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Preface

Peter Fishburn has had a splendidly productive career that led to path-breaking con-
tributions in a remarkable variety of areas of research. His contributions have been
published in a vast literature, ranging through journals of social choice and welfare,
decision theory, operations research, economic theory, political science, mathemati-
cal psychology, and discrete mathematics. This work was done both on an individual
basis and with a very long list of coauthors.

The contributions that Fishburn made can roughly be divided into three major
topical areas, and contributions to each of these areas are identified by sections of
this monograph. Section 1 deals with topics that are included in the general areas of
utility, preference, individual choice, subjective probability, and measurement the-
ory. Section 2 covers social choice theory, voting models, and social welfare. Sec-
tion 3 deals with more purely mathematical topics that are related to combinatorics,
graph theory, and ordered sets. The common theme of Fishburn’s contributions to
all of these areas is his ability to bring rigorous mathematical analysis to bear on a
wide range of difficult problems.

Part 1 covers a variety of topics stemming from several of Fishburn’s books:
Decision and Value Theory [Fishburn (1964)], Utility Theory for Decision Making
[Fishburn (1970)], Mathematics of Decision Theory [Fishburn (1973a)], The Foun-
dations of Expected Utility Theory [Fishburn (1982)], and Nonlinear Preference and
Utility Theory [Fishburn (1988)]. Fishburn has made cutting-edge contributions to
the theory of utility, including work on nontransitive preference, stochastic utility,
and decision theory, broadly speaking. He has contributed greatly to the theory of
expected utility, including important work on axioms for expected utility, the study
of multiattribute expected utility, behavioral models of risk taking, and the study of
dominance relations, as well as fundamental contributions to the understanding of
subjective expected utility. He has also contributed to nonlinear utility theory, with
contributions dealing with risk and with uncertainty. Fishburn’s work on choice has
dealt with choice probability, choice functions, and nonprobabilistic preference and
utility. His work on measurement theory has concentrated on uniqueness of repre-
sentations, as well as on additive and on nondecomposable representations.
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The contributions in Part 1 reflect different facets of the aforementioned re-
search. They start with three papers that are related to the general topic of utility
theory. Luce, Marley and Ng (Entropy-Related Measures of the Utility of Gam-
bling) develop utility models to explain individual behavior in gambling situations
by adding an additional ‘entropy’ term to the individual’s utility function to ac-
count for an individual’s preference, or aversion, for gambling in specific situations.
Bell and Keeney (Altruistic Utility Functions for Joint Decisions) consider situa-
tions in which two or more individuals are involved in selecting some alternative
in a decision making situation. The specific situation that is considered describes
scenarios in which each of the decision makers has an underlying interest in se-
lecting an alternative that will please the other decision makers. Nakamura (SSB
Preferences: Nonseparable Utilities or Nonseparable Beliefs) extends aspects of
Fishburn’s Skew-symmetric Bilinear Utility model to the case of decision making
under uncertainty.

Four contributions are on the general topic of decision theory. The paper by Jia
and Dyer (Decision Making Based on Risk-Value Tradeoffs) starts this section with
a survey of risk-value decision models that have been developed in the last decade.
This paper merges two streams of research, the modeling of individual preference
and the modeling of risk judgment, in an effort to develop a more descriptively
powerful risk-value model. Bodurtha and Shen (Normally Distributed Admissible
Choices are Optimal) consider one particular aspect of risk-value models by exam-
ining mean-variance analysis to determine the characteristics of optimal solutions
for decisions involving both mutually exclusive investments and financial portfo-
lios of investments with normally distributed returns. Their analysis shows that
these optimal solutions meet the conditions that are described by Fishburn’s def-
initions of stochastic dominance of admissible choices. Bouyssou, Marchant and
Pirlot (A Conjoint Measurement Approach to the Discrete Suengo Integral) extend
Fishburn’s work on subjective expected utility in multiple criteria decision making
by showing conditions under which a noncompensatory multiple-criteria decision-
making model is equivalent to a model that is based on the discrete Suengo inte-
gral. Slinko (Additive Representability of Finite Measurement Structures) presents
a survey of recent developments that are related to Fishburn’s work on the addi-
tive representation of finite measurement structures, work relating closely to the
classical measurement-theoretic topic of additive conjoint measurement. The paper
highlights the remaining open problems that Fishburn formulated in this area.

Part 2 mirrors Fishburn’s interest in voting and social-choice theory that he devel-
oped in two major books: The Theory of Social Choice [Fishburn (1973b)] and Ap-
proval Voting [Brams and Fishburn (1983)]. He has made pioneering contributions
to the understanding of social choice functions, which includes work on anonymity
conditions, paradoxes of preferential voting, and Borda’s rule and Condorcet’s prin-
ciple. His research on scoring-rule sensitivity and scoring vectors is also significant.
Fishburn has been a leader in developing and analyzing new voting rules, with his
analysis of approval voting being an important case in point. His contributions to
the comparison of voting methods are also noteworthy, including work on two-
stage voting systems, single transferable vote, and positional voting rules. He has
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also undertaken important studies of majority choice, including finding conditions
on preferences that guarantee a simple majority winner and a location theorem for
single-peaked preferences. He has also studied Condorcet proportions and probabil-
ities, social-choice lotteries, and impossibility theorems. Finally, his work includes
beautiful results on social welfare and equity, including equity axioms for public
risks and fair-cost allocation schemes.

Four contributions in this part are connected to Fishburn’s work on identifying
conditions that require the existence of a Condorcet winner in an election and the as-
sociated probabilities of observing events in election outcomes. Monjardet (Acyclic
Domains of Linear Orders) presents a survey of work that has focused on the iden-
tification of domains of voters’ preferences that require an ‘acyclic set’ or transi-
tive majority rule relationship; he develops intriguing connections between some
of these domains. Saari (Condorcet Domains: A Geometric Perspective) addresses
the same topic, taking a geometric approach that offers intuitive insight to the prob-
lem. Gehrlein (Condorcet’s Paradox with Three Candidates) analyzes the probabil-
ity that a Condorcet winner will exist and shows that this probability is quite large
for a small number of candidates when voters have preferences that are at all close
to being mutually coherent (according to any of several possible measures of mu-
tual coherence in group preferences). Feix, Lepelley, Merlin, and Rouet (On the
Probability to Act in the European Union) extend some of Fishburn’s work on prob-
abilities of election outcomes to analyze the probability that the voting rules used
by the European Union will produce deadlock.

Two contributions consider properties of voting rules. Brams and Sanver (Voting
Systems that Combine Approval and Preference) provide an extensive analysis of
two hybrid voting systems that combine approval voting with voting procedures
that require either a complete ranking of candidates or a partial ranking of only the
candidates in the approved subset. Zwicker (Anonymous Voting with Abstention:
Weighted Voting) considers an extension of the standard case of yes-no legislative
voting in which abstention is viewed as being a voter preference position somewhere
between a yes and a no vote. Characterizations are provided in which a specified set
of weighted scores are linked to voter responses of yes, abstain or no.

Two contributions address the general topic of social choice. Campbell and Kelly
(Social Welfare Functions that Satisfy Pareto, Anonymity and Neutrality, but not
ITA: Countably Many Alternatives) extend earlier work that showed that in the pres-
ence of the conditions of Pareto, non-dictatorship, full domain, and transitivity, an
extremely weak independence condition is incompatible with anonymity and neu-
trality for a finite number of alternatives; here they consider the case of countably
many alternatives.

Hopkins and Jones (Bruhat Orders and the Sequential Selection of Indivisible
Items) extend some of Fishburn’s work on fair division by considering the case in
which two players sequentially make selections from a set of indivisible items. Nec-
essary and sufficient conditions are found under which players receive their most
preferred and least preferred outcomes.

Part 3 explores fundamental mathematical constructs that arise in the more ap-
plied work, described in Parts 1 and 2, through the study of binary relations, partial
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orders, graphs and networks, combinatorics, number theory, linear programming,
inequalities, and coding theory. Fishburn’s partial order work includes foundational
introductions to the theory of partial-order dimension, linear extensions of partial
orders, the FKG property, and so on, as well as research on geometric partial orders
such as angle orders and circle orders. Interval orders and semiorders are impor-
tant special classes of partial orders that arise in problems in economics, psychol-
ogy, biology, scheduling, and so on. Fishburn has made both theoretical and applied
contributions to the understanding of such orders, highlighted in his book, Interval
Graphs and Interval Orders [Fishburn (1985)].

Graph theory topics are the subject of a wide variety of Fishburn’s papers. His
research in that area includes important contributions to such topics as niche overlap
graphs (arising in ecology), tolerance graphs (arising in psychology and operations
research), and L(2,1)-colorings (arising in communications) as well as the design
of various kinds of communication and other networks. Combinatorial geometry
involves the study of various configurations, and Fishburn’s work here has included
the study of convex n-gons, planar sets, partial set covering, and a wide variety of
related topics.

In addition, coding problems often can be analyzed using combinatorial and re-
lated algebraic methods. Fishburn’s contributions to a variety of coding problems
have included important results on sequence-based methods for data transmission
and source compression, binary convolutional codes, and related lattice concepts.

Much of Fishburn’s work involves counting, enumeration, and asymptotic behav-
ior of structures, including posets and graphs, but also sequences arising in number
theory, solutions to inequalities, and types of geometries. This work falls at the inter-
face among combinatorics, probability, number theory, and a number of other sub-
disciplines and often intersects ideas of convexity, linear programming, and so on.

Seven contributions tie into Fishburn’s work on posets, graphs, and networks.
There are two different representations for interval orders and semiorders. The basic
definitions of interval orders and semiorders both relate a poset to a set of intervals
on the number line. A second representation describes interval orders as the subset
of posets that do not include a 2+ 2 configuration; it describes semiorders as the sub-
set of interval orders that do not include a 3 4 1 configuration. Shuchat, Shull and
Trenk (Fractional Weak Discrepancy of Posets and Certain Forbidden Configura-
tions) find the range of possible values of fractional weak discrepancy for the subset
of posets that contain a 3+ 1 but no 2 + 2. Isaak (Interval Order Representation via
Shortest Paths) develops an alternative proof of the second representation for inter-
val orders and semiorders by showing that they are special instances of existence
results that are related to the measure of potentials in digraphs. Brown and Langley
(Probe Interval Orders) investigate probe interval graphs that arise in molecular bi-
ology and are obtained with a variation of the model by which interval orders are
determined by intervals on the number line; they also consider restrictions that must
be placed on these intervals such that the resulting probe interval graph is a probe
interval order. Falmagne and Ovchinnikov (Mediatic Graphs) discuss the concept of
mediatic graphs that trace their study to “stochastic token theory” in mathematical
psychology. They show that the sets of all interval orders and semiorders on a finite
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set each can be represented as mediatic graphs. Poljak and Roberts (An Application
of Stahl’s Conjecture About the k-tuple Chromatic Numbers of Knesser Graphs)
analyze the chromatic number in graph coloring problems and apply known results
about Stahl’s Conjecture to answer two open questions about the relation between
the n-tuple chromatic number of a graph and n times the size of the largest clique
in the graph. Hwang and Dou (Optimal Reservation-Scheme Routing for Two-Rate
Wide-sense Nonblocking Three-Stage Clos Networks) study interconnection net-
works that are widely used in data communications and parallel computing. In par-
ticular, they are interested in using these networks for different media to communi-
cate. By using reservation-scheme routing, they show that such networks can require
much less hardware. Sahi (The Harris Inequality for Partially Ordered Algebras)
deals with inequalities concerning increasing functions on a distributive lattice. Par-
tially ordered algebras are associative algebras over the reals with a nonempty subset
closed under addition, multiplication and multiplication by positive real numbers. In
special cases, the results relate to the Harris inequality that arises in percolation on
random graphs and to the more general FKG inequality, both topics on which Fish-
burn has made important contributions.

Three papers tie in to a variety of issues at the intersection among combinatorics,
probability, number theory, and linear programming. Lagarias, Rains and Vanderbei
(The Kruskal Count) analyze a well-known (at least among mathematicians) card
trick that relies on the high likelihood that two processes with different starts (one
chosen by the subject, one by the magician) will converge before the deck runs out,
enabling the latter to appear clairvoyant. The trick is modeled by a Markov chain;
two different value distributions (geometric and uniform) are studied, the second
for the first time; and then the results are compared to MC simulations of a real
deck. Applegate, LeBrun, and Sloane (Descending Dungeons and Iterated Base-
Changing) study the special sequences where each term arises from interpreting the
previous term in a different base. These iterated base changes (dungeons) are dis-
tinguished from iterated exponentiation (or towers). They prove a theorem about
the asymptotic value of the nth term in such a sequence. Shepp (Updating Hardy,
Littlwood and Polya with Linear Programming) discusses ideas dating back to the
famous 1934 book, Inequalities, by the authors named in his title. He studies in-
equalities that can be proven using linear programming or convexity arguments.

No tribute to Peter Fishburn would be complete without saying something about
him as a person. The three of us have collaborated with him over many years on a
variety of topics. Peter is not only conscientious and responsible to a fault, but he
is also a delight to work with, always doing more than his fair share quickly and
efficiently. We marvel at his ability to come up with new ideas, develop extensions
of old ones, and demonstrate linkages—all cheerfully, with no fuss and bother. We
have great admiration for this brilliant scholar, and we take enormous pleasure in
having had the opportunity to work with him on so many exciting projects and to
interact with him as a colleague and a friend.

Piscataway, NJ Steven J. Brams
November 2008 William V. Gehrlein
Fred S. Roberts
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Part 1

Utility, Preference, Individual Choice,
Subjective Probability, and Measurement



Utility Theory



Entropy-Related Measures of the Utility
of Gambling

R. Duncan Luce, Anthony J. Marley, and Che Tat Ng

1 Background of Work Reported

1.1 Roles of Peter Fishburn on this topic

The first author has known Peter for a very long time, dating back some 45 years to
when we met at a colloquium he gave at the University of Pennsylvania. After that
our paths crossed fairly often. For example, in the early 1970s, he spent a year at
the Institute for Advanced Study where Luce spent three years until the attempt to
establish a program in scientific social science was abandoned for a more literary
approach favored by the humanists and, surprisingly, the mathematicians then at the
Institute. The second author has learnt a tremendous amount about both substantive
and technical issues from Peter’s work, beginning with Peter’s book “Utility The-
ory for Decision Making” (Fishburn, 1970), which he reviewed for Contemporary
Psychology (see Marley, 1972).

Peter’s volume on interval orders (Fishburn, 1985) was a marvelous development
of various ideas related to the algebra of imperfect discrimination that elaborated the
first author’s initial work on semiorders (Luce, 1956).

Beginning in 1988, Peter made a major contribution in his integrative book “Non-
linear Preference and Utility Theory.” And in the first half of the 1990s, Fishburn
and Luce collaborated on three efforts to understand better the rank-dependent gen-
eralizations of expected utility that had attracted considerable notice in the 1980s
(Fishburn & Luce, 1995; Luce & Fishburn, 1991, 1995). It was here that we first
came up with the so-called p-additive form for the utility of joint receipts. All of
that played a major role in Luce’s (2000) attempt to pull together many of the re-
sults about utility, both experimental and theoretical, of the period starting in 1979.

R.D. Luce (=)

Institute for Mathematical Behavioral Sciences, University of California, Irvine, CA, USA,
92697-5100

e-mail: rdluce @uci.edu

S.J. Brams et al. (eds.), The Mathematics of Preference, Choice and Order: Essays in Honor 5
of Peter C. Fishburn, Studies in Choice and Welfare,
(© Springer-Verlag Berlin Heidelberg 2009



6 R.D. Luce et al.

And joint receipts play a key role in our attempt to incorporate a concept of the
utility of gambling into the situation, which is described in this paper.

To our knowledge, Peter directly addressed the issue of the utility of gambling
just once (Fishburn, 1980), where he presented the first, but very restricted, formal
model of it (Sect. 1.2).

So, in sum, we have learned much from Peter and are still tilling grounds that
he was, in very many ways, influential in developing in modern utility theory. This
chapter pays tribute to Peter not by commenting directly on his contributions, but
by summarizing some generalizations found in several articles cited below.

1.2 Utility of Gambling

The founders of “modern” utility theory, Ramsey (1931), von Neumann and
Morgenstern (1947), and, less explicitly, Savage (1954, pp. 13—17) all noted that
their theories could not accommodate the existence of utility of gambling (UofG)
per se. For example Ramsey (1931, p. 172) contended that the method of establish-
ing beliefs in terms of bets is “...inexact. .. partly because the person may have a
special eagerness or reluctance to bet, because he either enjoys or dislikes excite-
ment. .. The difficulty is like that of separating two different cooperating forces.”
This 1931 essay was actually dated 1926. Over two decades later von Neumann and
Morgenstern (1947, p. 28) remarked: “Since [our axioms] secure that the necessary
construction can be carried out, concepts like a ‘specific utility of gambling” cannot
be formulated free of contradiction on this level.” Adjoined is the footnote: “This
may seem to be a paradoxical assertion. But anybody who has seriously tried to
axiomatize that elusive concept, will probably concur with it.”

Furthermore, the sharp partition in these theories of valueless events and valued
consequences is often not the case in reality. Insurance on an airplane trip represents
such a separation, but not all of the events that might occur are valueless in their own
right — for instance, a crash of your flight.

Most theoretical work has ruled out UofG by incorporating in some fashion a ver-
sion of idempotence, namely, that attaching the same consequence x to each chance
event arising from a chance “experiment” is perceived as indifferent to receiving x
with certainty. Savage (1954) called such gambles “constant acts.” That indifference
means that no utility or disutility accrues either to the events themselves or to the
execution of the experiment, as such.

Ignoring both the value of events and the utility associated with uncertainty
and/or risk is a major idealization that has only rarely been questioned or addressed.
Some formal models of UofG appearing in the utility literature focused on the
risky cases', and typically involved modifications of the expected utility represen-
tation. Conlisk (1993) summarizes them from an economic perspective and Luce
and Marley (2000) from a more psychological one, but with important economic

! Those for which each of the possible consequences of the gamble occurs with a specified proba-
bility.
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influences. Fishburn (1980) gave the first formal model in which he appended a
UofG term to the expected utility of a risky gamble in such a way that this term
affects the choice between a pure consequence (sure-thing) and a risky gamble, but
does not influence the choice between two risky gambles. He also axiomatized sev-
eral possible forms for the UofG term, including the case where it is constant for
all gambles. Diecidue, Schmidt and Wakker (2004) generalized Fishburn’s formu-
lation, but, in the main, they continued to assume that preferences between risky
gambles agree with expected utility. Bleichrodt and Schmidt (2002) present a re-
lated model, with preferences between risky gambles again agreeing with expected
utility but with different utility functions depending upon whether or not one of the
alternatives is a pure consequence. Luce and Marley (2000) considered uncertain?
gambles, with a UofG term that depends on the events, but not the consequences. In
that model the UofG term can affect the choice between two gambles when they are
based on different events. They also motivate, but do not axiomatize, several pos-
sible forms for the UofG term for binary gambles. Le Menestrel (2001) and Pope
(1995 and earlier papers) offer process models for the utility of gambling. So far as
we know, no one before our work has dealt explicitly with valued uncertain events,
often because the underlying structure has been one of risk.

Meginniss (1976) seems to have been the first author to arrive at, in the context
of risk, a sensible theory incorporating UofG. Until quite recently, his result ap-
pears to have been unknown, ignored, and/or forgotten by utility theorists®, and its
ability to account for many anomalies has not been widely recognized. His result is
that the overall utility of a risky gamble is given by a linear weighted utility term
plus an (information-theoretic) entropy (Shannon, 1948) term dependent only on the
probabilities. His clever proof of the result rested on quite special, unaxiomatized,
representational assumptions. Unaware of Meginniss’ article, Yang and Qiu (2005)
proposed a closely related nonaxiomatized representation involving Shannon’s en-
tropy, explored some of its properties, and applied it to some of the well known
anomalies. We summarize similar explanations of several such anomalies in Sect. 5.

Ng, Luce, and Marley (2008a) generalized Meginniss’ approach in several ways,
fundamentally following his general ideas, whereas Luce, Ng, Marley and Aczél
(2008 a,b) and Ng, Luce, and Marley (2008b) take an axiomatic approach. Specifi-
cally, Luce et al. (2008a), summarized in Sect. 2, treat uncertain gambles and Luce
et al. (2008 b), summarized in Sect. 3, extend those results to risky gambles. Ng et al.
(2008b), summarized in Sect. 4, further extend the results to obtain representations
of the UofG term that involve a weighted value function over events, plus an entropy
term involving the same weights. The resulting representations include the “ratio-
nal” expected utility (EU) and subjective expected utility (SEU) representations as
very special cases, with no UofG term.

Section 5 applies a special case of these representations to several sets of data.
And Sect. 6 summarizes the results reported in this paper and states four major open
problems.

2 Those where the events have no readily agreed upon probabilities.
3 It was brought to our attention in 2004 by our collaborator Jdnos Aczél.
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1.3 Formulation of Gambles and Utility Representations

We begin with the general concept of uncertain gambles, then extend the results
to risky gambles and gambles involving valued events. Because we anticipate that
most of our readers are already familiar with standard notations in this domain and
need no more than reminders, we are not fully formal — that can be found in Luce
et al. (2008 a,b).

The set of pure consequences — no risk or uncertainty — is denoted X . Included in
X is a singular element e, called no change from the status quo, whose special prop-
erties are given below. The set of pure consequences is assumed to be closed under
the binary* commutative and associative operation of joint receipt, . We postulate
a (preference) ordering, -, over (X,®) that is assumed to be a weak order that is
strictly increasing in each argument of . As usual, strict preference is denoted by
> and indifference by ~. The latter is an equivalence relation. We assume that e is
an identity of &: forall x € X, x@ e ~ e B x ~ x. Moreover, X is assumed to satisfy
the structural restriction of solvability, namely, for each x,y, there exists z such that
x~ydz. Wedefinexoy:=z.

Assume that the axioms of the theory of extensive measurement are satisfied
(Krantz et al., 1971, Chap. 3) leading to a mapping U : X — R such that:

xZyeU) >U(y), (1)
Uxdy)=U(x)+U(y). (2)

It follows immediately that U(e) = 0 and that U (x©y) = U (x) — U(y).

Let Q denote a state space of the chance outcomes from some chance “experi-
ment.” Let (Cy,...,C;,...,C,) denote a typical nontrivial, finite partition of Q, i.e.,
CGNCj=aifi# j, C # @, UL C; = Q. Unlike Savage (1954) and many subse-
quent treatments, we do not assume a single universal state space; rather we produce
a more versatile model in which Q is a variable, as is typical of both concrete exam-
ples of gambles, e.g., alternate modes of travel from A to B, and equally well of the
experimental realizations of gambles in various experiments, e.g., spin of a wheel,
withdrawal of a colored ball from a randomized urn, etc. One can, and airlines do it
all the time, subtract and/or add alternatives to an existing set of flight alternatives.
The versatility is essential to our approach using gamble decompositions.

An uncertain alternative, often called a gamble but with a far broader scope than
ordinary usage, is defined inductively: A first-order one is a mapping g[, from such
a finite partition into X, a second-order one is a mapping to the union of X and
first-order ones, which are not of first order, etc. We use only these two levels. The
structure (X, @, ) can be extended to include all gambles and their joint receipts,
G, and we assume that the extended preference order continues to be a weak order,
still called = . And the additive representation over & also extends in the obvious
way. With no loss of generality, we choose the indices so that the consequences
of the gamble are ordered, i.e., x| 7~ X2 7 ... 7 x,, and we assume that gambles
are comonotonic in the sense of ordinary monotonicity so long as the ordering of

4 Inductively, one constructs an algebraic version of commodity bundles of any size.



Entropy-Related Measures of the Utility of Gambling 9

consequence is unchanged (Wakker, 1990). We may write a gamble explicitly in
either of two equivalent ways:

_(C1,Coy .., Gy Gy
8ln = (xl, X2,y ey Xiy oeny X @)
= (x1,C13%2,Co;.. %3, Cis .. 3 X0, Gy). 4)

We use which ever notation seems more useful at the occasion. Each consequence-
event pair (x;,C;) is called a branch of the gamble. Thus, a gamble is a collection of
n disjoint branches.

Although gambles are stated in ranked form, we note that such rankings are only
a matter of convenience in stating both some axioms (e.g., comonotonicity) and
some results (e.g., rank dependent representations). In fact, we assume that gambles
differing only in a permutation of the branches are perceived as indifferent.

1.4 Assumptions about Kernel Equivalents and Elements
of Chance

Following Luce and Marley (2000), any gamble for which every consequence is no
change from the status quo, e, i.e., gambles of the form (e,C;e,Ca;...;e,Cp), is
called an element of chance. This is simply the realization of a chance “experiment”
with no assignment of consequences to the several events, meaning that the status
quo is maintained, which we denote by e. A trivial example is watching a spin of
a roulette wheel. For any gamble g|, = (g1,C1;82,C2;. .. 8n,Cy), where the g; are
first-order gambles, its kernel equivalent, denoted KE (g[n] ), is defined to be the pure
consequence solution, which is assumed to exist, to the following indifference

gn ~ KE(gn) © (6,C156,Ca;..5¢,Cy). 5)

Note that, because KE (g[n]) is a pure consequence, the right hand expression in-
volves only one realization of the experiment.
We see that (2) and (5) yield

U(g[n]) - U(KE(g[n])) +U(€,C1;€,C2;...;€,Cn). (6)

The utility of an element of chance is a possible measure of the UofG. Our goal
is to discover something about its mathematical form. The first step in doing so
is to weaken the classical assumptions about idempotence: The kernel equivalents
are idempotent (KE-idempotent) if for any gamble, denoted g, (x), all of whose
consequences are X,

KE(g)(x)) ~ x. )

The elements of chance are e—idempotent if

e~ (e,Cr;e,Ca;...56,Cy). (8)
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Traditional theories of utility typically assume idempotence or prove it from other
assumptions. We explicitly do not assume e—idempotence and it is not a conse-
quence of our other assumptions.

Suppose that C;, i = 1,...,n, form a partition of a universal event Q and that C!
is the same partition but arising from an independent realization of the underlying
experiment. We assume that

(e,Cr;e,Cy;...;e,Cp) ~ (e,Cl3e,Chs. . ;e,Ch). 9)

This is obviously true if e—idempotence holds, but (9) does not imply
e—idempotence.

Although Luce and Marley (2000) derived a number of properties about such
a decomposition into KEs and elements of chance, they had no principled way of
getting results about the utility of elements of chance, partly because they considered
only binary gambles. We offer one remedy for that incompleteness.

1.5 Probabilities and Implicit Events

It is quite common to treat risky gambles in a fashion parallel to that for uncertain
ones, but instead of providing the event structure, one simply replaces the state C;
by the probability p; as, for example,

n
8n) = (X1, P15+ 3 X0, Dis -+ 3 Xy Pn) (ZP:‘ = 1)
=1

This is the form commonly invoked in most experiments and in most of the develop-
ments emanating from economics. Nevertheless, to provide a sound basis for such
probabilities, there must be some implicit event structure — the risky gambles have
to be realized in some fashion.

So we first summarize properties and results for event structures, and then spe-
cialize them to risky situations.

2 Key Properties

2.1 Separable Representations of Binary Gambles

For binary gambles, conjoint measurement assumptions are easily stated that lead
to the following (multiplicative) separable, ordering preserving, (1), representation
U* over so-called unitary binary gambles in which one consequence is e:

U*(KE(x,C;e,D)) = U*(x)Wcup(C), (10)
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where Wep(C) is a subjective weighting of the event C, conditional on the event
CUD. Because U of (1) and U* each preserve the order -, they are strictly monoton-
ically related. Can one find a property linking the two underlying structures leading,
respectively, to order preservation by U and additivity, (2), and to order preser-
vation by U* and separability, (10)? To that end we assume simple joint-receipt
decomposability:

(f©g,C;e,D)@® (e,C'se,D') ~ (f,Cse,D) @ (g,Cse,D'), Y

where the prime simply indicates an independent realization of the “experiment”
underlying the partition (C,D). Then, the result is that there exists k¥ > 0 such that
U = (U*)" and so we have the (multiplicative) separable form

U(KE(x,Cse,D)) = U(x)Scup(C) (12)

where Scup 1= WC"U p- The weights Sq for an event Q are also involved in the rep-
resentation of UofGs, explicitly for uncertain gambles, implicitly for risky gambles.

Next come two steps: the first extending (12) to unrestricted binary gambles, and
the second extending the representation of binary gambles to general ones.

2.2 Two Alternative Binary Decompositions: Segregation
and Duplex Decomposition

Luce (1997, 2000) has studied two closely related, but distinct, forms for extending
unitary gambles (x,C;e, D) to full binary gambles. The first is segregation:

(x®y,C;y,D) ~ (x,Cse,D') ®y. (13)

Kahneman and Tversky (1979) invoked segregation during the preliminary editing
phase of their prospect theory. Segregation with the earlier assumptions, where (10)
holds for gains only, leads to: For f 7~ g

UIKE(f,C:8,D)] = U(f)Scun(C) + U(g) [1 = Scup(C)]. (14)

The alternative decomposition, duplex decomposition, which first appeared in
Slovic (1967) and in Slovic and Lichtenstein (1968), is:

(x,C;y,D) @ (e,C';e,D) ~ (x,C;e,D) & (e,C';y,D"). (15)

This with the earlier assumptions, where (10) is for both gains and losses, and results
leads to:

UIKE(f,C;8,D)| = U(f)Scup(C) +U(g)Scup(D). (16)
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Note that segregation is significantly more restrictive than duplex decomposition
in that it associates 1 — Scup(C) to the (g, D) branch whereas duplex decomposition
associates Scyp (D) with no tie to Scup(C).

One empirical study, Cho, Luce and Truong (2002), suggests that some people,
perhaps 75% of them, satisfy one of these properties although that study was con-
ducted under the assumption of that (e,C’;e, D) ~ e, which, of course, matters only
for duplex decomposition.

2.3 Inductive Properties: Branching and Upper Gamble
Decomposition

We invoke two inductive properties, neither of which has received experimental
evaluation. They are both cases of the reduction of compound gambles in the con-
text of events, not probabilities. Their mathematical role is to reduce the utility
expressions for gambles of order n > 2 to the those for binary gambles, which
were given in Sects. 2.1 and 2.2. In particular, they lead to equations characterizing
the utility of gambling, UofG, terms. The first, called upper gamble decomposition

(UGD), is:
_(C, Gy, GG
g["] a X1y X2y ovey Xiy ovey X

C1, Q\C
~ (Cz,...,c,» C) . (17)
X1,
X2y vooy Xiy ooy Xp

One sees that if one is willing to consider compound gambles, it is highly rational
in nature, the “bottom lines” being the same.
The second property, branching, is

C,C,...,Ci ..., Cy
X1y, X2y ooy Xiy ooy X
G UG, G,...,GC,...,.C,
~ (cl,cz) . (18)
s X3y ey Xiy ooy Xy

X1, X2

This, too, is highly rational.

Note that each property involves a binary gamble, the first with the partition
(C1,Q\C1) and the second with (Cj,C,). Thus, we are able to invoke either (14)
or (16).
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Under these two properties for n = 3, one is able to prove (Luce et al., in press,
a) the choice property5: forevents CC D CE,

Se(C) = Sp(C)Se(D). (19)

One can construct a function ¢ from events to the real numbers such that for all
CCE,E+# 2,
Se(C) = u(C)/u(E). (20)

2.4 Main General Result

Under these assumptions one is able to arrive at a number of representations de-
pending on which decomposition is assumed and on whether or not S is finitely
additive (FA).

A first, important, result is that, under segregation, the representation has to be
p-additive in the sense that for an appropriate choice for the unit of pt, there exists a
constant A such that

Sa(CUD) = Sq(C) +Sa(D) +Au(R)Sa(C)Sa(D). 21

The weights are finitely additive iff A = 0.

Then the resulting representations are summarized in Table 1, which is to be read
as follows: It is the cell wise sum of two 2 x 2 matrices corresponding, respectively,
to the utility of kernel equivalents and to the utility of gambling terms. The matrix
rows are whether or not Sg is finitely additive. The columns are by whether segre-
gation or duplex decomposition is assumed. The cell entries are the representations
listed below the table itself.

Table 1 Summary of representations for uncertain gambles*

Codes: DD = Duplex Decomposition, FA = Finitely Additive,
KE = Kernel Equivalent, Seg = Segregation, UofG = Utility of

Gambling
U(KE) UofG
Seg DD Seg DD
(13) (15)
FA SEU SEU H H
Sa +
Not FA RDU LwWU 0,A H

*Adapted from Table 1 of Luce, Ng, Marley, and Aczél (2008a),
with kind permission of Springer Science+Business Media.

5 With finitely additive weights, which we do not yet have, Luce (1959) called it the choice axiom.
Here we use a more neutral term.
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where

LWU (gp)) := iU(xi)SQ(Ci).

SEU(gpy)) == IWU (g},)) with ) Sa(C;) = 1.
i=1

n

RDU (g})) := ;U(xi) [Sa(C(i)) = Sa(C(i—1))]

U (x)Sa(C:) (1 + At(Q)Sa(Cli— 1)) (cu) -U c;) ,

-

i=1

and when Q is maximal H = A, a constant; otherwise it is 0.
n
H(Cy,....Cp) :=U(e,Cri..56,Cp) =K(Q) — Y K(C))Sa(Ci).

i=1

These results are based on theorems reported in Davidson and Ng (1981), Ebanks
(1982), and Ebanks, Kannappan and Ng (1988). The representation SEU + H is
known as generalized subjective expected utility (G-SEU) with H the utility of gam-
bling. The function K that arises in the form of H, the last form listed, is not other-
wise specified. The nonfinitely additive representation under segregation has RDU
as its kernel equivalent and H is a constant A assigned to Q that is 0 when Q is
not maximal. As we will see, the results under risk, given in Table 2, are far more
specific.

3 Risky Elements of Chance and An Application

3.1 Risk and Implicit Events

Next, we discuss the more specific forms for the UofG that we have derived in the
case of risky gambles (Luce et al., 2008 b), and later (Sect. 5) summarize the evalu-
ation of one of those forms vis-a-vis available data. As already mentioned, the case
of risk entails an explicit set of probabilities, p;, and a risky gamble is a function
assigning a consequence x; to p;,i = 1,...,n. These cases are important because,
first, they are the class of gambles most often postulated by economists, and sec-
ond, more often than not, these cases are studied in laboratory experiments by both
economists and psychologists. Usually in experiments, the events are implicit with
no clear indication as to exactly how the probabilities are to be generated except to
the extent that participants in the experiment are “educated” about how the prob-
abilities might be realized through mechanisms such as spins of a color-coded pie
chart or random draws from an urn of colored balls. In this sense, we might suggest
that there is an “implicit” event space underlying the probability distributions. In
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fact, we now assume that, even when the probabilities are presented explicitly, the
participant postulates an underlying implicit event space. Then, we add assumptions
concerning the linkage between uncertain gambles over the event space and risky
gambles over the probability space that allow us to use our previous results about
the representation of uncertain gambles to obtain representations of risky gambles
with specific entropy-based representations of the elements of chance.

3.2 Probabilities Realized by Implicit Events

Let p, = (p1,p2,...,pn) be any nontrivial, complete probability distribution, i.e.,
pi>0and Y | p; = 1. We assume, as is standard in the foundations of probability
theory, that in a particular decision making context of gambles with explicitly given
probabilities, the decision maker postulates a fixed, implicit, underlying algebra of
events that is associated with a maximal universal event ¢ and a probability mea-
sure Pr on that algebra such that there is an ordered partition C, := (C,Cs,...,Cy)
of Qq, with C; # @, in the algebra, and with® Pr(C;| Q) = p;, i = 1,...,n. This
implicit algebra is assumed to be fixed for the decision making context, e.g., a state
lottery, independent of any particular lotteries that the decision maker may confront.
Of course, there may be another partition D, = (Dy,...,D,) of Q, with D; in the al-
gebra, such that Pr(D;| Qo) = p; = Pr(Gj|Qo), i = 1,...,n. Our assumptions, below,
overcome this ambiguity.

The risky gamble is presented as gj,) = (x1, P15 . -3%u, Pn). Let Z denote the pref-
erence ordering over pure consequences and risky gambles, and assume that a pref-
erence ordering =g exists over the event-based gambles G. We assume that g
agrees with 7~ over the structure of pure consequences, risky gambles, and their
joint receipt, so for simplicity we drop the subscript G.

We make two observations about the assumption of the existence of an implicit
algebra of events:

First, it is just that, an assumption. It is certainly conceivable that a deci-
sion maker may somehow deal with the probabilities without resorting at all to
an underlying algebra of events, as for example in a binary gamble given as
(x, p;y,1 — p) where it is taken for granted that when carried out the decision maker
gets exactly one of x and y.

Second, the assumption of an implicit algebra permits us to invoke the earlier
assumptions about events and the corresponding results. As we shall see, this means
that there are several quite different types of decision makers, which has important
implications for the usual kind of data analysis that averages data over respondents
instead of analyzing each respondent separately.

Now we need the preference ordering over event-based gambles to be compatible
with the preference ordering over the conditional-probability-based risky gambles
in the following sense where we write C(n) = U}!_,C;, D(m) = U | D;:

6 Usually Pr( C;| Qo) is abbreviated to Pr(C;), but we think it best in this article to keep it explicit.
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()C],C];. . -;xnvcn) i (ylaDl S ~;ymaDm)
< (x1,Pr(C|C(n));. . .;x0, Pr(Cy|C(n)))
= (y1,Pr(Dy|D(m)); .. .;m, Pr(Dyy|D(m))) . (22)

Under the background conditions (but not including segregation or duplex decom-
position) and with (22) and p — U(e, p;e, 1 — p) continuous, Luce et al. (2008 b)
show that there is a constant p > 0 such that

Sa(C) = Pr(C|Q)P, 23)

where Sg is the subjective weighting function in the representation of the uncertain
gambles.

Under the above conditions and those leading to the results summarized in
Table 1 for uncertain gambles, we obtain the representations for risky gambles that
are summarized in Table 2, which is read in a fashion similar to Table 1.
where

U(Xi)l?iv

-

EU(g[n]) =

i=1

and
Y pilogypi,  p=1
1(p)(p1,...7pn) = .
s pl —1,0<p #1

The UofG term when p = 1 is a constant A times the well-known Shannon (1948)
entropy. The sign of A determines whether UofG is positive or negative and the mag-
nitude of A determines the importance of UofG relative to the expected utility term.
The proof of these results rest upon the mathematical theory of information (en-
tropy) discussed by Aczél and Daréczy (1975). The sum in Table 2 corresponding
to p =1, EU +AIV | we call entropy-modified expected utility (EM-EU), and the
sum corresponding to p # 1 under duplex decomposition, Y, U (x;) p? +AI®P), we
call linear power weighted utility (LPWU), which, clearly, coincides with EM-EU
when p = 1. As indicated in the table, the case where segregation holds and p # 1
cannot occur under our assumptions.

These results raise an interesting concern about the almost exclusive focus of
many utility theorists on probabilities without any regard to the underlying event
structure. Apparently, that focus can lead to overlooking cases with p # 1.

It is striking that we have not arrived at a risky version of RDU, such as cumula-
tive prospect theory, plus a UofG term. This lack invites modifying the assumptions
in some crucial way, in particular by replacing branching by some property, such as
coalescing, satisfied by the kernel equivalent of such a form.

Although purely rational considerations favor segregation and so EM-EU over
duplex decomposition, descriptively those considerations are not compelling and,
as we shall see in Sect.5, some data reject EM-EU. Other data (Cho, Luce, &
Truong, 2002) strongly suggest that a substantial proportion of respondents are bet-
ter described by duplex decomposition than segregation. In that case, individual
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Table 2 Summary of representations for risky gambles*

Codes: DD = Duplex Decomposition, FA = Finitely Additive,
KE = Kernel Equivalent, Seg = Segregation, UofG = Utility of

Gambling
U(KE) UofG
Seg DD Seg DD
as3) as)
Sy? p=1 EU EU W m
is + Ax
FA  p#1  —  YU@)P) — »

*Adapted from Table 1 of Luce, Ng, Marley, and Aczél (2008 b),
with kind permission of Springer Science+Business Media.

differences abound, depending on the value of p. Therefore, it only makes sense to
look at data on an individual basis without averaging them. Despite that admonition,
most of the available data are for sets of people, not individuals.

3.3 An Application: Short-Term Gambling

Let b = b(gy,)) denote the maximum buying price of the gamble g, = (x1,Ci;
...;%n,Cy), where we have in mind a quick resolution of the uncertainty. Thus,
we are not treating such long-term “gambles” as life insurance, long-term health
disability, and long-term financial investments. Our theory is timeless and so no
financial discounting is involved. The following definition of b is natural (Luce,
2000, and earlier references), where the subjective weights may or may not be fi-
nitely additive:
e~ (x16b,C1;...5x,0D,Cy).

It is obvious that when one buys a gamble one acquires the gamble with each con-
sequence reduced by the buying price.

In the following, to make clear that the utility and weighting functions belong to
the buyer, who is the gambler, we use the subscript b.

In those cases where Sq 5, is assumed to be finitely additive, as in this subsection,
we know that Y Sq ,(C;) = 1, and so this definition is equivalent to

n

Ub(b) = ZUb(xi)SQ,b(Ci) +Hb(C1, .. .,Cn)

i=1

= Up(KE(g)y))) + Hp(Ch,- ., Cn), (24)

which is equivalent to b ~ g,

The case of selling prices is a good deal more subtle and we do not take it up
here.

Let us apply this to the issue of commercial gambling. Suppose that the seller
is either a state (lottery) or a casino and the buyer, i.e., a gambler, is an individual.
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Assume, as seems to be the case, that pricing money lotteries by both states and
casinos is based on some factor times the expected rate of return, i.e., s = (1 + &)EV,
a > 0. Assuming the special case where the buyer’s utility for money is the identity
function, then (24) yields

b>s< Up(b) > Uy (1+0)EV(gpy)) = (1+ )EV(g}))
éUb(KE(g[n]))‘i’Hb(Clv C) (1+a)EV(g[n])
<:>KE(g[n])Jf_l{b(cla“'ac ) > (1+a)EV(g[n])'

Let us suppose that, except for enjoying gambling, the gambler is fully rational and
identifies the kernel equivalent of the gamble with its expected value:

Then, s/he will gamble if and only if
Hb(C1 oo ,Cn) > (XEV(g[n]),

namely, whenever the gambler’s utility of gambling exceeds the profit to the seller.
This suggests that the utility of gambling is a strong determinant of behavior, as, of
course, has been widely recognized if not previously modeled so formally.

