and

Pr[ test rejects f ] = Pr[X > 0] ≥
�−1∑

i=0

Pr(Xi = 1)
E[X |Xi = 1]

≥ μ2�2

(μ� + μ2�2 − μ2�) + 2μψ(λ, �)
= A(μ, λ) .

So if
Pr( Test 2 accepts f ) ≥ 1 − A(δ, λ)

then

Pr( Test 2 rejects f ) ≤ A(δ, λ)

which implies

Pr( test of SW [3] rejects f ) = Pry∈G,s∈S(f(y)f(s) �= f(ys)) ≤ δ

By the analysis of Theorem 7, we know that in this case f is 2δ/(1− λ)-close to
some affine homomorphism.
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Remark 1: When δ is relatively large, say δ > 1−α
2 , we are able to prove a better

bound on the error probability, say Pr( Test 3 accepts ) ≤ (1 − δ + 1−α
2 )�−1.

Remark 2: Be different from the abelian group case, there exists some kind of
graph test may not work over general groups.
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Abstract. In this article, we show that there exist c.e. bounded Turing
degrees a, b such that 0 < a < 0

′
, and that for any c.e. bounded Turing

degree x, b ∨ x = 0
′
if and only if x ≥ a. The result gives an unexpected

definability theorem in the structure of bounded Turing reducibilities.

1 Introduction

A set A ⊆ ω is called computably enumerable (c.e., for short), if there is an
algorithm to enumerate the elements of it. Given sets A, B ⊆ ω, we say that A
is Turing reducible to B, if there is an oracle Turing machine, Φ say, such that
A = ΦB (denoted by A ≤T B), and furthermore, if the bits of oracle queries are
bounded by a computable function, we say that A is bounded Turing reducible to
B (written A ≤bT B). A Turing and a bounded Turing (or bT, for short) degree
is the equivalence class of a set under the Turing reductions and the bounded
Turing reductions respectively. A degree is called computably enumerable (c.e.),
if it contains a c.e. set.

Let E and EbT be the structures of the c.e. degrees under the Turing reductions
and the bounded Turing reductions respectively. During the past decades, the
studies of both structures focused on that of the algebraic properties, leading to
major achievements such as the decidability results of the Σ1-theory of E , and
the Σ2-theory of EbT (Ambos-Spies, P. Fejer, S. Lempp and M. Lerman [1996]),
and the undecidability results of the Σ3-theory of E (Lempp, Nies, and Slaman
[1998]), and of the Σ4-theory of EbT (Nies and Lempp [1995]). This progress
brings the decidability problems of the Σ2-theory of E , and the Σ3-theory of EbT

into sharper focus, for which new ingredients are welcome.
In recent years, the study of the computably enumerable degrees has focused

on Turing definability in the structure E . For instance, Slaman asked in 1985 if
there are any c.e. degrees that are incomplete and nonzero which are definable in
the c.e. degrees E . A natural approach to this problem is to find some definable
substructures of E that have nontrivial minimal/maximal and/or least/greatest

� The authors are partially supported by NSFC Grant No. 60325206, and No.
60310213.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 116–124, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Definable Filters in the Structure of Bounded Turing Reductions 117

members. This resumes interests in topics such as the continuity of the c.e.
degrees, started by Lachlan early in 1967.

Harrington and Soare [1992] showed that there is no maximal minimal pair
in the c.e. Turing degrees, and Seetapun [1991] proved a stronger result that for
any c.e. degree b �= 0,0′, there is a c.e. Turing degree a > b such that for any
c.e. Turing degree x, a ∧ x = 0 if and only if b ∧ x = 0.

In the dual case, Ambos-Spies, Lachlan and Soare [1993] showed that for any
c.e. Turing degrees x,y, if x and y are nontrivial splitting of 0′, then there exists
a c.e. Turing degree a < x such that a ∨ y = 0

′
. Remarkably, Cooper and Li [ta]

(the major subdegree theorem) showed that for any c.e. Turing degree b �= 0,0
′
,

there exists a c.e. Turing degree a < b such that for any c.e. Turing degree x,
b ∨ x = 0

′
if and only if a ∨ x = 0

′
(.

However, the study of the continuity and the definability in the bounded Tur-
ing structures is started just recently. Paul Brodhead, Angsheng Li and Weilin
Li [ta] (BLL) showed that the Seetapun’s result holds in the c.e. bounded Turing
degrees, that is, for any c.e. bounded Turing (bT) degree b �= 0,0

′
, there exists

a c.e. bT-degree a > b such that for any c.e. bT-degree x, a ∧ x = 0 if and only
if b ∧ x = 0. In the present paper, we consider the dual case of this result, the
BLL result. It is very unexpected that the dual case fails badly. In fact we are
able to prove:

Theorem 1. There exist c.e. bounded Turing degrees a, b with the following
properties:

(1) 0 < a < 0′,
(2) For any c.e. bounded Turing degree x, b ∨ x = 0′ if and only if x ≥ a.

An immediate corollary of the theorem is that there exist c.e. bounded Tur-
ing degrees a, b such that a ∨ b = 0′ but for no c.e. bT-degree x < a with
x ∨ b = 0′, and that the Cooper-Li major subdegree theorem fails badly in the
c.e. bT-degrees.

However the result gives a very nice theorem in the Turing definability of
the c.e. bounded Turing degrees. That is, there is a principal filter [a,0

′
] which

is definable by equation x ∨ b = 0
′

for some nonzero and incomplete c.e. bT-
degree b. The result may provide ingredients to the decidability/undecidability
problem of the Σ3-theory of the c.e. bounded Turing degrees.

The rest of this paper is devoted to proving theorem 1.1, our main result.
In section 2, we formulate the conditions of the theorem by requirements, and
for each requirement, we give corresponding strategy to satisfy it; in section 3,
we arrange all strategies to satisfy the requirements on nodes of a tree, or more
precisely, the priority tree T . In section 4, we use the priority tree to describe a
stage-by-stage construction of the objects we need. Finally, in section 5 we verify
that the construction in section 4 satisfies all of the requirements, finishing the
proof of the theorem.

Our notation and terminology are standard and generally follow Soare [1987].
During the course of a construction, notations such as A, Φ are used to denote
the current approximations to these objects, and if we want to specify the values
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immediately at the end of stage s, then we denote them by As, Φ[s] etc. For a
partial computable (p.c., or for simplicity, also a Turing) functional, Φ say, the
use function is denoted by the corresponding lower case letter φ. The value of
the use function of a converging computation is the greatest number which is
actually used in the computation. For a Turing functional, if a computation is not
defined, then we define its use function = −1. During the course of a construction,
whenever we define a parameter, p say, as fresh, we mean that p is defined to be
the least natural number which is greater than any number mentioned so far. In
particular, if p is defined as fresh at stage s, then p > s. The notion of bounded
Turing reducibility is taken from Soare’s new book: Computability Theory and
Applications [ta] (Definition 3.4.1).

2 Requirements and Strategies: Theorem 1.1

2.1 The Requirements

We will build c.e. sets A, B, C and D to satisfy the following requirements:

T : K ≤bT A ⊕ B
Pe : A �= θe

Se : C �= Ψe(A)
Re : D = Φe(Xe, B) −→ A ≤bT Xe

where e ∈ ω, {(θe, Φe, Ψe, Xe) : e ∈ ω} is an effective enumeration of all quadruples
(θ, Φ, Ψ, X) of all computable partial functions θ, of all bounded Turing (bT , for
short) reductions Φ, and Ψ , and of all c.e. sets X ; and K is a fixed creative set.

Let a, b and x be the bT-degrees of A, B and X respectively. By the
P-requirements and the S-requirements, we have 0 < a < 0′. By the R-
requirements, we know that for any c.e. bT degree x , if x ∨ b = 0′, then
a ≤ x. By the T -requirement, for any c.e. bounded Turing degree x, if a ≤ x,
then 0′ ≤ a ∨ b ≤ x ∨ b. Therefore satisfying all the requirements is sufficient
to prove the theorem.

We introduce some conventions of the bounded Turing reductions for describ-
ing the strategies. We will assume that for any given bounded Turing reduction
Φ or Ψ , the use functions φ and ψ will be increasing in arguments. Now we are
ready to describe the strategies.

2.2 The T -Strategy

To satisfy the T -requirement, K ≤bT A ⊕ B, we need to construct a bounded
Turing reduction Γ such that K = Γ (A, B).

We construct the Γ by coding K into A and B as follows:

For any k, if k ∈ K, then either 2k ∈ A or 2k ∈ B.

Therefore, k ∈ K if and only if either A(2k) = 1 or B(2k) = 1. K is bounded
Turing reducible to A ⊕ B, the T -requirement is satisfied.
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2.3 A P-Strategy

A P-strategy satisfying a P-requirement, A �= θ say, is a Friedberg-Muchnik
procedure, and proceeds as follows:

1. Define a witness a as a fresh odd number.
2. Wait for a stage, v say, at which θ(a) ↓= 0 = A(a), then

— enumerate a into A and terminate.

By the strategy, we know if step 2 of the procedure occurs, then θ(a) ↓= 0 �=
1 = A(a) is created, otherwise θ(a) �= 0 = A(a) occurs at each stage. In either
case, the P-requirement is satisfied. We use a node on a tree (the priority tree
as we’ll see later), γ say, to denote a P-strategy.

2.4 An S-Strategy

Suppose that we want to satisfy an S-requirement, C �= Ψ(A) say. It will be
satisfied by a Friedberg-Muchnik procedure as follows:

1. Define a witness c as a fresh odd number.
2. Wait for a stage, v say, at which Ψ(A; c)[v] ↓= 0 = Cv(c), then

— enumerate c into C;
— define an A-restraint rA = ψ(c).

The key point to the satisfaction of S is that the A-restraint rA = ψ(c) will
be preserved once step 2 of the strategy occurs. In this case, we have that if step
2 occurs, then Ψ(A; c) ↓= 0 �= 1 = C(c) is created and preserved, else if step
2 never occurs, then Ψ(A; c) �= 0 = C(c). In either case, the S-requirement is
satisfied. We use a node β, say, on the priority tree to denote the S-strategy.

2.5 An R-Strategy

Suppose we want to satisfy an R requirement, R: D = Φ(X, B) −→ A ≤bT X ,
say. We will build a bounded Turing reduction Δ such that if D = Φ(X, B) then
Δ(X) = A. The bounded Turing reduction Δ will be built by an ω-sequence of
cycles n, cycle n will be responsible for defining Δ(X ; n).

The R-strategy will proceed as follows:

1. Let n be the least x, such that Δ(X ; x) ↑. Define a witness block Un such
that min{y ∈ Un} is fresh, and that |Un| = n + 1.

2. Wait for a stage, v say, at which the following conditions occur: For all
y ∈ Un′ for some n′ ≤ n, we have

Φ(X, B; y) ↓= D(y)
then:
— define Δ(X ; n) ↓= A(n) with δ(n) = max{φ(y)|y ∈ Un′ , n′ ≤ n}.

3. If there is an x such that Δ(X ; x) ↓�= A(x), then let n be the least such x,
and go on to step 4.
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4. If for all y ∈ Un, Φ(X, B; y) ↓= D(y), then
— let x be the least y ∈ Un\D;
— enumerate x into D;
— define a conditional restraint −→r = (n, δ(n)].

5. Suppose that a conditional restraint −→r = (n, δ(n)] is kept, then there is no
element b with n < b ≤ δ(n) that can be enumerated into B.

Note that if X changes below δ(n), then Δ(X ; n) becomes undefined, and
simultaneously the conditional restraint −→r = (n, δ(n)] drops.

The new idea of this proof is the notion of the witness block, which seems
the first time it becomes available, and the notion of conditional restraints. The
later notion was largely the first author’s idea that has already been used several
times in the literature.

Now we analyze the correctness of the R-strategy. We proceed the arguments
by cases:

Case 1: Δ(X) is built infinitely often.
In this case we will prove that Δ(X) is a total function (i.e., Δ(X ; x) is defined

for every x). Note that for every n, Δ(X ; n) is redefined only finitely many times.
So there exists some s , such that for any stage s′ with s′ > s, Δ(X ; n)[s′] does
not change any more.

Assume by contradiction, there exists an x such that Δ(X ; x) ↑ eventually,
let n be the least such x. Assume after stage v, the Δ(X ; n) would never been
defined any more. By step 2 of the R-strategy, we know that for each stage s with
s ≥ v, there exists some y ∈ Un′ for some n′ ≤ n such that Φ(X, B; y) ↓�= D(y)
(otherwise Δ(X ; n) will be defined again by step 2 of the R-strategy), then for
any undefined Δ(X ; m) with m > n, it would never be defined after stage s with
s ≥ v. So Δ(X) is finitely built, a contradiction. That means that Δ(X) is a
total function.

Now if Δ(X) �= A, i.e., there exists an x such that Δ(X ; x) ↓�= A(x), we prove
that Φ(X, B) �= D under this assumption.

Let n be the least such x, we prove that there is an x ∈ Un such that
Φ(X, B; x) ↓= 0 �= 1 = D(x). Let sn be the stage at which the permanent com-
putation Δ(X ; n) was created, and let tn > sn be the stage at which n is enumer-
ated into A. By step 4 of the R-strategy, for any s > tn, if Φ(X, B; y) ↓= D(y)
holds for all y ∈ Un, then we enumerate an element x ∈ Un into D, and create a
conditional restraint (n, δ(n)]. By the choice of sn, the conditional restraint will
be kept forever. By the conditional restraint, no number x with n < x ≤ δ(n)
could be enumerated into B, therefore rn

.= {Φ(X, B; y)|y ∈ Un} can be injured
only by numbers x ≤ n. Once rn is injured, we may waste a witness x ∈ Un.
However, rn can be injured at most n many times and |Un| = n + 1. Therefore
after up to n many times injury, there is a witness y ∈ Un which can be used
to create a permanent inequality between Φ(X, B) and D. Let vn > tn be a
minimal stage after which B will never change below n. Therefore if at a stage
s > tn we have that
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(1) Δ(X ; n) ↓�= A(n), and
(2) for any y ∈ Un, Φ(X, B; y)[s] ↓= Ds(y),

then we enumerate the least x ∈ Un\D, x0 say, into D. By the choice of n, vn,
and by the conditional restraint −→r = (n, δ(n)], Φ(X, B; x0) ↓= 0 �= 1 = D(x0)
holds permanently, which means Φ(X, B) ↓�= D.

Case 2: Δ is finitely built.

In this case, assume w.l.o.g. that Δ(X ; 0) ↓, · · · , Δ(X ; n−1) ↓, and Δ(X ; n) ↑
eventually, we can assume after sn, Δ(X ; n) doesn’t have chance to be defined
any more (since if it has infinitely many chances to be defined, then it must be
defined). By step 2 of the R-strategy, for any stage s with s > sn, there exists
a y ∈ Un′ for some n′ ≤ n such that Φ(X, B; y) �= D(y) (otherwise Δ(X ; n)
will be defined again by step 2 of the R-strategy). Since

⋃
n′≤n Un′ is finite, so

there exists some n′ with some y0 ∈ Un′ such that Φ(X, B; y0)[s] �= Ds(y0) for
infinitely many stages s, that means Φ(X, B) �= D.

In either case, the R-requirement is satisfied. We use a node on the priority
tree, α say, to denote the R-strategy.

Note in the case Δ(X) = A, there is no permanent conditional restraint
−→r . However, there may be infinitely many stages at which we create

−→
r[s] =

(a[s], b[s]]. The key to the proof is that this unbounded conditional restraints−→
r[s] are harmless, because:

(1) A conditional restraint
−→
r[s] = (a[s], b[s]] controls elements x only if a[s] <

x ≤ b[s].
(2) The conditional restraints ensure that the R-strategy has no influence on

any number no larger than a[s]. We say it’s not important because in this case,
a[s] will be unbounded. This guarantees that the R-strategy would not injure a
lower priority S-strategy after some fixed stage. That is to say, a lower priority
S-strategy is injured by the R-strategy only finitely many times. This is the
reason why we can only use conditional restraints here, instead of the typical
restraints, which is of course one of the main contributions of this paper.

We thus define the possible outcomes of the R-strategy α by

0 <L 1

to denote infinite and finite actions respectively.

3 The Priority Tree

In this section, we will build a priority tree of strategies T ⊂ Λ<ω, with Λ =
{0, 1}. Let P < R denote that the priority ranking of P is higher than that of
R. Also let <L be a left-to-right ordering of the nodes on the priority tree, as
given below.
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Definition 1. Define the priority ranking of the requirements such that T has
the highest priority, and ∀e ∈ ω: Re < Se < Pe < Re+1.

Note that both a P-strategy and an S-strategy have only one possible outcome,
we denote it by 1. However, as we mentioned before, an R-strategy has two
outcomes which we denote by 0 <L 1.

We now define the priority tree T inductively as follows.

Definition 2 (The Priority Tree).

(i) Define the root node ∅ of the tree to be an R0-strategy.
(ii) The immediate successors of a node are the possible outcomes of the corre-

sponding strategy. We say a requirement X is satisfied at some node ξ, if
there is a node ξ

′ ⊆ ξ working on the requirement X .
(iii) The immediate successors of a node, ξ say, will work on the highest priority

ranking requirement which is not satisfied on path ξ.

Definition 3. The index I(ξ) of a node ξ is the index of the requirement on
which the node acts. For example, if ξ is an Re- or a Pe- or an Se-strategy, we
define I(ξ) = e.

4 The Construction

Our construction will perform different actions at even and odd stages. Suppose
that K is enumerated at odd stages only, and that there is exactly one element
that enters K at each odd stage. At even stages, strategies on the tree will act
to satisfy the requirements.

During the course of the construction, we may initialize a node, ξ say, which
means that all the actions taken by ξ previously, are canceled, or set to be totally
undefined.

Now we give the construction stage-by-stage.

Definition 4. (The Construction) The construction is defined as follows:
Stage s = 0. Set A = B = C = D = ∅, and initialize every node of the

priority tree T .
Stage s = 2n + 1. For ks ∈ Ks\Ks−1. Let x = 2ks, we need to decide either

x ∈ A or x ∈ B:
Case 1: Find the <-least ξ such that (a) or (b) below occurs:
(a) ξ = α is an R-strategy such that α has conditional restraint

−→
r[s] ↓=

(a[s], b[s]] and a[s] < x ≤ b[s];
(b) ξ = β is an S-strategy such that rA(β) ↓≥ x.
then:
Subcase 1: ξ = α, i.e., (a) occurs
— enumerate x into A;
— initialize all nodes ξ to the right of α 〈̂0〉.
Subcase 2: ξ = β, i.e., (b) occurs
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— enumerate x into B;
— initialize all nodes ξ with ξ �≤ β.
Case 2: Otherwise, we can’t find node ξ such that (a) or (b) occurs for ξ:
— enumerate x into A.
Stage s = 2n + 2. We specify certain strategies to be eligible to act. First

we allow the root node to be eligible to act at substage t = 0. At each substage
t, we let the strategy be eligible to act run its program, and then, either close
the current stage or specify a node to be eligible to act next, i.e., at the next
substage of stage s.

Substage t. Suppose that node ξ is eligible to act at substage t of stage s.
If t = s, then initialize all nodes ξ′ �≤ ξ, and close the current stage. Otherwise,
corresponding to different types of the strategy, there are three cases:

Case 1. ξ = β is an S-strategy. Then run the following:
Program β:

1. If c(β) ↓, and Ψβ(A; c(β)) ↓= 0 = C(c(β)), then
(a) If for any α with α 〈̂0〉 ⊆ β we have dom(α) > ψβ(c), then

— enumerate c(β) into C, and
— define rA(β) = ψ(c(β)),
where dom(α) is the size of the domain of Δα.

(b) Otherwise, then do nothing,
in either case, initialize all ξ′ �≤ β and go to stage s + 1.

2. If c(β) ↑, then
— define c(β) as fresh;
— initialize all ξ′ �≤ β and go to stage s + 1.

3. Otherwise, let β 〈̂1〉 be eligible to act next.

Case 2. ξ = γ is a P-strategy. Run the following
Program γ:

1. If a(γ) ↓, and θγ(a(γ)) ↓= 0 = A(a(γ)), then
— enumerate a(γ) into A,
– initialize all nodes ξ with ξ �≤ γ, and go to stage s + 1.

2. If a(γ) ↑, then
— define a(γ) as fresh;
— initialize all ξ′ �≤ γ and go to stage s + 1.

3. Otherwise, let γ 〈̂1〉 be eligible to act next.

Case 3. ξ = α is an R-strategy. In this case, we perform the following
Program α:

1. If there is a k > b(α), such that Δα(Xα; k) ↓�= A(k), then:
(a) If −→r (α) ↓, then:

— Let α 〈̂1〉 be eligible to act next.
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(b) Otherwise and ∀y ∈ Uα
k , Φα(Xα, B; y)[s] ↓= D(y), then:

— let i be the least k such that Δα(Xα; k) ↓�= A(k),
— let x be the least y ∈ Uα

i \D, enumerate x into D;
— define a conditional restraint −→r (α) = (i, δ(i)];
— initialize all nodes ξ to the right of α 〈̂0〉, and go to stage s + 1.

(c) Otherwise:
– let α 〈̂1〉 be eligible to act next.

2. Otherwise and for k = min{x > b(α)|Δα(Xα; x) ↑} we have:
(a) Uα

k ↓;
(b) ∀y ∈ Uα

k′ for some k′ ≤ k, Φα(Xα, B; y)[s] ↓= D(y).
Then:
— define Δα(Xα; k) ↓= A(k) with δα(k) = max{φα(y)|y ∈ Uα

k′ , k′ ≤ k};
— let α 〈̂0〉 be eligible to act next.

3. Otherwise and for k = min{x > b(α)|Δα(Xα; x) ↑} we have Uα
k ↑, then:

— define Uα
k = (l, l + k + 1), where l is a fresh number;

— initialize all nodes ξ to the right of α 〈̂0〉, and close the current stage.
4. Otherwise and b(α) ↑, then:

— define b(α) as fresh;
— initialize all ξ′ �≤ α and go to stage s + 1.

5. Otherwise, then let α 〈̂1〉 be eligible to act next.

This completes the description of the construction. The verification of this
construction will be given in the full version of the paper.
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Abstract. An H(p, q)-labeling of a graph G is a vertex mapping f :
VG → VH such that the distance between f(u) and f(v) (measured in
the graph H) is at least p if the vertices u and v are adjacent in G, and
the distance is at least q if u and v are at distance two in G. This notion
generalizes the notions of L(p, q)- and C(p, q)-labelings of graphs studied
as particular graph models of the Frequency Assignment Problem. We
study the computational complexity of the problem of deciding the exis-
tence of such a labeling when the graphs G and H come from restricted
graph classes. In this way we extend known results for linear and cyclic
labelings of trees, with a hope that our results would help to open a new
angle of view on the still open problem of L(p, q)-labeling of trees for
fixed p > q > 1 (i.e., when G is a tree and H is a path).

We present a polynomial time algorithm for H(p, 1)-labeling of trees for
arbitrary H . We show that the H(p, q)-labeling problem is NP-complete
when the graph G is a star. As the main result we prove NP-completeness
for H(p, q)-labeling of trees when H is a symmetric q-caterpillar.

1 Introduction

Motivated by models of wireless communication, the notion of so called distance
constrained graph labelings has received a lot of interest in Discrete Mathematics
and Theoretical Computer Science in recent years.

In the simplest case of constraints at distance two, the typical task is, given
a graph G and parameters p and q, to assign integer labels to vertices of G such
that labels of adjacent vertices differ by at least p, while vertices that share a
common neighbor have labels at least q apart. The aim is to minimize the span,
i.e., the difference between the smallest and the largest labels used.

The notion of proper graph coloring is a special case of this labeling notion
— when (p, q) = (1, 0). Thus it is generally NP-hard to decide whether such
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a labeling exists. On the other hand, in some special cases polynomial-time
algorithms exist. For example, when G is a tree and p ≥ q = 1, the algorithm of
Chang and Kuo based on dynamic programming finds a labeling of the minimum
span [3,6] in superlinear time O(nΔ5), where Δ is the maximum degree of the
tree.

Distance constrained labelings can be generalized in several ways. For exam-
ple, constraints on longer distances can be involved [18,14], or the constraints
on the difference of labels between close vertices can be directly implemented
by edge weights — the latter case is referred to as the Channel Assignment
Problem [22].

Alternatively, the cyclic metric or even more complex metrics on the label
set are considered. In particular, if the metric is given as the distance between
vertices in some graph H , we get the following mapping:

Definition 1. Given two positive integers p and q, we say that f is an H(p, q)-
labeling of a graph G if f maps the vertices of G onto vertices of H such that
the following hold:

– if u and v are adjacent in G, then distH(f(u), f(v)) ≥ p,
– if u and v are nonadjacent but share a common neighbor, then

distH(f(u), f(v)) ≥ q.

Observe that if the graph H is a path, the ordinary linear metric is obtained.
This has been introduced by Roberts and studied in a number of papers — see,
e.g., recent surveys [23,1]. The cyclic metric (corresponding to the case when H
is a cycle) was studied in [17,20]. The general approach was suggested in [8] and
several (both P-time and NP-hardness) results for various fixed graphs H were
presented in [7,10].

Several computational problems can be defined by restricting the graph classes
of the input graphs, and/or by fixing some values as parameters of the most
general problem which we refer to as follows:

Distance Labeling DL

Instance: G, H , p and q
Question: Does G allow an H(p, q)-labeling?

As it was already mentioned, the linear metric is often considered, i.e. when
H = Pλ+1 is a path of length λ. In this case we use the traditional notation
“L(p, q)-labeling of span λ” for “Pλ+1(p, q)-labeling” and also define the problem
explicitly:

L(p, q)-Distance Labeling L(p, q)-DL

Parameters: p, q
Instance: G and λ
Question: Does G allow an L(p, q)-labeling of span λ?

We focus our attention on various parameterized versions of the DL problem.
Griggs and Yeh [15] showed NP-hardness of the L(2, 1)-DL of a general graph,
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which means that DL is NP-complete for fixed (p, q) = (2, 1) and H being a path.
Later Fiala et al. [9] showed that the L(2, 1)-DL problem remains NP-complete
for every fixed λ ≥ 4. Similarly, the labeling problem with the cyclic metric is
NP-complete for a fixed span [8], i.e., when (p, q) = (2, 1) and H = Cλ for an
arbitrary λ ≥ 6.

From the very beginning it was noticed that the distance constrained label-
ing problem is in certain sense more difficult than ordinary coloring. The first
polynomial time algorithm for L(2, 1)-DL for trees came as a little surprise [3].
Attention was then paid to input graphs that are trees and their relatives, ei-
ther paths and caterpillars as special trees, or graphs of bounded treewidth.
Table 1 briefly summarizes the known results on the complexity of the DL prob-
lem on these graph classes and the new results presented in this paper. Notice
in particular that L(2, 1)-DL belongs to a handful of problems that are solvable
in polynomial time on graphs of treewidth one and NP-complete on treewidth
two [5].

Table 1. Summary of the complexity of the DL problem

Class of G Class of H p q Complexity

bounded tw finite class on input on input P [∗]
tw ≤ 2 paths 2 1 NP-c [5]
tw ≤ 2 cycles 2 1 NP-c [5]
pw ≤ 2 all graphs 2 1 NP-c [5]
stars all graphs fixed fixed, ≥ 2 NP-c [∗]

trees, L paths fixed fixed, ≥ 2 NP-c [11]
trees all graphs on input 1 P [3,2, ∗]
trees cycles on input ≥ q on input ≥ 1 P [20,19]
trees q-caterpillars fixed, ≥ 2q + 1 fixed, ≥ 2 NP-c [∗]
trees paths fixed fixed, ≥ 2 Open

The symbol tw means treewidth; pw is pathwidth; L indicates the list version of the DL
problem where every vertex has prescribed set (list) of possible labels; P are problems
solvable in polynomial time; NP-c are NP-complete problems; the reference [∗] indicates
results of this paper.

We start with two observations. For the seventh line, the algorithm of Chang
and Kuo [3] can be easily modified to work for arbitrary p and H on the input. It
only suffices to modify all tests whether labels of adjacent vertices have difference
at least two into tests whether they are mapped onto vertices at distance at least
p in H .

The first line of the table is a corollary of a strong theorem of Courcelle [4], who
proved that properties expressible in Monadic Second Order Logic (MSOL) can
be recognized in polynomial time on any class of graphs of bounded treewidth. If
H belongs to a finite graph class, then the graph property ”to allow an H(p, q)-
labeling” straightforwardly belongs to MSOL. A special case arises, of course, if
a single graph H is a fixed parameter of the problem.
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In particular, if λ is fixed, then L(p, q)-DL is polynomially solvable for trees.
On the other hand, without this assumption on λ the computational complexity
of L(p, q)-DL on trees remains open so far. It is regarded as one of the most
interesting open problems in the area.

We focus on the following variant when both p and q are fixed:

(p, q)-Distance Labeling (p, q)-DL

Parameters: p and q
Instance: G and H
Question: Does G allow an H(p, q)-labeling?

Our main contribution is given by Theorems 1 and 2 showing two NP-hardness
results for the (p, q)-DL problem: in the case when G is a star (with no restriction
on H), and in the case when G is a tree and H is a specific symmetric q-
caterpillar. The latter choice of H is motivated by the similarity of a caterpillar
with a path, which might provide a useful step in a proof of NP-hardness of the
L(p, q)-labeling problem.

2 Preliminaries

Throughout the paper the symbol [a, b] means the interval of integers between
a and b (including the bounds), i.e., [a, b] := {a, a + 1, . . . , b}. We also define
[a] := [1, a]. The relation i ≡q j means that i and j are congruent modulo q, i.e.,
q divides i − j. For i ≡q j we define [i, j]≡q := {i, i + q, i + 2q, . . . , j − q, j}. A
set M of integers is t-sparse if the difference between any two elements of M is
at least t. We say that a set of integers M is λ-symmetric if for every x ∈ M , it
holds that λ − x ∈ M .

All graphs are assumed to be finite, undirected, and simple, i.e., without loops
or multiple edges. Throughout the paper VG stands for the set of vertices, and
EG for the set of edges, of a graph G.

We use standard terminology: a path Pn is a sequence of n consecutively
adjacent vertices (its length being n − 1); a cycle is a path where the first and
the last vertex are adjacent as well; a graph is connected if each pair of vertices
is joined by a path; the distance between two vertices is the length of a shortest
path that connects them; a tree is a connected graph without a cycle; and a
leaf is a vertex of degree one. For precise definitions of these terms see, e.g.,
the textbooks [21,16]. A q-caterpillar is a tree that can be constructed from
a path, called the backbone, by adding new disjoint paths of length q, called
legs, and merging one end of each leg with some backbone vertex. We say that a
caterpillar is symmetric, if it allows an automorphism that reverses the backbone.
Obviously, a path can be viewed as a symmetric caterpillar.

As a technical tool for proving NP-hardness results we use the following prob-
lem of finding distant representatives:
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System of q-distant representatives Sq-DR

Parameter: q
Instance: A collection of sets Mi, i ∈ [m] of integers.
Question: Is there a collection of elements ui ∈ Mi, i ∈ [m] that pairwise
differ by at least q?

It is known that the S1-DR problem allows a polynomial time algorithm (by
finding a maximum matching in a bipartite graph), while for all q ≥ 2 the Sq-DR
problem is NP-complete, even if each set M has at most three elements [12].

We conclude this section with several observations specific to the H(p, q)-
labelings when H is a symmetric caterpillar. If f is such a labeling then the
”reversed” mapping f ′ defined as f composed with the backbone reversing au-
tomorphism is a valid H(p, q)-labeling as well. Hence, if we look for a specific
graph construction where only a fixed label is allowed on a certain vertex, we can
not avoid symmetry of labelings f and f ′. For that purpose we need a stronger
concept of systems of q-distant representatives.

Lemma 1. For any q ≥ 2 and t ≥ q, the Sq-DR problem remains NP-complete
even when restricted to instances whose sets are of size at most 6, t-sparse and
λ-symmetric for some λ.

Proof. We extend the construction from [12] where an instance of the well known
NP-complete problem 3-Satisfiability (3-SAT) [13, problem L02] was trans-
formed into an instance of the Sq-DR problem as follows:

Assume that the given Boolean formula is in the conjunctive normal form and
consists of m clauses, each of size at most three, over n variables, each with one
positive and two negative occurrences.

– The three literals for a variable xi are represented by a triple ai, bi, ai + q
such that ai < bi < ai + q. The number bi represents the positive literal,
while ai, ai + q the negative ones.

– Triples representing different variables are at least t apart (e.g., the elements
ai form an arithmetic progression of step q + t).

– The sets M ′
i , i ∈ [m] represent clauses and are composed from at most three

numbers, each uniquely representing one literal of the clause.

The equivalence between the existence of a satisfying assignment and the exis-
tence of a set of q-distant representatives is straightforward (for details see [12]).

Without loss of generality assume that there are positive integers α and β
such that M ′

i ⊂ [α, β] for every i ∈ [m] (we may assume that these bounds are
arbitrarily high, but sufficiently apart).

We set λ := 2β + t and construct the family of sets Mi, i ∈ [m + n] as follows:

– for i ∈ [m] : Mi := {a, λ − a : a ∈ M ′
i},

– for i ∈ [n] : Mm+i := {bi, λ − bi}.

If we choose the representatives for the sets Mm+i, i ∈ [n] arbitrarily, and
exclude infeasible numbers from the remaining sets, then the remaining task is
equivalent to the original instance M ′

i , i ∈ [m] of the Sq-DR problem.
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3 Distance Labeling of Stars

We first prove NP-hardness of the (p, q)-DL problem when G belongs to a very
simple class of graphs, namely to the class of stars.

Theorem 1. For any p ≥ 0 and q ≥ 2, the (p, q)-DL problem is NP-complete
even when the graph G is required to be a star.

Proof. We reduce the Independent Set (IS) problem, which for a given graph
G and an integer k asks whether G has k pairwise nonadjacent vertices. The IS
problem is well known to be NP-complete [13, problem GT20].

Let H0 and k be an instance of IS. We construct a graph H such that the star
K1,k has an H(p, q)-labeling if and only if H0 has k independent vertices.

The construction of H goes in three steps:
Firstly, if q = 2, then we simply let H1 := H0 and M := VH0 . Otherwise, i.e.,

for q ≥ 2, we replace each edge of H0 by a path of length q − 1 to obtain H1.
Now let M be the set of the middle points of the replacement paths (i.e., M is
of size |EH0 | when q is odd; otherwise M is twice bigger).

For the second step we first prepare a path of length max{0, � 2p−q−1
2 �} (ob-

serve that this path consists of a single vertex when 2p ≤ q + 1). We make one
its its ends adjacent to all vertices in the set M . We denote the other end of the
path by w.

Finally, if q is odd, we insert new edges to make all vertices in M pairwise
adjacent, i.e., the set M now induces a clique. This concludes the construction
of the graph H .

The properties of H can be summarized as follows:

– If two vertices were adjacent in H0, then they have distance q − 1 in H .
Analogously, they have distance q if they were non-adjacent.

– Every original vertex is at distance at least p from w, and this bound is
attained whenever 2p ≥ q − 1.

– If p ≤ q then every newly added vertex except w is at distance less than q
from any other vertex of H .

– If p ≥ q then every newly added vertex is at distance less than p from w.

Straightforwardly, if H0 has an independent set S of size k, then we map the
center of K1,k onto w and the leaves of K1,k bijectively onto S. This yields a
valid H(p, q)-labeling of K1,k.

For the opposite implication assume that K1,k has an H(p, q)-labeling f . We
distinguish three cases:

– When p < q, then the images of the leaves of K1,k are pairwise at distance q
in H . Hence, by the properties of H , these are k original vertices that form
an independent set in H0.

– If p = q, then the q-distant vertices of H are some nonadjacent original
vertices together with the vertex w. As the image of the center of K1,k

belongs into this set as well, H0 has at least k independent vertices.
– If p > q, then w is the image of the center of K1,k (unless k = 1, but then

the problem is trivial). Analogously as in the previous cases, images of the
leaves of K1,k form an independent set of H0.



Distance Constrained Labelings of Trees 131

4 Distance Labeling between Two Trees

In this section we show that the DL problem is NP-complete for any q ≥ 2 and
p ≥ 2q + 1 even when both graphs G and H are required to be trees. Before we
state the theorem, we describe the target graph H and explore its properties.

Let p and q be given, such that q ≥ 2 and p ≥ 2q+1. Assume that l > 2(p−q)
and for i ∈ [l] define mi := l3 + il. For convenience we also let mi := m2l−i =
l3 + (2l − i)l for i ∈ [l + 1, 2l − 1].

We construct a graph Hl as follows: We start with a path of length 2l − 2 on
vertices v1, . . . , v2l−1, called the backbone vertices. For each vertex vi, i ∈ [2l−1],
we prepare mi paths of length q and identify one end of each of these mi paths
with the vertex vi. By symmetry, every vertex v2l−i has the same number of
pending q-paths as the vertex vi. Observe that the resulting graph depicted in
Fig. 1 is a q-caterpillar.

For i ∈ [2l − 1] and j ∈ [mi], let ui,j denote the final vertex of the j-th path
hanging from the vertex vi.

q

vi−svi−s−1v1

m1

v2

mi = l3 + il

vi vi+s v2l−1

p − 2q

ui,j u2l−1,m2l−1u1,1

Fig. 1. Construction of the target tree Hl. White vertices define ni as well as a lower
bound on r(ui,j).

Observe that the total number of leaves in Hl is 2l4.
We define s := p − 2q to shorten some expressions.
For i ∈ [2l − 1], let ni be the number of leaves of Hl at distance at least p − q

from vi, i.e.,

ni :=
∑

j∈Si

mi =

⎧
⎪⎪⎨

⎪⎪⎩

2l4 − (s + i)l3 − (s + 2i)il + ls(s+1)
2 if i ∈ [s − 1],

2l4 − (2s + 1)l3 − (2s + 1)il if i ∈ [s, l − s], and
2l4 − (2s + 1)l3 − (2s + 1)il +

+ (s + i − l)(s + i − l + 1)l if i ∈ [l − s + 1, l],

where Si := [2l +1] \ [i− s, i+ s]. By symmetry, ni := n2l−i for i ∈ [l +1, 2l− 1].
Observe that the sequence n1, . . . , nl−s is decreasing.

For a vertex u ∈ VHl
, we further define r(u) to be the maximum size of a set

of vertices of Hl that are pairwise at least q apart, and that are also at distance
at least p from u. In other words, r(u) is an upper bound on the degree of a
vertex which is mapped onto u in an Hl(p, q)-labeling.
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We claim that for the leaves ui,j with i ∈ [l], j ∈ [mi] the r(ui,j) can be
bounded by

ni ≤ r(ui,j) ≤ ni +
2l − p

q
,

since the desired set can be composed from the ni leaves that are at distance
at least p − q from vi together with suitable backbone vertices. Consequently,
r(ui,j) < ni−1 for i ∈ [2, l − s].

Finally, observe that if u is a non-leaf vertex of H , then r(u) < nl−s, since
with every step away from a leaf the size of the set of p distant vertices decreases
by the factor of Ω(l3).

By the properties of the values ni and r(u) we get that:

Lemma 2. For given p, q and l such that p ≥ 2q + 1 and l > 2(p − q) + 1, let T
be a tree of three levels such that for every i ∈ [l − s] and j ∈ [mi], the root y of
T has two children xi,j , x2l−i,j , both of degree ni.

Every Hl(p, q)-labeling f of T satisfies that f(y) ∈ {ul,j | j ∈ [ml]}, and

∀i ∈ [l − s] : {f(xi,j), f(x2l−i,j) | j ∈ [mi]} = {ui,j, u2l−i,j | j ∈ [mi]}.

In addition, T has an Hl(p, q)-labeling such that the leaves of T are mapped
onto the leaves of Hl.

Proof. Assume by induction that all vertices xk,j and x2l−k,j with k < i are
mapped onto the set W = {uk,j, u2l−k,j | k < i, j ∈ [mk]}.

Then vertices xi,j , x2l−i,j with j ∈ [mk] must be mapped onto vertices that
are at least q apart from W , i.e., on the backbone vertices or inside a path under
some vi′ with i′ ∈ [i, 2l − i]. Among those vertices only leaves ui,j and u2l−i,j

satisfy r(ui,j) = r(u2l−i,j) ≥ ni and can be used as images for xi,j , x2l−i,j .
When the labels of all xi,j are fixed, the root must be mapped onto a vertex

that is at distance at least p from all ui,j with i ≤ l − p + 2q or i ≥ l + p − 2q.
The only such vertices are ul,j with j ∈ [ml].

If the first two levels of T are partially labeled as described above, then the
children of xi,j can be labeled by vertices uk,j with |k − i| > s, only the label of
the root y must be avoided. This provides a valid Hl(p, q)-labeling of T .

For i ∈ [l − s], let Ti denote the tree T rearranged such that its root is one of
the children of xi,1.

We are ready to prove the main theorem of this section.

Theorem 2. For any q ≥ 2 and p ≥ 2q + 1, the (p, q)-DL problem is NP-
complete, even if G is a tree and H is a symmetric q-caterpillar.

Proof. We reduce the 3-SAT problem and extend the reduction to the Sq-DR
problem exposed in Lemma 1.

For a formula with n variables, we set α := p − q + 1, β := 2p − 3q, t := p,
l := α + (n − 1)p + nq + β, and λ := 2l. According to these parameters we build
the graph Hl and transform the given formula into a collection of t-sparse sets
Mi, i ∈ [m + n].
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y

G

. . .

T

xi,j
x1,1

y

xl+s,ml−s

. . .

. . . . . .x2l−i,j

j ∈ [mi]

ni − 1 ni − 1

r

w1 wm+nwi

T
. . .

(mk + 1) × Tk

for every k ∈ Ni :

. . . . . .

Fig. 2. Construction of trees T and G

We construct the tree G of six levels as follows: the root r has children wi, i ∈
[m + n], representing sets Mi.

For each i ∈ [m+n], let Ni be the set containing all numbers of [l−s] that are
at least p − q apart from any number of Mi. Formally, Ni := [l − s] \

⋃
j∈Mi

[j −
p + q + 1, j + p − q − 1].

For each k ∈ Ni, we take mk + 1 copies of the tree Tk and add mk + 1 edges
between the roots of these trees and the vertex wi. Finally, we insert a copy of
the tree T and insert a new edge so that the root of this T is also a child of wi.

We repeat the above construction for all i ∈ [m + n] to obtain the desired
graph G. (See Fig. 2.)

We claim that if f is an arbitrary Hl(p, q)-labeling of G then every vertex wi

is mapped on some vertex vj with j ∈ Mi.
The child of wi, which is the root y, maps on some ul,j . Also the children of

y map onto all leaves of form ui,j , i ∈ [l − p + q], j ∈ [mi]. Hence, the image of
wi is one of the backbone vertices vi with i ∈ [l − p + q] ∪ [l + p − q, 2l − 1].

On the other hand, for any k ∈ Ni the image of wi is at least p apart from
some uk,l as well as from some u2l−k,l′ with l, l′ ∈ [mk]. This follows from the
fact that wi has in Tk more children than there are the leaves under vk (or under
v2l−k), so both k and l−k appear as the first index of the leaf which is the image
of a child of wi. This proves the claim.

Therefore, the existence of such mapping f yields a valid solution of the
original 3-SAT and Sq-DR problems.

In the opposite direction observe that any valid solution of the Sq-DR problem
transforms naturally to the mapping on vertices wi, i ∈ [m + n]. We extend this
partial mapping onto the remaining vertices of G such that the root r is mapped
onto u1,1, all vertices y onto ul,1. The copies of trees T are labeled as described
in Lemma 2.

For every wi, we map its children in copies of Tk onto distinct vertices of the
set {uk,j, u2l−k,j | j ∈ [mk]} \ {u1,1, ul,1}. Then we extend the labeling onto the
entire copy of each Tk like in Lemma 2 without causing any conflicts with other
labels. In particular, every child of wi in Tk is of degree nk+1 and its children are
labeled by leaves of Hl, while its parent (the vertex wi) by a backbone vertex.
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5 Conclusion

In this paper we have studied the computational complexity of the H(p, q)-
labeling problem when both the input graph G and the label space graph H are
trees. This could hopefully pave the way to the solution of the L(p, q)-labeling
of trees (with both p and q fixed), which is the most interesting open problem
in the area of computational complexity of distance constrained labeling prob-
lems. Another persistent open problem is the complexity of the L(2, 1)-labeling
problem for graphs of bounded pathwidth.
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Abstract. This paper is part of a research on static analysis in order
to predict program resources and belongs to the implicit computational
complexity line of research. It presents intrinsic characterizations of the
classes of functions, which are computable in NCk, that is by a uniform,
poly-logarithmic depth and polynomial size family of circuits, using first
order functional programs. Our characterizations are new in terms of first
order functional programming language and extend the characterization
of NC1 in [9]. These characterizations are obtained using a complexity
measure, the sup-interpretation, which gives upper bounds on the size of
computed values and captures a lot of program schemas.

1 Introduction

Our work is related to machine independent characterizations of functional com-
plexity classes initiated by Cobham’s work [14] and studied by the Implicit com-
putational complexity (ICC) community, including safe recursion of Bellantoni
and Cook [4], data tiering of Leivant [23], linear type disciplines by Girard et
al. [17,18], Lafont [22], Baillot-Mogbil [2], Gaboardi-Ronchi Della Rocca [16] and
Hofmann [19] and studies on the complexity of imperative programs using matrix
algebra by Kristiansen-Jones [21] and Niggl-Wunderlich [28]. Traditional results
of the ICC focus on capturing all functions of a complexity class and we should
call this approach extensional whereas our approach, which tries to character-
ize a class of programs, which represents functions in some complexity classes,
as large as possible, is rather intensional. In other words, we try to delineate a
broad class of programs using a certain amount of resources.

Our approach relies on methods combining term rewriting systems and inter-
pretation methods for proving complexity upper bounds by static analysis. It
consists in assigning a function from real numbers to real numbers to some
symbols of a program. Such an assignment is called a sup-interpretation if
it satisfies some specific semantics properties introduced in [27]. Basically, a
sup-interpretation provides upper bounds on the size of computed values. Sup-
interpretation is a generalization of the notion of quasi-interpretation of [10].
The problem of finding a quasi-interpretation or sup-interpretation of a given
program, called synthesis problem, is crucial for potential applications of the
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method. It consists in automatically finding an interpretation of a program in
order to determine an upper bound on its complexity. It was demonstrated
in [1,8] that the synthesis problem is decidable in exponential time for small
classes of polynomials. Quasi-interpretations and sup-interpretations have al-
ready been used to capture the sets of functions computable in polynomial time
and space [26,7] and capture a broad class of algorithms, including greedy algo-
rithms and dynamic programming algorithms. Consequently, it is a challenge to
study whether this approach can be adapted to characterize small parallel com-
plexity classes. Parallel algorithms are difficult to design. Employing the sup-
interpretation method leads to delineate efficient parallel programs amenable to
circuit computing. Designing parallel implementations of first order functional
programs with interpretation methods for proving complexity bounds, might be
thus viable in the near future.

A circuit Cn is a directed acyclic graph built up from Boolean gates And,
Or and Not. Each gate has an in-degree less or equal to two and an out-degree
equal to one. A circuit has n input nodes and g(n) output nodes, where g(n) =
O(nc), for some constant c ≥ 1. Thus, a circuit Cn computes a function fn :
{0, 1}n → {0, 1}g(n). A family of circuits is a sequence of circuits C = (Cn)n,
which computes a family of finite functions (fn)n over {0, 1}∗. A function f is
computed by a family of circuits (Cn)n if the restriction of f to inputs of size
n is computed by Cn. A uniformity condition ensures that there is a procedure
which, given n, produces a description of the circuit Cn. Such a condition is
introduced to ensure that a family of circuits computes a reasonable function.
All along, we shall consider UE∗-uniform family of circuits defined in [29]. The
complexity of a circuit depends on its depth (the longest path from an input to
an output gate) and its size (the number of gates). The class NCk is the class
of functions computable by a UE∗ -uniform family of circuits of size bounded by
O(nd), for some constant d, and depth bounded by O(logk(n)). Intuitively, it
corresponds to the class of functions computed in poly-logarithmic time with
a polynomial number of processors. Following [3], the main motivation in the
introduction of such classes was the search for separation results: “NC1 is the
at the frontier where we obtain interesting separation results”. NC1 contains
binary addition, substraction, prefix sum of associative operators. Buss [11] has
demonstrated that the evaluation of boolean formulas is a complete problem
for NC1. A lot of natural algorithms belong to the distinct levels of the NCk

hierarchy. In particular, the reachability problem in a graph or the search for a
minimum covering tree in a graph are two problems in NC2.

In this paper, we define a restricted class of first order functional programs,
called fraternal and arboreal programs, using the notion of sup-interpretation
of [27]. We demonstrate that functions, which are computable by these pro-
grams at some rank k, are exactly the functions computed in NCk. This result
generalizes the characterization of NC1 established in [9]. To our knowledge,
these are the first results, which connect small parallel complexity classes and
first order functional programs.
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2 First Order Functional Programs

2.1 Syntax of Programs

We define a generic first order functional programming language. The vocabulary
Σ = 〈Var,Cns,Op,Fct〉 is composed of four disjoint sets of symbols. The arity
of a symbol is the number n of arguments that it takes. A program p consists
in a vocabulary and a set of rules R defined by the following grammar:

(Values) T (Cns) � v ::= c | c(v1, · · · ,vn)
(Patterns) T (Var,Cns) � p ::= c | x | c(p1, · · · , pn)
(Expressions) T (Var,Cns,Op,Fct) � e ::= c | x | c(e1, · · · , en)

| op(e1, · · · , en) | f(e1, · · · , en)
(Rules) R � r ::= f(p1, · · · , pn) → e

where x ∈ Var is a variable, c ∈ Cns is a constructor symbol, op ∈ Op is an op-
erator, f ∈ Fct is a function symbol, p1, · · · , pn ∈ T (Var,Cns) are patterns and
e1, · · · , en ∈ T (Var,Cns,Op,Fct) are expressions. The program’s main function
symbol is the first function symbol in the program’s list of rules.

Throughout the paper, we only consider orthogonal programs having disjoint
and linear rule patterns. Consequently, each program is confluent [20]. We will
use the notation e to represent a sequence of expressions, that is e = e1, . . . , en.

2.2 Semantics

The domain of computation of a program p is the constructor algebra Values =
T (Cns). Set Values∗ = Values∪{Err}, where Err is a special symbol associated
to runtime errors. An operator op of arity n is interpreted by a function �op�
from Valuesn to Values∗. Operators are essentially basic partial functions like
destructors or characteristic functions of predicates like =.

Set Values# = Values ∪ {Err, ⊥}, where ⊥ means that a program is non-
terminating. Given a program p of vocabulary 〈Var,Cns,Op,Fct〉 and an expres-
sion e ∈ T (Cns,Op,Fct), the computation of e, noted �e�, is defined by �e� = w
iff e

∗→w and w ∈ Values∗, otherwise �e� = ⊥, where ∗→ is the reflexive and
transitive closure of the rewriting relation → induced by the rules of R. By def-
inition, if no rule is applicable, then an error occurs and �e� = Err. A program
of main function symbol f computes a partial function φ : Valuesn → Values∗

defined by ∀u1, · · · ,un ∈ Values, φ(u1, · · · ,un) = w iff �f(u1, · · · ,un)� = w.

Definition 1 (Size). The size of an expression e is defined by |e| = 0, if e is a
0-arity symbol, and |b(e1, · · · , en)| =

∑
i∈{1,...,n} |ei| + 1, if e = b(e1, · · · , en).

Example 1. Consider the following program which computes the logarithm func-
tion over binary numbers using the constructor symbols {0,1, ε}:

f(x) → rev(log(x))
log(i(x)) → if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x)))))

log(ε) → ε
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where if(u, v, w) is an operator, which outputs v or w depending on whether u
is equal to 1(ε) or 0(ε), rev is an operator, which reverses a binary value given
as input, Msp is an operator, which returns 1(ε) if the leftmost |x| � |y| bits of
x (where ∀x, y ∈ N, x � y = 0 if y > x and x − y otherwise) are equal to the
empty word ε and returns 0(ε) otherwise, Fh is an operator, which outputs the
leftmost �|x|/2 bits of x, and Sh is an operator, which outputs the rightmost
�|x|/2� bits of x.

The algorithm tests whether the number �|x|/2 of leftmost bits is equal to
the number �|x|/2� of rightmost bits in the input x using the operator Msp.
In this case, the last digit of the logarithm is a 0, otherwise it is a 1. Finally,
the computation is performed by applying a recursive call over half of the input
digits and the result is obtained by reversing the output, using the operator rev.
For any binary value v, we have �log(v)� = u, where u is the value representing
the binary logarithm of the input value v. For example, �log(1(0(0(0(ε))))� =
1(0(0(ε))).

2.3 Call-Tree

We now describe the notion of call-tree which is a representation of a program
state transition sequences induced by the rewrite relation → using a call-by-value
strategy. In this paper, the notion of call-tree allows to control the successive
function calls corresponding to a recursive rule. First, we define the notions of
context and substitution. A context is an expression C[�1, · · · , �r] containing
one occurrence of each �i, with �i new variables which do not appear in Σ.
A substitution is a finite mapping from variables to T (Var,Cns,Op,Fct). The
substitution of each �i by an expression di in the context C[�1, · · · , �r] is noted
C[d1, · · · , dr]. A ground substitution σ is a mapping from variables to Values.
Throughout the paper, we use the symbol σ and the word “substitution” to de-
note a ground substitution. The application of a substitution σ to an expression
(or a sequence of expressions) e is noted eσ.

Definition 2. Suppose that we have a program p. A state 〈f,u1, · · · ,un〉 of p
is a tuple where f is a function symbol of arity n and u1, · · · ,un are values of
Values∗.

There is state transition, noted η1 � η2, between two states η1 = 〈f,u1, . . . ,
un〉 and η2 = 〈g, v1, · · · , vm〉 if there are a rule f(p1, · · · , pn) → e of p, a sub-
stitution σ, a context C[−] and expressions e1, · · · , em such that ∀i ∈ {1, n}
piσ = ui, ∀j ∈ {1, m}, �ejσ� = vj and e = C[g(e1, · · · , em)]. We write ∗�
to denote the reflexive and transitive closure of �. A call-tree of p of root
〈f,u1, · · · ,un〉 is the following tree:

– the root is the node labeled by the state 〈f,u1, · · · ,un〉.
– the nodes are labeled by states of {η | 〈f,u1, · · · ,un〉 ∗� η},
– there is an edge between two nodes η1 and η2 if there is a transition between

both states which label the nodes (i.e. η1 � η2).
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A branch of the call-tree is a sequence of states of the call-tree η1, · · · , ηk such that
η1 � η2 . . . � ηk−1 � ηk. Given a branch B of a call-tree, the depth of the branch
depth(B) is the number of states in the branch, i.e. if B = η1, . . . , ηi−1, ηi, then
depth(B) = i.

Notice that a call-tree may be infinite if it corresponds a non-terminating
program.

2.4 Fraternity

The fraternity is the main syntactic notion, we use in order to restrict the com-
putational power of considered programs.

Definition 3. Given a program p, the precedence ≥Fct is defined on function
symbols by f ≥Fct g if there is a rule f(p) → C[g(e)] in p. The reflexive and
transitive closure of ≥Fct is also noted ≥Fct. Define ≈Fct by f ≈Fct g iff f ≥Fct g
and g ≥Fct f and define >Fct by f >Fct g iff f ≥Fct g and not g ≥Fct f. We
extend the precedence to operators and constructor symbols by ∀f ∈ Fct, ∀b ∈
Cns ∪ Op, f >Fct b.

Definition 4. Given a program p, an expression C[g1(e1), . . . , gr(er)] is a fra-
ternity activated by f(p1, · · · , pn) if:

1. f(p1, · · · , pn) → C[g1(e1), . . . , gr(er)] is a rule of p,
2. For each i ∈ {1, r}, gi ≈Fct f,
3. For every symbol b in the context C[�1, · · · , �r], f >Fct b.

Notice that a fraternity corresponds to a recursive rule.

Example 2. if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x))))) is
the only fraternity in the program of example 1. It is activated by log(i(x)) by
taking C[�1, �2] = if(Msp(Fh(i(x)),Sh(i(x))),0(�1),1(�2)) since log ≈Fct log.

3 Sup-interpretations

3.1 Monotonic, Polynomial and Additive Partial Assignments

Definition 5. A partial assignment I is a partial mapping from the vocabulary
Σ such that, for each symbol b of arity n in the domain of I, it yields a partial
function I(b) : (R+)n �−→ R

+, where R
+ is the set of non-negative real numbers.

The domain of a partial assignment I is noted dom(I) and satisfies Cns∪Op ⊆
dom(I).

A partial assignment I is monotonic if for each symbol b ∈ dom(I), we have ∀i ∈
{1, . . . , n} , ∀Xi, Yi ∈ R

+, Xi ≥ Yi ⇒ I(b)(X1, · · · , Xn) ≥ I(b)(Y1, · · · , Yn).
A partial assignment I is polynomial if for each symbol b of dom(I), I(b) is

a max-polynomial function ranging over R
+. That is, I(b) = max(P1, . . . , Pk),

with Pj polynomials.
A partial assignment is additive if the assignment of each constructor symbol

c of arity n is of the shape I(c)(X1, · · · , Xn) =
∑n

i=1 Xi + αc, with αc ≥ 1,
whether n > 0, and I(c) = 0 otherwise.
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If each function symbol of a given expression e having m variables x1, · · · , xm

belongs to dom(I) then, given m fresh variables X1, · · · , Xm ranging over R
+,

we define the homomorphic extension I∗(e) of the assignment I inductively by:

1. If xi is a variable of Var, then I∗(xi) = Xi

2. If b is a symbol of Σ of arity 0, then I∗(b) = I(b).
3. If b is a symbol of arity n > 0 and e1, · · · , en are expressions, then

I∗(b(e1, · · · , en)) = I(b)(I∗(e1), . . . , I∗(en))

Given a sequence e = e1, · · · , en, we will sometimes use the notation I∗(e) to
denote I∗(e1), . . . , I∗(en).

3.2 Sup-interpretations

Definition 6. A sup-interpretation is a partial assignment θ which satisfies the
three conditions below:

1. θ is a monotonic assignment.
2. For each v ∈ Values, θ∗(v) ≥ |v|
3. For each symbol b ∈ dom(θ) of arity n and for each value v1, . . . , vn of

Values, if �b(v1, . . . , vn)� ∈ Values, then

θ∗(b(v1, . . . , vn)) ≥ θ∗(�b(v1, . . . , vn)�)

A sup-interpretation is additive (respectively polynomial) if it is an additive (re-
spectively polynomial) assignment.

Notice that if a sup-interpretation is an additive assignment then the second con-
dition of the above definition is always satisfied. Intuitively, the sup-interpretation
is a special program interpretation which bounds from above the output size of the
function denoted by the program, as demonstrated in the following lemma:

Lemma 1 ([27]). Given a sup-interpretation θ and an expression e defined over
dom(θ), if �e� ∈ Values then we have |�e�| ≤ θ∗(�e�) ≤ θ∗(e)

Example 3. Consider the program of example 1. Define the additive assignment
θ by θ(1)(X) = θ(0)(X) = X + 1, θ(ε) = 0, θ(Msp)(X, Y ) = X � Y =
max(X − Y, 0), θ(Fh)(X) = X/2 and θ(Sh)(X) = X/2. We claim that θ is
an additive and polynomial sup-interpretation. Indeed, all these functions are
monotonic. Moreover, for every binary value v, we have θ∗(v) = |v| since the
sup-interpretation of a value is equal to its size. Finally, such an assignment
satisfies the third condition of the above definition. In particular, we check that,
for every binary values u and v, if Msp(u,v) ∈ Values then we have:

θ∗(Msp(u,v)) = θ(Msp)(θ∗(u), θ∗(v)) By definition of assignments
= θ∗(u) � θ∗(v) By definition of θ(Msp)
= |u| � |v| Since ∀w ∈ Values, θ∗(w) = |w|
= |�Msp(u,v)�| By definition of Msp

= θ∗(�Msp(u,v)�) Since ∀w ∈ Values, θ∗(w) = |w|



142 J.-Y. Marion and R. Péchoux

Notice that θ is a partial assignment since it is not defined on the symbols if and
log. However, we can extend θ by θ(if)(X, Y, Z) = max(Y, Z) and θ(log)(X) = X
in order to obtain a total, additive and polynomial sup-interpretation.

4 Arboreal and Fraternal Programs

In this section, we give two restrictions on programs (i) the arboreal condition
which ensures that the number of successive recursive calls corresponding to a
function symbol (in the depth of a call-tree) is bounded logarithmically by the
input size (ii) and the fraternal condition which ensures that the size of each
computed value is polynomially bounded by the input size.

4.1 Arboreal Programs

An arboreal program is a program whose recursion depth (number of successive
recursive calls) is bounded logarithmically by the input size. This logarithmic up-
per bound is obtained by ensuring that some complexity measure, corresponding
to the combination of sup-interpretations and motononic and polynomial partial
assignments, is divided by a fixed constant K > 1 at each recursive call.

Definition 7. A program p is arboreal iff there are a polynomial and additive
sup-interpretation θ, a monotonic and polynomial partial assignment ω and a
constant K > 1 such that for every fraternity C[g1(e1), . . . , gr(er)] activated by
f(p), the following conditions are satisfied:

– For any substitution σ, ω(f)(θ∗(pσ)) ≥ 1
– For any substitution σ and ∀i ∈ {1, . . . , r}, ω(f)(θ∗(pσ))≥K×ω(gi)(θ

∗(eiσ))
– There is no function symbol h ∈ ei such that h ≈Fct f.

Example 4. In the program of example 1, there is one fraternity:

if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x)))))

activated by log(i(x)). Taking the additive and polynomial sup-interpretation θ
of example 3, the polynomial partial assignment ω(log)(X) = X and the constant
K = 2, we check that the program is arboreal:

ω(log)(θ∗(i(x))) = X + 1 ≥ 2 × (X + 1)/2 = K × ω(log)(θ∗(Fh(i(x)))) ≥ 1

Lemma 2. Assume that p is an arboreal program. Then p is terminating. That
is, for every function symbol f and for any values u in Values, �f(u)� is in
Values∗.

Moreover, for each branch B = 〈f,u1, · · · ,un〉, . . . , 〈g, v1, · · · , vm〉 of a call-
tree corresponding to one execution of p and such that f ≈Fct g, we have:

depth(B) ≤ α × log(ω(f)(θ∗(u1), . . . , θ∗(un))), for some constant α
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Proof. Consider an arboreal program p, a call-tree of p and one of its branch
of the shape 〈f,u1, · · · ,un〉 � 〈g,v1, · · · ,vm〉, with f ≈Fct g. We know, by
definition of a call-tree, that there are a rule of the shape f(p1, · · · , pn) →
C[g(e1, · · · , em)] and a substitution σ such that piσ = ui and �ejσ� = vj . We
obtain:

ω(f)(θ∗(u1), . . . , θ∗(un)) = ω(f)(θ∗(p1σ), . . . , θ∗(pnσ))
≥ K × ω(gi)(θ

∗(e1σ), . . . , θ∗(emσ)) By definition 7
≥ K × ω(gi)(θ

∗(v1), . . . , θ∗(vm)) By lemma 1

Applying the same reasoning, we demonstrate, by induction on the depth of a
branch, that for each branch B = 〈f,u1, · · · ,un〉 � . . . � 〈g,v1, · · · ,vm〉, with
f ≈Fct g and depth(B) = i:

ω(f)(θ∗(u1), . . . , θ∗(un)) ≥ Ki × ω(g)(θ∗(v1), . . . , θ∗(vm))

Consequently, the depth is bounded by logK(ω(f)(θ∗(u1), . . . , θ∗(un))), because
of the first condition of definition 7, whenever 〈f,u1, · · · ,un〉 is the first state
of the considered branch. It remains to combine this result with the equality
log(x) = logK(x)

logK(2) in order to obtain the required result. Since every branch corre-
sponding to a recursive call has a bounded depth and we are considering confluent
programs, the program is terminating. ��

4.2 Fraternal Programs

Definition 8. A program p is fraternal if there is a polynomial and additive
sup-interpretation θ such that for each fraternity C[g1(e1), . . . , gr(er)] activated
by f(p1, · · · , pn) and for each symbol b of arity m appearing in C or in ej, there
are constants αb

i,j , β
b
j ∈ R

+ satisfying:

θ(b)(X1, · · · , Xm) = max
j∈J

(
m∑

i=1

αb
i,j × Xi + βb

j )

where J is a finite set of indices.

In other words, a program is fraternal if every symbol in a context or in an
argument of a fraternity admits an affinely bounded sup-interpretation.

Example 5. C[log(Fh(i(x))), log(Fh(i(x)))] is the only fraternity in the program
of example 1, where C[�1, �2] = if(Msp(Fh(i(x)),Sh(i(x))),0(�1),1(�2)). Con-
sequently, we have to check that the symbols if, Msp, Fh, Sh, 0 and 1 ad-
mit affine sup-interpretations. This is the case by taking the polynomial sup-
interpretation of example 3 and, consequently, the program is fraternal.

Lemma 3. Given a sup-interpretation θ and a monotonic and polynomial par-
tial assignment ω for which the program p is arboreal and fraternal, there is
a polynomial P such that for each sequence of values u1, · · · ,un and for each
function symbol f of arity n, we have: |�f(u1, · · · ,un)�| ≤ P (maxi=1..n(|ui|)).
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Proof (Sketch). Lemma 2 states that the number of successive recursive calls
occurring in the depth of the call-tree is logarithmically bounded by the input
size. By definition 8, the contexts and arguments of a recursive call (fraternity)
of a fraternal program are affinely bounded by the input size. Consequently,
a logarithmic composition of affinely bounded functions remains polynomially
bounded. ��

5 Characterizations of NCk and NC

Similarly to Buss’ encoding [11], we represent constructors and destructors (im-
plicitly used in pattern matching definitions) by UE∗-uniform circuits of con-
stant depth and polynomial size. Given such an encoding code and a function
φ : Valuesn → Values∗ computed by some program p, we define a function
φ̃ : {0, 1}∗ → {0, 1}∗ by ∀u ∈ Valuesn φ̃(code(u)) = code(φ(u)). A function φ of
Values is computable in NCk relatively to the encoding code if and only if φ̃ is
computable by a UE∗-uniform family of circuits in NCk.

Now, we define a notion of rank in order to make a distinction between the
levels of the NCk hierarchy:

Definition 9. Given a program p composed by a vocabulary Σ, a set of rules
R and an encoding code, the rank of a symbol b, rk(b), and the rank of a symbol
b relatively to an expression e, ∇(b, e), are partial functions ranging over N and
defined by induction over the precedence ≥Fct:

– If b is a variable or a constructor symbol then rk(b) = 0.
– If b is an operator, which can be computed by a UE∗-uniform family of circuits

of polynomial size and depth bounded by logk relatively to the encoding code,
then rk(b) = k.

– If b is a function symbol we define its rank relatively to an expression e by:
• If ∀b′ ∈ e, b >Fct b′ then ∇(b, e) = maxb′∈e(rk(b′))
• Otherwise ∃b′′ ∈ e such that b ≈Fct b′′ and e = b′(e1, · · · , en):

∗ If b >Fct b′ then ∇(b, e) = max(rk(b′) + 1, ∇(b, e1), . . . , ∇(b, en))
∗ Otherwise b ≈Fct b′ then ∇(b, e) = max(∇(b, e1), . . . , ∇(b, en)) + 1

– Finally, we define the rank of a function symbol b by:
• rk(b) = maxb(p)→e∈R(∇(b, e))

where b ∈ e means that the symbol b appears in the expression e. The rank of a
program is defined to be the highest rank of a symbol of a program.

Example 6. In the program of example 1, the operators if, Fh, Sh, rev and Msp
are of rank 0 since they all belong to NC0 (Cf.[5] for Fh, Sh and Msp) using
an encoding code which returns the binary value in T ({0,1, ε}) corresponding
to a binary string in {0, 1}∗. Consequently, we obtain that:

rk(log)=∇(log, if(Msp(Fh(i(x)),Sh(i(x))),0(log(Fh(i(x)))),1(log(Fh(i(x))))))
= max(rk(if) + 1, ∇(log,0(log(Fh(i(x))))), ∇(log,1(log(Fh(i(x))))))
= max(1, rk(0) + 1, rk(1) + 1, ∇(log, log(Fh(i(x)))))
= max(1, ∇(log,Fh(i(x))) + 1) = 1



A Characterization of NCk by First Order Functional Programs 145

Theorem 1. A function φ from Valuesn to Values∗ is computed by a fraternal
and arboreal program of rank k ≥ 1 (resp. k ∈ N) if and only if φ is computable
in NCk (resp. NC).

Proof (Sketch). We can show, by induction on the rank and the precedence
≥Fct, that an arboreal and fraternal program of rank k can be simulated by
a UE∗-uniform family of circuits of polynomial size and logk depth, using a
discriminating circuit of constant depth which, given some inputs, picks the
right rule to apply. The logk depth relies on a logarithmic number of logk−1

depth circuits compositions by lemma 2. The polynomial size is a consequence
of lemma 3. Conversely, we use the characterization of Clote [12] to show the
completeness. Clote’s algebra is based on two recursion schemas called Concate-
nation Recursion on Notation (CRN) and Weak bounded Recursion on Notation
(WBRN) defined over a function algebra from natural numbers to natural num-
bers when considering the following initial functions zero(x) = 0, s0(x) = 2×x,
s1(x) = 2 × x + 1, πn

k (x1, · · · , xn) = xk, |x| = �log2(x + 1)�, x#y = 2|y|×|x|,
bit(x, i) = �x/2i mod 2 and a function tree, which computes alternations of
bitwise conjunctions and bitwise disjunctions. All Clote’s initial functions can
be simulated by operators of rank 1 since they are in AC0 ([12]). We show that
a function of rank k in Clote’s algebra can be simulated by an arboreal and
fraternal program of rank k + 1, using divide-and-conquer algorithms (This re-
quirement is needed because of the arboreal property). A difficulty to stress here
is that Clote’s rank differs from the notion of rank we use because of the function
tree and the CRN schema. ��

6 Comparison with Previous Works

This work extends the characterization of NC1 in [9] to the NCk hierarchy. For
that purpose, we have substituted the more general notion of fraternal program
to the notion of explicitly fraternal of [9] and we have introduced a notion of rank.
In the literature, there are many characterizations of NC1 using several compu-
tational models, like ATM or functions algebra. Compton and Laflamme [15]
gave a characterization of NC1 based on finite functions. Bloch [5] used ramified
recurrence schema relying on a divide and conquer strategy to characterize NC1.
Leivant and Marion [25] have established another characterization using rami-
fied recurrence over a specific data structure, well balanced binary trees. We can
show that our characterization strictly generalizes the ones of Bloch and Leivant-
Marion since they both rely on divide-and-conquer strategies. The characteriza-
tions of the NCk classes by Clote [13], using a bounded recurrence schema à la
Cobham, are distinct from our characterizations since they do not rely on a di-
vide and conquer strategy. However, like Cobhams’ work, Clote’s WBRN schema
requires an upper bound on the computed function which is removed from our
characterizations. Other characterizations of NC are also provided in [24,6]. All
these purely syntactic characterizations capture a few algorithmic patterns. On
the contrary, our work tries to delineate a broad class of algorithms using the
semantics notion of sup-interpretation.
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Abstract. We introduce a new subrecursive degree structure: the struc-
ture of detour degrees. We provide definitions and basic properties of the
detour degrees, including that they form a lattice and admit a jump oper-
ator. Our degree structure sheds light upon the open problems involving
the small Grzegorcyk classes. There are also connections to complex-
ity theory and complexity classes defined by resource-bounded Turing
machines.

1 Introduction

Two main categories of subrecursive degrees are known from the literature: (i)
degrees of honest functions and (ii) degrees of computable sets.

An honest function is a total computable and monotone increasing function
with a simple graph, i.e., the characteristic function for the relation f(x) = y is of
degree 0. (E.g., if we are working with elementary degrees, the graph should be el-
ementary; if we are working with primitive recursive degrees, the graph should be
primitive recursive.) Typical reducibility relations between honest functions will
be “being (Kalmar) elementary in” and “being primitive recursive in”. Strong
resource bounded reducibilities like “being polynomial time computable in” do
not work when we are dealing with honest functions, and hence, computer sci-
entists and complexity theoreticians have never been very attracted to honest
degree theory. Honest subrecursive degree structures were studied in the early
seventies by e.g. Basu [2], Meyer & Ritchie [20], Machtey [16][17][18]; and more
recently by the first author, see [7][8][9][10]. The structure of honest elemen-
tary degrees is a distributive lattice with strong density properties. Kristiansen
studies a jump operator on the honest elementary degrees, see e.g. [7] [10].

The study of degrees of computable sets started off in the mid seventies with
Ladner’s seminal paper [15]. In contrast to honest functions, computable sets ad-
mit degree structures induced by strong resource bounded reducibility relations,
like e.g. “polynomial time computable in” and “logarithmic space computable
in”. The resulting degree structures, which of course are highly interesting from
a complexity-theoretic point of view, are all upper semi lattices with strong den-
sity properties. See Merkle [19] for very general embedding results. Ladner [15]
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c© Springer-Verlag Berlin Heidelberg 2008



The Structure of Detour Degrees 149

proved that neither the structure of polynomial time m-degrees nor the structure
of polynomial time T-degrees are lattices, and his proof methods and results gen-
eralise to wide variety of reducibilities. See Ambos-Spies [1] for more on degrees
of computable sets.

In this paper we introduce a new subrecursive degree structure that does not
fall into either of the two categories discussed above. The theory we develop
has a flavour of honest degree theory, but our reducibility relation is sufficiently
strong to make the theory interesting from a complexity-theoretic point of view.
We prove that our degree structure is a distributive lattice, and we introduce a
jump operator.

2 Preliminaries

We will use some notation and terminology from Clote [3]. An operator, here
also called (definition) scheme, is a mapping from functions to functions. Let X
be a set of functions (possibly given in a slightly informal notation), and let op

be a collection of operators. The function algebra [X ;op] is the smallest set of
functions containing X and closed under the operations of op. Let comp denote
the scheme of composition, i.e. the scheme f(�x) = h(g1(�x), . . . , gm(�x)) where
m ≥ 0, and let pr denotes the scheme of primitive recursion, that is, the scheme

f(�x, 0) = g(�x) f(�x, y + 1) = h(�x, y, f(�x, y)) .

Further, bounded minimalisation is the scheme f(�x) = (μi ≤ y)[R(�x, i)] where

(μi ≤ y)[R(�x, i)] =
{

the least i ≤ y such that the relation R(�x, i) holds
0 if no such i exists.

Any function f : N
n → N will be identified with a relation Rf ⊆ N

n. The relation
Rf (�n) holds iff f(�x) = 0, and the relation Rf belongs to a class of functions F
iff f belongs to F . A problem is a subset of N, or equivalently, a unary relation.
We will use A, B, C, . . . to denote problems, and a function f decides a problem
A when f(x) = 0 iff x ∈ A. For any set F of number-theoretic functions, F∗
denotes the set of problem decided by the functions in F .1

Let In
i : N

n → N denote the projection function, i.e. In
i (x1, . . . , xn) = xi

where �x = x1, . . . , xn and 1 ≤ i ≤ n. Let I denote the set of all such projection
functions. Let Ck denote the constant function yielding the natural number k.
The small Grzegorczyk classes are defined by E0 := [I, C0, S, max;comp,br],
E1 := [I, C0, S, +;comp,br] and E2 := [I, C0, S, +, x2 + 2;comp,br] where S
denotes the successor function and br denotes the scheme of bounded primitive
recursion, that is, the scheme

f(�x, 0) = g(�x) f(�x, y + 1) = h(�x, y, f(�x, y)) f(�x, y) ≤ j(�x, y) .

1 Our use of the subscript ∗ differs slightly from the standard in the literature. Nor-
mally, F∗ denotes the 0-1 valued functions in F whereas we use F∗ to denote the
set of problem decided by the functions in F . This is a matter of convenience, and
the deviation has no essential mathematical implications.
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3 Detour Functions and P−-Computability

Definition. P− := [I, C1;comp, pr]. ��

Roughly speaking, P− contains the primitive recursive functions which can be
defined without the successor function, and it is easy to see that we have f(�x) ≤
max(�x, 1) for any f ∈ P−. Even though P− contains only non-increasing func-
tions, surprisingly powerful relations and predicates belong to the class. Indeed, it
is an open problem if P−∗ = linspace; we have P−∗ = E0∗ ⊆ E1∗ ⊆ E2∗ = linspace,
and it is not known if any of the inclusions are strict.2 For more on P− and sim-
ilar non-increasing function algebras, see e.g. Kristiansen [5] [6] and Kristiansen
& Voda [13] [14].

Lemma 1 (Basic functions). The following number-theoretic functions belong
to P−: (i) 0,1 (constant functions); (ii) P(x) (predecessor); (iii) x−̇y (modified
subtraction); (iv) c where c(x, y1, y2) = y1 if x = 0 and c(x, y1, y2) = y2 if x 	= 0;
(v) max(x, y) and min(x, y); (vi) f where f(x, m) = x + 1 (mod m + 1) for
x ≤ m; (vii) f where f(x, y, m) = x + y (mod m + 1) for x, y ≤ m; (viii) f
where f(x, y, m) = x×y (mod m+1) for x, y ≤ m; (ix) f where f(x, y, m) = xy

(mod m + 1) for x, y ≤ m; (x) for each k ∈ N, the almost everywhere constant
function νk where νk(x) = min(x, k). Moreover, the class P− is closed under
bounded minimalisation.

Proof. To define the constant function 0 is slightly nontrivial. Define g by prim-
itive recursion such that g(x, 0) = x and g(x, y + 1) = y. Then we can define the
predecessor P from g since P (x) = g(x, x). Further, we can define the constant
function 0 by 0 = P (1). This proves that (i) and (ii) hold. (iii) holds since we
have x−̇0 = x and x−̇(y + 1) = P (x−̇y). (iv) holds since c(0, y1, y2) = I2

1 (y1, y2)
and c(x + 1, y1, y2) = I4

2 (y1, y2, x, c(x, y1, y2)). Furthermore, (v) holds since
max(x, y) = c(1−̇(x−̇y), x, y) and min(x, y) = c(1−̇(x−̇y), y, x). (vi) holds since
c(m−̇x, 0, m−̇((m−̇x)−̇1)) = x + 1 (mod m + 1) for x ≤ m. We omit the rest of
the proof. ��

Lemma 2 (Basic relations). (i) The relations x ≤ y and x = y belong to P−.
(ii) The relations of P− are closed under the propositional operations (and, or,
not) and under bounded existential and bounded universal quantification, i.e.,
∃x ≤ y[. . .] and ∀x ≤ y[. . .].

Proof. Apply the functions given by Lemma 1. We have y−̇x = 0 iff x ≤ y; we
have c(f(�x), c(g(�x), 0, 1), 1) = 0 iff f(�x) = 0 and g(�x) = 0; we have c(f(�x), 1, 0) =
0 iff f(�x) 	= 0; and so on. Use the bounded minimalisation operator to define the
bounded quantifiers. ��

2 The notorious problem E0
∗

?

⊆ E1
∗

?

⊆ E2
∗ is more than 50 years old and was posed

in Grzegorczyk [4]. It is trivial that P−
∗ ⊆E0

∗ , and it follows from Theorem 5 in this

paper that P−
∗ = E0

∗ . (The problem P−
∗

?
⊆ E0

∗ was posed as open in Kristiansen &
Barra [11].) Ritchie [22] proved that E2

∗ = linspace.
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Definition. A detour function f : N → N satisfies the following requirements:
(1) x ≤ f(x); (2) f(x) ≤ f(x + 1); and (3) the graph of f , i.e. the relation
f(x) = y, is in P−. Henceforth we will use Latin letters f, g, h, etc., to denote
detour functions. and Greek letters φ, ψ, ξ, etc., to denote arbitrary functions. A
function ψ is P−-computable in the detour function f if there exists φ ∈ P− such
that ψ(�x) = φ(�x, z) for all z ≥ f(max(�x)). Let P−(f) denote the set of functions
P−-computable in f . ��

What motivates our definitions? Well, we are mainly interested in P−(f)∗, that is,
the set of problems P−-computable in f . A problem A will be P−-computable in a
detour function f if f provides enough resources for a P−-computation to solve
the problem. Any P−-function is non-increasing, and thus, a P−-computation
solving a problem on input x in a detour function f , can make detours via any
number less than f(x), but no further detours are possible. Our definitions assure
that if g provides more resources (longer detours) than f , that is if f(x) ≤ g(x),
then any problem P−-computable in f will also be P−-computable in g.

It is essential that we require the graph of a detour function to be in P−. This
prevents us from coding a set A of high computational complexity into a detour
function f , e.g. by letting f(x) = 2x when x ∈ A and f(x) = 2x+1 when x 	∈ A,
and thus, the requirement ensures that a detour function provides nothing but
resources to a P−-computation. (Without the requirement our degree structure
would simply degenerate to a degree structure of computable sets.)

Definition. For any set A ⊆ N, we define the characteristic function χA by
χA(x) = 0 if x ∈ A and χA(x) = 1 if x 	∈ A. We define the function f−1 by
f−1(x) = (μi ≤ x)[f(i) ≥ x], and when f is a detour function, we will say that
f−1 is the inverse function of f . For any f : N → N and g : N → N, we define the
functions max[f, g] and min[f, g] by respectively max[f, g](x) = max(f(x), g(x))
and min[f, g](x) = min(f(x), g(x)) ��

The two following lemmas are collections of very basic facts. The lemmas will
be applied frequently throughout the paper, but we will only occasionally refer
explicitly to the lemmas.

Lemma 3. Let f be any detour function. (i) There exists ξ ∈ P− such that
φ(�x) = ξ(�x, f(max(�x))) if, and only if, there exist ψ ∈ P− such that φ(�x) =
ψ(�x, z) for any z ≥ f(max(�x)); (ii) A ∈ P−(f)∗ iff χA ∈ P−(f); (iii) P−(f)∗
is closed under unions, intersections and complements; (iv) f−1 ∈ P− and
f−1(f(x)) ≤ x, besides, if f is strictly monotone, we also have f−1(f(x)) = x.

Proof. We prove the only-if-direction of (i). (The if-direction is trivial.) Assume
there exists ξ ∈ P− such that φ(�x) = ξ(�x, f(max(�x))). Let ξ0(�x, y) = (μi ≤
y)[f(max(�x)) = i]. The graph of f belongs to P−, and P− is closed under bounded
minimalisation, and thus, we have ξ0 ∈ P−. Let ξ1(�x, z) = ξ(�x, ξ0(�x, z)). Now we
have ξ1 ∈ P− and φ(�x) = ξ1(�x, z) for any z ≥ f(max(�x)). Next we prove (iv).
By the definition of f−1 we have f−1(f(x)) = (μi ≤ f(x))[f(i) ≥ f(x)]. Since
f is monotone, it cannot be the case that f−1(f(x)) > x, and if f is strictly
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monotone, it cannot be the case that f−1(f(x)) < x. Thus, f−1(f(x)) = x when
f is strictly monotone. The graph of f belongs to P−, and P− is closed under
bounded minimalisation. Thus, f−1 ∈ P−. We omit the rest of the proof. ��

Lemma 4. (i) Any non-constant polynomial p(x) (generated from x and the
constants of N by + and ×) is a detour function. (ii) The function 2x is a
detour function. (iii) The detour functions are closed under compositions. (iv)
max[f, g] and min[f, g] are detour functions if f and g are detour functions.

Proof. (i) and (ii) follow from Lemma 1. Let f and g be detour functions. Ob-
viously, we have x ≤ f(g(x)) and f(g(x)) ≤ f(g(x + 1)), and thus, (iii) follows
from Lemma 2 since f(g(x)) = y ⇔ ∃z ≤ y[g(x) = z ∧ f(z) = y]. Further,
(iv) follows from Lemma 2 since max[f, g](x) = y ⇔

(f(x) = y ∧ ∃z ≤ y[g(x) = z]) ∨ (g(x) = y ∧ ∃z ≤ y[f(x) = z])

and min[f, g](x) = y ⇔

(f(x) = y ∧ ¬∃z < y[g(x) = z]) ∨ (g(x) = y ∧ ¬∃z < y[f(x) = z]) . ��

4 The Lattice of Detour Degrees

Definition. We define f � g :⇔ P−(f)∗ ⊆ P−(g)∗; f ≡ g :⇔ f � g ∧ g � f ;
f ≺ g :⇔ f � g ∧ g 	� f . Now, ≡ is an equivalence relation, and the detour
degrees are the ≡-equivalence classes of the detour functions. We denote the
equivalence class of f by dg(f), that is, dg(f) = {g | g ≡ f}, and following
the tradition of classical computability theory, we use boldface lowercase Latin
letters a,b, c, . . . to denote our degrees. Furthermore, we use < and ≤ to denote
the relations induced on the degrees by respectively ≺ and �, and we use D to
denote the set of detour degrees. ��

Lemma 5. Let f, g, h be detour functions. (i) If h � f and h � g, then h �
min[f, g]. (ii) If f � h and g � h, then max[f, g] � h.

Proof. The following simple claim is the key to the proof.

(Claim) Let f and g be detour functions, and let B = {x|f(x) ≤ g(x)}.
We have B ∈ P−(min[f, g])∗ (and thus B ∈ P−(f)∗ and B ∈ P−(g)∗).

Let
ξ(x) = (μi ≤ min[f, g](x)) [f(x) = i ∨ g(x) = i]

and let χB(x) = c(f(x) = ξ(x), 0, 1). Now, χB is the characteristic function of
B, and χB ∈ P−(min[f, g]) by the lemmas in Section 3. This proves the claim.

We prove (i). Assume h � f and h � g (*). (We will prove h � min[f, g].)
Assume A ∈ P−(h)∗. (We will prove A ∈ P−(min[f, g])∗.) By (*), we have
A ∈ P−(f)∗ and A ∈ P−(g)∗, and hence, we have φ1, φ2 ∈ P− such that χA(x) =
φ1(x, f(x)) and χA(x) = φ2(x, g(x)). By (Claim) we have η ∈ P− such that
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η(x, min[f, g](x)) = 0 iff f(x) ≤ g(x). Let ψ(x, z) = c(η(x, z), φ1(x, z), φ2(x, z)).
Then, ψ ∈ P− and χA(x) = ψ(x, min[f, g](x)), and thus, A ∈ P−(max[f, g])∗.
This completes the proof of (i).

In order to prove (ii), we assume f � h and g � h (*) and prove max[f, g] � h.
To prove max[f, g] � h, we assume A ∈ P−(max[f, g])∗ and prove A ∈ P−(h)∗.
Since A ∈ P−(max[f, g])∗, we have φ ∈ P− such that χA(x) = φ(x, max[f, g](x)).
Let B = {x|f(x) ≤ g(x)}, and let

x ∈ A1 ⇔ φ(x, f(x)) = 0 ∧ x 	∈ B and x ∈ A2 ⇔ φ(x, g(x)) = 0 ∧ x ∈ B .

By (Claim), we have A1 ∈ P−(f)∗ and A2 ∈ P−(g)∗, and by (*), we have
A1, A2 ∈ P−(h)∗. By Lemma 3, we have A1 ∪ A2 ∈ P−(h)∗. This completes the
proof because A = A1 ∪ A2. ��

Lemma 6. For any detour functions f, f1, g, g1, we have (i) if f ≡ f1 and
g ≡ g1, then max[f, g] ≡ max[f1, g1]; (ii) if f ≡ f1 and g ≡ g1, then min[f, g] ≡
min[f1, g1].

Proof. We prove f � f1 ∧ g � g1 ⇒ max[f, g] � max[f1, g1]. It follows that (i)
holds. Assume f � f1 and g � g1. Since f1 � max[f1, g1] and g1 � max[f1, g1],
we have f � max[f1, g1] and g � max[f1, g1]. By Lemma 5 (ii), we have
max[f, g] � max[f1, g1]. This completes the proof of (i). The proof of (ii) is
symmetric; apply Lemma 5 (i) in place of Lemma 5 (ii). ��

Lemma 4 (iv) and Lemma 6 show that the minimum and the maximum operators
on the detour functions induce operators on the detour degrees, and thus, the
next definition make sense.

Definition. Let f ∈ a and g ∈ b be detour functions. We define a∪b and a∩b
by respectively dg(max[f, g]) and dg(min[f, g]). ��

Theorem 1 (The Lattice of Detour Degrees). The structure 〈D, ≤, ∪, ∩〉 is
a distributive lattice, that is, for any a,b, c ∈ D we have (i) a∩b is the greatest
lower bound (glb) of a and b under the ordering ≤; (ii) a ∪ b is the least upper
bound (lub) of a and b under the ordering ≤; (iii) a∪ (b∩ c) = (a∪b)∩ (a∪ c)
and a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c).

Proof. We prove (i). Since we have min[f, g] � f and min[f, g] � g, it is obvious
that a ∩ b is a lower bound of a and b. To see that a ∩ b indeed is the greatest
lower bound of a and b, pick any degree c that lies below both a and b. By
Lemma 5 (i), we have that c also lies below a ∩ b. Thus, (i) holds. The proof of
(ii) is symmetric (use Lemma 5 (ii) in place of Lemma 5 (i)). Finally, (iii) holds
since the max operator distributes over the min operator and vice versa. ��

5 The Jump Operator

Lemma 7. Let f, g, h be detour functions, and let h be strictly monotone. If
f � g, then f ◦ h � g ◦ h.
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Proof. For any set A, let #A(x) =
∑

i≤x 1−̇χA(i). The function #A(x) gives the
cardinality of the set {y | y ∈ A ∧ y ≤ x}, and when f(x) ≥ x + 1, we have

A ∈ P−(f)∗ ⇔ #A ∈ P−(f) (Claim)

We skip the proof of the claim and assume f � g. (We will prove f ◦ h � g ◦ h.)
To prove f ◦ h � g ◦ h, we have to prove that A ∈ P−(f ◦ h)∗ entails A ∈

P−(g ◦ h)∗. We assume A ∈ P−(f ◦ h)∗ (and prove A ∈ P−(g ◦ h)∗.)
By (Claim), we have #A ∈ P−(f ◦ h), and thus, there exists φ ∈ P− such

that #A(x) = φ(x, fh(x)). Let B be the set given by #B(x) = φ(h−1(x), f(x)).
Then, B ∈ P−(f)∗ and

#B(h(x)) = φ(h−1h(x), fh(x)) = φ(x, fh(x)) = #A(x) .

Now, since B ∈ P−(f)∗ and f � g, we have B ∈ P−(g)∗, and then, by (Claim),
there exists ψ ∈ P− such that #B(x) = ψ(x, g(x)). Thus,

#A(x) = #B(h(x)) = ψ(h(x), gh(x)) . (*)

Let h′(x, y) = (μz ≤ y)[h(x) = z] and ξ(x, y) = ψ(h′(x, y), y). Then, ξ ∈ P− and

ξ(x, gh(x)) = ψ(h′(x, gh(x)), gh(x)) = ψ(h(x), gh(x)) (*)= #A(x) .

Thus, we have #A ∈ P−(g ◦h), and by (Claim), we also have A ∈ P−(g ◦h)∗. ��
It follows from Lemma 7 that f ≡ g ⇒ f ◦ h ≡ g ◦ h for any detour functions
f , g and any strictly monotone detour function h. Now, 2x is a strictly mono-
tone detour function, and furthermore, the detour functions are closed under
composition. Hence, the next definition makes sense.

Definition. We define the jump operator ·′ on the detour functions by f ′(x) =
f(2x). We define the jump operator ·′ on the detour degrees by a′ = dg(f ′)
where f is some detour function such that a = dg(f). Let 0 denote the degree
dg(I1

1 ). ��
It is easy to see that we have 0 ≤ a for any degree a. (We have a = dg(f) for
some f such that f(x) ≥ I1

1 (x) = x, and thus P−(I1
1 )∗ ⊆ P−(f)∗.) To prove that

0 < 0′ < 0′′ < 0′′′ < . . . , we have to resort to a machine model of computation.
We have chosen the Turing machines.

Lemma 8. There exists φ ∈ P− such that for any A ∈ P−(f)∗ we have a fixed
k ∈ N and fixed e0, e1, e2, . . . ∈ N such that

χA(x) = φ(ei, x, z) for any z ≥ f(x)k and any i ∈ N.

Proof. We will work with Turing machines accepting pairs of natural numbers.
The two inputs numbers are given to the machines in dyadic notation, and |z|
denotes the number of bits required to represent the number z. We assume
some computable enumeration M0, M1, M2, . . . of such machines, furthermore,
we can w.l.o.g. assume that each machine occurs infinitely many times in the
enumeration. We define the function Φ: Let Φ(e, x, y, z) = 0 if Me accepts the
input x, y in space |z| and time z; let Φ(e, x, y, z) = 1 otherwise. We skip the
proof of the following claim.
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(Claim 1) Φ ∈ P−.

Obviously, we have P− ⊆ E2, and it is well known that any function in E2 can be
computed by a Turing machine working in linear space in the length of the input
(Ritchie [22]). Thus, if φ is a binary function in P−, then φ(x, y) is computable
by a Turing machine M running in space k1| max(x, y)| for some fixed k1 ∈ N.
Now, if M runs in space k1| max(x, y)|, there also exists a fixed k ∈ N such that
M runs in space | max(x, y)k| and time max(x, y)k. Hence, the next claim holds.

(Claim 2) Let ψ be a binary 0-1 valued function in P−. There ex-
ists a fixed k ∈ N and infinitely many e ∈ N such that ψ(x, y) =
Φ(e, x, y, max(x, y)k).

Let 〈·, ·〉 be a standard bijection from N × N into N, e.g. 〈x, y〉 = (
∑

i≤x+y

i) + y,

and let π1, π2 be the corresponding decoding functions, i.e. π1(〈x, y〉) = x and
π2(〈x, y〉) = y. The pairing function is not in P−, but the decoding functions
π1, π2 are. Furthermore, the binary function �x 1

y � belongs to P−. We define the
function φ by

φ(w, x, y) = Φ(π1(w), x, �y
1

π2(w) �, y) .

It follows from our discussion and (Claim 1) that we have φ ∈ P−. To complete
our proof, we will prove that for any A ∈ P−(f)∗ there exist k ∈ N and infinitely
many e ∈ N such that χA(x) = φ(e, x, z) holds for any z ≥ f(x)k.

By the definition of φ we have

φ(〈e, k〉, x, zk) = Φ(e, x, z, zk) . (*)

Let A be any set in P−(f)∗. Then we have ψ ∈ P− such that χA(x) = ψ(x, z)
for any z ≥ f(x). Furthermore, for some e, k and and any z ≥ f(x), we have

χA(x) = ψ(x, z)
= Φ(e, x, z, max(x, z)k) (Claim 2)

= Φ(e, x, z, zk) since x ≤ f(x) ≤ z

= φ(〈e, k〉, x, zk) . (*)

and indeed, by (Claim 2) there are infinitely many numbers e such that these
equalities hold. Let d0, d1, d2, . . . denote these numbers, and let ei = 〈di, k〉.
Now we have χA(x) = φ(ei, x, zk) for any i ∈ N and any z ≥ f(x), and thus,
χA(x) = φ(ei, x, z) for any i ∈ N and any z ≥ f(x)k. ��

Theorem 2. Let f be any detour function such that for any k ∈ N we have
f(x)k ≤ f(2x) for all but finitely many x. Then, we have f ′ 	� f .

Proof. Let B be the set given by

χB(x) =
{

0 if φ(x, x, f ′(x)) = 1
1 otherwise. (*)
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where φ is the function given by Lemma 8. Obviously, we have B ∈ P−(f ′). We
prove that B 	∈ P−(f).

Assume for the sake of a contradiction that B ∈ P−(f). Then, by Lemma 8
and (*), we have ei and k such that

χB(ei) = φ(ei, ei, f(ei)k) = φ(ei, ei, f
′(ei)) 	= χB(ei) .

(Since we have infinitely many ei’s, it is possible to pick ei such that f(ei)k ≤
f(2ei) = f ′(ei).) It is a contradiction that χB(ei) 	= χB(ei). ��

Theorem 3. Let 00 = 0 and 0n+1 = (0n)′. We have 0n < 0n+1 for any n ∈ N.

Proof. It is trivial that 0n ≤ 0n+1. Let g0(x) = x and gi+1(x) = 2gi(x). Then we
have dg(gi) = 0i. Further, for any fixed k, we have gn(x)k < gn(2x) = gn+1(x)
for all sufficiently large x. Hence, we have 0n+1 	≤ 0n by Theorem 2. ��

Theorem 4 (Jump Inversion). Let a be any detour degree above 0′, i.e. 0′ ≤
a. There exists a detour degree b such that b′ = a.

Proof. Let a = dg(f). We can w.l.o.g. assume that f(x) ≥ 2x. Let �log2 x� be the
inverse function of 2x, and let g(x) = f(�log2 x�). Now, g is a detour function,
and obviously we have g′(x) = f(�log2 2x�) = f(x), and hence, dg(g)′ = a. ��

6 A Few Theorems and Some Comments

The implication f(x) ≤ g(x) ⇒ dg(f) ≤ dg(g) follows straightforwardly from
our definitions. The reverse implication is not true. (So, our degree structure is
not trivial.)

Theorem 5. P−(x + 1)∗ ⊆ P−(x)∗.

By Lemma 7 and Theorem 5, we have dg(f(x)+a) = dg(f(x)+b) for any a, b ∈ N

and any detour function f . The long and technical proof of the Theorem 5 is
available in a preprint posted on the Internet [12]. By extending the ideas of this
proof we expect to be able to prove that we have dg(xn) = dg(xn + p(x)) for
any n ∈ N and any detour polynomial p of degree strictly less than n.

Theorem 6. For any decidable problem (computable set) A there exists a detour
function f such that A ∈ P−(f)∗.

Proof. Let A be any computable set. By Kleene’s Normal Form Theorem (see
e.g. Odifreddi [21] p. 179) there exists a primitive recursive function U and a
primitive recursive relation T such that χA(x) = U((μi)[T (x, i)]). It can be
proved that U , T ∈ P−. Let g(x) = (μi)[T (x, i)] and f(x) =

∑
i≤x g(i). Now, f

is a detour function and A ∈ P−(f)∗. ��

The previous theorem shows that the detour degrees span all the computable
sets. The next theorems show that the degree structure is sufficiently fine-grained
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to shed light upon (open) problems in subrecursion theory and complexity the-
ory. We omit the proofs of these theorems due to space limitations. (Recall that
any unary number-theoretic function generated by composition from constants,
+, × and 2x, is a detour function. The small Grzegorczyk classes are defined in
Section 2.)

Theorem 7 (Turing Machine Space Classes). For i ∈ N, let space 2lin

i

be the set of problems decidable by a deterministic Turing machine working in
space 2c|x|

i for some c ∈ N (where 2x
0 = x and 2x

i+1 = 22x
i ). Then, A ∈ space 2lin

i

iff A ∈ P−(2p(x)
i )∗ for some polynomial p. Moreover, for any i ∈ N and any

polynomial p, the function 2p(x)
i is a detour function

Theorem 8 (Small Grzegorczyk Classes). (i) A ∈ E0
∗ iff A ∈ P−(x + k)∗

for some k. (ii) A ∈ E1∗ iff A ∈ P−(kx)∗ for some k. (iii) A ∈ E2∗ iff A ∈ P−(p)∗
for some polynomial p.

Now, it follows from Theorem 5 that P−
∗ = E0

∗ , and it is an open problem whether
any of the inclusions E0∗ ⊆ E1∗ ⊆ E2∗ are strict. Thus, it will be very hard to prove
that 0 	= dg(p) for some polynomial p. It might even not be true. However,

in our degree structure the open problem E0∗
?

⊆ E1∗
?

⊆ E2∗ manifests itself as a
special case of a more general open problem: Do there exist n ∈ N and a detour
polynomial p such that 0n < dg(2p(x)

n )?
Finally, we will argue that there exist incomparable degrees below 0′, i.e., we

have a,b < 0′ such that a 	≤ b and b 	≤ a. Let d0 = 0 and di+1 = 2di , and for
j = 0, 1, 2, let

fj(x) =
{

2x if d3i+j ≤ x < d3i+j+1

max(fj(x−̇1), x) otherwise.

Now, f0, f1, f2 are detour functions such that max(f0(x), f1(x), f2(x)) = 2x and
min(f0(x), f1(x), f2(x)) = x. Let a = dg(f0), b = dg(f1) and c = dg(f2). Then,
we have a ∪ b ∪ c = 0′ and a ∩ b ∩ c = 0. Now, since 0 	= 0′, any two of the
three degrees will probably be incomparable, but we are not sure how we best
can prove this. (Since the three degrees are uniformly constructed it is extremely
unlikely that one of them should equal 0 and one of them should equal 0′.) The
construction can be generalised to yield incomparable degrees between any two
degrees a,b where a < b.

In general, we expect our degree structure to be interesting and challenging
from a degree-theoretic point of view. The methods required to investigate the
structure will probably be a mixture of the number-theoretic techniques devel-
oped by Kristiansen for honest degrees and the techniques developed for degrees
of computable sets, e.g. delayed diagonalisation.

7 Stronger Reducibility Relations

Our reducibility relation is slightly weak from a complexity-theoretic point of
view as the number of steps in a P−-computation is not bounded by a polynomial
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in the length of the input. (The number of steps in a P−-computation is bounded
by a polynomial in the input x and thus by a number-theoretic expression of the
form 2k|x| where |x| denotes the length of the input.) However, we believe that
we can develop the structure of detour degrees for stronger reducibilities, e.g.
by resorting to the function algebra P−

b . This function algebra is defined as P−

but the scheme of primitive recursion is replaced by the scheme of (primitive)
recursion on notation, i.e., the scheme

φ(�x, 0) = ξ(�x) φ(�x, 2y) = ψ0(�x, y, φ(�x, y)) φ(�x, 2y + 1) = ψ1(�x, y, φ(�x, y)) .

The number of steps in a P−
b -computation is bounded by a polynomial in the

length of the input, and P−
b∗ is included in logspace.
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Abstract. In this paper, we sketch structure characterization of a class
of networks, called Matching Composition Networks (MCNs), to establish
necessary conditions for determining the conditional fault hamiltonicity.
We then apply our result to n-dimensional restricted hypercube-like net-
works, including n-dimensional crossed cubes, and n-dimensional locally
twisted cubes, to show that there exists a fault-free Hamiltonian cycle if
there are at most 2n − 5 faulty edges in which each node is incident to at
least two fault-free edges. We also demonstrate that our result is worst-
case optimal with respect to the number of faulty edges tolerated.

Keywords: Algorithmica aspect of network problems, conditional edge
faults, fault-tolerance, graph theory, Hamiltonian cycles, Hamiltonic-
ity, matching composition networks, multiprocessor systems, restricted
hypercube-like networks.

1 Introduction

Cycles (rings), the most fundamental class of network topologies for parallel and
distributed computing, are suitable for designing simple algorithms with low
communication costs. Numerous efficient algorithms based on cycles for solving
various algebraic problems and graph problems can be found in [1,10]. These
algorithms can also be used as control/data flow structures for distributed com-
puting in arbitrary networks.

Usually, when the Hamiltonicity of a graph G is an issue, investigations cen-
ter in whether G is Hamiltonian or Hamiltonian-connected. A Hamiltonian cycle
(Hamiltonian path) in a graph is a cycle (path) goes through every node of G
exactly once. G is called Hamiltonian if there is a Hamiltonian cycle in G, and
Hamiltonian-connected if there is a Hamiltonian path between every two distinct
nodes of G. Examples of applying Hamiltonian paths and cycles to practical
problems include on-line optimization of a complex flexible manufacturing sys-
tem [2] and wormhole routing [16,17]. These applications motivated us to embed
Hamiltonian cycles in networks.
� Corresponding author.
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Since link (edge) faults may occur when a network is put into use, it is impor-
tant to consider faulty network. Investigating the Hamiltonicity for various faulty
networks has received a great deal of attention in recent years[4,5,6,7,9,12,13,14].
Among the proposed works, there are two assumptions for faulty edges: One is
the standard fault-assumption in which there is no restriction on the distribu-
tion of faulty edges. This assumption is also adapted in [4,7,12,14]. The other is
the conditional fault-assumption in which each node is incident to at least two
fault-free edges. This assumption is adapted in [5,6,9,13].

In this paper, we investigate the hamiltonicity of a wide class of intercon-
nection networks, called the Matching Composition Networks (MCNs), under
the conditional fault-assumption. Basically, each MCN is constructed from two
graphs G0 and G1 with the same number of nodes by adding a perfect match-
ing between the nodes of G0 and G1. We first establish necessary conditions
for determining the hamiltonicity of an MCN with faulty edges. We then apply
our result to a subclass of MCNs, called n-dimensional restricted hypercube-like
networks, which include n-dimensional crossed cubes, and n-dimensional locally
twisted cubes. We show that each mentioned cube contains a fault-free Hamilto-
nian cycle if there are at most 2n− 5 faulty edges in which each node is incident
to at least two fault-free edges. Two of these particular applications are previ-
ously known results [6,9] using rather lengthy proofs. Our approach unifies these
special cases and our proof is much simpler. We also demonstrate that our result
is optimal in the worst case, with respect to the number of faulty edges tolerated.

The remainder of this paper is organized as follows: Section 2 introduces
some definitions, notations, and properties. In Sections 3 and 4, we investigate
the respective Hamiltonicity of MCNs and restricted hypercube-like networks,
under the conditional fault-assumption. In Section 5, we apply our result to two
multiprocessor systems. Finally, some concluding remarks are given in Section 6.

2 Preliminaries

A graph G = (V, E) is comprised of a node set V and an edge set E, where V is a
finite set and E is a subset of {(u, v)| (u, v) is an unordered pair of V }. We also
use V (G) and E(G) to denote the node set and edge set of G, respectively. Two
nodes u and v are adjacent if (u, v) is an edge in G. For a node v, we call the
nodes adjacent to it the neighbors of v, denoted by NG(v). The degree of node v,
denoted by dG(v), is the number of edges incident to it, i.e., dG(v) = |NG(v)|. Let
δ(G) = min{dG(v)| v ∈ V (G)}. A path P [v0, vt] = 〈v0, v1, ..., vt〉, is a sequence
of distinct nodes such that any two consecutive nodes are adjacent. A path
may contain other subpaths, denoted by 〈v0, v1, ..., vi, P [vi, vj ], vj , vj+1, ..., vt〉,
where P [vi, vj ] = 〈vi, vi+1, ..., vj−1, vj〉. A cycle 〈v0, v1, . . . , vk, v0〉 for k ≥ 2 is
a sequence of nodes in which any two consecutive nodes are adjacent, where
v0, v1, . . . , vk are all distinct.

A cycle that traverses each node of G exactly once is a Hamiltonian cycle and a
graph is said to be Hamiltonian if there exists a Hamiltonian cycle. A Hamiltonian
path is a path that contains every node of G and a graph is Hamiltonian-connected
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if there exists a Hamiltonian path between any two distinct nodes of G. A graph G
is called k-fault Hamiltonian (respectively, k-fault Hamiltonian-connected) if there
exists a Hamiltonian cycle (respectively, a Hamiltonian path between each pair of
distinct nodes) in G − F for any set F of faulty edges with |F | ≤ k. A graph G is
k-mixed-fault Hamiltonian-connected if there exists a Hamiltonian path between
each pair of distinct nodes in G−F for any set F of faulty elements (nodes and/or
edges) with |F | ≤ k. The term k-mixed-fault Hamiltonian can be defined similarly.
A graph G is k-fault edge-Hamiltonian-connected if there exists a Hamiltonian
path P [x, y] between arbitrary two adjacent nodes x and y in G with |F | ≤ k.
Furthermore, a graph G is said to be conditional k-fault Hamiltonian if there exists
a Hamiltonian cycle in G − F for any set F of faulty edges with |F | ≤ k, under
the conditional fault-assumption.

Lemma 1. [12] If a graph G is k-mixed-fault Hamiltonian-connected and (k+1)-
mixed-fault Hamiltonian, then k ≤ δ(G) − 3 and thus k + 4 ≤ |V (G)|.
A matching in a graph G is a set of non-loop edges with no shared end-nodes.
The nodes incident to the edges of a matching M are saturated by M ; the others
are unsaturated. A perfect matching in a graph is a matching that saturates
every node. The class of Matching Composition Networks (MCNs) is defined as
follows.

Definition 1. Let G0 and G1 be two graphs with the same number of nodes.
Let PM be an arbitrary perfect matching between V (G0) and V (G1), i.e., PM
is a set of edges connecting V (G0) and V (G1) in a one to one fashion; the
resulting composition graph, denoted by G0

⊕
G1, is called a Matching Com-

position Network (MCN), where the symbol “
⊕

” represents an operation that
connects G0 and G1 by adding a perfect matching between V (G0) and V (G1).
For convenience, G0 and G1 are called the components of an MCN. Note that
V (G0

⊕
G1) = V (G0)

⋃
V (G1) and E(G0

⊕
G1) = E(G0)

⋃
E(G1)

⋃
PM .

For two end-nodes of an edge in PM , one is said to be the crossing neighbor of
the other. For convenience, we use x̄ to denote the crossing neighbor of x.

 

G0 G1 

PM 

Fig. 1. An example of an MCN
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Vaidya et al.[15] introduced a class of hypercube-like networks, called HL-
graphs, which can be defined recursively as follows: (1) HL0 = {K1}, where
K1 is a single node, and (2) for n ≥ 1, HLn = {G0

⊕
G1| G0, G1 ∈ HLn−1}.

A graph which belongs to HLn is called an n-dimensional HL-graph. Clearly,
HLn belongs to MCNs. Note that each graph in HLn has 2n nodes and is
regular with the common degree n. Furthermore, non-bipartite HL-graphs are
said to be restricted HL-graphs (RHL), which can be recursively defined as fol-
lows [12]: RHL0 = {K1}, RHL1 = {K2}, RHL2 = {C4}, RHL3 = {G(8, 4)},
and RHLn = {G0

⊕
G1| G0, G1 ∈ RHLn−1} for n ≥ 4, where C4 is a cycle

graph with 4 nodes and G(8, 4) is a recursive circulant defined in [11]. A graph
which belongs to RHLn is called an n-dimensional restricted HL-graph.

Definition 2. A graph G is said to be 2-disjoint-path-coverable (2-DPC for
short) if given four distinct nodes x, y, u, and v in G, there exists two paths,
P [x, y] and P [u, v], such that V (P [x, y])

⋂
V (P [u, v]) = ∅ and V (P [x, y])

⋃

V (P [u, v]) = V (G).

Hereafter, let F be the set of faulty edges in G = G0

⊕
G1 and let F0 and F1

be the sets of faulty edges in G0 and G1, respectively. Also, let FPM be the
set of faulty edges in PM . Note that F = F0

⋃
F1

⋃
FPM . For convenience, let

f0 = |F0|, f1 = |F1|, and fPM = |FPM |.

Definition 3. A graph G is said to be k-fault super-Hamiltonian if the following
properties hold: (1) G is k-mixed-fault Hamiltonian-connected, (2) G is (k + 1)-
fault Hamiltonian, (3) G is (k +1)-fault edge-Hamiltonian-connected, and (4) G
is conditional (2k + 1)-fault Hamiltonian.

Definition 4. An MCN G = G0

⊕
G1 has the edge-property if for a Hamilto-

nian cycle Ci in Gi, i = 0, 1, there exist two edges (x, y) and (u, v) in Ci such
that (x̄, ȳ) and (ū, v̄) are two edges in G1−i, where x, y, u, v are all distinct.

3 Conditional Fault Hamiltonicity of MCNs

Given the set of faulty edges F in a graph G, the notation δ(G − F ) ≥ 2 means
that each node is incident to at least two fault-free edges in G−F . The following
result determines the conditional fault hamiltonicity of MCNs.

Theorem 1. Let G = G0

⊕
G1 be an MCN and let ki be a positive integer

such that |V (Gi)| ≥ 4ki + 7 for i = 0, 1. Then, G is conditional (2k + 3)-fault
Hamiltonian, where k = min{k0, k1}, if the following conditions hold: (1) each Gi

is 2-DPC, (2) Gi is ki-fault super-Hamiltonian, and (3) G has the edge-property.

Proof. Without loss of generality, we assume that f = 2k + 3 and f0 ≥ f1.
Hence, f1 ≤ �(2k + 3)/2	 = k + 1. We have the following three cases.

Case 1: f0 ≤ 2k + 1. Since G0 is k0-mixed-fault Hamiltonian-connected and
(k0 + 1)-fault Hamiltonian, then by Lemma 1, δ(G0) ≥ k0 + 3. Hence, there
is at most one node incident to only one fault-free edge in G0; otherwise,



164 S.-Y. Hsieh and C.-W. Lee

f0 ≥ (δ(G0) − 1) + (δ(G0) − 1) − 1 = 2δ(G0) − 3 ≥ 2k0 + 3 ≥ 2k + 3,
which contradicts to the fact that f0 ≤ 2k + 1, which leads to the following
subcases.

Case 1.1: δ(G0−F0) ≥ 2. Since f0 ≤ 2k+1 ≤ 2k0+1 and G0 is conditional
(2k0 +1)-fault Hamiltonian, there exists a Hamiltonian cycle C0 in G0 −
F0. We have the following scenarios.

Case 1.1.1: f1 = k + 1; hence, fPM ≤ 2k + 3 − 2(k + 1) = 1. Since G
has the edge-property, there are two edges (x, y) and (u, v) in C0 such
that (x̄, ȳ) and (ū, v̄) are also two edges in G1, where x, y, u, v are all
distinct. Since fPM ≤ 1, |{(x, x̄), (y, ȳ), (u, ū), (v, v̄)}

⋂
FPM | ≤ 1 and

thus there are at least three fault-free edges in {(x, x̄), (y, ȳ), (u, ū),
(v, v̄)}. Without loss of generality, we assume that (x, x̄) and (y, ȳ) are
both fault-free. By deleting (x, y) from C0, we obtain a path P0[x, y].
Moreover, since f1 = k + 1 ≤ k1 + 1 and G1 is (k1 + 1)-fault edge-
Hamiltonian-connected, there exists a Hamiltonian path P1[ȳ, x̄] in

 

G0 G1 
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(b) 
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Fig. 2. Illustration of the proof of Theorem 1, where dotted lines represent faulty edges
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G1 −F1. Therefore, a fault-free Hamiltonian cycle can be constructed
(see Figure 2(a)).

Case 1.1.2: f1 ≤ k. Since |V (G0)| ≥ 4k0 + 7 ≥ 4k + 7, there exists
an edge (x, y) in C0 such that (x, x̄) and (y, ȳ) are both fault-free1.
By deleting (x, y) from C0, we obtain a path P0[x, y]. Moreover,
since f1 ≤ k = min{k0, k1} and G1 is k1-mixed-fault Hamiltonian-
connected, there exists a Hamiltonian path P1[ȳ, x̄] in G1 − F1. A
fault-free Hamiltonian cycle can be constructed (see Figure 2(b)).

Case 1.2: δ(G0−F0) = 1. Let x be a unique node incident to only one fault-
free edge in G0. Note that f0 ≥ δ(G0) − 1 ≥ k0 + 2 ≥ k + 2, f1 + fPM ≤
(2k + 3)− (k + 2) = k + 1, and (x, x̄) is fault-free. We have the following
scenarios.
Case 1.2.1: f1 = k +1; hence, fPM = 0 and f0 = k +2. Since f1 = k +

1 ≤ 2k+1 ≤ 2k1+1 and G1 is conditional (2k1+1)-fault hamiltonian,
there is a Hamiltonian cycle C1 in G1 −F1. Let (w, x) be the unique
fault-free edge incident to x in G0. Since f0 = k+2 and the number of
faulty edges incident to x in G0 is at least δ(G0)−1 ≥ k0 +2 ≥ k+2,
the number of faulty edges in G0 are all incident to x. Let y and z be
two neighbors of x̄ in C1. Clearly, ȳ 
= w or z̄ 
= w. Without loss of
generality, we assume that z̄ 
= w. Moreover, since G0 is k0-mixed-
fault Hamiltonian connected, there is a Hamiltonian path in G0 −x,
where G0−x is the graph obtained by deleting x from G0. Therefore,
a fault-free Hamiltonian cycle can be constructed (see Figure 2(c)).

Case 1.2.2: f1 ≤ k. Since fPM ≤ k+1 and there are at least k+2 faulty
edges incident to x, there is an edge (x, y) ∈ F0 such that (y, ȳ) /∈
FPM . Since f1 ≤ k ≤ k1 and G1 is k1-mixed-fault Hamiltonian-
connected, there exists a Hamiltonian path P1[ȳ, x̄] in G1 −F1. Since
δ(G0 − (F0 − {(x, y)})) = 2, there is a Hamiltonian cycle C0 in
G0 − (F0 − {(x, y)}) such that C0 contains (x, y). Therefore, a fault-
free Hamiltonian cycle can be constructed (see Figure 2(d)).

Case 2: f0 = 2k + 2; hence, f1 + fPM ≤ 1. Note that there is at most one node
that is incident to only one fault-free edge in G0. There are the following
two subcases.
Case 2.1: δ(G0−F0) ≥ 2. We can select an edge (x, y) ∈ F0 such that (x, x̄)

and (y, ȳ) are both fault-free. Since |F0 − {(x, y)}| = 2k + 1 ≤ 2k0 + 1
and G0 is conditional (2k0+1)-fault Hamiltonian, there is a Hamiltonian
cycle C0 in G0 − (F0 − {(x, y)}). If C0 contains (x, y), then a fault-free
Hamiltonian cycle can be constructed similar as Case 1.2.2. However,
if C0 does not contain (x, y), we select an arbitrary edge (r, z) in C0.
By replacing x with r, y with z, x̄ with r̄, and ȳ with z̄, a fault-free
Hamiltonian cycle can also be constructed (see Figure 2(e)).

Case 2.2: δ(G0−F0) = 1. Let x be a unique node incident to only one fault-
free edge in G0. Since fPM ≤ 1, we can select an edge (x, y) ∈ F0 such

1 Since |V (G0)| ≥ 4k+7, C0 contains at least 4k+7 edges and contributes total 4k+7
choices. If such an edge does not exist, then fPM ≥ � 4k+7

2 � > 2k + 3 ≥ f , which is
a contradiction.
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that (y, ȳ) /∈ FPM . Since |F0−{(x, y)}| = 2k+1, δ(G1−(F0−{(x, y)})) =
2, and G0 is conditional (2k0 + 1)-fault Hamiltonian, there is a Hamil-
tonian cycle C0 in G0 − (F0 − {(x, y)}) such that C0 contains (x, y).
Therefore, a fault-free Hamiltonian cycle can be constructed similar as
Case 1.2.2.

Case 3: f0 = 2k + 3; hence, f1 = fPM = 0. In this case, there are at most two
nodes in which each node is incident to only one fault-free edge in G0. We
can construct a fault-free Hamiltonian cycle similar to that used in above
cases.

By combining above cases, we complete the proof. ��

4 Conditional Fault Hamiltonicity of RHLn

In this session, we will apply Theorem 1 to n-dimensional restricted hypercube-
like networks RHLn. We will demonstrate that the conditions described in The-
orem 1 can be further simplified because RHLn is recursively constructed.

Lemma 2. [12] Every RHLn for n ≥ 3 is (n − 3)-mixed-fault Hamiltonian-
connected and (n − 2)-mixed-fault Hamiltonian.

The following lemmas show that RHLn is 2-DPC for n ≥ 4, and (n − 2)-fault
edge-Hamiltonian-connected for n ≥ 6. Due to the space limitation, the proofs
are omitted.

Lemma 3. For any four distinct nodes x, y, u, and v in a graph G ∈ RHLn for
n ≥ 4, there exist two paths, P [x, y] and P [u, v], such that P [x, y]

⋂
P [u, v] = ∅

and P [x, y]
⋃

P [u, v] = V (G).

Lemma 4. Let G = G0

⊕
G1 be a graph in RHLn for n ≥ 6. If G has the edge

property and G0, G1 ∈ RHLn−1 are (n − 3)-fault edge-Hamiltonian-connected,
then G is (n − 2)-fault edge-Hamiltonian-connected.

Theorem 2. Let G = G0

⊕
G1 be a graph in RHLn with |V (G)| ≥ 8n − 18.

Then, G is conditional (2n − 5)-fault Hamiltonian if the following conditions
hold: (1) each Gi is (n − 3)-fault edge-Hamiltonian-connected, (2) each Gi is
conditional (2n − 7)-fault Hamiltonian, and (3) G has the edge-property.

Proof. Note that Gi ∈ RHLn−1. We prove this theorem by checking whether
all the conditions of Theorem 1 hold. First, by Lemma 3, each Gi is 2-DPC.
Secondly, since |V (G)| ≥ 8n − 18, |V (Gi)| ≥ 8n−18

2 = 4(n − 4) + 7. By Lemma 2
and Conditions 2–3, each Gi is (n − 4)-fault super-Hamiltonian. Moreover, the
edge-property hold by Condition 3. Therefore, all the conditions of Theorem 1
are satisfied and the result follows. ��
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5 Application to Multiprocessor Systems

In this section, we apply Theorem 2 to two popular multiprocessor systems: n-
dimensional crossed cubes, and n-dimensional locally twisted cubes, all of which
belong to RHLn. It is of course possible to apply them to many other potentially
useful systems. Interested readers can refer to [3,18] for the definitions of the
above networks.

To prove Theorem 3, we first show two useful lemmas in Lemma 5 and
Lemma 6. Due to the space limitation, the proofs are omitted.

Lemma 5. If C is a Hamiltonian cycle in CQi
n−1 for i = 0, 1, where n ≥ 3,

then there exist two edges (x, y) and (u, v) in C such that (x̄, ȳ) and (ū, v̄) are
also two edges in CQ1−i

n−1, where x, y, u and v are all distinct.

Lemma 6. CQn for n ≥ 5 is (n − 2)-fault edge-Hamiltonian-connected.

We can prove the following theorem by induction on n. The basis case for n =
3, 4, 5 can be shown using a computer program. For n ≥ 6, we show the result
by Theorem 2, Lemmas 5 and 6. Then, we have the following theorem.

Theorem 3. CQn for n ≥ 3 is conditional (2n − 5)-fault Hamiltonian.

The following lemmas demonstrate that LTQn has edge-property, and LTQn is
(n − 2)-fault-Hamiltonian-connected. The proofs of lemmas are omitted.

Lemma 7. If C is a Hamiltonian cycle in LTQi
n−1 for i = 0, 1, where n ≥ 3,

then there exist two edges (x, y) and (u, v) in C such that (x̄, ȳ) and (ū, v̄) are
also two edges in LTQ1−i

n−1, where nodes x, y, u and v are distinct.

Lemma 8. LTQn for n ≥ 5 is (n − 2)-fault edge-Hamiltonian-connected.

We can prove the following theorem by induction on n. The basis case for n =
3, 4, 5 can be shown using a computer program. For n ≥ 6, we show the result
by Theorem 2, Lemmas 7 and 8. Thus, we have Theorem 4.

Theorem 4. LTQn for n ≥ 3 is conditional (2n − 5)-fault Hamiltonian.

6 Concluding Remarks

In this paper, we have focused on investigating conditional fault hamiltonicty
of matching composition networks. By applying the established theorem to re-
stricted hypercube-like networks, we have successfully determined the condi-
tional fault-tolerant hamiltonicities of two popular multiprocessor systems, in-
cluding crossed cubes, and locally twisted cubes.

Since an n-dimensional restricted hypercube-like network G, where n ≥ 3,
studied in this paper possesses the edge-property, the girth (the length of the
shortest cycle) equals four. This leads to a worst-case scenario: Let 〈u, t, v, s, u〉
forms a cycle of length 4. Also, assume that (u, s), (u, t), (v, s) and (v, t) are
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u

s 

v 

t 

faultyfaulty 

fault-free

fault-free

fault-free

fault-free 

Fig. 3. A worst case scenario

fault-free. Clearly, any fault-free cycle containing nodes u and v must contain
(u, s), (u, t), (v, s) and (v, t). Since G is regular of the common degree n, the above
worst case contributed total 2n − 4 faulty edges; moreover, it is impossible to
generate a fault-free Hamiltonian cycle containing nodes u, t, v, and s. Therefore,
2n−5 is worst-case optimal with respect to the number of faulty edges tolerated.
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Abstract. The problem of computing locally a coloring of an arbitrary
planar subgraph of a unit disk graph is studied. Each vertex knows its
coordinates in the plane, can directly communicate with all its neighbors
within unit distance. Using this setting, first a simple algorithm is given
whereby each vertex can compute its color in a 9-coloring of the planar
graph using only information on the subgraph located within at most 9
hops away from it in the original unit disk graph. A more complicated
algorithm is then presented whereby each vertex can compute its color in
a 7-coloring of the planar graph using only information on the subgraph
located within a constant number of hops away from it.

1 Introduction

We are interested in the graph vertex coloring as applicable to wireless ad-hoc
networks. The wireless ad-hoc networks of interest to us are geometrically em-
bedded in the plane and consist of a number of location aware nodes, say n,
whereby two nodes are adjacent if and only if they are within the transmission
range of each other. If all the nodes have the same transmission range then these
networks are known as unit disk graphs. For such graphs there have been sev-
eral papers in the literature addressing the coloring problem. Among these it is
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worth mentioning the work by Marathe et al. [10] (presenting an on-line coloring
heuristic which achieves a competitive ratio of 6 for unit disk graphs: the heuris-
tic does not need a geometric representation of unit disk graphs which is used
only in establishing the performance guarantees of the heuristics), Graf et al. [7]
(which improves on a result of Clark, Colbourn and Johnson (1990) and shows
that the coloring problem for unit disk graphs remains NP-complete for any
fixed number of colors k ≥ 3), Caragiannis et al. [2] (which proves an improved
upper bound on the competitiveness of the on-line coloring algorithm First-Fit
in disk graphs which are graphs representing overlaps of disks on the plane)
and Miyamoto et al. [11] (which constructs multi-colorings of unit disk graphs
represented on triangular lattice points).

There are also several papers on coloring restricted to planar graphs of which
we note Ghosh et al. [6] because it is concerned with a self-stabilizing algorithm
for coloring such graphs. Their algorithm achieves a 6 coloring by transforming
the planar graph into a DAG of out-degree at most five. However, this algorithm
needs the full knowledge of the topology of the graph. The specificity of the
problem for ad-hoc networks requires a different approach. An ad-hoc network
can be a very large dynamic system, and in some cases a node can join or leave
a network at any time. Thus, the full knowledge of the topology of an ad-hoc
network might not be available, or possible for each node of the network at
all times. Thus algorithms that can make computations in a fully distributed
manner, using in each node only information about the network within a fixed
distance neighborhood of the node, are of particular interest in ad hoc networks.
Examples of algorithms of this type are the Gabriel test [5] for constructing a
planar spanner, face routing [8],[1] or an approximation of the minimum spanning
tree [14], [3].

To reduce network complexity, the unit disk graph G is sometimes reduced
to a much smaller subset P of its edges called a spanner. A good spanner must
have some properties so that certain parameters of communication within P
are preserved. To ensure all to all communication P must be connected. An
important property is having a constant stretch factor s, guaranteeing that the
length of a path joining two nodes in G is at most s times shorter that the
shortest path joining these nodes in P . A desired property of P is planarity,
which, on one hand, permits an efficient routing scheme based on face routing
and, on the other hand, ensures linear complexity of P with respect to its number
of nodes. Planar graphs also have low chromatic number, hence a small set of
frequencies is sufficient to realize radio communication.

In this paper, we are interested in local distributed coloring algorithms whereby
messages emanating from any node can propagate for only a constant number of
hops. This model was first introduced in the seminal paper of Linial [9]. One of
the advantages of this model is that it aims to obtain algorithms that could cope
with a dynamically changing infrastructure in a network. In this approach, each
node may communicate with nodes at a bounded distance from it and thus a local
change in the network only needs a local adjustment of a solution. In Linial’s model
of communication, locality results in a constant-time distributed algorithm.
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1.1 Network Model and Results of the Paper

We are given a set S of n points in the plane and a planar subgraph G of the
unit disk graph induced by S. We assume that G is connected and all the nodes
either know their exact (x, y) coordinates (which could be achieved for example
by having the nodes equipped with GPS devices) or have a consistent relative
coordinate system. If G is not connected, all reasoning can be applied to each
connected component of G independently, in which case the coloring constructed
applies to each connected component. We propose two local coloring algorithms.
The first simple algorithm computes a 9-coloring of the planar graph. We assume
that each node knows its 9-neighborhood in the original unit disk graph (i.e. all
nodes at distance at least 9 hops away from it), it can communicate with each
node of its neighborhood and it is aware which of these nodes belong to the planar
subgraph. We then present a more complicated algorithm whereby each vertex
can compute its color in a 7-coloring of the planer graph using only information
on the subgraph located within at most a constant number h = 201 of hops away
from it. The constant h is quite large though in practice nodes at much smaller
distance will need to communicate. The algorithm does not determine locally
either what the different connected components are or even what are the local
parts of a component connected somewhere far away. Moreover, the correctness
of the algorithm is independent of the connectivity of the planar subgraph.

2 Simple Local Coloring Algorithm

The basic idea of the coloring algorithms in this paper is to partition the plane
containing G into fixed sized areas, compute a coloring of the subgraph of G within
each such area independently and possibly adjust colors of some vertices that are
on the border of an area and thus are adjacent to nodes in another area. This
is possible to do consistently and without any pre-processing because the nodes
know their coordinates and thus can determine the area in which they belong.
Since each area is of fixed size, a subgraph of the given unit disk graph belonging
to this area is of a bounded diameter. Hence a constant number of hops is needed
for a node to communicate with each other node of the same area.

2.1 Coloring with Regular Hexagonal Tilings

The simplest partitioning we consider is obtained by tiling the plane with regular
hexagons having sides of size 1. We suppose that two edges of the hexagons are
horizontal and one of the hexagons is centered in coordinates [0, 0]. To assure
the disjointness of the hexagon areas we assume that only the upper part of
the boundary and the leftmost vertex belongs to each hexagon area while the
rightmost vertex does not belong to it. Under such conditions, two vertices of G
can be connected by an edge only if they are in the same or adjacent hexagon
areas.

As each vertex knows its own coordinates, it can calculate which hexagon it
belongs to. In the first step each vertex communicates with vertices within its
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hexagon and learns the part of the subgraph located in its hexagon. By Lemma
1, communication inside a hexagon may be done using at most nine hops.

Lemma 1. Any connected component of the subgraph of a unit disk graph in-
duced by its nodes belonging to a regular hexagon with sides of size 1 has a
diameter smaller or equal to nine. Moreover, there exist configurations of nodes
inside the hexagon of diameter equal to nine.

We could apply the standard 4-coloring algorithm for each connected component
of the graph induced by G on points within each hexagon. Since the tiling of
the plane by hexagons can be 3-colored, three disjoint sets of four colors can be
used, one set of colors for vertices in each hexagon area of the same color. This

1,2,3,4

5,6,7,8

9,10,11,12

5,6,7,8 5,6,7,8

9,10,11,12

9,10,11,12

Fig. 1. Coloring of a hexagonal tiling of the plane using 12 colors

would lead to a 12 coloring of G (see the coloring scheme of the hexagonal tiling
depicted in Figure 1).

The number of colors can be reduced by coloring the outer face of each com-
ponent in a hexagon with prescribed colors, using the result of the following
theorem.

Theorem 1 (3 + 2 Coloring, Thomassen [12]). Given a planar graph G, 3
prescribed colors and an outer face F of G, graph G can be 5-colored while the
vertices of F use only the prescribed three colors.

The precise result in Thomassen’s paper [12] (see also Dörre [4]) states that
every planar graph is L-list colorable for every list assignment with lists of size
5. The proof of this result however implies the following statement taken from
Tuza et al. [13] that for a planar graph G with outer face F , every pre-coloring
of two adjacent vertices v1, v2 of F can be extended to a list coloring of G for
every list assignment with |L(v)| = 3 if v ∈ V (F ) − {v1, v2} and |L(v)| = 5 if
v �∈ V (F ), where V (F ) denotes the vertex set of F .

Using Theorem 1 the number of colors can be reduced to 9 as follows. The
idea is that the vertices of G in a hexagon can be adjacent only to the outer
face vertices of the graphs induced in the neighboring hexagons. Three disjoint
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1,2,3

4,5

1,2

1,2

7,8,9

4,5,6

7,8,9

4,5,6

1,2

1,2

1,2

1,2

7,8,9

4,5,6

Fig. 2. Colorings of a hexagonal tiling of the plane using 9-colors

sets of colors of size three are used as the prescribed colors of the vertices on the
outer faces, the inner vertices of G in a hexagon can employ, in addition to the
three colors used on the outer face of its hexagon, two additional colors of the
outer faces of other hexagons (see Figure 2).

Theorem 2. Using the partitioning of a plane into regular hexagons with sides
of size 1, a vertex can compute its color in a 9-coloring of the planar graph
using only information on the subgraph located within at most 9 hops away
from it.

3 The 7-Coloring Algorithm

In this section we give a 7 coloring algorithm and prove its correctness. The trade-
off is the larger area of the network a node needs to examine in this algorithm
and a more complex partitioning of the plane.

3.1 Reducing the Number of Colors Using Mixed Tilings

We will employ the tiling using octagons and squares shown in Figure 3. Each
square is of size 5 + ε while the slanted part of an octagon border is of length
3 + ε, meaning that these sides can be chosen arbitrarily close to but greater
than 5 and 3, respectively. We shall assume that one of the octagons is centered
in coordinates [0, 0]. The reasons for choosing the sizes of tiles this way is to
isolate the meeting places of octagons (the slanted border part) from each other
so that each of them can be dealt with independently and locally, and to ensure
that there is no edge between two vertices in different squares or between two
vertices of the same squares that could be recolored for different crossings in
the algorithm. In handling a meeting place, only vertices at a distance at most
2 from it will be recolored, therefore it is impossible to have two neighboring
vertices recolored due to different crossing.
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Fig. 3. A coloring of the set of points based on the octagon/square tiling of the plane

Similarly as in the previous coloring, the subgraph induced by the vertices
in a tile is colored using 5 colors, three of them are used on the outer face and
these three colors plus the additional two colors are used on vertices not on the
outer face using Theorem 1. Since each node knows its location, it can determine
which tile it belongs to. By Lemma 2 the communication inside an octagon may
be done using at most 201 hops.

Lemma 2. Any subgraph of a unit disk graph induced by its vertices belonging
to an octagon used in the algorithm has a diameter smaller or equal to 201.

Despite the fact that the simple, surface comparing argument leaves some room
for improvement (the packing density is at most π

√
3/6 = 0.907), it is possible to

construct configurations of nodes, centered inside the octagon, inducing a graph
of diameter at least 183.

Since the square tile admits a smaller hop diameter, any node can determine
the subgraph induced by the vertices in its tile by examining nodes at hop
distance at most 201.

The color sets used in the tiles are as specified in Figure 3. The resulting
coloring is using only 6 colors. Due to the chosen sizes of the tiles and the chosen
coloring scheme, an edge of G crossing from a square to an octagon is between
vertices of different colors. After this initial color assignment, any edge of G
whose endpoints are of the same color is necessarily an edge crossing the slanted
part of the border of two adjacent octagons. The following construction shows
that using one additional color and with careful attention to detail near the
common border of adjacent octagons, some of the vertices can be recolored in
order to achieve a 7-coloring of G. Details follow in Subsection 3.2.

3.2 Adjusting the Coloring

As seen from Figure 3, the centers of the tiles form an infinite regular mesh. We
shall denote the hexagon tile that is centered at coordinates [0, 0] as S0,0. For
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a tile denoted Si,j , its horizontal left, horizontal right, vertical down, vertical
up neighboring tile is denoted Si−1,j , Si+1,j , Si,j+1, Si,j−1, respectively. Let Gi,j

denote the subgraph of G induced by the vertices located within Si,j and suppose
that Fi,j denotes the outer face of Gi,j . In case that Gi,j is not connected, we
consider each connected component of Gi,j separately. (Notice that we only need
to consider those components of Gi,j that contain vertices adjacent to more than
one octagon, for otherwise the coloring of such a component could be added to
the coloring of Gi+1,j+1.)

Let Si,j be one of the hexagonal tiles, i.e., i + j is even. Consider the place
where Si,j and Si+1,j+1 meet (we call it a CRi,j crossing). Consider the sequence
of vertices obtained in a counterclockwise cyclical traversal of the outer face Fi,j

of Gi,j and let L = {u1, u2, . . . , uk} be the shortest subsegment of this traversal
containing all the vertices connected to Gi+1,j+1, i.e., as in Figure 4.

Notice that L could contain some vertex more than once if the outer face is
not a simple curve. Define M = {v1, v2, . . . , vl} analogously for Gi+1,j+1, using
clockwise traversal.

We say that crossing CRi,j is simple if no inside vertex of L different from
u1 and uk is connected both to a vertex of M and to a vertex in Gi,j+1 or
Gi+1,j , and the same analogous condition holds for the inside vertices of M . If
the crossing is simple, the problem of having some edges between vertices of L or
M having both endpoints of the same color can be resolved using the following
lemma.

Gi+1,j

Gi+1,j+1

Gi,j+1

v1

uk

vl

v2

u3
u2

u1

Gi,j

Fig. 4. A typical simple crossing
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Lemma 3. Let CRi,j be a simple crossing (see Figure 4). Then the vertices of
L and M and some of the neighbors of u1, v1, uk and vk can be recolored, possibly
with the help of color 7, in such a way that no edge incident to L or M or a
neighbor of either of L or M has both endpoints of the same color.

