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Abstract. There are many contexts, from space structures to disk drive heads, 
from medical mechanisms to long-arm manipulators, from cranes to light 
robots, in which it is desired to achieve rapid and accurate position control of a 
system end-point by an actuator working through a flexible system. The 
system’s actuator must then attempt to reconcile two, potentially conflicting, 
demands: position control and active vibration damping. Somehow each must 
be achieved while respecting the other’s requirements. Wave-based control is a 
powerful, relatively new strategy for this important problem that has many 
advantages over most existing techniques. The central idea is to consider the 
actuator motion as launching mechanical waves into the flexible system while 
simultaneously absorbing returning waves. This simple, intuitive idea leads to 
robust, generic, highly efficient, adaptable controllers, allowing rapid and 
almost vibrationless re-positioning of the remote load (tip mass). For the first 
time there is a generic, high-performance solution to this important problem 
that does not depend on an accurate system model or near-ideal actuator 
behaviour.  

Keywords. Flexible mechanical systems, robot analysis and control, slewing of 
space structures, active vibration control. 

1 Introduction 

There are many contexts, from space structures to disk drive heads, from medical 
mechanisms to long-arm manipulators, from cranes to light robots, in which it is 
desired to achieve rapid and accurate position control of a load (or system end-point) 
by an actuator that is separated from the load by an intermediate system which is 
flexible. While all systems are to some extent flexible, issues related to flexibility 
become decisive as one tries to design lighter mechanisms, or systems that are more 
dynamically responsive, or softer, or more energy efficient, or simply long in one 
dimension. 

The system’s actuator must then attempt to reconcile two, potentially conflicting, 
demands: position control and active vibration damping. Somehow each must be 
achieved while respecting the other’s requirements.  

Previous approaches have included various classical and state feedback control 
techniques (often using simplified dynamic models); modal control (often considering 
a rigid-body, or zero frequency mode separately from vibration modes); sliding mode 



control; input command shaping; time-optimal control leading to bang-bang control; 
wave-based control; and control based on real-virtual system models [1] [2] [3] [4] [5] 
[6]. Each method has special characteristics and drawbacks, discussed in the 
literature. None is completely satisfactory under all headings. 

The wave-based control strategy [7] [8] [9] [10] [11] [12] is a powerful, relatively 
new method of dealing with flexibility that has been shown to be better than existing 
methods in most respects. The central idea is to consider the actuator motion as 
launching mechanical waves into the flexible system while simultaneously absorbing 
returning waves. This simple, intuitive idea leads to robust, generic, highly efficient, 
adaptable controllers, allowing rapid and almost vibrationless re-positioning of the 
system and the remote load (tip mass). For the first time there is a generic solution to 
this important problem that does not depend on an accurate system model and does 
not demand close to ideal performance by the actuator. Rather than treating the 
flexibility as a problem, it works with the flexibility to achieve system control in a 
natural way. 

Fig. 1 Typical flexible systems, with actuator position, x0(t) or θ0(t), controlling tip position, 
xn(t) or θn(t). 

For simplicity, it will be assumed that there is a single actuator, with its own position 
controller, which is attempting to control the position of the system tip, moving it 
from rest in one position to rest at a target position. If gravity is active, it is assumed 
that the initial and final gravitational strains are equal, so that, when the system comes 
to rest again, the net displacement of the actuator will equal that of the tip. It is further 
assumed that the actuator position controller has zero steady-state error, so final 
position accuracy is limited only by the actuator sensor accuracy. 
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This chapter will investigate the mathematical foundation for a wave-based 
interpretation of flexible system dynamics, both lumped and continuous, exemplified 
in Fig. 1. It will then show how this view can be used to interpret the actuator-system 
interface as a two-way energy flow, leading to the design of controllers that give 
optimal performance by controlling this energy flow, in ways that are simple, robust, 
generic, and energy efficient.  