4 Utility of Gambling with Valued Uncertain Events

The problem to be addressed in this section is motivated by the obvious, but widely
ignored, fact that in many important real-world situations not only do event par-
titions have consequences attached to the events, but some events themselves are
inherently valued by the decision maker. An example is airplane travel in which
some of the chance events, such as the trip being terminated in a crash, are them-
selves of (negative) value. Such a value is independent of any bet, — e.g., insurance
on the flight — that is placed on the trip. Moreover, we know of no principled way
that allows for the separate measurement of the inherent value of events. Nonethe-
less, by a novel conceptual device we are able to use the results of Table 1 to arrive
at the more specific forms given below.

The conceptual device is an ordering ~x, which has an additive representation
over joint receipts, and a family O of order extensions of 2~y to include gambles.
Also, the model presumes, for each and every —€ O, the formulation of Sects. 1
and 2 and the results summarized in Table 1. A difference arises because the weights
now depend on Z, i.e., we have S q rather than Sq. We make assumptions that are
sufficient for there to be some ¢ > 0 such that, for each pair (p,, C,,), there is some
7€ O for which S;Q(C ) = pi. With these, and other assumptions, Ng, Luce, &
Marley (2008b) show that, for each order =€ O with additive SZ, we can define
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H(Ch Gy, ..., Cy

=H-(Cy,...,C,) :=Us=(e,Cy;...;e,Cp).
Pty P25 -5 Pn ) i( ! n) t( ! n)

Then, under the assumptions about the family of orders, this family of functions
satisfies the conditions of what is known as inset entropy, introduced by Aczél and
Dardczy and Aczél in 1975 and Kannappen in 1978. In particular, (18) with x; = e,
i=1,...,n, becomes

H C, Gy ..., Gy —H ClUGy, G, ..., G,
P1, P25 -+ Pn P1+D2, P3, -5 Pn

G, C
+H< o >,(p1+pz)‘/°. (25)
pP1+p2 p1tp2

Using this, the utility of gambling becomes more specialized than in Table 1.
For both segregation and duplex decomposition with finitely additive Sq, the
utility of gambling term becomes

[V(Q)—V(C)]Sx alC AZSHZ )1og, S- o (Ci), (26)

!

i=1

where V maps events to numbers and A is a constant, both in the same units as
U. We call the left term subjective expected value and, of course, the right term is
the subjective Shannon entropy. As with risk, the sign of A determines whether the
subjective entropy is seen as having utility or dis-utility, whereas the magnitude of
A controls its importance relative to the two expectations.

For additive S where ¢ # 1, the segregation case is impossible and the duplex
decomposition one yields

vm)—,”z1 (€)S-.0(C

I—ZS>Q

27)

In this case, the term following A is called subjective entropy of degree 1/0 (Havrda
and Charvat, 1967). The role of A is as before.

5 Data: Accommodated and Not Accommodated

In this section we focus mostly on the case of risk and illustrate the relation of EM-
EU to existing data sets, although we do consider one case involving uncertainty
(Sect. 5.2). Details for both the risky and the uncertain cases are presented in Luce
et al. (2008 b). We focus on risk because, in the vast majority of experiments, the
gambles are formulated as risky. Nonetheless, Luce et al. (2008 b) note that the con-
cept of a purely risky gamble may be a fiction of the theorist and experimentalist in
the sense that it need not really exist for a respondent. For instance, as discussed in
Sect. 3.1, the experimenter often “educates” respondents about specific event spaces
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whereby the probabilities stated in the risky gambles might be realized. A respon-
dent may have superstitions about the qualities, such as colors or numbers, used to
identify such events and that may well affect behavior. Also, in naturalistic settings,
people are confronted with valued events, such as a standard blood test, where the
unpleasantness of the test is independent of the probability of the possible test re-
sults, and the above comments suggest that they may also impute values to events
that an experimenter considers valueless. We are not aware of experimental studies
of gambles, with human respondents, that explicitly involve valued events, nor have
we thought through what impact imputing values to valueless events has for data
analysis.

A number of “paradoxes” have been raised over the years, each of which casts
doubt on the descriptive adequacy of progressively more general theories. The oldest
and most famous, the St. Petersburg paradox, questioned the descriptive adequacy
of expected value (EV); the Allais paradox questioned expected utility (EU); and
the Ellsberg paradox questioned SEU. More recently Michael Birnbaum in collab-
oration with several others has explored a series of “independence” properties (for
a summary and references, see Marley & Luce, 2005) that have cast considerable
doubt on rank-dependent utility (RDU) — including, of course, cumulative prospect
theory, SEU, and EU. The vast majority of these data are for the risky case, and Luce
et al. (2008 b) show that EM-EU can handle many, but by no means all, of the em-
pirical results. Here we summarize the results implied by EM-EU for the Allais
paradox and the independence conditions, all situations of risk. For the Ellsberg
paradox, which is based in part on uncertain events, we turn to the special case of
G-SEU, given below as (29), where H is the subjective Shannon entropy. One can
view this as a specialization of the finite additive cases of either Table 1 or of the
representation (26) for which the value function V is a constant.

Two basic principles are useful in deriving the properties of EM-EU and in com-
paring them with those of EU and various data.” First, the properties of EM-EU
agree with those of EU when either A = 0 or when the Shannon entropy terms /(1)
in the various gambles under consideration are related in specific ways (some of
which we illustrate below). Second, the properties of EM-EU are likely to differ
from those of EU when A # 0 and the Shannon entropy terms / (1) in the various
gambles under consideration are not equal and do not “cancel” in appropriate ways.
We illustrate these principles with the Allais paradox, the Ellsberg paradox and one
of Birnbaum’s “independence” conditions.

As already mentioned, in the remainder of this section we develop most of the
arguments for EM-EU, i.e., for

U(gp) = EU (gp) +AIV (p1,..., pa), (28)

where I(1) is the Shannon (1948) entropy. This case arises under both segregation
and duplex decomposition.

7 Parallel principles apply to G-SEU, especially the special case that we apply to the Ellsberg
paradox.
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And, when gambles are based on uncertain events, — i.e., they are presented in
terms of events C; rather than probabilities p; — we consider the following very
special, but important, case of G-SEU:

U(gp) = SEU (g) —A Y Sa(Ci)log, Sa(Ci), (29)
i=1

where the UofG term is the Shannon (1948) entropy of the subjective probabilities.

5.1 The Allais Paradox

The classic example of the Allais paradox arises when an individual has the follow-
ing pair of preferences (where M means million):

$1M = ($5M,0.10;$1M,0.89;$0,0.01),
($5M,0.10;$0,0.90) > ($1M,0.11;$0,0.89),

a pattern of choices that is shown easily to violate EU. However, note that each
gamble is based on a different probability distribution, which means that the entropy
terms do not in general “cancel” when A # 0. In fact, Luce et al. (2008 b) show
that the above preference pattern is compatible with EM-EU for a sufficiently large
negative A value. Such use of a negative A value makes sense as it corresponds to
an aversion to gambling.

5.2 The Ellsberg Paradox

We now provide an explanation of the Ellsberg paradox in terms of the entropy-
modified form of SEU given in (29).

The Ellsberg (1961) paradox in coalesced® form is of the following form with
the choices between f vs. g and f’ vs. g’ where’

f=(xR;0,GUY) = (x,p;0,1 —p)
g=(x,G;0,RUY)
f' = (x,RUY;0,G)
g = (x,GUY;0,R) = (x,1 — p;0,p)

8 If there are two (or more) branches (x,C), (x,D) in a gamble, with the common consequence x,
then their coalesced form replaces the two by the single branch (x,CUD). If the gambles are pre-
sented in uncoalesced form, then the following explanation of the paradox requires the additional
assumption that the participants convert the gambles to their coalesced forms.

9 The event notation R, G,Y arose from the interpretation of the chance experiment being a draw
from an urn with red, green, and yellow balls.
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with x > e. Note that the probability of G, and so of Y, is not specified beyond being
bounded to the interval (0,1 — p). In the classic example, where Pr(R) = p = 1/3
and Pr(GUY) =1 — p = 2/3, people typically pick f over g and g’ over f’. It is
checked easily that this pattern of choices is incompatible with SEU.

Paralleling the reasoning for the Allais paradox, note that the gambles f and g
are based on different partitions of the events, as are f” and g’. This suggests that the
entropy terms given by the entropy-modified form of SEU, (29), do not in general
“cancel” when A # 0. In fact, Luce et al. (2008 b) show that the above prefer-
ence pattern is compatible with (29) provided that, in (29), the Shannon entropy
IM(Sq(R),1—Sa(R)) # IV (Sa(G),1 — So(G)) and A is sufficiently large, either
positively or negatively.

5.3 Independence Properties

Consider n =3, (p1, p2,r) and (g1,q2,r) arbitrary nontrivial complete probability
distributions, and consequences xi,y1,%2,y2,2,2 with y; = x| = xp = y» = e and
y2 = 2= e, y2 = 7 = e. Then branch independence of type'? (3,3)? states that:

fia) ~ (X1, 132, p232,7) 22 (V1,91552, 4252, 7) ~ &P3) (30)
iff
fp~ Gen, prixe, p2sdr) 2 (91,41332,42:2,7) ~ g3 GD

Note that, under EM-EU, the above gambles are such that
EU(fi3)) —EU(g3) = U(x1)p1 +U(x2)p2 —U(y1)q1 — U(y2)q2
= EU(ffy) —EU(g}3)- (32)

Now, it is routine to show that, under EM-EU, (32) is sufficient for branch indepen-
dence of type (373)2 to hold, i.e., (30) iff (31). In fact, all cases of branch indepen-
dence when n = 3 reduce to such a condition, and hence EM-EU predicts that they
all hold, contrary to some data.

Applying similar arguments to other independence conditions, Luce et al.
(2008b) show that EM-EU accommodates various, but by no means all, of the
data obtained in tests of independence conditions not leading to simple cancellation
of the UofG terms.

10 The notation (3, 3)2 indicates that the consequence z (respectively, 7') is the third consequence
of the ranked gamble.
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6 Conclusions

The major results, which are formally stated as theorems with proofs in our cited
papers, are the four representations found in Table 1 for uncertain gambles and the
three in Table 2 for risky ones. Those of Table 2 are, essentially, the same ones that
Meginniss (1976) first discovered in his long ignored paper. The difference is that we
have found an axiomatic basis for the results whereas he began by assuming a repre-
sentation of the form U (g, ) = Z?:l f(U(x;), pi), and that the common function f is
differentiable. In the proof he invoked, with little comment, what amounts to GDU.
His proof is far simpler and briefer than ours, but we feel it is less illuminating.

By using a conceptual construct of an (infinite) family O of order extensions of
7~x, plus other assumptions, we were able to develop, for each order extension, a
representation of the UofG term as a subjectively weighted value of events plus a
subjective entropy term involving the same weights.

Four major problems are worth mentioning that are unresolved here. First, the
case where utility is p-additive rather than additive, i.e., U(x®y) =U(x) +U(y) +
OU (x)U (y), is of considerable interest because the impact of the elements of chance
is amplified by the utility of the kernel equivalents:

U(g[n]) = U(KE(g[n])) +U(67C1;” ';e7Cn) [1 +5U(KE(g[n]))] :

Ng, Luce, and Marley (2008c, submitted) obtains a very nice representation in
the uncertain case for segregation but obtains essentially nothing interesting un-
der duplex decomposition. Second, we need a fuller understanding of why RDU
(including, of course, cumulative prospect theory), which has been so popular, ad-
mits only a very restricted UofG for uncertain gambles and simply does not arise
for risky ones. To have a richer utility of gambling environment that permits rank
dependent utility with utility of gambling must require some changes in the axioms.

Third, the conceptual device invoked in Sect.4 cannot be empirically realized
and tested because it applies to infinitely many orderings satisfying the same ax-
ioms and agreeing over (X, ®), whereas an individual generates just one. To make
the conceptual device seem a bit more concrete, some people are comfortable in
imagining an infinite family of individuals whose preference orders differ only due
to differences in their assignment of probability distributions to event partitions.
Others find it easier to think of a single individual whose extension is simply un-
known to a theorist who must be prepared to model whatever extension happens to
be true. The open problem is find some testable way to arrive at those results where
the utility of a gamble was partitioned into the sum of three subjective terms: a lin-
ear weighted utility of consequences plus a linear weighted value of events per se
plus an entropy term.

Fourth, although we have invoked the rank ordering induced by the consequences
of a gamble, we have also assumed invariance under permutations and so that con-
straint actually imposed no real limitation. It was done merely as a convenience
in stating certain assumptions and theorems. However, some of Birnbaum’s data
strongly suggest that whether an event underlies the best or the worst consequence
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actually matters greatly in how it is evaluated. Thus, a major open problem is to
work out a theory for the inherently ordered case. One possibility is to try to arrive
at weighted entropy,

Z a;Sa(Ci)logSa(C),

i=1

which has been mentioned in the literature. But this is certainly not the only
possibility.
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Altruistic Utility Functions for Joint Decisions

David E. Bell and Ralph L. Keeney

1 Introduction

All of us make decisions that are not entirely self-centered; we voluntarily anticipate
what we think to be the preferences of others and incorporate them into our decision
making. We do this, not because of legal requirements or social norms, but because
we are altruistic; we care intrinsically about the welfare of others. In this paper, we
illustrate for these types of decisions how confusion may arise because the distinc-
tion between our personal (egotistical) preferences and our altruistic concerns is not
carefully distinguished. We first define the distinction between personal and altru-
istic preferences, and then show how to use both of these kinds of preferences in
prescriptive decision making methodologies.

We confine ourselves to the class of problems where two or more people must
select a common course of action. The following story illustrates a simple exam-
ple. Joan and Dan have decided to have dinner and must choose a restaurant. They
quickly specify three possibilities: a Brazilian restaurant, a French restaurant, and a
Thai restaurant. Joan is thoughtful and wishes to choose a restaurant that Dan will
really like. Similarly, Dan wants to choose a restaurant that pleases Joan. So what
happens? Joan, thinking about what might be Dan’s preferences, decides that Dan
would like the French restaurant, followed by the Brazilian restaurant, followed by
the Thai restaurant. Dan, thinking about what Joan would like, also decides that the
French restaurant would be best, followed by the Brazilian restaurant, and then the
Thai restaurant. Joan speaks first and suggests the French restaurant. Dan, thinking
that this is what Joan wants, agrees and off they go. During dinner discussion, Joan
mentions that she would have preferred the Thai restaurant to the French restau-
rant. Somewhat surprised, Dan then says that he also would have preferred the Thai
restaurant. They wonder how this state of affairs came about.
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Two compounding errors led to an inferior choice. First, each person guessed at
the others preferences. Second, the stated preferences are mistakenly interpreted as
those of the speaker. How could this have been avoided? Clearly both Dan and Joan
could have written down their personal preference order for restaurants, assuming
that they did not care about the other’s preferences, and then compared notes. In our
illustration, this would have led immediately to a mutually satisfactory decision.
Our experience is that even decision analysts are rarely that explicit. What often
happens instead is that through discussion, or generalized experience with the other
person, each person informally updates their own preferences to take account of the
other’s likes and dislikes. There are many ways this informal approach can produce
inadequate solutions.

There are many situations where a group of individuals must collectively choose
among alternatives and where each individual wishes to please the others. Examples
include parents making choices with their children, decisions by boards of directors,
decisions by departments or groups within organizations, decisions by legislative or
regulatory bodies, choices made by families, and decisions among friends. In many
of these cases, parties to the decision will take account of the preferences of the
others, not only for the expediency of arriving at a consensus, but often out of an
altruistic interest in their happiness. An altruistic decision maker will be willing to
forgo some direct personal gain to help others achieve their objectives.

The general problem of combining preferences of individuals into group
preferences is not new. There is a large body of published work on this topic
((Arrow, 1951), (Harsanyi, 1955), (Diamond, 1967), (Sen, 1979), (Broome, 1984),
and many others). Much of the work prior to 50 years ago is summarized in
(Luce & Raiffa, 1957). Since that time, there has been work on risk sharing (e.g.
Raiffa, 1968), group utility functions (e.g. Keeney & Raiffa, 1976), and utility
functions where a seller incorporates the preferences of a buyer (Edgeworth, 1881),
(Raiffa, 1982), (Keeney & Lilien, 1978), and (Keeney & Oliver, 2005). There
has also been work on preference dependencies in multiattribute utility functions
(Fishburn, 1965), (Bell, 1977), (Meyer, 1977), (Keeney, 1981). Several authors
have discussed the adaptation of preferences in a group context (Zizzo, 2005),
(Sobel, 2005), and (Cubitt & Sugden, 1998). Trautmann (2006) proposes a similar
approach to ours, but his proposal is based on the descriptive criterion suggested
by (Fehr & Schmidt, 1999), whereas ours is consistent with standard multiattribute
approaches, and amenable to assessment as we discuss later.

We focus in this paper on one particular type of joint decision. One could think
of this type as altruistic joint decisions, because each of the individuals has a fun-
damental preference for the other individuals being pleased. Section 2 defines an
altruistic joint decision and discusses its relevance. As conceptual distinctions are
extremely important in discussing problems with interpersonal dependence of pref-
erences, Sect. 3 outlines the relevant concepts and terminology used to analyze altru-
istic joint decisions. In Sect. 4, we focus on altruistic joint decisions involving two
individuals and illustrate the main results that collectively characterize a reason-
able set of altruistic utility functions to use in analyzing joint decisions. Section 5
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elaborates on the foundations for altruistic utility functions. Section 6 suggests how
one might assess these utility functions, and Sect. 7 is a discussion of the insights
from and uses of the concepts and results of the paper.

2 Altruistic Joint Decisions

The altruistic joint decisions that we investigate in this paper are characterized by
six properties:

A group of individuals have a decision that they must make jointly,

The alternatives are exogenously given,

All individuals in the group bear the same consequences,

Each individual has utilities for the alternatives,

Each individual is altruistic about the others; they prefer them to be happy even
at some cost to themselves and,

Each person is honest in revealing their preferences.

N » D =

o

Property 3 rules out decisions that involve risk sharing or somehow dividing the
consequences among the individuals. With regard to Property 4, the individuals may
have utility functions over the consequences which can be used to derive utilities for
the alternatives. Property 5 is the one that states the altruism assumption. Without
it, we would have the more general situation sometimes referred to as the group
decision problem. Property 6 eliminates the need to worry about strategic gaming;
Property 2 is included to give the additional “safeguard” that individuals do not
introduce irrelevant alternatives to skew the decision making procedures.

It is useful to analyze altruistic joint decisions for many reasons. First, as sug-
gested above, they occur often in the real world. Second, the consequences are fre-
quently important. Poor choices increase the likelihood of a disastrous vacation or
a poor business outcome. Such consequences can contribute to dissolve what was
previously a wonderful group of friends, a terrific marriage, or an exciting and pro-
ductive business relationship. Third, ad hoc choices on altruistic decisions may con-
tribute to poor choices and hence less desirable consequences. The reason this may
occur is because there are sophisticated concepts necessary to take into account in
altruistic joint decisions. Self-centered preferences for consequences can get con-
fused or be confused with altruistic concerns for those same consequences. A little
analysis can help define and distinguish these aspects.

3 Concepts and Terminology

We characterize an altruistic decision as follows: There are J alternatives aj, j =
1,...,], one of which must be chosen by an altruistic group. The group has N indi-
viduals, referred to as Iy, ..., In. Each individual I; has a personal utility function u;
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over the alternatives. This egotistical utility function only incorporates the value of
the alternative directly to the individual and does not include any value to I; due to
his or her altruistic feelings for the happiness of others. Thus, for each alternative
aj, individual I; assigns an egotistical utility u;(a;).

Each individual also has what we refer to as an altruistic utility function Uj, i =
1,...,N which is the function that describes the preferences the person announces or
acts upon, which takes into account both his or her personal concerns and concerns
for the welfare of the others. For example, I;’s evaluation of alternative aj might be
expressed as Uy (ug(a;), Uz(a;),...,Un(aj)). An example of an individual altruistic
utility function for individual I; is the additive form

Ui (ur (), Uz (a7),...,Un(a))) = kiu (a) +ikiUi (aj), (1)

1

where u; and Uj,i = 1,...,N are scaled 0 to 1, k; > 0 (the person is not totally
altruistic) and the scaling factors ko, ..., ky are also non-negative to incorporate the
altruism that individual I; feels for individuals I;,i = 2,...,N.

The group altruistic utility function Ug is a utility function that incorporates the
preferences of each of the individuals in the group. In general the arguments in this
utility function can be each individual’s egotistical and/or altruistic utility function.
A possible example is the additive utility function

-

Ug (a)) = )_KiUi (a) , )

i=1

where the scaling factors Kj,i = 1,...,N must be positive to incorporate altruism of
each individual for the other individuals.

4 Main Results for Altruistic Decisions

In this section, we present our main analytical results. To focus on the conceptual
ideas, all of the work in this section concerns a joint altruistic decision made by
two individuals. We begin by stating our most important analytical results, though
the assumptions we use for Result 1 are stronger than necessary. In Sect. 5, these
assumptions are weakened. The ideas also extend to altruistic groups of more indi-
viduals as discussed in Sect. 7.

Result 1. An individual’s altruistic utility function should have two attributes which
are the egotistical utility functions of the two individuals. The resulting two-attribute
function, should be multiplicative (or additive) in those attributes. Thus,

Ui (a) = ki (a) + ko (a)) +kauy (a)) ua (a) 3)

and
Us (aj) = kaup (ay) +ksua (aj) +keur (a)) ua (ay) )
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where all utility functions are scaled O to 1, all k; scaling factors are positive, and
ki +ky+ks =1 and kg +ks + kg = 1. The scaling factors indicate the relative impor-
tance of the ranges of consequences possible on the corresponding utility function
as discussed in the assessment Sect. 6.

Argument. As we will discuss in Sect. 5, it might be tempting to think that one per-
son’s altruistic utility function should be a function of the other person’s altruistic
function, but, as we shall see, this leads to problems. We believe that a fundamen-
tal property of altruism is that if individual I;, say, is personally indifferent among
the available alternatives then he or she would wish to select the alternative that
maximizes the other individual’s egotistical utility function. For example, if Dan
personally regards all of the restaurant alternatives as equally preferable, surely he
would wish to select the one that Joan most prefers. One might imagine that if Dan
dislikes the available restaurants, then he might be jealous if Joan is delighted, but
that does not meet our sense of altruism. Similarly if Joan is personally indiffer-
ent among the available restaurants, then surely Dan should feel comfortable se-
lecting his own favorite, especially since he knows Joan is altruistic towards him
(we assume all parties are altruistic). In the language of multiattribute utility, we
have therefore concluded that individual I;’s altruistic utility function should have
the two attributes and each should be utility independent of the other. Thus his al-
truistic utility function should have the form (3), and by symmetry, individual I’s
should have the form (4).

The factors k; and ks are positive as each individual certainly cares about their
own direct consequences. Factors ko and k4 are positive as both individuals are
altruistic. We argue below that k3 and k¢ should at least be non-negative and more
likely are positive.

Suppose individual I; has a choice between two alternatives, one with (uj,u;) =
(x,y) and the other with (u;,uy) = (x —b,y-+c). Hence, I; must decide if for her the
sacrifice of an amount of utility b is worth the improvement of an amount of utility
c to individual I,. Using her altruistic utility function (3), we see the answer is yes if
Uy (x—b,y+c) > U;(x,y) which implies k; (x —b) + ka(y +¢) +k3(x—b)(y+¢) >
kix+koy +k3xy, so

—kib+koc+ks (cx —by —bc) > 0. (5)
Dividing (5) by bc yields
—ki/c+ko/b—ks+k3(x/b—y/c) >0. (6)

If k3 =0, then this preference is independent of x and y. If ks > 0, then I; is relatively
more altruistic when x is high or y is low. We believe this is more in line with
how altruistic people will like to behave than when k3 < 0. Thus, in general, it
seems reasonable to have k3 > 0, so k¢ > 0 also by the same argument. It is worth
mentioning that all of our results hold for the cases when k3 = 0 and/or kg = 0
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though this is not required. It is quite possible that a person’s level of altruism could
vary depending on the actual disparity in egotistical utility each person derives from
a consequence.

Result 2. The group altruistic utility function should be additive over the two argu-
ments of the individual’s altruistic utility functions, so

Ug (aj) =CU; (aj) +C,oU, (aj) s (7)
where all utility functions are scaled O to 1 and C; +C, = 1.

Argument. The utility function Ug represents how the pair of individuals should
evaluate joint decisions. It seems reasonable to suppose that if individual I is
indifferent among alternatives using Uj, then both individuals would be happy
to let the joint decision be consistent with U,. By symmetry the reverse would
be true. Hence Ug should be multiplicative or additive in U; and U,: Ug(aj) =
CU; (aj) + CgUg(aj) + C3U; (aj)Ug(aj).

Now we argue that C3 should be zero. Consider two gambles involving lotteries
over the alternatives. Suppose that individual Iy has the same expected altruistic
utility under either gamble. Suppose this is also true for individual 1. Then both
individuals are indifferent between the two gambles so it seems reasonable that Ug
should reflect that indifference. As proven in (Harsanyi, 1955) and (Fishburn, 1984),
this only occurs when C3 = 0. If C3 were greater than zero, for example, it would
mean that the group might prefer an alternative with lower values of U; and U,
in order to achieve more concordance between U; and U,. But since U; and U,
already, respectively, incorporate all of I;’s and I,’s altruistic concerns, any further
sacrifice is counter-productive.

The conclusion that C3 = 0, while not obvious, is consistent with the observa-
tion of (Keeney, 1981), namely that when the objectives are fundamental, complete,
and do not overlap, an additive utility function is appropriate. The two individual
altruistic utility functions are fundamental and a complete set in that they consider
all objectives relevant to the decision (e.g. individual I;’s concerns are completely
expressed by Uj) and do not overlap. Each individual altruistic utility function
addresses both direct and altruistic preference concerns. It is also consistent with
(Edgeworth, 1881) and (Harsanyi, 1955) who both argued that an altruistic solution
could be determined by maximizing the sum of the affected individual’s utilities.

Result 3. The group altruistic utility function is the multiplicative utility function
with the egotistical utility functions of the individuals as the arguments, so

Ua (aj) =Ky (aj) +Kauz (a) +Ksuy (a) uz () (8)
where K, i =1,2,3 are positive and K| + Ky + K3 = 1.

Argument. The argument in this case is a proof using Results 1 and 2. Substituting
(3) and (4) into (7) and dropping the a;’s for clarity yields
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Ug =C; (k1U1 +koup +k3ll1112) +C, (k4ll1 +ksup +k6u1u2)

)
= (Cik; 4+ Cokq)uj + (Cika 4+ Coks) up + (Ciksz 4+ Cokg) ujus.

Equation (9) is (8) with K; = C1k; 4+ Csky, and so on.

The group utility function (8) is not necessarily additive in the individual’s per-
sonal utilities. This is because if the altruism of any member of the group (their
willingness to give up utility to help someone else) depends on their own level of
satisfaction, then the multiplicative term will be present in their individual altruistic
utility function, and therefore in the group function also. The functional form (8)
is mathematically identical to an analysis of the group decision problem (Keeney
and Kirkwood, 1975) that posited a possible concern by the group for equity. In
that development the multiplicative term reflects the desire by the group not to have
disparate outcomes. It is possible for both phenomena to occur at the same time;
someone could be altruistic but also concerned about equity.

5 Personal Utilities are Fundamental to Altruistic Decisions

In Result 1, we made a strong assumption that the arguments in an individual’s
altruistic utility function should be the egotistical utilities of the individuals. We did
this so the important results in Sect. 4, and the logic supporting them would be clear.
Here, from more basic reasoning, we provide support for having egotistical utilities
as arguments in altruistic utility functions.

Result 4. The egotistical utility functions should be the arguments in the altruistic
utility functions.

Argument. We asserted the truth of Result 4 in stating our Result 1. But why is
that the case? It might seem reasonable to think that the altruistic utility function of
individual I} might depend on hers and on I,’s altruistic utility functions. But that is
circular. For example, if

U (Uy,Uz) =hUj +hyUy +h3U Uy, (10)

where we have deleted the a;’s for clarity, it is evident that h; = 1 and h, =hz =0
is the only viable solution.

Another way to think about the appropriate attributes for U; is that it can be a
function of u; and U, so individual I;’s altruistic utility function could be repre-
sented by

U, (ul,Uz) =hju; +hyUjs + h3uUp, (11D

and similarly for individual I,

U (Uy,u2) =hsU; +hsuy +hgUjus. (12)
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But (11) and (12) together lead to problems of double counting. One way to see this
is by substituting (12) into (11) which yields

U, (ul,Uz) = hju; +hy (hyU; + hsuy +h6U1u2) +hsuy (h4U1 +hsuy —‘rh6U1u2) .
(13)

Substituting (11) into (13) results in squared terms of uj if either h3 or hg is not
zero, and squared terms are unreasonable. The problem stems from the fact that
individual Ij, in trying to please individual I, who is trying to please individual
I;, ends up double counting his own interests. The intent of any utility function is
to maximize its expected value, which is a simple calculation, not to maximize its
square. Hence, h3 and hg would necessarily have to be zero if (11) and (12) were
reasonable.
Even if h3 = hg =0 in (11) and (12), there are still difficulties. Substituting (12)
into (11) yields
Uj (u;,Uz) =hju; +hy (haUj + hsuy). (14)

Solving (14) for Uy, we find
U1 = (h1u1 7h2h5U2) / (1 7h2h4). (15)

As a numeric example suppose that hy =hy = 0.2, h, =hs = 0.8, and h3 =hg = 0.
That is, individual I; is very altruistic and assigns 80% of the weight to the prefer-
ences of individual I, whereas individual I is less altruistic but does assign a 20%
weight to individual I;’s preferences.

Substituting the values for the h’s into (15) we find

5 16

U] = ilﬂ + ﬁuz. (16)
Similar calculations for I yield
1 20
=— —up. 1
Us 21u1+21u2 17)

Thus, although both individuals agree, in a sense, that 80% of the weight should be
on the preferences of individual I, the calculations show that the double counting
leads to a different outcome. It is possible that in selecting weights for (10), individ-
ual I; correctly anticipates the effect of the double counting, but we believe that for
most individuals this would be challenging.

If we consider the group altruistic utility function (7) in this case, any choice
of C; and C, necessarily leads to a weighting of individual I;’s personal utility
of less than 20%. We conclude that altruistic utility functions should be based
on individuals’ egotistical utility functions rather than on other altruistic utility
functions.
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6 Assessment Issues

Based on the results in Sect. 4, the group altruistic utility function could be assessed
based on either Result 2 or 3. The best way to make the necessary assessments is
to use Result 2. This requires first assessing the two individuals’ egotistical utility
functions, then both individuals’ altruistic utility functions (3) and (4), and then the
scaling factors C; and C; in (7).

The individuals’ egotistical utility functions should be assessed using standard
procedures as outlined in Keeney and Raiffa (1976) and many other sources. There
is nothing special about these utility functions as they are simply utility functions
for an individual concerned with consequences directly to that individual.

Assessing the individuals’ altruistic utility functions are also just individual as-
sessments. Relative weights on the individual egotistical utility functions in (3) and
(4) incorporate two separate issues. One of these is the well-known interpersonal
comparison of utility problem (Luce & Raiffa, 1957) and the other is the altruistic
value to each individual for pleasing each other. To make these assessments requires
understanding the relative desirability of the impacts for each individual of going
from the worst of their alternatives to the best of their alternatives. For instance, if
the two individuals are selecting a restaurant together, the range for individual I
may be in qualitative terms from a poor restaurant that would be “acceptable food
and pleasant atmosphere” to a best restaurant that would be “good food and pleasant
atmosphere.” For the second individual I, the range could go from “very unappeal-
ing food and objectionable atmosphere” to “excellent food and perfect atmosphere.”
In such a situation, each individual may decide to place greater weight on I’s util-
ities as Ip seems to have a much more significant difference in desirability of the
worst and the best of restaurants.

To determine appropriate relative scaling factors (the k’s) for the individuals’
altruistic utility functions given by (3) and (4), each individual should consider the
range of the desirability of the various consequences to each individual as well as
how much weight she wants to place on pleasing the other individual. Consider the
scaling factors ki k2, and k3 in (3). The best way to assess these factors is to compare
specific alternatives in terms of their egotistical utilities to both individuals I} and I,
and look for pairs of alternatives that the individual feels are equally desirable. Once
two pairs of such joint consequences described by (uy, u,) are found indifferent,
the individual’s altruistic utility function (3) should equate the utilities of the pairs.
This provides two equations with three unknowns, namely ki,k>, and k3. The fact
that k; +ky +k3 = 1 is a third equation. These three equations can be solved to
yield specific values for the three scaling factors. Note that the altruistic function
just assessed is the function the individual would use if he or she were to make the
group decision unilaterally. Put another way, it represents the preferences that this
individual would use if the decision were left up to her.

Assessing C; and C; in the group altruistic utility function (7) is the only value
judgment in the assessment process requiring agreement of the two individuals. The
value judgments about C; and C, are basically assessments about the relative sig-
nificance of each person to the group. With individuals who have altruistic feelings
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for each other, it seems reasonable to select C; = C, = 0.5. That is because all of
the more conceptually difficult value judgments concerning altruism and strength
of preferences are incorporated into each individual altruistic utility function. As a
specific example, suppose individual I; selected ki = 0.6 and ky = 0.4 in her utility
function (3), so k3 = 0. This would mean that she thought her personal utility func-
tion counted 1.5 times as much as I,’s personal utility function. It would not then
seem reasonable to underweight her altruistic preferences relative to those of indi-
vidual I, with C; < 0.5, or to overweight them, with C, > 0.5. Obviously, similar
reasoning holds for individual I».

7 Insights and Uses

The insights in this paper can be used informally or formally in making joint deci-
sions. Indeed, we would expect that the more common use of the concepts would be
in making decisions informally, but thoughtfully.

One basic finding is that the informal notion of agreement through discussion
and iterated compromise, while intuitively attractive, is fraught with difficulty: even
if the process converges, the compromise solution might not be the appropriate
solution.

Though it may appear to be selfish, it is important for altruistic decision makers
to focus initially on what they know best, their own personal (egotistical) utilities.
These are the utilities the individual has for the direct consequences of an alternative.
Each individual naturally knows much more about his or her own preferences than
about the other individual’s preferences. There is no reason for the guessing effort
to occur in altruistic decisions. Each individual should honestly first express their
own preferences for themselves. Once these are clearly laid out for both individuals
to understand, then any appropriate weighting by each individual to account for the
personal utilities and the altruistic concerns can more effectively occur.

An important insight from this work is that an altruistic utility function should be
over the egotistical utility functions. In particular, a multiplicative utility model is a
general model that can address these concerns for individuals and for joint decisions
of two individuals. The altruistic values that each of the individuals have can be
addressed in assessing the scaling factors in the multiplicative utility function.

So how would one use this theory on a simple decision like Joan and Dan’s
choice of a restaurant? First Joan and Dan should express their personal preferences
for the restaurants to each other. If they agree on their first choice, choose it. If
they disagree, eliminate any dominated alternatives. Then they should discuss their
personal strengths of preference among the remaining contenders, and then jointly
decide based on that information. Either the choice should be obvious or it should
not matter as they are about equally desirable in the joint sense.

Results 2 and 3 together state that the group altruistic utility function is additive
over the two individual’s altruistic utility functions and also multiplicative over those
two individual’s egotistical utility functions. This demonstrates the significance of
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how framing a decision, in this case specifying the objectives explicitly included
in the analysis of a decision, can and should influence the functional form of the
appropriate utility function.

The insights discussed above generalize to joint decisions involving more than
two individuals. Specifically, the multiplicative utility function is an appropriate
formulation for a joint altruistic utility function and the arguments of that function
should be the egotistical utility functions. The altruistic values of each of the individ-
uals are addressed in assessing the scaling factors in that altruistic utility function.
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SSB Preferences: Nonseparable Utilities
or Nonseparable Beliefs

Yutaka Nakamura

1 Introduction

It is around 1980 that new era for decision making under risk/uncertainty began to
uncover numerous alternative representations which generalize the traditional (sub-
jective) expected utility maximization. The initial major contributors include Chew
and MacCrimmon (1979), Chew (1983), Fishburn (1982), Kahneman and Tversky
(1979), Machina (1982), Quiggin (1981), and Schmeidler (1988) (first appeared in
1981 as a discussion paper). One of Fishburn’s works in this area is the discovery
of an axiomatic structure of SSB (skew-symmetric bilinear) preferences in deci-
sion making under risk, and its numerical representation, dubbed SSB utility (see
Fishburn, 1982). Since then, he published a series of papers which study SSB pref-
erences and their numerical representations in various contexts in decision making
under risk/uncertainty (see a survey, Fishburn, 1988b).

This paper further explores representational aspects of SSB preferences particu-
larly in decision making under uncertainty and discusses their necessary and suffi-
cient axiomatizations. Three representational forms will be examined. One of them
is known as an SSA (skew-symmetric additive) representation first explored by
Fishburn, 1984a. The other two are new in the literature, one of which seems to
be a more natural application of SSB utility to decision making under uncertainty
than SSA representation. A characteristic feature of the first two representations is
nonseparability of utilities for decision outcomes. The last one is a generalization of
subjective expected utility (SEU) which replaces subjective probabilities with non-
separable representation of comparative beliefs first discovered by Fishburn (1983a
and b).

Y. Nakamura

University of Tsukuba, Graduate School of Systems and Information Engineering, Division
of Social Systems and Management 1-1-1 Tennnoudai, Tsukuba, Ibaraki 305-8573, Japan
e-mail: nakamura@sk.tsukuba.ac.jp

S.J. Brams et al. (eds.), The Mathematics of Preference, Choice and Order: Essays in Honor 39
of Peter C. Fishburn, Studies in Choice and Welfare,
(© Springer-Verlag Berlin Heidelberg 2009



40 Y. Nakamura

There may be three formulations in the literature, discussed in the next section,
to arrive at axiomatizations of preferences in decision making under uncertainty:
pure-act formulation (Savage’s approach), lottery-act formulation, and act-lottery
formulation. Fishburn’s axiomatizations of SSB preferences are based on the first
two formulations. We adopt the third formulation to develop necessary and sufficient
axiomatizations for the three nonseparable representations when the state space is
finite.

The paper is organized as follows. The next section introduces nonseparable rep-
resentations. In Sect. 3, axiomatic SSB preference structures and their numerical
representations are presented. Section 4 studies necessary and sufficient axioms for
two nonseparable utility representations. Then in Sect. 5, we explores necessary and
sufficient axioms for SEU with nonseparable beliefs. Section 6 concludes the paper.

2 Nonseparable Representations

Let A be the set of all (pure) acts that are functions from the set S of states of the
nature into the set X of outcomes. Each a € X will be identified with constant act a
for which a(s) = a for all s € S. Let > be a binary strict preference relation on A,
read as ‘is strictly preferred to’. The traditional SEU theories yield a utility function
u on X and a probability measure 7 on an algebra By of subsets of S such that, for
alla,b € A,

a>b<= E(a,u,n)>Eb,u,n),

where E(a,u, ) is expected utility of act a with respect to 7. We may have three
equivalent integral expressions of E (a,u, 7):

(i) a-b < [s(u(a(s)) —u(b(s)))dn(s) >0,
(i) a-b < [ [s(u(a(s)) —u(b(t)))dn(s)dn(r) >0,
(i) a = b <= [T (n({s:u(a(s)) > 1}) —n({s:u(b(s)) > 1}))dt > 0.

The aim of this paper is to axiomatically characterize nonseparable general-
izations of the SEU representation. The most general nonseparable representation
yields a real valued bivariate function ¥ on A x A such that, for all a,b € A,

a>b<= Ya,b)>0.

We shall examine three specializations of . Two of them are concerned with the
first and second integral expressions (i) and (ii), where each of the integrands in
(i) and (ii), u(a(s)) — u(b(s)) and u(a(s)) — u(b(z)), are respectively replaced by
nonseparable utility representations, y(a(s),b(s)) and y(a(s),b(t)), i.e.,

(D W(a,b) = [sw(a(s),b(s))dn(s),
(I W(a,b) = [ [sw(a(s),b(t))dr(s)dn (1),

where y is a skew-symmetric bivariate function on X x X, i.e., for all x,y € X,
y(x,y)+ y(y,x) = 0. Model (I) is known as an SSA representation. Bilinearity with
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respect to state probabilities is reflected in model (II), but not in model (I). Thus
model (II) may be dubbed an SSB representation under uncertainty. Observe that
model (I) satisfies the Savage’s sure-thing principle, i.e., preferences for acts are
independent of outcomes in some states as long as those outcomes are identical for
acts under consideration. It is well known that this principle is often behaviorally
violated. However, model (II) does not necessarily satisfy the principle.

The last one is concerned with the third integral expression (iii) in which the in-
tegrand 7({s: u(a(s)) > t}) —w({s: u(b(s)) > t}) is replaced by the nonseparable
belief representation p ({s : u(a(s)) > t},{s:u(b(s)) > 1}), i.e.,

() W(a,b) = [TZp({s:u(a(s)) > 1}, {s:u(b(s)) > 1})dr,

where p is a bivariate function on Bg x By that satisfies:

(a) normalization: p(S,0) =1,

(b) monotonicity: forall A,B € Bg,A D B=—p(A,B) >0,
(c) skew-symmetry: forall A,B € Bg,p(A,B) = —p(B,A),
(d) conditional additivity: forall A,B € Bs,ANB=0—

pP(AUB,C)+p(0,C) =p(A,C)+p(B,C).

Note that when S is finite, conditional additivity implies that, for all A, B € 28,

p(A.B) =) Y p({s} {r})+(1—[B) Y p({s},0)+(1—|A]) }_p(0.{r}), (1)

SEAtEB SEA teB

where |A| denotes the number of elements of a set A (see Fishburn 1983b).

Let > be a binary comparative belief judgement on Bg, read as “is more probable
than”, which is defined by the preference relation > for pure acts as follows: for all
A,B € Bs,A =" B <= a = b whenever

a ifseA a ifseB
a(s) = {b otherwise and  b(s) = {b otherwise

for some a,b € X with a > b. Then models (I) and (II) yield that, for all A,B € Bg,
A >*B <= w(A) > n(B). Onthe other hand, model (II) gives that, for all A, B € B,

A>"B < p(A,B) >0.

