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Abstract. Most people usually do not consider the car sitting in their driveway 
to be on the leading edge of new technology. However, for most people, the 
personal automobile has now become their initial exposure to new intelligent 
computational technologies such as fuzzy logic, neural networks, adaptive 
computing, voice recognition and others. In this chapter we will discuss the 
various intelligent vehicle systems that are now being deployed into motor 
vehicles. These intelligent system applications impact every facet of the driver 
experience and improve both vehicle safety and performance. We will also 
describe recent developments in autonomous vehicle design and demonstrate 
that this type of technology is not that far away from deployment. Other 
applications of intelligent system design apply to adapting the vehicle to the 
driver’s preferences and helping the driver stay aware. The automobile industry 
is very competitive and there are many other new advances in vehicle 
technology that cannot be discussed yet. However, this chapter provides an 
introduction into those technologies that have already been announced or 
deployed and shows how the automobile has evolved from a basic 
transportation device into an advanced vehicle with a host of on-board 
computational technologies.  
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1 Introduction 

Although the automotive industry has always been a leading force behind many 
engineering innovations, this trend has become especially apparent in recent years. 
The competitive pressure creates an unprecedented need for innovation to 
differentiate products and reduce cost in a highly saturated automotive market to 
satisfy the ever increasing demand of technology savvy customers for increased 
safety, fuel economy, performance, convenience, entertainment, and personalization. 
With innovation thriving in all aspects of the automotive industry, the most visible 
advancements are probably in the area of vehicle controls enabled by the proliferation 
of on-board electronics, computing power, wireless communication capabilities, and 
sensor and drive-by-wire technologies. 

The increasing sophistication of modern vehicles is also accompanied by the 
growing complexity of required control models. Therefore, it is not surprising that 
numerous applications of methodologies generally known as “intelligent”, “soft 
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computing”, “computational intelligence”, and “artificial intelligence” have become 
increasingly popular in the implementation of vehicle systems. In this chapter, we 
focus on applications of computational intelligence methodologies such as Fuzzy 
Logic, Neural Networks, Machine Learning, Knowledge Representation, Probabilistic 
and Possibilistic Reasoning as building blocks for intelligent vehicle systems. These 
examples are drawn from published sources with credible evidence of successful 
vehicle implementation, or research sponsored by automotive enterprises. This 
chapter does not provide an exhaustive bibliographical review, but limits the number 
of references that are necessary to illustrate relevant examples of applications of 
intelligent technologies. 

In this review we describe the introduction of different methods of computational 
intelligence for vehicle control in chronological order. In the next section we review 
one of the first applications of computational intelligence for vehicle control: fuzzy-
neural controls. Section 3 describes automotive applications of speech recognition, 
while Sect. 4 discusses the varied uses of on-board vehicle diagnostics. In Sect. 5 we 
describe applications of intelligent vehicle technologies which also include a 
discussion on the technology needed for autonomous vehicles. Section 6 discusses the 
emerging field of application of driver-aware technologies that monitor and mitigate 
adversary driver conditions, such as fatigue, impairment, stress or anger. The final 
section summarizes the chapter and presents our conclusions.  

2 Fuzzy-Neural Systems Control 

Fuzzy logic and neural networks were the first computational intelligence techniques 
implemented in the vehicle as viable alternatives to the classical control methods that 
may be infeasible, inefficient or uneconomical. The first commercial applications of 
fuzzy logic for speed control and continuous variable transmission date back to 1988 
[37] [38].  

Fuzzy logic controllers take advantage of human knowledge of the control 
behavior. The control process is described inside a set of “IF-THEN” rules that also 
includes probabilistic fuzzy variables for control values. In a fuzzy logic controller, 
the crisp sensor inputs are converted to the fuzzy variables that are processed against 
the rule base. A combined result is then converted back into a specific crisp control 
value.  