Proof. After the initial coloring, the only edges which might have endpoints of
the same color are the edges connecting vertices of L to vertices of M . Without
loss of generality we may assume that the vertices of L and M use colors 1, 2, 3,
the inside of Gi,j uses in addition colors 4, 5, while the inside of Gi+1,j+1 uses
colors 4, 6 in addition to 1, 2, 3.

The recoloring is done in two steps, where in the first step the conflict vertices
of L and M (i.e. the ones with a neighbor of the same color) are recolored as
indicated in Table 1.

Table 1. First step of recoloring

Conflict vertex of old color new color

L 1 6
M 2 5
L 3 7

This ensures that no edge incident to an inner vertex of L or M , i.e, different
from {u1, v1, uk, vl}, has both endpoints of the same color since:

– if there was an edge from L to M connecting two vertices of the same color,
one endpoint of this edge has been recolored.

– As no color 6 was used in Gi,j , the vertices of L recolored to 6 have no neigh-
bors of color 6 in Gi,j (and they cannot be neighbors, as both had color 1 in
the coloring of Gi,j). They also do not have neighbors of color 6 in Gi+1,j+1

as all their neighbors in Gi+1,j+1 are on the outer face and thus of colors
1, 2, 3 (and newly 5). Finally, from the second property of simple crossing it
follows that the inner conflict vertices of L and M do not have neighbors in
Gi,j+1 and Gi+1,j ,

– Analogous argument applies for vertices recolored to 5 in M and vertices
recolored to 7 in L.

It remains to consider edges incident to {u1, v1, uk, vl} that might have end-
points of the same color; for example u1 was recolored from 1 to 6 but it has a
neighbor of color 6 in Si,j+1 (note that there is no problem if the new color was
7). In such a case, these same-color neighbors in Si,j+1 are recolored to color
7. We claim that this does not create same-color edges. First note that if u1

recolored its neighbors of color 6 in Gi,j+1, then v1 necessarily kept its original
color, since v1 might change its color only if it was originally 2. Hence, by the
simplicity of the crossing, only the neighbors of v1 of color 6 (or, by symmetry,
only the neighbors of u1 of color 5) need to be recolored to color 7. The cases
for other extreme vertices of L and M are analogous. Since the width of the gap
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Gi+1↪j

Gi+1↪j+1

Gi↪j+1

v1
u1

u

uk

u

vl
Gi↪j

Fig. 5. A not simple crossing

between the squares is greater than 3, it ensures that the recoloring of vertices
in Gi,j+1 and Gi+1,j does not create any conflict in coloring.

Furthermore, any two vertices of Gi,j+1 which were recolored to 7 due to
different crossings with octagons cannot be neighbors since the size of the squares
is 5 + ε.

While the width of the gap between the squares ensures the first condition for
a crossing to be simple is always satisfied, there can be a case when several
different vertices of L are connected both to a vertex of M and to a vertex in
Gi,j+1 or Gi+1,j , see Figure 5. Notice that this may happen when some inner
vertices of L or M are cut vertices in Gi,j or Gi+1,j+1.

We resolve the problem of a crossing that is not simple by a pre-processing
phase in which some of the vertices in the octagons are assigned to the neigh-
boring squares, with the goal to make the crossing simple.

Consider a crossing CRi,j and let L and M be defined as before. Let u′ be
the last (in L) occurrence of a node connected to both M and Gi,j+1 (if there
is no such node, set u′ = u1). Similarly, let u′′ be the first occurrence in L of
a node connected to both M and Gi+1,j . Define v′ and v′′ analogously in M ,
using clockwise traversal, see Figure 5. Any vertex of L which is connected to
both Gi,j+1 and Gi+1,j+1 must occur in the segment of L from u1 to u′, since
the edges incident with u′ connecting it to Gi,j+1 and Gi+1,j+1 act as separators
in the planar graph. Similarly, any node of L which is connected to both Gi+1,j

and Gi+1,j+1 must occur in the segment of L from u′′ to uk (see Figure 6).
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Gi↪j+1

Gi+1↪j

Gi↪j

Gi+1↪j+1
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v

M
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u1

v

vl

L1

L2

L

Fig. 6. L and M in a crossing

We now partition L into three parts: Let L1 be the shortest initial segment
of L from u1 to to first occurrence of u′ so that all vertices connected to both
Gi,j+1 and Gi+1,j+1 are contained in L1, let L3 be the shortest final segment of
L starting with an occurrence of u′′ so that all vertices connected to both Gi+1,j

and Gi+1,j+1 are contained in L3, and L2 be the remaining part of L. We define
M1, M2, and M3 analogously as segments of M using v′ and v′′.

To make the crossing simple, we assign the components of Gi,j separated
by u′ and encountered in the traversal of L1 to Gi,j+1, and the components
of Gi,j separated by u′′ and encountered in the traversal of L3 are assigned
to are Gi+1,j . The same is applied to the segments of Gi+1,j+1 separated by
v′ and v′′ and encountered in the traversal of M1 and M3, (see Figure 7). All
the components that are assigned to Gi,j+1 are inside the area bordered by the
edges connecting u′ or v′ to Gi+1,j+1 and Gi,j+1 or Gi,j and Gi,j+1. Similarly all
the components that are assigned to Gi+1,j are inside the area bordered by the
edges connecting u′′ or v′′ to Gi+1,j+1 and Gi+1,j or Gi,j and Gi+1,j . Since the
length of the crossing is more than 3, there cannot be any edge between vertices
assigned to Gi+1,j and Gi,j+1. Furthermore, after this reassignment, u′ is the
only vertex in Gi,j that can be connected to both Gi+1,j+1 and Gi,j+1 and u′′ is
the only vertex in Gi,j that can be connected to both Gi+1,j+1 and Gi+1,j . The
analogous statement can be made about v′ and v′′, Thus the crossing L′ and
M ′ between Gi,j and Gi+1,j+1 is a subset of u′, L2, u

′′ and v′, M2, v
′′ and this

modified crossing CRi,j satisfies both conditions of a simple crossing, see Figure
7, and we can thus proceed with the coloring as stated in Lemma 3.

The following lemma, together with the size of the squares being selected as
5 + ε, allows us to apply Lemma 3 to each crossing independently.
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Gi↪j+1

Gi+1↪j

Gi+1↪j+1

u

v

L

M

v1
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v

u1

Gi↪j

Fig. 7. L′ and M ′ after the transformation. The shaded areas belong to Gi,j+1 and
Gi+1,j .

Lemma 4. Any vertex recolored due to resolving conflicts in crossing CRi,j is
at a distance at most 2 from the line separating Si,j and Si+1,j+1.

3.3 Local 7-Coloring Algorithm

Putting the pieces together we have the following local, fully distributed algo-
rithm that is executed at each vertex of the graph to obtain a valid 7-coloring
of the graph.

Algorithm 1. The local 7-coloring algorithm for a vertex v

1: Learn your neighborhood up to distance 201 // Note that all steps can be performed
locally using the information learned in the first (communication) step, without
incurring further communication.

2: From your coordinates, identify the square/octagon Si,j you are located in, and
calculate the connected component of Gi,j you belong to.
// The next step is for vertices near a crossing

3: Calculate L and M , and then L′ and M ′. Determine whether you have been shifted
to a neighboring square. Determine whether L′ and M ′ are connected, if not
but the squares are now connected, repeat the process until the final L∗ and
M∗ are computed.

4: Apply the 3 + 2 coloring algorithm from Theorem 1 for each Gi,j , as in Figure 3
5: Apply the recoloring from Lemma 3.

The results of this section can be summarized in the following theorem.

Theorem 3. Given a planar subgraph of the unit disk graph whose vertices cor-
respond to hosts that are each aware of its geometric location in the plane, Al-
gorithm 1 computes locally a 7-coloring of this subgraph using only information
on the subgraph located within a constant number of hops away from it.
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An interesting remaining open problem is whether the number of colors needed
for a local coloring of a planar subgraphs of a unit disk graph can be decreased
any further.
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hochschule Südwestfalen (University of Applied Sciences) (unpublished note)

5. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation
analysis. Systemic Zoology 18, 259–278 (1972)

6. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs.
Distributed Computing 7, 55–59 (1993)

7. Gräf, A., Stumpf, M., Weißenfels, G.: On coloring unit disk graphs. Algorith-
mica 20(3), 277–293 (1998)

8. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
Proc. of 11th Canadian Conference on Computational Geometry, August 1999, pp.
51–54 (1999)

9. Linial, N.: Locality in distributed graph algorithms. SIAM J. COMP. 21(1), 193–
201 (1992)

10. Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple
heuristics for unit disk graphs. Networks 25(1), 59–68 (1995)

11. Miyamoto, Y., Matsui, T.: Multicoloring unit disk graphs on triangular lattice
points. In: SODA, pp. 895–896. SIAM, Philadelphia (2005)

12. Thomassen, C.: Every planar graph is 5-choosable. Combinatorial Theory Series
B 62(1), 180–181 (1994)

13. Tuza, Z., Voigt, M.: A note on planar 5-list colouring: non-extendability at distance
4. Discrete Mathematics 251(1), 169–172 (2002)

14. Wang, Y., Li, X.-Y.: Localized construction of bounded degree and planar spanner
for wireless ad hoc networks. In: DialM: Proceedings of the Discrete Algorithms
and Methods for Mobile Computing & Communications (2003)



Generalized Domination in Degenerate Graphs:

A Complete Dichotomy of Computational
Complexity

Petr Golovach1,� and Jan Kratochv́ıl2,��

1 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, Norway
petrg@ii.uib.no

2 Department of Applied Mathematics, and Institute for Theoretical Computer
Science, Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic
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Abstract. The so called (σ, ρ)-domination, introduced by J.A. Telle,
is a concept which provides a unifying generalization for many variants
of domination in graphs. (A set S of vertices of a graph G is called
(σ, ρ)-dominating if for every vertex v ∈ S, |S ∩ N(v)| ∈ σ, and for
every v /∈ S, |S ∩ N(v)| ∈ ρ, where σ and ρ are sets of nonnegative
integers and N(v) denotes the open neighborhood of the vertex v in
G.) It is known that for any two nonempty finite sets σ and ρ (such
that 0 /∈ ρ), the decision problem whether an input graph contains a
(σ, ρ)-dominating set is NP-complete, but that when restricted to some
graph classes, polynomial time solvable instances occur. We show that for
every k, the problem performs a complete dichotomy when restricted to
k-degenerate graphs, and we fully characterize the polynomial and NP-
complete instances. It is further shown that the problem is polynomial
time solvable if σ, ρ are such that every k-degenerate graph contains at
most one (σ, ρ)-dominating set, and NP-complete otherwise. This relates
to the concept of ambivalent graphs previously introduced for chordal
graphs.

Subject: Computational complexity, graph algorithms.

1 Introduction and Overview of Results

We consider finite undirected graphs without loops or multiple edges. The vertex
set of a graph G is denoted by V (G) and its edge set by E(G). The open
neighborhood of a vertex is denoted by N(u) = {v : (u, v) ∈ E(G)}. The closed
neighborhood of a vertex u is the set N [u] = N(u) ∪ {u}. If U ⊂ V (G), then
G[U ] denotes the subgraph of G induced by U .

Let σ, ρ be a pair of nonempty sets of nonnegative integers. A set S of vertices
of G is called (σ, ρ)-dominating if for every vertex v ∈ S, |S ∩N(v)| ∈ σ, and for
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J.A. Telle [4,5] (and further elaborated on in [6,2]) as a unifying generalization
of many previously studied variants of the notion of dominating sets. In particu-
lar, (N0,N)-dominating sets are ordinary dominating sets, ({0},N0)-dominating
sets are independent sets, (N0,{1})-dominating sets are efficient dominating sets,
({0},{1})-dominating sets are 1-perfect codes (or independent efficient dominat-
ing sets), ({0},{0, 1})-dominating sets are strong stable sets, ({0},N)-dominating
sets are independent dominating sets, ({1},{1})-dominating sets are total perfect
dominating sets, or ({r},N0)-dominating sets are induced r-regular subgraphs (N
and N0 denote the sets of positive and nonnegative integers, respectively).

We are interested in the complexity of the problem of existence of a (σ, ρ)-
dominating set in an input graph, and we denote this problem by ∃(σ, ρ)-
domination. It can be easily seen that if 0 ∈ ρ, then the ∃(σ, ρ)-domination

problem has a trivial solution S = ∅. So throughout our paper we suppose that
0 /∈ ρ. We consider only finite sets σ and ρ and use the notation pmin = min σ,
pmax = maxσ, qmin = min ρ, and qmax = max ρ.

It is known that for any nontrivial combination of finite sets σ and ρ
(considered as fixed parameters of the problem), ∃(σ, ρ)-domination is NP-
complete [4]. It is then natural to pay attention to restricted graph classes for
inputs of the problem. The problem is shown polynomial time solvable for inter-
val graphs in [3], where also the study of its complexity for chordal graphs was
initiated. A full dichotomy for chordal graphs was proved in [1], where a direct
connection between the complexity of ∃(σ, ρ)-domination and the so called am-
bivalence of the parameter sets σ, ρ was noted. A pair (σ, ρ) is called ambivalent
for a graph class G if there exists a graph in G containing at least two different
(σ, ρ)-dominating sets (such a graph will be called (σ, ρ)-ambivalent), and the
pair (σ, ρ) is called non-ambivalent otherwise.

It is shown in [1] that for finite sets σ, ρ, ∃(σ, ρ)-domination is polynomial
time solvable for chordal graphs if the pair (σ, ρ) is non-ambivalent (for chordal
graphs), and it is NP-complete otherwise. It should be noted that the charac-
terization which is given in [1] is nonconstructive in the sense that the authors
did not provide a structural description of ambivalent (or non-ambivalent) pairs
σ, ρ (and there is indication that such a description will not be simple).

In this paper we consider the connection between ambivalence and computa-
tional complexity of ∃(σ, ρ)-domination for k-degenerate graphs. A graph G is
called k-degenerate (with k being a positive integer) if every induced subgraph
of G has a vertex of degree at most k. For example, trees are exactly con-
nected 1-degenerate graphs, every outerplanar graph is 2-degenerate, and every
planar graph are 5-degenerate. An ordering of vertices v1, v2, . . . , vn is called a
k-degenerate ordering if every vertex vi has at most k neighbors among the ver-
tices v1, v2, . . . , vi−1. It is well known that a graph is k-degenerate if and only if
it allows a k-degenerate ordering of its vertices.

It is known [6] that for trees (and for graphs of bounded treewidth), ∃(σ, ρ)-
domination can be solved in polynomial time. Thus we assume k ≥ 2 through-
out the paper. We prove that also in the case of k-degenerate graphs, ambivalence
and NP-hardness of ∃(σ, ρ)-domination go hand in hand.
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Theorem 1. For finite sets σ, ρ, ∃(σ, ρ)-domination is polynomial (linear)
time solvable for k-degenerate graphs if the pair (σ, ρ) is non-ambivalent for
k-degenerate graphs (moreover, the problem can be solved by an algorithm which
is polynomial not only in the size of the graph, but also in pmax and qmax), and
it is NP-complete otherwise.

Unlike the case of chordal graphs, for k-degenerate graphs we are able to describe
a complete and constructive classification of ambivalent and non-ambivalent
pairs.

Theorem 2. Let σ, ρ be finite sets, and k ≥ 2. If pmin > k, then no k-degenerate
graph has a (σ, ρ)-dominating set. If pmin ≤ k, then the pair (σ, ρ) is non-
ambivalent for k-degenerate graphs if and only if one of the following two con-
ditions holds:

1. (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0},
2. for every p ∈ σ and every q ∈ ρ, |p − q| > k.

The last section of the paper is devoted to planar graphs. These undoubtedly
form one of the most interesting k-degenerate classes of graphs (k = 5 in this
case). Here we end up with several open problems. We are able to prove the
NP-hardness part of an analog of Theorem 1.

Theorem 3. For finite sets σ, ρ, ∃(σ, ρ)-domination is NP-complete for planar
graphs if the pair (σ, ρ) is ambivalent for planar graphs.

However, we do not know if non-ambivalence implies polynomial time recognition
algorithm in this case. We are able to classify ambivalent and non-ambivalent
pairs for some special pairs of sets σ and ρ, e.g., one-element sets, but even in
this case the proof of non-ambivalence is nonconstructive and does not yield an
algorithm.

Theorem 4. Let σ, ρ be one-element sets, σ = {p}, ρ = {q}, and 0 
= q. If
p > 5, then no planar graph has a (σ, ρ)-dominating sets. And if p ≤ 5, then
the pair (σ, ρ) is non-ambivalent for planar graphs if and only if q − p > 3 or
p − q > 2.

2 Classification of Ambivalent and Non-ambivalent Pairs
for k-Degenerate Graphs

In this section we present a structural characterization of ambivalent and non-
ambivalent pairs of sets (σ, ρ) for k-degenerate graphs. We also describe an al-
gorithm which (in case of a non-ambivalent pair (σ, ρ)) constructs the unique
(σ, ρ)-dominating set (if it exists) in an input k-degenerate graph. We start with
the following simple statement.

Lemma 1. Let σ, ρ be finite sets, and let k be a positive integer. If pmin > k,
then no k-degenerate graph contains a (σ, ρ)-dominating set.
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Proof. Let v1, v2, . . . , vn be a k-degenerate ordering of a k-degenerate graph G.
Since deg vn ≤ k < pmin, the vertex vn does not belong to any (σ, ρ)-dominating
set. But then every (σ, ρ)-dominating set of G is also a (σ, ρ)-dominating set of
the subgraph of G induced by {v1, v2, . . . , vn−1}. By repeating this argument
inductively, we conclude that only the empty set can be (σ, ρ)-dominating. And
since 0 /∈ ρ, this is impossible. ��

Now we assume that pmin ≤ k and we prove that the conditions given in The-
orem 2 are sufficient for non-ambivalence of σ, ρ. Towards this end, we describe
greedy algorithms which construct the unique candidate for a (σ, ρ)-dominating
set.

Let G be a k-degenerate graph with n vertices, and suppose that v1, v2, . . . , vn

is a k-degenerate ordering of the vertices of G. We consider two cases, and in
each if them a set S, which is a unique candidate for (σ, ρ)-dominating set in G,
is constructed.

Case 1. (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0}.

Procedure Construct A;
U := V (G), S := ∅;
while U 
= ∅ do

i := max{j : vj ∈ U};
S := S ∪ {vi}, U := U \ N [vi];

Return S

Case 2. (σ ∪ ρ) ∩ {0, 1, . . . , k} 
= {0}, and for every p ∈ σ and every q ∈ ρ,
|p − q| > k.

Procedure Construct B;
U := V (G), S := ∅;
for i := n downto 1 do

r := |N(vi) ∩ S|, s := |N(vi) ∩ U |;
if there is p ∈ σ such that r ≤ p ≤ r + s then

S := S ∪ {vi}, U := U \ {vi}
else

if there is q ∈ ρ such that r ≤ q ≤ r + s then
U := U \ {vi}

else
Return There is no (σ, ρ)-dominating set, Halt;

Return S

Even if the procedures Construct A or Construct B construct a set S, it is
still possible that this set is not (σ, ρ)-dominating. So we have to test for this
property:
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Procedure Test;
for i := 1 to n do

if (vi ∈ S and |N(vi) ∩ S| /∈ σ) or (vi /∈ S and |N(vi) ∩ S| /∈ ρ) then
Return There is no (σ, ρ)-dominating set, Halt;

Return S

The properties of the algorithms are summarized in the next statement.

Lemma 2. Let σ, ρ be finite sets. Suppose that k is a positive integer, pmin ≤ k
and either (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0}, or for every p ∈ σ and every q ∈
ρ, |p − q| > k. Then the described algorithms correctly construct the (σ, ρ)-
dominating set (if it exists) for any k-degenerate graph G, and this set is unique.
The running time is O((pmax + qmax)(n+m)), where n is the number of vertices
of G, and m is the number of its edges.

Proof. The correctness of the procedure Construct A is straightforward. The
loop invariant of the procedure is that no vertex of U has a neighbor in S. Hence
if (σ ∪ ρ) ∩ {0, 1, . . . , k} = {0}, then every vertex v ∈ U with degree no more
than k < qmin must belong to every (σ, ρ)-dominating set, and vertices of N(v)
can not belong to any such set.

The correctness of the procedure Construct B follows from the following
observation: If for every p ∈ σ and every q ∈ ρ, |p − q| > k, then the set
{r, r + 1, . . . , s} can not contain elements of both sets σ and ρ, since s ≤ k. And
since the number of S-neighbors of vi (in the final (σ, ρ)-dominating set S) will
end up in the interval [r, r + s], the justification is clear.

It is known that a k-degenerate ordering can be constructed in time O(n+m).
Then the estimate of the running time immediately follows from the description
of the algorithms. (Note here that we can assume that pmax, qmax ≤ n since
otherwise we can truncate the sets σ and ρ.) ��

To complete the proof of Theorem 2 we have to prove that the conditions given in
the theorem are not only sufficient but also necessary. We do so by constructing
graphs with at least two different (σ, ρ)-dominating sets. Let σ, ρ be finite sets,
and let k ≥ 2 be a positive integer. Suppose that pmin ≤ k, (σ∪ρ)∩{0, 1, . . . , k} 
=
{0}, and there are p ∈ σ and q ∈ ρ such that |p − q| ≤ k. We consider 3 different
cases.

Case 1. max(σ ∩ {0, 1, . . . , k}) = 0. Since (σ ∪ ρ) ∩ {0, 1, . . . , k} 
= {0}, there is a
q ∈ ρ such that q ≤ k. Then each class of bipartition of the complete bipartite
graph Kq,q is a (σ, ρ)-dominating set in Kq,q and Kq,q (and consequently the
pair (σ, ρ)) is ambivalent.

Case 2. 1 ∈ σ. If p < q, then we start the construction with the complete bipartite
graph Kq−p,q−p. Let the bipartition of its vertex set be {u1, u2, . . . , uq−p} and
{v1, v2, . . . , vq−p}. We further join every pair of vertices ui and vi by p different
paths of length 2. Let us denote by X the set of the middle vertices of these paths.
Since k ≥ 2 and q−p ≤ k, the graph constructed is k-degenerate. And it has two
different (σ, ρ)-dominating sets: {u1, u2, . . . , uq−p}∪X and {v1, v2, . . . , vq−p}∪X .
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If p ≥ q, then the construction starts with two copies of the complete graph
Kp−q+1, with vertex sets {u1, u2, . . . , up−q+1} and {v1, v2, . . . , vp−q+1}. Again,
we join every pair of vertices ui and vi by q different paths of length 2, and we let
X denote the set of the middle vertices of these paths. Since k ≥ 2 and p−q ≤ k,
the graph constructed in this way is k-degenerate. And it has two different (σ, ρ)-
dominating sets: {u1, u2, . . . , up−q+1} ∪ X and {v1, v2, . . . , vp−q+1} ∪ X .

Case 3. r ∈ σ for some 2 ≤ r ≤ k. Let H denote the complete graph Kr+1 with
one edge deleted, and let u, v be the endvertices of this edge. We will further
refer to these vertices as the poles of H . If p < q, then we start the construction
with two copies of the complete bipartite graph Kq−p,q−p with the bipartition
of the vertex sets {u1, u2, . . . , uq−p}, {v1, v2, . . . , vq−p} and {x1, x2, . . . , xq−p},
{y1, y2, . . . , yq−p}, respectively. Then for every i ∈ {1, 2, . . . , q −p}, we introduce
p copies of H and join one pole of each of them with ui and vi by edges, and
the other pole with xi and yi. Let X be the union of the sets of vertices of all
added graphs H . The resulting graph is k-degenerate (first the non-pole vertices
of H ’s have degrees r ≤ k, after their deletion the pole vertices have degrees
2 ≤ k, and after the deletion of these all the remaining vertices have degrees
p − q ≤ k), and it has two different (σ, ρ)-dominating sets: {u1, u2, . . . , uq−p} ∪
{x1, x2, . . . , xq−p} ∪ X and {v1, v2, . . . , vq−p} ∪ {y1, y2, . . . , yq−p} ∪ X .

If p ≥ q, then we start the construction with four copies of the com-
plete graph Kp−q+1, with vertex sets {u1, u2, . . . , up−q+1}, {v1, v2, . . . , vp−q+1},
{x1, x2, . . . , xp−q+1}, and {y1, y2, . . . , yp−q+1}. For every i ∈ {1, 2, . . . , p−q+1},
we add q copies of the graph H and join one pole of each of them with ui and vi,
and the other one with xi and yi. Again let X be the union of the sets of vertices
of the added copies of H . The resulting graph is k-degenerate, and it has two
different (σ, ρ)-dominating sets: {u1, u2, . . . , up−q+1} ∪ {x1, x2, . . . , xp−q+1} ∪ X
and {v1, v2, . . . , vp−q+1} ∪ {y1, y2, . . . , yp−q+1} ∪ X .

Unifying the claims of Lemmas 1, 2 and these constructions we have com-
pleted the proof of Theorem 2. Also since we presented polynomial time al-
gorithms which construct unique (σ, ρ)-dominating sets (if they exist) for the
non-ambivalent pairs (σ, ρ), the polynomial part of Theorem 1 is proved.

To conclude this section, let us point out a property of the constructed graphs
which will be used in the next section.

Lemma 3. For every ambivalent pair (σ, ρ), there is a k-degenerate graph G
with at least two different (σ, ρ)-dominating sets, which has a k-degenerate or-
dering v1, v2, . . . , vn such that for some �, the first � vertices v1, . . . , v� belong to
one and are not included to the other (σ, ρ)-dominating set.

3 NP-Completeness of ∃(σ, ρ)-domination for Ambivalent
Pairs

It this section we outline the proofs of the NP-hardness part of Theorem 1 and
of Theorem 3.
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We use a reduction from a special covering problem. Let r be a positive integer.
An instance of the Cover by no more than r sets is a pair (X, M), where
X is a nonempty finite set and M is a collection of sets of elements of X . We
ask about the existence of a collection M ′ ⊂ M of sets such that every element
of X belongs to at least one and to at most r sets of M ′. The graph G(X, M) of
an instance (X, M) is the bipartite graph with the vertex set X ∪ M and edge
set {xm|x ∈ m ∈ M}. The proof of the following lemma will appear in the full
version of the paper.

Lemma 4. For every fixed r ≥ 1, the Cover by no more than r sets prob-
lem is NP-complete even for instances (X, M) for which the graph G(X, M) is
2-degenerate. It also stays NP-complete if the graph G(X, M) is planar.

The main technical part of the NP-hardness proof is the construction of a gadget
which “enforces” on a given vertex the property of “not belonging to any (σ, ρ)-
dominating set”, and which guarantees that this vertex has a given number of
neighbors in any (σ, ρ)-dominating set in the gadget:

Lemma 5. Assume that k ≥ 2 and pmin ≤ k. Let r be a nonnegative integer.
Then there is a rooted graph F with the root u such that:

1. there is set S ⊂ V (F ) \ {u} such that for every x ∈ S, |N(x) ∩ S| ∈ σ, and
for every x /∈ S, x 
= u, |N(x) ∩ S| ∈ ρ;

2. for every such set S, |N(u) ∩ S| = r;
3. for every set S ⊂ V (F ) such that u ∈ S, either there is x ∈ S, x 
= u, for

which |N(x) ∩ S| /∈ σ, or there is x /∈ S for which |N(x) ∩ S| /∈ ρ;
4. F has a k-degenerate ordering with u as the first vertex.

The construction of F (which will appear in the full version of the paper) is
technical and requires a lengthy case analysis. A specific variant of the gadget
F ′ for planar graphs is also constructed, and the construction will also appear
in the full version of the paper.

Now we complete the proof of Theorem 1. Suppose that σ, ρ are finite sets
of integers, k ≥ 2, and the pair (σ, ρ) is ambivalent for k-degenerate graphs. Let
r = max{i ∈ N0 : i /∈ ρ, i + 1 ∈ ρ}. Since 0 /∈ ρ, r is correctly defined. We are
going reduce Cover by no more than t sets for t = qmax − r.

Suppose that (X, M) is an instance of Cover by no more than t sets

such that the graph G(X, M) is 2-degenerate, X = {x1, x2, . . . , xn} and M =
{s1, s2, . . . , sm}. Let H be a k-degenerate ambivalent rooted graph with root u,
such that u belongs to some (σ, ρ)-dominating set and u is not included in some
other (σ, ρ)-dominating set, and H has a k-degenerate ordering for which the
root is the first vertex. The existence of such a graph was proved in Lemma 3.
For every vertex si of the graph G(X, M), we take a copy of the graph H and
identify its root with si. For every vertex xj of our graph, a copy of the graph F
(cf. Lemma 5) is constructed and its root is identified with xj . Denote the graph
obtained in this way by G. Clearly, G is k-degenerate.

We claim that the graph G has a (σ, ρ)-dominating set if and only if (X, M)
allows a cover by no more than t sets. Since the graphs H and F depend only
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on σ and ρ, G has O(n + m) vertices, our reduction is polynomial and the proof
will be concluded.

Suppose first that G has a (σ, ρ)-dominating set S. Let M ′ = {si ∈ M : si ∈
S}. It follows from the properties of the forcing gadget F that every vertex xj

has exactly r neighbors in the gadget with root xj and xj /∈ S. Then xj has at
least one S-neighbor in the set {s1, s2, . . . , sm}, but no more than t = qmax − r
such neighbors. So, M ′ is a cover of X by no more than t sets.

Suppose now that M ′ ⊆ M is a cover of X by no more than t sets. For
every i = 1, 2, . . . , m, we choose a (σ, ρ)-dominating set Si in the copy of H
with the root si such that si ∈ Si if and only if si ∈ M ′. Let S′

1, S
′
2, . . . , S

′
n

be (σ, ρ)-dominating sets in the copies of F . Since {t + 1, t + 2, . . . , qmax} ⊆ ρ,
S = S1 ∪ S2 ∪ · · · ∪ Sm ∪ S′

1 ∪ S′
2 ∪ . . . S′

n is a (σ, ρ)-dominating set in G.

The proof of Theorem 3 follows along the same lines. Suppose that (X, M) is
an instance of Cover by no more than t sets such that the graph G(X, M) is
planar, X = {x1, x2, . . . , xn} and M = {s1, s2, . . . , sm}. Let H ′ be a planar am-
bivalent rooted graph with root u, such that u belongs to some (σ, ρ)-dominating
set and u is not included in some other (σ, ρ)-dominating set. For every vertex
si of the graph G(X, M), we construct a copy of the graph H ′ and unify its
root with si. For every vertex xj of our graph, a copy of the forcing gadget F ′

is constructed and the root of F ′ is identified with xj . Let G be the resulting
graph. Obviously, G is planar and G has a (σ, ρ)-dominating set if and only if
(X, M) allows a cover by no more than t sets.

4 Ambivalence and Non-ambivalence for Planar Graphs

Since planar graphs are 5-degenerate, Theorem 2 gives sufficient conditions for
non-ambivalence, but these conditions are not necessary for planar graphs. In
this section we give some new sufficient conditions for non-ambivalence for planar
graphs for certain cases of sets σ and ρ, and prove that in some cases these
conditions are also necessary. We start with the case qmin > pmax.

Lemma 6. Let σ, ρ be finite sets, and pmin ≤ 5. If qmin − pmax > 3, then the
pair (σ, ρ) is non-ambivalent for planar graphs.

Proof. Assume that qmin − pmax > 3 and let G be a planar graph with two
different (σ, ρ)-dominating sets S1 and S2. Let X = S1 ∩ S2, Y1 = S1 \ S2 and
Y2 = S2 \ S1. If x ∈ Y1, then since x ∈ S1, |N(x) ∩ X | ≤ pmax, and since x /∈ S2,
|N(x) ∩ S2| ≥ qmin. So, x has at least 4 neighbors in Y2. Similarly for y ∈ Y2.
Hence G[Y1 ∪Y2] is a planar bipartite graph such that every vertex has degree at
least 4, but this is impossible, since planar bipartite graphs are 3-degenerate. ��

Now we consider the case qmax < pmin.

Lemma 7. Let σ = {p} for some p ≤ 5 and 0 /∈ ρ. If p − qmax > 2, then the
pair (σ, ρ) is non-ambivalent for planar graphs.
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Proof. Suppose that p−qmax > 2 and let G be a planar graph with two different
(σ, ρ)-dominating sets S1 and S2. Let X = S1∩S2, Y1 = S1\S2 and Y2 = S2\S1.
If x ∈ Y1, then since x /∈ S2, |N(x)∩X | ≤ qmax, and since x ∈ S1, |N(x)∩S1| = p.
So x has at least 3 neighbors in Y1, i.e., G[Y1] and G[Y2] are planar graphs with
all vertices of degree at least 3. Assume that a vertex x ∈ Y1 is not adjacent
to any vertex of Y2. Then x has some neighbor y ∈ X . The vertex y must be
adjacent to some vertex z ∈ Y2 because σ contains exactly one element. Hence
every vertex of Y1 is either adjacent to some vertex of Y2, or is connected with
some vertex of Y2 by a path of length two with the middle vertex from X .

Consider a plane embedding of G. It induces plane embeddings of G[Y1] and
G[Y2]. Let x ∈ Y1. It is joined by an edge or by a path of length two to some
vertex y ∈ Y2, which belongs to some component H of G[Y2]. This graph H
lies completely in one face of G[Y1]. Since all vertices of H have degrees at
least 3, the graph H is not outerplanar. Then there is a vertex z ∈ V (H)
which does not belong to the boundary of the external face of H . By repeat-
ing the same arguments for z instead of x, we conclude that some compo-
nent of G[Y1] lies completely in some internal face of H , and so on. Since the
number of components of G[Y1] and G[Y2] is finite, this immediately gives a
contradiction. ��

The conditions given in Lemmas 6 and 7 are not only sufficient but also necessary
for one-element sets σ and ρ, and this completes the proof of Theorem 4. The
proof of this claim is provided by examples which are omitted here and will be
given the full version of the paper. We conclude the section and the paper by
explicitly stating some questions left open for planar graphs.

Problem 1. Is ∃(σ, ρ)-domination polynomial (NP-complete) when restricted
to planar graphs if and only if the pair σ, ρ is non-ambivalent (ambivalent, re-
spectively) for planar graphs? We believe that it would be interesting to solve
this problem even for one-element sets σ and ρ.

Problem 2. Complete the characterization of ambivalent pairs σ, ρ for planar
graphs.
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Abstract. Deciding strong and weak bisimilarity of BPP are challeng-
ing because of the infinite nature of the state space of such processes. De-
ciding weak bisimilarity is harder since the usual decomposition property
which holds for strong bisimilarity fails. Hirshfeld proposed the notion of
bisimulation tree to prove that weak bisimulation is decidable for totally
normed BPA and BPP processes. In this paper, we present a tableau
method to decide weak bisimilarity of totally normed BPP. Compared
with Hirshfeld’s bisimulation tree method, our method is more intuitive
and more direct. Moreover from the decidability proof we can derive
a complete axiomatisation for the weak bisimulation of totally normed
BPP.

1 Introduction

A lot of attention has been devoted to the study of decidability and complex-
ity of verification problems for infinite-state systems [1,15,16]. In [2], Baeten,
Bergstra, and Klop proved the remarkable result that bisimulation equivalence
was decidable for irredundant context-free grammars (without the empty prod-
uct). Subsequently, many algorithms in this domain were proposed. In [7], Hans
Hüttel and Colin Stirling proved the decidability of normed BPA by using a
tableau method, which can also be used as a decision procedure. Decidability of
strong bisimilarity for BPP processes has been established in [13]. Furthermore,
[14] proved that deciding strong bisimilarity of BPP is PSPACE-complete.

For weak bisimilarity, much less is known. Semidecidability of weak bisimilar-
ity for BPP has been shown in [5]. In [6] it is shown that weak bisimilarity is de-
cidable for those BPA and BPP processes which are “totally normed”. P.Jančar
conjectured that the method in [14] might be used to show the decidability of
weak bisimilarity for general BPP. However, the problem of decidability of weak
bisimilarity for general BPP is open.

Our work is inspired by Hirshfeld’s idea. In [6] Hirshfeld proposed the notion of
bisimulation tree to prove the decidability of weak bisimulation of totally normed
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BPP. Based on the idea, we show that weak bisimulation for totally normed BPP
is decidable by a tableau method. In [13], S. Christensen, Y. Hirshfield and F.
Moller proposed a tableau decision procedure for deciding strong bisimilarity
of normed BPP. The key for tableau method to work is a nice decomposition
property which holds for strong bisimulation, but fails for weak bisimulation. In
our work, instead of using decomposition property, we apply Hirshfeld’s idea to
control the size of the tableaux to make the tableau method work correctly. This
approach not only provides us a more direct decision method, but also has the
advantage of providing a completeness proof of an equational theory for weak
bisimulation of totally normed BPP processes, similar to the tableau method of
[13] provides such a completeness proof for strong bisimulation of normed BPP
processes. Moreover, the termination proof for tableau is greatly simplified.

The paper is organized as follows. Section 2 introduces the notion of BPP
processes and weak bisimulation and describes weak bisimulation equivalence.
Section 3 gives the tableau decision method and presents the soundness and
completeness results. In Section 4 we prove the completeness of the equational
theory. Finally, Section 5 sums up conclusions and gives suggestions for further
work.

2 BPP Processes and Weak Bisimulation Equivalence

Assuming a set of variables V , V={X, Y, Z, · · ·} and a set of actions Actτ ,
Actτ = {τ, a, b, c, · · ·} which contains a special element τ , we consider the set
of BPP expressions E given by the following syntax; we shall use E, F, . . . as
metavariables over E .

E ::= 0 (inaction)
| X (variables, X ∈ V)
| E1 + E2 (summation)
| μE (μ ∈ Actτ )
| E1|E2 (merge)

A BPP process is defined by a finite family of recursive process equations

Δ = {Xi
def
= Ei|1 ≤ i ≤ n}

where the Xi ∈ V are distinct variables and each Ei is BPP expressions, and free
variables in each Ei range over set {X1, . . . , Xn}. In this paper, we concentrate
on guarded BPP systems.

Definition 1. A BPP expression E is guarded if each occurrence of variable is
within the scope of an atomic action, and a BPP system is guarded if each Ei

is guarded for 1 ≤ i ≤ n.

Definition 2. The operational semantics of a guarded BPP system can be sim-
ply given by a labeled transition system (S, Actτ , −→) where the transition re-
lation −→ is generated by the rules in Table 1.
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Table 1. Transition rules

act aE
a−→ E rec E

a−→ E′

X
a−→ E′

(X = E ∈ Δ)

sum1 E
a−→ α

E + F
a−→ α

sum2 F
a−→ β

E + F
a−→ β

par1 E
a−→ α

E|F a−→ α|F
par2 F

a−→ β

E|F a−→ E|β

where the state space S consists of finite parallel of BPP processes, and the
transition relation −→⊆ S × Actτ × S is generated by the rules in Table 1, in
which (as also later) we use Greek letters α, β, · · · as meta variables ranging over
elements of S, Each such α denotes a BPP process by forming the product of
the elements of α, i.e. by combining the elements of α in parallel using the merge
operator. We write ε for empty sequence. We shall write Xn to represent the
term X | · · · |X consisting of n copies of X combined in parallel. By length(α) we
denote the cardinality of α.

It is shown in [3] that any guarded system can be effectively transformed into
a 3-GNF normal form

{Xi
def
= Σni

j=1aijαij |1 ≤ i ≤ m}

where for all i, j such that 1 ≤ i ≤ m, 1 ≤ j ≤ ni, length(αij) < 3. So we only
considered BPP processes given in 3-GNF in this paper.

Moreover, we write α
ε=⇒ β for α( τ−→)∗β, and write α

a=⇒ β for α
ε=⇒ a−→ ε=⇒

β. Letˆ : Actτ → {Actτ − τ} ∪ ε be the function such that â = a when a �= τ
and τ̂ = ε, then the following general definition of weak bisimulation on S is
standard.

Definition 3. A binary relation R ⊆ S × S is a weak bisimulation if for all
(α, β) ∈ R the following conditions hold:

1. whenever α
a−→ α′, then β

â=⇒ β′ for some β′ with (α′, β′) ∈ R;
2. whenever β

a−→ β′, then α
â=⇒ α′ for some α′ with (α′, β′) ∈ R.

Two states α and β are said to be weak bisimulation equivalent, written α ≈ β,
if there is a weak bisimulation R such that (α, β) ∈ R.

It is standard to prove that ≈ is an equivalence relation between processes.
Moreover it is a congruence with respect to composition on S:

Proposition 1. If α1 ≈ β1 and α2 ≈ β2 then α1|α2 ≈ β1|β2.

Proposition 2. α|β ≈ β|α.
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Proposition 3. (α|β)|γ ≈ α|(β|γ).

Definition 4. A process α is said to be normed if there exists a finite sequence
α −→ . . . −→ αn −→ ε transitions from α to ε, and un-normed otherwise. The
weak norm of a normed α is the length of the shortest transition sequence of the
form α

a1=⇒ . . .
an=⇒ ε, where each ai �= τ and ai=⇒ is counted as 1. We denote by

||α|| the weak norm of α. Also, for unnormed α, we follow the convention that
||α|| = ∞ and ∞ > n for any number n. A BPP system Δ is totally normed if
for every variable X appears Δ, 0 < ‖X‖ < ∞.

With this definition, it is obvious that weak norm is additive: for normed α, β ∈
S, ||α|β|| = ||α||+ ||β||. Moreover, the following proposition says that weak norm
is respected by ≈.

Proposition 4. If α ≈ β, then either both α, β are un-normed, or both are
normed and ||α|| = ||β||.

3 The Tableau Decision Method

From now on, we restrict our attention to the totally normed BPP processes in
3-GNF, i.e. processes of a parallel labeled rewrite system 〈S, Actτ , −→〉 where
∞ > ||X || > 0 for all X ∈ V . And throughout the rest of the paper, we assume
that all the processes considered are totally normed unless stated otherwise.

With the preparation of the previous section, in this section we can devise
a tableau decision method. The rules of the tableau system are built around
equations α = β, where α, β ∈ S. Each rule of the tableau system has the form

name
α = β

α1 = β1 . . . αn = βn
side condition.

The premise of a rule represents the goal to be achieved while the consequents
are the subgoals. There are three rules altogether. One for unfolding. Two rules
for substituting the states. We now explain the three rules in turn.

Table 2. Tableau rules

subl
α1|β1 = α2|β2

α1|β1 = α1|β2
(if there is α1 ≺ α2 and a dominated node labeled

α1 = α2 or α2 = α1 )

subr
α1|β1 = α2|β2

α2|β1 = α2|β2
(if there is α2 ≺ α1 and a dominated node labeled

α1 = α2 or α2 = α1 )

unfold
α = β

{α′ = β′ | (α′, β′) ∈ M} M is a match for (α, β)
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3.1 Substituting the States

The next two rules can be used to substitute the expressions in the goal. The
rules are based on the following observation.

Definition 5. (dominate and improve)[6]

1. The pair (α1|α2, β1|β2) dominates the pair (α1, β1).
2. Xk1

1 | · · · |Xki0
i0

| · · · |Xkn
n improves Xm1

1 | · · · |Xmi0
i0

| · · · |Xmn
n iff there is some

i0 such that for i < i0 the (total) number of occurrences of Xi is equal in
both pairs, i.e. ki = mi while the number of occurrences of Xi0 is smaller in
(Xk1

1 | · · · |Xki0
i0

| · · · |Xkn
n ) than in (Xm1

1 | · · · |Xmi0
i0

| · · · |Xmn
n ) i.e. ki0 < mi0 .

Proposition 5. Every sequence of pairs in which every pair improves the pre-
vious one is finite.

Proposition 6. Every sequence of pairs in which no pair dominates a previous
one is finite.

Definition 6. By ≺ we denote the well-founded ordering on S given as follows:
Xk1

1 | · · · |Xkn
n ≺ X l1

1 | · · · |X ln
n iff there exists j such that kj < lj and for all i < j

we have ki = li.

It is easy to show that ≺ is well-founded. Moreover, We shall rely on the fact
that ≺ is total in the sense that for any α, β ∈ S such that α �= β we have α ≺ β
or β ≺ α. Also we shall rely on the fact that α ≺ β implies α|α′ ≺ β|α′ as well
as α ≺ β|α′ for any α′ ∈ S. All these properties are easily seen to hold for ≺.

When building tableaux basic nodes might dominate other basic nodes; we say
a basic node n : α1|β1 = α2|β2 or α2|β2 = α1|β1 dominates any node n′ : α1 = α2

or n′ : α2 = α1 which appears above n in the tableau. There n′ : α1 = α2 or
n′ : α2 = α1 is called the dominated node.

Definition 7. We define a weight function ω, s.t. for α = Xk1
1 | · · · |Xkn

n , β =
Y m1

1 | · · · |Y mn
n , ω(α, β) = 1×k1+1×k2+· · ·+1×kn+1×m1+1×m2+· · ·+1×mn.

Proposition 7. For every α1, β1, if α ≈ β, then α|α1 ≈ β|β1 iff α|α1 ≈ α|β1

iff β|α1 ≈ β|β1.

Proof. For the only if direction, suppose α|α1 ≈ β|β1, since α ≈ β and β1 ≈ β1,
then α|β1 ≈ β|β1 by Proposition 1, by α|α1 ≈ β|β1, so α|α1 ≈ α|β1 since ≈
is an equivalence. For the if direction, suppose α|α1 ≈ α|β1, since α ≈ β and
β1 ≈ β1, α|β1 ≈ β|β1 by Proposition 1, by α|α1 ≈ α|β1, so α|α1 ≈ β|β1 since ≈
is an equivalence. For β it is similar to previous proof. ��
Proposition 8. One of the pairs (α|α1, α|β1) or (β|α1, β|β1) is an improvement
of (α|α1, β|β1) where α �= β.

This proposition guarantees the soundness and backwards soundness of subl, subr
rules.

In fact in section 2, from Proposition 5 we know that every sequence of pairs
in which every pair improves the previous one is finite. So this means that there
are only finitely many different ways to apply the rules.
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3.2 Unfolding by Matching the Transitions

Definition 8. Let (α, β) ∈ S × S. A binary relation M ⊆ S × S is a match for
(α, β) if the following hold:

1. whenever α
a−→ α′ then β

â=⇒ β′ for some (α′, β′) ∈ M ;
2. whenever β

a−→ β′ then α
â=⇒ α′ for some (α′, β′) ∈ M ;

3. whenever (α′, β′) ∈ M then ||α′|| = ||β′|| and either α
a−→ α′ or β

a−→ β′ for
some a ∈ Actτ .

It is easy to see that for a given (α, β) ∈ S × S, there are finitely many possible
M ⊆ S × S which satisfies 3. Above and moreover each of them must be finite.
And for such M it is not difficult to see that it is decidable whether M is a
match for (α, β).

The rule can be used to obtain subgoals by matching transitions, and it is
based on the following observation.

Proposition 9. Let α, β ∈ S. Then α ≈ β if and only if there exists a match
M for (α, β) such that α′ ≈ β′ for all (α′, β′) ∈ M .

This proposition guarantees the soundness and backwards soundness of unfold
rule.

As pointed out above there are finitely many matches for a given (α, β), so
there are finitely many ways to apply this rule on (α, β).

3.3 Constructing Tableau

We determine whether α ≈ β by constructing a tableau with root α = β using
the three rules introduced above. A tableau is a finite tree with nodes labeled
by equations of the form α = β, where α, β ∈ S.

Moreover if α = β labels a non-leaf node, then the following are satisfied:

1. ||α|| = ||β||;
2. its sons are labeled by α1 = β1 . . . αn = βn obtained by applying rule subl,

subr or unfold in Table 2 to α = β, in that priority order;
3. no other non-leaf node is labelled by α = β.

A tableau is a successful tableau if the labels of all its leaves have the forms:

1. α = β where there is a non-leaf node is also labeled α = β;
2. α ≡ β

3.4 Decidability, Soundness, and Completeness

Lemma 1. Every tableau with root α = β is finite, Furthermore, there is only
a finite number of tableaux with root α = β.

Theorem 1. If α ≈ β then there exists a successful tableau with root labeled
α = β.
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Proof. Suppose α ≈ β. If we can construct a tableau T (α = β) for α = β with
the property that any node n : α = β of T (α = β) satisfies α ≈ β, then by
Lemma 1 that construction must terminate and each terminal will be successful.
Thus the tableau itself will be successful.

We can construct such a T (α = β) if we verify that each rule of the tableau
system is forward sound in the sense that if the antecedent relates bisimilar pro-
cesses then it is possible to find a set of consequents relating bisimilar processes.
For the rule subl or subr we know from Proposition 7. For the rest of the tableau
rules it is easily verified that they are forward sound in the above sense. ��

Finally we must show soundness of the tableau system, namely that the existence
of a successful tableau for α = β indicates that α ≈ β. This follows from the fact
that the tableau system tries to construct a family of binary relations which are
bisimilar.

Definition 9. A sound tableau is a tableau such that if α = β is a label in it
then α ≈ β.

Theorem 2. A successful tableau is a sound tableau.

Proof. Let T be a successful tableau. We define W = {B ⊆ S × S} to be the
smallest binary relations satisfies the following:

1. if α ≡ β labels a node in T then (α, β) ∈ W ;
2. if there is a node in T labeled α = β and on which rule unfold is applied

then (α, β) ∈ W ;
3. if (α1, α2) ∈ W , (α1|β1, α1|β2) ∈ W where α1 ≺ α2 then (α1|β1, α2|β2) ∈ W ;
4. if (α1, α2) ∈ W , (α2|β1, α2|β2) ∈ W where α2 ≺ α1then (α1|β1, α2|β2) ∈ W .

We will prove the following properties about W :

A. If α = β labels a node in T then (α, β) ∈ W .
B. If (α, β) ∈ W , then the following hold:

(a) if α
a−→ α′ then β

â=⇒ β′ for some β′ such that (α′, β′) ∈ W ;
(b) if β

a−→ β′ then α
â=⇒ α′ for some α′ such that (α′, β′) ∈ W .

Clearly property B. implies that

B = {(α, β) | (α, β) ∈ W}

is a weak bisimulation. Then together with property A. it implies that T is a
sound tableau.

We prove A. by induction on weight ω′ = ω(α, β). If α = β is a label of an non-
leaf node, there are three cases according to which rule is applied on this node.
If unfold is applied, then by rule 2. of the construction of W clearly (α, β) ∈ W .
If subl is applied, in this case α = β is of the form α1|β1 = α2|β2, and the node
has sons labeled by α1|β1 = α1|β2. Clearly ω(α1|β1, α1|β2) < ω(α1|β1, α2|β2),
then by the induction hypothesis (α1|β1, α1|β2) ∈ W . Then by rule 3. in the
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construction of W , (α1|β1, α2|β2) ∈ W . If subr is applied, it is similar to subl
proof. If α = β is a label of a leaf node, then since T is a successful tableau
either there is a non-leaf node also labeled by α = β and in this case we have
proved that (α, β) ∈ W , or α ≡ β must hold and in this case by rule 1. in the
construction of W we also have (α, β) ∈ W .

We prove B. by induction on the four rules define W . Suppose (α, β) ∈ W ,
there are the following cases.

Case of rule 1. i.e. α ≡ β. It is obvious B. holds.
Case of rule 2. i.e. there exists M which is a match for (α, β) such that α′ = β′

is a label of T for all (α′, β′) ∈ M . Then by A. it holds that (α′, β′) ∈ W for all
(α′, β′) ∈ M , then by definition of a match, clearly B. holds.

Case of rule 3. i.e. there exist (α1, α2) ∈ W , (α1|β1, α1|β2) ∈ W where α1 ≺ α2

and α = α1|β1. If α1|β1
a−→ α′′, we have to match this by looking for a β′′ such

that α2|β2
â=⇒ β′′ and (α′′, β′′) ∈ W . By transition rule for α′′ has two cases:

the first case α1
a−→ α′

1 then α′′ = α′
1|β1. Now (α1, α2) ∈ W , by the induction

hypothesis there exists α′
2 ∈ α such that α2

â=⇒ α′
2 and (α′

1, α
′
2) ∈ W . since

(α1|β1, α1|β2) ∈ W , by the induction hypothesis there exists α′
1|β2 ∈ α such that

α1|β2
â=⇒ α′

1|β2 and (α′
1|β1, α

′
1|β2) ∈ W . By rule 3 we have (α′

1|β1, α
′
2|β2) ∈ W .

The another direction can be proved in a similar way; the second case β1
a−→

β′
1 then α′′ = α1|β′

1. since (α1|β1, α1|β2) ∈ W , by the induction hypothesis
there exists α1|β′

1 ∈ α such that α1|β2
â=⇒ α1|β′

2 and (α1|β′
1, α1|β′

2) ∈ W . Now
(α1, α2) ∈ W , by rule 3 we have (α1|β′

1, α2|β′
2) ∈ W . The another direction can

be proved in a similar way.
Case of rule 4. it is similar rule 3. proof. ��

Theorem 3. Let α, β ∈ S be totally normed. Then α ≈ β if and only if there
exists a successful tableau with root α = β.

4 The Equational Theory

We will develop the equational theory proposed by Sφren Chirstensen, Yoram
Hirshfeld, Faron Moller in [13] for strong bisimulation on normed BPP processes
given in 3-GNF. We now describe a sound and complete axiomatisation for
totally normed BPP processes. We pay attention to BPP processes in 3-GNF.
The axiomatisation shall be parameterised by Δ and consists of axioms and
inference rules that enable one to derive the root of successful tableaux.

The axiomatisation is built around sequences of the form Γ �Δ E = F where
Γ is a finite set of assumptions of the form α = β and E, F are BPP expressions.
Let Δ be a finite family of BPP processes in 3-GNF. A sequent is interpreted as
follows:

Definition 10. We write Γ |=Δ E = F when it is the case that if the relation

{(α, β)|α = β ∈ Γ} ∪ {(Xi, Ei)|Xi
def
= Ei ∈ Δ} is part of a bisimulation then

E ≈ F .
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Thus, the special case ∅ |=Δ E = F states that E ≈ F (relative to the system
of process equations Δ).

For the presentation of rule unfold we introduce notation unf(α) to mean the
unfolding of α given as follows (assuming that α ≡ Y1|Y2| · · · |Ym):

unf(α) =
∑m

i=1{aiγi : aiαi ∈ Yi},

where γi = αi|(
∏m

j=1,j �=i Yj) and the notation aα ∈ Y means that aα is a
summand of the defining equation for Y .

The proof system is presented in Table 3. Equivalence and congruence rules
are R1-6. In [13] the rule R5 of the axiomatisation for normed BPP processes
can not directly apply in our rules, since we know that weak bisimulation is not
preserved by summation, i.e. if E1 ≈ E2 and F1 ≈ F2, but we can’t get E1+F1 ≈
E2 + F2. So we increase two rules R5-6 to achieve summation. The rules R7-15
correspond to the BPP laws; notably we have associativity and commutativity
for merge. Finally, we have two rules characteristic for this axiomatisation; R16
is an assumption introduction rule underpinning the role of the assumption list
Γ and R17 is an assumption elimination rule and also a version of fixed point
induction. The special form of R17 has been dictated by the rule unfold of the
tableau system presented in Table 2.

Definition 11. A proof of Γ �Δ E = F is a proof tree with root labeled
Γ �Δ E = F , instances of the axioms R1 and R7-R16 as leaves and where the
father of a set of nodes is determined by an application of one of the inference
rules R2-R6 or R17.

Definition 12. The relations ≈o for ordinals o are defined inductively as fol-
lows, where we assume that l is a limit ordinal
E ≈0 F for all E, F
E ≈o+1 F iff for a ∈ (Actτ ∪ {ε})

E
a=⇒ E′, then ∃F ′.F â=⇒ F ′ and E′ ≈o F ′

F
a=⇒ F ′, then ∃E′.E â=⇒ E′ and E′ ≈o F ′.

E ≈l F iff ∀o < l.E ≈o F

So we can get a fact that is ≈=
∞⋂

n=0

≈n.

Theorem 4. (Soundness) If Γ �Δ E = F then we have Γ |=Δ E = F . In
particular if �Δ E = F then E ≈ F .

The similar proof for soundness can be found in [13].

Lemma 2. If Γ �Δ E = F then Γ, Γ ′ �Δ E = F for any Γ ′.

The completeness proof rests on a number of lemmas and definitions which tell
us how to determine our sets of hypotheses throughout a proof of E ≈ F from
a successful tableau for E ≈ F . We prove completeness from [13] idea.
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Table 3. The axiomatisation

Equivalence Congruence

R1 Γ �Δ E = E R4
Γ �Δ E1 = F1 Γ �Δ E2 = F2

Γ �Δ E1|E2 = F1|F2

R2 Γ �Δ E = F

Γ �Δ F = E
R5 Γ �Δ E = F

Γ �Δ E = F + τE

R3 Γ �Δ E = F Γ �Δ F = G

Γ �Δ E = G
R6 Γ �Δ E = F

Γ �Δ aE + R = aF + R

Axioms
R7 Γ �Δ E + (F + G) = (E + F ) + G R12 Γ �Δ E|F = F |E
R8 Γ �Δ E + F = F + E R13 Γ �Δ E|0 = E
R9 Γ �Δ E + E = E R14 Γ �Δ τE = E
R10 Γ �Δ E + 0 = E R15 Γ �Δ a(E + τF ) + aF = a(E + τF )
R11 Γ �Δ E|(F |G) = (E|F )|G
Recursion

R16 Γ, α = β �Δ α = β R17 Γ, α = β �Δ unf(α) = unf(β)

Γ �Δ α = β

Definition 13. For any node n of a tableau, Rn(n) denotes the set of labels of
the nodes above n to which the rule unfold is applied. In particular, Rn(r)=∅
where r is the root of the tableau.

Theorem 5. (Completeness)If α ≈ β then Γ �Δ α = β

Proof. If α ≈ β, then there exists a finite successful tableau with root labeled
α = β. Let T (α = β) be such a tableau. We shall prove that for any node
n : E = F of T (α = β) we have Rn(n) �Δ E = F . In particular, for the root
r : α = β, this reduces to �Δ α = β, so we shall have our result.

We prove Rn(n) �Δ E = F by induction on the depth of the subtableau
rooted at n. As the tableau is built modulo associativity and commutativity
of merge and by removing 0 components sitting in parallel or in sum we shall
assume that the axioms R12-R14 are used whenever required to accomplish the
proof.

Firstly, if n : E = F is a terminal node then either E and F are identical
terms α, so Rn(n) � E = F follows from R1.

Hence assume that n : E = F is a internal nodes. We proceed to apply to n
according to the tableau rule.

(i) Suppose unfold is applied. Then n is the label E = F and the son n′ of
n is labeled Ei = Fi(i ∈ {1 · · ·n}, Ei = Fi is match of E = F ), by induction
hypothesis Rn(Ei = Fi) � Ei = Fi, Rn(Ei = Fi) − {E = F}, E = F � Ei = Fi,
Rn(Ei = Fi) − {E = F} � E = F by R17, we know Rn(E = F ) = Rn(Ei =
Fi) − {E = F}, so Rn(E = F ) � E = F .

(ii) Suppose sub is applied wlog that is subl. Then the label E = F is of
the form E1|F1 = E2|F2 with the corresponding node n′′ labeled E1 = E2 and
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the son n′ of n is labeled E1|F1 = E1|F2, by induction hypothesis Rn(E1|F1 =
E1|F2) � E1|F1 = E1|F2 since Rn(E1|F1 = E1|F2) = Rn(E1|F1 = E2|F2), and
E1 = E2 ∈ Rn(E1|F1 = E2|F2), so Rn(E1|F1 = E2|F2) � E1 = E2 by R16.
Hence from R1, R4, R3 we have Rn(E1|F1 = E2|F2) � E1|F1 = E2|F2, last
Rn(E = F ) � E = F is required.

This completes the proof. ��

5 Conclusions and Directions for Further Work

In this paper we proposed a tableau method to decide whether a pair of totally
normed BPP processes is a weak bisimilar relation. The whole procedure is direct
and easy to understand, while the termination proof is also very simple. This
tableau method also helps us to show the completeness of Sφren Chirstensen,
Yoram Hirshfeld, Faron Moller’s equational theory on totally normed BPP sys-
tems. Recent results by Richard Mayr show that weak bisimulation of Basic
Parallel Processes is

∏P
2 -hard[18].

The study of bisimulation decision problems in the fields of BPA and BPP
processes has been already rather sophisticated. All the results were recorded and
updated by J.Srba[17], as well as open problems in this field. About algorithms,
the things left should be concerned with lowing complexity and improving the
efficiency. As the equational theory depends on assumptions, it is somewhat
different from Milner’s equational theory for regular processes[9]. One direction
of interest is the construction of equational theory of ≈ since many decision
results for weak bisimulation are already given.
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Abstract. In this paper, we study the extensions of embeddings in the
computably enumerable Turing degrees. We show that for any c.e. de-
grees x �≤ y, if either y is low or x is high, then there is a c.e. degree a
such that both 0 < a ≤ x and x �≤ y ∪ a hold.

1 Introduction

A set A ⊆ ω is called computably enumerable (c.e.) if and only if either A = ∅
or A is the range of a computable function.

A set A is simple if A is c.e. and Ā, the complement of A, is infinite but
contains no infinite c.e. set. Clearly if A is simple then A is not computable
because Ā can not be c.e., since otherwise it contains an infinite c.e. set, i.e., Ā.

Given sets A, B ⊆ ω, we say that A is Turing reducible to B, if there is an
oracle Turing machine Φ such that A = Φ(B) (denoted by A ≤T B). A ≡T B if
A ≤T B and B ≤T A. The Turing degree of A is defined to be a = deg(A) =
{B : B ≡T A}.

A degree a ≤ 0′ is low, if a′ = 0′, and high if a′ = 0′′. A set A ≤T ∅′ is low
(high), if deg(A) is low (high).

The degrees D form a partially ordered set under the relation deg(A) ≤ deg(B)
if and only if A ≤T B. We write deg(A) < deg(B) if A ≤T B and B �T A.

A degree is called computably enumerable (c.e.), if it contains a c.e. set. Let
E denote the class of c.e. degrees with the some ordering as that for D. As we
know (D; ≤, ∪) and (E ; ≤, ∪) will form upper semi-lattices.

Given r.e. degrees 0 < b < a, we say that b cups to a if there exists an r.e.
degree c < a such that b ∪ c = a; if no such c exists then b is an anti-cupping
witness for a. The r.e. degree a has the anti-cupping (a.c.) property if it has an
anti-cupping witness.

Extensions and non-extensions of embeddings in the computably enumerable
Turing degrees have been an extensively studied phenomena in the past decades
since Shoenfield [1965] published his conjecture. The conjecture was soon proved
false by the minimal pair theorem of Lachlan [1966]. However the characteriza-
tion of the structure satisfying Shoenfield’s conjecture has become a successful
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research in the local Turing degrees, leading to the final resolution of Slaman
and Soare [1995] of the full characterization of the problem.

The interests in the strong extensions of embeddings in the computably enu-
merable degrees come from the close relationship between the problem and the
decidability/undecidability of the Σ2-fragment of the c.e. degrees. For instance,
Slaman asked in [1983] the following question:

For any two c.e. degrees x and y, with x � y, does there exist a c.e. degree
a, satisfying:

1. 0 < a ≤ x,
2. x � y ∪ a?

Intuitively, the problem wants to construct a c.e. degree a which should “code
more information than” 0, and which cannot compute x even if it joins with y.

In fact it is not always possible to find such a c.e. degree a, which is stated in
Slaman and Soare [2001]. This problem has recently been resolved negatively in
progress by Barmpalias, Cooper, Li, Xia, and Yao.

In this article, we consider possible partial results on the positive side of the
problem above. We consider two special cases, i.e., when y is low and x is high.

We will show the following two theorems:

Theorem 1. For any two c.e. degrees x and l, with x � l and l low, there is a
c.e. degree a, satisfying:

1. 0 < a ≤ x, and
2. x � l ∪ a.

Theorem 2. For any two c.e. degrees h and y, with h � y and h high, there is
a c.e. degree a, satisfying:

1. 0 < a ≤ h, and
2. h � y ∪ a.

Note that Theorem 2 can be directly deduced from the following theorem which
appears in Miller [1981].

Theorem 3. Every high r.e. degree h has the a.c. property via a high r.e. witness
a.

We briefly describe how to show Theorem 2 by Theorem 3: for a given high r.e.
degree h, there exists a high r.e. degree a, 0 < a < h, and for a given r.e. y,
h ≤ y ∪ a implies h ≤ y, i.e., h � y implies h � y ∪ a. Therefore a is a desired
r.e. degree in Theorem 2.

The rest of the paper is devoted to proving Theorem 1, our main result.
Our notations and terminology are standard and generally follow Soare [1987]

and Cooper [2003]. During the course of a construction, notations such as A, Φ
are used to denote the current approximations to these objects, and if we want
to specify the values immediately at the end of stage s, then we denote them
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by As, Φ[s] etc. For a computable partial functional (c.p., or for simplicity, also
a Turing functional), Φ say, the use function is denoted by the corresponding
lower case letter φ. The value of the use function of a converging computation
is the greatest number which is actually used in the computation. For a Turing
functional, if a computation is not defined, then we define its use function equal
to −1.

2 Proof of Theorem 1

2.1 Requirements and Strategies

Given c.e. sets X ∈ x, and L ∈ l, with X ≤T L and L low, we will build a c.e.
set A to satisfy the following requirements:

T : A ≤T X
Pe : We infinite ⇒ We ∩ A 
= ∅
Ne : X 
= Φe(L ⊕ A)

where e ∈ ω, {Φe : e ∈ ω} is an effective enumeration of all Turing reductions Φ,
and We is the e-th c.e. set.

Let a be the Turing degree of A. By the T -requirement, a ≤ x, by the P-
requirements, A is simple, so it is not computable, i.e., a > 0, and by the
N -requirements, x � l ∪ a = deg(L) ∪ deg(A) = deg(L ⊕ A). Therefore the
requirements are sufficient to prove the theorem.

Let {Xs}s∈ω, {Ls}s∈ω be computable enumerations of X, L respectively.
During the construction, the requirements may be divided into the positive

requirements Pe, which attempt to put elements into A, and the negative re-
quirements Ne, which attempt to keep elements out of A, i.e., impose an A-
restraint function with priority Ne. The priority rank of the requirements is
Ne < Pe < Ne+1, for all e ∈ ω.

First we introduce an easy method in Yates [1965] for constructing a c.e. set
A which is computable in a given non-computable c.e. set B by enumerating an
element x in A at some stage s only when B permits x in the sense that some
element y < x appears in B at the same stage s.

Proposition 1. If {As}s∈ω and {Bs}s∈ω are computable enumerations of c.e.
sets A and B respectively, such that x ∈ As+1−As implies (∃y < x)[y ∈ B−Bs],
then A ≤T B.

Proof. To B-recursively compute whether x ∈ A, find a stage s such that Bs �
x = B � x. Now x ∈ A if and only if x ∈ As. �

The strategy for meeting the T -requirement is attached onto the positive re-
quirements. When an element x is enumerated into A, it must satisfy that
Xs+1 � x 
= Xs � x so that A ≤T X holds according to Proposition 1 (Soare
[1987]). Note that this kind of x can always be found because X is not com-
putable in L.
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The strategy for meeting a single requirement Pe is the same as for Post’s
simple set. Intuitively, enumerate We until the first element > 2e appears in We

simultaneously satisfying other conditions and put it into A.
We now give a property of a low c.e. set, as found in Soare [1987].

Proposition 2. If L is a low set then

C = {j : (∃n ∈ Wj)[Dn ⊆ L̄]} ≤T ∅′. (1)

where Wj is the j-th c.e. set, and Dn is a finite set with canonical index n.

Proof. Clearly, C is
∑L

1 , so C ≤T L′. If L is low then L′ ≤T ∅′, so C ≤T ∅′. �

According to the Limit Lemma, let g(e, s) be a computable function such that
lims g(e, s) is the characteristic function of C.

Now we state the basic strategy for meeting a requirement Ne, without loss
of generality, let A ⊆ 2ω, the even numbers, and L ⊆ 2ω + 1, the odd numbers.
Note that A ⊕ L ≡T A ∪ L, so we use the latter from now on, i.e.,

Ne : X 
= Φe(L ∪ A).

We follow some basic idea in Robinson [1971] of proving the Robinson Low
Splitting Theorem which also can be found in Soare [1987].

Fix e and x. Intuitively, we use the lowness of L to help to “L-certify” a
computation Φe((L ∪ A) � u; x)[s] where u = φe(L ∪ A; x)[s] is the use function
of this computation as follows:

Let Dn = L̄s � u. Enumerate n into a c.e. V that we shall build during
the construction. By the Recursion Theorem we may assume that we have in
advance an index j such that V = Wj . Find the least t ≥ s such that either
Dn ∩ Lt 
= ∅, in which case the computation is obvious disturbed, or g(j, t) = 1,
in which case we “L-certify” the computation and guess that it is L-correct. It
may happen that we were wrong and L � u 
= Ls � u, but this happens at most
finitely often by Proposition 2 and the Limit Lemma. Since we are really using
g as an oracle to inquire whether Dn ⊆ L̄ for the current Dn = L̄s � u, it is
very important that there are no previous m ∈ Vs unless Dm ∩ Ls 
= ∅. Thus,
whenever an L-certified computation first becomes A-invalid by At � u 
= As � u,
we abandon the old c.e. set V and start with a new version of V and hence a
new index j such that Wj = V .

This L-certification process is best formalized by transforming the function
Φe(L ∪ A; x) to a computable function Φ̂e(L ∪ A; x). When we have fixed e, for
notational convenience, we let

Φ̂s(x) ↔ Φ̂e(L ∪ A; x)[s],

and
us

x ↔ φe(L ∪ A; x)[s].

If Φ̂s−1(x) ↓ but Φ̂s(x) ↑ we say that the (e, x)-computation Φ̂s−1(x) ↓ be-
comes A-invalid if

(∃z < us−1
x )[z ∈ As − As−1]

and otherwise becomes L-invalid.
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Fix e, x and s, we define Φ̂s(x) as follows: given At and Lt, t ≤ s and assume
that

Φe(L ∪ A; x)[s] ↓= y,

and
¬(∃z < us−1

x )[z ∈ (As ∪ Ls) − (As−1 ∪ Ls−1)].

Let Dn = L̄s � us
x. Enumerate n into V e,x

s . Let v be the greatest stage less than
s at which an (e, x)-computation becomes A-invalid, and v = 0 if no such stage
exists. By the Recursion Theorem, choose j such that Wj =

⋃
{V e,x

t : t > v}.
Find the least t ≥ s such that either

Dn ∩ Lt 
= ∅, (2)

or
g(j, t) = 1. (3)

If the latter holds, define Φ̂s(x) ↓= y. Otherwise, Φ̂s(x) ↑.

We use a strategy which is similar to the Sacks’ preserving agreement strategy
to meet a negative requirement. Here we want to construct a c.e A to meet a
requirement of the form X 
= Φe(L ∪ A). During the construction we preserve
agreement between X and Φe(L∪A). Sufficient preservation will guarantee that
if X = Φe(L ∪ A), then in fact X ≤T L, contrary to hypothesis.

As usual, we define the computable functions:

(length function) l̂(e, s) = max{x : (∀y < x)[Xs(y) = Φ̂s(y)]},

(restraint fucntion) r̂(e, s) = max{us
x : x ≤ l̂(e, s) & Φ̂s(x) ↓}.

We say that x injures Ne at stage s + 1 if x ∈ As+1 − As and x ≤ r̂(e, s).
Define the injury set for Ne,

(injury set) Î(e) = {x : (∃s)[x ∈ As+1 − As & x ≤ r̂(e, s)]}.

The positive requirements of course are never injured.

2.2 Construction and Verification

Proof of Theorem 1.

Construction of A.
Stage s = 0. Set A0 = ∅.
Stage s + 1. Since As has already been defined, we can define, for all e, the

length function l̂(e, s) and restraint function r̂(e, s).
We say Pe requires attention at stage s + 1 if

We,s ∩ As = ∅,

Then find if ∃x,
x ∈ We,s,
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x > 2e,

Xs+1 � x 
= Xs � x,

and
(∀i ≤ e)[r̂(i, s) < x].

Choose the least i ≤ s such that Pi requires attention, and then enumerate the
least such x into As+1, and we say that Pi receives attention. Hence Wi,s∩As+1 
=
∅ and (∃x ∈ As+1)[Xs+1 � x 
= Xs � x], so Pi is satisfied and never again requires
attention.

If i does not exist, do nothing.
Let A =

⋃
As. This ends the construction.

To verify that the construction succeeds we must prove the following lemmas.

Lemma 1. (∀e) [Î(e) is finite]. (Ne is injured at most finitely often.)

Proof. Note that once Pi receives attention, it will become satisfied and remain
satisfied forever. Hence each Pi contributes at most one element to A, and Ne

can be injured by Pi only if i < e. So |Î(e)| ≤ e. �

Lemma 2. (∀e) [X 
= Φe(A ∪ L)]. (Ne is met.)

Proof. Assume for a contradiction that X = Φe(A ∪ L). Then lims l̂(e, s) = ∞.
By Lemma 1, choose s1 such that Ne is never injured after stage s1. We shall
show that X ≤T L contrary to hypothesis. To L-recursively compute X(p) for
p ∈ ω, find some stage s > s1 such that l̂(e, s) > p and each computation Φ̂s(x),
x ≤ p, is L-correct, namely, Ls � us

x = L � us
x. It follows by induction on t ≥ s

that
(∀t ≥ s)[l̂(e, t) > p & r̂(e, t) ≥ max{us

x : x ≤ p}], (4)

and hence that for all t ≥ s,

Φ̂t(p) = Φe(A ∪ L; p) = X(p).

So X is computable in L.
To prove (4), when t = s, clearly it is true. Assume that it holds for t.

Then by the definition of r̂(e, t) and s > s1, for any x ≤ p, it ensures that
(At+1 ∪ Lt+1) � z = (At ∪ Lt) � z for all numbers z used in a computation
Φ̂t(x) ↓= y. Hence,

Φ̂t+1(x) ↓= Φ̂t(x) ↓= Xt(x).

So l̂(e, t + 1) > p unless Xt+1(x) 
= Xt(x). But if Xt(x) 
= Xs(x) for some t ≥ s,
since X is c.e., the disagreement Φ̂t(x) ↓
= Xt(x) is preserved forever, so X(x) =
Xt(x) 
= Φ̂t(x) ↓= Φe(A ∪ L; x), contrary to the hypothesis X = Φe(A ∪ L). �

Lemma 3. (∀e)[lims r̂(e, s) exists and is finite].
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Proof. By Lemma 1, choose s1 such that Ne is never injured after stage s1. By
Lemma 2, choose p = (μx)[X(x) 
= Φe(A ∪ L; x)]. Choose s2 ≥ s1 sufficiently
large so that for all s ≥ s2,

(∀x < p)[Φ̂s(x) ↓= Φe(A ∪ L; x)],

and
(∀x ≤ p)[Xs(x) = X(x)].

Case 1. Φe(A ∪ L; p) ↓
= X(p). Choose s3 ≥ s2 such that for all s ≥ s3,
Φ̂s(p) ↓= q 
= X(p). Hence, for all s ≥ s3, l̂(e, s) = l̂(e, s3) and r̂(e, s) = r̂(e, s3).

Case 2. Φe(A∪L; p) ↑. We shall find a stage v such that for all s ≥ v, Φ̂s(p) ↑.
Hence, for all s ≥ v, r̂(e, s) = r̂(e, v).

Note that if Φ̂s(p) ↓ for any s ≥ s2 then r̂(e, s) ≥ us
p, so by induction on t ≥ s,

the computation Φ̂t(p) = Φ̂s(p) holds as long as it remains L-valid. Let s′ be
the least t such that no (e, p)-computation becomes A-invalid at any stage ≥ t.
By the Recursion Theorem, choose j such that Wj =

⋃
{V e,p

s : s ≥ s′}. Since
Φe(A ∪ L; p) ↑, any computation Φ̂s(p), s ≥ s′, becomes L-invalid at some stage
t > s, at which time Dm

⋂
Ct 
= ∅ for every m ∈ V e,p

t . Hence, lims g(j, s) = 0 by
(1). Choose v > s2 such that Φ̂v(p) ↑ and g(j, s) = 0 for all s ≥ v. We claim that
Φ̂s(p) ↑ for all s ≥ v. Suppose s > v, Φ̂s−1(p) ↑ and Φ̂s(p) ↓. Then we enumerate
n ∈ V e,p

s , where Dn = L̄s � us
p, and we choose the least t ≥ s satisfying (2) or

(3). But (3) could not occur by the choice of v, so (2) occurs and Φ̂s(p) ↑. �

Lemma 4. (∀e) [We infinite ⇒ We ∩ A 
= ∅]. (Pe is met, simultaneously, T is
met.)

Proof. By the above lemmas, for all i ≤ e, let

r̂(i) = lim
s

r̂(i, s)

and
R̂(e) = max{r̂(i) : i ≤ e}.

Choose s0 such that

(∀t ≥ s0)(∀i ≤ e)[r̂(e, t) = r̂(e)],

and no Pi, i < e, receives attention after stage s0.
Now choose s ≥ s0, if ∃x,

x ∈ We,s,

x > 2e,

Xs+1 � x 
= Xs � x,

and
R̂(e) < x.
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Now either We,s ∩ As 
= ∅ or else Pe receives attention at stage s + 1, then in
either case We,s ∩ As+1 
= ∅, so Pe is met by the end of stage s + 1. And by
Proposition 1, A ≤T X is obviously met.

It is remarkable that searching for an x with the condition Xs+1 � x 
= Xs � x
does not impact the requirement Pe. Suppose for the sake of contradiction that if
We infinite, while A ∩ We = ∅, then A ⊆ W e, choose an increasing c.e. sequence
of elements x1 < x2 < · · · in We such that x1 > R̂(e) for all stage s ≥ s0. Choose
sk minimal such that sk > s0 and xk ∈ We,sk

. Now Xsk
� xk = X � xk so X is

computable, contrary to X �T L. �

Note that Ā is infinite by the clause “x > 2e”. To see this, note that A contains
at most e elements in {0, 1, . . . , 2e}, hence card(Ā � (2e+1)) ≥ 2e+1−e = e+1.
A is simple.

This ends the proof of Theorem 1. �
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Abstract. We study the parameterized complexity of a generalized
matching problem, the P2-packing problem. The problem is NP-hard and
has been studied by a number of researchers. In this paper, we provide
further study of the structures of the P2-packing problem, and propose
a new kernelization algorithm that produces a kernel of size 7k for the
problem, improving the previous best kernel size 15k. The new kerneliza-
tion leads to an improved algorithm for the problem with running time
O∗(24.142k), improving the previous best algorithm of time O∗(25.301k).

1 Introduction

Packing problem has formed an important class of NP-hard problems. In par-
ticular, as one of the graph packing problem, the H-packing problem has gained
more attention, which arises in applications such as scheduling, wireless sensor
tracking, wiring-board design and code optimization, etc. The problem is defined
as follows [1].

Definition 1. Given a graph G = (V, E) and a fixed graph H . An H-packing
of G is a set of vertex disjoint subgraphs of G, each of which is isomorphic to H .

From the optimization point of view, the problem of MAXIMUN H-packing is
to find the maximum number of vertex disjoint copies of H in G. If the H is the
complete graph K2, the MAXIMUN H-packing becomes the familiar maximum
matching problem in bipartite graph, which can be solved in polynomial time.
When the graph H is a connected graph with at least three vertices, D. G.
Kirkpatrick and P. Hell [2] gave that the problem is NP-complete. From the
approximation point of view, V. Kann [3] proved that the MAXIMUN H-packing
problem is MAX-SNP-complete. C. Hurkens and A. Schrijver [4] presented an
approximation algorithm with ratio |VH |/2 + ε for any ε > 0.

� This work is in part supported by the National Natural Science Foundation of China
under Grant No. 60773111 and No. 60433020, Provincial Natural Science Foundation
of Hunan (06JJ10009), the Program for New Century Excellent Talents in Univer-
sity No. NCET-05-0683 and the Program for Changjiang Scholars and Innovative
Research Team in University No. IRT0661.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 212–222, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Improved Parameterized Algorithm for a Generalized Matching Problem 213

Recently, parameterized complexity theory has been used to design efficient
algorithms for H-packing problem. M. Fellows et. al. [5] proposed a parameter-
ized algorithm with time complexity of O(2O(|H|k log k+k|H| log |H|)) for any arbi-
trary graph H . For the edge disjoint triangle packing problem, L. Mathieson,
E. Prieto and P. Shaw [6] proved that the problem has a 4k kernel and gave a
parameterized algorithm of running time O(2

9k
2 log k+ 9k

2 ) based on the kernel.
When H belongs to the restricted family of graphs K1,s, a star with s leaves,

we can get the K1,s-packing problem, which is defined as follows:

Definition 2. Parameterized K1,s-PACKING(k-K1,s-PACKING): Given a
graph G = (V, E) and a positive integer k, whether there are at least k ver-
tex disjoint K1,s in G?

M. Fellows, E. Prieto and C. Sloper [7] gave that the parameterized K1,s-packing
problem is fixed-parameter tractable and got a O(k3) kernel. M. Fellows [7] et.al.
also studied the P2-packing problem, where P2 is a path of three vertices (one
center vertex and two endpoints) and two edges, which is defined as follows:

Definition 3. Parameterized P2-PACKING (k-P2-PACKING): Given a graph
G = (V, E) and a positive integer k, whether there are at least k vertex disjoint
P2 in G?

In [7], for the P2-packing problem, M. Fellows et.al. gave a kernel of size at most
15k and proposed an algorithm with time complexity O∗(25.301k).

In this paper, we mainly focus on the kernelization of the k-P2-packing prob-
lem and give a kernel of size at most 7k. Based on the kernel, we present a
parameterized algorithm with time complexity O∗(24.142k), which greatly im-
proves the current best result O∗(25.301k).

This paper is organized as follows. In section 2, we introduce some related
definitions and lemmas. In section 3, we present all the steps of the kernelization
algorithm, and prove that the k-P2-packing problem has a size of 7k kernel. In
section 4, we give the general algorithm solving the k-P2-packing. In section 5,
we draw some final conclusions.

2 Related Definitions and Lemmas

We first give some concepts and terminology about graph [8].
Assume G = (V, E) denotes a simple, undirected, connected graph, where

|V | = n. The neighbors of a vertex v are denoted as N(v). The induced subgraph
of S ⊆ V is denoted G[S]. For an arbitrary subgraph H of G, let N(H) denote
the vertices that are not in H but connect with at least one vertex in H . We use
the simpler G\v to denote G[V \v] for a vertex v and G\e to denote G = (V, E\e)
for an edge e. Likewise, G\V ′ denotes G[V \V ′] and G\E′ denotes G = (V, E\E′)
where V ′ is a set of vertices and E′ is a set of edges.

For the convenience of description, we firstly introduce the definitions of ‘dou-
ble crown’ decomposition and ‘fat crown’ decomposition [7].
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Definition 4. A double crown decomposition (H, C, R) in a graph G = (V, E)
is a partitioning of the vertices of the graph into three sets H , C and R that
have the following properties:

(1) H (the head) is a separator in G such that there are no edges in G between
vertices belonging to C and vertices belonging to R.

(2) C = Cu ∪ Cm ∪ Cm2 (the crown) is an independent set in G.
(3) |Cm| = |H |, |Cm2| = |H | and there is a perfect matching between Cm and

H , and a perfect matching between Cm2 and H .

Definition 5. A fat crown decomposition (H, C, R) in a graph G = (V, E) is a
partitioning of the vertices of the graph into three sets H , C and R that have
the following properties:

(1) H (the head) is a separator in G such that there are no edges in G between
vertices belonging to C and vertices belonging to R.

(2) G[C] is a forest where each component is isomorphic to K2.
(3) |C| ≥ |H |, and there is a perfect matching M between H and a subset

of cardinality |H | in C, where one endpoint of each edge in M is in H , and the
other is the endpoint of K2 in C.

We introduce the following lemmas [7] about the ‘double crown’ decomposition
and ‘fat crown’ decomposition that will be used in our algorithm.

Lemma 1. A graph G = (V, E) that admits a ‘double crown’-decomposition
(H, C, R) has a k-P2-packing if and only if G\(H∪C) has a (k−|H |)-P2-packing.

Lemma 2. A graph G = (V, E) that admits a ‘fat crown’-decomposition
(H, C, R) has a k-P2-packing if and only if G\(H∪C) has a (k−|H |)-P2-packing.

Lemma 3. A graph G with an independent set I, where|I| ≥ 2|N(I)|, has a
double crown decomposition (H, C, R), H ⊆ N(I), which can be constructed in
linear time.

Lemma 4. A graph G with a collection J of independent K2s, where |J | ≥
|N(J)|, has a fat crown decomposition (H, C, R), H ⊆ N(J), which can be con-
structed in linear time.

3 Kernelization Algorithm for the k-P2-Packing Problem

In this section we propose a kernelizaiton algorithm that can get a kernel of size
at most 7k for the parameterized version of P2-packing problem.

Assume W denotes a maximal P2-packing and the vertices in W are denoted
by V (W ). Let W be {L1, ..., Lt}, t ≤ k − 1, where each of Li(1 ≤ i ≤ t) is a
subgraph in G that is isomorphic to P2. Let Li be (e1, c, e2), 1 ≤ i ≤ t, where e1

and e2 are two endpoints of Li, and c is the center vertex of Li. Therefore, each
connected component of the graph induced by Q = V \V (W ) is either a single
vertex or a single edge [7]. Let Q0 be the set of all vertices such that each vertex
in Q0 makes a connected component of the graph induced by Q, and each vertex
in Q0 will be called a Q0-vertex. Let Q1 be the set of all edges such that each
edge in Q1 makes a connected component of the graph induced by Q. Each edge
in Q1 will be called a Q1-edge and each vertex in Q1 will be called a Q1-vertex.
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3.1 RPLW Algorithm

Based on the kernelization algorithm given in [7], the kernelization process we
propose is to apply the algorithm RPLW repeatedly. By using the kernelization
algorithm in [7], we can get a graph G, which consists of a maximal packing W
and Q = V \V (W ). The algorithm RPLW is to further reduce the vertices in W
and Q to get a better kernel, whose general idea is given in the following:

Algorithm RPLW deals with the Q0-vertices and Q1-edges in Q. When the
size of W is not changed, the algorithm aims at reducing the number of Q0-
vertices in Q. When the number of Q1-edges in Q is reduced, the size of W
becomes larger (the number of disjoint P2 in W is increased) and the algorithm
returns the larger W . Then we call the algorithm for the larger W . If the ‘double
crown’ decomposition or the ‘fat crown’ decomposition is found, the parameter
k becomes smaller and the algorithm returns the smaller parameter. Then we
call the algorithm for the smaller parameter.

For the convenience of analyzing the RPLW algorithm, we first discuss the
following two structures as shown in Fig.1 and Fig.2, which use solid circles and
thick lines for vertices and edges in the maximal P2-packing W , and use hollow
circles and thin lines for vertices and edges not in W . (In particular, thin lines
that connect two hollow circles are Q1-edge.)

q2q1
q2

q2q2
q1 q2qq1 q1

t1 t2c
t1 c

t2 t1 c
t2 t1 c

t2

(a)  (b) 

Fig. 1. Reduce the number of Q0-vertex

The general idea of Fig.1 is that: In order to decrease the number of Q0-
vertices in Q, replace the Li in W . The specific process is as follows.

In Fig.1(a), assume the P2 is the Li in W whose center vertex is c and two
endpoints are t1, t2. Q0-vertex q2 is adjacent to c, and Q0-vertex q1 is adjacent
to t1. Vertices q2, c and t2 can form a new P2. Let the new P2 be L′

i. If Li is
replaced by L′

i in W , the number of Q0-vertices in Q is just reduced by 2 (q1

and t1 form a Q1-edge in Q).
In Fig.1(b), assume the P2 is the Li in W whose center vertex is c and two

endpoints are t1, t2. Q0-vertex q2 is adjacent to t2, and Q0-vertex q1 is adjacent
to t1. Vertices q1t1 and c can form a new P2. Let the new P2 be L′

i. If Li is
replaced by L′

i in W , the number of Q0-vertices in Q is just reduced by 2 (q2

and t2 form a Q1-edge in Q).
The general idea of Fig.2 is that: In order to decrease the number of Q1-edges

in Q and increase the number of disjoint P2 in W , replace Li in W . The specific
process is as follows.
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Fig. 2. Reduce the number of Q1-edge

In Fig.2(a), assume the P2 is the Li in W whose center vertex is c and two
endpoints are t1, t2. Q1-edge (e1, e2) is adjacent to t1, and Q1-edge (e3, e4) is
adjacent to c. Vertices e1, e2 and t1 can form a new P2, which can be denoted
as L′

i. Vertices e3, e4 and c can also form a new P2, which is denoted as L′′
i . If

Li is replaced by L′′
i and L′

i in W , the number of Q1-edges in Q is just reduced
by 1 and the number of P2 in W is increased by 1.

In Fig.2(b), assume the P2 is the Li in W whose center vertex is c and two
endpoints are t1, t2. Q1-edge (e1, e2) is adjacent to t1, and Q1-edge (e3, e4) is
adjacent to t2. Vertices e1, e2 and t1 can form a new P2 which is denoted as L′

i.
Vertices e3, e4 and t2 can also form a new P2 which is denoted as L′′

i . If Li is
replaced by L′′

i and L′
i in W , the number of Q1-edges in Q is just reduced by

1and the number of P2 in W are increased by 1.
Fig.1 and Fig.2 vividly illustrate how to replace a Li in W to change the

number of Q0-vertices and Q1-edges. According to Fig.1 and Fig.2, we can obtain
the following rules.

Rule1. If a Li in W has two vertices that each is adjacent to a different Q0-
vertex, then apply the processes described in Fig.1 to decrease the number of
Q0-vertices by 2 (and increase the number of Q1-edges by 1).

Rule2. If a Li in W has two vertices that each is adjacent to a different Q1-edge,
then apply the processes described in Fig.2 to decrease the number of Q1-edges
by 1(and increase the size of the maximal P2-packing by 1).

The RPLW algorithm tries to reduce the number of Q0-vertices and the number
of Q1-edges by applying Rule1 and Rule2 consecutively. Note that these rules can-
not be applied forever. As shown in Fig.3, the while-loop in step1 of the algorithm
tries to reduce the number of Q0-vertices in Q. Because the number of vertices in
input graph G is limited (at most 15k [7]) and each applications of Rule1 reduces
the number of Q0-vertices by 2, the number of consecutive applications of Rule1
is bonded by 7.5k . During the applications of these rules, the resulting W may
becomes non-maximal. In this cases, we simply first make W maximal again, us-
ing any proper greedy algorithm in step2 of the algorithm before we further apply
the rules. Thus, the P2 founded in Q can be put into W to make W larger. Assume
the larger packing is W ′, then call the algorithm for W ′.

During the process of the replacement of Q1-edges in step3 of the algorithm,
since each application of Rule2 increases the number of P2 in W by 1, the



An Improved Parameterized Algorithm for a Generalized Matching Problem 217

Algorithm RPLW
Input: G, W , k
Output: a maximal P2-packing W and |W ′| > |W |, or a smaller parameter k′

and |k′| < |k|, or a reduced graph G′

1. while W is a maximal P2-packing and a P2 in W has two vertices that
each is adjacent to two different Q0-vertices do

apply Rule1 to replace W by a packing of the same size with reduced
Q0-vertices;

2. if W is not maximal then
use greedy algorithm to construct a larger P2-packing W ′;
return (G, W ′, k).

3. if two Q1-edges are adjacent to two different vertices on a P2 in W then
apply Rule2 to obtain a larger P2-packing W ′;
return (G, W ′, k).

4. if |Q0| ≥ 2|W | then
construct a double crown decompositon (H,C, R), then k′ = k − |H |;
return (G, W, k′).

5. if |Q1| ≥ |W | then
construct a fat crown decompositon (H,C, R), then k′ = k − |H |;
return (G, W, k′).

6. Assume the reduced graph is G′, return (G′, W, k).

Fig. 3. RPLW algorithm

total number of applications of Rule2 is bounded by k. Step4 and step5 of the
algorithm aim at finding ‘double crown’ and ‘fat crown’ in G induced by the
replacement of Q0-vertices and Q1-edges. Once ‘double crown’ or ‘fat crown’ is
found, the parameter k must be reduced (k′ = k − |H |).

For completeness, we verify the algorithm’s correctness, and analyze its precise
complexity.

Lemma 5. Repeatedly calling the algorithm RPLW will either find a k-P2-
packing or reduce the size of G, and those can be done in O(k3).

Proof. From step2 and step3 of the RPLW algorithm, it can be seen that the
number of disjoint P2 in W is increased by the replacement of Q0-vertices and
Q1-edges. By calling the algorithm repeatedly, when the number of disjoint P2

in W is k, a k-P2-packing is found in graph G. Because of the replacements in
step4 and step5 of the algorithm, ‘double crown’-decomposition or ‘fat crown’-
decomposition will be found in G. Therefore, the parameter k is decreased and
the number of disjoint P2 needed to be found is also decreased. By calling the
algorithm repeatedly, when the parameter k is reduced to 0, a k-P2-packing is
found in graph G. On the other hand, because the replacement in step1-3 of the
algorithm limits the number of Q0-vertices and Q1-edges, and some vertices are
removed by the ‘double crown’-decomposition or ‘fat crown’-decomposition in
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step4-5 of the algorithm, the size of G will be reduced. Thus, if a k-P2-packing
is not found in the algorithm, the algorithm returns a reduced G′.

At last, we analyze the time complexity of those whole process. Calling the
RPLW algorithm repeatedly is to apply Rule1 and Rule2 consecutively, which can
be finished in polynomial time. The number of consecutive applications of Rule1
is bonded by 7.5k, and the total number of applications of Rule2 is bounded by
k. When ‘double crown’-decomposition or ‘fat crown’-decomposition is applica-
ble, the parameter k is reduced accordingly. The ‘double crown’-decomposition or
‘fat crown’-decomposition can be founded in O(k2) [7]. The algorithm must return
when the number of disjoint P2 in W is increased or the parameter k is reduced,
and the algorithm is called again for the larger packing W ′ or the smaller param-
eter k′. If a k-P2-packing is not found in the algorithm, the algorithm returns a
reduced G′. Therefore, the algorithm is called at most 9.5k times. In consequence,
the whole process can be computed in O(k3) time. ��

Our kernelization process is to apply the RPLW algorithm repeatedly, i.e, to
apply Rule1 and Rule2 repeatedly by starting with a maximal P2-packing. The
whole process can finish in polynomial time. The kernelization will either find a
k-P2-packing or reduce the size of G until Rule1 and Rule2 are not applicable.
The reduced G can be considered as a kernel of the k-P2-packing problem. Note
that when Rule1 and Rule2 are not applicable, the maximal P2-packing W (for
each Li in W ) has the following properties:

Property 1. If more than one Q0-vertices are adjacent to Li, then all these
Q0-vertices must be adjacent to the same (and unique) vertex in Li.

Property 2. If more than one vertex in Li are adjacent to Q0-vertices, then all
these vertices in Li must be adjacent to the same (and unique) Q0-vertex.

Property 3. If more than one Q1-edges are adjacent to Li, then all these Q1-
edges must be adjacent to the same (and unique) vertex in Li.

Property 4. If more than one vertex in Li are adjacent to Q1-edges, then all
these vertices in Li must be adjacent to the same (and unique) Q1-edge.

3.2 A Smaller Kernel

In the following, we first analyze the number of Q0-vertices and Q1-edges in Q
after the kernelization. Then we will present how the kernel of size at most 7k
is obtained for k-P2-packing problem.

We first analyze the number of Q0-vertices in Q.

Theorem 1. The number of Q0-vertices is bounded by 2(k − 1), that is, |Q0-
vertex| ≤ 2(k−1), or else we can find a double crown decomposition in polynomial
time.

Proof. When Rule1 and Rule2 are not applicable, let W be the maximal packing
W = L1, · · · , Lt, t ≤ k − 1, which is a collection of disjoint P2. We partition the
disjoint P2 in W into two groups: {L1, · · · , Ld}, {Ld+1, · · · , Lt}, which satisfy
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the following property: for each Li, 1 ≤ i ≤ d, each Q0-vertex adjacent to Li

can be adjacent to more than one vertex in Li, and we denote these Q0-vertex
as Q0i (1 ≤ i ≤ d); for each Lj, j > d, each Q0-vertex adjacent to Lj is at most
adjacent to one vertex in Lj .

Consider the vertex set Q′
0-vertex=Q0-vertex−{Q01, · · · , Q0d}, and let W ′ =

{v1, · · · , vs} be the set of vertices in Ld+1 ∪ · · · ∪Lt such that each vertex in W ′

has neighbor in Q0-vertex. By the above partition property, each Lj(j > d) has
at most one vertex in W ′. Thus, s ≤ t − d. Moreover, by Property2, no vertex
in Q′

0-vertex is adjacent to any Li. Therefore, each vertex in Q′
0-vertex has all

its neighbors in W ′, that is, W ′ = N(Q′
0-vertex).

Assume the total number of vertices in Q′
0 -vertex is p. If p > 2s, there is

a ‘double crown’-decomposition in the input graph (note that the set of Q′
0-

vertex is an independent set). We can call the RPLW algorithm again, which
contradicts that Rule1 and Rule2 are not applicable. On the other hand, if
p ≤ 2s, the total number of Q0-vertices in the graph is that: |Q0-vertex| = |Q′

0-
vertex| + d = p + d ≤ 2s + d ≤ 2(s + d) ≤ 2t ≤ 2(k − 1). This completes the
proof. ��

In the following, we analyze the number of Q1-vertices in Q.

Theorem 2. The number of Q1-vertices is bounded by 2(k − 1), that is, |Q1-
edge| ≤ k − 1, or else we can find a double crown decomposition in polynomial
time.

Proof. When Rule1 and Rule2 are not applicable, let W be the maximal packing
W = L1, · · · , Lt, t ≤ k − 1, which is a collection of disjoint P2. We partition the
disjoint P2 in W into two groups: {L1, · · · , Ld}, {Ld+1, · · · , Lt}, which satisfy
the following property: for each Li, 1 ≤ i ≤ d, each Q1-edge adjacent to Li can
be adjacent to more than one vertex in Li, and we denote these Q1-edges as Q1i

(1 ≤ i ≤ d); for each Lj , j > d, each Q1-edge adjacent to Lj is at most adjacent
to one vertex in Lj.

Consider the vertex set Q′
1-edge=Q1-edge−{Q11, · · · , Q1d}, and let W ′ =

{v1, · · · , vs} be the set of vertices in Ld+1 ∪ · · · ∪Lt such that each vertex in W ′

has neighbors in Q1-vertex. By the above partition property, each Lj(j > d) has
at most one vertex in W ′. Thus, s ≤ t − d. Moreover, by Property4, no vertex
in Q′

1-edge is adjacent to any Li, 1 ≤ i ≤ d. Therefore, each vertex in Q′
1-edge

has all its neighbors in W ′, that is, W ′ = N(Q′
1-edge).

Assume the total number of edges in Q′
1-edge is p. If p > s, there is a

‘fat crown’-decomposition in the input graph (note that the set of Q′
1-edge

is an independent set of K2). We can call the RPLW algorithm again, which
contradicts that Rule1 and Rule2 are not applicable. On the other hand, if
p ≤ s, the total number of Q1-edges in the graph is that: |Q1-edge| = |Q′

1-
edge| + d = p + d ≤ s + d ≤ t ≤ k − 1. Each Q1-edge has two Q1-vertices,
therefore, the number of Q1-vertices is bounded by |Q1-vertex| ≤ 2(k − 1). This
completes the proof. ��

Based on theorem 1 and theorem 2, we can get the following theorem.
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Theorem 3. The k-P2-packing problem has a kernel of size at most 7k − 7.

Proof. By applying the RPLW algorithm repeatedly until the two rules are not
applicable. The vertices in G consist of the vertices in W and Q. Assume V (G)
denotes the vertices in G. The vertices in Q contains only Q0-vertices and Q1-
vertices. By Theorem1, we can get that |Q0-vertex| ≤ 2(k − 1). By Theorem2,
we can get that |Q1-vertex| ≤ 2(k − 1). Since |V (W )| ≤ 3(k − 1), thus, |V (G)| =
|V (W )| + |Q0| + |Q1| ≤ 3(k − 1) + 2(k − 1) + 2(k − 1) = 7k − 7. Therefore, the
k-P2-packing problem has a kernel of size at most 7k − 7. ��

4 The Improved Parameterized Algorithm

For the k-P2-packing problem, we proposed an improved parameterized algo-
rithm based on the 7k kernel. We first apply the kernelizaiton algorithm to
obtain a kernel for the problem. Since each P2 has a center vertex, in order to
find k vertex disjoint P2, we just need to find k center vertices in brute force
manner on the 7k kernel. The specific algorithm is given in figure 4.

Algorithm KPPW
Input: G = (V, E)
Output: a k-P2-packing in G, or can not find a k-P2-packing in G

1. compute a maximal P2-packing W with a greedy algorithm;
2. apply the RPLW(G, W, k) until rule1 and rule2 are not applicable;
3. if |V (G)| > 7k then

report “there exists a k-P2-packing” and stop;
4. find all possible subsets C of size k in reduced G;
5. for each C do
6. for each vertex v in C, produce a copy vertex v′;
7. Construct a bipartite graph G′ = (V1 ∪ V2, E) in the following way: the

edges connecting to v are also connected to v′. The k vertices and its
copy vertices are put into V1, and the neighbors of the k vertices in C
are put into V2;

8. use Maximum bipartite matching algorithm to find the k center vertices;
9. if all the vertices on V1 are matched then

report “there exists a k-P2-packing in G” and stop;
10. report “there is no a k-P2-packing in G” and stop;

Fig. 4. KPPW agorithm

Theorem 4. If there exists a k-P2-packing, the KPPW algorithm will find the
k-P2-packing in time O∗(24.142k).

Proof. It can be seen from the algorithm, the step2 is the whole kernelization
process applying the RPLW algorithm repeatedly. As a result, we can obtain
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a kernel of size at most 7k. We check the number of vertices in reduced G in
Step3. If the number of vertices is more than 7k, there must be a k-P2-packing in
G, and the KPPW algorithm does not need to run. We apply a straightforward
brute-force method on the kernel to find the optimal solution from Step 4 to
Step 8. The general idea is as follows:

We find all possible subsets C of size k in reduced graph G. For each C, we
will construct a bipartite graph G′ = (V1 ∪ V2, E) in the following way: first, for
each vertex v in C, we produce a copy vertex v′ with the property that the edges
connecting to v are also connected to v′. The k vertices and its copy vertices
are put into V1, and the neighbors of the k vertices in C are put into V2. If
all the vertices on the V1 are matched by a maximum bipartite matching, the
k vertices in C must be the center vertices of a k-P2-packing, therefore, report
“there exists a k-P2-packing in G” , and the algorithm stops. If for all C, we
cannot find k center vertices, report “there does not exist a k-P2-packing in G”,
and the algorithm stops.

In the following, we analyze the time complexity of algorithm KPPW.
Step1: Using greedy algorithm to find a maximal packing can be done in time

O(|E|).
Step2: The kernelization process given in [7] can be done in O(n3) time, and

the whole process that call the algorithm RPLW repeatedly until Rule1 and
Rule2 are not applicable runs in O(k3) time, therefore, the time complexity of
Step2 is O(n3 + k3).

Step3: Obviously, the running time of Step 3 is linear in the size of V .
Step4-Step8: We find the center vertices of the P2-packing in a brute force

manner, which has
(
7k
k

)
enumerations. By Stirling’s formula, this is bounded by

24.142k. We construct a bipartite graph G′ = (V1∪V2, E) with k vertices in C and
its copy vertices in V1, and the neighbors of k vertices in V2. Thus, the original
question is transformed to find the maximum matching problem in bipartite G′

which can be solved in time O(
√

|V1 + V2||E|) = O(k2.5). Therefore, the total
running time of Step4-Step8 is O(24.142kk2.5).

As a result, the total running time of algorithm KPPW is bounded by O(|E|+
|n3 + k3 + |V | + k + 24.142kk2.5) = O∗(24.142k). ��

5 Conclusions

In this paper, we mainly focus on the kernelization for the k-P2-packing problem.
We give further structure analysis of the problem, and propose a kernelization
algorithm obtaining a kernel of size at most 7k. Comparing with the kerneliztion
given in [7], our algorithm makes further optimization on the vertices of any
P2 in W and their Q0-vertex neighbors and Q1-edge neighbors, which reduces
the number of Q0-vertices and Q1-edges in Q. Based on the 7k kernel, we also
present an improved parameterized algorithm with time complexity O∗(24.142k),
which greatly improves the current best result O∗(25.301k).
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Abstract. In this paper we consider deterministic hot-potato routing
algorithms on n × n meshes and tori. We present algorithms for the
permutation routing problem on these networks and achieve new upper
bounds. The basic ideas used in the presented algorithms are sorting,
packet concentration and fast algorithms for one-dimensional submeshes.
Using this ideas we solve the permutation routing problem in 3.25n+o(n)
steps on an n × n mesh and in 2.75n + o(n) steps on an n × n torus.

1 Introduction

This paper studies routing in a synchronous network with bidirectional links in
which at most one packet is able to traverse any link in each time step and direc-
tion. We consider two of the most studied network with a fixed interconnection,
the two-dimensional n × n mesh and torus.

The problem of routing packets through a network is fundamental to the
study of parallel computation. One of the best studied routing problems is the
problem where each processor is source and destination of one packet, the per-
mutation routing problem. In the literature many different approaches to solve
permutation routing problems have been studied, e.g. adaptive, oblivious, cut-
through, wormhole, fault-tolerant, local, etc. [8]. Here we consider a routing
strategy known as hot-potato or deflection routing. In hot-potato routing no
buffers are used for storing packets. In this routing strategy in each step and in
each processor all incoming packets, unless they have reached their destination,
have to leave the processor in the following step (see Figure 1). Hot-potato al-
gorithms are attractive for practical applications because they tend to be simple
and due to the lack of buffers they have efficient hardware realizations. They
have been observed to work well in practice and have been used successfully on
several parallel machines or optical networks [10, 18, 19, 1, 9].

Although hot-potato routing algorithms are rather simple they are very hard
to analyze. Compared to other routing strategies the gap between the known
upper and lower bounds for hot-potato routing algorithms on meshes (and tori)
is large. To give an example, for greedy1 hot-potato routing no asymptotically
1 In greedy hot-potato routing a packet has to use an outgoing link in the direction

of its destination whenever it is possible.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 223–233, 2008.
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Fig. 1. One step in a processor in hot-potato routing

optimal routing algorithm is known. Nearly all fast routing algorithms for the
mesh and torus use sorting to achieve their bounds, e.g. see [8, 11, 17]. In the
case of hot-potato routing it is surprising that sorting can be used. Newman and
Schuster in [16] introduced it for hot-potato routing and we use a variant of their
technique here. Another well known technique to achieve fast routing algorithms
is to concentrate packets in a smaller subnetwork and to solve the problem in this
subnetwork. In combination with hot-potato routing the concentration technique
was not used before. Since in hot-potato routing no buffers are allowed to store
packets the possibilities to concentrate packets are very limited. In the algorithm
we concentrate the packets in a subnetwork with the half number of nodes, so
there are two packets on each node in a step. This can be done without buffers. In
routing algorithms for two-dimensional meshes or tori, one-dimensional routing is
often used as a subroutine. We use one-dimensional routing where each processor
is source and destination of at most two packets at several points of algorithm.
Hence we analyze one-dimensional routing and achieve new upper bounds for
two-dimensional hot-potato routing on meshes and tori.

The rest of the paper is organized as follows. In Section 2 we present related
work. In Section 3 we give some necessary definitions. In Section 4 we analyze
one-dimensional routing with the farthest destination first strategy and give some
simple results. In Section 5 we present and analyze our 3.25n+o(n) (2.75n+o(n))
step permutation routing algorithms for the mesh (torus). In Section 6 we give
a short conclusion.

2 Related Work

Several randomized or deterministic hot-potato routing algorithms have been
designed for the n × n-mesh or torus [2, 3, 4, 5, 6, 7, 11, 14, 16]. In [2] Ben-
Aroya et al. provide a deterministic greedy hot-potato routing algorithm for the
n × n mesh that delivers a batch of l packets in 2(l − 1) + dmax steps, where
dmax is the maximal initial soure to destination distance of a packet. In their
batch problems a processor is source of at most four and destination of at most l
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packets. Since l = n2 in permutation routing this results an O(n2) bound for the
permutation routing problem. In [4] Ben-Dor et al. achieve a O(n

√
l) bound for

the batch problem in an n×n mesh with the help of potential function analysis.
For the two-dimensional mesh, Kunde in [14] presents the first deterministic
greedy hot-potato routing algorithm with a o(n2) bound for permutation routing.
Kunde achieves a bound of O(n

√
n log n) steps. In [5] Busch et al. present a

randomized greedy hot-potato routing algorithm for the n × n mesh that solves
any permutation routing problem in O(n ln n) and batch routing problems in
O(m ln n) steps with high probability, where m = min{mr, mc} ∈ Θ(n) and mr

(mc) is the maximum number of packets targeted to a single row (column). In [6]
the same authors study batch routing where each processor is source of at most
one and destination of at most 4n2 packets. Their algorithm needs O(LB · log3 n)
steps with high probability, where LB ∈ Ω(n) is a lower bound based on dmax

and the maximum congestion of an instance.
For non-greedy hot-potato routing, Feige and Raghavan [7] present a ran-

domized algorithm that routes any random destination problem in 2n + O(ln n)
steps with high probability. They also solve any permutation routing problem
in 9n steps with high probability. Newman and Schuster [16] give a determinis-
tic non-greedy hot-potato routing algorithm for permutation routing that needs
7n + o(n) steps on the mesh and 4n + o(n) steps on the torus. The algorithms
for the mesh and torus in [16] use sorting to solve the routing problem. In [11]
Kaufmann et al. improve this result to 3.5n + o(n). Hence 3.5n + o(n) was the
so far best known bound for deterministic hot-potato routing on an n × n mesh
or torus.

For non hot-potato routing several optimal 2n − 2 step algorithms for the
permutation routing problem are known [8].

3 Basic Definitions

In an n × n mesh each processor (node) is given as a pair (r, c), 1 ≤ r, c ≤ n.
A processor (r, c) lies in row r and column c and is connected to at most four
adjacent nodes by bidirectional links. In a mesh a processor (r, c) is connected
with (r′, c′) iff |r − r′| + |c − c′| = 1, 1 ≤ r, r′, c, c′ ≤ n. The diameter of a
mesh is 2n − 2 and the bisection width is n. We call a node (r, c) where r + c
is even a black node and a node where r + c is odd a white node. Packets that
are initially on a black (white) node are called black (white) packets. In hot-
potato routing white and black packets never meet in any node. We denote
the (at most) four incoming and outgoing links of a processor by 1, 2, 3 or 4
(see Figure 2).

A torus is a mesh with wrap-around links. Node (i, 1) is connected with (i, n)
and node (1, j) is connected with (n, j), 1 ≤ i, j ≤ n. The advantage of a torus
is that all nodes can be treated in the same way since no border or corner nodes
exists. The diameter of a torus is half the diameter of the corresponding mesh
and its bisection width is twice as large.
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Fig. 2. A node (r, c) in an n × n mesh or torus. In the case of the mesh 1 < r, c < n

4 Basic Problems

First we consider the following problem in row i, 1 < i ≤ n, of the mesh2. We call
the problem 2-2 basic routing. We want to route up to n packets in row i using
hot-potato routing. Initially there are at most two packets on black (white) nodes
and no packets on white (black) nodes. Each node is destination of at most two
packets. During the routing the packets are allowed to use the 2-links and 4-links
in row i and the 1-links and 3-links between row i and row i − 1. We assume that a
packet is taken out of the mesh when it arrives at its destination.

For a problem instance R of 2-2 basic routing we define rR(k, l) (lR(l, k)) as
the number of packets that have to pass from left to right (right to left) node
(i, k) and node (i, l).

We route the packets greedily to their destination using the farthest destina-
tion first strategy. In the case that during routing two packets in a node want
to use the same 2-link or 4-link, the packet with lower priority uses the 1-link
and go to row i − 1. In the next step it uses the 3-link to come back into the
node in row i. If a packet uses neighboring nodes to wait, we say that the packet
vibrates.

The following holds (for a similar result for (non hot-potato) routing see
Lemma 3.1 in [12]):

Lemma 1. Solving a 2-2 basic routing problem R in row i, using the farthest
destination first strategy, takes at most maxk,l∈X{2(max{rR(k, l), lR(l, k)}−1)+
l − k} steps, where X = {(k, l) | k < l ∧ (rR(k, l) �= 0 ∨ lR(l, k) �= 0)}.

Proof. In this proof we restrict our attention to packets traveling from left to
right. For the other packets the bound could be proved analogously. We show
the bound by proving
2 Row i consists of processors (i, x), 1 ≤ x ≤ n.
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∀n > 0. n = maxk<l,rR(k,l) �=0{2(rR(k, l) − 1) + l − k}
=⇒

It takes at most n steps to solve R.

with induction on n. For n = 1 this is obviously true. In the following R is
an instance of 2-2 basic routing for which the bound is n + 1. We perform two
routing steps on R and get an instance R′ of 2-2 basic routing. For R′ we prove
that maxk<l,rR′ (k,l) �=0 2(rR′(k, l) − 1) + l − k is at most n − 1. Hence we are able
to apply the induction hypothesis to R′.

For 1 ≤ a < b ≤ n we define fR(a, b) := 2(rR(a, b)−1)+b−a and MR(a, b) as
the set of packets in R with a source in columns s ≤ a and a destination in column
d ≥ b. Obviously fR′(a, b) ≤ fR(a, b) for all a, b. Now choose kmax, lmax such
that n + 1 = fR(kmax, lmax) and set M := M(kmax, lmax). Since fR(kmax, lmax)
is a maximum over all a, b, there exists a packet in M with source column
kmax (otherwise fR(k, lmax) > fR(kmax, lmax) for a k < kmax). If there are
one or two packets from M in kmax, we get fR′(kmax, lmax) = n − 1, since
rR′(kmax, lmax) = rR(kmax, lmax)−1. If there are two packets in kmax from which
only one is in M , the packet in M has higher priority because the destination of
the other packet is smaller than lmax. So fR′(kmax, lmax) = n − 1 also for this
case.

Now assume that there are a, b such that fR′(a, b) = n. No packet of MR(a, b)
has passed column a in the two steps otherwise fR(a, b) > n + 1. So there are
two possibilities: (1) There is no packets in a in instance R or (2) all packets in a
have a destination column < b. In both cases we get MR(a−1, b) = MR(a, b) and
fR(a− 1, b) ≥ fR(a, b)+1 = n+1. So we get the maximum of n+1 for columns
a − 1 and b. For a maximum we know that a packet of MR(a − 1, b) leaves a − 1
in the first step and hence leaves a in the second step. A contradiction to (1)
and (2). •

The result of Lemma 1 holds also for row 1. In row 1 the packets vibrate using
row 2. Since the vibration of packets in different rows and the vibration of black
and white packets to do not interfere we get:

Lemma 2. The 2-2 basic routing problem can be solved simultaneously for all n
rows and black and white packets in at most maxk<l 2(max {r̂(k, l), l̂(l, k)} −1)
+l − k steps. Here r̂(k, l) (l̂(k, l)) is the maximum of rR(k, l) (lR(k, l)) over all
rows.

With the help of a variant of Odd-Even-Transposition Sort the following is easy
to see:

Lemma 3. In row i, 1 ≤ i ≤ n, of the n×n mesh let n packets be located in the
black (white) nodes such that initially there are two packets in each node. The
packets can be sorted in n steps using a variant of Odd-Even-Transposition Sort
such that finally there are two packets in each black (white) node.

As in the case for 2-2 basic routing the sorting can be done simultaneously for
all rows, black and white packets. Packets in row 1 use row 2 to vibrate, packets
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in a row i > 1 use row i − 1. Now we want to note that it is possible to sort an
n × n mesh in O(n) steps. To do so a variant of the sorting algorithm presented
in [15] or [17] can be used.

Lemma 4. Let each black (white) node of the n × n mesh have two packets.
There is a hot-potato algorithm that sorts simultaneously black and white packets
in snake-like column-major order in O(n) time. (Finally the black (white) packets
are in black (white) nodes.)

Of course the result of Lemma 4 also holds for column-major, row-major snake-
like row-major and similar indexing schemes. For the algorithm presented in the
next section it is sufficient to sort an n3/4 × n3/4 mesh in o(n) steps. For this
purpose also algorithms like Shearsort which are not asymptotically optimal can
be used. The benefit of Shearsort is that it is simple and easy to implement.

5 Permutation Routing on the Mesh and Torus

We begin with a rough version of the algorithm and give a more detailed version
of step 2 and step 3 later. The mesh is devided in four submeshes of n × n/4
nodes. We call these submeshes A, B, C, and D (see Figure 3). In step 1 the
packets are concentrated in the middle n/2 columns of the mesh (in BC). In
step 2 the algorithm uses a kind of 2-2 sorting to solve the routing problem. The
packets are sorted according to their destination column. To save time we do not
totally sort the packets and stop after 3n/2 + o(n) steps. In step 3 the packets
are transported to their final destination.

Algorithm Permutation Routing

(1) Move the packets n/4 steps horizontally from submesh A to submesh B and
from submesh D to submesh C. (n/4 steps)

(2) In the n/2×n mesh BC partially sort the packets according to the destination
column of a packet. (3n/2 + o(n) steps)

(3) Route packets to their destination:
(3a) Horizontally to their destination column. (n/2 + o(n) steps)
(3b) Vertically within the destination column. (n + o(n) steps)

Lemma 5. Algorithm Permutation Routing on a n×n mesh needs 3.25n+o(n)
steps.

Since black and white packets never interact we can restrict our attention to black
packets. All the following results and proofs are given only for black packets.
They also hold for white packets.

Details of Step 2. Sorting in BC.
In the following we use column-major and snake-like column-major in the usual
sense and assume that n/4, n1/4/4 are integer3. The algorithm is based on
Schnorr/Shamir’s algorithm from [17]. We divide BC into blocks of size 2n3/4 ×



Deterministic Hot-Potato Permutation Routing 229

consists of /4 blocksn 1/4
n/4

A B C D

2n

2n
a block

(a) (b)
3/4

3/4

n/2n/4 n/4

a horizontal slice of blocks

Fig. 3. Division of the Mesh for Permutation Routing

2n3/4. We call a row of n1/4/4 blocks a horizontal slice and a column of n1/4/2
blocks a vertical slice. BC consists of n1/4/2 horizontal and n1/4/4 vertical slices.

Algorithm Partially Sorting
(1) Sort each block in snake-like column-major order. (o(n) steps)
(2) Perform an n1/4/2-way unshuffle of the rows.

(The packets move within the vertical slices). (n steps)
(3) Sort each block into snake-like column-major order. (o(n) steps)
(4) Sort each row in linear order. (n/2 steps)
(5) Collectively sort blocks 1 and 2, blocks 3 and 4, blocks 5 and 6, etc. of each

horizontal slice into column-major order. (o(n) steps)
(6) Collectively sort blocks 2 and 3, blocks 4 and 5, blocks 6 and 7, etc. of each

horizontal slice into column-major order. (o(n) steps)

In the following proofs we use the 0-1 principle([13]) several times. For k, 1 ≤ k ≤
n, we mark all packets with a destination column < k as 0s, all packets with des-
tination column k with 1s and all packets with destination column > k with 2s.

Lemma 6. After step 6 of algorithm Partially Sorting the following holds:

(0) In any horizontal slice there are at most n3/4 + n1/2/4 1s.
(1) There are at most 3 neighboring columns in BC that contain black 1s.
(2) There are at most 2 black packets in each row with the same column desti-

nation.

Proof. In step 2 of algorithm Partially Sorting the number of 0s (1s, 2s) a block
sends to any two blocks of a vertical slice (vs for short) differs at most by two.
Since there are n1/4/2 blocks in a vs, the number of 0s (1s, 2s) in any two blocks
in a vs differs at most by n1/4 after step 2. There are n1/4/4 blocks in a horizontal
slice (hs for short). Therefore, the number of 0s (1s, 2s) in any two hs differs
at most by n1/2/4 after step 2. Steps (3) to (6) do not change the number of
0s (1s, 2s) in a hs. Hence after step 6 the number of 0s (1s, 2s) in any two hs
differ at most by n1/2/4. Furthermore, steps 3 to 6 sort the horitzontal slices in

3 Since n1/4/4 is integer we have n ≥ 44.
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column-major order. Let l1s,min be the minimal number of 1s in a hs, l1s,max the
maximal number of 1s in a hs and t1s be the total number of 1s in BC. Then

2t1s/n1/4 − n1/2/4 < l1s,min ≤ l1s,max < 2t1s/n1/4 + n1/2/4.

So (0) holds. Since (2t1s/n1/4 + 2n1/2/4)/(2n3/4) < 2 (the additional (n1/2/4)/
(2n3/4) stems from the difference of 0s within a hs) (1) holds. Although the 1s
could be in three neighboring columns, the cut of these three columns and any
row consists of at most two neighboring nodes. This is due to the sorting in the
blocks. Since from any two neighboring nodes in a row, one node is a black node
and one node is a white node (2) is fulfilled. •

Note that BC is not sorted in column-major but the horizontal slices are. Fur-
thermore, for each destination column i, 1 ≤ i ≤ n, the black packets with
destination column i can be found in at most three neighboring columns of the
mesh. Additionally there are at most two black packets in a row with destination
column i. Finally we consider the running time of the sorting step:

Lemma 7. Algorithm Partially Sorting needs 1.5n + O(n3/4) steps.

Proof. The running time of steps (1), (3), (5), and (6) follows from Lemma 4.
The running time of step (2) follows from Lemma 2 and the running time for
step (4) follows from Lemma 3. •

Details of Step 3. Greedy Routing to the destination.
In step (3a) we have to solve an instance of 2-2 basic routing. The destination
of a packet in this problem is its destination column. This, together with the
fact that the packets are partially sorted according to their destination column,
ensures that there is no overtaking of packets during the horizontal routing, i.e.
if two packets π and π′ in a row are initially in column i and i′, i < i′, and their
destinations are j and j′, then j ≤ j′. A packet that has reached its destination
column in step (3a) vibrates until step (3b) starts. We have to make sure that
the packets are able to vibrate before the beginning of step (3b). Packets in row
i with destination column j use nodes (i − 1, j) and (i + 1, j) to vibrate. So
columns 1 and n could be a problem. Since there is no overtaking, node (i, 1)
is able to vibrate the two packets to node (i, 2) and node (i + 1, 1) if i < n.
Analogously node (i, n) can vibrate packets to node (i, n − 1) and node (i + 1,
n). For the nodes (n, 1) and (n, n) a special treatment is necessary. One packet
of the possibly two packets can vibrate using node (n, 2) ((n, n− 1)). The other
packet have to vibrate from node (n, 2) to node (n − 1, 2) (node (n, n − 1) and
(n − 1, n − 1)). In step (3b) this special treatment of the two corner nodes only
results in O(1) extra steps.

The time bound of n/2 + O(1) for step (3a) can be seen with the help of
Lemma 2.

Lemma 8. Step (3a) can be done in n/2 + O(1) steps.

Proof. (Sketch) We only consider packets traveling from left to right. The bounds
for packets traveling from right to left are the same. To avoid notational clutter, we
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omit constants that stem from the fact that packets with a destination column k,
1 ≤ k ≤ n, are located in three neighboring columns. Instead we assume that BC is
sorted. This reduces the running time only by a constant. We have to give an upper
bound for max(i,j)∈X{2(max{r(i, j), l(i, j)}− 1)+ j − i}. To do so we construct a
worst case, i.e. we place the packets such that max(i,j)∈X{2(max{r(i, j), l(i, j)}−
1)+j−i} is maximal. We have to maximize 2(r(i, j)−1)+j−i. Such a worst case
occurs when all black packets have a destination in the right half of the mesh. In
the following n/4 ≤ i < j ≤ 3n/4, l := j − i, and k := 3n/4− j. Note that n black
packets fit in one column of BC and that a column of the mesh is destination of n
packets. Packets located in columns j to 3n/4 in the beginning of step 3a have to go
to columns n−k to n. Hence at most (n−k−j)·n free destinatons exist in columns t
where t ≥ j. Since n−k−j = n/4 we have at most n2/4 free destinations. Packets
between columns i and j have a destination to the right of column i. Hence at most
n2/4 − ln free destinations to the right of column i exist. Since n2/4 − ln packets
fit in n/4 − l columns, at most n/4 − l black packets in a row have to pass i and
j from left to right. So we get j − i + 2(n/4 − l) = n/2 − j + i ≤ n/2. •

Simulations of the algorithm have shown that the average time the packets need
in step (3a) is approximately n/4.
In the following we describe how packets are routed in step (3b). We restrict
our attention to packets with destination column k, 1 < k < n, and begin
with the description of the initial situation. We come back to the description
of the situation for packet with destination column 1 or n later. Initially the
packets are in columns k − 1, k, and k + 1 such that in column k there are
at most two packets on any black node and no packets on any white node. In
columns k − 1 and k + 1 there is at most one packet on any black node and
no packet on any white node. The packets are routed to their destination in
the following way. Packets in column k − 1 and k + 1 are routed horizontally to
column k. Packets in column k are routed vertically towards their destination. If
two packets in column k compete for a vertical link (1-link or 3-link) the packet
with the farthest destination wins. The other packet is routed horizontally to
column k − 1 or k. For the time of step (3b) we get

Lemma 9. For packets with destination column k, 1 < k < n, step (3b) can be
done in n + o(n) steps.

Proof. (sketch) Let u(i, j) be the number of packets that have to pass row i
and j downwards and d(i, j) be the number of packets that have to pass row i
and j upwards. (u(i, j) and d(i, j) are defined as r(i, j) and l(i, j) for 2-2 basic
routing). Then a bound of max(k,l)∈X{2(max{u(k, l), d(l, k)}− 1)+ l− k}+O(1)
steps can be proved analogously to the proof of Lemma 2. The additional O(1)
steps result from the fact that initially some packets are on a node in column
k − 1 or k + 1. So, to get a bound for the running time of step (3b), we have
to find an upper bound for the number of packets that pass node i and node
j. We restrict our attention to black packets that have to travel downwards.
From Lemma 6.(0) we know that in an horizontal slice at most 2n3/4 + O(n1/2)
packets with destination column k exist. So in r horizontal slices there are at
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most r(2n3/4 + O(n1/2)) packets with destination column k. Since we consider
permutation routing, each node is destination of exactly one packet. So at most

min{�i/(2n3/4)�(2n3/4 + O(n1/2), n − j} = min{i + o(n), n − j}

packets pass i and j. Since 2(d(i, j)−1)+ j − i ≤ 2min{i+ o(n), n− j}+ j − i =
n + o(n) we have proved the desired bound. •

Finally we have to consider destination columns 1 and n. We restrict our at-
tention to column n. Column 1 can be treated in the same way. In a horizontal
slice there are at most 2n3/4 + O(n1/2) black packets with destination column
n. Nearly all (up to O(n1/2)) of these packets are in column 3n/4 after step 2
of algorithm Partially Sorting. So only from row i ≥ n − O(n1/2) each row has
two packets. In rows i < n − O(n1/2) only every second row has two packets.
Hence we have a situation very similar to a 2-2 basic routing problem that can
be solved in n + o(n) steps. We omit a proof here. We get

Theorem 1. There is a deterministic hot-potato routing algorithm that solves
Permutaion Routing on an n × n mesh in 3.25n + o(n) steps.

Algorithm Permutation Routing also works on a torus but does not benefit from
the connections between row 1 (column 1) and row n (column n). On a torus no
special treatment for columns (rows) 1 or n is necessary and step (2) of algorithm
Partially Sorting can be done within n/2 steps. At the moment we do not know
whether step (3b) can be performed faster than in n steps on a torus. We assume
that it can be done in 3n/4 + o(n) steps. To get a better bound for step (3b) a
deeper analysis of hot-potato algorithms for 2-2 basic routing problems on rings
is necessary. So we have:

Theorem 2. There is a deterministic hot-potato routing algorithm that solves
Permutaion Routing on an n × n torus in 2.75n + o(n) steps.

Under the assumption that step (3b) can be done in 3n/4 + o(n) steps a bound
of 2.5n + o(n) could be achieved.

6 Conclusion

In this paper we have shown new upper bounds for deterministic hot-potato
routing on the mesh and torus. For permutation routing we reduced the gap
between the known upper and lower bound. To achieve the new bound we an-
alyzed routing problems on one-dimensional meshes. The results achieved there
could be useful for the design of fast hot-potato routing algorithms for higher
dimensional meshes or similar networks. To design fast (permutation routing)
algorithms for the torus it would be helpful to have a similar result for rings.
For local routing problems we achieved asymtotically optimal deterministic hot-
potato algorithms. Our algorithms use sorting to solve the routing problem.
As far as we know no asymptotically optimal deterministic hot-potato routing
algorithm for the Permutation Routing problem exists that does not use sorting.
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Abstract. We study a natural probabilistic model for motif discovery
that has been used to experimentally test the quality of motif discovery
programs. In this model, there are k background sequences, and each char-
acter in a background sequence is a random character from an alphabet
Σ. A motif G = g1g2 . . . gm is a string of m characters. Each background
sequence is implanted a randomly generated approximate copy of G. For
a randomly generated approximate copy b1b2 . . . bm of G, every character
is randomly generated such that the probability for bi �= gi is at most α.
In this paper, we give the first analytical proof that multiple background
sequences do help for finding subtle and faint motifs.

1 Introduction

Motif discovery is an important problem in computational biology and computer
science. For instance, it has applications to coding theory [3,4], locating binding
sites and conserved regions in unaligned sequences [18,10,6,17], genetic drug
target identification [9], designing genetic probes [9], and universal PCR primer
design [13,2,16,9].

This paper focuses on the application of motif discovery to finding conserved
regions in a set of given DNA, RNA, or protein sequences. Such conserved re-
gions may represent common biological functions or structures. Many perfor-
mance measures have been proposed for motif discovery. Let C be a subset of
0-1 sequences of length n. The covering radius of C is the smallest integer r such
that each vector in {0, 1}n is at a distance at most r from a set of 0-1 sequence
of length n. The decision problem associated with the covering radius for a set
of binary sequences is NP-complete [3]. Another similar problem called closest
string problem was also proved to be NP-hard [3,9]. Some approximation algo-
rithms have also been proposed. Li et al. [12] gave an approximation scheme for
the closest string and substring problems. The related consensus patterns prob-
lem is that give n sequences s1, · · · , sn, it asks for a region of length L in each
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si, and a median string s of length L so that the total Hamming distance from s
to these regions is minimized. Approximation algorithms for the consensus pat-
terns problem were also reported in [11]. Furthermore, a number of heuristics
and programs have been developed [15,7,8,19,1].

In many applications, motifs are faint and may not be apparent when two
sequences alone are compared but may become clearer when more sequences
are together [5]. For this reason, it has been conjectured that comparing more
sequences together can help identifying faint motifs. In this paper, we give the
first analytical proof for this conjecture.

In this paper, we study a natural probabilistic model for motif discovery.
In this model, there are k background sequences and each character in the
background sequence is a random character from an alphabet Σ. A motif G =
g1g2 . . . gm is a string of m characters. Each background sequence is implanted a
randomly generated approximate copy of G. For a randomly generated approxi-
mate copy b1b2 . . . bm of G, every character is randomly generated such that the
probability for bi �= gi is at most α. This model was first proposed in [15] and has
been widely used in experimentally testing motif discovery programs [7,8,19,1].

We design an algorithm that for a reasonably large k can discover the im-
planted motif with high probability. Specifically, we prove that for α < 0.1771
and any constant x ≥ 8, there exist constants t0, δ0, δ1 > 0 such that if the length
of the motif is at least δ0 log n, the alphabet has at least t0 characters, and there
are at least δ1 log n0 input sequences, then in O(n3) time the algorithm finds the
motif with probability at least 1− 1

2x , where n is the longest length of any input
sequence and n0 ≤ n is an upper bound for the length of the motif. When x
is considered as a parameter of order O(log n), the parameters t0, δ0, δ1 > 0 do
not depend on x. We also show some lower bounds that imply our conditions for
the length of the motif and the number of input sequences are tight to within
a constant multiplicative factor. This algorithm’s time complexity depends on
the length of input sequences and is independent of the number of the input
sequences. This is because that for a fixed x, Θ(log n) sequences are sufficient
to guarantee the probability of at least 1 − 1

2x to discover the motif. In contrast
to the NP-hardness of other variants of the common substring problem, motif
discovery is solvable in O(n3) time in this probabilistic model.

Our algorithm is an exact algorithm that has provable high probability to re-
turn the motif. The algorithm employs novel methods that extract similar con-
secutive regions among multiple sequences while tolerating noises. The algorithm
needs the motif to be long enough, but does not need to have the length of the
motif as an input. The algorithm allows the motif to appear any position at each
sequence, and each mutation in a motif to be arbitrary (a mutation lets a charac-
ter to be changed to an arbitrary character without any probabilistic condition).
We also derive lower bounds that indicate the upper bounds are almost optimal.

We give a brief description about the algorithm as section 3. Before giving
the algorithm, we set up a few parameters and constants that will affect the
algorithm at section 4.1. Then entire Algorithm Find-Noisy-Motif is described.
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We give the analysis and proof about Algorithm Find-Noisy-Motif and state it
in our main theorem (Theorem 1). Two lower bounds are presented at section 5.

2 Notations

For a set A, |A| denotes the number of elements in A. Σ is an alphabet with
|Σ| = t ≥ 2. For an integer n ≥ 0, Σn is the set of sequences of length n with
characters from Σ. For a sequence S = a1a2 · · · an, S[i] denotes the character
ai, and S[i, j] denotes the substring ai · · · aj for 1 ≤ i ≤ j ≤ n. |S| denotes the
length of the sequence S. We use ∅ to represent the empty sequence, which has
length 0.

Let G = g1g2 · · · gm be a fixed sequence of m characters. G is the motif
to be discovered by our algorithm. A Θα(n, G)-sequence has the form S =
a1 · · · an1b1 · · · bman1+1 · · · an2 , where n2 + m ≤ n, each ai has probability 1

t
to be equal to π for each π ∈ Σ, and bi has probability at most α not equal to
gi for 1 ≤ i ≤ m, where m = |G|. ℵ(S) denotes the motif region b1 · · · bm of S.
The motif region b1 · · · bm of S may start at an arbitrary or worst-case position
in S. Also, a mutation may convert a character gi in the motif into an arbitrary
or worst-case different character bi only subject to the restriction that gi will
mutate with probability at most α.

A mutation converts a character gi in the motif into an arbitrary different
character bi without probability restriction. This allows a character gi in the
motif to change into any character bi in Σ −{gi} with even different probability.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length, let
diff(S1, S2) = |{i|ai �=bi for i=1,···,m}|

m , i.e., the ratio of difference between the two
sequences.

Definition 1. Assume that S = a1a2 · · · an is a sequence. For its substring S′ =
S[i1, j1] and S′′ = S[i2, j2], define shiftS(S′, S′′) = min(|i1 − i2|, |j1 − j2|).

The analysis of our algorithm employs the well known Chernoff bound [14].

S1
ℵ(S1)� �

S2

ℵ(S2)� �

ℵ(S3)

S3

� �

Fig. 1. The motif regions of S1, S2 and S3 are not aligned
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3 A Sketch of the Algorithm Find-Noisy-Motif

Our Algorithm Find-Noisy-Motif has two phases. The first phase exploits the
fact that with high probability, the motif area in some sequences conserves the
first and last characters. Furthermore, the middle area of the motif changes with
a small ratio. We will select enough pairs of Θα(n, G)-sequences S′, S′′ and find
their substrings G′ and G′′ of S′ and S′′, respectively such that G′ and G′′

match in their left and right most characters. Furthermore, G′ and G′′ only have
a relatively small difference in the middle area. For each such pair S′ and S′′,
the substring G′′ of S′′ is extracted.

During the second phase, a new set of Θα(n, G)-sequences S1, S2, · · · , Sk2 will
be used. For each G′′ extracted from a pair of sequences in the first phase, it is
used to match a substring Gi of Si for i = 1, 2, · · · , k2. Assume that G1, · · · , Gk2

are derived from matching G′′ to all sequences S1, S2, · · · , Sk2 . Some Gi may be
an empty sequence if G′′ can not match well to any substring of Si. If G′′ has
the same length as that of motif G and is very similar to G, then the number
of non-empty sequences among G1, · · · , Gk2 is much larger than k2

2 and the i-th
character G[i] of G can be recovered from voting among G1[i], · · · , Gk2 [i]. In other
words, G[i] is the character that appears more than k2

2 times in G1[i], · · · , Gk2 [i].
We prove that with high probability, such a G′′ exists. The conversion from
figure 1 to figure 2 shows how we recover the motif via voting.

On the other hand, if |G′′| > |G| or G′′ does not match G well, we can prove
that the number of non-empty sequences among G1, · · · , Gk2 is less than k2

2 . Our
algorithm’s time complexity depends on the length of the input sequences and
is independent of the number of the input sequences. This is because that for
a fixed x, Θ(log n) sequences are sufficient to guarantee the probability of at
least 1 − 1

2x the motif will be discovered. Additional sequences can improve the
probability but are not needed for the high probability guarantee.