Thus p is a nonseparable representation of belief judgments for likelihoods of
events. When p is separable, i.e., for all A, B € Bs, p(A,B) = n(A) — n(B) for some
probability measure 7 on By, model (III) is reduced to SEU model.

There are many axiomatizations of SEU models (see a survey Fishburn, 1981).
In Savage’s (pure-act) formulation, preferences for pure acts in A are axiomatized
to arrive at desired representations. On the other hand, in lottery-act and act-lottery
formulations, we respectively enlarge X and .4 by randomization. A gamble on a set
Y is a nonnegative real valued function f on Y for which{f(y) : y € Y and f(y) > 0}
is finite and Y, f(y) = 1. Each f(y) is interpreted as (objectively known) probability
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number with which y obtains. Let G(Y) denote the set of all gambles on Y. In lottery-
act formulation, we consider preferences for lottery-acts that map S into G(X). Thus
the set of pure-acts is enlarged by changing ‘internal’ structure of pure-acts, that is,
change from the set of pure-outcomes to the set of randomized outcomes. In act-
lottery formulation, we consider preferences for gambles in G(A), i.e., the set of all
randomized pure-acts. This means no alteration of internal structure of pure-acts.
This point seems to be a conceptual advantage of act-lottery formulation.

Model (I) was axiomatized in various contexts (see Fishburn 1984a, 1988a;
Fishburn & La Valle 1987a and b; Nakamura, 1998). Model (II) is new in the liter-
ature. When |X| = 2, Fishburn (1983a and b) provided two axiomatizations for the
existence of p in model (IIT) under act-lottery formulation and pure-act formulation.
Nakamura (1997) axiomatized a slightly more general representation of model (III)
under pure-act formulation.

3 SSB Preferences

We adopt act-lottery formulation to develop necessary and sufficient conditions
for the nonseparable representations (I), (II), and (IIT) when § is finite. Let S =
{s1,-..,5,}. Then the set A of all acts can be identified with the n-Cartesian prod-
uct of X, i.e., X" =X X --- x X (n times). Elements of X" will be denoted by bold
faced small letters, x,y,z, and so forth. The i-component of x is written by Xt so
x = (x',...,x"), where each x' is the consequence of act x when state s; is true.
Gambles in G(X") will be denoted by bold faced capital letters, P,Q, R and so forth.
For P € G(X"), let P' denote the marginal probability distribution on i-component,
i.e., foralla € X,

Pla)=Y {P(x):¥' =aandx € X"}

Each x € X" is identified with gamble P in G(X") for which P(x) = 1. For
P,Q € G(X"), the convex combination of P and Q with respect to probability
number A, denoted (P,A,Q), is a gamble that yields outcome x with probability
AP(x)+(1—2A)Q(x) for all x € X". The compound gamble of m gambles Py, ..., P,
with equal probabilities is denoted by (Pj,...,P,). In particular, (P,Q) is tanta-
mount to <P, %,Q>.

We shall consider a binary preference relation > on G(X"). Two binary relations
~ and > on G(X") are defined as usual, i.e., P~ Qif = (P > Q ) and ~(Q > P), and
P> Qif —(Q + P). We say that a skew-symmetric function ® on X" x X" bilinearly
represents > if, for all P,Q € G(X"),

P-Q < )Y P(x)Q(y)®(x,y) >0,
x 'y

where skew-symmetry means that ®(x,y) = —®(y,x) for all x,y €X". We extend
the domain of ® to G(X") x G(X") by
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©(P,0) =) ) P(x)Qy)®(x.y)
Xy

for all P,Q € G(X"), so that ® on G(X") x G(X") is skew-symmetric (i.e.,
d(P,Q) = —D(Q,P) for all P,Q € G(X")) and bilinear (i.e.,

®((P,1,0).R) = 1®(P,R) + (1 - 1)®(P,R),
(R, (P,2,0)) = A2(R,P) + (1 - 1)P(R,0)

for all P,Q,R € G(X") and all 0 < A < 1). @ on G(X") x G(X") thus defined is
known as an SSB utility.

We say that > on G(X") is an SSB preference relation if the following three
axioms hold, which are understood as applying to all P,Q,R € G(X") and all 0 <
A<,

Axiom A1 (Continuity). If P> QandQ > R, thenQ ~ (P, o, R) forsome0 < o < 1.

Axiom A2 (Convexity). If P - R and Q = R, then (P,A,Q) - R; if R = P and
R>Q.thenR > (P,A,Q);if P~ R and Q ~ R, then (P,1,0) ~R.

Axiom A3 (Symmetry). If P - Q, Q > R, and Q ~ (P,R), then
<PaQ> ~ <P717R> — <Q7R> ~ <Rv/’{'aP>'

The representational implication of axioms A1-A3 is given by the following propo-
sition (see Fishburn, 1982):

Proposition 1. - on G(X") is an SSB preference relation if and only if there is a
skew-symmetric function ® on X" x X" which bilinearly represents . Furthermore,
® is unique up to a multiplicative transformation by positive constants.

Further generalizations of the proposition are found in (Fishburn & Nakamura 1991;
Nakamura 1990, 2001).

We shall write P ~ Q when P/ = Q' for i = 1,...,n. In what follows, we shall
require the SSB preferences to satisfy that all gambles in G(X") that yield identical
marginal probability distribution on each component are mutually indifferent. This
condition, which is necessary for models (I)—(III) under act-lottery formulation, is
stated in the following axiom, understood as applying to all P,Q € G(X").

Axiom A4 (Marginality—-Equivalence). If P ~ Q, then P ~ Q.

In multiattributed decision problem, however, notice that this axiom is generally
considered to be a restrictive assumption, where the i-th component x; of act x is
regarded as attribute i’s level of decision alternative x.

Although @ in Proposition 1 is a multivariate function on X", marginality-
equivalence further decomposes ® into sum of several bivariate functions on X?
and univariate functions on X, dubbed here a conditional additive decomposition. To
represent the decomposition, we need the following notations. Let N = {1,...,n}.
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A partition of N is a collection of mutually disjoint subsets of N whose union equals
N. When {Aj,...,A,} is a partition of N, we shall allow some of Aj,... A, to be
empty. When a',....a" € X and {Ay,...,A,,} is a partition of N, let a}h ay  de-
note act x € X" for which, fori=1,....,nand k= 1,...,m, x' = d* if i € A;. Given
x € X", acX,andi € N, we shall let X(iydg) denote a vector y € X" for which, for

k=1,...,n, _
X ifk=i,
Y Va4 otherwise,
and let ay denote a constant act x € X" for which x* = a for k = 1,...,n. Note that

x{ja;) is the same as x"{i}a{[}c, where {i}“ = N\ {i}, the complement of N.
The conditionally additive decomposition of & in proposition 1 is given by the
following proposition (see Fishburn, 1984b).

Proposition 2. Let @ be a skew-symmetric function on X" x X" which bilinearly
represents = on G(X"). Axiom A4 holds if and only if, for all x,y € X" and all
acX,

O(x,y) = Zcb(x{i}a(i)ay{j}a(j)) — (n—1) Y (P(xgaq),an) — P(ynag),an))-
L]

1

Fixing a € X in the proposition, we see that & is additively decomposed into bivari-
ate functions ®(x;3a(;),y1,14(j)) on X x X and univariate functions ®(x(;ya;),an)
on X.

When X = {a,b} and ay > by, Proposition 2 gives that, for all A,B C N,

D(apnbac,agbpe) =Y Y ®(agnbiy.agpb;)
i€A jEB
+ (1= [B]) Y. @(agybg),by) + (1 - A]) Y. ®(by,agpb(j)
i€A JjeB (2)

This is equivalent to (1) by defining p(A,B) = ®(asbac,apbp:) for all A,B C N.
Also, for all A,BC N,
A>"B < p(A,B) >0.

We see that p satisfies skew-symmetry (c) and conditional additivity (d). By the
uniqueness of @, we can assume that p(N,0) = 1, so normalization (a) is satisfied.
Ifagpbgy = by fori=1,...,n, then p thus defined satisfies monotonicity (b).

Given a subset ¥ of X", we say that > on G(Y) is independent if, for all
P,Q,R<cG(Y), (P,R) ~ (Q,R) whenever P ~ Q. The representational implication
of independent > on G(Y) is given by the following proposition (see Fishburn, 1982
for the proof).

Proposition 3. Let Y C X" and ® be a skew-symmetric function on X" x X" which
bilinearly represents > on G(X"). Then > on G(Y) is independent if and only if, for
allx,y,z €Y, ®(x,y)+P(y,z) + P(z,x) = 0.

Fixing z € Y in the proposition, we obtain an additive decomposition of & on
Y xY,ie., forallx,y €Y, ®(x,y) = u(x) —u(y), where u(-) = ®(-z).
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4 Axioms for Nonseparable Utilities

Throughout the rest of the paper, let @ be a skew-symmetric function on X" x X"
which bilinearly represents marginality-equivalent = on G(X"). We shall fix a° € X,
so Proposition 2 yields that, for all x,y €X",

D(x,y) = Z¢(x{i}a?i)7y{j}a (n-1) ( (xgiyaly,ay) - CI’(Y{i}a((),-)ﬂ%)) :
L i
3)
Necessary and sufficient axioms for models (I) and (IT) will be discussed in this
section and those for model (IIT) will appear in the next section. A key axiom is

domain-restricted independence which says that > on G(Y) is independent for any
subsets Y of X" that are appropriately chosen for each model.

4.1 SSA Structures

We show necessary and sufficient axioms for model (I), which is stated in our frame-
work as follows: there exist a skew-symmetric function ¢ on X x X and a probability
vector (7, ..., m,) € R" such that, for all x,y € X",

x,y) =Y mo(x
i
where m; >0 fori=1,...,nand }; m; = 1.
The following axiom applies to all a,b,c € X and all distinct i, j € N.

Axiom B1 (Domain-restricted Independence). > on G ({ay;c(;),byjc(jen'}) is
independent.

The representational implication of axiom B1 is given as follows.

Theorem 1. Axiom BI holds if and only if there exist n skew-symmetric functions
O1,..., 0, on X x X such that, for all x,y € X", ®(x,y) = ¥,; ¢:(x',y'). Further-
more, ¢;’s are unique up to a multiplicative transformations by common positive
constants.

Proof. The necessity of Bl easily follows. We show its sufficiency. Suppose axiom
B1 holds. Since > on G ({x{ }a ,y{j}a al }) is independent for all x,y € X", i
follows from Proposition 3 that

Dlxgaly,yja;) = PEmaly,ay) + Play.yya(;)-
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We then substitute this additive decomposition for (3) and get
D(x Z‘I’ X(3)a(y Yy Z ( (xqiyaly )+q>(a,ov,y{j}a‘3j)))
~(i-DY. (cb(x{i}a<,»>,aN> ~B(ygaly.ak))

= Y @(xqiyaly yiiyag)-

Thus deﬁning n skew- symmetric functions ¢; on X x X by ¢(a,b)
D(ay; }a( )2y a ) fori=1,...,n, we obtain the desired representation.

Ol

Given gambles Py,...,P, in G(X), let (Py,...,P,) denote gamble Q in G(X") for
which Q(x) = Py (x!) x - -- x P,(x") forallx € X". Thus Q' = P, fori = 1,...,n. Each
a € X is identified with gamble P in G(X) for which P(a) = 1. When P’ = P and
PI = afor j # i, we shall write (P;y,a(;) in place of (a,...,a,P,a,...,a) whenever
P is located at i-th position. We say that i € N is null if (P{i},a(i ) (Q{ 1,4 for
alPQeG(X)andalla € X.

The following axiom, which applies to all P,Q € G(X) and all a € X, says that
preferences for marginal probability distributions are independent of the state in
which those distributions are obtained whenever outcomes in other states are iden-
tical.

Axiom B2 (Interstate Consistency). If i,j € N are not null, then (Pj;y,a;) =
(Quiy-awm) i (Pry.aiy) = (Qgjyaq)-

Since the underlying outcome space X is the same under all states, this axiom seems
to be plausible unless ex post evaluation of outcomes is state-dependent.
Model (I) is completely characterized by axioms B1 and B2 as follows.

Theorem 2. Axiom Bl and B2 hold if and only if model (1) holds.

Proof. Necessity of axioms B1 and B2 is trivial. We show their sufficiency. Suppose
axioms B1 and B2 hold. Then by Theorem 1, ®(x,y) = ¥; ¢:(x',y"). Assume that i,
J € N are not null. Then

P((Pyiy,a()), (Qqiy-a ZZP ¢)¢i(b,c) >0
if and only if
O((Pyysa() (Qpjyra() = ;ZP(b)Q(c)%(b,C) > 0.

Thus by the uniqueness of SSB utilities on G(X) x G(X), ¢; = «;;¢; for a positive
constant ;. This completes the proof. (Il
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4.2 SSB Structures

We show necessary and sufficient axioms for model (II). The required decompo-
sition of @ in our framework is given as follows: there exist a skew-symmetric
function ¢ on X x X and a probability vector & € R” such that, for all x,y € X",

n n

D(x,y) = Z T (', y7).
1

i=1j=
The following axioms apply to all a,b,c,d € X and all i, j € N.
Axiom C1 (Betweenness of Event-mixture). If ay > by, then ay = a{i}b(i) > by.

Axiom C2 (Consistent Comparative Beliefs). If ay >~ by, cy >~ dy, and a{i}b(,-) ~
(an,A,by) for some 0 < A <1, then c(jyd;) ~ (cn, A, d) -

Axiom C3 (Strong Domain-restricted Independence). If a;;b(;) ~ (an, ot,by)
and cgjydj ~ (cn,B,dy) for some a,B € (0,1), then <a{i}b(i)7<cN,ﬁ,dN>> ~
{eqjydys (an, t:bw)).
Betweenness of event-mixture seems plausible, although it may be violated in some
situations. Axiom C2 is crucial to derive subjective probabilities through preference
judgments. However, it is argued that indifference judgments in the axiom might
depend on selected pairs of outcomes.

Although axiom C3 does not look like domain-restricted independence condi-

tion, it does imply the independence on some restricted domains. To see this, we
need the following lemma.

Lemma 1. Suppose agiybi) ~ (an,a,by) and agjbi;) ~ (an,B,by) for some
o,B € (0,1). Then

(1) ®(agiyby,an) = (1 - ) P(by, ay).
(2) @(agpbg),bn) = ad(ay,by).
(3) CIJ(a{,»}b(,-),a{j}b(J-)) = (Ot —ﬁ)fb(aN,bN).

Proof. (1) Since agpag) ~ (ay,A,ay), Axiom C3 implies (agyb;), (an,A,an)) ~
(agjya(j), (an, o, by)), so that

@(a{i}b([),a{j}am) = <I>(<aN, Ot,bN> s (aN,l,aN»
= (1 — Ot)(b(bN,ClN).

(2) and (3) similarly obtain. Q.E.D.

By Lemma 1(2) and Lemma 1(3), we have

P (agyby,agyby) = @ (apyba).by) +P(by,agjybj).
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Substituting this for (2), we obtain that, for all A,B C N,

D(apbac,apbpe) Z Z a{ }b ,bN) +CI>(bN,a{j}b(j>))

i€A jeB
+ (1 — |B|) Zq)(a{[}b(i>,bN) + (1 - ‘AD Z (I)(bN7a{/}b(/))
icA JjeB
= Y @(agybg,bv) + Y (bx,agjyb()
icA jeB

= (I)(aAbAc7bN) —i—CI)(bN,aBbBc)

which implies that > on G ({aabac,apbpe,by}) is independent.
The following theorem says that axioms C1-C3 completely characterize
model (II).

Theorem 3. Axioms CI1-C3 hold if and only if model (II) holds.

Proof. The necessity of axioms C1-C3 easily obtains. Thus we show their suffi-
ciency. Let ay - by. Then by axiom C1, ay = agjb;) = by. By Axioms Al and A2,
agiyby ~ (an, m;,by) for a unique 0 < m; < 1. By axiom C2, cqid(iy ~ (e, T, dy)
whenever cy > dy. Since <a{1}b S aiyb n)> = <aN, %,bN>, axiom A4 implies
<a{1}b(1),...,a{n}b(n)> <aN, ,b > Thus,

0=n® ((apybq).-- - apmybw)  (an, 1. bn))
=Z_‘I>(a{i}b<f>v<azvv;,bzv>)

—Z P(agybg),an) + (1 - 3) Plagybg),by))

=Y (3(1 - m)@(by,an) + (1 - }) m®(ay,by)) (by Lemma I(1) and (2)

=®(by,an) Y (n,» - ’11)

i

so that }; ; = 1. Hence T = (7y,...,,) is a probability vector.

Take any x,y € X", Assume that Xy = a and yy = a® for i =1,...,n. Then by
axiom C2, xy; }a(l) <x T, a > and y; }a(l) <y i, a > for i =1,...,n. Thus by
axiom C3, <x{i}a(()i), <y1];,77tj7ao>> ~ <y{j}a(()j)7 <x§v,7r,-7a0>> for all i, j € N, which
gives

D(xgyal).yjal;) = TP (s ) + (1 = 7)) D(xly, af) + 71 — 7)) D(a, )
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Substituting this for (3), we obtain
Dx,y) =) (ﬂiﬂjq)(vaan;z) + (1 — 7)) D(xy, ay) + (1 — ﬂi)qD(aR/,yf;/))
iJ
- (I’l - 1)2 (7[[@()(?5\/,612;) - ﬂ[(l)(yj\/,a?v))
i

= Zmn, (x40
ij

which does not depend on choice of a°. Letting ¢ (a,b) = ®(ay,by) forall a,b € X,
we obtain the desired result. O

5 SEU with Nonseparable Beliefs

We show necessary and sufficient axioms for model (III), which is stated in the
present framework as follows. Given any x,y €X”, let x',y' € {a',...,a™} fori =
l,...,nand @' = -+ = @™ For k=1,...,m, let Ay = {i € N: x' =d*} and By =
{i EN:y = ak}, so that {Ay,...,A,,} and {B,...,B,,} are partitions of N. Note
that x and y are respectively represented by a}h ---ay and a}gl -+-ag . Then model
(IIT) yields a real valued function u on X and a bivariate set function p on 2V x 2V,
satisfying (a)—(d), such that

m—1

D(x,y) :q)(a};l aA ,aBl aBm Z p (UAJ7 UB ) ( l+1 (ai)> )

The following axiom applies to all a,b,c € X with ay > by and by > ¢y and all
A,BCN.

Axiom D1 (Domain-restricted Independence). - on G ({aabac,by,bpcpe}) is in-
dependent.

When A = N and B = 0, axiom D1 means that > on G ({an,by,cn }) is independent,
so that > is a weak order (i.e., > and ~ are transitive) if > is restricted to the set of
all constant acts.

The important implication of axiom DI is the following decomposition of P,
whose proof will be deferred to the appendix.

Theorem 4. Axiom DI holds if and only if, for all positive integers m, all partitions
{Ay,...,An} and {By,... By}, and alla',... ,a" € X,
q>(a1 cdm gl gt )
AI Am> Bl B
_ 12 1 2 2 3 m 2 3 m
= Cb(aAlaAzumuAmaaBlaBzumLJBm) +q)(aA1UA2aA3 ©-ay, sAB,UB, 4B, ~aBm)

whenever a' = -+ = a™.
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By applying the decomposition of the above theorem consecutively, it immediately
follows that

1 m 1 m
¢(aA1 ...aAm7aBl ...aBm)

_ 1 2 1 2 2 3 2 3
= D(ay, az, .. UA,,, ,ap,ap,.-uB,) T P304, %450.-0A,, OB, UB, B3 U--UB,,)

m—1 a
+ +¢(aA U UAn 1 Am aBIU UBm 1 Bm) (4)

We need to further decompose each term in (4) as ®(agbac,apbpe) = (a,b)p(A,B)
for two bivariate functions, it >0 on X x X and p on 2V x 2V, satisfying properties
specified in the Theorem 5 below. This decomposition requires that preferences for
gambles in G ({aabac : A C N}) depend on subsets A of N but not on choice of a,b €
X with ay > by. This requirement is stated in the following axiom, understood as
applying to all a,b,c,d € X.

Axiom D2 (Consistent Comparative Probability). If ay > by,cy = dy, P,0Q €
G ({aabac :ACN}), and P',Q' € G({cadac :ACN}), then P~ Q < P - Q'
whenever P(agbac) = P'(cadac) and Q(apbac) = Q' (cadac) for all A C N.

It may be argued that as in axiom C2, preference judgments in axiom D2 depend
on selected pairs of outcomes in some situations. If this is the case, then likelihood
judgments about events cannot be derived from preference judgments for random-
ized acts.

The implication of axioms D1 and D2 is given as follows.

Theorem 5. Axioms DI and D2 hold if and only if there exist a nonnegative bi-
variate function u on {(a,b) € X xX :ay = by} and a skew-symmetric, condi-
tionally additive function p on 2N x 2V such that, for all a,b,c € X with ay >
by = cn, u(a,c) = w(a,b)+ u(b,c), and, for all positive integers m, all partitions
{A1,...,Apn} and {By,...,By}, and alla',...,a" € X,

m—1
1 1 k 1
®(ay,--aj qap, --ap,) = ), plat,at (UAuUE‘)
k=1 i=1 =1

Proof. Necessity of axioms D1 and D2 easily obtains. Thus we assume that axioms
D1 and D2 hold. Assuming that the hypotheses of axiom D2 hold, we obtain that

Y. Y P(aabac)Q(apbpe)®(anbac, apbp) >0
ACN BEN

— Y Y P(apnbac)Q(apbpe)P(cadac,cpdpe) > 0.
ACNBCN

By the uniqueness of SSB utility, we obtain that, for all A,B C N, thereisa A > 0
such that CID(aAbAc,aBbBc) = A,CD(CAdAC,CBdBr).

Fix a’,p" € X with a¥, = bY. Define p(A,B) = ®(a$bY.,a%b% ) for all A,B C N.
Then for all a,b € X with ay > by, ®(asbac,agbpe) = (a,b)p(A,B) for some
w(a,b) > 0. When ay ~ by, let (a,b) = 0.

Skew-symmetry of p follows from skew-symmetry of ®. Conditional additivity
of p follows from (2). It follows from the decomposition of Theorem 4 that, for
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all a,b,c € X with ay = by = ¢y, U(a,c) = u(a,b)+ pu(b,c). This completes the
proof. ]

Since model (IIT) requires that pt(a,b) = u(a) — u(b) for a real valued function
u on X, we must have U(a,b) = p(c,d) whenever ay ~ cy and by ~ dy. This is
ensured by the following axiom, which applies to all a,b,c,d € X and all A,B C N.

Axiom D3 (Consistent Outcome Utility). If ay > by, ay ~ ¢y, and by ~ dy, then
(aabac, A, cpdpe) ~ (cadac,A,apbpe) for all 0 < A < 1.

The last axiom, which applies to all a,b € X and all A,B C N, simply says that p
on 2V x 2V satisfies monotonicity (b).

Axiom D4 (Monotonicity). If ay >~ by and A O B, then asbsc = apbpe.
The implication of axioms D3 and D4 is stated in the following theorem.
Theorem 6. Axioms D1-D4 hold if and only if model (III) holds.

Proof. Necessity of axioms D1-D4 easily obtains. Thus we assume that axioms
D1-D4 hold. Let & on {(a,b) € X x X :ay = by} and p on 2V x 2V be obtained
in Theorem 5. If ay > by and A D B, then axiom D4 implies ®(asbac,apbpe) > 0.
By Theorem 5, ®(asbac,agbpe) = p(a,b)p(A,B), so that p(A,B) > 0. Hence p is
monotonic. Since ay = by, ®(agby,apbs) > 0, so p(S,0) > 0. By the uniqueness of
SSB utility, with no loss of generality, we can normalize p(S,0) = 1.

It remains to show that if ay > by, ay ~ ¢y and by ~ dy, then u(a,b) =
u(e,d) > 0. By axiom D3, ®(agbac,cadac) = ©(apbpe,cpdpe) = 0 and, for all
0<A<l,

(I>(<aAbAc,},,CBdBc> 5 <CAdAc, l,a3b3c>) = l(] — ﬂ,) (CID(aAbAc,aBbBc)
-I-CI)(CBdBC,CAdAL‘)) =0.

Thus ®(apbac,agbpe) = D(cadpc,cpdpe). By Theorem 5, u(a,b)p(A,B)
u(ce,d)p(A,B), so u(a,b) = p(c,d). This completes the proof.

Ol

6 Conclusions

We studied necessary and sufficient axiomatizations of three nonseparable repre-
sentations in decision making under uncertainty when the state space is finite. The
first two models (I) and (II) deal with nonseparability of outcome utilities but yield
additive subjective probabilities. On the other hand, the last one (III) is concerned
with nonseparability of subjective likelihood judgements but retains weakly ordered
preferences for decision outcomes.

Our axiomatizations are based on act-lottery formulation, in which pure-acts are
randomized. Thus internal structures of acts remain unchanged. Usual axiomatiza-
tions applying randomization in the literature adopt lottery-act formulation, which
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alters internal structures of acts by randomizing pure-outcomes. Although the for-
mer seems to have a conceptual advantage over the latter, marginality-equivalence
condition imposed on SSB preferences is rather restrictive. At present, I have no
idea how to escape from this restrictiveness. Thus it may be desirable to find axiom-
atizations in pure-act formulation, that is, without randomization, where only model
(I) has such an axiomatization.

Another open problem is to explore the extensions to infinite S. There are a few
axiomatizations for model (I), but no such an axiomatization for models (II) and
(IIT) is discovered.

Appendix

This appendix proves Theorem 4. Since the necessity of axiom D1 easily follows,
we show its sufficiency below. Assume that axiom D1 holds. We need the following
decompositional implications of axiom DI.

Lemma 2. Suppose that ay = by = cy = dy and k,{ € N. Then
(1) D(agycq)bieyey) = Plagy by, by) +P(bugew), bieyer))-
(2) @(agycp,en) = Plagbry),bn) +P(bryc,cn)-

(3) @ (aggd i cieydin) = Plagybu,bn) + P (brgdw,cind))
Proof. First we show (1) and (2) which are combined into

q’(“{k}c(k)ablc(l)) = @(a{k}b () bN)—‘r-Cp(b{k}C b]C ))

where [ is either @ or {¢}. Since <a{k}c(k by, bic(; )> <b1c sagnb b{k}c(k)>,
marginality-equivalence implies & (<a{k} C(k)» b, breq > <blc sy by b e >)
= 0, which gives

@ (agy ey, breay) + @by, aga b)) +P(bic), bugcr))
= P(agyb, aycu)) + Ly cw) agc ) + P(brew), by)
+@(byycwy),bn) +Plagy by, bic)-

We show that the right-hand side vanishes. To show this, we need to have

Pagy b, apyew) + Pbpyew) agcr) = P (bv,ag b)) + by, bige),
(a{k}b blc )) = ‘I’(bN,bIC(I)) +q)(a{k}b(k)7bN)~

Since (agyb), bixycr)) = (agyc), b ), marginality-equivalence implies the first.
By axiom D1,

D(agy by, by ) +P(bn,bic()) + P(bic(y, agn b)) =0,

which is the second.
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The claim (3) follows from (1) and (2) as follows:
® (“{k}du)vC{ﬂ}dw) = P(age()en) + P (C{k}d<k>70{4}d<a) (by (1))
=P(agyb),bn) + Pbycp) o) + P <C{k}d(k)vc{é}d(4)> (by (2))
=®(agyby),bn) + P <b{k}d(k)7c{i}d(/)) (by (1))
This completes the proof. ]

Sufficiency proof of Theorem 4. Assume thata' > --- > ™ and {A1,...,A,,} and
{Bi,...,By} are partitions of N. By Proposition 2, we obtain

1 m 1 m 2 3 m 2 3 m
q)(aAl Trdp,sapy e 'aBm) - cb(aAlquaAg ©rap,, 4B UBdB; " 'aBm)

) Y @ (ayafpy.alyay ) — (o Z Y @ (afyyafi.ai)

i=1 j=1 keA; (eB; i=1 keA;
+n=1) Z Y @ (afyayaf) - Z Z Y Y o (ajyaliafay)
j=1 (eB; i=2 j=2 keA} ZEB*v
+(n-1) D (da (n—1) @ (al
£ Eolusa) o £ Eolen)
=Y T o(eodipalndt) X T X (@ (aik}azww%)
k€A (€B J=2 keAy (€B;

- (“?k}"%’“@}a%))

Y Y (@ (afyatiy afnatyy) - @ (aafyyatyaly))

i=2 keA; (B,
- ¥ ¥ o (dgalyalnal)
k€A (eB)
—(n— l)kg ((ID (a%k}a?}c),aﬁ) - (a%k}az';{),a%))
1
+(n—1) I;’ (CID (aie}az’}),aﬁ> -® (a@}a’&),aﬁ)) ,
/€B)

where A5 = A1 UA,,B; = BiUBy,Af =A;, and Bf =B, fori=2,...,m. We are
to show that the last expression of the above equation, referred to as LE hereafter,

1 2 1 2
exactly equals CIZ'(aA1 ‘?AzumuAmvaBlaBzu-~-uB,,,)~
By Lemma 2, for j =2,...,m,

@ (el afyaly) - @ (el afyaly ) =@ (i at).
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We substitute this for LE and obtain

LE=Y ¥ @ (ayalalgaly) - ¥ ¥ @ (adgal.atyal)

keA1 leB) keA) (eBy
Z@(a k}a )—I—Z Z ZCID(aN,a{[}a )
J=2 k€A (eB; i=2 keA; (€B)
—(n— 1)k§ ( (a%k}a m) D (a%k}a’(’}(),a}(}))
+(n— 1)[625 (dJ (a%[}az'z),a%) (a%(,}am ,a’"))
1

Noting by skew-symmetry of ® that

) q’(“fk}“ﬁ»“?«}“%) =2 ) 4’(0@}&%,0@}0%)

k€A (€B k€A (eB
2 2
+ Y Y o(adydiatndy).
keA{ LeN

LE is rearranged to give

=Y Y o(ayalaipaly)+ ¥ ¥ (@ (alyah.ah)

keA; (eBy k€A, (eBy
2 m 2 m
JrCI)(a{k}a k ,a{g}a 0 ))

+ Y Y o(aydyadpal)+ ¥ Y (@ (ckalyal)

keA{ (B keA{ (eB;

—|—<D(a{k} a{,}a ))

+mn{2¢@m%w@+2¢@w%#ﬁ
keA]

keA;

+(n—1) {Z@(a{é} aN)—i—ZCID(a{[}a ()@ )},

Hence this is easily modified to the exact expression of conditionally additive de-
composition of dJ(a}ha%zUmmm , a}gl a%zu,_,UBm), since, by Lemma 2,

D(afyafy.ay) + Plafyay.ajyaly) = lajyaly.aiyafy).

This completes the proof. O
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Decision Making Based on Risk-Value Tradeoffs

Jianmin Jia and James S. Dyer

1 Introduction

This essay provides a review for measures of risk and risk-value models that we
have developed for the past ten years. Risk-value models are a new class of decision
making models based on the idea of risk-value tradeoffs. Intuitively, individuals
may consider their choices over risky alternatives by trading off between risk and
return, where return is typically measured as the mean (or expected return) and
risk is measured by some indicator of dispersion or possible losses. This notion is
prevalent in the literatures in finance, marketing and other areas.

Markowitz (1959, 1987, 1991) proposed variance as a measure of risk, and a
mean-variance model for portfolio selection based on minimizing variance subject
to a given level of mean return. But arguments have been made that mean-variance
models are appropriate only if the investor’s utility function is quadratic or the joint
distribution of returns is normal. However, these conditions are rarely satisfied in
practice.

Previous researchers usually consider expected utility theory as the foundation
of mean-risk models and risk-return models (e.g., Fishburn, 1977; Meyer, 1987,
Bell, 1988, 1995; Sarin & Weber, 1993). However, the expected utility theory has
been called into question by empirical studies of risky choice (e.g., Allais, 1953,
1979; Kahneman and Tversky, 1979; Machina, 1987; Weber, 2001). This suggests
that an alternative approach regarding the paradigm of risk-return tradeoffs would
be of interest.

The notion of risk as a primitive concern has also been investigated extensively,
and a number of perceived risk models have been proposed (e.g., Pollatsek &
Tversky, 1970; Coombs & Lehner, 1981, 1984; Luce, 1980; Fishburn, 1982, 1984;
Luce & Weber, 1986; Sarin, 1987, Lowenstein et al., 2001, Weber et al., 2004).
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These risk models have two major problems: first, the validity of most of these risk
models as measures of perceived risk has not been supported by empirical stud-
ies (e.g., Coombs & Bowen, 1971; Coombs & Lehner, 1981, 1984; Weber, 1984;
Keller, Sarin & Weber, 1986; Weber & Bottom, 1989; Weber 2001); second, it is
not clear how to incorporate these risk measures into decision models because they
were developed separately from preference measures. Thus, the usefulness of these
risk measures is limited in efforts to model or to improve decision making.

In the main stream of decision research, the role of risk in determining prefer-
ence is usually considered implicitly. For instance, in the expected utility model
(von Neumann & Morgenstern, 1947), an individual’s attitude toward the risk in-
volved in choices among risky alternatives is defined by the shape of his or her
utility function (Pratt, 1964); and in some non-expected utility models, risk (or “ad-
ditional” risk) is also captured by some nonlinear functions over probabilities (e.g.,
see Kahneman and Tversky, 1979; Quiggin, 1982; Tversky & Kahneman, 1992, Wu
& Gonzalez, 1996). Thus, these decision theories are not, at least explicitly, com-
patible with the choice behavior based on the intuitive idea of risk-return tradeoffs
as often observed in practice. Therefore, they offer little guidance for this type of
decision making.

In this essay, we review our risk-value studies and provide a framework that
is compatible with choice behavior based on risk-value tradeoffs. In particular, our
framework unifies two streams of research: one in developing preference models and
the other in modeling risk judgments. This synthesis makes our risk-value models
more descriptively powerful than other preference models and risk models that have
been proposed separately.

The remainder of this paper is organized as follows. The next section provides a
preference-dependent measure of risk with several useful examples. Section 3 devel-
ops the basic framework of our risk-value studies and related preference conditions.
Section 4 presents three particular forms of risk-value models. Section 5 concludes
our risk-value studies and discusses topics for future research.

2 The Standard Measure of Risk

In order to develop risk-value models, we first propose a preference-dependent
measure of risk, called a standard measure of risk, that offers a new foundation
for research regarding risk judgments and decision making by risk-value tradeoffs
(Jia & Dyer, 1996). This general measure of risk is based on the converse ex-
pected utility of normalized lotteries with zero-expected values, so it is compatible
with the measure of expected utility and provides the basis for linking risk with
preference.

For lotteries with zero-expected values, we assume that the only choice attribute
of relevance for them is risk. A riskier lottery would be less preferable and vice
versa, by any risk averse decision maker. Therefore, the riskiness ordering of these
lotteries should be simply the reverse of the preference ordering. We consider
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decomposing a lottery X (i.e., a random variable) into its mean X and its standard
risk, X’ = X — X, and the standard measure of risk is defined as follows:

R(X") = —E[u(X')] = —Elu(X - X)], (1)

where u(+) is a utility function (von Neumann & Morgenstern, 1947) and the symbol
E represents expectation over the probability distribution of a lottery. The mean of
the lottery serves as a status quo for measuring the standard risk.

One of the characteristics of our standard measure of risk is that it depends on
an individual’s utility function. When the form of the utility function is determined,
then we can derive the associated standard measure of risk. More important, our
standard measure of risk can offer a preference justification for some commonly
used measures of risk so that the suitability of those risk measures can be evaluated.

If a utility function is quadratic, u(x) = ax— bx2, where a,b > 0, then the standard
measure of risk is characterized by variance, R(X') = bE[(X — X)?]. However, the
quadratic utility function has a disturbing property; that is, it will be decreasing
after a certain point and it exhibits increasing risk aversion. Since the quadratic
utility function may not be an appropriate description of preference, it follows that
variance may not be a good measure for risk (unless the distribution of a lottery is
normal).

To obtain an increasing utility function based on the quadratic one, let us con-
sider a third-order polynomial (or cubic) utility model, u(x) = ax —bx” +c'x>, where
a,b,c’ > 0. When b” < 3ac’, the cubic utility model is increasing. This utility func-
tion is concave, and hence risk averse for low outcome levels (i.e., x < b/(3c’)),
and convex, and thus risk seeking for high outcome values (i.e., x > b/(3¢’)). Such
a utility function may be used to model a preference structure consistent with the
observation that a large number of individuals purchase both insurance (a moderate
outcome-small probability event) and lottery tickets (a small chance of a large out-
come) in the traditional expected utility framework (see Friedman & Savage, 1948).
The associated standard measure of risk for this utility function can be obtained as
follows:

R(X') = E[(X - X)?] - cE[(X - X)*], 2)

where ¢ = ¢’ /b > 0. Model (2) provides a simple way to combine skewness with
variance into a measure of risk. This measure of risk should be superior to variance
alone since the utility function implied by (2) has a more intuitive appeal than the
quadratic one implied by variance.

Markowitz (1952) noted that an individual with the utility function that is con-
cave for low outcome levels and convex for high outcome values will tend to prefer
positively skewed distributions (with large right tails) over negatively skewed ones
(with large left tails). The standard measure of risk (2) clearly reflects this observa-
tion; i.e., a positive skewness will reduce risk and a negative skewness will increase
risk.

If an individual’s preference can be modeled by an exponential or the quadratic
utility function, u(x) = ax — bx?, where a > 0, and b, ¢ > 0, then its corresponding
standard measure of risk (with the normalization condition R(0) = 1) is:
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R(X') = E[e=™¥%) ). 3)

Bell (1988) identified E[e X ~X)] as a measure of risk from the linear plus exponen-
tial utility model by arguing that the riskiness of a lottery should be independent of
its expected value. Weber (1990) also modified Sarin’s (1987) expected exponential
risk model by requiring that the risk measure be location free.

If an individual is risk averse for gains but risk seeking for losses (Fishburn &
Kochenberger, 1979; Kahneman and Tversky, 1979), then we can consider a piece-
wise power utility model as follows:

“4)

u(x) = ex® , when x > 0
—d|x|%, whenx <0
where e, d, 8; and 6, are non negative constants. According to (1), the correspond-
ing standard measure of risk is:

R(X") =dE"[|X —X|?] —eE*[|X - X|*], Q)

where E-[|X — X|%] = [X_|x— X|% f(x)dx,

ET[X — X|%] = [F(x—X)% f(x)dx and f(x) is the probability density of a
lottery.

The standard measure of risk (5) includes several commonly used mea-
sures of risk in the financial literature as special cases. When d > e > 0,
01 = 6, = 0 > 0 and the distribution of a lottery is symmetric, then we can have
R(X') = (d — e)E|X — X|®, which is associated with variance and absolute standard
deviation if 8 =2 and 6 = 1 respectively. This standard measure of risk is also
related to the difference of d and e, which reflects the relative effect of loss and
gain on risk. In general, if the distribution of a lottery is not symmetric, the standard
measure of risk will not be connected with variance even if 6; = 6, = 2 but it is still
related to the absolute standard deviation if 8; = 6, = 1 (Jia, Dyer & Butler, 2001).

Based on preference considerations, the absolute standard deviation should be
a better choice than the variance as a measure of risk. In the financial literature,
this point has been made by Konno & Yamazaki (1992). In statistics, the absolute
standard deviation is also considered a more robust measure for dispersion than
variance.

Another extreme case of (5) arises when e = 0 (i.e., the utility function is non
increasing for gains); then the standard measure of risk R(X') = dE~[|X — X|%],
which is a lower partial moment risk model. When 6, = 2, it becomes a semi-
variance measure of risk (Markowitz, 1959); and when 6, = 0, it reduces to the
probability of loss.

In summary, some other proposed measures of risk are special cases of our stan-
dard measure of risk. The standard measure of risk is more normative in nature, as it
is independent of the expected value of a lottery. To obtain more descriptive power
and to capture perceptions of risk, we have also established measures of perceived
risk that are based on a two-attribute structure: the mean of a lottery and its standard
risk (Jia, Dyer & Butler, 1999).
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3 Frameworks for Risk-Value Tradeoff

When we decompose a lottery into its mean and standard risk, then the evaluation of
the lottery can be based on the tradeoff between mean and risk. We assume a risk-
value preference function f(X,R(X")), where f is increasing in X and decreasing in
R(X') if one is risk averse.

Consider an investor who wants to maximize his or her preference function f
for an investment and also requires a certain level ut of expected return. Since f is
decreasing in R(X’) and X = p is a constant, then maximizing f(X,R(X")) is equiv-
alent to minimizing R(X'); i.e., max {f(X,R(X"))|X = u} = min{R(X")|X = u}.
This conditional optimization model includes many financial optimization models
as special cases by choosing different standard measures of risk; e.g., Markowitz’s
mean-variance model, the mean-absolute standard deviation model, and the mean-
semivariance model. We can also propose some new optimization models based on
our standard measures of risk (2) and (5).

In the conditional optimization problem, we do not need to assume an explicit
form for the preference function f. The problem only depends on the standard mea-
sure of risk. However, we may argue that an investor should maximize his or her
preference functions unconditionally in order to obtain the overall optimal portfo-
lio. For an unconditional optimization decision, the investor’s preference function
must be specified. Here we consider two cases for the preference function f: (1)
when it is consistent with the expected utility theory; and (2) when it is based on a
two-attribute expected utility foundation.

Let P be a convex set of all simple probability or lotteries {X, Y, ...} on a non-
empty set X of outcomes, and Re be the set of real numbers (assuming X € Re is
finite). We define > as a binary preference relation on P.

Definition 1. For two lotteries X,Y € P with E(X) = E(Y), if wo +X > wo +Y for
some wo € Re, then w+X = w+Y for all w € Re.

This is called the risk independence condition. It means that for a pair of lotteries
with a common mean, the preference order between the two lotteries will not be
changed when the common mean changes; i.e., the preference order can be deter-
mined solely by the ranking of their standard risk.

Theorem 1. Assume that the risk-value preference function f is consistent with the
expected utility theory. Then f can be represented as the following standard risk-
value form,

FXR(X)) =u(X) — ¢ (X)[R(X") — R(0)], (©)
if and only if the risk independence condition holds, where @(X) > 0 and u(-) is a
von Neumann and Morgenstern utility function.