There are a number of reviews outlining the advantages and production 
implementations of fuzzy logic in control of different vehicle systems, including anti-
lock breaking systems (ABS), engine control, automatic transmissions, anti-skid 
steering, and climate control [4] [43]. In recent years, the proliferation of hybrid 
vehicles (e.g. vehicles that combine combustion engines and electric motors) created 
the potential for a new application area of fuzzy logic control for vehicle subsystems 
[32]. These examples demonstrate that incorporating expert rules expressed through 
fuzzy logic simplifies complex control models.  

In addition, fuzzy logic allows the modeling of such inherently ambiguous notions 
as driver behavior in an efficient and effective way. Exploring this feature of fuzzy 
logic, Takahashi [38] presents the concept of vehicle control, where the driver plays 
the role of the human sensor for the control system. In this case, the driving 
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environment and driver intentions might be predicted by analyzing the operations 
executed by the driver, such as pedal inputs and steering maneuvers. Furthermore, this 
control system makes it possible to infer driver classification (for example 
“defensive”, “medium”, “sporty” [45]) and adjust the characteristics of the engine, 
transmission and other vehicle subsystems to the driver preferences.  

While fuzzy logic allows for the representation of the knowledge of human 
experts in the form of rules, neural networks allow for the capture of expertise 
through training. Often both techniques are combined together. Hayashi et al. [14] 
describes a Neuro-Fuzzy Transmission Control system developed at Isuzu Motors. 
This system combines both a Fuzzy Logic module and Neural Nets. Fuzzy Logic is 
used to estimate the automobile load and driver intentions from both the input shaft 
speed and accelerator position displacement. The Neural Net module determines the 
optimal gear-shift position from the estimated load, driver intentions, vehicle speed 
and accelerator pedal displacement. The Neural Net is trained using a standard gear-
shift scheduling map, uphill driving data, and knowledge from an experienced driver. 

The efficient control of vehicle subsystems depends on the accuracy and 
completeness of the feedback data from the system parameters. However, in many 
cases, the direct measurement of such system parameters is impractical due to 
complexity, noise and the dynamic nature of the system. Marko et al. [20] 
demonstrates that neural networks could be trained to emulate “virtual”, ideal sensors 
that enhance diagnostic information from existing sensors on production vehicles.  

The most prominent application area of neural-network based sensors is the on-
line diagnostics of engine combustion failures, featured in the Aston Martin DB9 
engine control system [1]. The importance of this application is enhanced by the fact 
that engine misfires are the leading contributors to excessive vehicle emissions and 
fuel consumption. In general, the identification of engine misfires can be done 
through the observation of crankshaft dynamics. However, the complexity of these 
dynamics can easily lead to misinterpretation. Neural Networks, trained by artificially 
inducing a combustion failure, can classify a misfire with a high level of accuracy 
based on indirect data, such as engine speed, load, crankshaft acceleration, and phase 
of the cylinder firing sequence [21] [28]. 

3 Speech Recognition 

Speech technology is another important type of an in-vehicle AI application. The 
importance of an in-vehicle speech interface is related to requirements for non-
destructive hands-free control of the ever increasing number of auxiliary functions 
offered in vehicles, such as telephones, entertainment, navigation, and climate control 
systems.  

One of the first vehicle speech dialog systems, called Linguatronic, was 
introduced by Mercedes-Benz in their S-class car line in 1996 [15]. The speech 
recognizer used in Liguatronic is speaker-independent and based on the Hidden 
Markov Model (HMM) combined with the Dynamic Time Warping (DTW) word 
recognizer for a user definable telephone directory [6]. 

Most of the systems available today are based on a single utterance command and 
control paradigm. Such systems typically require the memorization of all commands 
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from the manual that are often expressed in an artificial (non-natural) language. To 
address these limitations, automotive companies and suppliers have been actively 
pursuing research and development of the next generation of in-vehicle intelligent 
dialog systems [22] [27]. For example, Pieraccini et al. [27] presents a multimodal 
conversational interface prototype that was implemented on the Ford Model U 
Concept Vehicle shown at the 2003 North American International Auto Show in 
Detroit, Michigan. This system adopts a conversational speech interface coupled with 
a touch screen display. The speech recognition engine makes use of dynamic semantic 
models that keep track of current and past contextual information and dynamically 
modify the language model in order to increase accuracy of the speech recognizer. 