S1
ℵ(S1)� �

S2

ℵ(S2)� �

ℵ(S3)

S3

� �

Fig. 2. S1, S2 and S3 with their motif in the same column region

4 Algorithm Find-Noisy-Motif

In this section, we give an algorithm that any motif G can be discovered in O(n3)
time. It requires that the size of alphabet is larger than a fixed constant.
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Some parameters and constants will be used in Algorithm Find-Noisy-Motif .
In section 4.1, we give a list of assignments for some parameters and constants
that are used in the algorithm. The description of Algorithm Find-Noisy-Motif is
given at section 4.2. The analysis of the algorithm is given at section 4.3.

4.1 Parameters

As multiple parameters affect the performance of Algorithm Find-Noisy-Motif,
we list the parameters and discuss some useful inequalities here.

– Let x be any constant at least 8. We will prove that Algorithm Find-Noisy-
Motif has probability at least 1 − 1

2x to output the motif G. Let α be any
constant with α < 0.1771. Note that (1 − α)2 − α > 1

2 . Let η = 1
6 and let

ρ0 = 1
24 . Let ε > 0 be any constant such that (1 − α)2 − α − 3ε > 1

2 .
– Select any constant r0 > 0 such that

(1 − α)2 − α − 3ε − 2r0 >
1
2
. (1)

– Let v be the least integer that satisfies the inequalities below:

1 ≤ v, (2)

(1 − α)2 − 2cv

1 − c
− α − 3ε − 2r0 >

1
2
, (3)

2c2v
3cv

1 − c
< ρ0, (4)

2cv

1 − c
<

r0

2
, (5)

2cv

1 − c
< ρ0, (6)

where c = e−
ε2
3 . Note that the existence of v for (3) follows from (1).

– We define the following Q0. It will be first used in Lemma 1. Let Q0 =
(1 − α)2 − 2cv

1−c .
– Let c2 be a constant to be specified in Lemma 6.
– Let t0 be any constant such that

2(v − 1)
t0

≤ r0

2
, (7)

c2v
3

t0
≤ ρ0, (8)

t0 − 1
t0

− β > ε, (9)

where R is to be defined in Lemma 8. In the remainder of this paper, we
always assume the parameter t ≥ t0. Combining (3), (5), (7) and the
definition of R, we have Q0 − α − 3ε − 2R > 1

2 .
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– Let β = 2α + 2ε.

– The constant z is selected so that z ≥ v, and 4e− ε2
3 z

1−e− ε2
3

≤ ρ0.

– The number k1 is selected such that

(1 − Q1)k1 ≤ η

2x
, (10)

where Q1 is defined in Lemma 6, and is at least 1
12 . Note that k1 = O(1) is

a constant independent of the length of the input sequences.
– Select a constant δ0 > 0 and let d = δ0 log n such that n2e−d ≤ η

2x ,

n2e−
ε2
3 d ≤ ρ0.

– We require that the length of the motif G is at least d. Let n be the largest
length of an input Θα(n, G)-sequence. Let parameter n0 ∈ [d, n] be a given
upper bound on the length of the motif G that will be discovered by Algo-
rithm Find-Noisy-Motif .

– Select a constant δ1 > 0 and let k2 = δ1 log n0−2k1 so that n0k2e
− ε2

3 k2 ≤ η
2x ,

and k1e
− ε2

3 k2 ≤ η
2x .

The motif G is a pattern unknown to Algorithm Find-Noisy-Motif , and Al-
gorithm Find-Noisy-Motif will attempt to recover G from a series of Θα(n, G)-
sequences generated by the probabilistic model, which is controlled by the pa-
rameters α, n, and G. The source of randomness comes entirely from the input
sequence.

Let’s imagine how a sequence S is generated in this model. 1). Generate
a sequence S′ with n − |G| characters, in which each character is a random
character Σ. 2). Generate G′ such that with probability at most α, G′[i] �= G[i].
For G′[i] �= G[i], it represents a mutation. Note that there is no restriction about
how a character will change to in a mutation. 3). Insert G′, which servers the
motif region ℵ(S) of S, into any position of S′.

LetZ0 bea set ofk1 pairs of randomΘα(n, G)-sequences (S′
1, S

′′
1 ), · · · , (S′

k1
, S′′

k1
).

Let Z1 be the set Θα(n, G)-sequences {S′
1, S

′′
1 , · · · , S′

k1
, S′′

k1
} in the k1 pairs of se-

quences in Z0, where k1 is defined by inequality (10). Let Z2 be a set of k2 sequences
used in the second phase of Algorithm Find-Noisy-Motif . Let k = 2k1 + k2 be the
total number of Θα(n, G)-sequences that are used as the input to Algorithm Find-
Noisy-Motif . In the remainder of this paper,we assume that the alphabet has t ≥ t0
characters.

4.2 Description of Algorithm Find-Noisy-Motif

Algorithm Find-Noisy-Motif has two phases. The input to Phase 1 is k1 pairs
of Θα(n, G)-sequences in the set Z0. The input to Phase 2 is k2 Θα(n, G)-
sequences in the set Z2 and the output result from Phase 1. All the Θα(n, G)-
sequences are independent random Θα(n, G)-sequences. Note that k1 is constant,
k2 = O(log n0), and n0(≤ n) is an upper bound for the length of the motif G
according to the setting in Section 4.1. Algorithm Find-Noisy-Motif is a de-
terministic algorithm, which is based on the randomness of those sequences in
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both Z0 and Z2 and the independence in selecting them. Algorithm Find-Noisy-
Motif is deterministic, but its input is generated by a probabilistic model. The
following steps generate data sequenced for Algorithm Find-Noisy-Motif for Z0

and Z2.

Step 1. Randomly select 2k1 Θα(n, G)-sequences S′
1, S

′′
1 , S′

2, S
′′
2 , · · · , S′

k1
, S′′

k1

and let Z0 = {(S′
1, S

′′
1 ), (S′

2, S
′′
2 ), · · · , (S′

k1
, S′′

k1
)}.

Step 2. Randomly select k2 Θα(n, G)-sequences S1, · · · , Sk2 and let Z2 =
{S1, · · · , Sk2}.

Definition 2. – Two sequences X1 and X2 are left matched if (1) |X1| =
|X2|, (2) X1[1] = X2[1], and (3) diff(X1[1, i], X2[1, i]) ≤ β for all integers i,
v ≤ i ≤ |X1|.

– Two sequences X1 and X2 are right matched if XR
1 and XR

2 are left matched,
where XR = an · · · a1 is the inverse sequence of X = a1 · · ·an.

– Two sequences X1 and X2 are matched if X1 and X2 are both left and right
matched.

The function Extract(S1, S2) below extracts the longest similar region between
two sequences S1 and S2.

Function Extract(S1, S2)
Input: a pair of Θα(n, G)-sequences S1 and S2

Output: a subsequence of S2 which is similar to a subsequence of S1.
Steps:

for h = min(|S1|, |S2|) to d (recall from Section 4.1 that |G| ≥ d)
for i = 1 to |S1|

for j = 1 to |S2|
let i′ = i + h − 1 and j′ = j + h − 1;
if S1[i, i′] and S2[j, j′] are both left and right matched (see

Definition 2)
then return S2[j, j′];

return ∅ (the empty sequence);
End of Extract

The following are the steps of Phase 1 of Algorithm Find-Noisy-Motif :
Phase 1:
Input: Z0 = {(S′

1, S
′′
1 ), (S′

2, S
′′
2 ), · · · , (S′

k1
, S′′

k1
)}, a set of pairs of sequences

generated at Step 1 in the initial stage of the algorithm.
Output: a set W that contains a similar region of each pair in Z0.
Steps:

let W = ∅ (empty set);
for each pair of sequence (S, S′) ∈ Z0

let G′ = Extract(S, S′) and put G′ into W ;
return W , which will be used in Phase 2;

End of Phase 1
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After a set of motif candidates W is produced from Phase 1 of Algorithm
Find-Noisy-Motif, we use this set to match with another set of sequences to
recover the hidden motif via voting.

Function Match(G′, Si)
Input: a motif candidate G′, which is returned from the function Extract(),

and a sequence S from the group Z2;
Output: either a subsequence Gi of Si of the same length as G′ or an empty

sequence. Gi will be considered the motif region ℵ(Si) of Si if it is not empty, and
the empty sequence means the failure in extracting the motif region ℵ(Si) of Si.

Steps:
find a substring Gi of Si with |G| = |Gi| such that

G′ and Gi are matched (see Definition1)
if such a Gi does not exist, let Gi = ∅ (empty string).
Output Gi;

End of Match

The function Vote(G1, G2, · · · , Gk′) is to generate another sequence G′ via
voting, where G′[i] is the most frequent character among G1[i], G2[i], · · · , Gk′ [i].

Function Vote(G1, G2, · · · , Gk′)
Input: sequences G1, G2, · · · , Gk′ of the same length with k′ ≤ k2;
Output: a sequence G′, which is derived from voting at every position of the

input sequences.
Steps:

let m = |G1|;
for each j = 1, · · · , m

if strictly more than k2
2 characters from G1[j], · · · , Gk′ [j] are equal

to some character a
then let aj = a
else return “failure”;

return G′ = a1 · · ·am;
End of Vote

The following are the steps of Phase 2 of Algorithm Find-Noisy-Motif . It uses
the candidates of motif derived in the Phase 1 to extract the motif regions of
another set Z2 of sequences, and recover the motif via voting.

Phase 2:
let Z2 = {S1, · · · , Sk2} as defined in the begining of Section 4.2.
for each G′ ∈ W , let Gi = Match(G′, Si) for i = 1, · · · , k2.

let G′
1, · · · , G′

k′
2

be the list of all non-empty sequences in the list
G1, · · · , Gk2 (Note: For every non-empty sequence that appears
multiple times in the second list, it also appears the same number
of times in the first list.)
If k′

2 ≥ (Q0 − 2R − 2ε)k2

then output Vote(G′
1, G

′
2, · · · , G′

k′
2
) (which will be proven to be

identical to G with probability at least 1 − 1
2x ).

End of Phase 2
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4.3 Analysis of Phase 1 of Algorithm Find-Noisy-Motif

We present Lemma 1 that shows that with high probability, the initial part and
last part of motif region in a Θα(n, G)-sequence do not change much.

Lemma 1. With probability at least Q0 = (1 − α)2 − 2cv

1−c , a Θα(n, G)-sequence
S contains G′ = ℵ(S) satisfying the following conditions: (1) G′[1] = G[1]; (2)
G′[m] = G[m]; (3) diff(G′[1, h], G[1, h]) ≤ β

2 for all h = v, v + 1, · · · , m; (4)
diff(G′[m − h, m], G[m − h, m]) ≤ β

2 for h = v − 1, v + 1, · · · , m − 1, where

c = e−
ε2
3 and m = |G| as defined in Sections 4.1 and 2, respectively.

Lemma 2 shows that with small probability, a sequence can match a random
sequence. It will be used to prove that when two subsequences in two different
Θα(n, G)-sequences are similar, they are unlikely to stay away the motif regions
in the two Θα(n, G)-sequences, respectively.

Lemma 2. Assume that X1 and X2 are two independent sequences of the same
length and that every character of X2 is a random character from Σ. Then

1. if 1 ≤ |X1| = |X2| < v, then the probability that X1 and X2 are matched is
≤ 1

t ; and
2. if v ≤ |X1| = |X2|, then the probability for diff(X1, X2) ≤ β is at most

e−
ε2|X1|

3 .

Function Extract(S1, S2) returns a subsequence of S2. We expect that Extract(
S1, S2) is the motif region ℵ(S2) in S2. Lemma 3 shows that with small proba-
bility, the region for Extract(S1, S2) in S2 has no overlap with the motif region
ℵ(S2) of S2.

Lemma 3. With probability at most ρ0, Extract(S1, S2) and ℵ(S2) are not over-
laping substrings of S2. In other words, with probability is at most ρ0, Extract(S1,
S2) = S2[j, j′], ℵ(S2) = S2[t, t′], and the two intervals [j, j′] and [f, f ′] have no
overlap ([j, j′] ∩ [f, f ′] = ∅).

In order to show that Extract(S1, S2) is efficient to find a motif region in S2, we
give Lemma 4 show that with small probability, the region to fetch Extract(S1, S2)
in S2 shift much from the motif region ℵ(S2) of S2.

Lemma 4. For every z > 0, the probability is at most H1 = 2ρ0 that for a
pair of sequences (S1, S2) from Z0, shiftS2(M, ℵ(S2)) ≥ z and |M | ≥ |G|, where
M = Extract(S1, S2).

We need the Lemma 5, which will be useful to give the upper bound of probability
analysis. It is derived by the standard methods in calculus.

Lemma 5. Let a be a real constant in interval (0, 1) and j be an integer ≥ 1.
Then, 1.

∑∞
i=j iai = jaj−(j−1)aj+1

(1−a)2 < jaj

(1−a)2 ; and

2.
∑∞

i=j i2ai = aj( (j2−(j−1)(j+1)a)(1−a)−(j−(j−1)a)2(−a)
(1−a)3 ) < 2j2aj

(1−a)3 .
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Lemma 6 gives a lower bound for the probability that Extract(S1, S2) returns
the motif region ℵ(S2) of S2. Furthermore, the motif region ℵ(S2) of S2 does not
have much difference with the original motif G.

Lemma 6. Given two independent Θα(n, G)-sequences S1 and S2, it has the
probability at least Q1 = Q2

0 − H2 − H1 ≥ Q2
0 − 4ρ0 that G′ = Extract(S1, S2)

is ℵ(S2), and ℵ(S2) satisfies the conditions of G′ Lemma 1, where H1 is defined
in Lemma 4, H2 = c2v

3(1
t + cv) and c2 = O(1) is a constant.

By (3), we have Q0 ≥ 1
2 . By Lemma 6 and ρ0 = 1

24 defined in Section 4.1, we
have Q1 ≥ Q2

0−4ρ0 ≥ 1
12 . Since the number k1 is selected to be large enough that

(1−Q1)k1 ≤ η
2x (see (10)), the probability is at least 1− (1−Q1)k1 ≥ 1− η

2x (by
Lemma 6) that there is G0 = Extract(S1, S2) = ℵ(S2), where S1 and S2 satisfy
the conditions of Lemma 1. We now assume there is such a G0 that satisfies the
conditions described above.

4.4 Analysis of Phase 2 of Algorithm Find-Noisy-Motif

Lemma 7 shows that with small probability, Z1 generated in the initial stage
(step 2) of Algorithm Find-Noisy-Motif has a sequence whose motif region has
many mutations.

Lemma 7. With probability at most 2k1e
− ε2

3 d, there is a sequence S in Z1 that
changes more than β

2 |G| characters in its motif region ℵ(S).

Lemma 8 shows that with high probability, phase 2 of Algorithm Find-Noisy-
Motif extracts motif regions from the sequences in Z1.

Lemma 8. 1. Assume that G′′ = Extract(S′
i, S

′′
i ) with |G| ≤ |G′′|. Let S be

a Θα(n, G)-sequence with M = Match(G′′, S) and let w0 be the number of
characters of M that are not in the region of ℵ(S). Then the probability is at
most R = 2(v−1

t + cv

1−c ) that w0 ≥ 1.
2. The probability is at least Q0 −R that given a random Θα(n, G)-sequence S,

ℵ(S) = Match(G0, S).

Lemma 9 shows that we can use G′ to extract most of the motif regions for the
sequences in Z2 if G′ = G0 (recall that G0 is close to the original motif G and
G0 is defined right after Lemma 6).

Lemma 9. Assume that |G′| ≥ |G| and Gi = Match(G′, Si) for Si ∈ Z2 =
{S1, · · · , Sk2} and i = 1, · · · , k2 (Recall that each sequence Gi is either an empty
sequence or a sequence of the length |G′|).

1. If G′ = G0, then the probability is at least 1 − e−
ε2k2

3 that there are more
than (Q0 − R − ε)k2 sequences Gi with Gi = ℵ(Si).

2. The probability is at least 1 − e−
ε2k2

3 that for every G′, |{i|Gi �= ℵ(Si)(i =
1, · · · , k2)}| ≤ (R + ε)k2.



244 B. Fu, M. Kao, and L. Wang

Theorem 1 (Main). Assume that α is a constant less than 0.1771. There exist
constants t0, δ0, and δ1 such that if the size t of the alphabet Σ is at least
t0 and the length of the motif G is at least δ0 log n, then given k independent
Θα(n, G)-sequences with k ≥ δ1 log n0, Algorithm Find-Noisy-Motif outputs G
with probability ≥ 1 − 1

2x and runs in O(n3) time, where n is the longest length
of any input sequences and n0 ≤ n is a given upper bound for the length of G.

5 Lower Bounds on the Parameters

In this section, we show some lower bounds for the length of the motif and
the number of input sequences that are needed to recover the motif with high
probability.

Theorem 2 shows that when the motif is short, it is impossible to recover it
with a small number O(log n) of sequences. Thus, the upper bounds of Algorithm
Find-Noisy-Motif and the lower bounds here have constant factor multiplicative.

Theorem 2. Assume that constant ε > 0 and the alphabet has constant number
t characters. There is a constant δ > 0 such that with probability at least 1−o(1)
that given n1−ε independent random Θα(n, G)-sequences S1, · · · , Sn1−ε , every se-
quence of length m0 = 	δ log n
 is a substrings of each Si for i = 1, 2, · · · , n1−ε.

We consider the lower bound for the number of sequences needed for recovering
the motif. Theorem 3 shows that if the number of sequences is o(log n), it is
impossible to recover the motif correctly.

Theorem 3. There exists a constant δ such that no algorithm can recover the
motif G with at most δ log n Θα(n, G)-sequences.

Open Problems: An interesting open problem is whether there exists an algo-
rithm to recover all the motifs for the alphabet with four characters.
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2. Dopazo, J., Rodŕıguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for PCR am-
plification of highly variable genomes. Computer Applications in the Biosciences 9,
123–125 (1993)

3. Frances, M., Litman, A.: On covering problems of codes. Theoretical Computer
Science 30, 113–119 (1997)



Motif Discovery from Multiple Sequences 245

4. Ga̧sieniec, L., Jansson, J., Lingas, A.: Efficient approximation algorithms for the
Hamming center problem. In: Proceedings of the Tenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. S905–S906 (1999)

5. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

6. Hertz, G., Stormo, G.: Identification of consensus patterns in unaligned DNA and
protein sequences: a large-deviation statistical basis for penalizing gaps. In: Pro-
ceedings of the 3rd International Conference on Bioinformatics and Genome Re-
search, pp. 201–216 (1995)

7. Keich, U., Pevzner, P.: Finding motifs in the twilight zone. Bioinformatics 18,
1374–1381 (2002)

8. Keich, U., Pevzner, P.: Subtle motifs: defining the limits of motif finding algorithms.
Bioinformatics 18, 1382–1390 (2002)

9. Lanctot, J.K., Li, M., Ma, B., Wang, L., Zhang, L.: Distinguishing string selection
problems. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 633–642 (1999)

10. Lawrence, C., Reilly, A.: An expectation maximization (EM) algorithm for the
identification and characterization of common sites in unaligned biopolymer se-
quences. Proteins 7, 41–51 (1990)

11. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. In: Proceedings
of the Thirty-first Annual ACM Symposium on Theory of Computing, pp. 473–482
(1999)

12. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal
of the ACM 49(2), 157–171 (2002)

13. Lucas, K., Busch, M., Mossinger, S., Thompson, J.: An improved microcom-
puter program for finding gene- or gene family-specific oligonucleotides suitable
as primers for polymerase chain reactions or as probes. Computer Applications in
the Biosciences 7, 525–529 (1991)

14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (2000)

15. Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA se-
quences. In: Proceedings of the 8th International Conference on Intelligent Systems
for Molecular Biology, pp. 269–278 (2000)

16. Proutski, V., Holme, E.C.: Primer master: a new program for the design and anal-
ysis of PCR primers. Computer Applications in the Biosciences 12, 253–255 (1996)

17. Stormo, G.: Consensus patterns in DNA. In: Doolitle, R.F. (ed.) Molecular evolu-
tion: computer analysis of protein and nucleic acid sequences. Methods in Enzy-
molog, 183, 211–221 (1990)

18. Stormo, G., Hartzell III, G.: Identifying protein-binding sites from unaligned DNA
fragments. Proceedings of the National Academy of Sciences of the United States
of America 88, 5699–5703 (1991)

19. Wang, L., Dong, L.: Randomized algorithms for motif detection. Journal of Bioin-
formatics and Computational Biology 3(5), 1039–1052 (2005)



Ratio Based Stable In-Place Merging

Pok-Son Kim1 and Arne Kutzner2

1 Kookmin University, Department of Mathematics, Seoul 136-702, Rep. of Korea
pskim@kookmin.ac.kr

2 Seokyeong University, Department of Computer Science, Seoul 136-704,
Rep. of Korea

kutzner@skuniv.ac.kr

Abstract. We investigate the problem of stable in-place merging from
a ratio k = n

m
based point of view where m, n are the sizes of the input

sequences with m ≤ n . We introduce a novel algorithm for this problem
that is asymptotically optimal regarding the number of assignments as
well as comparisons. Our algorithm uses knowledge about the ratio of
the input sizes to gain optimality and does not stay in the tradition of
Mannila and Ukkonen’s work [8] in contrast to all other stable in-place
merging algorithms proposed so far. It has a simple modular structure
and does not demand the additional extraction of a movement imitation
buffer as needed by its competitors. For its core components we give
concrete implementations in form of Pseudo Code. Using benchmarking
we prove that our algorithm performs almost always better than its direct
competitor proposed in [6].

As additional sub-result we show that stable in-place merging is a
quite simple problem for every ratio k ≥

√
m by proving that there exists

a primitive algorithm that is asymptotically optimal for such ratios.

1 Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of size m and n, so that the result forms one sorted sequence of m+n
elements. An algorithm merges two sequences in place when it relies on a fixed
amount of extra space. It is regarded as stable, if it preserves the initial ordering
of elements with equal value.

There are two significant lower bounds for merging. The lower bound for the
number of assignments is m + n because every element of the input sequences
can change its position in the sorted output. As shown e.g. in Knuth [7] the
lower bound for the number of comparisons is Ω(m log( n

m + 1)), where m ≤ n.
A merging algorithm is called asymptotically fully optimal if it is asymptotically
optimal regarding the number of comparisons as well as assignments.

We will inspect the merging problem on the foundation of a ratio based ap-
proach. In the following k will always denote the ratio k = n

m of the sizes of the
input sequences. The lower bounds for merging can be expressed on the founda-
tion of such a ratio as well. We get Ω(m log(k+1)) as lower bound for the number
of comparisons and m · (k + 1) as lower bound for the number of assignments.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 246–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In the first part of this paper we will show that there is a simple asymptotically
fully optimal stable in-place merging algorithm for every ratio k ≥

√
m. Afterward

we will introduce a novel stable in-place merging algorithm that is asymptotically
fully optimal for any ratio k. The new algorithm has a modular structure and does
not rely on the techniques described by Mannila and Ukkonen [8] in contrast to
all other works ([10,4,2,6]) known to us. Instead it exploits knowledge about the
ratio of the input sizes to achieve optimality. In its core our algorithm consists
of two separated operations named “Block rearrangement” and “Local merges”.
The separation allowed the omitting of the extraction of an additional movement
imitation buffer as e.g. necessary in [6]. For core parts of the new algorithm we
will give an implementation in Pseudo-Code. Some benchmarks will show that it
performs better than its competitor proposed in [6] for a wide range of inputs.

A first conceptual description of a stable asymptotically fully optimal in-place
merging algorithm can be found in the work of Symvonis [10]. Further work
was done by Geffert et al. [4] and Chen [2] where Chen presented a simplified
variant of Geffert et al’s algorithm. All three publications delivered neither an
implementation in Pseudo-Code nor benchmarks. Recently Kim and Kutzner
[6] published a further algorithm together with benchmarks. These benchmarks
proved that stable asymptotically fully optimal in-place merging algorithms are
competitive and don’t have to be viewed as theoretical models merely.

2 A Simple Asymptotically Optimal Algorithm for
k ≥ √

m

We now introduce some notations that will be used throughout the paper. Let u
and v be two ascending sorted sequences. We define u ≤ v (u < v) iff x ≤ y (x < y)
for all elements x ∈ u and for all elements y ∈ v. |u| denotes the size of the sequence
u. Unless stated otherwise, m and n (m ≤ n) are the sizes of two input sequences
u and v respectively. δ always denotes some block-size with δ ≤ m.

Tab. 1 contains the complexity regarding comparisons and assignments for six
elementary algorithms that we will use throughout this paper. Brief descriptions

Table 1. Complexity of the Toolbox-Algorithms

Algorithm Arguments Comparisons Assignments
Hwang and Lin u, v with |u| ≤ |v| m(t + 1) + n/2t

let where
m = |u| , n = |v| t = �log(n/m)�

(1) - ext. buffer 2m + n
(2) - m rotat. n + m2 + m

Block Swapping u, v with |u| = |v| - 3 |u|
Block Rotation u, v - |u| + |v| + gcd(|u| , |v|)

≤ 2(|u| + |v|)
Binary Search u, x (searched element) �log |u|� + 1 -
Minimum Search u |u| − 1 -
Insertion Sort u, let m = |u| m(m−1)

2 + (m − 1) m(m+1)
2 − 1
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of these algorithms except for “Minimum Search” can be found in [6]. In the case
of “Minimum Search” we assume that u is unsorted, therefore a linear search is
necessary.

First we will now show that there is a simple stable merging algorithm called
Block-Rotation-Merge that is asymptotically fully optimal for any ratio
k ≥

√
m. Afterward we will prove that there is a relation between the number of

different elements in the shorter input sequence u and the number of assignments
performed by the rotation based variant of Hwang and Lin’s algorithm [5].

Algorithm 1: Block-Rotation-Merge (u, v, δ)

1. We split the sequence u into blocks u1u2 . . . u�m
δ � so that all sections u2 to

u�m
δ � are of equal size δ and u1 is of size mmod δ. Let xi be the last element

of ui (i = 1, · · · ,
⌈

m
δ

⌉
). Using binary searches we compute a splitting of v

into sections v1v2 . . . v�m
δ � so that vi < xi ≤ vi+1(i = 1, · · · ,

⌈
m
δ

⌉
− 1).

2. u1u2 . . . u�m
δ �v1v2 . . . v�m

δ � is reorganized to

u1v1u2v2 . . . u�m
δ �v� m

δ � using
⌈

m
δ

⌉
− 1 many rotations.

3. We locally merge all pairs uivi using
⌈

m
δ

⌉
calls of the rotation based variant

of Hwang and Lin’s algorithm ([5]).

The steps 2 and 3 are interlaced as follows: After creating a new pair uivi (i =
1, · · · ,

⌈
m
δ

⌉
) as part of the second step we immediately locally merge this pair as

described in step 3.

Lemma 1. Block-Rotation-Merge performs m2

2·δ + 2n + 6m + m · δ many
assignments at most if we use the optimal algorithm from Dudzinski and Dydek
[3] for all block-rotations.

Proof. For the first rotation from u1u2 · · ·u�m
δ �v1 to u1v1u2 · · · u�m

δ � the al-
gorithm performs |u2| + · · · + |u�m

δ �| + |v1| + gcd(|u2| + · · · + |u�m
δ �|, |v1|) as-

signments. The second rotation from u2u3 · · ·u�m
δ �v2 to u2v2u3 · · ·u�m

δ � requires
|u3|+· · ·+|u�m

δ �|+|v2|+gcd(|u3|+· · ·+|u�m
δ �|, |v2|) assignments, and so on. For

the last rotation from u�m
δ �−1u�m

δ �v�m
δ �−1v�m

δ � to u�m
δ �−1v�m

δ �−1u�m
δ �v�m

δ �
the algorithm requires |u�m

δ �| + |v�m
δ �−1| + gcd(|u�m

δ �|, |v�m
δ �−1|) assignments.

Additionally m
δ (3δ +3δ + δ2) = 6m+m · δ assignments are required for the local

merges. Altogether the algorithm performs δ · ((m
δ − 1) + (m

δ − 2) + · · · + 1) +
n + n + 6m + m · δ = m2

2·δ − m
2 + 2 · n + 6m + m · δ ≤ m2

2·δ + 2 · n + 6m + m · δ
assignments at most. �	

Lemma 2. Block-Rotation-Merge is asymptotically optimal regarding the
number of comparisons.

Corollary 1. If we assume a block-size of 

√

m� then Block-Rotation-Merge
is asymptotically fully optimal for all k ≥

√
m.
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So, for k ≥ √
m there is a quite primitive asymptotically fully optimal stable

in-place merging algorithm. In the context of complexity deliberations in the
next section we will rely on the following Lemma.

Lemma 3. Let λ be the number of different elements in u. Then the number of
assignments performed by the rotation based variant of Hwang and Lin’s algo-
rithm is O(λ · m + n) = O((λ + k) · m).

Proof. Let u = u1u2 . . . uλ, where every ui(i = 1, · · · , λ) is a maximally sized
section of equal elements. We split v into sections v1v2 . . . vλvλ+1 so that we get
vi < ui ≤ vi+1 (i = 1, · · · , λ). (Some vi can be empty.) We assume that Hwang
and Lin’s algorithm already merged a couple of section and comes to the first
elements of the section ui(i = 1, · · · , λ). The algorithm now computes the section
vi and moves it in front of ui using one rotation of the form · · ·ui . . . uλvi · · · to
· · · viui . . . uλ · · ·. This requires |ui|+ · · ·+ |uλ|+ |vi|+gcd(|ui|+ · · ·+ |uλ|, |vi|) ≤
2(m+|vi|) many assignments. Afterward the algorithm continues with the second
element in ui. Obviously there is nothing to move at this stage because all
elements in ui are equal and the smaller elements from v were already moved
in the step before. Because we have only λ different sections we proved our
conjecture. �	

Corollary 2. Hwang and Lin’s algorithm is fully asymptotically optimal if we
have either k ≥ m or k ≥ λ where λ is the number of different elements in the
shorter input sequence u .

3 Novel Asymptotically Optimal Stable In-Place Merging
Algorithm

We will now propose a novel stable in-place merging algorithm called Stable-
Optimal-Block-Merge that is fully asymptotically optimal for any ratio. No-
table properties of our algorithm are: It does not rely on the block management
techniques described in Mannila and Ukonnen’s work [8] in contrast to all other
such algorithms proposed so far. It degenerates to the simple Block-Rotation-
Merge algorithm for roughly k ≥

√
m/2 . The internal buffer for local merges

and the movement imitation buffer share a common buffer area. The two opera-
tions “block rearrangement” and “local merges” stay separated and communicate
using a common block distribution storage. There is no lower bound regarding
the size of the shorter input sequence.

Algorithm 2: Stable-Optimal-Block-Merge

Step 1: Block distribution storage assignment
Let δ = 


√
m� be our block-size. We split the input sequence u into u = s1ts2u

′

so that s1 and s2 are two sequences of size 
m/δ� + 
n/δ� and t is a sequence
of maximal size with elements equal to the last element of s1. We assume that
there are enough elements to get a nonempty u′ and call s1 together with s2 our
block distribution storage (in the following shortened to bd-storage).
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w vts1

(all elements in this area are distinct)

s2 b

elements originating from u

block distribution storage buffer

Fig. 1. Segmentation after the buffer extraction

Step 2: Buffer extraction
In front of the remaining sequence u′ we extract an ascending sorted buffer b of
size δ so that all pairs of elements inside b are distinct. Simple techniques how to
do so are proposed e.g. in [9] or [6]. Once more we assume that there are enough
elements to do so. Now let w be the remaining right part of u′ after the buffer
extraction.

The segmentation of our input sequences after the buffer extraction is shown
in Fig. 1.

Step 3: Block rearrangement
We logically split the sequence wv into blocks of equal size δ as shown in
Fig. 2 (a). The two blocks w1 and v
n

δ �+1 are undersized and can even be empty.
In the following we call every block originating from w a w-block and every block
originating from v a v-block. The minimal w-block of a sequence of w-blocks is
always the w-block with the lowest order (smallest elements) regarding the orig-
inal order of these blocks.

We rearrange all blocks except of the two undersized blocks w1 and v
n
δ �+1,

so that the following 3 properties hold:
(1) If a v-block is followed by a w-block, then the the last element of the v-block
must be smaller than the first element of the w block (Fig. 2(b)).

wr−1 wr v1 v
n
δ�w1 w2

buffer area

≤

(a)

(b) w-blockv-block

<

v-blockw-block

w-block v-block

> (elements exchanged)

v-block

(here used as movement imitation buffer)

first and second section of the block distribution storage

(c)

v
n
δ�+1

Fig. 2. Graphical remarks to the block rearrangement process
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(2) If a w-block is followed by a v-block, then the first element of the w-block
must be smaller or equal to the last element of the v-block (Fig. 2(b)).
(3) The relative order of the v-blocks as well as w-blocks stays unchanged.

This rearrangement can be easily realized by “rolling” the w-blocks through the
v-blocks and “drop” minimal w-blocks so that the above properties are fulfilled.
During this rolling the w-blocks stay together as group but they can be moved
out of order. So, due to the need for stability, we have to track their positions. For
this reason we mirror all block replacements in the buffer area using a technique
called movement imitation (The technique of movement imitation is described
e.g. in [10] and [6]). Every time when a minimal w-block was dropped we can
find the position of the next minimal block using this buffer area.

Later we will have to find the positions of w-blocks in the block-sequence
created as output of the rearrangement process. For this purpose we store the
positions of w-blocks in the block distribution storage as follows:

The block distribution storage consist of two sections of size 
m/δ�+
n/δ� and
the i-th element of the first section together with the i-th element of the second
section belong to the i-th block in the result of the rearrangement process. Please
note that, due to the technique used for constructing the bd-storage, such pairs
of elements are always different with the first one smaller than the second one. If
the i-th block originates from w we exchange the corresponding elements in the
bd-storage otherwise we leave them untouched. Fig. 2(c) shows this graphically.

Step 4: Local merges
We visit every w-block and proceed as follows:

Let p be the w-block to be merged and let q be the sequence of all v-originating
elements immediately to the right of p that are still unmerged. Further let x be
the first element of p.

(1) Using a binary search we split q into q = q1q2 so that we get q1 < x ≤ q2.
It holds |q1| < δ due to the block rearrangement applied before. (2) We rotate
pq1q2 to q1pq2. (3) We locally merge p and q2 by Hwang and Lin’s algorithm,
where we use the buffer area as internal buffer.

This visiting process starts with the rightmost w-block and moves sequentially
w-block by w-block to the left. The positions of the w-blocks are detected using
the information hold in the bd-storage. Every time when we locate the position
of a w-block in the bd-storage we bring the corresponding bd-storage elements
back to their original order. So, after finishing all local merges both sections of
the bd-storage are restored to their original form.

Step 5: Final sweeping up
On the left there is a still unmerged sub-sequence s1ts2bw1v

′ where v′ is the
subsection of v that consists of the remaining unmerged elements. We proceed
as follows: (1) We split v′ into v′ = v′1v

′
2 so that v′1 < x ≤ v′2 where x is the last

element of s2. Afterward we rotate bw1v
′
1v

′
2 to v′1bw1v

′
2 and locally merge w1 and

v′2 using Hwang and Lin’s algorithm with the internal buffer. (2) In the same
way we split v′1 into v′ = v′1,1v

′
1,2 so that we get v′1,1 < y ≤ v′1,2 where y is the

last element of s1. We rotate s1ts2v1,1v1,2 to s1v1,1ts2v1,2 and locally merge s1
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with v′1,1 and s2 with v1,2’ using the Block-Rotation-Merge algorithm with
a block-size of 


√
m�. (3) We sort the buffer area using Insertion-Sort and

merge it with all elements right of it using the rotation based variant of Hwang
and Lin’s algorithm.

Lack of Space in Step 1
The inputs are so asymmetric that u′ becomes empty. Using a binary search
we split v into v = v1v2 so that we get v1 < t ≤ v2 and rotate s1ts2v1v2

to s1v1ts2v2. Using the Block-Rotation-Merge algorithm with a block-size


√

m� we locally merge s1 with v1 and s2 with v2. If s2 is empty we ignore it
and directly merge s1 with v in the same style.

Extracted buffer smaller than 

√

m� in Step 2
We assume that we could extract a buffer of size λ with λ < 


√
m�. We change

our block-size δ to 
|u| /λ� and apply the algorithm as described but with the
modification that we use the rotation based variant of Hwang and Lin’s algorithm
for all local merges.

Corollary 3. Stable-Optimal-Block-Merge is stable.

Theorem 1. The Stable-Optimal-Block-Merge algorithm requires O(m+
n) = O(m · (k + 1)) assignments..

Proof. It is enough to prove that every step is performed with O(m + n) as-
signments. In the first step no assignments occur at all. The buffer extraction in
step 2 requires O(m) assignments, as shown in [6]. In step 3 the “rolling” of the
w-blocks through the v-blocks together with the “dropping” of the minimal w-
blocks requires 3

√
m ·(

√
m+ n√

m
) = O(m+n) assignments. The rotations for the

integrated “movement imitation” contribute O(
√

m ·(
√

m+ n√
m

)) = O(m+n) as-
signments. The marking of the positions of the w-blocks in the bd-storage needs
O(

√
m) assignments. So, altogether step 3 requires O(m+n) assignments. In step

4 each w-block rotation requires
√

m+
√

m+gcd(
√

m,
√

m) = 3
√

m assignments
at most. So all w-block rotations need 3

√
m ·

√
m = O(m) assignments. The local

mergings using Hwang and Lin’s algorithm consume 2m + n assignments alto-
gether. The reconstruction of the original order of the exchanged elements in the
bd-storage contributes O(

√
m) assignments. In step 5 the first rotation requires

4
√

m assignments at most and the local merging of w1 and v′2 needs 3
√

m assign-
ments at most. The second rotation requires 3

√
m + n√

m
assignments at most.

The success in step 1 implies that roughly k ≤
√

m/2, so we get k ·
√

m ≤ m.
Further we have 
m/δ� + 
n/δ� is roughly equal to (k + 1) ·

√
m = m+n√

m
. So,

according to Lemma 1 each local merging with Block-Rotation-Merge needs
(k

√
m)·k√m
2·√m

+2 ·n+6k
√

m+ k(
√

m
√

m) ≤ k·m
2 +2n+6m+ k ·m assignments at

most. The buffer sorting using insertion sort contributes O(m) assignments and
the final call of Hwang and Lin’s algorithm requires n + m +

√
m assignments.

So, step 5 needs altogether O(m + n) assignments as well.
In the first exceptional case “Lack of Space in Step 1” we have roughly k ≥√
m/2 and directly switch to Block-Rotation-Merge. According to Corollary

1 Block-Rotation-Merge is fully asymptotically optimal for such k.
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In the second exceptional case “Extracted buffer smaller than 
√m�” we
change the block-size to 
|u| /λ� with λ <

√
m and use the rotation based vari-

ant of Hwang and Lin’s algorithm for local merges. A recalculation of the steps
3 to 5, were we use Lemma 3 in the context of all local merges, proves that the
number of assignments is still O(m + n) . �	

Lemma 4. If k =
∑n

i=1 ki for any ki > 0 and integer n > 0, then
∑n

i=1 log ki ≤
n log(k/n).

Proof. It holds because the function log x is concave. �	

Theorem 2. The Stable-Optimal-Block-Merge algorithm requires
O(m log( n

m + 1)) = O(m log(k + 1)) comparisons.

Proof. As in the case of the assignments it is enough to show that every step keeps
the asymptotic optimality. Step 1 contains one binary search over m merely. The
buffer extraction in step 2 requires m comparisons at most, as shown in [6]. The
rearrangement of all blocks except of the two undersized blocks w1 and v
n

δ �+1 in
step 3 requires 2

√
m+ n√

m
comparisons at most. The detection of the minimal el-

ement in the movement imitation buffer demands
√

m ·
√

m many comparisons at
most. In step 4 the binary searches for splitting the q-sequences cost

√
m · log

√
m

comparisons at most. Now let (m1, n1), (m2, n2), · · · , (mr, nr) be the sizes of all
r-groups that are locally merged by Hwang and Lin’s algorithm. According to
Lemma 4, Table 1 and since r <

√
m this task requires

∑r
i=1(mi(log( ni

mi
) + 1) +

mi) =
∑r

i=1(mi log( ni

mi
) + 2mi) ≤

∑r
i=1 mi log( ni

mi
) + 2m =

∑r
i=1(mi log ni −

mi log mi)+2m =
√

m
∑r

i=1(log ni−logmi)+2m ≤
√

m(
√

m log n
r −

√
m log m

r )+
2m ≤ m(log( n

m + 1))+ 2m = O(m log( n
m + 1)) comparisons. The asymptotic op-

timality in step 5 as well as in the exceptional case “Lack of Space in Step 1” is
obvious due to Lemma 2. The change of the block-size in the second exceptional
case “Extracted buffer smaller than 


√
m�” triggers a simple recalculation of step

3 and step 4, where we leave the details to the reader. �	

Corollary 4. Stable-Optimal-Block-Merge is an asymptotically fully op-
timal stable in-place merging algorithm.

Table 2. Pseudo-code Definitions of the Toolbox Algorithms

Pseudo-code Definition Description of the Arguments
Hwang-And-Lin(A, first1, first2, last) u is in A[first1 : first2 − 1],

v is in A[first2 : last − 1]
Binary-Search(A, first, last, x) delivers the position of the

first occurrence of x in A[first : last−1]
Minimum(A,pos1, pos2) delivers the index of the minimal element

in A[pos1 : pos2 − 1]
Block-Swap(A,pos1, pos2, len) u is in A[pos1 : pos1 + len − 1],

v is in A[pos2 : pos2 + len − 1]
Block-Rotate(A,first1, first2, last) u, v as in Hwang-And-Lin
Exchange(A, pos1, pos2) is equal to Block-Swap(A,pos1, pos2, 1).
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Algorithm 1. Pseudo-code of the procedure for the block rearrangement

Rearrange-Blocks(A, first1, first2, last, buf, bds1, bds2, blockSize)

1 � w2 . . . wx is in A[first1 : first2 − 1], v1 . . . vy−1 is in A[first2 : last − 1]
2 � buffer b is in A[buf : buf + �

√
m� − 1]

3 � bd-storage s{1|2} is in A[bds{1|2} : bds{1|2} + �
√

m� + �n/
√

m� − 1]
4
5 bufEnd ← buf + (first2 − first1) / blockSize
6 minBlock ← first1
7 while first1 < first2
8 do if first2+blockSize<last and A[first2+blockSize−1]<A[minBlock]
9 then Block-Swap(A, first1, first2, blockSize)

10 Block-Rotation(A, buf, buf + 1, bufEnd)
11 if minBlock = first1
12 then minBlock ← first2
13 first2 ← first2 + blockSize
14 else Block-Swap(A, minBlock, first1, blockSize)
15 Exchange(A, buf, buf + (minBlock − first1) / blockSize)
16 Exchange(A, bds1, bds2)
17 buf ← buf + 1
18 if buf < end
19 then minIndex ← Minimum(A, buf, bufEnd)
20 minBlock ← first1 + (minIndex − buf) ∗ blockSize
21 bds1 ← bds1 + 1; bds2 ← bds2 + 1
22 first1 = first1 + blockSize

Pseudo-code implementations for the core operations “block rearrangement” and
“local merges” are given in Alg. 1 and Alg. 2, respectively. Both code segments
contain calls of the toolbox algorithms mentioned in section 2. The Pseudo-code
definitions for these toolbox algorithms are summarized in Tab. 2.

3.1 Optimizations

We now report about several optimizations that help improving the performance
of the algorithm without any impact on its asymptotic properties. The immediate
mirroring of all w-block movements in the movement imitation buffer (occurs in
Step 3) triggers a rotation (line 10 in Alg. 1) every time when a v-block is moved
into front of the group of w-blocks. The number of necessary rotations can be
reduced by first counting the number of v-blocks moved into front of the w-
blocks. This counting follows a single update of the movement imitation buffer
if the placement of a minimal w-block happens. In the context of the movement
of v-blocks into front of w-blocks (Step 3) the floating hole technique (for a
description see [4] or [6]) can be applied for reducing the number of assignments.
Similarly the floating hole technique can also be applied during the local merges
(Step 4) by combining the block swap to the internal buffer with the rotation
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Algorithm 2. Pseudo-code of the function for local merges

Local-Merges(A, first, last, buf, bds1, bds2, blockSize, numBlocks)

1 � A[first : last − 1] contains all blocks in distributed form
2
3 index ← ((last − first) / blockSize) − 1
4 while numBlocks > 0
5 do while A[bsd1 + index] < A[bsd2 + index]
6 do index ← index − 1
7 first2 ← first + ((index + 1) ∗ blockSize)
8 if first2 < last
9 then b ← Binary-Search(first2, last, A[first2 − blockSize])

10 Block-Rotation(A, first2 − blockSize, first2, b)
11 Hwang-Lin(A, b − blockSize, b, last, buf)
12 last ← b − blockSize
13 Exchange(A, bds1 + index, bds2 + index)
14 numBlocks ← numBlocks − 1; index ← index − 1
15 return last

that moves smaller v-originating elements to the front of the w-block. In the
special case “Extracted buffer smaller then 


√
m�” the sorting of the buffer b in

Step 5 is unnecessary because the buffer is already sorted after Step 3 and stays
unchanged during Step 4. Insertion-Sort can be replace by some more efficient
sorting algorithm. Please note that there is no need for stability in the context
of the buffer sorting because all buffer elements are distinct.

4 Experimental Work

We did some experimental work with our algorithm in order to get an impression
of its performance. We compared it with the stable fully asymptotically optimal
algorithm presented in [6] as well as the simple standard algorithm that relies

Table 3. Practical comparison of various merge algorithms

n m Stable-O.-B.-Merge SOFSEM 2006 Alg. Linear Standard Alg.
#comp #assign te #comp #assign te #comp #assign te

221 221 5843212 37551852 227 5961524 49666369 335 4194239 8388608 121
221 218 1500433 15866835 100 1505766 17182008 122 2359288 4718592 71
221 215 280611 17350896 87 280412 12681115 68 2129890 4259840 64
221 212 43611 4422493 35 47330 10512479 53 2100804 4202496 63
223 29 8057 16350956 133 8589 38150052 202 8373039 16778240 251
223 26 1200 15459824 131 1271 30749720 161 8234508 16777344 254
223 23 172 11322991 119 170 7535160 68 7572307 16777232 301
223 20 23 4163489 55 24 4163489 55 4225121 16777218 261
te : Execution time in ms, #comp : Number of comp., m,n : Lengths of inp. seq.
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on external space of size m. The results of our experimental work summarizes
Tab. 3 where every line shows average values for 50 runs with different data. We
took a standard desktop computer with 2GHz processor as hardware platform.
All coding happened in the C programming language. For the measurement
of the number of assignments we applied the optimal block rotation algorithm
presented in [3]. Although this algorithm is optimal regarding the number of
assignments it is quite slow in practice due to its high computational demands.
Therefore for the time measurements we applied a block-swap based algorithm
presented e.g. in [1] using identical data.

Regarding the buffer extraction (Step 2) there are several alternatives. The
extraction process can be started from the left end as well as from the right
end of the input and we can choose between a binary search and linear search
for the determination of the next element. All 4 possible combinations keep
the asymptotic optimality. However, there is no clear “best choice” among them
because the most advantageous combination can vary depending on the structure
of the input. In the context of the Stable-Optimal-Block-Merge algorithm
we decided for the variant “starting from the left combined with binary search”,
the SOFSEM 2006 algorithm already originally chose “starting from the right
combined with linear search”.

Except for two combinations of input sizes our new algorithm is always faster
than its predecessor. The bad performance in the case (221, 215) reflects the lack
of the implementation of the floating hole technique as mentioned in the section
about optimizations. The application of Block-Rotation-Merge triggers un-
necessary rotations in the case (223, 23). This can be fixed by introduction of a
check whether k ≥ m and a direct switch to the rotation based variant of Hwang
and Lin’s algorithm if true.

5 Conclusion

We investigated the problem of stable in-place merging from a ratio based point
of view by introducing a ratio k = n

m , where m,n are the sizes of the input
sequences with m ≤ n. We could show that there is a simple asymptotically fully
optimal (optimal regarding the number of comparisons as well as assignments)
stable in-place merging algorithm for any ratio k ≥

√
m.

In the second part of this paper we introduced a novel asymptotically fully
optimal stable in-place merging algorithm which is constructed on the foundation
of deliberations regarding the ratio of the input sizes. Highlights of this algorithm
are: It has a modular structure and does not rely on techniques described by
Mannila and Ukkonen [8] in contrast to all its known competitors ([10,4,6]). The
tasks “block-distribution” and “local block mergings” are modular separated. As
side effect they can share a common buffer area and the extraction of a separated
movement imitation buffer is not necessary. The algorithm demands no lower
bound for the size of the shorter input sequence (32 elements in case of the alg.
in [4] and 10 elements for the alg. in [6]).
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Our algorithm performs for a wide range of inputs remarkably better than
its direct competitor presented in [6]. There is a superiority in particular for
symmetrically sized inputs, a fact that is of importance in the context of the
Merge-sort algorithm.

The number of comparisons and assignments are good measurements for the
efficiency of merging algorithms. However, the impact of other operations as e.g.
numerical calculations and index comparisons deserves investigation as well. As
motivation we would like to refer to a well known effect with the optimal block-
rotation algorithm introduced by Dudzinski and Dydek in [3]. Their algorithm
is optimal regarding the number of assignments but has a bad performance due
to a included computation of a greatest common divisor. For our further work
we plan to include deliberations regarding such so far uncounted operations.
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Abstract. Four sub-recursive classes of functions, B, D, BD and BDD
are defined, and compared to the classes G0, G1 and G2, originally
defined by Grzegorczyk, based on bounded minimalisation, and charac-
terised by Harrow in [5]. B is essentially G0 with predecessor substituted
for successor ; BD is G1 with (truncated) difference substituted for addi-
tion. We prove that the induced relational classes are preserved (G0

� = B�

and G1
� = BD�). We also obtain D� = PrAqf

� (the quantifier free fragment
of Presburger Arithmetic), and BD� = PrA�, and BDD� = G2

�, where
BDD is G2 with integer division and remainder substituted for multi-
plication, and where G2

� is known to be equal to the predicates definable
by a bounded formula in Peano Arithmetic.

1 Introduction and Notation

Introduction: This paper emerges from some investigations into (very) small
sub-recursive classes. The original motivation has been to discard all increas-
ing functions, and to compare the resulting classes to otherwise similar classes.
This approach—banning all growth—has proved successful in the past, and has
repeatedly yielded surprising and enlightening results, see e.g. Jones [7,8]; Kris-
tiansen and Voda in [12,13] (with functionals of higher types, and imperative
programming languages respectively); Kristiansen and Barra [11] (with function
algebras and λ-calculus); and Kristiansen [9,10].

The author has been interested in further investigations into the consequences
of omitting increasing functions from the set of initial functions of various in-
ductively defined classes (see definitions below).

The seminal paper by A. Grzegorczyk Some classes of recursive functions
[4] from 1953 was the source of great inspiration to many researchers during the
decades to follow. One significant contribution emerged with Harrow’s Ph.D. dis-
sertation Sub-elementary classes of functions and relations [5], and his findings
were later summarised and enhanced in Small Grzegorczyk classes and limited
minimum [6]. He there answered several questions (in the negative), originally
posed by Grzegorczyk, and with regard to the interchangeability of the schemata
bounded primitive recursion and bounded minimalisation. Another result from
[5] is that G1

� (this and other classes mentioned below are defined in the sequel)

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 258–269, 2008.
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is identical to the set of predicates PrA�, i.e. those subsets of INk definable by a
formula in the language of Presburger Arithmetic.

More precisely, for i = 0, 1, 2, we study the three classes Gi which are defined
analogously to Grzegorczyk’s E i, but where the schema of bounded minimali-
sation is substituted for bounded primitive recursion. These classes contain the
increasing functions successor (in G0 and E0), addition (in G1 and E1) and
multiplication (in G2 and E2).

We will show that the classes Gi contain redundancies, in the sense that the
increasing functions ‘S’, ‘+’ and ‘×’ can be substituted with their nonincreasing
inverses predecessor, (truncated) difference, and integer division and remainder,
without affecting the induced relational classes Gi

�. That is, the growth pro-
vided by e.g. addition, in the restricted framework of composition and bounded
minimalisation, does not contribute to the number of computable predicates. In
fact, we show that the quantifier free fragment of Presburger Arithmetic may
be captured in a much weaker system: essentially only truncated difference and
composition is necessary.

Notation: Unless otherwise specified, a function means a function f : INk → IN
The arity of f , denoted ar(f), is then k. When F is a set of functions, Fk denotes
the k-ary functions in F .

A function is nonincreasing if, for some cf ∈ IN we have1 f(�x) ≤ max(�x, cf)
for all �x ∈ INk.

We say that f has top index i if f(�x) ≤ max(xi, cf ). If cf = 0, we say that f
is strictly nonincreasing, and that i is a strict top index.

The bounded f , denoted f̂ , is the (ar(f)+1)-ary function f̂(�x, b) def= min(f(�x), b).
These bounded versions, in particular the bounded versions of increasing func-
tions like Ŝ, the bounded successor function, will be of major importance for the
ensuing developments. The predecessor function, denoted P, is defined by P(x) def=
max(x − 1, 0). The case function, denoted C, and the (truncated) difference func-
tion, denoted ·−, are defined by

C(x, y, z) def=
{

x , if z = 0
y , else and x ·−y

def= max(x − y, 0) def=
{

0 , if x ≤ y
x − y , if x > y

When we use the symbol ‘−’ without the dot in an expression or formula, we mean
the usual minus on ZZ.

Let φ(x, y, n, r) def⇔ 0 ≤ r < y ∧ x = ny + r. The remainder function and
integer division function, denoted rem and

⌊ ·
·
⌋

respectively, are defined by
⌊

x

y

⌋
def=

{
x , if y = 0
n , if φ(x, y, n, r) and rem(x, y) def=

{
x , if y = 0
r , if φ(x, y, n, r) ,

respectively. We define e.g.
⌊

x
0

⌋
= x in order to make the functions total on IN2.

Note that we have
⌊

x
y

⌋
y + rem(x, y) = x for all x and y.

1 The bound which holds for f in G0 and E0 is f(�x) ≤ max(�x)+cf ; note the distinction.
The latter bound is sometimes referred to as 0-boundedness, while f(�x) ≤ cfmax(�x)
as 1-boundedness.
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I is the set of all projections Iki (�x) = xi, and N is the set of all constant
functions c(x) = c for all c ∈ IN.

An inductively defined class of functions (idc.), is generated from a set X
called the initial, primitive or basic functions, as the least class containing X
and closed under the schemata, functionals or operations of some set op of
functionals. We write [X ;op] for this set2. The schemata composition, denoted
comp, and bounded minimalisation3 , denoted bmin, will be used extensively.
We write h ◦ �g for the function f(�x) = h(g1(�x), . . . , gm(�x)), and μz≤y[g1 = g2]
for the function f(�x, y) which equals the least z ≤ y satisfying the equation
g1(�x, z) = g2(�x, z), if such exists, and 0 else.

A relation is a subset R of INk for some k. Relations are interchangeably called
predicates. Sets of predicates are usually subscripted with a �. For a set F� of
relations, we say that F� is boolean, when F� is closed under finite intersections
and complements. When F� is some set of relations of varying arity, Fk

� denotes
the k-ary relations of F�.

When R = f−1(0), the function f is referred to as a characteristic function of
R, and is denoted χR. Let F be a set of functions. F� denotes the set of relations
of F , viz. those subsets R ⊆ INk with χR ∈ F . Formally

Fk
� = {f−1(0) ⊆ INk|f ∈ Fk} and F� =

⋃

k∈IN

Fk
� .

The graph of f , denoted Γf , is the relation {(�x, y) ∈ INar(f)+1|f(�x) = y}. We
overload Γf to also denote its characteristic function.

Whenever a symbol occurs under an arrow, e.g. �x, we usually do not point
out the length of the list—by convention it shall be k unless otherwise specified.

2 The Classes B and G0

Let the class B be defined by B def= [I ∪ N ∪ {P, Ĉ};comp,bmin]. Note that
the case function Ĉ takes four arguments: Ĉ(x, y, z, b) def= min(C(x, y, z), b). G0 is
defined by (in our notation) [I ∪ {0, S, P};comp,bmin]. The essential difference
between the two classes is that G0 includes the increasing initial function S,
whereas B only includes nonincreasing initial functions. It is clear that N ⊆ G0,
and it is easy to prove that Ĉ ∈ G0. Hence B ⊆ G0. The inclusion is strict, since
all functions in B satisfy

Lemma 1 (top index). Let f ∈ Bk. Then f has a top index. Furthermore, if
f(INk) is infinite, the top index is strict. 
�

We skip the proof, which is easy and by induction on f ∈ B. Observe next that
Ĉ(1, 0, f, 1) = 1 ·−f and Ĉ(0, 1, f1, f2) = 0 ⇔ f1 = 0 ∨ f2 = 0. Since B is closed
under bmin by definition, we obtain

2 This notation is adopted from Clote [2], where an i.d.c is called a function algebra.
3 a.k.a. bounded search a.k.a. limited minimum.
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Proposition 1. B� is boolean, and is closed under ∃y≤x type quantifiers. 
�

This explains the inclusion of Ĉ amongst B’s initial functions4. As the main
result of this section will show, the only essential use of S in [6] is to produce
functions like e.g. 1 ·−x via the successor and bounded minimalisation.

Harrow proves in [6] that G0 = E0 ∩ PL, where PL is the set of piecewise
linear functions. This class is defined as the functions which may be put on the
form f(�x) = Li(�x) ⇔ Pi(�x), where each Li is either constant or of the form
xj

·−c or xj + c, and where the Pi are conjunctions of predicates of the form
Lr ≤ Ls. Note that there should be a finite number of clauses5.

Note that I11 is a characteristic function for the relation ‘equals zero’. Also,
x < y ⇔ y �= 0∧(x = 0∨μz≤y[P(z) = x] �= 0), and x = y ⇔ ¬(x < y∨y < x).
Importantly, for f

def= μz≤b[P(z) = x], we have Ŝ(x, b) = Ĉ(b, f, f, b), and so
x + 1 = y ⇔ x < y ∧ Ŝ(x, y) = y. Clearly this generalizes to relations x + c = y
for c ∈ IN.

Combining the above, it is not hard to see that we may decide in B� whether
P (�x) for any relation P of the form specified in the definition of PL, and—for
ditto L—whether L(�x) = y.

But now, for f ∈ PL, clearly f(�x) = y ⇔
∨

j(Pj(�x) ∧ Lj(�x) = y), with the
latter relation in B�, whence

Theorem 1. B� = G0
� = PL� .

Proof. Since B ⊆ G0, inclusion to the right is trivial. If R ∈ G0
�, by definition

R = f−1(0) for some f ∈ G0 ⊆ PL. Hence �x ∈ R ⇔ f(�x) = 0 ∈ B�. 
�

Hence, only nonincreasing functions are necessary to carry out the analysis. In
section 4 we show the analogous result holds also of Harrow’s G1. We first
dedicate some time to the truncated difference function. As the results of the
next section show, it is surprisingly strong from a computational point of view.

3 The Class D
Define D def= [I ∪ N ∪ { ·−};comp]. The lemma below is the starting point for
showing that the class D is surprisingly powerful. The reader is asked to note
that composition is the sole closure operation of D. A top-index lemma also
holds for D.

Lemma 2 (top index). Let f ∈ Dk. Then f has a top index. Furthermore, if
f(INk) is infinite, the top index is strict. 
�
4 We also conjecture that Ĉ cannot be omitted, e.g. proposition 1 would not hold.

However, we can prove that with an alternative version of bmin, which returns ‘y’
rather than ‘0’ upon a failed search, I ∪ N suffice as initial functions. The proofs of
this claim are straightforward, but involved.

5 E.g. f(x1, x2) =

{
5 , if x1 ≤ x2 ∧ 3 ≤ x1

x2 + 4 , else
is a member of PL, since the ‘else

clause’ can be split into the two clauses x2 + 1 ≤ x1 and x1 ≤ 2.
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Lemma 3 (bounded addition). The function min(x + y, z) belongs to D.

Proof. Set f(x, y, z) def= z ·−((z ·−x) ·−y). If x + y ≥ z, then (z ·−x) ·−y = 0, which
yields z ·−((z ·−x) ·−y) = z − 0 = z On the other hand, if z > x + y ≥ x, then
z ·−x = z − x > y > 0. Hence (z − x) ·−y = ((z − x) − y) > 0. But now
z > (z − (x + y)) > 0, and so
z ·−((z ·−x) ·−y) = z − (z − (x + y)) = z − z + (x + y) = x + y. 
�

This function is the key to proving several properties of D and D�.

Proposition 2. We have that (i) min(x, y) ∈ D; (ii) D� is boolean;
(iii) χ=, χ< ∈ D; (iv) Γmax, ΓC ∈ D; (v) If A or INk \ A is finite, then A ∈ D�.

Proof. Clearly min(x, y) = min(x + 0, y), thus (i). Next, given χR1 and χR2 we
have that

χR1∩R2 = min(χR1 + χR2 , 1) and χINk\R = 1 ·−χR1

hence (ii). Since x ·−y = 0 ⇔ x ≤ y and y ·−x = 0 ⇔ y ≤ x yields (iii) in
conjunction with (ii). Next, max(x, y) = z ⇔

(
y ≤ x∧z = x

)
∨

(
x < y∧z = y

)
.

Also, C(x, y, z) = w ⇔
(
z = 0 ∧ w = x

)
∨

(
z < 0 ∧ w = y

)
, hence (iv). (v) is

proved by induction on n = min(|A|, |INk \ A|). We skip the details. 
�
Armed with proposition 2, we may prove the following lemma

Lemma 4. Let r ∈ {<, =}, and let 1 ≤ j < k ∈ IN be arbitrary. Then, the
following relations belong to D�:

j∑

i=1

xi r
k∑

i=j+1

xi

Proof. Observe first that the function f(x, �y) = x ·−
( ∑k

i=1 yi

)
∈ D, by the length

of �y consecutive applications of composition. Note also that when R(�x) ∈ Dk
� ,

and �f ∈ Dm, then the relation S(�y), defined by S(�y) def⇔ R(f1(�y), . . . , fk(�y)),
belongs to Dm

� .
We prove the lemma by induction on k. proposition 2 constitutes induc-

tion start. Note that
∑j

i=1 xi =
∑k

i=j+1 xi ⇔ ¬(
∑j

i=1 xi <
∑k

i=j+1 xi) ∧ ¬
( ∑k

i=j+1 xi <
∑j

i=1 xi

)
.

Hence, it is sufficient to perform the induction step when r is ‘<’. Moreover, as D�

is boolean, we may invoke the induction hypothesis (i.h.) for r ∈ {≥, ≤, <, >, =}.
We proceed to the case k + 1, with 2 ≤ k, and we shall first prove the special

cases of j = k. Clearly

k∑

i=1

xi < xk+1 ⇔ 0 < xk+1
·−
( k∑

i=1

xi

)
.

This shows that
∑k

i=1 xi < xk+1 ∈ D� by the initial remarks.
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Next consider the general case 1 ≤ j < k.

j∑

i=1

xi <
( k∑

i=j+1

xi

)
+ xk+1 ⇔

( j∑

i=1

xi < xk+1

)
∨

((
xk+1 ≤

j∑

i=1

xi

)

︸ ︷︷ ︸
ψ

∧
((( j∑

i=1

xi

)
·−xk+1

)
<

k∑

i=j+1

xi

)

︸ ︷︷ ︸
φ

)
.

The conjunct marked φ above, needs special attention. Consider the function

gj(x1, . . . , xj , xk+1) = (
j∑

i=1

xi) ·−xk+1 .

Now gj is not in D. However, we note that

gj(�x, y) = (x1
·−y)+(x2

·−(y ·−x1))+· · ·+(xj
·−(y ·−x1

·−x2
·− · · · ·−xj−1)) · · · )) (†)

Furthermore, when ψ is true, we have that gj(�x, y) =
( ∑

i xi

)
− y. Importantly

for us, the expression (†) is a sum of j summands, each summand being a D-
function of the variables involved. Hence

ψ ∧ φ ⇔ ψ ∧
( j∑

i=1

(
xi

·−
(
xk+1

·−
i−1∑

�=1

x�

))
<

k∑

i=j+1

xi

)

︸ ︷︷ ︸
φ′

,

which concludes the proof when r is ‘<’, since the φ′ is in D� by the i.h. 
�

3.1 Presburger Arithmetic and D�

Let PrA be the 1st-order language {0, S, +, <, =} with the intended structure
N

def= (IN, 0, S, +, <)—the natural numbers with the usual order, successor and
addition. Terms, (atomic) formulae, and the numerals m are defined in the stan-
dard way. As usual we use abbreviations extensively, e.g. t ≤ s for t = s ∨ t < s.

Many readers will no doubt have recognized PrA as the language of Pres-
burger Arithmetic, see e.g. Enderton [3, p. 188]. It is known that the theory N
is decidable (we return to this point in section 4), and that it does not admit
quantifier elimination.

We overload the symbol PrA to also denote the set of PrA-formulae. For
φ(�x) ∈ PrA, define Rφ ⊆ INk by Rφ

def= {�m ∈ INk|N |= φ(�m)}, and set PrA�
def=

{Rφ|φ ∈ PrA}. PrAqf denotes the set of quantifier free PrA-formulae; PrAΔ0

the Δ0-formulae. PrAqf
� and PrAΔ0

� are defined as expected.
It is well-known that for terms t ∈ PrA, we have N |= t = m for some m and

that this m is unique. Also, any PrA-term t is clearly equivalent to some term
t = (

∑
i≤k aixi) + m, where the right side is shorthand for the term
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(x1 + · · · + x1︸ ︷︷ ︸
a1−times

) + · · · + (xk + · · · + xk︸ ︷︷ ︸
ak−times

) + m .

Thus, any atomic formula φ(�x) ∈ PrA is equivalent to a formula of the form6

∑
aixi + a r

∑
biyi + b . (‡)

The main result of this section is

Theorem 2. PrAqf

� = D� .

Last section’s lemma 4 provides us with most of the proof of PrAqf
� ⊆ D� .

Proof (of PrAqf

� ⊆ D�). Let R ∈ PrAqf
� . Then, by definition we have R = Rφ for

some φ(�x) ∈ PrAqf. Since D� is boolean, it is sufficient to prove the lemma for
φ atomic.

Let φ(�x) be atomic. Hence it is of the form specified in (‡) above. If we let R
be the relation

R(�x, �y) def=
∑

aixi + z r
∑

biyi + w ,

we have by lemma 4 that χR ∈ D. But then

χR(�n, �m, a, b) = 0 ⇔
∑

aini + a r
∑

bimi + b ⇔ N |= φ(�n, �m) ,

and so χR(�x, �y, a, b) = χRφ
. Hence χRφ

∈ D. 
�

To facilitate the proof of the opposite inclusion, we first consider the language
PrA

·− def= PrA ∪ { ·−, −}, viz. PrA augmented with new function symbols ‘ ·−’
and ‘−’, and with intended model Z

def= (ZZ, 0, S, +, −, ·−, <). Note that ·− is
well-defined on all of ZZ2 by its original definition max(x − y, 0). We also just
remark on the fact that for φ ∈ PrA variable free, we have Z |= φ ⇔ N |= φ.

Secondly, to every function f ∈ Dk, there is a PrA
·−-term tf (�x) such that,

for all �n, m ∈ IN we have Z |= tf (�n) = m ⇔ f(�n) = m .

Lemma 5. Let φ(�x) ∈ PrA
·− be atomic. Then, there is a φ′(�x) ∈ PrAqf such

that, for all �n ∈ IN we have N |= φ′(�n) ⇔ Z |= φ(�n) .

Proof. For a PrA
·−-term t, we define rk ·−(φ) to be the number of occurrences of

the symbol ·− in t. Note that when φ ∈ PrA
·− is atomic it is of the form t1 r t2,

and that rk ·−(t1)+ rk ·−(t2) = 0 implies that either φ ∈ PrAqf, or it is equivalent
to φ′ ∈ PrAqf by basic arithmetical considerations.

The proof is by induction on rk ·−(t1) + rk ·−(t2); the comments above effects
the induction start.

Induction step: Let rk ·−(t1) + rk ·−(t2) = 
 + 1. At least one of the ti must
contain a sub-term s of the form s1

·−s2, and with with rk ·−(s) = 1, i.e. s may
be chosen to satisfy rk ·−(s1) = rk ·−(s2) = 0. Next, consider the terms defined
6 We continue to use r as meta variable, ranging over {<, =} if not otherwise specified.
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by t−i
def= ti[s := s1 − s2] and t

0
i

def= ti[s := 0], where ti[s := s′] denotes the
result of substituting s′ for all occurrences of the sub-term s. We note that
rk ·−(t−i ) = rk ·−(t0i ) < rk ·−(ti) for at least one i since we have removed at least
one occurrence of ·− from one of the ti in each construction. Thus we have
rk ·−(t−1 ) + rk ·−(t2) = rk ·−(t01) + rk ·−(t2) ≤ 
, and moreover

t1(�x) r t2(�x) ⇔
∨{

s1(�x) < s2(�x) ∧ t
0
1(�x) r t

0
2(�x)

s2(�x) ≤ s1(�x) ∧ t−1 (�x) r t−2 (�x)
.

By the i.h., the relation t1(�x) r t2(�x) is in PrAqf
� , since each disjunct above is a

conjunction of atomic PrA
·−-terms of rank strictly less than 
 + 1. 
�

We are now ready to finish the proof of theorem 2.

Proof (of D� ⊆ PrAqf

�). Let R ∈ Dk
� . Then R = f−1(0) for some f ∈ Dk. Next,

fix a PrA
·−-term tf such that Z |= t(�x) = y iff f(�x) = y. Apply lemma 5 to

obtain φ ∈ PrAqf satisfying N |= φ(�x, y) ⇔ Z |= t(�x) = y. But then also
�x ∈ f−1(0) ⇔ N |= φ(�x, 0), and thus f−1(0) = Rφ ∈ PrAqf

� . 
�

Considering that no increasing functions are available in D, and perhaps even
more striking, only composition is allowed, the class D really delivers more than
one—at a first glance—would expect7.

It is also of interest that when only composition is available, none of the
standard linear initial functions add anything to D�. More precisely

Theorem 3. [I ∪ N ∪ {max, min, C, S, P, +, ·−};comp]� = D� . 
�

Space does not permit a proof, but by theorem 2 it is sufficient to construct
PrAqf

� formulae representing the graphs of the functions in this class—surely the
reader can supply the details.

4 The Classes BD and G1

In this section we turn our attention to the class BD, the class obtained by
adding the schema of bounded minimalisation to the closure operations of the
class D. Thus, define BD def= [I ∪ N ∪ { ·−};comp,bmin]. Obviously D ⊆ BD.
It is straightforward to show that lemma 1 is true also of f ∈ BD, in other
words (�x) ≤ max(xi, cf ) for some fixed i and cf , and cf = 0 when f(INk) is
infinite. Also, BD� is boolean—since functions for intersection and complement
are already in D—and closed under quantifiers bounded by a variable—since all
classes F� where F is closed under bmin share this feature.

Define PrAΔV by PrAqf ⊆ PrAΔV , and φ ∈ PrAΔV ⇒ ∃z≤yφ ∈ PrAΔV .
The ‘V ’ in ΔV is meant to reflect the requirement that the quantified variable
be bounded by a variable, and not a general term, and is also known as finite or
linear quantification.
7 In contrast, e.g. [I ∪ N ∪ {C}; comp]� essentially consists of ∅, {0}, IN \ {0} and IN,

(and their products), and most other familiar functions, like S, P or +, even fail to
produce a boolean set of relations.
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Lemma 6. If f ∈ BD, then Γf ∈ PrAΔV
� .

Proof. By induction on f . That D� = PrAqf
� effects the induction start.

Case h ◦ �g: Let ij (for 1 ≤ j ≤ m) be the strict top index of gj if gj(IN) is
infinite, and max gj(IN) otherwise. Fix PrAΔV -formulae φh(�z, y) and φj(�x, zj)
representing the graphs of h and the gj’s respectively. Then

(h ◦ �g)(�x) = y ⇔ ∃z1≤t1 · · · ∃zm≤tm

(( ∧

1≤i≤m

φ(�x, zi)
)

∧ φh(�z, y)
)

,

where tj = xij for unbounded gj , and ij else. Clearly, quantification bounded by
a constant is merely a finite disjunction, and as such even PrAqf

� is closed under
∃x≤c type quantifiers.

Case μz≤y[g1 = g2]: Let φi represent gi(�x) = y, and define

φ(�x, y, w) ⇔
∨

⎧
⎨

⎩

w = y ∧ ¬∃z≤y(φ1(�x, z) ∧ φ2(�x, z))

∃z≤y

(∧
{

w = z ∧ φ1(�x, z) ∧ φ2(�x, z)
∀u≤z(¬φ1(�x, u) ∨ ¬φ2(�x, u) ∨ u �= z)

)

Then φ ∈ PrAΔV , and N |= φ(�x, y, w) ⇔ f(�x, y) = w as required. 
�

Corollary 1. D� � BD� = PrAΔV
� . 
�

The class G1 is defined by G1 def= [I ∪{0, S, +};comp,bmin], and Harrow proved
that G1

� = PrA�. Our next theorem is

Theorem 4. BD� = G1
� = PrA� .

We obtain theorem 4 via the original proof that the theory of PrA is de-
cidable. In 1930 Mojżes Presburger demonstrated this now well-known fact in8

Über die Vollständigket eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt [15] by proving that
the theory of the intended structure N≡ = (IN, 0, S, +, <, ≡2, ≡3, . . .) for the
language PrA≡ def= PrA ∪ {≡2, ≡3, . . .} does admit quantifier elimination. In
particular, for any PrA-formula φ, there is a φ′ ∈ PrA≡,qf such that

N≡ |= φ′ ⇔ N≡ |= φ ⇔ N |= φ .

The relation ‘congruence modulo λ’, is definable by

x ≡λ y ⇔ ∃u≤x

(
x = y + u + · · · + u︸ ︷︷ ︸

λ-terms

)
∨ ∃u≤y

(
y = x + u + · · · + u︸ ︷︷ ︸

λ-terms

)
.

Since the right side is clearly PrAΔV
� , by corollary 1 these predicates belong

to BD� for all λ ∈ IN. But we can do even better.
8 The author has consulted the excellent translation by D. Jaquette, On the Com-

pleteness of a Certain System of Arithmetic of Whole Numbers in Which Addition
Occurs as the Only Operation [16].
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Lemma 7. Let p, q ∈ IN[�x] be linear polynomials, and let λ ∈ IN. Then, the
relation p(�x) ≡λ q(�x) is in BD�.

Proof. First note that the unary function remλ(x) def= rem(x, λ) ∈ BD, for each
fixed λ ∈ IN, since rem(x, λ) = μz≤λ[χ≡λ

(x, z) = 0].
Write p(�x) =

∑kp

i=1 ap
i xi + mp. Set Ap =

∑kp

i=1 ai, and note that Ap is inde-
pendent of �x. Also, since remλ(x) < λ, we have

sp(�x) =
kp∑

i=1

ai remλ(xi) < Apλ .

Similarly for q(�x). Then p(�x) ≡λ q(�x) ⇔ sp(�x) ≡λ sq(�x) .
It remains to show that the relation sp(�x) ≡λ sq(�x) is in BD�. Since bounded

addition is in D, we also have ŝp(�x, z) def= min(sp(�x), z) in BD. But then, for
A = max(λAp, λAq), we have p(�x) ≡λ q(�x) ⇔ ŝp(�x, A) ≡λ ŝq(�x, A). 
�

Because lemma 7 yields a decision procedure for all atomic PrA≡-formulae
within BD�, and since BD� is boolean, we have PrA≡,qf

� ⊆ BD�. Whence, via
Presburger’s original results

BD� ⊇ PrA≡,qf
� = PrA� ⊇ PrAΔV

� = BD� ,

which constitutes a proof of theorem 4. Note that this also proves that

Corollary 2. PrAΔV
� = PrA� . 
�

5 The Classes BDD and G2

Let PA
def= PrA ∪ {×}, be the language of Peano Arithmetic, and adopt the

notations of the previous sections. The definition of the class G2, minted in
our notation, is G2 def= [I ∪ N ∪ {0, S, +, ×};comp,bmin]. Harrow proved that
PAΔ0

� = G2
�, and that PAΔ0

� = PAΔV
� . Off course PAΔ0

� � PA�.
Let the class BDD def= [I ∪ N ∪ { ·−,

⌊ ·
·
⌋
, rem};comp,bmin]; informally BDD

is obtained by adding integer division and remainder to BD. A natural question
to ask is whether the inclusion of these new functions, which together make for
an inverse to multiplication, makes BDD to G2 what BD is to G1.

The answer is yes.

Theorem 5. BDD� = PAΔ0
� = G2

� . 
�

We only sketch the proof. Observe that

xy = z ⇔
(
y > 0 ∧ x =

z

y

)
∨ φ ⇔

(
y > 0 ∧ rem(z, y) = 0 ∧

⌊
z

y

⌋

= x
)

∨ φ ,

where φ(x, y, z) is e.g. y = 0 ∧ z = 0, and so the graph of multiplication is
computable in BDD�.
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The class CA of constructive arithmetic predicates as introduced by Smullyan
(see [17]), is defined as the closure of the graphs of addition and multiplication
under explicit transformations, boolean operations and quantification bounded
by a variable. Hence CA ⊆ BDD�. It is straightforward to prove that BDD� ⊆
PAΔ0

� , by a lemma analogous to lemma 6, especially since here we need not
worry about the ΔV -restriction and simply define the graphs of BDD-functions
within the framework of PAΔ0

� (easy).
This is sufficient, since results by Bennett, Wrathall and Lipton in [1,18,14]

imply the nontrivial identities CA Ben= RUD Wra= LH Lip= PAΔ0
� , which completes

a proof of theorem 5. (Here RUD are Smullyan’s rudimentary relations, and
LH the linear hierarchy.)

Acknowledgments and final remarks. The author would like to thank Lars
Kristiansen for valuable discussions, and the referees for their thorough reading
and commenting on the article. In particular, section 5 is new to the final
version of this paper, and materialised after one of the referees pointed in the
direction of Lipton [14]. The correct reference to the identity CA = PAΔ0

� proved
invaluable. This theorem is widely—and falsely—attributed to Harrow, and the
surrounding confusion initially stalled the proof of theorem 5.

Note however that it is not clear if DD� (where DD is ‘BDD without bmin’)
is equal to PAqf

� , and so the question of whether the analogue to theorem 2
is true is an open problem. DDqf

� ⊆ PAqf
� is obvious, but the converse inclusion

might very well be proper; expressing general polynomial equations in BDD�

appears to make use of quantifiers in an essential way.
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Abstract. The minimum 3-way cut problem in an edge-weighted hyper-
graph is to find a partition of the vertices into 3 sets minimizing the total
weight of hyperedges with at least two endpoints in two different sets. In
this paper we present some structural properties for minimum 3-way cuts
and design an O(dmn3) algorithm for the minimum 3-way cut problem
in hypergraphs, where n and m are the numbers of vertices and edges
respectively, and d is the sum of the degrees of all the vertices. Our al-
gorithm is the first deterministic algorithm finding minimum 3-way cuts
in hypergraphs.

1 Introduction

Given a hypergraph G = (V, E) with nonnegative hyperedge weights, and an
integer k, a k-way cut for G is a subset of hyperedges whose deletion separates
the graph into k nonempty components, and the minimum k-way cut problem
is to find a k-way cut minimizing the total weight of it. In the literature k-way
cuts are also referred as k-cuts or multi-component cuts. The minimum k-way
cut problem is an extension of the classical minimum cut problem, and it has
great applications in the area of VLSI system design, parallel computing sys-
tems, clustering, network reliability and finding cutting planes for the travelling
salesman problems.

The minimum k-way cut problem in graphs was well studied during the past
twenty years. First, Goldschmidt and Hochbaum [5] proved that this problem is
NP-hard when k is part of the input and presented a polynomial algorithm for
fixed k with running time O(nk2

T (n, m)), where T (n, m) is the time required to
compute a minimum cut or maximum flow in an edge-weighted graph. Recently
Kamidoi et al. [8] improved the running time bound to O(n4k/(1−1.71/

√
k)−34

T (n, m)). Karger and Stein [10] proposed a Monte Carlo algorithm with O(n2(k−1)

log3 n) time. It seems that all the above algorithms do not work in hypergraphs
and no solid results in hypergraphs for k > 2 are known. When k is a small
number, the problem has also drawn much attention.

The minimum 2-way cut problem is commonly known as the minimum cut
problem. Another version of the minimum 2-way cut problem is the minimum
(s, t) cut problem, which asks us to find a minimum cut that splits two given
vertices s and t. These two problems are classical and fundamental problems in
the subject of graph connectivity. For graphs, the minimum cut problem can

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 270–281, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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be solved in O(mn + n2 log n) time by Nagamochi and Ibaraki’s algorithm [17]
or Stoer and Wagner’s algorithm [21], and the minimum (s, t) cut problem can
be solved in O(mn log n2/m) time by Goldberg and Tarjan’s algorithm [4] and
O(min{n2/3, m1/2}m log(n2/m) logU) time by Goldberg and Rao’s algorithm
[3], where U is the maximum capacity of the edge. For hypergraphs, there are also
some good results on them. Klimmek and Wagner [13] and Mak and Wong [16]
extended Stoer and Wagner’s algorithm [21] to hypergraphs and gave an O(dn+
n2 log n) algorithm for the minimum cut problem in hypergraphs, where d is the
sum of the degrees of all the vertices. Lawler [14] showed that a minimum (s, t)
cut in a hypergraph can be computed by using one maximum flow computation
in an auxiliary digraph with n+2m vertices and 2d+m edges. Then a minimum
(s, t) cut in a hypergraph can be found in Õ(dm) time. In the remainder of the
paper, we use T (n, m) and T (n, m, d) to denote the running times of computing
a minimum (s, t) cut in a graph and a hypergraph respectively.

For the minimum 3-way cut problem in graphs, Kapoor [9] and Kamidoi et
al. [7] showed that it can be solved by using O(n3) maximum flow computations.
Burlet and Goldschmidt [1] and Nagamochi and Ibaraki [18] improved the result
to O(n2). Furthermore, Nagamochi et al. [18], [19] proved that the minimum
k-way cut problem can be solved in Õ(mnk) time for k = 4, 5, 6. Unfortunately,
we do not find many results in hypergraphs for k ≥ 3. In fact, Nagamochi et al.
[18] considered the minimum {3, 4}-way cuts in hypergraphs, but their measure
is different, which makes their problem easier. Currently the frequently used
algorithms in VLSI system design to partition a hypergraph are some heuristic
algorithms without any theoretic guarantee, such as hMETIS [11] and other
algorithms based on multilevel partitioning framework [12].

Effective algorithms for minimum 3-way cuts in hypergraphs have potential
applications in VLSI system design. A deeper understanding of the structure
of 3-way cuts will help us investigating the structure of the general k-way cut
problem. Motivated by these, in this paper we study the minimum 3-way cut
problem in hypergraphs.

Roughly speaking, there are three techniques frequently used to design algo-
rithm for finding minimum 3-way cuts, as well as minimum k-way cuts, in graphs.
The first one is based on searching minimum (S, T ) cuts. The first algorithm for
the general k-way cut problem presented by Goldschmidt and Hochbaum [5] is
an example. They proved that there are 4 vertices a, b, c, d such that the mini-
mum ({a, b}, {c, d}) cut is contained in a minimum 3-way cut. If we try all the
O(n4) possibilities by taking each one as a subset of a 3-way cut and finding
a such 3-way cut with weight minimized, then we can get a minimum 3-way
cut by selecting a lightest one among all the O(n4) 3-way cuts. Later Kapoor
[9] improved this method to O(n3) maximum flow computations. The second
technique is enumerating all small 2-way cuts (We will simply call a 2-way cut
a cut). We sort all cuts in the graph in the order of nondecreasing weights. If
we try on each cut by taking it as a subset of a 3-way cut, finally we will meet
a cut contained in a minimum 3-way cut and then get a minimum 3-way cut.
Nagamochi et al. [18] proved that at least one of the first O(n) small cuts is



272 M. Xiao

contained in a minimum 3-way cut and the first O(n) cuts can be enunciated
by using O(n2) maximum flow computations. So a minimum 3-way cut can be
found in O(n2T (n, m)) time. Levine [15] proved that a minimum 3-way cut can
be found by considering the first O(n) small cuts of all the 4/3-minimum cuts in
3 graphs. Since Karger and Stein’s algorithms [10] can find all the 4/3-minimum
cuts and a minimum cut in O(n2 log n) and O(m log3 n) time with high proba-
bility respectively, Levine got a Monte Carlo algorithm finding minimum 3-way
cuts with time bound O(mn log3 n). The last technique is based on ‘divide-and-
conquer’, such as Kamidoi et al.’s algorithm [7]. We first find a proper cut of the
graph that is noncrossing with a minimum 3-way cut, then we can find mini-
mum 3-way cuts in two smaller graphs. The hard part of this method is that the
proper cut is not always easy to get and sometimes we will turn to the second
technique to find one.

All of the above algorithms can not be extended to the problem in hyper-
graphs directly. We look at one of the fastest algorithms for finding minimum
3-way cuts in graphs presented by Nagamochi et al. [18]. Their algorithm is
based on the observation that at least one of the first r cuts {C1, · · · , Cr} in the
order of nondecreasing weights is contained in a minimum 3-way cut, where r
is the first integer such that Cr is crossing with Cq (1 ≤ q < r). We give an
example in Figure 1 to show that this theorem does not hold in hypergraphs.
G = (V, E) is a hypergraph with 6 vertices and 6 hyperedges, V = {a, b, c, d, e, f},
E = {abc, cdef, cd, de, ef, cf}, and w(abc) = 4.5, w(cdef) = 2, w(cd) = w(de) =
w(ef) = e(cf) = 1. [{a, b, c, d}, {e, f}] and [{a, b, c, f}, {d, e}] are the first two
small cuts and they are crossing, but none of them is contained in the minimum
3-way cut [{a}, {b}, {c, d, e, f}]. In this paper, based on the idea of Kamidoi et
al.’s divided-and-conquer algorithm [7], we define a class of cuts called k-way free
cuts (See Definition 3) and present a framework of designing algorithms for the
minimum k-way cut problem in hypergraphs by finding k-way free cuts. Then
we prove that minimum 3-way cuts in hypergraphs can be found by using O(n3)
hypergraph minimum (s, t) cut computations.

a

b

c d

e

The first two small cuts: 
[{a, b, c, d}, {e, f}] and [{a, b, c, f}, {d, e}].

The minimum 3-way cut: [{a}, {b}, {c, d, e, f}].f
1

1

1

1

4.5 2

Fig. 1. The first two small cuts not being contained in a minimum 3-way cut

2 Preliminaries

Let G = (V, E) be an edge-weighted hypergraph with |V | = n vertices and
|E| = m hyperedges. For any hyperedge e ∈ E, V (e) denotes the set of endpoints
of e. An induced sub hypergraph H = G[V ′] with V ′ ⊆ V is a sub hypergraph with
hyperedges whose endpoints in V ′. For any hyperedge subset C ⊆ E, w(C) de-
notes the total weight of the hyperedges in C. Let X1, X2, · · · , Xk ⊂ V be k (2 ≤
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k ≤ n) disjoint nonempty subsets of vertices, then [X1, X2, · · · , Xk] denotes the
set of hyperedges crossing at least two different vertex sets of {X1, X2, · · · , Xk}
(Hyperedges that the endpoints of each of them are in at least two different
sets of {X1, X2, · · · , Xk}). We also define another important hyperedge set:
e(X1, X2, · · · , Xk) = {e|e ∈ [X1, X2, · · · , Xk]&V (e) ⊆

⋃k
i=1 Xi}. There is an

illustration for these two notations in Figure 2. Let V = {a, b, c, d, e} and E =
{ab, abc, abe, ae, bde, cd}. Then [{a, b}, {c}, {d}] = {abc, bde, cd} and e({a, b}, {c},

{d}) = {abc, cd}. When
⋃k

i=1 Xi = V , i.e., {X1, X2, · · · , Xk} is k-partition of V ,
we say [X1, X2, · · · , Xk] is a k-way cut of the hypergraph and Xi is a component
of the k-way cut. Over all the k-way cuts those with the minimum weight are
called minimum k-way cuts. A 2-way cut [X, X] is also simply called a cut of the
hypergraph, where X = V −X . If we require a special vertex s in X and a special
vertex t in X, then such kind of cuts are called (s, t) cuts. Generally for any two
disjoint sets of vertices S and T , a group of hyperedges is called an (S, T ) cut, if
deleting it splits S away from T . Merging some vertices means identifying these
vertices as a new vertex while keeping all the hyperedges incident on them (we
also need to update the hyperedges: combining ‘parallel’ hyperedges with weight
being the sum of all the weights and deleting self-loops). For a vertex subset
X ⊂ V , GX stands for the graph generated by merging X = V −X into a single
vertex. This notation is frequently used in this paper. Sometimes a singleton
set {s} is simply written as s, w([X1, X2, · · · , Xk]) as w(X1, X2, · · · , Xk), and
w(e(X1, X2, · · · , Xk)) as we(X1, X2, · · · , Xk).

a 5 vertices: a, b, c, d, e
b

cd

e 6 hyperedges: ab, abc, abe, ae, bde, cd

[{a, b}, {c}, {d}] = {abc, bde, cd}

e({a, b}, {c}, {d}) = {abc, cd}

Fig. 2. An illustration for notations [] and e()

Definition 1. Two cuts [X, X] and [Y, Y ] are noncrossing if X ⊆ Y or X ⊆ Y .
Otherwise, we say that they are crossing.

Note that when X = Y or X = Y , the two cuts are the same. Some references
exclude this case in their definition of noncrossing. The properties of noncrossing
between two cuts are studied in many references [6], [2]. Here we extend the
definition of noncrossing to describe a relation between a cut and a k-way cut.

Definition 2. A cut [X, X] and a k-way cut [Y1, Y2, · · · , Yk] are noncrossing if
there exists i ∈ {1, 2, · · · , k} such that X ⊆ Yi or X ⊆ Yi. Otherwise, we say that
they are crossing.
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Lemma 1. Given a hypergraph G and two vertices u and v in G, let G′ be the
hypergraph after merging u and v into a new vertex, C′

k be a minimum k-way
cut of G′ and Ck be the corresponding hyperedge set of C′

k in G. If there is a
minimum k-way cut C of G such that u and v are in a same component of C,
then Ck is also a minimum k-way cut of G.

Proof. Let C′ be the corresponding hyperedge set of C in G′. u and v are in a
same component of C, so C′ is a k-way cut of G′. C′

k is a minimum k-way cut of
G′, and then w(Ck) = w(C′

k) ≤ w(C′) = w(C). Thus, Ck is a minimum k-way
cut of G.

Lemma 2. Given a hypergraph G and a cut C = [X, X] of G, let CX and
CX be a minimum k-way cut of GX and GX respectively, where GX is the
graph obtained by merging X into a single vertex and GX is the graph obtained
by merging X into a single vertex. And let C′

X and C′
X

be the corresponding
edge sets of CX and CX in G respectively. If there is a minimum k-way cut
noncrossing with cut C, then either C′

X or C′
X

is a minimum k-way cut of G.

Proof. Assume that minimum k-way cut Ck = [Y1, Y2, · · · , Yk] is noncrossing
with cut C. Then there exists i ∈ {1, 2, · · · , k} such that X ⊆ Yi or X ⊆ Yi.
According to Fact 1, when X ⊆ Yi, we can merge X into a single vertex; when
X ⊆ Yi, we can merge X into a single vertex. Thus, the lemma holds.

Lemma 2 provides a prospective divide-and-conquer method to find a min-
imum k-way cut in hypergraphs. If we get a proper cut which is noncrossing
with a minimum k-way cut and each component of the cut contains at least two
vertices, then we can find a minimum k-way cut by searching on two smaller
graphs. This idea is one of the main ideas we used to find minimum 3-way cuts
in this paper. For convenience, we give the following definition.

Definition 3. A cut is k-way free, if there exists a minimum k-way cut non-
crossing with it.

Note that k-way free is just used to describe cuts, but not for k-way cuts for
k ≥ 3. To find a minimum k-way cut, we need to find proper k-way free cuts. In
Section 3.2, we first present some structural properties of minimum 3-way cuts,
which provide us some ways to get 3-way free cuts. The detailed algorithm and
running time analysis are presented in Section 4. In Section 3.1, we first give
some properties for hyperedges, which will be used in our main proofs.

3 Properties

3.1 Hyperedge’s Properties

Lemma 3. Let {X1, X2, · · · , Xk}
⋃

{Y1} be a group of disjoint nonempty subsets
of vertices in a hypergraph, then

[X1 + Y1, X2, · · · , Xk] ⊇ [X1, X2, · · · , Xk] + e(Y1, X2 + · · · + Xk).
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If {X1, X2, · · · , Xk}
⋃

{Y1} is a partition of the vertex set, then

[X1 + Y1, X2, · · · , Xk] = [X1, X2, · · · , Xk] + e(Y1, X2 + · · · + Xk).

Lemma 4. Let {X1, X2, · · · , Xk}
⋃

{Y1, Y2} be a group of disjoint nonempty
subsets of vertices in a hypergraph, then

[X1+Y1, X2+Y2, X3, · · · , Xk] ⊇ [X1, · · · , Xk]+e(Y1+Y2, X3+· · ·+Xk)+e(Y1, X2)+e(X1, Y2).

Fact 3 and Fact 4 can be simply proved by enumerating all kinds of hyperedges
and we just ignore the detailed proof steps here. These two facts are frequently
used in the proofs in Section 3.2, and to make the proofs fluent we do not point
out which fact being used each time. In fact, we only use the cases k = 2 and 3,
which are somewhat intuitive.

3.2 Structural Properties

Lemma 5. In a hypergraph, any minimum cut is 3-way free.

Proof. We need to prove that for any minimum cut C = [X, X] of G, there is a
minimum 3-way cut C3 such that C and C3 are noncrossing. Let C′

3 = [Y1, Y2, Y3]
be an arbitrary minimum 3-way cut, and Zij = Xi

⋂
Yj , (i = 1, 2, j = 1, 2, 3),

where X1 = X and X2 = X (See Figure 3). If C and C′
3 are crossing, then ∃j ∈

{1, 2, 3} such that Z1j and Z2j are nonempty sets. Without loss of generality, we
assume that they are Z11 and Z21. At least one of Z13 and Z23 is not an empty
set. Without loss of generality, we further assume that Z23 	= ∅.

Case 1: Z22 	= ∅.
We will prove that C3 = [Y1 + Z12 + Z13, Z22, Z23] is a satisfied minimum 3-way
cut (See Figure 3). It is easy to see that C3 is a 3-way cut noncrossing with C.
We only need to prove that C3 is minimum.

[Z11, Z11] = [Z11, X2] + e(Z11, Z12 + Z13) and [X1, X2] = [Z11, X2] + e(Z12 +
Z13, X2). [X1, X2] is a minimum cut. w(Z11, Z11) ≥ w(X1, X2). So

we(Z11, Z12 + Z13) ≥ we(Z12 + Z13, X2). (1)

: the minimum 3-way cut      in Case 1.

1X

2X

1Y 2Y 3Y

11Z 12Z 13Z

23Z22Z21Z

3C

Fig. 3. Case 1 of the proof
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Fig. 4. A minimum (s, t) cut not being 3-way free

On the other hand, C3 = [Y1 + Z12 + Z13, Z22, Z23] = [Y1, Z22, Z23] + e(Z12 +
Z13, Z22 + Z23) and C′

3 = [Y1, Y2, Y3] ⊇ [Y1, Z22, Z23] + e(Y1, Z12 + Z13). It is
obvious that e(Z12 +Z13, Z22 +Z23) ⊆ e(Z12 +Z13, X2) and e(Z11, Z12 +Z13) ⊆
e(Y1, Z12 +Z13). According to (1), we get that w(C3) ≤ w(C′

3). C3 is a minimum
3-way cut.

Case 2: Z22 = ∅.
For this case, Z12 	= ∅. Let C3 = [Z11, Z12, Z21 + Y3]. Like what we do in Case
1, we will prove that C3 is a satisfied minimum 3-way cut.

[Z23, Z23] = [X1, Z23] + e(Z21, Z23) and [X1, X2] = [X1, Z23] + e(X1, Z21).
(Z23, Z23) ≥ w(X1, X2). So

we(Z21, Z23) ≥ we(X1, Z21). (2)

C3 = [Z11, Z12, Z21 + Y3] = [Z11, Z12, Y3] + e(Z11 + Z12, Z21), where e(Z11 +
Z12, Z21) = e(Z11, Z21)+e(Z12, Z21)+e(Z11, Z12, Z21) ⊆ e(Z12, Z21)+e(X1, Z21).
And C′

3 = [Y1, Y2, Y3] ⊇ [Z11, Z12, Y3]+e(Z12, Z21)+e(Z21, Y3) ⊇ [Z11, Z12, Y3]+
e(Z12, Z21) + e(Z21, Z23). According to (2), we know that w(C3) ≤ w(C′

3).
We have discussed all the cases and then finished the proof.
Lemma 5 shows a noncrossing property between minimum cuts and minimum

3-way cuts. The noncrossing property between minimum (s, t) cuts and minimum
3-way cuts is a little weaker. Given two vertices s and t, the minimum (s, t) cut
may not be 3-way free even in graphs. We give an example in Figure 4. G = (V, E)
is a graph with 4 vertices and 4 edges, V = {a, b, s, t}, E = {ab, bt, st, as}, and
w(ab) = 1, w(bt) = 2, w(st) = 3, w(as) = 2. It is easy to see that [a, b, {s, t}] is
the unique minimum 3-way cut and [{a, s}, {b, t}] is the unique minimum (s, t)
cut in the graph. They are crossing. In the next two lemmas we show some
further properties between minimum (s, t) cuts and minimum 3-way cuts.

Lemma 6. Given a hypergraph G and two vertices s and t in it, if there is a
minimum 3-way cut whose removal disconnects s from t (s and t are in two
different components of the 3-way cut), then any minimum (s, t) cut is 3-way
free.

Proof. The proof is based on the proof of Lemma 5. Let C′
3 = [Y1, Y2, Y3] be a

minimum 3-way cut, and s and t be two vertices in two different components
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of C′
3. Suppose C = [X1, X2] is a minimum (s, t) cut, where X2 = X1. Let

Zij = Xi

⋂
Yj , (i = 1, 2, j = 1, 2, 3). Without loss of generality, we also assume

that Z11, Z21 	= ∅,s ∈ X1, t ∈ X2, and t ∈ Y3. Then t ∈ Z23 and s is in either
Z11 or Z12.

Case 1: s ∈ Z11.
The proof just follows the proof of Lemma 5, because [Z11, Z11] and [Z23, Z23]
are still (s, t) cuts and the two cases in the proof of Lemma 5 still work.

Case 2: s ∈ Z12.
When Z22 	= ∅, we exchange Y1 and Y2 and then it becomes Case 1. When
Z22 = ∅, we only need to do Case 2 in the proof of Lemma 5. For this case,
[Z23, Z23] is still an (s, t) cut, so the proof is the same.

Lemma 7. Given a hypergraph G and two disjoint vertex subsets S, T ⊂ V , if
there is a minimum 3-way cut whose removal disconnects S from T , then any
minimum (S, T ) cut is 3-way free.

Proof. Let C′
3 = [Y1, Y2, Y3] be a minimum 3-way cut whose removal disconnects

S from T , C = [X1, X2] be a minimum (S, T ) cut, and Zij = Xi

⋂
Yj , (i =

1, 2, j = 1, 2, 3). Since removal of C′
3 will disconnect S from T , either S or T

is contained in a component of C′
3. Without loss of generality, we assume that

S ⊆ Y1. Furthermore, we assume that S ⊆ X1 and T ⊆ X2. Then S ⊆ Z11 and
T ⊆ Z22

⋃
Z23.

When T is also contained in a component of C′
3, by Fact 1 we can safely merge

S into a single vertex and merge T into a single vertex. The minimum 3-way cut
in the remaining graph is still a minimum 3-way cut in the original graph. And
by Lemma 6 we know that there is a minimum 3-way cut noncrossing with C.
Otherwise, we let T1 = T ∩Y2 and T2 = T ∩Y3. T1, T2 	= ∅. For this case, we can
prove that C3 = [Y1 + Z12 + Z13, Z22, Z23] is a minimum 3-way cut noncrossing
with C like what we do in Case 1 of the proof of Lemma 5. The reason is that
T1 ⊆ Z22 	= ∅ and T2 ⊆ Z23 	= ∅, and [Z11, Z11] is still an (S, T ) cut.

If we want to use Lemma 2 to design algorithms, we first need to find a 3-free
cut [X, X] such that neither X nor X only contains one vertex. The 3-way free
cuts discussed above, including the minimum cuts and the minimum (s, t) cuts,
may not have this property. For convenience, we give the following definition.

Definition 4. A cut [X, X] is called a 2-size cut, if |X | ≥ 2 and |X| ≥ 2. Over
all the 2-size cuts those with the minimum weight are called minimum 2-size
cuts.

Lemma 8. Let G be a hypergraph with more than 6 vertices. If G has a mini-
mum 3-way cut such that each component of it has at least 2 vertices, then any
minimum 2-size cut in G is 3-way free.

Proof. Let the minimum 3-way cut be C3 = [Y1, Y2, Y3], the minimum 2-size cut
be C = [X1, X2], and Zij = Xi

⋂
Yj , (i = 1, 2, j = 1, 2, 3). We will prove the

lemma by using Lemma 7.
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Fig. 5. Minimum cuts not being {4, 5}-way free

If there is a component of C3 being contained in a component of C, say
Y1 ⊆ X1, we can prove the lemma as the follows. Y1 has at least two vertices
a and b. X2 has least two vertices c and d, and c, d ∈ Y2 ∪ Y3. Let S = {a, b}
and T = {c, d}. Removal of C3 will disconnect S from T and C is a minimum
(S, T ) cut. By Lemma 7 we know the lemma holds. Otherwise, none of Zij

(i = 1, 2, j = 1, 2, 3) is an emptyset. G has more than 6 vertices. At least one
of Zij (i = 1, 2, j = 1, 2, 3) contains more than one vertex. Without loss of
generality, we assume that two different vertices a, b ∈ Z11. Z22, Z23 	= ∅. Assume
that c ∈ Z22 and d ∈ Z23. Let S = {a, b} and T = {c, d}. We can also prove the
lemma by using Lemma 7.

Remark. In Lemma 8, if graph G has right 6 vertices, the result may not hold.
Here is an example. G = (V, E) is a hypergraph with 6 vertices and 5 hyperedges,
V = {a, b, c, d, e, f}, E = {ad, be, cf, abc, def}, and w(ad) = w(be) = w(cf) =
2.5, w(abc) = w(def) = 4. [{a, d}, {b, e}, {c, f}] is the unique minimum 3-way
cut and each component of it has two vertices. [{a, b, c}, {d, e, f}] is the unique
minimum 2-size cut. They are crossing.

Lemma 9. A minimum cut may not be k-way free, k ≥ 4.

Two examples that minimum cuts are not being {4, 5}-way free are shown in
Figure 5. In fact, Lemma 6, Lemma 7 and Lemma 8 also do not hold for minimum
4-way cuts.

4 The Algorithm

Using Lemma 2 and lemmas mentioned in Section 3.2, we can design various
algorithms for the minimum 3-way cut problem in hypergraphs. But we should
pay attention that when we meet a 3-way free cut [X, X] such that X or X
contains only one vertex, then our algorithms may not work any more, because
GX or GX will not be a smaller graph. At that time, we need to use Lemma 8.

Next, we use Lemma 5 and Lemma 8 to design a recursive algorithm. We
iteratively find a minimum cut C = [X, X] as a 3-way free cut, and then find
minimum 3-way cuts in smaller hypergraphs GX and GX . When the 3-way free
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cut we found is not 2-size, we turn to Lemma 8. There is a 3-way free cut being
2-size or a minimum 3-way cut such that one component of it has only one vertex
(Assume the graph has more than 6 vertices). For the former case, the recursive
step can continue. And for the later case, we can find a solution directly by
trying on each vertex. In fact, the algorithm only includes Step 1 and Step 4 of
the following algorithm still works. The reason for it lies in Lemma 8. Step 2 and
Step 3 can accelerate the algorithm sometimes but do not help in the running
time analysis.

Algorithm Hyper3waycut(G):
0. Initially let the solution set S be the whole edge set E.
1. If the graph has less than or equal to 6 vertices, find the solution directly
and return it; otherwise, do
2. Find a minimum cut [X, X] of the graph.
3. If both of X and X have more than one vertex, update S ←− min
{Hyper3waycut(GX), Hyper3waycut(GX)}, where GX is the graph obtained
by merging X into a single vertex and GX is the graph obtained by merging X
into a single vertex.
4. Otherwise, do
4.1 For each vertex v in the current graph, find a minimum cut Cv in induced
subgraph G[V − {v}] and update S ←− min{S, Cv ∪ [v, V − {v}]}.
4.2 Find a minimum 2-size cut [X, X] in the current graph and update
S ←− min{S, Hyper3waycut(GX), Hyper3waycut(GX)}.
5. Return S.

In each iteration, we will find a 3-way free cut being 2-size in either Step 3 or
Step 4.2 and divide the problem into two smaller problems. Now we consider how
much time we will use in each iteration. First we compute a minimum cut in the
hypergraph in Step 1. If one component of the cut has only one vertex, we will
compute n minimum cuts in Step 4.1 and compute a minimum 2-size cut in Step
4.2. Via brute-force search, a minimum 2-size cut can be found by using O(n4)
minimum (s, t) cut computations. In fact, we can improve it to O(n2) minimum
(s, t) cut computations by enumerating small cuts. Vazirani and Yannakakis [22]
presented an algorithm for finding all the cuts in a graph in the order of non-
decreasing weights by building a 0-1 tree. And the delay between two successive
outputs is at most n − 1 minimum (s, t) cut computations. This algorithm still
works in hypergraphs. A hypergraph has at most n cuts not being 2-size. So at
most we need to compute the first n+1 outputs to get a minimum 2-size cut. We
can find a minimum 2-size cut by using O(n2) minimum (s, t) cut computations
in hypergraphs.

Suppose the current graph has n vertices and X has x vertices (2 ≤ x ≤ n−2).
Then GX has x + 1 vertices and GX has n − x + 1 vertices. We get recurrence
relation:

C(n) ≤ C(x + 1) + C(n − x + 1) + O(n2), (3)
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where C(n) is the number of minimum (s, t) cut computations used when Hy-
per3waycut computes on a hypergraph with n vertices. It is easy to verify that
C(n) = O(n3) satisfies (3).

Theorem 1. Algorithm Hyper3waycut finds a minimum 3-way cut in a hy-
pergraph in O(n3T (n, m, d)) = Õ(dmn3) time.

5 Conclusion

In this paper, we have presented an O(dmn3) algorithm for finding minimum 3-
way cuts in hypergraphs. As far as we know, it is the first deterministic algorithm
for solving the minimum 3-way cut problem in hypergraphs.

k-way partitioning with minimum cost in hypergraphs is one of central prob-
lems in VLSI system design [20]. Effective algorithms for small k may have direct
applications. But unfortunately most properties and algorithms for k-way cuts
in graphs do not hold in hypergraphs, and currently there are not many known
algorithms for hypergraphs except some heuristic algorithms without any the-
oretic guarantee. It would be interesting to find other fast algorithms for the
k-way cut problem in hypergraphs, even when k is a small number.

Furthermore, to prove the correctness of our algorithm, we present some prop-
erties of hypergraphs and minimum k-way cuts, which may be helpful for us to
understand the structure of the minimum k-way cuts and differences between
the k-way cut problems in graphs and hypergraphs. We note that some good
properties for 3-way cuts do not hold for 4-way cut cases, and the algorithm
presented in this paper can not be simply extended to the minimum 4-way cut
problem in hypergraphs. It seems that other approaches or properties are needed
for the minimum k-way cut problem for k ≥ 4.
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Abstract. Given a bipartite graph G = (V1, V2, E) where edges take
on both positive and negative weights from set S , the maximum weighted
edge biclique problem, or S-MWEB for short, asks to find a bipartite sub-
graph whose sum of edge weights is maximized. This problem has various
applications in bioinformatics, machine learning and databases and its
(in)approximability remains open. In this paper, we show that for a wide
range of choices of S , specifically when

∣
∣ min S
max S

∣
∣ ∈ Ω(ηδ−1/2) ∩ O(η1/2−δ)

(where η = max{|V1|, |V2|}, and δ ∈ (0, 1/2]), no polynomial time algo-
rithm can approximate S-MWEB within a factor of nε for some ε > 0
unless RP = NP. This hardness result gives justification of the heuristic
approaches adopted for various applied problems in the aforementioned
areas, and indicates that good approximation algorithms are unlikely to
exist. Specifically, we give two applications by showing that: 1) finding
statistically significant biclusters in the SAMBA model, proposed in [18]
for the analysis of microarray data, is nε-inapproximable; and 2) no poly-
nomial time algorithm exists for the Minimum Description Length with
Holes problem [4] unless RP = NP.

1 Introduction

Let G = (V1, V2, E) be an undirected bipartite graph. A biclique subgraph in G
is a complete bipartite subgraph of G and maximum edge biclique (MEB) is the
problem of finding a biclique subgraph with the most number of edges. MEB is
a well-known problem and received much attention in recent years because of
its wide range of applications in areas including machine learning [14], manage-
ment science [16] and bioinformatics, where it is found particularly relevant in
the formulation of numerous biclustering problems for biological data analysis
[5,2,18,19,17], and we refer readers to the survey by Madeira and Oliveira [13] for
a fairly extensive discussion on this. Maximum edge biclique is shown to be NP-
hard by Peeters [15] via a reduction from 3SAT. Its approximability status, on
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the other hand, remains an open question despite considerable efforts [7,8,12]1.
In particular, Feige and Kogan [8] conjectured that maximum edge biclique is
hard to approximate within a factor of nε for some ε > 0. In this paper, we
consider a weighted formulation of this problem defined as follows

Definition 1. S-Maximum Weighted Edge Biclique (S-MWEB)
Instance: A complete bipartite graph G = (V1, V2, E) (throughout the paper, let
η = max{|V1|, |V2|} and n = |V1| + |V2|), a weight function wG : E → S, where
S is a set consisting of both positive and negative integers.
Question: Find a biclique subgraph of G where the sum of weights on edges is
maximized.

A few comments are in order. First note it is not a lose of generality but a
technical convenience to require the graph be complete, one can always think of
an incomplete bipartite graph as complete where non-edges are assigned weight
0. Also note we require that both positive and negative weights be in S at the
same time because otherwise S-MWEB becomes a trivial problem.

Our study of S-MWEB is motivated by the problem of finding statistically
significant biclusters in microarray data analysis in the SAMBA model [18] and
the Minimum Description Length with Holes (MDLH) problem [3,4,10]; detailed
discussion of the two problems can be found in Sect. 4. Our main technical
contribution of this paper is to show that if S satisfies the condition | minS

maxS | ∈
Ω(ηδ−1/2) ∩ O(η1/2−δ), where δ > 0 is any arbitrarily small constant, then no
polynomial time algorithm can approximate S-MWEB within a factor of nε for
some ε > 0 unless RP = NP. This result enables us to answer open questions
regarding the hardness of the SAMBA model and the MDLH problem. Since
maximum edge biclique can be characterized as a special case of S-MWEB with
S = {−η, 1}, the nε-inapproximability result also provides interesting insights
into the conjectured nε-inapproximability [8] of maximum edge biclique.

The rest of the paper is organized in three sections. In Sect. 2, we present
the main technical result by proving the aforementioned inapproximability of S-
MWEB. We give applications of this by answering hardness questions regarding
two applied problems in Sect. 3. We conclude this work by raising a few open
problems in the last section.

2 Approximating S-Maximum Edge Biclique Is Hard

We start this section by giving two lemmas about CLIQUE, which will be used
in establishing inapproximability for the biclique problems we consider later.
Lemma 1 is a recent result by Zuckerman [20], obtained by a derandomization
of results of H̊astad [11]; Lemma 2 follows immediately from Lemma 1.
1 Note it might be easy to confuse the MEB problem with the Bipartite Clique problem

discussed by Khot in [12]. Bipartite Clique, which also known as Balanced Complete
Bipartite Subgraph [8], aims to maximize the number of vertices of a balanced sub-
graph whereas MEB aims to maximize the total weights on edges in a (not necessarily
balanced) subgraph.
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Lemma 1. ([20]) It is NP-hard to approximate CLIQUE within a factor of
n1−ε, for any ε > 0.

Lemma 2. For any constant ε > 0, no polynomial time algorithm can approx-
imate CLIQUE within a factor of n1−ε with probability at least 1

poly(n) unless
RP = NP.

2.1 A Technical Lemma

We first describe the construction of a structure called {γ, {α, β}}-Product,
which will be used in the proof of our main technical lemma.

Definition 2. ({γ, {α, β}}-Product)
Input: An instance of S-MWEB on complete bipartite graph G = V1×V2, where
γ ∈ S and α < γ < β; an integer N .
Output: Complete bipartite graph GN = V N

1 × V N
2 constructed as follows: V N

1

and V N
2 are N duplicates of V1 and V2, respectively. For each edge (i, j) ∈ GN ,

let (φ(i), φ(j)) be the corresponding edge in G. If wG(φ(i), φ(j)) = γ, assign
weight α or β to (i, j) independently and identically at random with expectation
being γ, denote the weight by random variable X. If wG(φ(i), φ(j)) �= γ, then
keep the weight unchanged. Call the weight function constructed this way w(·).

For any subgraph H of GN , denote by wγ(H) (resp., w−γ(H)) the total
weight of H contributed by former-γ-edges (resp., other edges). Clearly, w(H) =
wγ(H) + w−γ(H).

With a graph product constructed in this randomized fashion, we have the fol-
lowing lemma.

Lemma 3. Given an S-MWEB instance G = (V1, V2, E) where γ ∈ S, and a

number δ ∈ (0, 1
2 ]; let η = max (|V1|, |V2|), N = η

δ(3−2δ)+3
δ(1+2δ) , GN = (V N

1 , V N
2 , E)

be the {γ, {α, β}}-product of G and S′ = (S ∪ {α, β}) − {γ}. If
1. |β − α| = O((Nη)

1
2−δ); and

2. there is a polynomial time algorithm that approximates the S′-MWEB in-
stance within a factor of λ, where λ is some arbitrary function in the size of the
S′-MWEB instance

then there exists a polynomial time algorithm that approximates the S-MWEB
instance within a factor of λ, with probability at least 1

poly(n) .

Proof. For notational convenience, we denote η
1
2−δ by f(η) throughout the proof.

Define random variable Y = X − γ, clearly E[Y ] = 0. Suppose there is a poly-
nomial time algorithm A that approximates S′-MWEB within a factor of λ, we
can then run A on GN , the output biclique G∗

B corresponds to N2 bicliques in
G (not necessarily all distinct). Let G∗

A be the most weighted among these N2

subgraphs of G, in the rest of the proof we show that with high probability, G∗
A

is a λ-approximation of S-MWEB on G.
Denote by E1 the event that G∗

B does not imply a λ-approximation on G. Let
H be the set of subgraphs of GN that do not imply a λ-approximation on G,
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clearly, |H| ≤ 4Nη. Let H ′ be an arbitrary element in H, we have the following
inequalities

Pr {E1} ≤ Pr
{
at least one element in H is a λ-approximation of GN

}

≤ 4Nη · Pr
{
H ′ is a λ-approximation of GN

}

= 4Nη · Pr{E2}

where E2 is the event that H ′ is a λ-approximation of GN .
Let the weight of an optimal solution U1 ×U2 of G be K, denote by UN

1 ×UN
2

the corresponding N2-duplication in GN . Let x1 and x2 be the number of former-
γ-edges in H ′ and UN

1 × UN
2 , respectively. Suppose E2 happens, then we must

have
w−γ(H ′) + x1γ ≤ N2(K

λ − 1)
w−γ(H ′) + wγ(H ′) ≥ 1

λ (w−γ(UN
1 × UN

2 ) + wγ(UN
1 × UN

2 ))

where the first inequality follows from the fact that we only consider integer
weights. Since w−γ(UN

1 × UN
2 ) = N2K − x2γ, it implies

(wγ(H ′) − x1γ) − 1
λ

(wγ(UN
1 × UN

2 ) − x2γ) ≥ N2

so we have the following statement on probability

Pr{E2} ≤ Pr
{
(wγ(H ′) − x1γ) − 1

λ(wγ(UN
1 × UN

2 ) − x2γ) ≥ N2
}

Let z1 (resp., z2 and z3) be the number of edges in E(H ′) − E(UN
1 × UN

2 )
( resp., E(UN

1 × UN
2 ) − E(H ′) and E(UN

1 × UN
2 ) ∩ E(H ′) ) transformed from

former-γ-edges in G. We have

Pr
{
(wγ(H ′) − x1γ) − 1

λ (wγ(UN
1 × UN

2 ) − x2γ) ≥ N2
}

= Pr
{∑z1

i=1 Yi − 1
λ

∑z2
j=1 Yj + λ−1

λ

∑z3
k=1 Yk ≥ N2

}

= Pr
{∑z1

i=1 Yi + 1
λ

∑z2
j=1 (−Yj) + λ−1

λ

∑z3
k=1 Yk ≥ N2

}

≤ Pr
{∑z1

i=1 Yi ≥ N2

3

}
+Pr

{
1
λ

∑z2
j=1 (−Yj) ≥ N2

3

}
+Pr

{
λ−1

λ

∑z3
k=1 Yk ≥ N2

3

}

≤ Pr
{∑z1

i=1 Yi ≥ N2

3

}
+ Pr

{∑z2
j=1 (−Yj) ≥ N2

3

}
+ Pr

{∑z3
k=1 Yk ≥ N2

3

}

≤
∑

i∈{1,2,3}

(

exp
(

−2zi

(
N2

3zi(c1f(Nη))

)2
))

(Hoeffding bound)

≤ 3 · exp
(
−c2 · N1+2δ

η3−2δ

)
(zi ≤ η2N2)

where c1, c2 are constants (c2 > 0). Now if we set N = η
3−2δ
1+2δ +θ for some θ, we

have

Pr {E1} ≤ 4Nη · Pr {E2} ≤ 3 · exp
(
ln 4 · η

4
(1+2δ) +θ − c2 · η(1+2δ)θ

)

For this probability to be bounded by 1
2 as η is large enough, we need to have

4
1+2δ +θ < (1+2δ)θ. Solving this inequality gives θ > 2

δ(1+2δ) . Therefore, for any

δ ∈ (0, 1
2 ], by setting N = η

δ(3−2δ)+3
δ(1+2δ) , we have Pr{E1}, i.e. the probability that
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the solution returned by A does not imply a λ-approximation of G, is bounded
from above by 1

2 once input size is large enough. This gives a polynomial time
algorithm that approximates S-MWEB within a factor of λ with probability at
least 1

2 . 	


This lemma immediately leads to the following corollary.

Corollary 1. Following the construction in Lemma 3, if S′-MWEB can be ap-
proximated within a factor of nε′

, for some ε′ > 0, then there exists a polyno-
mial time algorithm that approximates S-MWEB within a factor of nε, where
ε = (1 + δ(3−2δ)+3

δ(1+2δ) )ε′, with probability at least 1
poly(n) .

2

Proof. Let |G| and |GN | be the number of nodes in the S-MWEB and S′-MWEB

problem, respectively. Since λ = |GN |ε′ ≤ |G|(1+
δ(3−2δ)+3

δ(1+2δ) )ε′
, our claim follows

from Lemma 3. 	


2.2 {−1, 0, 1}-MWEB

In this section, we prove inapproximability of {−1, 0, 1}-MWEB by giving a
reduction from CLIQUE; in subsequence sections, we prove inapproximability
results for more general S-MWEB by constructing randomized reduction from
{−1, 0, 1}-MWEB.

Lemma 4. The decision version of the {−1, 0, 1}-MWEBproblem is NP-complete.

Proof. We prove this by describing a reduction from CLIQUE. Given a CLIQUE
instance G = (V, E), construct G′ = (V ′, E′) such that V ′ = V1∪V2 where V1, V2

are duplicates of V in that there exist bijections φ1 : V1 → V and φ2 : V2 → V .
And

E′ = E1 ∪ E2 ∪ E3

E1 = {(u, v) | u ∈ V1, v ∈ V2 and (φ1(u), φ2(v)) ∈ E}
E2 = {(u, v) | u ∈ V1, v ∈ V2, φ1(u) �= φ2(v) and (φ1(u), φ2(v)) /∈ E}
E3 = {(u, v) | u ∈ V1, v ∈ V2, and φ1(u) = φ2(v)}

Clearly, G′ is a biclique. Now assign weight 0 to edges in E1, −1 to edges in
E2 and 1 to edges in E3. We then claim that there is a clique of size k in G if
and only if there is a biclique of total edge weight k in G′.

First consider the case where there is a clique of size k in G, let U be the set
of vertices of the clique, then taking the subgraph induced by φ−1

1 (U) × φ−1
2 (U)

in G′ gives us a biclique of total weight k.
Now suppose that there is a biclique U1 ×U2 of total weight k in G′. Without

loss of generality, assume U1 and U2 correspond to the same subset of vertices in
2 Note we are slightly abusing notation here by always representing the size of a given

problem under discussion by n. Here n refers to the size of S ′-MWEB (resp. S-

MWEB) when we are talking about approximation factor nε′
(resp. nε). We adopt

the same convention in the sequel.
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V because if (φ1(U1)−φ2(U2))∪ (φ2(U2)−φ1(U1)) is not empty, then removing
(U1 − U2) ∪ (U2 − U1) will never decrease the total weight of the solution. Given
φ1(U1) = φ2(U2), we argue that there is no edge of weight −1 in biclique U1×U2;
suppose otherwise there exists a weight −1 edge (i1, j2) (i1 ∈ U1, and j2 ∈ U2),
then the corresponding edge (j1, i2) (j1 ∈ U1, and i2 ∈ U2) must be of weight
−1 too and removing i1, i2 from the solution biclique will increase total weight
by at least 1 because among all edges incident to i1 and i2, (i1, i2) is of weight 1,
(i1, j2) and (i2, j1) are of weight −1 and the rest are of weights either 0 or −1.

Therefore, we have shown that if there is a solution U1 × U2 of weight k in
G′, U1 and U2 correspond to the same set of vertices U ∈ V and U is a clique of
size k. It is clear that the reduction can be performed in polynomial time and
the problem is NP, and thus NP-complete. 	


Given Lemma 1, the following corollary follows immediately from the above
reduction.

Theorem 1. For any constant ε > 0, no polynomial time algorithm can approx-
imate problem {−1, 0, 1}-MWEB within a factor of n1−ε unless P = NP.

Proof. It is obvious that the reduction given in the proof of Lemma 4 preserves
inapproximability exactly, and given that CLIQUE is hard to approximate within
a factor of n1−ε unless P = NP, the theorem follows. 	


Theorem 2. For any constant ε > 0, no polynomial time algorithm can approx-
imate {−1, 0, 1}-MWEB within a factor of n1−ε with probability at least 1

poly(n)

unless RP = NP.

Proof. If there exists such a randomized algorithm for {−1, 0, 1}-MWEB, com-
bining it with the reduction given in Lemma 4, we obtain an RP algorithm for
CLIQUE. This is impossible unless RP = NP. 	


2.3 {−1, 1}-MWEB

Lemma 5. If there exists a polynomial time algorithm that approximates {−1, 1}-
MWEB within a factor of nε, then there exists a polynomial time algorithm that ap-
proximates {−1, 0, 1}-MWEBwithin a factor of n5ε with probability at least 1

poly(n) .

Proof. We prove this by constructing a {γ, {α, β}}-Product from {−1, 0, 1}-
MWEB to {−1, 1}-MWEB by setting γ = 0, α = −1 and β = 1. Since δ = 1

2 ,
according to Corollary 1, it is sufficient to set N = η4 so that the probability of
obtaining a n5ε-approximation for {−1, 0, 1}-MWEB is at least 1

poly(n) . 	


Theorem 3. For any constant ε > 0, no polynomial time algorithm can approx-
imate {−1, 1}-MWEB within a factor of n

1
5−ε with probability at least 1

poly(n)

unless RP = NP.

Proof. This follows directly from Theorem 2 and Lemma 5. 	
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2.4 {−η
1
2 −δ, 1}-MWEB and {−ηδ− 1

2 , 1}-MWEB

In this section, we consider the generalized cases of the S-MWEB problem.

Theorem 4. For any δ ∈ (0, 1
2 ], there exists some constant ε such that no poly-

nomial time algorithm can approximate {−η
1
2−δ, 1}-MWEB within a factor of

nε with probability at least 1
poly(n) unless RP = NP. The same statement holds

for {−ηδ− 1
2 , 1}-MWEB.

Proof. We prove this by first construct a {γ, {α, β}}-Product from {−1, 1}-
MWEB to {−η

1
2−δ, 1}-MWEB by setting γ = −1, α = −(Nη)

1
2−δ and β = 1. By

Corollary 1, we know that for any δ ∈ (0, 1
2 ], if there exists a polynomial time al-

gorithm that approximates {−η
1
2−δ, 1}-MWEB within a factor of nε, then there

exists a polynomial time algorithm that approximates {−1, 1}-MWEB within a

factor of n(1+ δ(3−2δ)+3
δ(1+2δ) )ε with probability at least 1

poly(n) . So invoking the hardness

result in Theorem 3 gives the desired hardness result for {−η
1
2−δ, 1}-MWEB.

The same conclusion applies to {−1, η
1
2−δ}-MWEB by setting γ = 1, α = −1

and β = (Nη)
1
2−δ. Since η is a constant for any given graph, we can simply

divide each weight in {−1, η
1
2−δ} by η

1
2−δ. 	


Theorem 4 leads to the following general statement.

Theorem 5. For any small constant δ∈(0, 1
2 ], if

∣
∣ minS
maxS

∣
∣ ∈ Ω(ηδ−1/2)∩O(η1/2−δ),

then there exists some constant ε such that no polynomial time algorithm can ap-
proximate S-MWEB within a factor of nε with probability at least 1

poly(n) unless
RP = NP.

3 Two Applications

In this section, we describe two applications of the results establish in Sect. 3 by
proving hardness and inapproximability of problems found in practice.

3.1 SAMBA Model Is Hard

Microarray technology has been the latest technological breakthrough in biolog-
ical and biomedical research; in many applications, a key step in analyzing gene
expression data obtained through microarray is the identification of a bicluster
satisfying certain properties and with largest area (see the survey [13] for a fairly
extensive discussion on this).

In particular, Tanay et. al. [18] considered the Statistical-Algorithmic Method
for Bicluster Analysis (SAMBA) model. In their formulation, a complete bipar-
tite graph is given where one side corresponds to genes and the other size cor-
responds to conditions. An edges (u, v) is assigned a real weight which could be
either positive or negative, depending on the expression level of gene u in condi-
tion v, in a way such that heavy subgraphs corresponds to statistically significant



Inapproximability of Maximum Weighted Edge Biclique 289

biclusters. Two weight-assigning schemes are considered in their paper. In the
first, or simple statistical model, a tight upper-bound on the probability of an
observed biclusters in computed; in the second, or refined statistical model, the
weights are assigned in a way such that a maximum weight biclique subgraph
corresponds to a maximum likelihood bicluster.

The Simple SAMBA Statistical Model: Let H = (V ′
1 , V ′

2 , E′) be a subgraph
of G = (V1, V2, E), E′ = {V ′

1 × V ′
2} − E′ and p = |E|

|V1||V2| . The simple statistical
model assumes that edges occur independently and identically at random with
probability p. Denote by BT (k, p, n) the probability of observing k or more
successes in n binomial trials, the probability of observing a graph at least as
dense as H is thus p(H) = BT (|E′|, p, |V ′

1 ||V ′
2 |). This model assumes p < 1

2 and
|V ′

1 ||V ′
2 | � |V1||V2|, therefore p(H) is upper bounded by

p∗(H) = 2|V
′
1 ||V ′

2 |p|E
′|(1 − p)|V

′
1 ||V ′

2 |−|E′|

The goal of this model is thus to find a subgraph H with the smallest p∗(H).
This is equivalent to maximizing

− log p∗(H) = |E′|(−1 − log p) + (|V ′
1 ||V ′

2 | − |E′|)(−1 − log (1 − p))

which is essentially solving a S-MWEB problem that assigns either positive
weight (−1 − log p) or negative weight (−1 − log (1 − p)) to an edge (u, v), de-
pending on whether gene u express or not in condition v, respectively. The
summation of edge weights over H is defined as the statistical significance of H .

Since 1
η2 ≤ p < 1

2 , asymptotically we have −1−log (1−p)
−1−log p ∈ Ω( 1

log η ) ∩ O(1).
Invoking Theorem 5 gives the following.

Theorem 6. For the Simple SAMBA Statistical model, there exists some ε > 0
such that no polynomial time algorithm, possibly randomized, can find a bicluster
whose statistical significance is within a factor of nε of optimal unless RP = NP.

The Refined SAMBA Statistical Model: In the refined model, each edge
(u, v) is assumed to take an independent Bernoulli trial with parameter pu,v,
therefore p(H) = (

∏
(u,v)∈E′ pu,v)(

∏
(u,v)∈E′(1 − pu,v)) is the probability of ob-

serving a subgraph H . Since p(H) generally decreases as the size of H increases,
Tanay et al. aims to find a bicluster with the largest (normalized) likelihood ra-

tio L(H) =
(
∏

(u,v)∈E′ pc)(
∏

(u,v)∈E′(1 − pc))

p(H)
, where pc > max(u,v)∈E pu,v is a

constant probability and chosen with biologically sound assumptions. Note this
is equivalent to maximizing the log-likelihood ratio
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log L(H) =
∑

(u,v)∈E′

log
pc

pu,v
+

∑

(u,v)∈E′

log
1 − pc

1 − pu,v

With this formulation, each edge is assigned weight either log pc

pu,v
> 0 or

log 1−pc

1−pu,v
< 0 and finding the most statistically significant bicluster is equiva-

lent to solving S-MWEB with S = {log 1−pc

1−pu,v
, log pc

pu,v
}. Since pc is a constant

and 1
η2 ≤ pu,v < pc, we have log (1−pc)−log (1−pu,v)

log pc−log pu,v
∈ Ω( 1

log η ) ∩ O(1). Invoking
Theorem 5 gives the following.

Theorem 7. For the Refined SAMBA Statistical model, there exists some ε > 0
such that no polynomial time algorithm, possibly randomized, can find a bicluster
whose log-likelihood is within a factor of nε of optimal unless RP = NP.

3.2 Minimum Description Length with Holes (MDLH) Is Hard

Bu et. al [4] considered the Minimum Description Length with Holes problem
(defined in the following); the 2-dimensional case is claimed NP-hard in this
paper and the proof is referred to [3]. However, the proof given in [3] suffers
from an error in its reduction3, thus whether MDLH is NP-complete remains
unsettled. In this section, by employing the results established in the previ-
ous sections, we show that no polynomial time algorithm exists for MDLH,
under the slightly weaker (than P �= NP) but widely believed assumption
RP �= NP.

We first briefly describe the Minimum Description Length summarization with
Holes problem; for a detailed discussion of the subject, we refer the readers to
[3,4].

Suppose one is given a k-dimensional binary matrix M , where each entry is
of value either 1, which is of interest, or of value 0, which is not of interest. Be-
sides, there are also k hierarchies (trees) associated with each dimension, namely
T1, T2, ..., Tk, each of height l1, l2, ..., lk respectively. Define level l = maxi(li).
For each Ti, there is a bijection between its leafs and the ’hyperplanes’ in the
ith dimension (e.g. in a 2-dimensional matrix, these hyperplanes corresponds to
rows and columns). A region is a tuple (x1, x2, ..., xk), where xi is a leaf node
or an internal node in hierarchy Ti. Region (x1, x2, ..., xk) is said to cover cell
(c1, c2, ..., ck) if ci is a descendant of xi, for all 1 ≤ i ≤ k. A k-dimensional l-level
MDLH summary is defined as two sets S and H , where 1) S is a set of regions
covering all the 1-entries in M ; and 2) H is the set of 0-entries covered (unde-
sirably) by S and to be excluded from the summary. The length of a summary
is defined as |S| + |H |, and the MDLH problem asks the question if there exists
a MDLH summary of length at most K, for a given K > 0.

In an effort to establish hardness of MDLH, we first define the following
problem, which serves as an intermediate problem bridging {−1, 1}-MWEB and
MDLH.
3 In Lemma 3.2.1 of [3], the reduction from CLIQUE to CEW is incorrect.
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Definition 3. (Problem P)
Instance: A complete bipartite graph G = (V1, V2, E) where each edge takes on
a value in {−1, 1}, and a positive integer k.
Question: Does there exist an induced subgraph (a biclique U1 × U2) whose
total weight of edges is ω, such that |U1| + |U2| + ω ≥ k.

Lemma 6. No polynomial time algorithm exists for Problem P unless RP = NP.

Proof. We prove this by constructing a reduction from {−1, 1}-MWEB to Prob-
lem P as follows: for the given input biclique G = (V1, V2, E), make N duplicates
of V1 and N duplicates of V2, where N = (|V1| + |V2|)2. Connect each copy of
V1 to each copy of V2 in a way that is identical to the input biclique, we then
claim that there is a size k solution to {−1, 1}-MWEB if and only if there is a
size N2k solution to Problem P .

If there is a size k solution to {−1, 1}-MWEB, then it is straightforward that
there is a solution to Problem P of size at least N2k. For the reverse direction, we
show that if no solution to {−1, 1}-MWEB is of size at least k, then the maximum
solution to Problem P is strictly less than N2k. Note a solution UN

1 × UN
2 to

Problem P consists of at most N2 (not necessarily all distinct) solutions to
{−1, 1}-MWEB, and each of them can contribute at most (k − 1) in weight to
UN

1 ×UN
2 , so the total weight gained from edges is at most N2(k − 1). And note

the total weight gained from vertices is at most N(|V1|+ |V2|) = N
√

N , therefore
the weight is upper bounded by N

√
N + N2(k − 1) < N2k and this completes

the proof.
As a conclusion, we have a polynomial time reduction from {−1, 1}-MWEB

to Problem P . Since no polynomial time algorithm exists for {−1, 1}-MWEB
unless RP = NP, the same holds for Problem P . 	


Theorem 8. No polynomial time algorithm exists for MDLH summarization,
even in the 2-dimension 2-level case, unless RP = NP.

Proof. We prove this by showing that Problem P is a complementary problem
of 2-dimensional 2-level MDLH.

Let the input 2D matrix M be of size n1×n2, with a tree of height 2 associated
with each dimension. Without loss of generality, we only consider the ’sparse’
case where the number of 1-entries is less than the number of 0-entries by at
least 2 so that the optimal solution will never contain the whole matrix as one
of its regions. Let S be the set of regions in a solution. Let R and C be the set
of rows and columns not included in S. Let Z be the set of all zero entries in M .
Let z be the total number of zero entries in the R × C ’leftover’ matrix and let
w be the total number of 1-entries in it. MDLH tries to minimize the following:

(n1 − |R|) + (n2 − |C|) + (|Z| − z) + w = (n1 + n2 + |Z|) − (|R| + |C| + z − w)

Since (n1 + n2 + |Z|) is a fixed quantity for any given input matrix, the 2-
dimensional 2-level MDLH problem is equivalent to maximizing (|R|+|C|+z−w),
which is precisely the definition of Problem P .
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Therefore, 2-dimensional 2-level MDLH is a complementary problem to Prob-
lem P and by Lemma 6 we conclude that no polynomial time algorithm exists
for 2-dimensional 2-level MDLH unless RP = NP. 	


4 Concluding Remarks

Maximum weighted edge biclique and its variants have received much atten-
tion in recently years because of it wide range of applications in various fields
including machine learning, database, and particularly bioinformatics and com-
putational biology, where many computational problems for the analysis of mi-
croarray data are closely related. To tackle these applied problems, various kinds
of heuristics are proposed and experimented and it is not known whether these
algorithms give provable approximations. In this work, we answer this question
by showing that it is highly unlikely (under the assumption RP �= NP) that good
polynomial time approximation algorithm exists for maximum weighted edge
biclique for a wide range of choices of weight; and we further give specific appli-
cations of this result to two applied problems. We conclude our work by listing
a few open questions.

1. We have shown that {Θ(−ηδ), 1}-MWEB is nε-inapproximable for δ ∈
(− 1

2 , 1
2 ); also it is easy to see that (i) the problem is in P when δ ≤ −1, where

the entire input graph is the optimal solution; (ii) for any δ ≥ 1, the problem is
equivalent to MEB, which is conjectured to be nε-inapproximable [8]. Therefore
it is natural to ask what is the approximability of the {−nδ, 1}-MWEB problem
when δ ∈ (−1, − 1

2 ] and δ ∈ [ 12 , 1]. In particular, can this be answered by a better
analysis of Lemma 3?

2. We are especially interested in {−1, 1}-MWEB, which is closely related
to the formulations of many natural problems [1,3,4,18]. We have shown that
no polynomial time algorithm exists for this problem unless RP = NP, and we
believe this problem is NP-complete, however a proof has eluded us so far.
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Abstract. This paper investigates symbolic algorithm analysis of rect-
angular hybrid systems. To deal with the symbolic reachability problem,
a restricted constraint system called hybrid zone is formalized. Hybrid
zones are also applied to a symbolic model-checking algorithm for verify-
ing some important classes of timed computation tree logic formulas. To
present hybrid zones, a data structure called difference constraint matrix
is defined. Using this structure, all reachability operations and model
checking algorithms for rectangular hybrid systems are implemented.
These enable us to deal with the symbolic algorithm analysis of rect-
angular hybrid systems in an efficient way.
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1 Introduction

Hybrid systems are state-transition systems consisting of a non-trivial mixture
of continuous activities and discrete events [6,8]. Most of verification tools [2,3,4]
for hybrid systems deal with the reachability analysis and model checking [16,17].
In this paper, we will be concerned with a symbolic approach which is based on
the manipulation of conjunctions of inequalities.