Model (6) shows that an expected utility model could have an alternative repre-
sentation if the risk independence condition holds. If one is risk averse, then u(-)
is a concave function and R(X') — R(0) is always positive. u(X) provides a mea-
sure of value for the mean, and @(X) is a tradeoff factor that may depend on the
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mean. If we further require the utility model to be continuously differentiable, then
it must be either a quadratic, exponential, or linear plus exponential model (Jia &
Dyer, 1996).

There are also some other alternative forms of risk-value models within
the expected utility framework under different preference conditions (Sarin &
Weber, 1993; Bell, 1995; Dyer & Jia, 1998). In addition, for non-negative lotteries
such as those associated with the price of a stock, we propose a relative risk-value
model that is compatible with the logarithmic (or linear plus logarithmic) and the
power (or linear plus power) utility functions (Dyer & Jia, 1997).

However, the notion of risk-value tradeoffs within the expected utility framework
is very limited. In particular, the risk measure and the value measure must be based
on the same utility function. Intuitively, a decision maker may deviate from this
“consistency” to have different measures for risk and value if his choice is based on
risk-value tradeoffs.

In order to be more realistic and flexible in the framework of risk-value tradeoffs,
we consider a two-attribute structure (X, X”) for the evaluation of a risky alternative
X. In this way we can explicitly base the evaluation of lotteries on two attributes,
mean and risk, so that the mean-risk (or risk-value) tradeoffs are not necessarily
consistent with the traditional expected utility framework.

We assume the existence of the von Neumann and Morgenstern expected utility
axioms over the two-attribute structure (X, X’) and require the risk-value model
to be consistent with the two-attribute expected utility model, i.e., f(X,R(X')) =
E[U(X,X')], where U is a two-attribute utility function. As a special case when the
relationship between X and X’ is a simple addition, the risk-value model reduces to a
traditional expected utility model, i.e., f(X,R(X")) =E[U(X,X")]| =E[U(X +X')] =
E[U(X)] = aE[u(X)] +b, where a > 0 and b are constants.

To obtain some separable forms of the risk-value model, we need to have a risk
independence condition for the two-attribute structure. Let P be the set of normal-
ized lotteries with zero-expected values, and > a strict preference relation for the
two-attribute structure.

Definition 2. For X', Y’ € P, if there exists a wy € Re for which (wg,X’) = (wo,Y’),
then (w,X’) > (w,Y’) for all w € Re.

This two-attribute risk independence condition requires that if two lotteries have
the same mean and one is preferred to the other, then transforming the lotteries by
adding the same constant to all outcomes will not reverse the preference ordering.
This condition is generally supported by our recent experimental studies (Butler,
Dyer & Jia, 2005).

Theorem 2. Assume that the risk-value preference function f is consistent with the
two-attribute expected utility model. Then f can be represented as the following
generalized risk-value form,

FXRX) =V(X) = ¢(X)[R(X") = R(0)] (7

if and only if the two-attribute risk independence condition holds, where ¢ (X) > 0
and R(X') is the standard measure of risk.
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In contrast to the risk-value model (6), three functions V (X),R(X’) and ¢(X) in
this generalized risk-value model (7) can be considered independently, which leads
to a very flexible structure for risk-value tradeoffs. Thus we can choose different
functions for the value measure V(X) instead of the utility function. The expected
utility measure is only used for the standard measure of risk. Even though expected
utility theory has been challenged by some empirical studies for general lotteries,
we believe that it should be appropriate for describing risky choice behavior within a
special set of normalized probability distributions with the same expected values. In
fact, the generalized risk-value model can capture a number of decision paradoxes
that violate the traditional expected utility theory (Jia, 1995).

If the utility function u is strictly concave, then R(X’) — R(0) > 0 and model (7)
will reflect risk averse behavior. In addition, if V(X) is increasing and twice con-
tinuously differentiable, ¢ (X) is once continuously differentiable and ¢'(X) /¢ (X)
is nonincreasing, then the generalized risk-value model (7) exhibits decreasing risk
aversion if and only if —V"(X)/V'(X) < —¢'(X)/¢(X); and the generalized risk-
value model (7) exhibits constant risk aversion if and only if —V"(X)/V/(X) =
—¢'(X)/¢(X) is a constant. Thus, if a decision maker is decreasingly risk averse
and has a linear value function, then we must choose a decreasing function for the
tradeoff factor ¢(X).

The basic form of the risk-value model may be further simplified if some stronger
preference conditions are satisfied. When ¢(X) = k > 0, model (7) becomes the
following additive form:

fXR(X") =V(X) = k[R(X") = R(0)]. ®)

When ¢ (X) = —V(X) > 0, then model (7) reduces to the following multiplicative
form:

f(XR(X') = V(X)R(X), ©)
where R(0) = 1 and V(0) = 1. In this multiplicative model, R(X") serves as a value
discount factor due to risk.

We also develop measures of perceived risk based on the converse interpretation
of the axioms of risk-value models, and thus a negative linear transformation of
the risk-value model (7) provides a measure of the perceived risk for an individual
(Jia et al., 1999). Our risk-value framework offers a unified approach to both risk
judgment and preference modeling.

4 Generalized Risk-Value Models

According to the generalized risk-value model (7), the standard measure of risk, the
value function, and the tradeoff factor can be considered independently. Some ex-
amples of the standard measure of risk R(X') are provided in Section 2. The value
measure V (X) should be chosen as an increasing function and may have the same
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functional form as a utility model. For appropriate risk averse behavior, the tradeoff
factor ¢(X) should be either a decreasing function or a positive constant; e.g.,
¢ (X) = ke™"X, where k > 0 and b > 0. We consider three types of risk-value models,
namely moments risk-value models, exponential risk-value models and generalized
disappointment models as follows.

4.1 Moments Risk-Value Models

People often use mean and variance to make tradeoffs for financial decision mak-
ing because of their operational advantages and because they provide a reasonable
approximation for modeling decision problems (see Markowitz, 1959, 1987, 1991;
Sharpe 1970, 1991). In the past, expected utility theory has been used as a founda-
tion for mean-variance models. Now we can provide a better foundation, the risk-
value theory, for developing moments models that include the mean-variance model
as a special case.

As an example, the mean-variance model, X — kE[(X — X)?]where k > 0, is a
simple risk-value model with variance as the standard measure of risk and a con-
stant tradeoff factor. Sharpe (1970, 1991) assumed this mean-variance model in his
analysis for portfolio selection and the Capital Asset Pricing Model. However, under
the expected utility framework, this mean-variance model is based on the assump-
tions that the investor has an exponential utility function and that returns are jointly
normally distributed.

According to our risk-value theory, this mean-variance model is constantly risk
averse. To obtain a decreasing risk averse mean-variance model, we can simply use
a decreasing function for the tradeoff factor:

f(X,R(X')) =X —ke " E[(X — X)?] (10)

where b, k > 0.

For many decision problems, mean-variance models are an over simplification.
Based on our risk-value framework, we can develop some richer moment models
for risky decision making. First, let us consider the moment standard measure of
risk (2) for the additive risk-value model (8):

F(XR(X")) =X — K{E[(X - X)*] - cE[(X - X)*]}, (11)

where ¢, k > 0. The three moments model (11) can be either risk averse or risk
seeking, depending on the distribution of a lottery. For symmetric bets or lotteries
not highly skewed (e.g., an insurance policy) such that E[(X —X)?] > cE[(X —X)?],
model (11) will be risk averse. But for highly positive skewed lotteries (e.g., lottery
tickets) such that the skewness overwhelms the variance, i.e., E[(X — X)?] < cE[(X —
X)3], then model (11) will exhibit risk seeking behavior.
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Markowitz (1952) noticed that individuals of all wealth levels have the same
tendency to purchase insurance and lottery tickets whether they are poor or rich. This
observed behavior contradicts a common assumption of expected utility theory that
preference ranking is defined over ultimate levels of wealth. For the three moments
model (10), the change of wealth level just causes a parallel shift for the model,
which will not affect the risk attitude and the choice behavior of this model. This
is consistent with Markowitz’s observation. In addition, the three moments model
implies an nonlinear weight of probability that can be consistent with Kahneman
and Tversky’s (1979) prospect theory (Jia, 1995).

4.2 Exponential Risk-Value Models

If the standard measure of risk is based on exponential or linear plus exponential
utility models, then the standard measure of risk is given by (3). To be compatible
with the form of the standard measure of risk, we can also choose the same form
of exponential functions, but with different parameters, for the value measure V(X )
and the tradeoff factor ¢ (X), which leads to the following model:

F(X,R(X")) = —he X — ke PXE[e<¥-%) _1], (12)

where a, b, ¢, h, and k are positive constants. When @ = b = ¢ and h = k, this model
reduces to an exponential utility model. Otherwise, these two models are different.
When b > a, model (12) is decreasing risk averse even though the traditional expo-
nential utility model exhibits constant risk aversion.

As a special case, when a = b and h = k, model (12) reduces to the following
simple multiplicative form:

F(X,R(X")) = ke X E[e <X X)), (13)

This model is constantly risk averse, and therefore has the same risk attitude as
an exponential utility model. It has more flexibility since there are two different
parameters. This simple risk-value model can be used to explain some well known
decision paradoxes (Jia, 1995).

Choosing a linear function or a linear plus exponential function for V (X) leads
to the following models:

(x) =

X — ke PXEle %) _ 1], (14)
JX.R(X')) =X —he

he= X — ke PXE[e=X %) _1]. (15)
Model (14) is decreasingly risk averse. Model (15) includes a linear plus exponential

utility model as a special case when a = b = c and h = k. It is decreasingly risk averse
ifb>a.
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4.3 Generalized Disappointment Models

Bell (1985) proposed a disappointment model for decision making under uncer-
tainty. Although Bell’s development of the disappointment model has an intuitive
appeal, his model is only applicable to lotteries with two outcomes.

Jia et al. (2001) use the risk-value framework to develop a generalized version
of Bell’s (1985) disappointment model. Consider the following piece-wise linear
utility model:

ex when x > 0

u(x) = {dx when x < 0 (16)

where d, e > 0 are constant. Decision makers who are averse to downside risk or

losses should have d > e, as illustrated in Fig. 1. The standard measure of risk for
this utility model can be obtained as follows:

R(X') =dE"[|X —X] - eE"[|X — X[] = [(d —e)/2]E[|X — X]], (17)

where E7[|[X —X|] = ¥ pilxi—X|and ET[[X —X|] = ¥ pi(x;—X), and E[|X —
xi<X xi>X

X|] is the absolute standard deviation. According to Bell’s (1985) basic idea,

dE~[|X —X|] should be a general measure of expected disappointment and eE ™ [| X —

X|] a general measure of expected elation, and then overall psychological satis-

faction is measured by - R(X'), which is the converse of the standard measure of

risk (17).

If we assume a linear value measure and a constant tradeoff factor, then we
can have the following risk-value model based on the measure of disappointment
risk (17):

FX,R(X') =X — {dE"[|X — X|] — eE"[|X — X[]}

— X~ [(d—e)/2JEIX —X]]. e

u(x)

u(x) = ex

u(x) = dx

Fig. 1 A piece-wise linear
utility function
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For a two-outcome lottery, model (18) reduces to Bell’s disappointment model.
Thus, we call the risk-value model (18) a “generalized disappointment model.” This
model is a risk averse when d > e.

Using his two-outcome disappointment model, Bell (1985) gave an explanation
for the common ratio effect. Our generalized disappointment model (18) can ex-
plain the Allais Paradox (Allais, 1953, 1979), which involves an alternative with
three outcomes (Jia et al., 2001). Another concern for Bell’s model and our model
(18) is that they imply constant risk aversion. Thus, they are not appropriate for
decreasing risk averse behavior. To obtain a disappointment model with decreasing
risk aversion, we can use a decreasing function for the tradeoff factor:

F(X,R(X")) =X —ke " E[|X - X|]. (19)

Bell’s disappointment model and our model (18) imply that disappointment and ela-
tion are proportional to the difference between the expected value and an outcome.
Then we should use some nonlinear functions for disappointment and elation such
as the risk model (5), which leads to a more general form of disappointment model:

FR.R(X')) =X —dE"[[X — X|*] - E*[|X — %] 20)

When 6, = 6, = 1, this model reduces to model (18). When ¢ = 0 and 6, = 2, model
(20) becomes a mean-semivariance model. This model also provides an interpreta-
tion for the decision weight in prospect theory based on the concept of disappoint-
ment (Jia et al., 2001).

Finally, our generalized disappointment models are different from Loomes and
Sugden (1986) model, X +E[D(X — X)], where D(x —X) = —D(X —x), and D is
continuously differentiable and convex for x > X (thus concave for x < X). Even
though this model is different from our generalized disappointment models (20),
it is a special case of our risk-value model with a linear measure of value, a con-
stant tradeoff factor, and a specific form of the standard measure of risk (i.e.,
R(X')= —E[D(X —X)], where D(x—X) = —D(X —x)). Loomes and Sugden (1986)
used this model to provide an explanation for the choice behavior that violates
Savage’s (1954) sure-thing principle.

5 Conclusion

We have summarized our efforts to incorporate the intuitively appealing idea of
risk-value tradeoffs into decision making under risk. The risk-value framework ties
together two streams of research: one in developing preference models and the other
in modeling risk judgments, and unifies a wide range of decision phenomena includ-
ing both normative and descriptive aspects.

This development also refines and generalizes a substantial number of previously
proposed decision theories and models, ranging from the mean-variance model in
finance to disappointment models in decision science. It is also possible to create
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many new risk-value models. Specifically, we have discussed three classes of de-
cision models based on this risk-value theory: moments risk-value models, expo-
nential risk-value models and generalized disappointment risk-value models. These
models are very flexible in modeling preferences. They also provide new resolu-
tions for observed risky choice behavior and the decision paradoxes that violate the
independence axiom of the expected utility theory.

The most important assumption in this study is the risk independence condi-
tion, which leads to a separable form of risk-value models. Although some other
weaker condition could be used to derive a risk-value model that has more descrip-
tive power, this reduces the elegance of the basic risk-value form, and increases oper-
ational difficulty. Butler et al. (2005) conducted an empirical of this key assumption,
and found some support for it. This study also highlighted some additional patterns
of choices indicating that the translation of lottery pairs from the positive domain to
the negative domain often results in the reversal of preference and risk judgments.
To capture this phenomenon, we have extended risk independence conditions to al-
low the tradeoff factor in the risk-value models to change sign, and therefore to
infer risk aversion in the positive domain and risk seeking in the negative domain.
These generalized risk-value models provide additional insights into the reflection
effects in prospect theory (Kahneman and Tversky, 1979) and related empirical re-
sults (Fishburn & Kochenberger, 1979; Payne et al., 1980,1981).

Even though some other non-expected utility theories that have been proposed
(e.g., Prospect Theory and rank dependent utility models) may produce the same
predictions for the decision paradoxes as risk-value theory, it offers a new justifi-
cation for them based on an appealing and realistic notion of risk-value tradeoffs.
In particular, since the role of risk is merely considered implicitly in these decision
theories and models, they are not compatible with the choice behavior that is based
on risk and mean return tradeoffs as often faced in financial management and other
applied fields. Therefore, these theories and models offer little guidance in practice
for this type of decision making. We believe that the potential for contributions of
these risk-value models in finance is very exciting. And also applications of our
risk-value models in other fields such as economics, marketing, insurance and risk
management should be promising.

Risk-value theory can be made compatible with traditional utility theory by re-
stricting the choices of the components of model (6). However, the risk-value theory
can be extended to model (7) by basing it on the two-attribute expected utility frame-
work, which retains many appealing properties of the traditional expected utility
theory. In particular, our risk-value models reduce to single-attribute expected util-
ity models for lotteries that have the same expected values. Fishburn (1989) pointed
out, “in view of the accumulated evidence for persistent and predictable violation
of expected utility, new theories have been proposed to accommodate such viola-
tions without abandoning too much of the mathematical elegance of the traditional
theories.” Our risk-value theory is a further development toward achieving this goal.
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Normally Distributed Admissible Choices
are Optimal

James N. Bodurtha Jr and Qi Shen

1 Notation and Definitions

Generally accepted observable behavior has led to the following classes of continu-
ously differentiable utility functions, u (e):

1. Nonsatiation axiom: u’ > 0
II. Risk aversion: v’ > 0,u” <0

Adopting the notation of (Bawa, 1975), let the uncertain prospects be character-
ized by random variables x;,i = 1,2,...,n+ 1, with known continuous probability
distribution functions defined over an open interval R given by (a,b),a < b.

Let the following progressively restrictive set of utility functions, u(-), describe
the decision maker’s preferences. The utility functions are defined over the space R!
of realizations of a random variable x:

Uy = {u(x)|u(x) is finite ' (x) > 0, for all x € R},
Up = {u(x)|u(x) € Uy,u"(x) <0, forallx € R} .

These definitions lead to the following well-known second-order stochastic domi-
nance theorem and definition':

I First Order Stochastic Dominance is developed assuming only non-satiation, (Quirk &
Sapasnik, 1962) and (Fishburn, 1964). Assuming risk-aversion, several authors formulated
second-order stochastic dominance, (Hadar & Russell, 1969, 1971), (Hanoch & Levy, 1969), and
(Rothschild & Stiglitz, 1970, 1971). Third-Order Dominance (Whitmore, 1970), and decreasing
absolute risk aversion (Vickson, 1975) treatments followed. Algorithms for the first three orders of
stochastic dominancehave been specified, (Porter, Wart, & Ferguson, 1973), (Bawa, Lindenberg,
& Rafsky, 1979) and (Aboudi & Thon, 1994). Levy provides a review of Stochastic Dominance
(Levy, 1992). Convex Stochastic Dominance (CSD) identifies optimal choices among mutually ex-
clusive alternatives (Fishburn, 1974, 1975), and the associated algorithm determines First-, Second-
and Third-Order CSD (Bawa et al., 1985).
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Theorem 1. Second-Order Stochastic Dominance (SSD). For any two cumulative
distributions F; and F}, F; is (strictly) preferred to F; for all utility functions in U, if
and only if

/F,-(t)dtﬁ/ Fj(t)dtVx€R (and < for somex € R). ()

Definition 1. SSD Admissible Set - A subset C of choice set P, its members are not
second-order stochastically dominated.

If a choice in P is not in subset C (not admissible), then all investors unanimously
drop it from consideration. By dropping these choices, the SSD admissible set sub-
stantially reduces the full choice set. In the case of normally distributed choice al-
ternatives, convex second-order dominance is an optimal choice rule.

Definition 2. Convex Second-Order Stochastic Dominance (CSSD) - A distribution
function £, | is convex second-order stochastically dominated by { },i = 1,2,...,n},
if Yu € U, there exists an Fj € {Fy,F>,...,F,} such that

b b
/a U(x)dF; (x) > / U(x)dFy 1 (x)

Correspondingly, we introduce the CSSD admissible set.

Definition 3. CSSD Admissible Set - A subset C of choice set P is CSSD admissible
if Yu € U,, choice a is not CSSD dominated by any other members of P. Since
CSD admissibility is more restrictive than the usual SSD admissibility, the CSSD
admissible set is generally smaller than the SSD admissible set.

Let A = (A1,A2...4,) , A €Ay withA; >0,i=1,2,...nand Y7 | A; = 1. We state
the convex generalization of Theorem 1 (Fishburn, 1974).

Theorem 2. Convex Second-Order Stochastic Dominance (CSSD). Fy, 41 is convex
second-order stochastically dominated by {F;,i=1,2,...,n}, iff L € A, such that

n X X

Zli/ Fi(t)dtg/ Fo.1(t)dt VYx€R
i=1 Ja a

and < for some x € R)

Conversely, if F,+1 is not convex second-order stochastically dominated by
{F;,i=1,2,...,n} then it is optimal:

X X
VA EA,,,erR,/a Fn+1(;)d;<2lex,-/a Fi(t)dt =
Ju e Up,u(F) <u(Fp1),V{i=1,2,...,n}

Therefore, the CSSD admissible, C, is the optimal set.
We also define another important concept relevant to investment choice, the effi-
ciency of a choice set.
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Definition 4. Second-Order Efficient Set - A subset E of choice set P is second-order
efficient if it contains the maximizers for all U,.2

Obviously, investors with non-satiation and risk-aversion attributes should only
evaluate the minimal second-order efficient choice set in order to make their invest-
ment decisions. We show that the minimal efficient choice set is the CSSD admissi-
ble set.

2 Optimal Choices Among Mutually Exclusive Alternatives

Convex Stochastic Dominance (CSD) identifies choice distribution mixtures that
dominate other elements of the choice set (the dominated elements). Any choice
dominated by a mixture of other alternatives will not be chosen (Fishburn, 1974).
Conversely, any choice that is not so dominated is in the optimal set.

Our method of proof is straightforward. For normal distributions, the appropriate
SD decision rule is second-order (SSD). Since normal distributions cross in most
cases, first-order stochastic dominance (FSD) is precluded. Under Convex Second-
Order Stochastic Dominance (CSSD), we show that the set of mixture distributions
necessary to dominate any member of the admissible set is empty. Hence, the ad-
missible set is optimal.

For mutually exclusive choices, the choice space may be written as the following:

n
P= Zl,Fi A €A, Fiisnormal fori=1,2,....n 5,
i=1

In Appendix A, we prove two needed Lemmas.

The set of non-SSD dominated distributions (the admissible set) is no smaller
than the set of non-CSSD dominated distributions (the optimal set). However, the
following theorem shows that in the case of normal distributions, these two concepts
coincide. In this case, the two choice sets are identical.

Proposition 1. Given a set of normal distributions ® = {Fy,F»,...,F,,F, 1}, if ®
is a Uy admissible set, then it is also the CSSD admissible set and optimal.

Proof. ® is an admissible set; therefore, distributions are mutually undominated.
Since in the normal distribution case, SSD is equivalent to the mean-variance deci-
sion rule, we can order the distributions in @ in such a way that

01<0p << 0Oy, and Yy < lp < -+ < UUy.

The mean and standard deviation of distribution F,,+; may be anywhere in the se-
quence of F1,F>,...F,.

2 The equivalence between SD admissibility and efficiency for the portfolio allocation problem has
been shown (Bawa & Goroff, 1983).
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Case 1: 041 < 0, = 1max {O'j}. We divide the set @ in two parts: @ =
<js<n

{Fl, el ,Fk}, and &, = {Fk+1 R ,Fn}, such that t; < 11 < Ug+1. and O < Oy <
Ol+1
We can take a degenerate distribution as a special case of the normal distribu-
tion, by defining its variance to be zero. We replace the set ®; with another set &,
such that
w(B)—pn(F), o(f)=0, i=12,. . .k

If F,+1 cannot be dominated by <i>1 U®,, then F;;; also can’t be dominated by
@ UDP; (since each member of ®; is dominated by the corresponding member in
Ci>1). For members of set ®;, we choose a sufficiently small number, r, such that the
Variance Dominance Rule can be applied to each element of ®,. For simplicity, we
keep the notation of F;,i = 1,... .k, instead of F}.

From Lemma 1, for any given A; > 0, there exists an r; such that

rj rj
/'] Fn+1(t)dt<xj/’/ Fi(t)dt, j=k+1,...n

Therefore, there exists a real numberr € R, r < min {,ui =1, krij=k+1,
...,n}, for any given A € A,,,

[ Eawar< ¥ 4 [ Fod=

j=k+1

n r k r
y ﬁ.j/ij(t)dt—&—jZ’llj/ij(t)dt

j=krl I
r n r
/ Fn+1(t)dt<z7tj/ Fj(t)dt
e .

Here, we have used the fact that [* F;(1)dr =0 for j=1,...,k, since r < ;.
We have shown that F,; | is not CSSD dominated by {F,...F,}.
Case 2: 6,1 > lrgzlgn{cj} =0,

In this case, from Lemma 1, there exists a sufficiently large number r;, such that

" —-o00 oo
/ Fi (t)dr < Fooi(t)dr j=1,2,...n.

P rj P I‘j
Thus, [ F1 () dt =1— [T F,q (t)dt

~+o0

<1-Y 2 Fj(t)dt:ZAj/er(t)dt
J=1 4 J=1 -

where r > max {r;}. In this case, we have shown that F, ;| can’t be CSSD domi-
<j<n

nated by . Q.E.D.
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3 CSSD Portfolio Choices

For portfolio choices, a choice vector, T, dominates the associated mixed strat-
egy, Ag, for all strictly concave von Neumann-Morgenstern utility functions
(Baron, 1977). We present a corollary to this result as Proposition 2.3

Our construct is, again, Fishburn’s CSSD. Additionally, we need two more lem-
mas (3 and 4), which are also in Appendix A. Our CSSD efficient portfolio propo-
sition follows:

Proposition 2. The mean-variance efficient portfolio frontier choices are CSSD
admissible.

Proof. Given Lemma 4, any mixture of alternatives is dominated by an associated
portfolio. Any portfolio not associated with the mean-variance efficient frontier is
dominated by some element of the set of portfolios on the efficient frontier. There-
fore, mean-variance efficient portfolio choices dominate mixtures of portfolio dis-
tributions, and all such portfolios are CSSD admissible.

Like mutually exclusive choice CSSD Proposition 1, Proposition 2 shows that
the entire mean-variance efficient portfolio frontier is optimal.

4 Conclusion

For sets of investors with non-satiation and risk-aversion attributes, U,, who face
mutually exclusive normally distibuted investment returns, we have shown that the
second-order stochastic dominance (SSD) admissible set is the optimal set (Bawa
et al., 1985) and the strictly best set (Bawa & Goroff, 1982). By our CSSD meth-
ods (Fishburn, 1974), or from an analogous portfolio choice problem specification
(Yitzhaki & Mayshar, 1997), we also know that efficient portfolio choices among
normally-distributed alternatives are optimal. Therefore, we conclude that admissi-
ble sets of normally distributed choice elements are optimal.

In the absence of mean and variance parameter estimation risk, our results high-
light Sharpe’s classic mean-variance ratio as an optimal delegated financial man-
agement choice measure (Sharpe, 1966). In this context, a portfolio manager should

3 This result has been proved in the context of Marginal Stochastic Dominance (Yitzhaki &
Mayshar, 1997) for general discrete distributions and in an alternative context for normal distribu-
tions. As in our case, there results generalize to a broader class of exchangeable distribution func-
tions. For the general discrete distribution cases, Post, like Yitzhaki—-Mayshar, separates dominated
and efficient portfolios (Post, 2003). For the dominated allocations, two works, (Kousmanen, 2004)
and (Bodurtha, 2004), provide methods to identify efficient reallocations. The continuous distrib-
ution case has been treated as well.(Goroff & Whitt, 1980) For utility functions manifesting some
risk-seeking preference, separation of dominated and efficient portfolio allocations have been ana-
lyzed, (Post & Levy, 2005).
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identify inefficient or dominated choice set elements by this simple mean-variance

rule and should not reduce the choice set further before presenting choices to in-
4

vestors.

Appendix — Lemmas

For the mutually exclusive choice case, we now state and prove two lemmas.
Lemma 1. Variance Dominance Rule

Given two distributions F; andF> with finite variances 0'12 and 622, if we let
0] < 0y, then there exist three numerals x*, 7|, and r, (with r; < r;), such that

I. the density functions f (x) and f> (x) satisfy fi (x) < f2 (x),if x <rjorx > rp
II. the distribution functions have the same value at x* and satisfy: Fj (x) <
Fr(x) ifx<x®orF(x)>F(x) ifx>x"

Proof. The proof has three steps.’

Step 1: There are exactly two intersection points for fi (x) and f> (x).
Therefore, the following equation must have exactly two real roots:

<x—u5>2 <x—u%>2
ole 1 =o0ne (A1)

4 Though we have noted that our results extend to some other continuous “location-scale” distri-
butions [e.g. (Bawa, 1975)], It has been shown that the SSD admissible set and various “optimal”
sets are not, in general, equal, (Peleg-Yaari 1975), (Peleg, 1975), (Bawa & Goroff, 1982), and
(Dybvig & Ross, 1982). Further analysis of the respective “risk-aversely efficient” and “regular
risk-aversely efficient” random variables, “strictly best choices,” and “portfolio efficient sets” is
needed. In the portfolio context and more generally for the mutually exclusive investment choices
(Dybvig & Ross, 1982), the potential for non-convex choice sets raises particular difficulties in
this analysis. Alternatively, the admissible set is dense in the optimal-strictly best set (Bawa &
Goroff, 1982). Therefore, the delegated manager who provides decision makers with admissible
choices is not grossly non-optimal.

5 By replacing the mean and variance with the Generalized Location and Scale (£,s) parameters,
this proof will show that mean-scale admissible densities within the following classes cross twice:
t distributions with the same degree of freedom, Cauchy distributions and log-normal distribu-
tions. In these cases, the densities are, like the normal, functions of a standardized random vari-
able, ((x— 0) / s)z. The differences between and ratios of any two admissible choices for these
distributions satisfy Lemma 1 (the double crossing property defined in location and scale) and
Lemma 2 (the distribution dominance condition.) Though no analytic density functions exist for
Stable Distributions other than the normal and Cauchy, the densities associated with stable dis-
tributions with the same characteristic exponent and skewness parameter also cross-twice. While
the uniform distribution is in the location scale family and admissible uniform distributions are
optimal, the switching nature of the mean-scale admissible rule over the range of uniform random
variables precludes our line of proof. (Bawa, 1975, 1979).
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Taking a logarithm of both sides of this equation, and collecting terms, we have

9]
0= (of — 03)x* +2x (1105 — i 07) + (Gfuzz —o5ui —207051n Gz)

We then define the determinant as:
2 (a3
A=4(u 05— oi) —4(of —o03) |:612[.122 —o2u? —20%0%1n 62} (A2)

To show that this determinant is greater than zero, we show that the first term on
the right-hand side of equation (A.2) is greater than a quantity that is, itself, greater
than the second term on the right-hand side of equation (A.2).

; o 2 2)2 2 _ 52
Since lna—; > 0, we need only to show that, (ulcrz fuzcrl) > (Gl 70'2)

[6?13 — o3 u?] . This inequality is equivalent to (f — p1)* > 0, so we denote the
two real roots as r; and r.
Step 2: To show (I), we reconsider equation (A.1). Let

— )2 2 )2 2
h(x) = Gle(x Hr) /251 —Gze(x H2) /202.
Following Step 1, it is straightforward to verify that
I (x) <0,x € (—oo,r1) and A’ (x) > 0,x € (rp,+o0)

Step 3: To show II, notice that F (e0) = F (e0) = 1.

Since  Fi(r1) = [LA@)dr < [T fa(1)dt = Fa(r1), and [ fi(t)dt <
Iy f2(t)dt, it must be that [2 fi (t)dt > [[2 f>(t)dt.

Both F; (x) and F> (x) are increasing continuous functions on (—oo,c0).® There-
fore, there exists a unique x* € (ry,r2), such that

AE)= [ Ad= [ p@d=Fx), ad
Fi (x) < B (x)ifx <x* Q.E.D.

The first part of the Variance Dominance Rule states that the density function curve
for the smaller variance distribution, Fj, always lies below the other one with larger
variance, F», on the interval (—oo, r ). However, a reversed relationship is true on an
interval (ry,+oo).

6 In the log-normal case, F| (x) and F> (x) are increasing continuous functions on (0,e0). The log-
normal density crossing points, rj,r}, are defined by location-scale and determined in the log

space. While the distribution crossing point is a unique X e (e’ll , er,2> , and distribution dominance

follows in the return space.
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Lemma 2. Given two distribution functions, as in Lemma 1, the value of Fy (x) is
negligible compared to the value of F> (x) if x is sufficiently small.”

Proof. By L’Hopital’s Law, we show that

lim FA(x) lim F(x) oo
x—= = F(x) x——F(x)
STV 2 (v 1s)2 2
Since 28 = %e(x ) /261 (e=2) /262, we show that
03 (x—)> =07 (x— a)* — +oo (A3)

This is self-evident since 0] < 0». Similarly, we show that

lim  f>(x)
X — oo fl ()C)

= +o0 Q.E.D.

This Lemma is another interpretation of the Variance Dominance Rule, and states
that the distribution curve of larger variance not only dominates the distribution
curve with a smaller variance, but also that the magnitude of the latter one is actually
negligible. In fact as x — —oo, F} (x) approaches 0 much faster than F; (x) does.

For the portfolio choice case, we now state and prove two additional lemmas.

Lemma 3. The SSD integral, (1), is convex.

Proof. The SSD integral is a twice continuously differentiable real-valued func-
tion on an open interval. Furthermore, its second derivative is the normal density
and hence, non-negative throughout its domain. Convexity follows by Theorem
4.4 of Rockefellar, and essentially strict convexity follows by his Theorem 26.3
(Rockefellar, 1970). (The SSD integral gradient is the normal distribution and is
positive over the real line.)

Lemma 4. A portfolio of normally distributed choices SSD dominates the associ-
ated mixture of normally distributed choices.

Proof. Given Lemma 3 [convexity of the SSD integral (1)], a convex combination
(mixture) of these integrals is no less than the SSD integral defined over the linear
combination (portfolio) of the associated random variables.

7 These limits apply for mean-scale admissible t distributions with the same degree of freedom and
stable distributions with the same characteristic exponent and skewness. For mean-scale admissible
log-normal distributions, (A.3) is defined in location, /, and scale parameters, s. The necessary SSD
log-normal distribution mean condition is imposed with ¢, + s3 /20 + 52 /2. As in the normal
case for x, the terms that are quadratic in In x are the difference in squared scale, which is positive.
In this case, the limits are evaluated approaching zero from the right, and all other terms are linear
in the natural logarithm of x.
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With integration by parts, we have the following:

I = e T = T E=S T C=

are the standard normal distribution and density, respectively.
For a portfolio to CSSD dominate a mixture requires

o [(5)o (5 ) <o (5]
<aon (G2 (5 ) ro (o)
ri-ae (T o (T ) e (12| e

Defining the portfolio weights to equal the mixture weights, we have

Xp = 0x)+ (1 — OC))CQ,‘LL[, =ou + (1 — Ot)uz7 and
2 2.2 2 2 2
0, =a"oj +2a(l —a)o102p + (1 — )" 05 # [ao1 + (1 — &) 62|,
However, setting the correlation equal to one implies that the portfolio standard
deviation is a convex combination of the other two standard deviations, and that this
standard deviation is an upper bound on the actual portfolio standard deviation:

oy < Oplp=1 = oo +(l—a)oy

Therefore,

o [(F) e () o (5 )]
<om [ (50) 2 (5,2) 0 (5.2)
<o ()2 () o (5]
ri-e | (5o (15 ) v (5]

Vx € (—o0,00) and 0 < o < 1. Q.E.D.
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A Conjoint Measurement Approach
to the Discrete Sugeno Integral

Denis Bouyssou, Thierry Marchant, and Marc Pirlot

1 Introduction and Motivation

In the area of decision-making under uncertainty, the use of fuzzy integrals, most
notably the Choquet integral and its variants, has attracted much attention in recent
years. It is a powerful and elegant way to extend the traditional model of (subjective)
expected utility (on this model, see Fishburn, 1970, 1982). Indeed, integrating with
respect to a non-necessarily additive measure allows to weaken the independence
hypotheses embodied in the additive representation of preferences underlying the
expected utility model that have often been shown to be violated in experiments
(see the pioneering experimental findings of Allais, 1953; Ellsberg, 1961). Models
based on Choquet integrals have been axiomatized in a variety of ways (see Gilboa,
1987; Schmeidler, 1989; or Wakker, 1989, Chap. 6. For related works in the area of
decision-making under risk, see Quiggin, 1982; and Yaari, 1987). Recent reviews of
this research trend can be found in Chateauneuf and Cohen (2000), Schmidt (2004),
Starmer (2000) and Sugden (2004).

More recently, still in the area of decision-making under uncertainty, Dubois,
Prade, and Sabbadin (2000b) have suggested to replace the Choquet integral by a
Sugeno integral (see Sugeno, 1974, 1977), the latter being a kind of “ordinal coun-
terpart” of the former, and provided an axiomatic analysis of this model (special
cases of the Sugeno integral are analyzed in Dubois, Prade, & Sabbadin 2001b.
For a related analysis in the area of decision-making under risk, see Hougaard &
Keiding, 1996). Dubois, Marichal, Prade, Roubens, and Sabbadin (2001a) offer a
lucid survey of these developments.

Unsurprisingly, people working in the area of multiple criteria decision mak-
ing (henceforth, MCDM) have considered following a similar path to build models
weakening the independence hypotheses embodied in the additive value function
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model that underlies most of existing MCDM techniques. This offers an alterna-
tive to the decomposable and polynomial models studied in Krantz, Luce, Suppes,
and Tversky (1971, Chap. 7). The work of Grabisch (1995, 1996) has widely pop-
ularized the use of Choquet and Sugeno integrals in MCDM. Since then, there has
been many developments in this area. They are surveyed in Grabisch and Roubens
(2000) and Grabisch and Labreuche (2004) (an alternative approach to weaken the
independence hypotheses of the traditional model that does not use fuzzy integrals
is suggested in Gonzales & Perny, 2005).

It is well known that decision-making under uncertainty and MCDM are related
areas. When there is only a finite number of states of nature, acts may indeed be
viewed as elements of a homogeneous Cartesian product in which the underlying
set is the set of all consequences (this is the approach advocated and developped
in Wakker, 1989, Chap. 4). In the area of MCDM, a Cartesian product structure is
also used to model alternatives. However, in MCDM the product set is generally not
homogeneous: alternatives are evaluated on several attributes that do not have to be
expressed on the same scale.

The recent development of the use of fuzzy integrals in the area of MCDM should
not obscure the fact that there is a major difficulty involved in the transposition of
techniques coming from decision-making under uncertainty to the area of MCDM.
In the former area, any two consequences can easily be compared: considering con-
stant acts gives a straightforward way to transfer a preference relation on the set
of acts to the set of consequences. The situation is vastly different in the area of
MCDM. The fact that the underlying product set is not homogeneous invalidates
the idea to consider “constant acts”. Therefore, there is no obvious way to compare
consequences on different attributes. Yet, such comparisons seem to be prerequisite
for the application of models based on fuzzy integrals.

Traditional conjoint measurement models (see, e.g., Krantz et al., 1971, Chap. 6;
or Wakker, 1989, Chap. 3) lead to compare preference differences between conse-
quences. It is indeed easy to give a meaning to a statement like “the preference
difference between consequences x; and y; on attribute i is equal to the preference
difference between consequences x; and y; on attribute ;j” (e.g., because they exactly
compensate the same preference difference expressed on a third attribute). These
models do not lead to comparing in terms of preference consequences expressed on
distinct attributes. Indeed, in the additive value function model a statement like “x; is
better than x;” is easily seen to be meaningless (this is reflected in the fact that, in
this model, the origin of the value function on each attribute may be changed inde-
pendently on each attribute).

In order to bypass this difficulty, most studies involving fuzzy integrals in the
area of MCDM postulate that the attributes are somehow “commensurate”, while the
precise content of this hypothesis is difficult to analyze and test (see, e.g., Dubois,
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Grabisch, Modave, & Prade, 2000a). Less frequently, researchers have tried to build
attributes so that this commensurability hypothesis is adequate. This is the path
followed in Grabisch, Labreuche, and Vansnick (2003) who use the MACBETH
technique (see Bana e Costa & Vansnick, 1994, 1997, 1999) to build such scales.
Such an analysis requires the assessment of a neutral level on each attribute that is
supposed to be “equally attractive”. In practice, the assessment of such levels does
not seem to be an easy task. On a more theoretical level, the precise properties of
these commensurate neutral levels are not easy to devise.

A major breakthrough for the application of fuzzy integrals in MCDM has re-
cently been done in Greco, Matarazzo, and Stowiniski (2004) who give conditions
characterizing binary relations on non-homogeneous product sets that can be repre-
sented using a discrete Sugeno integral, using this binary relation as the only prim-
itive. This is an important result that paves the way to a measurement-theoretic
analysis of fuzzy integrals in the area of MCDM (Greco et al., 2004, also relate the
discrete Sugeno integral model to models based on decision rules that they have
advocated in Greco, Matarazzo, & Slowinski, 1999, 2001). It allows to analyze the
discrete Sugeno integral model without any commensurateness hypothesis, which is
of direct interest to MCDM.

In the present paper, we will present a new model for the representation of
preferences, inspired from the work of Bouyssou and Marchant (2007). This non-
numerical model, called non-compensatory model, is slightly more general than the
discrete Sugeno integral but, when the preference relation is a weak order that has a
numerical representation, we will show that both models are equivalent. The analy-
sis of this new model will thus help us to better understand the discrete Sugeno
integral and, eventually, to answer some open questions. In particular, we will ad-
dress the following issues:

e Besides the standard completeness, transitivity and order density conditions,
Greco et al. (2004) used only one condition. We will show that it is possible
to factorize this condition into two more elementary ones. This helps us to better
understand the behavioural content of the conditions. It can also be useful for
empirically testing the conditions. Finally, this will permit us to show that the
discrete Sugeno integral model can be viewed as a particular case of a general
decomposable representation, investigated in Bouyssou and Pirlot (2004) and
Greco et al. (2004).

e The correspondence established between weak orders that are representable in
the noncompensatory model and those representable by the discrete Sugeno inte-
gral model has an interesting byproduct. Starting from any (bounded) numerical
representation of a weak order in the noncompensatory model, we provide for-
mulae that allow to build a representation of the weak order by a Sugeno integral.

e Greco et al. (2004) used four conditions in their characterization of the discrete
Sugeno integral. We will prove that they are independent.

e In the standard characterizations of the additive model for multi-attributed pref-
erences (e.g., Wakker, 1989), no commensurateness hypothesis is made. Yet, it is
well-known that the difference between two levels on attribute i can be compared
to the difference between two levels on attribute j. So, in this model, differences
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are commensurate and this can be derived from the axioms. This plays an impor-
tant role in most elicitation techniques.

In their characterization, Greco et al. (2004) did not make any commensurate-
ness hypothesis either. Yet, when we compute a discrete Sugeno integral, we com-
pare levels on different attributes. So, just as with the additive model, it seems that
commensurateness must be implied by the axioms and that this could be used in the
elicitation. Unfortunately, we will show that the picture is more complex with the
discrete Sugeno integral than with the additive model.

e Greco et al. (2004) have shown that, under some conditions, there exists utility
functions (one per attribute) that can be used to represent the preferences by
means of a discrete Sugeno integral. These utility functions are of course not
unique; but to what extent? We will provide a partial answer to this question.