4 On-Board Diagnostics and Prognostics 

While intelligent systems in service diagnostics have been in use since the 1980s, 
vehicle on-board diagnostics and prognostics define an emerging area of 
computational intelligence applications. Each new vehicle currently contains a large 
number of processors that control the operation of various automotive subsystems, 
such as the engine, lights, climate control, airbags, anti-lock braking systems, traction 
control, transmissions, stereo systems and others. Each of these processors runs 
software that deals with faults and abnormal behavior in the various subsystems. This 
software has three main goals: 

 

Vehicle fault information is aggregated in the On Board Diagnostic (OBD) system 
that is a standard component of every modern vehicle. The fault detection algorithms 
(predominantly model based) provide input to the OBD that is used to evaluate the 
health of individual vehicle subsystems for on-board monitoring and to support off-
line diagnostic maintenance systems. There has also been considerable work done to 
apply model-based systems and qualitative reasoning to support on-board diagnostics 
[36]. This work includes the development of the Vehicle Model-Based Diagnosis 
(VMBD) project in Europe. This project involves running model-based diagnosis on 
demonstrator vehicles to analyze problems with emissions in a diesel engine. In this 
case, a model was developed that represented the turbocontrol subsystem in the 
engine and a solution to a problem was found using a consistency-based diagnosis 
system. The model of the system is not a single model of the entire system, but 
instead contains a library of component models. Qualitative models capture the 
interdependencies and physical effects of the airflow and pressure that is present in 
the engine. The concept of model based diagnostics is further refined and developed 
by combining it with a dynamic Bayesian network [33] [34] [35]. The network model 
is applied to approximate the fault dynamics, interpret the residuals generated by 
multiple models and to determine fault probabilities. This approach was piloted for 
on-board diagnosis of the Anti-lock Braking System (ABS) and Electronic Stability 
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Program (ESP) of a Daimler Chrysler pilot vehicle and demonstrated an effective way 
to detect faults from multiple model residuals. 

Fault prognostics recently became an important feature of on board diagnostic 
systems. The goal of this technology is to continually evaluate the diagnostics 
information over time in order to identify any significant potential degradation of 
vehicle subsystems that may cause a fault, to predict the remaining useful life of the 
particular component or subsystem and to alert the driver before such a fault occurs. 
Most of the work in this direction is inspired by the recent progress in Condition 
Based and Predictive Maintenance [7] [9]. Presently available on selected military 
vehicles [13], a prognostic capability is envisioned as becoming a substantial 
extension of OBD systems and vehicle telematics [5].  

Model based prognostics assume models that are used to calculate the residuals 
between the measured and model predicted features, estimate the measure of 
degradation, and to evaluate the remaining useful life of the component. Model based 
prognostics use the advantages of first principle models and provide an accurate 
representation of the particular vehicle subsystems [18] [19]. Alternatively, learning 
based prognostic techniques are data driven and employ black box type models, e.g. 
neural networks, Support Vector Machines, fuzzy models, statistical models, and 
other approximators to identify the trend of change in the features, and can 
consequently predict fault scenarios [12] [13].  

An open scalable Integrated Diagnostic/Prognostic System (IDPS) architecture for 
real time diagnostics and prognostics was proposed in [41]. Diagnostics is performed 
by a fuzzy inference engine and static wavelet neural network that is capable of 
recognizing the occurrence of a fault mode and identifying the fault. Prognostic 
functionality includes a virtual sensor to provide fault dimensions and a prediction 
module employing a dynamic wavelet neural network for fault trending and 
estimation of remaining useful life of bearings.  

As the complexity of vehicles increases, the need for intelligent diagnostics tools, 
such as the ones described above becomes more critical. 