Many tools for timed automata use data structures and algorithms to ma-
nipulate timing constraints over clock variables called clock zone [11], which is
a conjunction of inequalities that compare either a clock value or the difference
between two clock values to an integer. In this paper, we are motivated to deal
with the reachability of rectangular hybrid systems using some constraint sys-
tem similar to clock zones. However, the immediate problem we encounter is
that the constraint system is getting more complicated than clock zones. For
linear hybrid systems, researchers have used convex polyhedra [10] as the basis
for the symbolic manipulations. Using convex polyhedra, there is a basic op-
eration “quantifier elimination” to compute reachability states, which has an
exponential complexity [15]. As a subset of linear hybrid systems, we could also
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use convex polyhedra as a basic unit for the symbolic reachability analysis of
rectangular hybrid systems. However, we use a more effective constraint system
called hybrid zone in this paper1, which is a conjunction of inequalities that com-
pare either a variable value or a linear expression of two variables to a rational
number. We prove that hybrid zones are closed over the reachability operations
of rectangular hybrid systems.

The model checking problem for rectangular hybrid systems decides whether
a rectangular hybrid system presented by a rectangular automaton meets a prop-
erty given by a temporal logic formula. Unfortunately, this problem is proved to
be undecidable. In [1], a semidecision model-checking algorithm for linear hybrid
systems is given to check timed computation tree logic (TCTL) formulas. In the
model-checking procedure, there are two important operations on state spaces
of linear hybrid systems. They are backward time closure and precondition. We
proved that our hybrid zones are also closed under those two operations for rect-
angular hybrid systems, which enables us to use the same algorithm to check
properties of rectangular hybrid systems presented by some important classes of
TCTL formulas.

To represent hybrid zones, we define a matrix data structure difference con-
straint matrix (DCM), which is indexed by the variables in the rectangular
hybrid systems together, and each entry in the matrix represents an inequality
in the hybrid zone. Using DCM, we implement all reachability operations and
model checking algorithms for rectangular hybrid systems. Similar to DBM [5],
after the DCM has been converted to canonical form, those reachability oper-
ations and model checking algorithms for rectangular hybrid systems can be
implemented straightforwardly. Hence, the main computation is the operation
for obtaining the canonical form of hybrid zones. Finding the canonical form
can be automated by an algorithm with polynomial time complexity. However,
if we use convex polyhedra, the quantifier elimination will lead to an exponential
complexity.

This paper is organized as follows. The next section introduces rectangular
automata. In Section 3, hybrid zones are defined. Section 4 investigates the model
checking problem for rectangular hybrid systems. In Section 5, a data structure
DCM is formalized. Conclusions are drawn in Section 6.

2 Rectangular Automata

Let Y = {y1, · · · , yn} be a set of variables. A rectangle B ⊆ Rn over Y is defined
by a conjunction of linear (in)equalities of the form yi ∼ c, where ∼ is <, ≤, =,
≥, or >, and c is a rational number [7,9]. For a rectangle B ⊆ Rn, we denote Bi

by its projection onto the ith coordinate. The set of all n-dimensional rectangles
is denoted by Bn.

Definition 1. A rectangular automaton [9] is a tuple (Q, X, init, E, jump,
update, reset, act, inv), where:
1 The definition of the hybrid zone is firstly formalized in our another paper [13],

which is perfected in this paper.
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– Q is a finite set of locations.
– X is a finite set of real-numbered variables.
– Init : Q → Bn is a labeling function that assigns an initial condition to each

location q ∈ Q.
– E ⊆ Q × Q is a finite set of edges called transitions.
– jump : E → Bn is a labeling function that assigns a jump condition to each

edge e ∈ E, which relates values of variables before edge e.
– update : E → 2{1,...,n} is a function that maps an element in 2{1,...,n} to

each edge e ∈ E. update(e) indicates the variables {xi|i ∈ update(e)} whose
values must be changed over edge e.

– reset : E → Bn is a labeling function that assigns a reset condition to each
edge e ∈ E, which relates values of the variables after edge e.

– inv : Q → Bn is a labeling function that assigns an invariant condition to
each location q ∈ Q.

– act : Q → Bn is a labeling function that assigns a flow condition to each
location q ∈ Q being the form of ẋ = a (x ∈ X, a ∈ act(q)).

In this paper, we investigate the initialized rectangular automata with bounded
nondeterminism [7]. In addition, we require that for e = (q, q′) ∈ E, jump(e)
is bounded; and for each interval act(q)i, either act(q)i ⊂ (−∞, 0] or act(q)i ⊂
[0, ∞) while both of its end-points are integers.

A valuation is a function from (x1, ..., xn) to Rn, where xi ∈ X . We use V to
denote the set of valuations. A state is a tuple (q, v), where q ∈ Q and v ∈ V .
We use S to denote the set of states. For v ∈ V and d ∈ R+, v + l · d denotes
the valuation which maps each variable xi ∈ X to the value v(xi) + li · d. For
θ ⊆ {1, ..., n}, B ∈ Bn, [θ 
→ B]v denotes the valuation which maps each variable
xi ∈ X (i ∈ θ) to a value in Bi and agrees with v over {xk|k ∈ {1, ..., n}\θ}. For
e = (q, q′) ∈ E, states (q, v) and (q′, v′), if v ∈ jump(e) and v′ ∈ reset(e), then
state (q′, v′) is called a transition successor of state (q, v).

The semantics of rectangular automata can be given by an infinite transition
system. A run of a rectangular automaton H is a finite or infinite sequence

ρ : s0 
→t0
f0

s1 
→t1
f1

s2 
→t2
f2

· · ·

of states si = (qi, vi) ∈ S, nonnegative reals ti ∈ R+, and fi ∈ act(qi), such that
for all i ≥ 0:

1. For all 0 ≤ t ≤ ti, vi + fi · t ∈ inv(qi).
2. The state si+1 is a transition successor of the state (qi, vi + fi · ti).

The state si+1 is called a successor of state si. The run ρ diverges if ρ is infinite
and the infinite sum

∑

i≥0

ti diverges.

3 Reachability Analysis

Given two states s and s′ of a hybrid system H, the reachability problem asks
whether there exists a run of H which starts at s and ends at s′. The reachability
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problem is central to the verification of hybrid systems. In the sequel, we will give
a constraint system to deal with the symbolic reachability analysis of rectangular
hybrid systems.

We can use the algorithm in Fig. 1 to deal with the symbolic reachability
analysis of rectangular hybrid systems, which checks whether a rectangular au-
tomaton may reach a state satisfying a given state formula φ. This algorithm can
be expressed in terms of the following three reachability operations: given two
sets of valuations D and D′, two locations q, q′ ∈ Q and the edge e = (q, q′) ∈ E,
intersection D ∧ D′ is the set of valuations in both D and D′, time progress in
location q D↑q is the set of valuations {u+ l ·d|u ∈ D ∧ l ∈ act(q)∧d ∈ R+} that
are reachable from some valuation in D by time progressing, variable reset Re-
sete(D) is the set of valuations {[update(e) 
→ reset(e)]u|u ∈ D} that are reach-
able from some valuation in D over the transition e (In Fig. 1, (q, D) ↪→ (qs, Ds)
iff qs = q ∧ Ds = (D ∧ inv(q))↑q or qs �= q ∧ Ds = Resete′(D ∧ jump(e′)) ∧ e′ =
(q, qs)).

Passed:={}
Wait:={(q0, D0)}
while Wait �= {}

get (q, D) from Wait
if (q, D) |= φ then return ’YES’
else if D �⊆ D′ for all (q, D′) ∈Passed

add (q, D) to Passed
Next:={(qs, Ds)| (q, D) ↪→ (qs, Ds) ∧ Ds �= ∅}
for all (qs′ , Ds′) ∈Next do

put (qs′ , Ds′) to Wait
return ’NO’

Fig. 1. An algorithm for symbolic reachability analysis

Hybrid zones

In the sequel, for each variable xi ∈ X , li denotes the left end-point of act(q)i,
and ri the right end-point, without clarification. We define a function g̃(a, b)
as g̃(a, b) = gcd(a, b), if a · b �= 0, otherwise, g̃(a, b) = 1, where gcd(a, b) is the
greatest common divisor of a and b.

Definition 2. For a location q of a rectangular automaton, let li denote the left
end-point of act(q)i, and ri the right end-point. A q-zone is the conjunction of
inequalities:

∧

0<i≤n

(xi ≺ ci0 ∧ −xi ≺ c0i) ∧
∧

0<i�=j≤n

aijxi − bijxj ≺ cij ,

such that for 0 < i �= j ≤ n
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⎧
⎪⎪⎨

⎪⎪⎩

aij = lj/g̃(lj , ri) bij = ri/g̃(lj , ri), if li ≥ 0 and lj ≥ 0
aij = lj/g̃(lj , li) bij = li/g̃(lj , li), if li ≥ 0 and rj < 0
aij = rj/g̃(rj , ri) bij = ri/g̃(rj , ri), if ri < 0 and lj ≥ 0
aij = rj/g̃(rj , li) bij = li/g̃(rj , li), if ri < 0 and rj < 0

A hybrid zone is a conjunction of inequalities that accords with some q–zone,
where q ∈ Q is a location of a rectangular automaton. By using a variable x0

which is always 0, we can obtain a general form of a hybrid zone:

x0 = 0 ∧
∧

0≤i�=j≤n

aijxi − bijxj ≺ cij (3 − 1)

where a0k = b0k = ak0 = bk0 = 1, for 0 ≤ k ≤ n.
Given a hybrid zone D represented by

∧
ax− by ≺ c, we call (≺, c) the bound.

For two bounds (≺, c) and (≺′, c′), (≺, c) is tighter than (≺′, c′), denoted by
(≺, c) � (≺′, c′), iff c < c′ or c = c′, ≺ is < and ≺′ is ≤. Further, for ≺ and ≺′,
we define min(≺, ≺′) is ≤ if both ≺ and ≺′ are ≤, and min(≺, ≺′) is < if one
of ≺ and ≺′ is <. For a constraint ax − by ≺ c in D, if (≺′, c′) is the tightest
bound of linear expression ax − by that can be deduced from the conjunction
of other constraints in D, then we call ax − by ≺′′ c′′ the canonical constraint ;
and D with each constraint being canonical the canonical hybrid zone, where
(≺′′, c′′) = (≺, c) if (≺, c) � (≺′, c′), otherwise, (≺′′, c′′) = (≺′, c′).

The following lemmas and theorems ensure that hybrid zones are closed over
those three reachability operations of rectangular hybrid systems, which enables
hybrid zones to be used as the basis for the state reachability analysis algorithm
for rectangular hybrid systems in Fig. 1.

To prove that the projection of a hybrid zone onto a lower dimensional sub-
space is also a hybrid zone, we need to prove that any newly produced constraint
from arbitrary two constraints contained in the hybrid zone must be redundant.
For this, we give a sufficient condition that a hybrid zone has q–property. If a q-
zone D has q-property, then any constraint newly produced from two constraints
in D can be deduced from the conjunction of other constraints in D.

Given a location q of a rectangular automaton and a q-zone D, the canonical
form of D is represented by (3-1). We say D has q-property, iff for 0 < i �= j �=
k ≤ n, one of the following conditions is satisfied:

1. if li ≥ 0, lj ≥ 0, lk ≥ 0, then
g̃(lj , ri)lkcij + (rkri − lkri)c0j ≤ g̃(lk, ri)ljcik + g̃(lj , rk)rickj

2. if li ≥ 0, rj ≥ 0, rk < 0, then
−g̃(lj , ri)rkcij + (rkri − lkri)c0j ≤ g̃(ri, rk)ljcki + g̃(lk, lj)ricjk

3. if li ≥ 0, lj < 0, lk ≥ 0, then
g̃(lj , li)rkcij + (rkli − lkli)cj0 ≤ g̃(lj , lk)lickj − g̃(li, rk)ljcki

4. if li ≥ 0, lj < 0, lk < 0, then
−g̃(lj , li)lkcij + (rkli − lkli)cj0 ≤ g̃(rk, lj)licjk − g̃(lk, li)ljcik

5. if li < 0, lj ≥ 0, lk ≥ 0, then
g̃(rj , ri)rkcij + (lkri − rkri)c0j ≤ g̃(rk, ri)rjcik − g̃(lk, rj)ricjk
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6. if li < 0, rj ≥ 0, rk < 0, then
−g̃(rj , ri)lkcij + (lkri − rkri)c0j ≤ g̃(ri, lk)rjcki − g̃(rj , rk)rickj

7. if li < 0, lj < 0, lk ≥ 0, then
g̃(rj , li)lkcij + (lkli − rkli)cj0 ≤ −g̃(li, lk)rjcki − g̃(rk, rj)licjk

8. if li < 0, lj < 0, lk < 0, then
−g̃(rj , li)rkcij + (lkli − rkli)cj0 ≤ −g̃(rk, li)rjcik − g̃(rj , lk)lickj

For a canonical q-zone D, and a variable xr, D has q-property is a sufficient
condition for ∃xr[D] being a q-zone with variables X \ {xr}. Thus, the following
lemma can be readily obtained.

Lemma 1. Given a location q of a rectangular automaton, if D is a q-zone with
q-property, xr is a variable in X, then ∃xr[D] is a q-zone with q-property over
variables X \ {xr}.

Proof. Suppose the canonical form of D is given by (3-1). Without loss of gener-
ation, let r = n > 0. Since D has q-property, then any inequality obtained from
two inequalities in D by eliminating variable xn are redundant. So, ∃xn[D] is
the q-zone

x0 = 0 ∧
∧

0≤i�=j<n

aijxi − bijxj ≺ cij .

Since D has q-property, so ∃xn[D] has q-property over X \ {xn}. ��

Given a canonical hybrid zone D represented by (3-1), it is easy to prove that D
is empty iff there exists a k.(0 < k ≤ n) such that (min(≺0k, ≺k0), c0k + ck0) �

(≤, 0). For any location q of a rectangular automaton, a bounded rectangle can
be easily expressed as a q-zone with q-property. This ensures that the assignment
of values to variables in the initial condition and every variable constraint used
in the invariant condition of a rectangular automaton location can be expressed
as hybrid zones. Moreover the jump condition of a transition is a hybrid zone.
The following three theorems ensure that hybrid zones keep closed over the three
reachability operations.

Theorem 1. Given a location q of a rectangular automaton, if D is a q-zone
with q-property, then D↑q is a q-zone with q-property.

Theorem 2. Given a location q of a rectangular automaton, if D′ is a bounded
rectangle and D is a q-zone with q-property, then D ∧ D′ is a q-zone with q-
property.

The proofs of Theorem 1 and 2 can refer to our another paper [13]. To ensure
D∧D′ having q-property is necessary and crucial, as after being intersected with
D′, the hybrid zone D will traverse an edge e with q as the left end location,
D ∧ D′ having q-property is the sufficient condition that all the valuation that
can be reached from D ∧ D′ by traversing the edge e can be represented by the
hybrid zone. For the q-zone D, an edge e′ = (q, q′), and a single variable set
update(e′) = {xi}, by Lemma 1, Resete′ [D] = ∃xi[D] ∧ xi ∈ reset(e′)i is a q′–
zone. It is important that Resete′ [D] has q′-property, as it will traverse another
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edge by time elapsing and intersected with a jump condition. This is ensured by
the following lemma. The result can easily be extended to sets with more than
one variable by induction, which is the conclusion of Theorem 3. The proofs of
Lemma 2 and Theorem 3 can refer to our paper [13].

Lemma 2. Given two locations q and q′ of a rectangular automaton. Suppose
D, given by

x0 = 0 ∧
∧

0≤i�=j<n

aijxi − bijxj ≺ cij

is a canonical q-zone with q-property, and q′ is a location such that act(q′)i =
act(q)i, for 0 < i < n. Then

x0 = 0 ∧ x0 − xn ≺ c0n ∧ xn − x0 ≺ cn0 ∧
∧

0≤i�=j<n

aijxi − bijxj ≺ cij

is a q′-zone with q′-property, where c0n and cn0 are two constant rational numbers
such that c0n + cn0 ≥ 0.

Theorem 3. Given an edge e = (q, q′) of a rectangular automaton. If D is a
q-zone with q-property, then Resete[D] is a q′-zone with q′-property.

4 Model Checking

In this section, we address the model checking problem of rectangular hybrid
systems, which is to check whether a given rectangular automaton satisfies a
requirement expressed in the timed computing tree logic [1,14].

4.1 Timed Computation Tree Logic

Here, we introduce the TCTL presented in [1]. Let C be a set of clocks satisfying
C ∩ X = ∅, a state predicate is a linear formula over the set C ∪ X . The syntax
of TCTL is given by the grammar

φ ::= ψ | ¬φ | φ1 ∨ φ2 | z.φ1 | φ1∃Uφ2 | φ1∀Uφ2

where ψ is a state predicate, ′∃U ′ and ′∀U ′ are temporal operators. The formula
φ is closed if all occurrences of a clock z ∈ C are within the scope of a reset
quantifier z. In the following, some abbreviations are given: ∀♦φ

def
= true∀Uφ,

∃♦φ
def
= true∃Uφ, ∀�φ

def
= ¬∃♦¬φ, ∃�φ

def
= ¬∀♦¬φ. We also put timing

constraints as subscripts on the temporal operators. For example, the formula
z.∃♦(φ ∧ z ≤ 3) is abbreviated to ∃♦z≤3φ.

Given a run ρ = s0 
→t0
f0

s1 
→t1
f1

s2 
→t2
f2

. . . of a rectangular automaton H,
we can construct a function g : R+ → S such that for any t ∈ R+, g(t) =

(qi, vi + fi · t′), where i and t′ ∈ R+ satisfy t =
i∑

j=0

tj + t′ and si = (qi, vi). We

use ρ(t) to denote the state g(t).
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A clock valuation ν is a function from C to R+. For any clock z ∈ C, we use
ν[z := 0] to denote the clock valuation ν′ such that ν′(z) = 0 and ν′(z′) = ν(z′),
for all z′(z′ �= z) ∈ C. An extended state is a tuple (s, ν). The extended state
(s, ν) satisfies the TCTL-formula φ, denoted (s, ν) |= φ, if

1. (s, ν) |= ψ iff (s, ν)(ψ).
2. (s, ν) |= ¬φ iff (s, ν) �|= φ.
3. (s, ν) |= φ1 ∨ φ2 iff (s, ν) |= φ1 or (s, ν) |= φ2.
4. (s, ν) |= z.φ iff (s, ν[z := 0]) |= φ.
5. (s, ν) |= φ1∃Uφ2 iff there exists a run ρ of rectangular automaton H with

ρ(0) = s and a time t ∈ R+ such that (ρ(t), ν+t) |= φ2 and for any 0 ≤ t′ ≤ t,
(ρ(t′), ν + t′) |= φ1 ∨ φ2.

6. (s, ν) |= φ1∀Uφ2 iff for all divergent runs ρ of rectangular automaton H
with ρ(0) = s and a time t ∈ R+ such that (ρ(t), ν + t) |= φ2 and for any
0 ≤ t′ ≤ t, (ρ(t′), ν + t′) |= φ1 ∨ φ2.

For a closed TCTL formula φ, a state s ∈ S satisfies φ, denoted by s |= φ,
if (s, ν) |= φ for all clock valuation ν. The rectangular automaton H satisfies φ,
denoted by H |= φ, if all states of H satisfies φ. We use |φ| to denote the states
of H that satisfies φ.

4.2 Model Checking

Given a closed TCTL-formula φ, a model-checking algorithm computes the char-
acteristic set |φ|. We use the algorithm in [1] to deal with the model-checking
problem for rectangular hybrid systems with our hybrid zones.

The procedure is based on fixpoint characterizations of the TCTL-modalities
in terms of a binary next operator �. Given two sets of states R and R′, R�R′

is the set of the state s that have a successor s′ ∈ R′ such that all states between
s and s′ are contained in R ∪ R′: (q, v) ∈ R � R′ iff

∃(q′, v′) ∈ R′, ∃t ∈ R+, ∃e ∈ E.((q′, v′) ∈ (q′,Resete({v}↑q))∧
∀0 ≤ t′ ≤ t.((q, v + act(q) · t) ∈ R ∪ R′)),

that is, the � operator is a single-step until operator. To define the � operator
syntactically, we introduce two notations.

Given an edge e = (q, q′) ∈ E and a set of valuations D, we define the backward
time elapsing in location q D↓q and the backward zone Bace(D) as

v′ ∈ D↓q iff ∃v ∈ D, ∃f ∈ act(q), ∃t ∈ R+.(v = v′ + f · t
∧ ∀0 ≤ t′ ≤ t.((v′ + f · t′) ∈ inv(q))),

v ∈ Bace(D) iff ∃v′ ∈ D.(v′ ∈ Resete({v})).

Then, for two sets of states R and R′, let D = {v|∃q ∈ Q.((q, v) ∈ R′)}, we can
define R � R′ as

(q, v′) ∈ R � R′ iff ∃ e ∈ E, ∃ v ∈ Bace(D), ∃ f ∈ act(q).(v′ ∈ {v}↓q).
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Lemma 3. Given a location q of a rectangular automaton, if D is a q-zone with
q-property, then D↓q is a q-zone with q-property.

Proof. Suppose q′ is a location such that for all k ∈ R, k ∈ act(q) if and only if
−k ∈ act(q′). By the definition of q–zone and q–property, D is a q-zone iff D is
a q′-zone, D has q-property iff D has q′-property. By the definition of backward
time elapsing, D↓q = D↑q′ . By Theorem 1, D↑q′ is a q′-zone with q′-property,
then D↓q is a q-zone with q-property.

Lemma 4. Given an edge e = (q, p) of a rectangular automaton, if D is a
p-zone with p-property, then Bace[D] is a q-zone with q-property.

Proof. Suppose update(e) = {i1, ..., im}, by the definition of backward zone,
Bace[D] is

∃xi1 · · · ∃xim [D ∧
∧

j∈update(e)

xj ∈ reset(e)j ].

By the definition of initialled rectangular automaton, for ∀k ∈ {1, ..., n}\update
(e), act(q)k = act(p)k. By Lemma 1 and Theorem 2, Bace[D] is a q-zone with
q-property.

Theorem 4. Given two locations q and q′ of a rectangular automaton, if D is
a q-zone, D′ is a q′-zone, R = (q, D) and R′ = (q′, D′) are two state regions,
then D∗ = {v|(q, v) ∈ R � R′} is a q-zone.

Proof. It is the immediate consequence of Lemma 3 and 4.

∃U(φ1, φ2) { / ∗ φ1, φ2 are two formulas ∗/
R1 = |φ1|; R2 = |φ2|; R′ = |φ2|; R = |φ1| � |φ2|;
while(R �⊆ R′) {

R′ = R′ ∪ R;
R = R1 � R; }

return R′; }
∀�(φ) { / ∗ φ is a formula ∗/

R′ = |φ|; R = |φ| ∩ ¬(true � ¬|φ|)
while(R �⊆ R′) {

R′ = R′ ∩ R;
R = R ∩ ¬(true � ¬R); }

return R′; }
∀♦≤c(φ) { / ∗ φ is a formula ∗/

R = |φ|; R∗ = |z > c|; R′ = |z > c| ∩ ((¬R) � ¬|z > c|); /*z ∈ C*/
while(R′ �⊆ R∗) {

R∗ = R∗ ∩ R′;
R′ = R′ ∩ ((¬R) � ¬R′); }

return R∗; }

Fig. 2. The model checking procedures



Symbolic Algorithm Analysis of Rectangular Hybrid Systems 303

The meaning of both TCTL- modalities ∀U and ∃U can be computed iteratively
as fixpoints using the � operator. By [1], the iterative fixpoint computation
always terminates for rectangular hybrid systems. Theorem 4 ensures that all
regions that are computed by the process are hybrid zones. Refer to the method
presented in [1], Fig. 2 gives the model checking procedures for some important
classes of TCTL-formulas,

5 Difference Constraint Matrix

To represent hybrid zones, we formalize a data structure difference constraint
matrix. This matrix is indexed by the variables in X together with a special
variable x0 whose value is always 0. This variable plays exactly the same role as
the variable x0 in the previous section. Each entry Dij (i �= j) in the matrix D
has the form (aij , bij , dij , ≺ij) and represents the inequality aijxi −bijxj ≺ij dij ,
or (aij , bij , ∞, <), if no bound is known for aijxi − bijxj . Each entry Dii has the
form (1, 1, dii, ≺ii).

Given a hybrid zone D in its general form represented by (3-1). We can obtain
the matrix D shown below:

– Dij = (aij , bij , cij , ≺ij), for 0 ≤ i �= j ≤ n.
– Dii = (1, 1, 0, ≤), for 0 ≤ i ≤ n.

A DCM D with each Dij = (aij , bij , dij , ≺ij) is canonical iff the hybrid zone
represented by D is canonical, and (min(≺i0, ≺0i), (di0 + d0i)) �� (≺ii, dii), for
all 0 ≤ i ≤ n. We describe five operations on canonical DCM. These operations
correspond to the five operations defined on hybrid zones.

Intersection. Given a location q of a rectangular automaton, and two q-zones
respectively represented by two DCMs D1 and D2, we define D = D1 ∧ D2. Let
D1

ij = (a, b, c1, ≺1) and D2
ij = (a, b, c2, ≺2). Then Dij = (a, b, min(c1, c2), ≺),

where ≺ is defined as follows:

– If c1 < c2, then ≺=≺1.
– If c2 < c1, then ≺=≺2.
– If c1 = c2 and ≺1=≺2, then ≺=≺1.
– If c1 = c2 and ≺1 �=≺2, then ≺=<.

Variable Reset. Given an edge e = (q, q′) of a rectangular automaton, and a q-
zone represented by a DCM D. Suppose Dij = (aij , bij , cij , ≺ij) and reset(e)k =
−xk ≺k μk ∧xk ≺′

k νk, for k ∈ update(e). We define D′ = Resete(D) as follows:

– D′
ij = (aij , bij , ∞, <), for i ∈ update(e) or j ∈ update(e) such that i �= j and

i · j �= 0, where aij and bij satisfy the definition of q′−zone.
– D′

ij = Dij , for (i �= j) �∈ update(e).
– D′

0i = (1, 1, μi, ≺i), D′
i0 = (1, 1, νi, ≺′

i), for i ∈ update(e) and 0 < i ≤ n.
– D′

ii = Dii, for 0 ≤ i ≤ n.

Elapsing of Time in Location q. Given a location q of a rectangular au-
tomaton, and a q-zone represented by a DCM D, we define D′ = D↑q as follows:
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– D′
i0 = (1, 1, ∞, <), D′

0i = D0i, if li ≥ 0; D′
i0 = Di0, D′

0i = (1, 1, ∞, <), if
ri < 0, for i �= 0.

– D′
ij = Dij , for i = j = 0 or i · j �= 0.

Backward Time Elapsing in Location q. Suppose Dij = (aij , bij , cij , ≺ij),
define D′ = D↓q as follows:

– D′
i0 = (1, 1, ∞, <), D′

0i = D0i, if li < 0; D′
i0 = Di0, D′

0i = (1, 1, ∞, <), if
ri ≥ 0, for any i �= 0.

– D′
ij = Dij , if i = j = 0 or i �= 0 ∧ j �= 0.

Backward Zone. Suppose e = (q, q′) is an edge of a rectangular automa-
ton, and the canonical form of D′ = D ∧

∧

i∈update(e)

reset(e)i has each D′
ij as

(aij , bij , cij , ≺ij). We define D∗ = Bace(D) as follows:

– D∗
ij = (aij , bij , ∞, <), for i ∈ update(e) or j ∈ update(e).

– D∗
ij = D′

ij , for i, j �∈ update(e).

In each case the resulting DCM may fail in its canonical form. Thus, as a final
step we need to reduce the DCM to the canonical form. Given a hybrid zone D
represented by (3-1), to find the canonical form of a constraint aijxi−bijxj ≺ cij

is equal to find the maximum of function f(xi, xj) = aijxi − bijxj over the
constraint system D. This is the issue of linear programming, and it can be
automated by the algorithm in [12]. As clarified in [12], the running-time of this
algorithm is O(n3.5L2), where n is the dimension of the problem and L is the
number of bits in the input. Hence, finding canonical form of hybrid zone D can
be automated within a polynomial-time O(n5.5L2).

6 Conclusion

In this paper, a hybrid zone with constraints less than n2 and a data structure
DCM are defined. After the DCM has been converted to canonical form, the
manipulating operations of rectangular hybrid systems on hybrid zones can be
implemented straightforwardly. Hence, the main computation is n2 operations
for obtaining canonical form at most. Finding the canonical form can be auto-
mated by an algorithm with polynomial time-complexity. In addition, we imple-
ment the reachability operations and model checking algorithms for rectangular
hybrid systems using DCMs.
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Abstract. Integer multiplication as one of the basic arithmetic func-
tions has been in the focus of several complexity theoretical investiga-
tions. Ordered binary decision diagrams (OBDDs) are the most common
dynamic data structure for boolean functions. Among the many areas
of application are verification, model checking, computer-aided design,
relational algebra, and symbolic graph algorithms. In this paper it is
shown that the OBDD complexity of the most significant bit of integer
multiplication is exponential answering an open question posed by We-
gener (2000).

Keywords: Computational complexity, integer multiplication, lower
bounds, ordered binary decision diagrams.

1 Introduction and Result

Integer multiplication is certainly one of the most important functions in com-
puter science and a lot of effort has been spent in designing good algorithms and
small circuits and in determining its complexity. For one of the latest results
see, e.g., [8]. Ordered binary decision diagrams (OBDDs) are the most common
dynamic data structure for boolean functions. Although many even exponential
lower bounds on the OBDD size of boolean functions are known and the lower
bound methods how to obtain such bounds are simple, it is often a more difficult
task to prove large lower bounds for some predefined and interesting functions.
Despite the well-known lower bounds on the OBDD size of the so-called middle
bit of multiplication ([7], [17]), until now the OBDD complexity of the most
significant bit of multiplication has been unknown and Wegener [16] has asked
whether its OBDD complexity is exponential. In the following we answer his
question affirmatively.

1.1 Branching Programs or Binary Decision Diagrams

Besides boolean circuits and formulae, branching programs (BPs), sometimes
also called binary decision diagrams (BDDs), are one of the standard represen-
tations for boolean functions. (For a history of results on branching programs
see, e.g., the monograph of Wegener [16]).
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Definition 1. A branching program (BP) on the variable set Xn = {x1, . . . , xn}
is a directed acyclic graph with one source and two sinks labeled by the constants
0 and 1. Each non-sink node (or decision node) is labeled by a boolean variable
and has two outgoing edges, one labeled by 0 and the other by 1.

An input b ∈ {0, 1}n activates all edges consistent with b, i.e., the edges labeled
by bi which leave nodes labeled by xi. A computation path for an input b in a
BP G is a path of edges activated by the input b which leads from the source
to a sink. A computation path for an input b which leads to the 1-sink is called
accepting path for b.

Let Bn denote the set of all boolean functions f : {0, 1}n → {0, 1}. The BP
G represents a function f ∈ Bn for which f(b) = 1 iff there exists an accepting
path for the input b.

The size of a branching program G is the number of its nodes and is denoted
by |G|. The branching program size of a boolean function f is the size of the
smallest BP representing f . The length of a branching program is the maximum
length of a path.

It is well known that the logarithm of the branching program size is essentially
the same as the space complexity of the nonuniform variant of Turing machines.
Hence, it is a fundamental open problem to prove superpolynomial lower bounds
on the size of branching programs for explicitly defined boolean functions. In
order to develop and strengthen lower bound techniques one considers restricted
computation models. There are several possibilities to restrict BPs, among them
restrictions on the multiplicity of variable tests or the order in which variables
may be tested.

Definition 2. i) A branching program is called read-k-times (BPk) if each
variable is tested on each path at most k times.

ii) A branching program is called s-oblivious for a sequence of variables s =
(s1, . . . , sl), si ∈ Xn, or short oblivious, if the set of decision nodes can be
partitioned into disjoint sets Vi, 1 ≤ i ≤ l, such that all nodes from Vi are
labeled by si and the edges which leave Vi-nodes reach a sink or a Vj-node
where j > i. The length of an s-oblivious branching program is the length of
the sequence s.

Besides the complexity theoretical viewpoint people have used branching pro-
grams in applications. Representations of boolean functions that allow efficient
algorithms for many operations, in particular synthesis (combine two functions
by a binary operation) and equality test (do two representations represent the
same function?) are necessary. Bryant [6] introduced ordered binary decision dia-
grams (OBDDs) which have become the most popular data structure for boolean
functions. Among the many areas of application are verification, model checking,
computer-aided design, relational algebra, and symbolic graph algorithms.

Definition 3. An OBDD is a branching program with a variable order given by
a permutation π on the variable set. On each path from the source to the sinks,
the variables at the nodes have to appear in the order prescribed by π (where
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some variables may be left out). A π-OBDD is an OBDD ordered according to
π. The π-OBDD size of f denoted by π-OBDD(f) is the size of the smallest
π-OBDD representing f . The OBDD size of f , sometimes also called OBDD
complexity of f , (denoted by OBDD(f)) is the minimum of all π-OBDD(f).

1.2 Integer Multiplication and Binary Decision Diagrams

Lower bounds for integer multiplication are motivated by the general interest in
the complexity of important arithmetic functions.

Definition 4. The boolean function MULi,n ∈ B2n maps two n-bit integers x =
xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their product, i.e., MULi,n(x, y) =
zi, where x · y = z2n−1 . . . z0.

The bit z2n−1 is the most significant bit of integer multiplication in the following
sense. Let (z2n−1, . . . , z0) be the binary representation of the integer z, i.e.,
z =

∑2n−1
i=0 zi·2i. Since the bit z2n−1 has the highest value, for the approximation

of the value of the product of two n-bit numbers x and y it is the most interesting
one. On the other hand for space bounded models of computation the most
significant bit of integer multiplication is the easiest one to compute in the sense
that if it cannot be computed with size s(n), then any other bit zi, 2n− 1 < i ≤
n− 1, cannot be computed with size s(n/2). and any other bit zi, n− 1 < i ≤ 0,
cannot be computed in size s(i/2).

The middle bit of integer multiplication (the bit zn−1) is the hardest bit to
compute for space bounded models of computation in the sense that if it can be
computed with size s(n), then any other bit can be computed with size at most
s(2n). More precisely, any branching program for MUL2n−1,2n can be converted
into a branching program representing MULi,n, 0 ≤ i ≤ 2n − 1, by relabeling
the nodes and by replacing some inputs with the constant 0. Therefore, the first
exponential lower bounds have been proved for MULn−1,n. For OBDDs Bryant
[7] has presented an exponential lower bound of 2n/8 and Gergov has extended
the result for so-called nondeterministic linear-length oblivious branching pro-
grams [9]. Later Ponzio has shown that the complexity of this function is 2Ω(

√
n)

for read-once branching programs [12]. Progress in the analysis of MULn−1,n

has been achieved by a new approach using universal hashing. Woelfel [17] has
improved Bryant’s lower bound to Ω(2n/2) and Bollig and Woelfel [3] have pre-
sented a lower bound of Ω(2n/4) for read-once branching programs. Exponential
lower bounds have also been proved for more general read-once branching pro-
gram models that allow limited nondeterminism and for models where some but
not all variables may be tested multiple times (see, e.g., [2], [5], [18], [4]). Finally,
Sauerhoff and Woelfel [13] have presented exponential lower bounds on the size of
read-k-times branching programs representing the middle bit of multiplication.

Despite the well-known lower bounds for the middle bit of multiplication, until
now the OBDD complexity of the most significant bit of multiplication has been
unknown. Since the most significant bit is a monotone function it seems to be
easier to compute than the middle bit. The known upper bounds on the OBDD
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size confirms this intuition. Amano and Maruoka [1] have presented an upper
bound of O(2n) on the OBDD size of the most significant bit of multiplication,
whereas the best known upper bound for the middle bit is O(26/5n). Furthermore,
in the lower bound proofs on the OBDD size for MULn−1,n it has been shown
that for an arbitrary variable order π there exists an assignment b to one of
the input vectors such that the π-OBDD size for the resulting subfunction is
exponential. In contrast it is not difficult to see that the OBDD size for any
subfunction of MUL2n−1,n where one of the input vectors is a constant is O(n2).

Computing the set of nodes that are reachable from some source s ∈ V in a
digraph G = (V, E) is an important problem in computer-aided design, hard-
ware verification, and model checking. Proving exponential lower bounds on the
space complexity of a common class of OBDD-based algorithms for the reach-
ability problem, Sawitzki [14] has presented the first exponential lower bound
on the size of π-OBDDs representing the most significant bit for the variable
order π where the variables are tested according to increasing significance, i.e.
π = (x0, y0, x1, y1, . . . , xn−1, yn−1). For the lower bounds on the space complex-
ity of the OBDD-based algorithms he has used the assumption that the output
OBDDs use the same variable order as the input OBDDs. But in contrast, practi-
cal algorithms usually run variable reordering heuristics on intermediate OBDD
results in order to minimize their size. Therefore, it is interesting whether the
OBDD size of the most significant bit of multiplication is exponential with re-
spect to an arbitrary variable order.

In this paper we present the following result.

Theorem 1. OBDD(MUL2n−1,n) = Ω(2n/720).

As a by-product we obtain almost the same lower bound on the π-OBDD size for
the variable order π = (x0, y0, x1, y1, . . . , xn−1, yn−1) as Sawitzki using a much
simpler proof.

2 Preliminaries

2.1 Notation

In the rest of the paper we use the following notation.
Let [x]lr, n − 1 ≥ l ≥ r ≥ 0, denote the bits xl . . . xr of a binary number

x = (xn−1, . . . , x0). For the ease of description we use the notation [x]lr = z if
(xl, . . . , xr) is the binary representation of the integer z ∈ {0, . . . , 2l−r+1 − 1}.
Sometimes, we identify [x]lr with z if the meaning is clear from the context.

Let � ∈ {0, . . . , 2m − 1}, then � denotes the number (2m − 1) − �.

2.2 Communication Complexity

In order to obtain lower bounds on the size of OBDDs one-way communication
complexity has become a standard technique (see Hromkovič [10] and Kushile-
vitz and Nisan [11] for the theory of communication complexity and the results
mentioned below).
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The main subject is the analysis of the following (restricted) communication
game. Consider a boolean function f ∈ Bn which is defined on the variables in
Xn = {x1, . . . , xn}, and let Π = (XA, XB) be a partition of Xn. Assume that
Alice has only access to the input variables in XA and Bob has only access to the
input variables in XB. In a one-way communication protocol, upon a given input
x, Alice is allowed to send a single message (depending on the input variables
in XA) to Bob who must then be able to compute the answer f(x). The one-
way communication complexity of the function f denoted by C(f) is the worst
case number of bits of communication which need to be transmitted by such a
protocol that computes f . It is easy to see that an OBDD G with respect to
a variable order where the variables in XA are tested before the variables in
XB can be transformed into a communication protocol and C(f) ≤ �log |G|�.
Therefore, linear lower bounds on the communication complexity of a function
f lead to exponential lower bounds on the OBDD complexity.

One central notion of communication complexity are fooling sets which play
an important role for the lower bound proof used later on.

Definition 5. Let f : {0, 1}|Xa| × {0, 1}|XB| → {0, 1}. A set S ⊆ {0, 1}|Xa| ×
{0, 1}|XB| is called fooling set for f if f(a, b) = c for all (a, b) ∈ S and some
c ∈ {0, 1} and if for different pairs (a1, b1), (a2, b2) ∈ S at least one of f(a1, b2)
and f(a2, b1) is unequal to c.

Theorem 2. If f : {0, 1}|Xa| × {0, 1}|XB| → {0, 1} has a fooling set of size t,
the communication complexity of f is bounded below by �log t�.

Because of our considerations above, the size t of a fooling set for f is a lower
bound on the size of OBDDs representing f with respect to a variable order
where the variables XA are tested before the variables XB. Because of the sym-
metric definition of fooling sets, t is also a lower bound on the size of OBDDs
representing f with respect to a variable order where the variables XB are tested
before the variables XA. The crucial thing to prove lower bounds on the OBDD
complexity of a function is to obtain for all partitions of the variables lower
bounds on the size of fooling sets for subfunctions of the given function.

Now we take a look at known results about the communication complexity of
some functions. Let EQ: {0, 1}n × {0, 1}n → {0, 1} be defined by EQ(a, b) = 1
iff the vectors a = (a1, . . . , an) and b = (b1, . . . , bn) are equal. It is well-known
that C(EQ) = n. The same holds for the function IP: {0, 1}n × {0, 1}n →
{0, 1} for which IP(a, b) = 1 iff ai ⊕ bi = 1 for all i ∈ {1, . . . , n}. Simi-
lar results can be obtained for the functions GT : {0, 1}n × {0, 1}n → {0, 1},
GT∗ : {0, 1}n × {0, 1}n → {0, 1}, and GT∗∗ : {0, 1}n × {0, 1}n → {0, 1}, where
GT(a, b) = 1 iff [a]n1 ≤ [b]n1 , GT∗(a, b) = 1 iff α ≤ [b]n1 , where α is the integer
with binary representation a, and GT∗∗(a, b) = 1 iff [a]n1 ≤ β, where β is the
integer with binary representation b. Furthermore, obviously the same results
can be obtained if Alice gets exactly one of the variables ai and bi, 1 ≤ i ≤ n.
The reason is the following one. The addition function ADDi,n ∈ B2n maps two
n-bit integers x = xn−1 . . . x0 and y = yn−1 . . . y0 to the ith bit of their sum,
i.e., ADDi,n(x, y) = si, where x + y = sn . . . s0. It is well-known that ADDn,n
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has a fooling set of size 2n if for each i, 0 ≤ i ≤ n − 1, Alice gets exactly
one of the variables xi and yi (variables of the same significance are symmet-
ric variables for binary addition). GT((an−1, . . . , a0), (bn−1, . . . , b0)) is equal to
ADDn,n((an−1, . . . , a0), (bn−1, . . . , b0)), where ADDn,n(x, y) is the negated func-
tion ADDn,n.

The idea of Bryant’s lower bound proof on the OBDD size of MULn−1,n [7]
is the following. For each variable order, there is a subfunction of MULn−1,n

which essentially equals the computation of the output bit at position m of the
addition of two m-bit numbers x and y where m ≥ n/8. The variable order is
bad in the sense that among Alice’s m variables is exactly one of the variables
xi and yi.

3 An Exponential Lower Bound on the OBDD
Complexity of the Most Significant Bit of Integer
Multiplication

In this section, we determine the lower bound on the size of OBDDs for the
representation of the most significant bit of multiplication mentioned above.

Besides Bryant’s lower bound proof on the size of OBDDs representing the
middle bit of multiplication we use the idea of the following reduction from
multiplication to squaring presented by Wegener [15] where squaring computes
the square of an n-bit input. For two n-bit numbers u and w the number z :=
u · 22(n+1) + w is defined. Then

z2 = u2 · 24(n+1) + uw22(n+1)+1 + w2.

Since w2 and uw are numbers of length 2n, the binary representation of the
product uw can be found in the binary representation of z2.

In the following for the sake of simplicity we do not apply floor or ceiling
functions to numbers even when they need to be integers whenever this is clear
from the context and has no bearing on the essence of the proof.

We start our proof of the lower bound on the OBDD complexity of MUL2n−1,n

by the following observation (due to the lack of space we have to omit the proof).

Lemma 1. A pair (xi, yi+1), n/2 + 1 ≤ i ≤ (3/4)n − 2, is called (x, y)-pair.
Let S be the set of the first |S| variables according to a variable order π. A
pair (xi, yi+1) is called separated with respect to S iff xi ∈ S and yi+1 /∈ S or
vice versa. If there exist a set S according to π such that there are at least m
separated (x, y)-pairs with respect to S, the π-OBDD size of the most significant
bit of integer multiplication is at least 2m/2.

Now let π be an arbitrary variable order. The key observation for our lower
bound proof is the following one.

Fact 1. For a number 2n−1 + �2(1/2)n, � ≤ 2(1/6)n−1, the corresponding small-
est number such that the product of the two numbers is at least 22n−1 is 2n −
�2(1/2)n+1 + 4�2. (Figure 1 shows the corresponding x- and y-inputs.)
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Fig. 1. The partition of the inputs x and y

In the following we take a closer look at the variables xn/2, . . . , xn/2+n/6−2.
For the ease of description we assume that (n/6 − 1) mod 3 = 2. We rename
[x]n/2+n/18−2

n/2 by [w]m−1
0 and [x]n/2+n/6−2

n/2+n/9 by [u]m−1
0 , where m := (n/6 − 3)/3.

Figure 1 illustrates the partition of the input x.
Let S be the set of the first |S| variables according to π where there are at least

(1/2)m variables from {w0, . . . , wm−1} for the first time. Let IS ⊆ {0, . . . , m−1}
be the set of indices i for which wi ∈ S. Using simple counting arguments we can
prove that there exists a distance parameter d such that there exists a set of pairs
P = {(wi, wi+d)|i ∈ IS and (i + d) /∈ IS or i /∈ IS and (i + d) ∈ IS , where 0 ≤
i < m/2 ≤ i + d ≤ m − 1} and |P | ≥ m/8 (see [7] for a similar proof). Let I ′′ be
the set of indices i, 0 ≤ i < m/2, where wi belongs to a pair in P .

Case 1: There are at least (2/5)m/8 separated (xn/2+i, yn/2+i+1)-pairs with
respect to S, where i ∈ I ′′ or i − d ∈ I ′′. Using Lemma 1 we can conclude that
the π-OBDD size of the most significant bit of integer multiplication is at least
2(1/5)m/8.

Case 2: There are less than (2/5)m/8 separated (xn/2+i, yn/2+i+1)-pairs with
respect to S, where i ∈ I ′′ or i − d ∈ I ′′. Let I ′ ⊆ I ′′ be the set of indices such
that (xn/2+i, yn/2+i+1) and (xn/2+i+d, yn/2+i+d+1), i ∈ I ′′, are not separated
with respect to S. Obviously, |I ′| ≥ (3/5)m/8.

Now we replace some of the variables in the following way.

- yn−1, . . . , yn/2+n/6 are replaced by 1,
- yn/2, . . . , yn/3, y1, and y0 are replaced by 0,
- xn−1 is replaced by 1,
- xn−2, . . . , xn/2+n/6−1 are replaced by 0,
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Fig. 3. The effect of the replacements of some of the y-variables

- xn/2+n/9−1, . . . , xn/2+n/18−1 are replaced by 0,
- x0, . . . , xn/2−1 are replaced by 0.

Figure 1 illustrates these replacements. Furthermore, u0 and ud are set to
1, all other u-variables are set to 0. The effect of these replacements is that
[u]m−1

0 = 2d + 1 =: u. The variables y4m+6, y4m+d+7, and y4m+2d+6 are set to
1, the other variables yj with 4m + 6 ≤ j ≤ 6m + 5 are set to 0. The effect of
these replacemenst is that [y]6m+5

4m+6 = u2 (Figure 3 shows these replacements).
The variables y4m+5, y2m+4, y2m+3 and y2m+2 are set to 0, and the variables
y2m+1, . . . , y2 are set to 1. The effect of the last replacements is that 22m >
[y]2m+1

2 > w2, where w is defined as the integer with binary representation
[w]m−1

0 . Figure 3 illustrates these replacements. Now we take a closer look at
the product u · w, where u is equal to 2d + 1.

A pair (wi+d, y2m+5+2d+i), i ∈ I ′, is called (w, y)-pair. A (w, y)-pair is called
separated with respect to S iff wi+d ∈ S and y2m+5+2d+i /∈ S or vice versa.

Case 2.1
In the following we prove the existence of a fooling set with at least 2(1/5)m/8

elements. For this reason we choose a subfunction of MUL2n−1,n such that
the computation of this subfunction resembles the computation of the function
GT(1/5)m/8.

There are at least (2/5)m/8 separated (w, y)-pairs with respect to S. W.l.o.g.
we assume that there are at least (1/5)m/8 separated w-variables in S. Our
aim is to prove that there exists a fooling set of size at least (1/5)m/8. The
separated w-variables in S and their corresponding y-variables are called free.
Furthermore, a variable yn/2+i+d+1 for which the variable wi+d is free is also
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called free. Remember that the variable yn/2+i+d+1 is also in S because of the
definition of I ′. Let min I ′ be the minimal and max I ′ be the maximal element
of I ′. In the rest of the proof we choose for each variable yn/2+i+d+1, where wi+d

is a free variable and i 
= min I ′, an assignment such that yn/2+i+d+1 = wi+d ⊕1
without further mentioning it.

- The variables wmin I′+d, y2m+5+2d+min I′ , and yn/2+min I′+d+1 are set to 1.
- The variables wj and yn/2+j+1, 0 ≤ j < min I ′ + d, are set to 0.
- All other variables wi which are not free are set to 0, their corresponding

variables yn/2+i+1 are set to 1.
- The other y-variables which are not free are replaced in the following way.

The variable y2m+5+max I′+d+1 is set to 1, the remaining y-variables without
the free variables to 0.

What is the effect of these replacements?
Remember that [w]m−1

0 = [x]n/2+m−1
n/2 . We only consider assignments to the

variables for which the following holds. If [x]n/2+3m+1
n/2 = � then [y]n/2+3m+2

n/2+1 =
� + 1. Now iff [y]6m+3

2 represents a number r, where r ≥ �2, the product x ·
y is greater than 22n−1. We take a closer look at the variables y2, . . . , y6m+3.
Figure 2 shows the composition of the number �2. One effect of our replacements
is that [y]6m+5

4m+6 = u2 and [y]2m+1
2 > w2. Therefore, iff [y]4m+4

2m+5 represents a
number r′, where r′ ≥ u · w, [y]6m+5

2 represents a number r, where r ≥ �2. Since
we have replaced the variable y2m+5+max I′+d+1 by 1 and because of our other
replacements, [y]6m+5

2 represents a number r, where r ≥ �2, iff for each separated
(w, y)-pair, the assignment to the variable y2m+5+2d+i is at least as large as the
assignment to the variable wi+d. Therefore, the considered subfunction resembles
the function GT1/5·m/8.

In the rest of the proof we show that all possible assignments to the free vari-
ables wi+d together with all possible assignments to the variables y2m+5+2d+i,
where y2m+5+2d+i = wi, are a fooling set of size at least 1/5 · m/8.

Together with the replacements to constants an assignment to the free w-
variables can be seen as a number 2n−1 + �12n/2, the corresponding assignment
to the free y-variables together with the replacements to constants as number
2n − �12n/2+1 + c, where c > 4�2

1. Therefore, the product of the two numbers
is larger than 22n−1. If we choose another assignment to the free variables wi+d

such that x can be seen as number 2n−1 + �22n/2, �2 > �1, we get the following
result

(2n−1 + �22n/2) · (2n − �22n/2+1 + c) < 22n−1,

because c < 4�2
2. Therefore, we are done.

Case 2.2: In the following we prove the existence of a fooling set with at least
2(1/5)m/8 elements. For this reason we choose a subfunction of MUL2n−1,n such
that the computation of this subfunction resembles the computation of the func-
tion GT∗∗

(1/5)m/8.
There are less than (2/5)m/8 separated (w, y)-pairs with respect to S. Let

I ⊆ I ′ be the set of indices such that (wi+d, y2m+5+2d+i), i ∈ I ′, are not separated
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with respect to S. Obviously, |I| ≥ (1/5)m/8. Let min I and max I be the
minimal resp. maximal element of I. For this reason we replace some of the
variables in the following way.

- The variables wmin I and yn/2+min I+1 are set to 1, the variable wmin I+d is
set to 0, the variable yn/2+min I+d+1 is set to 1,

- the variables wi, i < min I, are set to 0, the corresponding variables yn/2+i+1

are set to 0,
- the variables wi, min I < i < max I and i /∈ I are set to 1, the corresponding

variables yn/2+i+1 are set to 0,
- all other variables wj , j /∈ I and j − d /∈ I, are set to 0, the corresponding

variables yn/2+j+1 are set to 1.

Furthermore, the variables y2m+5+2d+i, i ∈ I ′ \ I, are replaced by 0. The
variables y2m+5+2d+i, yn/2+i+1, and yn/2+i+d+1, i ∈ I, are called free. The y-
variables which are not free are replaced in the following way.

- The variables yj , 2m + 5 + min I ≤ j ≤ 2m + 5 + max I, are set to 1,
- the variables yj , 2m + 5 + min I + d ≤ j ≤ 2m + 5 + max I + d, are set to 1,

and
- all other variables yj with 2m + 5 ≤ j ≤ 6m + 5 besides the free y-variables

are set to 0.

The free y-variables are not separated from their corresponding w-variables,
since we know that wi ∈ S and yn/2+i+1 ∈ S or wi 
∈ S and yn/2+i+1 
∈ S, where
i ∈ I, because of the definition of I. The same holds for wi+d, yn/2+i+d+1, and
y2m+5+2d+i, where i ∈ I. In the rest of the proof we only consider assignments
with the property that

- yn/2+i+1 = wi ⊕ 1,
- yn/2+i+d+1 = wi+d ⊕ 1, and
- y2m+5+2d+i = wi+d,

where i ∈ I, without further mentioning it.
In the following we prove that all possible assignments to the variables wi,

i ∈ I, together with the assignments to the variables wi+d, i ∈ I, such that
wi+d = wi ⊕ 1 are a fooling set of size at least (1/5)m/8. Together with the
replacements to constants our assignments to the variables wi, i ∈ I or i−d ∈ I,
can be seen as a number 2n−1 + �2n/2. The corresponding assignments to the y-
variables can be interpreted as number 2n−�2n/2+1+c, where c > 4�2. Therefore,
the product of the two numbers is larger than 22n−1. To see this we decompose
� into u · 22m+2 + w, where u = [u]m−1

0 and w = [w]m−1
0 . The number c can be

decomposed into

[y]6m+5
4m+6 · 24m+6 + [y]4m+4

2m+5 · 22m+5 + [y]2m+1
2 · 22.

As mentioned before, [y]6m+5
4m+6 = u2 and w2 < [y]2m+1

2 < 22m (see Figure 3).
The number [w]m−1

0 can be decomposed into [w]max I+d
min I+d · 2min I+d + [w]max I

min I ·
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2min I . Let w′ := [w]max I
min I and w′′ := [w]max I+d

min I+d . Now the number [y]4m+4
2m+5 can

be decomposed into w′′ · 22m+5+2d+min I + (2max I−min I+1 − 1) · 22m+5+d+min I +
(2max I−min I+1 − 1) · 22m+5+min I . Iff w′ + w′′ ≤ 2max I−min I+1 − 1, the number
[y]4m+4

2m+5 is greater than u · w and altogether [y]6m+5
2 > �2. Therefore, we can

conclude c > 4�2.
If w′+w′′ > 2max I−min I+1−1, the number [y]4m+4

2m+5 is less than u·w. Therefore,
x can be seen as number 2n−1 + �′2n/2 and y as 2n − �′2n/2+1 +c, where c < 4�′2.
Since

(2n−1 + �′2n/2) · (2n − �′2n/2+1 + c) < 22n−1

we are done.

Altogether we have shown that for an arbitrary variable order π the π-OBDD
size for the most significant bit of multiplication is at least 2(1/5)m/8. Considering
the fact that m := (n/6−3)/3 = n/18−1 we obtain a lower bound of 2n/720−1 =
Ω(2n/720) on the OBDD complexity of MUL2n−1,n.

Using techniques from analytical number theory Sawitzki [14] has presented a
lower bound of 2n/6 on the size of π-OBDDs representing the most significant bit
of integer multiplication for the variable order π where the variables are tested
according to increasing significance, i.e. π = (x0, y0, x1, y1, . . . , xn−1, yn−1). Al-
most the same lower bound can be proved in an easier way and without analytical
number theory using the fact that for a number 2n−1 + �2(1/2)n, � ≤ 2(1/6)n−1,
the corresponding smallest number such that the product of the two numbers is
at least 22n−1 is 2n − �2(1/2)n+1 + 4�2.

Furthermore, we only want to mention here that similar to Gergov’s [9] gen-
eralization of Bryant’s lower bound on the size of OBDDs for the middle bit of
multiplication to arbitrary oblivious programs of linear length the result for the
most significant bit of multiplication can be extended.
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Abstract. In this paper we define and investigate basic logical closure
properties of propositional proof systems such as closure of arbitrary
proof systems under modus ponens or substitutions. As our main result
we obtain a purely logical characterization of the degrees of schematic
extensions of EF in terms of a simple combination of these properties.
This result underlines the empirical evidence that EF and its extensions
admit a robust definition which rests on only a few central concepts from
propositional logic.

1 Introduction

In their seminal paper [11] Cook and Reckhow gave a very general complexity-
theoretic definition of the concept of a propositional proof system, focusing on
efficient verification of propositional proofs. Due to the expressivity of Turing
machines (or any other model of efficient computation) this definition includes
a variety of rather unnatural propositional proof systems. In contrast, proof-
theoretic research concentrates on propositional proof systems which, beyond
efficient verification, satisfy a number of additional natural properties. Proof sys-
tems with nice structural properties are also exclusively used in practice (e.g. for
automated theorem proving). Supported by this empirical evidence, we therefore
formulate the thesis, that the Cook-Reckhow framework is possibly too broad
for the study of natural proof systems of practical relevance. Motivated by these
observations, we investigate the interplay of central logical closure properties of
propositional proof systems, such as the ability to use modus ponens or substi-
tutions in arbitrary proof systems.

Proof systems are compared with respect to their strength by simulations,
and all equivalent systems form one degree of proof systems. Since in proof com-
plexity we are mostly interested in the degree of a propositional proof system
and not so much in specific representatives of this degree, we only study proper-
ties which are preserved inside a simulation degree. In particular, we think that
it would be desirable to characterize the degrees of important proof systems
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(e.g. resolution, cutting planes, or Frege) by meaningful and natural properties.
Such results would provide strong confirmation for the empirical evidence, that
these systems have indeed a natural and robust definition. One would expect
that according to the general classification of propositional proof systems into
logical systems (such as resolution, Frege, QBF), algebraic systems (polynomial
calculus, Nullstellensatz) and geometric systems (cutting planes), these under-
lying principles should also be of logical, algebraic, and geometrical character,
respectively.

As a first step of this more general program we exhibit a purely logical char-
acterization of the degrees of schematic extensions of the extended Frege system
EF . These schematic extensions enhance the extended Frege system by addi-
tional sets of polynomial-time decidable axiom schemes. Such systems are of
particular importance: Firstly, because every propositional proof system is sim-
ulated by such an extension of EF , and secondly, because these systems admit
a fruitful correspondence to theories of bounded arithmetic [8,14,16].

For our characterization we formalize closure properties such as modus ponens
and substitutions in such a way that they are applicable for arbitrary proposi-
tional proof systems. We analyse the mutual dependence of these properties,
providing in particular strong evidence for their independence. Our characteri-
zation of extensions of EF involves the properties modus ponens, substitutions,
and reflection. This result tells us that the essence of extended Frege systems
(and its generalizations) lies in the ability to use modus ponens and substitu-
tions, and to prove the consistency of the system with short proofs (this property
is known as reflection). Thus schematic extensions of EF are exactly those sys-
tems (up to p-equivalence) which can prove their consistency and are closed
under modus ponens and substitutions. This result also allows the characteri-
zation of the existence of optimal propositional proof systems (which simulate
every other system).

The paper is organized as follows. We start in Sect. 2 by recalling some back-
ground information on propositional proof systems and particularly Frege sys-
tems and their extensions. In Sect. 3 we define and investigate natural properties
of proof systems which we use throughout this paper. A particularly important
property for strong systems is the reflection property, which gives a proposi-
tional description of the correctness of a proof system. Different versions of such
consistency statements are discussed in Sect. 4, leading in particular to a robust
definition of the reflection property.

Section 5 contains the main result of this paper, consisting of a purely logical
characterization of the degrees of schematic extensions of EF . This directly leads
to a similar characterization of the existence of p-optimal proof systems. These
results can also be explained in the more general context of the correspondence
between strong propositional proof systems and arithmetic theories, of which we
will sketch an axiomatic approach. Finally, in Sect. 6 we conclude with some
open problems.

Most definitions and results of this paper can be given in two versions, one
for simulations and the other, using slightly stronger assumptions, for the case
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of p-simulations between proof systems (cf. Sect. 2). For brevity we will restrict
this exposition to the efficient case of p-simulations.

Due to space limitations we only sketch proofs or omit them in this extended
abstract.

2 Propositional Proof Systems

Propositional proof systems were defined in a very general way by Cook and
Reckhow [11] as polynomial-time functions P which have as their range the set
TAUT of all propositional tautologies. A string π with P (π) = ϕ is called a
P -proof of the tautology ϕ. By P �≤m ϕ we indicate that there is a P -proof of
ϕ of size ≤ m. If Φ is a set of propositional formulas we write P �∗ Φ if there
is a polynomial p such that P �≤p(|ϕ|) ϕ for all ϕ ∈ Φ. If Φ = {ϕn | n ≥ 0} is a
sequence of formulas we also write P �∗ ϕn instead of P �∗ Φ.

Proof systems are compared according to their strength by simulations, in-
troduced in [11] and [18]. A proof system S simulates a system P (denoted by
P ≤ S) if there exists a polynomial p such that for all tautologies ϕ and P -proofs
π of ϕ there is an S-proof π′ of ϕ with |π′| ≤ p (|π|). If such a proof π′ can even
be computed from π in polynomial time we say that S p-simulates P and denote
this by P ≤p S. Systems P and S, that mutually (p-)simulate each other, are
called (p-)equivalent, denoted by P ≡(p) S. A proof system is (p-)optimal if it
(p-)simulates all proof systems.

A prominent example of a class of proof systems is provided by Frege systems
which are usual textbook proof systems based on axioms and rules. In the context
of propositional proof complexity these systems were first studied by Cook and
Reckhow [11], and it was proven there that all Frege systems, i.e., systems using
different axiomatizations and rules, are p-equivalent. A different characterization
of Frege systems is provided by Gentzen’s sequent calculus [12], that is historically
one of the first and best analysed proof systems. The sequent calculus is widely
used, both for propositional and first-order logic, and it is straightforward to
verify that Frege systems and the propositional sequent calculus LK p-simulate
each other [11].

Augmenting Frege systems by the possibility to abbreviate complex formulas
by propositional variables, we arrive at the extended Frege proof system EF . The
extension rule might further reduce the proof size, but it is not known whether
EF is really stronger than ordinary Frege systems. Both Frege and the extended
Frege system are very strong systems for which no non-trivial lower bounds to
the proof size are currently known (cf. [6]).

It is often desirable to further strengthen the proof system EF by additional
axioms. This can be done by allowing a polynomial-time computable set Φ as new
axioms, i.e., formulas from Φ as well as their substitution instances may be freely
used in EF -proofs. These schematic extensions of EF are denoted by EF + Φ.
In this way, we obtain proof systems of arbitrary strength (cf. Theorem 15).
More detailed information on Frege systems and its extensions can be found in
[9,16].



Logical Closure Properties of Propositional Proof Systems 321

3 Closure Properties of Proof Systems

In this section we define and investigate natural properties of propositional proof
systems that are satisfied by many important proof systems. One of the most
common rules is modus ponens, which serves as the central rule in Frege systems.
Carrying out modus ponens in a general proof system might be formalized as:

Definition 1. A proof system P is closed under modus ponens if there exists a
polynomial-time computable algorithm that takes as input P -proofs π1, . . . , πk of
propositional formulas ϕ1, . . . , ϕk together with a P -proof πk+1 of the implication
(ϕ1 → (ϕ2 → . . . (ϕk → ϕk+1) . . . )) and outputs a P -proof of ϕk+1.

Defining closure under modus ponens by requiring k = 1 in the above definition
seems to lead to a too restrictive notion. Namely, in some applications we need
to use modus ponens polynomially many times (cf. Theorem 11). In this case,
the above definition with k = 1 would only guarantee an exponential upper
bound on the size of the resulting proof, whereas Definition 1 results only in a
polynomial increase.

If π is a Frege proof of a formula ϕ, then we can prove substitution instances
σ(ϕ) of ϕ by applying the substitution σ to every formula in the proof π. This
leads us to the general concept of closure of a proof system under substitutions.

Definition 2. P is closed under substitutions if there exists a polynomial-time
procedure that takes as input a P -proof of a formula ϕ as well as a substitution
instance σ(ϕ) of ϕ and computes a P -proof of σ(ϕ).

It also makes sense to consider other properties like closure under conjunctions
or disjunctions. A particularly simple property is the following: a proof system
evaluates formulas without variables if formulas using only constants but no
propositional variables have polynomial-size proofs. As this is true even for truth-
table evaluations, all proof systems simulating the truth-table system evaluate
formulas without variables.

We can classify properties of proof systems like those above along the follow-
ing lines. Some properties are monotone in the sense that they are preserved
from weaker to stronger systems, i.e., if P ≤ Q and P has the property, then
also Q satisfies the property. Evaluation of formulas without variables is such
a monotone property. Other properties might not be monotone but still robust
in the sense that the property is preserved when we switch to a p-equivalent
system. Since we are interested in the degree of a proof system and not in the
particular representative of that degree, it is desirable to investigate only robust
or even monotone properties. It is straightforward to verify that closure under
modus ponens and closure under substitutions are robust properties.

We remark that Frege systems and their extensions have very good closure
properties.

Proposition 3. The Frege system F , the extended Frege system EF, and all
extensions EF +Φ by polynomial-time computable sets of axioms Φ ⊆ TAUT are
closed under modus ponens and under substitutions.
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It is interesting to ask whether these properties of propositional proof systems
are independent from each other. With respect to this question we observe the
following.

Proposition 4. Assume that the extended Frege proof system is not optimal.
Then there exist proof systems which are closed under substitutions but not under
modus ponens.

Proof. (Idea) We use the assumption of the non-optimality of EF to obtain
polynomial-time constructable sequences ϕn and ψn of tautologies, such that
EF �∗ ϕn, but EF 	�∗ ψn. We then encode the implications ϕn → ψn into an
extension of EF , thus obtaining a system Q that is closed under substitutions, but
not under modus ponens, because Q �∗ ϕn, Q �∗ ϕn → ψn, and Q 	�∗ ψn. 
�

Candidates for proof systems that are closed under modus ponens but not under
substitutions come from extensions of Frege systems by polynomial-time com-
putable sets Φ ⊆ TAUT as new axioms. Clearly these systems are closed under
modus ponens. In [3], however, we exhibit a suitable hypothesis, involving dis-
joint NP-pairs, which guarantees that these proof systems are not even closed
under substitutions by constants for suitable choices of Φ.

4 Consistency Statements

Starting with this section, we will use the correspondence of propositional proof
systems to theories of bounded arithmetic. Bounded arithmetic is the general
denomination of a whole collection of weak fragments of Peano arithmetic, that
are defined by adding a controlled amount of induction to a set of basic axioms
(cf. [14]). One of the most prominent examples of these arithmetic theories is
Buss’ theory S1

2 , defined in [8]. In addition to the usual ingredients, the language
L of S1

2 uses a number of technical symbols to allow a smooth formalization of
syntactic concepts.

A central ingredient of the correspondence of arithmetic theories to propo-
sitional proof systems is the translation of first-order arithmetic formulas into
propositional formulas [10,19]. An L-formula in prenex normal form with only
bounded existential quantifiers is called a Σb

1-formula. These formulas describe
NP-predicates in the sense that the class of all Σb

1-definable subsets of N coin-
cides with the class of all NP-subsets of N (cf. [25,8]). Likewise, Πb

1-formulas only
have bounded universal quantifiers and describe coNP-predicates. A Πb

1-formula
ϕ(x) is translated into a sequence ‖ϕ(x)‖n of propositional formulas contain-
ing one formula per input length for the number x, such that ϕ(x) is true, i.e.,
N |= (∀x)ϕ(x), if and only if ‖ϕ(x)‖n is a tautology where n = |x| (cf. [16]). We
use ‖ϕ(x)‖ to denote the set {‖ϕ(x)‖n | n ≥ 1}.

The consistency of a proof system P is described by the consistency statement
Con(P ) = (∀π)¬Prf P (π, ⊥), where Prf P (π, ϕ) is a suitable arithmetic formula
describing that π is a P -proof of ϕ. The formula Prf P can be chosen such that
Prf P is provably equivalent in S1

2 both to a Σb
1- and a Πb

1-formula (such formulas
are called Δb

1-formulas with respect to S1
2 , cf. [16]).
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A somewhat stronger formulation of consistency is given by the reflection
principle of a propositional proof system P , which is defined by the arithmetic
formula

RFN (P ) = (∀π)(∀ϕ)Prf P (π, ϕ) → Taut(ϕ) ,

where Taut is a Πb
1-formula formalizing propositional tautologies. Therefore

Con(P ) and RFN (P ) are ∀Πb
1-formulas, i.e., these formulas are in prenex nor-

mal form with unbounded ∀-quantifiers followed by bounded ∀-quantifiers and
can therefore be translated via ‖.‖ into sequences of propositional formulas.

The two consistency notions Con(P ) and RFN (P ) are compared by the fol-
lowing well-known observation, contained e.g. in [16]:

Proposition 5. Let P be a proof system that is closed under substitutions and
modus ponens and evaluates formulas without variables, and assume that these
properties are provable in S1

2 . Then S1
2 � RFN (P ) ↔ Con(P ).

Very often propositional descriptions of the reflection principle are needed. These
can be simply obtained by translating RFN (P ) to a sequence of propositional
formulas using the translation ‖.‖.

Definition 6. A propositional proof system P has the reflection property if
there exists a polynomial-time algorithm that on input 1n outputs a P -proof of
‖RFN (P )‖n.

There is a subtle problem with Definition 6 which is somewhat hidden in the
definition. Namely, the formula Prf P describes the computation of some Turing
machine computing the function P . However, the provability of the formulas
‖RFN (P )‖n with polynomial-size P -proofs might depend on the actual choice
of the Turing machine computing P . Let us illustrate this with the following
example.

Proposition 7. If EF is not p-optimal, then there exists a proof system Q ≡p

EF such that S1
2 does not prove the reflection principle of Q, i.e., S1

2 does not
prove the formula (∀π)(∀ϕ)Prf Q(π, ϕ) → Taut(ϕ) for some suitable choice of
the Turing machine that computes Q and is used for the formula Prf Q.

Proof. (Sketch) If EF is not p-optimal, then there exists a proof system R such
that R 	≤p EF . We define the system P as EF + ‖RFN (R)‖ and the system Q
as

Q(π) =

⎧
⎪⎨

⎪⎩

ϕ if π = 0π′ and π′ is an EF -proof of ϕ

P (π′) if π = 1π′ and P (π′) ∈ {�, ⊥}
� otherwise.

It is easily checked that EF and Q are ≤p-equivalent. We have to show that
S1

2 does not prove the formula RFN (Q) where for the predicate Prf Q we use
the canonical Turing machine M according to the above definition of Q, i.e.,
on input 0π′ the machine M checks whether π′ is a correct EF -proof and on
input 1π′ the machine M evaluates P (π′). Assume on the contrary that S1

2 �
RFN (Q). Because of line 2 of the definition of Q this means that S1

2 can prove
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that there is no P -proof of ⊥, i.e., S1
2 proves the consistency statement of P .

The system P is closed under substitutions by constants and modus ponens.
Therefore Con(P ) and RFN (P ) are equivalent in S1

2 by Proposition 5. Hence
S1

2 not only proves Con(P ), but also RFN (P ), which gives a p-simulation of P
by EF (cf. Definition 13 and Theorem 14 below). This, however, contradicts the
choice of P , and hence S1

2 	� RFN (Q). 
�

Note that S1
2 � RFN (EF ) (cf. [18]), contrasting S1

2 	� RFN (Q) in the above
proposition. This observation tells us that we should understand the meaning of
Definition 6 in the following, more precise way:

Definition 8. A propositional proof system P has the robust reflection property
if there exists a deterministic polynomial-time Turing machine M computing the
function P such that for some Δb

1-formalization Prf P of the computation of M
with respect to S1

2 we have a polynomial-time algorithm that constructs on input
1n a P -proof of the formula ‖(∀π)(∀ϕ)Prf P (π, ϕ) → Taut(ϕ)‖n.

For this definition of reflection we can show the robustness of the reflection
principle under p-simulations:

Proposition 9. Let P and Q be p-equivalent proof systems. Then P has the
robust reflection property if and only if Q has the robust reflection property.

Proof. (Idea) If Q proves its reflection principle with respect to the Turing ma-
chine M , then P can prove its reflection for the Turing machine M ◦ N , where
the machine N computes a p-simulation of Q by P . 
�

It is known that strong propositional proof systems like EF and its extensions
have the reflection property [18]. In contrast, weak systems like resolution do not
have reflection. Pudlák [21] proved that the cutting planes system CP requires
nearly exponential-size refutations of some canonical formulation of the formulas
RFN (CP). Atserias and Bonet [1] obtained the same result for the resolution
system Res. This, however, does not exclude the possibility that we have short
proofs for the reflection principle of resolution or CP with respect to some other
formalization of PrfCP , PrfRes , or Taut . It therefore remains as an open question
whether these systems have the robust reflection property.

Alternatively, we can view robust reflection as a condition on the canonical dis-
joint NP-pair (Ref (P ),Sat∗) of a proof system P , introduced by Razborov [22].
Its first component Ref (P ) = {(ϕ, 1m) | P �≤m ϕ} contains information about
proof lengths in P , and the second component Sat∗ = {(ϕ, 1m) | ¬ϕ ∈ SAT}
is a padded version of SAT. The link of the canonical pair with the reflection
property was already noted by Pudlák [21]. We can extend this idea to obtain a
characterization of robust reflection for weak proof systems.

Proposition 10. Let P be the resolution or cutting planes system. Then P has
the robust reflection property if and only if the canonical pair of P is p-separable,
i.e., there exists a polynomial-time decidable set S such that Ref (P ) ⊆ S and
S ∩ Sat∗ = ∅.
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Proof. (Idea) Robust reflection for P means that we can efficiently generate P -
proofs for the disjointness of (Ref (P ),Sat∗) with respect to some propositional
representations of its components. Using feasible interpolation for P [17,7,20],
we get a polynomial-time computable separator for (Ref (P ),Sat∗).

Conversely, if the canonical P -pair is p-separable, then it can be given a
simple propositional description, for which we can devise short P -proofs of the
disjointness of the pair. This is possible, as all p-separable disjoint NP-pairs are
equivalent (via suitable reductions for pairs [13]). We can then choose a simple p-
separable pair, prove its disjointness in P , and translate these proofs into proofs
for the disjointness of (Ref (P ),Sat∗) (cf. [2] for the details of this approach). 
�

As it is conjectured that none of the canonical pairs of natural proof systems
is p-separable [21], Proposition 10 indicates the absence of robust reflection for
weak systems that satisfy the interpolation property.

5 Characterizing the Degree of Extended Frege Systems

Using the results from the previous section, we will now exhibit a characterization
of the degrees of schematic extensions of EF .

Theorem 11. For all proof systems P ≥p EF the following conditions are
equivalent:

1. P is p-equivalent to a proof system of the form EF + ‖ϕ‖ with a true Πb
1-

formula ϕ.
2. P is p-equivalent to a proof system of the form EF +‖Φ‖ with a polynomial-

time decidable set of true Πb
1-formulas Φ.

3. P has the robust reflection property and is closed under modus ponens and
substitutions.

Proof. Item 1 trivially implies item 2. For the implication 2 ⇒ 3 let P ≡p

EF +‖Φ‖. Then the closure properties of EF +‖Φ‖ are transferred to P . Systems
of the form EF + ‖Φ‖ are known to have the reflection property (cf. [19] and
Theorem 14 below). By Proposition 9 robust reflection for EF+‖Φ‖ is transferred
to P .

The main part of the proof is the implication 3 ⇒ 1. Its proof involves a series
of results that are also of independent interest. The first step is an efficient
version of the deduction theorem for EF :

1. Efficient Deduction theorem for EF . There exists a polynomial-time pro-
cedure that takes as input an EF-proof of a formula ψ from a finite set of
tautologies Φ as extra assumptions, and produces an EF-proof of the impli-
cation (

∧
ϕ∈Φ ϕ) → ψ.

A similar deduction theorem was shown for Frege systems by Bonet and Buss
[4,5]. For stronger systems like EF we just remark that there are different ways
to formalize deduction. These deduction properties seem to be quite powerful, as
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they allow the characterization of the existence of optimal and even polynomially
bounded proof systems [3].

In the second step we compare schematic extensions of EF and strong proof
systems with sufficient closure properties.

2. Simulation of extensions of EF by sufficiently closed systems. Let P be a
proof system such that EF ≤p P and P is closed under substitutions and
modus ponens. Let Φ be some polynomial-time decidable set of tautologies
such that P -proofs of all formulas from Φ can be constructed in polynomial
time. Then EF + Φ ≤p P .

The idea of the proof of this simulation is the following: if EF + Φ �≤m ϕ, then
there are substitution instances ψ1, . . . , ψk of formulas from Φ such that we have
an EF -proof of ϕ from ψ1, . . . , ψk. Using the deduction theorem for EF , we get
a polynomial-size EF -proof of (

∧k
i=1 ψi) → ϕ. By the hypotheses P ≥p EF and

P �∗ Φ, together with the closure properties of P , we can transform this proof
into a polynomial-size P -proof of ϕ.

Item 2 is most useful in the following form:

3. If the proof system P ≥p EF has the robust reflection property and P is
closed under substitutions and modus ponens, then we get the p-simulation
EF + ‖RFN (P )‖ ≤p P .

The converse simulation extends a result of Kraj́ıček and Pudlák [18], namely
that every proof system P is p-simulated by the system EF + ‖RFN (P )‖.

4. Simulation of arbitrary systems by extensions of EF . Let P be an arbitrary
proof system, and let Φ be some polynomial-time decidable set of tautologies.
If EF + Φ-proofs of ‖RFN (P )‖n can be generated in polynomial time, then
P ≤p EF + Φ.

After these preparations we can now prove the implication 3 ⇒ 1. Let P
be a proof system which has the robust reflection property and is closed under
modus ponens and substitutions. We choose the formula ϕ as RFN (P ). Then
EF + ‖ϕ‖ ≤p P by the above item 3. The converse simulation P ≤p EF + ‖ϕ‖
follows from item 4. 
�

The equivalence of items 1 and 2 in the above corollary expresses some kind
of compactness for extensions of EF : systems of the form EF + ‖Φ‖ are al-
ways equivalent to a system EF + ‖ϕ‖ with a single arithmetic formula ϕ. The
equivalence to item 3 shows that these systems have a robust logical definition,
independent of the particular axiomatization chosen for EF .

We will now apply Theorem 11 to characterize the existence of optimal and
p-optimal proof systems. These problems were posed by Kraj́ıček and Pudlák
[18] and have been intensively studied during the last years [15,23,24]. We call
a set A printable if there exists a polynomial-time algorithm which on input 1n

outputs all words from A of length n.
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Corollary 12. The following conditions are equivalent:

1. P is a p-optimal propositional proof system.
2. P ≥p EF and P is closed under modus ponens and substitutions. Further, for

every printable set of tautologies, P -proofs can be constructed in polynomial
time.

Using non-constructive versions of the conditions in item 2 we get a similar
characterization of the existence of optimal proof systems.

Probably the strongest available information on EF and its extensions stems
from the connection of these systems to theories of bounded arithmetic. Actu-
ally, also Theorem 11 can be derived as a consequence from this more general
context. In the remaining space we will sketch an axiomatic approach to this
correspondence, as suggested by Kraj́ıček and Pudlák [19]. The correspondence
works for pairs (T, P ) of arithmetic theories T and propositional proof systems
P . It can be formalized as follows:

Definition 13. A propositional proof system P is called regular if there exists
an L-theory T such that the following two properties are fulfilled for (T, P ).

1. Let ϕ(x) be a Πb
1-formula such that T � (∀x)ϕ(x). Then there exists a

polynomial-time computable function which on input 1n outputs a P -proof
of ‖ϕ(x)‖n.

2. T proves the correctness of P , i.e., T � RFN (P ). Furthermore, P is the
strongest proof system for which T proves the correctness, i.e., T � RFN (Q)
for a proof system Q implies Q ≤p P .

Probably the most important instance of the general correspondence is the rela-
tion between S1

2 and EF . Property 1 of the correspondence, stating the simula-
tion of S1

2 by EF , is essentially contained in [10], but for the theory PV instead
of S1

2 . Examining the proof of this result, it turns out that the theorem is still
valid if both the theory S1

2 and the proof system EF are enhanced by further
axioms. Property 2 of the correspondence between S1

2 and EF was established
by Kraj́ıček and Pudlák [19]. Again, this result can be generalized to extensions
of S1

2 and EF by additional axioms. Combining these results, we can state:

Theorem 14 (Cook [10], Buss [8], Kraj́ıček, Pudlák [19]). Let Φ be a
polynomial-time decidable set of true Πb

1-formulas. Then the proof system EF +
‖Φ‖ is regular and corresponds to the theory S1

2 + Φ.

Using these results, we can exhibit sufficient conditions for the regularity of a
propositional proof system. From the definition of a regular system it is clear that
regular proof systems have the reflection property. Furthermore, a combination
of the properties of proof systems introduced in Sects. 3 and 4 guarantees the
regularity of the system, namely:

Theorem 15. If P is a proof system such that EF ≤p P and P has the robust
reflection property and is closed under substitutions and modus ponens, then P
is regular and corresponds to the theory S1

2 + RFN (P ).
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Proof. The hypotheses on P imply EF + ‖RFN (P )‖ ≡p P by Theorem 11.
We will now check the axioms of the correspondence for S1

2 + RFN (P ) and P .
Suppose ϕ is a ∀Πb

1-formula such that S1
2 +RFN (P ) � ϕ. By Theorem 14 we can

construct EF + ‖RFN (P )‖-proofs of ‖ϕ‖n in polynomial time. As we already
know that EF + ‖RFN (P )‖ is p-simulated by P , we obtain polynomial-size
P -proofs of ‖ϕ‖n. This proves part 1 of the correspondence.

It remains to verify the second part. Clearly S1
2+RFN (P ) � RFN (P ). Finally,

assume S1
2 + RFN (P ) � RFN (Q) for some proof system Q. By Theorem 14 this

implies that we can efficiently construct proofs of ‖RFN (Q)‖ in the system
EF +‖RFN (P )‖. Applying items 3 and 4 from the proof of Theorem 11 we infer
Q ≤p EF + ‖RFN (P )‖ ≤p P . 
�

6 Conclusion

The results of this paper suggest that logical closure properties can be used to
give robust definitions of strong proof systems such as EF and its extensions.
Continuing this line of research, it is interesting to ask, whether we can also char-
acterize the degrees of weak systems like resolution or cutting planes in terms of
similar closure properties. In particular, these weak systems are known to satisfy
the feasible interpolation property [17]. Can interpolation in combination with
other properties be used to characterize the degrees of weak systems? Pudlák
[21] provides strong evidence that interpolation and reflection are mutually ex-
clusive properties. Which other combinations of such properties are possible?
Further investigation of these questions will hopefully contribute to a better
understanding of propositional proof systems.

Acknowledgements. I am indebted to Jan Kraj́ıček for many helpful and
stimulating discussions on the topic of this paper. I also thank Sebastian Müller
for detailed suggestions on how to improve the presentation of the paper.
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Abstract. We give the first characterisation of graphs of linear clique-
width at most 3, and we give a polynomial-time recognition algorithm
for such graphs.

1 Introduction

Clique-width is an important graph parameter that is useful for measuring the
computational complexity of NP-hard problems. In particular, all problems that
can be expressed in a certain kind of monadic second order logic can be solved
in linear time on graphs whose clique-width is bounded by a constant [5]. The
clique-width of a graph is defined as the smallest number of labels that are needed
for constructing the graph using the graph operations ‘vertex creation’, ‘union’,
‘join’ and ‘relabel’. The related graph parameter linear clique-width is obtained
by restricting the allowed clique-width operations to only ‘vertex creation’, ‘join’
and ‘relabel’. Both parameters are NP-hard to compute, even on complements
of bipartite graphs [7].

The relationship between clique-width and linear clique-width is similar to
the relationship between treewidth and pathwidth, and the two pairs of pa-
rameters are related [7,10,12]. However, clique-width can be viewed as a more
general concept than treewidth since there are graphs of bounded clique-width
but unbounded treewidth, whereas graphs of bounded treewidth have bounded
clique-width. While treewidth is widely studied and well understood the knowl-
edge on clique-width is still limited. The study of the more restricted parameter
linear clique-width is a step towards a better understanding of clique-width.
For example, NP-hardness of clique-width is obtained by showing that linear
clique-width is NP-hard to compute [7].

In this paper, we contribute to the study of linear clique-width. The main
result that we report is the first characterisation of graphs that have linear clique-
width at most 3 and the first polynomial-time algorithm to decide whether a
graph has linear clique-width at most 3. We also show that such graphs are both
cocomparability and weakly chordal graphs, and we present a decomposition
scheme for them. Such a decomposition scheme is useful for designing algorithms
especially tailored for this graph class. For bounded linear clique-width, until now
only graphs of linear clique-width at most 2 could be recognised in polynomial
� This work is supported by the Research Council of Norway through grant

166429/V30. Some proofs are omitted in this version. They can be found in [11].
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time [8,3], and it was an open question whether the same is true for graphs
of linear clique-width at most 3 [9,10]. For bounded clique-width, graphs of
clique-width at most 2 [6] and at most 3 [2] can be recognized in polynomial
time. Whereas graphs of clique-width at most 2 are characterised as the class of
cographs [6], no characterisation is known for graphs of clique-width at most 3.
Furthermore, from the proposed algorithm in [2] there is even no straightforward
way of deciding whether a graph of clique-width at most 3 has linear clique-width
at most 3. Before giving the mentioned results, we define a graph reduction
operation that preserves linear clique-width.

2 Graph Preliminaries and Linear Clique-Width

We consider undirected finite graphs with no loops or multiple edges. For a
graph G = (V, E), we denote its vertex and edge set by V (G) = V and E(G) =
E, respectively. Usually, graphs are non-empty, and may be empty only in case
it is explicitly mentioned. For a vertex set S ⊆ V , the subgraph of G induced by
S is denoted by G[S]. We denote by G − S the graph G[V \ S] and by G−v the
graph G[V \ {v}].

The neighbourhood of a vertex x in G is NG(x) = {v : xv ∈ E} and its degree
is |NG(x)|. The closed neighbourhood of x is NG[x] = NG(x) ∪ {x}. Vertex x is
isolated in G if NG(x) = ∅ and universal if NG[x] = V (G). Two vertices x, y of
G are called false twins if NG(x) = NG(y).

An induced cycle on k vertices is denoted by Ck and an induced path on k
vertices is denoted by Pk. The graph consisting of only two disjoint edges is
denoted by 2K2, the complement of the graph consisting of two disjoint P3’s is
denoted by co-(2P3).

Let G and H be two vertex-disjoint graphs. The (disjoint) union of G and
H , denoted by G ⊕ H , is the graph with vertex set V (G) ∪ V (H) and edge set
E(G) ∪ E(H). The join of G and H , denoted by G ⊗ H , is the graph obtained
from the union of G and H and adding all edges between vertices of G and
vertices of H .

Let H be a family of graphs. A graph is H-free if none of its induced subgraphs
is in H. The class of cographs is defined recursively as follows: a single vertex
is a cograph, the disjoint union of two cographs is also a cograph, and the
complement of a cograph is a cograph. The class of cographs coincides with the
class of P4-free graphs [3].

The notion of clique-width was first introduced in [4]. The clique-width of a
graph G, denoted by cwd(G), is defined as the minimum number of labels needed
to construct G, using the following operations:

(i) Creation of a new vertex v with label i, denoted by i(v);
(ii) Disjoint union, denoted by ⊕;
(iii) Changing all labels i to j, denoted by ρi→j ;
(iv) Adding edges between all vertices with label i and all vertices with label j,

i �= j, denoted by ηi,j(= ηj,i).
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An expression built by using the above four operations is called a clique-width
expression. If k labels are used in a clique-width expression then it is called a
k-expression. We say that a k-expression t defines a graph G if G is equal to the
graph obtained by using the operations in t in the order given by t.

The linear clique-width of a graph, denoted by lcwd(G), is introduced in [10]
and defined by restricting the disjoint union operation (ii) of clique-width. In a
linear clique-width expression all clique-width operations are allowed, but when-
ever the ⊕ operation is used, at least one of the two operands must be an
expression defining a graph on a single vertex. The restricted version of opera-
tion (ii) becomes redundant if we allow operation (i) to automatically add the
vertex to the graph as an isolated vertex when it is created. For simplicity, we
adopt this notation in this paper. Hence whenever a vertex v is created with op-
eration i(v), it is added to the graph as an isolated vertex v with label i, which
means that we never use operation ⊕ in our linear clique-width expressions.
With this convention, the linearity of a linear clique-width expression becomes
clearly visible.

For every k-expression that defines a graph G there is a parse tree that encodes
the composition of G starting with single vertices followed by interleaved opera-
tions of relabeling, edge insertion, and disjoint union. If t is a linear clique-width
expression then its parse tree is path-like. Thus one can view the relationship
between clique-width and linear clique-width analogous to the relationship be-
tween treewidth and pathwidth. Note that the difference between clique-width
and linear clique-width of a graph can be arbitrarily large. For example cographs
and trees have bounded clique-width [6] but unbounded linear clique-width [10].

3 A Graph Reduction Operation That Preserves Linear
Clique-Width

Some graph operations preserve clique-width. Substituting a vertex by a graph
is the replacement of a vertex v of G with a graph H such that every vertex of
H is adjacent to its neighbours in H and the neighbours of v in G. The modular
decomposition is the reverse operation of obtaining a graph recursively by substi-
tution. A module in a graph is a set of vertices that have the same neighbourhood
outside of the module. A prime graph with respect to modular decomposition is
a graph that cannot be obtained by non-trivial substitution. The clique-width
of a graph G is equal to the maximum of the clique-width of all prime induced
subgraphs of G [6]. Thus for clique-width it is enough to consider the prime
graphs appearing in the modular decomposition. For linear clique-width this is
not true, since cographs have unbounded linear clique-width whereas they are
completely decomposable with respect to modular decomposition and they have
no prime graph [1].

In other words modules do not affect the clique-width of a graph and the
scheme provided by modular decomposition gives an efficient way of considering
only the clique-width of the decomposed subgraphs. Motivated by the above
property on clique-width, in this section we give an analogous result for linear
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clique-width. In particular we are able to show that for certain types of modules
this nice property holds when restricted to linear clique-width of graphs.

Definition 1. A set of vertices M in a graph G is a maximal independent-
set module of G if M is an inclusion-maximal set of vertices that is both an
independent set and a module of G.

For a graph G, we define a binary relation for false twins u and v, denoted by
u ∼ft v. Since ∼ft is an equivalence relation, the corresponding equivalence
classes partition the vertex set. It is not difficult to verify that the equiva-
lence classes are exactly the maximal independent-set modules of G. We de-
fine the graph G/∼ft as follows: there is a vertex in G/∼ft for every maximal
independent-set module of G, and two vertices of G/∼ft are adjacent if and
only if the corresponding maximal independent-set modules in G contain ad-
jacent vertices. Clearly G/∼ft is isomorphic to an induced subgraph of G. An
independent-set module is called trivial if it contains a single vertex.

Lemma 1. For a graph G, the independent-set modules of G/∼ft are trivial.

Lemma 2. For a graph G, lcwd(G) = lcwd(G/∼ft).

Proof. Since G/∼ft is isomorphic to an induced subgraph of G, the inequality
lcwd(G/∼ft) ≤ lcwd(G) is immediate. For showing lcwd(G) ≤ lcwd(G/∼ft),
let Mx for x ∈ V (G/∼ft) be the maximal independent-set module of G cor-
responding to x. Let a be a linear clique-width k-expression for G/∼ft where
k = lcwd(G/∼ft) and let �x be the label of x when adding x in the expression
a. Define a linear clique-width k-expression a′ for G as: for every vertex x of
G/∼ft place the vertices of Mx at the occurrence of the addition of x and give
them the same label of x. That is, we replace the appearance of �x(x) in a with
�x(v1) · · · �x(v|Mx|), where vi ∈ Mx. Mx is a module in G and every vertex of Mx

will obtain the same neighbourhood as x in the graph defined by a′. And since
every vertex of Mx receives the same label in a′, Mx is an independent set in
the graph defined by a′. Hence lcwd(G) ≤ lcwd(G/∼ft).

4 Characterisation of Graphs of Linear Clique-Width at
Most 3

We introduce a graph decomposition scheme such that graphs of linear clique-
width at most 3 are exactly the graphs that are completely decomposable. Using
this characterisation, we show that graphs of linear clique-width at most 3 are
both cocomparability and weakly-chordal graphs, which particularly means that
graphs of linear clique-width at most 3 do not contain long cycles or complements
of long cycles as induced subgraphs.

As a first step, we give a characterisation of graphs of linear clique-width at
most 2. The only known characterisation of this graph class is as the class of
{2K2, P4, co-(2P3)}-free graphs [8].
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Definition 2. A graph G is a simple cograph if G satisfies one of the following
conditions:

(1) G is an edgeless graph.
(2) G can be partitioned into two graphs A and B such that A is a simple cograph

and B is an edgeless graph and G = A ⊗ B or G = A ⊕ B.

Recall that cographs are graphs that are completely decomposable into edgeless
graphs with respect to operations ‘join’ and ‘union’. Hence simple cographs are
defined as the graphs that are completely decomposable in the same way, with
the restriction that one operand is always an edgeless graph in the ‘join’ and
‘union’ operations.

Theorem 1. For a graph G, the following statements are equivalent:

(1) G is a simple cograph.
(2) G is {2K2, P4, co-(2P3)}-free.
(3) G can be reduced to a graph on a single vertex by repeatedly deleting an

isolated vertex, a universal vertex or a false twin vertex.

Note that characterisation (3) of Theorem 1 implies a simple and linear-time
recognition algorithm for graphs of linear clique-width at most 2.

Similar to graphs of linear clique-width at most 2, we want to give a decom-
position scheme for graphs of linear clique-width at most 3. We define a set of
operations and show that graphs of linear clique-width at most 3 are exactly the
graphs that are completely decomposable into edgeless graphs by using these op-
erations. Unlike for simple cographs, the operations are complex. We define the
decomposition as a class of formal expressions. An lc3-expression is inductively
defined as follows, where d ∈ {l, r}.

(d1) (A) is an lc3-expression, where A is a non-empty set of vertices.
(d2) Let T be an lc3-expression and let A be a (possibly empty) set of vertices

not containing a vertex appearing in T , then (d[T ], A) is an lc3-expression.
(d3) Let T be an lc3-expression and let A1, A2, A3, A4 be disjoint (and possi-

bly empty) sets of vertices not containing a vertex appearing in T , then
(A1|A2, d[T ], A3|A4) is an lc3-expression.

(d4) Let T be an lc3-expression and let A1, A2, A3, A4 be disjoint (and possibly
empty) sets of vertices not containing a vertex appearing in T , and let p
be one of the following number sequences: 123, 132, 312, 321, 12, 32 (not
allowed are 213, 231, 21, 23, 13, 31), then T � (A1|A2, •), T � (•, A1|A2)
and T ◦ (A1, A2|A3, A4, d[p]) are lc3-expressions where � ∈ {⊗, ⊕}.

This completes the definition of lc3-expressions. These expressions define graphs.
Important and necessary is that these expressions allow to fix a vertex partition
for the defined graphs. The graph defined by an lc3-expression and its associated
vertex partition is obtained according to the following inductive definition. Let T
be an lc3-expression. Then, G(T ) is the following graph, where T ′ always means
an lc3-expression and A, A1, A2, A3, A4 are sets of vertices and d ∈ {l, r}:
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(i1) Let T = (A), then G(T ) is the edgeless graph on vertex set A; the vertex
partition associated with G(T ) is (A, ∅).

(i2) Let T = T ′ � (A1|A2, •) for � ∈ {⊗, ⊕}, and let G(T ′) with vertex par-
tition (B, C) be given, then G(T ) is obtained from G(T ′) by adding the
vertices in A1 and A2 and the edges B � (A1 ∪ A2) and A2 ⊗ C; the vertex
partition associated with G(T ) is ((B ∪ A1 ∪ A2), C).

(i3) The case T = T ′� (•, A1|A2) is similar to the previous one, where the edges
are C � (A1 ∪A2) and A2 ⊗B and the vertex partition is (B, (C ∪A1 ∪A2)).

(i4) Let T = T ′◦(A1, A2|A3, A4, d[p]), and let G(T ′) with vertex partition (B, C)
be given, then G(T ) is obtained from G(T ′) by adding the vertices in A1 ∪
A2 ∪ A3 ∪ A4; the set of edges is dependent on p: we have three start sets,
A2, B, C, and three additional sets, A3, A1, A4, that correspond to A2, B, C,
respectively; the first join is executed between the two specified start sets,
then the two additional sets are added to the sets involved in the first join;
the second join is executed between a now enlarged set and a start set,
then the third additional set is added to its corresponding start set and
the last join operation (if there is one) is executed; so the result depends
on the order of the operations; the numbers stand for: 1 means A2 ⊗ B, 2
means B ⊗ C, 3 means A2 ⊗C; note that the start sets become bigger after
each join operation; the vertex partition associated with G(T ) is ((B ∪A1 ∪
A2 ∪ A3), (C ∪ A4)) or ((B ∪ A1), (C ∪ A4 ∪ A2 ∪ A3)) for d = l or d = r,
respectively.

(i5) Let T = (d[T ′], A), and let G(T ′) with vertex partition (B, C) be given,
then G(T ) is the graph defined by T ′ ⊗ (•, A|∅) or T ′ ⊗ (A|∅, •) for d = l or
d = r, respectively; the vertex partition associated with G(T ) is (B ∪C, A).

(i6) Let T = (A1|A2, d[T ′], A3|A4), and let G(T ′) with vertex partition (B, C)
be given, then G(T ) is the graph defined by T ′ ◦ (A1, A3|A4, A2, d[p′]) where
p′ =def 132 or p′ =def 312 for d = l or d = r, respectively; the vertex
partition associated with G(T ) is ((A1 ∪ A2 ∪ B ∪ C), (A3 ∪ A4)).

Definition 3. A graph G is an lc3-graph if there is an lc3-expression T such
that G = G(T ).

It is not difficult to show that induced graphs of lc3-graphs are also lc3-graphs.
Note that this is not trivial, since a given lc3-expression might require consider-
able changes to obtain an lc3-expression for the induced subgraph.

Before showing that lc3-graphs are exactly the graphs of linear clique-width at
most 3, we give two structural properties. For simplicity, we assume that empty
graphs are simple cographs.

Lemma 3. Let T be an lc3-expression, and let (B, C) be the vertex partition
associated with G(T ). Then, the subgraph of G(T ) induced by C is a simple
cograph.

Proof. We give a construction, that works on the inductive definition of lc3-
expressions. Let GC denote the subgraph of G(T ) induced by vertex partition
set C. If T = (A) for some set A of vertices, then C is empty, and then GC is
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G2G3

H2H3

H1G1

Fig. 1. The result of an lc3-composition of the graphs G1, G2, G3, H1, H2, H3. The
thick lines from graphs G1 and H1 represent joins. The bow tie between G2 ⊕ H2 and
G3 ⊕ H3 means either a join or no edge at all.

an empty graph. Empty graphs are simple cographs. If T = (d[T ′], A) or T =
(A3|A4, d[T ], A1|A2) for d ∈ {l, r}, T ′ an lc3-expression and A1, A2, A3, A4 sets
of vertices, then GC is an edgeless graph on vertex set A or A1∪A2, respectively.
If T = T ′ � (A1|A2, •) where � ∈ {⊕, ⊗}, then C induces GC also in G(T ′), and
we obtain the result by application of the induction hypothesis. Now, let (B′, C′)
be the vertex partition associated with G(T ′). If T = T ′ ◦ (A1, A2|A3, A4, l[p])
and A4 is non-empty, then GC is equal to GC′ ⊕ G(T )[A4], where GC′ denotes
the subgraph of G induced by C′. According to induction hypothesis, GC′ is a
simple cograph, and since G(T )[A4] is an edgeless graph, GC is a simple cograph.
Using the same definitions for the case T = T � (•, A1|A2) where � ∈ {⊕, ⊗},
GC is equal to GC′ � G(T )[A1 ∪ A2], which is a simple cograph. Finally, let
T = T ′◦(A1, A2|A3, A4, r[p]). Depending on p, GC is one of the following graphs:

– (GC′ ⊗ G(T )[A2 ∪ A3]) ⊕ G(T )[A4]
– (GC′ ⊗ G(T )[A2]) ⊕ G(T )[A3 ∪ A4]
– (GC′ ⊕ G(T )[A4]) ⊗ G(T )[A2 ∪ A3] .

All these graphs are simple cographs, and we conclude the proof.

The second property of lc3-graphs is a closure property for a special composition
operation. Let G1, G2, G3 be an edgeless graph, a simple cograph and an lc3-
graph (in arbitrary assignment) and let H1, H2, H3 be edgeless graphs. Graphs
may be empty but at least two of them are non-empty. Then, the graph that is
obtained from these six graphs and the additional edges as in Figure 1 is an lc3-
graph. The bow tie in Figure 1 means either a join between G2⊕H2 and G3⊕H3

or no edge at all. We call this operation complete or incomplete lc3-composition
depending on whether the bow tie represents a join operation (‘complete’) or a
union operation (‘incomplete’).

Lemma 4. Let G1, G2, G3 be an edgeless graph, a simple cograph and an lc3-
graph and let H1, H2, H3 be edgeless graphs, where at least two of the six graphs
are non-empty. Then, both the complete and the incomplete lc3-compositions of
these graphs yield lc3-graphs.



Graphs of Linear Clique-Width at Most 3 337

Proof. Let G2 be an edgeless graph, G3 be a simple cograph, G1 be an lc3-graph.
Let T be an lc3-expression for G1. Let T ′ =def (l[T ], ∅). Obtain T ∗ by adding
operations of the form ⊕(•, ∅|A) and ⊗(•, ∅|A) to T ′ to obtain an lc3-expression
for G1 ⊗G3. This can be done by reversing the construction procedure described
in the proof of Lemma 3. Then, the expressions

T ∗ ⊕ (V (H1)|∅, •) ⊕ (•, V (H3)|∅) ⊗ (•, V (H2)|V (G2))
T ∗ ⊕ (V (H1)|∅, •) ⊕ (•, V (H3)|∅) ⊕ (•, V (H2)|V (G2))

define lc3-expressions for the complete and incomplete lc3-composition of the
six graphs. In case that G2 is an edgeless graph, G1 is a simple cograph and G3

is an lc3-graph, we obtain lc3-expressions for the lc3-compositions in a similar
way. Let G1 be an edgeless graph. Similar to the construction above, we obtain
an lc3-expression T for G2 ⊕ G3. Then,

T ◦ (V (H2), V (G1)|V (H1), V (H3), l[p]) or
T ◦ (V (H1), V (G1)|V (H1), V (H2), l[p])

for an appropriate choice of p is an lc3-expression for the complete or incomplete
lc3-composition. The case of G3 being an edgeless graph is analogous.

Our main theorem is proven by considering linear clique-width 3-expressions.
Linear clique-width expressions may contain redundant operations with no af-
fect to the defined graph. As an auxiliary result, the following lemma shows a
normalisation result for linear clique-width expressions. We use the following
notation. Let t = t1 · · · tq be a linear clique-width k-expression. By G[t1 · · · ti],
we denote the graph that is defined by subexpression t1 · · · ti of t. We say that
vertices with the same label in G[t1 · · · ti] belong to the same label class of
G[t1 · · · ti].

Lemma 5. Let k ≥ 1 and let G be a graph that has a linear clique-width k-
expression. Then, G has a linear clique-width k-expression a = a1 · · ·ar such
that the following holds for all join and relabel operations ai in a:

(1) G[a1 · · · ai] does not contain an isolated vertex
(2) G[a1 · · · ai−1] contains vertices of the two label classes involved in ai .

Proof. Let b = b1 · · · bs be a linear clique-width k-expression for G. Let bi be a
join or relabel operation and suppose that G[b1 · · · bi] contains an isolated ver-
tex, say x. Let c be the label of x in G[b1 · · · bi]. If bi is a join operation then c
is not one of the two join labels. We obtain b′ = b′1 · · · b′s from b by deleting the
vertex creation operation for x in b and adding the operation c(x) right after op-
eration bi. Then, G[b′1 · · · b′i] = G[b1 · · · bi]. Iterated application of this operation
shows existence of a linear clique-width k-expression having the first property. For
the second property, let d = d1 · · · dt be a linear clique-width k-expression that
has the first property. Let di = ηc,c′ be a join operation. If G[d1 · · · di] does not
contain a vertex with label c or c′, di does not add an edge to G[d1 · · · di−1], i.e.,



338 P. Heggernes, D. Meister, and C. Papadopoulos

G[d1 · · · di−1] = G[d1 · · · di]. We obtain d′ from d by deleting operation di. Let
di = ρc→c′ be a relabel operation, and suppose that one of the two involved label
classes is empty in G[d1 · · · di−1]. If the label class corresponding to c is empty,
we obtain d′ from d by just deleting operation di. If the class corresponding to
c is non-empty but the class corresponding to c′ is empty, we obtain d′ from d
by first exchanging c and c′ in all operations di+1, . . . , dt and then deleting di.
It is clear that G[d1 · · ·dj ] and G[d′1 · · · d′j−1] correspond to each other for every
j ∈ {i+1, . . . , t} with the exception that the classes corresponding to c and c′ are
exchanged. Repeated application of the modification completes the proof.

Theorem 2. A graph has linear clique-width at most 3 if and only if it is an
lc3-graph.

The main idea of the proof of the ‘only-if’ part is to partition a given normalised
linear clique-width 3-expression into subexpressions between two relabel oper-
ations. The modifications of the described graph are expressed by appropriate
combinations of lc3-expression operations. For the converse, it is mainly sufficient
to give linear clique-width 3-expressions for each lc3-expression operation.

Using the new characterisation of graphs of linear clique-width at most 3,
we can show that these graphs are cocomparability graphs. A graph is called
cocomparability graph if directions can be assigned to the edges of its complement
to obtain a directed graph that is transitive. For a graph G = (V, E), a vertex
ordering σ is called cocomparability ordering if for every triple u, v, w of vertices
such that u ≺σ v ≺σ w, uw ∈ E implies uv ∈ E or vw ∈ E. A graph is
cocomparability if and only if it has a cocomparability ordering [13].

Proposition 1. Lc3-graphs are cocomparability graphs.

Proof. We show the statement by induction over the definition of lc3-expressions.
Let G = (V, E) be an lc3-graph with lc3-expression T . We show that there is
a cocomparability ordering for G that respects the vertex partition associated
with G(T ). First, let T = (A) for a set A of vertices. Then, G(T ) is an edgeless
graph, and every vertex sequence for G is a cocomparability ordering for G. Fur-
thermore, every vertex sequence for G respects the vertex partition (A, ∅). Now,
let T be more complex. For the rest of the proof, let T ′ be an lc3-expression with
associated vertex partition (B, C), let σ′ be a cocomparability ordering for G(T ′)
that respects partition (B, C), which means that the vertices in B appear con-
secutively and the vertices in C appear consecutively in σ′, let A, A1, A2, A3, A4

be sets of vertices, d ∈ {l, r} and p an appropriate number sequence. We consider
only the more interesting cases here.

– T = T ′ � (A1|A2, •) for � ∈ {⊕, ⊗}. We obtain σ from σ′ by adding the
vertices in A1 to the left of the vertices in B and the vertices in A2 between
the vertices in B and C. Then, σ is a cocomparability ordering for G and
the vertices in B ∪ A1 ∪ A2 appear consecutively.

– T = (l[T ′], A). The vertices in A are adjacent to only the vertices in C. We
obtain σ from σ′ by adding the vertices in A to the right of the vertices in
C. Then, σ is a cocomparability ordering for G that respects the
partition (B ∪ C, A).
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– T = T ′◦(A1, A2|A3, A4, l[12]). The vertices in B and A2 are adjacent and the
vertices in B∪A1 and C are adjacent. We obtain σ by placing the vertices in
the following order: A3, A2, B, A1, C, A4, and the vertices in B and C appear
in order determined by σ′. Then, σ is a cocomparability ordering for G and
respects the vertex partition ((B ∪ A1 ∪ A2 ∪ A3), (C ∪ A4)).

– T = T ′ ◦ (A1, A2|A3, A4, r[12]). We place the vertices in
order A4, A3, A2, C, B, A1.

The remaining cases are (A1|A2, d[T ′], A3|A4) and T = T ′ ◦ (A1, A2|A3, A4, d[p])
where p ∈ {123, 132, 312, 321}. We begin with the situation in Figure 1. Suppose
cocomparability orderings for the graphs G1, G2, G3, H1, H2, H3 are given. We
define three vertex orderings for the depicted graph. The vertices of every par-
tition graph appear consecutively and in order defined by the given orderings.
The order of the partition graphs is as follows:

H2, G3, G2, H3, G1, H1 ; H3, H1, G1, G3, G2, H2 ; H2, G1, G2, H1, G3, H3 .

It is easy to check that all three vertex orderings actually define cocompara-
bility orderings for the graph (scheme) depicted in Figure 1. Furthermore, for
every i ∈ {1, 2, 3}, there is a cocomparability ordering such that the vertices of
Gi ⊕ Hi appear consecutively at the end of the ordering. Depending on p, the
pairs (B, A1), (C, A4), (A2, A3) are matched to (G1, H1), (G2, H2), (G3, H3), and
depending on d and the particular case, one of the vertex orderings is chosen to
achieve the correct vertex partition. This completes the proof.

Proposition 1 shows that lc3-graphs do not contain induced cycles of length
more than 4, since such cycles are no cocomparability graphs. This also holds
the complements of such cycles. Graphs that neither contain induced cycles of
length at least 5 nor their complements as induced subgraphs, are called weakly-
chordal. The proof of the following proposition requires a careful but not difficult
argumentation.

Proposition 2. Lc3-graphs are weakly-chordal.

5 Recognition of Graphs of Linear Clique-Width at
Most 3

The results of the previous section provide an efficient recognition algorithm for
lc3-graphs. This algorithm, called Lc3-graphRecognition, is given in Fig-
ure 2. The main loop decomposes the input graph using the reverse of lc3-
composition as long as possible. When such a decomposition is not possible, a
vertex partition has to be determined. Algorithm Simplify applies the opposite
strategy, since it starts already with a vertex partition. We call a vertex almost-
universal if it has exactly one non-neighbour. The following lemma summarises
properties of Simplify.

Lemma 6. Let G = (V, E) be a graph, and let (B, C) be a vertex partition for
G. Let G not have false twin vertices in B and in C. If Simplify applied to G
and (B, C) . . .
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Algorithm Lc3-graphRecognition

Input a graph G = (V, E)
Result an answer accept or reject

set G := G/∼ft;

while no return do

if G is edgeless then return accept

else-if G is the result of an lc3-composition of at least two non-empty graphs then
if all partition graphs are simple cographs then return accept

else set G to the partition graph that is not a simple cograph end if

else-if there is a vertex u such that
Simplify on G−u with partition (NG(u), V (G) \ NG[u]) returns a graph G′ then

set G := G′

else-if there is a pair u, v of non-adjacent vertices where the degree of v is |V (G)| − 2 such that
Simplify on G − {u, v} with partition (NG(u), V (G) \ (NG(u) ∪ {u, v}))
returns a graph G′ then

set G := G′

else return reject end if

end while.

Algorithm Simplify

Input a graph G and a vertex partition (B, C) for G

Result an answer accept or reject or a graph G′, where accept returns a graph on a single vertex

while no return do

if G is edgeless then return accept

else-if B = ∅ or C = ∅ then return G

else-if G has a vertex u such that
NG(u) = ∅ or NG(u) = B or NG(u) = C or
NG[u] = V (G) or NG[u] = B or NG[u] = C then

set G := G−u and (B, C) := (B \ {u}, C \ {u})

else-if there is a pair u, v of non-adjacent vertices where v is almost-universal such that
u, v ∈ B and NG(u) = B \ {u, v} or
u, v ∈ C and NG(u) = C \ {u, v} then

set G := G − {u, v} and (B, C) := (B \ {u, v}, C \ {u, v})

else-if B or C is singleton set containing vertex u and
|V (G) \ NG[u]| �= 2 or V (G) \ NG[u] = {x, z} and the sets
NG(x) \ {z} and NG(z) \ {x} can be ordered by inclusion then

set G := G−u and (B, C) := (V (G) \ NG[u], NG(u))

else-if G is the result of an lc3-composition of at least two non-empty graphs
that respects the given vertex partition then

if all partition graphs are simple cographs then return accept

else return the partition graph that is not a simple cograph end if

else return reject end if

end while.

Fig. 2. The recognition algorithm for lc3-graphs

(1) returns accept then G is an lc3-graph and there is an lc3-expression T for
G that associates G(T ) with vertex partition (B, C) or (C, B).

(2) returns reject then G is not an lc3-graph or there is no lc3-expression T
for G that associates G(T ) with vertex partition (B, C) or (C, B).

(3) returns a graph G′ then G is an lc3-graph and there is an lc3-expression T
for G that associates G(T ) with vertex partition (B, C) or (C, B) if and only
if G′ is an lc3-graph. Furthermore, G′ is a module and subgraph of G that is
induced by vertices only in B or in C.

Theorem 3. There is an O(n2m)-time algorithm for recognising lc3-graphs.
Correctness. If the algorithm accepts, an lc3-expression can be constructed
for the input graph. Important subroutines are the proofs of Lemmata 4 and
2. The converse is proven by induction. Let G be the input graph, and let T
be an lc3-expression for G. For space reasons, we restrict G to have only trivial
independent-set modules and not to be the result of an lc3-composition. The
last operation in T is not of the forms (d1) and (d3) and the complex operation
of (d4). Let the last operation be of the form (d2). There is a vertex u such
that G−u is an lc3-graph with lc3-expression T ′ that associates G(T ′) with the
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vertex partition (NG(u), V (G)\NG[u]) or its reverse. Due to Lemma 6, Simplify

outputs a proper subgraph of G, that is accepted. Let the last operation of T be
of the form �(A1|A2, •) or �(•, A1|A2). If � = ⊕ then A1 is empty. The vertex
in A2, say u, defines vertex partition (V (G) \ NG[u], NG(u)) or (NG(u), V (G) \
NG[u]) for G−u, and this partition corresponds to the vertex partition associated
with G(T )−u. So, G is accepted. Let � = ⊗. If A2 is empty, the case is similar
to the previous one. If A1 is empty, the vertex in A2 is universal. Thus, A1 and
A2 are non-empty. The vertex in A2 is adjacent to all vertices but the vertex in
A1, and the vertex in A1 defines a vertex partition for G. The algorithm accepts.

Running time. Graph G/∼ft can be computed in linear time. Every while-
loop execution is done with a smaller graph, so that there are at most n while-
loop executions. A single while-loop execution takes time O(nm): linear time
for checking for result of an lc3-composition and at most 2n applications of
Simplify, that requires linear time each call. This shows the total O(n2m)
running time.
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Abstract. A Boolean function on n variables is called k-mixed if for
any two different restrictions fixing the same set of k variables must
induce different functions on the remaining n−k variables. In this paper,
we give an explicit construction of an n − o(n)-mixed Boolean function
whose circuit complexity over the basis U2 is 5n + o(n). This shows that
a lower bound method on the size of a U2-circuit that uses the property
of k-mixed, which gives the current best lower bound of 5n − o(n) on a
U2-circuit size (Iwama, Lachish, Morizumi and Raz [STOC ’01, MFCS
’02]), has reached the limit.

1 Introduction and Results

A Boolean function on n variables is called k-mixed if for any two different
restrictions fixing the same set of k variables must induce different functions on
the remaining n − k variables. The notion of a k-mixed Boolean function, which
was introduced by Jukna [7], plays an important role on deriving explicit lower
bounds on several computational models.

The best known 5n − o(n) lower bound on the size of a Boolean circuit over
the basis U2 can be established for any n − o(n)-mixed Boolean function [5,6].
The basis U2 is the set of all Boolean functions over two variables except for
the XOR function and its complement. It is also known that the size of any
read-once branching program computing a k-mixed Boolean function is at least
2k (see e.g., [12,10]). This result was used to show the existence of a function in
P having read-once branching program size not smaller than 2n−O(

√
n) [10] (see

also [2] for an improved result).
In this paper, we focus on the complexity of Boolean circuits over the basis

U2. Deriving a good lower bound for an explicit Boolean function in such a gen-
eral circuit model is one of the central problems in computer science. In 1991,
Zwick [14] gave a lower bound of 4n − O(1) for a certain family of symmetric
Boolean functions. After a decade, Lachish and Raz [9] introduced a new fam-
ily of Boolean functions called strongly-two-dependent and improved the lower
bound to 4.5n − o(n). Shortly after, Iwama and Morizumi [5] proved a lower

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 342–350, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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bound of 5n − o(n) for the same family of Boolean functions, which is the cur-
rent best (see also [6]). Since it is easily shown that the property of k-mixed is
stronger than that of strongly-two-dependent, the above mentioned lower bound
of 5n − o(n) can be established for every k-mixed function with k = n − o(n).

A simple and explicit construction of an n−3
√

n-mixed Boolean function was
given by Savický and Zák [10]. Their function is of the form h(x) = xφ(x), where
φ : {0, 1}n → {1, 2, . . . , n} is a kind of weighted sum of inputs. If we consider the
circuit complexity of their function, a straightforward implementation yields an
upper bound of O(n log n). It seems to be difficult to improve this upper bound
without changing the definition of the function, since we need to manipulate n
numbers each has O(log n)-digits in order to compute the index function φ(·).
Hence it would be natural to expect that a lower bound method that uses the
property of k-mixed [6,9,5], which gives the current best lower bound on a U2-
circuit size of 5n − o(n), can further be extended for obtaining a higher lower
bound.

The main result of this paper is to show that this is not the case since there
is a well-mixed function with circuit complexity 5n + o(n). Precisely, we give a
construction of an explicit Boolean function fn on n variables such that

(i) fn is n − t(n)-mixed for any t(n) = ω(
√

n log2 n), and
(ii) fn can be computed by a circuit of size 5n + o(n) over the basis U2.

The circuit complexity of our function over the basis U2 is optimal up to a lower
order term. The result also shows that a lower bound method that uses the
property of k-mixed (Iwama, Lachish, Morizumi and Raz [6,9,5]) has reached
the limit.

The organization of the paper is as follows. In Section 2, we give some prelim-
inaries. In Section 3, we describe the definition and the analysis of our function.
Finally, we give some concluding remarks in Section 4.

2 Notations and Definitions

For a natural number n, [n] denotes the set {1, 2, . . . , n}. For a binary sequence
x = xk−1 · · · x0, (x)2 denotes the integer represented by x, i.e., (x)2 =

∑k−1
i=0 2ixi.

Throughout the paper, we consider a Boolean function on the variable set
Xn = {x1, . . . , xn}. Let B2 denote the set of all (sixteen) Boolean functions
over two variables, and let U2 denote B2 − {⊕, ≡}, i.e., U2 contains all Boolean
functions over two variables except for the XOR function and its complement.
For a basis B ⊆ B2, a Boolean circuit over the basis B is a directed acyclic graph
with nodes of in-degree 0 or 2. Nodes of in-degree 0 are called input-nodes, and
each one of them is labeled by a variable in Xn or a constant 0 or 1. Nodes
of in-degree 2 are called gate-nodes, and each one of them has two inputs and
an output, and is labeled by a function in B. For a basis B and for a Boolean
function f , the circuit complexity of f over the basis B, which is denoted by
SizeB(f), is the minimum number of gate-nodes in a circuit over the basis B
that computes f .
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Let f be a Boolean function on Xn. A partial assignment is a function σ :
Xn → {0, 1, ∗}, where σ(xi) = 0 or 1 means that the input variable xi is fixed to
the corresponding constant, and σ(xi) = ∗ means xi remains free. For a partial
assignment σ, the support of σ, denoted by Sup(σ), is Sup(σ) = {xi | σ(xi) �= ∗}.
Let f |σ denote the subfunction (over Xn\Sup(σ)) obtained by restricting all
variables xi in Sup(σ) to σ(xi).

All logarithms in the paper are base 2.

3 The Function and Proofs

In this section, we give an explicit construction of a well-mixed Boolean function
whose circuit complexity over the basis U2 is 5n ± o(n).

Definition 1. For k ∈ N, a Boolean function f on Xn is called k-mixed, if for
every V ⊆ Xn such that |V | = k and for any two distinct partial assignments
α, β with support V yield different subfunctions, i.e., f |α �= f |β.

We now describe the definition of our function. Our function is of the form
fn(x) = xz where z is computed from a weighted sum of block parities of input
variables.

Definition 2. For an integer n, let p[n] be the smallest prime greater than or
equal to n. Note that the Bertrand-Chebyshev theorem (see e.g., [4, p.373]), which
states that there is a prime p such that n ≤ p < 2n for every n > 1, guarantees
that p[n] < 2n. Let wn : N → [n] be defined as follows. For an integer s, let s̃ be
the unique integer satisfying s̃ ≡ s (mod p[n]) and 1 ≤ s̃ ≤ p[n]. Then,

wn(s) =
{

s̃, 1 ≤ s̃ ≤ n,
1, otherwise.

Let b = � n
�log2 n��. For an index i ∈ [n], the value � i

�log2 n�� is called a weight
of the index i and is denoted by wgt(i). We divide [n] into b blocks D1, . . . , Db

such that j ∈ Di iff wgt(j) = i.
For a total assignment x to Xn and i ∈ [b], let PAR(x, i) denote the parity of

variables whose weight is i, i.e.,

PAR(x, i) =
⊕

j∈Di

xj .

For every n, the Boolean function fn : {0, 1}n → {0, 1} is defined as fn(x) = xz,
where

z = wn

(
b∑

i=1

i · PAR(x, i)

)

. (1)

We should note that our function is a modification of the function introduced
by Savický and Zák [10], which was shown to be n − 3

√
n-mixed. The difference
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between their function and ours is that they defined z := wn(
∑n

i=1 i ·xi) instead
of Eq. (1) in Definition 2.

Below we prove that the function fn defined above is n− t(n) mixed for every
t(n) = ω(

√
n log2 n) (Theorem 3), and then prove that the circuit complexity of

fn over the basis U2 is 5n + o(n) (Theorem 6).

Theorem 3. For any t = t(n) = ω(
√

n log2 n), the function fn is (n− t)-mixed.

As for the result of Savický and Zák [10], we use the following theorem due to
da Silva and Hamidoune [11] (see also e.g., [1]).

Theorem 4. Let p be a prime number and let z and h be two integers. Let
h ≤ z ≤ p and let A ⊆ Zp such that |A| = z. Let B be the set of all sums of h
distinct elements of A. Then |B| ≥ min(p, hz − h2 + 1).

The outline of the proof of Theorem 3 is similar to the proof of Theorem 2.5
in [10]. However, we need more detailed analysis since the effect of a partial
assignment to our function is more complex than that to the function introduced
by Savický and Zák [10].

Proof. (of Theorem 3) Let I ⊆ [n] with |I| = n − t and let u and v be two
different partial assignments both of whose support is I. To show fn|u �= fn|v,
it is sufficient to show that there are two total assignments x and y such that
fn(x) �= fn(y), where x is an extension of u and y is an extension of v. Let
u0 (v0, resp.) be a total assignment obtained from u (v, resp.) by additionally
assigning every variables in [n]\I to the constant 0.

Let J be an arbitrary maximal subset of [n]\I such that every two elements
of J have distinct weights, i.e., wgt(i) �= wgt(j) for every i, j ∈ J with i �= j.
Note that |J | = ω(

√
n) since there are at most O(log2 n) indices having same

weight.
Intuitively, Theorem 4 guarantees that, for every assignment to the variable

set [n]\J , it is possible to set the remaining inputs J in such a way that the
weighted sum of parities in Eq. (1) belongs to any given value residue class
modulo Zp[n].

Now we divide the set of indices J into two classes Js and Jd defined as

Js = {j ∈ J | PAR(u0, wgt(j)) = PAR(v0, wgt(j))},

Jd = {j ∈ J | PAR(u0, wgt(j)) �= PAR(v0, wgt(j))}.

We divide the proof of the theorem into two cases depending on the sizes of Js

and Jd.
In the rest of the proof, the symbol ≡ means that the congruence modulo

p[n].

Case A. |Js| ≥ |Jd|.
In this case we have |Js| = ω(

√
n). Let ũ (ṽ, resp.) be a partial assignment

obtained from u (v, resp.) by additionally assigning every variables in ([n]\I)\Js

to 0.
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Let S(u) =
∑b

i=1 i · PAR(u0, i) and S(v) =
∑b

i=1 i · PAR(v0, i). Let Δ be an
element of Zp such that Δ ≡ S(v) − S(u).

Case A-1. Δ �≡ 0.
We extend ũ and ṽ to u′ and v′ by setting some positions not fixed in ũ and
ṽ. We first choose any j ∈ Js\{1}. Let � = wn(j + Δ). Since � ≡ j + Δ �≡ j or
� = 1 �= j, we have j �= �. If � ∈ Js, in u′ and v′ we set the position j to 0 and
set the position � to 1. This ensures that u′

j = v′j �= u′
� = v′�. If � �∈ Js, we set the

position j of both u′ and v′ in such a way that u′
j = v′j �= v′�.

We have |Js| − 2 = ω(
√

n) positions that are still not specified in both u′

and v′. We denote A by the set of these positions. For an index j ∈ [n], the
contribution of j, denoted by cj , is defined as

cj =
{

wgt(j), if PAR(u0, wgt(j)) = 0,
p[n] − wgt(j), if PAR(u0, wgt(j)) = 1.

Intuitively, setting 1 to an unassigned variable xj increases the total weight of
x (i.e.,

∑b
i=1 i · PAR(x, i)) by cj . Since wgt(j) ≤ b = � n

�log2 n�� < p[n]/2 for
every j, all indices in A have distinct contributions. Let h = �|A|/2�. Since
|A|h − h2 + 1 = ω(n) ≥ p[n], Theorem 4 guarantees that there is a set H ⊆ A of
size h such that

∑

i∈H

ci ≡ j −
b∑

i=1

i · PAR(u′, i)

Let x be an extension of u′ such that xi = 1 for every i ∈ H and xi = 0 for
every i ∈ A\H . Then, we have

b∑

i=1

i · PAR(x, i) ≡ j.

This implies that fn(x) = u′
j. Let y be an assignment extending v such that the

bits with indices in Js have the same value in x and y. This implies that

ωn

(
b∑

i=1

i · PAR(y, i)

)

= ωn

(
b∑

i=1

i · PAR(x, i) + Δ

)

= �,

and hence fn(y) = v′� �= fn(x).

Case A-2. Δ ≡ 0.
Let j ∈ I with uj �= vj . Since |Js| = ω(

√
n), Theorem 4 guarantees that there

is an extension x of u such that
∑b

i=1 i · PAR(x, i) ≡ j. Let y be an assignment
extending v such that the bits with indices in Js have the same value in x. Then,
we have fn(x) = uj �= vj = fn(y).
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Case B. |Jd| > |Js|.
We divide the set Jd into two sets Jd,0 and Jd,1 defined as

Jd,0 = {j ∈ Jd | PAR(u0, wgt(j)) = 0 ∧ PAR(v0, wgt(j)) = 1},

Jd,1 = {j ∈ Jd | PAR(u0, wgt(j)) = 1 ∧ PAR(v0, wgt(j)) = 0}.

Without loss of generality, we can assume that |Jd,0| ≥ |Jd,1| (otherwise we
swap u with v). Note that |Jd,0| ≥ |Jd|/2 = ω(

√
n). Let ũ (ṽ, resp.) be a partial

assignment obtained from u (v, resp.) by additionally assigning every variables
in ([n]\I)\Jd,0 to 0.

Let S(u) =
∑b

i=1 i · PAR(u0, i) and S(v) =
∑b

i=1 i · PAR(v0, i). Let Δ be an
element of Zp such that Δ ≡ S(v) − S(u).

As for Case A-1, we will extend ũ and ṽ to u′ and v′ by setting some positions
in Jd,0. The difference to Case A-1 is that if we set the value 1 to an unassigned
variable whose weight is k, then the total weight of ũ increases by k and that of
ṽ decreases by k.

Let k be an arbitrary element in Zp that satisfies ωn(S(u)+k) ∈ Jd,0\{1}, and
let j = ωn(S(u) + k) for a chosen k. Let � = ωn(S(v) − k) = ωn(S(u) + Δ − k).
Without loss of generality, we can assume that j �= �. This is because that since
j = � implies S(u)+k ≡ S(u)+Δ−k, the number of choices of k that forces j = �
is at most one. Hence we can always avoid such a k since |Jd,0| is sufficiently
large. If � ∈ Jd,0, in u′ and v′ we set the position j to 0 and set the position
� to 1. If � �∈ Jd,0, we set the position j of both u′ and v′ in such a way that
u′

j = v′j �= v�.
The rest of the proof is an analogous to Case A-1. Since we have at least

|Jd,0| − 2 = ω(
√

n) unassigned variables, Theorem 4 guarantees that we can
always extend u′ to x such that

∑b
i=1 i · PAR(x, i) ≡ S(u) + k. Let y be a total

assignment obtained from v′ by applying the same extension as for u′. Then we
have

∑b
i=1 i · PAR(y, i) ≡ S(v) − k, and therefore fn(x) = xj �= y� = fn(y). This

completes the proof of Theorem 3. ��

Now we proceed to the analysis of the complexity of our function. We use a
circuit called decoder whose definition is as follows.

Definition 5. An n-to-2n decoder Decoden : {0, 1}n → {0, 1}2n

is the function
that takes an n-bit binary input x and outputs d0d1 · · · d2n−1 such that di = 1 iff
(x)2 = i.

It is well known that SizeU2(Decoden) = 2n + O(n2n/2) (see e.g., [13, p. 75]).

Theorem 6. The function fn can be computed by a circuit of size at most 5n+
o(n) over the basis U2.

Proof. We break down the computation of fn into five steps as follows :

(i) Compute PAR(x, i) for each i = 1, . . . , b. Recall that b denotes the number
of blocks of the input variables.
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(ii) Compute the binary representation of i · PAR(x, i) for each i = 1, . . . , b.
(iii) Compute the binary representation of

∑b
i=1 i · PAR(x, i).

(iv) Compute the binary representation of z = wn

(∑b
i=1 i · PAR(x, i)

)
.

(v) Output xz.

In step (i), since a parity gate can be implemented by using three U2-gates
(g1 = x1 ∧ x2, g2 = x1 ∧ x2, g3 = x1 ⊕ x2 = g1 ∨ g2), all PAR(x, i)’s can be
computed by a circuit of size 3(n − b) < 3n over the basis U2.

Let (iq, . . . , i1) be the binary representation of an i ∈ [b], where q = O(log n).
Then the binary representation of i · PAR(x, i) is obviously

(iq ∧ PAR(x, i), . . . , i1 ∧ PAR(x, i)). (2)

Since ij’s are not depending on an input, i.e., ij’s can be considered as constants,
we need no gates in step (ii). In fact, we can replace ij ∧ PAR(x, i) in Eq. (2) by
the constant 0 for each j with ij = 0, and by PAR(x, i) for each j with ij = 1.

In step (iii), we need b − 1 O(log n)-bit adders, which can be realized using at
most b · O(log n) = o(n) gates over the basis U2, since the addition of two k bit
numbers can be implemented by a circuit of size O(k) (see, e.g., [13]).

In step (iv), we only need several basic arithmetic operations on O(log n)-digit
numbers. The number of gates needed is obviously a polynomial in O(log n) =
o(n).

In step (v), we use the n-way multiplexer (a.k.a. storage access function) Mn

whose definition is as follows: Let q = �log n�. The function Mn takes q + n
binary inputs and is defined as

Mn(z1, . . . , zq, x0, . . . , xn−1) = x(zq···z1)2 .

If (zq · · · z1)2 ≥ n, then the output of Mn is unspecified. It is well known that
Mn can be computed by a circuit of size 2n + o(n) over the basis U2 when n is
a power of two [8] (see also [13, p.77]). Below we describe the construction due
to [8] and verify that SizeU2(Mn) = 2n + o(n) for every n.

By using the identity [8], we have

Mn(z1, . . . , zq, x0, . . . , xn−1) = M2�q/2�(z1, . . . , z�q/2	, x′
0, . . . , x

′
2�q/2�−1),

where, for each i = 0, . . . , 2�q/2	 − 1,

x′
i =

2�q/2�−1∨

t=0

(dt ∧ x2�q/2�i+t), (3)

and dt is the t-th output of Decode�q/2� applied to (z�q/2	+1, . . . , zq). Here we
put xj = 0 for every j ≥ n in Eq. (3). Thus, Mn can be realized using n AND
gates and at most n OR gates, and additional O(2q/2) = o(n) gates those are
used to compute the function M2�q/2� and Decode�q/2�.
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Overall, the total size of our circuit for the function fn is (3 + 2)n + o(n) =
5n + o(n). This completes the proof of Theorem 6. ��

In summary, we have:

Theorem 7. There is a sequence of Boolean functions {fn}n, which is given by
Definition 2, such that (i) fn is a Boolean function on n variables, (ii) for every
t = t(n) = ω(

√
n log2 n), fn is n − t-mixed, and (iii) the circuit complexity of fn

over the basis U2 satisfies

5n − o(n) ≤ SizeU2(fn) ≤ 5n + o(n).

4 Concluding Remarks

In the paper, we gave an explicit construction of an n−o(n)-mixed Boolean func-
tion with circuit complexity 5n ± o(n). Our results shows that a lower bound
method on the size of a U2-circuit that uses the property of k-mixed has reached
the limit. This gives a strong motivation to find another property of Boolean
functions that can be used for deriving a higher lower bound, which is an inter-
esting and challenging open problem.
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Abstract. In this paper, we present a spatial logic for distributed higher
order π-calculus. In order to prove that the induced logical equivalence
coincides with distributed context bisimulation, we present some new
bisimulations, and prove the equivalence between these new bisimulations
and distributed context bisimulation. Furthermore, we present a variant
of this spatial logic and prove that it gives a logical characterisation of
distributed bisimulations.

1 Introduction

Higher order π-calculus was proposed and studied intensively in Sangiorgi’s dis-
sertation [13]. In higher order π-calculus, processes and abstractions over pro-
cesses of arbitrarily high order, can be communicated. Some interesting equiva-
lences for higher order π-calculus, such as barbed equivalence, context bisimu-
lation and normal bisimulation, were presented in [13]. Barbed equivalence can
be regarded as a uniform definition of bisimulation for a variety of concurrent
calculi. Context bisimulation is a very intuitive definition of bisimulation for
higher order π-calculus, but it is heavy to handle, due to the appearance of
universal quantifications in its definition. In the definition of normal bisimula-
tion, all universal quantifications disappeared, therefore normal bisimulation is a
very economic characterisation of bisimulation for higher order π-calculus. The
coincidence between the three weak equivalences was proved [13,12,9].

In [3] we design a distributed higher order π-calculus which allows the observer
to see the distributed nature of processes. For this distributed higher order π-
calculus, the processes under observation are considered to be distributed in
nature and locations are associated with parallel components which represent
sites. So, the observer cannot only test the process by communicating with it but
also can observe or distinguish that part of the distributed process which reacted
to the test. Furthermore, three general notions of bisimulation related to this
observation of distributed systems are introduced. The equivalence between the
distributed bisimulations is proved, which generalizes the equivalence between
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barbed equivalence, normal bisimulation and context bisimulation for distributed
process calculus.

Providing a logical characterisation for various equivalence relations has been
one of the major research topics in the development of process theories. A logical
characterisation not only allows us to reason about process behaviours, but also
helps to understand the properties of the operators.

For CCS, a famous modal logic is Hennessy-Milner logic [10], for which logical
equivalence is known to characterise bisimilarity. For higher order π-calculus, the
logical characterisation is in general difficult to give. The main problem lies in
the fact that universal quantifications appear in the definition of bisimulations
for higher order π-calculus. For instance, to equal two processes with higher
order input prefixing, one has to equal the residuals under all possible process
substitutions. Some Hennessy-Milner style logics for bisimulation in CHOCS
were presented in [1,2].

Spatial logic was presented in [7]. Spatial logic extends classical logic with
connectives to reason about the structure of the processes. The additional con-
nectives belong to two families. Intensional operators allow one to inspect the
structure of the process. A formula A1|A2 is satisfied whenever we can split the
process into two parts satisfying the corresponding subformula Ai, i = 1, 2. In
presence of restriction in the underlying model, a process P satisfies formula
n�A if we can write P as (νn)P ′ with P ′ satisfying A. Finally, formula 0 is
only satisfied by the inaction process. Connectives | and � come with adjunct
operators, called guarantee (�) and hiding (�) respectively, that allow one to
extend the process being observed. In this sense, these can be called contextual
operators. P satisfies A1 � A2 whenever the spatial composition (using |) of P
with any process satisfying A1 satisfies A2, and P satisfies A�n if (νn)P satisfies
A. Some spatial logics have an operator for fresh name quantification [6].

Existing spatial logics for concurrency are intensional [11], in the sense that
they induce an equivalence that coincides with structural congruence, which is
much finer than bisimilarity. In [8], Hirschkoff studied an extensional spatial
logic. This logic only has spatial composition adjunct (�), revelation adjunct
(�), a simple temporal modality, and an operator for fresh name quantification.
For π-calculus, this extensional spatial logic was proved to induce the same
separative power as strong early bisimilarity.