By the way, since the non-compensatory model and the discrete Sugeno inte-
gral are equivalent under some conditions, our proof of the characterization of the
non-compensatory model can be used as a proof of the characterization of the dis-
crete Sugeno integral. This can prove useful since no proof of it has been published
so far.!

This paper is organized as follows. The result of Greco et al. (2004) is pre-
sented in Sect.2. We there show how to factorize their main condition into two
simpler conditions. Section 3 introduces and characterizes what we will call the
noncompensatory model for weak orders. Section 4 analyzes the links between
the noncompensatory model for weak orders and the discrete Sugeno integral model.
Section 5 presents examples showing that the conditions used in the main result are
independent. Section 6 discusses the uniqueness of the representation in the dis-
crete Sugeno integral model and further investigates the commensurateness issue.
Section 7 briefly concludes with the mention of some directions for future research.

2 The Discrete Sugeno Integral

2.1 Background on the Discrete Sugeno Integral

Let B = (B1,B2,---,Bp) € [0,1]7. Let (-)g be a permutation on P = {1,2,...,p}
such that ﬁ(l)ﬁ < ﬁ(Z)ﬁ <... < ﬁ(l’)[}'
A capacity (see Choquet, 1953) on P is a function v : 2F — [0, 1] such that:

!'It should be mentioned that a related result for the case of ordered categories is presented without
proof in Stowinski, Greco, and Matarazzo (2002). This result is a particular case of the one pre-
sented in Greco et al. (2004) for weak orders with a finite number of distinct equivalence classes.
A complete and quite simple proof for this particular case was proposed in Bouyssou and Marchant
(2007), using comments made on an early version of the latter paper by Greco, Matarazzo, and
Stowinski.
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e v(2)=0.
e [A,Bc2PandA C B] = v(A) < v(B).
The capacity V is said to be normalized if, furthermore, v(P) = 1.
The discrete Sugeno integral of the vector (1, B2, .., 8y) € [0,1]” w.r.t. the nor-
malized capacity Vv is defined by

P
SvIBI =/ By AV(AGy)]
i=1

where A;), is the element of 2P equal to {(i)g, (i+1)g,...,(p)p}-

We refer the reader to Dubois, et al. (2001a) and Marichal (2000a, 2000b) for
excellent surveys of the properties of the discrete Sugeno integral and its several
possible equivalent definitions. Let us simply mention here that the reordering of
the components of 3 in order to compute its Sugeno integral can be avoided noting
that we may equivalently write

Sv[B] ="\ [M)A (/\&)1- (1)

TCP ieT

We will mainly use this presentation of the discrete Sugeno integral below.

2.2 The Model

Let - be a binary relation on a set X = [[_; X; with n > 2. Elements of X will
be interpreted as alternatives evaluated on a set N = {1,2,...,n} of attributes. The
relations - and ~ are defined as usual. We denote by X_; the set [];cn (i Xj. We
abbreviate Not[x 7Z y] asx 77 y.

We say that =~ has a representation in the discrete Sugeno integral model if there
are a normalized capacity u on N and functions u; : X; — [0,1] such that, for all
x,yeX,

X2 S (x) = Spu (),

where S, ) (x) = Sp[(u1(x1),u2(x2), .-, tn (xn))]

2.3 Axioms and Result

A weak order is a complete and transitive binary relation. The set Y C X is said to
be dense in X for the weak order 77 if for all x,y € X, x > y implies x 77 z and z 7 y,
for some z € Y. We say that the weak order - on X satisfies the order-denseness
condition (condition OD) if there is a finite or countably infinite set ¥ C X that is
dense in X for . It is well-known (see Fishburn, 1970, p. 27; or Krantz et al., 1971,
p. 40) that there is a real-valued function v on X such that, for all x,y € X,
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xZyevx) Zv(),
if and only if 7 is a weak order on X satisfying the order-denseness condition.

Remark 1. Let 7~ be a weak order on X. It is clear that ~ is an equivalence and that
the elements of X/~ are linearly ordered. We often abuse terminology and speak
of equivalence classes of 7~ to mean the elements of X /~. When X /~ is finite, we
speak of the first equivalence class of 7~ to mean the elements of X /~ that precede
all others in the induced linear order.

The following condition was introduced in Greco et al. (2004). The relation 2~ on
X is said to be strongly 2-graded on attribute i € N (condition 2*-graded,) if, for all
x,y,z,w € X and all g; € X;,

X7z

and (ai,x—i) 7=z
yIow = or

and (xXi,y—i) Zw,
oW

where (a;,x_;) denotes the element of X obtained from x € X by replacing its ith
coordinate by a; € X;. The binary relation will be said to be strongly 2-graded (con-
dition 2*-graded) if it is strongly 2-graded on all attributes i € N.

Although the above condition may look complex, it has a simple interpretation.
Consider the particular case of condition 2*-graded; in which z = w. Suppose that
(xi,y—i) Z w. Since (y;,y—;) 7= w and (x;,y—;) Z w, this suggests that the level x; is
worse than y; with respect to the alternative w. In this case, (x;,x_;) 7Z w implies that
(ai,x—;) 7w, for all a; € X;. This means that, once we know that some level y; is
better than x; w.r.t. to w € X, there does not exist an element in X; that could be worse
than x;, so that, if (x;,x_;) 7 w, the same will be true replacing x; by any element
in X;. This roughly implies that, for each w € X, we can partition the elements of X;
into at most two categories of levels: the “satisfactory” ones and the “unsatisfactory”
ones with respect to w. Condition 2*-graded; implies these twofold partitions are not
unrelated when considering distinct elements z and w in X.

Greco et al. (2004) state the following:

Theorem 1 (Greco et al. (2004, Theorem 3, p.284)). Let 7~ be a binary relation
on X. This relation has a representation in the discrete Sugeno integral model if and
only if (iff) it is a weak order satisfying the order-denseness condition and being
strongly 2-graded.

The necessity of the conditions in this theorem is easy to establish. It is indeed
clear that if 7- has a representation in the discrete Sugeno integral model, then it
must be a weak order satisfying OD. It is not difficult to show that it must also
satisty 2*-graded. Indeed, suppose that condition 2*-graded, is violated, so that, for
some x,y,z,w € X and some «; € X;, we have x 75z, y = w, z - w, (a;,x_;) 7 z and
(xi,y-i) Z w. Using y Z w and (x;,y—;) Z w, we obtain u;(x;) < S, (w). Because
722w, we know that Sy, (2) > Sy (W), so that Sy, 4y (z) > u;i(x;). Since x 27 z
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and S, ,(z) > ui(x;), there is some I € 2V such that i ¢ I, (1 ) <“7u> (z) and
uj(xj) > Sy (z), for all j € 1. This implies S, . ((ai,x-i)) > Squu(2), so that
(aj,x—;) 7 z, a contradiction.

In Sect. 4, we give a proof of the sufficiency of the conditions, which links the
discrete Sugeno integral model with the noncompensatory model studied in Sect. 3.

2.4 Factorization of 2*-Graded;

We say that the relation 7~ satisfies condition AC1; if, for all x,y,z,w € X,

xXZy (zisX—i) Z 9
and = or
o w (xiy2—i) Zow.

We say that 7~ satisfies AC1 if it satisfies AC1; for all i € N.

Condition AC1 was proposed and studied in Bouyssou and Pirlot (2004). It plays
a central role in the characterization of binary relations (that may be incomplete or
intransitive) admitting a decomposable representation of the type:

x 2y Glui(x1), - tn(Xn),u1(y1), -+, tn(yn)] > 0,

with G being nondecreasing (resp. nonincreasing) in its first (resp. last) n arguments
(see Bouyssou & Pirlot, 2004, Theorem 2). We refer to Bouyssou and Pirlot (2004)
for a detailed interpretation of this condition. Let us simply mention here that condi-
tion AC1;, independently of any transitivity or completeness properties of 7, allows
to order the elements of X; in such a way that this ordering is compatible with >~
(see Lemma 3 below).

We say that 7 is 2-graded on attribute i € N (condition 2-graded,) if, for all
x,y,z,w € X and all g; € X;,

X7z
and
vi,x—i) 2z (ai,x—i) Tz
and = or
yzw (X, y-i) Zw.
and
Zow

We say that 7 is 2-graded (condition 2-graded) if it is 2-graded on all attributes
i € N. Condition 2-graded weakens condition 2*-graded adjoining it the additional
premise (y;,x_;) 7 z. It has a similar interpretation. We have:

Lemma 1. Let 7~ be a weak order on the set X. Then 7, satisfies AC1; and 2-graded,;
iff it satisfies 2*-graded,.



92 D. Bouyssou et al.

Proof. [AC1; & 2-graded; = 2*-graded,]. Suppose that x 2~ z, y 22 w z 2Z w. Using
AC1;, x 7 zand y 77 w implies either (y;,x_;) 2~ z or (x;,y—;) 2Z w. In the latter case,
one of the two conclusions of 2*-graded; holds. In the former case, we have x - z,
(yi,x—i) Z z, y - w and z 77 w, so that 2-graded; implies either (a;,x_;) 2 z, for all
a; € X; or (x;,y—;) 7, w, which is the desired conclusion.

[2*-graded; = AC1; & 2-graded;]. It is clear that 2*-graded; implies 2-graded,
since 2-graded; is obtained from 2*-graded; by adding to it an additional premise.
Suppose that x 7~ y and z 2Z w. Since 7 is complete, we have either y 72 w or w 22 y.
If y = w, we have x 77y, z 77 w and y 7 w, so that 2*-graded, implies (x;,z_;) 77 w or
(aj,x—;) 7y, for all ¢; € X;. Taking a; = z; shows that AC1; holds in this case. The
proof is similar if it is supposed that w Z y. a

Why is this factorization interesting? First, it makes clear that the condition used
by Greco et al. (2004) combines two distinct properties: (1) the elements of X; can
be ordered and (2) for each w € X, we can partition the elements of X; into at most
two categories with respect to w. This helps us better understand the behavioural
content of the conditions. It can also be useful for empirically testing the validity
of the discrete Sugeno integral model. Indeed, if we run an experiment for testing
whether a complex condition (like 2*-graded) is satisfied by subjects, it is likely that
it will be rejected. This does not mean that the condition is completely wrong. It can
happen that only part of it is wrong. Therefore, testing more elementary conditions
can help identify what is wrong with a model. Finally, this factorization permit us to
show that the discrete Sugeno integral model can be viewed as a particular case of
a general decomposable representation, investigated and characterized in Bouyssou
and Pirlot (2004) and Greco et al. (2004). Furthermore, thanks to the factorization,
we know exactly what has to be imposed on the decomposable model in order to
obtain the discrete Sugeno integral model.

3 The Noncompensatory Model for Weak Orders

This section presents and characterizes the noncompensatory model for weak or-
ders. It will turn out to have intimate connections with the discrete Sugeno integral
model.

The following non-numerical model is inspired from the work of Stowinski et al.
(2002) and Bouyssou and Marchant (2007) who analyze ordered partitions of a
Cartesian product using similar models. A similar model was first suggested in
Fishburn (1978).

Definition 1. A weak order 7~ on X has a representation in the noncompensatory
model if for all x € X, there are sets:

1. A7 C X;, foralli € N.
2. F* C 2N such that
[ecF andICJe2V]=JcF, 2)
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that are such that, for all x,y € X,

AYC A}
xXZy= and 3)
F*CFY
and
xmye{ieEN:x €A} P, 4)

We often write A(x,y) instead of {i € N : x; € A} }.

The noncompensatory model? can be interpreted as follows. For each x € X we
isolate on each attribute a subset A} C X; containing the levels on attribute i that
are satisfactory for x. In order for an alternative to be at least as good as x, it must
have evaluations that are satisfactory for x on a subset of attributes belonging to
F*. The subsets of attributes belonging to F* are interpreted as subsets that are
“sufficiently important” to warrant preference on x.

With this interpretation in mind, the constraint (3) means that if x is at least as
good as y then every level that is satisfactory for x must be satisfactory for y. Further-
more, subsets of attributes that are “sufficiently important” to warrant preference on
x must also be “sufficiently important” to warrant preference on y. Given the above
interpretation of F*, the constraint (2) simply says that any superset of a set that is
“sufficiently important” to warrant preference on x must have the same property.

Suppose that x %7 y and that x; € Af, for some i € N. In the noncompensatory
model, we have (z;,x_;) Z y, for all z; € X;. It is therefore impossible, starting from x,
to obtain an alternative that would be at least as good as y by modifying the eval-
uation of x on the ith attribute. In other terms, the fact that A(x,y) ¢ F” cannot be
compensated by improving the evaluation of x on an attribute in A(x,y). Hence, our
name for this model.

We first observe that a weak order having a representation in the noncompensa-
tory model must satisfy AC1 and 2-graded.

Lemma 2. [f weak order -, on X has a representation in the noncompensatory
model, then it satisfies AC1 and 2-graded.

Proof. [AC1;]. Suppose that x 7~ y, z 7w, (zi,x—;) 7y and (x;,z—;) 7 w. It is easy
to see that x 2 y and (z;,x_;) Z y imply x; € A} and z; ¢ A?. Similarly, z 72 w and
(xi,z—i) Z wimply z; € A¥ and x; ¢ A}". Because 27 is complete, we have either y 7 w
or w - y. Hence, we have either A7 C A or A C A7, a contradiction.

[2-graded;]. Suppose that 2-graded; is violated, so that, for some x,y,z,w € X
and some a; € X;, (x;,x_;) 7= 2, (Vi,x—i) = 2z, Vi, y—i) = w, 225w, (a;,x—;) 7 z and

2 The noncompensatory model for weak orders must not be confused with “noncompensatory pref-
erences” as introduced in Fishburn (1976). Noncompensatory preferences in the sense of Fishburn
(1976) are preferences that result from an “ordinal aggregation” in the context of MCDM that is
quite close from the type of aggregation studied in social choice theory in the vein of Arrow (1963)
(for a recent analysis of such preferences, see Bouyssou and Pirlot (2005)). As first shown in Fish-
burn (1975), noncompensatory preferences that are weak orders are, except in degenerate cases,
lexicographic.
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(xi,y—i) 7 w. Using the definition of the noncompensatory model, (y;,y_;) 7 w and
(xi,y—i) Z w imply y; € AY and x; ¢ AY. Similarly, (x;,x_;) 22 z and (a;,x—;) Z z
imply x; € A7 and a; ¢ A7 Since 727w, we have A7 C AY, a contradiction. |

The main result of this section says that, for weak orders, the noncompensatory
model is fully characterized by condition 2*-graded or, equivalently, by the con-
junction of AC1 and 2-graded.

Proposition 1. If a weak order on X satisfies AC1 and 2-graded then it has a repre-
sentation in the noncompensatory model.

Before proving Proposition 1, we will have to go through a few definitions and
lemmas.

Consider an attribute i € N. We define the left marginal trace on attribute i € N
letting, for all x;,y; € Xj, alla_; € X_;and all z € X,

xi ZFvie (viva) Zz= (xi,a-) 22

Similarly, given a € X, we define the left marginal trace on attribute i € N with
respect to a € X, letting, for all x;,y; € X;and all z_; € X_,

x5 Dy (ne) ma= (i) Sal.

The symmetric and asymmetric parts of 2 (resp. 5 > ) are denoted ~;" and >}
(resp. N;L(“) and >i+<“)). It is clear that ;" and ?\;i T are always reﬂexwe and
transitive. They may be incomplete however.

We note a few useful obvious connections between i;r(a) , 7~ and 7 in the fol-

lowing lemma.
Lemma 3. We have, foralli € N, all z,w € X and all x;,y; € X;:

1. x; = i <= [xz >+ vi, forall a € X]

~I1 ~1

2. zmwxi ohw] = (xiyze) oow.

3. Furthermore, if 7 is reflexive then, [z; N;r wj, forall j € N| =z~ w.
4. The relation ij is complete iff AC1; holds.

Proof. Parts 1 and 2 easily follow from the definitions. Part 3 follows from Part 2
and the fact that w 2 w. It is obvious that negating the completeness of 7~/ is equiv-
alent to negating AC1,. O

Remark 2. When - is a weak order, condition AC1; is equivalent to supposing that,
for all x;,y; € X; and all z_j,w_; € X_; (xi,2-i) = (visz—i) = (xiyw—i) 2= (yi,w—i),
i.e., that attribute i is weakly separable, using the terminology of Bouyssou and
Pirlot (2004).

Indeed suppose that 77 satisfies AC1; and is such that attribute i is not weakly
separable. Therefore there are x;,y; € X; and z_;,w_; € X_; such that (x;,z_;) >
(yi,z—i) and (y;,w—;) > (x;,w_;). Since 7 is reﬂexwe we have (x;,z—;) 7= (xi,2—;)
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and (y;,w—;) = (yi,w—;). Using AC1;, we have either y; iﬁ X; OF X; N;r Vi, so that
either (yi,z—;) 75 (xi,z—i) or (x;,w—;) 2= (vi,w—;), a contradiction.

Conversely, suppose that = is complete and transitive and that attribute i is
weakly separable. Suppose that AC1; is violated so that, since 77 is complete,
(xi,x_i) =y, (zi,z—i) 75w, ¥ = (zi,x_;) and w = (x;,z_;), for some x,y,z,w € X.
Since - is a weak order, we obtain (x;,x_;) > (z;,x_;) and (zj,z—;) > (xi,z—;), which
violates the weak separability of attribute i.

We say that a weak order 7~ is weakly separable if, for all i € N, it is weakly
separable for attribute i.

Hence, combining Lemma 1 with Theorem 1 shows that a relation has a repre-
sentation in the discrete Sugeno integral model iff it is a weakly separable weak
order satisfying OD and 2-graded.

Bouyssou and Pirlot (2004, Propositions 8 and B.3) have shown that, for weak
orders satisfying OD, weak separability is a necessary and sufficient condition to
obtain a general decomposable representation in which, for all x,y € X,

xzmye Flui(x)),...,un(x0)] = Flui(01), - un(yn)],

with F' being nondecreasing in all its arguments (see also Greco et al., 2004,
Theorem 1). Hence, condition 2-graded is exactly what must be added to go from
this general decomposable representation to a representation in the discrete Sugeno
integral model.

The following lemma makes precise the structure of the relations ?V;r(a)
a weak order satisfying AC1; and 2-graded;.

when - is

Lemma 4. Let 7 be a weak order on X satisfying AC1; and 2-graded,. Then:

?j(a) is complete for all a € X.
X @ yi =[x fj(b) yiforall b € X].

»+(a)

~I

[xi ~; ()zandx>-

has at most two distinct equivalence classes, for all a € X.
(a )y,} = Xj ~; +0b) Zi, for all b € X such that a 7~ b.

O N

Afa i b and both 7, @ ana 7 b ) are nontrivial then the first equivalence class
of ?\;lﬂa) is included in the first equivalence class of ziﬂb).

Proof. Parts 1 and 2 follow from Lemma 3 since AC1; implies that >=;" is complete.

Part 3. Suppose that bj( % has at least three distinct equivalence classes This im-
plies that (x;,c_;) 7 a, (yi,c—i) Z a, (yi,d—;) 7 aand (z;,d_;) 7 a, for some x;,y;,z; €
X;, some c_;,d_; € X_; and some a € X. Using AC1;, (x;,c_;) 7= a, (yi,d—i) 7 a

and (y;,c—;) 7 a imply (x;,d—;) - a. Using 2-graded;, (y;,d_;) 7 a, (x;,d_;) 7 a,
(xi,c—i) Zaand a - aimply (yi,c—;) Zaor (z,d_;) 7 a, a contradiction
Part 4. Suppose that x; ~ Ha) Zis Xi = +a) vi, a 7 b and x; >- z, (the proof

for the case z; >i+(b)

(zi,w—i) Z b, (x;,1—;) 7 aand (y;,1—;) Z a. Since x; ~ Ha )z,,we must have (z;,7_;) 7

~

a. Using ACLy, (xi,w_1) 7 b, (zist-) 7 and (z5,w_1) 2, b imply (xi,1_1) % a. Using

Xi bemg similar). By construction, we have (x;,w_;) 2= b,
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2-graded;, (zi,t—;) 7 a, (xi,t—;) ZZ a, (xi,w—;) 72 b and a 2Z b imply (z;,w_;) 7 b or
(yi,t—i) 7 a, a contradiction.
+(a)

Part 5. Suppose that a J b, x; >-;

Zi bj(a) x;. Because we know from Part 3 that ="

~1
+(a
classes, we must have z; ~; (@)

(b)

() x;. Using Part 2, we know that
(a)

+
yiand z; >=;
has at most two equivalence
(a) (a)

x;. Using Part 4, a 7, b, z; N?L x; and x; >l-+ Vi

imply z; ~i+ X, a contradiction. O

Let 7~ be a weak order on X satisfying AC1; and 2-graded;. Leti € N. For all a € X,
we know that either i:r(a) is trivial or ?V';r(a) has two distinct equivalence classes.
Define Bf C X; as the empty set in the first case and as the elements in the first
equivalence class in the second case. Define C{' letting:

= U B

{xeX:xza}
The following lemma studies the properties of the sets Cy'.

Lemma 5. Let =~ be a weak order on X satisfying AC1 and 2-graded. For all
x,y,z,we X and alli € N:

Lzzw=CCCY.

2.{jeN:y;eCy C{jeN:x;€C)= vz yiforallieN].
3. CFC X

Proof. Part 1. We have x; € C5 iff x; € BY, for some a 7 z. Because z ;7 w and 7 is
a weak order, we have a 7 z. Hence, x; € BY, for some a 7 w, so that x; € C}".

Part 2. If ;%) is trivial, we have by definition x; ~= @ y;. If =¥ is not trivial,
it follows from Part 5 of Lemma 4 that C7 is equal to the first equivalence class
of ?;j@. If y; € C;, we have x; € C}, so that x; Nj@ yi- If y; ¢ C%, then we have

NN
Zi ~I yl' .

Part 3. By construction, B! is strictly included in X;. As the set C7 is obtained by

taking the union of sets B, the conclusion follows. O

Lemma 6. Ler - be a weak order on X satisfying AC1; and 2-graded;. Define, for
all x € X, the set G* C 2V letting I € G* whenever we have {i € N : 7; € C'} C1, for
some z € X such that 7 77, x. We have, for all x,y € X:

Lxzys{ieN:xeC}eq.
22.IeG andICJ]=Je G
xzy=G"CG.

Proof. Part 1. By construction, if x 77 y then {i € N :x; € C} } € G”. Let us show that
the reverse implication is true. Suppose that {i € N : x; € C} } € G*. This implies that
{ieN:z€C’} C{ieN:x;€C'}, for some z € X such that z 7 y. Using Part 2
of Lemma 5, {i e N:z, € C'} C{i € N:x; € C'} implies x; =, ) z;, for all i € N.
Hence, z 77 y implies x 7 y.
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Part 2 follows from the definition of the sets G*.

Part 3. Suppose that x 7~ y and let I € G*. Let us show that we must have I € G”.
By construction, I € G* implies that {i € N : z; € Cct } C 1, for some z € X such that
z 2~ x. Consider the alternative w € X defined in the following way:

o Ifz; € C7, let w; = z;. We have w; € C}. Using Part 1 of Lemma 5, we know that
this implies w; € Cl-y .

e Ifz ¢ C. Using Part 3 of Lemma 5, we know that C; C X;. We take w; to be any
element in X; \ C’. Because, we know that C; C C}, we have w; ¢ C7.

By construction we have, for all i € N, z; € Cf < w; € Cf < w; € C}. Hence, we
have {i e N:z; € CF} ={i € N:w; € CF} = {i € N : w; € C'}. The first equality
implies w 7~ x. Using the fact that =~ is a weak order, we obtain w 7 y. Hence, we
have {i € N:w; € C'} CIand w - y. This implies / € G°. 0

Defining Af = C7 and F* = G*, the sufficiency proof of Proposition 1 follows from
combining Lemmas 5 and 6.

4 The Noncompensatory Model and the Discrete Sugeno
Integral Model

The main result in this section says that if a weak order has a representation in the
noncompensatory model and has a numerical representation, then it has a represen-
tation in the discrete Sugeno integral model. This will help to complete the proof of
Theorem 1.

Proposition 2. Let 7~ be a weak order on X. Suppose that 7, can be represented in
the noncompensatory model and that there is a real function v on X such that, for
all x,y € X,

xZyev(x) Zv(y). (5)

Then 7 has a representation in the discrete Sugeno integral model.

Proof. Let 7 be a weak order representable in the noncompensatory model and such
that there is a real-valued function v satisfying (5). We may assume w.l.o.g. that, for
all x € X, v(x) € [0, 1]. Furthermore, if there are minimal elements in X for 7, we
may assume w.l.o.g. that v gives the value O to these elements. We consider now any
such function v. For all i € N, define u; letting, for all x; € Xj,

(6)

AW if Iw:x; € AY
ui(xi) _ {(S)up{wEX.x,-EAi }V(W) waw:ix; € A7,

otherwise.
Define 1 on N letting, for all 7 € N,

_ [ supgexieryy viw) if3dw:IeF",
k() { 0 otherwise. @
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Since I € F" and J D I entails J € F", we have that u(J) > u(7). Hence, u is a
nondecreasing set function.

Let us show that u(@) = 0. If there is no w € X such that @ € F", then we
have, by construction, 1 (@) = 0. Suppose that Xg = {w € X : & € F"} # &. From
the definition of the noncompensatory model, it follows that, for all x € X and all
w € Xz, we have x 7~ w. Hence, for all w € Xy, w is minimal for >~. We therefore
have v(w) = 0, for all w € Xz and, hence, (&) = 0. This shows that 1 defined by
(7) is a capacity on 2V. It is not necessarily normalized, i.e., we may not have that
u(N)=1.

Independently of the normalization of 1, we can compute, for all x € X, Sy, u(x)
letting:

S () (x) = \/ lu([) A (/\u,(x,))] . (8)
ICN iel
It is clear that, for all y € X, S¢, ,y(v) € [0,1]. Let us show that, for all y € X,
S(uuy(y) = v(y), which will complete the proof if u happens to be normalized.

Let x,y € X be such that x 7 y. This implies A(x,y) = {i EN:x; €A} € F”.
Hence, for all i € A(x,y), y € {w € X : x; € A"}, so that u;(x;) > v(y). Similarly,
ye{weX :A(x,y) € F¥}, sothat i(A(x,y)) > v(y). Hence, for I = A(x,y), we have

w(l) A (/\u,-(n)) > v(y).

iel

In view of (8), this implies Sy, (x) > v(y). Since 7 is reflexive, this shows that,
forall y € X, Sy () = v(y).

We now prove that, for all y € X, S,y (v) < v(y). If y is maximal for 7 (i.e.,
y 7 x, for all x € X), we have v(y) > v(x), for all x € X. The definition of u; and
obviously implies that they cannot exceed the maximal value of v on X. Hence, in
this case, we have Sy, ,y (v) < v(y).

Suppose henceforth that y € X is not maximal for 7, so that x > y, for some
x € X. This implies that A(y,x) = {i € N :y; € A} } ¢ F*. Define Ay = U, A(y,2).
Because A(y,z) C N, N is a finite set, and 7’ 77 z implies A(y,z') C A(y,z), there is
an element zp € X with zo > y that is such that A(y,z9) = A, and A(y,z) = A,, for all
z€ X such that 7o 75 7 = y.

We claim the following:

Claim 1:  forall j ¢ Ay, u;(y;) <v(y).
Claim 2:  forall 7 C Ay, u(I) <v(y).

Proof of Claim 1. Let j ¢ A, so thaty; ¢ A;O. If theset {we X :y; € A;-V} is empty,
we have u(y;) = 0 and the claim trivially holds. Otherwise, let w € X such that
yj € A¥.If w = z9, we have AY C A7, so that y; € AY implies y; € A?, a contra-
diction. If zo 72 w >y, we know that A(y,w) = A(y,zo). This is contradictory since
yj €AY andy; ¢ Aj-o. Hence, when j ¢ A,, we must have y 7 w, for all w € X such
thaty; € A" This implies that u;(y;) = SUP{iyex:y ear) v(w) <v(y), forall j ¢ A,.
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Proof of Claim 2. Let I C A,. If the set {w € X : [ € F"} is empty, we have (1) =0
and the claim follows. Otherwise, let w € X such that I € F'". Suppose that w > zo.
This implies F* C F?, so that / € . Because I C Ay, we obtain A, € F%. This
is contradictory since zo > y implies that A, = A(y,z0) ¢ F. Suppose now that
20 Zw > y. We have A(y,w) = A, ¢ F". But, since I € F" and I C A, we obtain
A, € F", a contradiction. Hence, for all w € X such that € F", we have y 77 w.
This implies (1 (1) = supycx.repwy V(W) < v(y).

Using Claims 1 and 2, we establish that S, ,y(v) < v(y) for any y € X that is not
maximal. Let I C N. We distinguish two cases in order to compute

u(I) A (/\ui(xi)>~

icl
1. If I is not included in A,, we know that there is j € I such that j ¢ A,. Hence,

using Claim 1, uj(y;) < v(y) so that (1) A (Aieyui(yi)) < v(y).
2. If I is included in Ay, using Claim 2, we have 1 (I) < v(y). Hence, we know that

() A (Nierui(yi)) < v(y).

Hence, for all I C N, we have p(I) A (Ajesui(yi)) < v(y), so that S¢, »(v) < v(y).
This proves that, for all y € X, S, . (v) = v(y)-

It remains to show that we may always build a representation in the discrete
Sugeno integral model using a normalized capacity, i.e., a capacity v such that
V(N)=1.

Using the above construction, the value of (t(N) is obtained using (7). We have
W(N) =sup,,.x v(w), since for all w € X, N € F". If the weak order 7 is not trivial,
we have ((N) > 0. In order to obtain a representation leading to a normalized
capacity, it suffices to apply the above construction to the function u obtained by
dividing v by u(N). If the weak order 77 is trivial, it is easy to see that it has a
representation in the noncompensatory model such that, for all x € X and all i € N,
A} =X; and F* = {N}. Defining, for all i € N and all x; € X;, u;(x;) =1, u(N) =1
and p(A) =0, for all A C N, leads to a representation of this trivial weak order in
the discrete Sugeno integral model. O

The sufficiency proof of Theorem 1 follows from combining Lemma 1 with
Propositions 1 and 2. This amounts to characterizing the discrete Sugeno inte-
gral model by the conjunction of any of the following three equivalent sets of
conditions:

e Completeness, transitivity, OD, AC1 and 2-graded
o Completeness, transitivity, OD, weak separability and 2-graded
e Completeness, transitivity, OD and 2*-graded

The examples in the following section show no condition in the first set is redundant.

Remark 3. Consider a nontrivial weak order =~ on X that satisfies the hypotheses of
Proposition 2. The proof of this proposition establishes that any function v : X —
[0, 1] satisfying (5) and giving a value O to the minimal elements in X for 7 (if any)



100 D. Bouyssou et al.

can be used to define a representation in the Sugeno integral model. The functions
u; and the (non-necessarily normalized) capacity ( used in this representation can
be defined on the basis of v using (6) and (7).

In other words, any (bounded) numerical representation v of a weak order repre-
sentable in the noncompensatory model is essentially a Sugeno integral. By “essen-
tially”, we mean that a positive affine transformation may have to be applied first
to the numerical representation v in order that the minimal elements in X (if any)
receive the value 0 and that the supremum of v is 1. This transformation is only
needed to ensure that (@) = 0 and p is a normalized capacity. Note that applying
(6) and (7) to any bounded numerical representation of the preference would yield
u;’s and 1 such that formula (8) would restate the value of v(x), even if it does not
satisfy 1 (@) = 0 or is not normalized.

Furthermore, as shown in this proof, (6) and (7) can be viewed as inversion for-
mulas for the discrete Sugeno integral model in the following sense. If we know the
value of S, ,(x), for all x € X, without knowing the functions u and ;, it is possi-
ble to use (6) and (7) to build functions «; and a capacity i that allow to reconstruct
all these values using the discrete Sugeno integral formula (8).

5 Independence of Conditions

When strong 2-gradedness is factorized using AC1 and 2-gradedness, Theorem 1
uses five conditions: completeness, transitivity, AC1, 2-gradedness and order-dense-
ness. The five examples below show that none of these conditions can be dispensed
with.

Example 1. Let X = {x1,y1} X {x2,y2}. Let 7 be identical to the weak order

1,32) = [(x1,32), 1,%2)] = (x1,%2),

except that we have removed two arcs from /-, so as to have (x1,y2) 7 (y1,x2) and
(y1,x%2) Z (x1,y2). It is clear that - is transitive but is not complete. Since X; and
X, have only two elements, condition 2-graded trivially holds. It is not difficult to
check that we have y; >1+ x1 and y; >2+ X2, so that AC1 holds.

Example 2. Let X = {x,y1} X {x2,y2}. Let 7 be identical to the trivial weak order
except that we have removed one arc from -, so as to have (x,x2) 7 (y1,y2). Itis
not difficult to see that the resulting relation is complete but not transitive (it is a
semi-order). Since X| and X, have only two elements, condition 2-graded trivially
holds. It is not difficult to check that we have y; > x; and y, >3 x2, so that AC1
holds.

Example 3. Let X = {x1,y1,21} X {x2,y2} x {x3,y3}. Let 7 be the weak order such
that:
[(X] ,XZ,X3), (yl 7-x27-x3)]
-
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[(xlax25y3)7(x17y2)x3)7(y17x27y3)7 ()’17}’27353)7
(y1,52,53), (21,%2,%3), (21, %2,¥3), (21,2, %3)]

[(z1,¥2,¥3), (x1,¥2,¥3)] -

We have y; >—1+ X1 >—fr 71, X2 >—2+ y2 and x3 >—§r y3, which shows that AC1 holds.

Conditions 2-graded, and 2-gradeds are trivially satisfied. Condition 2-graded,
is violated since (x1,%2,x3) 2 (V1,%2,%3), (¥1,%2,%3) Z (V1,%2,%3), (¥1,52,3) 5
(x1,%2,y3) and (y1,x2,x3) 2Z (x1,%2,y3) but (z1,%2,%3) Z (y1,%2,%3) and (x1,¥2,¥3) Z
(x1,%2,¥3).

Example 4. Let X = {x;,y1} X {x2,y2} x {x3,y3}. Let = be the weak order such
that:
[(xl,xz,)@),(xl,yz,x3),()’1,y2,x3)]
-
[(O01,¥2,3), (V1,%2,%3)]
—

[(x1,x2,3), (x1,¥2,¥3), (V1,%2,¥3)] -

Condition 2-graded trivially holds. We have y, >§r xp and x3 >3+ y3, so that con-
ditions AC1, and AC13 hold. Since (X1,XQ,X3) ?\: (y17y2,X3) and (y17y27y3) i

(y1,%2,x3) but (y1,x2,x3) Z (y1,y2,x3) and (x1,y2,y3) Z (y1,x2, x3), condition
AC1; is violated.

Remark 4. Ttis easy to check that the weak order in Example 4 satisfies the following
condition

xXZy (zisX—i) Z 9
and = or
2y (xi,Zfi) Y

for all x,y,z € X. This condition is a weakening of AC1; obtained by requiring that
y = w in the expression of AC1; (it is equivalent to requiring that all relations t;r(a)
are complete). It is therefore not possible to weaken AC1; in this way.

Similarly, it is easy to check that the weak order in Example 3 satisfies the weak-
ening of 2-graded; obtained by requiring that z = w in the expression of 2-graded;
(and, hence, removing the last redundant premise), i.e., for all x,y,z € X and all

a; € X;,

Xz

and (ai,x_i) 7z
Visx—i) Tz o = or

and (xi,y—i) Z 2,

yzz

Hence, condition 2-graded; cannot be weakened in this way.

Example 5. Let X = 2% x {0,1}. We consider the weak order on X such that
(x1,%2) ZZ (v1,y2) if [xa = 1] or [x, =0, y» = 0 and x; >* y;], where >* is any
linear order on 2%, It is easy to see that - is a weak order. It violates OD since
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the restriction of - to 2% x {0} is isomorphic to >* on 2% and >* violates OD.
The relation 2~ has a representation in the noncompensatory model. Indeed, for all
x=(x1,1), take A} = @, Ay = {1} and F* = {{2},{1,2}}. For all x = (x,0), take
AY={y; €28 :y; >*x;}, A5 = {1} and F* = {{1},{2},{1,2}}. It is easy to check
that this defines a representation of the weak order 7 in the noncompensatory model.
Using Lemma 2, this implies that - satisfies AC1 and 2-graded.

6 Uniqueness

This section briefly discusses the uniqueness of the representation in the noncom-
pensatory model and the discrete Sugeno integral model. The “ordinal” character
of these models makes them especially attractive to deal with finite sets of alter-
natives. We therefore restrict our attention to this case in what follows. When X is
finite, combining Propositions 1 and 2 with Theorem 1, shows that a binary relation
has a representation in the noncompensatory model iff it has a representation in the
discrete Sugeno integral model.

6.1 Links Between Representations in the Noncompensatory
Model and the Discrete Sugeno Integral Model

Let 7~ be a non-degenerate weak order on a finite set X with r > 1 distinct equiv-
alence classes. Suppose that 7~ has a representation in the noncompensatory model
using sets A7 and F™*. It is easy to deduce from this representation a representation
of - in the discrete Sugeno integral model.

It follows from the definition of the noncompensatory model that, if x and y
belong to the same equivalence class, we have A7 = A? forall i € N, and F* = F”.
Let Agk) =AYand F (k) = F*_ for some x € X belonging to the kth equivalence class
of ~.

Take any numbers A; such that

M=1>LL>--->A_1>A=0. 9)

For all i € N, define u; letting, for all x; € X;,

(10)

wi(xi) =2y ifx; e AVTINAVT,
ui(x;) = Ar otherwise,
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and u on 2V letting, for all A € 2V,

pA) =21 ifAcFW),

pA) =24 ifAec FAO\FW
y(A)': A ifAc FON\F@), an

wA)=A_; ifAcFr—U\Fr-2),
U(A)=2A,  otherwise.

With such definitions, for all x € X, the value Sy, , (x) belongs to {A1,42, ..., A, }.
It is easy to see that x € X belongs to the kth equivalence class of 77 iff {i e N: x; €
AP} € FO S, o (x) = A

The above formulas therefore give a systematic way to build a representation in
the discrete Sugeno integral model on the basis of a representation in the noncom-
pensatory model.

Clearly, the real numbers A; may be chosen arbitrarily, provided that they satisfy
(9). Given a particular choice of A, the representation built above is “minimal” in
the sense that it uses as few real numbers as possible in order to build the represen-
tation in the Sugeno integral model.

The minimal representation, given a particular choice of A; compatible with (9),
envisaged above is not the only possible one. Given the numbers A, we can, for
instance, use them to define the values of y through (11). When this is done, it is
clear that for each distinct x; € AEM \Agkfl) we can define u;(x;) to take an arbitrary
value in the interval [A, A;_1). Other choices are clearly possible.

6.2 Uniqueness of Representations

It is easy to deduce from the results in Bouyssou and Marchant (2007) the unique-
ness of the representation in the noncompensatory model. Consider the kth equiva-
lence class of 7. We say that attribute i € N is influent for this equivalence class if
there are x;,y; € X; and a_; € X; such that (x;,a_;) belongs at least to the kth equiv-
alence class of 7~ and (y;,a_;) belongs to a strictly lower equivalence class. Using
the results in Bouyssou and Marchant (2007), it is easy to show that, when each

attribute 7 € N is influent for the kth equivalence class of -, the sets Al(k) and F(®)
are uniquely determined. This condition is not necessary for such a uniqueness how-

ever. This is illustrated in the example below adapted from Bouyssou and Marchant
(2007).

Example 6. Let n =3, X = {x1,y1} x {x2,y2} x {x3,y3}. Let 2 be such that:

(x1,%2,x3) = (y1,%2,%3) = [(x1,%2,Y3), (x1,¥2,%3)]

= [(x1,52,53), (V1,%2,53), (V1,52,%3), (1,52, ¥3)] -
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It is easy to check that all attributes are inﬂuent for the first equivalence class of

7. We must have A = {x1}, A = {0}, A = {x3} and FU) = {{1,2,3}}.

Slmllarly, all attributes are 1nﬂuent for the third equ1va1ence class. We must have
V= AP = o)A = (o) and FO = {{1,2,{1,3},{2,3},{1,2.3}}.

Attributes 2 and 3 are influent for the second equivalence class of - while at-
tribute 1 is not. In order to satisfy the constraints of the noncompensatory model,
we must takeA ={x}, A {xz},A = {x3} and F® = {{2,3},{1,2,3}}.
The conditions ensuring the uniqueness of the representation in the noncompensa-
tory model are investigated in Bouyssou and Marchant (2007). Whenever this rep-
resentation is not unique, we may use each of these representations as a basis for the
analysis in Sect. 6.1.

In order to analyze the uniqueness of the representation in the discrete Sugeno
integral model, two points should therefore be kept in mind. First, given a repre-
sentation in the noncompensatory model, it is possible to deduce several distinct
representations in the discrete Sugeno integral model. Second, the representation in
the noncompensatory model may not be unique. Combining these two effects, it is
clear that the uniqueness of the representation in the discrete Sugeno integral model
is quite weak. Since its precise analysis does not seem to be informative, we do not
develop this point.

6.3 Commensurateness

When we compute a Sugeno integral, we compare levels on different attributes.
This seems to indicate that the axioms of the discrete Sugeno integral model imply
the existence of a relation > defined on | J;cy X;, with the following interpretation:
x;i > x; iff x; is better than x;. Given a preference relation /7, there can exist several
representations in the discrete Sugeno integral model and it can happen that u;(x;) >
uj(x;) in one representation while u;(x;) < u/;(x;) in another one. Hence, stating
x; = x;j (or the converse) does not make sense for such a pair. So, let us define >~
by x; =€ x; iff u;j(x;) > u;j(x;) in all representations. In the following proposition,
we characterize this relation in terms of the primitive relation 7.