5 Intelligent Vehicle Technologies 

Intelligent Vehicle Technology is a concept typically associated with the development 
of autonomous vehicle functionality. The key attributes of intelligent vehicles include 
the following: 

• the ability to sense the vehicle’s own status as well as its environment;  
• the ability to communicate with the environment;  
• the ability to plan and execute the most appropriate maneuvers [42]. 
 

Intelligent vehicle technologies are a rapidly growing field pursued by the 
automotive industry, academia and government agencies [42] [2]. The general 
interest in intelligent vehicle technologies is also fuelled by a number of competitions 
for unmanned ground vehicles (UGV) around the world: the annual Intelligent 
Ground Vehicle Competition (see http://www.igvc.org) sponsored by the 
International Association for Unmanned Vehicle Systems held since 1993; the 
Defense Advanced Research Projects Agency (DARPA) Grand challenge (see 
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http://www.grandchallenge.org/) started in 2004; and the European Grand-Robot Trail 
(see http://www.elrob.org/) held its first annual contest in May 2006. Today, the 
DARPA Grand challenge is probably the most publicized event with its grand prize of 
$2 million in 2005. In 2005, the teams had to complete a 132 mile race through the 
Nevada Mojave desert in less than 10 hours. Interestingly, a number of teams in the 
2005 DARPA Grand Challenge based their design on existing production vehicles. 
For instance, the winning team from Stanford in collaboration with Volkswagen used 
a specially modified “drive-by-wire” diesel “Toureg” R5. Furthermore, the team 
“Gray” that completed the race in fourth place used a standard 2005 Ford Escape 
Hybrid integrated with other off-the-shelf instrumentation and control technologies. 
Team “Gray” specifically mentioned in their technical paper [40] that the team 
approached the Grand Challenge from the standpoint of being integrators rather than 
developers of such technology. These examples clearly demonstrate how close 
existing automotive products are in regards to the implementation of intelligent 
vehicle functionality.  

Although the autonomous vehicle is not currently a goal of the automotive 
companies, the elements of this technology are quickly finding their way into 
passenger vehicles to provide driver assistance in critical moments. The applications 
of intelligent vehicle technologies to the automotive sector are often seen as the next 
generation of vehicle safety systems. Specifically, for applications within the 
automotive industry, Richard Bishop [2] defines “Intelligent Vehicle systems” as 
systems that sense the driving environment and provide information or vehicle control 
to assist the driver in optimum vehicle operation. 

Today different data about the driving environment can be obtained through any 
combination of sources such as on-board video cameras, radars, lidars (light detecting 
and ranging, the laser-based analog to radar), digital maps navigated by global 
positioning systems, communication from other vehicles or highway systems. The on-
board system analyzes this data in real-time and provides a warning to the driver or 
even takes over control of the vehicle. Examples of intelligent vehicle technologies 
existing today include lane departure warning, adaptive cruise control, parallel 
parking assistants, crash warning and automated crash avoidance.  

In general, intelligent vehicle systems do not necessarily employ the full scale of 
computational intelligence techniques. However, it is clear that intelligent systems when 
combined with the conventional systems and control techniques can play a significant role 
to facilitate or even enable the implementation of many of the intelligent vehicle 
functionalities. For instance, analysis of images from video cameras calls for the 
application of traditional AI techniques such as machine vision and pattern recognition. 
The fusion of the disjointed data from multiple sources benefits from the application of 
neural networks in a similar fashion to the virtual sensor development in engine control. 
The implementation of real-time response to the changes in driving conditions may take 
advantage of fuzzy logic. For example, Tascillo et al. [39] describes the prototype of a 
system that identifies and classifies objects in close proximity using a neural net approach 
to select the best course of action to avoid an accident. Nigro and Rombaut [25] proposes a 
rule-based system incorporating linguistic variables to recognize driving situations. 
Engstrom and Victor [8] developed real-time recognition of the driving context (e.g. city, 
highway, suburban driving) using neural networks. Miyahara et al. [23] presents a vision-
based target tracking system based on the range window algorithm and pattern matching. 
Schlenoff et al. [31] discusses the use of ontology to enhance the capabilities and 
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performance of autonomous vehicles, particularly in navigation planning. These are only 
few examples from the vast on-going research using computational intelligence techniques 
to address intelligent vehicle functionality.  