There are lots of works of spatial logics for π-calculus and Mobile Ambients.
But as far as we know, there is no spatial logic for higher order π-calculus up to
now.

In this paper, we present a spatial logic for distributed higher order π-calculus,
called WL, which comprises two barb detecting predicates ⇓ and ⇓μ, a sim-
ple temporal modality 〈〉 and a spatial composition adjunct �. We show that
this equivalence induced by this spatial logic coincides with distributed con-
text bisimulation. To establish this result, our strategy is to first give a simpler
bisimulation which is equivalent to distributed context bisimulation, and then
present a logical characterisation for this simpler bisimulation. Consequently,
this logic is also a characterisation for context bisimulation. Similar to [8], we
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exploit the characterisation of distributed context bisimulation in the terms of
distributed barbed equivalence. However, in the definition of distributed barbed
equivalence, the testing context is an arbitrary process. It is difficult to give the
logical characterisation of barbed equivalence directly. Therefore we first give a
variant of normal bisimulation, ≈d

nr, where in the case of higher order output
action, we only need to test the remainder process with some kind of finite pro-
cesses. Then we give a similar variant of contextual barbed bisimulation, ≈d

nb,
where a process only need to be tested with some special finite processes. The
bisimulations ≈d

nrand ≈d
nb are proved to coincide with weak context bisimula-

tion. Furthermore, we prove that WL is a characterisation of ≈d
nb. Thus WL

is a logic characterisation of weak context bisimulation. Finally, we present a
variant of WL, named WSL, which does not have ⇓μ, but contains �. We prove
that WSL induces an equivalence that coincides with weak context bisimulation.
Thus WSL is also a logic characterisation of context bisimulation.

This paper is organized as follows: In Section 2, we introduce a distributed
higher order π-calculus. In Section 3, we present some distributed bisimulations
and give the equivalence between these bisimulations. In Section 4, we give a
spatial logic for weak distributed context bisimulation, and prove that the logical
induced equivalence coincides with weak distributed context bisimulation. The
paper is concluded in Section 5.

2 Syntax and Labelled Transition System of Distributed
Higher Order π-Calculus

In this section, a distributed higher order π-calculus is given, which was first
presented in [3]. We now introduce the concept of distributed process. Given
a location set Loc, w.l.o.g., let Loc be the set of natural numbers, the syn-
tax for distributed processes allows the parallel composition of located process
{P}i, which may share a defined name, using the construct (νa)−. The class of
the distributed processes is denoted as DPr, ranged over by K, L, M, N, ....

The formal definition of distributed process is given as follows:
M ::= {P}i | M1|M2 | (νa)M, where i ∈ Loc and P is a process of higher

order π-calculus.
Intuitively, {P}i represents process P residing on location i. The actions of

such a process will be observed to occur “within location i”. M1|M2 represents
the parallel of two distributed systems M1 and M2. (νa)M is the restriction
operator, which makes name a local to system M .

For example, {(νl)(b〈l.0|!τ.0〉.0|l.0)}0|{b(U).U}1, (νl)({l.0}0|{l.0|!τ.0}1),
{b〈!τ.0〉.0}0|{b(U).U}1 and {0}0|{!τ.0}1 are distributed processes. Here intu-
itively {(νl)(b〈l.0|!τ.0〉.0|l.0)}0|{b(U).U}1 represents (νl)(b〈l.0|!τ.0〉.0|l.0) and
b(U).U running on locations 0 and 1 respectively, (νl)({l.0}0|{l.0|!τ.0}1) repre-
sents the parallel of {l.0}0 and {l.0|!τ.0}1 with a private name l.

In each distributed process of the form (νa)M the occurrence of a is a bound
within the scope of M . An occurrence of a in M is said to be free iff it does
not lie within the scope of a bound occurrence of a. The set of names occurring
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free in M is denoted fn(M). An occurrence of a name in M is said to be bound
if it is not free, we write the set of bound names as bn(M). n(M) denotes the
set of names of M , i.e., n(M) = fn(M) ∪ bn(M). We use n(M, N) to denote
n(M) ∪ n(N). Higher order input prefix {a(U).P}i binds all free occurrences of
U in P . The set of variables occurring free in M is denoted as fv(M). We write
the set of bound variables in M as bv(M). A distributed process is closed if it
has no free variable; it is open if it may have free variables. DPrc is the set of
all closed distributed processes.

Processes M and N are α-convertible, M ≡α N , if N can be obtained from
M by a finite number of changes of bound names and bound variables.

Structural congruence is a congruence relation including the following rules:
{P}i|{Q}i ≡ {P |Q}i; M |N ≡ N |M ; (L|M)|N ≡ L|(M |N); M |0 ≡ M ; (νa)0

≡ 0; (νa)(νb)M ≡ (νb)(νa)M ; (νa)(M |N) ≡ M |(νa)N if a /∈ fn(M); M ≡ N
if M ≡α N.

The distributed actions are given by
Iα ::= {τ}i,j | {l}i | {l}i | {a〈E〉}i | {a〈E〉}i | {(νb̃)a〈E〉}i

We write bn(Iα) for the set of names bound in Iα, which is {b̃} if Iα is
{(νb̃)a〈E〉}i and ∅ otherwise. n(Iα) denotes the set of names that occur in Iα.

We give the operational semantics of distributed processes in Table 1. We
have omitted the symmetric of the parallelism and communication rules. The
main character of Table 1 is that the label Iα on the transition arrow is of the

Table 1.

ALP :
M

Iα−→ M ′

N
Iα−→ N ′

M ≡ N, M ′ ≡ N ′ TAU :
P

τ−→ P ′

{P}i

{τ}i,i−→ {P ′}i

OUT1 :
P

l−→ P ′

{P}i
{l}i−→ {P ′}i

IN1 :
P

l−→ P ′

{P}i
{l}i−→ {P ′}i

OUT2 :
P

(νb̃)a〈E〉−→ P ′

{P}i
{(νb̃)a〈E〉}i−→ {P ′}i

IN2 :
P

a〈E〉−→ P ′

{P}i
{a〈E〉}i−→ {P ′}i

PAR :
M

Iα−→ M ′

M |N Iα−→ M ′|N
bn(Iα) ∩ fn(N) = ∅

COM1 :
M

{l}i−→ M ′ N
{l}j−→ N ′

M |N
{τ}i,j−→ M ′|N ′

COM2 :
M

{(νb̃)a〈E〉}i−→ M ′ N
{a〈E〉}j−→ N ′

M |N
{τ}i,j−→ (νb̃)(M ′|N ′)

b̃ ∩ fn(N) = ∅

RES :
M

Iα−→ M ′

(νa)M
Iα−→ (νa)M ′

a /∈ n(Iα)

OPEN :
M

{(νc̃)a〈E〉}i−→ M ′

(νb)M
{(νb,c̃)a〈E〉}i−→ M ′

a �= b, b ∈ fn(E) − c̃
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form {α}i or {τ}i,j , where α is an input or output action, i and j are locations.
From the point of distributed view, {α}i can be regarded as an input or output
action performed on location i, and {τ}i,j can be regarded as a communication,
where the output happens on location i and the input happens on location j. In
the following, we view {α}i as a distributed input or output action, and view
{τ}i,j as a distributed communication.

Remark: In the above table, the labelled transition system of P
α−→ P ′ was

given in operational semantics of higher order π-calculus [13]. Transition M
{α}i−→

M ′ means that distributed process M performs an action on location i, then

continues as M ′; and transition M
{τ}i,j−→ M ′ means that after a communication

between locations i and j, distributed process M continues as M ′.

3 Bisimulations for Distributed Higher Order π-Calculus

3.1 Distributed Bisimulations

In our distributed calculus, processes contain locations, and actions in the scope
of locations will be observed on those locations. For such distributed processes,
some new distributed bisimulations, distributed context bisimulation and dis-
tributed normal bisimulation, will be proposed. The new semantics we give to
distributed processes additionally takes the distribution in space into account.

For distributed calculus, two distributed processes are equated if not only the
actions, but also the locations, where the actions happen, can be matched against
each other. So we get the following definition of distributed context bisimulation.
In the following, we abbreviate M{E/U} as M〈E〉.

We first give the weak distributed context bisimulation, weak distributed nor-
mal bisimulation and the weak distributed reduction bisimulation. Then we give
their congruence property and the equivalence between these three bisimulations.

Before giving the weak distributed bisimulations, let us compare communica-
tion {τ}i,i with {τ}i,j firstly, where i �= j. For weak distributed bisimulations,
it seems natural to view {τ}i,i as an invisible communication and {τ}i,j as a
visible communication, since for an observer who can distinguish between sites,
{τ}i,i is an internal communication on location i, and {τ}i,j represents an ex-
ternal communication between two different locations i and j. Therefore in the
following, we regard {τ}i,i as a private event on location i, and {τ}i,j as a visible
event between locations i and j.

For example, let us consider a system consisting of a satellite and an earth
station. It is clear that in this system, the satellite is physically far away from
the earth station. If the program controlling the satellite has to be changed,
either because of a program error or because the job of the satellite is to be
changed, then a new program will be sent to the satellite. The satellite is ready
to receive a new program. After reception it acts according to this program until
it is “interrupted” either by a new job or because a program error has occurred
or because the program has finished.



356 Z. Cao

In this example, the satellite and the earth can be specified in our distributed
calculus syntax as follows:

Sat
def
= {!a(U).U |satsys}S, where S represents location satellite.

Earth
def
= {a〈newprg1〉.a〈newprg2〉...}E , where E represents location earth.

Now the system is specified as:
Sys

def
= (νa)({!a(U).U |satsys}S|{a〈newprg1〉.a〈newprg2〉...}E).

The earth can send a new program to the satellite, then in the satellite, this
program interacts with the old satellite system:

Sys
{τ}S,E−→ (νa)({!a(U).U |newprg1|satsys}S|{a〈newprg2〉...}E)

{τ}S,S=⇒
(νa)({!a(U).U |newsatsys}S |{a〈newprg2〉...}E).

In this transition sequence, {τ}S,E is a communication between locations
satellite and earth, {τ}S,S is an internal action on location satellite. Intuitively,
we can consider {τ}S,E as an external communication and it is visible; mean-
while, {τ}S,S can be viewed as an internal action of satellite and it is private.
Therefore, from the point of view of distributed calculus, we can neglect internal
communication such as {τ}S,S but {τ}S,E is treated as a visible action.

Firstly we give the definition of weak distributed context bisimulation. The
difference from strong distributed context bisimulation is that in the case of
weak bisimulation we neglect {τ}i,i since from the point of distributed view
{τ}i,i happens internally on location i.

In the following, we use M
ε=⇒ M ′ to abbreviate M

{τ}i1,i1−→ ...
{τ}in,in−→ M ′,

and use M
Iα=⇒ M ′ to abbreviate M

ε=⇒ Iα−→ ε=⇒ M ′.

Definition 1. Weak distributed context bisimulation
Let M , N ∈ DPrc, we write M ≈d

cxt N , if there is a symmetric relation R,
such that M R N implies:

(1) whenever M
ε=⇒ M ′, there exists N ′ such that N

ε=⇒ N ′ and M ′ R N ′;

(2) whenever M
{τ}i,j=⇒ M ′, there exists N ′ such that N

{τ}i,j=⇒ N ′ with M ′ R
N ′, where i �= j;

(3) whenever M
{l}i=⇒ M ′, there exists N ′ such that N

{l}i=⇒ N ′ with M ′ R N ′;

(4) whenever M
{l}i=⇒ M ′, there exists N ′ such that N

{l}i=⇒ N ′ with M ′ R N ′;

(5) whenever M
{a〈E〉}i=⇒ M ′, there exists N ′ such that N

{a〈E〉}i=⇒ N ′ and M ′

R N ′;

(6) whenever M
{(νb̃)a〈E〉}i=⇒ M ′, there exist N ′, F , c̃, such that N

{(νc̃)a〈F 〉}i=⇒ N ′,
and for any distributed process C(U) with fn(C(U)) ∩ {b̃, c̃} = ∅, (νb̃)(M ′|
C〈E〉) R (νc̃)(N ′|C〈F 〉).
Definition 2. Weak distributed normal bisimulation

Let M , N ∈ DPrc, we write M ≈d
nor N , if there is a symmetric relation R,

such that M R N implies:
(1) whenever M

ε=⇒ M ′, there exists N ′ such that N
ε=⇒ N ′ and M ′ R N ′;
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(2) whenever M
{τ}i,j=⇒ M ′, there exists N ′ such that N

{τ}i,j=⇒ N ′ with M ′ R
N ′, where i �= j;

(3) whenever M
{l}i=⇒ M ′, there exists N ′ such that N

{l}i=⇒ N ′ with M ′ R N ′;

(4) whenever M
{l}i=⇒ M ′, there exists N ′ such that N

{l}i=⇒ N ′ with M ′ R N ′;

(5) whenever M
{a〈m.0〉}i=⇒ M ′, there exists N ′ such that N

{a〈m.0〉}i=⇒ N ′ and
M ′ R N ′, where m is a fresh name;

(6) whenever M
{(νb̃)a〈E〉}i=⇒ M ′, there exist N ′, F , c̃, such that N

{(νc̃)a〈F 〉}i=⇒ N ′,
and for a fresh name m and fresh location j, (νb̃)(M ′|{!m.E}j)
R (νc̃)(N ′|{!m.F}j).

In the following, we present some new bisimulations, and prove that they are
equivalent to distributed context bisimulation. These results are used to give a
logical charatersation of ≈d

cxt .
Now we first give a variant of distributed normal bisimulation, where parallel

of finitary copies is used as a limit form of replication. We prove it coincides with
distributed normal bisimulation. In the following, we write ΠkM to denote the
parallel composition of k copies of M , i.e., ΠkM

def
= M |Πk−1M and Π0M

def
= 0.

For example, Π3M represents M |M |M .

Definition 3. A symmetric relation R ⊆ DPrc × DPrc is a weak distributed
limit normal bisimulation if M R N implies:

(1) whenever M
ε=⇒ M ′, there exists N ′ such that N

ε=⇒ N ′ and M ′ R N ′;

(2) whenever M
{τ}i,j=⇒ M ′, there exists N ′ such that N

{τ}i,j=⇒ N ′ with M ′ R
N ′, where i �= j;

(3) whenever M
{l}i=⇒ M ′, there exists N ′ such that N

{l}i=⇒ N ′ with M ′ R N ′;

(4) whenever M
{l}i=⇒ M ′, there exists N ′ such that N

{l}i=⇒ N ′ with M ′ R N ′;

(5) whenever M
{a〈m.0〉}i=⇒ M ′, there exists N ′ such that N

{a〈m.0〉}i=⇒ N ′ and
M ′ R N ′, where m is a fresh name;

(6) whenever M
{(νb̃)a〈E〉}i=⇒ M ′, there exist N ′, F , c̃ such that N

{(νc̃)a〈F 〉}i=⇒ N ′

and (νb̃)(M ′|{Πkm.E}j) R (νc̃)(N ′|{Πkm.F}j) for all k ∈ {0, 1, 2, ...}, where m
is a fresh name.

We write M ≈d
nr N if M and N are weakly distributed limit normal bisimilar.

In [8], the logical characterisation of strong early bisimulation was exploited in
terms of strong barbed equivalence. The extensional spatial logic [8] was proved
to capture strong barbed equivalence firstly, then since strong early bisimulation
coincides with strong barbed equivalence, this spatial logic is also a logical char-
acterisation of strong early bisimulation. But the proof techniques in [8] does not
work for weak bisimulation. In [8], the problem of the spatial logical equivalence
of weak early bisimulation was presented as an open question.

To give a logical charatersation of ≈d
cxt, we will give a distributed variant of

barbed equivalence, where testing contexts are some special processes.
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Definition 4. For each name or co-name μ, the observability predicate ↓μ is
defined by

(1) M ↓l if there exists M ′ such that M
{l}i−→ M ′;

(2) M ↓l if there exists M ′ such that M
{l}i−→ M ′;

(3) M ↓a if there exist E, M ′ such that M
{a〈E〉}i−→ M ′;

(4) M ↓a if there exist b̃, E, M ′ such that M
{(νb̃)a〈E〉}i−→ M ′.

Definition 5. A symmetric relation R ⊆ DPrc × DPrc is a weak distributed
normal barbed bisimulation if M R N implies:

(1) M |C R N |C for any C in the form of {0}i, {l.0}i, {l.0}i, {a〈m.0〉.0}i,
{a(U).Πkm.U}i, where k is any natural number;

(2) whenever M
ε=⇒ M ′ there exists N ′ such that N

ε=⇒ N ′ and M ′ R N ′;

(3) whenever M
{τ}i,j=⇒ M ′, there exists N ′ such that N

{τ}i,j=⇒ N ′ with M ′ R
N ′, where i �= j;

(4) if M ⇓μ, then also N ⇓μ, where M ⇓μ means ∃M ′, M
ε=⇒ M ′ ↓μ .

We write M ≈d
nb N if M and N are weakly distributed normal barbed

bisimilar.
It is worth to note that all testing contexts in the above definition are finite

processes. Hence it is possible to give the characteristic formulas for these testing
contexts.

3.2 Equivalence of Distributed Bisimulations

Now we study the equivalence between ≈d
cxt, ≈d

nor and ≈d
nr .

Lemma 1. For any M, N ∈ DPrc, M ≈d
cxt N ⇒ M ≈d

nr N.

Proof : It is trivial by the definition of ≈d
cxt and ≈d

nr .

Lemma 2. For any M, N ∈ DPrc, M ≈d
nr N ⇒ M ≈d

nor N.

Proposition 1. For any M, N ∈ DPrc, M ≈d
cxt N ⇔ M ≈d

nr N ⇔ M ≈d
nor N.

Proof : By the equivalence between ≈d
cxt and ≈d

nor [3], M ≈d
nor N ⇔ M ≈d

cxt N.
Furthermore, by Lemmas 1 and 2, we have that the proposition holds.

The following proposition states that ≈d
nr coincides with ≈d

nb .

Proposition 2. For any M, N ∈ DPrc, M ≈d
nr N ⇔ M ≈d

nb N.

Proposition 3. For any M, N ∈ DPrc, M ≈d
cxt N ⇔ M ≈d

nr N ⇔ M ≈d
nor

N ⇔ M ≈d
nb N.

Proof : By Propositions 1 and 2.

In fact, a symmetric relation R satisfying conditions (1), (2) and (3) of Definition
5 is also equivalent to ≈d

cxt .



A Logic for Distributed Higher Order π-Calculus 359

4 A Logic for Distributed Higher Order π-Calculus

In this section, we present a logic to reason about distributed higher order π-
calculus. Roughly speaking, this logic extends propositional logic with four con-
nectives: (1) formula ⇓ is an atom formula, which means that the process can
communicate through some channel; (2) formula ⇓μ is an atom formula, which
means that the process can communicate through channel μ; (3) formula 〈〉A
means that the process can perform several {τ}i,j actions, where i = j, and
transform to a process that satisfies A; (4) formula 〈i, j〉A means that process
can perform {τ}i,j and transform to a process that satisfies A; (5) if M satisfies
A1 � A2, then the parallel composition of processes M and N satisfies formula
A2 if N satisfies formula A1.

To prove that the equivalence induced by this logic coincides with distributed
context bisimulation, we present a variant of distributed normal bisimulation,
≈d

nr, where replication is replaced by a series of parallel composition. Then we
prove the equivalence between ≈d

nr and ≈d
nor. Furthermore, we present a simpli-

fied version of distributed contextual barbed bisimulation, ≈d
nb. In the definition

of distributed contextual barbed bisimulation, two equivalent processes should
be tested by any context. So it is not convenient to verify the equivalence be-
tween two processes. In the definition of ≈d

nb, to equate two processes we only
need to test them by some special contexts. We prove that ≈d

nb coincides with
≈d

nr. Moreover, since ≈d
cxt, ≈d

nor and ≈d
nr are equivalent, to give a logical char-

acterisation of ≈d
cxt, it is enough to prove that this logic captures ≈d

nb. Since the
special contexts appearing in the definition of ≈d

nb are finite, we can give char-
acterisation formulas for all these processes. Thus that the equivalence induced
by this logic coincides with ≈d

nb can be proved.

4.1 Syntax and Semantics of Logic WL

Now we introduce a spatial logic called WL.

Definition 6. Syntax of WL
A :=⇓ | ⇓x | ⇓x | ¬A | ∧i∈IAi | 〈〉A | 〈i, j〉A | A1 � A2

Definition 7. Semantics of WL
M |=⇓ iff ∃M ′. M

ε=⇒ M ′, and M ′ ↓x or M ′ ↓x for some x;
M |=⇓x iff ∃M ′. M

ε=⇒ M ′ ↓x;
M |=⇓x iff ∃M ′. M

ε=⇒ M ′ ↓x;
M |= ¬A iff M �|= A;
M |= ∧i∈IAi iff M |= Ai for any i ∈ I;
M |= 〈〉A iff ∃M ′. M

ε=⇒ M ′ and M ′ |= A;

M |= 〈i, j〉A iff ∃M ′. M
{τ}i,j=⇒ M ′ and M ′ |= A;

M |= A1 � A2 iff ∀N . N |= A1 implies M |N |= A2.

Definition 8. M and N are logically equivalent with respect to WL, written
M =WL N, iff for any formula A, M |= A iff N |= A.
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4.2 WL is a Logical Characterisation of ≈d
cxt

In this section we prove the equivalence between ≈d
nb and =WL . Since ≈d

nb

coincides with ≈d
cxt, we have the equivalence between ≈d

cxt and =WL .

Proposition 4. For any M, N ∈ DPrc, M ≈d
nb N implies M =WL N.

Proof : We prove by structural induction on A that whenever M ≈d
nb N and

M |= A, we have N |= A. The case corresponding to the adjunct operator �
follows from congruence properties of ≈d

nb with respect to parallel composition.

To prove the converse proposition, we need the following definition, which gives
the characteristic formulas for the testing contexts in the definition of ≈d

nb .

Definition 9
(1) WF{0}i

def
= �⇓, where �⇓def

= ¬ ⇓;

(2) WF{ch(x)}i

def
= ⇓x ∧[j, i]⊥ ∧ ([j, i]⊥ � 〈j, i〉WF{0}i

), where A � B
def
=

¬(A � ¬B), [i, j]A
def
= ¬〈i, j〉¬A.

(3) WF{ch(x)}i

def
= ⇓x ∧[i, j]⊥ ∧ ([i, j]⊥ � 〈i, j〉WF{0}i

).

(4) WF{l.0}i

def
= WF{ch(l)}i

;

(5) WF{l.0}i

def
= WF{ch(l)}i

;

(6) WF{a〈0〉.0}i

def
= WF{ch(a)}i

∧ (WF{ch(a)}j
� [i, j](�⇓a→ WF{0}i

));

(7) WF{a〈m.0〉.0}i

def
= WF{ch(a)}i

∧ (WF{ch(a)}j
� [i, j](�⇓a→ WF{m.0}i

));

(8) WF{Π0m.0}i

def
= WF{0}i

;

(9) WF{Πkm.0}i

def
= WF{m.0}j

� 〈j, i〉WF{Πk−1m.0}i
;

(10) WF{Π0m.n.0}i

def
= WF{0}i

;

(11) WF{Πkm.n.0}i

def
= �⇓n ∧(WF{m.0}j

� 〈j, i〉)kWF{Πkn.0}i
∧ WF{m.0}j

� 〈j, i〉
(WF{n.0}h

� 〈i, h〉WF{Πk−1m.n.0}i
), where k �= 0 (B � 〈i, j〉)iC

def
= B � 〈i, j〉(B �

〈i, j〉)i−1C, (B � 〈i, j〉)1C def
= B � 〈i, j〉C;

(12) WF{a(U).Πkm.U}i

def
= �⇓m ∧WF{a〈0〉.0}j

�〈j, i〉WF{Πkm.0}i
∧WF{a〈n.0〉.0}j

�
〈j, i〉WF{Πkm.n.0}i

.
Intuitively, formula WFM captures the class of processes that are bisimilar to

process M . The following lemma states this formally:

Lemma 3. The above formulas have the following interpretation:
(1) M |= WF{0}i

iff M ≈d
cxt {0}i;

(2) M |= WF{ch(a)}i
where a is a higher order name iff M ≈d

cxt {a(U).C(U)}i,

and there exist b̃, E, N, such that (νb̃)({C〈E〉}i|N) ≈d
cxt {0}i;

(3) M |=WF{ch(a)}i
where a is a higher order name iff M ≈d

cxt (νb̃)({a〈E〉.Q}i),
and there exists N(U), such that (νb̃)(N〈E〉|{Q}i) ≈d

cxt {0}i;
(4) M |= WF{l.0}i

iff M ≈d
cxt {l.0}i;

(5) M |= WF{l.0}i
iff M ≈d

cxt {l.0}i;
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(6) M |= WF{a〈0〉.0}i
iff M ≈d

cxt {a〈0〉.0}i;
(7) M |= WF{a〈m.0〉.0}i

iff M ≈d
cxt {a〈m.0〉.0}i;

(8) M |= WF{Πkm.0}i
iff M ≈d

cxt {Πkm.0}i, where ΠkM denotes the parallel
composition of k copies of M ;

(9) M |= WF{Πkm.n.0}i
iff M ≈d

cxt {Πkm.n.0}i, where m �= n;
(10) M |= WF{a(U).Πkm.U}i

iff M ≈d
cxt {a(U).Πkm.U}i.

Lemma 4. D |= WFC ⇔ C ≈d
cxt D, where C is in the form of {0}i, {l.0}i,

{l.0}i, {a〈m.0〉.0}i, or {a(U).Πkm.U}i, where k is an arbitrary natural number.

P roof : It is clear by Lemma 3.

Proposition 5. For any M, N ∈ DPrc, M =WL N implies M ≈d
nb N.

The following proposition states that WL captures ≈d
cxt .

Proposition 6. For any M, N ∈ DPrc, M ≈d
cxt N ⇔ M =WL N.

Proof : By Proposition 3, 4 and 5.

4.3 A Variant of WL

We have proved that ≈d
cxt coincides with =WL . In the following we consider a

variant of WL, called WSL, in which we remove ⇓ and ⇓μ, and add ⇓in, ⇓out

and �. We show that ⇓ and ⇓μ can be defined by using ⇓in, ⇓out and �, then it
is clear that WSL is a spatial logical characterisation of ≈d

cxt .

Definition 10. Syntax and semantics of WSL
Formulas of WSL are defined by the following grammar:
A ::=⇓in | ⇓out | ¬A | ∧i∈IAi | 〈〉A | 〈i, j〉A | A1 � A2 | A � n
Semantics of WSL is similar to WL except that the definition of ⇓μ is elimi-

nated and the definitions of ⇓in, ⇓out and � are added as follows:
M |=⇓in iff ∃M ′. M

ε=⇒ M ′ ↓μ where μ is in the form of l or a;
M |=⇓out iff ∃M ′. M

ε=⇒ M ′ ↓μ where μ is in the form of l or a;
M |= A � n iff (νn)M |= A.
We abbreviate A � n1 � n2 � ... � nk as A � ñ, where ñ = {n1, n2, ..., nk}.

Definition 11. M and N are logically equivalent with respect to WSL, written
M =WSL N, iff for any formula A, M |= A iff N |= A.

Lemma 5. M |=⇓⇔ M |=⇓in ∨ ⇓out

Proof : It is trivial.

Lemma 6. (1) M |=⇓μ⇔ M |=⇓in ∧(WF0 � m̃ � μ) ∧ ¬(WF0 � m̃), where μ is
in the form of l or a, m̃ = fn(M) − {μ};

(2) M |=⇓μ⇔ M |=⇓out ∧(WF0 � m̃ � μ) ∧ ¬(WF0 � m̃), where μ is in the
form of l or a, μ = l if μ = l, μ = a if μ = a, and m̃ = fn(M) − {μ}.

Now we can give the equivalence between ≈d
cxt and =WSL .

Proposition 7. For any M, N ∈ DPrc, M ≈d
cxt N ⇔ M =WSL N.
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Proof : Similar to Proposition 4, we prove by structural induction on A that
whenever M ≈d

cxt N and M |= A, we have N |= A. Thus M ≈d
cxt N ⇒ M =WSL

N. By Lemmas 5, 6 and Proposition 6, we have M =WSL N ⇒ M ≈d
cxt N . Hence

the proposition holds.

5 Conclusions

In this paper, we have defined a logic WL, which comprises some spatial oper-
ators. We have shown that the induced logical equivalence coincides with weak
distributed context bisimulation for distributed higher order π-calculus. As far
as we know, this is the first spatial logical characterisation of distributed context
bisimulation.

In [8], Hirschkoff studied a contextual spatial logic for the π-calculus, which
lacks the spatial operators to observe emptiness, parallel composition and re-
striction, and only has composition adjunct and hiding. The induced logical
equivalence was proved to coincide with strong early bisimulation. The proof
involves the definition of non-trivial formulas, including characteristic formulas
for restriction-free processes up to bisimulation and characteristic formulas for
barbed bisimulation. In [8], Hirschkoff pointed out that his techniques do not
apply directly if we consider weak early bisimulation, and studying spatial logi-
cal equivalence of weak early bisimulation was viewed as a challenging question.
In this paper, to prove that =WL coincides with ≈d

cxt, we present two simplified
notions of observable equivalence on distributed higher order processes named
≈d

nr and ≈d
nb . Then ≈d

nr and ≈d
nb was proved to coincide with ≈d

cxt . Moreover,
since the testing contexts in the definition of ≈d

nb are finite processes, we can
give the characteristic formulas for such testing contexts. Thus the equivalence
between =WL and ≈d

cxt is proved.
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Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp.
63–78. Springer, Heidelberg (2006)

5. Castellani, I.: Process Algebras with Localities, ch. 15. In: Bergstra, J., Ponse,
A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 945–1045. North-Holland,
Amsterdam (2001)



A Logic for Distributed Higher Order π-Calculus 363

6. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part II). Theoretical
Computer Science 322(3), 517–565 (2004)

7. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and
Computation 186(2), 194–235 (2003)

8. Hirschkoff, D.: An Extensional Spatial Logic for Mobile Processes. In: Gardner,
P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 325–339. Springer,
Heidelberg (2004)

9. Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order π-calculus revisited.
In: Proceedings of Mathematical Foundations of Programming Semantics, Elsevier,
Amsterdam (2003)

10. Milner, R., Parrow, J., Walker, D.: Modal logics for mobile processes. Theoretical
Computer Science 114(1), 149–171 (1993)

11. Sangiorgi, D.: Extensionality and Intensionality of the Ambient Logic. In: Proc. of
the 28th POPL, pp. 4–17. ACM Press, New York (2001)

12. Sangiorgi, D.: Bisimulation in higher-order calculi. Information and Computa-
tion 131(2) (1996)

13. Sangiorgi, D.: Expressing mobility in process algebras: first-order and higher-order
paradigms. Ph.D thesis, University of Einburgh (1992)



Minimum Maximal Matching Is NP-Hard in

Regular Bipartite Graphs

M. Demange1 and T. Ekim2,�

1 ESSEC Business School, Avenue Bernard HIRSH, BP 105,
95021 Cergy Pontoise cedex France

demange@essec.fr
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Abstract. Yannakakis and Gavril showed in [10] that the problem of
finding a maximal matching of minimum size (MMM for short), also
called Minimum Edge Dominating Set, is NP-hard in bipartite graphs
of maximum degree 3 or planar graphs of maximum degree 3. Horton
and Kilakos extended this result to planar bipartite graphs and planar
cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in
[10] by showing that MMM is NP-hard in the class of k-regular bipartite
graphs for all k ≥ 3 fixed.

Keywords: stable marriage, unmatched pairs, Minimum Maximal
Matching, regular bipartite graphs.

1 Introduction

Given a graph, a matching is a set of edges which are pairwise non-adjacent. A
matching M is said to be maximal if no other edge can be added to M while
keeping the property of being a matching. We say that an edge in a matching
M dominates all edges adjacent to it. Also, vertices contained in edges of M are
said to be saturated by M . In a given graph, a matching saturating all vertices
is called perfect. Note that in a maximal matching M of a graph G = (V, E),
every edge in E is necessarily dominated. The problem of finding a maximal
matching of minimum size is called Minimum Maximal Matching (MMM) or
Minimum (Independent) Edge Dominating Set (see [5] for the equivalence of
these problems as well as all other graph theoretical definitions not given here).

MMM, NP-hard in general, is extensively studied due to its wide range of
applications. See [10] for the description of an application related to a telephone
switching network built to route phone calls from incoming lines to outgoing
trunks. The worst case behavior of such a network (minimum number of calls
routed when the system is saturated) can be evaluated by a minimum maximal
matching.
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A second application appears in the so-called stable marriage problem which
involves a set of institutions and applicants. Suppose that institutions, respec-
tively applicants, have preference lists on each other set. The objective is to find
a matching between institutions and applicants which is stable; that is, a match-
ing where there is no pair of institution-applicant which are not matched but
which would be both better off if matched to each other. The problem to solve is
to find a stable matching in a bipartite graph where one part of the bipartition
represents institutions and the other part applicants, and where the preferences
of each institution and each applicant are given. In [4], Gale and Shapley give
an algorithm to determine a stable matching between medical school graduate
students and hospitals. Their algorithm works in a greedy fashion; in a suc-
cessive way, institutions tentatively admit applicants and admitted applicants
tentatively accept the admissions.

It is easy to see that a stable matching is necessarily a maximal matching
since otherwise there would be at least one more pair of institution-applicant
where both prefer to be matched to each other compared to the current situa-
tion. However, the well-known Gale-Shapley algorithm finding a stable matching
in a bipartite graph may leave unmatched some institutions and applicants; this
is clearly not a desired situation. One can easily see that the number of un-
matched institutions and applicants is bounded above by the number of the
remaining vertices after the removal of a minimum maximal matching (since a
stable matching is necessarily maximal).

In some problems, the number of applicants can be very large; it is the case
for instance during the university admission examination in Turkey where each
year over two million students apply. Here, the national examination office places
students to universities by giving priority to the preferences of students with best
scores (see [2] for further information). Departing from the idea that the exam-
ination score can not be the only criterion in the student placement procedure,
after the first placement results, it may be convenient to establish shortlists (of
the same lenght) based on the initial preferences of students and universities
(which are for now represented by examination scores). These shortlists can be
obtained by constructing a stable many-to-many matching where each student
and each university has the same number of choices; this is represented by a
regular bipartite graph (see [1] for the description of such an algorithm). Once
we have the shortlists, students and universities can have a second round to ex-
press their new preferences which are this time based on interviews and a better
knowledge of each other; criteria other then exam scores for institutions or uni-
versity reputations for students are now taken into account. A stable matching
obtained from this regular bipartite graph with new preferences will be the ulti-
mate placement result. So this motivates the problem of studying the tractability
of minimum maximal matching restricted to regular bipartite graphs.

In [10], Yannakakis and Gavril show that MMM is NP-hard in several classes
of graphs including bipartite (or planar) graphs with maximum degree 3. In
[6], Horton and Kilakos obtained some extensions of these results including the
NP-hardness of MMM in planar bipartite graphs and planar cubic graphs.
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In the present paper, we give another strengthening of the result of Yannakakis
and Gavril in [10] by showing that MMM is NP-hard in k-regular bipartite graphs
for any fixed k ≥ 3; this shows the NP-hardness of finding the best upper bound
on the number of unmatched pairs given by a stable matching based on shortlists.
Note that in the case k = 2, MMM is polynomially solvable since 2-regular
graphs consist of disconnected cycles and therefore any maximal matching is
in fact a maximum matching. Our result implies in particular that MMM is
NP-hard already in cubic bipartite graphs which are strictly contained in the
class of bipartite graphs with maximum degree 3. Besides, one may observe that
the generalization of this result in cubic bipartite graphs to k-regular bipartite
graphs for k > 3 is far from being straightforward. Note also that the class of
k-regular bipartite graphs for k ≥ 3 has no inclusion relationship with the class
of planar bipartite graphs while having a non-empty intersection (the Heawood
graph, also called (3,6)-cage graph, is a 3-regular bipartite graph which is non-
planar [5]). These results contribute to narrowing down the gap between P and
NP-complete with respect to MMM.

Other polynomial time solvable cases for MMM can be found in [8] for trees, in
[7] for block graphs and in [9] for bipartite permutation graphs and cotrianglated
graphs.

Throughout the paper, we consider only connected bipartite graphs; all results
remain valid for not necessarily connected bipartite graphs simply by repeating
the described procedures for each connected component.

The paper is organized in the following way. In Section 2, we show that if
MMM is NP-hard in k-regular bipartite graphs then it is also NP-hard in (k+1)-
regular bipartite graphs. In Section 3, the NP-hardness of MMM in 3-regular
bipartite graphs is established; to this purpose, we first reduce a restricted 3-
SAT problem to MMM in bipartite graphs with vertices of degree 2 or 3 (inspired
from [10]), and then the later problem to MMM in 3-regular bipartite graphs by
using the gadget Rk for k = 2 already described in Section 2. Finally, we put
together the results of Sections 2 and 3 to conclude that MMM is NP-hard in
k-regular bipartite graphs for all fixed k ≥ 3.

2 MMM in k-Regular Bipartite Graphs ∝ MMM in
(k + 1)-Regular Bipartite Graphs

Let Bk = (Vk, Ek) be a k-regular bipartite graph. We shall explain a poly-
nomial time reduction from MMM in k-regular bipartite graphs to MMM in
(k + 1)-regular bipartite graphs. It has two steps; in the first step, called degree
increasing step, we increase by 1 the degree of all vertices in Bk by branching
to each of them a Degree Increasing gadget DIk which itself contains vertices
of degree k and k + 1. This transformation is followed by the addition of a Reg-
ularity gadget Rk to each DIk. The obtained graph, denoted by B̃k, contains
vertices of degree k and k+1. The second step, called regularity step, consists of
making B̃k (k + 1)-regular by first taking k +1 copies of B̃k and then branching
Regularity gadgets Rk’s to the vertices of degree k in such a way that, in the
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final graph Bk+1, all vertices have degree k + 1. To conclude, we show that if
one can solve MMM in Bk+1, then one can also solve MMM in Bk.

2.1 Degree Increasing Step

Let us first discuss about some properties of the gadget DIk depicted in Figure 1.
DIk is bipartite as can be observed in the bipartition shown in Figure 1 by black
(referred to as sign −) and white (referred to as sign +) vertices.DIk has one vertex
in Level 1, k − 1 vertices in Level 2, k vertices in Level 3 and two vertices in Level
4; let ij denote the j’th vertex (from left) in Level i in a DIk. The edges of DIk

are the following: there are all possible edges between Levels 1 and 2 and between
Levels 3 and 4; every vertex in Level 2 has exactly k−1 edges towards the vertices
of Level 3 which are distributed as equally as possible (hence each vertex of Level
3 receives exactly k−2 edges from Level 2 except one vertex which receives k−1).
We suppose without loss of generality that this is the vertex 31 in Level 3 which
receives k−1 edges from Level 2. The dashed edge e0 is the connection edge to the
original graph Bk whereas the other k + 1 dashed edges e1, . . . , ek+1 will be used
to connect DIk to a Regularity gadget Rk.

Fig. 1. DIk: Degree Increasing gadget of order k

Suppose we have branched a gadget DIk to each vertex of the k-regular graph
Bk using the edge e0. Now, we branch a Regularity Gadget Rk (see Figure 2)
to each DIk using the k + 1 (dashed) connection edges e1, . . . , ek+1. The graph
obtained in this manner is denoted by B̃k = (Ṽk, Ẽk) and depicted in Figure 3.

The gadget Rk has k + 1 vertices in each one of Level 1, Level 2 and Level 3,
and k vertices in Level 4; the edges of Rk are such that a k-regular bipartite graph
is induced by the vertices of Level 1 and 2, a 1-regular bipartite graph (a perfect
matching) is induced by the vertices of Level 2 and 3, and all possible edges exist
between Levels 3 and 4.
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Fig. 2. Rk: Regularity gadget of order k

Fig. 3. B̃k = (Ṽk, Ẽk): The graph obtained at the end of the first step

It is important to note that the connection edges e0, e1, . . . , ek+1 are not in-
cluded in DIk, nor in Rk.

Let nk = |Vk| be the number of vertices in Bk. The following property is a
direct consequence of the construction of B̃k:

Property 1. B̃k is bipartite; moreover all of its vertices are of degree k+1, except
k vertices in each one of the nk gadgets DIk which are of the same sign and of
degree k.

Proof. A bipartition of B̃k follows from the fact that both DIk and Rk are bipar-
tite; moreover all end-vertices of the connection edges e1 . . . , ek+1 in DIk, respec-
tively in Rk, have the same sign in the bipartition of DIk, respectively of Rk.

The property on the degrees of vertices in B̃k is a direct consequence of its
definition; the connection edges e0’s ensure that the degree of all vertices of
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Bk is k + 1; all vertices in Rk’s have degree k + 1 since the connection edges
e1, . . . , ek+1 are present; all vertices in DIk’s are of degree k + 1 except the
vertices 11, 32, 33, . . . , 3k in each copy of DIk which are of degree k. ��

Other properties follow from the above definitions.

Property 2. There is a unique minimum maximal matching (of size k+1) in Rk;
it leaves non-dominated all connection edges.

Proof. First, notice that at least k +1 edges are needed to dominate all edges in
Rk since there is an induced perfect matching of size k +1 between Levels 2 and
3 (shown by bold edges in Figure 2). In addition, this matching dominates all
edges in Rk, hence it is a minimum maximal matching in Rk. Besides, suppose
that there is another maximal matching M in Rk which does not contain p > 0
edges of the matching between Levels 2 and 3. This requires that min(p, k) other
edges between Levels 3 and 4, and at least �p/2� other edges between Levels 1
and 2 have to be in M (since there are p × k edges to be dominated between
Levels 1 and 2, and one edge can dominate at most 2k −1 edges (plus itself)). It
follows that this matching has at least k+1−p+min(p, k)+�p/2� > k+1 edges
and consequently there is no other minimum maximal matching in Rk. ��

Let Hk be the graph which consists of a DIk = (VD, ED) connected to a Rk =
(VR, ER) with the connection edges e1, . . . , ek+1 and where all edges incident to
e0 (that is all edges between Levels 1 and 2 in DIk) are removed. In other words,
Hk is a subgraph of B̃k induced by the vertex set (VD \{11})∪VR. The following
property shows that, even if an edge e0 connecting a couple of gadgets DIk and
Rk (which are already connected) to Bk is included in a maximal matching of
B̃k, we still need at least 2(k+1) additional edges to dominate all edges of these
gadgets DIk and Rk.

Property 3. There are at least 2(k+1) edges in any maximal matching MH of Hk.

Proof. We set MH = MR
H ∪ MD

H ∪ M ′
H where MR

H = MH ∩ ER and MD
H =

MH ∩ ED and hence M ′
H ⊆ {e1, . . . , ek+1}. Firstly, we note that |MD

H | ≥ k.
In fact, the k vertices of DIk in Level 3 are of degree at least k and an edge
incident to one of them can dominate at most one edge which is incident to
another vertex of Level 3. As a consequence, if |MD

H | = k − 1 then these k − 1
edges can dominate at most all edges incident to k − 1 vertices of Level 3 and
k − 1 edges incident to the remaining vertex of Level 3; hence at least one edge
remains non-dominated.

Let us now consider the edges in MR
H ; suppose p ≥ 0 of them are adjacent to

one of the connection edges e1, . . . , ek+1. If p = 0, then |MR
H | = k +1 since there

is an induced matching of size k+1 (between Levels 2 and 3) in Rk. In this case,
none of the connection edges e1, . . . , ek+1 is dominated by an edge in MR

H and
moreover, they form an induced matching of size k +1; thus |MD

H ∪M ′
H | ≥ k +1

and therefore |MH | ≥ 2(k + 1). If p ≥ 1, note that MR
H contains at least k

additional edges to dominate all edges between Levels 3 and 4. Indeed, either
k edges saturating all vertices of Level 4 are in MR

H ; or at least one vertex of
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Level 4 is not saturated by an edge in MR
H and consequently at least k + 1

edges are in MR
H . In both cases we have |MR

H | ≥ k + p. Now, if p ≥ 2 then
|MH | ≥ |MR

H | + |MD
H | ≥ 2(k + 1). Finally, if p = 1, we consider two cases

mentioned above. If MR
H contains k edges dominating all vertices of Level 4,

then there is at least one edge which is not yet dominated between Levels 1 and
2; thus, at least one more edge (in MR

H or M ′
H) is necessary in addition to k + 1

edges in MR
H , this gives |MH | ≥ 2(k + 1). If there is at least one vertex of Level

4 which is not saturated, then |MR
H | ≥ k + 1 + 1 and therefore |MH | ≥ 2(k + 1),

which concludes the proof. ��

The following result summarizes the above discussion on the degree increasing
step.

Lemma 1. There is a maximal matching M0 of size at most m0 in Bk if and
only if there is a maximal matching M1 of size at most m1 = m0 + 2nk(k + 1)
in B̃k where nk = |Vk| and all vertices in copies of DIk are saturated.

Proof. (=⇒) The matching M1 contains all (at most) m0 edges in M0 which
dominate all edges in Bk. In addition, the matchings of size (k + 1) in each DIk

(there are nk of them) as depicted in Figure 1 by bold edges, and the matchings
of size (k + 1) in each Rk (there are nk of them) as depicted in Figure 2 by
bold edges dominate together all edges in B̃k. Note that edges e0, e1, . . . , ek+1

are dominated since the matchings in DIk’s saturate their end-vertices in DIk’s.
This matching of size m1 = m0 + 2nk(k + 1) is clearly maximal.

(⇐=) Suppose we have a maximal matching M1 of size at most m1 = m0 +
2nk(k + 1) in B̃k. Let Ve0 be the set of vertices in Bk which are incident to
an edge of type e0 ∈ M1. By Property 3, we know that |M1| ≥ 2nk(k + 1) +
|Ve0 | + |M1 ∩ Ek|; hence m0 ≥ |Ve0 | + |M1 ∩ Ek|. Besides, the edges of Bk not
dominated by M1 ∩ Ek are incident to a vertex in Ve0 and the partial subgraph
of Bk formed by these edges is a bipartite graph with Ve0 as a vertex cover (of its
edges). Consequently, any maximal matching M ′

1 of this subgraph has at most
|Ve0 | edges. Therefore M ′

1 ∪ (M1 ∩ Ek) is a maximal matching of Bk of size at
most m0. ��

2.2 Regularity Step

Property 1 states that all vertices in the graph B̃k obtained at the end of the
first step has degree k + 1 except k vertices of the same sign in each one of
the nk copies of DIk. Now, we describe a procedure which allows to make B̃k a
(k +1)-regular bipartite graph. To this purpose, we first take k +1 copies of B̃k,
denoted by (k +1)B̃k. Then, for each vertex x ∈ Ṽk of degree k, we consider the
k + 1 copies x1, . . . , xk+1 of x in (k + 1)B̃k; clearly, they are all of degree k and
there is a bipartition of (k + 1)B̃k where all of x1, . . . , xk+1 have the same sign.
We branch a regularity gadget Rk to vertices x1, . . . , xk+1 for every vertex x of
degree k in B̃k; this new graph is denoted by Bk+1. We have the following.
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Theorem 1. There is a maximal matching M0 of size at most m0 in Bk if and
only if there is a maximal matching M2 of size at most m2 = (k + 1)m1 + k(k +
1)nk in Bk+1 where m1 = m0 + 2nk(k + 1) and nk = |Vk|.

Proof. (=⇒) By Property 1, in B̃k, there are k vertices of degree k in each one
of the nk gadgets DIk. This results in knk copies of the regularity gadget Rk

in Bk+1. By Property 2, we know that we can dominate all edges in these knk

copies of Rk by k(k + 1)nk edges. Moreover, we know by Lemma 1 that one
can find a minimum maximal matching M1 of size m1 = m0 + 2nk(k + 1) in
B̃k where all vertices in different copies of DIk are saturated. Therefore, by
taking k + 1 copies of M1 (one by each B̃k) in M2, we obtain a matching of size
m2 = (k+1)m1 +k(k+1)nk which also dominates all connection edges between
DIk’s and newly added Rk’s.

(⇐=) There are knk independent copies of Rk’s in Bk+1 which are added
during the regularity step; by Property 2, there are at least k(k + 1)nk edges of
M2 which dominate all edges in these Rk’s (but not necessarily their connection
edges e1, . . . , ek+1). Consequently, the remaining at most (k+1)(m0+2nk(k+1))
edges in M2 dominate all edges in the k + 1 independent copies of B̃k and their
connection edges to the newly added knk copies of Rk. It follows from Lemma
1 that there is a maximal matching M0 of size at most m0 in Bk. ��

3 MMM in 3-Regular Bipartite Graphs Is NP-Hard

We will make use of the following problem in the sequel.

Restricted 3-SAT : A set of clauses C1, . . . , Cp with variables x1, . . . xn where
there are at most three literals (negative or positive variables) per clause, such
that every variable occurs twice and its negation once.

Lemma 2. The decision version of MMM in bipartite graphs with vertices of
degree 2 or 3 is NP-complete.

Proof. The reduction is a modified version of the reduction of Restricted 3-SAT
to the decision version of MMM in bipartite graphs with vertices of maximum
degree 3 [10]. We construct a graph B = (V, E) as follows: for each variable
xi, there is a gadget Gi

1 as depicted in Figure 4 where the edges (dj1, d
′
j1)

and (dj2, d
′
j2) represent the two clauses Cj1, Cj2 in which xi appears in positive

form, and (dj3, d
′
j3) the clause Cj3 in which xi appears in negative form. Edges

(aj1
i , dj1), (b

j2
i , dj2) and (cj3

i , d′j3) are the connection edges between subgraphs
representing variables and clauses. In this way, all variables and clauses are rep-
resented; nevertheless, the vertices dj (respectively d′j) corresponding to clauses
Cj which consist of 3-positive (respectively 3-negative) variables will have degree
four. We avoid such a situation by representing this kind of clauses by the gadget
Gj

2 of Figure 4. For a clause Cj = (xr, xk, xh) (respectively Cj = (x̄r , x̄k, x̄h)),
the connection edges l1, l2, l3 are incident to aj

r or bj
r, aj

k or bj
k, and aj

h or bj
h

(respectively cj
r, c

j
k and cj

h); a connection edge is incident to a vertex of type aj
i
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Fig. 4. Gadgets G1 and G2

if the first occurrence of variable xi is in the clause Cj , and to a vertex of type
bj
i if the second occurrence of variable xi is in the clause Cj . Now, we notice that

the constructed graph B is bipartite with vertices of degree 2 or 3.
Suppose a satisfying assignment of Restricted 3-SAT is given; let p3 be the

number of clauses with 3-positive or 3-negative variables, then a maximal match-
ing M of size 9n + 5p3 in B is obtained as follows:

M = {(aj1
i , dj1), (b

j2
i , dj2), (ci, c

j3
i )|xi = 1} ∪ {6 bold edges in Gi

1|xi = 1}
∪ {(ai, a

j1
i ), (bi, b

j2
i ), (cj3

i , d′j3)|xi = 0} ∪ {6 bold edges in Gi
1|xi = 0}

∪ {5 bold edges in Gj
2|Cj has 3-positive or 3-negative variables}.

Conversely, let M be a maximal matching of size 9n + 5p3 in B, a truth as-
signment for Restricted 3-SAT can be obtained in polynomial time. First, notice
that M must contain at least 5 edges per gadget Gj

2 even though all connection
edges l1, l2, l3 are in M (since there are three disjoint paths of length 4 between
vertices u and v). In particular, if at least one connection edge is in M , then 5
additional edges suffice to dominate all edges of Gj

2 (In Figure 4, the bold edges
of Gj

2 show these 5 edges in case l1 is in M). On the other hand, if none of the
connection edges is in M , then at least 6 edges from Gj

2 should be in M .
Secondly, one can observe that in Gi

1, we need at least 6 edges to dominate
all edges containing non-labeled vertices (such a set of 6 edges in G1 is shown
in bold in Figure 4). Moreover, there is no such a set of 6 edges which also
dominates at least one edge from {(aj1

i , a′j1
i ), (cj3

i , c′j3i ), (bj2
i , b′j2i )}. It follows

that vertices aj1
i , cj3

i and bj2
i must be saturated for all variables xi in every

maximal matching of B, so in particular in M . This implies that there are
at least three more edges per variable in M . Since |M | = 9n + 5p3 and at
least 6n edges are necessarily used to dominate all edges containing non-labeled
vertices as well as at least 5p3 edges to dominate all edges in Gj

2’s, there are
exactly three additional edges per variable which should saturate aj1

i , cj3
i and
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bj2
i ; therefore neither (ai, ci) nor (ci, bi) is in M for any xi. Let us now have a

closer look at these three remaining edges per variable in M . If (ci, c
j3
i ) /∈ M ,

then necessarily (ai, a
j1
i ), (bi, b

j2
i ), (cj3

i , d′j3) ∈ M . If (ci, c
j3
i ) ∈ M , then we can

suppose without loss of generality that (aj1
i , dj1), (b

j2
i , dj2) ∈ M because if not,

M can be transformed in polynomial time into such a maximal matching since
|M | = 9n + 5p3 implies that for every j we have (dj , d

′
j) /∈ M .

We define a truth assignment by setting xi = 0 in the first case and xi = 1
in the second case. As ∀j, (dj , d

′
j) /∈ M , there is at least one edge in M which is

incident to dj or d′j and which determine(s) the variable(s) satisfying the clause
j. One can notice that if for some i, we have (ai, a

j1
i ), (ci, c

j3
i ), (bi, b

j2
i ) ∈ M then

variable xi can be set equally to 0 or 1; in fact, this simply means that there is
a truth assignment of the Restricted 3-SAT instance where variable xi does not
satisfy any clause. ��

Theorem 2. The decision version of MMM in 3-regular bipartite graphs is NP-
complete.

Proof. The reduction is from MMM in bipartite graphs with degree 2 or 3. Let B
be a bipartite graph with vertices of degree 2 or 3. We take 3 copies of B and for
each vertex x of degree 2 in B, we branch a Regularity gadget (see Figure 2) of
order k = 2 (R2) to its three copies x1, x2 and x3. Let us denote this new graph
by B′; it is easy to see that B′ is a 3-regular bipartite graph. Now, it follows from
the discussion in the proof of Theorem 1 that there is a maximal matching M of
size m in B if and only if there is a maximal matching M ′ of size m′ = 3m+6|V 2|
in B′ where V 2 is the set of vertices of degree 2 in B. ��

4 Final Remarks

The following is a corollary of Theorems 1 and 2:

Corollary 1. MMM is NP-hard in k-regular bipartite graphs for all fixed k ≥ 3.

A simple computation shows that our reduction can be done in polynomial time
if k is fixed. In fact, if the number of vertices in a k-regular bipartite graph is nk,
then our reduction (in Theorem 1) gives a (k + 1)-regular bipartite graph with
nk(10k2 + 14k + 5) vertices. It follows that the graph obtained (by successive
applications of Theorem 1 starting from parameter k′ = 3 until k′ = k) to show
the NP-hardness of MMM in k-regular bipartite graphs will have a number of
vertices which is a multiplier of k!.

Our result narrowed down the gap between P and NP for MMM in bipartite
graphs. This theoretical progress opens the doors of several research directions.
Several approximation algorithms with performance guarantee for MMM are
known in the literature (MMM is 2-approximable even if the edges are weighted
[3]); one could hope to derive algorithms with better performance guarantee in
the case of regular bipartite graphs. The sharpness of such approximation ratios
in special cases can be discussed knowing that this allows to bound the number
of unmatched pairs in a stable matching.
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A Topological Study of Tilings
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Abstract. To tile consists in assembling colored tiles on Z
2 while respect-

ing color matching. Tilings, the outcome of the tile process, can be seen as
a computation model. In order to better understand the global structure of
tilings, we introduce two topologies on tilings, one à la Cantor and another
one à la Besicovitch. Our topologies are concerned with the whole set of
tilings that can be generated by any tile set and are thus independent of a
particular tile set. We study the properties of these two spaces and com-
pare them. Finally, we introduce two infinite games on these spaces that
are promising tools for the study of the structure of tilings.

1 Introduction

Wang was the first to introduce in [Wan61] the study of tilings with colored
tiles. A tile is a unit size square with colored edges. Two tiles can be assembled
if their common edge has the same color. A finite set of tiles is called a tile set.
To tile consists in assembling tiles from a tile set on the grid Z

2.
One of the first famous problems on tilings was the domino problem: can one

decide whether given a tile set, there exists a tiling of the plane generated by this
tile set? Berger proved the undecidability of the domino problem by constructing
an aperiodic set of tiles, i.e., a tile set that can generate only non-periodic tilings
[Ber66]. Simplified proofs can be found in [Rob71] and later [AD96]. The main
argument of this proof was to simulate the behavior of a given Turing machine
with a tile set, in the sense that the Turing machine M stops on an instance ω
if and only if the tile set τ〈M,ω〉 does not tile the plane. Hanf and later Myers
[Mye74, Han74] have strengthened this and constructed a tile set that has only
non-recursive tilings.

Later, tilings have been studied for different purposes: some researchers have
used tilings as a tool for studying mathematical logical problems [AD96], others
have studied the different kinds of tilings that one tile set can produce [CK97,
DLS01, Rob71], or defined tools to quantify the regular structure of a tiling
[Dur99]. One of the most striking facts concerning tilings is that tilings constitute
a Turing equivalent computation model. This computation model is particularly

� This author has been supported by the FNS grant 200020-105515.

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 375–387, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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relevant as a model of computation on the plane. Notions of reductions that have
led to notions of universality for tilings and completeness for tile sets have been
introduced in [LW07]. It is difficult to quantify this completeness property and
other ones as periodicity, quasiperiodicity: one would like to be able to measure
how common such a property is, in order to determine when and how they occur,
or to give a size to the different sets of tilings with a certain property, or to say
if a tile set is more likely to produce tilings with a certain property. One of our
ultimate goals is to be able to say that if a set of tilings (generated from a given
tile set or a family of tile sets) is large enough, then it necessarily contains a
tiling with such and such properties. Naturally, topological tools on tilings would
be the first step in this direction; first step that we aim at developing in this
paper.

We introduce two metrics on tilings which have the particularity to be in-
dependent of a particular tile set, i.e., we can measure a distance between two
tilings that are not necessarily generated by the same tile set. These two metrics
are similar to two traditional metrics used in the study of cellular automata: the
so-called Cantor and Besicovitch metrics. The former gives more importance to
the local structure around (0, 0) and the later measures the asymptotic differ-
ence of information contained in the two tilings. They give rise to two natural
topologies on the set of tilings.

The topological study of subsets of reals is inherently linked to the study of
infinite games. In some of these games, such as Banach-Mazur games, a strong
connection exists between the existence of a winning strategy and the co-meager
property of the set on which the game is played. This connection allows one to
show that some sets are meager. Others games, such as Gale-Stewart games,
yield a hierarchy of winning strategies for one of the two players - we say in this
case that the game is determined - depending on the structure of the sets on
which the games are played. Having such a game-topological study of tilings,
instead of subsets of reals, can lead to a better understanding of the structure
of the tilings generated by a tile set.

This paper is organized as follows: we first recall basic notions on tilings, define
the two topologies that we use and prove basic properties of these topologies.
Then we study in a deeper way the structure of our topological spaces. We
conclude by introducing two types of games on tilings, which help us to prove in
a simpler way results of the previous section, and open a new direction for the
study of the structure of tilings.

2 Topologies on Tilings

2.1 Tilings

In this paper we use the following terminologies: a tile set S is an initial subset
{1, . . . , n} of N. To map consists in placing the numbers of S on the grid Z

2. A
mapping generated by S is called a S-mapping. It is associated to a mapping
function fA ∈ SZ

2
that gives the tile of S at position (x, y) in A. We call M the

set of all mappings, i.e., M ≡ {{1, . . . , n}Z
2}n≥1.
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An S-pattern without constraints, or just S-pattern, is an S-mapping defined
on a finite subset of Z

2.
A Wang tile is an oriented unit size square with colored edges from C, where

C is a finite set of colors. A Wang tile set, or just tile set, is a finite set of different
tiles. To tile consists in placing the tiles of a given tile set on the grid Z

2 such
that two adjacent tiles share the same color on their common edge. A tiling P
generated by a tile set τ is called a τ -tiling. It is associated to a tiling function
fP where fP (x, y) gives the tile at position (x, y) in P .

An S-mapping A ∈ M is a Wang tiling if there exist a Wang tile set τ , a
τ -tiling P and a bijective function h : S → τ such that h ◦ fA(x, y) = fP (x, y).
By this, we mean that A works as P . We define T as the subset of mappings of
M which are Wang tilings.

Different kinds of tile sets and tilings have been identified: a periodic tiling is a
tiling such that there exist two integers a and b such that for any (x, y), the tiles
at position (x, y) and (x+a, y+b) are the same; a tile set is periodic if it generates
a periodic tiling; a tiling is finite if it is a pattern; a tiling P is universal if for any
tile set τ , P simulates at least one τ -tiling. For more precisions on simulation
and universality we refer the reader to [LW07].

Different tools are used to quantify the regular structure of a tiling. One of
these is the quasiperiodic function. For a tiling P , the quasiperiodic function
of P , denoted gP , is the function that given an integer n, gives the smallest
integer s which has the following property: if m is a square pattern of P of size
n (the length of the sides of the square), then m appears in any square of size
s in Z

2. Thus, the quasiperiodic function of a tiling quantifies the regularity of
appearance of the patterns in the tiling. Some tilings do not have a quasiperiodic
function defined for every n. We say that a tiling is quasiperiodic if it has a
quasiperiodic function defined for every n. An important result in [Dur99] is
that any tile set, that can tile the plane, can generate a quasiperiodic tiling of
the plane.

2.2 A Besicovitch Topology

The first metric we introduce is a metric similar to the cellular automata metric
à la Besicovitch. A {n × n′} τ -pattern m can be seen has a sequence of numbers
placed in a rectangle of size n × n′; we have the number k in position (x, y) if
fm(x, y) = tk where tk is the kth tile of τ . Then intuitively any reordering of the
tiles of τ gives the same pattern. Thus, we would like to say that the distance
between two patterns m and m′ is c if the proportion of different tiles between m
and m′ is at most c up to a reordering of the tiles. We formalize this notion in the
following definitions, by defining a metric for any pattern without constraints:

Definition 1. Let S and S′ be two initial subsets of N such that |S| ≤ |S′|.
Let A be a {n × n} S-pattern, B be a {n × n} S′-pattern, and g be a one-to-
one function from S to S′. We define the metric related to g by: δg(A, B) =
#{ (x,y) | g◦fA(x,y) �=fB(x,y)}

n2 .
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If A is an S-pattern and B is an S′-pattern such that |S| ≥ |S′|, then δg(A, B)
is defined to be equal to δg(B, A).

We define the absolute metric by: δ(A, B) = ming∈S′S {δg(A, B)}.

From this definition of distance between patterns, we have that δ is symmetric
and satisfies the triangle inequality.

Now that we have defined a metric between patterns, we can generalize it
to tilings of the whole plane, since a tiling can be seen as the infinite union of
patterns of ever increasing sizes:
Definition 2. Let A be an S-tiling and let B be an S′-tiling. For any function
g ∈ S′S, we define the tiling metric dg by: dg(A, B) = lim supi→∞ δg(Ai, Bi),
where the Ai (resp. Bi) are the {n × n} S-patterns (resp. S′-patterns) centered
around (0, 0) in A (resp. B).

We define the absolute tiling metric d by: d(A, B) = ming∈S′S {dg(A, B)}.

Since δ satisfies the triangle inequality, and since reflexivity and symmetry are
obvious, then d is a pseudometric on M. The natural way to obtain a metric on
M is to introduce an equivalence relation ≡d defined by: A ≡d B ⇔ d(A, B) =
0. One can see that ≡d is an equivalence relation. We can now consider the
quotient space M/ ≡d where a typical element is the equivalence class [A] =
{ B | d(A, B) = 0 }. By adding to this space the metric d we obtain a metric
space that we call MB. In this paper, [A] denotes the equivalence class of the
particular mapping A; an element of MB is designated by a capital letter in bold,
e.g., A; and we say ”let A ∈ MB” in the sense that we consider a mapping of the
equivalence class of A, i.e., a mapping in [A]. Similarly, we define the space T/≡d

where a typical element is [P ] = { Q | d(P, Q) = 0 }. By adding to this space the
metric d we obtain the metric space TB. Of course, we have TB ⊂ MB. An
element of TB is an equivalence class of MB that can contain mappings that
are not Wang tilings, but which work ”almost” like Wang tilings since the local
constraint is respected almost everywhere.

From this definition, we have the two following results: for any two mappings
A, B ∈ M, the distance between A and B is in [0, 1[ and for any mapping C ∈ M
(resp. any tiling P ∈ T) and any ε ∈ [0, 1[, there exists a tiling D (resp. Q) such
that d(C, D) ≥ 1 − ε (resp. d(P, Q) ≥ 1 − ε). Therefore, for any tiling A, we can
build a tiling B such that the distance between A and B is almost one.

To obtain a topological space, since MB is a metric space, we use the natural
topology induced by the metric where the open sets are the balls B(A, r), where
A is a mapping. We use the subset topology on TB.

The Besicovitch metric is one of the traditional metrics used for tilings. The
other one is the Cantor one which gives more importance to the finite patterns
centered around the origin.

2.3 A Cantor Metric

We define and study another traditional metric adapted for tilings, a metric à
la Cantor. The metric studied above, is a metric that allows one to understand
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the behavior of a tiling in the whole Z
2 grid. The distance between two tilings

is small if their behavior is close. Another way to measure distance between
tilings is to consider the greatest common pattern centered around (0, 0) that
they share. We first define the function p as the function p : N → Z

2 such that
p(0) = (0, 0), p(1) = (0, 1), p(2) = (1, 1), p(3) = (1, 0) . . . and p keeps having the
behavior of a spiral afterward. This function allows us to enumerate the tiles of
a given tiling. We define the prefix-patterns of a tiling P :

Definition 3. Let P be a tiling. The prefix-pattern of size n of P is the pat-
tern m defined on the finite subset D = {p(0), . . . , p(n)} � Z

2 with the pattern
function fm(x, y) = fP (x, y) if (x, y) ∈ D. We denote the prefix-pattern m
by a finite sequence of tiles ordered by the function p: m = {fm ◦ p(0), fm ◦
p(1), . . . , fm ◦ p(n − 1)}. If m is a prefix-pattern of size n, then m.t1, the con-
catenation of m and the tile t1, is the prefix-pattern of size n + 1 such that
m.t1 = {fm ◦ p(0), fm ◦ p(1), . . . , fm ◦ p(n − 1), t1}.

The set of prefix-patterns can be enumerated by a tree T . The rules of the
construction of T are the following: at level 0 in T , we have the empty prefix-
pattern; at level 1 we have an unique prefix-pattern {1}. Then a pattern m at
the level i, composed of j different tiles, has j + 1 sons: m.1, m.2, . . . , m.(j + 1).

One can see that for any tile set S and any prefix-pattern m = {m1, . . . , mn}
generated by S, there exists an unique bijective function em : S → {1, . . . , |S|}
such that the prefix-pattern em(m) def= {em(m1), em(m2), . . . , em(mn)} is an ele-
ment of T . em(m) is said to be the canonical form of m. In T , an infinite branch
corresponds to a mapping of the plane. Thus, to any S-mapping A there exists a
unique bijective function eA such that the set eA(A) def= {eA ◦ fA ◦ p(0), eA ◦ fA ◦
p(1), . . .} corresponds to an infinite branch of T . eA(A) is said to be the canonical
form of A. We say that m is a prefix-pattern of A if em(m) is a prefix-pattern
of eA(A). We can now define a metric à la Cantor:

Definition 4. Let A be an S-mapping and B be an S′-mapping. We define the
Cantor metric δC as: δC(A, B) = 2−i where i is the size of the greatest common
prefix-pattern of eA(A) and eB(B), i.e., the highest level in T where eA(A) and
eB(B) are equal.

If eA(A) = eB(B) then δC(A, B) = 0.

We can see that δC is a pseudometric on M. In fact, dC is a hypermetric, i.e.,
a metric such that for any three mappings A, B, C, dC(A, C) ≤ max{dC(A, B),
dC(B, C)}. This is a stronger version of the inequality of the triangle. One can
note that in a hypermetric space, any point of an open ball is center of this ball.

To obtain a metric on M, we say that two tilings P and Q are equivalent,
P ≡C Q, if their Cantor distance is null. Thus, two tilings are equivalent if they
represent the same tiling up to a color permutation. We denote MC the space
of equivalence classes M/≡C equipped with the metric δC .

Similarly, we define T/≡C that we denote TC . The metric δC is a metric on
TC . From this, we can define a topology on TC : we say that the set Um =
{ P | m is a prefix-pattern of P } is a clopen set for any prefix-pattern m. This
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topology gives rise to a different understanding of the topology of tilings than
the topological space MB since it gives more importance to the local structure
centered around {0, 0}. Since there is a finite set of pattern of a given size, then
we can cover MB and TB with a finite set of open sets. Therefore, MB and TB

are precompact, i.e., for all r, there does not exist a finite set of open balls of
radius r that covers these spaces.

Since we have a Hausdorff space, because MC is a metric space, and since we
have a basis of clopen sets, then MC is a 0 − dimensional space.

We finish the definition of the Cantor space by stating some obvious facts
about the Cantor metric: if A and B are two mappings, then dC(A, B) ∈ [0, 1/2],
and for any mapping A, there exists a mapping B such that dC(A, B) = 1/2.

2.4 Basic Properties

The space MC is well-defined since two mappings at distance 0 are in fact the
same tiling up to a reordering of the tiles, or, to say it differently, have the same
canonical form. The space MB is slightly different, since two tilings at distance
0 can be different. We have to redefine properties for the mappings of MB: if a
tiling class contains a tiling with a certain property, then all the class has this
property, since in fact, all other tilings of the class have ”almost” the property.
Thus, we can define the following tiling classes: if P ∈ TB is a tiling class, we say
that P is: periodic if P contains a periodic tiling, quasiperiodic if P contains a
quasiperiodic tiling, finite if P contains a finite tiling (i.e., a pattern), universal
if P contains a universal tiling and a tiling with a quasiperiodic function f if
P contains a tiling with a quasiperiodic function f and if P does not contain a
tiling with a quasiperiodic function g < f .

We obtain now a space that works almost like the space of all Wang tilings.
We can see how the different classes work. The following proposition states that
the distance between two periodic tilings of TB is a rational number and gives
a characterization of the classes of periodic tilings.

Proposition 1. If P and Q are two different periodic tilings, then there exist
n, m ∈ N

∗ such that d(P, Q) = n/m. Therefore, if P ∈ MB is periodic, then it
contains one and only one periodic tiling up to a reordering of the tiles.

The following proposition shows that two quasiperiodic tilings which belong to
the same equivalence class have the same quasiperiodic function:

Proposition 2. If P and Q are two quasiperiodic tilings such that P ≡d Q,
then gP = gQ, where gP and gQ are the quasiperiodic functions of P and Q.

We recall a basic notion of tilings: extraction. Consider an infinite set of τ -
patterns {m1, m2, . . .} of ever increasing sizes. We can see them as an infinite
tree with the root representing the empty pattern and where a pattern m is a
direct son of a pattern n if n is a subpattern of m, and if there does not exist
a pattern m′ 
= m such that n is a subpattern of m′ and m′ is a subpattern of
m. Thus, we obtain an infinite tree with finite degree. Therefore, by Koenig’s
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lemma, we have at least one infinite branch. In our tree, this branch represents
a tiling Q of the plane. This tiling Q is said to be an extraction of the set
{m1, m2, . . .}. Now, we say that Q is extracted from P if there exists an infinite
set {m1, m2, . . .} of patterns of P such that Q is an extraction of {m1, m2, . . .}.

Notions of universality and completeness for tilings have been introduced in
[LW07]. We relate them to our topological space:

Proposition 3. Let P ∈ MB be a universal (resp. quasiperiodic, periodic)
tiling. Then for any tiling A ∈ P, we can extract from A a universal (resp.
quasiperiodic, periodic) tiling A′.

The previous result shows again that belonging to an equivalence class with a
certain property is almost like having this property.

Now we study the different distances that we can obtain between Wang tilings
and mappings in our two Besicovitch spaces. We have the following properties:

Theorem 1. i) There exist a mapping A ∈ MB \ TB and ε > 0 such that the
ball B(A, ε) does not contain any Wang tilings;

ii) For any n, there exists an infinite subset H of TB such that for any two
tilings P and Q of H, d(P, Q) ≥ 1 − 1/n2.

As a corollary, we have that the spaces MB and TB are not precompact. We
can remark that that there exist prefix-patterns that can not be represented
by the local constraint of a Wang tile set. From this, we obtain the following
proposition:

Proposition 4. There exists an open set in MC that does not contain any Wang
tiling.

3 Properties of Our Topologies

3.1 Properties of the Metric Spaces

We first study some basic notions of our spaces to have a better understanding
of how they work. First of all, since we have metrizable spaces, we have that our
spaces are completely Hausdorff and that there are no isolated points neither in
MB nor in TB. This seems natural for MB, and is more interesting in the case
of TB.

Proposition 5. MB, TB, MC and TC are all perfectly normal Hausdorff and
perfect.

The set of tilings is uncountable. But there exist tile sets that generate an un-
countable set of tilings but only a countable set of equivalence classes in MB .
From this, and with the fact that any equivalence class contains an uncountable
set of mappings, there arises the question of the cardinality of MB. The following
proposition shows that even the equivalence classes of TB are uncountable.
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Proposition 6. TB has the cardinality of the continuum.

The next theorem is important for the understanding of Wang tilings. The metric
used is strongly related to the information contained in the tiling. Thus, two
tilings are close if the information contained in them is similar. So, theorem 2
can be stated as follows: a countable set of Wang tilings can not approach all the
information that Wang tilings can generate. Then, by generalizing this theorem,
we obtain a nice corollary.

Theorem 2. There does not exist a countable set of Wang tilings which is dense
in TB.

Corollary 1. i) For any countable set of Wang tilings H, there exist a tiling
P and a natural number n such that d(P, Q) ≥ 1/n for any Q ∈ H;

ii) There exist a Wang tiling P and an integer n such that for any tile set τ ,
there exists at least one τ-tiling Q such that d(P, Q) ≥ 1/n.

The next proposition shows how different the two topological spaces TB and TC

are. This comes from the fact that one takes a glimpse at the whole tiling since
the other one just look at it with blinkers.

Proposition 7. There exists a countable set of Wang tilings that is dense in τC .

From this, we have that MB is separable, and since it is completely metrizable,
we have that MB is a Polish space. The next theorem shows that for any two
tilings A, B ∈ TB, there exists a continuous path c : [0, 1] → TB such that
c(0) = A and c(1) = B:

Theorem 3. TB is a path-connected space.

3.2 Topological Properties

We now study the topological structure of our spaces. Since they are metric
spaces, then natural topologies are induced on them by the metrics. We define
the following sets:

i) Mapping(S) = { [A] | A is an S-mapping },
ii) Wang(S) = { [P ] | P is a Wang S-tiling }.

And for any tile set τ , we define the set: Wang(τ) = { [P ] | P is a τ -tiling }.
The following theorem shows that the set of mappings or tilings generated

by a tile set is a closed set. Then we give a characterization of the set of Wang
tilings that can produce a tile set:

Theorem 4. Let S and τ be two tile sets. Then Wang(τ) and Mapping(S) are
closed sets and Wang(τ) is either a closed discrete set, or a closed non-discrete
nowhere-dense set.

Corollary 2. i) TB is meager in MB;
ii) MB \ TB is dense in MB.
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We now show that our spaces are Baire spaces:

Theorem 5. TB, TC, MB and MC are complete metric spaces, and thus, are
Baire spaces.

In the following section, we introduce games on our topological spaces as tools
for the study of the structure of tilings.

4 Games on Tilings

Since the tilings computation model is equivalent to the Turing machines, tilings
make possible a geometrical point of view of computability. The different topo-
logical tools studied in this paper have shown some interesting aspects of the
behavior of computability in tiling spaces. As we have seen, the set of tilings
generated by a tile set τ , gives rise to complex subsets of MB and MC . These
sets can even be uncountable. A natural next step for studying these sets is to
consider infinite games on tilings.

Several kinds of infinite games exist and are used in many different fields.
Games have been studied for computation models such as pushdown automata
(see Serre’s PhD thesis [Ser05] for detailed survey). Considering the tilings com-
putation model, we now give definitions for two types of infinite games on tilings.

The first one, Banach-Mazur games [Oxt57], is a play on the topological struc-
ture of the space. Different definitions of Banach-Mazur games exist. We propose
this one:

Definition 5. Let X be a topological space and Y a family of subsets of X such
that:

i) any member of Y has nonempty interior;
ii) any nonempty open subset of X contains a member of Y .

Let C be a subset of X. The game proceeds as follows: Player I chooses a
subset Y1 of Y . Player II chooses a subset Y2 of Y such that Y2 ⊆ Y1. Then
Player I chooses a subset Y3 of Y such that Y3 ⊆ Y2 and so on. At the end of the
infinite game, we obtain a decreasing sequence of sets: X ⊇ Y1 ⊇ Y2 ⊇ . . . such
that Player I has chosen the sets with odd indexes and Player II has chosen the
sets with even indexes. Player II wins the game if

⋃
n≥1 Yi ⊆ X.

The study of the different subsets of X such that Player II has a winning strategy
is the main application of Banach-Mazur games. Of course, if C = X Player II
has a winning strategy. The question is: how big C has to be to allow Player II to
have a winning strategy? This gives rise to classical theorem concerning Banach-
Mazur games on topological spaces which states: a subset C of X is meager if
and only if Player II has a winning strategy for the game on {X, X \ C}. We
propose a Banach-Mazur game on the space MC :

Definition 6. Let X be a subset of MC and C ⊆ X. The game {X, C} is defined
as follows: Player I chooses a prefix-pattern m1 such that m1 is a prefix-pattern
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of a mapping of X. Player II chooses a prefix-pattern m2 such that m1 ⊂ m2

and such that m2 is a prefix-pattern of a mapping of X and so on. At the end of
the game, we obtain a sequence of prefix-patterns m1 ⊂ m2 ⊂ m3 . . . from which
we extract a unique mapping A. Player II wins the game if A ∈ C.

This amounts to playing the classical Banach-Mazur game with X = MC and
Y ⊆ { Um | Um is an open set in MC }. In our Cantor space, choosing a prefix-
pattern amounts to choosing an open set, since the open sets of MC can be
defined from prefix-patterns. Using this tool, we show that the set of Wang
tilings is meager in the set of mappings for our topology MC :

Theorem 6. TC is meager in MC .

Proof. We use the game {MC , MC \ TC} . We now have to show that Player II
has a winning strategy, i.e., Player II can always chooses integers in such a way
that the final mapping can not be a Wang tiling.

This is true since whatever plays Player I at the first round, then Player II
can choose a prefix-pattern which does not respect any possible local constraint
generated by Wang tilings.

This trivial proof shows the convenience of using games to prove that some
subsets are meager. To obtain the same kind of results for MB we define a
Banach-Mazur game more adapted to the topology of MB:

Definition 7. Let X be a subset of MB and C ⊆ X. A Banach-Mazur game on
{X, C} is defined as follows: Player I chooses a mapping A1 of X and an integer
n1; Player II chooses a mapping A2 of X such that d(A1, A2) ≤ 1/n1 and an
integer n2 ≥ n1; Player I chooses a mapping A3 of X such that d(A3, A2) ≤ 1/n2

and an integer n3 ≥ n2, and so on. Player II wins the game if limi→∞Ai ∈ C.

This game is still equivalent to a classical Banach-Mazur game, and since MB

is a topological space, we still have that Player II has a winning strategy if and
only if C is co-meager. We now prove the same result for MB:

Theorem 7. TB is meager in MB.

Proof. We will show that Player II has a winning strategy in the game {MB,
MB \TB}. To show this, we first prove the following result: for any tiling P and
any open ball B(P, 1/n), there exist a mapping A and an integer m > n such
that B(A, 1/m) ⊂ B(P, 1/n) and B(A, 1/m) ∩ TB = ∅.

Let P be a tiling and n an integer. The idea is to insert error patterns in
P . We can build a pattern of size six generated by two tiles such that it can
not be represented by a Wang pattern since its construction would imply that
the two tiles that compose it are equal. Thus, at least one tile of this pattern
can not be represented by Wang tiles. We introduce it in P in such a way that
the new mapping A that we obtain is at distance 1/2n of P . Because of the
error patterns, A can not be a Wang tiling. In the error pattern we have at least
one of the six tiles that can not be represented by a Wang tile. Therefore if Q
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is a Wang tiling, then d(Q, A) ≥ 1/12n. Thus, B(A, 1/12n) ⊂ B(P, 1/n) and
B(A, 1/12n) ∩ TB = ∅.

With this result, we can see that the strategy of Player II will be to choose
the tiling A and the integer 12n1 to be sure to win. Thus, TB is meager.

We introduce another type of games for the study of the complexity of the set of
tilings generated by a given tile set: games à la Gale-Stewart. Here is a general
definition of these games:

Definition 8. Let A be a nonempty set and X ⊆ AN. We associate with X
the following game: Player I chooses an element a1 of A, Player II chooses an
element a2 of A and so on. Player I wins if {an}n∈N ∈ X. We denote G(A, X)
this game.

A traditional question about a game G(A, X) is to know whether one of the
two players has a winning strategy, or in the terminology of games, if the game
is determined. In [Mar75], Martin has shown that any Borel set is determined.
Thus, we have to go beyond the Borelian hierarchy to find subsets complicated
enough not to be determined. We would like to use these games on tilings to
obtain similar structural complexity results for the set of tilings generated by a
tile set. In that direction we give the following definition:

Definition 9. Let H ⊆ MB and X ⊆ H. The Gale-Stewart game G(H, X) is
defined as follows: Player I chooses a tile a1 such that {a1} is a prefix-pattern
of a tiling of H; Player II chooses a tile a2 such that {a1, a2} is a prefix-pattern
of a tiling of H and so on. Player I wins if the tiling {a1, a2, . . .} ∈ X.

If one of the two players has a winning strategy we say that G(H, X) is deter-
mined or that X is determined in H. We say that τ is determined if Wang(τ) is
determined in Tτ , where Tτ is the set of all τ-tilings and τ-patterns, and that τ
is completely undetermined if for any subset X ∈ Wang(τ), X is undetermined
in Wang(τ).

The question is to know which kinds of games on tilings are determined, and
which ones are not. We give a glimpse in that direction by showing that there
exist tile sets determined and other ones completely undetermined:

Theorem 8. i) There exists a determined tile set;
ii) There exists a completely undetermined tile set.

Proof. i) To show this, we just have to find a tile set simple enough to generate
a determined game. The tile set Easy5composed of a unicolor blue tile and
four tile with three sides blue and one red satisfies the theorem. Player I
has a winning strategy in the game G(TEasy5, Wang(Easy5)): in this game,
the goal of player I is to obtain a tiling of the plane, and the goal of player
II, while respecting the local constraint of Easy5, is to obtain a situation
where Player I can not move anymore. Player I can force the play of Player
II by playing always one of the tile with a colored edge to force Player II to
play the symmetric of this tile. Thus, the game is determined.
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ii) Since Hanf and Myers [Mye74, Han74], we know that there exist tile sets
that generate only non-recursive tilings. Let τ be one of them; we consider
the game G(Wang(τ), X) where X is a subset of Wang(τ). If this game is
determined, then there exists a winning strategy for one of the two players.
Without loss of generality, suppose Player I has a winning strategy. There-
fore, whatever Player II plays, Player I has a recursive process that allows
him to choose a tile to go in a winning position: this strategy can generate
a τ -tiling in a recursive way. This is a contradiction.

5 Concluding Remarks

The topologies and games introduced in this paper have made possible some
descriptions of the structure of Wang tilings. This is a first step in the direction
of measuring the largeness or meagerness of sets of tilings. One of the many
remaining questions is to be able to measure how common universality is.

To reach these goals, the topological study of tilings through games appears
as a promising approach.
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Abstract. We provide a domain-based denotational semantics for a se-
quential language for exact real number computation, equipped with a
non-deterministic test operator. The semantics is only an approximate
one, because the denotation of a program for a real number may not be
precise enough to tell which real number the program computes. How-
ever, for many first-order common functions f : R

n → R, there exists
a program for f whose denotation is precise enough to show that the
program indeed computes the function f . In practice such programs pos-
sessing a faithful denotation are not difficult to find.

1 Introduction

We provide a denotational model for a functional programming language for
exact real number computation. A well known difficulty in real number com-
putation is that the tests x = y and x ≤ y are undecidable and hence cannot
be used to control the execution flow of programs. One solution, proposed by
Boehm and Cartwright, is to use a non-deterministic test [2]. For any two ratio-
nal numbers p < q and any real number x, at least one of the relations p < x
or x < q can be determined to hold; thus, operators rtestp,q are used, whose
evaluation never diverges when x is a real number:

1. rtestp,q(x) evaluates to true or to false,
2. rtestp,q(x) may evaluate to true iff x < q and
3. rtestp,q(x) may evaluate to false iff p < x.

Since a program can in general produce different results in different runs, Escardó
and Marcial-Romero took the view in previous work that programs of real-
number type denote sets of real numbers, and the question arose as to which
power domains would be suitable for modelling the behaviour of rtest [7,8]. It was
shown that, among the known power domains, only the Hoare power domains
are suitable. However, a semantics based on Hoare power domains only accounts
for partial correctness of programs (If a program computes a real number then
it is the one given by its denotation).

We argue that, although Smyth power domains cannot faithfully model the
rtestp,q operators, they can nevertheless provide an approximation which is suffi-
ciently precise to define many common first-order functions, and has the further
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advantage over other choices that total correctness of programs is expressed in
the model (If the denotation of a program is a real number, then the program
computes this real number). Writing �M� and [M ] for the denotational and op-
erational meaning of a program M , respectively, we show that, in general, one
has �M� � [M ], but not necessarily �M� = [M ]. However, if �M� represents
a real number, then �M� is maximal, and hence �M� = [M ]. To illustrate the
usefulness of the approximate semantics in practice, it can be shown that many
programs of interest have a total denotation, which allows to establish their total
correctness without resorting to operational methods.

Some background in domain theory is assumed [1,6]. In this paper, a domain
is a continuous, directed-complete poset and all domains are seen as topological
spaces, with the Scott topology. Continuity of functions between domains is to
be understood relatively to the Scott topologies.

2 The Language

The language we consider is an extension of the functional language PCF [9,10]
with a type for real numbers and related basic constructors. Types are given by

σ = real | nat | bool | σ → σ. (1)

Types real, nat and bool are called ground types. The typing judgements and
reductions rules are recapitulated in Table 1 and Table 2 respectively. The ex-
pressions |M | = ⊥, |L| < 1 and 0 < |L|, to the right of certain reduction rules,
are decidable, side conditions indicating when these rules are applicable (cf. Def-
inition 2 below).

2.1 Approximating Real Numbers with Intervals

The constructors bounda, p+ and p× are used to approximate real numbers with
intervals and operate on these approximations. The index a ranges over

RQ = {[s, t] | s ≤ t and s, t ∈ Q}

and p over the rational numbers. The set RQ ∪ {(−∞, +∞)} forms a basis of
the interval domain [5,3].

Definition 1. The interval domain R is the set of all non-empty, closed and
bounded real intervals ordered by reverse inclusion, along with a least element
⊥R = (−∞, +∞). We write x � y for x ⊇ y.

The interval domain is a continuous Scott domain in which the supremum of
a directed set is its intersection. The real numbers are embedded in R via the
continuous map r 
→ {r} = [r, r].
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Table 1. Typing judgements

Γ, x : σ � x : σ
Γ � M : σ → τ Γ � N : σ

Γ � M(N) : τ

Γ, x : σ � M : τ

Γ � (λx : σ.M) : σ → τ
Γ � M : σ → σ
Γ � Yσ(M) : σ

Γ � true : bool Γ � false : bool

Γ � L : nat
Γ � (0 =) (L) : bool

Γ � L : bool, Γ � M : γ, Γ � N : γ

Γ � ifγ(L, M, N) : γ
γ ∈ {bool, nat, real}

Γ � n : nat
for all n ∈ N

Γ � M : nat
Γ � succ(M) : nat

Γ � M : nat
Γ � pred(M) : nat

Γ � M : real
Γ � bounda(M) : real

a ∈ RQ, where RQ = {[p, q] | p ≤ q, p, q ∈ Q}

Γ � M : real
Γ � p + (M) : real

p ∈ Q

Γ � M : real
Γ � p × (M) : real

p ∈ Q

Γ � L : real
Γ � rtest(L) : bool

Γ ranges over contexts, that is finite sequences x1 : σ1, . . . , xk : σk where xi are pairwise
distinct variables and σi are types.

The operation bounda : R → R that appears as index in the reduction rule
(15) of Table 2 is continuous. It is the direct image function obtained from
the function bounda : R → R, r 
→ max(a, min(r, a)) where a and a are the
upper and lower bounds of the interval a (i.e. a = [a, a]). Notice that we have
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Table 2. Reduction relation

(1)
Yσ(M) � M(Yσ(M))

(2)
(λx : σ.M)(N) � M [N/x]

(3) M � M ′

M(N) � M ′(N)

(4)
if(true, M, N) � M

(5)
if(false, M, N) � N

(6) B � B′

if(B, M, N) � if(B′, M, N)

(7)
(0 =)(0) � true

(8)
(0 =)(n + 1) � false

(9) L � L′

(= 0)(L) � (= 0)(L′)

(10)
succ(n) � n + 1

(11) M � M ′

succ(M) � succ(M ′)

(12)
pred(0) � 0

(13)
pred(n + 1) � n

(14) M � M ′

pred(M) � pred(M ′)

(15)
bounda

(
boundb(M)

)
� boundbounda(b)(M)

(16) M � M ′

bounda(M) � bounda(M ′)
|M | = ⊥

(17)
p +

(
bounda(M)

)
� boundp+a

(
p + (M)

) (18) M � M ′

p + (M) � p + (M ′)
|M | = ⊥

(19)
p ×

(
bounda(M)

)
� boundp×a

(
p × (M)

) (20) M � M ′

p × (M) � p × (M ′)
|M | = ⊥

(21)
rtest(L) � true

|L| < 1 (22)
rtest(L) � false

0 < |L|

(23) L � L′

rtest(L) � rtest(L′)

bounda(⊥R) = ⊥R and hence a � bounda(x), for all x ∈ R. Furthermore, if a
and x are consistent (a ∩ x �= ∅), then bounda(x) = a ∩ x = a � x.

Similarly, p+ and p× : R → R are the continuous functions obtained from
addition and multiplication of real numbers.
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As an example, here are a few reduction steps from a program zero for 0.

zero = Yreal

((
λz : real.

1
2

×
(
bound[−1,1](z)

))
)

�
(
λz : real.

1
2

×
(
bound[−1,1](z)

))
(zero) �

1
2

×
(
bound[−1,1](zero)

)

� bound[
− 1

2 ,
1
2

]

(
1
2

× (zero)
)

�4 bound[
− 1

2 ,
1
2

]

(

bound[
− 1

4 ,
1
4

]

(
1
2

×
(

1
2

× (zero)
) ))

� bound[
− 1

4 ,
1
4

]

(
1
2

×
(

1
2

× (zero)
) )

�5 bound[
− 1

4 ,
1
4

]

(

bound[
− 1

8 ,
1
8

]

(
1
2

×
(

1
2

×
(

1
2

× (zero)
))) )

� bound[
− 1

8 ,
1
8

]

(
1
2

×
(

1
2

×
(

1
2

× (zero)
)) )

� etc.

It is not hard to see that there is only one, infinite reduction path from program
zero, of the form

zero � . . . � bound[− 1
2 , 12 ]

1
2

zero � . . . � bound[− 1
2n , 1

2n ]

1
2

× . . . × 1
2

zero � . . .

The reduction relation reduces a program of type real to another one that
possibly displays a better approximation of its result, in the form of intervals a,
at the head of programs such as bounda(M), but the evaluation process never
terminates. We say that a is the immediate output of program bounda (M).

Definition 2 (Immediate outputs of programs). The immediate output of
a program of type real is an element of R and is defined by:

| bounda(N)| = a for any term N : real → real and any a ∈ RQ,
|M | = ⊥R for any program not of the form bounda(N).

We also define the immediate output of programs of type bool and nat, as an
element of B⊥ or N⊥: | true | = true, | false | = false, |n| = n and |M | = ⊥
in other cases.

The immediate output of a program of ground type is the information that can
be read at once from the head of a program without further evaluation.

Definition 3. The supremum
⊔

|Mn| of immediate outputs of programs along
a reduction path (Mn) is called the output of the path.

At type real, the output of a path is an element of the interval domain R.
For example the output of the reduction path from program zero given above,



A Denotational Semantics for Total Correctness 393

is [0, 0], that is {0}, which represents the real number 0 in R. The output of
any reduction path exists because a program can only reduce to a program with
equal or greater immediate output.

It is easy to see that there exists only one reduction path from any given
term with no occurrence of rtest. In this deterministic setting, the operational
meaning [M ] of a program M of ground type could simply be defined as the
output of the unique reduction path from it, that is as an element of R, N⊥ or
B⊥. However, the expressivity of the language without rtest is very weak [4].

2.2 Redundant Test: The rtest Constructor

We have already motivated the introduction of the rtest operator in Section 1.
Reduction rules for the rtest constructor are the only ones with overlapping
premises, which renders the operational semantics non-deterministic, in the sense
that one term may reduce to several ones (Table 2). We only introduce one
constructor rtest0,1, simply written rtest, because the other ones are definable

in the language, e.g. rtestp,q(x) = rtest0,1

(
x−p
q−p

)
.

The purpose of rule (23) is to eventually enable the applicability of one or
both rules (21) and (22). Only when none of (21) and (22) become applicable,
should rule (23) be allowed to be applied infinitely often.

2.3 Fair Reduction Paths

To avoid applying rule (23) infinitely many times in a row when doing other-
wise is possible, one could give priority to the application of rules (21) and (22)
over the application of rule (23), by stipulating that rule (23) should not be ap-
plied whenever one of the two other rules can be applied. But this would make
rtest able to distinguish between programs computing the same real number.
For example, suppose that half is a program for computing 1

2 , i.e. all reduc-
tion paths from half have output [12 , 1

2 ]; for example, take half = 1
2 + zero.

The term rtest(bound[0, 12 ](half)) would then only reduce to true whereas the
term rtest(bound[ 1

2 ,1](half)) would only reduce to false, although both terms

bound[0, 1
2 ](half) and bound[ 1

2 ,1](half) compute the number 1
2 . We wish to remain

as general as possible and not put artificial constraints on the operational be-
haviour of the language. It should be up to a particular implementation to make
specific decisions to avoid undesirable paths. In order to rule out undesirable
paths without imposing too much constraint, we stipulate that only fair paths
should be allowed. Roughly, a fair path is one along which rules (21) and (22)
are eventually applied when possible.

Definition 4. A computation is a maximal, fair reduction path.

Computations are the only paths that any implementation of the language should
consider. What is important, is that there exists a strategy that allows to produce
maximal fair paths. Even if we only consider computations from a fixed program,
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these may have different outputs. For example, the program rtest(half) reduces
to both true and false.

Definition 5. The outputs of a program is the set of outputs of all computa-
tions from this program:

Outputs (M) =
{⊔

n

|Mn|
∣
∣ (Mn) is a computation from M

}
.

Since there is at least one fair path from a given term M , the set Outputs(M) is
not empty. A program M : real computes a real number r if Outputs(M) = [r, r].
For example, consider the program abs: real → real recursively defined by

abs (x) = if rtest−1,0(x)then −x
else if rtest0,1(x)then 1

2 bound[−1,1](abs (2x))
else x.

(2)

It can be shown that, for any program M : real that computes some real num-
ber r, the program abs (M) computes the absolute value of r.

2.4 Operational Meaning of Programs of Ground Types

To account for the multi-valuedness of programs, both the operational meaning
[M ] and the denotation �M� of a program M of ground type are defined in a
power domain PD. As mentioned in the introduction, our choice is to use Smyth
power domains because it allows us to prove the correctness of programs.

Definition 6 (Smyth power domains). Given a domain D, its Smyth power
domain PS D is the set of non empty, Scott compact and upper subsets of D, ordered
by reverse inclusion (It is itself a domain).

The Hasse diagram of the Smyth power domain PS
B⊥ is represented in Figure 1.

{true} {false}

{true, false}

{⊥, true, false}

Fig. 1. Smyth power domain PS
B⊥ over the lifted booleans B⊥

Definition 7 (Interpretation of ground types.). The interpretation �γ� of
a ground type γ is given by: �nat� = PS

N⊥, �bool� = PS
B⊥, �real� = PS R.
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Definition 8. The operational meaning [M ] of a closed term M of ground type
γ is the greatest element in the domain �γ� that contains the set of outputs of
M :

[M ] =
⋂

{K ∈ �γ� | K ⊇ Outputs(M)} . (3)

Notice that, for γ = real, Definition 8 relies on the fact that, for any closed
term M of ground type γ, the set {K ∈ �γ� | K ⊇ Outputs (M)} is directed.
This follows from the fact that, in continuous Scott domains (bounded complete
domains), the intersection of finitely many Scott compact upper sets is Scott
compact [1].

It is not always possible to recover the set of outputs of a program from its
operational meaning. However, for a program M of ground type whose oper-
ational meaning is a finite set of maximal elements of N⊥, B⊥ or R, we have
that Outputs (M) = [M ]. In particular, if a program M computes a real number
r, then [M ] = {[r, r]} in PS R. The main motivation of our work is to define
a denotational semantics such that, in such cases, �M� coincides with [M ] and
hence with Outputs (M), at least for enough programs M for the denotational
semantics to be useful.

3 An Approximate Semantics for Total Correctness

The interpretations of ground types were given in Definition 7. The interpre-
tation of a higher type σ → τ is given by �σ → τ� = Dσ→τ =

[
�σ� → �τ�

]
,

the domain of Scott continuous functions from �σ� to �τ�. The denotation of
a typing judgement x1 : σ1, . . . , xk : σk � M : σ is a continuous function from
�σ1�× . . .×�σk� to �σ� in the category of bounded-complete continuous domains.
Table 3 on the following page gives the recursive definition of the denotations
of typing judgements. The fact that the denotations of terms are continuous
comes from classical results of domain theory (see e.g. [10]) and the fact that
the denotations of basic constructors other than rtest are given as functions
known to be continuous. We only have space to give details on the interpretation
of rtest.

3.1 Denotation of rtest

Theorem 1. The function ttest : R → PS
B⊥ defined as follows is continuous.

ttest(l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{|true|} if l < 0
{|false|} if 1 < l

{|true, false|} if l ≮ 0, 1 ≮ l and l �� [0, 1]
{|⊥B⊥ |} if l � [0, 1]

(4)

The denotation of rtest is the continuous function ttest∗ : PS R → PS
B⊥ that

maps K to
⋃

{↑ ttest(k) | k ∈ K}.
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Table 3. Denotation of typing judgements

�x1 : σ1, . . . , xk : σk � xi : σi� (
−→
d ) = di

�Γ � (λx : σ.M) : σ → τ� (
−→
d )(e) = �Γ, x : σ � M : τ� (

−→
d , e)

�Γ � Yσ(M) : σ� (
−→
d ) = μDσ

(
�Γ � M : σ → σ� (

−→
d )

)

�Γ � M(N) : τ� (
−→
d ) = �Γ � M : σ → τ� (

−→
d )

(
�Γ � N : σ� (

−→
d )

)

�Γ � (0 =)(M) : bool� (
−→
d ) =

(
PS(0 =)

)
(�Γ � M : nat�)

�Γ � succ(M) : nat� (
−→
d ) =

(
PS(succ)

)
(�Γ � M : nat�)

�Γ � pred(M) : nat� (
−→
d ) =

(
PS(pred)

)
(�Γ � M : nat�)

�Γ � true : bool� (
−→
d ) = {true}

�Γ � false : bool� (
−→
d ) = {false}

�Γ � n : nat� (
−→
d ) = {n}

�Γ � rtest(L) : bool� (
−→
d ) = ttest∗

(
�Γ � L : real� (

−→
d )

)

�Γ � ifγ(B, M, N) : γ� (
−→
d )

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�Γ � M : γ� (
−→
d ) if �Γ � B : bool� (

−→
d ) = {true}

�Γ � N : γ� (
−→
d ) if �Γ � B : bool� (

−→
d ) = {false}(

�Γ � M : γ� (
−→
d )

)
∪

(
�Γ � N : γ� (

−→
d )

)
if �Γ � B : bool� (

−→
d ) = {true, false}

⊥Dγ otherwise

�Γ � bounda(M) : real� (
−→
d ) =

(
PS(bounda)

)
(�Γ � M : real�)

�Γ � p + (M) : real� (
−→
d ) =

(
PS(p+)

)
(�Γ � M : real�)

�Γ � p × (M) : real� (
−→
d ) =

(
PS(p×)

)
(�Γ � M : real�)

The left side of Figure 2 represents the values taken by the function ttest on
the interval domain. The black wedges indicate to which area the boundary lines
belong. In particular

ttest ([0, 0]) = ttest ([1, 1]) = {true, false} . (5)

Similarly, the right side represents the values taken by rtest when seen as a
function rtest from R to P(B⊥), the power set of B⊥, in the following way:
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{true, false}{true} {false}

{⊥B⊥ , true, false}

{0} {1}

⊥R

{true, false}{true} {false}

{⊥B}

{0} {1}

⊥R

Fig. 2. Values of ttest(l) for l ∈ R

given a program M : real such that �M� = ↑ {x} = {y ∈ R | x � y} for some
interval x ∈ R, the figure indicates the set of outputs of the program rtest (M).
On the areas that are of different colours from one figure to the other, we have
that ttest(x) strictly contains rtest(x). In particular rtest ([0, 0]) = {true} and
rtest([1, 1]) = {false}. It follows that for some programs M : real, even some
computing real numbers, one has �rtest (M)� � [rtest (M)] .

Our main technical result states that adequacy between the operational and
denotational semantics holds for programs of ground type with maximal
denotation.

Theorem 2. For any closed term M of ground type, �M� � [M ].

In particular, if M has a maximal denotation, then equality holds. Our proof
makes use of a logical relation and is adapted from the proof of adequacy for
PCF as found in e.g. [10]. In itself, Theorem 2 does not say much about our
semantics, because the semantics that assigns bottom to every term also satisfies
the conclusion of the theorem. However, our model is “close enough” to the
operational semantics, as we shall see in the next two sections.

4 Example

For many common first-order computable functions, it is not difficult to find
programs whose denotation is total (sends maximal elements to maximal ele-
ments). We only have space to provide one example (but see conclusion). The
denotation of the closed term we gave earlier (page 394) for the absolute value
function is the map abs: PS R → PS R considered in the next theorem.

Theorem 3. The following recursively defined function abs: PS R → PS R
represents the absolute value map on real numbers:

abs (x) = cases x ≤ 0 → −x
−1 ≤ x → cases x ≤ 1 → bound[−1,1]

(
1
2 abs(2x)

)

0 ≤ x → x
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where cases x ≤ q → M0

p ≤ x → M1

is a notation for if ttestp,q(x) then M0 elseM1.

Let us say that a program M defines a real number r if �M� = {[r, r]}. Using
the fact that {[r, r]} is maximal in PS R, it follows from Theorems 2 and 3 that,
whenever a program M : real defines r ∈ R, the program abs(M) defines the
absolute value |r| of r, and hence that the program abs(M) computes |r|: all
computations from abs(M) output [|r|, |r|], which represents |r| in the interval
domain.

5 Conclusion

The undecidability of (in)equality tests on real numbers from a constructive point
of view creates problems in the design of control-flow mechanisms for program-
ming languages for exact real-number computation. A good operational solution,
based on constructive analysis, has been proposed by Boehm and Cartwright [2]
and developed by Marcial-Romero and Escardó [8] to some extent. A main con-
tribution of [8] is that the Hoare power domain of the interval domain can be
used to reason about partial correctness in a natural way, combining real analysis
and domain theory. A main problem left open in the same work is the develop-
ment of a denotational semantics that would allow for total correctness proofs.
Marcial-Romero and Escardó ruled out the Smyth and Plotkin power domains
for such a semantics, by proving that there is no continuous interpretation of
Boehm and Cartwright’s rtest construction in those power domains. In this
work, we have shown that the best continuous approximation of rtest in the
Smyth power domain allows one to develop total correctness proofs based on
real analysis and denotational semantics, in a natural way, avoiding termination
proofs based on operational semantics. Technically, our main contribution is the
formulation and proof of a suitable computational adequacy theorem for the
approximate semantics, which we expressed as �M� � [M ], for any program M
of ground type.

Acknowledgement. This work is part of my PhD Thesis, under the supervision
of Mart́ın Escardó, to whom I express all my gratitude. Detailed proofs and many
other examples of programs will appear in my PhD dissertation, a draft of which
is already available on my web page. The dissertation also contains a universality
result (all computable first-order total functions are definable in the language);
this will be the subject of another paper.
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Abstract. The existence of bisimulations for objects in the Kleisli category asso-
ciated with the Giry monad of subprobabilities over Polish spaces is studied. We
first investigate these morphisms and show that the problem can be reduced to the
existence of bisimulations for objects in the base category of stochastic relations
using simulation equivalent congruences. This leads to a criterion for two objects
related through the monad to be bisimilar.

1 Introduction

The Giry monad [8] provides a categorical approach to the measure-theoretic founda-
tions of Probability Theory. Permitting to represent a variety of models in computer
Science, it has recently attracted some attention with respect to the foundations of con-
currency theory (like bisimulations) [11,1,3,5], Kripke models for modal logics with
applications to model checking [15,4], and even to modelling software architectures [2].
The monograph [6] provides an overview over the recent development. E. Moggi pro-
poses in his paper Notions of Computations and Monads [10] a monadic model of com-
putation. Functor T acts as a type constructor, so that if A is a type, then TA is the
object of computations of type A. Assuming that T is the functorial part of a monad,
the Kleisli category for this monad is identified as the category of programs, and mor-
phisms in this category are the programs.

The present paper is about these morphisms in the Giry monad; they are usually
referred to as stochastic relations. It studies the problem under which conditions two
stochastic relations are bisimilar in the Kleisli category for the Giry monad. Thus, given
two stochastic relations K and L, we ask under which conditions we can find a stochas-
tic relation M and two Kleisli morphisms Φ : K � M and Ψ : L � M, hence we
want to know under which conditions a span of morphisms in the Kleisli category for
the Giry monad exists. The strong case, i.e., the case that F and G both are replaced by
Borel measurable maps (and Kleisli composition by the composition of maps) has been
studied extensively in different settings [6,7], and here general criteria are known. The
case of weak morphisms, however, did not find sufficient attention yet.

This problem is interesting for a variety of reasons. First, it is known that there is
an intimate connection between bisimilarity and Kripke models for modal logics, not
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only in the case when the logics is interpreted coalgebraically through a set based func-
tor [13] but also when the subprobability based functor is used [7]. It can be shown that
the weak probabilistic case is by no means as clearly cut as the strong case, hence the
interest is somewhat pronounced here. Then, bisimilarity is a basic notion in the theory
of concurrency, consequently, a better knowledge about an interesting special case is
welcome. From a technical point of view it is important to see that weak morphisms are
closely related to strong ones, which gives some insight into the inner working of the
Kleisli construction for the Giry monad.

The problem is tackled here in terms of congruences with an approach similar to the
one proposed in [4]. Congruences are introduced in Section 3, after having recalled in
Section 2 some familiar constructions with the Giry monad. In Section 4 we reduce the
problem to finding a weak morphism to the strong case through a construction that re-
sembles a tensor product and analyse congruences that occur in this case. We know that
the existence of simulation equivalent congruences implies the existence of a bisimu-
lation for the strong case, hence we study simulation equivalence in the context of the
transformed problem. After some transformations involving the corresponding factor
spaces, we show that two stochastic relations are weakly bisimilar if we can find sim-
ulation equivalent congruences on the base spaces that are compatible with the Kleisli
composition. The conclusing Section 5 wraps it all up and proposes further work.

2 Some Constructions Associated with the Giry Monad

Given a measurable space (X, A), S (X, A) is the space of all subprobability measures
on (X, A). It is again a measurable space with the ∗ − σ-algebra A•. This is the small-
est σ-algebra on S (X, A) which makes all the evaluations μ �→ μ(Q) with Q ∈ A
measurable. Defining for another measurable space (Y, B) and an A-B-measurable
map f : X → Y the map S (f) → S (Y ) through S (f) (μ)(B) := μ(f−1 [B])
constitutes a A•-B•-measurable map. The subprobability functor S is hence an endo-
functor on the category of measurable spaces. This functor is the functorial part of a
monad, the Giry monad [8]. The Kleisli construction [9] for this monad is particu-
larly interesting: If (X, A) and (Y, B) are measurable spaces, then a stochastic relation
K : (X, A) � (Y, B) is a map K : X → S (Y, B) which is A-B•-measurable, stochas-
tic relations are just the Kleisli morphisms for the Giry monad. The reader may wish
to compare this with Kleisli morphisms for the powerset monad: they are exactly the
relations, and in fact there are many interesting and not so obvious similarities, see,
e.g. [6]. In Probability Theory, stochastic relations are known as subprobability kernels,
the algebraic context is usually not being considered there.

The Kleisli composition of the stochastic relations K : (X, A) � (Y, B) and L :
(Y, B) � (Z, C) (for some measurable space (Z, C)) is the stochastic relation L∗K :
(X, A) � (Z, C) defined through (x ∈ X, G ∈ C)

(
L∗K

)
(x)(G) :=

∫

Y

L(y)(G) K(x)(dy).

In Probability Theory, this operation is usually referred to as the convolution of the
kernels K and L.



402 E.-E. Doberkat

Define the coproduct K+K′ of the stochastic relations K = ((X, A), (Y, B), K) and
K ′ = ((X ′, A′), (Y ′, B′), K ′) through

(
(X +X ′, A+A′), (Y +Y ′, B+B′), K+K ′),

where
(
K + K ′)(z) :=

{(
S (injY ) ◦ K

)
(x), if z = injX(x),

(
S (injY ′) ◦ K ′)(x′), if z = injX′(x′).

Here e.g., injY is the injection Y → Y + Y ′ from Y into the sum Y + Y ′. Thus
we have e.g. for x ∈ X and the measurable set T ⊆ Y + Y ′ the identity

(
K +

K ′)(injX(x))(T ) = K(x)(T ∩ Y ). It is not difficult to see that this defines the co-
product in the category of stochastic relations, anticipating the definition of strong mor-
phisms from Definition 3.

If X is a Polish space, i.e., a Hausdorff space with a countable dense subset for which
a complete metric exists, then X becomes a measurable space with the Borel sets B(X)
as a σ-algebra. B(X) is the smallest σ-algebra that contains the open (or, equivalently,
the closed) sets of X . We suppress B(X) usually from the notation of a Polish space
X . Then S (X) is a Polish space as well [12], taking the topology of weak convergence
as a topology, and it is well known that the ∗ − σ-algebra are just the Borel sets for this
topology.

Let again (X, A) and (Y, B) be measurable spaces, and denote by A⊗B the product
σ-algebra on X × Y . Define for a stochastic relation K : (X, A) � (Y, B) and for a
subprobability μ ∈ S (Y, B) on (X × Y, A ⊗ B) the measure

(
μ ⊗ K

)
(H) :=

∫

X

K(x)(Hx) μ(dx)

(here Hx := {y ∈ Y | 〈x, y〉 ∈ H} is the vertical cut of H at x ∈ X). It is folklore
in Probability Theory that this defines a measure on the product space. The following
Lemma will be helpful in expressing the Kleisli product in a sometimes more conve-
nient manner.

Lemma 1. x �→ K(x) ⊗ L defines a stochastic relation K(·) ⊗ L : (X, A) � (Y ×
Z, B ⊗ C) such that

(
L∗K

)
(x)(G) = S (πY ×Z,Z) (K(x) ⊗ L)(G) for all G ∈ C. �

Now let X and Y be Polish spaces, and assume that a measure μ ∈ S (X × Y ) is
given. Then it is well known that μ can be represented through a measure on X and a
stochastic relation K : X � Y (see [12, Theorem V.8.1] or [6, Section 1.5.3]):

Theorem 1. Given μ ∈ S (X × Y ), then μ = S (πX×Y,X) (μ)⊗K for some stochastic
relations K : X � Y . K is unique S (πX×Y,X) (μ)-almost everywhere. K is called a
disintegration of μ with respect to X, Y . �

Thus, whenever μ ∈ S (X × Y ) and H ∈ B(X × Y ), we can write

μ(H) =
∫

X

K(x)(Hx) S (πX×Y,X) (μ)(dx).

The Change of Variables Formula will be a helpful technical tool. It uses the basic fact
stated above that a measurable map between measurable spaces induces a measurable
map between the corresponding subprobabilities. We formulate it for convenience for
Polish spaces, but it holds for general measurable spaces as well.
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Lemma 2. Let X and Y be Polish spaces, and assume that f : X → Y is Borel
measurable. Then

∫

B

g(y) S (f) (μ)(dy) =
∫

f−1[B]

(
g ◦ f

)
(x) μ(dx)

whenever B ⊆ Y is a Borel set. �

3 Smooth Relations

If (X, A) is a measurable space, then an equivalence relation � on X is called smooth
(or countably generated) iff there exists a sequence (Qn)n∈N of sets in A such that

x� x′ iff ∀n ∈ N : [x ∈ Qn ⇔ x′ ∈ Qn].

The sequence (Qn)n∈N is said to determine �. For example, when one constructs an
equivalence relation from the sets on which the formulas of a modal logic are valid [4],
these sets then form a determining sequence. In this case two states are equivalent iff
they cannot be separated by the logic.

Concerning the measurable structure of the factor space, it is well known that if X
is Polish, then the factor space X/� is analytic (i.e., homeomorphis to a continuous
image of a Polish space), whenever � is smooth, provided the factor carries the largest
σ-algebra that makes the factor map e� : x �→ [x]� B(X)-measurable [14, Exercise
5.1.14]. As a rule, the factor spaces are analytic spaces, even if the base spaces are
Polish, see [7, Example 2.7] for a discussion.

Call a set B ⊆ X �-invariant iff B =
⋃

{[x]� | x ∈ B}, so that x ∈ B and
x� x′ implies x′ ∈ B. The �-invariant A-measurable sets INV (A, �) := {C ∈ A |
C is �-invariant} form a σ-algebra for a measurable space (X, A). This is a collection
of results for smooth equivalence relations that will be used silently throughout.

Lemma 3. Let X be a Polish space, � be a smooth equivalence relation with the Borel
sets (Qn)n∈N as determining sequence. Then

a. INV (B(X), �) = σ ({Qn | n ∈ N}),
b. C ∈ B(X/�) iff e−1

� [C] ∈ INV (B(X), �), and e−1
� [e� [A]] = A for each A ∈

INV (B(X), �) ,
c. x� x′ iff

[
x ∈ Q ⇔ x′ ∈ Q

]
holds for all Q ∈ INV (B(X), �) .

d. The equivalence classes [x]� are exactly the atoms of the σ-algebra INV (B(X), �).

As a consequence of the characterization for the atoms of INV (B(X), �) we note that
the INV (B(X), �)-measurable real functions are constant on the equivalence classes.

Corollary 1. Let X and � be as in Lemma 3. If f : X → R is INV (B(X), �)-
measurable, then � ⊆ ker (f) . �

A pair (α, β) of smooth equivalence relations α on X and β on Y (with both X and Y
Polish) is called a congruence for the stochastic relation K : X � Y iff K(x)(B) =
K(x′)(B) whenever xα x′ and B ⊆ Y is a β-invariant Borel set. Thus if α cannot
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distinguish x from x′, and if β cannot discern the elements of B, then K(x) and K(x′)
both assign the same probability to B. Given a congruence (α, β) for K : X � Y , one
constructs the factor relation K(α,β) : X/α � Y/β upon setting

K(α,β)

(
[x]α

)
(G) := K(x)

(
e−1
β [G]

)
=

(
S (eβ) ◦ K

)
(x)(G)

for x ∈ X, G ∈ B(Y/β). This is a characterization of congruences in terms of the
relation involved [5, Lemma 2.8]:

Proposition 1. The following statements are equivalent for the Polish spaces X and Y

a. (α, β) is a congruence for K : X � Y .
b. K : INV (B(X), α) → INV (B(Y ), β) is a stochastic relation. �

For the investigation of bisimilarity, the notion of simulation equivalent congruences
will be important. A necessary condition for the bisimilarity of stochastic relations is
the existence of equivalent congruences on them. This condition is technically a bit
involved because it requires the notion of the mutual generation of smooth equivalence
relations; this concept is called spawning, it is discussed in detail in [4], so is the closely
related concept of simulation equivalent congruences.

Lemma 4. Let α and β be smooth equivalence relations on the Polish spaces X resp.
Y , and assume that p : X/α → Y/β is a map between the equivalence classes.
Put

√
p(A) :=

⋃
{p([x]α) | x ∈ A} for A ⊆ X . Then

√
p : INV (B(X), α) →

INV (B(Y ), β) . If p is injective, then
√

p is a Boolean σ-morphism. �

It is useful to notice that
√

p(A) = e−1
β [p [eα [A]]] .

Definition 1. Let α and β be smooth equivalence relations on the Polish spaces X
resp. Y , and assume that p : X/α → Y/β is an injective map between the equiv-
alence classes. We say that α spawns β via (p, A0) iff A0 is a countable generator
INV (B(X), α) such that {√

p(A)|A ∈ A0} is a generator of INV (B(Y ), β).

Thus if α spawns β, then the measurable structure induced by α on X is all we need
for constructing the measurable structure induced by β on Y : the map p can be made
to carry over the generator A0 from INV (B(X), α) to INV (B(Y ), β) and to transport
the atoms from one σ-algebra to the other. This is of particular interest since the atoms
constitute the equivalence classes. It can be shown that the specific generator in question
is not important because the map between the classes is injective, so that any generator
will do.

Definition 2. Let K : X � Y and K ′ : X ′ � Y ′ be stochastic relations over analytic
spaces on which congruences (α, β) resp. (α′, β′) are defined.

a. Call (α, β) proportional to (α′, β′) (written as (α, β) ∝ (α′, β′)) iff α spawns α′ via
(p, A0), β spawns β′ via (q, B0) such that both A0 and B0 are closed under finite
intersections and

∀x ∈ X∀x′ ∈ p([x]α)∀B ∈ B0 : K(x)(B) = K ′(x′)(
√

q(B)).
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b. Call these congruences simulation equivalent iff both (α, β)∝(α′, β′) and (α′, β′)∝
(α, β)

We require the generators to be closed under finite intersections since this is — by the
famous π-λ-Theorem of Measure Theory [6, Theorem 1.1] — a helpful condition to
ensure uniqueness of a measure. Simulation equivalent congruences behave in identical
fashion on the class structure induced by the respective congruences.

If α and α′ are smooth equivalence relations on X resp. X ′, define for x̄, x̄′ ∈ X+X ′

the equivalence relation α + α′ on the coproduct X + X ′ through [injX(x)]α+α′ :=
[x]α whenever x ∈ X , and [injX′(x′)]α+α′ := [x′]α′ , whenever x′ ∈ X ′. Thus
(X + X ′)/(α + α′) is isomorphic to X/α + X ′/α′, hence both spaces will be identi-
fied. Simulation equivalence is preserved through coproducts. The proof is fairly
straighforward.

Lemma 5. Let K and L be stochastic relations with simulation equivalent congruences
(χ, α) and (υ, β) and assume that K′ and L′ are stochastic relations with simulation
equivalent congruences (χ′, α′) and (υ′, β′). Then (χ+χ′, α+α′) and (υ+υ′, β+β′)
are simulation equivalent congruences for K + K′ and L + L′. �

4 Weak Bisimilarity

We will define weak and strong morphisms now in order to be able to define bisimi-
larity. This property is introduced through a span of morphisms, thus we take here a
coalgebraic point of view. In what follows, all spaces are Polish.

Definition 3. Let K = (X, Y, K) and L = (A, B, L) be stochastic relations, then a
pair (f, g) : K → L is called a strong morphism iff f : X → A and g : Y → B are
surjective Borel maps, such that L ◦ f = S (g) ◦ K.

Thus strong morphisms are based on measurable Borel maps. In contrast, weak mor-
phisms are based on Kleisli morphisms.

Definition 4. Let K = (X, Y, K) and L = (A, B, L) be stochastic relations, then a
pair (F, G) : K � L is called a weak morphism iff F : X � A and G : Y � B are
Kleisli morphisms with L∗F = G∗K.

The condition L∗F = G∗K entails for each x ∈ X and each Borel set P ∈ B(B)

(
L∗F

)
(x)(P ) =

∫

A

L(a)(P ) F (x)(da) =
∫

Y

G(y)(P ) K(x)(dy) =
(
G∗K

)
(x)(P )

If (f, g) : K → L is a strong morphisms, then L(f(x))(P ) = K(x)(g−1 [P ]) holds.
Clearly, strong morphisms are special cases of weak ones. This is so because δf : x �→
δf(x) is a stochastic relation X � Y , whenever f : X → Y is a Borel map, and
because

∫
Y

h(y) δf (x)(dy) = h(f(x)), whenever f : Y → R is a measurable map.
Some properties of weak morphisms are discussed in [5].

The coproduct permits to reduce co-spans of weak morphisms to weak morphisms.
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X

F
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M1

��
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N

��

X

K
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M2

��
S (A) S (A × B)

S(πA×B,A)
��

S(πA×B,B) ����������� S (Q)
S(s1)
��

S(s2)
�� S (Y × B)

S(πY ×B,Y )
��

S(πY ×B,B)�����������
S (Y )

S (B)

Fig. 1. Derived diagram for the proof of Proposition 3

Lemma 6. Let (F, G) : K � N , (F ′, G′) : K′
� N be a span of weak morphisms.

Then (F + F ′, G + G′) : K + K′
� N + N constitutes a weak morphism. �

Proposition 2. A weak morphism (F, G) : (X, Y, K) � (A, B, L) is characterized
through the stochastic relations M1 : X � A × B and M2 : X � Y × B with these
properties:

a. S (πA×B,B) ◦ M1 = S (πY ×B,B) ◦ M2.
b. The disintegration of M1(x) with respect to A, B is independent of x ∈ X and

coincides with L.
c. K = S (πY ×B,Y ) ◦ M2.
d. The disintegration of M2(x) with respect to Y, B is independent of x ∈ X .

Then G is the disintegration of M2(x) with respect to Y, B, and F = S (πA×B,A)◦M1.
�

Using this construction, we derive a first criterion for the weak bisimilarity of two
stochastic relations.

Proposition 3. Construct M1 : X � A × B and M2 : X � Y × B from the weak
morphism (F, G) : (X, Y, K) � (A, B, L). If M1 and M2 are strongly bisimilar, then
K and L are weakly bisimilar.

Proof. The construction yields the diagram of commuting maps displayed in Fig. 1
for a suitable stochastic relation N : P � Q. Chasing L (which is hidden through
disintegration in M1) and K , the assertion is easily established. �

This reduction result encourages to look for conditions that ensure the derived relations
M1 and M2 being strongly bisimilar. For this, fix smooth equivalence relations α on A,
β on B, χ on X and υ on Y and a weak morphism (F, G) : (X, Y, K) � (A, B, L)
such that (χ, υ) is a congruence for K , (α, β) is a congruence for L, (χ, α) is a con-
gruence for F and finally, (υ, β) is a congruence for G. We assume that (χ, α) and
(χ, υ) are simulation equivalent such that p : A/α → Y/υ is a bijection with inverse
q. The maps p and q are used to transport the structures to and fro in the sense of Def-
inition 1 with A0 and Y0 as the respective ∩-stable generators for INV (B(A), α) and
INV (B(Y ), υ). We assume that the identity on X/χ maps the factor structure onto it-
self so that K(x)(W0) = F (x′)

(√
q(W0)

)
holds for every W0 ∈ Y0 whenever xχ x′.

Recall from both A0 and Y0 are closed under finite intersections, see Definition 2.
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Define the product α × β of the equivalence relations α and β through 〈a, b〉〈a′, b′〉
(α × β) iff a α a′ and b β b′, then α×β and, similarly, υ×β are smooth equivalence rela-
tions on A×B resp. Y ×B such that e.g. INV (B(A × B), α × β) = INV (B(A), α)⊗
INV (B(B), β) , see [6, Lemma 5.13]. Let B0 be a ∩-stable countable generator of
INV (B(B), β), then {A0 × B0 | A0 ∈ A0, B0 ∈ B0} is a countable and ∩-stable gen-
erator of INV (B(A × B), α × β). A similar characterizsation holds for the σ-algebra
INV (B(Y × B), υ × β).

We claim that (χ, α×β) is simulation equivalent to (χ, υ ×β). It suffices to demon-
strate that these equations hold: M2(x)(

√
p(A0) × B0) = M1(x′)(A0 × B0), and

M1(x)(
√

q(Y0) × B0) = M2(x′)(Y0 × B0), whenever A0 ∈ A0, B0 ∈ B0, Y0 ∈ Y0

and x, x′ ∈ X with xχ x′ are given. It is enough to establish the first equality, since the
maps p and q are symmetric, the second one will follow in the same way.

The proof is broken into several steps. The first step shows that

M2(x)(
√

p(A0) × B0) =
∫

eυ[
√

p(A0)]

G(υ,β)(t)(eβ [B0]) K(χ,υ)([x]χ)(dt).

Because (υ, β) is a congruence for G, we know from Proposition1 that y �→ G(y)(B0)
is INV (B(Y ), υ)-measurable, since B0 ∈ INV (B(B), β). From Corollary 1 we infer
that this map is constant on the atoms of INV (B(Y ), υ), which are just the equivalence
classes, thus we may conclude that G(y)(B0) =

(
G(υ,β) ◦ eυ

)
(y)(eυ [B0]). Apply

the Change of Variables Formula, and observe that for a Borel set T ∈ B(Y/υ) the
equality e−1

υ [T ] =
√

p(A0) is equivalent to T = eυ [
√

p(A0)] , because
√

p(A0) ∈
INV (B(Y ), υ). Recalling the construction of the factor relation, it is evident that the
measures S (eυ) (K(x)) and K(χ,υ)([x]χ) coincide on B(Y/υ), yielding the equation.

Because (α, β) and (υ, β) are simulation equivalent, we may conclude that
G(υ,β)(t)(eβ [B0]) = L(α,β)(q(t))(eβ [B0]). Using change of variables, and observing
q−1 [q [eυ [

√
p(A0)]]] = eυ [

√
p(A0)] , because q is injective, we continue and show in

a second step

M2(x)(
√

p(A0) × B0) =
∫

q[eυ[
√

p(A0)]]

L(α,β)(s)(eβ [B0]) S (q)
(
K(χ,υ)([x]χ)

)
(ds)

Now let G ∈ B(A/α), then S (q)
(
K(χ,υ)([x]χ)

)
(G) = S (eα)

(
F (x′)

)
(G) This is

derived from the definition of the factor relation, from the assumption that xχ x′, and
from the assumption that q is injective, since

√
q◦e−1

υ ◦q−1 =
(
e−1
α ◦q◦eυ

)
◦e−1

υ ◦q−1 =
e−1
α . From e−1

α ◦ q ◦ eυ ◦ e−1
υ ◦ p ◦ eα = id we obtain

M2(x)(
√

p(A0) × B0) =
∫

q[eυ[
√

p(A0)]]

L(α,β)(s)(eβ [B0]) S (eα)
(
F (x′)

)
(ds)

=
∫

e−1
α [q[eυ[

√
p(A0)]]]

L(α,β)(eα(a))(eβ [B0]) F (x′)(da)

=
∫

A0

L(a)(B0) F (x′)(da)

= M1(x′)(A0 × B0),
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as desired. As an aside, it is noted that the proof does not use the assumption that (F, G)
is a weak morphism.

The considerations above establish the main result now.

Theorem 2. Let (χ, υ) and (α, β) be congruences for the stochastic relations K =
(X, Y, K) resp. L = (A, B, L) and assume that there exists a weak morphism (F, G) :
K � L such that (χ, α) and (υ, β) are simulation equivalent congruences for (X, A, F )
resp. (Y, B, G). Then K and L are weakly bisimilar.

Proof. Define the relations M1 : X � A × B through M1(x) := F (x) ⊗ L resp.
M2 : X � Y × B through M2(x) := K(x) ⊗ G. The discussion above shows that the
congruences (χ, α × β) and (χ, υ × β) are simulation equivalent. Thus we obtain from
the general criterion in [4, Theorem 4.8] that M1 and M2 are strongly bisimilar. From
Proposition 3we infer the claim. �

In the category of stochastic relations with strong morphisms, a bisimulation is con-
structed through a cospan. This construction is helpful, e.g., when showing that Kripke
models for a modal logic are bisimilar, provided they are behavioral equivalent
[6, 6.2.3]. Thus the question arises whether a similar construction is possible as well
when strong morphisms are replaced by weak ones. We did reduce a cospan of weak
morphisms to a weak morphism on a coproduct in Lemma 6, and this construction will
be helpful now for answering the question above.

Proposition 4. Let (F, G) : K � N and (F ′, G′) : K′
� N be a cospan of weak

morphisms, and assume that (χ, υ) and (χ′, υ′) is a congruence on K resp. K′, and
(α, β) is a congruence on N such that (χ, α) is simulation equivalent to (υ, β), (χ′, α)
is simulation equivalent to (υ′, β). Then K and K′ are weakly bisimilar.

Proof. We infer from Lemma 5 that (χ + χ′, α + α) is simulation equivalent to (υ +
υ′, β + β′), so we find through Theorem 2 a stochastic relation M = (C, D, M) and
weak morphisms (I, J) : M � K+K′ and (I ′, J ′) : M � N +N (using the notation
from Theorem 2 with N = (A, B, C)). Discarding the latter morphisms, we define the
stochastic relation I1 : C � X through I1(c)(G) := I(c)(G ∩ X) with G ∈ B(X);
the relations I2 : C � X ′, J1 : D � Y and J2 : D � Y ′ are defined similarly. An
easy integration argument shows that K ′∗I2 = J2∗M, holds. �

Thus we have a general criterion for two stochastic relations being weakly bisimilar.
It is technically more involved than the corresponding criterion for strong morphisms
(which simply states that two relations are strongly bisimilar if there exists simulation
equivalent congruences for them). Both statements have in common that they do not
need an external instance (like a modal logic) for a decision of whether or not they are
bisimilar, and both use the existence of a cospan, albeit in very different ways.

5 Conclusion

We derive a criterion for weak bisimilarity in the Giry monad. Technically, this was
done through a reduction argument together with an appliction of a general criterion
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for strong bisimilarity. This shows a close relationship between Kleisli morphisms and
morphisms in the base category which has not yet been sufficiently exploited in this spe-
cial case or in the general case, as it seems. Looking again into tensored categories [1]
for this purpose may be useful.
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Abstract. We study the border minimization problem (BMP), which arises in
microarray synthesis to place and embed probes in the array. The synthesis is
based on a light-directed chemical process in which unintended illumination may
contaminate the quality of the experiments. Border length is a measure of the
amount of unintended illumination and the objective of BMP is to find a place-
ment and embedding of probes such that the border length is minimized. The
problem is believed to be NP-hard. In this paper we show that BMP admits
an O(

√
n log2 n)-approximation, where n is the number of probes to be syn-

thesized. In the case where the placement is given in advance, we show that
the problem is O(log2 n)-approximable. We also study a related problem called
agreement maximization problem (AMP). In contrast to BMP, we show that AMP
admits a constant approximation even when placement is not given in advance.

1 Introduction

DNA microarrays [9] have become a very important research tool which have proved
to benefit areas including gene discovery, disease diagnosis, and multi-virus discovery.
They are used for performing a large number of hybridization experiments simultane-
ously. Besides their prevalent use to measure the amount of gene expression [21] in a
cell, microarray is an efficient tool for making a qualitative statement about the pres-
ence or absence of biological target sequences in a sample. A DNA microarray (“chip”)
is a plastic or glass slide which consists of thousands of (about 60,000) short DNA
sequences known as probes. DNA microarray design raises a number of challenging
combinatorial problems, such as probe selection [10,14,18,22], deposition sequence
design [17,19] and probe placement and synthesis [12,3,4,5,15,16]. In this paper, we
focus on the probe placement and synthesis problem.

Probes are synthesized on the microarray through the process called very large-scale
immobilized polymer synthesis (VLSIPS) [8]. In each step, light is selectively allowed
through a mask to expose spots in the microarray in order to activate the nucleotides in
the spots. The patterns of the masks used and the sequence of the deposition nucleotides
in the illumination define the ultimate sequence of nucleotides of the array spot. A mask
consists of masked (blocking light) and unmasked (allowing light) regions and induces

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 410–422, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Synthesis of a 2 × 2 microarray. The deposition sequence D = CTAC corresponds to
the sequence of four masks M1, M2, M3, and M4. The masked regions are shaded. The borders
between the masked and unmasked regions are represented by bold lines.

deposition of a particular nucleotide (A, C, G or T) at its exposed array spots. The
deposition sequence D corresponding to the sequence of masks is a supersequence of
all probes in the array (see example in Figure 1).

DNA microarray synthesis consists of two components, namely probe placement and
probe embedding. Given a set of probes to be synthesized, probe placement is to place
each probe to a unique spot in the microarray and probe embedding is the sequence
of masked and unmasked steps used in the synthesis. For example, in Figure 2, the
deposition sequence is (ACGT)3 and the sequence (a) A(−)4C(−)5T is a possible
embedding of the probe ACT, where “ − ” represents a space.

We distinguish two types of synthesis, namely, synchronous and asynchronous syn-
thesis. In synchronous synthesis, each deposition nucleotide can only be deposited to
the i-th position of the probes for a particular i. In asynchronous synthesis, there is no
such restriction, allowing arbitrary embeddings. For example, Figure 1 shows an asyn-
chronous synthesis in which M2 deposits a nucleotide to the second position of the
sequence CT and the first position of TA. Asynchronous synthesis is more flexible, yet
more difficult to optimize. In this paper we focus on asynchronous synthesis.

Due to diffraction, internal reflection and scattering, spots on the border between
masked and unmasked regions are often subject to unintended illumination [8]. This
uncertainty produces unpredicted probes that can compromise experimental results. As
microarray chip is expensive to synthesize, it is usual that as many probes as possible are
placed in a chip (i.e., as many entries are used), while unintended illumination has to be
minimized. The magnitude of unintended illumination can be measured by the border
length of the masks used, which is the number of borders shared between masked and
unmasked regions, e.g., in Figure 1, the border length of M1, M3, M4 is 2 and M2 is 4.

To reduce the amount of unintended illumination, one can exploit freedom in plac-
ing probes in the microarray during probe placement and choosing different probe em-
beddings. The Border Minimization Problem (BMP) [12] is to find a placement of the
probes on the microarray together with their embeddings in such a way that the sum of
border lengths over all masks is minimized. It has been stated in [3,4] that the problem
is believed to be NP-hard because of the exponential number of possible placements
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Fig. 2. Different embeddings of probe p = ACT into deposition sequence D = (ACGT)3

(although we are not aware of an NP-hardness proof). For this reason, we focus on
approximation algorithms for BMP in this paper.

Previous work. The BMP problem has attracted a lot of attention [12,3,4,5,15,16] and
most work is experimental in nature. As far as we know, no polynomial time approxi-
mation algorithm is known for BMP with non-trivial performance guarantee.

BMP was first formally defined by Hannenhalli et al. [12]. They focused on syn-
chronous synthesis and the only concern becomes probe placement. Their algorithm
computes an approximated travelling salesman path (TSP) in the complete graph with
nodes representing probes and edge costs representing the Hamming distance between
the probes. The TSP path is then placed on the microarray in a certain way called thread-
ing. Experiments shows that threading is effective in reducing border length. Since then,
other algorithms [15,16,4] have been proposed to improve the experimental results.

Asynchronous probe embedding was introduced by Kahng et al. [15]. They studied a
special case that the deposition sequence D is given and the embeddings of all but one
probes are known. A polynomial time dynamic programming algorithm was proposed
to compute the optimal embedding of this single probe whose neighbors are already
embedded. This algorithm is used as the basis for several heuristics [3,4,5,15,16] that
are shown experimentally to reduce unintended illumination in terms of border length.

On the other hand, there are few theoretical results. In [15], lower bounds on the total
border length for synchronous and asynchronous BMP problem were given, which are
based on Hamming distance, and Longest Common Subsequence (LCS), respectively.
The asynchronous dynamic programming mentioned above computes the optimal em-
bedding of a single probe in time O(�|D|), where � is the length of a probe and D is the
deposition sequence. The algorithm can be extended to an exponential time algorithm
to find the optimal embedding of all n probes in O(2n�n|D|) time.

Our contribution. In this paper, we study approximation of BMP in asynchronous
synthesis. This is the first result with proved performance guarantee. The main result
is an O(

√
n log2 n)-approximation, where n is the number of probes in the microarray.

This is based on an approximation algorithm for the variant when the placement of
probes is given in advance (called P-BMP problem). We show that P-BMP is O(log2 n)-
approximable. We further show that if the array is one-dimensional, P-BMP can be
solved optimally in polynomial time and there is a constant approximation for BMP. On
the other hand, we show that BMP can be defined as the maximum agreement problem
(AMP) with a different objective called “agreement”. Minimizing the border length is
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equivalent to maximizing the agreement. Yet we are able to devise O(1)-approximation
algorithms for AMP regardless of whether the placement is given in advance or not.

Organization of the paper. In Section 2, we give some definitions and notations. In
Sections 3 and 4, we present and analyze approximation algorithms for BMP and AMP,
respectively. Finally we give a conclusion and discuss future work in Section 5.