Proposition 3. Let =~ be a weak order representable by means of a Sugeno integral.
We have z; = z; if and only if, for some c,d € X, w; € X;, w; € Xj, a_; € X_; and
b_j € X_j, we have

¢ d,
(Zi7 l) f>\: ¢ (WH ) if ¢ (12)
(W]’b*j) idv (ZJ7 )%d

Proof. If (12) holds, then, in any representation, u;(z;) > Sy, (¢) = Syuu(d) >
u;j(z;). So, in any representation, u;(z;) > u(z;) and, therefore, z; =€ z;.
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Suppose now z; > z; and let (u});en be one of the representations constructed
by means of (9), (10) and (11). We therefore know that u} (z;) > u; (zj). There is thus

k and [ with k < [ such that u}(z;) = Al and uf(z;) = A (this follows from (10)).
Hence, z; € A(k) and z; ¢ A;k). So, (12) holds for some ¢ = d belonging to the kth

i
equivalence class of . O
From the definition of >, it is clear that this relation is transitive and asymmetric,
ie., z; =€ z; implies z; ¢ z;. We now show that it is also negatively transitive, i.e.,
X; #<yjand y; £¢ z; implies x; #¢ z;. Hence, = is the asymmetric part of a weak
order on the set | J;cy X;. This is in line with the intuitive notion of commensurate-
ness.

Proposition 4. Let =~ be a weak order representable by means of a Sugeno integral.
Then > is negatively transitive.

Proof. Let (u})icn be one of the representations constructed by means of (9), (10)
and (11). Suppose x; #¢ y; and y; # z;. If u; (x;) > u3(y;), then, as shown in the
proof of Proposition 3, (12) holds and, by Proposition 3, x; =€ y;. This contradiction
implies u; (x;) < u}(y;). The same reasoning yields u}(y;) < uj(z). By transitivity,
u}(x;) < uj(z). Suppose now, contrary to negative transitivity, that x; > z;. This
implies u; (x;) > u;(z;), a contradiction. O

To conclude this section, note that the “derived commensurateness”, i.e., the relation
>¢, is not easy to interpret and analyze however. Indeed, the way the above relation
combines with =~ remains complex. As shown in the example below, it is quite
possible to have (x;,xj,x_;;) 7y, zj =€ x; and z; =€ x;, while (z;,z,x_;j) Z y. This
calls for further analysis.

Example 7. Let n =4 and X; = X, = X3 = X4 = {0,0.01,0.02,...,0.99,1}. For all
i € N, let u;(x;) = x;. Define a normalized capacity i on N such that: u(2) =0,
u(A) = 0.1, for all A C N such that [A| = 1, p({1,2}) = 0.1, u({1,3}) =
0.2, u({1,4}) = 0.301, u({2,3}) = 0.31, u({2,4}) = 0.2, u({3,4}) = 0.3,
w({1,2,3}) = 0.55, u({1,2,4}) = 039, u({1,3,4}) = 1, u({2,3,4}) = 0.31,
W(N) = 1. Define 7~ on X as the relation obtained through the comparison of the
values Sy, ,y (x) = Su[x] using the utility functions and the capacity defined above.
We have
$,[(0.2,0,0.5,0)] = 0.2 > S,[(0.1,0,0.5,0)] = 0.1,

$,[(0,0.2,0,0.5)] = 0.2 > 5,[(0,0.15,0,0.5)] = 0.15.

Since it is clear that S,[(0.2,0.2,0.2,0.2)] = 0.2 we thus have

(0.2,0,0.5,0) = (0.2,0.2,0.2,0.2) = c,
(0.1,0,0.5,0) % (0.2,0.2,0.2,0.2) =,
(0,0.2,0,0.5) == (0.2,0.2,0.2,0.2) = d,
(0,0.15,0,0.5) % (0.2,0.2,0.2,0.2) = d,
¢=1(0.2,0.2,0.2,0.2) = (0.2,0.2,0.2,0.2) =d,

so that the level 0.2 on X is better than the level 0.15 on X»
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Similarly, we have

5,[(0,0.46,0.5,0)] = 0.31 > 5,[(0,0.3,0.5,0)] = 0.3,
5,[(0.5,0,0,0.5)] = 0.301 > 5,[(0.3,0,0,0.5)] = 0.3.

Since we have S,[(0.31,0.31,0.31,0.31)] = 0.31 and S,[(0.301,0.301,0.301,
0.301)] = 0.301, we obtain

(0,0.46,0.5,0) = (0.31,0.31,0.31,0.31) = ¢/,
(0,0.3,0.5,0) %7 (0.31,0.31,0.31,0.31) = ¢/,
(0.5,0,0,0.5) = (0.301,0.301,0.301,0.301) =
(0.3,0,0,0.5) Z (0.301,0301,0.301,0.301) =,

dzd,

so that the level 0.46 on X5 is better than the level 0.3 on X;.

We have S,[(0.3,0.15,0.29,0.4)] = 0.3. Since the level 0.2 on X; is better than
the level 0.15 on X, and 0.46 on X is better than the level 0.3 on X;, we should
obtain that §,[(0.2,0.46,0.29,0.4)] > 0.3, whereas it is equal to 0.29.

7 Discussion

In this paper, we have analyzed the relations between the discrete Sugeno integral
model and the noncompensatory model as well as proposed a factorization of the
main condition used in Greco et al. (2004, Theorem 3). By the same token, we have
presented a proof of Greco et al. (2004, Theorem 3). We have also discussed the
uniqueness of the representation in the discrete Sugeno integral model and shown
that the conditions used in Greco et al. (2004, Theorem 3) are independent. Besides,
we have analyzed the commensurateness that is implied by the discrete Sugeno
integral model and shown that it is more complex than what is usually thought in
the literature. Many questions are nevertheless left open. Let us briefly mention here
what seems to us the most important ones.

The result in Greco et al. (2004) is a first step in the systematic study of models
using fuzzy integrals in MCDM. A first and major open problem is to derive a
similar result for the discrete Choquet integral. This appears very difficult and we
have no satisfactory answer at this time.

A second open problem is to use the above result as a building block to study
particular cases of the discrete Sugeno integral. This was started in Greco et al.
(2004) who showed how to characterize ordered weighted minimum and maximum.
There are nevertheless many other particular cases of the discrete Sugeno integral
that would be worth investigating.

A third problem is to investigate assessment protocols of the various parameters
of the discrete Sugeno integral model using the above result and conditions. This
will clearly require a deeper investigation of the commensurateness at work in our
models.
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Finally, it should be mentioned that we have mainly used here the noncompen-
satory model for weak orders as a tool for analyzing the discrete Sugeno integral
model. The noncompensatory model that we introduced can be extended in many
possible directions. This will be the subject of a subsequent paper.
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Additive Representability of Finite
Measurement Structures

Arkadii Slinko

1 Introduction

The theory of additive conjoint measurement takes its roots in the papers by
Debreu, (1960) and Luce and Tukey (1964). It is presented in books (Pfanzagl
(1968); Fishburn (1970); Krantz, Luce, Suppes, & Tversky, 1971; Luce, Krantz,
Suppes, & Tversky, 1998; Suppes, Krantz, Luce, & Tversky, 1988; Roberts, 1979;
Narens, 1985) and excellent surveys, of which Fishburn’s survey (1999) is the most
recent. The goal of the present paper is twofold: we would like to describe some
recent developments that took place after Fishburn’s survey was published, and to
attract attention to several questions posed by Fishburn that remain unanswered.
The main object of this theory is a Cartesian product of finitely many mutually
disjoint sets A;
A=A XAy X...xXA, (1)

equipped with an order <. This product is usually interpreted as the set of alterna-
tives under the consideration of a decision maker, or the set of outcomes that may
result from her actions. We may also think that there are n criteria in place and each
set A; is identified with the set of levels of the ith criterion. The order represents the
decision maker’s preference on the set of alternatives.

A decision maker often faces some kind of optimization problem. A solution of
this problem would be made feasible if it were possible to find an additive utility
representation over criteria of the decision maker’s preference order < on A. The
central theme of the theory of additive conjoint measurement is finding conditions
which imply the existence of such a representation. Another important question is
about uniqueness of this representation. It appeared that, in many aspects, the most
difficult case to study is the case of finite measurement structures, i.e. when A is
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finite. The main focus of this paper is on this case. In addition to that we restrict
ourselves with < being a (strict) linear order, in which case the uniqueness question
does not emerge.

Kraft, Pratt, and Seidenberg (1959) established (see also Scott (1964)) that ad-
ditive utility representation of < is equivalent to a denumerable set of conditions,
called cancellation conditions, which is not equivalent to any finite subset of them.
However, for a finite Cartesian product of a particular size we need to check only
finitely many cancellation conditions for =< to establish its additive representability.
Fishburn (see, e.g. his motivation of this in (1997, 1999)) considered that it is ex-
tremely important to know the exact number of cancellation conditions needed as
a function of the size of the product, or at least a good lower and upper bounds for
this number. He saw the absence of such bounds as a serious gap in understanding of
additive representability of preferences on finite measurement structures. Fishburn
made a significant contribution to this theory and formulated a large number of open
problems, which have guided and undoubtedly will continue to guide investigators
in this area. And although some recent progress has been made, only a few of the
great many questions posed by Fishburn have been answered to date.

Let us briefly outline what will be covered in the subsequent sections. In Sect. 2
we introduce the main types of finite measurement structures considered in the lit-
erature to date. They are Cartesian product structure, power set structure, power
multiset structure. Section 3 surveys the most general case, the Cartesian product
structure. In this case no significant progress has been recently made, and we high-
light a number of open questions.

Comparative probability orders, which represent one of the main cases of the
power set structure, are surveyed in Sect.4. This measurement structure emerges
when A; = {0,1} fori=1,2,...,n, in which case any n-tuple of the Cartesian prod-
uct can be identified with a subset of the set of atoms [n] = {1,2,...,n}. Here we
reformulate the cancellation conditions for comparative probability orders in terms
of portfolios of desirable gambles. This framework allows for a better understanding
of Fishburn’s function f(n), the main object of his investigations in Fishburn (1996,
1997). We show that f(n) can be interpreted as a measure of rationality of a player
required to correctly evaluate any portfolio of gambles with n states of the world.
We report on the recent progress in estimation of f(n) and the related function g(n),
which was introduced by Conder and Slinko (2004). The reason for introducing
this new function is as follows. It is known that for comparative probability orders
the absence of arbitrage does not imply additive representation and some cancel-
lation conditions may still be violated. However the absence of arbitrage is a very
important condition and g(n) is a complete analogue of f(n) in the situation of no
arbitrage.

Fishburn showed by way of a sophisticated combinatorial construction that
f(n) > n—1, which together with the bound f(n) < n+ 1 of Kraft-Pratt—
Seidenberg (1959) gave quite a narrow range for this function. Fishburn conjectured
that f(n) =n— 1. Recently however Conder and Slinko (2004) showed that f(7) >7
and Marshall (2005, 2007) showed that f(p) > p for a large number of prime num-
bers p > 131. Conder showed that f(n) > n for all 7 < n < 13. Fishburn (1996,
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1997) also paid attention to minimal violations of the cancellation conditions which
he called irreducible patterns. Here we present a theorem of Auger (2005) which
says that there are only finitely many of them.

In Sect. 5, devoted to power multiset structure, sets are generalised to multisets
which allow multiple entry of identical elements. If A; = {0, 1,...,m;} and if the ith
coordinate of an n-tuple from the Cartesian product is j, then we may think that the
multiset associated with this tuple has j copies of atom i. We see great advantages
in describing this measurement structure in multiset terms, because of the emerging
analogies with comparative probability orders. Orders on submultisets of a multiset
were first used in the computer science literature by Dershowitz (1979) to prove
termination of rewrite systems. Sertel and Slinko (2002) showed some important
applications of multisets in Economics and Political Science. In Economics rank-
ing multisets can be used for ranking income streams and investment projects. In
Political Science they can be used for ranking committees or parliaments.

Additive conjoint measurement on subsets of Cartesian products containing?
rank-ordered? n-tuples was considered by Wakker in (1991, 1993). He established
that, contrary rank-ordered to what has often been thought, additive conjoint mea-
surement on subsets of Cartesian products has characteristics different from additive
conjoint measurement on full Cartesian products.

Fishburn himself did not work with this preference structure but many of his ideas
work in this case too. An analogue of de Finetti’s axiom here is Independence of
Equal Submultisets (IES) introduced in Sertel and Slinko (2002); Sertel and Slinko
(2007). The analogues of functions f(n) and g(n) can be introduced and those ana-
logues will have k as an additional parameter, i.e. we obtain functions f(n,k) and
g(n, k). It is rather surprising that in this case better progress can be achieved in de-
scribing these functions than in the case of comparative probability orders (Conder,
Marshall and Slinko, 2007). The function g(n,k) is determined exactly: we have
g(n,k) =n—1for (n,k) # (5,2) and g(5,2) = 3. We also have n > f(n,k) > g(n,k)
and we conjecture that f(n,k) = g(n, k).

2 Types of Finite Measurement Structures

In this paper we assume that the Cartesian product (1) is finite. Let m; denote the
cardinality of A; and in this case the cardinality of the Cartesian product will be
|A| = mymy...m,. We interpret < as a nonstrict preference relation on A, i.e.a <b
means a is not preferred to b. The corresponding strict preference relation < and
indifference ~ are defined in the usual way.

Sometimes A; (i = 1,...,n) are sets without any additional structure. This hap-
pens, when elements in each A; belong to the same class but cannot be com-
pared and measured in units of something, e.g. A; = {apple,banana} and A, =
{pepsi, coca cola}. Here the Cartesian product consists of pairs

A = {(apple, pepsi), (apple, coca cola), (banana, pepsi), (banana, coca cola) }.
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We say that we have a Cartesian product structure. The additive utility representa-
tion in this case will then take the following form.

Definition 1. A binary relation < on a Cartesian product structure (1) is said to be
additively representable if there are n non-negative real-valued functions u;: A; — R
such that for all a = (ay,...,a,) and b= (by,...,b,) in A

=

a=<b<—= Zn:u,-(ai) <N ui(by). 2)

i=1 i=1

An important case emerges when we have n types of goods which are divisible to
a certain extent but not infinitely divisible (such as money, cars, houses, etc.). These
goods can be measured only in whole units of some quantity which is further indi-
visible. If the total number of available units of the good of type i is m;, then each A;
can be identified with the set {0, 1,...,m;} which has the structure of the truncated
monoid of nonnegative integers N,,,. A truncated monoid Ny = ({0,1,....k—1},®)
of positive integers is an algebraic system on the base set {0, 1,...,k— 1}, where the
addition @ is defined as

On— m+n ifm4n<k,
MEM= undefined if m+n > k.

The representability of linear orders on such a Cartesian product must respect the
structure on the A;’s, which means that for the ith utility function we must have

ui(k) = ku;i(1)
and, in particular, u;(0) = 0.
When m; = ... = m, = 2, and each A; has the structure of N, this is the case of
goods which are indivisible. A 1 in the ith position of an n-tuple a = (ay,...,a,) €A

means that the ith good is present in this bundle. The Cartesian product A thus can
be identified with the set of all indicator functions on [1] or with the set of all subsets
of [n]. Then the order < becomes an order on subsets of [n]. We call it the power set
structure. We will deal only with linear, i.e. antisymmetric orders on subsets, since
the general theory has not been developed yet. One obvious necessary condition for
additive representability of the power set structure is the famous axiom introduced
by de Finetti.

Definition 2. An order < on 21" is said to satisfy the de Finetti axiom if for any
A,B € 2" and any C € 21" such that CN(AUB) = 0

A=XB<+=AUC=XBUC. 3)

If a linear order < satisfies de Finetti’s axiom and () < X for any non-empty
subset X C [n], then it is called a comparative probability order. Some significant
progress has been recently achieved in understanding of additive representability of
comparative probability orders. We report it in Sect. 4.
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A multiset M on a base set X is a collection of elements of X, where multiple
entries of the same element of X are possible (Stanley, 1997). In general, if X =
{x1,...,x} is a set, then a multiset on X is denoted as M = {x7' x3* ... x{*}, where
qjis the number of occurrences of x; in M, respectively. The number q, is normally
referred to as the multiplicity of x; in M. As some ¢; may be zero, not all elements
of the base set may be present. The number of unique elements of X in M we call
the width of M and the sum ):1]‘-:1 q; we call the cardinality of M.

When the Cartesian product (1) is such that every A; has a structure of N,,,,, then
A can be identified with all submultisets of the multiset {1",2"2, ..., n"} on [n]. In
the language of bundles of goods, we have n types of goods, denoted 1,2,...,n, and
exactly m; copies of good i are available. We call it the power multiset structure. The
power multiset model has numerous useful interpretations (see e.g. Sertel and Slinko
(2007); Conder et al. (2007)). We report results on the power multiset structure in
Sect. 5.

In some applications not all alternatives of the Cartesian product (1) are actu-
ally available for choice. In this case we have to consider orders on a subset of
this Cartesian product. Section 6.5.5 of Krantz et al. (1971) points out the impor-
tance of additive conjoint measurement on subsets of Cartesian products. Interest
in this topic has increased during the last decade because of new developments in
the literature on decision making under risk/uncertainty where conditions like inde-
pendence are often required to hold only within certain subsets. Sertel and Slinko
(2002) showed that sometimes from the applications point of view it is necessary
to restrict ourselves to the submultisets {15,252 .. nkn} of {1 2m2 .. ™} of
fixed cardinality , i.e. those for which )" | k; = k. The set of all submultisets of car-
dinality k we will denote as Py ([n]). They gave several important examples of such
applications (see also Conder et al. (2007)).

3 Cartesian Product Structure

When we deal with sequences of elements of the Cartesian product A, we will in-
dex them with superscripts, while leaving subscripts to numerate the coordinates of
elements of A. For example, if al ,...,a" is the sequence of elements of A, then ag is
the ninth coordinate of the seventh vector.

If <is a binary relation on the Cartesian product A and a < b is true, then, using
the preference elicitation terminology Fishburn, Peke¢, and Reeds (2002), we will
say that a < b is a valid comparison of the two tuples a and b.

Definition 3. Let < be a relation on the Cartesian product A and
;e al=be 4)

be a sequence of valid comparisons of pairs of elements of A such that a’ < b for
at least one i. We say that this sequence has the cancellation property if, for each

coordinate i = 1,2,...,n, the sequence b} , b? b? is a permutation of the sequence

1 2 pni
q
a;,az,...,al.



118 A. Slinko

The number g of comparisons in the sequence (4) will be called its cardinality
and the number of unique comparisons in (4) will be called the width of this se-
quence. Note that this is consistent with the multiset terminology. This is because,
if we drop the order of elements in any sequence, it becomes a multiset.

Example 1. The following two sequences of comparisons

(1,2) < (2,3)
(1,2) < (3,4)
Ga=<02 5P

the first one, in the left column, of cardinality two, and the second, in the right col-
umn, of cardinality three, both have the cancellation property. If all the comparisons
of the first sequence are valid for <, then < is not antisymmetric, If all the compar-
isons of the second sequence are valid, then =< is not transitive.

From the previous example we get a feeling that having a sequence of valid
comparisons with the cancellation property is some kind of a pathology.

Definition 4. We say that a binary relation < on a Cartesian product (1) satisfies the
cancellation condition Cy if every sequence of comparisons which satisfies the can-
cellation property has width greater than k. We say that a binary relation < satisfies
the cancellation condition C,i' if every sequence of comparisons which satisfies the
cancellation property has cardinality greater than k.

The following example is taken from Fishburn (1999).
Example 2. Let A = {1,2,3} x {a,b,c}. Then the linear order
la<1b<2a <2b<3a~<1c<2c~<3b<3c
satisfies C; and C; but fails both C3 and C; since the sequence of valid comparisons
1b<2a, 3a<lc, 2c=<3b
has the cancellation property.

As the width of a multiset is not greater than its cardinality, C always implies
C,j. Both C; and CZ group together a large number of conditions but they do it differ-
ently. Both are introduced to help us better comprehend the great many cancellation
conditions necessary for additive representability.

It is obvious that an additively representable binary relation does not have se-
quences of valid comparisons that satisfy the cancellation property and, hence, sat-
isfies all cancellation conditions. The converse is also true Krantz et al. (1971). The
basic rationality assumption for a preference relation on A is called Independence of
Equal Subalternatives. It says that for four n-tuples x,y,z,w € A

Xy<=z=Ww
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whenever there exists a proper subset S C [n] such thatx; = z; and y; = w; for all i € S,
and x; = y; and z; = w; for all i ¢ S. We take this terminology from Wakker (1989);
Fishburn calls it the first order independence Fishburn (1997); in Krantz et al. (1971)
this is called coordinate independence. Independence of Equal Subalternatives, be-
ing a consequence of Cp, is not generally sufficient for additive representability.
However, as we shall see later, for a limited set of sizes it is true.

Given a relation < on A, we may associate the following two numbers with it. Let
f(=X) be the smallest k such that < violates the cancellation condition Cy and f7(=)
be the smallest k such that < violates the cancellation condition CZ. An obvious
relation between these two functions is, of course, f(=) < f*(j). However the
minimal violation of CZ hypothetically may not have the smallest possible width.
Knowing only f(=), we know only half of the story and knowing f(=) and f7(=)
gives us the full picture.

Now we will introduce two functions that were of primary interest to Fishburn.
We set

flmy,ma,.comy) =max f(2), fHmy,mo,...omy) = max f1(2), ()

where the maximum both times is taken over all binary relations on A. In other
words, any relation < on A, which satisfies cancellation conditions C; with k <
f(my,my,...,my,) is additively representable and f(m,ma,...,m,) is the smallest
number with this property. The second function f'(m,my,...,m,) can be similarly
characterised. Fishburn concentrated his attention on the first function leaving the
second for future research. In this section we will not consider the important case of
(my,ma,...,my) =(2,2,...,2) since we will devote the whole next section to it.
Krantz et al. (1971) (see pp. 427-428), who made the initial contribution to this
topic, proved that f(2,my) = 2 and that f(3,3) > 3. Little else was known about
these functions until Fishburn’s papers (1997, 2001). One of the most significant
results of Fishburn (1997) was the general upper bound for f(my,my,...,my,).

Theorem 1 (Fishburn, 1997). f(m,ma,...,m,) <Y* m;j—(n—1).

As f(2,my) is known, the case n = 2 with min(m;,my) > 3 naturally attracted
much attention Fishburn (1996, 1997).

Theorem 2 (Fishburn, 1997, 2001).

1. £(3,3) =3, f(3,4) = f(4,4) =4

2. f(3,my) > my for all even my > 4, and f(3,my) > myp — 1 for all odd my > 5.
3. f(ml,mz) >m; +my — 10.

4. f(5,my) > my+ 1 forall odd my > 5.

We note that Theorem 1 gives us f(3,mp) < my + 2 so the bounds for f(3,my)
given by Theorem 2 are rather tight. Apart from obvious questions that these results
prompt, Fishburn (1997, 2001) formulated the following interesting ones.

Problem 1. What can be said about f7(m,ms,...,m,)?
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Problem 2. We can narrow the class of relations and define the functions f(m;,
my,...,my,) and fT(my,m,... ,my,) for strict linear orders. Will the values of these
functions remain the same? Fishburn conjectured that they would (see Conjecture 1
in Fishburn (1997)).

An important paper by Fishburn and Roberts (1988) studied the uniqueness ques-
tion, which we do not survey here due to lack of space.

4 Comparative Probability Orders

As we already noticed, in the case when m; = ... = m, = 2, the Cartesian product A
can be identified with the power set of n-element set [1]. Here we adopt de Finnetti’s
point of view (de Finnetti, 1931) and consider [r] as the set of the states of the world
in which case we can identify comparisons of subsets with gambles. This approach
was further developed by Fine (1973), Walley and Fine (1979) and Walley (1991,
1999) who believed that there are considerable advantages of basing the theory of
comparative probability on desirability of gambles. In our case orders on subsets
and desirability of gambles provide two equivalent characterisations but there are
some nuances. The shift from preference to desirability is subtle but important. The
word “preference” has an optimality flavour while the word “desirability” is more
in line with the concept of satisficing introduced by Simon (1982). The behavioral
aspect that can be introduced to comparative probability through the introduction of
gambles shed a new light on some old concepts of the theory. In particular, as will
be demonstrated below, the functions introduced by Fishburn (1996, 1997) become
measures of rationality of personal comparative probability.

4.1 Discrete Cones

Let [n] = {1,2,...,n} be the set of possible states of the world, one of which will
materialise. We suppose that agents can somehow compare probabilities of events.
This is their personal probability assessment and it is subjective. If an agent believes
that B is more likely to occur than A, she should accept the gamble which pays 1 if
the state i € A\ B materialises, — 1 if the state i € B\ A materialises, and pays nothing
in all other cases. On the other hand, if the agent considers this gamble desirable, she
must believe that B is more likely to happen than A. Thus it is clear that comparative
probability assessments of sets and desirability of gambles provide two equivalent
languages to discuss orders on subsets. Below we will make this connection formal.

Let T = {—1,0,1}. Any vector of T" represents a gamble. The gamble which
pays x; € T if the state /i materialises will be denoted x = (x1,...,x,) € T". On
appearance of a nonzero gamble x € 7" a participating agent must be ready to accept
either x or —x. The zero gamble 0 is neutral (no loss, no profit). Let us agree that it
is not desirable.
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The following properties will be assumed as basic rationality assumptions that
all agents possess:

Cl. ¢,=(0,...,1,...,0) is a desirable gamble for all 1 <i<n;

C2. If x and y are two desirable gambles and if x+y € 7", then X+ is a desirable
gamble;

C3. For every nonzero gamble x € T", either x or —x (but not both) is desirable.

Definition 5. Any subset C of 7" which contains 0 and whose nonzero vectors sat-
isfy C1 - C3 is called a discrete cone.

To summarise: the set of desirable gambles for an agent is the set of all nonzero
vectors of a certain discrete cone.

For each subset A C [n] we define the characteristic vector x4 of this subset by
setting x4 (i) = 1if i € A, and xa (i) = 0 if i ¢ A. For any pair of subsets A, B € 21"
we define a gamble:

X(AB)=xp—xacT"

Given an agent whose set of desirable gambles is a discrete cone C, the agent can
compare events as follows:

A=B<+= x(A,B)eC. (6)

Due to properties of C, < is an order (reflexive, complete and transitive relation)
on 21", This order satisfies de Finetti’s axiom (3) and hence is a comparative prob-
ability. This probability assessment is, of course, specific for this particular agent
only.

The study of discrete cones as algebraic objects was initiated by Kumar! in his
PhD thesis (Kumar, 1982). This approach was rediscovered by Fishburn (1996)
who pioneered their combinatorial study. Further combinatorial properties of dis-
crete cones were studied in Fine and Gill (1976); Fishburn (1997); Fishburn, Pekec,
and Reeds (2002); Maclagan (1999); Conder and Slinko (2004); Marshall (2005);
Christian and Slinko (2005). In this section we concentrate on combinatorics of ra-
tionality assessment.

If p=(p1,...,pn) is a probability measure on [n], where p; is the probability of 7,
then we know the probability of every event A, by the rule p(A) = ¥ ;c4 pi. We may
now define an order <, on 21 by

A =pB<= p(A) < p(B).

Suppose the probabilities of all events are different. Then =, is a comparative prob-
ability order on [n].

Definition 6. Any comparative probability order < on [n] is called additively repre-
sentable by a measure or simply representable if there exists a probability measure

!' T am grateful to Terry Fine for this reference.
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p on [n] such that <==,. A comparative probability order < on [n] is said to be
almost representable by a measure p if

A=B= p(A) < p(B).

In this case we will also say that < is almost representable without specifying the
measure p.

If an order < is almost representable but not representable, then at least for one pair
of subsets A and B we must have A < B and at the same time p(A) = p(B).

4.2 Portfolios of Acceptable Gambles

Our way to measure rationality of an agent is to look at how consistent she was in
accepting and rejecting various gambles. We need the following concept.

Definition 7. Let C be a discrete cone. A multiset
P={x{",x3%,...,x{"},

where x; € C and q; € N, is called a portfolio of desirable gambles.

Gambles are like risky securities. You may own different number of shares of the
same company. Similarly, a portfolio can contain several identical gambles. If the
personal comparative probability of an agent is representable by a measure, then all
portfolios of desirable gambles are (in the long run) profitable.

Definition 8. The portfolio P is said to be neutral if
arXi +axxg+ -+ ayX, = 0. 7
The portfolio P is said to be a sure loss if
n
arX) +axXp+ -+ amXpy = Zbie; (8)
i=1
with b; <Oforalli=1,...,n.

If a sure-loss portfolio exists, an agent is said to provide an arbitrage. A fully
rational agent cannot accept a neutral portfolio and, of course, cannot provide an
arbitrage. Here is an example of a comparative probability order that has a neutral
portfolio of desirable gambles.

Example 3. Let n =5 and consider the following comparative probability order:

0<1<2<3<12<13<4<14<23<
5<123<24<34<15<124<25<134....

(further continuation is unique). The following four desirable gambles
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xi = (~=1,0,—1,1,0), x> =(—1,1,1,—1,0),
x3 = (1,0,—1,—1,1), x4=(1,—1,1,1,—1)

(they correspond to the underlined comparisons) form a neutral portfolio since x; +
X +X3+x4 =0.

For an example of arbitrage we must have |Q| > 6. Such an example is given in Kraft
et al. (1959). Conder and Slinko (2004) used a computer program to help them find
that for n = 6 there are 5202 such comparative probability orders.

Definition 9. A comparative probability order satisfies cancellation condition Cy
when no neutral portfolio (7) of desirable gambles of width k exist, and satisfies
the cancellation condition C,: when no neutral portfolio (7) of desirable gambles of
cardinality k exist.

The criterion of representability given by Kraft et al. (1959) can be reformulated
as follows.

Theorem 3. Suppose = is the agent’s comparative probability order on 2" and C
be the corresponding discrete cone. Then

1. < is representable iff C has no neutral portfolios of desirable gambles;
2. = is almost representable iff there is no arbitrage.

4.3 Fishburn’s Functions as Measures of Rationality

Let < be the agent’s comparative probability order. Let f(=<) be the smallest width
of a neutral portfolio of desirable gambles and f'(=) be the smallest cardinality
of a neutral portfolio of desirable gambles, if such portfolios exist. Otherwise set
f(2)=fH(=) =co.

The idea is to measure the agent’s rationality by the minimum “size” of the port-
folio that she cannot handle properly with accepting a neutral portfolio being the
early sign of non-rationality. We have two measures for the size of a portfolio: its
width and its cardinality. Each measure gives us a measure of an agent’s rational-
ity. They are f(=) and f7 (=), respectively. The larger these functions are the more
rational is the agent. Fishburn defined these functions in terms of cancellation con-
ditions of two types Fishburn (1996). He and his coauthors used their combinatorial
interpretations in terms of multilists Fishburn, Peke¢, and Reeds (2002). Conder and
Slinko (2004) used their algebraic reformulation of cancellation conditions in terms
of linear dependencies of vectors of discrete cones. However in both cases the real
meaning of cancellation conditions is hard to grasp due to the intricacies of those
definitions. Portfolios clarify the real meaning of cancellation conditions.

Let £, be the set of all comparative probability orders on 21"l and let R, be the
set of all almost representable comparative probability orders on 201 Define
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f(n)=max f(<),  f(n) = max f7(=),

=L, =eLy,

These two functions were introduced and studied by Fishburn (1996, 1997). Also
we define

g(n) = max f(=), g'(n) = jn;%ﬁ(ﬁ)-

These functions were introduced by Conder and Slinko (2004). They are defined
similarly to Fishburn’s functions, but only for comparative probability orders which
do not admit arbitrage. By temporarily setting all orders with arbitrage aside, Conder
and Slinko showed that it is possible to achieve some progress and to answer some
questions of Fishburn about f(=) and f7(=<). The relationships between f(=) and
fT(=) and their no arbitrage analogues g(=<) and g'(=<) are not completely clear.
All we can state is that g(n) < f(n) and g'(n) < fT(n).

Some initial values for these functions are known Kraft et al. (1959); Fishburn
(1996); Fishburn (1997); Conder and Slinko (2004):

f)=f(n)=e,  (n<4),

g(5)=g"(5)=r(5)=r(5)=4,
g(6) =g"(6) = f(6) = '(6) =5.
It is also known that g(n) < n Conder and Slinko (2004) and we will see later that

g(7) = . The following bounds are known for f(n), where the upper bound was
established by Kraft et al. (1959) and the lower by Fishburn (1996, 1997).

Theorem 4 (Kraft et al., 1959, Fishburn, 1997). n— 1 < f(n) <n+1.

The upper bound here is a rather trivial fact, the lower bound was obtained by a
non-trivial construction. Fishburn (1996, 1997) conjectured that f(n) =n— 1. How-
ever, since f(n) > g(n), the first part of the following theorem refutes Fishburn’s
conjecture.

Theorem 5 (Conder & Slinko, 2004). g(7) =7 and g'(7) > 8.
This result is based on the following construction theorem.

Theorem 6 (Conder & Slinko, 2004). Let X = {xi,...,X,} € T" (m > 4), such
that Y1 | aix; = 0 for some positive integers a;, and either

no proper subsystem X' C X is linearly dependent with positive coefficients
or
the sum Y | a; is minimal possible.

Suppose further that the m X n matrix A having the vectors Xi,...,Xy, as its rows
has the property that Ab = 0 for some positive integer-valued vectorb = (by,...,b,)
with by > by > ... > b, >0, and that

btNT" = {£x,...,4+X,}.
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Letp= (b1 +...+b,) 'band C = {x € T" | (x,p) > 0}. Then the discrete cone
C'=C\{—x1,...,—Xpn}

corresponds to an almost representable comparative probability order < which al-
most agrees with p, with either

fD=m o fH=Ya

respectively.
To prove the second part of Theorem 5 one may take the following 7 X 7 matrix:

1-1-1 1 0 1-1]
1 0-1—-1 1-1-1
1 0-1-1-1 0 1
A=|-1 1-1 1 1 0 1
0-1 1 1 0-1 1
0-1 1-1 1 1 1
-1 1 1 0-1 0-1]

and let x1, ..., x7 denote its rows. It is easy to check that rank(A) = 6,
X| + X2 + X3+ X4+ X5+ X6 +2x7 =0,

pt =Span{x,....x;}NT7 = {#£xy,...,+x7},

for the probability measure

1
(48,40, 27, 16, 12, 10, 7).

P= 2

4.4 Extremal Cones and Comparative Probability Orders.
Marshall’s Theorem

In the previous section we saw that discrete cones and comparative probability or-
ders with the property g(n) = n do exist. Since this is the maximal possible value of
g(n), Marshall (2005) calls such objects extremal. He constructed a great many other
extremal comparative probability orders by using some clever algebra and number
theory. Before formulating Marshall’s theorem we remind the reader that, given a
prime p, an integer a is called a quadratic residue if there exists a b such that a = b>

(mod p); otherwise it is called a quadratic non-residue. The Legendre symbol (%)

is 0 if @ is a multiple of p, 1 if a is a quadratic residue mod p, and —1 if a is a
quadratic non-residue.
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Theorem 7 (Marshall, 2005). Let p be a prime greater than 131. If

P
-1 —1
) e (D)
p p
where ged(a,b) = p, then there exists an almost representable discrete cone in TP
with g(p) = p.

The odd primes satisfying the above equation he calls optimus primes. The first
few non-optimus primes are

3,23,31,137,191,239,277,359, ...

Calculations that he and McCall conducted showed that 1,725 of the 1,842 primes
between 132 and 16,000 are optimus primes.

Problem 3. Is the number of optimus primes infinite?

The idea of Marshall’s construction is as follows. He uses the construction of
Theorem 6 (changing rows into columns) and constructs the matrix needed there
by altering the vector of Legendre quadratic residue symbols in the first two co-
ordinates as follows:

() () (5"

Then he forms a circulant matrix

0=q,5¢,5%q,...,5" 'q]

from q, where S is the standard matrix of the circular shift operator. Finally he forms
A = Q— Eq1 + E1, which is Marshall’s matrix for prime p.

Theorem 8 (Conder, 2005). g(n) =n for7<n <13.

This result was proved with the help of the MAGMA system Bosma and Cannon
(1997) and announced in Marshall (2005). In the course of achieving it, Conder
found that Marshall’s matrices work not just for primes p satisfying the conditions
given in Theorem 7, but also for some others, including all primes p in the range
5<p<L23.

A number of questions remain open. The most important ones are:

Problem 4.

1.Is f(7) =T oris f(7) = 8?

2. What is g(14)?

3. Isg(n)=nforn>17?

4. Is it true that f(n) = g(n)?

5. Does Marshall’s construction work for all primes p > 5?
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4.5 Patterns of Minimal Neutral Portfolios

Definition 10. Let < be a comparative probability order on 2/ and C be the corre-
sponding discrete cone. Let

P={x{"x3,...,x{"}, 9)
be a neutral portfolio of desirable gambles satisfying

1. width(P) = m is minimal possible for a neutral portfolio,
2. for neutral portfolios of desirable gambles of width m the cardinality card(P) =
" | a; is minimal.

In this case we say that (ay,...,ay,) is an irreducible pattern. The set of all irre-
ducible patterns of width m in 201l is denoted as A . Let us denote

Theorem 9 (Fishburn, 1996).

Ay ={(1,1,1,1)},
As = {(1,1,1,1,1), (1,1,1,1,2)}.

Moreover, As s =0, and As = As .

Theorem 10 (Conder-Slinko, 2004).

A576 = {(171717171)}7
A7,7 2 {(L17171a1,171)a(1a13131717172)}'

This means that we don’t know As 7 and Asg. We don’t know Ag either. An
unpublished recent result in this direction is the following theorem by Auger (2005),
for which we provide here a short proof.

Theorem 11 (Auger, 2005). For any positive integer m there are only finitely many
irreducible patterns of length m.

Proof. Let us consider the set of all vectors of R” with non-negative integer coor-
dinates. Let us denote it Z,,. All irreducible patterns from .A4,, belong to Z,,. For an
arbitrary a = (ay,...,anm) € Z, we denote h(a) = Y. | a;. We also define a set

icl =

R(a){{l,J}|1,Jg[m], INJ =0, Za,’Za]}.
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The set R(a) has a cardinality smaller than the cardinality of the set of all pairs of
subsets {I,J} with /NJ = 0, which is (3™ — 1)/2. Hence R(a) is finite. So it is
sufficient to prove that there are only finitely many irreducible patterns a with the

same R(a).
Suppose now that we have two irreducible patterns a and b with R(a) = R(b).
Let {x1,...,X;u} € T" such that Y7, a;x; = 0. Then each of the n coordinates of

this vector equation will give us an element of R(a) (they will not be necessarily
distinct). Hence if another vector b = (by,...,b,) € Z,, will satisfy R(a) = R(b),
then Y | a;x; = 0 will always imply Y7 | b;x; = 0 and vice versa. Thus, if a € Z,,
and b € Z,, are both irreducible patterns of A,,, then we must have i(a) = h(b).
Since there are only finitely many vectors ¢ in Z,, with the given A(c), we see that
the set of irreducible patterns a with fixed R(a) is finite and hence A4,, is finite. O

Problem 5. Let C be a discrete cone and P = {x{!,x5?,...,x%"} be the neutral port-

folio of desirable gambles with the smallest height Y7 | a;. Is (ay,...,a;) an irre-
ducible pattern? Or, in other words, will the width of P also be smallest?

Axioms for unique additive representation of a comparative probability order
(which in this case cannot be strict) were given by Fishburn and Roberts (1989).

5 Orders on Submultisets of a Multiset

In this section we will consider multisets on the base set [n]. Every such multiset
M= {1" 2" .. . n"} isuniquely determined by its multiplicity function i : [n] —
N such that p (i) = m;. We say that M} = ([n], 1) is a submultiset of M = ([n], U2),
if (i) < pa (i) for all i € [n], and we denote this by M; C M,. We remind the reader
that the set of all submultisets of cardinality k will be denoted as P([n]).

5.1 Independence of Equal Submultisets and Additive
Representability

Definition 11. An order < on Py[n] is said to be (additively) representable if there
exist nonnegative real numbers uy, ... ,u, (utilities) such that for all M; = ([n], i)
and M, = ([n], 12) belonging to Py|n],

=

M, <M, < Zyl (Du; < Zuz(i)u,'. (10)
i=1 i=1

The following basic rationality condition adopted for this situation was sug-
gested by Sertel and Slinko (2002, 2007), who called it consistency. Here we follow
Conder et al. (2007) who give a slightly different (but equivalent) definition of this
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concept, which makes it a close relative to the concept of the Independence of Equal
Subalternatives and de Finetti’s axiom.

Definition 12. An order < on P([n]) is said to satisfy the Independence of Equal
Submultisets condition (IES) if, for all 1 < j <k — 1, for every two multisets U,V
of cardinality j and for every two multisets W;, W, of cardinality k — j,

UUW| X VUW| <= UUW, <VUW,. (11)

Certainly every additively representable order must satisfy IES. The converse
as we will see later is not true. However, it appeared that IES alone implies addi-
tive representability on Py ([3]) for all k. The following theorem was proved first in
Sertel and Slinko (2002) and later appeared in Sertel and Slinko (2007). We remind
the reader of the definition of one of the main number-theoretic functions ¢, which
is Euler’s totient function. For any positive integer n, ¢(n) is the number of posi-
tive integers which are smaller than n and relatively prime to n. Also, the famous
sequence of Farey fractions Fy is the increasing sequence of all fractions in lowest
possible terms between 0 and 1, whose denominators do not exceed k. For example,
the sequence of Farey fractions F¢ will be:

o2 1323451
1767547357253 4561
The standard reference for Farey fractions is Hardy and Wright (1960).

Theorem 12 (Sertel and Slinko, 2002). Any order < on Py ([3]) satisfying IES is
additively representable. There are 2® (k) — 1 of them, where ®(k) = Y*_, ¢ (h) and
¢ (h) is the Euler totient function, with exactly ®(k) orders being strict (antisymmet-
ric). Moreover, if utilities of 1 and 3 are normalized so that uy = 1, uz = 0, then the
ith strict order occurs when uy belongs to the ith interval between consecutive Farey
fractions in the kth sequence of Farey fractions Fy.

Here we will choose a combinatorial way to introduce cancellation conditions
similar to Scott’s approach Scott (1964).

Definition 13. Let < be an order on P[n] and let
A1 =By, A =By, ..., A;=B, (12)

be a sequence of valid set comparisons such that A; < B; for at least one i =
1,2,...,q9. We say that this sequence satisfies the cancellation property if the fol-
lowing two multiset unions coincide

AjU...UA,=BU...UB,. (13)

Definition 14. We say that an order < on Py[n] satisfies the kth cancellation con-
dition Cy if no sequence of comparisons (12) of width < k satisfy the cancellation
property and we say that it satisfies the kth cancellation condition CZ if no sequence
of comparisons (12) of cardinality < k satisfy the cancellation property.
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As in (Kraft et al., 1959, Theorem 2) it is easy to show that for an order < on
Pi([n]) to be additively representable, it is necessary and sufficient that all can-
cellation conditions C>,Cs,...,Cy,... are satisfied or alternatively all cancellation
conditions C;,C;f, e ,Cg, ... are satisfied.