The integration of vehicle control systems and fusion of a different type of 
information provides another new dimension for building intelligent vehicle systems. 
For example, algorithms that combine engine and navigation (GPS) data create the 
opportunity for the development of predictive models and control strategies that 
optimize fuel efficiency and vehicle performance. In [29] [30] an intelligent control 
method using fuzzy logic is applied to improve traditional Hybrid Electric Vehicle 
(HEV) control. A rule-base with a fuzzy reasoning mechanism is used as a lower level 
controller to calculate the operating point of the internal combustion engine based on 
the current speed, engine efficiency and emission characteristics and driver required 
torque. A second fuzzy controller works as a predictor for the future state of the 
vehicle using information about the speed and elevation of the sampled route that is 
provided by the navigation system. The role of the second (supervisory) fuzzy 
controller is to anticipate changes in the vehicle state and to implement predefined 
heuristics based on the battery charge/discharge rate and on the estimated changes in 
the road and traffic conditions (e.g. downhill/uphill, city/highway ). Fuzzy logic is 
then used in conjunction with the conventional HEV control system to provide 
additional flexibility and information fusion that result in substantial fuel economy 
and emission reduction. 

6 Driver-Aware Technologies 

In the past decade there has been an increased interest in technologies that monitor 
and mitigate driver conditions, such as fatigue, impairment, stress or anger that 
adversely affects the driver’s vigilance and reduces their ability to safely operate the 
vehicle.  

There are two main approaches for real-time detection of driver conditions: by 
monitoring the deviations in driver’s performance in the vehicle operation and by 
monitoring the driver’s bio-physical parameters [16]. The first approach involves the 
analysis of steering wheel movements, acceleration, braking, gear changing, lane 
deviation and distance between vehicles. The second approach measures and analyses 
bio-physical parameters of the drivers such as features of the eyes (such as eye 
closure rating, called PERCLOS), face, head, heart, brain electrical activity, skin 
conductance and respiration, body posture, head nodding, voice pitch, etc. These 
measurements can be conducted by using video camera, optical sensors, 
voice/emotion recognition, and steering wheel sensors.  

There has been substantial research addressing the issues of driver drowsiness and 
fatigue. Many of the proposed systems rely on a number of soft computing methods, 
such as sensor fusion, neural networks, and fuzzy logic. For example, Ward and 
Brookhuis [44] describes project SAVE (System of effective Assessment of the driver 
state and Vehicle control in Emergency situations) and a subsequent project AWAKE 
(effective Assessment of driver vigilance and warning to traffic risK Estimation) 
undertaken in Europe in the late 1990s with the aim of real-time detection of driver 
impairment and the engagement of emergency handling maneuvers. In SAVE the data 
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from the vehicle sensors is first classified using neural networks and then the final 
diagnostics is performed using fuzzy logic. 

Ford has been extensively studying the efficacy of different methods to identify 
and provide remedies for drowsy drivers using VIRtual Test Track Experiment 

lane departure warning for drowsy drivers including steering wheel torque and 
vibration, rumble strip sound, and heads up display. 

The emerging area of affective computing [26] opened up a new opportunity to 
monitor and mitigate the adversary driver behaviors based on negative emotions such 
as stress and anger. In fact, Prof. Picard considers that the automotive industry will be 
the first to apply truly interactive affective computing to products for safety reasons 
[3]. “Sensors can decide the driver’s emotional condition. A stressed driver might 
need to be spoken to in a subdued voice or not interrupted at all.” 

However, the attention to affective technologies in the automotive industry 
encompasses more than just safety issues. The success of humanoid robots leaves no 
doubt of the importance of emotional intelligence for building machines and systems 
that can appeal to people. The description of the modern vehicle as a highly 
computerized machine that continuously interacts with the driver seems to be a 
reasonable candidate for the massive realization of the concept of emotional 
intelligence. It is reasonable to expect that a vehicle that is implanted with emotional 
intelligence ability can be appealing to the customer and may stimulate the creation of 
an emotional bond between the vehicle and the driver.  