2 Preliminaries

We are given a set of n length-� probes P = {p1, p2, . . . , pn}, a
√

n ×
√

n array (for
simplicity, we assume that

√
n is an integer). For any sequence pi, we denote the t-th

character of a sequence pi by pi[t]. The probes in P are to be placed on the
√

n ×
√

n
array. We represent this array by a grid graph G = (V, E). Two grid vertices (x1, y1)
and (x2, y2) are said to be neighbor if |x1 −x2|+ |y1 −y2| = 1. For each vertex v ∈ V ,
we denote the set of neighbors of v by N (v).

Placement and embedding. A placement of the probes is a bijective function φ : P →
V that maps each probe to a unique vertex in the grid G. An embedding of a set of
probes P into a deposition sequence D is denoted by ε = {ε1, ε2, . . . , εn}. For 1 ≤
i ≤ n, εi is a length-|D| sequence such that (1) εi[t] is either D[t] or a space “ − ”;
and (2) removing all spaces from εi gives pi. The hamming distance between εi and
εj measures the border length between pi and pj if they are neighbors in a certain
placement. We define this quantity as the conflict between the embeddings of pi and pj ,
denoted by confε(pi, pj). Note that confε(pi, pj) ≤ 2�. We define the share between
the embeddings of pi and pj as 2� − confε(pi, pj), and denote it by shareε(pi, pj).

Border length and agreement. The border length of a placement φ and an embedding
ε is defined as the sum of conflicts between the embeddings of probes that are neighbors
in the placement φ in G:

BL(φ, ε) =
1
2

∑

pi, pj :
φ(pj) ∈ N (φ(pi))

confε(pi, pj) . (1)

The objective of the BMP problem is to find a placement φ and an embedding ε, so
that BL(φ, ε) is minimized. We denote the optimal placement and the corresponding
optimal embedding by φ∗ and ε∗, respectively. We further define the counter part of
border length, the agreement, which is the sum of shares between the embeddings of
probes that are neighbors in the placement φ in G:

A(φ, ε) =
1
2

∑

pi, pj :
φ(pj) ∈ N (φ(pi))

shareε(pi, pj) (2)

The Maximum Agreement Problem (AMP) is to find a placement φ and an embedding ε,
so that A(φ, ε) is maximized. Since A(φ, ε) = 4�(n−

√
n)−BL(φ, ε) , minimizing the

border length BL(φ, ε) is equivalent to maximizing the agreement A(φ, ε).

Common subsequence and common supersequence. The border length is closely re-
lated to the common subsequence and common supersequence between neighboring
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sequences in the placement. Consider any two length-� sequences p, q. We denote the
longest common subsequence and shortest common supersequence of two sequences p
and q by LCS(p, q) and SCS(p, q), respectively, and the corresponding length as
|LCS(p, q)| and |SCS(p, q)|, respectively. SCS(p, q) can be obtained by finding
LCS(p, q) and inserting into p the characters in q that are not in LCS(p, q) while
preserving the order in q. Therefore, |SCS(p, q)| = 2� − |LCS(p, q)|. For any em-
bedding ε, the maximum number of common deposition nucleotides between p and q
is |LCS(p, q)|, in other words, confε(p, q) ≥ 2(� − |LCS(p, q)|) and shareε(p, q) ≤
2|LCS(p, q)|. We define the LCS distance to be 2(� − |LCS(p, q)|), denoted by
dist(p, q). In other words, dist(p, q) is a lower bound of confε(p, q) for any embedding ε.

Multiple sequence alignment (MSA) and Weighted MSA (WMSA). As we will
see in later sections, a variant of BMP problem, named P-BMP (BMP problem in
which the placement is given), can be polynomial time reducible to WMSA. As a
consequence, we can apply the approximation results on WMSA to P-BMP, which
we can further use as a building block for the approximation for BMP. We first re-
view the MSA and WMSA problems. MSA and WMSA have been studied exten-
sively [2,7,11,20]. Let Σ be the set of characters and S = {S1, S2, . . . , Sk} be a set
of k sequences, with maximum length m, over Σ. An alignment of S is a matrix
S′ = (S′

1, S
′
2, . . . , S

′
k) such that |S′

i| = m′ and S′
i is formed by inserting spaces

into Si. For a given distance function δ(a, b) where a, b ∈ Σ ∪{−}, the pair-wise score
of S′

i and S′
j is defined as

∑
1≤y≤m′ δ(S′

i[y], S′
j [y]). Given a weight function w(i, j)

for the pair of sequences Si and Sj , the weighted sum-of-pair (SP) score SP(S′, w) =
1
2

∑
1≤i,j≤k w(i, j)

∑
1≤y≤m′ δ(S′

i[y], S′
j [y]). The WMSA problem is to find an align-

ment S′ such that SP(S′, w) is minimized. WMSA has been proved to be NP-complete.
An O(log2 n)-approximation algorithm [23] has been given via a reduction to the min-
imum routing cost tree problem (MRCT) [1].

Minimum routing cost tree problem (MRCT). In this problem, a graph with weighted
edges is given. For a spanning tree of the graph, the routing cost between two vertices
is the sum of weights of the edges on the unique path between the two vertices in the
spanning tree. The routing cost of the spanning tree is defined as the sum of routing
cost between every pair of two vertices. The MRCT problem is to find a spanning tree
whose routing cost is minimum. The results in [1] state that there is a polynomial time
reduction from WMSA to MRCT. Each sequence in the input of WMSA corresponds
to a vertex in the input graph of MRCT. The edge weight between two vertices is set to
be the weighted edit distance between the two corresponding sequences. The reduction
result states that (1) there is a routing spanning tree T whose routing cost is at most
O(log2 n) times

∑
i,j w(i, j)d(i, j), where d(i, j) is the edit distance between the two

sequences i and j; and (2) there is an alignment S′ whose SP(S′, w) is at most the
routing cost of T . Note that

∑
i,j w(i, j)d(i, j) is a lower bound on the weighted SP

score. Therefore, the following lemma follows.

Lemma 1. [23] There is an O(log2 n)-approximation algorithm for the WMSA prob-
lem, where n is the number of sequences to be aligned.
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3 The BMP Problem

In this section, we study the BMP problem. We are to find a placement and an embed-
ding for the given probe set. An O(

√
n log2 n)-approximation algorithm is given for

BMP (Section 3.2), which is based on an approximability result for a variant of BMP,
named P-BMP (Section 3.1). At the end of this section, we also discuss the case when
the array is one-dimensional and we show that BMP admits better results in this case.

3.1 P-BMP: Finding Embedding When Placement Is Given

In this section, we study the P-BMP problem, a variant of BMP with a placement
given in advance. The concern becomes to find an embedding. We show that P-BMP is
O(log2 n)-approximable by giving a reduction to the weighted multiple sequence align-
ment problem (WMSA), for which there is an O(log2 n)-approximation algorithm [23].

Lemma 2. There is a polynomial time reduction from P-BMP to WMSA.

Proof. Let I be an instance of the P-BMP problem with a given placement φ. We con-
struct an instance I ′ for WMSA such that there is a solution for I with border length X
if and only if there is a solution for I ′ with a weighted SP score of X .

Construction of I ′. We first show the construction of I ′. The input sequence for WMSA
is the same as the input probe set P . The weight w(i, j) is defined as follows:

w(i, j) =

{
1 if φ(pj) ∈ N (φ(pi)),
0 otherwise.

The distance function δ(a, b), for a, b ∈ Σ ∪ {−}, is defined as follows:

δ(a, b) =

⎧
⎪⎨

⎪⎩

0 if a = b,

1 if a �= b and (a = “ − ” or b = “ − ”),

∞ otherwise.

Note that the edit distance of pi and pj in WMSA is the same as dist(pi, pj) in BMP.

Solution for I implies solution for I ′. Suppose we have an embedding ε for I . Note
that ε = {ε1 · · · εn} is an alignment for P and the pairwise score of εi and εj equals
confε(pi, pj). So, SP(P ′, w) = 1

2

∑
1≤i,j≤n w(i, j)

∑
1≤y≤|D| δ(εi[y], εj [y]) =

1
2

∑
1≤i,j≤n w(i, j)confε(pi, pj) = 1

2

∑
pi,pj :φ(pj)∈N (φ(pi))

confε(pi, pj) = BL(φ, ε).
The second last equality is due to the definition of w(i, j), which is based on φ.

Solution for I ′ implies solution for I . On the other hand, suppose we have a solution
for I ′, i.e., an alignment P ′ = (p′1 · · · p′n) for P and |p′i| = m′, for some m′. In the align-
ment P ′, each column contains the same character or “ − ” because of the definition of
the distance function δ(a, b). We denote the resulting matrix as ε = (ε1 · · · εn). It can be
seen that ε is an embedding for P and the hamming distance between εi and εj equals the
pair-wise score of p′i and p′j . Then BL(φ, ε) = 1

2

∑
pi,pj :φ(pj)∈N (φ(pi))

confε(pi, pj) =
1
2

∑
pi,pj :φ(pj)∈N (φ(pi))

∑
1≤y≤|D| δ(p

′
i[y], p′j [y]) = 1

2

∑
1≤i,j≤n w(i, j)

∑
1≤y≤|D|

δ(p′i[y], p′j[y]) = SP(P ′, w). Note that the second last equality holds for the same rea-
son as above. Therefore, the lemma follows. 
�
Corollary 1. The P-BMP problem is O(log2 n)-approximable.
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Fig. 3. Row-by-row threading of a TSP (solid edges) on a grid. Solid and dotted edges connect
neighbors in the placement that are and are not, respectively, neighbors on the TSP.

3.2 BMP: Finding Placement and Embedding

In this section, we study the BMP problem in which we are to find both the placement
as well as the embedding. We give an O(

√
n log2 n)-approximation, which makes use

of the approximability result for P-BMP (Section 3.1). To make use of the result for
P-BMP, we need a certain placement, the choice of which is guided by some travel-
ling salesman path (TSP) on a particular graph (to be defined). Note that finding the
minimum TSP is NP-hard, yet there is a polynomial time O(1)-approximation [6].

The algorithm PLACE&EMBED. The approximation algorithm PLACE&EMBED is
shown in Algorithm 1. The graph Gc constructed in the algorithm is a weighted com-
plete graph with vertices representing P and edge weight representing dist() between
the two vertices. A travelling salesman path (TSP) is obtained from Gc, which we
“thread” on the grid G in a row-by-row fashion to form a placement [12]: the TSP
is placed from left to right on the first row, right to left on the second, and then alternate
in the same way in the remaining rows (see Figure 3 for an example). We then employ
the approximation algorithm in Section 3.1. We denote the placement and embedding
computed by PLACE&EMBED as φ̃ and ε̃, respectively.

Algorithm 1. PLACE&EMBED: Approximation algorithm for BMP.
Input: Probe set P = {p1, p2, . . . , pn} to be placed on a

√
n ×

√
n array.

Output: A placement φ̃ and an embedding ε̃ for P .
1: Construct the weighted complete graph Gc.
2: Find an approximate TSP Q̃ for Gc using algorithm in [6].
3: Thread Q̃ in a row-by-row fashion to obtain a placement φ̃.
4: Run the approximation algorithm for P-BMP in Section 3.1 (i.e., by reducing the P-BMP

instance to an WMSA instance) to obtain an embedding ε̃.

Theorem 1. Algorithm PLACE&EMBED is an O(
√

n log2 n)-approximation for BMP.

To analyze the performance of PLACE&EMBED, we need some notations. Recall that
we define for any sequences p, q, dist(p, q) = 2(� − |LCS(p, q)|). We overload the
notation dist() for any subgraph of Gc. For any subgraph H of Gc, we define the LCS
distance of H , denoted by dist(H), to be the sum of LCS distances of neighboring
probes in H , i.e., dist(H) = 1

2

∑
p, q : q ∈ N (p) in H dist(p, q).

As mentioned before in Section 2, dist(p, q) is the minimum conflict between probes
p and q. Yet the embeddings needed to achieve dist(p, q) may not be compatible with
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each other in a particular placement. For example, consider the placement φ in Fig-
ure 1, dist(φ) = 8 since dist(p, q) = 2 for every neighboring pair p, q. Yet the min-
imum border length is 10 with CTAC as the deposition sequence, and embeddings
(− − AC, −TA−, CT − −, C − A−). We summarize this as follows.

Observation 1. Given a placement φ, dist(φ) ≤ BL(φ, ε), for any embedding ε.

Observation 1 implies that for the optimal placement φ∗ and embedding ε∗, dist(φ∗) ≤
BL(φ∗, ε∗). To approximate BMP, it suffices to bound the border length by dist(φ∗).
On the other hand, we make an observation about a graph H1 and its subgraph H2. The
observation is true since any neighbors in H2 are also neighbors in H1.

Observation 2. Consider any graph H1 and a subgraph H2 of it. dist(H2) ≤ dist(H1).

Corollary 2. Suppose Q∗ is the optimal TSP for Gc. Then, we have dist(Q∗) ≤
dist(φ∗).

Proof. φ∗ can be viewed as threading a TSP Q in a row-by-row fashion. By Observa-
tion 2, dist(Q) ≤ dist(φ∗). As Q∗ is the optimal TSP, dist(Q∗) ≤ dist(Q) ≤ dist(φ∗).


�

It is known that TSP can be approximated by 3/2 (Lemma 3). So, dist(Q̃) ≤
3 dist(Q∗)/2.

Lemma 3. [6] The travelling salesman problem admits a 3/2-approximation if the
weight satisfies the triangle inequality.

Lemma 4. (i) dist(φ̃) ≤ 2
√

n dist(Q̃); and (ii) BL(φ̃, ε̃) ≤ O(log2 n) dist(φ̃).

Proof (Sketch). (i) Suppose Q̃ = {u1, u2, . . . , un}. Note that the LCS distance dist()
satisfies the triangular inequality, i.e., dist(ui, uj) ≤

∑
i≤k<j dist(uk, uk+1). Neigh-

boring probes on Q̃ are also neighbors in φ̃ but not vice versa. For any two probes ui

and uj which are neighbors in φ̃, we have 1 ≤ |j−i| < 2
√

n. When we sum up dist(φ̃),
dist(uk, uk+1), for any k, may be counted more than once, but no more than 2

√
n times.

Therefore, dist(φ̃) ≤ 2
√

n dist(Q̃).
(ii) In Step 4 of PLACE&EMBED, we reduce the P-BMP instance with φ̃ as the place-

ment to an WMSA instance. Lemma 2 asserts that the border length of the embedding
obtained is the same as the weighted SP score of the alignment. Furthermore, we have
seen in Section 2 that approximation for WMSA can be found by the approximation
for MRCT and the resulting routing tree has a routing cost, and thus, the weighted SP
score, at most O(log2 n) times the total weighted edit distance in WMSA. In the proof
of Lemma 2, we note that the weighted edit distance of two sequences is the same as
dist() of the two sequences. So, BL(φ̃, ε̃) ≤ O(log2 n) dist(φ̃). 
�

Proof (Theorem 1). By Lemmas 4, 3, and Corollary 2, we have BL(φ̃, ε̃)≤O(
√

n log2 n)
dist(Q̃) ≤ O(

√
n log2 n) dist(Q∗) ≤ O(

√
n log2 n) dist(φ∗) . Furthermore, Observa-

tion 1 holds for all placements, and hence for φ∗, in other words, dist(φ∗) ≤ BL(φ∗, ε∗).
Therefore, BL(φ̃, ε̃) ≤ O(

√
n log2 n) BL(φ∗, ε∗). 
�
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Fig. 4. An illustration of EXTEND. Shaded squares refer to characters in LCS(p, q). Characters
in q but not in LCS(p, q) are inserted into S so that the order preserves as in q (see the arrows).

3.3 One Dimensional Array

In this section, we study the special case on an 1D array. Intuitively, the problem is
easier than the 2D case. We show that P-BMP on an 1D array can be solved optimally
in polynomial time while BMP on an 1D array admits an O(1)-approximation.

P-BMP on 1D array. The algorithm EMBED1D shown in Algorithm 2 makes use of
a procedure called EXTEND. EXTEND takes two sequences p and q, and a superse-
quence S of p as input and returns a supersequence of S and q. Let c = |LCS(p, q)|,
x1, x2, . . . , xc be the indices of S corresponding to p that belongs to LCS(p, q), and
y1, y2, . . . , yc be the indices of q that belongs to LCS(p, q). EXTEND then extends S by
inserting characters in q but not in LCS(p, q): characters between q[yk−1] and q[yk] are
inserted right before S[xk] and characters beyond q[yc] are appended to the end of S.
EXTEND keeps track of the indices of the new S that correspond to q (see Figure 4).

Algorithm 2. EMBED1D: Optimal embedding for P-BMP on 1D array.
Input: Probe set P = {p1, p2, . . . , pn}, placed on a 1D array in that order.
Output: An embedding ε with minimum border length.
1: Set D = p1.
2: For i > 1, call the procedure EXTEND with pi−1, pi and D as the input to obtain a new D.
3: For each pi, set εi such that ε[y] = D[y] if D[y] corresponds to a character in pi kept track

by EXTEND, and ε[y] = “ − ” otherwise.

Theorem 2. EMBED1D finds an optimal embedding for the P-BMP problem on 1D
array in polynomial time.

Proof. We first observe that D constructed in each iteration by EXTEND is a common
supersequence of p1, . . . , pi. This is clear from the way EXTEND finds LCS(pi−1, pi)
and inserts characters into D. It also implies that the number of nucleotides shared by
pi−1 and pi is maintained as |LCS(pi−1, pi)|, which is the maximum possible. Note
that this property does not change by later steps. Hence, the border length of the final
embedding is the minimum. As for time complexity, the bottleneck is finding the longest
common subsequences of two sequences, which is known to take polynomial time [13].
This is done for n−1 times only. Therefore, EMBED1D also takes polynomial time. 
�
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BMP on 1D array. Similar to the case on 2D array, we find a placement by finding an
approximate TSP on the weighted complete graph Gc and then find an embedding by
EMBED1D. This algorithm gives a 3/2-approximation for BMP on 1D array.

Theorem 3. There is a polynomial time algorithm for BMP on 1D array with approxi-
mation ratio 3/2.

4 The Maximum Agreement Problem (AMP)

In this section, we study the counter part of BMP, which we called maximum agree-
ment problem (AMP) (recall definition in Section 2). In contrast to BMP, AMP admits
constant approximations, whether the placement is given in advance or not.

4.1 Approximation for P-AMP

We first study the P-AMP problem, a variant of AMP with a placement already given.

Algorithm AEMBED. The algorithm AEMBED (EMBED for Agreement) makes use of
procedure EXTEND in Section 3.3. The order of probes to be considered is determined
by a certain tree T with the bottom rightmost probe in G being the root. To construct T ,
for each probe p, we assign a parent to the probe, denoted by parent(p). We denote
by r(p) and b(p) the right and bottom neighbors of probe p, respectively. The probes in
the rightmost column and bottommost column has r(p) = NULL and b(p) = NULL,
respectively. We set parent(p) to r(p) or b(p) depending on whether |LCS(p, r(p))| or
|LCS(p, b(p))| is larger. Details of AEMBED is shown in Algorithm 3. The embedding
found is denoted by ε̂. Figure 5 shows an example.

Analysis. To analyze the performance of AEMBED, we first observe that in the final
embedding ε̂, the number of nucleotides shared by a probe and its parent equals to the
length of their LCS (by a similar argument as the proof of Theorem 2). We then bound
the performance of AEMBED as follows.
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Fig. 5. (a) A set of probes placed on a 3 × 3 grid G. The values represent the length of LCS
between the two neighboring probes. An arrow from p to q means parent(p) = q. (b) The tree
constructed by AEMBED with root CTT. (c) How the deposition sequence D changes iteratively.
The sequences are drawn in a way the characters align with the final D.
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Algorithm 3. AEMBED: Approximate algorithm for P-AMP.
Input: Probe set P = {p1, p2, . . . , pn} placed on a

√
n×

√
n array according to a placement φ.

Output: An embedding ε̂ for P .
1: Construct a tree T by assigning parent to each probe p: if |LCS(p, r(p))| ≥ |LCS(p, b(p))|

set parent(p) = r(p) else set parent(p) = b(p).
2: Set D to be the bottom rightmost probe in the grid G.
3: Traverse T in a pre-order fashion: for each probe p traversed, call the procedure EXTEND

with parent(p), p and D as input.
4: For each pi, set ε̂i such that ε̂[y] = D[y] if D[y] corresponds to a character in pi kept track

by EXTEND, and ε̂[y] = “ − ” otherwise.

Theorem 4. AEMBED is a polynomial-time 2-approximation algorithm for P-AMP.

Proof. For the given placement φ and the optimal embedding ε∗, the optimal agreement
is: A(φ, ε∗) =

∑
p∈P(shareε∗(p, r(p))+ shareε∗(p, b(p))). We assume shareε∗(p, q) =

0 if q = NULL. As mentioned in Section 2, for any embedding, the share between the
embeddings of probes p, q is at most 2|LCS(p, q)|. Thus, 2|LCS(p, r(p))| ≥ shareε∗(p,
r(p)) and 2|LCS(p, b(p))| ≥ shareε∗(p, b(p)). Note that shareε̂(p, parent(p)) =
2 max{ |LCS(p, r(p))|, |LCS(p, b(p))|} ≥ 1

2 (shareε∗(p, r(p)) + shareε∗(p, b(p))).
Therefore, A(φ, ε̂) =

∑
p∈P shareε̂(p, parent(p)) ≥ 1

2A(φ, ε∗). Finally, AEMBED

runs in polynomial time as the bottleneck is finding LCS between two sequences. 
�

4.2 Approximation for AMP

In this section, we study the general AMP problem to find both the placement and the
embedding to maximize the agreement. We prove that the algorithm APLACE&EMBED

as shown in Algorithm 4 has an asymptotic approximation ratio of 4.

Algorithm 4. APLACE&EMBED: Approximation algorithm for AMP.
Input: Probe set P = {p1, p2, . . . , pn} to be placed on a

√
n ×

√
n array.

Output: A placement φ̌ and an embedding ε̌ for P .
1: Partition P into four disjoint groups A, C, G and T : a probe belongs to A if the number of A

in the probe is the maximum over the number of other characters (similarly for C, G and T ).
2: Thread the probes in group A on the array in a row-by-row fashion, followed by threading of

probes in C, G, and T to form the placement φ̌.
3: For probes in A, align them such that the maximum number of A are aligned while different

characters are not aligned. This forms a partial embedding ε̌a with deposition sequence Da.
Similarly, find ε̌c, ε̌g, ε̌t and Dc, Dg , Dt.

4: Combine Da, Dc, Dg , and Dt to form D (append one after the other).
5: Extend the embeddings ε̌a, ε̌c, ε̌g , ε̌t according to D by inserting “ − ” in the columns

corresponding to other groups. The union of the extended embeddings is the resulting em-
bedding ε̌.
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Theorem 5. The asymptotic approximation ratio of APLACE&EMBED is 4.

Proof. Consider the optimal placement φ∗ and embedding ε∗. For every pair of neigh-
boring probes p, q, shareε(p, q) ≤ 2�. There are a total of 2(n −

√
n) pairs of neigh-

bors on the grid in total. So, the optimal agreement A(φ∗, ε∗) ≤ 4�(n −
√

n). On the
other hand, consider φ̌ and ε̌ returned by APLACE&EMBED. According to the way we
partition the probes into group, for any two probes p, q in a group, the number of nu-
cleotides that can be shared is at least �/4. Hence, shareε̌(p, q) ≥ 2(�/4) = �/2. As
we seen above, there are altogether 2(n −

√
n) pairs of neighbors in the grid. We may

not share any nucleotide when the pair belongs to different groups. According to the
way we thread the groups, there are at most 3

√
n + 3 such pairs (

√
n pairs of vertical

neighbors between consecutive groups and 3 pairs of neighbors that are the last one in
a group and the first one in the next group). As a result, we have at least 2n − 5

√
n − 3

pairs each with shareε̌() at least �/2. Therefore, A(φ̌, ε̌) ≥ �(n − 2.5
√

n − 1.5). Then
A(φ̌, ε̌)/A(φ∗, ε∗) tends to 4 as A(φ∗, ε∗) tends to infinity. So, the asymptotic approx-
imation ratio of APLACE&EMBED is 4. 
�

5 Concluding Remarks

To summarize, we study the border minimization problem which is believed to be NP-
hard with no known NP-hardness proof. An open question is to derive an NP-hardness
proof. Another interesting open question is to improve the approximation ratio and/or
derive inapproximability result. As mentioned before, there is an exponential time algo-
rithm to compute the optimal BMP solution. Improving the exponential time algorithm
could be useful in practice and is of theoretical interest.
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Abstract. For many TxtEX-learnable computable families of recursively
enumerable sets, all their computable numberings are equivalent with re-
spect to the reduction via the functions recursive in the halting problem.
We show that this holds for every TxtEX-learnable computable family of
recursively enumerable sets, but, in general, the converse is not true.

Keywords: computable family of sets, TxtEX learning, equivalent
numberings.

1 Introduction

It is well-known (see [1]) that computable classes of finite sets, finite classes of
recursively enumerable sets, and some classes of the graphs of recursive functions
are TxtEX-learnable. On the other hand, the computable numberings of any of
these classes are pairwise equivalent with respect to the reduction by 0′-recursive
functions. It might be that these observations led Frank Stephan to propose the
following conjecture to one of the authors of this paper:

For every computable family A of r.e. sets, the following are equivalent.

(i) A is TxtEX-learnable.
(ii) All computable numberings of A are 0′-equivalent.

Our aim is to show that one of the directions of this statement is true (namely
the (easy) direction (i) ⇒ (ii)) while the converse fails.

We follow the monograph [4] of Yu.L. Ershov in Russian and the survey papers
[2], [3] for the terminology and notations accepted in the theory of numberings.
A mapping α : N −→ L of the set N of natural numbers onto a family L of
recursively enumerable (r.e. for short) sets is called a computable numbering of
L if the set {〈x, n〉 : x ∈ α(n)} is r.e., and a family L of subsets of N is called
computable if it has a computable numbering. In other words, a computable
family L is a uniformly r.e. class of sets, and every computable numbering
α of L defines a uniform r.e. sequence α(0), α(1), . . . of the members of L. A

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 423–432, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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numbering α is called reducible (0′-reducible) to a numbering β if α = β ◦ f for
some recursive (recursive relative to the halting problem) function f . Numberings
α, β are called equivalent (0′-equivalent) if they are reducible (0′-reducible) to
each other.

A language in this paper is just an r.e. set. The class of all r.e. subsets of N is
denoted by E , and W0, W1, . . . stands for the standard computable numbering of
the family E . A text for a set L is a function t : N −→ N such that range(t) = L.

Definition 1. A learner is a partial function M : N
∗ −→ N.

Notice that a learner is not required to be recursive. We call a learner M com-
putable if the function M is partial recursive.

Definition 2. A learner M learns or identifies a language L if for every text t
for L,

1. limn M(t � n) exists (we say in this case that M converges on the text t);
2. L = Wlimn M(t�n).

If L is a family of languages, we say that M learns or identifies L if M identifies
every language L ∈ L. L is TxtEX-learnable if it is identified by some computable
learner.

TxtEX denotes the class of all TxtEX-learnable families, [5].

Remark 1. If a computable family L of languages is TxtEX-learnable then it is
identifiable by some primitive recursive learner.

2 Computable Numberings of TxtEX-Learnable Families

In this section we will show that any two computable numberings of a computable
TxtEX-learnable family of languages are 0′-equivalent. Our proof will use the
following representation of computable numberings by Lachlan (see [6] for the
details).

Let L be a computable family of r.e. sets. We say that an r.e. set A represents
L if L = {Wx : x ∈ A}. Now if A represents L then any recursive function
f enumerating A induces a computable numbering αf of L where αf (x) =
Wf(x). Moreover, if f and g are recursive functions enumerating A then the
corresponding numberings αf and αg of L are equivalent. So, up to equivalence,
any r.e. set A representing L induces a unique computable numbering of L in the
just described way. Conversely, for any computable numbering α of L, there is
an r.e. set A representing L such that the numbering induced by A is equivalent
to α. The latter follows from the following well-known fact of the theory of
numberings: α : N −→ L ⊆ E is a computable numbering iff α is reducible to
the standard numbering W = 〈We : e ≥ 0〉, so A can be chosen as the range of
a function which reduces α to W .

In the following we will refer to the above observations on representations
as Lachlan’s representation theorem. The following lemma gives a criterion for
the numberings induced by two representations of a computable family to be
0′-equivalent.
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Lemma 1. Let A and B be r.e. sets such that

{Wa : a ∈ A} = {Wb : b ∈ B} (1)

and let α and β be the numberings induced by the sets A and B respectively. Then
α is 0′-reducible to β if and only if there exists a recursive function g : N×N → N

such that, for any a ∈ A,

lim
s

g(a, s) ↓ & lim
s

g(a, s) ∈ B & Wa = Wlims g(a,s). (2)

Proof. The proof is a straightforward modification of the proof of Lemma 2.2
from [6].

Theorem 1. Computable numberings of a computable TxtEX-learnable family
of languages are pairwise 0′-equivalent.

Proof. Let C be a computable TxtEX-learnable family, let M be a computable
learner of C, and let A and B be any r.e. sets such that

C = {Wa : a ∈ A} = {Wb : b ∈ B}.

By Lachlan’s representation theorem and by Lemma 1, it suffices to define a
recursive function g satisfying (2).

In order to do so, we will show that there is a recursive function

state : N
3 → {0, 1}

such that, for any numbers a ∈ A and b ∈ B the following hold.

Wa = Wb ⇒ lim
s

state(a, b, s) ↓ & lim
s

state(a, b, s) = 1 (3)

Wa �= Wb ⇒ lim
s

state(a, b, s) ↓ & lim
s

state(a, b, s) = 0 (4)

Then the function g defined by letting g(a, s) be the least b ∈ Bs such that
state(a, b, s) = 1 (if there is such a b and by letting g(a, s) = 0 otherwise) will
have the desired properties. Namely, given a ∈ A, by (1), we may fix b minimal
such that b ∈ B and Wa = Wb. Then, given a stage s0 such that b ∈ Bs0 , by
(3) and (4), we may fix s1 ≥ s0 such that, for s ≥ s1, state(a, b, s) = 1 and
state(a, b′, s) = 0 for all b′ < b. So, for any stage s ≥ s1, g(a, s) = b.

The function state(a, b, s) is defined by induction on s. Simultaneously with
state(a, b, s) we define a finite string σ(a, b, s) over N and we let content(σ(a, b, s))
be the set of numbers occuring in σ(a, b, s).

For s = 0 we let σ(a, b, 0) = λ and state(a, b, 0) = 1. For the definition of
σ(a, b, s + 1) and state(a, b, s + 1) we distinguish the following cases.

Case 1 : content(σ(a, b, s)) �⊆ Wa,s ∩ Wb,s.

Then let σ(a, b, s + 1) = σ(a, b, s) and state(a, b, s + 1) = 0.
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Case 2 : content(σ(a, b, s)) ⊆ Wa,s ∩ Wb,s and

M(σ(a, b, s)) = M(σ(a, b, s)Wa,s) = M(σ(a, b, s)Wb,s).

(Here Wa,s is viewed as the string of the elements of Wa,s in the order of enu-
meration (and, similarly, for Wb,s).)

Then let σ(a, b, s + 1) = σ(a, b, s) and state(a, b, s + 1) = 1.

Case 3 : Otherwise, i.e., content(σ(a, b, s)) ⊆ Wa,s ∩ Wb,s and M(σ(a, b, s)) �=
M(σ(a, b, s)Wa,s) or M(σ(a, b, s)) �= M(σ(a, b, s)Wb,s).

Then let σ(a, b, s+1) = σ(a, b, s)Wa,sWb,s if M(σ(a, b, s)) �= M(σ(a, b, s)Wa,s)
and σ(a, b, s + 1) = σ(a, b, s)Wb,sWa,s otherwise. In either case let state(a, b, s+
1) = 0.

This completes the definition of σ and state.
To show that the function state satisfies (3) and (4), fix a ∈ A and b ∈ B.

Note that, by definition,

σ(a, b, s)  σ(a, b, s + 1), (5)

content(σ(a, b, s)) ⊆ Wa,s ∪ Wb,s, (6)

and
σ(a, b, s) � σ(a, b, s + 1) ⇒ content(σ(a, b, s)) ⊆ Wa,s ∩ Wb,s. (7)

Next we will show that there are only finitely many stages s such that Case
3 applies in the definition of σ(a, b, s + 1) and state(a, b, s + 1). For a contra-
diction assume that this happens infinitely often. Since, for s < s′ such that
Case 3 applies to s + 1 and s′ + 1, content(σ(a, b, s + 1)) = Wa,s ∪ Wb,s and
content(σ(a, b, s + 1)) ⊆ content(σ(a, b, s′)) ⊆ Wa,s′ ∩ Wb,s′ , it follows that
Wa ∪ Wb ⊆ Wa ∩ Wb whence Wa = Wb. So the infinite sequence lims σ(a, b, s)
is an enumeration (i.e., a text) of both Wa and Wb. Moreover, if Case 3 holds
at stage s + 1 then the extension σ(a, b, s + 1) of σ(a, b, s) is chosen in such a
way that M(σ(a, b, s)) �= M(σ) for some σ with σ(a, b, s) � σ  σ(a, b, s+1). So
on the sequence lims σ(a, b, s) the learner M changes its mind infinitely often,
hence does not learn Wa contrary to assumption.

Now, since Case 3 applies only finitely often and since σ(a, b, s) is only ex-
tended at a stage s + 1 at which Case 3 applies, we may fix s0 such that
σ(a, b, s) = σ(a, b, s0) for all s > s0 and Case 3 does not apply after stage
s0. Distinguish the following two cases.

First assume that content(σ(a, b, s0)) �⊆ Wa ∩ Wb. Then, by (6), Wa �= Wb

and Case 1 applies to all stages s > s0 whence lims state(a, b, s) = 0. So (4)
holds.

Finally assume that content(σ(a, b, s0)) ⊆ Wa ∩ Wb. Then, for s1 > s0

with content(σ(a, b, s0)) ⊆ Wa,s1 ∩ Wb,s1 , Case 2 applies to all stages s > s1

whence lims state(a, b, s) = 1. It remains to show that Wa = Wb in this case.
Now, by definition, M(σ(a, b, s0)) = M(σ(a, b, s0)Wa,s) and M(σ(a, b, s0)) =
M(σ(a, b, s0)Wb,s), so given the enumeration of Wa obtained by the initial seg-
ments σ(a, b, s0)Wa,s (s ≥ s1), the learner M does not make any changes in his
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prediction after stage s1. Since M learns Wa this implies that M(σ(a, b, s0)) is
an index of Wa. By a similar argument, M(σ(a, b, s0)) is an index of Wb too,
whence Wa = Wb.

This completes the proof.

3 A Counterexample

Now we will give a counterexample to the converse part of the conjecture of
Frank Stephan. Indeed, we will prove the following stronger statement.

Theorem 2. There exists a computable family L /∈ TxtEX whose computable
numberings are pairwise equivalent.

Proof. We will only sketch the proof by discussing the strategies for meeting the
requirements, the conflicts among these strategies and how these conflicts are
resolved.

We will construct a computable numbering α such that for the family L =
{α(x) : x ∈ N} of r.e. sets the following hold.

(a) All computable numberings of L are equivalent to α.
(b) L is not TxtEX-learnable.

Indeed, we will build a positive numbering α, i.e., a numbering α such that
the relation α(x) = α(y) is r.e. in x and y. Any positive numbering is minimal
under reduction, [4], and, therefore, in order to ensure (a) it suffices to reduce all
computable numberings of L to that numbering α. Moreover, in order to ensure
(b), by Remark 1 it suffices to guarantee that no primitive recursive learner
identifies L.

Requirements. Let M0, M1, . . . be a computable sequence of all primitive
recursive learners, and let γ0, γ1, . . . be a uniformly computable sequence of all
possible computable numberings of computable families of r.e. sets. We fix any
uniform approximation γs

k(x) for this sequence. Then the numbering α has to
meet the following requirements for all k, e ∈ N:

P : α is a computable positive numbering.

Rk : If γk is a numbering of L then γk is reducible to α.

Me : There exists an α-index m such that Me fails to learn the set α(m).

We will refer to Rk as the kth reduction requirement and to Me as the eth
nonlearning requirement. The priority ordering among the requirements Rk and
Me is defined as usual by giving requirements with smaller index higher priority
and by giving Rn higher priority than Mn.

We identify each α-index n with a triple of numbers, n = 〈e, i, j〉, where the
individual components of n have the following meaning:
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– e means that the language α(n) might be used for diagonalizing against the
learner Me, i.e., for meeting the nonlearning requirement Me,

– i denotes the attempt number for trying to diagonalize against Me (due to
our strategy for meeting the higher priority reduction requirements, a single
attempt might not suffice),

– j means that α(n) is the jth candidate in the ith attempt for diagonalizing
against Me.

We denote the components e, i, j of a triple n = 〈e, i, j〉 by π1(n), π2(n), and
π3(n) respectively. Moreover, we refer to the sets α(n) with π1(n) = e and
π2(n) = i as the sets in section (e, i). (So sets in section (e, i) are reserved for
the ith attempt for meeting Me.)

Strategies. For meeting the requirements P and Rk we have to take some
precautions in the enumerations αs(n) of the sets α(n).

Strategy for meeting P. In order to make α positive we ensure, for all stages
s and numbers m and n,

αs(m) = αs(n) ⇒ ∀ t ≥ s (αt(m) = αt(n)) (8)

and
α(m) = α(n) ⇒ ∃t (αt(m) = αt(n)). (9)

So, in particular, α(m) = α(n) if and only if αs(m) = αs(n) for some stage s.
Obviously, this implies that {(m, n) : α(m) = α(n)} is r.e.

Strategy for meeting Rk. Let b(n) = 2n and let a(n) = 2n + 1. Initially, we
let

α0(n) = {b(n)} (10)

and call b(n) the base element of α(n). So, for n �= m, α0(n) �= α0(m) and α0(n)
can be positively distinguished from α0(m) by its base element. Numbers a(n)
may be enumerated into some sets α(m) later, where a(s) will not enter any set
α(m) before stage s.

Sets in different sections will be distinguishable by their base elements, i.e.,
the base element of a set α(n) will never be put into any set α(m) in a different
section. For sets α(m) and α(n) in the same section (e, i), however, our strategy
for meeting the nonlearning requirements may force us to enumerate the base
element of α(n) into α(m). If this happens, the role of the base element of α(n)
will be played by some new number a(s) put into α(n) before b(n) enters α(m) -
unless we make α(n) and α(m) agree.

To be more precise, the enumeration of the sets in a given section (e, i)
will obey the following rules. At any stage s there will be a distinguished set,
α(〈e, i, je,i(s)〉), called the active set, where je,i(0) = 1 and je,i(s + 1) ≥ je,i(s)
is defined at stage s + 1. Then, at any stage s ≥ 1,

– the sets α(〈e, i, j〉) for j < je,i(s) have been previously merged with the
primary set of the section, α(〈e, i, 0〉), i.e., αs(〈e, i, j〉) = αs(〈e, i, 0〉) for
j < je,i(s);
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– αs(〈e, i, je,i(s)〉) and αs(〈e, i, 0〉) can be positively distinguished from each
other, namely the base element b(〈e, i, je,i(s)〉) of α(〈e, i, je,i(s)〉) is not in
αs(〈e, i, 0〉) and some element of αs−1(〈e, i, 0〉), denoted by b̂(〈e, i, 0〉, s − 1)
below, is not in αs(〈e, i, je,i(s)〉); and

– the sets α(〈e, i, j〉) for j > je,i(s) are still in their initial states and can
be positively distinguished from all other sets by their base elements, i.e.,
αs(〈e, i, j〉) = {b(〈e, i, j〉)} and b(〈e, i, j〉) �∈ αs(m) for all m �= 〈e, i, j〉.

This will be achieved by initially letting je,i(0) = 1 and b̂(〈e, i, 0〉, 0) =
b(〈e, i, 0〉), and by allowing only the following procedures to be applied to the
sets of section (e, i) at a stage s + 1 > 0.

– COPY(e, i, s + 1).

αs+1(〈e, i, je,i(s)〉) = αs(〈e, i, je,i(s)〉) ∪ [αs(〈e, i, 0〉) \ {b̂(〈e, i, 0〉, s)}].

– MERGE(e, i, s + 1). For all j ≤ je,i(s) let

αs+1(〈e, i, j〉) = αs(〈e, i, 0〉) ∪ αs(〈e, i, je,i(s)〉) ∪ {a(s + 1)}

and set b̂(〈e, i, 0〉, s + 1) = a(s + 1) and je,i(s + 1) = je,i(s) + 1.

where these procedures are applied alternatingly starting with COPY and where
at most one of the procedures is applied at any stage s + 1 > 0. (If not stated
otherwise, a parameter will maintain its value at stage s + 1.)

Note that the above will ensure that (8) and (9) are satisfied whence α is
positive.

Now, in order to show how the above will help us to meet the reduction
requirements, fix k. Assuming that γk is a numbering of L we have to give a
reduction function gk from γk to α. Given x, we will define gk(x) as follows.

1. Wait for a stage s1 > x and a number n such that b(n) ∈ γs1
k (x), say

n = 〈e, i, j〉. Distinguish the following two cases.
2. If j ≥ je,i(s1) then let gk(x) = n.
3. If j < je,i(s1) then wait for the least stage s2 ≥ s1 such that γs2

k (x) =
αs2(〈e, i, 0〉) or je,i(s1) < je,i(s2) or γs2

k (x) = αs2(〈e, i, je,i(s1)〉). In the for-
mer two cases let gk(x) = 〈e, i, 0〉, in the latter case let gk(x) = 〈e, i, je,i(s1)〉.

Note that if we wait for a stage s1 and n as above forever then γk(x) �∈ L,
hence γk is not a numbering of L. Similarly, if there is no stage s2 ≥ s1 such
that je,i(s1) < je,i(s2) then only finitely many operations are applied to section
(e, i). So there will be s′ ≥ s1 at which all sets in the section have reached their
final (finite) state, and γk(x) will disagree from all of these sets. So, again, γk

is not a numbering of L. So we may conclude, that gk is total. (In the actual
construction we will define gk(x) according to the above procedure only if, for
s1 and n as above, π1(n) ≥ k. If π1(n) < k then the value of gk(x) will be
specified depending on the outcomes of the strategies for meeting the nonlearning
requirements M0, . . . , Mk−1.)
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It remains to argue that γk(x) = α(gk(x)). Note that if we let gk(x) = n,
n = 〈e, i, j〉, at stage s then

b(n) ∈ γs
k(x) & ∀ m �= n (b(n) �∈ αs(m))

(namely in case of 2. and in the third case of 3.) or

j = 0 & [ (b(n) ∈ γs
k(x) ∩ αs(〈e, i, 0〉) & b(n) �∈ αs(〈e, i, je,i(s)〉)) or

γs
k(x) = αs(〈e, i, 0〉) ].

Now, in the former case, if α(n) is not merged with α(〈e, i, 0〉), then b(n) will
positively distinguish α(n) from all sets α(m) with m �= n in the limit. So it
suffices to show that if the first case applies and α(n) is merged with α(〈e, i, 0〉)
or if the second case applies then γk(x) = α(〈e, i, 0〉). Here a problem may arise
by a COPY operation applied at a stage t > s. Then the current approximation
γt

k(x) of γk(x) may be a subset of both, αt(〈e, i, 0〉) and αt(〈e, i, je,i(t − 1)〉),
and in the limit the latter two sets may disagree. (So it could turn out that
γk(x) = α(〈e, i, je,i(t − 1)〉) �= α(〈e, i, 0〉).) We can prevent this from happening
by requiring that any COPY operation has to wait for k-confirmation.

Here we say that stage s + 1 is k-confirmed (w.r.t. section (e, i)) if, for any x
and j such that gs

k(x) = 〈e, i, j〉 for some j < je,i(s), αs(〈e, i, 0〉) ⊆ γs
k(x).

Note that if s + 1 is k-confirmed then (for x and j as above), in partic-
ular, b̂(〈e, i, 0〉, s) ∈ γs

k(x), so if COPY is applied at stage s, still γs
k(x) �⊆

αs+1(〈e, i, je,i(s)〉). Hence if we limit the COPY operation to k-confirmed stages
then the reduction gk will be correct.

But what effect does this limitation may have on the Me strategies? For a
single k such that γk is a numbering of L there will be infinitely many k-confirmed
stages (provided that we sufficiently slow down the enumeration of gk), so that
waiting for confirmation will not interfere with the intended action on section
(e, i). For k such that γk is not a numbering of L, however, we may wait for a
k-confirmation forever.

So any attack on the nonlearning requirement Me will be provided with a
guess at which of the higher priority reduction requirements have a correct
hypothesis. An attack based on guess (i0, . . . , ie) ∈ {0, 1}e+1 will wait for k-
confirmation for those k ≤ e such that ik = 1. If the guess is correct, waiting
for confirmation will not interfere with the nonlearning startegy. On the other
hand, if in the course of the construction it seems that an attack erroneously
ignores some k, then the attack is abandoned and the sets in the section (e, i)
used by the attack are all identified (by letting α(〈e, i, j〉) = {b(〈e, i, j′〉) : j′ ≥
0}∪{a(n) : n ≥ 0}). So the reduction gk will be trivially correct on section (e, i).

Strategy for meeting Me. Given a section (e, i), in the ith attempt for meeting
Me we build a (finite or infinite) sequence of strings over N, namely

σ0
e,i � σ1

e,i � · · · � σj∗

e,i

(j∗ ≥ 0) or
σ0

e,i � σ1
e,i � σ2

e,i � . . .
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such that -if the ith attempt is the successful one- either

content(σj∗

e,i) ⊆ α(〈e, i, 0〉) ∩ α(〈e, i, j∗ + 1〉) &
Me fails to learn α(〈e, i, 0〉) or α(〈e, i, j∗ + 1〉) (11)

or ⋃
j∈N

content(σj
e,i) = α(〈e, i, 0〉) &

Me fails to learn α(〈e, i, 0〉) from the text σe,i = limj→∞ σj
e,i.

(12)

This is achieved by induction on j ≥ 1, where string σj
e,i is defined in the j-

cycle given below (σ0
e,i is the empty string). Cycle j will affect only α(〈e, i, 0〉) and

α(〈e, i, j〉). If cycle j is started at stage sj then αsj (〈e, i, 0〉) = content(σj−1
e,i ) ∪

{b̂(〈e, i, 0〉, sj)}, j is active at stage sj , i.e., j = je,i(sj), and αsj−1(〈e, i, j〉) is
still in its initial state.

Cycle j (j ≥ 1).

1. Wait for the least stage s′j > sj which is k-confirmed for k ≤ e such that
ik = 1 where (i0, . . . , ie) is the guess underlying the attack.
Perform COPY(e, i, s′j).

2. Wait for the least stage s′′j > s′j such that

Me(σ
j−1
e,i b̂(〈e, i, 0〉, sj)s′′

j −s′
j ) �= Me(σ

j−1
e,i ) (13)

or
Me(σ

j−1
e,i b(〈e, i, j〉)s′′

j −s′
j ) �= Me(σ

j−1
e,i ). (14)

Then MERGE(e, i, s′′j ), let

σj
e,i =

{
σj−1

e,i b̂(〈e, i, 0〉, sj)s′′
j −s′

j b(〈e, i, j〉) if (13) holds
σj−1

e,i b(〈e, i, j〉)s′′
j −s′

j b̂(〈e, i, 0〉, sj) otherwise,

and start cycle j + 1.

The success of this strategy (if based on the correct guess, hence not stuck
in step 1 of any cycle) is shown as follows. If the strategy gets stuck in step 2
of cycle j then, for j∗ = j − 1, (11) holds. Namely, the learner Me will make
the same prediction for the text σj−1

e,i b̂(〈e, i, 0〉, sj)ω of α(〈e, i, 0〉) = αsj (〈e, i, 0〉)
and for the text σj−1

e,i b(〈e, i, j〉)ω of α(〈e, i, j〉) = αsj (〈e, i, je,i(sj)〉) though these
sets differ. If all cycles are completed then (12) holds since Me makes infinitely
many changes on the text σe,i = limj→∞ σj

e,i for α(〈e, i, 0〉).
This completes our discussion of the strategies and the basic ideas underlying

the proof.
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Abstract. The individual haplotyping problem Minimum Letter Flip
(MLF) is a computational problem that, given a set of aligned DNA
sequence fragment data of an individual, induces the corresponding hap-
lotypes by flipping minimum SNPs. There has been no practical exact
algorithm to solve the problem. In DNA sequencing experiments, due to
technical limits, the maximum length of a fragment sequenced directly is
about 1kb. In consequence, with a genome-average SNP density of 1.84
SNPs per 1 kb of DNA sequence, the maximum number k1 of SNP sites
that a fragment covers is usually small. Moreover, in order to save time
and money, the maximum number k2 of fragments that cover a SNP site
is usually no more than 19. Based on the properties of fragment data,
the current paper introduces a new parameterized algorithm of running
time O(nk22

k2 +mlogm+mk1), where m is the number of fragments, n
is the number of SNP sites. The algorithm solves the MLF problem effi-
ciently even if m and n are large, and is more practical in real biological
applications.
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1 Introduction

A single nucleotide polymorphism (SNP) is a single base mutation of a DNA
sequence that occurs in at least 1% of the population. SNPs are the predominant
form of human genetic variation, and more than 3 million SNPs are distributed
throughout the human genome [1, 2]. Detection of SNPs is used in identifying
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biomedically important genes for the diagnosis and therapy of human hereditary
diseases, in identification of individual and descendant, and in the analysis of
genetic relations of populations.

In humans and other diploid organisms, chromosomes are paired up. A hap-
lotype describes the SNP sequence of a chromosome. In Fig. 1, the haplotypes
of the individual are “ATACG” and “GCATG”.

G . . C . . A . . T . . G . 

A . . T . . A . . C . . G . 

Fig. 1. SNPs

Because two chromosomes paired up are not completely
identical, the haplotype contains more information than the
genotype. Haplotyping, i.e. identification of chromosome hap-
lotypes, plays an important role in SNP applications [3].
Stephens et al. [4] identified 3899 SNPs that were present
within 313 genes from 82 unrelated individuals of diverse an-
cestry. Their analysis of the pattern of haplotype variation
strongly supports the recent expansion of human populations. Based on linkage
studies of SNPs and the association analysis between haplotypes and type 2 di-
abetes, Horikawa et al. [5] localized the gene NIDDM1 to the distal long arm of
chromosome 2 and found 3 SNPs in CAPN10 associated with type 2 diabetes.

Haplotyping has been time-consuming and expensive using biological tech-
niques. Therefore, effective computational techniques have been in demand for
solving the haplotyping problem. A number of combinatorial versions of the
haplotyping problem have been proposed. In the current paper, we will be con-
centrated on an important version Minimum Letter Flips (MLF) [6, 7] that
comes from the individual haplotyping problem [8]: Given a set of aligned SNP
sequence fragment data from the two copies of a chromosome, find a minimum
number of SNPs to correct so that there exist two haplotypes compatible with
the corrected fragments. The MLF problem is also called the Minimun Error
Correction (MEC) problem [9, 10]. The problem is NP-hard [9] and there has
been no practical exact algorithm to solve the problem [6, 10, 11].

By carefully studying related properties of fragment data, we have found the
following fact. In all sequencing centers, due to technical limits, the sequencing
instruments such as ABI 3730 and MageBACE can only sequence DNA frag-
ments whose maximum length is about 1000 nucleotide bases. In consequence,
with a genome-average SNP density of 1.84 SNPs per 1 kb of DNA sequence [12],
the maximum number k1 of SNP sites that a fragment covers is small. Moreover,
in order to save time and money, the maximum number k2 of fragments that
cover a SNP site is usually no more than 19 [1, 13, 14].

Based on the observation above, the current paper proposes a new algorithm
of time O(nk22k2 + mlogm + mk1), where m is the number of fragments and n
is the number of SNP sites. The algorithm solves the problem efficiently even if
m and n are large, and is more practical in real biological applications.

2 The Individual Haplotyping MLF Problem

For a pair of chromosomes, a SNP site where both haplotypes have the same
nucleotide is called a homozygous site, and a SNP site where both haplotypes
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(a) Error-free (b) M3,3 is an error read

Fig. 2. SNP Matrices

have different nucleotides is called a heterozygous site. To reduce the complexity,
a haplotype can be represented as a string over a two-letter alphabet {A, B}
rather than the four-letter alphabet {A, C, G, T} , where ‘A’ denotes the major
allele and ‘B’ denotes the minor. In Fig. 1, the haplotypes can be represented
by “ABABB” and “BAAAB”.

Only considering SNPs, the aligned DNA sequence fragment data of an indi-
vidual can be represented as an m×n SNP matrix M over the alphabet {A,B,-},
in which n columns represent a sequence of SNPs according to the order of sites
in a chromosome and m rows represent m fragments. Fig. 2 shows two 5×4 SNP
matrices. In the matrix M , the ith row’s value at the jth column is denoted by
Mi,j , which equals the ith fragment’s value at the jth SNP site. If the value of
the ith fragment at the jth SNP site misses (i.e. there is a hole in the fragment)
or the ith fragment doesn’t cover the jth SNP site, then Mi,j takes the value
“−” (the value “−” will be called the empty value).

The following are some definitions related to the SNP matrix M .
We say that the ith row covers the jth column if there are two indices k and

r such that k ≤ j ≤ r, and both Mi,k and Mi,r are not empty. For example, in
Fig. 2(a), row 2 covers columns 1, 2 and 3.

The set of (ordered) rows covering the jth column is denoted by rowset(j).
The first and the last column that the ith row covers are denoted by left(i) and
right(i) respectively.

If Mi,j �= “ − ”, Mk,j �= “ − ” and Mi,j �= Mk,j , then the ith and kth rows of
M are said to conflict at column j. If the ith and kth rows of M do not conflict
at any column then they are compatible.

A SNP matrix M is feasible if its rows can be partitioned into two classes
such that the rows in each class are all compatible.

Obviously, a set of DNA sequence fragment data without error corresponds to a
feasible SNP matrix, with each of the compatible classes in the matrix correspond-
ing to one of a pair of haplotypes. As in Fig. 2(a), it is easy to see fragments 1 and
2 are from a chromosome and fragments 3, 4 and 5 are from another chromosome.
So it is easy to infer that a haplotype is “ABAA” and another is “BABA”.
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However, because of contaminants and read errors during the sequencing pro-
cess, the SNP matrix corresponding to the fragment data is in general not feasi-
ble. This fact has resulted in the following combinatorial optimization problem
[6, 9, 10]:

Minimum Letter Flips (MLF): Given a SNP matrix M , flip (or correct)
a minimum number of elements (“A” into “B” and vice versa) so that
the resulting matrix is feasible, i.e. the corrected SNP fragments can
be divided into two disjoint sets of pairwise compatible fragments, with
each set determining a haplotype.

With a SNP matrix M , we will denote MLF(M) a solution to the MLF
problem (i.e. the minimum number of elements have to be flipped to make M
feasible). As for the SNP matrix M in Fig. 2(b), MLF(M)=1 because with no
element flipped, M is not feasible, and once M3,3 is flipped to “B”, M becomes
feasible.

The MLF problem is NP-hard [9]. Wang et al. [10] proposed a branch-and-
bound algorithm whose time complexity is O(2m), which is impractical when
the number of fragments m is large. There has been no more efficient exact
algorithm [6, 10, 11]. Therefore it is of practical importance to introduce more
efficient algorithms.

3 Parameterized MLF Algorithm

Currently the main method to identify SNPs is DNA direct sequencing [15]. The
prevailing method to sequence a DNA fragment is the Sanger’s technology of
DNA sequencing with chain-termination inhibitors [16], which cannot sequence
any DNA fragment longer than 1200 bases due to the technique limits. A recent
research [17] revealed that two copies of the human genome differ from one
another by approximately 0.5% of nucleotide sites, and the number of SNP sites
in a fragment read is very small and no more than 10 according to the available
data in spite of the varying distribution density along a chromosome [3, 18].

In order to save money and time, in DNA sequencing experiments, the frag-
ment coverage is also small. In Celera’s whole-genome shotgun assembly of the
human genome, the fragment average coverage is 5.11 [1], and in the human
genome project of the International Human Genome Sequencing Consortium,
the fragment average coverage is 4.5 [14]. Huson et al. [13] have analyzed the
fragment data of the human genome project of Celera’s, and given a fragment
coverage plot. Although the fragment covering rate is not the same at all sites
along the whole genome, the plot shows that most sites are covered by 5 frag-
ments, and that the maximum of fragments covering a site is no more than 19.
Therefore, for an SNP site, compared with the total number of fragments, the
number of fragments covering the SNP site is very small.

Based on the observations above, we introduce the following parameterized
condition.
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Definition 1. The (k1, k2) parameterized condition: the number of SNP sites
covered by a single fragment is bounded by k1, and each SNP site is covered by
no more than k2 fragments.

Accordingly, in a SNP matrix satisfying the (k1, k2) parameterized condition,
each row covers at most k1 columns and each column is covered by at most k2

rows. For an m × n SNP matrix M , the parameters k1 and k2 can be obtained
by scanning all rows of M . In the worst case, k1 = n and k2 = m. But as to the
fragment data of Celera’s human genome project, k2 is no more than 19 [13].

For a solution to the MLF problem for a SNP matrix M , after flipping the
corresponding elements, all the rows of M can be partitioned into two classes
H0 and H1, such that all pairs of rows in the same class are compatible.

Definition 2. Let R be a subset of (ordered) rows of a SNP matrix M . A
partition function P on R maps each row in R to one of the values {0, 1}.
Suppose that R contains h > 0 rows, then a partition function P on R can be
coded by an h-digit binary number in {0, 1}, where the i-th digit is the P value
of the ith row in R. For completeness, if R = ∅, we also define a unique partition
function P , which is coded by −1.

For briefness, a partition function defined on rowset(j) is called a partition func-
tion at column j. For a SNP matrix M satisfying the (k1, k2) parameterized
condition, there are at most 2k2 different partition functions at column j.

Let R be a set of rows of the matrix M , and P be a partition function on R.
For a subset R′ of R, the partition function P ′ on R′ obtained by restricting P
on the subset R′ is called the projection of P on R′, and P is called an extension
of P ′ on R.

Definition 3. Fix a j. Let P be a partition function on a row set R. Define
VE [P, j] to be any subset S of elements of M that satisfies the following condi-
tions:

(1) For each element Mr,k in S: 1 ≤ k ≤ j.
(2) After flipping the elements of S, there is a partition (H0, H1) of all rows of

M such that any two rows in the same class do not conflict at any column from
1 to j, and for any row i ∈ R, row i is in the class Hq if and only if P (i) = q,
for q ∈ {0, 1}.

Definition 4. Fix a j. Let P be a partition function at column j. Define SE [P, j]
to be any VE [P, j] that minimizes the number of elements in VE [P, j]. And E[P, j]
is defined as the number of elements in SE [P, j].

From Definitions 3 and 4, it is easy to verify that the following equation holds
true:

MLF(M) = min
P : P is a partition function at column n

(E[P, n]) (1)

Let P be a partition function at column j, for k ∈ {0, 1}, NA(P, j, k) denotes
the number of the rows whose P value is k, and whose value at column j is
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CompFlips(j, P, F ) // F denotes F (P, j)
// As[k] denotes NA(P, j, k), Bs[k] denotes NB(P, j, k), k = 0, 1

1. As[0] = Bs[0] = As[1] = Bs[1] = 0; k = 0; Ptmp = P ; F = ∅;
2. for i=the first row .. the last row of rowset(j) do
2.1. k =the least significant bit of Ptmp ; //k = P (i)
2.2. Ptmp right shift 1 bit;
2.3. if Mi,j =‘A’ then As[k] = As[k] + 1;
2.4. if Mi,j =‘B’ then Bs[k] = Bs[k] + 1;
3. for k = 0..1 do
3.1. if As[k] > Bs[k] then Minor[k] =‘B’;
3.2. else Minor[k] =‘A’;
4. Ptmp = P ;
5. for i = the first row .. the last row of rowset(j) do
5.1. k = the least significant bit of Ptmp ; Ptmp right shift 1 bit;
5.2. if Mi,j = Minor[k] then F = F ∪ Mi,j ;

Fig. 3. Function CompFlips

‘A’, i.e. NA(P, j, k) = | {i | P (i) = k ∧ Mi,j = ‘A’} |; similarly, | {i | P (i) =
k ∧ Mi,j = ‘B’} | is denoted by NB(P, j, k). If NA(P, j, k) > NB(P, j, k), then
Minor(P, j, k) = ‘B’, otherwise Minor(P, j, k) = ‘A’.

Under the condition that the rows covering column j are partitioned by P and
the rows partitioned into the same class don’t conflict at column j, the values
at column j of some rows have to be flipped to avoid confliction. The number
of the elements flipped at column j is minimal if and only if those Mi,j , whose
value equal to Minor(P, j, P (i)), are flipped. We denote the set of the flipped
elements above by F (P, j), i.e. F (P, j) = {Mi,j | Mi,j = Minor(P, j, P (i))}.

The function CompFlips to compute F (P, j) is given in Fig. 3, whose time
complexity is O(k2).

So SE [P, 1] and E[P, 1] can be obtained as follows.

SE [P, 1] = F (P, 1) (2)

E[P, 1] = |F (P, 1)|, i.e. the number of elements in F (P, 1) (3)

In order to present our algorithm, we need to extend the above concepts from
one column to two columns as follows. Let the set of all rows that cover both
columns j1 and j2 be Rc(j1, j2).

Definition 5. Fix a j. Let P ′ be a partition function defined on Rc(j, j + 1).
Define SB[P ′, j] to be any VE [P ′, j] that minimizes the number of elements in
VE [P ′, j]. And B[P ′, j] is defined as the number of elements in SB[P ′, j].
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Given j and a partition function P ′ on Rc(j, j + 1). If E[P, j] and SE [P, j] are
known for every extension P of P ′ on rowset(j), then B[P ′, j] and SB[P ′, j] can
be calculated by the following equations:

B[P ′, j] = min
P : P is an extension of P ′ on rowset(j)

(E[P, j]) (4)

SB [P ′, j] = SE [P, j] | P minimizes E[P, j] (5)

Inversely, for each partition function P on rowset(j), since Rc(j − 1, j) is a
subset of rowset(j), the project P ′ of P on Rc(j−1, j) is unique. Once B[P ′, j−1]
and SB [P ′, j − 1] are known, E[P, j] and SE [P, j] can be calculated according
to the following equations, whose correctness can be proven similarly as Equa-
tion (2) and (3).

SE [P, j] = SB[P ′, j − 1] ∪ F (P, j) (6)

E[P, j] = B[P ′, j − 1]+ | F (P, j) | (7)

Based on the equations above, the solution to the MLF problem for a SNP
matrix M can be obtained as follows: firstly, E[P, 1] and SE [P, 1] can be obtained
according to Equations (2) and (3) for all partition functions P at column 1;
secondly, B[P ′, 1] and SB[P ′, 1] can be obtained by using Equations (4) and
(5) for all partition functions P ′ on Rc(1, 2); thirdly, E[P, 2] and SE [P, 2] can
be obtained by using Equations (6) and (7) for all partition functions P on
rowset(2); and so on, at last E[P, n] and SE [P, n] can be obtained for all partition
functions P at column n. Once E[P, n] and SE [P, n] for all possible P are known,
a solution to the MLF problem for M can be obtained by using Equation (1).
Please see Fig. 4 for the details of our P-MLF algorithm.

Theorem 1. For an m × n SNP matrix M , if M satisfies the (k1, k2) param-
eterized condition, then the P-MLF algorithm solves the MLF problem correctly
in time O(nk22k2 + mlogm + mk1) and space O(mk12k2 + nk2).

Proof. The P-MLF algorithm is based on Eqs. (1)-(7). Eqs. (2)-(7) have been
proven in the above discussion and the correctness of Eq. (1) is obvious. Given
an m×n SNP matrix M satisfying the (k1, k2) parameterized condition, consider
the following storage structure: each row keeps the first and the last column that
the row covers, i.e. its left and right value, and its values at the columns from
its left column to its right column. In such a storage structure, M takes space
O(mk1). It is easy to see that rowset takes space O(nk2), H takes space O(n), E
and B take space O(2k2), and SE and SB take space O(mk12k2). In summary,
the space complexity of the algorithm is O(mk12k2 + nk2).

Now we discuss the time complexity of the P-MLF algorithm. In Step 1,
sorting takes time O(mlogm). All rowsets can be obtained by scanning the rows
only once, which takes time O(mk1). Since M satisfies the (k1, k2) parameterized
condition, there are no more than k2 rows covering a column. Therefore, the
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Algorithm P-MLF
input: an m × n SNP matrix M
output: a solution to the MLF problem for M
1. initiation: sort the rows in M in ascending order such that for any
two rows i1 and i2, if i1 < i2, then left(i1) ≤ left(i2); for each column j,
calculate an ordered set rowset(j) and the number H [j] of the rows that cover
column j;
2. for P = 0..2H[1] − 1 do // P is coded by a binary number
2.1. CompFlips(1, P, SE [P ]); //calculate SE[P, 1] using Eq. (2)
2.2. E[P ] =| SE [P ] |; //calculate E[P, 1] using Eq. (3),
3. j=1;
4. while j < n do //recursion based on Eqs. (4)-(7)

// MAX denotes the maximum integer
4.1. calculate NC , the number of rows that cover both columns j and j +1,
and a vector Bits such that Bits[i]=1 denotes the ith row of rowset(j) covers
column j + 1;
4.2. for P ′ = 0..2NC − 1 do B[P ′]=MAX;
4.3. for P = 0..2H[j] − 1 do
4.3.1. calculate the project P ′ of P on Rc(j, j + 1) using Bits.

//Eqs. (4) and (5)
4.3.2. if B[P ′] > E[P ] then B[P ′] = E[P ]; SB [P ′] = SE[P ];
4.4. j + +; //next column
4.5. for P ′ = 0..2NC − 1 do
4.5.1. for each extensions P of P ′ on rowset(j) do
4.5.1.2. CompFlips(j,P, F );
4.5.1.3. SE[P ] = SB[P ′] ∪ F ; E[P ] = B[P ′]+ | F |; //Eqs. (6) and (7)
//Eq. (1)
5. output the minimum E[P ] and the corresponding SE[P ] (P = 0..2H[n]−1).

Fig. 4. P-MLF Algorithm

function CompFlips takes time O(k2), and for each column j, H [j] ≤ k2. In
consequence, Step 2 takes time O(k22k2). In Step 4.1, scanning rowset(j) and
rowset(j+1) simultaneously can obtain NC and Bits, and takes time O(k2). Step
4.2 takes time O(2k2 ), and Step 4.3 takes time O(k22k2). In Step 4.5, for each
P ′, there are 2H[j]−NC extensions of P ′ on rowset(j). Given P ′, an extension of
P ′ can be obtained by a bit-or operation in time O(1). In all, Step 4.5 takes time
O(k22Nc2k2−Nc). Then Step 4 is iterated n − 1 times and takes time O(nk22k2).
Step 5 takes time O(2k2). In summary, the time complexity of the algorithm is
O(nk22k2 + mlogm + mk1). This completes the proof. ��

4 Experimental Results

To the best of our knowledge, real DNA sequence fragment data in the pub-
lic domain are not available, References [15, 19, 20] used computer-generated
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Table 1. Comparison of performances of two algorithms

Parameters Tavg(s) a Tmax(s) a R a

n m e B-MLF P-MLF B-MLF P-MLF B-MLF P-MLF

0.01 0.04 0.002 0.13 0.011 0.985 0.984
16 32 0.03 0.40 0.002 2.34 0.011 0.978 0.980

0.05 5.62 0.002 56.8 0.013 0.971 0.971
0.01 186.9 0.002 738.5 0.018 0.962 0.963

22 44 0.03 200.1 0.003 1503 0.019 0.958 0.958
0.05 532.3 0.003 3214 0.029 0.953 0.952
0.01 - 0.013 >96 hours 0.030 - 0.949

50 100 0.03 - 0.018 >96 hours 0.037 - 0.945
0.05 - 0.025 >96 hours 0.038 - 0.943

a All experiments are repeated 100 times except for B-MLF with n = 50 and m = 100.
Tavg (the average time), Tmax (the maximum running time) and R (the reconstruc-
tion rate) are over the repeated experiments with the same parameters.

simulated data under some realistic assumptions to compare the algorithms on
the haplotypes assembly problem. Accordingly, we generated artificial fragment
data in the same way and using the same parameters as in the above references.

In order to make the generated data have the same statistical features as the
real data, a widely used shotgun assembly simulator Celsim [21] is adopted. At
first a haplotype h1 of length n is generated at random, then another haplo-
type h2 of the same length is generated by flipping every char of h1 with the
probability of d, then Celsim is invoked to generated m fragments whose lengths
are between lMin and lMax. At last the output fragments are processed to
plant reading errors with probability e and empty values with probability p. In
the DNA sequencing experiments, fragment coverage rate c is about 10 [13]. In
our experiments, the parameters are as follows: fragment coverage rate c = 10,
the difference rate between two haplotypes d =10%, the minimal length of frag-
ment lMin = 3, the maximal length of fragment lMax = 7 and empty values
probability p = 2%.

The length of haplotype n, the number of fragment m (m = 2×n×c/(lMax+
lMin)) and the reading error probability e are varied to compare the performance
of Wang et al.’s algorithms B-MLF [10] and our algorithms P-MLF. Please refer
to [20] and [21] for the details about how to generate artificial data.

P-MLF is implemented in C++ and B-MLF comes from Wang [10]. We ran
our experiments on a Linux server (4 Intel Xeon 3.6GHz CPU and 4GByte
RAM). In the experiments, we compare the running time and the reconstruction
rate of haplotypes [10] between both the algorithms. The reconstruction rate
of haplotypes is defined as the ratio of the number of the SNP sites that are
correctly inferred by an algorithm to the total number of the SNP sites of the
haplotypes.

From Table 1, we can see when n and m increase, the running time of B-
MLF increases sharply. When n = 50 and m = 100, B-MLF cannot work out a
solution in 4 days, but the running time of P-MLF is still small and less than 1
second. We also can see when the reading error probability e is small both the
algorithms have good performance in reconstructing the haplotypes.
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(a) Reconstruction rate (b) Running time

Fig. 5. The performance of P-MLF

From Fig. 5, we can also see that P-MLF still has good performance when
the length of the haplotypes increases to 300.

5 Conclusion

Haplotyping plays a more and more important role in some regions of genetics
such as locating of genes, designing of drugs and forensic applications. MLF
is an important computational model to infer the haplotypes of an individual
from one’s aligned SNPs fragment data by flipping the minimum number of
SNPs. MLF has been proven to be NP-hard. To solve the problem, Wang et
al. [10] proposed a branch-and-bound algorithm. Because it is of O(2m) time
complexity, Wang et al.’s alogrithm is impractical when the number of fragments
m is large. Based on the fact that the maximum number of fragments covering
a SNP site is small (usually no more than 19 [13]), the current paper introduced
a new parameterized algorithm P-MLF to solve the MLF problem. With the
fragments of maximum length k1 and the maximum number k2 of fragments
covering a SNP site, the P-MLF algorithm can solve the MLF problem in time
O(nk22k2 +mlogm+mk1) and in space O(mk12k2 +nk2). Compared with other
exact algorithms, the P-MLF algorithm has good scalability and is more efficient
in practice. As for other MLF type computational models such as MEC/GI
( MEC with Genotype Information ) [10], the P-MLF algorithm can also be
applicable with a little change to ensure that the haplotypes reconstructed by
the algorithm make up the input genotype.

Acknowledgement. We thank Dr. Rui-Sheng Wang and Prof. Gene Myers for
their kindly providing us with the source codes of B-MLF and Celsim
respectively.
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Abstract. The NP-hard Bicluster Editing is to add or remove at
most k edges to make a bipartite graph G = (V, E) a vertex-disjoint
union of complete bipartite subgraphs. It has applications in the analysis
of gene expression data. We show that by polynomial-time preprocessing,
one can shrink a problem instance to one with 4k vertices, thus proving
that the problem has a linear kernel, improving a quadratic kernel result.
We further give a search tree algorithm that improves the running time
bound from the trivial O(4k + |E|) to O(3.24k + |E|). Finally, we give
a randomized 4-approximation, improving a known approximation with
factor 11.

1 Introduction

Data clustering is a classical task, where the goal is to partition a data set into
clusters such that elements within a cluster are similar, while between clusters
there is less similarity. This similarity is often modeled as a graph: Each vertex
represents a data point, and two vertices are connected by an edge iff the entities
that they represent have some (context-specific) similarity. If the data were per-
fectly clustered, this would result in a cluster graph, that is, a graph where every
connected component is a clique. However, for real-world data, there is typically
noise in the data. A simple clustering model is then the Cluster Editing prob-
lem [4, 19]: find a minimum set of edges to add or delete to make the graph a
cluster graph.

Cluster Editing is NP-hard [15]; a number of approaches have been recently
suggested to deal with this. After a series of improvements, the best known
polynomial-time approximation is by a factor of 2.5 [2, 21]. Another technique
is that of fixed-parameter (FPT) algorithms [7, 9, 17]. The idea is to accept the
superpolynomial running time that seems to be inherent to NP-hard problems,
but to restrict the combinatorial explosion to a parameter that is expected to be
small. For Cluster Editing, the number of editing operations k is a suitable
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parameter, since for data with not too much noise it should be low. Several
fixed-parameter algorithms for Cluster Editing have been suggested (see also
Hüffner et al. [14] for a survey on FPT techniques in graph-modeled clustering).
The search tree algorithm of Gramm et al. [10] with a running time bound
of O(2.27k + n3) has been experimentally evaluated [6]. A recent manuscript [5]
claims a running time of O(1.83k + n3) by using a different branching strategy
and reports further experimental results.

An important tool of FPT algorithmics is kernelization [7, 9, 17]. A kernel-
ization is a polynomial-time preprocessing that reduces an instance to a size
that depends only on the parameter k, and not on the input size |G| anymore.
Clearly, such a preprocessing is useful for basically any approach to solving the
problem, be it exact, approximative, or heuristic. For Cluster Editing, after
a series of improvements [8, 10, 18], a kernel of only 4k vertices is known [11].

In some settings, the standard clustering model is not satisfactory. An im-
portant example is clustering of gene expression data, where under a number of
conditions the level of expression of a number of genes is measured. This yields
a bipartite similarity graph. Here, clustering only genes or only conditions of-
ten does not yield sufficient insight; we would like to find subsets of genes and
subsets of conditions that together behave in a consistent way. This is called
biclustering [16, 20]. A simple formulation of biclustering analogous to Cluster

Editing is Bicluster Editing. Here, as a consistency condition for a cluster,
we demand that it forms a biclique, that is, a complete bipartite subgraph. With
bipartite graphs, we mean two-colorable graphs. Further, we do not allow any
clusters to overlap.

Bicluster Editing

Instance: A bipartite graph G = (V, E) and an integer k ≥ 0.
Question: Can we delete and add at most k edges in G such that
it becomes a bicluster graph, that is, a graph where every connected
component is a biclique?

Further applications of biclustering arise in collaborative filtering, information
retrieval, and data mining. Despite its importance, there are fewer results for
Bicluster Editing than for Cluster Editing. Amit [3] proved the NP-
hardness and gave a factor-11 approximation based on the relaxation of a linear
program. Using a simple branching strategy, the problem can be solved in O(4k+
m) time [18], where m is the number of edges in the graph. Protti et al. [18]
showed how to construct a problem kernel with 4k2 + 6k vertices.

Contributions. Following the work recently done for Cluster Editing, our aim
is to improve FPT and approximation algorithms also for its sister problem Bi-

cluster Editing. We first improve the size of the problem kernel from 4k2+6k
to 4k vertices (Sect. 2). The methods used are similar to those of Guo [11]. If
the input graph is not already a bipartite graph, we can still get a 6k-vertex ker-
nel by similar means. Next, we show that the trivial O(4k + m) time branching
algorithm can be improved to O(3.24k + m) time by a more refined branch-
ing strategy (Sect. 3). Finally, we give a randomized approximation algorithm
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with an expected approximation factor of 4, using similar techniques as those
introduced for Cluster Editing [1].

Preliminaries. We consider only undirected graphs G = (V, E) with n := |V |
and m := |E|. Since singleton vertices do not play an interesting role in our
problems, we assume that n ∈ O(m). Let P4 denote an induced path comprising
4 vertices. Furthermore, let ijkl denote a P4 in which i and l have degree 1 and j
and k have degree 2. The neighborhood of a vertex v is denoted by N(v), and
the closed neighborhood N(v)∪ {v} is denoted by N [v]. We furthermore extend
this notation to vertex sets, that is, for a vertex set S, N(S) := (

⋃
v∈S N(v))\S.

For a vertex v, N2(v) := N(N(v)) \ {v} denotes the set of vertices that have
distance exactly 2 from v.

Due to lack of space, several proofs are deferred to a full version of this paper.

2 Linear Problem Kernel

In this section, we present a kernelization algorithm for Bicluster Editing

that produces a kernel consisting of at most 4k vertices, improving the kernel
consisting of O(k2) vertices given by Protti et al. [18]. This kernelization follows
the idea of the kernelization algorithm for Cluster Editing in [11] that also
produces a kernel consisting of at most 4k vertices. However, since here we are
dealing with bipartite graphs and bicliques, the concrete handling of the data
reduction rules and the argumentation of the kernel size are different from the
one for Cluster Editing. The first step is to introduce a useful structure.

Definition 1. A set S of vertices is called a critical independent set if all ver-
tices in S have the same open neighborhood and S is maximal under this property.

Observe that every critical independent set is an independent set. The connec-
tion between critical independent sets and Bicluster Editing is given by the
following lemma.

Lemma 1. For any critical independent set I, there is an optimal solution of
Bicluster Editing in which any two vertices v1 and v2 from I end up in the
same biclique.

We apply the following two data reduction rules; the second one works on critical
independent sets.

Rule 1. Remove all connected components that are bicliques from the graph.

Rule 2. Consider a critical independent set R. Let S := N(R) and T := N(S)\
R. If |R| > |T |, then remove arbitrary vertices from R until |R| = |T |.

Rule 1 is clearly correct and can be carried out in O(m) time. A situation in
which Rule 2 can be applied is illustrated in Fig. 1. Next, we prove the correctness
of Rule 2.
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R S T U

Fig. 1. Example for the application of Rule 2

Lemma 2. Rule 2 is correct and works in O(n2) time.

Proof. To prove the correctness of Rule 2, we first claim that, as long as |R| ≥ |T |,
there is always an optimal solution constructing a bicluster graph that contains a
biclique B with R ∪ S ⊆ B ⊆ R ∪ S ∪ T and, thus, deleting or inserting no edge
incident to R. Since the input graph G and the graph resulting by one application
of Rule 2 to G differ only in the size of R, the correctness of Rule 2 follows.

To show the claim, let U := N(T )\S. First, observe that R will not be “split”
(following from Lemma 1), that is, there is always an optimal solution leaving a
biclique B with R ⊆ B. Second, we prove that no vertex outside of R∪S ∪T can
be in B, that is, B ⊆ R∪S∪T . To see this, if a vertex u /∈ R∪S∪T is in B, then
obviously u is from U . However, to add u to B needs at least |R| edge insertions.
Thus, as long as |R| ≥ |T |, adding u to B is never better than putting u in a
biclique different from B, which requires at most |T | edge deletions. Finally, we
show that no vertex from S can be outside of B, that is, R∪S ⊆ B. This is easy
to see, since every vertex u ∈ S has only neighbors in R and T . By |R| ≥ |T |
and B ⊆ R ∪ S ∪ T , including u in B requires at most |T | edge modifications,
namely, deleting all edges between u and N(u) ∩ T and adding edges between u
and T \N(u). In comparison, excluding u from B needs at least |R| edge deletions,
since R ⊆ N(u).

Concerning the running time, one can compute all critical independent sets
in O(m) time [12]. Then, we determine the sets S and T for all independent
sets R, which can be done in O(n2) time. To check the applicability of Rule 2,
one iterates over all critical independent sets and uses the already computed
information about S and T to decide if the precondition of Rule 2 is fulfilled
by R. Note that after one application of Rule 2, one has only to consider the
critical independent sets whose vertices are in S and T and to change the sizes
of their S’s and T ’s. Therefore, each application of Rule 2 can be carried out
in O(n) time. Rule 2 can be applied at most n times, which gives the total
running time O(n2). ��

With these two rules we can now prove a kernel consisting of at most 4k vertices.

Theorem 1. Bicluster Editing on bipartite graphs admits a 4k-vertex prob-
lem kernel.

Proof. Let G denote a bipartite graph on which Rules 1 and 2 have been ex-
haustively applied. Furthermore, let F be a bicluster editing set with |F | ≤ k
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and let G′ be the resulting bicluster graph after applying the edge modifica-
tions in F to G. We partition the vertices in G′ into two sets, X containing
the endpoints of the edges in F , and Y the rest. Clearly, |X | ≤ 2k. It remains
to upper-bound |Y |. Suppose G′ consists of l biclusters, B1, . . . , Bl. It is easy
to see that for every i ∈ {1, . . . , l}, the unaffected vertices from one partition
in Bi must have the same neighborhood in G. Hence, for every i ∈ {1, . . . , l},
the vertices in Bi ∩ Y form at most two critical independent sets in G. Let R be
one critical independent set in Bi, S := NG(R), and T := NG(S) \ R. Due to
Rule 2, |R| ≤ |T |. Due to Rule 1, all vertices of T are in X . Some of them are
in Bi after gaining some edges between them and the vertices in S and the oth-
ers are in other bicliques after losing all edges between them and S. Therefore,
summing up over all critical independent sets in all bicliques, we can conclude
that |Y | ≤ |X |, giving the claimed number of vertices in the kernel. ��

Protti et al. [18] have considered Bicluster Editing on general graphs as well
and presented a problem kernel with O(k2) vertices. With a slight modification
of Rule 2, we can improve this result to a 6k-vertex problem kernel. The main
difference to the kernelization for bipartite graphs lies in the edges between the
vertices of S: If the vertices in S have much more edges between them than the
size of R, it could be better to keep them and to remove some edges between R
and S. To take this into account, we make a partition of the vertices in S as
described below.

Modified Rule 2. Consider a critical independent set R, let S := N(R) and
T := N(S) \ R. Further partition S into two sets, S1 the set of vertices without
neighbors in S and S2 := S \ S1. If |R| > |S2| + |T |, then reduce R until |R| =
|S2| + |T |.

The correctness proof of the modified Rule 2 is almost the same as the one
for Lemma 2, namely, showing that in case |R| ≥ |S2| + |T | there is always an
optimal solution creating a biclique B, such that R ∪ S ⊆ B ⊆ R ∪ S ∪ T .
The only difference concerns the vertices in S2. Since they have neighbors in S2,
including them in B requires not only deleting and adding edges between them
and T but also deleting edges between them and their neighbors in S2. However,
if |R| ≥ |S2|+ |T |, then it is never better to exclude them from B than to include
them in B.

Theorem 2. Bicluster Editing on general graphs admits a 6k-vertex prob-
lem kernel.

3 Fixed-Parameter Algorithm

In this section, we present a search tree algorithm for Bicluster Editing in
bipartite graphs that is based on the forbidden subgraph characterization of
Bicluster Editing and has a running time of O(3.24k + m), improving upon
the trivial search tree algorithm with a running time of O(4k + m) [18].
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Let ijkl be a P4 in G. The trivial search tree algorithm for Bicluster Edit-

ing branches on ijkl in 4 cases: one case corresponds to adding edge {i, l}; the
other three cases correspond to removing one of the three edges of ijkl. The
improvement of the running time of our algorithm is achieved by applying a re-
fined branching strategy on larger subgraphs that contain a P4. In this branching
strategy, we distinguish two main cases. For the first case, we show that an im-
proved branching can be achieved. For the second case, we show that it can be
solved in polynomial time. In the following, we describe this branching strategy.

Clearly, branching is only performed as long as G is not a bicluster graph.
Therefore, we assume that G contains a P4. Furthermore, we deal with each
connected component separately. Therefore, without loss of generality assume
that G is connected. We distinguish two main cases.

Case 1: There is a connected subgraph of size 5 of G that contains a P4 and
has 4 edges. Let G′ be such a subgraph, and let ijkl denote a P4 contained
in G′. Since G′ is connected and contains 5 vertices and 4 edges, it must contain
a vertex u that is connected to exactly one vertex in ijkl. Hence, the resulting
graph is either a P5—in case u is adjacent to i or l—or a so-called fork—in
case u is adjacent to j or k. We describe the branching strategy for P5’s in detail.
Branching on forks works analogously. Both branchings are depicted in Fig. 2.

Let ijklu be the P5 that we branch on. In the first branch, we delete the
edge {k, l}, the parameter is decreased by 1. In the second branch, we delete the
edge {j, k} and the parameter is decreased by 1. Since we have already considered
deleting {k, l} or {j, k}, we can mark these two edges as permanent, that is, we
may not delete these edges in the remaining branches. To destroy jklu, we must
either delete {l, u} or add {j, u}. But after performing either of these two edge
modifications the graph still contains ijkl, and {j, k} and {k, l} are marked as
permanent. Hence, for each of these two branches, we create two subbranches,
one in which {i, l} is added, and one in which {i, j} is deleted. In total, we
have 6 branches, two branches in which the parameter is decreased by 1, and 4
branches in which the parameter is decreased by 2. To estimate the size of the
search tree, we use the concept of branching vectors [17]. The branching vector
of this branching is (1, 1, 2, 2, 2, 2). The branching on a fork works analogously.

Case 2: Otherwise. Since Case 1 did not apply, every connected subgraph of size 5
that contains a P4 has at least 5 edges. We show that in this case, no branching is
needed because G can be turned into a biclique by adding one edge.

Lemma 3. Let G = (V1, V2, E) be a fork-free and P5-free connected bipartite
graph, and let ijkl be a P4 in G. Then, adding edge {i, l} transforms G into a
biclique.

Proof. W.l.o.g. assume that {i, k} ⊆ V1 and {j, l} ⊆ V2. We prove the lemma by
showing that with the exception of {i, l} all edges are present in G.

First, we show that k is adjacent to all vertices in V1, and that j is adjacent to
all vertices in V2. Clearly, if i has a neighbor u, then u is a neighbor of k. Oth-
erwise, G[{i, j, k, l, u}] is a P5, and G is thus not P5-free. Also, every vertex u ∈
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(b) Case 1.2: Branching on a fork.

Fig. 2. Branching on subgraphs of size 5 that contain a P4 and exactly 4 edges. Dashed
lines are deleted edges; bold lines are permanent edges.

N(k) \ {l} is a neighbor of i. Otherwise, G[{i, j, k, l, u}] is a fork, and G thus not
fork-free. Therefore N(i) = N(k) \ {l}. Analogously, we can show that N(l) =
N(j) \ {i}. Furthermore, every vertex v ∈ N2(i) is adjacent to j. Otherwise, sup-
pose that there is a vertex v ∈ N2(i) that is not adjacent to j and let u be the com-
mon neighbor of i and v. Then, the subgraph G[{i, k, l, u, v}] is a fork, because u
is also adjacent to k (since u ∈ N(i) ⊂ N(k)), and u is not adjacent to l (since
u /∈ N(j) ⊃ N(l)). Hence, G is not fork-free in this case. Analogously, we can show
that k is adjacent to all vertices in N2(l). With this it becomes obvious that k is
adjacent to all vertices in V1, and j is adjacent to all vertices in V2.

Now we show that every pair of vertices u ∈ V1 \ {i} and v ∈ V2 \ {l} must be
pairwise adjacent. Suppose, there are two vertices u ∈ V1 \ {i} and v ∈ V2 \ {l}
that are not pairwise adjacent. Since i is adjacent to all vertices in V1 \ {l},
it is adjacent to v. Analogously, one can show that j and l are adjacent to u.
Therefore, G[{i, j, l, v, u}] is a P5 if v and u are not adjacent, contradicting the
fact that G is P5-free.

Since all vertices in V1 \ {i} are adjacent to all vertices V2 \ {l}, it is clear
that adding edge {i, l} transforms G into a biclique. ��

In the following theorem, we bound the running time of the described search
tree algorithm, when it is combined with kernelization.

Theorem 3. Bicluster Editing can be solved in O(3.24k + m) time.
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ApproxBicluster(G = (V1, V2, E))
1 G′ := (∅, ∅, ∅)
2 while V1 ∪ V2 �= ∅:
3 randomly select a pivot vertex i ∈ V1 ∪ V2

4 C := {i} ∪ N(i)
5 for all j ∈ {v �= i | N(v) ∩ N(i) �= ∅} :
6 if N(j) = N(i) : add j to C
7 else : add j to C with probability 1/2
8 transform G[C] into an isolated biclique
9 G′ := G′ ∪ G[C] � add G[C] as new component to G′

10 G := G[V \ C] � remove C from G
11 output set of edge modifications from G to G′

Fig. 3. A randomized factor-4 approximation algorithm for Bicluster Editing

4 Randomized 4-Approximation Algorithm

We present a polynomial time randomized factor-4 approximation algorithm for
Bicluster Editing that is based on a technique introduced by Ailon et al. [1].
This improves the previously best factor-11 approximation algorithm by Amit
[3]. The basic strategy of the algorithm is to randomly pick a pivot vertex v,
and then to randomly destroy all P4’s that contain v. In doing so, we create
an isolated biclique that contains v, since a connected component in which one
vertex does not appear in a P4 is a biclique. This procedure is applied until the
graph is a bicluster graph. In the following, we describe how the P4’s containing
the pivot vertex v are destroyed.

Given a pivot vertex i, we create a vertex set C that initially contains N [i].
In the end this set C contains the vertices that are in the same biclique as i in
the final bicluster graph. First, we add all vertices that are in the same critical
independent set as i.

Then we randomly decide for each vertex w that is adjacent to at least one
vertex of N(i) whether w should be added to C. Since w is adjacent to neighbors
of N(i) but is not in the same critical independent set as i, there must be a P4

that contains i and w. By randomly deciding whether i and w end up in the
same biclique, we randomly decide which edge modification is made to destroy
the P4. After this is done for all such vertices, we output C and cut C from G.

This is done until G has no vertex. The pseudo-code of the algorithm is shown
in Fig. 3. In order to apply the method of Ailon et al. [1], the algorithm must
guarantee that after an edit operation is made on an edge, this edge is never
again modified during the course of the algorithm, and that for a given P4 each
edit operation has the same probability. In our case this probability is 1

4 , which
leads to an approximation factor of 4.

To prove this upper bound on the approximation factor, we first need the
notion of a fractional packing.



Improved Algorithms for Bicluster Editing 453

i j

k l

pivot Pr[Eij ] Pr[Eil] Pr[Ekj ] Pr[Ekl]

i 0 0 1
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1
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2 0 0

l 1
2 0 1

2 0

i ∨ j ∨ k ∨ l 1
4

1
4

1
4

1
4

Fig. 4. The probabilities of edge modifications in ijkl in case one of {i, j, k, l} is chosen
as pivot. The event that there is an edge modification between two vertices i and j is
denoted by Eij .

Definition 2. Let G = (V1, V2, E) be a bipartite graph, P the set of P4’s of G,
and w : P → �

+ a weight function. The function w is called a fractional packing
of P if ∀i ∈ V1, j ∈ V2 :

∑
{p∈P |{i,j}∈p} w(p) ≤ 1.

In the following lemma, we show that given a fractional packing w, the sum of
the weights w(p) of all p ∈ P is a lower bound on the cost of optimal solutions.

Lemma 4. Let G = (V1, V2, E) be a bipartite graph, COpt the cost of an opti-
mal solution of Bicluster Editing of G, and P the set of P4’s. If a weight
function w : P → �

+ is a fractional packing of P , then
∑

p∈P w(p) ≤ COpt.

Using Lemma 4, we can show an upper bound on the approximation factor
of ApproxBicluster, as follows. First, we show that the sum of the proba-
bilities of making edge modifications in all P4’s caused by choosing one of their
vertices as pivot equals the expected cost of the solution that is output by Ap-

proxBicluster. Then, we show that dividing these probabilities by 4 also yields
a fractional packing and thus that the expected cost of the output solution is at
most 4 times the cost of an optimal solution.

Theorem 4. ApproxBicluster is a randomized factor-4 approximation algo-
rithm for Bicluster Editing, running in O(n2) time.

Proof. Obviously, the output of ApproxBicluster is a solution of Bicluster

Editing. We thus prove the theorem by bounding the approximation factor of the
expected cost of the output of ApproxBicluster. Let C be the cost of a solution
that is output by ApproxBicluster, and let COpt be the cost of an optimal so-
lution. We prove the theorem by showing that the expected cost E[C] ≤ 4 · COpt.

Clearly, the algorithm inserts or removes edges only between vertices that
appear in a P4. An edit operation is performed in a P4 ijkl only if i, j, k, and l
are still in the graph and one of them is chosen as pivot. Let Aijkl denote the
event that one vertex in {i, j, k, l} is chosen as pivot when all of them are still in
the graph. Furthermore, let πijkl denote the probability that event Aijkl occurs
during the execution of ApproxBicluster. In case that event Aijkl occurs,
we perform exactly one edge edit operation between the vertices of {i, j, k, l}.
Therefore, the expected cost E[C] of ApproxBicluster is

∑
p∈P πp.



454 J. Guo et al.

We complete the proof by first showing that the weight function w that is
obtained by assigning the weight πijkl

4 to the P4 ijkl is a fractional packing
of the P4’s of G, and then showing that this leads to the claimed expected
approximation factor.

Let p be a P4, and let i ∈ V1, j ∈ V2 be two vertices in p. Let Eij denote the
event that there is an edit operation between i and j.

As Fig. 4 shows, the probability Pr[Eij | Ap] = 1
4 . Therefore,

Pr[Eij ∧ Ap] = Pr[Eij | Ap] · Pr[Ap] =
1
4
πp.

Furthermore, note that after event Eij occurred, at least one of i and j is re-
moved from the graph, and thus no further editing between i and j takes place.
Therefore, for distinct P4’s p and p′, the events Eij ∧Ap and Eij ∧Ap′ are disjoint
and thus

∑

{p∈P |{i,j}∈p}
Pr[Eij ∧ Ap] =

∑

{p∈P |{i,j}∈p}

1
4
πp ≤ 1.

With this, it becomes obvious that assigning the weight 1
4πp to every p ∈ P

results in a fractional packing of the P4’s of G. As shown by Lemma 4, this
means that

∑
p∈P

1
4πp ≤ COpt. Therefore,

E[C] =
∑

p∈P

πp ≤ 4 · COpt,

which proves the upper bound on the approximation factor.
Now we prove the running time of the algorithm. In a preprocessing step,

we compute the critical independent sets of the graph, which can be performed
in O(n+m) time [12]. This is done so that the test in line 6 of the algorithm can be
performed in constant time. Determining which vertices end up in C takes O(m)
time overall, since the test for membership in the same critical independent set
can now be performed in constant time and each edge is visited at most once:
either the edge is cut or it is part of the isolated biclique that is removed from G
and added to G′. Finally, the number of added edges is in O(n2), which results
in the claimed running time bound. ��

Note that the running time of Theorem 4 can be improved to O(m) when the
output is merely a list of the bicliques and the vertices they contain. Otherwise,
a linear running time cannot be achieved, because the output size cannot be
bounded by O(m).

5 Outlook

We have improved kernelization, parameterized algorithm, and approximation
algorithm for Bicluster Editing. It is probably possible to further improve the
bound of the FPT algorithm, albeit only at the cost of a more complicated case
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distinction. Further improvement of the approximation factor and derandomiza-
tion of the result of Theorem 4 should be possible using similar techniques as
for Cluster Editing [1, 21, 22].

Together, the improvements make non-heuristic algorithm implementations
much more feasible. In particular useful seems the kernelization, which for ex-
ample is guaranteed to reduce an instance with 1000 vertices and k = 50 to
only 200 vertices, without losing optimality (note that here the quadratic ker-
nelization [18] does not give any useful bound). It is conceivable that in many
cases the kernelized instance can be solved by the branching algorithm from
Sect. 3 within reasonable time. Further, it would be interesting to see whether
the observed approximation quality of the approximation algorithm from Sect. 4
improves by the preprocessing.

Variants of Bicluster Editing are also of interest, for example considering
weights, allowing the deletion of vertices instead of adding and deleting edges, or
the generation of a prespecified number of bicliques (the corresponding variations
for Cluster Editing have received some attention, see e. g. [11, 13]).
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Abstract. Among the several notions of resource-bounded Kolmogorov
complexity that suggest themselves, the following one due to Levin [Le]
has probably received most attention in the literature. With some appro-
priate universal machine U understood, let the Kolmogorov complexity
of a word w be the minimum of |d|+log t over all pairs of a word d and a
natural number t such that U takes time t to check that d determines w.
One then differentiates between generation complexity and distinction
complexity [A, Sip], where the former asks for a program d such that w
can actually be computed from d, whereas the latter asks for a program d
that distinguishes w from other words in the sense that given d and any
word u, one can effectively check whether u is equal to w.

Allender et al. [A] consider a notion of solvability for nondeterministic
computations that for a given resource-bounded model of computation
amounts to require that for any nondeterministic machine N there is a
deterministic machine that exhibits the same acceptance behavior as N
on all inputs for which the number of accepting paths of N is not too
large. They demonstrate that nondeterminism is solvable for computa-
tions restricted to polynomially exponential time if and only if for any
word the generation complexity is at most polynomial in the distinction
complexity. We extend their work and a related result by Fortnow and
Kummer [FK] as follows. First, nondeterminism is solvable for linearly
exponential time bounds if and only if generation complexity is at most
linear in distinction complexity. Second, nondeterminism is solvable for
polynomial time bounds if and only if the conditional generation com-
plexity of a word w given a word y is at most linear in the conditional
distinction complexity of w given y; hence, in particular, the latter con-
dition implies that P is equal to UP. Finally, in the setting of space
bounds it holds unconditionally that generation complexity is at most
linear in distinction complexity.

In general, the Kolmogorov complexity of a word w is the length |d| of a short-
est program d such that d determines w effectively. In a setting of unbounded
computations, this approach leads canonically to the usual notion of plain Kol-
mogorov complexity and its prefix-free variant. In a setting of resource-bounded
computations though, there are several notions of Kolmogorov complexity that
are in some sense natural – and none of them is considered canonical.
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A straight-forward approach is to cap the execution time and/or used space
by simply not allowing descriptions that take too long or too much space for
producing the word we want to describe. This notion has the disadvantage that
for a fixed resource-bound there is no canonical notion of universal machine.
Another approach, which has received considerable attention in the literature,
was introduced by Levin [Le], where, in contrast to the notion just mentioned,
arbitrarily long computations are allowed, but a large running time increases in
some way the complexity value. More precisely, with some appropriate universal
machine U understood, in Levin’s model the Kolmogorov complexity of a word d
is the minimum of |d|+log t over all pairs of a word d and a natural number t such
that U takes time t to check that w is the word determined by d. As for other
notions of resource-bounded Kolmogorov complexity, here one can differentiate
between generation complexity and distinction complexity [A, Sip], where the
former asks for a program d such that w can actually be computed from d,
whereas the latter asks for a program d that distinguishes w from other words
in the sense that given d and any word u, one can effectively check whether u is
equal to w.

The question of how generation and distinction complexity relate to each other
in the setting of Levin’s notion of resource-bounded Kolmogorov complexity has
been investigated by Allender et al. [A]. They consider a notion of solvability
for nondeterministic computations that — for a given resource-bounded model
of computation — amounts to require that for any nondeterministic machine N
there is a deterministic machine that exhibits the same acceptance behavior
as N on all inputs for which the number of accepting paths of N is not too
large, e.g., is at most logarithmic in the number of all possible paths. Their main
result then asserts that nondeterminism is solvable for computations restricted
to polynomially exponential time if and only if for any word the generation
complexity is at most polynomial in the distinction complexity.

We extend the work of Allender et al. [A] and a related result by Fortnow
and Kummer [FK] as follows. First, nondeterminism is solvable for linearly ex-
ponential time bounds if and only if generation complexity is at most linear in
distinction complexity. Second, nondeterminism is solvable for polynomial time
bounds if and only if the conditional generation complexity of a word w given a
word y is at most linear in the conditional distinction complexity of w given y;
as a consequence, the latter condition implies in particular that P is equal to
UP. Combining the result on polynomial time bounds with a result by Fortnow
and Kummer [FK] about Kolmogorov complexity defined in terms of fixed poly-
nomial time bounds, one obtains that in the model just mentioned conditional
generation and distinction complexity are close if and only if they are close in
Levin’s model. Finally, in the setting of space bounds, more precisely, for com-
plexity measures Ks and KDs that logarithmically count the used space instead
of the running time used on a program, it holds unconditionally that generation
complexity is at most linear in distinction complexity.

The notion of generation complexity considered below differs from Levin’s
original notion insofar as one has to generate only single bits of the word to be
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generated but not the word as a whole. This variant has already been used by
Allender et al. [A]; their results mentioned above, as well as the results demon-
strated below extend to Levin’s original model by almost identical proofs.

For a complexity class C, we will refer by C-machine to any machine M that
uses a model of computation and obeys a time- or space-bound such that M
witnesses L(M) ∈ C with respect to the standard definition of C. For example,
an NE-machine is a nondeterministic machine that runs in linearly exponential
time.

The individual bits of a word x will be denoted by x1 to x|x|. We fix an
appropriate universal machine U that receives as input encoded tuples of words
and e.g. (x, y, z) will be encoded by x̃01ỹ01z̃ where the word ũ is obtained by
doubling every symbol in u, i.e., ũ = u1u1u2u2 . . . u|u|u|u|.

Logarithms to base 2 are denoted by log, and often a term of the form log t
will indeed denote the least natural number s such that t ≤ 2s.

1 Known Results

Definition 1 (Levin [Le], Allender et al. [A]). Time-bounded generation
complexity Kt(.) and distinction complexity KDt(.) are defined by

Kt(x) = min

{

|d| + log t

∣
∣
∣
∣
∣

∀b ∈ {0, 1, ∗} : ∀i ≤ |x| + 1: U(d, i, b)
runs for t steps and accepts iff (x∗)i = b

}

,

KDt(x) = min
{
|d| + log t

∣
∣
∣

∀y ∈ Σ|x| : U(d, y) runs for
t steps and accepts iff x = y

}
.

Observe that in the definition of Kt-complexity the symbol ∗ has to be generated
as an end marker for the word x.

Remark 2. The notion of Kt-complexity introduced in Definition 1 was proposed
by Allender et al. in [A] as a variation of Levin’s original definition, where the
latter requires to generate whole words instead of individual bits. Levin’s original
definition has the advantage of assuring that for all x, it holds that KDt(x) ≤
Kt(x) + log |x|.

In connection with Theorem 14 we also use the following conditional complexity
notions.

Definition 3. The conditional time-bounded distinction complexity Kt(.|.) and
conditional generation complexity KDt(.|.) are defined by

Kt(x|y) = min

{

|d| + log t

∣
∣
∣
∣
∣

∀b ∈ {0, 1, ∗} : ∀i ≤ |x| + 1: U(d, y, i, b)
runs for t steps and accepts iff (x∗)i = b

}

,

KDt(x|y) = min
{
|d| + log t

∣
∣
∣
∀z ∈ Σ|x| : U(d, y, z) runs for
t steps and accepts iff z = x

}
.
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We will shortly review Theorem 17 from Allender et al. [A] before we will state
our extensions.

Definition 4 (Allender et al. [A]). We say that FewEXP search instances
are EXP-solvable if, for every NEXP-machine N and every k, there is an
EXP-machine M with the property that if N has fewer than 2|x|

k

accepting
paths on input x, then M produces on input x some accepting path as output if
there is one.

We say that FewEXP decision instances are EXP-solvable if, for every
NEXP-machine N and every k, there is an EXP-machine M with the property
that if N has fewer than 2|x|

k

accepting paths on input x, then M accepts x if
and only if N accepts x.

We say that FewEXP decision instances are EXP/poly-solvable if, for every
NEXP-machine N and every k, there is an EXP-machine M having access to
advice of polynomial length, such that if N has fewer than 2|x|

k

accepting paths
on input x, then M accepts x if and only if N accepts x.

The notion of solvability can be equivalently characterized in terms of promise
problems [CHV, FK]. This will be discussed further in connection with Theorem
17 by Fortnow and Kummer.

Remark 5. Note that by definition EXP-solvability of FewEXP decision in-
stances implies FewEXP = EXP, but it is unknown whether the reverse impli-
cation holds as well. This is because the definition of EXP-solvability does not
require the considered machines to have a limited number of accepting paths on
all inputs.

Theorem 6 (Allender et al. [A]). The following statements are equivalent:

1 For all x, Kt(x) ∈ (KDt(x))O(1).
2 FewEXP search instances are EXP-solvable.
3 FewEXP decision instances are EXP-solvable.
3′ FewEXP decision instances are EXP/poly-solvable.
4 For all A ∈ P and for all y ∈ A=l it holds that

Kt(y) ∈ (log |A=l| + log l)O(1).

In words this means, that if generating is “not much more difficult” than dis-
tinguishing, then witnesses for certain nondeterministic computations with few
witnesses can be found deterministically, and vice versa.

2 Tools

In what follows we will use a corollary of the following result by Buhrman et al.,
which have also been used by Allender et al. We omit proofs and more detailed
discussion due to space considerations.



Generation Complexity Versus Distinction Complexity 461

Lemma 7 (Buhrman et al. [BFL]). Let n be large enough and let

A := {x1, x2, . . . , x|A|} ⊆ {l, l + 1, . . . , l + n − 1}.

Then for all xi ∈ A and at least half of the prime numbers p ≤ 4 · |A| · log2 n it
holds for all j �= i that xi �≡ xj(mod p).

Corollary 8. Let A ⊆ Σ∗, y ∈ Σ∗ and l ∈ N. Let

Ay,l := A ∩ {x | y 
 x ∧ |x| = l}.

Then it holds that

∀y ∈ Ay,l : KDtAy,l(x) ≤ 2 log |Ay,l| + O(log l)

In particular, if there is a machine that on input y, l and x decides in polynomial
time whether x is in the set Ay,l, then

∀x ∈ Ay,l : KDt(x|y) ≤ 2 log |Ay,l| + O(log l).

3 New Results

We will now state our variants of Theorem 6 by Allender et al., which are demon-
strated by similar proofs.

Definition 9. We say that FewE search instances are E-solvable if, for every
NE-machine N and every k, there is an E-machine M with the property that if
N has fewer than 2k·|x| accepting paths on input x, then M produces on input x
some accepting path as output if there is one.

We say that FewE decision instances are E-solvable if, for every NE-machine
N and every k, there is an E-machine M with the property that if N has fewer than
2k·|x| accepting paths on input x, then M accepts x if and only if N accepts x.

We say that FewE decision instances are E/lin-solvable if, for every NE-
machine N and every k, there is an E-machine M having access to advice of
linear length, such that if N has fewer than 2k·|x| accepting paths on input x,
then M accepts x if and only if N accepts x.

We say that UE decision instances are E-solvable if, for every NE-machine
N and every k, there is an E-machine M with the property that if N has at most
one accepting path on input x, then M accepts x if and only if N accepts x.

Theorem 10. The following statements are equivalent:

1 For all words x, Kt(x) ∈ O(KDt(x)).
2 FewE search instances are E-solvable.
3 FewE decision instances are E-solvable.
3′ UE decision instances are E-solvable.
3′′ FewE decision instances are E/lin-solvable.
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4 For all A ∈ P it holds that for Ay,l := A ∩ {x | y 
 x ∧ |x| = l} and for all
x ∈ Ay,l

Kt(x) ∈ O(log |Ay,l| + log l + |y|).

We omit the proof of Theorem 10 due to space constraints.

Remark 11. Theorem 10 remains valid by essentially the same proof when formu-
lated for Levin’s original notion of Kt instead of the variant of Allender et al.

Corollary 12. If for all x, Kt(x) ∈ O(KDt(x)), then UE = E.

Proof. According to the theorem, the assumption implies that UE decision in-
stances are E-solvable. Since a language in UE contains only such instances, the
claim follows. �

The equivalence stated in Theorem 10 can be extended to the setting of polyno-
mial time bounds when considering conditional complexities

Definition 13. We say that FewP search instances are P-solvable if, for every
NP machine N and every k there is a P machine M with the property that if
N has fewer than |x|k accepting paths on input x, then M produces on input x
some accepting path as output if there is one.

We say that FewP decision instances are P-solvable if, for every NP machine
N and every k there is a P machine M with the property that if N has fewer
than |x|k accepting paths on input x, then M accepts x if and only if N accepts x.

We say that UP decision instances are P-solvable if, for every NP-machine
N and every k, there is a P-machine M with the property that if N has at most
one accepting path on input x, then M accepts x if and only if N accepts x.

Theorem 14. The following statements are equivalent:

1 For all words x and y, Kt(x|y) ∈ O(KDt(x|y)).
2 FewP search instances are P-solvable.
3 FewP decision instances are P-solvable.
3′ UP decision instances are P-solvable.
4 For all A ∈ P it holds that for Ay,l := A ∩ {x | y 
 x ∧ |x| = l} and for all

x ∈ Ay,l

Kt(x|y) ∈ O(log |Ay,l| + log l).

Proof. (1 ⇒ 4): We have access to y through the conditioning. If we also have
access to l, we can decide membership of x in Ay,l in polynomial time. To do
this, we first check whether y 
 x and whether y has the correct length l. If
yes, compute the value A(x) = Ay,l(x) using the fact that A ∈ P. Corollary
8 then yields

KDt(x|y) ≤ 2 log |Ay,l| + O(log l).

Using assumption 1 the claim follows.
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(4 ⇒ 2): Let N be any nondeterministic machine running in polynomial time
nk, where we can assume that N branches binarily. Let L denote L(N). Let

D := {yx | x ∈ {0, 1}|y|
k

codes an accepting computation of N on y}.

Obviously, D ∈ P. Now fix any y such that M on input y has at most |y|k
accepting paths. Then the set Dy := D ∩ {yx | |x| = |y|k} contains at most
|y|k words and by assumption 4 it follows that

∀yx ∈ Dy : Kt(yx|y) ∈ O(log |Dy| + log(|y| + |y|k))
= O(log(|y|))

So, in order to find an accepting path of M on input y, if there is one, it
suffices to search through all words x with Kt(x|y) ≤ O(log |y|). This can be
done in polynomial time, so that L ∈ P as was to be shown. Note that it
causes no problems that we have to deal with conditional complexity here.
This is because when we are searching for an accepting path x for a word y
we obviously have access to y.

(2 ⇒ 3): This is trivial.
(3 ⇒ 3′): This is trivial.
(3′ ⇒ 1): Let us assume that we have a KDt-description d, finite conditioning

information y and a described word x such that the universal machine U
accepts the triple (d, y, x) in tKDt steps. Assuming that this is the optimal
description for x we would have KDt(x|y) = |d| + log tKDt. Since we can in
tKDt steps only access the first tKDt bits of y (with the encoding of tupels
introduced with the universal machine U) we can use y[1..tKDt] instead of y
for the rest of the proof and can therefore w.l.o.g. assume |y| < tKDt. By a
similar argument we can assume |d| < tKDt.

Consider a variant UUP of the universal machine U where UUP is given
inputs of the form (d̂, ŷ, 1t̂, î, b̂, n̂). On any such input, if n̂ > t̂, then reject.
Otherwise guess a word x̂ ∈ {0, 1}n̂ and check whether x̂i = b̂. If yes, UUP

behaves for t̂ steps like U on input (d̂, ŷ, x̂), that is UUP accepts iff U(d̂, ŷ, x̂)
accepts in these t̂ steps.

For our fixed triple (d, y, x) this computation takes tUP steps, with tUP ∈
Θ(|x| + tKDt). Note that the running time of the simulation is coded unarily
into its input. Let’s call the coded number tcoded. So we have tKDt = tcoded.
The execution of a distinguishing description for x on U takes at least |x|
steps (otherwise x could not even be read completely, and therefore it could
not be correctly distinguished). So we have tUP ∈ Θ(tKDt).

This computation is now a nondeterministic one that already correctly
recognizes the given bit of x. Because no part of the input pentuple P is
longer than tcoded, we have that the program has length Θ(tcoded) = Θ(tKDt)
and that therefore the running time tUP of the nondeterministic computation
is in Θ(|P |).

Since d is a distinguishing description for the word x ∈ {0, 1}n, for all i
on input (d, y, 1tcoded , i, xi, |x|) there is a unique accepting path of UUP and



464 R. Hölzl and W. Merkle

none on input (d, y, 1tcoded , i, x̄i, |x|). By assumption 3′ there is a deterministic
machine M that for all such inputs has the same acceptance and rejection
behaviour as N and works in some fixed polynomial time bound.

The input for M together with an encoding of M is a generating pro-
gram for x. It only remains to prove that this program is small enough and
computes fast enough, compared to the KDt-program. This then implies
Kt(x|y) ≤ O(KDt(x|y)), as desired.

Let us first inspect the program length. The input for M consists of tcoded,
|x| (both encoded in binary), �M�, d. Since tKDt counted logarithmically for
KDt we have log tcoded ≤ KDt(x|y). KDt(x|y) is always greater than log |x|,
for the same argument as above. One fixed M works for all appropriate inputs
and its encoding therefore has constant length. Obviously, d ≤ KDt(x|y).
Furthermore, y is given as part of the input to M , but does not add to
Kt(x|y).

Let us now inspect the running time of the code. The nondeterministic
machine used a running time in Θ(|P |). After the conversion to a determin-
istic procedure we have by assumption a running time of (|P |)O(1). In other
words: A polynomial overhead might have been introduced relative to the
nondeterministic running time tUP . Therefore we have tP ∈ O((tUP )c) =
O(tcKDt), hence log(tP) ∈ O(log tKDt).

All this, together with the fact that running time counts logarithmically,
results in the required inequality Kt(x|y) ≤ O(KDt(x|y)). �

Remark 15. For the same reason as in Remark 11, this proof would also work if
we considered Levin’s original definition of Kt.

Corollary 16. If for all x and y, Kt(x|y) ∈ O(KDt(x|y)), then UP = P.

Proof. According to the theorem, the assumption implies that UP decision in-
stances are P-solvable. Since a language in UP contains only such instances, the
claim follows. �

Fortnow and Kummer [FK, Theorem 24] proved an equivalence related to Theo-
rem 14 in the setting of the“traditional”polynomially time-bounded Kolmogorov
complexities Ct and CDt [LiV, Chapter 7] where for example

Ct(x) = min{|d| | U(d) runs on input x for t(|x|) steps and outputs x}.

Theorem 17 (Fortnow, Kummer). The following two statements are
equivalent:

1. UP decision instances are P-solvable.
2. For any polynomial t there are a polynomial t′ and a constant c ∈ N such

that for all x and y it holds that Ct′
(y|x) ≤ CDt(y|x) + c.

Remark 18. In fact Fortnow and Kummer formulated their equivalence in terms
of promise problems. Instead of the first statement in the theorem they used the
assertion that the promise problem (1SAT, SAT) is in P, where for a promise
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problem (Q, R) to be in P means that there is a P-machine that accepts all
x ∈ Q ∩ R and rejects all x ∈ Σ∗ − R.

Their formulation of the first statement is indeed equivalent to the one used
above, because (1SAT, SAT) is complete for UP , as witnessed by a parsimonious
version of Cook’s Theorem due to Simon [Sim, Theorem 4.1].

The following corollary is immediate from Theorems 14 and 17.

Corollary 19. The following two statements are equivalent.

1. For all x and y, Kt(x|y) ∈ O(KDt(x|y)).
2. For any polynomial t there is a polynomial t′ and a constant c ∈ N such that

for all x and y it holds that Ct′
(y|x) ≤ CDt(y|x) + c.

In analogy to the time-bounded case one can define the following two notions of
space-bounded Kolmogorov complexity.

Definition 20. The space-bounded distinction complexity Ks and generation
complexity KDs are defined by

Ks(x) = min

{

|d| + log s

∣
∣
∣
∣
∣

∀b ∈ {0, 1, ∗} : ∀i ≤ |x| + 1: U(d, i, b)
runs in space s and accepts iff (x∗)i = b

}

,

KDs(x) = min
{
|d| + log max(s, |x|)

∣
∣
∣

∀y ∈ Σ|x| : U(d, y) runs in
space s and accepts iff x = y

}
.

Here U is a machine with a two-way read-only input tape where only the space
on the work tapes is counted.

Remark 21. For the definition of KDs it is relevant how the candidate y is pro-
vided to U and if the space for y is counted. Here we chose to do count the space
for y which accounts for the term max |x| in the definition of KDs. This then
implies the inequality log |x| ≤ KDs(x), which is analogous to the corresponding
statement for KDt and will be used in the proof of Theorem 22.

Theorem 22. For almost all x, it holds that Ks(x) ≤ 5 · KDs(x).

Proof. Let N be a nondeterministic machine which on input (d, s, i, b, n) guesses
a word y ∈ {0, 1}n, simulates the computation of U(d, y) while limiting the used
space to s, and then accepts iff yi = b and U(d, y) accepts. In particular, if d is
a distinguishing description for a word x ∈ {0, 1}n, then for all sufficiently large
s and for all i ≤ n there is an accepting path of N on input (d, s, i, xi, |x|) but
none on (d, s, i, x̄i, |x|).

By the Theorem of Savitch there is a deterministic machine M that has the
same acceptance behavior as N and uses space at most s2; observe in this con-
nection that s is specified in the input of N and M , hence doesn’t have to be
computed by M .

Given a word x, fix a pair d and s such that d is a distinguishing program for x,
it holds that |d| + log s ≤ KDs(x), and U uses space at most s on input (d, x).



466 R. Hölzl and W. Merkle

The specification of d, s, |x| and M therefore constitutes a Ks-program for x
which runs in space s2. By choice of d and s we have

|d| + log s + log |x| ≤ 2KDs(x).

Furthermore, the space s2 used in the computation of M counts only logarithmi-
cally, where 2 · log s ≤ 2 ·KDs(x). Taking into account that M has to be specified
and that some additional information is needed to separate the components of
the Ks-program for x, we obtain Ks(x) ≤ 5 · KDs(x) for all sufficiently large x.

�
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Abstract. We consider the problem of load-balanced routing, where a
dense network is modelled by a continuous square region and origin and
destination nodes correspond to pairs of points in that region. The ob-
jective is to define a routing policy that assigns a continuous path to
each origin-destination pair while minimizing the traffic, or load, pass-
ing through any single point. While the average load is minimized by
straight-line routing, such a routing policy distributes the load non-
uniformly, resulting in higher load near the center of the region. We
consider one-turn rectilinear routing policies that divert traffic away from
regions of heavier load, resulting in up to a 33% reduction in the maxi-
mum load while simultaneously increasing the path lengths by an average
of less than 28%. Our policies are simple to implement, being both local
and oblivious. We provide a lower bound that shows that no one-turn
rectilinear routing policy can reduce the maximum load by more than
39% and we give a polynomial-time procedure for approximating the
optimal randomized policy.

1 Introduction

The problem of routing in multi-hop wireless networks has received extensive
attention in the last decade [1,2,12,14,18]. Many of the proposed routing proto-
cols attempt to find shortest paths between pairs of nodes, or try to bound the
stretch factor of the paths, while trying to ensure that the paths are loop-free.
This approach takes into account a single packet traversing the network and tries
to optimize performance for this packet. A more global and realistic view would
consider the performance of the protocol under the assumption of many traffic
flows in the network. In this situation, there can often be congestion created by
several packets that need to be forwarded by the same intermediate nodes at the
same time. This congestion is very likely to influence the latency experienced by
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a packet. A routing protocol should therefore attempt to avoid creating highly
congested nodes. Not only does this improve packet latency, it would also im-
prove the lifetime of a wireless network, where heavily loaded nodes may run
out of battery power and disconnect the network.

In this paper, we investigate routing protocols for wireless networks with the
aim of minimizing the congestion experienced at nodes. We consider a multi-
hop ad hoc network consisting of identical location-aware nodes, uniformly and
densely deployed within a given planar region. Furthermore, we assume that the
traffic pattern is uniform point-to-point communication, i.e., each node has the
same number of packets to send to every other node in the network. This is
sometimes called the all-to-all communication pattern. A routing policy must
define, for every ordered pair of nodes (u, v), a path in the network to get from
u to v. The load at a given node v is the number of paths that pass through v.
The average (maximum) load for a network with respect to a particular routing
policy is the average (respectively maximum) load over all nodes in the network.
The fundamental question we wish to answer is: what routing policy minimizes
the maximum load in the network?

It seems intuitively evident that for nodes within a convex planar region,
shortest path routing should cause maximum load near the geometric center.
Indeed, this has been proved analytically for disks (see for example [16]) and
squares and rectangles (see Section 3). This suggests that if load balancing is
a fundamental concern then a good routing policy should redirect some of the
traffic away from the geometric center and other areas of high load. However, load
balancing cannot be the only concern: taking unnecessarily long paths just to
bypass the center can drastically increase the stretch factor and the average load
of nodes in the network, and can therefore be very inefficient in terms of energy
consumption. Furthermore, it is critical that the forwarding strategy required
to implement the routing policy be simple and have low memory requirements.
Ideally, the routing policy should be oblivious (the route between u and v depends
only on the identities or locations of u and v) and the forwarding strategy should
be local (the forwarding node can make its decision based only on itself and its
neighbors, and the packet header contains only the address of the destination).

In the setting of nodes uniformly distributed in a given planar convex region,
very little research has been done on finding a simple routing policy that achieves
both a reasonable stretch factor and a minimum value of maximum congestion.
In [6], an algorithm achieving a good tradeoff between stretch factor and load
balance is shown for the special case when all nodes are located in a narrow strip
of width at most 0.86 times the transmission radius. The analysis is not specific
to the all-to-all communication pattern. Popa et al. [16] address the all-to-all
routing problem for the case when the region containing the nodes is a unit disk.
They establish quantitatively the crowded center effect for shortest-path routing
as a nearly-quadratic function that peaks at the center of the disk and present a
theoretical approach that is guaranteed to find paths minimizing the maximum
load. They also give a practical solution (curveball routing) whose performance
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compares favorably to the optimum. No theoretical bounds are given on the
stretch factor of the routes for either strategy.

In this paper, we investigate the problem of load-balanced routing when the
nodes are uniformly and densely packed in a square or rectangular region. As in
[16], our approach is to look at the unit square (and the k × 1 rectangle) as a
continuous space rather than formed by discrete nodes. This makes it possible
to analyze the average and maximum load induced by a routing policy, with-
out regard to the topology of the actual network. At the same time, the results
should predict the behavior of a network with very densely and uniformly de-
ployed nodes. Shortest-path routing corresponds to straight-line routing in this
setting. We derive the average and maximum load for straight-line routing in
a unit square and confirm the crowded-center effect for squares and rectangles.
In keeping with the goal of minimizing congestion while ensuring a reasonable
stretch factor, we investigate the class of rectilinear routing policies that assign
to each origin-destination pair of nodes one of the two possible rectilinear paths
containing only one turn. It is not difficult to show that all such one-turn rec-
tilinear strategies have a maximum stretch factor of

√
2. Furthermore, they are

simple and realistic in the ad hoc network setting; the routing policy is oblivious
and the forwarding algorithm is local. We propose and analyze several simple
rectilinear strategies, the best of which reduces the maximum load by about 33%
compared to the straight-line policy. We also characterize the optimal random-
ized rectilinear policy as the solution to an optimization problem and provide
an efficient procedure for approximating it.

1.1 Overview of Results

Our main contributions are summarized below:

– We derive an exact expression for the load induced by a straight-line routing
policy at an arbitrary point in the unit square. We show that the average
and maximum load for the straight-line routing policy are 0.5214 and 1.1478
respectively.

– We show that the average load for every one-turn rectilinear routing policy
is 2/3. The maximum and average stretch factor for such policies are shown
to be

√
2 and 1.2737 respectively.

– We propose several one-turn rectilinear routing policies and derive their max-
imum load. The best of these, called the diagonal rectilinear policy, achieves a
maximum load of 0.7771, which represents a 33% improvement over straight-
line routing.

– We prove a lower bound of 0.7076 on the the maximum load for any one-turn
rectilinear policy.

– We characterize the optimal randomized rectilinear policy as the solution
to an optimization problem and provide an efficient procedure for approx-
imating it. Numerical results suggest that the maximum load for the best
possible rectilinear policy is close to 0.74.

Detailed proofs for some results are omitted due to space restrictions.
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1.2 Related Work

In this section, we briefly describe other efforts to address the congestion prob-
lem. Several studies confirm the crowded center effect for shortest path routing
[8,11,15,16]. In [15,16], the load at the center of a circular area is derived ana-
lytically, by modelling the area as a continuous region, as in this paper, rather
than as formed by discrete nodes. The node distribution resulting from a random
waypoint mobility model in an arbitrary convex domain is analyzed in [10]; this
is related to the load probability density for straight-line routing.

The tradeoffs between congestion and stretch factor in wireless networks has
been studied in [13] and [7]. For instance, for growth-bounded wireless networks,
Gao and Zhang [7] show routing algorithms that simultaneously achieve a stretch
factor of c and a load balancing ratio of O((n/c)1−1/k) where k is the growth
rate. (The load balancing ratio is defined to be the ratio between the maximum
load on any node induced by the algorithm versus that created by the optimal
algorithm.) They also derive an algorithm for unit disk graphs with bounded
density and show that if the density is constant, shortest path routing has a load
balancing ratio of Θ(

√
n). The communication patterns considered are arbitrary,

the lower bound does not derive from the all-to-all communication pattern, and
the routing algorithms are not oblivious.

The all-to-all communication pattern has been studied extensively in the con-
text of interconnection networks, and particularly in WDM optical networks. In
this context, [4] defined the forwarding index of a communication network with
respect to a specific routing algorithm to be the maximum number of paths go-
ing through any vertex in the graph. The forwarding index of the network itself
is the minimum over all possible routing algorithms for the network. This notion
was extended to the maximum load on an edge [9], which is more appropriate
to wired networks. However, for wireless networks, the node forwarding index
captures the load on a wireless node better. While the node forwarding index
for specific networks, including the ring and torus networks has been derived ex-
actly [4], it has not been studied for two-dimensional grid networks, which would
perhaps be a good approximation for the dense wireless networks of interest to
us. Our results in Section 6 provide an approximation for the forwarding index
in grid graphs for the class of one-turn rectilinear routing schemes.

There does not appear to be much work on routing with a view to reducing
the congestion for the all-to-all communication pattern in specific planar regions,
the model of interest in this paper. As stated earlier, [6] looks at nodes contained
in a narrow strip and [16] addresses the problem for the unit disk. Busch et al.
[3] analyze routing on embedded graphs via a random intermediate point lo-
cated near the perpendicular bisector of the origin and destination; we consider
the generalization of this strategy to convex regions in Section 4.4. Popa et al.
[16] give expressions for the maximum and average load induced by straight-
line routing in unit disks, and propose a practical algorithm called curveball
routing whose performance is close to the optimum for disks. They also provide
experimental results on greedy routing versus curveball routing in square- and
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rectangular-shaped areas, and show that curveball routing achieves a reduction
in load in such areas, but they do not provide any theoretical results.

2 Definitions

2.1 Routing Policies and Traffic Load

Given a convex region A ⊆ R
2, a routing policy P assigns a route to every origin-

destination pair (u, v) ∈ A2, where the route from u to v, denoted routeP (u, v),
is a plane curve segment contained in A, whose endpoints are u and v. For a
given routing policy P on a region A, the traffic load at a point p is proportional
to the number of routes that pass through p. Formally,

Definition 1. Given a routing policy P on a region A, the load at point p is

λP (p) =
∫∫

A

fP (p, u, v) du dv, where fP (p, u, v) =
{

1 if p ∈ routeP (u, v),
0 otherwise.

The average load of routing policy P on region A is given by

λavg(P ) =
1

Area(A)

∫

A

λP (p) dp, (1)

where Area(A) =
∫

A
dp denotes the area of region A. The average length of a

route determined by policy P between two points in A is given by

lengthavg(P ) =
1

Area(A)2

∫∫

A

length(routeP (p, q)) dq dp. (2)

Since length(routeP (u, v)) =
∫

A fP (p, u, v) dp, Proposition 1 follows from (1) and
(2):

Proposition 1. Given routing policy P on a region A,

λavg(P ) = Area(A) · lengthavg(P ). (3)

In addition to average load, a routing policy P on a region A is also characterized
by its maximum load, given by

λmax(P ) = max
p∈A

λP (p). (4)

2.2 Straight-Line Routing Policy

The straight-line routing policy, denoted S, assigns to every pair (u, v) the route
consisting of the line segment between u and v. In straight-line routing,

length(routeS(p, q)) = ||p − q|| =
√

(px − qx)2 + (py − qy)2. (5)
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Since the line segment from u to v is the shortest route from u to v, it follows
that straight-line routing minimizes (2). Consequently, for any convex region A
and any routing policy P �= S,

λavg(S) ≤ λavg(P ). (6)

The average stretch factor and maximum stretch factor of routing policy P on
region A are respectively given by

stravg(P ) =
1

Area(A)2

∫∫

A

length(routeP (p, q))
length(routeS(p, q))

dq dp (7)

strmax(P ) = max
{p,q}⊆A

length(routeP (p, q))
length(routeS(p, q))

. (8)

2.3 One-Turn Rectilinear Routing Policies

Recent related work on this problem has considered the case when region A is
a disk [16]. In this paper, we consider the case when region A is bounded by a
square or a rectangle. As we show in Section 3, the load in straight-line routing
on a square or a rectangle is maximized at its center. The maximum load can
be decreased by redirecting routes that pass near the center to regions of lower
traffic. This motivates the examination of one-turn rectilinear routing policies
which we now define.

A monotonic rectilinear routing policy assigns to every pair (u, v) a route
consisting of a monotonic rectilinear path from u to v, i.e., a path comprised of
a series of axis-parallel line segments such that any axis-parallel line intersects
the path at most once. A one-turn rectilinear routing policy assigns to every pair
(u, v) a monotonic rectilinear path consisting of one horizontal line segment and
one vertical line segment joining u to v via an intermediate point w. Point w
may coincide with u or v.

For any monotonic rectilinear routing policy P ,

length(routeP (p, q)) = |px − qx| + |py − qy|. (9)

In general, there are two possible one-turn rectilinear routes from a given origin
(ux, uy) to a given destination (vx, vy). We refer to these as row-first and column-
first, where the row-first route passes through the intermediate point (vx, uy) and
the column-first route passes through the intermediate point (ux, uy).

3 Straight-Line Routing on a Square

In this section we examine the load of straight-line routing on the unit square.
These values serve as milestones against which the optimality of all other routing
policies on the unit square are compared.
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3.1 Average Load

By Proposition 1, the average load in the unit square under straight-line routing
is equal to the expected distance between two points selected at random in the
square. This value is a box integral with the following solution [17]:

lengthavg(S) =
2 +

√
2 + 5 ln(1 +

√
2)

15
≈ 0.5214. (10)

By (6), the average load (and maximum load) of any routing policy on the unit
square is bounded from below by (10).

3.2 Load at an Arbitrary Point

Since straight-line routing is symmetric in the x- and y-dimensions, we derive the
load at an arbitrary point p located in an octant of the unit square. The load at
an arbitrary point in the unit square is then easily found using the appropriate
coordinate transformation.

Theorem 1. Given a point p = (px, py) such that 1/2 ≤ py ≤ px ≤ 1, the load
at p using straight-line routing is given by

λS(p) = (1 − px)px

[∣
∣
∣
α

θ=0
g1(θ)

]
+ (1 − px)2py

[∣
∣
∣
π/2−β

θ=α
g4(θ)

]

+ (1 − px)p2
y

[∣
∣
∣
π/2−β

θ=α
g3(θ)

]

+ (1 − py)py

[∣
∣
∣
π/2

θ=π/2−β
g2(θ)

]

+ (1 − py)py

[∣
∣
∣
π/2+γ

θ=π/2
g2(θ)

]

− (1 − py)2(1 − px)
[∣
∣
∣
π−δ

θ=π/2+γ
g3(θ)

]

+ (1 − py)(1 − px)2
[∣
∣
∣
π−δ

θ=π/2+γ
g4(θ)

]

− px(1 − px)
[∣
∣
∣
π

θ=π−δ
g1(θ)

]

, (11)

where expressions for α, β, γ, δ, and g1 through g4 are omitted for lack of space.

Expression (11) has a closed-form polylogarithmic representation (free of any
trigonometric terms). The complete expression is not reproduced here due to
the large number of terms but can be easily reconstructed from (11).

3.3 Maximum Load

We now derive the maximum load for straight-line routing on the unit square
and show that this value is realized at the center of the square.

Theorem 2. The maximum load for straight-line routing on the unit square is

λmax(S) =
1√
2

+
3
8

ln(
√

2 + 1) − 1
8

ln(
√

2 − 1) ≈ 1.1478, (12)

realized uniquely at the center of the square.
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4 One-Turn Rectilinear Routing on a Square

In this section we consider various one-turn rectilinear routing policies on the
unit square and compare these against straight-line routing. Our objective in
designing these policies was to reduce the maximum load by redirecting routes
for particular regions of origin-destination pairs away from high-traffic areas and
towards low-traffic areas while maintaining a low stretch factor.

4.1 Average Load

Theorem 3. The average load for any monotonic rectilinear routing policy on
the unit square is 2/3.

Proof. By Proposition 1 and (9), the average load is equal to the average 	1

distance between two points in the unit square. This value is

λavg(P ) =

1 1 1 1∫∫∫∫

0 0 0 0

|ux − vx| + |uy − vy| dvy dvx duy dux =
2
3
. �	 (13)

4.2 Average Stretch Factor

It is straightforward to see that the maximum stretch factor for any monotonic
rectilinear routing policy is

√
2. We now consider the average stretch factor.

Theorem 4. The average stretch factor for any monotonic rectilinear routing
policy P on the unit square is

stravg(P ) =
1
6

(
10 ln(2 +

√
2) + 2

√
2 − 4 − 5 ln(2)

)
≈ 1.2737. (14)

4.3 Diagonal Rectilinear Routing

We define a routing policy in terms of the partition of the unit square induced
by its two diagonals. Let R1 through R4 denote the four regions of the partition
such that R1 is at the bottom of the square and the regions are numbered in
clockwise order. If the origin lies in R1 or R3, the row-first route is selected.
Otherwise, the column-first route is selected. We refer to this routing policy,
denoted PD, as diagonal rectilinear routing.

As we did in Section 3.2, we derive the load at an arbitrary point p located in
an octant of the unit square since PD is symmetric in the x- and y-dimensions.
The load at an arbitrary point in the unit square is then easily found using the
appropriate coordinate transformation.

Theorem 5. Given a point p = (px, py) such that 0 ≤ py ≤ px ≤ 1/2, the load
at p using diagonal rectilinear routing is

λPD (p) = 2p3
x − 5p2

x +
7
2
px − 2pxpy +

3
2
py − 3p2

y + 2p3
y. (15)
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1a 1b 1c 1d 2a 2b 2c

Fig. 1. Illustration in support of Theorem 5. The white dot denotes point p.

Proof. Let u = (ux, uy) denote the origin and let v = (vx, vy) denote the des-
tination. The relative positions of u, v, and p can be divided into seven cases
such that the load at p corresponds to the sum of the measure of the regions of
possible origin-destination combinations in each case. In Cases 1a through 1d, u
lies in region R1 or R3 and, consequently, the row-first route is selected. In Cases
2a through 2c, u lies in region R2 or R4 and, consequently, the column-first route
is selected. See Fig. 1. The theorem follows by summing the contribution to load
in each of these cases. Details are omitted for lack of space. �	

It can be shown that (15) is maximized when px = 5
6 − 1

3

√
3 − 1

2

√
11 ≈

0.4472 and py = 2
3 −

√
11
6 ≈ 0.1139, with load λmax(PD) = 1

27

[√
11 − 31

2

]
≈

0.7771.

4.4 Additional Policies Considered

We describe additional one-turn rectilinear routing policies considered. In each
case, the maximum load was shown to be strictly greater than that of diagonal
rectilinear routing. Recall that all one-turn rectilinear routing policies have equal
average load (Theorem 3).

Equal Distribution. A simple initial strategy to consider is to assign to each
origin-destination pair (u, v) the row-first route. For any point p ∈ [0, 1]2, λPR

(p) = λP (p), where PR denotes the row-first routing policy and P denotes any
policy that assigns the pairs (u, v) and (v, u) different one-turn rectilinear routes
for all u and v.

Outer Turn. Consider the routing policy that selects the one-turn rectilinear
route whose intermediate point is furthest from the center of the square. If the
two intermediate points are equidistant from the origin, then a route is assigned
as in the equal distribution policy.

Grid-Based Regions. Divide the unit square into nine rectangular regions whose
boundaries intersect the x- and y-axes at 0, k, 1 − k, and 1, respectively, for
some fixed k ∈ [0, 1/2]. There are three types of regions: corner, mid-boundary,
and one central region. If the origin is located in a mid-boundary region and
the destination is in a non-adjacent corner region then select the one-turn rec-
tilinear route that avoids passing through the central region. Similarly, a route
from a corner regions to a non-adjacent mid-boundary region must avoid pass-
ing through the central region. For all other origin-destination pairs, routes are
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assigned as in the equal distribution policy. A second grid-based routing policy
is defined by adding the constraint that a route from a mid-boundary region to
an adjacent mid-boundary region must also avoid passing through the central
region.

Line Division. Let l denote the line passing through the origin u and destination
v. If l does not pass through the center of the square, c, select the one-turn
rectilinear route whose intermediate point is opposite l from c. If l passes through
c, then a route is assigned as in the equal distribution policy.