2 Wave Analysis of Flexible Systems 

In flexible systems of the above type, the actuator and load are dynamically 
uncoupled. The interaction between them is mediated by the flexible system dynamics 
and it involves delays. When the actuator moves it directly affects only the part of the 
flexible system to which it is attached. A disturbance (or “wave”) then travels through 
the system to the load or tip, and then back towards the actuator, typically dispersing 
as it goes, in a complex motion. At each end of the system, some of this wave may be 
reflected and/or absorbed, depending on the instantaneous relationship between the 
motions of the actuator, or tip, and the motion of the adjacent parts of the flexible 
system.  

The wave-based control strategy depends on (a) understanding, (b) measuring and 
(c) controlling the (notional) two-way flow of energy and momentum happening at 
the interface between the actuator and the flexible system. To move the tip from rest 
to rest the actuator must launch a “wave” into the flexible system and then absorb it, 
in such a way that when all the energy and momentum of the motion have been 
extracted, the system is at the target position.  

The term “wave” here is very general, and includes not just oscillating motion but 
also a “step wave” which, after it passes a point, changes the net or DC displacement, 
implying “rigid body” or “zero frequency” motion. Because the primary focus here is 
position control, the wave variable is taken as displacement, linear or angular (in 
meters or radians). In other applications, variables such as force, torque, velocity, or 
acceleration would be appropriate as wave variables, and the wave control ideas can 
easily be adapted to suit. 

3 Resolving Actuator Motion into 2-Way Waves 

The actuator motion, x0(t) is notionally resolved into two component motions, a0(t) 
and b0(t),  

( ) ( ) ( )tbtatx 000 += ,   (1) 

with a0 corresponding to an outwards-going, or launch, wave, b0 corresponding to a 
return wave, which the actuator attempts to absorb. 

For the control application, the resolving in (1) need not be precise: it is necessary 
to fulfil only certain generic criteria [11]. The simplest definition sets 
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where f(t) is the force that the actuator applies to the beginning of the flexible system 
in the direction of motion, and Z is an impedance term, whose value is not critical. For 
lumped systems Z can be taken as √(k1m1), corresponding to the first spring stiffness, 
k1, and first mass, m1. For the gantry crane, one can set Z = √(ρT) where ρ is the linear 
density of the cable and T the tension at the top, and for a simple pendulum system, Z 
= m√(g/L), with m the mass and L the length. 

( ))()()()()( 010 sAsGsXsGsB −=         (4) 

with 

( ))()()()()()( 0100 sAsGsXsGsXsA −−=     (5) 

where G(s) is a second order mass-spring-damper system, with mass and spring 
corresponding the beginning of the lumped flexible system, and with viscous damping 
at half critical [Fig. 2]. 
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Fig. 2 A wave-based control implementation using (4) and (5) to determine return wave, b0 
from x0 and x1, with G as shown. 

4 The Control Strategy 

For rest-to-rest motion to a target position, the strategy is as follows. The input to the 
actuator is set as the sum of two components. The first component is set directly by 
the controlling computer, the only essential requirement being that its time profile 
ends at half the target displacement and holds there. The second component is the 
measured return wave, b0, calculated by measuring two variables, such as x0 and x1, or 
x0 and f, and calculated using for example (3) or (4).  

Adding the second input component, which has the form of a positive feedback 
signal, provides active vibration damping, by making the actuator appear as a 
matched viscous impedance to “waves” returning from the flexible system towards 
the actuator. See for example (3). This causes the actuator to act as a very efficient, 
one-way, active vibration absorber, yet without impeding the action of simultaneously 
setting a launch wave.  

A second effect of the absorbing component is to cause the total steady-state 
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For a system of lumped masses and springs in series, a slightly better expression 
[11] [12] for the s-domain version of the return wave, B0(s), is given by 

actuator displacement to become exactly double the launch component. This can be 



seen most clearly in the case of (2) and (3). For rest to test motion, the force integral 
terms must become zero, so that at rest a0 and b0 must become equal to each other and 
equal to ½x0. Thus, if the launch displacement component is set to settle at half the 
target displacement, adding the absorbing component ensures that (a) the system 
vibrations are absorbed, and (b) in absorbing them, the system arrives exactly at target. 
Thus, the main control problem has been solved, in a simple and elegant manner. 