Toyota’s POD (Personalization on Demand) concept vehicle [24] that was 
developed in collaboration with Sony is an intelligent vehicle control system that is 
able to estimate the driver’s emotion and also exhibits its own emotional behavior 
corresponding to the vehicle status. The POD vehicle is inspired by the idea of 
affective computing and represents the first vehicle spin-off of humanoid robot 
technology [11]. From a systems perspective it implements a cognitive model that is 
similar to the cognitive emotional engine of Sony’s Aibo companion robot [10] but 
with vehicle specific sensors and actuators. Its main components include three AI 

Cognitive Behavior Module, and Control Module. 
POD’s Perception Module detects variations in driving conditions; monitors the 

steering wheel, accelerator and brakes, the pulse, the face and the perspiration level of 
the driver. Soft sensors screen driver’s preferences, including driving style, music and 
other favorites. The result is a set of features that describe the current status of the 
driver and vehicle. A nonlinear mapping with predefined thresholds maps the feature 
set into 10 different emotional states. 

POD’s Cognitive Behavior Module estimates the new state based on the current 
and the previous state and pulls the set of behaviors (reactions) that correspond to this 
new state. This is the reaction of the POD vehicle to current emotional state of the 
vehicle and the driver. POD’s behaviors are event driven software agents that create 
actions based on the information from the sensors and the other behaviors. The agents 
exemplify different behaviors; some of those behaviors are blended in ten different 
emotions, including happiness, surprise, sadness, etc. The cognitive module functions 
as an evolving adaptive controller that continually monitors the vehicle systems and 
driver’s status and generates actions that maximize safety and comfort objective 
functions. POD’s cognition module learns from the driver’s habits and actions and 

(VIRTTEX). Kozak et al. [17] describes the analysis of different methods to provide 
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evolves the behavior agents accordingly. The result of this is that POD’s emotions 
continually evolve and reflect the current status of the vehicle and the driver. 

POD’s Control Module implements the actions associated with the selected 
behaviors by activating specific actuators. Actuators include color changing LED 
panels on the front, servomotors that change the positions of the headlamps, grille, 
and side mirrors that communicate the current emotional status of the vehicle. The 
POD actuators display warnings, chose the right music, control the A/C. The 
emotional state of the vehicle is expressed and communicated by controlling the 
shutters, antenna, vehicle height, windshield color, and ornament line.  

7 Conclusions 

In this chapter we have reviewed the major areas of intelligent system applications 
that are utilized in motor vehicles. The goal of this chapter was to focus on the 
technologies that are actually deployed inside the customer vehicle and interact with 
the driver. The modern passenger car or truck is an extremely sophisticated and 
complex piece of machinery that plays a critical role in the lives of many consumers. 
It is also much more than a mechanical transportation device and is often the center of 
passionate debate among consumers. There are few other industries that are as 
competitive as the automobile industry and this often results in very fast 
implementation of new technologies.  

We discussed many approaches to intelligent system design that impact the driver 
with the intention of improving the overall driving experience. It has been shown that 
not all new technologies are readily embraced by drivers and the auto manufacturers 
have learned that “talking cars” and other intrusive technologies are not always 
welcome. Therefore, the automobile manufacturers must balance the benefits of 
introducing new technologies with the possible consumer backlash if the technology 
application is rejected. All of the applications described in this chapter have been 
deployed or tested and they show the wide range of technologies that have been 
adapted into the cars and trucks that we drive. 

It is quite clear that the AI and intelligent systems have become a valuable asset 
that has many important uses in the automotive industry. The use of intelligent 
systems and technologies results in applications that provide many benefits to both 
the auto manufacturers and their customers. We believe that this trend will increase 
into the future as we move toward the age of intelligent vehicles and transportation 
systems. 
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