Random Intermediate Point. A random intermediate point connected to the
origin and destination by straight-line routes results in load exactly twice that
of straight-line routing. Perhaps a better strategy is that described by Busch
et al. [3] which can be generalized to convex regions; an intermediate point is
selected at random on the perpendicular bisector of the origin and destination.
Note that although this policy involves a single turn, it is not a rectilinear routing
policy.

Summary. Table 1 summarizes bounds on average and maximum load for each
of the above routing policies and straight-line routing. We derived the load at
an arbitrary point in the unit square for five of these policies; the correspond-
ing plots are illustrated in Fig. 2. The diagonal rectilinear routing policy, PD,
achieves the lowest maximum load, significantly lower than the maximum load
of straight-line routing and not much greater than the lower bound.

Table 1. Comparing routing policies on the unit square

routing policy λavg λmax routing policy λavg λmax

straight-line S 0.5214 1.1478 grid-based (1) 2/3 7/8
diagonal PD 2/3 0.7771 grid-based (2) 2/3 0.8541
equal dist. PR 2/3 1 line division 2/3 ≥ 7/8
outer turn 2/3 ≥ 0.8977 lower bound 0.7076
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Fig. 2. These plots display λP (p) for p ∈ [0, 1]2 for five routing policies: (left to right)
straight-line S, equal distribution PR, grid-based (two policies), and diagonal PD



Balancing Traffic Load Using One-Turn Rectilinear Routing 477

5 Lower Bounds on Load for One-Turn Rectilinear
Routing Policies

Naturally, no monotonic rectilinear routing policy can have a maximum load less
than the average load of 2/3. In this section we establish a stronger lower bound
on the maximum load of any one-turn rectilinear routing policy.

Theorem 6. No one-turn rectilinear routing policy can guarantee a maximum
load less than 0.7076.

6 Optimal Randomized One-Turn Rectilinear Routing
Policies

In this section we give a characterization of the optimal randomized one-turn
rectilinear strategy as the solution of an optimization problem and provide an ef-
ficient procedure for approximating it. A deterministic one-turn rectilinear strat-
egy is equivalent to a function P : [0, 1]4 → {0, 1} where P (u, v, s, t) = 1 iff the
route from (u, v) to (s, t) uses the column-first path. (If u = s or v = t, we
define P (u, v, u, t) = P (u, v, s, v) = 1.) We can generalize this to randomized
rectilinear schemes by considering Q : [0, 1]4 → [0, 1] where if Q(u, v, s, t) = q
then a packet travelling from point (u, v) to (s, t) takes the the column-first path
with probability q and the row-first path with probability 1 − q. A formula for
the expected λ(x, y) at a point (x, y) can be found easily.

The optimal strategy is given by the solution to the following optimization
problem: minQ max(x,y) λ(x, y). While we can’t directly solve this problem we
can approximate it by considering finer and finer partitions of the square into n2

1/n by 1/n subsquares and giving a strategy for all packets routing between each
pair of subsquares. Now our problem is equivalent to finding a randomized one-
turn rectilinear routing strategy for an n × n grid that minimizes the number of
packets using any particular node of the grid under an all-to-all communication
pattern.

Let pijkl, 1 ≤ i, j, k, l ≤ n, be the probability that a packet starting in sub-
square (i, j) going to subsquare (k, l) uses the column-first path and let the
maximum expected load at any point in subsquare (r, s) be λ(r, s).

An upper bound on λ(r, s) is easily derived and our problem now reduces to
minpijkl

maxr,s λ(r, s), which is equivalent to the following linear program with
n4 + 1 variables and 2n4 + n2 constraints (solvable in polynomial time):

Minimize z
Subject to
0 ≤ pijkl ≤ 1, 1 ≤ i, j, k, l ≤ n,
z − λ(r, s) ≥ 0, 1 ≤ r, s ≤ n.

Table 2 shows an upper bound on the maximum load achieved by the strategy
obtained by using an n × n grid to approximate the unit square for 2 ≤ n ≤
12. The results indicate that the optimal strategy achieves a maximum load
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Table 2. Approximations to the optimal randomized strategy using n × n grids

n 2 3 4 5 6 7 8 9 10 11 12
max. load 1.0000 0.8889 0.8264 0.8009 0.7813 0.7759 0.7650 0.7610 0.7530 0.7499 0.7446

of approximately 0.74. The solutions were found using the CVXOPT convex
optimization package [5]. We were unable to obtain results for larger n due to
memory limitations.
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17. Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University
Press, Cambridge (2004)

18. Stojmenovic, I.: Position based routing in ad hoc networks. IEEE Comm. Mag. 40,
128–134 (2002)



A Moderately Exponential Time Algorithm for

Full Degree Spanning Tree

Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov

Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{serge,saket}@ii.uib.no, ljosha@ljosha.org

Abstract. We consider the well studied Full Degree Spanning Tree

problem, a NP-complete variant of the Spanning Tree problem, in the
realm of moderately exponential time exact algorithms. In this prob-
lem, given a graph G, the objective is to find a spanning tree T of G
which maximizes the number of vertices that have the same degree in
T as in G. This problem is motivated by its application in fluid net-
works and is basically a graph-theoretic abstraction of the problem of
placing flow meters in fluid networks. We give an exact algorithm for
Full Degree Spanning Tree running in time O(1.9172n). This adds
Full Degree Spanning Tree to a very small list of “non-local prob-
lems”, like Feedback Vertex Set and Connected Dominating Set,
for which non-trivial (non brute force enumeration) exact algorithms are
known.

1 Introduction

The problem of finding a spanning tree of a connected graph arises at various
places in practice and theory, like the analysis of communication or distribution
networks, or modeling problems, and can be solved efficiently in polynomial time.
On the other hand, if we want to find a spanning tree with some additional
properties like maximizing the number of leaves or minimizing the maximum
degree of the tree, the problem becomes NP-complete. This paper deals with one
of the NP hard variants of Spanning Tree, namely Full Degree Spanning

Tree from the view point of moderately exponential time algorithms.

Full Degree Spanning Tree (FDST): Given an undirected connected
graph G = (V, E), find a spanning tree T of G which maximizes the number
of vertices of full degree, that is the vertices having the same degree in T as
in G.

The FDST problem is motivated by its applications in water distribution and
electrical networks [15,16,17,18]. Pothof and Schut [18] studied this problem in
the context of water distribution networks where the goal is to determine or
control the flows in the network by installing and using a small number of flow
meters. It turns out that to measure flows in all pipes, it is sufficient to find a
full degree spanning tree T of the network and install flow meters (or pressure
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gauges) at each vertex of T that does not have full degree. We refer to [1,4,11]
for a more detailed description of various applications of FDST.

The FDST problem has attracted a lot of attention recently and has been
studied extensively from different algorithmic paradigms, developed for coping
with NP-completeness. Pothof and Schut [18] studied this problem first and gave
a simple heuristic based algorithm. Bhatia et al. [1] studied it from the view
point of approximation algorithms and gave an algorithm of factor O(

√
n). On

the negative side, they show that FDST is hard to approximate within a factor
of O(n

1
2−ε), for any ε > 0, unless coR = NP , a well known complexity-theoretic

hypothesis. Guo et al. [10] studied the problem in the realm of parameterized
complexity and observed that the problem is W[1]-complete. The problem which
is dual to FDST is also studied in the literature, that is the problem of finding
a spanning tree that minimizes the number of vertices not having full degree.
For this dual version of the problem, Khuller et al [11] gave an approximation
algorithm of factor 2 + ε for any fixed ε > 0, and Guo et al. [10] gave a fixed
parameter tractable algorithm running in time 4knO(1). FDST has also been
studied on special graph classes like planar graphs, bounded degree graphs and
graphs of bounded treewidth [4]. The goal of this paper is to study Full Degree

Spanning Tree in the context of moderately exponential time algorithms, an-
other coping strategy to deal with NP-completeness. We give a O(1.9172n) time
algorithm breaking the trivial 2nnO(1) barrier.

Exact exponential time algorithms have an old history [5,14] but the last few
years have seen a renewed interest in the field. This has led to the advancement
of the state of the art on exact algorithms and many new techniques based on
Inclusion-Exclusion, Measure & Conquer and various other combinatorial tools
have been developed to design and analyze exact algorithms [2,3,7,8,12]. Branch
& Reduce has always been one of the most important tools in the area but its
applicability was mostly limited to ‘local problems’ (where the decision on one
element of the input has direct consequences for its neighboring elements) like
Maximum Independent Set, SAT and various other problems, until recently.
In 2006, Fomin et al.[9] devised an algorithm for Connected Dominating

Set (or Maximum Leaf Spanning Tree) and Razgon [19] for Feedback

Vertex Set combining sophisticated branching and a clever use of measure.
Our algorithm adheres to this machinery and adds an important real life problem
to this small list. We also need to use an involved measure, which is a function
of the number of vertices and the number of edges to be added to the spanning
tree, to get the desired running time.

2 Preliminaries

Let G be a graph. We use V (G) and E(G) to denote the vertices and the edges
of G respectively. We simply write V and E if the graph is clear from the
context. For V ′ ⊆ V we define an induced subgraph G[V ′] = (V ′, E′), where
E′ = {uv ∈ E : u, v ∈ V ′}.
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Let v ∈ V , we denote by N(v) the neighborhood of v, namely N(v) = {u ∈
V : uv ∈ E}. The closed neighborhood N [v] of v is N(v) ∪ {v}. In the same way
we define N [S] for S ⊆ V as N [S] = ∪v∈SN [v] and N(S) = N [S] \ S. We define
the degree of vertex v in G as the number of vertices adjacent to v in G. Namely,
dG(v) = |{u ∈ V (G) : uv ∈ E(G)}|.

Let G be a graph and T be a spanning tree of G. A vertex v ∈ V (G) is a full
degree vertex in T , if dG(v) = dT (v). We define a full degree spanning tree to
be a spanning tree with the maximum number of full degree vertices. One can
similarly define full degree spanning forest by replacing tree with forest in the
earlier definition.

A set I ⊆ V is called an independent set for G if no vertex v in I has a
neighbor in I.

3 Algorithm for Full Degree Spanning Tree

In this Section we give an exact algorithm for the FDST problem.
Given an input graph G = (V, E), the basic idea is that if we know a subset S

of V for which there exists a spanning tree T where all the vertices in S have full
degree then, given this set S, we can construct a spanning tree T where all the
vertices in S have full degree in polynomial time. Our first observation towards
this is that all the edges incident to the vertices in S, that is

ES = {uv ∈ E such that u ∈ S or v ∈ S } (1)

induce a forest. For our polynomial time algorithm we start with the forest
(V, ES) and then complete this forest into a spanning tree by adding edges to
connect the components of the forest. The last step can be done by using a
slightly modified version of the Spanning Tree algorithm of Kruskal [13] that
we denote by poly fdst(G, S).

The rest of the section is devoted to finding a largest subset of vertices S for
which we can find a spanning tree where the vertices of S have full degree.

Our algorithm follows a branching strategy and as a partial solution keeps a
set of vertices S for which there exists a spanning tree where the vertices in S
have full degree. The standard branching step chooses a vertex v that could be
included in S and then recursively tries to find a solution by including v in S
and not including v in S. But when v is not included in S, it cannot be removed
from further consideration as cycles involving v might be created later on in
(V, ES) by adding neighbors of v to S. Hence we resort to a coloring scheme
for the vertices, which can also be thought of as a partition of the vertex set of
the input graph. At any point of the execution of the algorithm, the vertices are
partitioned as below:

1. Selected S: The set of vertices which are decided to be of full degree.
2. Discarded D: The set of vertices which are not required to be of full degree.
3. Undecided U : The set of vertices which are neither in S nor D, that is those

vertices which are yet to be decided. So, U = V \ (S ∪ D).
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Next we define a generalized form of the FDST problem based on the above
partition of the vertex set. But before that we need the following definition.

Definition 1. Given a vertex set S ⊆ V , we define the partial spanning tree of
G induced by S as T (S) = (N [S], ES) where ES is defined as in Equation (1).

For our generalized problem, we denote by G = (S, D, U, E) the graph (V, E)
with vertex set V = S ∪ D ∪ U partitioned as above.

Generalized Full Degree Spanning Tree (GFDST): Given an in-
stance G = (S, D, U, E) such that T (S) is connected and acyclic, the objec-
tive is to find a spanning forest which maximizes the number of vertices of U
of full degree under the constraint that all the vertices in S have full degree.

If we start with a graph G, an instance of FDST, with the vertex partition
S = D = ∅ and U = V then the problem we will have at every intermediate step
of the recursive algorithm is GFDST. Also, note that a full degree spanning
forest of a connected graph can easily be extended to a full degree spanning tree
and that a full degree spanning tree is a full degree spanning forest.

As suggested earlier our algorithm is based on branching and will have some
reduction rules that can be applied in polynomial time, leading to a refined
partitioning of the vertices. Before we come to the detailed description of the
algorithm, we introduce a few more important definitions. For given sets S, D
and U , we say that an edge is

(a) unexplored if one of its endpoints is in U and the other one in U ∪ D,
(b) forced if at least one of its endpoints is in S, and
(c) superfluous if both its endpoints are in D.

The basic step of our algorithm chooses an undecided vertex u ∈ U and considers
two subcases that it solves recursively: either u is selected, that is u is moved
from U to S, or u is discarded, that is moved from U to D. But the main idea is
to choose a vertex in a way that the connectivity of T (S) is maintained in both
recursive calls. To do so we choose u from U ∩ N [N [S]]. This brings us to the
following definition.

Definition 2. The vertices in U ∩ N [N [S]] are called candidate vertices.

On the other hand, if S is not empty and the graph does not contain a candidate
vertex, then D can be partitioned into two sets: (a) those vertices in D that have
neighbors in S and (b) those that have neighbors in U . Superfluous edges (with
both endpoints in D) are removed by reduction rule R1 making G disconnected
in this case, and then the algorithm is executed on each connected component.

Now we are ready to describe the algorithm in details. We start with a pro-
cedure for reduction rules in the next subsection and prove that these rules are
correct.
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3.1 Reduction Rules

Given an instance G = (S, D, U, E) of GFDST, a reduced instance of G is
computed by the following procedure.

Reduce(G = (S, D, U, E))

R1 If there is a superfluous edge e, then return Reduce((S, D, U, E \ {e}))
R2 If there is a vertex u ∈ D ∪ U such that d(u) = 1, then remove the unique

edge e incident on it and return Reduce((S, D, U, E \ {e})).
R3 If there is an undecided vertex u ∈ U such that T (S ∪{u}) contains a cycle,

then discard u, that is return Reduce((S, D ∪ {u}, U \ {u}, E)).
R4 If there is a candidate vertex u that is incident to at most one vertex in

U ∪ D, then select u, and return Reduce((S ∪ {u}, D, U \ {u}, E)).
R5 If S = ∅ and there exists a vertex u ∈ U of degree 2, then select u and

return Reduce((S ∪ {u}, D, U \ {u}, E)).
R6 If there is a candidate vertex u of degree 2, then select u and return

Reduce((S ∪ {u}, D, U \ {u}, E)).
Else return G

Now we argue about the correctness of the reduction rules, more precisely that
there exists a spanning forest of G such that a maximum number of vertices
preserve their degree and the partitionning of the vertices into the sets S, D and
U of the graph resulting from a call to Reduce(G = (S, D, U, E)) is respected.
Note that the reduction rules are applied in the order of their appearance. The
correctness of R1 follows from the fact that discarded vertices are not required
to have full degree.

For the correctness of reduction rule R2, consider a vertex u ∈ D ∪ U of
degree 1 with unique neighbor w. Let G′ = (S, D, U, E \ {uw}) be the graph
resulting from the application of the reduction rule. Note that the edge uw
is not part of any cycle and that a full degree spanning forest of G can be
obtained from a full degree spanning forest of G′ by adding the edge uw. As
Algorithm poly fdst(G, S) adds edges to make the obtained spanning forest
into a spanning tree, the edge uw is added to the final solution.

For the correctness of reduction rule R3, it is enough to observe that if for a
subset S ⊆ V , there exists a spanning tree T such that all the vertices of S have
full degree then T (S) is a forest.

We prove the correctness of R4, R5 and R6 by the following lemmata.

Lemma 1. Let G = (V, E) be a graph and T be a full degree spanning forest for
G. If v ∈ V is a vertex of degree dG(v) − 1 in T , then there exists a full degree
spanning forest T ′ such that v has degree dG(v) in T ′.

Proof. Let u ∈ V be the neighbor of v such that uv is not an edge of T . Note
that both u and v do not have full degree in T , are not adjacent and belong
to the same tree in T . The last assertion follows from the fact that if u and v
belong to two different trees of T then one can safely add uv to T and obtain a
forest T ′ that has a larger number of full degree vertices, contradicting that T
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is a full degree spanning forest. Now, adding the edge uv to T creates a unique
cycle passing through u and v. We obtain the new forest T ′ by removing the
other edge incident to u on the cycle, say uw, w �= v. So, T ′ = T \ {uw} + {uv}.
The number of full degree vertices in T ′ is at least as high as in T as v becomes
a full degree vertex and at most one vertex, w, could become non full degree. 	


We also need a generalized version of Lemma 1.

Lemma 2. Let G = (S, D, U, E) be a graph and T be a full degree spanning
forest for G such that the vertices in S have full degree. Let v ∈ U a candidate
vertex such that its neighbors in D ∪ U are not incident to a forced edge. If v
has degree dG(v)− 1 in T , then there exists a full degree spanning forest T ′ such
that v has degree dG(v) in T ′ and the vertices in S have full degree.

Proof. The proof is similar to the one of Lemma 1. The only difference is that
we need to show that the vertices of S remain of full degree and for that we
need to show that all the edges of T (S) remain in T ′. To this observe that all
the edges incident to the neighbors of v in D ∪ U in T do not belong to edges of
T (S), that is they are not forced edges. So if uv is the unique edge incident to
v missing in T then we can add uv to T and remove the other non-forced edge
on u from the unique cycle in T + {uv} and get the desired T ′. 	


Now consider reduction rule R4. If u is a candidate vertex with unique neighbor
w in D ∪U then (a) u ∈ N(S) and (b) all the edges incident to w are not forced,
otherwise reduction rule R2 or R3 would have applied. Now the correctness of
the reduction rule follows from Lemma 2. The correctness proof of reduction
rule R6 is similar. Here u belongs to N [N [S]] ∩ U but all the edges incident to
its unique neighbor in V \ N [S] are not forced and again Lemma 2 comes into
play. To prove the correctness of reduction rule R5, we need to show that there
exists a spanning forest where u has full degree. Suppose not and let T be any
full degree spanning forest of G. Without loss of generality, suppose that u has
degree 1 in T (if u is an isolated vertex in T , then add one edge incident to u
to T ; this does not create any cycle in T and does not decrease the number of
vertices of full degree in T ). Let v be the unique neighbor of u in T . But since
S = ∅, there are no forced edges and we can apply Lemma 2 again and conclude.

This finishes the correctness proof of the reduction rules. Before we go into
the details of the algorithm we would like to point out that all our reduction
rules preserve the connectivity of T (S).

3.2 Algorithm

In this section we describe our algorithm in details. Given an instance G =
(S, D, U, E) of GDPST, our algorithm recursively solves the problem by choosing
a vertex u ∈ U and including u in S or in D and then returning as solution the
one which has maximum sized S. The algorithm has various cases based on the
number of unexplored edges incident to u.

Algorithm fdst(G), described below, returns a super-set S∗ of S correspond-
ing to the full degree vertices in a full degree spanning forest respecting the
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initial choices for S and D. After this, poly fdst(G, S∗) returns a full degree
spanning tree of G as described in the beginning of the section. The description
of the algorithm consists of the application of the reduction rules and a sequence
of cases. A case consists of a condition (first sentence) and a procedure to be
executed if the condition holds. The first case which applies is used in the algo-
rithm. Thus, inside a given case, the conditions of all previous cases are assumed
to be false.

fdst(G = (S, D, U, E))

Replace G by Reduce(G).
Case 1: U is a set of isolated vertices. Return S ∪ U .
Case 2: S = ∅. Choose a vertex u ∈ U of degree at least 3. Return the largest

set among fdst((S ∪{u}, D, U \{u}, E)) and fdst((S, D∪{u}, U \{u}, E)).
Case 3: G has at least 2 connected components, say G1, G2, · · · , Gk. Return⋃k

i=1 fdst((S ∩ V (Gi), D ∩ V (Gi), U ∩ V (Gi), E ∩ E(Gi))).
Case 4: There is a candidate vertex u with at least 3 unexplored incident edges.

Make two recursive calls: fdst((S ∪ {u}, D, U \ {u}, E)) and fdst((S, D ∪
{u}, U \ {u}, E)), and return the largest obtained set.

Case 5: There is a candidate vertex u with at least one neighbor v in U and
exactly two unexplored incident edges. Make two recursive calls: fdst((S ∪
{u}, D, U \ {u}, E)) and fdst((S, D ∪ {u, v}, U \ {u, v}, E)), and return the
largest obtained set.

From now on let v1 and v2 denote the discarded neighbors of a can-
didate vertex u (see Figure 1).

Case 6: Either v1 and v2 have a common neighbor x �= u; or
v1 (or v2) has a neighbor x �= u that is a candidate vertex; or
v1 (or v2) has a neighbor x of degree 2.
Make two recursive calls: fdst((S ∪ {u}, D, U \ {u}, E)) and fdst((S, D ∪
{u}, U \ {u}, E)), and return the largest obtained set.

Case 7: Both v1 and v2 have degree 2. Let w1 and w2 (w1 �= w2) be the other
(different from u) neighbors of v1 and v2 in U respectively. Make recursive
calls as usual, but also explore all the possibilities for w1 and w2 if u ∈ S.
When u is in S, recurse on all possible ways one can add a subset of A =
{w1, w2} to S. That is make recursive calls fdst((S, D ∪ {u}, U \ {u}, E))
and fdst((S ∪{u}∪X, D ∪ (A−X), U \ ({u}∪A), E)) for each independent
set X ⊆ A, and return the largest obtained set.

Case 8: At least one of {v1, v2} has degree ≥ 3. Let {u, w1, w2, w3} ⊆ N({v1, v2})
and let A = {w1, w2, w3}. Make recursive calls fdst((S, D∪{u}, U \{u}, E))
and fdst((S ∪{u}∪X, D ∪ (A−X), U \ ({u}∪A), E)) for each independent
set X ⊆ A, and return the largest obtained set.

4 Correctness and Time Complexity of the Algorithm

We prove the correctness and the time complexity of Algorithm fdst in the
following theorem.
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Fig. 1. Illustration of Case 7. Cases 6 and 8 are similar.

Theorem 1. Given an input graph G = (S, D, U, E) on n vertices such that
T (S) is connected and acyclic, Algorithm fdst returns a maximum size set S∗,
S ⊆ S∗ ⊆ S ∪ U such that there exists a spanning forest for G where all the
vertices in S∗ have full degree in time O(1.9172n).

Proof. The correctness of the reduction rules is described in Section 3.1. The
correctness of Case 1 follows, as any isolated vertex belonging to U has full
degree in any spanning forest. Similarly, the correctness of Case 3 follows from
the fact that any spanning forest of G is a spanning forest of each of the connected
components of G. The remaining cases, except Case 5, of Algorithm fdst are
branching steps where the algorithm chooses a vertex u ∈ U and tries both
possibilities: u ∈ S or u ∈ D. Sometimes the algorithm branches further by
looking at the local neighborhood of u and trying all possible ways these vertices
can be added to either S or D. Since all possibilities are tried to add vertices of
U to D or S in Cases 3, 4 and 6 to 8, these cases are correct and do not need
any further justifications. The correctness of Case 5 requires special attention.
Here we use the fact that there exists a full degree spanning forest with all the
vertices in S having full degree, such that either u ∈ S or u and its neighbor
v ∈ U are in D. We prove the correctness of this assertion by contradiction.
Suppose all the full degree spanning forests such that all the vertices in S are
of full degree have u of non full degree and v of full degree. But notice that
u ∈ N(S) (see R6) and all the neighbors of u in D ∪U do not have any incident
forced edges. Now we can use Lemma 2 to get a spanning forest which contains
u and is a full degree spanning forest with all the vertices in S having full degree.

Now we move on to the time complexity of the algorithm. The measure of
subproblems is generally chosen as a function of structure, like vertices, edges
or other graph parameters, which change during the recursive steps of the al-
gorithm. In our algorithm, this change is reflected when vertices are moved to
either S or D from U . The second observation is that any spanning tree on n
vertices has at most n − 1 edges and hence when we select a vertex in S we in-
crease the number of edges in T (S) and decrease the number of edges we can add
to T (S). Finally we also gain when the degree of a vertex becomes two because
reduction rules apply as soon as the degree 2 vertex becomes a candidate vertex.
Our measure is precisely a function of these three parameters and is defined as
follows:
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μ(G) = η|U2| + |U≥3| + αm′, (2)

where U2 is the subset of undecided vertices of degree 2, U≥3 is the subset of
undecided vertices of degree at least 3, m′ = n − 1 − |E(T (S))| is the number
of edges that can be added to the spanning tree and α = 0.372 and η = 0.5
are numerically obtained constants to optimize the running time. We write μ
instead of μ(G) if G is clear from the context. We prove that the problem can be
solved for an instance of size μ in time O(xμ) where x < 1.60702. As μ ≤ 1.372n,
the final running time of the algorithm will be O(x1.372n) = O(1.9172n). Denote
by P [μ] the maximum number of times the algorithm is called recursively on
a problem of size μ (i. e. the number of leaves in the search tree). Then the
running time T (μ) of the algorithm is bounded by P [μ] · nO(1) because in any
node of the search tree, the algorithm executes only a polynomial number of
steps. We use induction on μ to prove that P [μ] ≤ xμ. Then T (μ) = xμ · nO(1),
and since the polynomial is suppressed by rounding the exponential base, we
have T (μ) = O(1.60702μ). Clearly, P [0] = 1. Suppose that P [k] ≤ xk for every
k < μ and consider a problem of size μ. We remark that in all the branching
steps all the candidate vertices in U have degree at least 3, otherwise reduction
rules R5 or R6 would have applied.

Case 2: In this case, the number of vertices in U≥3 decreases by one in both
recursive calls and the number of edges in T (S) increases by at least 3 in the
first recursive call. Thus,

P [μ] ≤ P [μ − 1 − 3α] + P [μ − 1].

Case 3: Here we branch on different connected components of G, and hence

P [μ(G)] ≤
k∑

i=1

P [μ(Gi)].

Case 4: This case has the same recurrence as Case 2 as the number of vertices
in U≥3 decreases by one in both recursive calls and the number of edges in
T (S) increases by at least 3 in the first recursive call.

Case 5: When the algorithm adds u to S, the number of vertices in U≥3 de-
creases by one and the number of edges in T (S) increases by 2 while in the
other case, |U≥3| decreases by two as both u and v are candidate vertices.
So we get:

P [μ] ≤ P [μ − 1 − 2α] + P [μ − 2].

Case 6: When the algorithm adds u to S, reduction rule R3 or R6 applies to
x. We obtain the following recurrences, based on the degree of x:

P [μ] ≤ P [μ − 1 − η − 2α] + P [μ − 1],

P [μ] ≤ P [μ − 2 − 2α] + P [μ − 1].
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Case 7: In this case we distinguish two subcases based on the degrees of w1

and w2. Our first subcase is when either w1 or w2 has degree 3 and the other
subcase is when both w1 and w2 have degree at least 4. (Note that because
of Case 5, v1 and v2 do not have a common neighbor and do not have a
neighbor of degree 2). Suppose w1 has degree 3. When the algorithm adds u
to D, the edges uv1 and uv2 are removed (R1), the degree of v1 is reduced
to 1 and then reduction rule R2 is applied and makes w1 of degree 2. So, in
this subcase, μ decreases by 2 − η. The analysis of the remaining branches
is standard and we get the following recurrence:

P [μ] ≤ P [μ − 3 − 2α] + 2P [μ − 3 − 5α] + P [μ − 3 − 8α] + P [μ − 2 + η].

For the other subcase we get the following recurrence:

P [μ] ≤ P [μ − 3 − 2α] + 2P [μ − 3 − 6α] + P [μ − 3 − 10α] + P [μ − 1].

Case 8: This case is similar to Case 7 and we get the following recurrence:

P [μ] ≤ P [μ−4−2α]+3P [μ−4−5α]+3P [μ−4−8α]+P [μ−4−11α]+P [μ−1].

In each of these recurrences, P [μ] ≤ xμ which completes the proof of the
theorem. 	


The bottleneck of the analysis is the second recurrence in Case 7. Therefore,
an improvement of this case would lead to a faster algorithm.

5 Conclusion

In this paper we have given an exact algorithm for the Full Degree Span-

ning Tree problem. The most important feature of our algorithm is the way we
exploit connectivity arguments to reduce the size of the graph in the recursive
steps of the algorithm. We think that this idea of combining connectivity while
developing Branch & Reduce algorithms could be useful for various other non-
local problems and in particular for other NP-complete variants of the Spanning

Tree problem. Although the theoretical bound we obtained for our algorithm
seems to be only slightly better than a brute-force enumeration algorithm, prac-
tice shows that Branch & Reduce algorithms perform usually better than the
running time proved by a worst case analysis of the algorithm. Therefore we
believe that this algorithm, combined with good heuristics, could be useful in
practical applications.

One problem which we would like to mention here is Minimum Maximum

Degree Spanning Tree, where, given an input graph G, the objective is to
find a spanning tree T of G such that the maximum degree of T is minimized.
This problem is a generalization of the famous Hamiltonian Path problem for
which no algorithm faster than 2nnO(1) is known. It remains open to find even a
2nnO(1) time algorithm for the Minimum Maximum Degree Spanning Tree

problem.
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Abstract. A vertex coloring of a tree is called convex if each color in-
duces a connected component. The NP-hard Convex Recoloring prob-
lem on vertex-colored trees asks for a minimum-weight change of colors to
achieve a convex coloring. For the non-uniformly weighted model, where
the cost of changing a vertex v to color c depends on both v and c, we
improve the running time on trees from O(Δκ ·κn) to O(3κ ·κn), where Δ
is the maximum vertex degree of the input tree T , κ is the number of
colors, and n is the number of vertices in T . In the uniformly weighted
case, where costs depend only on the vertex to be recolored, one can
instead parameterize on the number of bad colors β ≤ κ, which is the
number of colors that do not already induce a connected component.
Here, we improve the running time from O(Δβ · βn) to O(3β · βn). For
the case where the weights are integers bounded by M , using fast subset
convolution, we further improve the running time with respect to the ex-
ponential part to O(2κ ·κ4n2M log2(nM)) and O(2β ·β4n2M log2(nM)),
respectively. Finally, we use fast subset convolution to improve the expo-
nential part of the running time of the related 1-Connected Coloring

Completion problem.

1 Introduction

The issue of recoloring vertex-colored graphs by a minimum-cost set of color
changes in order to achieve a desired property of the color classes such as being
connected has recently received considerable attention; approximation as well
as fixed-parameter algorithms have been developed for the corresponding NP-
hard problems [2, 7, 8, 15, 16, 20]. Here, we focus on exact fixed-parameter
algorithms [9, 11, 18] for two prominent types of these problems, significantly
improving on the associated exponential running time factors. The two types
of problems we investigate are as follows. First, we study vertex-colored trees
and the task is to recolor some of its vertices such that each color class forms
� Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research group
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a connected component. The problem was introduced by Moran and Snir [15],
and it concerns the major part of this work. The second type of problem is not
only concerned with trees, but with general graphs. However, here we cannot
recolor freely, but a subset of vertices is uncolored and the task is to complete
the coloring such that each color class forms a connected component [8].

Convex Recoloring. Most of this work deals with convex recoloring problems on
trees. The most general version, that is, non-uniformly weighted, is defined as
follows.

Convex Recoloring

Instance: A tree T = (V, E) with a vertex coloring C : V → C and a
weight function w : V × C → �+, where w(v, C(v)) = 0 for all v ∈ V .
Task: Find a convex coloring C′ : V → C with minimum weight
w(C′) :=

∑
v∈V w(v, C′(v)).

We defined Convex Recoloring only for trees. There are some positive
results for the special case of paths [15, 16], but there do not seem to be positive
results for general graphs (Moran et al. [17] considered the slightly more general
class of galled networks).

Let κ be the number of colors |C| and n the number of vertices |V |. Let β ≤ κ
be the number of bad colors, that is, colors that do not already induce a connected
component.

Convex Recoloring was introduced by Moran and Snir [15], who showed
that the decision version is NP-complete, even for unweighted paths. They also
gave an algorithm for non-uniformly weighted Convex Recoloring running
in O(Δκκn) time, where Δ is the maximum degree of the input graph. They
further gave an algorithm running in O((κ/ log κ)κ · κn4) time, thus showing
that the problem is fixed-parameter tractable with respect to the parameter κ.
For the uniformly weighted case, they showed that κ can be replaced by the
potentially smaller parameter β in these running times.

For the unweighted case, Razgon [20] gave an 256k · nO(1) time algorithm,
where k is the number of vertices recolored. This can be related to other results
by noting that k ≥ β/2 (every color change can make at most two bad colors
good). Bodlaender and Weyer [5] considered a different parameter, namely the
separation of colors �, which is the maximum number of colors separated by a
vertex, where we say that a vertex v separates a color c if there is a path between
two vertices of color c that passes through v. They presented a running time
of O(3� ·�3n). Since they showed that � ≤ k+1, this also improves Razgon’s result
to O(3k ·kn). Bar-Yehuda et al. [2] further improved the bound to O(2k ·kn+n2)
by doing a better analysis of a variant of the dynamic programming algorithm
of Moran and Snir [15]. Bodlaender et al. [6] showed a problem kernel with
O(k6) vertices, which was later improved to O(k2) vertices [7]. Finally, Moran
and Snir [16] gave a factor-3 approximation for the uniformly weighted case
running in O(κn2) time. This was improved to a (2 + ε)-approximation running
in O(n2 + n(1/ε)241/ε) time [2].



492 O. Ponta, F. Hüffner, and R. Niedermeier

Bachoore and Bodlaender [1] gave an O(4kn) time algorithm for the variant
where only the leaves are precolored.

Connected Coloring Completion. The second type of problem we study has only
recently been introduced by Chor et al. [8]; accordingly, so far less results are
known for this problem. As Convex Recoloring, it is motivated by applica-
tions in bioinformatics.

1-Connected Coloring Completion

Instance: A graph G = (V, E) with k uncolored vertices U ⊆ V and a
vertex coloring C : V \ U → C.
Task: Find a convex coloring C′ : V → C that extends C, that is, for
all v ∈ V \ U : C′(v) = C(v).

Chor et al. [8] also considered the more general r-Connected Coloring

Completion, where the goal is to find a coloring where each color induces
at most r connected components. They showed that 1-Connected Coloring

Completion is NP-hard, even for only two colors, but can be solved in O(8k ·k+
2k · kn) time on an n-vertex graph. They further showed that for the parameter
treewidth, r-Connected Coloring Completion is fixed-parameter tractable
for r = 1 but W[1]-hard for r ≥ 2.

Our contributions. The main purpose of this paper can be seen in “engineer-
ing” dynamic programs for weighted Convex Recoloring problems and for
(unweighted) 1-Connected Coloring Completion with respect to their ex-
ponential running time factors. To this end, we make use of two main techni-
cal tricks investigated in greater depth in the following two sections. First, we
observe how a method for tree problems originally going back to Maffioli [14]
(which meanwhile has found several applications, see, e.g., [4, 5]) also helps to
significantly speed up and somewhat simplify dynamic programming algorithms
for weighted convex recoloring problems. Second, we show how a recent general
breakthrough result of Björklund et al. [3] concerning a more efficient compu-
tation of subset convolutions can be tailored towards applying it to recoloring
problems.1 More specifically, for non-uniformly weighted Convex Recoloring

we improve a previous exponential factor of Δκ to 3κ and further on to 2κ, and
for uniformly weighted Convex Recoloring we improve a previous exponen-
tial factor of Δβ to 3β and further on to 2β; herein, Δ denotes the maximum
vertex degree in the tree. Note that the improvements from exponential base 3
to 2 come along with increased polynomial factors in the running time. Finally,
we also adapt the subset convolution trick to 1-Connected Coloring Com-

pletion in order to improve the previous exponential factor of 8k to 4k.

1 Lingas and Wahlen [13] recently presented an application in the context of subgraph
homeomorphism problems.
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2 Fine-Grained Dynamic Programming

The major part of this work is concerned with improvements for non-uniformly
and uniformly weighted Convex Recoloring based on a more efficient dy-
namic programming strategy. The essence of the underlying trick can be traced
back to work of Maffioli [14]. We start with the somewhat less technical case con-
cerning a dynamic program for non-uniformly weighted Convex Recoloring

with respect to the parameter “number of colors” and then extend our findings
to uniformly weighted Convex Recoloring with respect to the parameter
“number of bad colors”.

2.1 Non-uniformly Weighted Convex Recoloring

In this section, we show how to improve the running time of the dynamic pro-
gramming by Moran and Snir [15] from O(Δκ · κn) to O(3κ · κn), where κ is
the number of colors and n is the number of vertices in the input graph. The
dynamic programming works bottom-up from the leaves of the tree. The im-
provement comes from not considering all children of an inner vertex at once,
but rather taking them into account one-by-one. This is a classical trick for dy-
namic programming on trees (see e. g., [14, 5, 4]). A more detailed presentation
of our result is given in the thesis of Ponta [19].

We designate an arbitrary vertex r of T as the root. For each vertex v ∈ V , we
denote by Tv the subtree induced by v and all descendants of v. For a vertex v
with children w1, . . . , wp in an arbitrary but fixed order, we denote by Tv,i the
subtree induced by v, the first i children w1, . . . , wi of v, and all descendants of
w1, . . . , wi. Note that Tv,0 contains only the vertex v and that Tv,p equals Tv.

The basic structure of Moran and Snir’s original algorithm is preserved. The
algorithm visits the vertices in postorder. We start by determining the trivial
convex recolorings for the leaves of the tree and proceed with the computation of
weights of convex recolorings of subtrees Tv for internal vertices v in a bottom-up
fashion. A solution for Tv is constructed using the previously computed solutions
for the subtrees induced by the children of v. The way a solution for the extended
problem is computed differs from Moran and Snir’s algorithm and is the key to
the running time improvement.

For the description of the algorithm, we need two dynamic programming ta-
bles denoted by opt and optr. Let C′[Tv] be the set of colors appearing in the
subtree Tv.

Definition 1. Let v ∈ V and D ⊆ C be a set of colors. A recoloring C′ is a
(Tv, D)-coloring if it is a convex recoloring of Tv such that C′[Tv] = D. The cost
of an optimal (Tv, D)-coloring of Tv is denoted by opt(Tv, D).

If Tv has less than |D| vertices or D = ∅, then no (Tv, D)-coloring exists, and
we set opt(Tv, D) = ∞. A (Tv, D)-coloring is a convex recoloring of Tv that
uses exactly the colors from D. Thus, the cost of an optimal convex recoloring of
T can be calculated as minD⊆C opt(Tr, D). To retrieve the recoloring that realizes
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this cost, we can use standard dynamic programming backtracing methods. It
remains to describe how to fill in the dynamic programming table opt. For this,
we need a second table optr.

Definition 2. Let v ∈ V , D ⊆ C and c ∈ C. A recoloring C′ is a (Tv, D, c)-
coloring if it is a (Tv, D)-coloring such that C′(v) = c. The cost of an optimal
(Tv, D, c)-coloring is denoted by optr(Tv, D, c).

We set optr(Tv, D, c) = ∞ if c /∈ D. It is easy to calculate opt from optr:

opt(Tv, D) = min
c∈D

optr(Tv, D, c). (1)

For a subtree Tv consisting of only the vertex v, we set optr(Tv, {c}, c) = w(v, c)
and optr(Tv, D, c) = ∞ for D 	= {c}. For an interior vertex v with children
w1, . . . , wp, we inductively assume that the values optr(Twi , ·, ·) for 1 ≤ i ≤ p
are already calculated. We then iteratively calculate optr(Tv,i+1, ·, ·) for i =
0, . . . , p, obtaining optr(Tv, ·, ·) = optr(Tv,p, ·, ·). Thus, each iteration has to take
into account the subtree Twi+1 in addition to the subtree Tv,i considered in the
previous iteration. In contrast, Moran and Snir [15] take into account all child
subtrees at once. The childwise iterative approach to dynamic programming on
trees has also been used e. g. to find minimum-weight subtrees of a tree [14, 4]
or for unweighted Convex Recoloring with a different parameter [5]. In our
context, the technique allows to avoid the maximum vertex degree Δ in the base
of the exponential part of the running time of Moran and Snir’s algorithm.

For a simpler notation of the recurrence for optr(Tv,i+1, ·, ·), we define the
function optc(Twi+1 , D, c) for the (i + 1)th child wi+1 of v and D ⊆ C, v ∈ C as

optc(Twi+1 , D, c) = min{opt(Twi+1 , D \ {c}), optr(Twi+1 , D ∪ {c}, c)}. (2)

Thus, the value optc(Twi+1 , D, c) is the minimum cost of a convex recoloring C′

of Twi+1 that uses every color in D \ {c}, no color from C \ (D ∪ {c}), and uses
color c in Twi+1 only if C′(wi+1) = c.

The following lemma describes the central recurrence for optr.

Lemma 1. Let v be an interior vertex with children w1, . . . , wp. For any color
set D and any color c ∈ D it holds that

optr(Tv,i+1, D, c) = min
D1∪D2=D\{c}

D1∩D2=∅
(optr(Tv,i, D1∪{c}, c)+optc(Twi+1 , D2, c)). (3)

Proof. “≥”: Let C′ be an optimal (Tv,i+1, D, c)-coloring. The weight of the re-
coloring C′ is then w(C′) = optr(Tv,i+1, D, c). Let D′

1 = C′[Tv,i] \ {c} be the
set of colors different from c that C′ uses in the recoloring of Tv,i, and let
D′

2 = C′[Twi+1 ]\{c} be the set of colors different from c that C′ uses in the recol-
oring of Twi+1 . Given the fact that C′(v) = c and the convexity of (C′, Tv,i+1), it
follows that D′

1 ∩ D′
2 = ∅. By the definitions of the sets D′

1, D′
2, and D, it holds

that D′
1 ∪ D′

2 = D \ {c}.
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For a subtree T ′ of a tree T and a coloring C of T , let C|T ′ be the restric-
tion of C to the vertices of T ′. Since C′|Tv,i is a (Tv,i, D′

1, c)-coloring of Tv,i

and C′|Twi+1
is a (Twi+1 , D′

2)- or (Twi+1 , D′
2, c)-coloring of Twi+1 , it holds that

w(C′|Tv,i ) ≥ optr(Tv,i, D′
1 ∪ {c}, c) and w(C′|Twi+1

) ≥ optc(Twi+1 , D′
2, c). Conse-

quently, w(C′) is at least the right-hand side of (3).
“≤”: Consider D′

1 and D′
2 with D′

1 ∪ D′
2 = D \ {c} and D′

1 ∩ D′
2 = ∅ such

that the sum optr(Tv,i, D′
1 ∪ {c}, c) + optc(Twi+1 , D′

2, c) is minimized. Denote
with C′

v,i the recoloring of Tv,i witnessing the cost optr(Tv,i, D′
1 ∪ {c}, c) and

with C′
wi+1

the recoloring of Twi+1 witnessing the cost optc(Twi+1 , D′
2, c). We

can then combine C′
v,i and C′

wi+1
to obtain a coloring C′ for Tv,i+1. The weight

of C′ equals the right-hand side of (3). By construction, C′ is a convex recoloring
of Tv,i+1 that uses exactly the colors in D and has C′(v) = c. Thus, w(C′) is at
least optr(Tv,i+1, D, c). �

Theorem 1. Non-uniformly weighted Convex Recoloring can be solved in
O(3κ · κn) time for a tree with n vertices and κ colors.

Proof. We have shown how to solve non-uniformly weighted Convex Recol-

oring by dynamic programming using the recurrences (1), (2), and (3). By
visiting each vertex in postorder, it is possible to fill in opt, optc, and optr while
only accessing already calculated entries. It remains to bound the running time.
The bottleneck is clearly the calculation of (3). Since there are O(n) edges in a
tree, we have O(n) values for the first component Tv,i+1. For fixed c and Tv,i+1,
the computation of optr(Tv,i+1, D, c) effectively needs to examine all 3-ordered
partitions of C \ {c} of the form (C \ D, D1, D2); there are 3κ−1 such partitions.
In total, we arrive at the claimed running time. �

2.2 Uniformly Weighted Convex Recoloring

In this section, we show that for the uniformly weighted case, the parameter κ
(number of colors) can be replaced by β (number of bad colors) in the running
time of Theorem 1. This is particularly attractive for scenarios where the input is
already almost convex. Moran and Snir [15] have shown how to get an O(Δβ ·βn)
time algorithm from their O(Δκ · κn) time dynamic programming algorithm for
the non-uniformly weighted case. We show that analogously, our O(3κ · κn)
time algorithm (Theorem 1) can be improved to O(3β · βn) time for the non-
uniformly weighted case. The approach is similar to that of Moran and Snir, but
we considerably simplify some concepts and proofs.

When recoloring, typically good colors are overwritten by bad colors, in order
to connect different regions of a bad color. It is tempting to just restrict the
search of alternative colors to bad colors, which would reduce the size of the
dynamic programming tables defined in Sect. 2.1 and give the desired speedup
of replacing κ by β in the base of the exponential factor. However, this is not
correct: sometimes a bad color has to be overwritten with a good color in order
to wipe out a region of this bad color. The central observation of Moran and Snir
[15] is that when overwriting a color with a good color, we do not have to decide
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immediately which good color to use—the goal is after all only to get rid of the
bad color of the vertex that is being recolored. We capture this in the notion of
a restricted recoloring, which is a coloring V → C ∪ {∗}, where ∗ /∈ C serves to
mark vertices that are uncolored.2 It is easy to see that a standard recoloring
is convex iff all vertices on a path between two vertices with the same color c
also have color c. In analogy, we say that a restricted recoloring is convex iff all
vertices on a path between two vertices with the same color c 	= ∗ have color c.

In the uniform cost model, we can assign a cost to a restricted recoloring by
simply giving cost w(v) to the recoloring of v ∈ V with ∗ (this is not possible
in the non-uniform model, where cost also depends on the actual color used in
recoloring a vertex). The following lemma shows that to find an optimal convex
recoloring, it suffices to look for optimal restricted recolorings.

Lemma 2. In the uniformly weighted model, any convex restricted recoloring
can be converted in linear time into a convex recoloring of the same weight and
vice versa.

Proof. Given a convex restricted recoloring, we can fill in the colors of the un-
colored vertices by a depth-first search starting from some not uncolored vertex,
where we recolor an uncolored vertex with the color of its predecessor in the
search. This clearly produces a convex recoloring with the same weight.

The only way a convex recoloring Ĉ of a coloring C might not already be
a restricted recoloring is that some vertex color was overwritten with a good
color. We construct C′ from Ĉ by recoloring these vertices by ∗ instead. Clearly,
C′ has the same weight as Ĉ, and we claim that C′ is also convex. For this,
consider two vertices v1, v2 with C′(v1) = C′(v2) = c 	= ∗. By construction
of C′, then also Ĉ(v1) = Ĉ(v2) = c. Thus, every vertex on the path between v1

and v2 is colored c by Ĉ. If c is a bad color, then also every vertex on the path
between v1 and v2 is colored c by C′, since only good colors are used differently
between Ĉ and C′; if c is a good color, then Ĉ has left v1 and v2 unchanged
from C, and because c is a good color, any vertex between v1 and v2 must also
be colored c by C, and thus also by Ĉ and C′. In summary, every vertex on the
path between v1 and v2 is colored c by C′, and thus C′ is convex. �

By Lemma 2, it suffices to find the weight of an optimal restricted recoloring
to solve the uniformly weighted Convex Recoloring problem. The dynamic
programming from Sect. 2.1, based on the three tables opt, optr, and optc cal-
culated by the recurrences (1), (2), and (3) in tree postorder remains almost
unchanged. Therefore, we only point out the differences here.

Let B be the set of bad colors. The table opt now only covers restricted
colorings, that is, opt(Tv, D) is the weight of an optimal restricted coloring C′

such that for each c ∈ B there is a vertex x in Tv with C′(x) 	= C(x) and
C′(x) = c iff c ∈ D. Table optr is adapted analogously, and we additionally
allow ∗ as third argument. In the initialization, we also set optr(Tv, ∅, ∗) = w(v)

2 Moran and Snir [15] use the more complicated notion of a conservative recoloring.
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and optr(Tv, D, ∗) = ∞ for all D 	= ∅. For the case that c = ∗ in recurrence (3),
we use

optr(Tv,i+1, D, ∗) = min
D1∪D2=D
D1∩D2=∅

(optr(Tv,i, D1, ∗) + opt(Twi+1 , D2)). (4)

We omit the proof, which is analogous to that in Sect. 2.1.

Theorem 2. Uniformly weighted Convex Recoloring can be solved in O(3β ·
βn) time for a tree with n vertices and β bad colors.

3 Fast Subset Convolution

When we restrict the weights to be integers bounded by M , we can further
improve the exponential part of the running time for Convex Recoloring by
using fast subset convolution. This novel technique was developed by Björklund
et al. [3], who used it to speed up several dynamic programming algorithms such
as the classical Dreyfus–Wagner algorithm [10] for Steiner Tree in graphs. It
was also used to improve the speed of subgraph homeomorphism algorithms [13].

Let f and g be functions defined on the power set of a finite set N with
|N | = p, that is, f, g : P(N) → I. For any ring over I that defines addition and
multiplication on elements of I, the subset convolution of f and g, denoted by
f ∗ g, is defined for each S ⊆ N as

f ∗ g : P(N) → I, (f ∗ g)(S) =
∑

T⊆S

f(T )g(S \ T ). (5)

To calculate the subset convolution means to determine the value of f ∗ g
for all 2p possible inputs, assuming that f and g can be evaluated in constant
time (typically by being stored in a table). A naive algorithm that calculates
each value independently needs O(

∑p
i=0

(
p
i

)
2i) = O(3p) ring operations. The

following result shows a substantial improvement.

Theorem 3 (Björklund et al. [3]). The subset convolution over an arbitrary
ring can be computed with O(2p · p2) ring operations.

Björklund et al. [3] showed how to apply Theorem 3 to also calculate the
subset convolution for the integer min-sum semiring

f ∗ g : P(N) → �, (f ∗ g)(S) = min
T⊆S

f(T ) + g(S \ T ) (6)

by embedding it into the standard integer sum-product ring. Here, it is not
appropriate to assume that addition and multiplication can be done in constant
time, since the numbers involved can have up to n bits.3 Björklund et al. [3]
did not give a precise estimation, but it is not too hard to derive the following
bound from their Theorem 3 [3].

Proposition 1. The subset convolution over the integer min-sum ring with
M := maxi∈(f(P(N))∪g(P(N))) |i| can be computed in O(2p · p3M log2(Mp)) time.
3 To avoid complicated terms, we assume a bound of O(n log2 n) on the running time

of integer multiplication of two n-bit numbers. Better bounds are known [12].
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3.1 Convex Recoloring

We now use fast subset convolution over the integer min-sum to speed up the
dynamic programming for Convex Recoloring. Recall that the bottleneck in
deriving the running time of O(3κ · κn) (Theorem 1) comes from recurrence (3),
which we recall here:

optr(Tv,i+1, D, c) = min
D1∪D2=D\{c}

D1∩D2=∅
(optr(Tv,i, D1 ∪ {c}, c) + optc(Twi+1 , D2, c)).

Consider fixed Tv,i+1 and c. Then (3) can be seen as a subset convolution over the
integer min-sum semiring (like in (6)) by setting f c

v,i(D) = optr(Tv,i, D ∪ {c}, c)
and gc

wi+1(D) = optc(Twi+1 , D, c):

optr(Tv,i+1, D, c) = (f c
v,i ∗ gc

wi+1
)(D \ {c}). (7)

Theorem 4. The non-uniformly weighted Convex Recoloring problem with
integer weights bounded by M can be solved in O(2κ ·κ4n2M log2(nM)) time for
a tree with n vertices and κ colors.

Proof. We solve non-uniformly weighted Convex Recoloring by dynamic pro-
gramming using the recurrences (1), (2), and (3), where (3) is calculated by fast
subset convolution as in (7). Using Proposition 1, for fixed Tv,i+1 and c, we can
calculate (7) in O(2κ ·κ3nM log2(nM)) time, because the values of f c

v,i and gc
wi+1

are bounded by nM , since they are weights of recolorings, and κ ≤ n. The rest
of the analysis is as in Theorem 1. �

In the same way as for Theorem 2, we obtain a running time of O(2β · β4n2M
log2(nM)) for the uniformly weighted case.

Theorem 5. The uniformly weighted Convex Recoloring problem with in-
teger weights bounded by M can be solved in O(2β · β4n2M log2(nM)) time for
a tree with n vertices and β bad colors.

3.2 1-Connected Coloring Completion

Chor et al. [8] gave simple linear-time preprocessing rules that allow without
loss of generality to assume κ ≤ k, that is, there are at most as many colors as
uncolored vertices. The data reduction also collapses each maximal connected
monochromatic subgraph into a single vertex. Thus, the problem can be restated
as finding a coloring of the set U of uncolored vertices such that each color
induces a connected subgraph in U and each vertex in V \ U with color c is
adjacent to a vertex with color c in U .

Chor et al. [8] solved 1-Connected Coloring Completion by using a
binary-valued dynamic programming table T (C′, U ′) for C′ ⊆ C and U ′ ⊆ U
with the following semantics: T (C′, U ′) = 1 iff if it is possible to color U ′ with C′

such that each color c ∈ C′ induces a connected subgraph Gc in U that dominates
the vertices colored c in V \ U , meaning that each such vertex is adjacent to at



Speeding up Dynamic Programming 499

least one vertex in Gc. Thus, if T (C′, U ′) = 0, then it is not possible to solve
the instance by assigning (exclusively) the colors from C′ to the vertices in U ′;
but if T (C′, U ′) = 1, then solving the instance is still possible by finding a
suitable allocation of the remaining colors C \ C′ to the remaining uncolored
vertices U \U ′. Clearly, if T (C, U) = 1, then the instance is solvable, and we can
find the corresponding solution by backtracing.

Chor et al. [8] used the following recurrence to fill in T :

T (C′, U ′) = 1 ⇐⇒ ∃c ∈ C′, U ′′ ⊂ U ′ : T (C′ \ {c}, U ′′) = 1

and U ′ \ U ′′ induces a connected subgraph that
dominates the vertices of color c,

(8)

which can be simplified to

T (C′, U ′) =
∨

U ′′⊆U ′

(
T (C′ \ {c}, U ′′) ∧ T ({c}, U ′ \ U ′′)

)
(9)

for some c ∈ C′. To be able to calculate recurrence (9), we need all values of
T ({c}, U ′) for c ∈ C and U ′ ⊆ U . The calculation can clearly be done in O(2k ·kn)
time, since there are 2k ·k such entries, and each can be calculated in linear time.
A straightforward calculation of (9) for an entry then takes O(2k) time, and there
are 4k table entries, thus giving a total running time of O(8k + 2k · kn).

To speed up the exponential part of the calculation of (9), we use fast subset
convolution over the or-and semiring.

Proposition 2. The subset convolution over the or-and semiring

f ◦ g : P(N) → {0, 1}, (f ◦ g)(S) =
∨

T⊆S

f(T ) ∧ g(S \ T ) (10)

with |N | = p can be calculated in O(2p · p3 log2 p) time.

Proof. It holds that

(f ◦ g)(S) =
∨

T⊆S

f(T ) ∧ g(S \ T ) (11)

=

{
1 if maxT⊆S(f(T ) + g(S \ T )) = 2
0 otherwise

(12)

=

{
1 if (f ∗ g)(S) = 2
0 otherwise,

(13)

and the subset convolution “∗” in the integer min-sum semiring can be calculated
using Proposition 1 with M = 1. �

Next, we define

fC′(U ′) = T (C′ \ {c}, U ′) (14)
gC′(U ′) = T ({c}, U ′), (15)
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for some c ∈ C′, which gives us

T (C′, U ′) = (fC′ ◦ gC′)(U ′). (16)

Theorem 6. 1-Connected Coloring Completion can be solved in O(4k ·
k3 log2 k + 2k · kn) time.

Proof. By Proposition 2, for fixed C′, we can calculate (16) in O(2k · k3 log2 k)
time. There are 2k subsets C′ ⊆ C. Thus, together with the O(2k · kn) time for
the table initialization, we arrive at the claimed running time. �

4 Outlook

We improved known fixed-parameter tractability results based on dynamic pro-
gramming for several NP-hard recoloring problems in trees and graphs. These
problems are mainly motivated by applications in bioinformatics (particularly,
phylogenetics). The running times now seeming practically feasible, so it would
be desirable to experimentally test the algorithms on real-world data. In partic-
ular, it would be interesting to see how the improvements concerning the expo-
nential factors that have been achieved due to fast subset convolution pay off in
practice. Moreover, also the space consumption of our algorithms is exponential
and so memory space could become the real bottleneck in applications—this
invites further research on improvement strategies.
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[12] Fürer, M.: Faster integer multiplication. In: Proc. 39th STOC, pp. 57–66. ACM
Press, New York (2007)

[13] Lingas, A., Wahlen, M.: On exact complexity of subgraph homeomorphism. In:
Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 256–
261. Springer, Heidelberg (2007)

[14] Maffioli, F.: Finding a best subtree of a tree. Technical Report 91.041, Politecnico
di Milano, Dipartimento di Elettronica, Italy (1991)

[15] Moran, S., Snir, S.: Convex recolorings of strings and trees: Definitions, hardness
results and algorithms. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
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Abstract. A room is a simple polygon with a prespecified point, called
the door, on its boundary. Search may be conducted by two guards on the
boundary who keep mutual visibility at all times, or by a single boundary
searcher with a flashlight. Search starts at the door, and must detect any
intruder that was in the room at the time the search started, preventing
the intruder from escaping through the door. A room may or may not be
searchable, depending on where the door is placed or no matter where
the door is placed. We want to find all intervals on the boundary where
the door can be placed for the resultant room to be searchable. It is
known that this problem can be solved in O(n log n) time, if the given
polygon has n sides. We improve this complexity to O(n).

1 Introduction

Imagine intruders who move freely within a dark polygonal region. One or more
searchers, who are equipped with flashlights, try to detect them. It is assumed
that the intruders can move arbitrarily fast and try to escape detection. Suzuki
and Yamashita [1] formulated polygon search by introducing the k-searcher whose
vision is restricted to the beams from the k flashlights. The purpose of search is
to detect the intruders by eventually illuminating all of them. A searcher who
has 360o visibility and can illuminate an intruder in any direction is called an
∞-searcher.

In street search [2], two points on the polygon boundary, the entrance and the
exit, are prespecified. Two guards start moving in the opposite directions from
the entrance along the boundary, while maintaining mutual visibility. They may
move backwards from time to time, as long as each of them does not move
beyond the entrance and exit. The search completes when they meet at the exit.
A street is said to be walkable if every intruder is detected by the time the search
is completed. Heffernan [3] proposed a linear-time algorithm to check whether
a street is walkable. Tseng et al. [4] considered the problem of finding all the

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 502–513, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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pairs of entrance and exit to make the resultant street walkable. Bhattacharya
et al. [5] came up with the optimal algorithm for the same problem. In [6], Crass
et al. studied an ∞-searcher in an open-edge “corridor”, which uses edges as the
entrance and exit instead of vertices.

Another special case of polygon search is room search, which has been studied
extensively [7,8,9,10,11]. A room, denoted by P (d), is a simple polygon P with
a designated point d on its boundary, called the door, which is like the entrance
in street search. Unlike street search, however, no exit is prespecified. If two
boundary guards are used, they move on the boundary as in street search and
eventually meet somewhere on the boundary [9].

We may also use a boundary 1-searcher who can move only along the room
boundary, starting at the door [7]. An intruder is detected if he is illuminated by
the beam. We want to test if a given room P (d) is searchable by two guards or
a 1-searcher. We proposed a linear-time algorithm for checking whether a given
room is searchable by two guards in [12]. In [13], we also presented an O(n log n)
time algorithm for finding all the door locations for a given polygon to make the
resultant room searchable by two guards or a 1-searcher, respectively, where n is
the number of vertices of the polygon. In this paper, we show that this problem
can be solved in O(n) time. Other related work can be found in [8,10,11].

The paper is organized as follows. In Section 2, we introduce the notation
used throughout the paper, and review some basic concepts related to room
search. In particular, we review the visibility diagram. In Section 3, we discuss
the relation between a room’s searchability and its LR-visibility. In Section 4, we
analyze and characterize searchable rooms using the visibility diagram. Section 5
presents our linear-time algorithm for identifying a set of possible positions for
the door such that the resultant rooms are searchable by two guards. We then
extend our discussions to the 1-searcher case. Finally in Section 6, we summarize
our work. The full version of this paper, complete with all the proofs, is available
as a technical report [14].

2 Preliminaries

2.1 Notation

A simple polygon P is defined by a clockwise sequence of distinct vertices num-
bered 0, 1, · · · , n − 1, (n ≥ 3), and n edges, connecting adjacent vertices. The
edge between vertices u and v is denoted by (u, v). The boundary of P , denoted
by ∂P , consists of all its vertices and edges. The vertices immediately preced-
ing and succeeding vertex v in the clockwise order are denoted by Pred(v) and
Succ(v), respectively. For any two points a, b ∈ ∂P , the open and closed portions
of ∂P clockwise from a to b are denoted by ∂P (a, b) and ∂P [a, b], respectively.

A vertex whose interior angle between its two incident edges in the polygon is
more than 180o is called a reflex vertex. Consider reflex vertex r. Extend the edge
(Succ(r), r) toward the interior of P , and let B(r) ∈ ∂P denote the backward
extension point, where this extension leaves P for the first time. The polygonal
area formed by ∂P [r, B(r)] and the chord rB(r) is called the clockwise component
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associated with r, and is denoted by Ccw(r). Similarly, the extension of (Pred(r),
r) determines forward extension point, F (r), and the counter-clockwise compo-
nent, Cccw(r), associated with r is bounded by ∂P [F (r), r] and the chord rF (r).
If Ccw(r) (resp. Cccw(r)) does not totally contain any other clockwise (resp.,
counter-clockwise) component, it is said to be a non-redundant component.

Since our result in this paper makes use of some previous results, which are
based on the assumption that no three vertices of the polygon are collinear, and
no three lines defined by edges intersect in a common point, we adopt the same
assumption in our discussions.

2.2 Visibility Diagram and Skeleton V-Diagram

Two points u and v are said to be mutually visible if the line segment uv is
completely contained inside P , where we consider that ∂P is inside P . Given a
polygon P , we define a configuration to be an element in ∂P × ∂P [15]. We call
〈p, q〉 ∈ ∂P × ∂P a visible (resp. invisible) configuration, if p and q are mutually
visible (resp. invisible).

Let us pick an arbitrary point on the boundary ∂P as the origin, and measure
all distances along ∂P clockwise from the origin. Let |∂P | denote the length of
∂P . For x ∈ IR,1 x represents the point p(x) ∈ ∂P which is at distance x−k|∂P |
from the origin, where k is an integer such that 0 ≤ x − k|∂P | < |∂P |. We thus
can consider any x ∈ IR as representing point p(x) on ∂P . Note that there are
infinitely many real numbers x ∈ IR that represent the same point p(x) on ∂P .
Let x, y ∈ IR. Without loss of generality, we maintain one side of the beam (or the
line connecting two guards on the polygon boundary) clear of the intruders. As
the search progresses, x and y, which are the points on ∂P where the cleared area
ends, can be considered as real-valued functions x, y : [0, 1] → IR.2 A schedule is
a pair σ = (x(t), y(t)). Since the length of the cleared part on the boundary is at
most |∂P |, we impose the constraint x(t) − |∂P | ≤ y(t) ≤ x(t) for any t ∈ [0, 1].

The visibility space, denoted by V , consists of the infinite area between and
including the lines y = x (the start line S) and y = x − |∂P | (the goal line G),
as shown in Fig. 1 [16].3 The visibility diagram (V-diagram for short) for a given
polygon is drawn in the V-space by shading some areas in it gray as follows:
point (x, y) ∈ V is gray if configuration 〈x, y〉 is invisible. For example, Fig. 2 (b)
shows the V-diagram for the polygon in Fig. 2 (a). In the diagram, coordinate
(x, y) on line S or G is labeled by vertex v if x = � + k|∂P | and y = � + k′|∂P |
for some integers k and k′, where � is the distance of v from the origin on ∂P .

The straight-edge boundaries of the gray areas touching either the S line
of G line constitute the skeleton V-diagram (SV-diagram, for short). See the
highlighted line segments on the boundary of the gray areas in Fig. 2 (b). The
maximal contiguous white area in an SV-diagram is called a cell. A cell that has
either three or four sides is called a simple cell.
1 IR denotes the set of all real numbers.
2 We shall see in Section 3 that the formulation here naturally maps to the room

search by two guards.
3 The two dashed lines originating from point (d, d) will be discussed in Section 4.1.



A Linear-Time Algorithm 505

(d, d−L)

(d+L, d)
(d, d)

y=x−Ly=x

G
S

0
x

y

Fig. 1. Visibility space (L = |∂P |)

0

1

6 7 9

2
3

5 8 10

12

13

11

4

(a)

0
1

23

13

76
5

8
9

12

10
11

4

0
1

2
3

45
67

8
9

10
11

12
13

0
123 45 67 111098 1312 00

0

4

12
13

11
10

9
8

76
5

0

1
23

10
11
12
13
0

4
5
6

9
8
7

3
2
1
0

(b)

Fig. 2. (a) An example polygon; (b) Its V-diagram

3 Searchability and LR-Visibility

Given a polygon P , let d ∈ ∂P . Room P (d) is searchable by two boundary guards
if there exist two continuous functions � : [0, 1] → ∂P and r : [0, 1] → ∂P such
that [9]

(a) �(0) = r(0) = d and �(1) = r(1) ∈ ∂P ;
(b) For any t ∈ (0, 1), �(t) 	= r(t) and �(t) and r(t) are mutually visible; and
(c) For any t ∈ [0, 1], d ∈ ∂P [r(t), �(t)] holds. 
�

Functions �(t) and r(t), both of which are continuous, represent the positions
of the left guard and right guard4 on ∂P at t ∈ [0, 1], respectively. It is clear
from the above definition that, if a room is searchable, for any t ∈ [0, 1], the
partition of P that lies on the door side of the line segment �(t)r(t) is always
clear of intruders. If P (d) is searchable, we call d a safe door.

4 Viewed from door d.



506 J.Z. Zhang and T. Kameda

A polygon P is LR-visible if there exists a pair of points u and v on ∂P
such that ∂P (u, v) and ∂P (v, u) are mutually weakly visible, i.e., any point on
∂P (u, v) is visible to at least one point on ∂P (v, u) and vice versa [17]. If a
polygon is LR-visible, there is an O(n) time algorithm to determine all possible
pairs of maximal boundary chains {Ai, Bi}, i = 0, 1, · · · , m, such that for any
u ∈ Ai and any v ∈ Bi, P is LR-visible with respect to the pair {u, v} [17].

It is shown in [1] that if a simple polygon P is 1-searchable, there exists a pair
of vertices {u, v} such that P is weakly visible from the shortest path connecting
u and v, i.e., every point on the two sides of P partitioned by u and v can be
seen at least by one point on the shortest path connecting u and v. In this case,
it is clear that P is LR-visible with respect to u and v [18]. Similarly, there is a
relation between the searchability of a room and its LR-visibility.

Lemma 1. [9,10] Let v be a reflex vertex of a searchable room P (d). If d /∈
Ccw(v) (resp. d /∈ Cccw(v)), the final meeting place of the two guards p ∈ ∂P (v, d)
(resp. ∂P (d, v)). 
�

Lemma 2. If a room P (d) is searchable by two guards, P is LR-visible with
respect to d and a point p ∈ ∂P .

Proof. For the full proof, see [14]. 
�

Corollary 1. If d ∈ ∂P is a safe door, d is on some Ai or Bi. 
�

4 Searchability Analysis of a Room

4.1 A Simple Characterization

We investigate room search by two guards using the V-diagram introduced in
Section 2.2. Since no guard can move across the door at any time according to
condition (c) of the definition of a searchable room given in Section 3, configu-
ration 〈l(t), r(t)〉 is always within the V-space bounded by x ≥ d and y ≤ d. See
the triangular portion of the V-space bounded by the dashed lines in Fig. 1. The
initial configuration for the two guards 〈d, d〉 is represented by the only point
on S, called the door point, at the upper left corner of this triangular section.
The portion of the SV-diagram for room P (d) bounded by x ≥ d and y ≤ d is
called the visibility triangle for P (d) and denoted by VTP (d). Fig. 3 shows an
example. By convention, we label point (x, x) on the diagonal by x.

By definition, in a searchable room P (d), all the configurations in {〈l(t), r(t)〉 |
t ∈ (0, 1)} correspond to white points in the V-diagram. Thus, the following
proposition follows immediately [16].

Proposition 1. A room is searchable by two boundary guards if and only if
there exists a cell in VTP (d) that touches both the door point and the diagonal
side. 
�

A cell in VTP (d) that does not touch both the door point and the diagonal
side is called a blocking cell. We call a blocking cell that has either three sides
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Fig. 3. The visibility triangle where vertex 12 is considered as the door for the polygon
in Fig. 2

(a triangle) or four sides (a rectangle) a simple blocking cell.5 Note that in Fig. 3,
for example, the blocking cell to the right of the vertical line segment extending
from vertex 5 on the diagonal G and bounded by the two horizontal line segments
at vertices 8 and 11 does not touch G at 8, since the line segments have non-zero
width.

(b) (c) (d)(a)

r’r’

r

r’

r

r’

rr

d d d d
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rr’
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Fig. 4. Simple blocking cells that touch the door point

All the simple blocking cell patterns that touch the door point are shown in
Fig. 4. In Fig. 4 (a) (resp. Fig. 4 (b)) there are two reflex vertices whose clockwise
(resp. counter-clockwise) components are disjoint from each other. In Fig. 4 (c)
there are two reflex vertices such that the clockwise component of one is disjoint
from the counter-clockwise component of the other. The two arrows in Fig. 4 (d)
need not intersect.

It follows immediately from Proposition 1 that if P (d) contains any pattern
in Fig. 4, P (d) is not searchable by two boundary guards. However, Fig. 4 does
not exhaust all the possible cases where P (d) is not searchable. Let us call an
interval on the diagonal that is touched by a simple blocking cell (a triangle) an
5 There may be other “dangling” line segments inside a simple blocking cell.



508 J.Z. Zhang and T. Kameda

d

d d

d

rr

(b)

r r

d

(c)

d

r

d

d

r

r

d

r’r

r’

r

d

(a)d

d
r’

r

d

r
r’

(d)

r

r’

d

r

r’

d

r’

d

d

r

(e)

r’

d

d

d
r’

r

r

Fig. 5. Simple blocking cells that touch the diagonal

unreachable interval. An interval that is not unreachable is called reachable. Fig. 5
shows all the simple blocking cell patterns that cause unreachable intervals [13].
In the figure, the unreachable intervals are indicated by dashed line segments
(in the bottom half of the figure), and the corresponding boundary portions are
indicated by dotted curves (in the top half of the figure).

In Fig. 5 we show the visibility triangles embedded in V-diagrams. Note that
the unreachable intervals of Fig. 5 (a) and (b) appear in (d) and (e), respectively,
as well. In addition, Fig. 5 (a), (d), and (e) appear in Fig. 4 but the positions of
d are different in the two figures.

The following theorem characterizes a safe door.

Theorem 1. [13] Room P (d) is searchable by two boundary guards if and only
if

(a) no simple blocking cell touches the door point, and
(b) there exists a point in a reachable interval on the diagonal of VTP (d). 
�

4.2 A Linear-Time Testing Algorithm

Suppose the given P is LR-visible with respect to some pair of vertices. Then
all the pairs of maximal boundary chains {{Ai, Bi} | i = 1, 2, · · · , m}, such that
for any s ∈ Ai and any t ∈ Bi, P is LR-visible with respect to the pair {s, t},
can be computed in O(n) time [17]. In [12] we made use of the LR-visibility of
a searchable room in our linear-time algorithm for checking if a given room is
searchable by two guards. Below we present our algorithm as a procedure [13].
Its major goal is to detect the patterns in Fig. 5 (d) and (e) in linear time. We
focus on the pattern in Fig. 5 (d), since the one in Fig. 5 (e) can be treated
symmetrically. We will use this procedure in Section 5.

We first construct two lists in linear time: Lcw is a list of reflex vertices
on ∂P (d, p) that cause non-redundant clockwise components, ordered counter-
clockwise from p to d, while Rcw is a list of all reflex vertices on ∂P (p, d) ordered
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clockwise from p to d. We now modify Rcw to construct a new list Rcw by
merging Rcw and {B(u) | u ∈ Lcw} and appending d at the end. If Lcw could
be augmented by {B(u) | u ∈ Rcw}, it would be easy to find the farthest r′, but
it would require O(n log n) time to do so [13], because Rcw may contain reflex
vertices that cause redundant clockwise components. Our aim is to do away with
the computation of {B(u) | u ∈ Rcw}, since we do not know how to do it in
linear time. We use variables Pr and Pl, initialized to the first element of Rcw

and to be null (Λ), respectively, in order to scan Rcw and Lcw, respectively. We
maintain another variable, v, to remember the “current” reflex vertex in Lcw.

Procedure Farthest(d)

1. While Pr = B(u) for some vertex u do {v = u; advance Pr};
2. If Pr = d no pattern in Fig. 5 (d) is present (stop);
3. If Pr and v are mutually visible, set w = v. Otherwise, go to step 6;
4. If r = w and r′ = Pr form the pattern of Fig. 5 (d), Pr is the farthest vertex

(stop);6
5. Advance Pr to the next element in Rcw and go to Step 1;
6. If Pl = Λ, set Pl = v;
7. While Pl and Pr are not mutually visible {advance Pl to the next element

in Lcw};
8. Set w = Pl and go to Step 4; 
�

5 A Linear-Time Algorithm for Finding all Safe Door
Locations

We presented an O(n log n) solution to the problem of finding all safe doors
in [13]. Here we present an optimal O(n) algorithm in five steps, by reusing the
same visibility information for all candidate door positions. If a polygon is not
LR-visible, by Lemma 2 there can be no safe door. Therefore, we shall always
assume that the given polygon is LR-visible.

5.1 Critical Points and Sections

We define a section to be the part of the polygon boundary between two ad-
jacent critical points. Observe in Fig. 5 (d) that, as we slide an imaginary d
clockwise from r′, the interval ∂P (r′, r) remains unreachable as long as d is
within ∂P (r′, r). In other words, ∂P (r′, r) remains unreachable for the range of
d bounded by the two reflex vertices r′ and r. This means that the safety of any
door position on ∂P (r′, r) is not affected by the position of B(r′). Note that the
clockwise component from r′ could be redundant. A similar observation applies
to r in Fig. 5 (e), due to its symmetry to Fig. 5 (d). Therefore, we do not need
to consider the extension points from the reflex vertices whose components are
redundant. Note that we do need to consider the reflex vertices themselves.

Proposition 2. The points in a section are either all safe or all unsafe. 
�
6 To test this condition efficiently, determine if the extension of edge (Succ(Pr), Pr)

is to the left of line segment Prw viewed from Pr and Pr �= B(w).
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5.2 Data Structures

We maintain two lists, Candidates and Sections, and an array A[ ]. Candidates
initially contains one representative door position for each section, and unsafe
positions will be deleted from it as they become known. Candidates functions
as an index for Sections. The entry of Sections corresponding to a candidate
door d in Candidates contains at most two maximal unreachable intervals that
are currently known for d.

The edge (i, i + 1) will be numbered i, where i = 0, 1, . . . , n − 1. A[ ] is an
array indexed by the vertex number. If edge i is in interval ∂P (r, r′) for any
pair of reflex vertices r and r′ in the pattern shown in Fig. 5 (a) components
A[i].cw and A[i].ccw will store the clockwise and counter-clockwise end (reflex)
vertices, respectively, of the maximal unreachable interval on which edge i lies.
Otherwise, we set A[i].cw = A[i].ccw = i. We can construct A[ ] in linear time.

5.3 Patterns in Fig. 4 and Fig. 5 (a)

By condition (a) of Theorem 1, point d in any of the figures in Fig. 4 is unsafe.

Step 1: Determine the critical points by computing the extension points of all
the reflex vertices that cause non-redundant components. Construct Candidates
by placing one representative door position for each section, excluding the sec-
tions that are unsafe, according to Fig. 4. 
�

Since we assume the given polygon is LR-visible, we can compute the Ais and
Bis in O(n) time. By deleting from Candidates all positions that do not belong
to any Ai or Bi (see Corollary 1), we eliminate all candidates that are positioned
as d in Figs. 4 (a), (b), or (c). As a result of Step 1, a safe d can only be in the
clockwise component due to r or r′.

Step 2: Referring to the deadlock intervals in Fig. 5 (a), construct array A[ ]. 
�

5.4 Patterns in Fig. 5 (b)-(e)

Fig. 5 (b) and (c) are shown combined in Fig. 6 (a), and Fig. 5 (d) and (e) are
shown combined in Fig. 6 (b).

We now construct the entry of Sections for each representative door d. It
consists of at most two unreachable intervals on the diagonal of visibility triangle
VTP (d). They are of the form (rH(d), d) or (d, rL(d), if any. In Fig. 6, rH(d)
and rL(d) are the farthest reflex vertices from d that cause such patterns [13].
Thus the intervals ∂P (d, rL(d)) and ∂P (rH(d), d) are unreachable. We update
the unreachable intervals in the entry of Sections corresponding to d by Steps 3
and 4. Clearly, if the union of the unreachable intervals in the entry for position
d and those in A[ ] spans the entire boundary, d is unsafe.

Step 3: For each point d in Candidates, compute rL(d) and rH(d) of Fig. 6 (a),
by determining the farthest (clockwise from d) non-redundant clockwise compo-
nent and the farthest (counter-clockwise from d) non-redundant counter-clockwise
component, respectively. 
�
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We can partition Candidates into two groups: group Gd
1 consists of those

door positions belonging to the same clockwise components as d and group Gd
2

consists of the rest. Note that all door positions in Gd
1 (resp. Gd

2) share the same
farthest rH . This implies that we can invoke procedure Farthest(d) for one
representative d from each group.

The pattern in Fig. 5 (e) can be treated similarly to determine rL(d) for each
d ∈ Candidates.

Step 4: Pick an element d from Candidates and determine the two groups, Gd
1

and Gd
2, defined above. Update rL(d′) and rH(d′) for each d′ in Sections. 
�

5.5 Final Step

All the information needed to determine the safety of the doors in Candidates
is contained in A[ ] and Sections. We now need to compute the union of the un-
reachable intervals on the diagonal, if they overlap. We then test if the resulting
unreachable interval equals the entire boundary.

Step 5: For each entry (let it be the entry for representative door d) in Sections
do the following:

1. If either rL(d) = d or rH(d) = d, the diagonal is reachable and d is safe. Stop
2. Using rL(d) and rH(d) as indices into array A[ ], find A[rL(d)].cw and

A[rH(d)].ccw. If, starting clockwise from d, A[rH(d)].ccw is encountered be-
fore A[rL(d)].cw, door d is unsafe and otherwise it is safe. 
�

Theorem 2. Given polygon P with n vertices, we can identify in O(n) time all
the safe door locations when two boundary guards search. 
�

5.6 Extension to 1-Searcher Case

A boundary 1-searcher always moves on the polygon boundary, starting from the
door, aiming her flashlight at the other side of the door. Her vision is restricted
to the beam (inside the polygon) from the flashlight, up to the point where it
leaves the polygon for the first time. In the 1-searcher case, we need to consider
the beam head jump [15,16]. The following results are immediate [14].
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Theorem 3. Room P (d) is searchable by a boundary 1-searcher if and only if

(a) no simple blocking cell touches the door point, and
(b) the unreachable intervals caused by the patterns in Figs. 5 (a)-(d) do not

span the entire boundary ∂P . 
�

Theorem 4. Given polygon P with n vertices, we can identify in O(n) time all
the safe door locations when a boundary 1-searcher searches. 
�

6 Conclusion

The ultimate objective of our research on polygon search is to characterize the
sets of polygons that can be searched by a given number of k-searchers or guards
and generate search schedules in an efficient way. For some special cases where
k = 1 or 2, or where there are other restrictions (such as streets or rooms),
several interesting results are known, thanks to recent research effort by many
researchers.

As for room search, it is now fairly well-understood, and an O(n) time algo-
rithm is known for testing if a given door on a given polygon is safe, i.e., it makes
the room searchable by two guards. There is also an O(n log n) time algorithm
to find all such safe door locations. We have shown in this paper that all the
safe doors can be found in O(n) time, in other words, we can do so in the most
efficient way. In a sense this concludes research on the room search problem by
two guards or a 1-searcher.
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Abstract. We study the complexity of automatic structures via well-
established concepts from both logic and model theory, including ordinal
heights (of well-founded relations), Scott ranks of structures, and Cantor-
Bendixson ranks (of trees). We prove the following results: 1) The ordi-
nal height of any automatic well-founded partial order is bounded by ωω;
2) The ordinal heights of automatic well-founded relations are unbounded
below ωCK

1 ; 3) For any infinite computable ordinal α, there is an auto-
matic structure of Scott rank at least α. Moreover, there are automatic
structures of Scott rank ωCK

1 , ωCK
1 + 1; 4) For any ordinal α < ωCK

1 ,
there is an automatic successor tree of Cantor-Bendixson rank α.

1 Introduction

In recent years, there has been increasing interest in the study of structures that
can be presented by automata. The underlying idea is to apply techniques of
automata theory to decision problems that arise in logic and applications such
as databases and verification. A typical decision problem is the model checking
problem: for a structure A (e.g. a graph), design an algorithm that, given a for-
mula φ(x̄) in a formal system and a tuple ā from the structure, decides if φ(ā)
is true in A. In particular, when the formal system is the first order predicate
logic or the monadic second order logic, we would like to know if the theory of
the structure is decidable. Fundamental early results in this direction by Büchi
([4], [5]) and Rabin ([20]) proved the decidability of the monadic second order
theories of the successor on the natural numbers and of the binary tree. There
have been numerous applications and extensions of these results in logic, alge-
bra, verification, model checking, and databases (see, for example, [9] [23] [24]
and [25]). Moreover, automatic structures provide a theoretical framework for
constraint databases over discrete domains such as strings and trees [1].

M. Agrawal et al. (Eds.): TAMC 2008, LNCS 4978, pp. 514–525, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Model Theoretic Complexity of Automatic Structures 515

A structure A = (A; R0, . . . , Rm) is automatic if the domain A and all the
relations R0, . . . , Rm of the structure are recognised by finite automata (pre-
cise definitions are in the next section). Independently, Hodgson [13] and later
Khoussainov and Nerode [14] proved that for any given automatic structure
there is an algorithm that solves the model checking problem for the first order
logic. In particular, the first order theory of the structure is decidable. There is a
body of work devoted to the study of resource-bounded complexity of the model
checking problem for automatic structures. Most current results demonstrate
that automatic structures are not complex in various concrete senses. However,
in this paper we use well-established concepts from both logic and model theory
to prove results in the opposite direction. We now briefly describe the measures
of complexity we use (ordinal heights of well-founded relations, Scott ranks of
structures, and Cantor-Bendixson ranks of trees) and connect them with the
results of this paper.

A relationR is called well-founded if there is no infinite sequence x1, x2, x3, . . .
such that (xi+1, xi) ∈ R for i ∈ ω. In computer science, well-founded relations are
of interest due to a natural connection between well-founded sets and terminat-
ing programs. We say that a program is terminating if every computation from
an initial state is finite. This is equivalent to well-foundedness of the collection
of states reachable from the initial state, under the reachability relation [3]. The
ordinal height is a measure of the depth of well-founded relations. Since all au-
tomatic structures are computable, the obvious bound for ordinal heights of auto-
matic well-founded relations is ωCK

1 (the first non-computable ordinal). Sections
3 and 4 study the sharpness of this bound. Theorem 1 characterizes automatic
well-founded partial orders in terms of their ordinal heights, whereas Theorem 2
shows that ωCK

1 is the sharp bound in the general case.

Theorem 1. For each ordinal α, α is the ordinal height of an automatic well-
founded partial order if and only if α < ωω.

Theorem 2. For each (computable) ordinal α < ωCK
1 , there is an automatic

well-founded relation A whose ordinal height is greater than α.

Section 5 is devoted to building automatic structures with high Scott ranks. The
concept of Scott rank comes from a well-known theorem of Scott stating that
for every countable structure A there exists a sentence φ in Lω1,ω-logic which
characterizes A up to isomorphism [22]. The minimal quantifier rank of such a
formula is called the Scott rank of A. A known upper bound on the Scott rank
of computable structures implies that the Scott rank of automatic structures is
at most ωCK

1 + 1. But, until now, all the known examples of automatic struc-
tures had low Scott ranks. Results in [19], [7], [17] suggest that the Scott ranks
of automatic structures could be bounded by small ordinals. This intuition is
falsified in Section 5 with the theorem:

Theorem 3. For each infinite computable ordinal α there is an automatic struc-
ture of Scott rank at least α.
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In the last section, we investigate the Cantor-Bendixson ranks of automatic
trees. A partial order tree is a partially ordered set (T, ≤) such that there
is a ≤-minimal element of T , and each subset {x ∈ T : x ≤ y} is finite and
is linearly ordered under ≤. A successor tree is a pair (T, S) such that the
reflexive and transitive closure ≤S of S produces a partial order tree (T, ≤S).
The derivative of a tree T is obtained by removing all the nonbranching paths
of the tree. One applies the derivative operation to T successively until a fixed
point is reached. The minimal ordinal that is needed to reach the fixed point is
called the Cantor-Bendixson (CB) rank of the tree. The CB rank plays an
important role in logic, algebra, and topology. Informally, the CB rank tells us
how far the structure is from algorithmically (or algebraically) simple structures.
Again, the obvious bound on CB ranks of automatic successor trees is ωCK

1 . In
[16], it is proved that the CB rank of any automatic partial order tree is finite
and can be computed from the automaton for the ≤ relation on the tree. It has
been an open question whether the CB ranks of automatic successor trees can
be bounded by small ordinals. We answer this question in the following theorem.

Theorem 4. For α < ωCK
1 there is an automatic successor tree of CB rank α.

The main tool we use to prove results about high ranks is the configuration spaces
of Turing machines, considered as automatic graphs. It is important to note that
graphs which arise as configuration spaces have very low model-theoretic com-
plexity: their Scott ranks are at most 3, and if they are well-founded then their
ordinal heights are at most ω (see Propositions 1 and 2). Hence, the configu-
ration spaces serve merely as building blocks in the construction of automatic
structures with high complexity, rather than contributing materially to the high
complexity themselves.

2 Preliminaries

A (relational) vocabulary is a finite sequence (Pm1
1 , . . . , Pmt

t , c1, . . . , cs), where
each P

mj

j is a predicate symbol of arity mj > 0, and each ck is a constant symbol.
A structure with this vocabulary is a tuple A = (A; PA

1 , . . . , PA
t , cA1 , . . . , cAs ),

where PA
j and cAk are interpretations of the symbols of the vocabulary. When

convenient, we may omit the superscripts A. We only consider infinite structures.
A finite automaton M over an alphabet Σ is a tuple (S, ι, Δ, F ), where

S is a finite set of states, ι ∈ S is the initial state, Δ ⊂ S × Σ × S is the
transition table, and F ⊂ S is the set of final states. A computation of A
on a word σ1σ2 . . . σn (σi ∈ Σ) is a sequence of states, say q0, q1, . . . , qn, such
that q0 = ι and (qi, σi+1, qi+1) ∈ Δ for all i ∈ {0, . . . , n − 1}. If qn ∈ F , then the
computation is successful and we say that automaton M accepts the word
σ1σ2 . . . σn. The language accepted by the automaton M is the set of all words
accepted by M. In general, D ⊂ Σ� is finite automaton recognisable, or
regular, if D is the language accepted by some finite automaton M.

To define automaton recognisable relations, we use n-variable (or n-tape) au-
tomata. An n–tape automaton can be thought of as a one-way Turing machine
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with n input tapes [8]. Each tape is regarded as semi-infinite, having written on it
a word over the alphabet Σ followed by an infinite succession of blanks (denoted
by � symbols). The automaton starts in the initial state, reads simultaneously
the first symbol of each tape, changes state, reads simultaneously the second
symbol of each tape, changes state, etc., until it reads a blank on each tape. The
automaton then stops and accepts the n–tuple of words if it is in a final state.
The set of all n–tuples accepted by the automaton is the relation recognised by
the automaton. For a formal definition see, for example, [14].

Definition 1. A structure A = (A; R0, R1, . . . , Rm) is automatic over Σ if its
domain A and all relations R0, R1, . . ., Rm are regular over Σ.

The configuration graph of any Turing machine is an example of an automatic
structure. The graph is defined by letting the configurations of the Turing ma-
chine be the vertices, and putting an edge from configuration c1 to configuration
c2 if the machine can make an instantaneous move from c1 to c2. Many exam-
ples of automatic structures can be formed using the ω-fold disjoint union of a
structure A (the disjoint union of ω many copies of A).

Lemma 1. [21] If A is automatic then its ω-fold disjoint union is isomorphic
to an automatic structure. ��
The class of automatic structures is a proper subclass of the computable struc-
tures. In this paper, we will be coding computable structures into automatic
ones. Good references for the theory of computable structures include [11], [15].

Definition 2. A computable structure is a structure A = (A; R1, . . . , Rm)
whose domain and relations are all computable.

The domains of computable structures can always be identified with the set ω
of natural numbers. Under this assumption, we introduce new constant symbols
cn for each n ∈ ω and interpret cn as n. In this context, A is computable iff the
atomic diagram of A (the set of Gödel numbers of all quantifier-free sentences
in the extended vocabulary that are true in A) is computable.

3 Ranks of Automatic Well-Founded Partial Orders

In this section we consider structures A = (A; R) with a single binary relation.
An element x is said to be R-minimal for a set X if for each y ∈ X , (y, x) /∈ R.
The relation R is said to be well-founded if every non-empty subset of A has
an R-minimal element. This is equivalent to saying that (A; R) has no infinite
chains x1, x2, x3, . . . where (xi+1, xi) ∈ R for all i.

A ranking function for A is an ordinal-valued function f such that f(y) <
f(x) whenever (y, x) ∈ R. For f a ranking function on A, let ord(f) = sup{f(x) :
x ∈ A}. The structure A is well-founded if and only if A admits a ranking
function. The ordinal height of A, denoted r(A), is the least ordinal α which
is ord(g) for some ranking function g on A. For B ⊆ A, we write r(B) for the
ordinal height of the structure obtained by restricting R to B. Recall that if
α < ωCK

1 then α is a computable ordinal.
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Lemma 2. If α < ωCK
1 , there is a computable well-founded relation of ordinal

height α.

Lemma 2 amounts to taking a computable copy of any linear order of type α.
The next lemma follows easily from well-foundedness of ordinals and of R.

Lemma 3. For a structure A = (A; R) where R is well-founded, if r(A) = α
and β < α then there is an x ∈ A such that rA(x) = β. ��

For the remainder of this section, we assume further that R is a partial order. For
convenience, we write ≤ instead of R. Thus, we consider automatic well-founded
partial orders A = (A, ≤). We will use the notion of natural sum of ordinals.
The natural sum of ordinals α, β (denoted α +′ β) is defined recursively: α +′ β
is the least ordinal strictly greater than γ +′ β for all γ < α and strictly greater
than α +′ γ for all γ < β.

Lemma 4. Let A1 and A2 be disjoint subsets of A such that A = A1 ∪ A2.
Consider the partially ordered sets A1 = (A1, ≤1) and A2 = (A2, ≤2) obtained by
restricting ≤ to A1 and A2 respectively. Then, r(A) ≤ α1+′α2, where αi = r(Ai).

Proof. We will show that there is a ranking function on A whose range is
contained in the ordinal α1 +′ α2. For each x ∈ A consider the partially or-
dered sets A1,x and A2,x obtained by restricting ≤ to {z ∈ A1 | z < x} and
{z ∈ A2 | z < x}, respectively. Define f(x) = r(A1,x) +′ r(A2,x). It is not hard
to see that f is the desired ranking function. ��

Corollary 1. If r(A) = ωn and A = A1 ∪ A2, where A1 ∩ A2 = ∅, then either
r(A1) = ωn or r(A2) = ωn. ��

Khoussainov and Nerode [14] show that, for each n, there is an automatic pre-
sentation of the ordinal ωn. It is clear that such a presentation has ordinal height
ωn. The next theorem shows that ωω is the sharp bound on ranks of all auto-
matic well-founded partial orders. Now that Corollary 1 has been established,
the proof of Theorem 1 follows Delhommé [7] and Rubin [21].

Theorem 1. For each ordinal α, α is the ordinal height of an automatic well-
founded partial order if and only if α < ωω.

Proof. One direction of the proof is clear. For the other, assume for a contra-
diction that there is an automatic well-founded partial order A = (A, ≤) with
r(A) = α ≥ ωω. Let (SA, ιA, ΔA, FA) and (S≤, ι≤, Δ≤, F≤) be finite automata
over Σ recognizing A and ≤ (respectively). By Lemma 3, for each n > 0 there
is un ∈ A such that rA(un) = ωn. For each u ∈ A we define the set

u ↓= {x ∈ A : x < u}.

Note that if rA(u) is a limit ordinal then rA(u) = r(u ↓). We define a finite
partition of u ↓ in order to apply Corollary 1. To do so, for u, v ∈ Σ�, define
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Xu
v = {vw ∈ A : w ∈ Σ� & vw < u}. Each set of the form u ↓ can then be

partitioned based on the prefixes of words as follows:

u ↓= {x ∈ A : |x| < |u| & x < u} ∪
⋃

v∈Σ�:|v|=|u|
Xu

v .

(All the unions above are finite and disjoint.) Hence, applying Corollary 1, for
each un there exists a vn such that |un| = |vn| and r(Xun

vn
) = r(un ↓) = ωn.

On the other hand, we use the automata to define the following equivalence
relation on pairs of words of equal lengths:

(u, v) ∼ (u′, v′) ⇐⇒ ΔA(ιA, v) = ΔA(ιA, v′) & Δ≤(ι≤,

(
v

u

)

) = Δ≤(ι≤,

(
v′

u′

)

)

There are at most |SA| × |S≤| equivalence classes. Thus, the infinite sequence
(u1, v1), (u2, v2), . . . contains m, n such that m �= n and (um, vm) ∼ (un, vn).

Lemma 5. For any u, v, u′, v′ ∈ Σ�, if (u, v) ∼ (u′, v′) then r(Xu
v ) = r(Xu′

v′ ).

To prove the lemma, consider g : Xu
v → Xu′

v′ defined as g(vw) = v′w. From the
equivalence relation, we see that g is well-defined, bijective, and order preserving.
Hence Xu

v
∼= Xu′

v′ (as partial orders). Therefore, r(Xu
v ) = r(Xu′

v′ ).
By Lemma 5, ωm = r(Xum

vm
) = r(Xun

vn
) = ωn, a contradiction with the as-

sumption that m �= n. Therefore, there is no automatic well-founded partial
order of ordinal height greater than or equal to ωω. ��

4 Ranks of Automatic Well-Founded Relations

4.1 Configuration Spaces of Turing Machines

In the following, we embed computable structures into automatic ones via con-
figuration spaces of Turing machines. Let M be an n-tape deterministic Turing
machine. The configuration space of M, denoted by Conf(M), is a directed
graph whose nodes are configurations of M. The nodes are n-tuples, each of
whose coordinates represents the contents of a tape. Each tape is encoded as
(w q w′), where w, w′ ∈ Σ� are the symbols on the tape before and after the
location of the read/write head, and q is one of the states of M. The edges of
the graph are all the pairs of the form (c1, c2) such that there is an instruction
of M that transforms c1 to c2. The configuration space is an automatic graph.
The out-degree of every vertex in Conf(M) is 1; the in-degree need not be 1.

Definition 3. A deterministic Turing machine M is reversible if Conf(M)
consists only of finite chains and chains of type ω.

Lemma 6. [2] For any deterministic 1-tape Turing machine there is a reversible
3-tape Turing machine which accepts the same language.
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Proof. (Sketch) Given a deterministic Turing machine, define a 3-tape Turing
machine with a modified set of instructions. The modified instructions have the
property that neither the domains nor the ranges overlap. The first tape performs
the computation exactly as the original machine would have done. As the new
machine executes each instruction, it stores the index of the instruction on the
second tape, forming a history. Once the machine enters a state which would
have been halting for the original machine, the output of the computation is
copied onto the third tape. Then, the machine runs the computation backwards
and erases the history tape. The halting configuration contains the input on the
first tape, blanks on the second tape, and the output on the third tape. ��

We establish the following notation for a 3-tape reversible Turing machine M
given by the construction in this lemma. A valid initial configuration of M
is of the form (λ ι x, λ, λ), where x in the domain, λ is the empty string, and ι
is the initial state of M. From the proof above, observe that a final (halting)
configuration is of the form (x, λ, λ qf y), with qf a halting state of M. Also,
because of the reversibility assumption, all the chains in Conf(M) are either
finite or ω-chains (the order type of the natural numbers). In particular, this
means that Conf(M) is well-founded. We call an element of in-degree 0 a base
(of a chain). The set of valid initial or final configurations is regular. We classify
the components (chains) of Conf(M) as follows:

– Terminating computation chains: finite chains whose base is a valid
initial configuration; that is, one of the form (λ ι x, λ, λ), for x ∈ Σ�.

– Non-terminating computation chains: infinite chains whose base is a
valid initial configuration.

– Unproductive chains: chains whose base is not a valid initial configura-
tion.

Configuration spaces of reversible Turing machines are locally finite graphs
(graphs of finite degree) and well-founded. Hence, the following proposition guar-
antees that their ordinal heights are small. The proof is left to the reader.

Proposition 1. If G = (A, E) is a locally finite graph then E is well-founded
and the ordinal height of E is not above ω, or E has an infinite chain. ��

4.2 Automatic Well-Founded Relations of High Rank

Theorem 2. For each computable ordinal α < ωCK
1 , there is an automatic

well-founded relation A whose ordinal height is greater than α

Proof. The proof of the theorem uses properties of Turing machines and their
configuration spaces. We take a computable well-founded relation whose ordinal
height is α, and “embed” it into an automatic well-founded relation with similar
ordinal height.

By Lemma 2, let C = (C, Lα) be a computable well-founded relation of ordinal
height α. We assume without loss of generality that C = Σ� for some finite
alphabet Σ. Let M be the Turing machine computing the relation Lα. On each
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pair (x, y) from the domain, M halts and outputs “yes” or “no” . By Lemma
6, we can assume that M is reversible. Recall that Conf(M) = (D, E) is an
automatic graph. We define the domain of our automatic structure to be A =
Σ� ∪ D. The binary relation of the automatic structure is:

R = E ∪ {(x, (λ ι (x, y), λ, λ)) : x, y ∈ Σ�} ∪ {(((x, y), λ, λ qf “yes” ), y) : x, y ∈ Σ�}.

Intuitively, the structure (A; R) is a stretched out version of (C, Lα) with in-
finitely many finite pieces extending from elements of C, and with disjoint pieces
which are either finite chains or chains of type ω. The structure (A; R) is auto-
matic because its domain is a regular set of words and the relation R is recognis-
able by a 2-tape automaton. We should verify, however, that R is well-founded.
Let Y ⊂ A. If Y ∩ C �= ∅ then since (C, Lα) is well-founded, there is x ∈ Y ∩ C
which is Lα-minimal. The only possible elements u in Y for which (u, x) ∈ R
are those which lie on computation chains connecting some z ∈ C with x. Since
each such computation chain is finite, there is an R-minimal u below x on each
chain. Any such u is R-minimal for Y . On the other hand, if Y ∩ C = ∅, then
Y consists of disjoint finite chains and chains of type ω. Any such chain has a
minimal element, and any of these elements are R-minimal for Y . Therefore,
(A; R) is an automatic well-founded structure.

We now consider the ordinal height of (A; R). For each element x ∈ C, an easy
induction on rC(x), shows that rC(x) ≤ rA(x) ≤ ω + rC(x). We denote by �(a, b)
the (finite) length of the computation chain of M with input (a, b). For any
element ax,y in the computation chain which represents the computation of M
determining whether (x, y) ∈ R, we have rA(x) ≤ rA(ax,y) ≤ rA(x) + �(x, y).
For any element u in an unproductive chain of the configuration space, 0 ≤
rA(u) < ω. Therefore, since C ⊂ A, r(C) ≤ r(A) ≤ ω + r(C). ��

5 Automatic Structures and Scott Rank

The Scott rank of a structure is introduced in the proof of Scott’s Isomorphism
Theorem [22]. Here we follow the definition of Scott rank from [6].

Definition 4. For structure A and tuples ā, b̄ ∈ An (of equal length), define

– ā ≡0 b̄ if ā, b̄ satisfy the same quantifier-free formulas in the language of A;
– For α > 0, ā ≡α b̄ if for all β < α, for each c̄ (of arbitrary length) there is

d̄ such that ā, c̄ ≡β b̄, d̄; and for each d̄ (of arbitrary length) there is c̄ such
that ā, c̄ ≡β b̄, d̄.

Then, the Scott rank of the tuple ā, denoted by SR(ā), is the least β such that
for all b̄ ∈ An, ā ≡β b̄ implies that (A, ā) ∼= (A, b̄). Finally, the Scott rank of A,
denoted by SR(A), is the least α greater than the Scott ranks of all tuples of A.

Example 1. SR(Q, ≤) = 1, SR(ω, ≤) = 2, and SR(n · ω, ≤) = n + 1.

Configuration spaces of reversible Turing machines are locally finite graphs. By
the Proposition below, they all have low Scott Rank.
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Proposition 2. Let G = (V, E) be a locally finite graph, then SR(G) ≤ 3.

Proof. The neighbourhood of diameter n of a subset U , denoted Bn(U), is de-
fined as follows: B0(U) = U and Bn(U) is the set of v ∈ V which can be reached
from U by n or fewer edges. The proof of the proposition relies on two lemmas
whose proofs are left to the reader.

Lemma 7. Let ā, b̄ ∈ V be such that ā ≡2 b̄. Then for all n, there is a bijection
of the n-neighbourhoods around ā, b̄ which sends ā to b̄ and which respects E.

Lemma 8. Let G = (V, E) be a graph. Suppose ā, b̄ ∈ V are such that for
all n, (Bn(ā), E, ā) ∼= (Bn(b̄), E, b̄). Then there is an isomorphism between the
component of G containing ā and that containing b̄ which sends ā to b̄.

To prove the proposition, we note that for any ā, b̄ in V such that ā ≡2 b̄, Lemmas
7 and 8 yield an isomorphism from the component of ā to the component of b̄
that maps ā to b̄. Hence, if ā ≡2 b̄, there is an automorphism of G that maps ā
to b̄. Therefore, for each ā ∈ V , SR(ā) ≤ 2, so SR(G) ≤ 3. ��

Let C = (C; R1, . . . , Rm) be a computable structure. We construct an automatic
structure A whose Scott rank is (close to) the Scott rank of C. Since the domain
of C is computable, we assume that C = Σ� for some finite Σ. The construction
of A involves connecting the configuration spaces of Turing machines comput-
ing relations R1, . . . , Rm. Note that Proposition 2 suggests that the high Scott
rank of the resulting automatic structure is the main part of the construction
because it is not provided by the configuration spaces themselves. We detail the
construction for Ri. Let Mi be a Turing machine for Ri. By a simple modifica-
tion of the machine we assume that Mi halts if and only if its output is “yes” .
By Lemma 6, we can also assume that Mi is reversible. We now modify the
configuration space Conf(Mi) so as to respect the isomorphism type of C. This
will ensure that the construction (almost) preserves the Scott rank of C. We use
the terminology from Subsection 4.1.

Smoothing out unproductive parts. The length and number of unproductive
chains is determined by the machine Mi and hence may differ even for Turing
machines computing the same set. In this stage, we standardize the format of
this unproductive part of the configuration space. We add ω-many chains of
length n (for each n) and ω-many copies of ω. This ensures that the (smoothed)
unproductive section of the configuration space of any Turing machine will be
isomorphic and preserves automaticity.

Smoothing out lengths of computation chains. We turn our attention to
the chains which have valid initial configurations at their base. The length of each
finite chain denotes the length of computation required to return a “yes” answer.
We will smooth out these chains by adding “fans” to each base. For this, we
connect to each base of a computation chain a structure which consists of ω
many chains of each finite length. To do so we follow Rubin [21]: consider the
structure whose domain is 0�01� and whose relation is given by xEy if and only
if |x| = |y| and y is the least lexicographic successor of x. This structure has a



Model Theoretic Complexity of Automatic Structures 523

finite chain of every finite length. As in Lemma 1, we take the ω-fold disjoint
union of the structure and identify the bases of all the finite chains. We get a
“fan” with infinitely many chains of each finite size whose base can be identified
with a valid initial computation state. Also, the fan has an infinite component if
and only if Ri does not hold of the input tuple corresponding to the base. The
result is an automatic graph, Smooth(Ri) = (Di, Ei), which extends Conf(Mi).

Connecting domain symbols to the computations of the relation. We
apply the construction above to each Ri in the signature of C. Taking the union
of the resulting automatic graphs and adding vertices for the domain, we have
the structure (Σ�∪∪iDi, E1, . . . , En) (where we assume that the Di are disjoint).
Assume that each Mi has a different initial state, and denote it by ιi. We add n
predicates Fi to the signature of the automatic structure connecting the elements
of the domain of C with the computations of the relations Ri:

Fi = {(x0, . . . , xmi−1, (λ ιi (x0, . . . , xmi−1), λ, λ)) | x0, . . . , xmi−1 ∈ Σ�}.

Note that for x̄ ∈ Σ�, Ri(x̄) if and only if Fi(x̄, (λ ιi x̄, λ, λ)) holds and all
Ei chains emanating from (λ ιi x̄, λ, λ) are finite. We have built the automatic
structure

A = (Σ� ∪ ∪iDi, E1, . . . , En, F1, . . . , Fn).

Two technical lemmas are used to show that the Scott rank of A is close to α:

Lemma 9. For x̄, ȳ in the domain of C and for ordinal α, if x̄ ≡α
C ȳ then x̄ ≡α

A ȳ.

Lemma 10. If x̄ ∈ Σ� ∪ ∪iDi, there is ȳ ∈ Σ� with SRA(x̄x̄′ū) ≤ 2 + SRC(ȳ).

Putting these together, we conclude that SR(C) ≤ SR(A) ≤ 2+SR(C). Apply-
ing the above construction to the computable structures of Scott rank ωCK

1 and
ωCK

1 + 1 built by Harrison [12] and Knight and Millar [18], we get automatic
structures of Scott rank ωCK

1 , ωCK
1 + 1. We also apply the construction to [10],

where it is proved that there are computable structures with Scott ranks above
each computable ordinal. In this case, we get the following theorem.

Theorem 3. For each infinite computable ordinal α, there is an automatic struc-
ture of Scott rank at least α.

6 Cantor-Bendixson Rank of Automatic Successor Trees

In this section we show that there are automatic successor trees of high Cantor-
Bendixson (CB) rank. Recall the definitions of partial order trees and successor
trees from Section 1. Note that if (T, ≤) is an automatic partial order tree then
the successor tree (T, S), where the relation S is defined by S(x, y) ⇐⇒ (x <
y) & ¬∃z(x < z < y), is automatic.

Definition 5. The derivative of a tree T , d(T ), is the subtree of T whose
domain is {x ∈ T : x lies on at least two infinite paths in T}. By induction,
d0(T ) = T , dα+1(T ) = d(dα(T )), and for γ a limit ordinal, dγ(T ) = ∩β<γdβ(T ).
The CB rank of the tree, CB(T ), is the least α such that dα(T ) = dα+1(T ).
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The CB ranks of automatic partial order trees are finite [16]. This is not
true of automatic successor trees. The main theorem of this section provides a
general technique for building trees of given CB ranks. It uses the fact that for
each α < ωCK

1 there is a computable successor tree of CB rank α. This fact can
be proven by recursively coding up computable trees of increasing CB rank.

Theorem 4. For α < ωCK
1 there is an automatic successor tree of CB rank α.

Proof. Suppose we are given α < ωCK
1 . Take a computable tree Rα of CB rank

α. We use the same construction as in the case of well-founded relations (see
the proof of Theorem 2). The result is a stretched out version of the tree Rα,
where between each two elements of the original tree we have a coding of their
computation. In addition, extending from each x ∈ Σ� we have infinitely many
finite computation chains. Those chains which correspond to output “no” are
not connected to any other part of the automatic structure. Finally, there is a
disjoint part of the structure consisting of chains whose bases are not valid initial
configurations. By the reversibility assumption, each unproductive component
of the configuration space is isomorphic either to a finite chain or to an ω-chain.
Moreover, the set of invalid initial configurations which are the base of such an
unproductive chain is regular. We connect all such bases of unproductive chains
to the root and get an automatic successor tree, Tα.

We now consider the CB rank of Tα. Note that the first derivative removes all
the subtrees whose roots are at distance 1 from the root and are invalid initial
computations. This occurs because each of the invalid computation chains has
no branching and is not connected to any other element of the tree. Next, if we
consider the subtree of Tα rooted at some x ∈ Σ�, we see that all the paths
which correspond to computations whose output is “no” vanish after the first
derivative. Moreover, x ∈ d(Tα) if and only if x ∈ d(Rα) because the construction
did not add any new infinite paths. Therefore, after one derivative, the structure
is exactly a stretched out version of d(Rα). Likewise, for all β < α, dβ(Tα) is a
stretched out version of dβ(Rα). Hence, CB(Tα) = CB(Rα) = α. ��
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Abstract. The notion of divergence information of an ensemble of prob-
ability distributions was introduced by Jain, Radhakrishnan, and Sen [1,2]
in the context of the “substate theorem”. Since then, divergence has been
recognized as a more natural measure of information in several situations
in quantum and classical communication.

We construct ensembles of probability distributions for which diver-
gence information may be significantly smaller than the more standard
Holevo information. As a result, we establish that lower bounds previ-
ously shown for Holevo information are weaker than similar ones shown
for divergence information.

1 Introduction

In this article, we study the relationship between two different measures of in-
formation contained in an ensemble of probability distributions. The first mea-
sure, Holevo information, is a standard notion from information theory, and is
equivalent to the notion of mutual information between two random variables.
Consider jointly distributed random variables XY , with X taking values in a
sample space X . Consider the ensemble of distributions E = {(λi, Yi) : i ∈ X},
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where λi = Pr(X = i), and Yi = Y |(X = i), obtained by conditioning on val-
ues assumed by X . The Holevo information of the ensemble is given by χ(E) =
I(X : Y ) = Ei∼XS(Yi‖Y ), where S(·‖·) measures the relative entropy of a ran-
dom variable (equivalently, distribution) with respect to another. This notion
may be extended to ensembles of quantum states (see, e.g., the text [3]), and the
term ‘Holevo information’ is derived from the literature in quantum information
theory.

The second measure, divergence information, was introduced by Jain, Rad-
hakrishnan, and Sen [1,2]. It arises in the study of relative entropy, and its
connection with a “substate property”. The observational divergence (or sim-
ply divergence) of two classical distributions P, Q on the same finite sample
space is maxE P (E) log2(P (E)/Q(E)), where E ranges over all events. We may
view this as a (scaled) measure of the factor by which P may exceed Q for
an event of interest. The notion of divergence information is derived from this
as D(E) = Ei∼XD(Yi‖Y ), in analogy with Holevo information. A quantum gen-
eralisation of this measure may also be defined [2].

Relative entropy and Holevo (or mutual) information have been studied ex-
tensively in communication theory and beyond (see, e.g, [4]) as they arise in a
variety of applications. Since the discovery of the substate theorem [1], diver-
gence is being recognized as a more natural measure of information in a growing
number of applications [2, Section 1]. The applications include privacy trade-offs
in communicatioin protocols for computing relations [5] and bit-string commit-
ment [6], and the communication complexity of remote state preparation [7]. In
particular, divergence captures, up to a constant factor, the substate property
for probability distributions. It thus becomes relevant in every application where
the substate theorem is used.

We construct ensembles of probability distributions (equivalently, jointly dis-
tributed random variables) for which the Holevo and divergence information are
quantitatively different.

Theorem 1. For every positive integer N , and real number k ≥ 1 such that N >
236k2

, there is an ensemble E of distributions over a sample space of size N such
that D(E) = k and χ(E) = Θ(k log log N).

A more precise statement of this theorem (Theorem 4) and related results may
be found in Section 3.

The ensembles we construct satisfy the property that the ensemble average
(i.e., the distribution of the random variable Y in the description above) is
uniform. We show that the above separation is essentially the best possible
whenever the ensemble average is uniform (Theorem 6). The result also applies
to ensembles of quantum states, where the ensemble average is the completely
mixed state (Theorem 7). We leave open the possibility of larger separations for
classical or quantum ensembles with non-uniform averages.

The difference between the two measures demonstrated by Theorem 1 shows
that in certain applications, divergence is quantitatively a more relevant measure
of information. In Appendix A, we describe two applications where functionally
similar lower bounds have been established in terms of both measures. This
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article shows that the lower bounds in terms of divergence information are, in
fact, stronger.

In prior work on the subject, Jain et al. [2, Appendix A] compare relative
entropy and divergence for classical as well as quantum states. For pairs of
distributions P, Q over a sample space of size N , they show that D(P‖Q) ≤
S(P‖Q)+1, and S(P‖Q) ≤ D(P‖Q) ·(N −1). This extends to the corresponding
measures of information in an ensemble: D(E) ≤ χ(E)+1 and χ(E) ≤ D(E)·(N −
1). They show qualitatively similar relations for ensembles of quantum states.
In addition, they construct a pair of distributions P, Q such that S(P‖Q) =
Ω(D(P‖Q) · N). However, they do not translate their construction to a similar
separation for ensembles of probability distributions. Our work fills this gap for
ensembles (of classical or quantum states) with a uniform average.

2 Preliminaries

Here, we summarise our notation and the information-theoretic concepts we
encounter in this work. We refer the reader to the text by Cover and Thomas [4]
for a deeper treatment of (classical) information theory. While the bulk of this
article pertains to classical information theory, as mentioned in Section 1, it is
motivated by studies in (and has implications for) quantum information. We
refer the reader to the text [3] for an introduction to quantum information.

For a positive integer N , let [N ] represent the set {1, . . . , N}. We view prob-
ability distributions over [N ] as vectors in R

N . The probability assigned by dis-
tribution P to a sample point i ∈ [N ] is denoted by pi (i.e., with the same letter
in small case). We denote by P ↓ the distribution obtained from P by composing
it with a permutation π on [N ] so that p↓i = pπ(i) and p↓1 ≥ p↓2 ≥ · · · ≥ p↓N . For
an event E ⊆ [N ], let P (E) =

∑
i∈E pi denote the probability of that event.

We denote the uniform distribution over [N ] by UN . The expected value of a
function f : [N ] → R with respect to the distribution P over [N ] is abbreviated
as EP f .

We appeal to the majorisation relation for some of our arguments. The rela-
tion tells us which of two given distributions is “more random”.

Definition 1 (Majorisation). Let P, Q be distributions over [N ]. We say that
P majorises Q, denoted as P � Q, if

i∑

j=1

p↓j ≥
i∑

j=1

q↓j ,

for all i ∈ [N ].

The following is straightforward.

Fact 2. Any probability distribution P on [N ] majorises UN , the uniform dis-
tribution over [N ].

Throughout this article, we use ‘log’ to denote the logarithm with base 2, and ‘ln’
to denote the logarithm with base e.
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Definition 2 (Entropy, relative entropy). Let P, Q be probability distribu-
tions on [N ]. The entropy of P is defined as H(P ) def= −

∑N
i=1 pi log pi. The

relative entropy between P, Q, denoted S(P‖Q), is defined as

S(P‖Q) def=
N∑

i=1

pi log
pi

qi
.

Note that the relative entropy with respect to the uniform distribution is con-
nected to entropy as S(P‖UN ) = log N − H(P ).

We can formalise the connection betweenmajorisationand randomness through
the following fact.

Fact 3. If P, Q are distributions over [N ] such that P majorises Q, i.e. P � Q,
then H(P ) ≤ H(Q).

The notion of observational divergence was defined by Jain, Radhakrishnan, and
Sen [1] in the context of the “substate theorem”.

Definition 3 (Observational divergence). Let P, Q be probability distribu-
tions on [N ]. Then the observational divergence between them, denoted D(P‖Q),
is defined as

D(P‖Q) def= max
f :[N ]→[0,1]

(EP f) log
EP f

EQf
.

Note that we allow the quantity to take the value +∞. Throughout the paper
we refer to ‘observational divergence’ as simply ‘divergence’.

Divergence D(P‖Q) is always non-negative, and it is finite precisely when
the support of P is contained in the support of Q [1]. Due to convexity, the
divergence between two distributions is attained by the characteristic function
of an event.

Lemma 1. D(P‖Q) = maxE⊆[N ] P (E) log P (E)
Q(E) .

Proof. Let F denote the (convex) set of functions from [N ] to [0, 1]. The extreme
points of F are precisely the characteristic functions of events in [N ]. For an
extreme point, say the characteristic function fE of the event E ⊆ [N ], we
have EP fE = P (E).

If the divergence is +∞, then there is an event for which the right hand side
also takes the value +∞. So assume that the divergence is finite. In this case,
the right hand side also is finite, as the support of P is contained in the support
of Q. By restricting f : [N ] → [0, 1] to characteristic functions of events, we see
that D(P‖Q) is at least the expression on the right hand side above.

For the inequality in the other direction, we note that the function

g(x) = (ax + b) log
(

ax + b

cx + d

)

defined on [0, 1] is convex in x, for any a, b, c, d ∈ R such that ax + b ≥ 0 and
cx + d > 0 when x ∈ [0, 1]. Therefore, the function g(x) attains its maximum at
either x = 0 or at x = 1.
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The convexity of g(x) implies that for any α ∈ [0, 1], and functions f, f ′ ∈ F ,
we have

(EP (αf + (1 − α)f ′)) log
EP (αf + (1 − α)f ′)
EQ(αf + (1 − α)f ′)

= (α(EP f − EP f ′) + EP f ′) log
α(EP f − EP f ′) + EP f ′

α(EQf − EQf ′) + EQf ′

≤ max
{

(EP f) log
EP f

EQf
, (EP f ′) log

EP f ′

EQf ′

}

.

Thus, the divergence is attained at an extreme point of F . This proves the claim.

Henceforth, we only use the equivalent definition of divergence given by this
lemma.

The divergence of any distribution with respect to the uniform distribution is
bounded.

Lemma 2. For any probability distribution P on [N ], we have 0 ≤ D(P‖UN ) ≤
log N .

Proof. Consider the event E which achieves the divergence between P and UN .
W.l.o.g., the event E is non-empty. Therefore P (E) ≥ UN (E) ≥ 1/N , and

0 ≤ D(P‖UN) ≤ P (E) log P (E)N ≤ log N.

We observe that we need only maximise over N events to calculate divergence
with respect to the uniform distribution.

Lemma 3. For any probability distribution P on [N ] such that P ↓ = P , i.e.,
p1 ≥ p2 ≥ · · · ≥ pN , we have

D(P‖UN ) = max
i∈[N ]

P ([i]) log
N · P ([i])

i
.

Proof. By definition of observational divergence, the RHS above is bounded
by D(P‖UN ). For the inequality in the other direction, we note that the prob-
ability P (E) of any event E with size nE = |E| is bounded by P ([nE ]), the
probability of the first nE elements in [N ]. We thus have

D(P‖Q) = max
E⊆[N ]

P (E) log
N · P (E)

nE

≤ max
E⊆[N ]

P (E) log
N · P ([nE ])

nE

≤ max
E⊆[N ]

P ([nE ]) log
N · P ([nE ])

nE
,
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since P majorises UN (Fact 2) and P ([nE ]) ≥ nE

N . This is equivalent to the RHS
in the statement of the lemma.

Definition 4 (Ensemble). An ensemble is a sequenceof pairs{(λj , Qj):j∈ [M ]},
for some integer M , where Λ = (λj) ∈ R

M is a probability distribution on [M ]
and Qj are probability distributions over the same sample space.

Definition 5 (Holevo information). The Holevo information of an ensem-
ble E = {(λj , Qj) : j ∈ [M ]}, denoted as χ(E), is defined as

χ(E) def=
M∑

j=1

λj S(Qj‖Q),

where Q =
∑M

j=1 λjQj is the ensemble average.

Definition 6 (Divergence information). The divergence information of an
ensemble E = {(λj , Qj) : j ∈ [M ]}, denoted as D(E) is defined as

D(E) def=
M∑

j=1

λj D(Qj‖Q),

where Q =
∑M

j=1 λjQj is the ensemble average.

3 Divergence Versus Relative Entropy

In this section, we describe the construction of an ensemble for which there is
a large separation between divergence and Holevo information. The ensemble
has the property that the ensemble average is uniform. As a by-product of our
construction, we also obtain a bound on the maximum possible separation for
ensembles with a uniform average.

We begin with the construction of the ensemble. Let fL(k, N)=k(ln log(kN)−
ln(6k) + 1) − log(1 + k ln 2) − 1 − 1

ln 2 on point in the positive orthant in R
2

with Nk > 1.

Theorem 4. For every integer N > 1, and every positive real number 16
N ≤ k <

log N , there is an ensemble E =
{
( 1

N , Qi) : i ∈ [N ]
}

with 1
N

∑
i Qi = UN , the

uniform distribution over [N ], with D(E) ≤ k, and

χ(E) ≥ fL(k, N).

To construct the ensemble described in the theorem above, we first construct a
probability distribution P on [N ] with observational divergence D(P‖UN ) ≤ k
such that its relative entropy S(P‖UN ) is large as compared with k. Let fU =
k(ln log(Nk) − ln k + 1) be defined on points in the positive orthant of R

2

with kN > 1.

Theorem 5. For every integer N > 1, and every positive real number 16
N ≤ k <

log N , there is a probability distribution P with D(P‖UN ) = k, and
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fL(k, N) ≤ S(P‖UN ) ≤ fU(k, N).

The construction of the ensemble is now immediate.

Proof of Theorem 4: Let Qj = P ◦πj , where πj is the cyclic permutation of [N ]
by j − 1 places. We endow the set of the N cyclic permutations {Qj : j ∈ [N ]}
of P with the uniform distribution. By construction, the ensemble average is UN .
Since both observational divergence and relative entropy with respect to the
uniform distribution are invariant under permutations of the sample space,
D(E) = D(P‖UN ) ≤ k, and χ(E) = S(P‖UN ) ≥ fL(k, N). ��

We turn to the construction of the distribution P . Our construction is such
that P ↓ = P , i.e., p1 ≥ p2 ≥ · · · ≥ pN . Lemma 3 tells us that we need only
ensure that

P ([i]) log
N · P ([i])

i
≤ k, ∀ i ∈ [N ], (1)

to ensure D(P‖Q) ≤ k. Since S(P‖UN ) = log N − H(P ), we wish to minimise
the entropy of P subject to the constraints in Eq. (1). This is equivalent to
successively maximising p1, p2, . . ., and motivates the following definitions.

Define the function g(y, x) = y log(Ny/x) − k on the positive orthant of R
2.

Consider the function h : R
+ → R

+ implicitly defined by the equation g
(h(x), x) = 0.

Lemma 4. The function h : R
+ → R

+ is well-defined, strictly increasing, and
concave.

Proof. Fix an x ∈ R
+, and consider the function gx(y) = g(y, x). This function

is continuous on R
+, tends to −k < 0 as y → 0+, and tends to ∞ as y → ∞.

By Intermediate Value Theorem, for some y > 0, we have gx(y) = 0. Moreover,
gx(y) < −k for 0 < y ≤ x/N , and is strictly increasing for y > x/Ne (its
derivative is g′x(y) = log eNy

x ). Therefore there is a unique y such that gx(y) = 0
and h(x) is well-defined.

The function h satisfies the equation h log Nh
x = k, and therefore the identity

x = Nh exp
(
−k ln 2

h

)
.

Differentiating with respect to h, we see that

dx

dh
= N

(

1 +
k ln 2

h

)

exp
(
−k ln 2

h

)
, and

d2x

dh2
=

N(k ln 2)2

h3
exp

(
−k ln 2

h

)
.

So dh
dx > 0 for all x > 0, and h is a strictly increasing function. Note also

that d2x
dh2 > 0 for all h > 0, so x is a convex function of h. Since h is an increasing

function, convexity of x(h) implies concavity of h(x).



A Separation between Divergence and Holevo Information for Ensembles 533

Let v0 = 0. For i ∈ [N ], let vi = h(i), i.e., vi log Nvi

i = k. Let si
def= min{1, vi},

for i ∈ [N ]. Let p1 = s1, and pi = si − si−1 for all 2 ≤ i ≤ N . Lemma 4
guarantees that these numbers are well-defined. We claim that

Lemma 5. The vector P = (pi) ∈ R
N defined above is a probability distribution,

and P ↓ = P , i.e., p1 ≥ p2 ≥ · · · ≥ pN .

Proof. By definition, we have vi > 0 for all i ∈ [N ]. Therefore s1 = min {1, v1} >
0. Since h(x) is an increasing function in x, the sequence (vi) is also increasing,
so (si) is non-decreasing. Therefore pi = si − si−1 ≥ 0 for i > 1.

Now vN log vN = k > 0. Since x log x ≤ 0 for x ∈ (0, 1], we have vN > 1.
So sN = min {1, vN} = 1. Therefore

∑N
i=1 pi = sN = 1. So P is a probability

distribution on [N ].
Note that (v2/2) log(Nv2/2) = k/2 < k, so v1 > v2/2. So s1 ≥ s2/2, i.e.,

p1 ≥ p2. For i ≥ 2, we have pi−pi+1 = (si−si−1)−(si+1−si) = 2si−si−1−si+1.
Since h(x) is concave, so is the function min {1, h(x)}. Therefore, si ≥ (si−1 +
si+1)/2, and the sequence (pi) is non-decreasing.

The vector S = (si) ∈ R
N thus represents the (cumulative) distribution function

corresponding to P .

Proof of Theorem 5: We claim that the probability distribution P constructed
above satisfies the properties stated in the theorem.

Since P ↓ = P , by Lemma 3, we need only verify that si log(Nsi/i) ≤ k
for i ∈ [N ]. If si = vi, then the condition is satisfied with equality. (Note that
since k < log N , we have s1 = v1 < 1.) Else, si = 1 < vi, so si log(Nsi/i) <
vi log(Nvi/i) = k.

We now bound the relative entropy S(P‖UN ) from below. Let n be the small-
est positive integer such that vn−1 ≤ 1 and vn > 1. Note that n > 1. We also
have n ≤ N , since vN > 1 (as vN log vN = k > 0). Therefore, we have si = vi

(equivalently, Nsi = i2k/si) for i ∈ [n−1], and sn = 1 < vn. Thus, for 1 < i < n,

Npi = i2
k
si − (i − 1)2

k
si−1

= 2
k
si + (i − 1)(2

k
si − 2

k
si−1 )

= 2
k
si + (i − 1)2

k
si−1 (2

k
si

− k
si−1 − 1)

= 2
k
si + Nsi−1(2

k
si

− k
si−1 − 1)

≥ 2
k
si + Nsi−1

(
k

si
− k

si−1

)

ln 2

= 2
k
si − Npik

si
ln 2.

The penultimate line follows from the inequality 2x ≥ 1 + x ln 2 for all x ∈ R.
Thus we have

Npi ≥ 2
k
si

1 + k
si

ln 2
. (2)
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Since Np1 = Ns1 = 2
k

s1 , this also holds for i = 1.
We bound the relative entropy using Eq. (2).

S(P‖UN ) =
N∑

i=1

pi log Npi =
n∑

i=1

pi log Npi

≥
n−1∑

i=1

pi log
2

k
si

1 + k
si

ln 2
+ pn log Npn

≥
n−1∑

i=1

pik

si
−

n−1∑

i=1

pi log
(

1 +
k ln 2

si

)

+ pn log Npn. (3)

We bound each of the three terms in the RHS of Eq. (3) separately.
We start with

∑n−1
i=1

pik
si

. Let p = p1, and let m =
⌊

1
p

⌋
. For every j ∈ [m], there

is an i ∈ [n], say i = ij, such that jp ≤ sij ≤ (j+1)p. (Otherwise, for some i > 1,
the probability pi = si − si−1 is strictly larger than p, an impossibility.)

s1 s3s2 s4

p 2p 3p

s5 s6

4p

1/s1

1/s2

1/s3

1/s4
1/s5

1/s6

We interpret the sum
∑n−1

i=2
pi

si
=

∑n−1
i=2

si−si−1
si

as a Riemann sum approxi-
mating the area under the curve 1/x between s1 and sn−1 with the area under
the solid lines in Figure 3. This area is bounded from below by the area under
the dashed lines, which corresponds to the area of rectangles of uniform width p
and height 1/sj+1 for the jth interval. Thus,



A Separation between Divergence and Holevo Information for Ensembles 535

n−1∑

i=1

pik

si
≥ k + k

m∑

j=1

p · 1
sij+1

≥ k + k
m∑

j=1

p · 1
(j + 2)p

= k + k
m∑

j=1

1
j + 2

≥ k + k

∫ m+3

3

1
x

dx

= k + k ln
m + 3

3
. (4)

We lower bound m =
⌊

1
p

⌋
next. Recall that g1(y) = y log(Ny) is an increasing

function for y > 1
eN , and p = p1 ≥ 1/N . Consider the value of g1(y) at the

point q = 2k
log kN :

g1(q) =
2k

log kN
log

2Nk

log kN
> 2k

(

1 − log log kN

log kN

)

≥ k,

since kN ≥ 16. As g1(q) > g1(p) > 0, we have q > p. Therefore, m ≥ 1
p − 1 ≥

log kN
2k − 1. Together with Eq. (4), we get

n−1∑

i=1

pik

si
≥ k(ln log kN − ln 6k + 1). (5)

Next, we derive a lower bound for the second term in Eq. (3).

−
n−1∑

i=1

pi log
(

1 +
k ln 2

si

)

= −
n−1∑

i=1

pi log(si + k ln 2) +
n−1∑

i=1

pi log si

≥ − log(1 + k ln 2) +
n−1∑

i=1

pi log si. (6)

Viewing the second term above as a Riemann sum, we get

n−1∑

i=1

pi log si ≥
∫ sn−1

0

log x dx

≥
∫ 1

0

log x dx

= − 1
ln 2

. (7)
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Combining Eq. (6) and (7), we get

−
n−1∑

i=1

pi log
(

1 +
k ln 2

si

)

≥ − log(1 + k ln 2) − 1
ln 2

. (8)

We bound the third term in Eq. (3) crudely as pn log Npn ≥ −1. Along with
the bounds for the previous two terms, Eq. (5), (8), this shows that

S(P‖UN ) ≥ fL(k, N) def= k(ln log kN−ln 6k+1)−log(1+k ln 2)−1− 1
ln2

.

(9)
This proves the lower bound on the relative entropy.

Moving to an upper bound, we have for i ≥ 2,

Npi = i2
k
si − (i − 1)2

k
si−1

= 2
k
si + (i − 1)(2

k
si − 2

k
si−1 )

≤ 2
k
si ,

since the second term is negative. This also holds for i = 1, since p1 = s1

and s1 log Ns1 = k. Therefore,

S(P‖UN ) =
n∑

i=1

pi log Npi

≤
n∑

i=1

kpi

si

≤ k + k

∫ 1

s1

1
s
ds

= k − k ln s1

≤ k + k ln
(

log Nk

k

)

= k(1 − ln k + ln(log Nk)).

In the last inequality, we used the lower bound s1 ≥ k/ logNk. ��

The upper and lower bounds on the relative entropy of P with respect to the
uniform distribution both behave as k log log Nk up to constant factors.

Proof of Theorem 1: The dominating term in both of lower bound and upper
bound on the relative entropy S(P‖UN ), with P as in Theorem 5, is k ln log Nk

when N is large as compared with k. Specifically, when N > 236k2
, we have

1
2
k log log Nk ≤ S(P‖UN ) ≤ 2k log log Nk.

By hypothesis, 1 ≤ k and by Lemma 2, we have k ≤ log N . Thus,

S(P‖UN ) = Θ(D(P‖UN ) log log N).
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The same holds for the ensembles constructed in Theorem 4. ��

The separation we demonstrated above is the best possible for ensembles of
distributions that have a uniform average distribution.

Theorem 6. For anypositive integerN , and any ensembleE={(λj , Qj) : j∈ [M ]}
of distributions over [N ] such that

∑M
j=1 λjQj = UN , we have

χ(E) ≤ K(2 ln log N − ln K + 1) + 16,

where K = D(E).

Proof. Let D(Qj‖UN ) = kj . We show that S(Qj‖UN ) ≤ kj(2 ln log N − ln kj +1)
when kj ≥ 16

N . When kj < 16
N , we have S(Qj‖UN) < 16. Since k(2 ln log N−lnk+

1) is a concave function in k, averaging over j with respect to the distribution Λ =
(λj) gives the claimed bound.

Fix an j such that kj > 16
N . Let R = Q↓

j . Note that D(R‖UN ) = kj and S
(R‖UN ) = S(Qj‖UN). Consider the distribution P constructed as in Section 3
with k = kj . Using the notation of that section, we have si log(Nsi/i) = kj for

all i < n, and sn = 1. Let ti =
∑i

l=1 rl, where rl
def= Pr(R = l). By definition, we

have ti log(Nti/i) ≤ kj = si log(Nsi/i). Since the function gi(y) = y log(Ny/i) is
strictly increasing for y ≥ i/Ne, and ti ≥ i/N (Fact 2), we have ti ≤ si for i < n.
Since si = 1 for i ≥ n, we have ti ≤ si for these i as well. In other words, P � R.
By Fact 3, we have H(P ) ≤ H(R). This is equivalent to S(R‖UN) ≤ S(P‖UN ).
By Theorem 5, S(P‖UN ) ≤ kj(ln log(Nkj) − ln kj + 1). Since kj ≤ log N , this is
at most kj(2 ln log N − ln kj + 1).

Finally, we observe that this is also the best separation possible for an ensemble
of quantum states with a completely mixed ensemble average.

Theorem 7. For any positive integerN , and any ensemble E ={(λj , ρj) : j∈ [M ]}
of quantumstates ρj over aHilbert space of dimension N such that

∑M
j=1 λjρj = I

N ,
the completely mixed state of dimension N , we have

χ(E) ≤ K(2 ln log N − ln K + 1) + 16,

where K = D(E).

Proof. Let Qj be the probability distribution on [N ] corresponding to the eigen-
values of ρj . By definition of observational divergence for quantum states, D
(Qj‖UN ) ≤ D(ρj‖ I

N ). Further, we have S(ρj‖ I
N ) = S(Qj‖UN ). We now apply

the same reasoning as in the proof of Theorem 6, note that the divergence of
the ensemble {(λj , Qj) : j ∈ [M ]} is bounded by D(E), and that the RHS in
the statement is a non-decreasing function of K. This gives us the stated bound.
(Note that we do not need

∑M
j=1 λjQj = UN to use the reasoning in Theorem 6.)
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A Implications for Quantum Protocols

A.1 Quantum String Commitment

A string commitment scheme is an extension of the well-studied and powerful
cryptographic primitive of bit commitment . In such schemes, one party, Alice,
wishes to commit an entire string x ∈ {0, 1}n to another party, Bob. The protocol
is required to be such that Bob not be able to identify the string until it is
revealed by Alice. In turn, Alice should not be able to renege on her commitment
at the time of revelation. Formally, quantum string commitment protocols are
defined as follows [8,6].

Definition 7 (Quantum string commitment (QSC)). Let P = {px : x ∈
{0, 1}n} be a probability distribution and let B be a measure of information
contained in an ensemble of quantum states. A (n, a, b)-B-QSC protocol for
P is a quantum communication protocol between two parties, Alice and Bob.

http://www.arxiv.org/
http://www.arxiv.org/
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Alice gets an input x ∈ {0, 1}n chosen according to the distribution P . The
starting joint state of the qubits of Alice and Bob is some pure state independent
of x. The protocol runs in two phases: the commit phase, followed by the reveal
phase. There are no intermediate measurements during the protocol. At the end
of the reveal phase, Bob measures his qubits according to a POVM {My : y ∈
{0, 1}n} ∪ {I −

∑
y My} to determine the value of the committed string by Alice

or to detect cheating. The protocol satisfies the following properties.

1. (Correctness) Suppose Alice and Bob act honestly. Let ρx be the state of
Bob’s qubits at the end of the reveal phase of the protocol, when Alice gets
input x. Then (∀x, y) Tr Myρx = 1 iff x = y, and 0 otherwise.

2. (Concealing property) SupposeAlice acts honestly, andBob possibly cheats,
i.e., deviates from the protocol in his local operations. Letσx be the state of Bob’s
qubits after the commit phase when Alice gets input x. Then the B informa-
tion B(E) of the ensemble E = {px, σx} is at most b. In particular, this also
holds when both Alice and Bob follow the protocol honestly.