The launch component of the actuator motion can be considered as pushing the 
system half the distance to the target, while the absorbing component acts as if the 
reaction of the system were pulling the actuator the other half displacement, but in 
such a way that all momentum and energy return to zero precisely on completion of 
the process, just when the system arrives to target. 

4.1 Launch Wave Profile 

The launch waveform (time profile) is to a great extent arbitrary. It can arrive at the 
half-target displacement in many ways (step, ramp, constant acceleration, or using a 
pre-determined motion plan), limited only by the actuator dynamics. The control 
strategy works very well for all such choices. 

There is one choice that is particularly neat [11]. The absorb wave motion is added 
throughout the entire manoeuvre. If the absorb wave is recorded from the beginning, 
the initial part of it can be used to determine a very good way to complete the launch 
wave. The actuator gets half way to target before the launch wave has reached its 

complete its trajectory using an inverted and time-reversed version of the wave that 
has been absorbed out of the system up to that point. Thus, the “echo” that was 
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Fig. 3 Wave-echo control to determine actuator motion x0. The target distance is 1. The a0 
component is set by the controller as a ramp until t=t1 (when x0=½), then as a reverse replay of 
recorded b0, but inverted (shown dotted). At all stages b0 is determined from the measured 
system response. 
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steady (half-target) value (Fig. 3). At this point, the launch wave can be set to 
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absorbed from the system in the first half of the manoeuvre is played back into the 
system in reverse to complete the manoeuvre. This has the effect of bringing the tip to 
rest in a time-and-space mirror-image of the start-up motion. In other words, the load 
stops dead, rapidly, precisely at the target, while the actuator continues to move so 
that the rest of the system then relaxes in just the right way to leave everything 
motionless in the correct position. 

5 Sample Results 

As an example, Fig. 4 shows the control of a uniform, lumped three-mass system.  
The actuator and end-mass positions are shown against time expressed in units of the 
period, T, or 2π/ωn, where ωn = (k/m). The target displacement is 1m. Also shown are 
a0(t) and b0(t). 

 

 T = t*ωn/ 2π

 
Fig. 4 End point of a uniform, three-mass system, moved 1 m.  

As can be seen, the response is remarkable. Without a control strategy, the position 
of the end mass (“load”) would, of course, oscillate somewhere between zero and 
two, with three frequency components superposed. Instead the load is translated from 
rest to rest, in a single, controlled movement, with almost no overshoot and with 
negligible oscillations (and so little or no settling time). The total manoeuvre time is 
excellent. Depending how strictly one defines the settling time, it is between 3 and 3.5 
“periods” of ωn, (This corresponds to about only 1.5 periods of the fundamental mode 
of the 3-mass system.) 

The end mass (load) comes to rest exactly at target. It does so sooner than its 
actuator. The actuator’s movements are smooth and easily achievable. Around mid-
manoeuvre, the speed of the end-mass (the slope in Fig. 4) is close to that of the 
actuator: the flexible system is then behaving as if rigid, or almost so: vibration is 
under control.  

Similarly impressive results are obtained whether the system is long or short, 
uniform or not, with linear or hardening or softening springs (other than the first), 
with or without internal damping, with ideal or realistic actuator, and with or without 

Displacement [m] 

End mass, x3(t) actr. x0(t) 

a0(t) 

b0(t) 
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precise values for all the terms in (3) or (4). Illustrating a mixture of such added 
complexities, Fig.5 shows the response of a 5 DOF system with non-linear (hard-
ening) springs; variations of the masses of 1, 0.5, 1, 2, 1; damping between the masses 
of 0, 0.25, 0.1, 0.25, 0, 0.05 times critical damping; an actuator modelled as a first 
order system of time constant 1/3ωn; and b0(t) approximated by (3). These parameter 
values and system size were chosen almost at random: a similar result is obtained for 
almost arbitrary choices of these system variables. 

 

Load mass, x3

Periods, T 

 
Fig. 5 Response of end mass of 5 DOF system, with non uniform masses, various dampers 
between the masses, non-linear springs, a first order actuator, and b0(t) determined simply by (3). 

