
Smooth Trajectory Planning for Fully Automated 
Passengers Vehicles: Spline and Clothoid Based Methods 

and its Simulation  

Larissa Labakhua1, Urbano Nunes2, Rui Rodrigues2 and Fátima S. Leite2 

1 University of Algarve, Escola Superior de Tecnologia/ADEE, Faro, Portugal 
llabak@ualg.pt 

2 Institute of Systems and Robotics, University of Coimbra, Coimbra, Portugal 

Abstract. A new approach for mobility, providing an alternative to the private 
passenger car, by offering the same flexibility but with much less nuisances, is 
emerging, based on fully automated electric vehicles. A fleet of such vehicles 
might be an important element in a novel individual, door-to-door, 
transportation system to the city of tomorrow. For fully automated operation, 
trajectory planning methods that produce smooth trajectories, with low 
associated accelerations and jerk, for providing passenger’s comfort, are 
required. This chapter addresses this problem proposing an approach that 
consists of introducing a velocity planning stage to generate adequate time 
sequences for usage in the interpolating curve planners. Moreover, the 
generated speed profile can be merged into the trajectory for usage in 
trajectory-tracking tasks like it is described in this chapter, or it can be used 
separately (from the generated 2D curve) for usage in path-following tasks. 
Three trajectory planning methods, aided by the speed profile planning, are 
analysed from the point of view of passengers’ comfort, implementation 
easiness, and trajectory tracking. 

Keywords. Trajectory planning, splines, clothoids, trajectory tracking, fully-
automated vehicles, passenger comfort. 

1 Introduction 

Negative side effects of car use in build-up areas jeopardise the quality of life. 
Technology driven inventions like cybernetic transport systems may contribute to 
sustainable urban mobility. In this context, a new approach for mobility providing an 
alternative to the private passenger car, by offering the same flexibility but with much 
less nuisances, is emerging, based on fully automated electric vehicles, named 
cybercars [2] [7]. A fleet of such vehicles might be an important element in a novel 
individual, door-to-door, transportation system to the city of tomorrow. These 
vehicles must be user-friendly, easy to handle and safe, not only for passengers but 
also for the other road users. These vehicles are already in operation in specific 
environments featuring short trips at low speed [1] [7].  

For fully automated operation, trajectory planning methods that produce smooth 
trajectories, with low associated accelerations and jerk, are required. Although motion 
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planning of mobile robots has been thoroughly studied in the last decades, the 
requisite of producing trajectories with minimum accelerations and jerk (integrating 
both lateral and longitudinal accelerations) has not been traceable in the technical 
literature. A global minimum-jerk trajectory planning approach is proposed in [8] but 
in the context of joint space trajectories of robot manipulators.  

This chapter addresses the problem of generating smooth trajectories with low 
associated accelerations, proposing an approach that consists of introducing a velocity 
planning stage to generate adequate time sequences to be fed into the interpolating 
curve planners. The generated speed profile can be merged into the trajectory for 
usage in trajectory-tracking tasks like it is described in this chapter, or it can be used 
separately (from the generated 2D curve) for usage in path-following tasks [9]. Three 
trajectory planning methods used to generate smooth trajectories from a set of 
waypoints, embedding a given speed profile, are analysed from the point of view of 
passengers’ comfort, easiness of implementation, and trajectory tracking performance. 
The trajectory-planning methods studied are the following ones: cubic spline 
interpolation, trigonometric spline interpolation, and a combination of clothoids, 
circles and straight lines. For its evaluation, the well-known Kanayama trajectory-
tracking controller was used [4]. The kinematics model of a Robucar vehicle 

simulations the studied trajectory planning methods. 

2 Acceleration Effects on the Human Body 

For a vehicle following a trajectory at speed v , accelerations are induced on the 
passengers, which can be expressed as 

T N
dv dv da e v e
dt dt dt

θ= = +  (1) 

where v  denotes the longitudinal velocity (tangent to the trajectory), θ  is the vehicle 
orientation, and Te  and Ne  are unit vectors in the tangent and normal trajectory 
directions, respectively. Moreover 

1d v
dt
θ

ρ=  (2) 

where ρ  is the curvature radius. From (1) and (2) one gets the longitudinal 
acceleration (tangential component), induced by variations in speed, 

T
dva dt=  (3) 

and lateral accelerations (normal component), originated by changes in vehicle’s 
orientation, whose values are also affected by the vehicle speed: 

21
L

da v v
dt
θ

ρ= =  (4) 
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(platform used in our autonomous navigation experiments) is used to evaluate through 

The lateral acceleration is function of the trajectory curvature and speed. Assuming 
constant speed, the smaller is the curvature the smaller is the induced lateral 
acceleration, and therefore less harmful effects on the passengers. The ISO 2631-1 
standard (Table 1) relates comfort with the overall r.m.s. acceleration, acting on the 
human body, defined as 



2 2 2 2 2 2
w x wx y wy z wza k a k a k a= + +  (5) 

motion on the xy -plane, 0wza = . The local coordinate system is chosen so that its 
x -axis is aligned with the longitudinal axis of the vehicle, and it’s y-axis defines the 
trajectory lateral direction.  