3. (Binding property) Suppose Bob acts honestly , and Alice possibly cheats.
Let c ∈ {0, 1}n be a string in a special cheating register C with Alice that
she keeps independent of the rest of the registers till the end of the commit
phase. Let τc be the state of Bob’s qubits at the end of the reveal phase when
Alice has c in the cheating register. Let qc

def= Tr Mcτc. Then
∑

c∈{0,1}n

pcqc ≤ 2a−n

The idea behind the above definition is as follows. At the end of the reveal phase
of an honest run of the protocol Bob identifies x from ρx by performing the
POVM measurement {My}y ∪ {I −

∑
y My}. He accepts the committed string

to be x iff the observed outcome y = x; this happens with probability Tr Mxρx.
He declares that Alice is cheating if outcome I −

∑
x Mx is observed. Thus, at

the end of an honest run of the protocol, with probability 1, Bob accepts the
committed string as being exactly Alice’s input string. The concealing property
ensures that the amount of B information about x that a possibly cheating Bob
gets is bounded by b. In bit -commitment protocols, the concealing property is
quantified in terms of the probability with which Bob can guess Alice’s bit. Here
we instead use different notions of information contained in the corresponding
ensemble. The binding property ensures that when a cheating Alice wishes to
postpone committing to a string string until after the commit phase, then she
succeeds in forcing an honest Bob to accept her choice with bounded probability
(in expectation).

Strong string commitment, in which both parameters a, b above are required to
be 0, is impossible for the same reason that of strong bit-commitment protocols
are impossible [9,10]. Weaker versions are nonetheless possible, and exhibit a
trade-off between the concealing and binding properties. The trade-off between
the parameters a and b has been studied by several researchers [11,8,6]. Buhrman,
Christandl, Hayden, Lo, and Wehner [8] study this trade-off both in the scenario
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of a single execution of the protocol and also in the asymptotic regime, with
an unbounded number of parallel executions of the protocol. In the asymptotic
scenario, they show the following result in terms of Holevo information (which
is denoted by χ).

Theorem 8 ([8]). Let Π be an (n, a1, b)-χ-QSC scheme. Let Πm represent m
independent, parallel executions of Π (so Π1 = Π). Let am represent the binding
parameter of Πm and let a

def= limm→∞ am/m. Then, a + b ≥ n.

Jain [6] shows a similar trade-off result regarding QSCs, in terms of the diver-
gence information of an ensemble (denoted by D).

Theorem 9 ([6]). For single execution of the protocol of an (n, a, b)-D-QSC
scheme,

a + b + 8
√

b + 1 + 16 ≥ n.

As mentioned before, for any ensemble E , divergence information is bounded by
the Holevo χ-information D(E) ≤ χ(E) + 1. This immediately implies:

Theorem 10 ([6]). For single execution of the protocol of a (n, a, b)-χ-QSC
scheme

a + b + 8
√

b + 2 + 17 ≥ n.

As Jain shows, this implies the asymptotic result due to Buhrman et al. (Theo-
rem 8).

The separation that we demonstrate between divergence and Holevo informa-
tion (Theorem 1) shows that for some ensembles over n qubits, D(E) may be
a log n larger than χ(E). For such ensembles the binding-concealing trade-off of
Theorem 9 is stronger than that of Theorem 8.

A.2 Privacy Trade-Off for Two-Party Protocols for Relations

Let us consider two-party protocols between Alice and Bob for computing a re-
lation f ⊆ X × Y × Z. The goal here is to find a z ∈ Z such that (x, y, z) ∈ f ,
when Alice and Bob are given x ∈ X and y ∈ Y, respectively. Jain, Radhakr-
ishnan, and Sen [1] studied to what extent the two parties may solve f while
keeping their respective inputs hidden from the other party. They showed the
following:

Result 11 ([5], informal statement). Let μ be a product distribution on X ×
Y. Let
Qμ,A→B

1/3 (f) represent the one-way distributional complexity of f with a single
communication from Alice to Bob and distributional error under μ at most 1/3.
Let X and Y represent the random variables corresponding to Alice and Bob’s
inputs respectively. If there is a quantum communication protocol for f where
Bob leaks divergence information at most b about his input Y , then Alice leaks
divergence information at least Ω(Qμ,A→B

1/3 (f)/2O(b)) about her input X. A sim-
ilar statement also holds with the roles of Alice and Bob interchanged.
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From the upper bound on the divergence information in terms of Holevo infor-
mation this immediately implies the following.

Result 12 ([5], informal statement). Let μ be a product distribution on X ×
Y. Let Qμ,A→B

1/3 (f) represent the one-way distributional complexity of f with
a single communication from Alice to Bob and distributional error under μ at
most 1/3. Let X and Y represent the random variables corresponding to Alice
and Bob’s inputs respectively. If there is a quantum communication protocol for
f where Bob leaks Holevo information at most b about his input Y , then Alice
leaks Holevo information at least Ω(Qμ,A→B

1/3 (f)/2O(b)) about her input X. A
similar statement also holds with the roles of Alice and Bob interchanged.

It follows from Theorem 1 that Result 11 is much stronger than the second,
Result 12 in case the ensembles arising in the protocol between Alice and Bob
has divergence information much smaller than its Holevo information.
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Abstract. This paper studies infinite graphs produced from a natural
unfolding operation applied to finite graphs. Graphs produced via such
operations are of finite degree and can be described by finite automata
over the unary alphabet. We investigate algorithmic properties of such
unfolded graphs given their finite presentations. In particular, we ask
whether a given node belongs to an infinite component, whether two
given nodes in the graph are reachable from one another, and whether
the graph is connected. We give polynomial time algorithms for each
of these questions. Hence, we improve on previous work, in which non-
elementary or non-uniform algorithms were found.

1 Introduction

The underlying idea of automatic structures consists of using automata to rep-
resent structures and then to study the logical and algorithmic consequences of
such presentations. For example, there are descriptions of automatic linear orders
and trees in model theoretic terms such as Cantor-Bendixson ranks [13], [10].
Thomas and Oliver gave a full description of finitely generated automatic groups
[12]. Khoussainov, Nies, Rubin and Stephan have characterized the isomorphism
types of automatic Boolean algebras [8]. These results give the decidability of
the isomorphism problems for automatic ordinals and Boolean algebras [13].

The complexity of the first-order theories of automatic structures has also been
studied. Grädel and Blumensath constructed examples of automatic structures
whose first-order theories are non-elementary [2]. Lohrey, on the other hand,
proved that the first-order theory of any automatic graph of bounded degree
is elementary [11]. This paper continues this line of research and investigates
computational properties of unary automatic graphs of finite degree. We use
a fundamental algorithmic property of automatic structures proved by Khous-
sainov and Nerode: the first-order theory of any automatic graph is decidable
[7]. In particular, for a fixed first-order formula φ(x̄) and an automatic graph G,
determining if a tuple ā from G satisfies φ(x̄) can be done in linear time. Refining
this, we find polynomial time algorithms for natural graph theoretic questions in
the class of unary automatic graphs of finite degrees. Since all such graphs can
be obtained by an unfolding operation applied to finite graphs (see Theorem 2),
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we measure complexity based on the input size of the finite graphs. Specifically,
we are interested in the following decision problems for the graph G determined
by the pair of finite graphs (D, F):

• Connectivity Problem. Is the graph G connected?
• Reachability Problem. Given vertices x, y, is there a path from x to y?
• Infinite Component Problem. Does G have an infinite component?
• Infinity Testing Problem. Given a vertex x, is it in an infinite component?

For finite graphs, the first two problems can be solved in linear time and the
last two have obvious answers. However, for infinite graphs, much more work is
needed to investigate these problems. In the class of all automatic graphs, all
of these problems are undecidable (see [13]). Since all unary automatic graphs
are first-order definable in S1S (the monadic second-order logic of the successor
function), it is not hard to prove that all the problems above are decidable ([1],
[13]). However, the constructions which appeal to S1S yield algorithms with
non-elementary time complexity, since one needs to transform S1S formulas into
automata ([4]). The reachability problem has been studied in [3], [5], and [14] via
pushdown graphs. A pushdown graph is the configuration space of a pushdown
automaton. Unary automatic graphs are examples of pushdown graphs [14]. In
[3], [5], [14] it is proved that for a given node v in a pushdown graph, there
is an automaton that recognizes all nodes reachable from v. The size of this
automaton depends on the input node v. Moreover, the automata constructed by
this algorithm are not uniform (different automata are built for different vertices
v). It is therefore interesting to see for which classes of graphs the reachability
problem has a uniform solution (an automaton that tells whether any two nodes
belong to the same component). The practical advantage of a uniform solution is
that, once the automaton that recognizes reachability relation is built, deciding
whether node v is reachable from u by a path takes only linear time In this
paper, we show that for unary automatic graphs of finite degree, all the problems
above can be solved in polynomial time. Moreover, the reachability problem has
a uniform solution.

We now outline the rest of the paper. Section 2 introduces the main definitions
needed and recalls a characterization theorem (Theorem 1) for unary automatic
graphs. Section 3 introduces unary automatic graphs of finite degree; Theorem 2
explicitly provides a method for building these graphs and is used throughout the
paper. Section 4 and Section 5 solve the infinite component problem and infinity
testing problem, respectively. For easy reference, we list the main results below.
G is a given unary automatic graph of finite degree, A is the unary automaton
recognizing G, and n is the number of states of A.

Theorem 3. The infinite component problem for G is solved in O(n
3
2 ).

Theorem 4. The infinity testing problem for G is solved in O(n
5
2 ). When A is

fixed, a constant time algorithm decides the infinity testing problem on G.
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Section 6 gives a polynomial time algorithm constructing uniform automata
that solve the reachability problem. This algorithm also yields a solution to the
connectivity problem for unary automatic graphs of finite degree.

Theorem 5. A polynomial time algorithm solves the reachability problem on
G. For inputs u, v, the running time of the algorithm is O(|u| + |v| + n

5
2 ).

Theorem 6. The connectivity problem for G is solved in O(n3).

2 Preliminaries

A finite automaton A over Σ is a tuple (Q, ι, Δ, F ), where Q is a finite set of
states, ι ∈ Q is the initial state, Δ ⊂ Q × Σ × Q is the transition table,
and F ⊂ Q is the set of final states. A run of A on a word σ1 . . . σn ∈ Σ� is a
sequence q0, . . . , qn such that q0 = ι and (qi, σi+1, qi+1) ∈ Δ for all i ≤ n − 1. If
qn ∈ F then the run is successful and we say that the automaton A accepts
the word. The language accepted by the automaton A is the set of all words
accepted by A. A set D ⊂ Σ� is FA recognizable if D is the language accepted
by some finite automaton. For two states q0, q1, the distance from q0 to q1

is the minimum number of transitions required for A to go from q0 to q1. If
|Σ| = 1, we call A a unary automaton. A 2-tape automaton is a one-
way Turing machine with two semi-infinite input tapes. Each tape has written
on it a word from Σ� followed by a succession of � symbols. The automaton
starts in the initial state, reads simultaneously the first symbol of each tape,
changes state, reads simultaneously the second symbol of each tape, changes
state, etc., until it reads � on each tape. The automaton then stops and accepts
the 2-tuple of words on its input tapes if it is in a final state. Formally, set
Σ� = Σ ∪ {�} where � �∈ Σ. The convolution of a tuple (w1, w2) ∈ Σ�2 is the
string w1 ⊗ w2 of length maxi |wi| over the alphabet (Σ�)2 which is defined as
follows: the kth symbol is (σ1, σ2) where σi is the kth symbol of wi if k ≤ |wi|,
and is � otherwise. The convolution of a relation E ⊂ Σ�2 is the language
⊗E = {w1 ⊗ w2 | (w1, w2) ∈ E}. The relation E ⊂ Σ�2 is FA recognizable if
⊗E is recognizable by a 2-tape automaton.

A graph G = (V, E) is automatic over Σ if its vertex set V ⊂ Σ� and
the edge relation E are FA recognizable. The binary tree ({0, 1}�, E), where
E = {(x, y) | y = x0 or y = x1}, is an automatic graph. We are interested in the
following class of automatic graphs:

Definition 1. A unary automatic graph is a graph (V, E) whose domain is
a regular subset of {1}� and whose edge relation E is regular.

Convention. To eliminate bulky exposition, we fix the following assumptions: 1)
By “automatic graph”, we always mean “unary automatic graph”. 2) All graphs
are infinite unless explicitly specified otherwise. 3) The domains of automatic
graphs coincide with the set 1� of all unary strings {λ, 1, 11, 111, . . .}. Hence, the
automaton recognizing the edge relation is sufficient for describing the graph. 4)
The graphs are undirected. All the notions and results below can be adapted
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to the case when the domains are regular subsets of 1� and when the graphs are
directed without materially changing the complexity of the algorithms.

Let G = (V, E) be an automatic graph. Let A be a unary automaton recogniz-
ing E with n states. The general shape of A is given in Figure 1. All the states
reachable from the initial state by reading input (1, 1) are called (1, 1)-states. A
tail in A is a sequence of states linked by transitions without repetition. A loop
is a sequence of states linked by transitions such that the last state coincides
with the first one, and with no repetition in the middle. The set of (1, 1)-states
is a disjoint union of a tail and a loop, called the (1, 1)-tail and the (1, 1)-loop.
Let q be a (1, 1)-state. All the states reachable from q by reading inputs (1, �)
are called (1, �)-states. This collection of (1, �)-states is also a disjoint union
of a tail and a loop (see the figure), called the (1, �)-tail and the (1, �)-loop.
The (�, 1)-tails and (�, 1)-loops are defined in a similar way. Since we con-
sider undirected graphs, we simplify the general shape of the automaton by only
considering edges labelled by (�, 1) and (1, 1). An automaton is standard if the
lengths of all its loops and tails equal some number p, called the loop constant.

(1, 1)-tail

(1, �)-loop

(1, �)-tail

(1, 1)-loop

(�, 1)-tail

(�, 1)-loop

Fig. 1. A Typical Unary Graph Automaton

We recall a characterization theorem of unary automatic graphs from [13].
Let D = (D, ED) and F = (F, EF ) be finite graphs. Let R1, R2 be subsets of
D × F , and R3, R4 be subsets of F × F . Consider the graph D followed by ω
many copies of F , ordered as F0, F1, F2, . . .. Formally, the vertex set of F i is
F × {i} and we write f i = (f, i) for f ∈ F and i ∈ ω. The edge set Ei of F i

consists of all pairs (ai, bi) such that (a, b) ∈ EF . We define the infinite graph,
unwind(D, F , R̄), as follows: the vertex set is D ∪ F 0 ∪ F 1 ∪ F 2 ∪ . . .; the edge
set contains ED ∪ E0 ∪ E1 ∪ . . . as well as the following edges, for all a, b ∈ F ,
d ∈ D, and i, j ∈ ω:

– (d, b0) when (d, b) ∈ R1, and (d, bi+1) when (d, b) ∈ R2,
– (ai, bi+1) when (a, b) ∈ R3, and (ai, bi+2+j) when (a, b) ∈ R4.

Theorem 1. [9] A graph G has a unary automaton presentation if and only if it
is isomorphic to unwind(D, F , R̄) for some parameters D, F , and R̄. Moreover,
if A is a standard automaton representing G then the parameters D, F , R̄ can be
extracted in O(n2); otherwise, the parameters can be extracted in O(n2n), where
n is the number of states in A.
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3 Unary Automatic Graphs of Finite Degree

A graph is of finite degree if there are finitely many edges connected to each
vertex v. A unary automaton A recognizing a binary relation is a one-loop
automaton if its transition diagram contains exactly one loop, the (1, 1)-loop.
The following is an easy proposition:

Proposition 1. Let G = (V, E) be a unary automatic graph, then G is of finite
degree if and only if there is a one-loop unary automaton A recognizing E. 	


Each unary automaton has an equivalent standard unary automaton. In general,
the standard automaton may have exponentially more states. However, if A is
a one-loop automaton with n states, the (1, 1)-loop of the equivalent standard
one-loop automaton has at most n states, so the automaton itself has at most
4n2 states. Below, we assume the input automaton A is standard. Let p be
the loop constant of A, then A has exactly 4p2 states. In the following, we
state all results in terms of p rather than n, the number of states of the input
automaton.

Definition 2 (Unfolding Operation). Let D = (VD, ED) and F = (VF , EF)
be finite graphs. The finite sets ΣD,F , ΣF contain all mappings η : VD → P (VF )
and σ : VF → P (VF ) (respectively). The sequence α = ησ0σ1 . . . where η ∈ ΣD,F
and σi ∈ ΣF for each i yields the infinite graph Gα = (Vα, Eα) as follows:

• Vα = VD ∪ {(v, i) | v ∈ VF , i ∈ ω}.
• Eα = ED ∪ {(d, (v, 0)) | v ∈ η(d)} ∪ {((v, i), (v′, i)) | (v, v′) ∈ EF , i ∈ ω} ∪
{((v, i), (v′, i + 1)) | v′ ∈ σi(v), i ∈ ω}.

Figure 2 illustrates the general shape of a unary automatic graph of finite degree
built from D, F , η, and σω (σω is the infinite word σσσ · · · ). We use Definition
2 to recast Theorem 1 for graphs of finite degree. The proof is omitted.

Fig. 2. Unary automatic graph of finite degree Gησω

Theorem 2. A graph of finite degree G = (V, E) possesses a unary automatic
presentation if and only if there exist finite graphs D, F and mappings η : VD →
P (VF ) and σ : VF → P (VF ) such that G is isomorphic to Gησω . 	


If G is a unary automatic graph of finite degree, the parameters D, F , σ and
η can be extracted in O(p2) time, where p is the loop constant of the one-loop
automaton representing the graph. Furthermore, |VF | = |VD| = p.
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4 Deciding the Infinite Component Problem

A component of a graph is the transitive closure of a vertex under the edge
relation. The infinite component problem asks whether a graph G has an
infinite component.

Theorem 3. The infinite component problem for unary automatic graphs of
finite degree G is solved in O(p3), where p is the loop constant of the unary
automaton recognizing G.

By Theorem 2, it suffices to consider the case when G = Gσω since Gησω has an
infinite component if and only if Gσω has one. Let F i be the ith copy of F in G
and xi be the copy of vertex x in F i. The finite directed graph Fσ = (V σ, Eσ) is
defined as follows. Nodes in V σ are the distinct connected components of F . For
simplicity, we assume that |V σ| = |VF | and use x to denote its own component
in F . The case in which |V σ| < |VF | is similar. For x, y ∈ VF , put (x, y) ∈ Eσ if
and only if y′ ∈ σ(x′) for some x′ and y′ that are in the same component as x
and y, respectively. Constructing Fσ requires finding connected components of
F and hence takes time O(p2). To prove Theorem 3, we make essential use of
the following definition which is taken from [6].

Definition 3. An oriented walk in a directed graph G is a subgraph P of G
that consists of a sequence of nodes v0, . . . , vk such that for 1 ≤ i ≤ k, either
(vi−1, vi) or (vi, vi−1) is an arc in G, and for each 1 ≤ i ≤ k, exactly one of
(vi−1, vi) and (vi, vi−1) belongs to P. An oriented walk is an oriented cycle if
v0 = vk and there are no repeated nodes in v1, . . . , vk.

In an oriented walk P , an arc (vi, vi+1) is called a forward arc and (vi+1, vi) is
called a backward arc. The net length of P , denoted disp(P), is the difference
between the number of forward arcs and backward arcs. Note that the net length
can be negative. Given an oriented walk P = v0, . . . , vm , we define the low point
of P as min{disp(v0 . . . v�) | 0 ≤ � ≤ m}. The low point of the oriented walk P is
at most min{0, disp(P)}, and hence is not positive. The next lemma establishes
a connection between oriented walks in Fσ and paths in G.

Lemma 1. Let P be an oriented walk from x to y whose net length is d and low
point is −� . For every i ≥ �, the oriented walk P defines a path P i in G from
xi to yi+d. Moreover, the smallest j such that P i ∩ F j �= ∅ is equal to i − �. 	

Lemma 2. There is an infinite component in G if and only if there is an oriented
cycle in Fσ with positive net length.

Proof. We prove one direction; the other is left to the reader. Suppose there is
an infinite component D in G. Since F is finite, there must be some x in VF such
that there are infinitely many copies of x in D. Let xi and xj be two copies of x
in D with i < j. Consider a path between xi and xj . We can assume that on this
path there is at most one copy of any vertex y ∈ VF apart from x (otherwise,
there is another vertex in VF having an infinite number of copies in the infinite
component with these properties). By definition of Gσω and Fσ, the node x must
be on an oriented cycle of Fσ with net length j − i. 	
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Proof (Theorem 3). By Lemma 2, it suffices to decide if Fσ contains an oriented
cycle with positive net length. Such an oriented cycle exists if and only if there
is an oriented cycle with negative net length. Therefore, the following algorithm
searches for oriented cycles with non-zero net length.
ALG:Oriented-Cycle

1. Pick the first node x ∈ Fσ for which a queue has not been built. Initialize
the queue Qx to be empty. Let d(x) = 0, and put x into Qx marked as
unprocessed. If there is no such x ∈ Fσ, stop the process and return NO.

2. Define y to be the first unprocessed node in the queue Qx. If there are no
unprocessed nodes in Qx, return to (1).

3. For each node z in the set {z | (y, z) ∈ Eσ or (z, y) ∈ Eσ}, do the following:
(a) If (y, z) ∈ Eσ, set d′(z) = d(y) + 1; if (z, y) ∈ Eσ, set d′(z) = d(y) − 1.
(If both hold, do steps (a), (b), (c) first for (z, y) and then for (y, z).)
(b) If z /∈ Qx, set d(z) = d′(z), put z into Qx, and mark z as unprocessed.
(c) If z ∈ Qx then if d(z) = d′(z), move to next z; if d(z) �= d′(z), stop the
process and return YES.

4. Mark y as processed and go back to (2).

We claim that the algorithm returns YES if and only if there is an oriented
cycle in Fσ with non-zero net length. Suppose the algorithm returns YES. Then,
there is a base node x and a node z such that d(z) �= d′(z). Thus, there is an
oriented walk P from x to z with net length d(z) and there is an oriented walk
P ′ from x to z with net length d′(z). Let (P ′)− be the oriented walk P ′ in reverse
direction. Consider the oriented walk P(P ′)−: it is an oriented walk from x to
x with net length d(z) − d′(z) �= 0. If there are no repeated nodes in P(P ′)−,
it is the required oriented cycle. Otherwise, let y be a repeated node in P(P ′)−

such that no nodes between the two occurrences of y are repeated. Consider the
oriented walk between these two occurrences of y; if it has a non-zero net length
it is our required oriented cycle and otherwise we can make the oriented walk
P(P ′)− shorter without altering its net length.

Conversely, suppose there is an oriented cycle P = x0, . . . , xm of non-zero
net length where x0 = xm. We assume for a contradiction that the algorithm
returns NO. Consider how the algorithm acts when we pick x0 at step (1). For
each 0 ≤ i ≤ m, the following statements hold (by induction on i).

(�) xi gets a label d(xi)
(��) d(xi) equals the net length of the oriented walk from x0 to xi in P .

These statements suffice to yield a contradiction, and hence prove the correctness
of Oriented-Cycle.

Putting these pieces together, the following algorithm solves the infinite com-
ponent problem. Suppose we are given a unary automaton (with loop constant
p) which recognizes the unary automatic graph of finite degree G. Recall that
p = |VF |. We compute Fσ in time O(p2). Then we run Oriented-Cycle to de-
cide if Fσ contains an oriented cycle with positive net length. For each node x in
Fσ, the run time is O(p2). Since Fσ contains p nodes, this takes time O(p3). 	
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5 Deciding the Infinity Testing Problem

The infinity testing problem asks for an algorithm that, given a vertex v and
graph G, decides if the vertex belongs to an infinite component of the graph G.

Theorem 4. The infinity testing problem for G, a unary automatic graph of
finite degree with loop constant p, is solved in O(p5). When A is fixed, there is
a constant time algorithm that decides the infinity testing problem on G.

To prove Theorem 4 we outline several lemmas, the more difficult of which we
prove. The set C is defined as all nodes x in Fσ for which there exists an oriented
cycle from x with positive net length and low point 0. We call an oriented walk
simple if it contains no repeated nodes. For any k ≥ 0, let C[k] be the set of all
nodes x /∈ C[0] ∪ . . . ∪ C[k − 1] that can reach C via a simple oriented walk with
low point −k. Note that C ⊆ C[0]. Moreover, since |Fσ| ≤ p, a simple oriented
walk may have at most p steps and hence C[k] = ∅ for k > p − 1.

Lemma 3. Let x ∈ VF . If xi belongs to an infinite component of G then for all
j > 0, xi+j also belongs to an infinite component of G. 	


Lemma 4. If x ∈ C, then xi is in an infinite component for all i ∈ ω. 	


Lemma 5. For each vertex xi, xi belongs to an infinite component in G if and
only if node x ∈ C[k] for some 0 ≤ k ≤ min{i, p − 1}.

Proof. We prove the harder direction: if xi is in an infinite component, there is
an oriented walk from x to C with low point −k, where 0 ≤ k ≤ min{i, p−1}. Let
D be the infinite component of xi. Since F is finite, there must be y in VF such
that D contains infinitely many copies of y. Let ys and yt be two copies of y in D
with s < t. Take a path P in G between ys and yt such that P contains no more
than one copy of each vertex in VF apart from y. (If there is no such path P ,
choose another vertex y in VF with these properties). Let � be the least number
such that P ∩F� �= ∅. Let z� be a vertex in P . Then P is divided into two paths
P1 and P2, where P1 goes from ys to z� and P2 goes from z� to yt. Hence there
is a path P3 from yt to z�+t−s. By joining P2 and P3 together we obtain a path
between z� and z�+t−s. We have defined an oriented cycle in Fσ with positive
net length and low point 0. Hence, z ∈ C. Take a path in G between xi and a
copy of z in D containing no more than one copy of each vertex in F . This is an
oriented walk in Fσ from x to z with low point not more than min{i, p− 1}. 	


Lemma 6. If G is a unary automatic graph of finite degree presented by A with
loop constant p, the set C for G can be computed in time O(p4).

Proof. For each x ∈ Fσ, do a breadth-first search through Fσ for oriented
walks starting at x. To compute the path P , put (y, d) in a queue, where y is
the incremental destination of P and d is its net length. We keep track of the
following properties of the pair (y, d):

1. level(y, d) is the length of the oriented walk P from x to y; and
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2. path(y, d) is a tuple of pairs (x0, d0) . . . (xlevel(y,d), dlevel(y,d)) coding the ini-
tial segment of P . Note: (x0, d0) = (x, 0) and (xlevel(y,d), dlevel(y,d)) = (y, d).

Given input x ∈ Fσ, the following algorithm checks membership in C.
ALG:C-Membership

1. Put (x, 0) into the (initially empty) queue Q. Mark (x, 0) as unprocessed and
set level(x, 0) = 0, path(x, 0) = (x, 0).

2. If no unprocessed pair is left in the queue, stop and output NO. Otherwise,
take the first unprocessed (y, d) in Q.

3. If level(y, d) ≥ p, stop and output NO.
4. For arcs e of the form (y, z) or (z, y) in Eσ do the following:

(a) If e = (y, z), set j = d + 1; if e = (z, y), set j = d − 1.
(b) If z = x and j > 0, stop the process and return YES.
(c) If (z, d′) is not in path(y, d) for any d′, and if j ≥ 0 and (z, j) /∈ Q, then
put (z, j) into Q, mark (z, j) as unprocessed, set level(z, j) = level(y, d)+ 1,
set path(z, j) = path(y, d) · (z, j).

5. Mark (y, d) as processed and go back to (2).

We claim that C-Membership on input x returns YES if and only if x ∈ C.
Suppose the algorithm returns YES. Then there is a simple oriented walk P from
x to x with positive net length. Let P be x0, . . . , xm such that x0 = xm = x. The
algorithm ensures that the net length of the (sub)oriented walk in P from x0 to
each xi is non-negative. Thus, the low point of P is no less than 0 and x ∈ C.
For the other direction, suppose P = x0, . . . , xm is an oriented cycle of positive
net length and zero low point. Assume the algorithm does not return YES. Run
the algorithm from x0. For all xi, the following statements hold by induction.

(�) There exists di ≥ 0 such that (xi, di) ∈ Q.
(��) di equals the net length of the oriented walk from x0 to xi in P .

Note that level(y, d) ≤ p for all (y, d) ∈ Q. Moreover, every time the level is
incremented by 1 the net length either goes up or down by 1, hence d must also
be no more than p. Thus, the cardinality of Q is bounded above by p2 and so
for each x ∈ Fσ, the algorithm takes time O(p3). To compute C, we need to run
C-Membership on every x in Fσ, taking time O(p4). 	

Using Lemma 6, we iteratively compute C[k] for any 0 ≤ k ≤ p − 1 as follows.
First, compute the set C in time O(p4). For each x /∈ C[0] ∪ · · · ∪ C[k − 1] we run
operations similar to the ones described above, except that at step (4)(b), the
process stops and returns YES whenever z ∈ C and j ≥ −k, and at step (4)(c),
the process puts a pair (z, j) into the queue Q if j ≥ −k and (z, j) /∈ Q. The
proof of correctness is like that of C-Membership. This algorithm runs in O(p4).

Proof (Theorem 4). We assume the input vertex xi is given by tuple (x, i). By
Lemma 5, to check if xi is in an infinite component, the algorithm needs to
compute C[0], . . . , C[min{i, p − 1}]. As a consequence of Lemma 6, this takes
time O(p5). The algorithm then checks whether x ∈ C[k] for some 0 ≤ k ≤
min{i, p − 1}. Once the sets C[0], . . . , C[p − 1] are found, checking whether xi

belongs to an infinite component takes constant time. 	
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6 Deciding the Reachability and Connectivity Problems

The reachability problem asks whether two given vertices u and v in a unary
automatic graph of finite degree belong to the same component.

Theorem 5. Suppose G is a unary automatic graph of finite degree represented
by unary automaton A of loop constant p. A polynomial time algorithm solves the
reachability problem on G. For inputs xi, yj, the algorithm runs in O(i+ j + p5).

We restrict to the case G = Gσω (the general case requires few changes). The
infinity testing algorithm checks if xi is in a finite component in O(p5) time, and
leads to two possible cases. First, suppose that xi is in a finite component.

Lemma 7. If xi is in a finite component, then xi and yj are in the same com-
ponent only if i − p < j < i + p. 	


To check if xi and yj are in the same component, we run a breadth first search
in G starting from xi visiting all vertices in F i−i′

, . . . , F i+p (i′ = min{p, i}) .
ALG: FiniteReach

1. Put (x, 0) into the (initially empty) queue Q, marked as unprocessed.
2. If there are no unprocessed pairs in Q, stop the process. Otherwise, let (y, d)

be the first unprocessed pair. For arcs e of the form (y, z) or (z, y) in Eσ:
(a) If e = (y, z), let d′ = d + 1; if e = (z, y), let d′ = d − 1.
(b) If −i′ ≤ d′ ≤ p and (z, d′) /∈ Q, put (z, d′) into Q marked as unprocessed.

3. Mark (y, d) as processed, and go to (2).

Then, xi and yj are in the same (finite) component if and only if after running
FiniteReach on the input xi, the pair (y, j − i) is in Q. The running time is
bounded by the number of edges in G restricted to F0, . . . , F2p, hence is O(p3).

Corollary 1. If all components of G are finite and if we represent (xi, yj) by
(xi, yj , j − i), an O(p3)-algorithm checks reachability for xi and yj. 	


On the other hand, suppose that xi is in an infinite component. We begin with
an algorithm that computes all vertices y ∈ VF whose ith copy lies in the same
component as xi. The algorithm is identical to FiniteReach, except that Line
(2b) in FiniteReach is changed to the following: (2b’) If |d′| ≤ p and (z, d′) �∈ Q,
then put (z, d′) into Q and mark (z, d′) as unprocessed. We use this modified
algorithm to define the set Reach(x) = {y | (y, 0) ∈ Q}. Intuitively, we can
think of the algorithm as a breadth first search through F0 ∪ · · · ∪ F2p which
originates at xp. Therefore, y ∈ Reach(x) if and only if there exists a path from
xp to yp in G, restricted to F0 ∪ · · · ∪ F2p.

Lemma 8. If xi, yi are both in infinite components, they are in the same com-
ponent iff y ∈ Reach(x).

Proof. Assume xi, yi are in infinite components. Suppose y ∈ Reach(x). There
is a path P in G from xp to yp. Let � be least such that F� ∩ P �= ∅. If i ≥ p − �,
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then xi and yi are in the same component. Thus, suppose i < p − �. Let z be
such that z� ∈ P . Then P is P1P2 where P1 is a path from xp to z� and P2 is
a path from z� to yp. By Lemma 3, since xi is in an infinite component, so is
xp. There is r > 0 such that the set {xp+rm | m ∈ ω} is contained in a single
component. Likewise, there is an r′ > 0 such that {yp+r′m | m ∈ ω} is in one
component. Consider xp+rr′

and yp+rr′
. There is a path P ′

1P
′
2 from xp+rr′

to
yp+rr′

. A second path P ′ from xp to yp goes from xp to xp+rr′
, then along P ′

1P
′
2

from xp+rr′
to yp+rr′

, and finally to yp. The least �′ such that F�′ ∩ P ′ �= ∅ is
larger than �. Iteratively lengthening the path between xp and yp until i < p− �′

brings us to the previous case.
To prove the implication in the other direction, we assume that xi and yi

are in the same infinite component. We want to prove that y ∈ Reach(x). Let
i′ = min{p, i}. Let P be a path in G from xi to yi. We use P to construct a path
which stays in F i−i′ ∪· · ·∪F i+p. Let �(P ) be largest such that P ∩F�(P ) �= ∅; let
�′(P ) be least such that P ∩F�′(P ) �= ∅. If i− i′ ≤ �′(P ) and �(P ) ≤ i+p, we are
done. Otherwise, let P1, . . . , Pk be a sequence of subpaths of P , each beginning
and ending in F i, such that P = P1 · · · Pk and for each 1 ≤ j ≤ k, �(Pj) = i or
�′(Pj) = i. It is not hard to see that each Pj can be replaced by a path P ′

j with
the same start and end points and which satisfies i− i′ ≤ �′(P ′

j) ≤ �(P ′
j) ≤ i+ p.

This new path witnesses that y ∈ Reach(x). 	

We inductively define a sequence Cl0(x), Cl1(x), . . . such that each Clk(x) is a sub-
set of VF . Set Cl0(x) = Reach(x). For k > 0, set Clk(x) = Reach(σ(Clk−1(x))).

Lemma 9. Suppose j ≥ i and xi, yj are both in infinite components. xi and yj

are in the same component if and only if y ∈ Clj−i(x). 	

The following algorithm uses the lemma to solve the reachability problem.
ALG: Naı̈veReach

1. Check if each of xi, yj are in an infinite component of G (see Theorem 4).
2. If exactly one of xi and yj is in a finite component, then return NO.
3. If both xi, yj are in finite components, run FiniteReach on xi and check if

(y, j − i) ∈ Q.
4. If both xi and yj are in infinite components, check if y ∈ Clj−i(x).

Naı̈ve Reach computes Cl0(x) in time O(p3). Given Clk−1(x), we can com-
pute Clk(x) in time O(p4). Hence, on input xi, yj, Naı̈veReach takes time
O((j − i) · p4). We will now improve this bound. From Lemma 5, xi is in an
infinite component in G if and only if there is an oriented cycle C with positive
net length, zero low point, and reachable from x by a simple oriented walk with
low point ≥ −i. Assume xi is in an infinite component. The algorithm for the
infinity testing problem finds such an oriented cycle C. And, it can compute the
net length r of C. All vertices in {xi+mr | m ∈ ω} belong to the same component.

Lemma 10. Cl0(x) = Clr(x). 	

We give a new algorithm, Reach, by replacing line (4) in Naı̈veReach with: (4’)
If xi and yj belong to infinite components, compute Cl0(x), . . ., Clr−1(x). If
y ∈ Clk(x) for k < r with j − i = k mod r, return YES ; otherwise, return NO.
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Proof (Theorem 5). By Lemma 9 and Lemma 10, Reach returns YES iff xi and
yj are in the same component. Calculating Cl0(x), . . . , Clr−1(x) requires time
O(p5). Therefore the running Reach on xi, yj takes O(i + j + p5). 	

In fact, the algorithm produces k < p such that to check if xi, yj (j > i) are in
the same component, we need to test if j − i < p and if j − i = k mod p. If G
is fixed, we may pre-compute Cl0(x), . . . , Clrx−1(x) for all x, so deciding if two
vertices u, v belong to the same component takes linear time. The above proof
can also be used to build a unary automaton that decides reachability uniformly.

Corollary 2. With G as above, there is a deterministic automaton with at most
2p4 + p3 states that solves the reachability problem on G. The time required to
construct this automaton is O(p6). 	

This corollary can be applied to solve the connectivity problem.

Theorem 6. The connectivity problem for unary automatic graphs of finite degree
is solved in time O(p6), where p is the loop constant of the unary automaton. 	
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Abstract. The vast number of applications featuring multimedia and
geometric data has made the R-tree a ubiquitous data structure in
databases. A popular and fundamental operation on R-trees is nearest
neighbor search. While nearest neighbor on R-trees has received consid-
erable experimental attention, it has received somewhat less theoretical
consideration. We study pruning heuristics for nearest neighbor queries
on R-trees. Our primary result is the construction of non-trivial fami-
lies of R-trees where k-nearest neighbor queries based on pessimistic (i.e.
min-max) distance estimates provide exponential speedup over queries
based solely on optimistic (i.e. min) distance estimates. The exponential
speedup holds even when k = 1. This result provides strong theoretical
evidence that min-max distance heuristics are an essential component
to depth-first nearest-neighbor queries. In light of this, we also consider
the time-space tradeoffs of depth-first versus best-first nearest neighbor
queries and construct a family of R-trees where best-first search per-
forms exponentially better than depth-first search even when depth-first
employs min-max distance heuristics.

1 Introduction

Nearest neighbor queries on the R-tree play an integral role in many modern
database applications. This is due in large part to the prevalence and popularity
of multimedia data indexed geometrically by a vector of features. It is also be-
cause nearest neighbor search is a common primitive operation in more complex
queries [1].

Although the performance of nearest neighbor search on R-trees has received
some theoretical consideration (e.g., [2,3]), its increasing prominence in todays
computing world warrants even further investigation. The authors of [1] note
that three issues affect the performance of nearest neighbors on R-trees:

– the order in which children are visited,
– the traversal type, and
– the pruning heuristics.

We show that at least two of these — traversal type and pruning heuristics —
have a quantitatively profound impact on efficiency. In particular we prove the
following:
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1. There exists a family of R-trees where depth-first k-nearest neighbor search
with pessimistic (i.e. min-max) distance pruning performs exponentially bet-
ter than optimistic (i.e. min) distance pruning alone. This result holds even
when k = 1.

2. There exists a family of R-trees where best-first k-nearest neighbor queries
perform exponentially better than depth-first nearest neighbor queries even
when the depth-first search uses both optimistic and pessimistic pruning
heuristics. This result also holds when k = 1.

Our first result provides strong theoretical evidence that pruning strategies based
on pessimistic distance estimates are valuable in depth-first nearest neighbor queries.
These results rely on subtle changes to existing algorithms. In fact, without these
nuanced changes, the exponential speedup may completely disappear.

Our second result deals with the known time efficiency benefits of best-first
nearest neighbor algorithms over depth-first nearest neighbor algorithms. Given
our first result, it is natural to ask whether pessimistic distance pruning closes
part of the time efficiency gap. We answer this question in the negative through
several general constructions. Still, the benefit of pessimistic pruning strategies
should not be overlooked. They provably enhance the time-efficiency of the al-
ready space-efficient depth-first nearest neighbor queries. Such algorithms still
play an increasingly prominent role in computing given the frequency and de-
mand for operations on massive data sets.

The outline of this paper is as follows: In sections 2 and 3 we briefly review
definitions for R-trees, MinDist, MinMaxDist, and the three common pruning
heuristics employed in depth-first nearest neighbor queries. Sections 4 and 5
describe our R-tree constructions and prove the power of pessimistic pruning.
Section 6 discusses the time-space tradeoffs of best-first versus depth-first nearest
neighbor queries. We conclude in Section 7.

2 Background

R-trees [4] and their variants (e.g. [5,6]. See [1] for a list of others) are data
structures for organizing spatial objects in Euclidean space. They support dy-
namic insertion and deletion operations. Internal and leaf nodes contain records.
A record r belonging to an internal node is a tuple 〈M, μ〉 where μ is a pointer
to the child node of r and M is an n-dimensional minimum bounding rectangle
(MBR). M tightly bounds the spatial objects located in the subtree of r. For
example, given the points (1, 2), (4, 5), and (3, 7) in 2-space, the MBR would be
〈(1, 4), (2, 7)〉. The records of leaf nodes are also tuples but have the form 〈M, o〉
where o is either the actual spatial object or a reference to it.

The number of records in a node is its branching factor. Every node of an R-
tree contains between b and B records where both b and B are positive integers
and b ≤ �B

2 �. One exception is the root node which must have at least two
records. R-trees are completely balanced—all leaf nodes have the same depth.
Figure 1 depicts an example collection of spatial objects, their MBRs, and their
R-tree. More details on R-trees are available in [1].
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Fig. 1. (i) A collection of spatial objects (solid lines) and their hierarchy of minimum
bounding rectangles (dashed lines). (ii) An R-tree for the objects in (i).

We consider nearest neighbor searches on R-trees. In all cases these searches
have the form: Given a query point q and an R-tree T with spatial objects of
matching dimension to q, find the k-nearest objects to q in T . Nearest here and
throughout the rest of the paper is defined by Euclidean distance.

3 Nearest Neighbors

There are two dominant nearest neighbor algorithms for the R-tree. The first
is a best-first search algorithm (denoted HS) due to Hjatlson and Samet [7].
HS is optimal in the sense that it only searches nodes with bounding boxes
intersecting the k-nearest neighbor hypersphere [7,8]. However, it has worst case
space complexity that is linear in the total number of tree nodes. With large
data sets this cost may become prohibitive [3].

The second algorithm due to Roussopoulos et al. [9] (denoted here by RKV) is
a branch and bound depth-first search. RKV employs several heuristics to prune
away branches of the tree. We define and discuss the subtlety of these heuristics
below. While RKV may search more nodes than HS, it has worst-case space
complexity that is only logarithmic in the number of tree nodes. In addition,
the authors of [10] note that statically constructed indices map all pages on a
branch to contiguous regions on disk, so a depth-first search may “yield fewer
disk head movements than the distance-driven search of the HS algorithm.” In
these cases RKV may be preferable to HS for performance reasons beyond space
complexity.

3.1 Distances

RKV uses three different strategies (here called H1, H2, and H3 respectively
and defined formally below) to prune branches. H3 is based on a measure called
MinDist which gives the actual distance between a node and a query point. In
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MinDistance

MinMaxDistance

Fig. 2. A visual explanation of MinDist and MinMaxDist in two dimensions

other words, MinDist(q, M) is the length of the shortest line between the query
point q and the nearest face of the MBR M . When the query point lies within
the MBR, MinDist is 0. Figure 2 shows the MinDist values for a query point
and three minimum bounding rectangles. Because an MBR tightly encapsulates
the spatial objects within it, each face of the MBR must touch at least one of
the objects it encloses [9]. This is called the MBR face property.

Figure 2 shows that MinDist is a lower bound or optimistic estimate of
the distance between the query point and some spatial object inside its MBR.
However, the actual distance between a query point and the closest object may
be much larger.

H1 and H2 use a second measure called MinMaxDist which provides an
upper bound on the distance between an actual object in a node and a query
point. In other words, MinMaxDist provides a pessimistic estimate of the dis-
tance between the query point and some spatial object within its MBR. Figure 2
depicts these distances for a query point and three MBRs. From its name one
can see MinMaxDist is calculated by finding the minimal distance from a set
of maximal distances. This set of maximal distances is formed as follows: Sup-
pose we have an n-dimensional minimum bounding rectangle. If we fix one of
the dimensions, we are left with two n − 1 dimensional hyperplanes; one repre-
senting the MBR’s lower bounds, the other representing its upper bounds. We
know from the MBR face property that at least one spatial object touches each
of these hyperplanes. However, given only the MBR, we cannot identify this lo-
cation. But, given a query point, we can say that an object is at least as close
as the distance from that point to the farthest point on the closest hyperplane.
This distance is an upper bound on the distance between the query point and a
spatial object located within the MBR. By iteratively fixing each dimension of
an MBR and finding the upper bound, we can form the set of maximal distances.
Since each maximal distance is an upper bound, it follows that the minimum
of these is also an upper bound. This minimum distance is what we call the
MinMaxDist(q, M) of a query point q and an MBR M .
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3.2 Pruning Heuristics

Pruning strategies based on MinDist and MinMaxDist potentially remove
large portions of the search space. The following three strategies were originally
defined in [9] for use in RKV. All assume a query point q and a list of MBRs
M (to potentially prune) sorted by MinDist. The latter assumption is based
on empirical results from both [9] and [7]. In addition, two strategies, H2 and
H3, assume a current nearest object o.

Definition 1 (H1). Discard any MBR Mi ∈ M if there exists Mj ∈ M with
MinDist(q, Mi) > MinMaxDist(q, Mj)

Definition 2 (H2). Discard o if there exists Mi ∈ M such that MinMaxDist

(q, Mi) < Dist(q, o).

Definition 3 (H3). Discard any minimum bounding rectangle M ∈ M if
MinDist(q, M) > Dist(q, o)

Both Cheung et al. [11] and Hjaltason et al. [7] show that any node pruned by H1
is also pruned by H3. Furthermore, they note that H2 serves little purpose since
it does not perform any pruning. This has led to the development of simpler but
behaviorally-identical versions of RKV that rely exclusively on H3 for pruning.
As a result, we take RKV to mean the original RKV without H1 and H2.

Algorithm 1. 1NN(q, n, e)
Require: A query point q, a node n and a nearest neighbor estimate e. e may be a

distance estimate object or a (pointer to a) spatial object.

1: if LeafNode(n) then
2: for 〈M, o〉 in records[n] do {M is a MBR, o is a (pointer to a) spatial object}
3: if Dist(q, M) ≤ Dist(q, e) then
4: e ← o
5: end if
6: end for
7: else
8: ABL ← Sort(records[n]) {Sort records by MinDist }
9: for 〈M, μ〉 in ABL do {M is an MBR, μ points to a child node}

10: if MinMaxDist(q, M) ≤ e then {H2* Pruning}
11: e ← MinMaxDist(q, M)))
12: end if
13: end for
14: for 〈M, μ〉 in ABL do {M is an MBR, μ points to a child node}
15: if MinDist(q, M) < Dist(q, e) then {H3 Pruning}
16: 1NN(q, μ, e)
17: end if
18: end for
19: end if
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The benefits of MinMaxDist, however, should not be overlooked — it can
provide very useful information about unexplored areas of the tree. The key is to
replace an actual object o with a distance estimate e (some call this the closest
point candidate) and then adjust H2 so that we replace the estimate with the
MinMaxDist instead of discarding the object. This gives us a new definition of
H2 which we call H2*.

Definition 4 (H2*). Replace e with MinMaxDist(q, Mi) if there exist Mi ∈
M such that
MinMaxDist(q, Mi) < e.

This definition is not new. In fact, the authors of [2] use replace instead of discard
in their description of H2. However, updating the definition of H2 to H2* in RKV
does not yield the full pruning power of MinMaxDist. We need to apply H2*
early in the search process. This variation on RKV yields Algorithm 1 which we
refer to it as 1NN. Note that the RKV traditionally applies H2 after line 1. This
diminishes the power of pessimistic pruning. In fact, our exponential speedup
results in Sections 4 and 5 hold even when H2* replaces H2 in the original
algorithm.

3.3 k-Nearest Neighbors

Correctly generalizing H2* to k-nearest neighbor queries is essential in light of
the potential power of pessimistic pruning. However, as Böhm et. al [10] point
out, such an extension takes some care.

We begin by replacing e with a priority queue L of k-closest neighbors esti-
mates. Note that H2* doesn’t perform direct pruning, but instead, updates the
neighbor estimate when distance guarantees can be made. If the MinMaxDist

of a node is less than the current distance estimate, then we can update the
estimate because the future descent into that node is guaranteed to contain an
object with actual distance at most MinMaxDist. We call estimates in up-
dates of this form promises because they are not actual distances, but are upper
bounds on distances. Moreover each estimate is a promise of, or place holder for,
a spatial object that is as least as good the promise’s prediction. A natural but
incorrect generalization of H2 places a promise in the priority queue whenever
the maximum-distance element in L is farther away than the MinMaxDist.
This leads to two problems. First, multiple promises may end up referring to
the same spatial object. Second, a promise may persist past its time and eventu-
ally refer to a spatial object already in the queue. These problems are depicted
visually in Figure 3. The key to avoiding both problems is to always remove a
promise from the queue before searching the node which generated it; it will
always be replaced by an equal or better estimate or by an actual object. This
leads us to the following generalization of H2 which we call Promise-Pruning:

Definition 5 (Promise-Pruning). If there exists Mi ∈ M such that δ(q, Mi) =
MinMaxDist(q, Mi) < Max(L), then add a promise with distance δ(q, Mi) to
L. Additionally, replace any promise with distance δ(q, Mi) from L with ∞ before
searching Mi.
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Fig. 3. Blindly inserting promises into the queue, without removing them correctly,
wreaks havoc on the results. For example, when performing a 2-nearest neighbor search
on the tree above, a promise with distance f is placed in the queue at the root. Af-
ter investigating X, the queue retains f and a. However, if f is not removed before
descending into Y , the final distances in the queue are e and f — an incorrect result.

This generalization is tantamount to an extension suggested by Böhm et al.
in [10]. Our primary contribution is to show that this extension, when performed
at the right point, may provide an exponential performance speedup on depth-
first nearest neighbor queries.

For completeness, we also provide generalizations of H1 and H3 which we call
K1 and K3 respectively. We also prove that K3 dominates K1, just as it did in
the 1-nearest neighbor case. This proof is a simple extension of those appearing
in [11,7].

Definition 6 (K1). Discard any minimum bounding rectangle Mi ∈ M if there
exists M′ ⊆ M such that |M′| ≥ k and for every Mj ∈ M′ it is the case that
MinDist(q, Mi) > MinMaxDist(q, Mj)

Definition 7 (K3). Discard any minimum bounding rectangle Mi ∈ M if
MinDist(q, Mi) > Max(L) where Max returns the largest estimate in the prior-
ity queue.

Theorem 1. Given a query point q, a list of MBRs M, and a priority queue of
k closest neighbor estimates L, any MBR pruned by K1 in the depth-first RKV
algorithm is also pruned by K3.

Proof. Suppose we are performing a k nearest neighbor search with query point
q and K1 prunes MBR M from M. From Definition 6 there exists M′ ⊂ M such
that |M′| ≥ k and every M ′ in M′ has MinMaxDist(q, M ′) < MinDist(q, M).
Since for any MBR N ,MinDist(q, N) ≤ MinMaxDist(q, N), each M ′ in M′ will
be searched before M because M is sorted by MinDist. Because each M ′ in M′

is guaranteed to contain a spatial object with actual distance at most that of than
an object found in M and since we have |M′| ≥ k we know Max(L) < δ(q, M).
Therefore, from Definition 7, M would also be pruned using K3.
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Algorithm 2. KNN(k, q, n, L)
Require: An integer k, a query point q, a node n and a priority queue L of fixed size

k. L initially contains k neighbor estimates with distance ∞.

1: if LeafNode(n) then
2: for 〈M, o〉 in records[n] do {M is a MBR, o is a (pointer to a) spatial object}
3: if Dist(q, M) < max(L) then {Here max returns the object or estimate of

greatest distance}
4: insert(L, o) {Inserting o into L replaces some other estimate or object.}
5: end if
6: end for
7: else
8: ABL ← Sort(records[n]) {Sort records by MinDist }
9: for 〈M, μ〉 in ABL do {M is an MBR, μ points to a child node}

10: if MinMaxDist(q, M) < max(L) then {Promise-Pruning}
11: insert(L,Promise(MinMaxDist(q, M)))
12: end if
13: end for
14: for 〈M, μ〉 in ABL do {M is an MBR, μ points to a child node}
15: if MinDist(q, M) < max(L) then {K3 Pruning}
16: if L contains a promise generated from M then
17: remove(L,Promise(MinMaxDist(q, M)))
18: end if
19: KNN(k, q, μ, L)
20: end if
21: end for
22: end if

Theorem 1 means K1 is redundant with respect to K3, so we do not use it in our
depth-first k-nearest neighbor procedure outlined in Algorithm 2. We call this
procedure KNN.

4 The Power of Pessimism

In this section we show that 1NN may perform exponentially faster than RKV
despite the fact that it differs only slightly from the original definition. As we
noted earlier, the original RKV is equivalent to RKV with only H3 pruning.
Thus, RKV is Algorithm 1 without lines 9-13.

Theorem 2. There exists a family of R-tree and query point pairs T = {(T1, qn),
. . . , (Tm, qm)} such that for any (Ti, qi), RKV examines O(n) nodes and 1NN

examines O(log n) nodes on a 1-nearest neighbor query.

Proof. For simplicity, we restrict our attention to R-trees composed of points in
R

2 so that all the MBRs are rectangles. Also, we only construct complete binary
trees where each node has two records. The construction follows the illustration
in Figure 4. Let δ(i, j) be the Euclidean distance from point i to point j and
let (i, j) be their rectangle. Let q be the query point. Choose three points a,
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Fig. 4. A visual explanation of the tree construction for Theorem 2

b, and c such that δ(q, a) = r1 < δ(q, b) = r4 < δ(q, c) and (b, c) forms a
rectangle W with a corner a. Similarly, choose three points d, e, and f such
r1 < δ(q, f) = r2 < δ(q, d) = r3 < r4 < δ(q, e) and (d, e) forms a rectangle X
with corner f . Let T be a complete binary tree over n leaves where each node
has two records. Let T1 be the left child of T and let T2 be the right child of T .
Let L1 be the far left leaf of T1 and let L2 be the far left leaf of T2. Place b and
c in L1, and d and e in L2. In the remaining leaves of T1, place pairs of points
(pi, pj) such that pi and pj are interior to V , δ(q, pi) > r4 and δ(q, pj) > r4 but
(pi, pj) form a rectangle with corner p′ such that r3 < δ(q, p′) < r4. Rectangles
Y and Z in Figure 4 are examples of this family of point pairs. In the remaining
leaves of T2 place pairs of points (pk, pl) such that pk and pl are interior to U
(i.e., so that MinDist(q, (pk, pl)) > r3). The construction yields a valid R-tree
because we place pairs of points at the leaves and build up the MBRs of the
internal nodes accordingly.

Claim. Given a tree T and query point q as constructed above, both RKV and
1NN prune away all of T2 save the left branch down to L2 on a 1-nearest neighbor
query.

Proof. Note that d is the nearest neighbor to q in T so both algorithms will search
T2. L2, by construction, has the least MinDist of any subset of points in T2, so
both algorithms, when initially searching T2, will descend to it first. Since δ(q, d)
is the realization of this MinDist and no other pair of points in X has MinDist <
δ(q, d), both algorithms will prune away the remaining nodes using H3.

Now we’ll show that RKV must examine all the nodes in T1 while 1NN can use
information from X to prune away all of T1 save the left branch down to L1.

Lemma 1. Given an R-tree T and query point q as constructed above, RKV
examines every node in T1 on a 1-nearest neighbor query.

Proof. Since MinDist(q, W ) = δ(q, a), RKV descends to L1 first and claims b as
its nearest neighbor. However, RKV is unable to prune away any of the remaining
leaves of T1. To see this, let Li = (pi1, pi2) and Lj = (pj1, pj2) be distinct leaves of
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T1 (but not L1). Note that MinDist(q, (pi1, pi2)) < r4 < min(δ(q, pj1), δ(q, pj2))
and MinDist(q, (pj1, pj2)) < r4 < min(δ(q, pi1), δ(q, pi2)). This means that the
MinDist of any leaf node is at most r4 but every point is at least r4 so RKV
must probe every leaf. As a result, it cannot prune away any branches.

Lemma 2. Given a tree T and query point q as constructed above, 1NN prunes
away all nodes in T1 except those on the branch leading to L1 in a 1-nearest
neighbor query.

Proof. 1NN uses the MinMaxDist information from X as an indirect means
of pruning. Before descending into T1, the algorithm updates its neighbor esti-
mate with δ(q, d). Like RKV, 1NN descends into T1 directly down to L1 since
δ(q, W ) < δ(q, d) and W has the smallest MinDist of all the nodes. Unlike RKV,
it reaches and ignores b because δ(q, d) < δ(q, b). In fact, the promise granted
by X allows us to prune away all other branches of the tree since the remaining
nodes are all interior to V and δ(q, d) < MinDist(q, V ).

The theorem follows from Lemma 1 and Lemma 2. RKV searches all of T1 (O(n)
nodes) while 1NN searches only the paths leading to L1 and L2 (O(log n) nodes).
As a consequence, 1NN can reduce the search space exponentially over RKV. �

In the original RKV, H2 pruning appears on line 1. Our results hold even if
we replace H2 with H2*. This is because all the pruning in T1 relies on the
MinMaxDist found at the root node. Hence the promotion of pessimistic prun-
ing in Algorithm 1 plays a crucial role in the performance of depth-first nearest
neighbor queries.

5 Search Space Reductions with K-Nearest Neighbors

Here we show that the benefits 1NN reaps from MinMaxDist extend to KNN
when H2* is properly generalized to Promise-Pruning. In particular, we con-
struct a class of R-trees where KNN reduces the number of nodes visited ex-
ponentially when compared with RKV. As in Section 4, we take RKV to mean
Algorithm 2 without lines 9-13 (and additionally lines 16-18).
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Fig. 5. A visual explanation of the tree construction used in Theorem 3
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Theorem 3. There exists a family of R-trees and query point pairs T ={(T1, qn),
. . . , (Tm, qm)} such that for any (Ti, qi), RKV examines O(n) nodes and KNN
examines O(log n) nodes on a 2-nearest neighbor query.

Proof. The proof follows the outline of Theorem 2. The construction is similar
to Figure 4 except that b shifts slightly down and V shifts slightly up so that
δ(q, b) < MinDist(q, V ). We illustrate this in Figure 5 and give details where
the two proofs differ.

Claim. Given a tree T and query point q as constructed in Figure 5, both KNN
and RKV prune away all of T2 save the left branch down to L2 on a 2-nearest
neighbor query.

Proof. Note that b and d are the two nearest-neighbors to q in T . Both algo-
rithms will search T1 first because MinDist(q, W ) < MinDist(q, X). Since both
algorithms are depth-first searches, b is in tow by the time T2 is searched. Be-
cause d has yet to be realized, both algorithms will search T2 and prune away
the remaining nodes just as in 4.

Just as before, we’ll show that RKV must examine all the nodes in T1 while
KNN can use information from X to prune away all of T1 save the left branch
down to L1.

Lemma 3. Given an R-tree T and query point q as constructed above, RKV
examines every node in T1 in a 2-nearest neighbor search.

Proof. Since MinDist(q, W ) = δ(q, a), RKV descends to L1 first and inserts b
(and c) into its 2-best priority queue. However, RKV is unable to prune away
any of the remaining leaves of T1 because every pair of leaf points have MinDist

at most r5 but all points in T1 (besides b) lie outside r5 . As a result RKV must
probe every leaf.

Lemma 4. Given a tree T and query point q as constructed above, KNN prunes
away all nodes in T1 except those on the branch leading to L1 in a 2-nearest
neighbor search.

Proof. Before descending into T1, KNN inserts a promise with distance
MinMaxDist(q, X) = δ(q, d) into its 2-best priority queue. The algorithm de-
scends into T1 directly down to L1, finding b and inserting it into its 2-best
priority queue. Unlike RKV, the promise granted by X allows us to prune away
all other nodes of the tree since the remaining nodes are all interior to V and
δ(q, d) < MinDist(q, V ).

The theorem follows from Lemma 3 and Lemma 4. Note that if KNN did not
remove the promise granted by d at X the final result would be the point d and
its promise – an error. �

We can generalize the construction given in Theorem 3 so that the exponential
search space reduction holds for any k nearest neighbor query. In particular,
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Fig. 6. A visual explanation of the tree construction used in Theorem 4

for any constant k > 0 there exists a class of R-tree and query point pairs for
which KNN reduces the search space exponentially over RKV. A simple way of
accomplishing this is to place k − 1 points at b and insert them into the far left
leaves of T1.

6 Time / Space Tradeoffs

Given the search space reductions offered by 1NN and KNN, it is natural to ask
if the space-efficient depth-first algorithms can approach the time efficiency of
the best-first algorithms. In other words, how does KNN stack up against HS?
We answer this question here in the negative by constructing a family of R-trees
where HS performs exponentially better than KNN. The HS algorithm uses a
priority queue to order the nodes by MinDist. It then performs a best-first
search by MinDist while pruning away nodes using K3. We direct the reader
to [7] for more details.

Theorem 4. There exists a family of R-tree and query point pairs T ={(T1, qn),
. . . , (Tm, qm)} such that for any (Ti, qi), HS examines O(log n) nodes and 1NN

examines O(n) nodes on a 1-nearest neighbor query.

Proof. This construction resembles the construction in Theorem 2 and is de-
picted visually in Figure 6. We organize T1 in exactly the same way as Theorem 2:
we choose three points a, b, and c such that δ(q, a) = r1 < δ(q, b) = r4 < δ(q, c)
and (b, c) forms a rectangle W with a corner a. Next we choose three points d, e,
and f such r1 < δ(q, d) = r2 < r4 < δ(q, f) < δ(q, e) and (d, e) forms a rectangle
X with corner f . Let T be a complete binary tree over n leaves where each node
has two records. Let T1, T2, L1, and L2 be as in Theorem 2. Place b and c in L1,
and d and e in L2. In the remaining leaves of T1, place pairs of points (pi, pj)
such that pi and pj are interior to V , δ(q, pi) > r4 and δ(q, pj) > r4 but (pi, pj)
form a rectangle with corner p′ such that r3 < δ(q, p′) < r4. Rectangles Y and
Z in Figure 6 are examples of this family of point pairs. In the remaining leaves
of T2 place pairs of points (pk, pl) such that pk and pl are interior to X .
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Claim. Given a tree T and query point q as constructed above, both 1NN and
HS prune away all of T2 save the left branch down to L2 on a 1-nearest neighbor
query.

Proof. d is the nearest neighbor to q in T so both algorithms must search T2. L2,
by construction, has the least MinDist of any subset of points in T2, so both
algorithms, when initially searching T2, will descend to it first. Since δ(q, d) is
the realization of this MinDist and no other pair of points in X has MinDist <
δ(q, d), both algorithms will prune away the remaining nodes using H3.

Now we’ll show that 1NN must examine all the nodes in T1 while HS can use
the MinDist of X to bypass searching all of T1 save the path down to L1.

Lemma 5. Given an R-tree T and query point q as constructed above, 1NN

examines every node in T1 on a 1-nearest neighbor query.

Proof. 1NN descends into T1 before T2 since MinDist(q, W ) < MinDist(q, X).
Note that the distance estimate delivered by f is useless given that every pair of
leaf points in T1 has MinDist less than δ(q, f). 1NN will descend to L1 and find
b but it cannot rule out the rest of T1 because every pair of leaf points forms a
rectangle with MinDist smaller than r4. To see this, let Li = (pi1, pi2) and Lj =
(pj1, pj2) be distinct leaves of T1 (but not L1). Note that MinDist(q, (pi1, pi2)) <
r4 < min(δ(q, pj1), δ(q, pj2)) and MinDist(q, (pj1, pj2)) < r4 < min(δ(q, pi1),
δ(q, pi2)). This means that the MinDist of any leaf node is at most r4 but
every point is beyond r4 so 1NN cannot use H3 pruning. Furthermore, since
MinMaxDist is always an upper bound on the points, it can never use H2*
pruning. Thus, 1NN searches all of T1.

Lemma 6. Given a tree T and query point q as constructed above, HS prunes
away all nodes in T1 except those on the branch leading to L1 in a 1-nearest
neighbor query.

Proof. Like 1NN, HS descends directly to L1, however, once b is in tow, it
immediately jumps back to X since MinDist(q, X) < MinDist(q, V ). Since
d is the 1-nearest neighbor and since MinDist(q, X) = δ(q, d), it immediately
descends to L2 to find d. Since δ(q, d) < MinDist(q, V ) it can use H3 to prune
away the rest of T1.

The theorem follows from Lemma 5 and Lemma 6. 1NN searches all of T1 (O(n)
nodes) while HS searches only the paths leading to L1 and L2 (O(log n) nodes).
As a consequence, HS can prune the search space exponentially over 1NN even
when 1NN has the advantages of H2*. �

Extending Theorem 4 to k-nearest neighbors is fairly straight-forward. Add k−1
points to X between r2 and r3 and place these points in leaves as adjacent to
L2 as possible. Since this set of points forms a rectangle with MinDist smaller
than r3 and since this rectangle is encountered en route to L2, HS will find the
points immediately and then use H3 to prune away the rest of T1 and T2. This
gives us the following theorem:
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Theorem 5. There exists a family of R-tree and query point pairs T ={(T1, qn),
. . . , (Tm, qm)} such that for any (Ti, qi), HS examines O(log n) nodes and KNN

examines O(n) nodes on a k-nearest neighbor query.

7 Open Problems and Future Work

The most natural open problem is quantifying the time/space trade-off of depth-
first versus best-first nearest-neighbor algorithms on the R-tree. One line of
future work might explore hybrid algorithms that combine the space-efficiency
of depth-first search along with the time-efficiency of best-first search.
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This paper continues the project, initiated in [ACK], of describing general con-
ditions under which relative splittings are derivable in the local structure of the
enumeration degrees.

The main results below include a proof that any high total e-degree below 0′
e

is splittable over any low e-degree below it, and a construction of a Π0
1 e-degree

unsplittable over a Δ2 e-degree below it.
In [ACK] it was shown that using semirecursive sets one can construct mini-

mal pairs of e-degrees by both effective and uniform ways, following which new
results concerning the local distribution of total e-degrees and of the degrees
of semirecursive sets enabled one to proceed, via the natural embedding of the
Turing degrees in the enumeration degrees, to results concerning embeddings of
the diamond lattice in the e-degrees. A particularly striking application of these
techniques was a relatively simple derivation of a strong generalisation of the
Ahmad Diamond Theorem.

This paper extends the known constraints on further progress in this direction,
such as the result of Ahmad and Lachlan [AL98] showing the existence of a
nonsplitting Δ0

2 e-degree > 0e, and the recent result of Soskova [Sos07] showing
that 0′

e is unsplittable in the Σ0
2 e-degrees above some Σ0

2 e-degree < 0′
e. This

work also relates to results (e.g. Cooper and Copestake [CC88]) limiting the local
distribution of total e-degrees.

For further background concerning enumeration reducibility and its degree
structure, the reader is referred to Cooper [Co90], Sorbi [Sor97] or Cooper [Co04],
chapter 11.

Theorem 1. If a < h ≤ 0′, a is low and h is total and high then there is a low
total e-degree b such that a ≤ b < h.

Corollary 2. Let a < h ≤ 0′, h be a high total e-degree, a be a low e-degree.
Then there are Δ0

2 e-degrees b0 < h and b1 < h such that a = b0 ∩ b1 and
h = b0 ∪ b1.

Proof. Immediately follows from Theorem 1, and Theorem 6 of [ACK]. ��
Proof of Theorem 1. Assume A has low e-degree, H ⊕ H has high e-degree (i.e.,
H has high Turing degree) and A ≤e H ⊕ H.
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We want to construct an H-computable increasing sequence of initial segments
{σs}s∈ω such that the set B = ∪sσs satisfies the requirements

Pn : n ∈ A ⇐⇒ (∃y)[〈n, y〉 ∈ B]

and
Rn : (∃σ ⊂ B)[n ∈ W σ

n ∨ (∀τ ⊃ σ)[τ ∈ SA =⇒ n /∈ W τ
n ]]

for each n ∈ ω, where

SA = {τ : (∀x)(∀y)[τ(〈x, y〉) ↓= 1 =⇒ x ∈ A]}.

Note that Pn-requirements guarantee that A ≤e B, and hence A ≤e B ⊕ B.
To prove that the Rn-requirements provide B′ ≡T ∅′, first note that SA ≡e A,
which has low e-degree, and

X = {〈σ, n〉 : (∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]} ≤e SA.

Then X ∈ Δ0
2 and

n /∈ B′ ⇐⇒ (∃σ ⊂ B)[〈σ, n〉 /∈ X ],

so that B′ is co-c.e. in B ⊕ ∅′ ≡T ∅′. Thus B′ ≤T ∅′ by Post’s Theorem.
Since the set B will be computable in H , the set

Q = {n : (∀σ ⊂ B)(∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]}

will be computable in (H ⊕ ∅′)′ ≡T H ′ – indeed, we have n ∈ Q ⇐⇒ (∀σ ⊂
B)[〈σ, n〉 ∈ X ], so that Q is co-c.e. in H ⊕∅′. Now to construct the desired set B
we can apply the Recursion Theorem and fix an H-computable function g such
that Q(x) = lims g(x, s).

Let {As}s∈ω and {SA
s }s∈ω be respective H-computable enumerations of A

and SA.

Construction
Stage s = 0. σ0 = λ.
Stage s + 1 = 2〈n, z〉 (to satisfy Pn). Given σs define l = |σs|.
If n /∈ As, then let σs+1 = σŝ0.
If n ∈ As, then choose the least k ≥ l such that k = 〈n, y〉 for some y ∈ ω and

define σs+1 = σŝ0k−l̂1 (so that σs+1(k) = 1).
Stage s + 1 = 2〈n, z〉 + 1 (to satisfy Rn). H-computably find the least stage

t ≥ s such that either g(n, t) = 0, or n ∈ W τ
n,t for some τ satisfying τ ∈ SA

t and
τ ⊃ σs. (Such stage t exists since if lims g(n, s) = 1 then n ∈ Q, and hence there
exists some τ ⊃ σs such that n ∈ W τ

n and τ ∈ SA.)
If g(n, t) = 0 then define σs+1 = σŝ0.
Otherwise, choose the first τ ⊃ σs such that τ ∈ SA

t and n ∈ W τ
n,t. Define

σs+1 = τ.
This completes the description of the construction.
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Let B = ∪sσs. Clearly B ≤T H since each σs is obtained effectively in H.
Each Pn-requirement is satisfied by the even stages of the construction since
σs ∈ SA for any s ∈ ω.

To prove that each Rn-requirement is met suppose that

(∀σ ⊂ B)(∃τ ⊇ σ)[τ ∈ SA & n ∈ W τ
n ]

for some n. This means that n ∈ Q. Choose any odd stage s = 2〈n, z〉 + 1 such
that g(n, t) = 1 for all t ≥ s. Then by the construction n ∈ W σs

n .
Hence A ≤e B ⊕ B ≤e H ⊕ H , and dege(B ⊕ B) is low. ��

Theorem 3. There is a Π0
1 e-degree a and a 3-c.e. e-degree b < a such that a

is not splittable over b.

Proof. We construct a Π0
1 set A and 3-c.e. set B satisfying both the global

requirement:
G : B = Ω(A),
and the requirements

RΞ,Ψ,Θ : A = Ξ(Ψ(A) ⊕ Θ(A)) =⇒ (∃ e-operator Γ )A = Γ (Ψ(A) ⊕ B)∨
(∃ e-operator Λ)A = Λ(Θ(A) ⊕ B)

for each triple of e-operators Ξ, Ψ, Θ, and

NΦ : A �= Φ(B)

for each e-operator Φ.
In fact A will be constructed as a 2-c.e. set. Note that the e-degrees of Π1

sets coincide with the e-degrees of 2-c.e. sets. Hence this will still produce the
desired enumeration degrees.

Basic Strategies

Suppose we have an effective listing of all requirements R1, R2, . . . and N1, N2, . . .
The requirements will then be arrangedby priority in the following way:G < R1 <
N1 < R2 < N2 < . . .

To satisfy the requirement G we will make sure that every time we enumerate
an element into the set B, we enumerate a corresponding axiom into the set Ω;
and every time we extract an element from B, we make the corresponding axiom
invalid by extracting elements from A. More precisely every element y that enters
B will have a corresponding marker m in A and an axiom 〈y, {m}〉 in Ω. If y
is extracted from B then we extract m from A. If y is later re-enumerated into
B – this can happen since B is 3-c.e. – then we will just enumerate the axiom
〈y, ∅〉 into Ω.

To satisfy the requirements Ri we will initially try to construct an operator Γ
using information from both of sets B and Ψ(A). Again, enumeration of elements
into A is always accompanied by enumeration of axioms into Γ , and extraction
of elements from A can be rectified via B-extractions.
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The N -strategies follow a variant of the Friedberg -Muchnik strategy while
at the same time respecting the Γ -rectification, so we will call them (NΦ, Γ )-
strategies. They choose a follower x, enumerate it in A, then wait until x ∈ Φ(B).
If this happens - they extract the element x from A while restraining B � ϕ(x) in
B. The need to rectify Γ after the extraction of the follower x from A can be in
conflict with the restraint on B. To resolve this conflict we try to obtain a change
in the set Ψ(A) which would enable us to rectify Γ without any extraction from
the set B. To do this we monitor the length of agreement

lΞ,Ψ,Θ(s) = max{y : (∀y < x)[y ∈ A[s] ⇐⇒ y ∈ Ξ(Ψ(A) ⊕ Θ(A))[s]]}.

We only proceed with actions directed at a particular follower once it is below
the length of agreement. This ensures that the extraction of x from A will have
one of the following consequences

1. The length of agreement will never return so long as at least one of the
axioms that ensure x ∈ Ξ(Ψ(A) ⊕ Θ(A)) remains valid.

2. There is a useful change in the set Ψ(A).
3. There is a useful change in the set Θ(A).

We will initially assume that it is the case that the third consequence is
true and commence a backup strategy (NΦ, Λ) which is devoted to building an
enumeration operator Λ with information from A and Θ(A). This is a new copy
of the N -strategy working with the same follower. It will try to make use of
this change in Θ(A) to satisfy the requirement. Only when we are provided with
evidence that our assumption is wrong will we return to the initial strategy
(NΦ, Γ ).

Basic module for an NΦ-strategy below one RΞ,Ψ,Θ-strategy

We will first consider the simple case involving just two requirements. Assume
we have NΦ, which we refer to as the N -requirement, below RΞ,Ψ,Θ, which we
refer to as the R-requirement.

At the root we have the R-strategy denoted by (R, Γ ). It will have two out-
comes e <L gw. The R-strategy will monitor all elements x /∈ A. In the case
in which there is an element x /∈ A such that x ∈ Γ (Ψ(A) ⊕ B) the operator
Γ cannot be rectified. The (R, Γ )-strategy will then have outcome gw, and we
will be able to argue that x ∈ Ξ(Ψ(A)⊕ Θ(A)), which indicates a global win for
the R-requirement. Strategies working below this outcome will follow a simple
Friedberg-Muchnik strategy and preserve the difference at x by using followers
of big enough value. In case there is no such x the operator, Γ can be rectified
and the (R, Γ )-strategy will have outcome e.

Below e we will try to meet N satisfying A = Γ (Ψ(A) ⊕ B). The (N, Γ )-
strategy will have four outcomes: three finitary outcomes, f , w and l, and one
infinitary outcome λ. The outcomes are arranged in the following way: λ <L

f <L w <L l. Outcome l indicates that at that node the R-requirement is
globally satisfied since the follower x enumerated in A is not in Ξ(Ψ(A)⊕Θ(A)).



572 M.M. Arslanov et al.

Outcome w indicates that Γ is correct on x and the N -requirement is satisfied as
x ∈ A−Φ(B). Outcome f is only accessible once a follower x has been returned.
It will indicate that Γ is again correct on x and the N -requirement is satisfied
via x ∈ Φ(B) − A.

Below outcome λ strategies will be devoted to constructing an operator Λ with
A = Λ(Θ(A) ⊕ B) where they will receive their followers from (N, Γ ). Again we
have a controlling strategy (R, Λ) with only one outcome e which makes sure
that the operator Λ can be rectified at all times. In case it sees an element x /∈ A
for which the axiom enumerated in Λ is valid, it will send x back to (N, Γ ). We
will be able to argue that x has provided evidence of a useful change in Ψ(A).

Below (R, Λ)’s only outcome e we try to meet N by (N, Λ) with A = ΛΦ(Θ(A)⊕
B). The strategy below the outcome λ acts only when the (N, Γ )-strategy sends its
follower x. It performs similar actions with regard to (N, Γ ) and has two outcome
f <L w both indicating that the N -requirement is satisfied and the operator Λ
remains intact.

The R strategy

1. Scan all followers x /∈ A defined up to the current stage.
2. If x ∈ Γ (Ψ(A) ⊕ B), then let the outcome be o = gw.
3. If all followers are scanned and none has produced an outcome o = gw, then

let the outcome be o = e.

The (N, Γ ) strategy

At stage s the strategy will start its work at the step of the module indicated
at the previous stage.

Setup 1) Choose a new follower x as a fresh number (bigger than any previously
set up restraint). Enumerate it into As.
2) If there are finite sets G(x), H(x), L(x) with x ∈ Ξ(G(x) ⊕ H(x)),
G(x) ⊂ Ψ(L(x)), H(x) ⊂ Θ(L(x)) and L(x) ⊂ A then restrain A on
max(L(x)) and go to Setup 3. Otherwise let the outcome be o = l and
return to Setup2) at the next stage.
3 ) Define x′s B-marker y(x), along with its corresponding A-marker
m(x), as fresh numbers bigger than any previously set restraint on
A or B. Enumerate y(x) in Bs and m(x) in As. Define a new axiom
〈y(x), {m(x)}〉 for Ωs.
Enumerate each 〈z, Gx ⊕ B � y(x)〉 into Γ where z is either x, or m(x),
or a follower z ∈ A from a previous cycle of the strategy. Note that we
enumerate axioms for previous followers as well. So at this point the
operator Γ is rectified. Let the outcome be o = w. Go to Wait at the
next stage.

Wait If x ∈ Φ(Bs) then go to Attack. Otherwise let the outcome be o = w
and return to Wait at the next stage.

Attack 1) Check if any previously sent follower has been returned. If so go to
Result. Otherwise go to Attack2.
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2)Let v(x) = max(ϕ(x), y(x)) and restrain B on v(x). Extract y(x)
from Bs and m(x) from As, noting that x is still in Ξ(Ψ(A) ⊕ Θ(A)) as
the marker m(x) is chosen as a fresh number after G(x) and H(x) are
already defined.
Send x. Let the outcome be o = λ. At the next stage start from Setup1,
choosing a new current follower. The strategy working below outcome
λ will believe B only below a right boundary Rs = y(x). Note that
the next follower will choose its B-marker of greater value. So if the
outcome λ is visited infinitely often then the right boundary R will
grow unboundedly.

Result Let the returned follower be x. Put y(x) into Bs and 〈y(x), ∅〉 into Ωs.
For each follower z of this strategy such that z ∈ A put the axiom 〈z, ∅〉
into Γs.
1) For the returned follower we know that x /∈ As and H(x) ⊂ Θ(As).
The outcome λ will not be accessible anymore so we can preserve H(x) ⊆
Θ(At) at further stages t. Also if G(x) ⊆ Ψ(As) then the (R, Γ )-strategy
would have outcome gw preserving the difference and satisfying R glob-
ally. The (N, Γ )-strategy would not be accessible any longer. Otherwise
G(x) � A and the outcome is o = f . Return at Result1 at the next
stage.

The (R, Λ)-strategy below outcome λ

1. Scan all followers x /∈ A.
2. If x ∈ Λ(Θ(A) ⊕ B) then return x. End this stage.
3. If all followers are scanned and none have been returned then let the outcome

be e.

The (N, Λ)-strategy below outcome λ

Setup 1) Let x ∈ A be a new integer which was sent by the (N, Γ )-strategy.
Now x becomes the follower of the (N, Λ)-strategy. Go to Setup2.
2) Put 〈x, Hx ⊕ B � v(x)〉 into Λ. Go to Wait.

Wait If x ∈ Φ(B) with use ϕ(x) < Rs then go to Attack. Otherwise the
outcome is o = w, return to Wait at the next stage.

Attack Extract x from A. Go to result.
Result Let the outcome be o = f . Return to Result at the next stage.

The (N, FM)-strategy below outcome l or gw

Setup Choose a new follower x bigger than any previously set restraint on A
and enumerate it into A. Go to Wait.

Wait If x ∈ Φ(B) go to Attack. Otherwise the outcome is o = w, return to
Wait at the next stage.

Attack Extract x from A and go to Result.
Result Let the outcome be o = f . Return to Result at the next stage.
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Now the (N, FM) strategy below outcome l will also be changing A. To keep
Γ and Λ rectified, every time we initialise the (N, FM)-strategy and cancel its
follower x, if x ∈ A we will add the axiom 〈x, ∅〉 in Γ and Λ.

If the (R, Γ )-strategy has outcome gw on stage s for the first time, then the
(N, FM)-strategy working below will will be initialised on the previous stage
and will choose its follower x anew, respecting the restraint on A that (N, Γ )
has set up. So (R, Γ ) will have outcome gw on all further stages and B will
not be modified any longer. The (N, FM)-strategy will be able to satisfy its
requirement.

Suppose that (R, Γ )-strategy never has outcome gw. We will analyse all pos-
sible outcomes of the N -strategies and see that in each case the requirements
are satisfied.

Consider first the possible outcomes of the strategy (N, Γ ). If one of the cycles
stops at Setup2, i.e. on all stages t > s the strategy has outcome l, then the
true outcome will be (o = l). The length of agreement lΞ,Ψ,Θ(s) = max{y :
(∀y < x)[y ∈ A[s] ⇐⇒ y ∈ Ξ(Ψ(A) ⊕ Θ(A))[s]]} is bounded and hence the
requirement R is trivially satisfied.

The set B is not modified after stage s and the simple strategy (N, FM),
active on all stages t ≥ s succeeds to satisfy the requirement N .

Suppose now that no cycle of the (N, Γ )-strategy stops at Setup2. In this
case the (N, FM)-strategy may be activated infinitely many times and will be
initialised every time the (NΓ )-strategy moves on to Wait. The current follower
x of the (N, FM)-strategy will be cancelled and if it is not yet extracted from A
the corresponding axiom 〈x, ∅〉 will be enumerated in Γ and Λ. This ensures that
both operators will be correct at x for all cancelled followers x of the strategy
(N, FM).

We first consider the case when the (N, Γ )-strategy during its work sends only
finitely many integers. Then some cycle with a follower x stops either at Wait
or reaches Result. If the cycle stops at Wait then the outcome is o = w and
x ∈ A − Φ(B), hence the N -requirement is satisfied. On the other hand for all
followers z we have z ∈ A ⇐⇒ z ∈ Γ (Ψ(A) ⊕ B) and m(z) ∈ A ⇐⇒ m(z) ∈
Γ (Ψ(A) ⊕ B) since y(z) ∈ B ⇐⇒ z = x. Hence Γ is correct at all followers z.

If the cycle reaches Result then we have y(x) ∈ B and hence x ∈ Φ(B) − A,
so N is satisfied. Also Hx ⊆ Θ(A) via some finite set Px ⊂ A. If Gx ⊆ Ψ(A) then
this will be apparent at some finite stage s, i.e. on stage s we will see a finite
set Qx ⊂ A such that Gx ⊆ Ψ(Qx). Then from stage s on the (R, Γ )-strategy
will have outcome o = gw, contradicting our assumption. So Gx � Ψ(A) giving
x /∈ Γ (Ψ(A) ⊕ B). Since again y(z) ∈ B ⇐⇒ z = x we have z ∈ A ⇐⇒ z ∈
Γ (Ψ(A)⊕B) and m(z) ∈ A ⇐⇒ m(z) ∈ Γ (Ψ(A)⊕B) for any follower z. Hence
the operator Γ remains correct at all further stages.

Suppose now that the (N, Γ )-strategy during its work sends infinitely many
integers. In particular, no x is returned to (N, Γ ). Then the true outcome is
o = λ and we will see that the (N, Λ)-strategy is successful.

If the (N, Λ)- strategy stops at Wait then x ∈ A−Φ(B). Indeed if we assume
that x ∈ Φ(B) then there is some finite Mx ⊂ B such that x ∈ Φ(Mx). The
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right boundary R grows unboundedly, so eventually there will be a stage s with
Rs > max(Mx) and the strategy will move on to Attack.

The second case is if the strategy reaches Result. Then x ∈ Φ(B)−A because
at some stage s we found a set Mx ⊂ Bs with maxMx < R such that x ∈ Φ(Mx).
The strategy (N, Γ ) will not extract any more markers from B after stage s that
are below the right boundary Rs, hence x ∈ Φ(B).

At this stage of the construction we can only prove that Λ will be correct at
the follower x and all cancelled followers of the strategy (NΦ, FM). To prove
that the operator is correct at the rest of the followers enumerated in A by the
(N, Γ )-strategy we will need to consider how all N -strategies will work together.

Basic module for many NΦ-strategies under one RΞ,Ψ,Θ-strategy

We will try to meet all requirements NΦ1, NΦ2 , . . . . Each requirement NΦj will
be denoted by Nj and met by one of the following strategies:

1. (Nj , Γ ) with outcomes λ, f , w and l;
2. (Nj , FM) with outcomes f and w and situated in the subtree of the strategy

(Ni, Γ ) with outcome l, where i ≤ j.
3. (Nj , Λ) with outcomes f and w and situated in the subtree of the strategy

(Ni, Γ ) with outcome λ where where i ≤ j.

We now need to be more careful as more strategies will enumerate and extract
markers from A and B. We will have to ensure that the operator constructed on
the true path is correct and manages to satisfy the R-requirement.

The first rule that we will implement in order to achieve this follows the idea of
cancelling followers of the (N, FM)-strategy from the previous section. Namely,
whenever we initialise a strategy (Nj , S) on an node α in the tree of strategies
whose follower x is in A we will enumerate an axiom 〈x, ∅〉 into all operators
Γ and Λ that are constructed on nodes β < α. If m(x) is in A we will also
enumerate an axiom 〈m(x), ∅〉 into these operators.

Secondly we will be more careful when enumerating axioms in the correspond-
ing operators. Instead of just using the sets G(x) and H(x), we will use the infor-
mation from all axioms defined up until now. More precisely we will modify the
modules of the strategies from the previous section in the following way:

The (Nj, Γ )-strategy is the same as the as the (NΦ, Γ )-strategy with the
exception of step Setup3, which is now as follows:

Setup3) Enumerate all 〈z, Gx ⊕ B � yx ∪ U〉 into Γ where z is either x, or mx,
or a follower z ∈ A from a previous cycle of the strategy and U is the union of
all sets D such that 〈v, D〉 is a valid axiom in Γ , where v ∈ A is a follower of
the strategy (Ni, Γ ) with i < j.

The (NΦj , Λ)-strategy is the same as the (NΦ, Λ)-strategy with the exception
of Setup2), which is now as follows:

Setup2) Enumerate 〈x, (Hx ⊕ B � v(x)) ∪ U〉 into Λ where U is the union of all
finite sets D such that 〈v, D〉 ∈ Λ for some follower v ∈ A of an (Nk, Λ)-strategy
with k < j.
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The main idea behind the added sets U in the axioms is that a strategy α
working below another strategy β where α and β construct the same operator O
believes that β′s work is final and the axioms enumerated in O by β will remain
true. In the case that β changes its mind and invalidates one of these axioms α
will be initialised as β will have an outcome to the left of α. If α′s followers are
still in A then an axioms for them will be enumerated in the operator as stated
in above. But if α′s follower is not in A, then we need to ensure that there isn’t a
valid axiom in O for it. α will not be able to monitor this follower any longer, so
the job is going to be transferred to β automatically via the set U which includes
an axiom for β′s follower, which β observes and makes sure is invalid.

Two R-requirements

Now we need to consider the case when there are two R-requirements. Cor-
responding to them there are nodes on the tree: an (R1, Γ1)-strategy and an
(R2, Γ2)-strategy along each path, scanning for an appropriate global win for
the R-requirements. Below outcome gw for an Ri-strategy the N -requirements
simply ignore the requirement Ri and act as in the previous section.

There now more possibilities for an N -strategy working below outcomes e of
both (Ri, Γi)-strategies depending on how it believes the Ri-requirements will
be satisfied.

The main strategy will be again the one that deals with operators Γ1 and Γ2. It
will try to obtain the necessary changes in the sets Ψ1(A) and Ψ2(A) using backup
strategies that try to satisfy the R requirements in a different manner. The require-
ment R1 is of higher priority. The method for satisfying the lower priority require-
ment R2 will be decided after we have established the method for satisfying R1

unless we have already evidence that the R2-requirement is trivially satisfied. The
N -strategy starts off assuming that the requirements will be satisfied via operators
Γ1 and Γ2. It will be denoted by (N, Γ1, Γ2). Its outcomes are λ2 <L f <L w <L

l2 <L l1. Outcomes w and f will represent the fact that the strategy has succeeded
in satisfying its requirement while keeping both operators rectified.

Outcome l1 will represent a global win for R1. The price we pay for it is
that the operator Γ2 will not be rectified. Below this outcome there will be a
backup (N, FM1, Γ

′
2)-strategy. It will construct a new operator Γ ′

2 and meet the
requirement N . Its outcomes are λ2 <L f <L w <L l2 and it acts just as the
(N, Γ )-strategy from the previous section.

Outcome l2 will represent a global win for R2. Below it we have a strat-
egy (N, Γ1, FM2) which continues to construct the same operator Γ1 as the
(N, Γ1, Γ2)-strategy. Strategies below will simply treat R2 as satisfied - that is,
this requirement will be invisible to them.

Below outcome λ2 is the (R2, Λ2)-strategy followed by a backup strategy
(N, Γ1, Λ2). It continues to construct the same operator for the first strategy
Γ1 but switches the method for the second strategy to Λ2. Its outcomes are
λ1 <L f <L w.

Below outcome λ1 is the (R1, Λ1)-strategy a backup strategy that changes
the method for satisfying the requirement R1. As a consequence the method for
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R2 must be decided again. The strategy is (N, Λ2, Γ
′′
2 ) with outcomes λ2 <L

f <L<w<L l2. The method for satisfying R1 cannot be switched anymore.
The method for R2 can be further switched via (N, Λ1, FM2) below l2 and
to (N, Λ1, Λ

′′
2) below outcome λ2.

In this way all possible combinations of methods for satisfying the two R-
requirements are distributed through the tree.

The modules for each of the described strategies above follow the basic steps
as outlined in the previous section. The (N, Γ1, Γ2) strategy chooses a follower
x. It tries to define the parameters for R1 - H1(x), G1(x), y1(x) and m1(x) and
rectifies Γ1. Then it focuses on the second requirement R2. Once R2’s parameters
are defined a new element m2(x) will be enumerated in A. The new point is
that this new change in A must be reflected in the definition of Γ1. So an axiom
〈m2(x), G1(x) ⊕ {y2(x)}〉 is enumerated in Γ1. If m2(x) is extracted from A then
we will extract y2(x) from B and this axiom will not be valid. We will enumerate
y2(x) back in B only if x has been returned in which case G1(x) � Ψ1(A).

The axioms enumerated in Γ2 will have to include additionally m1(x) and all
m1(z) for previously defined followers of this strategy from previous cycles, that
are still in A.

Once we have established that x ∈ Φ(B), we start the attack by sending the
follower x with defined v(x) = max(ϕ(x), y1(x), y2(x)) to (N, Γ1, Λ2). This strat-
egy will need to get further permission from Γ1. An axiom 〈z, H2(x) ⊕ B � v(x)〉
will be enumerated for each z which is a follower from a previous cycle, x or
m1(x). This strategy also starts an attack by sending x to (N, Λ1, Γ

′′
2 ) and ex-

tracting y1(x) and m1(x) from A once it has observed that x ∈ Φ(B). Note that
this will make the axiom for x in Λ2 invalid.

The (N, Λ1, Γ
′′
2 )-strategy now must define parameters G′′

2(x) and H ′′
2 (x),

markers y′′
2 (x) and m′′

2 (x). And then it will initiate the last attack sending x
to (N, Λ1, Λ

′′
2).

Once the follower is extracted from A it can climb back up these strategies.
(R2, Λ

′′
2) will send it back to (N, Λ1, Γ

′′
2 ) in case H ′′

2 (x) ⊂ Θ2(A).
(R1, Λ1) will send the follower x back to (N, Γ1, Λ2) in case H1(x) ⊂ Θ1(A).
Then (R, Λ2) will send it back to (N, Γ1Γ2) in case H2(x) ⊂ Θ2(A).
When the (N, Γ1Γ2)-strategy re-receives x it will have proof that H1(x) ⊆

Θ1(A), so that G1(x) � Ψ1(A) and Γ1 is rectified and H2(x) ⊂ Θ2(A), so G2(x) �

Ψ2(A) and Γ2 is rectified.
Considering two requirements we can justify the need for the (Ri, Λi)-strategies.

Suppose α̂ l2 ⊂ β and β is sharing the same method Λ1 as α. If a follower x of β is
extracted from A we must ensure that the axioms for x defined in the operator Λ1

are invalid. It could be the case that α moves on to outcome w and initialises β.
The follower x will not be observed any longer. But as Θ1(A) is not in our control
it is possible that H1(x) ⊂ Θ1(A) and this is revealed at a later stage after x has
been cancelled. If x is not sent back, then Λ1 will not be correct. This is why we
need the (R1, Λ1) strategy which observes all followers. It will return x even after
x is cancelled.
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The (R, Γ1) strategy plays a similar role. Suppose that α l̂2 ⊂ β. Now β is
sharing the same method Γ1 as α. If a follower x of β is extracted from A we
must ensure that the axioms for x defined in the operator Γ1 are invalid. If α
moves on to outcome w thereby initialising β we lose control on x and it could
happen that G1(x) ⊂ Ψ1(A) at a later stage. We will be able to argue that if the
axiom for x in Γ1 is valid, then H1(x) ⊂ Θ1(A) and (R, Γ1) will have outcome
gw at all further stages.

In [ACKS] we combine the ideas from the above description to obtain the
construction that meets all requirements. ��
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Abstract. For any enumeration degree a let Ds
a be the set of s-degrees

contained in a. We answer an open question of Watson by showing that
if a is a nontrivial Σ0

2-enumeration degree, then Ds
a has no least element.

We also show that every countable partial order embeds into Ds
a.

1 Introduction

Positive reducibilities formalize models of relative computability which use only
“positive ” oracle information. The most comprehensive positive reducibility
is enumeration reducibility, denoted by ≤e. Intuitively a set A is enumeration
reducible to a set B if there is some effective procedure for enumerating A given
any enumeration of B. This is made mathematically precise by defining A ≤e B
if there exists a c.e. set Φ such that

A = {x : (∃ finite D)[〈x, D〉 ∈ Φ & D ⊆ B]}

(often denoted by A = ΦB) where finite sets are identified with their canonical
indices. In this context a c.e. set Φ is also called an enumeration operator.

It is clear that given a set B, an enumeration operator Φ, and a given x, there
is no bound to the number n of oracle questions which are needed to enumerate
x in ΦB, i.e. to the cardinality of a finite set D for which we need D ⊆ B, in
order to have x ∈ ΦB. One can therefore introduce restricted, or strong, versions
of enumeration reducibility by requesting instead that there be such a bound,
such as is done in [1].

Although extreme, the case n = 1, in which for any given x we need at most
one oracle question, is particularly interesting, and occurs often in practical
applications of enumeration reducibility. This suggests the following definition:

Definition 1.1. An enumeration operator Φ is called an s-operator if for every
〈x, D〉 ∈ Φ, we have that D has at most one element.

It is straightforward to see that the s-operators (s stands for singleton) can
be effectively listed, and give rise to a reducibility (called s-reducibility), de-
noted by ≤s. The corresponding degree structure, denoted by Ds, consists of the
� The author has been supported by a Marie Curie Incoming International Fellowship

of the European Community FP6 Program under contract number MIFI-CT-2006-
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equivalence classes, called s-degrees, of the subsets of ω under the equivalence
relation ≡s generated by ≤s. The s-degree of a set A will be denoted by degs (A).
The structure Ds is an upper semilattice with least element 0s = degs (∅) con-
sisting of the c.e. sets, and the operation of least upper bound is given by
degs (A)∪degs (B) = degs (A ⊕ B), where ⊕ denotes the usual disjoint union of
sets.

It is clear that if A ≤s B then A ≤e B and so it is natural to ask questions
about the structure of the s-degrees contained within a single enumeration de-
gree. Given a set A, define A∗ = {n : Dn ∈ A} where n is the canonical index
of the finite set Dn. It follows that A∗ ≡e A and if B ≤e A then B ≤s A∗,
and so degs (A∗) is the greatest s-degree in dege (A). Zacharov [10] showed that
≤s is properly contained in ≤e by showing that every nonzero enumeration de-
gree contains at least two s-degrees. Zacharov’s proof is a unique gem of its
kind and will be sketched in Section 3. Watson [9] showed that no nonzero Δ0

2-
or Σ0

2 -high enumeration degree contains a minimal s-degree, thus showing that
every such enumeration degree contains infinitely many s-degrees. Based also
on Copestake’s result in [3] that every 1-generic enumeration degree contains
infinitely many s-degrees (in fact an ω-chain of s-degrees), Watson then raised
the question ([9, p. 90]) as whether every nontrivial Σ0

2 -enumeration degree con-
tains infinitely many s-degrees, conjecturing that this is so. In this paper we
give a positive answer to Watson’s question, by giving in Theorem 4.1 a uniform
priority-free proof of the fact that no nonzero Σ0

2 -enumeration degree contains
a minimal s-degree. That every nontrivial Σ0

2 -enumeration degree contains in-
finitely many s-degrees is also implied by Theorem 5.1, in which we show that
one can embed any countable partial order in any nontrivial Σ0

2 enumeration
degree. This theorem generalizes also Copestake’s result on ω-chains within any
1-generic enumeration degree. For the reader who is interested in restricted ver-
sions of enumeration reducibility, we finally observe that Theorem 4.1 still holds
if we replace enumeration reducibility with computably bounded enumeration
reducibility, where we say that a set A is computably bounded enumeration re-
ducible to a set B, if A ≤e B via an enumeration operator Φ such that there
exists a computable function f satisfying

(∀x, D)[〈x, D〉 ∈ Φ ⇒ |D| ≤ f(x)],

where |D| denotes the cardinality of the finite set D.
The reader is referred to the papers [1], [2], and [8] for a survey of results on

s-reducibility.

2 Conventions

We give some conventions and notation that we will use throughout the article.

Definition 2.1. Given a Σ0
2 -approximation 〈As〉s∈ω to a set A, we say that the

stage s is true if As ⊆ A, and we say that the approximation is good if it contains
infinitely many true stages.
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Even though we are using a good Σ0
2 -approximation to A, it is possible that a

strategy on the true path of the construction will be active only during finitely
many true stages. To circumvent this problem, each strategy in the tree of strate-
gies will use its own relativized version of the approximation to A defined by
〈Aα

s 〉s∈ω = 〈
⋂

s0<t≤s At〉s∈ω, where s0 < s is the last stage at which α was active
prior to stage s, or −1 if no such stage exists.

Clearly, if α is active infinitely often, then 〈Aα
s 〉 is a good Σ0

2 -approximation
to A. During the construction, instead of referring to Aα

s and Bα
s = Θ

Aα
s

s (for
some given enumeration operator Θ approximated by 〈Θs〉s∈ω), we will just refer
to these sets as A and B, with the understanding that we are actually using the
relativized approximations.

3 Sketch of Zacharov’s Proof

Let A be a non-c.e. set. We outline the main steps of Zacharov’s proof to show
that there exists a set B such that A ≡e B, but A �s B. One of the key points is
the following observation: If a set X is not c.e. and for every c.e. subset W ⊆ X
there exists a computable set V such that W ⊆ V ⊆ X (examples of such sets
X include the immune sets and the non-c.e. semirecursive sets), then for every
set Y containing a simple set, we have that X �s Y .

1. Define J(A) =
{
x : x ∈ ΦA

x

}
where 〈Φe〉e∈ω denotes here an effective listing

of all enumeration operators. It is easy to see that A ≡e J(A), and for every
set B, if B ≤e J(A) then B ≤1 J(A), where ≤1 denotes 1 − 1-reducibility.

2. Assume now that S is Post’s simple set, and let {Fn}n∈ω be a strong array of
finite sets (i.e. Fn = Df(n) for some computable function f), which partition
ω and such that Fn ∩ S �= ∅, for every n. Define

B = S ∪
⋃

n∈J(A)

Fn,

so that B contains a simple set. It is not difficult to see that J(A) ≡e B.
3. We now claim that J(A) �s B, thus showing that the enumeration degree

of A contains two distinct s-degrees. Suppose that J(A) ≤s B. By [4, Theo-
rem 3.6] let R be a semirecursive set such that R ≤e J(A) and J(A) ≤T R.
Hence R ≤1 J(A), which implies that R ≤s B. But, as observed at the
beginning of this section, since R is semirecursive this is possible only if R
is c.e.. It follows that J(A) ∈ Δ0

2. It is now easy to see that there exists an
immune set C such that C ≤e J(A): In fact any non-c.e. Σ0

2 set is enumera-
tion equivalent to a hyperimmune set (see [6]). Therefore C ≤1 J(A), which
implies that C ≤s B, a contradiction since B contains a simple set, and C
is immune.

4 There Is No Minimal Element

Watson [9] proves that if A is Δ0
2 and non-c.e., or A is Σ0

2 -high, then there exists
a set B such that B ≡e A and B <s A. He actually gives two distinct proofs
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depending on whether A lies in Δ0
2 or A is Σ0

2-high. The following theorem gives
a uniform and priority-free proof of Watson’s result that works for every non-c.e.
Σ0

2 set.

Theorem 4.1. Let A be a non-c.e. Σ0
2 -set. There exists a set B ≡e A such that

B <s A.

Corollary 4.1. If a is a nontrivial Σ0
2 -enumeration degree, then there is no

minimal s-degree within a.

Proof (of Corollary 4.1). Immediate.

We now give the construction, and a sketch of the verification, for Theorem 4.1.

4.1 The Requirements

Let A be a non-c.e. Σ0
2 -set. We build an enumeration operator Γ and an s-

operator Λ such that for each s-operator Φ we meet the following requirements:

R: B = ΛA

Q: A = Γ B

PΦ: A = ΦB ⇒ A is c.e.

Order the PΦ-requirements as 〈Pi〉i∈ω .

4.2 The Strategies

Partition ω as {Fn : n ∈ ω} where |Fn| = (n + 2)3 and max(Fn) < min(Fn+1).
For each x, define σ(x) to be such that x ∈ Fσ(x). Define

Γ = {〈n, Fn〉 : n ∈ ω}

The construction of Λ is by stages. At stage s define a finite approximation Λs

to Λ, and let of course Bs = ΛAs
s . Initially define

Λ0 = {〈y, {n}〉 : n ∈ ω and y ∈ Fn} .

Notice that if we defined B = ΛA
0 , we would immediately have

n ∈ A ⇔ Fn ⊆ B ⇔ n ∈ Γ B,

i.e. A = Γ B. Unfortunately, strategies attempting to meet PΦ-requirements may
enumerate additional axioms into Λ as needed during the construction, while Γ
is never changed. These additional axioms will have the form 〈z, ∅〉 ∈ Λ, in which
case we say that we dump z into B. However we will guarantee that A = Γ B for
the eventual set B = ΛA, by ensuring that for every n, not all the elements of
Fn are dumped into B. It follows from the definition of the operator Γ that if n
belongs to A then Fn is a subset of B. The fact that not all the elements of Fn

are dumped into B guarantees that if n does not belong to A then Fn will not
be a subset of B and hence n will not belong to Γ B.
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The strategy for PΦ. The basic strategy to meet requirement PΦ = Pt tries
to permanently restrain in ΦB the elements of A ∩ ΦB : If at stage s we see a
number y ∈ A∩ΦB which has not been so far restrained, then we do so, by either
automatic restraint provided by an axiom 〈y, ∅〉 ∈ Φ, or otherwise by taking an
axiom 〈y, {z}〉 ∈ Φ, with currently z ∈ B, and dumping z into B. If A = ΦB

then we can show that A is c.e. by arguing that A coincides, modulo a c.e. set,
with the elements restrained in ΦB. Extra care will be taken in order to achieve
that the strategy only dumps elements of sets Fn with t ≤ n, and for each such
n, PΦ dumps at most n + 1 elements of Fn. This, together with the fact that
|Fn| = (n + 2)3, will guarantee that not all the elements of Fn are dumped into
B: In fact, for each n,

∣
∣Fn ∩ Λ∅∣∣ ≤ (n + 1)3.

4.3 The Construction

Each stage s of the construction consists of substages t < s, where strategy Pt

is eligible to act. Let strategy Pt = PΦ be eligible to act at substage t of stage
s. Define Ãs =

⋃
i∈ω Ai

s where A0
s = As � t, Bi+1

s = Λ
Ai

s
s and Ai+1

s = Φ
Bi+1

s
s . Let

y ∈ As ∩ ΦBs
s be least such that y /∈ Ãs. If y exists, let z ∈ Bs be least such

that 〈y, {z}〉 ∈ Φs and σ(z) ∈ ΦBs
s . If z exists, dump z into B by enumerating

the axiom 〈z, ∅〉 into Λ. (Intuitively, Ãs is the smallest c.e. set such that, for
B̃s = ΛÃs

s , we have Ãs = ΦB̃s
s , and As � t ⊆ Ãs.)

The reader is referred to [5] for a thorough verification that the construction
works.

5 Embedding Countable Partial Orders

A further easy consequence of Theorem 4.1 is the following corollary. Let Z−

denote the partial order of the nonpositive integers:

Corollary 5.1. If a is any nontrivial Σ0
2 enumeration degree, then Z− embeds

into the s-degrees within a.

Proof. If A is a non-c.e. Σ0
2 set, define B0 = A . Having defined Bi then apply

Theorem 4.1 to Bi to get Bi+1 ≡e Bi (hence Bi+1 ≡e A), and Bi+1 <s Bi.

We improve on the previous embedding result by showing that in fact every
countable partial order embeds in the s-degrees within any nontrivial Σ0

2 enu-
meration degree. Theorem 5.1 generalizes also Copestake’s result in [3] stating
that every 1-generic enumeration degree contains a chain of s-degrees order-
isomorphic to ω.

We say that a family {bi}i∈ω of s-degrees is independent if for every i ∈ ω,
and any computable set J with i /∈ J , one has

bi �≤
⊕

j∈J

bj

where the join is defined by taking suitable representatives Bj ∈ bj and letting
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⊕

j∈J

bj = degs(
⋃

j∈J

({j} × Bj))

Theorem 5.1. Let a be a non-trivial Σ0
2-enumeration degree. Then there exists

an independent family of s-degrees {bi}i∈ω such that for each i, bi ⊆ a.

Corollary 5.2. For every non-trivial Σ0
2 -enumeration degree a and countable

partial order P = 〈P, ≤〉, we have that P embeds into the s-degrees within a, i.e.
there exists a mapping F , associating with any p ∈ P an s degree F (p) ⊆ a, and
satisfying, for all p, q ∈ P ,

p ≤ q ⇔ F (p) ≤s F (q).

Proof (of Corollary 5.2). It is a standard argument (see for instance [7, The-
orem V.2.9]) to show how to embed any countable partial order in a class of
degrees which contains a computably independent collection of degrees, and is
closed under computable joins.

We now give the construction, and a sketch of the verification, for Theorem 5.1.

5.1 The Requirements

Fix a non-c.e. Σ0
2-set A. We build enumeration operators Γi and Λi, such that

for all s-operators Φ and i ∈ ω, we meet the following requirements:

Ri: Bi = ΛA
i

Qi: A = Γ Bi

i

Pi,Φ: Bi = Φ
⊕

j �=i Bj ⇒ ∃Δ (A = Δ)

where Δ is a c.e. set constructed by us.

5.2 The Tree of Strategies

Let our set of outcomes be 0 < 1 < · · · < ∞ and define T = (ω∪{∞})<ω . Order
the P-requirements as 〈Pi〉i∈ω and assign to each α ∈ T the requirement P|α|.
In the rest of the proof, notations and terminology about trees are standard.

5.3 The Construction

Let 〈As〉s∈ω be a good approximation to A. We define Bi ⊆ ω[i], and so we
can take

⊕
j �=i Bj =

⋃
j �=i Bj . Using the convention that max(∅) = min(∅) =

−1, partition ω as {Fn : n ∈ ω} where |F [i]
n | = (n + 2)2 if i ≤ n and F

[i]
n = ∅

otherwise, and such that max(F [i]
n ) ≤ min(F [i]

n+1). For each x define σ(x) to be
such that x ∈ Fσ(x). For each i ∈ ω, define

Λi =
{
〈x, An〉 : n ≥ i and x ∈ F [i]

n

}
, and

Γi =
{

〈x, F [i]
n 〉 : n ≥ i and x ∈ An

}
.
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We will enumerate additional axioms into Λi as needed during the construc-
tion, and so at each stage of the construction, for i, x ∈ ω and α ∈ T, define

G(i, x) =
⋂

{F : 〈x, F 〉 ∈ Λi} , and

Gα =
⋃

{G(i, x) : x ∈ Bi and x = bα
m for some m < nα} ,

where nα and the bα
m are parameters defined by α during the construction.

5.4 The Strategies

As in the proof of the previous theorem, it is immediate to see that if we let
Bi = ΛA

i , with Λj as is initially defined, then it would follow that A = Γ Bi

i . In
defining the additional axioms for Λi (as needed by the Pi,Φ-strategies) we must
therefore ensure that for every k, there is at least one element y ∈ F

[i]
k for which

we do not define additional axioms.
The strategy α for Pi,Φ can be visualized as working on cycles, one cycle for

each natural number n:

Cycle n:

1. If bm ∈ Φ
⊕

j �=i Bj − Bi, for some m < n, then stop all cycles k > m. If later
bm ∈ Φ

⊕
j �=i Bj ∩ Bi again then resume all existing cycles;

2. otherwise, wait for a number b ∈ Φ
⊕

j �=i Bj ∩ Bi, with b /∈ {b0, . . . , bn−1},
such that there is either an axiom 〈b, ∅〉 ∈ Φ, or an axiom 〈b, {y}〉 ∈ Φ
where y ∈ Bj , some j �= i, and y can be conditionally dumped into Bj ,
by adding an axiom 〈y, G〉 ∈ Λj, where G is such that if b0, . . . , bn−1 ∈ Bi

then G ⊆ ⊕k �=iBk, forcing b ∈ Φ
⊕

j �=i Bj . In doing so we must not violate the
constraints imposed by higher priority strategies, and care should be taken
to guarantee that for every z the strategy conditionally dumps at most one
element of F

[j]
σ(z).

3. Once such a number b appears, appoint bn = b, conditionally dump the
corresponding y into Bj (if 〈y, ∅〉 /∈ Φ), impose a restraint on bn so that
lower priority strategies are not allowed to add additional Λ-axioms for bn,
enumerate the elements of the finite set G, as defined in Step 2, into an
auxiliary c.e. set Δ, and go to Cycle n + 1.

We briefly describe the outcomes of this strategy, and how they are recorded
on the true path if α is on the true path. If there is a least m such that outcome
(1) holds infinitely often, than the requirement is satisfied since in this case
bm ∈ Φ

⊕
j �=i Bj − Bi and so α�〈m〉 is on the true path. Outcome (2) would

imply that Φ
⊕

j �=i Bj ∩ Bi is c.e.; therefore if Φ
⊕

j �=i Bj = Bi then Bi is c.e.,
and so A = Γ Bi

i is c.e., a contradiction. On the other hand, each time we pass
through (2) we let α�〈∞〉 be eligible to act next. Finally if all cycles are defined
and there is no bm ∈ Φ

⊕
j �=i Bj −Bi, then we can argue that A = Δ, i.e. A is c.e.,

again a contradiction. In this last case, the construction ends the current stage.
However, since A is not c.e., we can conclude that there is indeed an outcome o
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such that α�〈o〉 is on the true path, and this outcome is of the form o = m, for
some bm ∈ Φ

⊕
j �=i Bj − Bi.

Before proceeding with the details of the construction let us spend a few
more words on how different strategies interact with each other. Let α1 have
higher priority than α2. By initialization, we may assume that α1 ⊂ α2, and
by the above informal remarks we consider only the case of some m such that
α�

1 〈m〉 ⊆ α2. The restraints imposed by α1 on α2 are that α2 is not allowed to
add additional Λ-axioms for numbers bn that α1 conditionally dumps in (3) of
the above module. We can argue that these restraints guarantee that for each i
and n ≥ i, there is a y ∈ F

[i]
n such that the only axiom of the form 〈y, F 〉 ∈ Λi

is 〈y, An〉, thus letting the Qi- and Ri-requirements be satisfied. On the other
hand these restraints, being finitary by the above discussion, do not prevent α2

from being satisfied.
Each stage s of the construction consists of substages t < s, where a strategy

α ∈ T, with |α| = t is eligible to act. Let α be a Pi,Φ-strategy eligible to act at
substage t of stage s and let s0 be the first stage at which α was eligible to act
after its last initialization. If this is the first time that α has been eligible to act,
set n = 0. Choose the first case which applies.

Case 1. There is an m < n such that bm ∈ Φ
⊕

j �=i Bj − Bi: Let m0 be the least
such m and end the current substage by letting α�〈m0〉 be eligible to act next.

Case 2. For all m < n, bm ∈ Φ
⊕

j �=i Bj ∩ Bi:

Case 2.1. There is a b ∈ Φ
⊕

j �=i Bj ∩ Bi − {bm : m < n} with σ(b) > s0 and
Gα ⊆ G(i, b) such that either 〈b, ∅〉 ∈ Φ or 〈b, {y}〉 ∈ Φ with y ∈

⊕
j �=i Bj ,

σ(y) > s0, y �= bβ
m for all β ⊆ α and m < nβ , and y /∈ Fσ(ym) for all m < n:

Let bn to be the least such b. If 〈bn, ∅〉 /∈ Φ, let yn be the least such y for bn,
and enumerate 〈yn,

⋃
β⊆α Gβ〉 into Λj for the j such that yn ∈ Bj . Enumerate

G(i, bn) into Δ. Set n = n + 1, and end the current stage.

Case 2.2. Else: Let α�〈∞〉 be eligible to act next.

Ending the stage s: For any α > fs cancel all local parameters and set Δ = ∅.
Again, the reader is referred to [5] for more details on the construction and

its verification.
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Abstract. The existence of isolated degrees was proved by Cooper and Yi in
1995 in [7], where a d.c.e. degree d is isolated by a c.e. degree a if a < d is the
greatest c.e. degree below d. A computably enumerable degree c is non-isolating
if no d.c.e. degree above c is isolated by c. Obviously, 0 is a non-isolating degree.
Cooper and Yi asked in [7] whether there is a nonzero non-isolating degree. Ar-
slanov et al. showed in [3] that nonzero non-isolating degrees exist and that these
degrees are downwards dense in the c.e. degrees and can also occur in every jump
class. In [11], Salts proved that there is an interval of computably enumerable de-
grees, each of which isolates a d.c.e. degree. Recently, Cenzer et al. [4] proved
that such intervals are dense in the computably enumerable degrees, and hence
the non-isolating degrees are nowhere dense in the computably enumerable de-
grees. In this paper, using a different type of construction to that of [3], we prove
that the non-isolating degrees are upwards dense in the computably enumerable
degrees. In the context of [4], this is the best possible such result.

1 Introduction

The existence of isolated degrees was proved by Cooper and Yi in 1995 in [7], where a
d.c.e. degree d is isolated by a c.e. degree a if a < d is the greatest c.e. degree below
d. Ding and Qian [8], LaForte [10] independently, proved that the isolated degrees,
and hence the isolating degrees, are dense in the computably enumerable degrees. In
[3], Arslanov, Lempp and Shore proved that the non-isolated degrees are also dense
in the computably enumerable degrees. In [13], Wu use the isolation phenomenon an
alternative proof of Downey’s diamond embedding theorem. Ishmukhametov and Wu
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[12] proved that sometimes, the isolated degrees can be far from the corresponding
isolating degrees. That is, there is a high d.c.e. degree isolated by a low c.e. degree.
This too has had an interesting application (see [1]), related to Post’s problem for the
d.c.e. degrees.

In this paper, we are mainly concerned with the non-isolating degrees, where a com-
putably enumerable degree c is non-isolating if no d.c.e. degree above c is isolated by
c. Obviously, 0 is a non-isolating degree. Cooper and Yi asked in [7] whether there is a
nonzero non-isolating degree. Arslanov et al. showed in [3] that nonzero non-isolating
degrees exist and that these degrees are downwards dense in the c.e. degrees and can
also occur in every jump class. Arslanov et al. actually proved a stronger result. They
first pointed out that for any c.e. degree c and d.c.e. degree d > c, there is a degree
a c.e. in c such that c < a < d, and then proved that there is a c.e. degree failing to
isolate any 2-CEA degree in it. In [11], Salts proved that there is an interval of com-
putably enumerable degrees, each of which isolates a d.c.e. degree. Recently, Cenzer
et al. [4] proved that such intervals are dense in the computably enumerable degrees,
and hence the non-isolating degrees are nowhere dense in the computably enumerable
degrees. In this paper, we prove that the non-isolating degrees are upwards dense in the
computably enumerable degrees, so completing a near comprehensive characterisation
of the situation.

Theorem 1. For any incomplete c.e. degreea < 0′, there is an incomplete non-isolating
degree c above a.

Our construction of the non-isolating degrees is direct, and is different from the one
given by Arslanov et al. in [3]. In section 2, we show how to construct a non-isolating
degree. In section 3, we describe how to combine our construction with the upwards
density to prove Theorem 1.

2 Constructing a Non-isolating Degree

In this section, we present a new construction of non-isolating degrees. We will con-
struct c.e. sets A, C satisfying the following requirements:

Pe : A �= Φe;

Qe : C �= ΦA
e ;

Re : D̃e = ΦA
e ⇒ ∃Be ≤T De ⊕ A(Be �≤T A) ∨ De ≤T A;

where {(De, Φe) : d ∈ ω} is an effective list of pairs (D, Φ), where D is a d.c.e. set
and Φ is a partial computable functional. Here, D̃ is the Lachlan set of D, with respect
to an effective (d.c.e.) approximation {Ds : s ∈ ω}. That is:

D̃ = {〈x, s〉 : x ∈ Ds & ∃t > s(x �∈ Dt)}.

Obviously, D̃ ≤T D and it is a c.e. set. From the approximation {Ds : s ∈ ω}, we have
the following effective enumeration of D̃: 〈x, s〉 is enumerated into D̃ at stage t if t is
the least stage such x �∈ Dt.
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The strategy for satisfying the P and Q requirements is the standard Friedberg-
Muchnik one, and we assume the readers are familiar with it. The R-requirements are
non-isolating requirements. That is, for a d.c.e. set D, if D is not reducible to A, then
we want to find a c.e. set reducible to A ⊕ D, but not reducible to A, so that A does not
isolate A ⊕ D. This c.e. set may either be the natural candidate D̃, or some other, B,
which we will need to construct. On the other hand, if D itself is reducible to A (where,
of course, D̃ is reducible to A), then we will need to show this fact.

To satisfy Re, we need to construct a c.e. set Be, and a p.c. functional Γe for which
Be = Γ A⊕D

e . At the same time, we also want to ensure that Be �≤T A, provided that D
is not reducible to A. That is, the following requirements should be also satisfied:

Se,i : Be �= ΦA
i or there is a p.c. functional Δe,i such that D = ΔA

e,i.

An Re strategy defines Γe at sufficiently large, that is “big”, expansionary stages.
Here we say that an expansionary stage is big if the length of agreement between D̃
and ΦA

e is bigger than any number specified by a substrategy S. Obviously, if there are
infinitely many expansionary stages, there are also infinitely many big expansionary
stages. An Re strategy has two outcomes: f for finitely many expansionary stages, and
∞ for infinitely many expansionary stages, with ∞ <L f . Below outcome ∞, we will
list substrategies Se,i, i ∈ ω, which will work together to construct Be, and to satisfy
requirement Re.

An Se,i-module consists of (infinitely many) steps, where each step n tries to find a
number xn such that either ΦA

i (xn) �= Be(n) or ΔA
e,i(n) is defined. Step n works as

follows:

1. Choose xn as a big number.
2. Wait for ΦA

i (xn) ↓= 0.
3. For ΦA

i (xn) ↓= 0 at stage s –

We define ΔA
e,i(n) = D(n) with use δe,i(n) = ϕi(xn). Here, again, when we see

ΦA
i (xn)[s] ↓= 0, we do not put restraint on A to preserve this computation. When-

ever A changes below δe,i(n), go back to (2), in which case, ΔA
e,i(n) is undefined

by this A-change.

[Here, n can be in Ds or not in in Ds.
If n is currently not in Ds, then n can enter D later, and leave at a further stage.
When n enters D, at stage s′, we will use the assumption that D̃ is equal to ΦA

e , as
at stage s′, 〈n, s〉 is not in D̃, and we want to restrain A from changing to preserve
this computation. If later n leaves D, then 〈n, s〉 will enter D̃, making D̃ and ΦA

e

disagree at 〈n, s〉.
If n is in Ds, we do nothing here, since if n leaves D later, this change will en-
able us to undefine Γ A⊕D(xn), and allow us to put xj,n into Be. Note that axioms
enumerated into Γe before n enters D are all invalidated by the A-changes. Other-
wise we will be in the situation described in the last paragraph, where n leaving D
causes a disagreement between D̃ and ΦA

e .]

Wait for D(n) to change, and simultaneously start the step n + 1.
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4. Say D(n) changes at stage t > s. There are two possibilities.

(a) n enters D at stage t. In this case, the D(n) change undefines Γ A⊕D
e (xn), and

instead of putting xn into Be immediately at this stage, we wait for D̃ and ΦA
e

to agree on (all numbers ≤) 〈n, t〉.

[We delay the enumeration of xn into Be mainly because n may leave D later,
making Γ A⊕D

e correct, forcing the enumeration of a number into A to change
Γ A⊕D

e (xn), resulting in no real progress.]

(b) n leaves D at stage t. Then 〈n, s〉 enters D̃ at this stage. Since the computation
ΦA

e (〈n, s〉) = 0 is preserved at stage s′ by restraining A, and we get a global
win via

ΦA
e (〈n, s〉) = 0 �= 1 = D̃(〈n, s〉).

5. At stage t′ > t, D̃ and ΦA
e agree on (all numbers ≤) 〈n, t〉. We enumerate xn

into Be, and put restraint on A to preserve both computations ΦA
i (xn) = 0, and

ΦA
e (〈n, t〉) = 0.

[Here, at stage t, n enters D, which undefines Γ A⊕D
e (xn). From now on, we wait

for the agreement between D̃ and ΦA
e to exceed 〈n, t〉, and during this period, we

do not define Γ A⊕D
e (xn). Thus, at stage t′, we can enumerate xn into Be directly,

as Γ A⊕D
e (xn) is undefined at this stage. If there is no such a stage t′, then Re

will have outcome f , and below this outcome, no substrategies Se,i are listed. We
consider the case when a strategy X is between Re and Se,i. W.o.l.g., suppose
that X is an Se′,j-strategy with e′ < e. Then under outcome f , another strategy
is arranged to satisfy the Se′,j-requirement. A nontrivial case is that after X puts
a number into Be′ , De′ changes now and the permission from De′ used for the
enumeration of the number into Be′ goes away — (6) is reached. In this case, Re′

is satisfied permanently because a disagreement between D̃e′ and ΦA
e′ is found.

We will also see that in the whole construction, only P strategies put numbers into
A. This explains why 0 is non-isolating and why the nonzero non-isolating degrees
are downwards dense in the c.e. degrees. We will see in the next section that it
will not be like this when we prove the upwards density, where a change of K is
required.]

6. At stage t′′ > t′, n leaves D. Then as in 4(b), 〈n, t〉 enters D̃ at this stage. As the
computation ΦA

e (〈n, t〉) = 0 is preserved at stage t′, by keeping this restraint on A,
we get a global win via

ΦA
e (〈n, t〉) = 0 �= 1 = D̃(〈n, t〉).

We now consider the outcomes of Se,i, which can run finitely many or infinitely
many steps. Notice that if step n2 is in progress, and now we have an A-change so that
we come back to 2 of step n1 < n2, then ΔA

e,i(n2) is undefined automatically by this
A-change. After this, we need to start step n2 from 1. That is, we choose a new xn2 .

If some step n passes 3, then we win either by 4(b) or 6, which is a global win via
ΦA

e �= D̃, where this disagreement is preserved forever. This means that there will be no
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more Re-expansionary stages, or we win by 5, where we get a D-change at n, where
this n remains in D, ensuring that the previous axioms enumerating xn into Γ A,D are
invalid forever.

If no step passes 3, then notice that we put no restraint on A. It can happen that there
is a least n such that ΦA

e (xn) does not converge to 0, or for each n, ΦA
e (xn) converges

to 0. Se,i is satisfied in both cases: In the former case, Be(xn) = 0 �= ΦA
e (xn); and in

the latter case, each step remains at 3, and hence ΔA
e,i(n) is defined and equal to D(n).

So ΔA
e,i = D.

So this Se,i module has two outcomes: w and s with w <L s. Here w denotes the
case in which no step passes 3, and s the case in which some step passes 3. In the latter
case, we put restraint on A to preserve computations.

3 Upwards Density

We are now ready to present the strategy for constructing an incomplete non-isolating
degree above any incomplete c.e. degree.

Fix U as an incomplete c.e. set. We will construct c.e. sets A and C satisfying the
following requirements:

Pe : C �= ΦA,U
e ;

Re : D̃e = ΦA,U
e ⇒ (∃Be ≤T A ⊕ De ⊕ U)(Be �≤T A ⊕ U) ∨ De ≤T A ⊕ U ;

where {(De, Φe) : d ∈ ω} is a standard list of pairs (D, Φ), where D is a d.c.e. set and
Φ is a partial computable functional, and D̃ is the Lachlan set of D. Here we did not
require that A is not reducible to U , as we can obtain this by applying Sacks’ density
theorem first.

We apply the Sacks preservation strategy to satisfy the P requirements by running
(infinitely many) cycles to threaten the assumption that U is incomplete via a p.c. func-
tional Θ. Cycle n behaves as follows:

1. Choose a big number xn.
2. Wait for ΦA,U

e (xn) ↓= 0.
3. Say ΦA,U

e (xn) converges to 0 at stage s. Define ΘU (n) = Ks(n) with use θ(n) =
ϕ(xn). Restrain A from changing below ϕ(xn).

Wait for a change of K(n) or a change of U below ϕ(n), and simultaneously start
the next cycle.

4. Say U changes below ϕ(xn) first. Then go back to 2. Note that ΘU (n′), each n′ ≥
n, is undefined by this U change.

5. Say K(n) changes first. Then we put xn into C, and wait for a change of U below
ϕ(xn).

[If there is no such a U -change, then ΘU (n) differs from K(n). But as U below
ϕ(xn) is fixed, we satisfy P because ΦA,U

e (xn) ↓= 0 is preserved forever, and
C(xn) = 1. Otherwise, as above, a U -change undefines ΘU (n′), each n′ ≥ n,
allowing us to redefine ΘU (n) = K(n) = 1.]
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6. Undefine ΘU (n′) for n′ ≥ n, and redefine ΘU (n) = K(n) = 1 with use 0. Start
the next cycle.

The P module has the following outcomes:

〈n, w〉: cycle n stops at 2. P is satisfied since ΦA,U
e (xn) does not converge to 0 and

C(xn) = 0.
〈n, s〉: cycle n stops at 2. P is satisfied since ΦA,U

e (xn) converges to 0 and C(xn) = 1.
〈n, u〉: cycle n runs through the loop 2-3-4-2 infinitely often. P is satisfied since

ΦA,U
e (xn) does not converge at all, and C(xn) = 0.

These outcomes are ordered:

〈0, u〉 <L 〈0, w〉 <L 〈0, s〉 <L 〈1, u〉 <L 〈1, w〉 <L 〈1, s〉 <L 〈2, u〉

<L 〈2, w〉 <L 〈2, s〉 <L · · · <L 〈n, u〉 <L 〈n, w〉 <L 〈n, s〉 <L · · · .

As U is incomplete, there is a least n such that one of 〈n, u〉, 〈n, w〉, 〈n, s〉 is the true
outcome for P , since otherwise, ΘA will be totally defined, and will compute K cor-
rectly, which is impossible.

We now consider how to satisfy the R-requirements, with U included. Again, for
any d.c.e. set D, if D is not reducible to A ⊕ U , we need to find a c.e. set reducible to
A ⊕ D ⊕ U , but not reducible to A ⊕ U , so that A ⊕ U does not isolate A ⊕ D ⊕ U .
Again, this c.e. set can be D̃, or another set B which we will construct. On the other
hand, if D itself is reducible to A ⊕ U , then we need to construct a p.c. functional Δ to
reduce D to A ⊕ U . The following are the details.

We will construct a c.e. set Be and a p.c. functional Γe such that Be = Γ A⊕D⊕U
e . At

the same time, if D is not reducible to A ⊕ U , we need to ensure that Be �≤T A ⊕ U .
That is, the following requirements should also be satisfied:

Se,i : Be �= ΦA⊕U
i or there is a p.c. functional Δe,i such that D = ΔA⊕U

e,i .

As in section 2, a Re strategy defines Γe at big expansionary stages, and has two
outcomes: f for finitely many expansionary stages, and ∞ for infinitely many expan-
sionary stages, with ∞ <L f . Below outcome ∞, we will list substrategies Se,i, i ∈ ω.

An Se,i-module consists of infinitely many cycles and each cycle consists of in-
finitely many steps. All the cycles are devoted to defining a p.c. functional Θe,i, and
each cycle j tries to find some some x such that Be(x) �= ΦA⊕U

i (x), or to define a p.c.
functional Δe,i,j such that D = ΔA⊕U

e,i,j , or to define ΘA⊕U
e,i (j) = K(j). This task will

be realized by cycle j’s steps, where as in section 2, each step n of cycle j, denoted by
〈j, n〉, tries to find a number xj,n such that either ΦA

i (xj,n) �= Be(xj,n) or ΔA
e,i,j(n) is

defined. Step 〈j, n〉 proceeds as follows:

1. Choose xj,n as a big number.
2. Wait for ΦA,U

i (xj,n) ↓= 0.
3. If ΦA,U

i (xj,n) ↓= 0 at stage s —

We define ΔA,U
e,i (n) = D(n) with use δe,i(n) = ϕi(xn). Here, again, when we

see ΦA,U
i (xn)[s] ↓= 0, we do not put restraint on A to preserve this computation.



594 S.B. Cooper, M.C. Salts, and G. Wu

Whenever A or U changes below δe,i(n), we go back to 2, in which case, ΔA,U
e,i (n)

is undefined.

[Note that here, n can be in Ds or not in Ds.
If n is currently not in Ds, then n can enter D later, and leave at a further stage.
When n enters D, at stage s′, we will use the assumption that D̃ is equal to ΦA⊕U

e ,
as then 〈n, s〉 is not in D̃, and we want to restrain A from changing to retain
this computation. If n leaves D later (Γ A⊕D⊕U (xj,n) reverts to a previous value,
which is equal to 0), then 〈n, s〉 will enter D̃, making D̃ and ΦA⊕U

e disagree at
〈n, s〉. This disagreement can now fail only when U changes, which will undefine
Γ A⊕D⊕U (xj,n).

If n is in Ds, then we do nothing here, as if n leaves D later, this change
will allow us to undefine Γ A⊕D⊕U (xn), and we can put xj,n into Be. Notice that
axioms enumerated into Γe before n enters D are all invalid due to the A or U -
changes. Since otherwise we will be in the situation described in the last paragraph,
where n leaving D will cause a disagreement between D̃ and ΦA⊕U

e .]

Wait for D(n) to change, and simultaneously commence the step 〈j, n + 1〉.
4. Say D(n) changes at stage t > s. There are two possibilities:

(a) n enters D at stage t. In this case, the D(n) change makes Γ A⊕D⊕U
e (xj,n)

undefined, and instead of putting xj,n into Be immediately at this stage, we
wait for D̃ and ΦA

e to agree on (all numbers ≤) 〈n, t〉.
(b) n leaves D at stage t. Then this D(n) change necessarily results in Γ A⊕D⊕U

e

(xj,n) becoming undefined, and we define ΘU (j) = K(j) with use θ(j) =
ϕi(xj,n), and wait for U to change below θ(j) or K(n) to change. Of course,
a restraint is put on A to preserve the computation ΦA⊕U

e (xj,n).
If U changes first, go back to (2), and the restraint is canceled. If K(n) changes
first, go to (6).

5. At stage t′ > t, D̃ and ΦA
e agree on (all numbers ≤) 〈n, t〉. We put restraint on A to

preserve both computations ΦA,U
i (xj,n) = 0, and ΦA,U

e (〈n, t〉) = 0. Create a link
between Se,i and Re, the mother node. This link can be traveled and canceled when
we find at Re that U has changes below ϕe(〈n, t〉). If there is no such a U -change,
then this link can survive for ever.

We define ΘU (j) = K(j) with use θ(j) = max{ϕi(xj,n), φe(〈x, s〉)}, and wait
for U to change below θ(j), or K(n) to change, or n to leave D. Simultaneously,
start cycle j + 1.

If K(j) changes first, then go to (6). If n leaves D first, go to (7).
If U changes first, see whether U has a change below ϕi(xj,n). If yes, then go

back to (2). Of course, the restraint on A established at stage t′ will be canceled.
Otherwise, go back to (4) and wait for D̃ and ΦA⊕D

e to agree on (all numbers ≤)
〈n, t〉.

6. K(j) changes.

We enumerate xj,n into Be, and the current γe(xj,n) into A. Note that this new
γe(xj,n) is bigger than θ(j), since it is defined after stage t′.
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Wait for U to change below θ(j), and also wait for n to leave D. If n leaves D
first, then go to (7). If U changes first, go to (8).

7. At stage t′′ > t′, n leaves D. Then 〈n, t〉 enters D̃ at this stage. As the computation
ΦA

e (〈n, t〉) = 0 is preserved at stage t′, we get a global win via

ΦA,U
e (〈n, t〉) = 0 �= 1 = D̃(〈n, t〉),

provided that U does not change change below ϕe(〈n, t〉).
Wait for U to change below θ(j).

8. Put γe(xj,n) into A and redefine ΘU (j) = K(j), with use 0. Start cycle j + 1.

The outcomes for Se,i are rather more complicated. As in the P-module, we will
have outcomes for each cycle, and each cycle has outcomes different from those given
in section 2. Below, we only describe the outcome for a particular cycle j.

〈j, w〉: Cycle j runs many steps, and each one stays at (2) or (3), or returns to (2)
infinitely often from (3) or (4b). In this case, no restraint is put on A, and
Se,i is satisfied by either ΦA,U

e (xj,n) not converging for some xj,n (some step
stops at (2) or loops between (2) and (3), or (4b)), or by ΔA,U

e,i becoming
totally defined and computing D correctly. [Note that if this outcome is true,
a step can return to (2) from other point beyond (5) at most once, via a U -
change.]

No restraint is put on A in this outcome.

〈j, n, u〉: Step n of cycle j reaches (5) and later returns to (4) to wait for D̃ and ΠA⊕U
e

to agree on number ≤ 〈n, t〉, infinitely often by U -changes, where t is the
stage at which n enters D. That is, infinitely many links to the mother node
Re are created and canceled in the construction. If this outcome is true, then
ΦA⊕U

e (〈n, t〉) diverges, leading to a global win for Re.

No restraint is put on A in this outcome.

〈j, n, d〉: Step n of cycle j reaches (7) because after (5), n leaves D, no matter whether
K(j) has changed or not. As we put a restraint on A at (5), if U does not
change below ϕe(〈n, t〉), then we will have ΦA⊕D

e (〈n, t〉) = 0 and 〈n, t〉 ∈ D̃
— again, a global win for Re. If this outcome applies, then there are only
finitely many expansionary stages. That is, Re will have f as its outcome,
and we do not put this outcome below Se,i.

[Notice that if this outcome applies, Γ A⊕D⊕U
e (xj,n) can be wrong in the case

that step n reaches (6), and xj,n is put into Be when n is in D. If later n leaves
D, then Γ A⊕D⊕U

e (xj,n) can be reinstated to the one before n enters D, which
is currently defined as 0. If so, then either cycle j reaches (7) and stays at (7),
or it eventually reaches (8). If the former case, as indicated above, we have
a global win for Re. If cycle j eventually reaches (8), then cycle j also wins
as ΘU (j) is defined, and is equal to K(j). To keep Γ A⊕D⊕U

e (xj,n) correct,
at (8), we also put γe(xj,n) (the old one) into A. This enumeration does not
injure cycle j.]
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〈j, s〉: Some step n of cycle j reaches and stays at (6). Then Se,i is satisfied, via
Be(xj,n) = 1 �= 0 = ΦA⊕U

i (xj,n). Notice that since n remains in D (oth-
erwise step n will go to (7), which cannot be true by our assumption), the
enumeration of γe(xj,n) (the new one) into A will not change the computa-
tion ΦA⊕U

i (xj,n). The enumeration of this γe(xj,n) makes Γ A⊕D⊕U
e well-

defined and correct at xj,n. Also note that U will not change so as to injure
this computation, since otherwise step n will go to (8), which again cannot be
true.

We arrange the outcomes of cycle j as:

〈j, w〉 <L 〈j, 0, u〉 <L 〈j, 1, u〉 <L · · · <L 〈j, n, u〉 <L · · · <L 〈j, s〉,

where the outcomes for j1 are always to the left of those for j2, whenever j1 < j2.
Again, since U is incomplete, there is a least j such that one of the outcomes for cycle
j is the true outcome relative to Se,i.

The whole construction turns out to be a 0′′′ argument, in a quite standard way. The
details will appear in [6].
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