Example 4 (Sertel and Slinko (2002)). The following linear order on P [4]

12-12-13-22-23 > 14> 24 > 3> =34 = 42

satisfies IES but is not representable. It does not satisfy the condition C3, since it
contains the following comparisons:

{1,3} = {22}, {2,3} >~ {1,4}, {2,4} = {3°}. (14)

Indeed, the union of the multisets on the right and the union of the multisets on the
left are both equal to the multiset {1,2%,3%,4}. Thus C; is violated with a; = ap =
az =1, and hence C; is also violated.

Definition 15. An order < on Py[n] is said to be almost (additively) representable
if there exist nonnegative real numbers uy,...,u,, not all of which are equal, such
that for all M, = ([n], ;) and M> = ([n], 2) belonging to Py[n],

=

M, =M, = Z.ul(i)“i < Z[Jz(i)ui. (15)
i=1 i=1

If the only way to get uy,...,u, which satisfy (15) is to set u; = up = ... = uy,
then the order fails to be almost representable. Papers Sertel and Slinko (2002);
Sertel and Slinko (2007) present such an order belonging to P3[4].

Let £, x be the set of all orders on Py [n] satisfying the IES and R, x be the set of
all almost representable comparative probability orders on Py [n| satisfying the IES.
As in the case of comparative probability orders we define

fnk)= max f(2),  f'(nk)= max f7().

€Ly 2€Lyk
Also we define

g(nk)= max f(=),  g'(nk)= max f'(=).

jGRn‘k jERn‘k
These functions have the same meaning as in the comparative probability orders
case. Conder et al. (2007) fully characterized the function g(n, k) as follows:
Theorem 13. For alln > 3 and k > 2,

n—2if (n,k) = (5,2),
n—1 otherwise.

el = {

This result leaves very little room for the function f(n,k),i.e.n—1< f(n,k) <n
whenever (n,k) # (5,2). Computer-assisted calculations show that g(n,k) = f(n,k
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for small values of n and k (namely, for (n,k) = (4,2),(4,3),(5,2),(5,3),(6,2) and
(7,2)), and so Conder, Marshall, and Slinko conjecture that this is true in general.

Problem 6. Is it true that f(n,k) = g(n,k) foralln >4 and k > 1?
Problem 7. What can be said about the relationship between g'(n,k) and f7(n,k)?

Orders on the infinite set P[n] of all multisets on [n] satisfying the analogue of
the de Finetti axiom (3), where the union is understood as the multiset union and
the condition C N (AUB) = 0 is not assumed, were considered by Danilov (1987)
and Martin (1989). Both independently prove that all orders on P|[n] satisfying this
axiom are additively representable. For the set P<[n] of all multisets on [n] of
cardinality < k, Danilov gives an example of nonrepresentable orders on P<[5]
satisfying the modified de Finetti axiom.

Apart from the aforementioned paper by Danilov, the representability of orders
on P<x[n| has largely escaped the attention of researchers. However some interest-
ing things have been observed. For example, it can be easily checked that the linear
order on P <, [3]

?-12-22=13-1-23-32-2-3%0

is not representable. Hence the analogue of Theorem 12 is not true.

Problem 8. Develop an additive representation theory for orders on P<[n].
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Acyclic Domains of Linear Orders: A Survey

Bernard Monjardet

1 Notations and Preliminaries

A={1,2...,j,k...n} is a finite set of n elements that I will generally call alterna-
tives (but which could also be called issues, decisions, outcomes, candidates, ob-
jects, etc.). The elements of A will be also denoted by letters like x, y, z etc. A subset
of cardinality p of A will be called a p-set.

A? (respectively, A%) denotes the set of all ordered pairs (x,y) (respectively, or-
dered triples (x,y,z) written for convenience as xyz) of A. When the elements of A
are denoted by the n first integers, P?(n) denotes the set of the n(n — 1)/2 ordered
pairs (i < j).

A binary relation on A is a subset R of A? and we write xRy or (x,y) € R when x
is in the relation R with y. For ¢ integer > 2, a cycle of length £ of R, called also a
l-cycle, is a subset {xj,x2,....x;} of A such that x;Rx;.......x¢Rx;. For B C A, the
restriction of a relation R to B is denoted by R /3.

A strict linear order on A is an irreflexive, transitive and complete (x # y implies
XRy or yRx) binary relation on A. Henceforth, we will omit the qualifier strict and
sometimes, when there is no ambiguity, the qualifier linear. Linear orders on A are
in a one-to-one correspondence with permutations of A. So if L is a linear order on
A one can write it as a permutation x.. .XzXg1 1. ..X,. Then one says that x; has rank
k and is covered by x;.1 and that x; and x;; are consecutive in L. I denote by T
the transposition which exchange x; and x4 in L: T (L) = x1. . X1 Xk - X

The set of all linear orders on A is denoted by L or L, if |A| = n. D denotes any
subset of L.

In all of this paper the preferences of what I will call a vofer (but what could
also be called agent, person, individual, criterion, etc.) on a set A of alternatives is
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represented by a linear order L = xx;...x, where x| is assumed to be the last pre-
ferred alternative, x, the next-to-last, etc. So, yLx or (y,x) € L means that alternative
x is preferred to alternative y in the linear order L.

Remark 1. One could consider that the notation yLx should mean that y is preferred
to x. But we are working in this paper with posets and, unfortunately, this choice
would be not in accordance with the usual convention of poset theory. Indeed in
this theory the symbol used for a (strict) order is generally < what means that yLx
is interpreted as y < x, and so as y is less than x. The reader must keep in mind a
consequence of our choice: in a linear order of preference L = x|x»...x,, the worst
alternative x; (respectively, the best alternative x,,) has rank 1 (respectively, n).

The problem of getting a collective preference from various voters’ preferences
was tackled by Borda and Condorcet at the end of 18th century. Condorcet criti-
cized Borda’s rank method and proposed the use of the majority rule on the pairs of
alternatives. Before we recall the definition of this rule, I introduce some notations.
I consider v voters, which express their preferences on the alternatives by linear
orders taken in a set D of linear orders (D C L). The state of their preferences is
given by a v-profile ® = (L1, .Lg, .,L,) where L, is the linear order of D representing
the preference of voter g. D” denotes the set of all these v-profiles. For a subset B
of alternatives, T/ = (L, /Bs-Lq/y Ly g) denotes the profile of voters’ preferences
restricted to B.

For a v-profile © = (L1,.Ly,.,L,) and two alternatives x and y, one denotes by
vr(y,x) the number of voters preferring x to y in this profile.

In his “Essai sur I’application de [’analyse a la probabilité des décisions rendues
a la pluralité des voix” (1785) Condorcet recommended the rule now called Con-
dorcet’s majority rule.! This rule associates with a profile 7 the collective preference
defined as the strict (simple) majority relation® Rsyay(T):

YRsmay ()X if v (y,x) > v/2

i.e., alternative x is collectively preferred to alternative y if it is preferred by a
(strict) majority of voters. It is clear that this majority relation is asymmetric i.e.,
has no 2-cycles. But Condorcet discovered that majority relations can have cy-
cles of length ¢ > 3: x{RsmAJX2. - ... ..x¢Rsmayx1. This fact that was rediscovered
for instance by Dodgson, Black and Arrow has been called the “Condorcet effect”
by Guilbaud (1952) and is also known as the “voting paradox”. T prefer the first
appellation, which emphasizes the fact that this occurrence of cycles is not really a
paradox (see Guilbaud, 1952 or Monjardet, 2006).

! Condorcet uses other terms like “plurality”.

2 The (simple) majority relation is the relation defined by yRyay (1) x if vz (y, x) > v/2. Observe that
since T is a profile of linear orders one has for x # y(y, x) € Ryaj (%) if and only if (x,y) ¢ Rsmay(T).
3 Condorcet speaks of the “contradictory case”. Dodgson and Black speak of “cyclical majorities”
and I do not know who used the term paradox the first time (it appears in Arrow’s 1951 book).
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The simplest cases of the Condorcet effect occur when A = {i, j,k} and v = 3,
with the profiles (ijk, jki, kij) and (jik, ikj, kji)) since then majority relations are the
3—CyC1€S iRsmAJ JRsmaTkRsMagi and jRsmajiRsMarkRsmagj- | say that such proﬁles
are 3-cyclic profiles. More generally, for an integer ¢ > 3, I say that a profile like T =
(X12X3. . . X03X0X3 . . XpX] ;- .3 XpX X2, . .. X1 ) 1S @ £-cyclic profile. The strict majority
relation associated with such a profile is a ¢-cycle. Observe that arbitrary profiles
can contain the same linear order several times, but that /-cyclic profiles are subsets
of L.

A subset D of the set L of all linear orders on A is an acyclic domain (of linear
orders) if for every integer v and every profile T = (L, Ly, .,L,) € D", Rsmaj(T) has
no cycles.*

Several classical characterizations of acyclic domains are given in the theorem
below. I need some definitions. For ¢ integer greater than 2, I say that a set D of
linear orders contains a ¢-cyclic profile if there exists a subset B = {xj,x2,....x¢}
of A and a subset {Li,...Ly,...,L;} of ¢ linear orders in D such that the profile
/g = (LI/B7 Lyp-- .LZ/B) is a /-cyclic profile. When a set of three alternatives is
linearly ordered as i < j <k, then® 7 has rank 1, Jj has rank 2 and k has rank 3. I say
that a set D of linear orders is value-restricted if for every subset {i, j,k} of A, there
exists an alternative which either never has rank 1 or never has rank 2 or never has
rank 3 in the set D(; ; 1)- Finally in condition (7) of the theorem I use the majority
relation defined in footnote 2.

Theorem 1. Let D be a subset of the set L of all linear orders on a set A. The fol-
lowing conditions are equivalent:

1. D is acyclic (i.e., for every integer v and every profile ® € D", Rgyay () has no
cycles),

. For every integer v and every profile T € DV, Rsyay () is a (strict) partial order,

. For every odd integer v and every profile ® € D', Rsyas(T) is a linear order,

. For every integer £ > 3, D does not contain (-cyclic profiles,

. D does not contain 3-cyclic profiles,

. D is value-restricted,

. For every integer v, every profile T € D' and every B C A, {a € B: for every
be B\{a}, bRMA](TE)a} 7é @}

Condition (2) means that when voters’ preferences belong to an acyclic domain, the
collective preference that is given by majority rule is transitive (and asymmetric)
which in particular implies that it can be extended into a linear order. For a given

N YL AN w i

4 Acyclic domains have been also called consistent profiles (Ward, 1965), valued-restricted do-
mains (Kim & Roush, 1980), transitive simple majority domains or consistent sets (Abello &
Johnson, 1984), “états d’opinion fortement condorcéens” (Chameni-Nembua, 1989), acyclic sets
(Fishburn, 1992,1997), majority-consistent sets (Craven, 1996) or Condorcet domains (Monjardet,
2000).

3 See the Remark on the ranks of linearly ordered alternatives in the previous page.
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profile I say that an alternative is a Condorcet winner if it is preferred to all other
alternatives in the majority relation (see footnote 2) associated with this profile.
Condition (7) means that for every profile and every subset of candidates there exists
at least a Condorcet winner. Condition (5) means that D is acyclic if and only if for
every subset C = {L;,L,L3} of three different linear orders of D and every subset
{i, j,k} of three different alternatives, C is not a 3-cyclic profile on {i, j,k}. It was
introduced by Ward (1965) which proved the equivalence of conditions (1), (4) and
(5) of the above theorem. He called it the condition of Latin-square-lessness since a
3-cyclic profile forms a Latin square when it is disposed in a 3 x 3 array. Condition
(6) of value-restriction was introduced by Sen (1966).6

In what follows I will use Fishburn’s formulation of the condition of value re-
striction. One assumes that the n alternatives of A are ranked in an arbitrary linear
order, which in fact will be the natural order 1 < 2 < ...i < j < k < ....n. There
are two 3-cyclic profiles on a 3-element set {7, j,k}, namely {ijk, jki, kij} and
{jik, ikj, kji}. In each of these 3-cyclic profiles each element /4 of {i, j,k} appears
at rank 1, 2 and 3 in one of the three linear orders of the profile. In order to avoid
a 3-cyclic profile on {i, j,k}, it suffices to assume that one of the linear orders in
{ijk, jki, kij} and one in { jik, ikj, kji} never occurs. There are 3 x 3 =9 different
ways to do that. But each of these ways comes back to assume that an element /
of {i, j,k} never appears at rank 1, 2 or 3 in a linear order on {i, j,k}. For instance,
to exclude ijk and jik comes back to assume that k£ never has rank 3 in the restric-
tions to {i, j,k} of the linear orders of D. I will write this condition kN(; jxy3- More
generally for 4 in {i, j,k} and r in {1,2,3}, the Never Condition hNy; ; ;r means
that /2 never has rank r in the restrictions to {i, j,k} of the linear orders of D. With
these definitions a set of linear orders is an acyclic domain if and only if for every
ordered triple i < j < k there exists i € {i, j,k} and r € {1,2,3} such that AN(; ; 7.
Since 1 < 2... < n contains n(n-1)(n-2)/6 ordered triples and that for each ordered
triple i < j <k, one can choose one of the nine possible Never Condition hNy; j iy 7,
one sees that there are many ways to get acyclic domains.” T will say that an acyclic
domain satisfies the Never Condition ANr if for every ordered triple i < j < k, the
same Never Condition ANy; ; )7 is satisfied. For instance D satisfies jN1 if for every
ordered triple i < j < k, j never has rank 1 (i.e., is never last) in the restrictions
to {i, j,k} of the orders of D. I will say that an acyclic domain satisfies the Never
Condition ijkNr if for every ordered triple i < j < k, one has either iNr or jNr or kNr
(one of the three alternatives never has rank r).

An obvious but useful observation is that the Never Conditions are “hereditary”.
Firstly if a set D of linear orders satisfies a set of Never Conditions any subset of
D satisfies the same set of Never Conditions. Secondly if a set D of linear orders

6 In fact Sen’s value-restriction condition is more general since it bears on the case where voters’
preferences are represented by weak orders (transitive and complete binary relations). But Sen
has immediately pointed out that when voters’ preferences are represented by linear orders his
condition is equivalent to Ward’s Latin-square-lessness condition. In this case Ward’s result and
Arrow’s theorem are “dual” (see Monjardet, 1978).

7 But the set of Never Conditions chosen must be satisfied by at least a linear order. For instance,
Raynaud (1981) has shown that for n > 5 there does not exist a linear order satisfying jN2 for
every ordered triple i < j < k (and that this condition is satisfied by only four orders for n = 4).
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defined on A satisfies a set of Never Conditions then for every B C A, D /B (the set of
linear orders restrictions to B of the linear orders of D) satisfies the same set of Never
Conditions. It is also interesting to mention the following fact on these conditions.
Let us denote by L? the dual linear order of the linear order L : xL?y if and only
if yLx, and for D C L, call D4 = {Ld,L € D} the dual domain of D. Then a domain
satisfies the Never Condition 4Nr if and only if its dual satisfies the Never Condition
hN(4-r).

Now the interesting problem is: how large can domains of linear orders where
Condorcet’s majority rule works well be? Or more concisely, how large can acyclic
domains be? Observe that the problem becomes a purely combinatorial problem:
to construct large sets of linear orders satisfying the above restriction conditions.
I introduce some definitions and notations. An acyclic domain D is maximal if for
any linear order L not in D, DU {L} is no longer an acyclic domain. Moreover a
(maximal) acyclic domain contained in L, is maximum if it has the maximum size,
denoted by f(n), among all acyclic domains in L,. An acyclic domain D C L, is
connected if there always exists a path® of L, included in D between any two linear
orders in D; such a connected domain is of diameter d if the maximum length of a
shortest path between two linear orders of D is d. One can observe that the diameter
of L, is n(n-1)/2. I denote by g(n) the maximum size of a connected acyclic domain
of diameter n(n-1)/2 contained in L,. It has been shown that g(n) = f(n) forn <6,
but it seems to be less than f(n) for n > 16.

The problem of determining f(n) or g(n) for all n is daunting. Up to now these
numbers are known only for n < 6 (where they are equal). Then one has to search
good lower or upper bounds for them instead. Lower bounds are obtained by pro-
ducing (maximal) acyclic domains. The first maximal connected acyclic domain
obtained by Black contains only 2"~ linear orders (compare to the n! possible lin-
ear orders). For a long time the other maximal acyclic domains found were also
connected and contained no more orders. I will present some of them in Sect. 2.
This perhaps raised up the conjecture f(n) = 2"~!; but this was unfortunate since it
can be disproved for n = 4 (see footnote 13 and Fig. 4). Breakthroughs came first
in the eighties with Abello and Chameni-Nembua’s works which I will present in
Sects. 3 and 4. They use the order on the “permutoedre” and do not explicitly use
Never Conditions. For instance for n = 6, maximal connected acyclic domains with
44 or 45 linear orders were obtained (instead of 32 = 23). A clever use of the Never
Conditions by Fishburn and Craven allowed them to find larger maximal connected
acyclic domains for n > 6 (all of diameter n(n — 1)/2). They will be presented in
Sect. 5 along with Fishburn’s construction that allows still larger, but not connected,
maximal acyclic domains. Finally in Sect. 6, I will state Galambos and Reiner’s
work which allows to get a unified version of almost all the known results on max-
imal connected acyclic domains of diameter n(n — 1)/2. In the conclusion I will
point out two conjectures. The Appendix contains a Table giving numerical results
on lower or upper bounds for f(n) and g(n).

8 A path in L, is a sequence of different linear orders L ...LgLy1...Ls such that for k =1,2...s-1,
Ly and Ly, differ only by a transposition (of two consecutive elements). In fact it is a path in the
“permutoedre graph” defined in Sect. 3.
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2 The Beginnings: Small Maximal Acyclic Domains

As already noted the first maximal (connected) acyclic domain was produced by
Black (1948, 1958, 1988) who called it the domain of the single peaked preferences.
Assume that the set of alternatives is linearly ordered as 1 <2 < ... < p... <nby
a “reference” order. Let L be a linear order of preference on A for which p is the
preferred alternative. L is said single-peaked (with respect to the reference order <)
if i < j < p implies iLjLp and p < g < r implies rLgLp. This condition means that
given that p is the preferred alternative of the voter, he prefers alternative x to al-
ternative y if x is “closer” to p than y in the reference order (for instance such a
condition can be satisfied for political preferences, when the political parties can be
ranked from extreme left to extreme right). Now it is not difficult to see that a linear
order L is single-peaked (w.r.t. <) if and only if for every ordered triple i < j < k, jLi
implies kLj and jLk implies iLj, which is true if and only if L satisfies the condition
JN1, i.e., for every ordered triple i < j <k, jNy; i1 (in other words, the middle
alternative of the triple is never the least preferred). Then the domain of single-
peaked (w.r.t. <) linear orders is the domain of all linear orders satisfying jN1. It
is also easy to see that for n alternatives its size is 2"~! (see for instance Kreweras
(1962) who used the fact, already observed by Ward that no more than two alterna-
tives can have rank 1 in these single-peaked linear orders). The set of the eight
single-peaked linear orders on {1,2,3,4} w.r.t. the linear order 1234 (=1<2<
3<4) is {1234,1243,1423,1432,4123,4132,4312,4321}. The permutoédre Ly is
represented at Fig. 4 and on this figure a black square is attached to each of these
eight orders.

Black’s single-peakedness condition is a subcase of Arrow-Black’s single-
peakedness condition® (1951), which is the condition ijkN1 i.e., for every 3-subset
{i, j,k}, there exists i in {i, j,k} such that aiNy; ;1 1. An acyclic domain satisfying
Arrow-Black’s single-peakedness condition does not necessarily satisfy Black’s
single-peakedness condition. But such an acyclic domain contains also at most
2"~ linear orders. This results immediately from the point already mentioned
that a Never Condition is hereditary and from another easy observation: the set of
elements ranked 1 in the linear orders belonging to a domain satisfying Arrow-
Black’s single-peakedness condition has size at most 2.

Some other interesting domains satisfying Arrow-Black’s condition have been
investigated. For instance let be L and L’ denote two linear orders which rank the
alternatives of A according two different criteria. A decision maker can rank the
alternatives from the last by using alternatively the two criteria: he gives rank 1 to

9 The terminology of these conditions depends on authors. For instance what I call Black’s single-
peakedness condition (respectively, Arrow-Black’s single-peakedness condition) has been called
unimodality condition by Romero 1978 (respectively, pseudo-unimodality condition by Romero
and single-peakedness on the triples by Kelly 1978). In fact, as it was observed by Inada (1964),
Arrow-Black’s single-peakedness appears only implicitly in the proof of Theorem 4 in Arrow’s
book. This condition appears also in Dumett & Farquharson (1961). What is somewhat confusing
is that the term single—peakedness condition is sometimes used without making it clear as to which
of the two contexts above the term is being used.
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an alternative ranked 1 by one of the criteria (i.e., to the worst alternative according
to this criteria); then he deletes this alternative from the two linear orders and he
uses the same procedure on the restrictions obtained to determine his next to last
alternative, and so on. Romero (1978) said that a set of linear orders obtained by
this procedure satisfies the quasi-unimodality condition and he proved that this set
satisfies Arrow-Black’s single-peakedness condition. When the two linear orders L
and L’ are dual (xLy if and only if yL'x) one gets again the set of all single-peaked
linear orders (w.r.t. L).

It is obvious that the dual of an acyclic domain is also an acyclic domain. For
instance the dual of Black’s (respectively, Arrow-Black’s) single—peaked linear or-
ders, i.e., the set of linear orders satisfying jN3 (respectively, ijkN3) was called by
Vickrey (1960) the domain of single-troughed (respectively, by Inada (1964) the do-
main of single-caved) linear orders. One can find a systematic study of the domains
of linear orders satisfying one of the Never Conditions in Arrow and Raynaud’s
book 1986 (see also Kohler, 1978; Romero, 1978; Raynaud, 1981; Blin (1973)).

Another type of acyclic domains was discovered by Blin (1973) under the name
of multidimensional consistency: the chains of the “permutoedre lattice”. It will be
described in the following section but one can already mention that the size of such
a domain is at most n(n—1)/2+ 1 and so less than 2"~! (for n > 3).

3 Abello’s Work

I begin with Abello’s contributions that are contained in his doctoral dissertation
(1985) and several papers (1981, 1984 with Johnson, 1985, 1987, 1988, 1991, 2004).
In all these papers Abello works with S, the set of all permutations on a set of
cardinality n. I will describe some of his results but I will continue to rather speak
of linear orders belonging to L,. These results use the partial order known as the
weak Bruhat order (on S,).'° Let L be an arbitrary linear order of L,; it will be
convenient to take L =1 < 2 < ....n. For L € L,, one sets InvL' = {{i,j} C A
such that iLj and jL'i} (i.e., the set of pairs {i, j} on which L and L’ “disagree”).
For L', L” € L, one sets L" < L' if InvL’ C InvL”. It has been shown by Guilbaud
and Rosenstiehl (1963) that the poset (L,, <) denoted henceforth simply by L,, is a
lattice!! called the “permutoédre” lattice in French tradition (see for instance Barbut

10°5,, the symmetric group of all permutations on {1,2...,n} is an example of a finite Coxeter
group. All Coxeter groups can be partially ordered by the so-called weak Bruhat order (and also
by the strong Bruhat order).

T That is two linear orders have a least upper bound and a greatest lower bound in this partial
order. Some authors attribute this result to Yanagimoto & Okamoto (1969). One can admit than a
paper published in French will be less known that a paper written in English. But Guilbaud and
Rosenstiehl’s paper which precedes Yanagimoto and Okamoto’s paper has been quoted in many
English-written papers; moreover its proof that S, is a lattice is reproduced in Principles of com-
binatorics (Berge, 1971) and above all Yanagimoto and Okamoto’s paper does not contain a real
proof of their assertion (read it !). One can add that properties of the permutoedre lattice are studied
in Barbut & Monjardet (1970), Le Conte de Poly-Barbut (1990), Duquenne and Cherfouh (1994),
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Fig. 1 The permutoedre lattice Ly

& Monjardet, 1970). Its maximum element is 1 < 2 < ...n denoted by ®, and its
minimum element is the dual linear order n < ...2 < 1 denoted by «.

The lattice Ly is represented on Fig. 1 by a (Hasse) diagram giving its covering
relation. The undirected covering relation of this lattice is the adjacency relation
between linear orders where a linear order is adjacent to another one if they differ
on a unique pair of elements. The set of all linear orders endowed with this adjacency
relation is called the permutoeédre graph.

Come back to acyclic domains. The first easy observation is that the set of ordered
triples ijk contained in the linear orders of an acyclic domain D of L, has size at
most 4n(n—1)(n—2)/6 (if not D contains a 3-cyclic profile). So when one adds to
an acyclic domain D all the linear orders, which do not increase the set of ordered
triples already present in D one gets a maximal acyclic domain. More generally the
map, which adds to an arbitrary set of linear orders all the linear orders that do not
increase the set of ordered triples, is a closure operator on the subsets of L, 12

The second —also easy but significant— observation is that a maximal chain of
L, is an acyclic domain (a fact already observed by Blin (1973) as noted above)
which contains exactly 4n(n—1)(n—2)/6 ordered triples. So by applying the above
closure operator to a maximal chain one obtains a maximal acyclic set. Now Abello
has proved several significant results and in particular the following ones:

1. A maximal acyclic domain D obtained by the closure operator applied to a maxi-
mal chain of L, is a connected subset of L, of diameter n(n — 1)/2 and an upper
semimodular sublattice of the permutoedre lattice;

Markowsky (1994) and Caspard (2000) and that more generally Bjorner (1984) proved that all
finite Coxeter groups partially ordered by the weak Bruhat order are lattices.

12 This closure operator appears already in Kim and Roush’s 1980 book (see Definition 5.12).
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2. For any maximal connected acyclic domain of L, of diameter n(n — 1)/2, there
exists a maximal acyclic domain with the same size obtained by the closure of a
maximal chain;

3. Let us say that two maximal chains of the permutoedre lattice L, are equivalent
if they have the same closure (and so are two maximal chains of the associated
lattice). One goes from one of these chains to the other by “quadrangular trans-
formations” of linear orders: let L = xj ... XgXg11 .. .XiXi+] .. .X, be a linear order
such that xzx; and x;x;4| are four different alternatives; then L is transformed
into L' =x1 ... X1 Xk - Xip 1K - - X (=tm(L) = »mi(L)).

Property 2 means that to search maximal connected acyclic domains of diameter
n(n—1)/2 with large size, it suffices to consider those obtained by the closure of
a maximal chain. Abello gives an algorithm to get the maximal connected acyclic
domain obtained from a maximal chain Lo < Ly... < Ly(,_1)/» of L. The algo-
rithm constructs a sequence Do = {Lo},D1,...Dy(,—1)/2 Of acyclic domains. One
goes from Dy to Dy by adding to Dy the linear order L, and the set of linear
orders obtained by applying to all the linear orders of a subset E; of Dy the trans-
position 7; (of x; and x;;1) used to obtain Ly from Ly; a linear order M is in E; if
there exists in Dy U {L;.1} a maximal chain from M to Ly 1, for which none of the
transpositions along this chain act on x; or x;11.

A similar algorithm can be used with other acyclic domains to get maximal con-
nected acyclic domains. With this algorithm Abello and Johnson (1984) show that
f(n) > 3(2”*2) —4 (for n > 4). Except for n = 4, where one gets a lower bound
of 8 and where a maximal acyclic domain of size 9 has been already found,'? the
acyclic domains so found were the first of size greater than 2"~!. One will see in the
following sections that there exist maximal connected acyclic domains with a much
greater size.

4 Chameni-Nembua’s Work

Chameni-Nembua’s work on acyclic domains is contained in his 1970 “thése de 3°™¢
cycle” and in a paper that appeared the same year. I was his thesis’ director and his
work has answered some questions that I had asked him to investigate. The origin of
these questions comes back to Guilbaud’s paper in 1952. In this paper one finds an
analysis of Black’s domain showing that the set of single-peaked linear orders has
a distributive lattice structure and that the majority relation of a profile taken in this
domain is the median of the elements of the profile in this lattice.'* In particular one
finds (page 32 of the English translation) a figure showing the distributive lattice

13 An acyclic domain of size 9 in Ly is given in Kim and Roush’s book (1980) or in Raynaud (1982).
Such an acyclic domain is represented Fig. 4 as AS(4) (see Sect. 5).

14 The fact that in this case majority relation is both a metric and an algebraic median is a special
case of median’s theory in distributive lattices (or more generally in median semilattices). One will
find elements of this theory and references in Barthélemy & Monjardet (1981), Monjardet (2006a)
and in Day and McMorris 2005 book.
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BACDE — ABCDE
T

CBADE—BCADE  (A<B)« (A<C) « (A<D) « (A<E)

T T T T T
DCBAE — CDBAE— CBDAE— BCDAE (B<C) « (B<D) « (B<E)

) T ) T T
DCBEA — CDBEA —s CBDEA —> BCDEA (C<D) « (C<E)

) T T
DCEBA — CDEBA (D<E)

T
EDCBA —DECBA
2a 2b

Fig. 2 The distributive lattice of the 16 single-peaked linear orders on a 5-set and the associated
poset of the ordered pairs

of the sixteen single-peaked linear orders on a set of five alternatives. This figure is
reproduced below at Fig. 2a. One can observe that this lattice is a covering sublattice
of the permutoedre lattice Ls that means that the covering relation in this sublattice
is the same as the covering relation in Ls. Indeed, a single-peaked linear order is
covered by another single-peaked linear order if and only if they differ on a unique
pair of elements.

Several other acyclic domains that are covering distributive sublattices of the
permutoedre lattice were given in Frey (1971) and in Frey and Barbut’s 1971 book.
For instance, the so-called “fuseaux bipolaires d’insertions” which are in fact the
sets of all linear orders containing a partial order formed by the (cardinal) sum of
two unrelated chains. Figure 3 here reproduces the figure on page 121 of Frey and
Barbut’s book that shows the case where the two unrelated chains are 1 <2 < 3
and 4 < 5 < 6 (I have replaced letters by integers); one obtains a (not maximal)
covering distributive sublattice of Lg. Other examples given in this book are the
so-called “faisceaux d’indifférence” which are the set of linear orders which differ
from a given linear order L only on consecutive elements of L'> and the set of “co-
blackiens” (= single-troughed) linear orders.

So I asked Chameni-Nembua to answer the following question: is any covering
distributive sublattice of the permutoedre lattice an acyclic domain? His answer
was positive, based on the properties of meet and join in this lattice and the fact
that a distributive lattice must not contain some sublattices (see any book on lattice
theory and Monjardet, 1971 for the case of L, ). Moreover, he showed that maximal
covering distributive sublattices are maximal acyclic domains which contain the
minimum and the maximum elements of L, (i.e., n < ...2<land 1 <2< ....n)

15 Like the “fuseaux bipolaires”, the “faisceaux d’indifférence” are also the set of linear extensions
of some posets P of width 2 (where the width is the maximum number of incomparable elements
of P). More generally the set of linear extensions of any poset of width 2 is a covering distributive
sublattice of L,, (Chameni-Nembua, 1989).
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Fig. 3 The distributive lattice 123456
of the linear extensions of a
poset sum of two chains

124536

412356 124563
412536 142563
415236 145263

451236 145623

451263 415623

456123

4321
[l SINGLEPEAKED #¢ AS®)

Fig. 4 Two distributive lattices acyclic domains on a 4-set

and so a maximal chain of L,. These results led us to search such large maximal
covering distributive sublattices of ,,. For n = 4, one founds the sublattice AS(4),
of size 9 represented on Fig. 4 (the linear orders with a black ellipsoid).
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123456

123564

531246 135642

356421

654321

Fig. 5 AS(6), a distributive lattice acyclic domain of size 45 on a 6-set

For n = 5, we found such a sublattice of size 20, and for n = 6, I found a sub-
lattice of size 45 which is the last Figure in Chameni-Nembua’s paper and which is
reproduced here at Fig. 5 (with integers instead of letters for the elements of A). This
last sublattice showed that it was possible to surpass the best Abello and Johnson‘s
lower bound known at this date (f(6) > 45 > 44 = 3(26-2) —4). T was pretty sure
that there was a general construction to get such large acyclic domains but since
I didn’t find it, I sent these examples to Peter who was already working on the topic
and (obviously) found the construction described in the next section.1©

16 T should be ashamed to have not having found this construction since as it will seen in section 5
it was sufficient to look the triples, and in fact it was also found by Dridi (1994 private letter). But
Fishburn achieved a much more difficult task: to compute the size of the corresponding acyclic
domains for n up to 25 (Dridi computed this size up to n = 8 with the exact values for n =7 but he
found 220 instead of 222 for n = §8). By the way, it is worthwhile to mention here Fishburn’s prac-
tice, which should be more wide-spread in our scientific world. In his works on acyclic domains,
he always quoted the example that I sent to him. He always did the same in other circumstances
and/or for some other authors when I indicated to him a result that preceded one of his works.
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5 Fishburn’s and Craven’s Works

It seems that Peter’s interest for acyclic domains was motivated by Craven’s con-
jecture that was reported in Kelly’s 1991 paper. In his 1992 book Craven conjec-
tures that f(n) = 2" and he gives an example of an acyclic domain of size 8
for n = 4 (but see!”). Kelly exhibits for n > 4 a maximal acyclic domain of size
2"~ generalizing Craven’s example (in fact, this domain is a maximal Arrow-
Black’s single-peaked domain). In his 1992 note Fishburn mentions that the above
conjecture is false for n > 4 (see footnote 13) and that in fact f(n)/2"~! — oo,
This is proved by using an iterative construction of acyclic domains where the
first one is the domain of size 9 on a 4-element set and one goes from an acyclic
domain of size p on a n-set to an acyclic domain of size 2p” on a 2n-set. Fish-
burn’s paper also contains a replacement construction which for n = 2m and m > 4
that gives a much better lower bound than Abello and Johnson’s lower bound:
f(16) > 59,049 > 3(2'% —2) — 4 = 49,148. In fact when Peter wrote his Notes
on Craven’s conjecture he didn’t remember that Abello had worked on the topic.
He remembered only after he read Kim, Roush and Intriligator’s 1992 Overview
of Mathematical Social Sciences where the problem to find f(n) was mentioned.
Therefore, when (in January 1993) I sent him Chameni-Nembua’s paper with my
example of Fig. 5 they were welcomed. A week later he sent me a seven page memo
containing the first elements of what became his 1996 and 1997’s papers (for which
I was referee or editor) and the personal details mentioned above. These papers
contain many significant results.

Firstly, Peter defines the alternating scheme which is the construction allowing
a generalization of my example. Let | <2... < p... < n be a linear order on A.
An acyclic domain D of L, satisfies the alternating scheme, if for all i < j < k ei-
ther (1) jN1 if j is even and jN3 if j is odd, or (2) jN3 if j is even and jN1 if j
is odd (observe that these two domains are dual). So to define such a domain, de-
noted by AS(n), one combines the Never Conditions used for the single-peaked and
single-troughed domains. The size of AS(n) is computed by recursion up to n = 25.
Concerning these sizes, Peter writes that he was unable to find a closed formula for
them. Such a formula has been since obtained by Galambos and Reiner (2008 see
next section). The number of linear orders satisfying the alternating scheme is:

2n—3(n+3)—-C(n—2,n/2—1)(n—3/2), forevenn > 2
2n—3(n+3)—C(n—1,(n—1)/2)(n—1)/2), foroddn > 1

where C(p,q) = p!/(p— q)!q! is the binomial coefficient.

Secondly, Fishburn proves that f(4) =9, f(5) = 20 and that for n < 5, an acyclic
domain is maximum if and only if satisfies the alternating scheme. He conjectured
the same for n = 6 and 7 the first conjecture having been proved in his 2002 paper
(a difficult task!).

17 This is another example of the bad circulation of some scientific results, since this conjecture
had already been made by Johnson (1978) and disproved at least since 1980 (see footnote 13 and
Fig. 4).
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Thirdly, it is shown that at least for n > 16, the alternating scheme is not optimal
since the replacement scheme is better. This scheme uses two acyclic domains D
defined on {0,1,2...m} and D’ defined on {m+ 1,...m+ p}. For every order in D
one replaces 0 by each of the orders in D'. It is easy to check that the domain of
linear orders obtained on {0,1,2...m,m+1,...m+ p} is acyclic. Hence one gets
f(m+p)> f(p)f(m+1) and in particular f(16) > 108,336 > 105,884 the size of
the acyclic domain given by the alternating scheme. Another result allows to show
that f(n) > (2.17)" for all large n and that |AS(n)|/f(n) — 0 as n — oo i.c., that the
lower bound given by the alternating scheme becomes more and more inaccurate.

Finally, the paper attacks the “major challenge” to find good upper bounds for
f(n). The only upper bound already known 2[(n — 1)!] had been given in Arrow
and Raynaud’s book, but for instance it gives f(9) < 103.698 whereas a clever
Fishburn’s Lemma allows us to obtain f(9) < 22.680. The paper raises two con-
jectures. The first one is f(n+m) < f(n+1)f(m+ 1) for all n, m > 1 and in Fish-
burn’s 2002 paper it is shown that it would imply f(n) < (2.591)"~2. The second
conjecture is f(n) < ¢" for some constant ¢ and this was proved later by Raz (2000).

I come back now to Craven’s works. In his 1994 note he gives a partition scheme
which generalizes a construction given in Fishburn’s 1992 note and which in a par-
ticular case is equivalent to Fishburn’s replacement scheme. So he obtains the same
formula f(m+ p) > f(p)f(m+ 1) allowing him to improve some lower bounds of
Fishburn’s note. In his 1996 paper, after reproving the fact that there are 2"~ ! single-
peaked linear orders on a n-set (see Sect. 2), he studies the acyclic domains that are
generated by Fishburn’s alternating scheme. In particular he makes the linear or-
ders that are generated by this scheme more precise and he gives some recurrence
relations allowing him to obtain the sizes of the corresponding acyclic domains up
ton =15.

6 Galambos and Reiner’s Work

In this section I consider the problem of computing g(n) or rather good lower
bounds to this number, i.e., to provide large connected acyclic domains. We have
seen that Abello had constructed such domains by applying a closure operator to
some maximal chains of the permutoedre lattice. I gave an example showing that
it was possible to find larger such domains that are covering distributive sublat-
tices of the permutoedre lattice (shown to be acyclic domains Chameni-Nembua).
Generalizing this example by means of his alternating scheme using the two Never
Conditions jN3 and jN1, Fishburn obtained the up to now best lower bound known
for g(n). I present now the link between these various results, as it is established
in recent Galambos and Reiner’s 2008 work (and anticipated in Guilbaud’s, 1952
paper; see Remark later).

Abello constructs maximal connected acyclic domains which are (upper) semi-
modular sublattices of the permutoedre lattice by using the fact that the maximal
chains of these lattices have an invariant, namely the set of the ordered triples of
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elements appearing in the orders of the chain. Galambos and Reiner show that these
lattices are the same as Chameni-Nembua’s lattices, i.e., that they are (maximal)
covering distributive sublattices of the permutoedre lattice and that their maximal
chains have another invariant, namely a poset defined on P?(n) (the set of n(n—1)/2
ordered pairs (i < j)). The fact that Abello’s maximal connected acyclic domains
are distributive lattices is significant since it allows to use the well-known Birkhoft’s
duality between posets and distributive lattices.

We need some notions of lattice theory. A join-irreducible element of a lattice is
an element covering a unique element and an ideal (respectively, a filter) of a poset
(X,<) is a subset I of X such that x € I and y < x implies y € I (respectively, a
subset I of X such that x € F and x < y implies y € F). Now by Birkhoff’s dual-
ity between posets and distributive lattices, a distributive lattice D is isomorphic to
the set ordered by inclusion of all the ideals of the poset Jp of its join-irreducible
elements (or to the set ordered by O of all the filters of Jp). It is well-known that
in this duality the maximal chains of a distributive lattice are in a one-to-one cor-
respondence with the linear extensions of the poset Jp (i.e., with the linear orders
containing the partial order between the join-irreducible elements); indeed when x;
is covered by xz,| in a maximal chain of a distributive lattice then there exists a
unique join-irreducible element j; such that x;;.; = x V ji; so the covering relation
X < Xg+1, can be labeled by ji and the linear order jj j2....j|;,| obtained on Jp is a
linear extension of the poset Jp.

What are the join-irreducible elements of a covering distributive sublattice of
the permutoedre lattice? I consider a covering distributive sublattice D containing
a maximal chain of L, (then containing the maximum element ® =1 <2 < ...n
and the minimum element & = n < ...2 < 1 of the permutoedre lattice). A linear
order L is a join-irreducible element of D if it covers a unique other element L of
D. Then one has L = xy ... XpXpt1 ... X = ‘L'k(L/ =X1 e X1 X - - .xn) with x; < x4
(in the order 1 < 2 < ....n). Yet, since on a maximal chain between o and ® any
of the n(n —1)/2 ordered pairs j > i of a has to be transposed exactly once to
get M, the transposition of the elements x; and x| appears for the first time in
any maximal chain between o and xi...x;xg11...X,. So we can identify the join-
irreducible L = xj...xXg11 - .. X, With the ordered pair (x, x;41), and finally the
poset of join-irreducible elements of D is isomorphic to a poset P, = [P?(n),<p]
defined on the set P?(n) of all the ordered pairs i < j. Now, any linear order L in
D corresponds to an ideal of Py: L is obtained from a0 =n < ...2 < 1 by applying
all the transpositions of the ordered pairs belonging to this ideal. And any maximal
chain of D corresponds to a linear order on P*(n), which is a linear extension of the
poset Pp.