2.1 Speed Profile 

Trajectory planning for passenger’s transport vehicles must generate smooth 
trajectories with low associated accelerations and jerk. As expressed by (3) and (4), 
lateral and longitudinal accelerations depend on the vehicle’s speed. Thus, the 
trajectory planner should not only generate a smooth curve (spatial dimension) but 
also its associated speed profile (temporal dimension). 

Table 1 ISO 2631-1 Standard 

Overall acceleration Consequence 
20.315 /wa m s<  Not uncomfortable 

20.315 0.63 /wa m s< <  A little uncomfortable 
20.5 1 /wa m s< <  Fairy uncomfortable 

20.8 1.6 /wa m s< <  Uncomfortable 
21.25 2.5 /wa m s< <  Very uncomfortable 

22.5 /wa m s>  Extremely uncomfortable 

Using Table 1 and (5), for “not uncomfortable” accelerations, the longitudinal and 
lateral r.m.s. accelerations must be less than 20.21 /m s . Speed profiles can be 
calculated under this constraint, and consequently appropriate time-interval values 
sequences obtained to be used by the curve planners. Assuming a constant speed and 
a perfect arc cornering with a radius r , the reference speed in corners (segment 
between waypoints i  and j ) is 

2,  0.21 /ij T Tv a r a m s≤ ⋅ ≤  (6) 
It makes sense to consider a straight course segment just before each corner for 

reducing speed, and others after corners for increasing speed. So, the reference speed 
on the straight segments begin (end), designated by the waypoint k , can be calculated 
as 

2,      0.21 /k i L Lv v a t a m s= ± Δ ≤  (7) 

2 / Lt l aΔ =  (8) 
where the waypoint i designates the corner begin (end), and is the straight segment 
length.  

Figure 1 shows an urban road way with very close corners, a roundabout, and a set 
of waypoints defined by stars.  
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where wxa , wya , wza , are the components of the r.m.s. acceleration w.r.t. , ,x y z axes 
and ,  ,  ,x y zk k k  are multiplying factors. For a seated person 1.4,  1x y zk k k= = = . For 



1 2 3
4

5

6

7
8 9

1 0 1 1

1 2

1 3

1 4

1 5
1 6

1 7

1 8
1 9

2 02 1
2 22 3

2 4
2 5

2 6

2 8  m

1 8  m

R  1 1  m

3 4  m

18
 m

27
 m

 
Fig. 1 Urban road way with very close corners, a roundabout, and waypoints defined by stars. 
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Fig. 2 Speed profile defined by speed values at the waypoints specified in Fig. 1: 

, 1, 2,..., 26riv i = . 

For the purpose of comparison of the three trajectory planning algorithms, applied to 
the scenario depicted in Fig. 1, and somehow to observe the above acceleration 
constraints, it was empirically defined the speed profile shown in Fig. 2. A simple 
algorithm to generate a 1C  speed profile curve using a second order polynomial is 
presented in [9] which is a step in an iterative trajectory planning method that 
generates smooth curves with bounded associated accelerations. 

3 Kinematics Model 

Cybercars are expected to be used in urban areas, airport terminals, pedestrian zones, 
etc., i.e. in places where the vehicle will move at relatively low speed. Therefore, 
kinematics-based trajectory control can be considered. 
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Fig. 3 Kinematics model of a 4-wheel car-like vehicle with front and rear steering capability. 

These vehicles are under-actuated systems with two controls, speed and steering 
angle, but evolving in a 3D  configuration space { }, ,x y θ , the first 2 coordinates for 
the 2D  position and the third for the vehicle orientation. A representation of the 
kinematics model of Robucar (bi-steerable, 4-wheels actuated vehicle manufactured 
by Robosoft) is shown in Fig. 3. The model shows the possibility to steer both the rear 
and front pairs of wheels. The rear steering angle is proportional by a factor –k to the 
front steering angle. If the angle ϕ represents the front wheels’ steering command, the 
back wheels will be deflected from the central axis of the vehicle by an angle –kϕ. 
Assuming that the wheels roll without slipping, the rear and front steering angles give 
the directions of the velocities at points F and T, respectively. Hence, the position of 
the instantaneous turning centre of the solid, point G in Fig. 3 can be deduced. Using 
the geometrical model of Fig. 3, the kinematics model of the vehicle¸ with the 
possibility of steering both the rear and front wheels, can be derived [11]: 