As can be seen, the non-uniformities, actuator limitations, and so on, make things 
less smooth, but despite everything, the controller gets the load exactly to target, 
rapidly, and it works very effectively to remove vibratory energy from the system 
during the motion and on arrival at target. 

The presence of system non-uniformities requires no adjustment to the control 
strategy. The actuator’s action is restricted to either launching or absorbing waves. To 
absorb returning waves the actuator must await their arrival. The non-uniformities 
will delay, and stretch out, their arrival and therefore delay the absorbing process. 
Also the non-ideal actuator response will slightly prolong the final tidying up. But 
even though the strategy and controller settings were not changed, their effectiveness 
in meeting the much more difficult challenge is almost undiminished. 

Figure 6 gives a trolley crane example, moving a load 2 m, with a 4-m cable of 
significant mass [10]. The launch waveform is set to correspond to half the maximum 
trolley velocity, to which is added the return wave, b0. For a long manoeuvre, this 
causes the trolley velocity to approach the maximum for the middle part of the transit, 
with the swing angle approaching zero. In other words, the system is then moving at 
top speed and as if it were rigid, with the load displacement tracking the trolley 
displacement. After the halfway point for the trolley (1 m), the launch displacement a0 
is based on the previous b0. This causes the trolley to decelerate in precisely the way 
needed to get the load to land at target (2 m) and stop dead. The load arrives before 
the trolley, which continues to move in just the right way to allow the cable to 
straighten up as all wave energy flows out of the system. 

Displacement [m] 
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Fig. 6. Load arrives and stops at target before trolley. Crane target distance 3 m. Cable 
length=4 m, ρ=0.1 kg/m, m=2 kg, T=23.54 N, Z=1.534 Ns/m. Note time symmetry of load & 
trolley motions, due to a0 and b0 following wave-echo scheme of Fig. 3. 

6 Discussion & Conclusions 

Aspects of the problem of controlling flexible systems have been presented in new 
and fruitful ways, leading to new control algorithms that perform remarakbly well.  
They easily move a load from point to point, rapidly, yet with negligible residual 
vibration and negligible overshoot and zero steady-state error. They move the load at 
close to the actuator velocity (the ideal), in one controlled motion, without exciting 
load or system vibrations unnecessarily. The control strategies are very robust; they 
are applicable to a wide variety of problems; they require minimal system 
information, little computational overhead, and are very tolerant of limitations in the 
actuator dynamics. Sensing requirements are also minimal. Other than the actuator’s 
own motion, only one other sensed input is needed, and the second sensor supplying 
this information is located conveniently close to the actuator, where sensing is 
generally easiest and safest in practice. 

Modelling errors hardly feature. System changes are automatically accommodated. 
The order of the controller automatically matches that of the system, and explicit 
information, for example, about locations of poles (or natural frequencies and 
damping ratios of modes) is not needed.  

The control approach can be considered a combination of “command shaping” 
and feedback control, the launch wave being a simple, shaped input, and the absorb 
part the feedback contribution. 

With the wave-echo idea, the returning waveform, b0, reveals to the controller the 
entire system dynamics in just the form the controller needs to achieve ideal system 
deceleration to rest. In a sense, the system itself serves as the system model, which is 
therefore always accurate, up to date, and of the correct order. The system itself also 
serves as the model’s computer. To put it another way, all the required system 
identification is done in real time, as part of the controlled motion, with minimal 
computational overhead. This partly explains the control system’s robustness to 
system changes.  

–0.5

–1
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The interface between the actuator and the flexible system is seen as a wave 
gateway, controlled and managed by the actuator’s motion. Energy and momentum 
enter and leave the flexible system at the interface. They propagate in two directions 
within the system, from actuator to end-mass, and back again, albeit in ways that are 
faltering, complex, and highly dynamic. Rest-to-rest motion corresponds to getting 
the energy and momentum into, and then out of, the system in just the right way to 
ensure that the entire system comes to rest at the target.  

The actuator is the sole agent for all this. But the actuator interacts directly only 

It is here contended that wave-based methods provide just such a “general solution” 
for a wide class of problems, with many additional attractive features.  
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