2

cos( ) 0sin( ) 0sin( ) 0cos( ) 10
0

F
T F
T

F F
T

F
F
T

kx ky kq v vL
k

θ ϕ
θ ϕ

ϕ ϕ
θ ϕϕ
ϕ

−
−
+= = ⋅ + ⋅⋅

−

 (9) 

where L is the vehicle length and v2 defines the front wheels steering angular speed. 
The rear wheels steering angular speed is 2kv . 
 The results shown in Fig. 4 were calculated using model (9). For a given front 
steering angleϕ , the effect of the rear steering angle is shown. 
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Fig. 4 Car-like vehicle trajectories, using the same front wheel steering angle 5ºFϕ = and 
different values of the rear steering angle, given by the coefficient k. 

Autonomous vehicles are expected to be used in places such as city centres with 
narrow areas and wherever it is needed to share the space with pedestrians. So, it is 
also important to know the position of each wheel, in order to avoid any kind of 
casualties, sidewalks, etc. Solving the kinematics model (9), and knowing the vehicle 
length L and its width e, it is possible to derive an output equation for the wheels’ 
positions. 

4 Trajectory Planning Methods 

4.1 Cubic Splines 

We assume that 0 1 mt t t< < <  is a chosen partition of the time interval [ ]0 , mt t , and 
that 0 1, , , mp p p  are given distinct points in 2ℜ . We are interested in the construction 
of a smooth curve in 2ℜ  which goes through the point kp  at time kt , for all 

0, 1, , ,k m=  with prescribed initial and final velocities ( 0v  and mv  respectively). 
The instants of time are chosen in order that the trajectory satisfies a reasonable 
criterion of performance. Typically, this interpolation problem can be solved by a 
cubic spline, which is roughly a smooth concatenation of simple cubic polynomial 
curves. More precisely, a curve ( )S t , [ ]0 , mt t t∈ ,  is a cubic spline in 2ℜ if it fulfils 
simultaneously the following: 
1. ( )S t is defined in each subinterval [ ]1,k kt t +  by:  

2 3
1 1 1 1

2 3
2 2 2 2

( ) k k k kk
k k k k

a b t c t d tS t
a b t c t d t

+ + +=
+ + +

 (10) 

2. ( )S t  is 2C −smooth in [ ]0 , mt t , i.e., ( )S t , ( ),S t′ ( )S t′′  are continuous functions in 

[ ]0 , mt t ; 
3. ( )k kS t p= , 0, ,k m=  (interpolation conditions); 
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4. 0 0( )S t v′ =  and ( )m mS t v′ =  (boundary conditions). 
All the coefficients in (10) are uniquely determined by solving a set of linear 

algebraic equations arising from conditions 2–4. The cubic spline ( )S t  is a smooth 
concatenation of each spline segment ( )kS t  and thus uniquely computed [3]. 

4.2 Trigonometric Splines 

An alternative to build a 2C
satisfying all the requirements at the beginning of this section is based on the 
construction of a trigonometric interpolating curve, described in [6] and [10]. This 
curve is again obtained by putting together smaller pieces (spline segments). 
However, one particular but important feature of this construction is that each piece 
can be computed separately. As a consequence, one may reduce the computations of 
each spline segment to the time interval [ ]0,1 , thus simplifying notations. 

The piece connecting point kp  (at 0t = ) to point 1kp +  (at 1t = ) is denoted by 
( )kS t  and given by the following convex combination of two other curves, ( )kL t  and 
( )kR t : 

2 2( ) cos ( / 2) ( ) sin ( / 2) ( ).k k kS t t L t t R tπ π= +  
The curves kL  and kR  are called respectively the left component and the right 
component of the spline segment and will be computed from the local data as follows. 
The name “trigonometric spline” is suggested by the expression which defines the 
spline components. 

• Computation of kL  ( 0k ≠ ): 
If the points kp , 1kp +  and 1kp −  define a straight line, then ( )kL t  is the line 

segment connecting kp  (at 0t = ) to 1kp +  (at 1t = ). Otherwise, consider the circle 
defined by the 3 points and let ( )kL t  be the circular arc joining kp  (at 0t = ) and 

1+kp  (at 1=t ) that does not contain 1kp − . 
• Computation of kR  ( k m≠ ): 
The previous algorithm (for the left component) is also implemented to compute 

the right component, but uses instead the points kp , 1kp +  and 2kp + . 
The computation of the left component 0L  of the spline segment 0S  and the right 

component mR  of the spline segment mS  is slightly different. The computation of 0L  
requires the use of the prescribed initial direction (at time 0t ) in addition to the points 

0p and 1p . For mR it is required to use the prescribed final direction (at time mt ) 
besides the points 1mp −  and mp . More details can be found in [10]. Properties of the 
trigonometric spline: 

a. The final curve is guaranteed to be 2C
b. The procedure used to compute 0L and mR  shows how to compute a 

trigonometric spline when directions are prescribed at each instant of time kt . This is 

-smooth trajectory in a two-dimensional environment 

-smooth; 
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an important issue in trajectory planning in a real environment. However, in this case 
S  will no longer be 2C

c. Another important property is due to the fact that only four data points are used 
to compute each spline segment. This is of particular importance in real trajectory 
planning. Indeed, under the presence of an unpredictable change of a data point 
(resulting, for instance, from the appearance of a sudden obstacle), at most the two 
previous and the two following segments of the spline, have to be recalculated. This 
contrasts with the classical cubic spline, mentioned previously, which would have to 
be entirely recalculated. 

4.3 Clothoids 

Using clothoid curves it is also possible to produce smooth trajectories with smooth 
changes in curvature (see Fig. 5). Clothoids allow smooth transitions from a straight 
line to a circle arc or vice versa. The clothoid curvature can be defined as in [5] by: 

0( )k s s kσ= + , (11) 
 

where σ is the curvature derivative, 0k the initial curvature, s the position 
variable [ ]0,s l∈ ,  and l the curve length. The orientation angle at any clothoid point is 
obtained integrating (11): 

2
0 00( ) ( )

2
ss k u du s k sσθ θ= = + +  (12) 

 
where 0θ is the initial orientation angle. The parametric equations of a clothoid in 
the xy plane are given by: 

0 0

0

0
0

0

( ) 2 ( )

2 ( ) 2

,
2 ( ) 2

l
x s r Rly

sCF CF

x
y

s SFSF

πθ θ θ

θ θ
π π

θ θ
ππ

= − ∗

∗ − +

 
(13) 

 
where 1θ and lr are respectively the orientation angle and the radius of the clothoid at 
the point s l= , R is a 2D rotation matrix, 0x and 0y are the co-ordinates of the clothoid 
at 0s = , CF and SF denote respectively the cosine and sine Fresnel integrals 

2
0( ) cos

2
xCF x u duπ= , 2

0( )
2

xSF x sen u duπ=  

and 
2

0 0( )
2

s s k sσθ θ= + + , and 
2
0

0 2
kθ σ=  (14) 

 

-

-smooth; 
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Fig. 5 Transition from a straight line to a circumference arc using a clothoid curve. m represents 
the distance between the straight line and the circumference. 

The smooth transition from a straight line to a circumference is shown in Fig. 5, 
where the x-axis represents a straight line tangent to the clothoid trajectory. The 
dashed line clothoid curve should handle the smooth transition between the straight 
line and the circumference arc with centre at ( ),c cx y , radius lr and curvature 1 lk r= . 
Solving the equations, one can find the clothoid parametersσ and l : 

2
1

2 l lr
σ

θ
=  and 2 l ll rθ=  (15) 

 
The trajectory planning using clothoids is not an interpolation method. The 

trajectory results from the concatenation of straight line segments, clothoid curves, 
and circumference arcs. 

Fig. 6 Trajectory planning module. Fig. 7 Simulation model block diagram: 
trajectory planning and trajectory-tracking 
modules. 

Thus, the trajectory is obtained by means of a geometric construction, and it is not 
possible to use the prescribed points in the same way as in interpolation methods. A 
previous processing is needed for assigning new points, circumference arcs radius, 
and the distance between the straight line segments and circumference arcs.  
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5 Simulation Model 

A simulation numerical model was developed using the MATLAB/SIMULINK 
programming environment (see Figs. 6 and 7). The first step consisted on calculating 
the trajectories, from a set of points ( ), , 1,2, ,i i ip x y i n= = … , using cubic splines, 
trigonometric splines and clothoids. These calculations give the reference positions x 

arctan( )L vϕ ω= ⋅  (16) 

while for both front and rear wheels steering, and for equal front and rear angles, 1k= , 
results: 

arcsin( 2 )L vϕ ω= ⋅  (17) 
For other values of k it is more complicated to find the value of angleϕ . One possible 
way is to expand the sine and cosine in Taylor series and solve the resulting equation. 
The kinematics model (9) is related to the velocity Tv this velocity is in the direction 
of the rear wheels, as shown in Fig. 3. On the other hand, the target velocity is in the 
direction of the vehicle axis. Hence, 

cos( )Tv v kϕ=  (18) 
and the kinematics model becomes 

2
sin( )cos sin

.cos

T
T F F
T

F

x ky v
L

ϕ ϕθ θ
ϕθ

+=  (19) 

Simple first order steering and speed vehicle’s model were used in simulations, 
using time constants ϕτ and vτ between the reference and the targets angleϕ and 
velocity v  (see Fig. 7). 

6 Results 

Three trajectory planning methods were applied to a set of prescribed waypoints 
(points defined by stars in Fig. 4). These point locations represent an urban road way 
with very close corners and a roundabout. As an example, a planned trajectory using 
trigonometric splines is depicted in Fig. 8. Figures 9 to 14 show results of the 
trajectory planning and vehicle’s path-following for the three trajectories obtained 
using the planning methods described in Sect. 4. 

Figures 9, 11 and 13 show the orientation angle, curvature, and longitudinal and 
lateral accelerations behaviour. The curvature is a non time-depending parameter, 
which shows the smoothness of the planned curve. The acceleration results allow an 
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and y. A time-dependent vector is obtained from the desired trajectory speed values 
riv which is used to define the reference variables ( ), ( ), ( )x t y t tθ  and ( )v t , as shown 

in Fig. 6. A trajectory controller must ensure that the vehicle follows the planned 
reference trajectory. Errors are obtained comparing the reference position with 
vehicle’s position, and a Kanayama controller [4] is used to calculate velocity 
commands v  and ω . The angle ϕ  is calculated in order to model the steering input of 
a car-like vehicle. For a front wheels only steering, 0k = , 



evaluation of the trajectory comfort. However, the accelerations also depend on linear 
speed variation. So, using a different speed profile other results would be obtained. 
Subsequently, the planned trajectories were applied to the simulation model for 
trajectory tracking, using a Kanayama controller. The tracking errors obtained from 
the simulation are shown in Figs. 10, 12 and 14. The angle, longitudinal and lateral 
errors are shown for cubic splines, trigonometric splines and clothoid curves planned 
trajectories tracking. Table 2 summarises results of the applied trajectory planning 
methods. 
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Fig. 8 Generated trajectory using trigonometric splines. 
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Fig. 9 Orientation angle θ, curvature, longitudinal and lateral acceleration behaviour along the 
course for the given reference velocity vector, using cubic splines trajectory planning. 
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Fig. 10 Angle, longitudinal and lateral tracking errors, using a Kanayama controller and the 
vehicle kinematics model to follow cubic splines planned trajectory. 
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Fig. 11 Orientation angle θ, curvature, longitudinal and lateral acceleration behaviour along the 
course for the given reference velocity vector, using trigonometric splines trajectory planning. 
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Fig. 12 Angle, longitudinal and lateral tracking errors, using a Kanayama controller and the 
vehicle kinematics model to follow cubic trigonometric planned trajectory. 
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Fig. 13 Orientation angle θ, curvature, longitudinal and lateral acceleration behaviour along the 
course for the given reference speed profile, using clothoid curves trajectory planning. 
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Fig. 14 Angle, longitudinal and lateral tracking errors, using a Kanayama controller and the 
vehicle kinematics model to follow clothoid curves planned trajectory. 

Table 2 Planning methods results 

Quantity                               Cub.       Trig.          Clothoid 
Max. Curvature (1/m)           0.87       0.56 0.41 
r.m.s. Curvature (1/m)   0.21       0.20 0.16 
Max. Long. Accel. (m/s2)     0.69       0.69 0.42 
r.m.s. Long. Accel. (m/s2)     0.21      0.21 0.15 
Max. Lateral Accel. (m/s2)   1.50       1.32 0.95 
r.m.s. Lateral Accel. (m/s2)   0.24      0.25 0.25 
Overall Acceleration (m/s2)  0.43      0.46 0.40 
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7 Conclusions 

In this chapter, three trajectories planning methods using cubic splines, trigonometric 
splines and clothoid curves, were analysed. The integration of a speed profile planner 
was proposed, with the goal of calculating the time-intervals sequence that lead to low 
level of accelerations and jerk. Further research is being carried out in this direction 
[9]. The generated trajectories were applied to a numeric model for trajectory-
tracking, using a Kanayama controller. The first conclusion is related to the use of 
methods easiness. In spite of the relatively good results, the use of clothoid curves is 
complex and without flexibility in case of trajectory change. On the other hand, all 
methods showed to be adequate from the point of view of passengers’ comfort and 
tracking.  
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