Using more general results on Bruhat orders (Ziegler,1993) Galambos and Reiner
characterize the linear orders on P?(n) which are admissible i.e., which correspond
to the sequence of transpositions of a maximal chain C of 1,,: a linear order A on
P?(n) is admissible if and only if it contain only triples (of ordered pairs) ordered
in the lexicographic order or in its dual, i.e., triples of the form ij < ik < jk or
Jk < ik <ij (withi< j < k). Moreover, these two sets of ordered triples are the same
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for the linear orders corresponding to any maximal chain of the distributive lattice
D closure of the chain C. For instance, a maximal chain of the domain of single
peaked-linear orders of Ly is 4321 <4312 <4132 < 1432 < 1423 < 1243 < 1234,
the associated linear order on P2(4) is 12 < 13 < 14 < 23 < 24 < 34 and the set
of ordered triples corresponding to any of the maximal chains in this domain is
{(12,13,23), (12,14,24), (13, 14,34), (23,24,34)} (so it does not contain triples
dually lexicographically ordered). The domain AS(4) contains the maximal chain
4321 < 4231 < 4213 <2413 < 2143 < 2134 < 1234; the associated linear order
on P*(4) is 23 < 13 < 24 < 14 < 34 < 12; the associated set of lexicographically
(respectively, dually lexicographically) ordered triples is {(13, 14, 34), (23,24,34)}
(respectively, {(23, 13, 12), (24, 14, 12)}).

When one takes an arbitrary maximal chain C = o < L; < Ly... < ® of L, it is
a maximal chain in a maximal covering distributive sublattice D of the permutoedre
lattice. In order to determine D it suffices to determine the poset P, associated to this
maximal chain. Galambos and Reiner constructs P, by using a notion of “arrange-
ment of pseudolines” allowing to represent Py and its ideals and so to recover the
linear orders in D. Another algorithm to get Py is proposed in Monjardet (2006b).

When By is known, computing the size of D comes back to computing the num-
bers of ideals of this poset, a difficult task in general, since this computation is
known to be #P-complete (Provan and Ball 1983). In the case when D is given
by the alternating scheme, the corresponding poset has a very regular structure (its
covering relation is given in Monjardet 2006b). Galambos and Reiner describe it by
means of a certain arrangement of pseudolines and show that computing the ideals
of this poset comes back computing some lattice paths. By cleverly using path enu-
meration techniques they get the formula for |AS(n)| given in the previous section.

Another significant Galambos and Reiner’s result is the characterization of the
maximal covering distributive sublattices D of L, by a set of Never Conditions.
Let C be a maximal chain of D and A be the corresponding linear order admissi-
ble on P%(n), i.e., the linear order corresponding to the sequence of transpositions
of this maximal chain. It has been noted above that the restrictions of A to any
subset {(ij), (ik), (jk)} of three ordered pairs are ordered either lexicographically
(ij < ik < jk) or dually lexicographically (jk < ik < ij). Let us denote by LEX3A
respectively, ALEX3A) the set of triples i < j < k for which the set {(ij), (ik), (jk)}
is lexicographically ordered (respectively, dually lexicographically ordered) in A. As
also already noted, LEX3A and ALEX3A are the same for any other maximal chain
of D. Then, D is the set of all linear orders satisfying the following Never Conditions:

JN1,Yi< j <k with ijk € LEX3\
jN3,Vi < j <k with ijk € ALEX3A
For instance, for any linear order A associated to a maximal chain of |AS(4),

LEX3A = {134,234} and ALEX3A = {123,124} and one gets again the Never Con-
ditions 3N'1 and 2N3 of formula (2) in Sect. 5.
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6.1 Remark

As noted before, Guilbaud’s paper contains an anticipation of a Galambos and
Reiner’s result in a particular case. Indeed Guilbaud not only pointed out the distrib-
utive lattice structure of the domain of single-peaked linear orders but he also gave
an explanation for it. He writes (page 29, English translation): “These observations
focus attention on a sort of hierarchy of judgments'®; one judgment dominates sev-
eral others. .. This subordination is easy to designate in the form of an ordered net-
work” (he adds in note: “This is a partially ordered structure, called a lattice”!”). He
represents this partial order by a triangular tableau for the domain of single-peaked
linear orders on a 6-element set (this tableau is reproduced here Fig. 2b) and he
adds below it: “Note that the affirmation of any one of these judgments implies the
affirmation of all the “consequents”; that is, the affirmation of those located either
in the same row and to the left, or in the same column and thus of all the judgments
located to the left and above”. He concludes that single-peaked orders corresponds
to frontiers separating judgments + (i.e., x > y) and judgments — (i.e., x < y) in the
triangular tableau. In other terms he shows that single-peaked orders correspond to
filters in the partial order defined between the ordered pairs.

7 Conclusion

The search for large acyclic domains appears as a fascinating quest all the more
that I have not said all. For instance, maximal chains of the permutoedre lattice
are in one-to-one correspondence with other significant combinatorial objects the
standard Young tableaux and the balanced tableaux (see Edelman & Greene, 1987;
Abello 2004) and this allows other interpretations of the problems that have been
raised.??

There are also interesting algorithmic problems to answer the question of recog-
nizing acyclic domains. Some answers have been given, especially for Black’s single
peaked domains, by Romero 1978, see also Arrow & Raynaud, 1986), Bartholdi and
Trick (1986) and Doignon and Falmagne (1994).

18 In Guilbaud’s paper a (simple) judgment is an ordered pair of alternatives expressing a prefer-
ence between them; for example, x > y (see page 24{f of the translation).

19 Indeed in the case of the covering distributive sublattice corresponding to single-peaked orders,
it is not difficult to prove that the associated poset on P?(n) is the lattice where (i, j) V (k,I) =
(max(i,k), max(j,/)) and (i, j) A (k,I) = (min(i, k), min(j,/)). See also Monjardet (2006b).

20 A balanced tableau is a staircase tableau T’ of n(n — 1) /2 cases — corresponding to the ordered
pairs (i < j) — containing the integers from 1 to n(n — 1)/2 and satisfying for every i < j <k,
t(i,k) between ¢ (i, j) and t(k, j). Such a tableau codes a maximal chain of L, by coding the linear
order A on P?(n) associated to this chain: the integer in the case corresponding to (i, /) is the rank
of (i, j) in A. Conversely a balanced tableau induces the maximal chain obtained by effecting the
sequence of transpositions of the ordered pairs in the order of the cases of the tableau. The much
more sophisticated bijection between maximal chains of L, and standard Young tableaux allows to
Edelman and Greene to give a formula for computing the number of these chains.
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I end this paper by noting a final result and two conjectures. Instead of searching
for the maximal covering distributive sublattices of the permutoedre lattice which
have a maximum size, one can ask what are those that have a minimum size. Since
such a sublattice is the closure of a maximal chain, one gets the answer if there exist
maximal chains that are closed. It’s actually the case as it is shown in Monjardet
2006b). This paper contains also some results on the distributive lattices given by
Fishburn’s alternating scheme and by Black’s single-peakedness condition.?!

Conjecture 1 (Fishburn 1996, 1997)
fn+m) < f(n+1)foralln,m>1

The proof of this conjecture would imply (2.17)" < f(n) < (2.591)"~2 for all large
n since Fishburn (1997, 2002) proved the lower bound and the implication for the
upper bound. Then, if true, it would give a much better upper bound that the bound
4"=1 conjectured by Abello (1991). In the same paper Abello conjectures g(n) <
3"~ for which the conjectured upper bound (2.591)"~2 would still be much better.
Let |AS(n)| be the size of the acyclic domain given by the alternating scheme.

Conjecture 2 (Galambos & Reiner, 2008)

g(n) =[ns(n)|

This conjecture is true for n < 6 since in this case f(n) = |AS(n)| and Galambos
and Reiner checked it for n = 7.

Acknowledgements I warmly thank the anonymous referee and William Gehrlein as editor for
their suggestions and corrections on the first version of the paper.
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Appendix

259-279.

Table 1 Table Exact values and bounds for g(n) (maximum size of a connected acyclic domain of
maximum diameter) and f(n) (maximum size of an acyclic domain)

A B C D E F G H
noo2vhoonlyonily 32024 as(n)  gm) Cln) RS(n)  fin)
3 4 4 2 4 4 5 4 4
4 8 9 8 9 9 14 8 9
5 16 19 20 20 20 42 16 20
6 32 39 44 45 45 132 36 45
7 64 79 92 100 100 429 81 ?
8 128 159 188 222 ? 1,430 180 ?
9 256 319 380 488 ? 4,862 400 ?
10 512 639 764 1,069 ? 16,796 900 ?
11 1,024 1,279 1,532 2,324 7 58786 2025 2
12 2,048 2,559 3,068 5,034 2208012 4500 2
13 4,09 5,119 6,140 10,840 7 742900 10,000  ?
14 8192 10,239 12284 23266 7 2674440 22200 2
15 16,384 20,479 24572 49,704 7 9,694,845 49284 2
16 32,768 40,959 49,148 105884 7 35357670 108336  ?
17 65,536 81,919 98300 224,720 2 238,144 2
18 131,072 163,840 196,604 475773 7 521,672 2
19 262,144 826680 393216 1004212 ? 1,142,761 2
20 524288 671,359 805,628 2,115,186 ? 2,484,356 7

Exact Values

Lower Bounds

A: Craven’s conjecture, 1992 (!)
B: Kim and Roush, 1980
C: Abello and Johnson 1984 (N.B. 3.2" 2 —4 =21 4272 _4)

E: n <4 folklore, n = 5,6 Fishburn 1997, 2002, n = 7 Galambos and Reiner
H: n < 4 folklore, n = 5,6 Fishburn 1997, 2002
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D: Fishburn 1997 (Alternating scheme, n = 6 BM 1989)
G: Fishburn 1997 (Replacement scheme f(n+m) > f(n).f(m+ 1))

For all large n, (2.17)" < f(n) (Fishburn 1997)

Upper Bounds

F: g(n) < C(n) = Catalan number2n!/n!(n+ 1)! (Abello 1991)
For all n, f(n) < ¢" for some n > 0 (Raz 2000)

B. Monjardet



Condorcet Domains: A Geometric Perspective

Donald G. Saari

1 Introduction

One of the several topics in which Fishburn (1997, 2002) has made basic contribu-
tions involves finding maximal Condorcet Domains. In this current paper, I intro-
duce a geometric approach that identifies all such domains and, at least for four and
five alternatives, captures Fishburn’s clever alternating scheme (described below),
which has advanced our understanding of the area.

To explain “Condorcet Domains” and why they are of interest, start with the fact
that when making decisions by comparing pairs of alternatives with majority votes,
the hope is to have decisive outcomes where one candidate always is victorious
when compared with any other candidate. Such a candidate is called the Condorcet
winner. The attractiveness of this notion, where someone beats everyone else in
head-to-head comparisons, is why the Condorcet winner remains a central concept
in voting theory. For a comprehensive, modern description of the Condorcet solution
concept, see Gehrlein’s recent book (2006).

But Condorcet also proved that pairwise rankings can lead to cycles, where a
Condorcet winner cannot exist. His three voter example Condorcet (1785),! now
called the Condorcet triplet, has the preferences

A1>-A2>—A3, A2>—A3>-A], Az = A1 = Ay (1)

(“Ay > Az > A3” means that the voter prefers A; to A, and Az, and A, to A3). The
majority vote generates the cycle where A beats A, A, beats Az, and A3 beats A
each with a 2:1 tally. The trouble with cycles is that they frustrate society’s ability to

! Condorcet’s example in his Essai Condorcet (1785) is not as concise; it involves about sixty
voters. But, I expect that somewhere in his writings, Condorcet explicitly stated this triplet.
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Institute for Mathematical Behavioral Sciences, University of California, Irvine, CA 92697-5100,
USA

e-mail: dsaari@uci.edu

S.J. Brams et al. (eds.), The Mathematics of Preference, Choice and Order: Essays in Honor 161
of Peter C. Fishburn, Studies in Choice and Welfare,
(© Springer-Verlag Berlin Heidelberg 2009



162 D.G. Saari

make a decision; e.g., who should be selected with this example? Not A| because a
majority prefers Az. Not A3 because a majority prefers A>. Not A, because a majority
prefers A;.

The difficulties associated with this behavior are much worse because the ways in
which cyclic behavior can be manifested extend beyond frustrating the majority vote
decision process to cause fundamental theoretical concerns. As we now know (Saari
(2001a)), for instance, aspects of cyclic outcomes are totally responsible for Arrow’s
seminal theorem Arrow (1951), which purportedly shows that no non-dictatorial
voting rule can satisfy seeming innocuous conditions, and Sen’s Paretian Liberal
Theorem Sen (1970), which identifies what is called a fundamental conflict between
individual and societal decisions. (For different interpretations of Arrow’s and Sen’s
theorems, see Saari (2001a); also see Saari and Petron (2006) and Li and Saari
(2004).)

A standard way to handle these difficulties is to restrict the preferences that voters
are permitted to have. (See Gaertner (2001) for other restricted domain conditions in
choice theory.) This leads to the Condorcet Domain problem: it is to identify sets of
preference rankings whereby, no matter how many voters have each of the specified
rankings, the outcome never admits a cycle. A goal is to find or characterize all such
domains — all sets of these preference rankings — and find the ones with a maximum
number of rankings.

This Condorcet Domain challenge has captured the attention of influen-
tial contributers to this area; for a brief history with references see Fishburn
(1997), Monjardet (2006b), Monjardet’s survey (2006), and Monjardet (2008)
that appears in this volume. Indeed, it was Monjardet’s interesting presentation
Monjardet (2006a,b) at an October 2006 DIMACS/LAMSADE conference in Paris
that awakened my interest in this issue and led to this paper. As Monjardet ex-
plained, Fishburn’s paper (1997) contains some of the deepest conclusions about
this issue. Fishburn credits his discovery of the “alternating scheme” to clever
examples that Monjardet created.

Fishburn’s and Monjardet’s approaches are essentially combinatoric. So, after
introducing the basic problem, I will introduce a geometric approach to describe
Fishburn’s alternating scheme. My expectation is that the symmetries, which be-
come apparent by use of geometry, will lead to other mathematical tools that can
be used to analyze this and other pressing questions. Then, after showing how
my geometric approach fits into a broader research theme, I generalize the Con-
dorcet Domain problem by replacing sets of “individual rankings” with sets of
“specific configurations of individual rankings.” Namely, instead of finding spe-
cific rankings that avoid cycles, the new goal is to find configuration of rankings
whereby if any number of groups of voters adopt any of these configurations, cycles
never occur. Although this generalized problem appears to be far more complicated,
the complete solution is in Sect.4. The original problem, however, remains wide
open.



Condorcet Domains: A Geometric Perspective 163

2 Early Solutions

The Condorcet Domain problem is to identify subsets of preference rankings so
that, no matter how many voters are assigned to each ranking, the pairwise majority
vote outcomes never admit a cycle. As the number of voters with each ranking is
not restricted, each Condorcet Domain defines a subspace of profiles with which not
only majority pairwise voting, but several other voting issues avoid the difficulties of
pairwise comparisons; this includes Arrow’s Theorem (1951) as well as some deci-
sion problems from engineering (Saari and Sieberg (2004)). With these advantages,
it is natural to find Condorcet Domains that have the maximal number of rankings;
after all, such a domain defines a maximal dimensional profile subspace with these
desired properties.

An early Condorcet Domain solution, which continues to be widely used, is
Black (1948) single peaked condition. While his condition is slightly more gen-
eral than described next, a flavor of it can be obtained by placing each alternative at
a distinct point on a line. Next, place an individual’s “ideal point” anywhere on the
line; this individual’s preference ranking is defined by the distance from his ideal
point to each alternative where “closer is better.” It is not difficult to show how and
why this ordering of the voters’ preference rankings always results in orderly pair-
wise outcomes. (See, for instance, Black (1948), Saari (2001a) among many other
references.)

To see what happens with three candidates, notice that the alternative in the mid-
dle never is bottom-ranked by any voter. For special cases, if all ideal points are
on one side of the alternatives, some candidate never is top-ranked; if the voters
are split into polarized left-right regimes, some candidate never is middle-ranked.
Black’s condition probably motivated the Condorcet Domain solution advanced by
Ward (1965) and later generalized by Sen (1966). Namely, with three candidates at
least one of the following conditions is satisfied:

1. There is some candidate who never is bottom-ranked.
2. There is some candidate who never is middle-ranked.
3. There is some candidate who never is top-ranked.

As Iindicate next with a geometric representation, when any of these conditions are
satisfied, a majority vote pairwise cycle cannot occur.

2.1 Geometry of Triangles

My preferred way Saari (2001b) to represent three-candidate profiles is with an
equilateral triangle, where the name of each candidate is assigned to a distinct vertex
as illustrated in Fig. 1. The ranking assigned to a point in the triangle is determined
by its distance to each vertex, where closer is better. Thus the vertical line represents
all A} ~ A; tied rankings; the remaining two indifference lines connect a vertex
with the midpoint on the opposite edge. What results is a partitioning of the triangle
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A
xX+y z+w 2 ) z+w
a. A3 never bottom b. A3 never middle c. A3 never top
ranked ranked ranked

Fig. 1 Ranking triangles

A> not second-ranked

Ay not top-ranked ﬂh Az not bottom-ranked
A1 <Z ‘

A
Star choice

Fig. 2 Condorcet triplets

into what I call “ranking regions;” the open triangles represent strict rankings. For
instance, any point in the small Fig. 1a triangle with an x is closest to A, next closest
to Az, and farthest from A, so it has the A > A3 > A, ranking.

A way to represent a profile is to place the number of voters with each ranking
in the associated ranking region. The z in Fig. 1a, for instance, means that z voters
have the A3 > A, > A ranking. A candidate never is bottom-ranked when there are
no entries in the two regions farthest from the candidate’s vertex; e.g., the Fig. la
profile never has A3 bottom-ranked. Figure 1b, ¢ represent the remaining two Ward
conditions with respect to Az.

An indifference line associated with a particular pair divides the six rankings into
two regions with the two possible pairwise rankings; e.g., the vertical line in Fig. 1a
separates the three rankings on the left with A; > A, from the three rankings on
the right with Ay > A. Thus a quick way to tally majority votes is to project the
numbers from the triangle to the appropriate edge and then add them; the sums are
listed next to each edge. This projection and summing process is indicated by the
dashed arrows in Fig. 1b, which represents all profiles where A3 is never middle-
ranked. Notice that the Ay, A, tallies are, respectively, x+y and z+ w. As the Ay,
A3 and Aj, Aj tallies agree, A3 must be either the Condorcet winner or loser; in
either case, it follows that cycles cannot occur when some candidate never is middle-
ranked. A similar argument holds for the other figures; e.g., in Fig. 1a, if A; beats
Ay, then x+y > z+w, so A3 beats Ay: as A, is the Condorcet loser, cycles cannot
occur.

The complementary relationship between Ward conditions and the Eq. (1) Con-
dorcet triplet is illustrated with Fig.2. There are two possible Condorcet triplets;
the Eq. (1) choice is illustrated with stars in the appropriate ranking regions,
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the other with bullets. To avoid the cycles caused by Condorcet triplets, it is worth
examining what happens if one ranking with a star and one with a bullet are prohib-
ited. By symmetry, it does not matter which star choice is selected, so choose the
one indicated in Fig. 2. Next, select one of the three bullets; as the figure indicates,
each choice corresponds to satisfying some Ward condition.

Ward’s conditions, then, should be viewed as being the sharpest possible restric-
tions that avoid a Condorcet triplet. Namely, a way to restate Ward’s conditions
is that they identify any set of rankings from which a Condorcet triplet cannot be
created. To complete the complementary connection between Ward and Condorcet,
each Condorcet triplet consists of the smallest number of rankings that violate all of
Ward’s conditions. In summary, a three-candidate Condorcet Domain is any set of
rankings from which a Condorcet triplet cannot be created; i.e., it is any set that sat-
isfies one of Ward’s conditions. As each candidate defines three different Condorcet
Domains, nine different four-dimensional subspaces in the six-dimensional profile
space are spared the problems of cyclic behavior.

2.2 More Candidates

What happens with more candidates? With four candidates, for instance, can pair-
wise cycles be avoided whenever some candidate never is bottom-ranked? As il-
lustrated with the Eq. (2) example, where A3 never is bottom-listed, the answer is
no.

A=Ay = Az - Ag, Ay -A3>=As A1, Az >As>A1 > A;. 2)

Here, A4 beats Ay, Ay beats Aj, A beats A3 (each by 2 : 1), and A3 beats A4 (unani-
mously) to form a cycle. Notice how this profile defines the A| > A, Ay >~ Az, A3 >
A cycle with the familiar 2 : 1 tallies. Indeed, by focussing attention on the relative
position of these three candidates, we find that they create a Condorcet triplet, which
means that all of Ward’s conditions are violated. This insight explains Sen’s condi-
tion Sen (1966) that a necessary and sufficient requirement for a set of rankings to
define a Condorcet Domain is that, when restricting the rankings to any triplet, one
of Ward’s conditions holds. So for {A;,...,A,}, a set of rankings is a Condorcet
Domain if and only if when restricted to each triplet, at least one candidate never
is top-ranked, or middle-ranked, or bottom-ranked; i.e, these relative rankings can
never be used to create a Condorcet triplet.

By knowing what creates Condorcet Domains, the next step is to find exam-
ples and maximal Condorcet Domains. This is where Fishburn (1997) alternat-
ing scheme and “never” conditions play a dominant role. To explain his condition
with an example, consider the five candidates {A,B,C,D,E}. Select a ranking; say
E -~ A= D> C > B. Assign temporary A; names according to the ranking’s order;
e.g., Eiscalled A, Aiscalled Ay, ..., Bis called As.

Fishburn’s alternating scheme is as follows:
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List each triplet in the order of their temporary names; e.g., list {A3,A;,A4} in the order of
their subscripts as {A1,A3,A4}. If the subscript for the middle alternative is odd, as it is here
(it is 3), use the never-top ranked rule for this alternative with the triplet. If it is even, use the
never bottom-ranked rule with the alternative. Apply this rule to all triplets. Alternatively,
the rule used with all triplets could be that if the subscript for the middle alternative is odd,
then use the never-bottom ranked rule; if it is even, use the never-top ranked rule.

The value of this algorithm comes from Fishburn’s result stated next; proofs are
in his papers:

Theorem 1 (Fishburn (1997, 2002)) For n = 4,5,6 alternatives, a Condorcet Do-
main has the maximal number of rankings if and only if the set satisfies the al-
ternating scheme. For n > 16, the alternating scheme does not define the maximal
Condorcet Domain.

What a delightful result! Beyond contributing to a long studied question, his
theorem creates a mystery that begs to be investigated. Why does it work? What
underlying mathematical structures permit this condition? Is there an intuitive way
to appreciate his alternating condition? What is magical about the n = 16 cutoff?
What happens between 7 and 15? As my objective is to develop insight and intuition,
I describe the Ward—Sen and Fishburn conditions in a geometric framework.

3 Geometry

To find all four-candidate Condorcet Domains by using elementary geometry,
replace the equilateral triangle with the Fig.3a equilateral tetrahedron. Again, a
ranking is assigned to a point based on its distances to the vertices. To create a
two-dimensional representation of the tetrahedron, select a vertex (A4 in Fig. 3), cut
the three tetrahedron edges from the vertex to its base, and open the flaps to create
the Fig. 3b object. Each of the 24 small triangles, or ranking regions, represents a

Ay Ay A3 Ay A3
N
N ~
A3 ' NN

\

. = \

Ay A LA é ° A | Ay A
" N /
AN / )
a. Tetrahedron N . c. Triangle
7
Ay

b. Unfolded tetrahedron

Fig. 3 Representation triangle and tetrahedron
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particular ranking; e.g., using distances to vertices, the region with the bullet has the
Ap = Ay > A4 > Az ranking, while the one with the diamond has A4 > Ay > A3 >~ Aj.
The four large equilateral triangles are the four original tetrahedron faces; alterna-
tively, they represent where one alternative is removed. For instance, the central
equilateral triangle with vertices Aj,A>,A3 can be used to represent rankings when
Ay is dropped.

To motivate what is done next, recall that to construct a Condorcet Domain we
need to find all rankings where after dropping A4, the remaining triplet satisfies
the “Aj3 is never middle ranked” or some other Ward—Sen condition. Namely, we
need to avoid all rankings whereby dropping A4 leads to either A} > Az > Ay or
A = Az > A;. More generally, we need to find a way to identify all rankings that
have a specified relative ranking after dropping a particular candidate.

To do this by using geometry, start with the three alternative setting of Fig. 3c.
Similar to tallying elections, ignoring Az has the effect of projecting the rankings to
the A1-A, edge; e.g., the dashed arrow in the triangle represents projecting all three
rankings with the A; > A, relative ranking to the A; > A, portion of the bottom
edge. (So, to find all rankings with A; > A», just follow that dotted line backwards.)
A similar projection occurs with Fig. 3a when an alternative is dropped, but we need
help to see the projections. Assistance is provided by Fig. 3b.

Figure 3b easily handles projections when A4 is ignored and a {A1,A,,A3} rank-
ing results. For instance, the starred region has the ranking Ay > A3 > Ay > A4,
with the A; > Az > A relative ranking when ignoring A4. The four rankings with
this A| > A3 > A, relative ranking are in the ranking regions with the dashed arrow
pointing to the star; i.e., ignoring A4 effectively projects these four rankings into
the starred region. Indeed, “above” (i.e., directly away from the center point of the
central triangle) each ranking region in the central equilateral triangle are the four
four-candidate rankings with the same relative ranking of the triplet.

Now consider a ranking that is not in the central triangle; e.g., treating the region
with a bullet as a triplet, the ranking is Ay > A| > A4. As Az is the missing candidate,
one way to handle to geometry is to return to the tetrahedron and open it from the A3
vertex. Doing so would create four attached equilateral triangles with the A;,A>,A4
triangle in the center; each adjacent triangle has the vertex A3. But this approach is
not satisfactory for our needs as we want to compute the rankings to be removed for
all triplets with one diagram. So, an equivalent way to create the same figure that
is formed by slicing the tetrahedron open from vertex A3 is to rotate (the circular
dotted line) the A1,A3,A4 triangle about vertex A; so that the two A;-A4 edges meet,
and rotate the A,A3,A4 triangle about A, so that the two A>-A4 edges meet. By
doing so, it is clear that the ranking regions with the dashed arrow pointing to the
bullet are projected to this region. (Here, we did not need to rotate the faces.)

As a final example, the three-candidate ranking for the region with a diamond
is A4 > Ay > Az where A; is the ignored alternative. To find all rankings with this
relative ranking, rotate the Aj,A4,A; triangle about the A, vertex, find the projection,
and then rotate back again to show that the desired ranking regions are those with
the dashed arrow combined with the circular arrow.
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3.1 Excluding Rankings

To illustrate how to use this geometry, the “never-middle ranked” condition is im-
posed in Fig.4a for each triplet. With the A;,A3,A4 triplet, for instance, the 1’s
indicate those rankings where, when restricted to this triplet, A4 is middle-ranked,;
thus, these two rankings are to be excluded and the other four are admitted. Similarly
the regions with 4’s indicate where A is middle-ranked when restricting admissible
rankings to the Aj,A3, A4 triplet, so the other four rankings satisfy Ward’s condition
where A; never is middle-ranked.

All rankings that satisfy these conditions, i.e., all ranking regions that project to
any of the marked Fig. 4a regions, are marked in Fig. 4b. The top “1” in Fig. 4a, for
instance, excludes the three regions indicated by the top circular arrow; one Fig. 4b
region already is excluded as it has a 4, the other two regions, marked with 1%,
are excluded because they are projected to a 1. Similarly, the lower circular Fig. 4b
arrow identifies the three regions that project to the other 1; one region already is
excluded with its 3, and the two with 1* are excluded by being projected to this 1.

Doing this for all four numbers leaves only four ranking regions without a label;
these rankings, {A4 > Az = A} = Ay, As - A3 = Ap = A1, A1 = Ay = Az = Ag, Ay >~
Ay = A3 = A4} enjoy obvious symmetry relationships made apparent with the figure.
(For instance, notice that each ranking is accompanied by its reversal.) They define
a “complete Condorcet Domain” in that by adding any other ranking to the set, the
new set no longer is a Condorcet Domain.

In general, for each of the four triangles, select a Ward—Sen condition for some
alternative. Then, cross off all regions identified by the selected Ward—Sen choices,
and all regions that project onto one of these regions. In this manner, all possi-
ble four-alternative complete Condorcet Domains can be found. As this approach
shows, in profile space (which can be represented by the 24 dimensional Euclid-
ean space R?*) the Condorcet Domain is orthogonal to the space of regions that are
eliminated by the Ward—Sen conditions.

The geometric challenge, which has the flavor of a Sudoku or crossword puzzle,
is to determine which combinations of Ward—Sen structures leave the largest number
of blank spaces after the projected regions are crossed off. Thus, finding a Condorcet
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Domain with a maximal number of rankings requires finding combinations of Ward—
Sen conditions with the minimal number of crossed off regions. Clearly, for this to
occur, we need to select conditions so that some regions are eliminated by multiple
conditions. For instance the regions with a 3 on the right in the A{,A;,A4 triangle
is excluded twice; first by being the indicated middle ranking for that triangle and
then by being projected to a 1. The goal, then, is to determine which combinations
of the Ward—-Sen conditions minimize, and which maximize, multiple counting of
ranking regions. The answer must involve the geometric structure and its associated
symmetries.

An example using symmetry is depicted in Fig.4c where the four not-middle
choices, given by the numbers 1 to 4, are selected in a band. Notice, some num-
bers are in regions that are projected to other numbers. The projection regions are
depicted by dashed lines leading out of regions with a number; three dashed lines
are labeled with the donor number n*. With this choice, five marked ranking re-
gions are used three times, six twice, and only five once. This arrangement leaves
eight blank regions that define a complete Condorcet Domain: the first part has A3
bottom-ranked,

{A1 = Ay = Ay - A3, A1 = Ay = Ax = A3, Ay - Ay = A = A3, Ap = As - A| >~ Az}
and the second part has A3 is top-ranked
{A3 Al = Ay >-Ar, A3 = A1 = A = Ay, A3 = Ay = Ay - A1, Az = Ay - Ap >A1}.

Also notice, accompanying each ranking in this Condorcet Domain is its reversal.

3.2 Calculus of Ward-Sen Conditions

One of my contributions for this Condorcet Domain problem is to indicate how to
create a calculus to determine which ranking regions should be eliminated. To do
so, the Ward—Sen conditions are related to the geometry of a tetrahedron. Using the
bottom face of Fig. 3a, with vertices {A1,A2,A3}, which is the central face of Fig. 5a,
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the never-bottom condition defines an edge; e.g., the b’s in Fig. 5a are on the Aj-A;
edge. Applying this condition to define a Condorcet Domain, it follows from the
dashed lines moving out of the “b” regions that it eliminates all rankings in the other
face that shares this edge; in Fig. 5a, it is the triangle {A],A,A4}. Thus, a never-
bottom condition defines one of the face’s edges; it eliminates the two specified
never-bottom rankings and all rankings in the face sharing the same edge.

A never-top condition defines two regions sharing a vertex; in Fig. 5a, the regions
are denoted by t’s, and the vertex is A3. As illustrated by the dashed lines moving out
of the two “t” regions, this condition eliminates all six rankings that share the same
vertex and two more along the “designated edge” that connects the specified vertex
with the vertex not in this face; here it is the A4 vertex. Notice that this A3-A4 edge is
depicted on two of the faces; the reason is that this is one of the edges along which
the tetrahedron was cut open. What is not so obvious is that this edge connects A3
from the A|,A,,As face to A4 from the A|,A,,A4 face. After all, the same A4 is on
three faces; to see that this is so, just fold up the faces into a tetrahedron.

As indicated by the m’s in Fig. 5a, the never-middle condition defines a face base
and two adjacent faces; the excluded regions are the two selected rankings and three
each in the adjacent faces. These eliminated rankings come in pairs; a ranking and
its reversal. Also notice how four of the Fig. 5Sa rankings are below the A| ~ A3 line,
the other four are below the A, ~ A3 line.

The next step is to identify what rankings disappear by combining these condi-
tions; the ideas can be illustrated by using the same condition with two faces o and
B; the remaining two faces (equilateral triangles) are called y and §. The easiest case
is the never-bottom condition, which emphasizes selected edges.” (See Figs. 3a, 5a.)
All possible combinations follow:

e If the never-bottom condition used with the a and B faces has the o identified
edge bordering face y and the B identified edge bordering face &, then there is
no overlap of eliminated regions. Thus 16 regions are eliminated; they are all of
the 7, 0 ranking regions and the four initiating regions. To illustrate with Fig. 5a,
let the o face be given by the vertices A,A;,As, and the bordering 7y face be
Ay,Az,A4. Then the b’s in the  face eliminate all ¥ face rankings. Let the 3 face
be given by A>,A3,As where the two bottom ranked rankings are on the Az-A4
edge. These two choices eliminate all rankings in the § face defined by vertices
Ay4,A1,A3. Intotal, all rankings from the y and § faces, 12 of them, are eliminated
along with the four selected rankings for a total of 16.

e If the o edge is on the B face, but the § edge is on face 7y, then 14 regions are
eliminated — the f face condition eliminates all y rankings, the o face condition
eliminates all § rankings including the two that drop all of the y rankings, and
the two initiating regions in the « face. Again, illustrating with Fig. 5a with the
same « face but where the 8 face now is Aj,A,A4, the b’s in Fig. 5a satisfy the
first condition; all B face rankings are dropped. Now let the ¥ face be defined by
Aj,A3,A4. To satisfy the specified conditions, the two bottom ranked rankings

2 The approach becomes clear and fairly easy with some experience. Therefore I strongly recom-
mend that the reader creates versions of the Fig. 5 triangles and carries out the described calculus.
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from 8 must be on the A;-A4 edge. These choices eliminate all § and y rankings
(12 of them in total) and the two b rankings in the first face for a total of 14
rankings.

e If both conditions define the same edge, which connects the ¢ and f3 faces, then
both faces, or 12 regions are eliminated. To illustrate, let o and 3 be as in the last
illustration. Let the b be as in Fig. 5a, and let the two choices for  be directly
across the Aj-A; edge. These choices eliminate all @ and 3 rankings; 12 of them.

e Finally if the @ and 8 edges both border on face 7, only 10 regions are elimi-
nated; each 7y region is eliminated by both conditions; the remaining four are the
initiating choices in a and . To illustrate, let & be as above, B the A,A3,A4
face, and y the A1,A5,A4 face. Let the b’s be as in Fig. 5a, so they eliminate all
of the y rankings. Chose the bottom ranked rankings in 3 along the A,-A4 edge;
they, too, eliminate all y rankings. So, the eliminated rankings are the six in face
v and the four selected ones for a total of ten.

Using the “never-top” conditions with the a, § faces characterizes all combina-
tions of vertices that identify the never-top candidate and the interaction of desig-
nated edges.

e If both conditions use the same vertex, there will be overlap in the regions that are
eliminated. Here, there are only 10 dropped regions — both “never-top” choices
eliminate the six regions around the shared vertex, and each condition elimi-
nates two more regions along the designated edges. This is illustrated in Fig. 5b
where face « is given by Aj,A;,A3; the two ¢’s eliminate three rankings along
the dashed line in the 3 face of Aj,A3,A4 and three rankings along the dashed
line in the y face of A;,As,A4. The rankings selected in the 3 face are indicated
in Fig. 5b with the I’s. In the 7 face, this choice eliminates three rankings, but
two of them were already eliminated by ¢. Similarly, the other 1 eliminates three
rankings in the o face, but two of them are #’s. Thus this choice eliminates only
two additional regions; they are given by the 1*’s. A total of 10 regions are elim-
inated.

e If the conditions use two different vertices that share the same designated edge,
some overlap occurs meaning that 12 regions are eliminated. In Fig. 5b, the o
face is defined by A,A>,A3 and selected rankings are given by the #’s. Thus the
designated edge connects vertices A3 and A4. To find the other vertex, as the
designated edge is to be the same, the face cannot include vertex As. Thus this f3
face must be defined by A1,A>,A4. Moreover, to have the same designated edge,
Ay is the selected vertex, thus the selected regions must be given by the 2’s in
this face. One 2 eliminates three regions in y defined by Aj,A3,A4, but two of
these regions have a dashed line meaning they already were eliminated by the
t’s. The same behavior occurs in § defined by A,,A3,A4. Thus the 2*’s show the
two regions not already eliminated by the #’s, leading to a total of 12 dropped
regions.

e If the designated vertices differ and the designated edges meet only in a single
point, then the smaller overlap causes 14 eliminated regions. To illustrate why
and what this means, using the same ¢ face and #’s, the designated edge connects
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Az with A4. What we need is to select the B face and its identified never-top
rankings in a manner so that the designated line is the A;-A4 edge, where A; is
either A| or A,. Suppose it is A;. Now there is a choice; do we have A| or A4 as
the “never-top” ranked candidate? If it is Ay, the face is A1,A2,A3, which is the &
face where the never top condition already is specified. Thus, the choice must be
A4 where, as in Fig. 5b, the  face must be given by A»,A3,A4 and the selected
never-top rankings must be given by the 3’s. The regions newly eliminated are
given by the 3*’s in Fig. 5b. In total, 14 regions are eliminated.

e The remaining condition is for the two vertices differ and the two designated
edges not to meet. To see what this means, start with the same  face and the #’s.
This choice defines the designated line connecting vertices A3 and A4. Thus, the
other designated line must connect A| and A;; one of these vertices identifies the
“never-top ranked” candidate for a particular triplet. If it is A, then the choice
of the designated line means that the triplet cannot contain Aj; the B face is
Aj,A3,A4. In Fig. Sc, this situation is given by the 4’s. As the eliminated regions
do not meet, this last situation drops 16 regions.

The analysis for the never-middle condition is similarly easy. Using the never-
middle with faces o and B where both have the same edge as a base, the number
of eliminated regions is 12. If the ranking regions for two never-middle choices
are adjacent, so they share a portion of an edge of the tetrahedron, the number of
excluded regions also is 12. Otherwise, the number of excluded regions is 14. No
combination eliminates 16 rankings. Incidentally, for any n > 3, for each ranking not
eliminated by applying the condition to a triplet, its reversal also is not eliminated,;
i.e., any Condorcet Domain defined strictly with never-middle conditions has an
even number of rankings.

Similar straightforward computations hold for other combinations; e.g., when
combining a never-bottom with a never-top, emphasize how the never-bottom edge
along with the never-top vertex and its designated edge, interact. For instance, us-
ing a never-bottom with « where the edge is the designated edge of a never-top
condition with face B provides overlap so 11 regions are eliminated. Combining
a never-middle with a never-top condition where both designated regions for the
never-top already have been eliminated leads to 13 dropped regions.

3.3 Combinations and Fishburn’s Alternating Scheme

The calculus for three conditions is similar, so, instead of doing so, the above com-
binatoric rules are now used to obtain insight into what happens with the various
combinations of conditions. The first result shows what can be obtained by using
the same constraint with each triplet.

Theorem 2 [fthe never-top or the never-bottom condition is used with each triplet,
then the smallest associated Condorcet Domain is empty; the largest Condorcet Do-
main has 8 rankings. If the never-middle requirement is used with each triplet, then
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the resulting Condorcet Domain has either 4 or 8 rankings. The unique arrange-
ment giving 8 rankings is equivalent to Fig. 4c. Each ranking in the never-middle
Condorcet Domain has its reversal in the Domain.

Proof. First consider the never-bottom condition. Use the never-bottom for the o
and B faces as defined by the connecting edge; this eliminates all o, rankings.
Doing the same with the 7,0 faces means that all rankings have been eliminated,
so the Condorcet Domain is empty. To have a minimum number of eliminated re-
gions, select a face &; each edge of & connects to another face; using each of these
edges to define the never-bottom condition for the connecting face means that each
of these three conditions eliminate all & regions; in total 12 rankings have been
dropped. It remains to use the never-bottom with «; the selected edge will elimi-
nate the remaining four rankings from the connecting face, leaving the specified 8
rankings.

For the never-top condition, to eliminate all rankings, just use all four vertices.
About each vertex, the condition eliminates all six rankings where that candidate is
top-ranked, so all rankings are eliminated. At the other extreme, select a vertex; it
connects three faces. For each face, select the never-top condition defined by that
vertex. As the six rankings with that candidate top-ranked are eliminated three times,
the total number of eliminated rankings is 12. The choice for the last face must be
selected. The three conditions already selected define three designated legs. Select a
vertex in this face so that it defines the same designated leg; only four more regions
are eliminated. Hence the associated Condorcet Domain has 8 rankings. That this is
best possible follows from the construction and the above combinatoric rules.

The never-middle conditions are left for last as they indicate a general strategy.
For instance, to show that the never-middle conditions cannot have an empty Con-
dorcet Domain, assume that it could; thus all rankings from each face must be elim-
inated. So we try to find what conditions permit this to obtain a contradiction. With
the m’s in Fig. 6a, the required conditions to eliminate all rankings in this ¢ face
defined by Aj,A>,A3 follow immediately: There is one “never-middle” condition
from the B face of Ay,A3,A4 that never eliminates any regions from o; the other
two never-middle choices from 8 leave two blank regions in . A similar statement
holds for any of the three faces bordering on o. Indeed, it is easy to see that the
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positioning of the x’s in y defined by Aj,A3,A4 and the y’s in 3, where the x is ad-
jacent to an m, and the y is lifted a region, will eliminate all ¢ face rankings. This
choice is unique up to symmetry.

As the never-middle choices for three faces are uniquely specified to drop all &
face rankings, it remains to find the never-middle choice for the bottom face § given
by Aj,A,A4. As it is easy to check, each of the three choices of u, v, or z leaves
four blank regions, so the associated Condorcet Domain has four rankings. Because
this setting describes where all rankings from one face are eliminated, it follows in
general that if all rankings from any face are not eliminated, then each face must
have at least one blank region; i.e., with the never-middle conditions, the Condorcet
Domain must always have at least four rankings.

If we do not want to have all rankings dropped from each face, then the next step
is to determine how to select never-middle conditions so that a face has precisely
one blank region. The two choices are where the blank region and one of the never-
middle rankings are either the bottom two, or the top two, rankings for some al-
ternative. For the first case, which is illustrated in Fig. 6b, the goal is to keep the
A3 = A1 > Ay > A4 ranking; this ranking region is identified with the bullet. It is
easy to see that the only choice for the x and y never-middle rankings are uniquely
determined as illustrated. It remains to find the rankings for the 8 face. To keep the
designated region blank, the only choices are denoted by u and v. If u is selected,
all rankings in the side face are eliminated, which returns to the earlier case of four
rankings in the Condorcet Domain. Selecting v is the Fig. 4c case of eight rankings
in the Condorcet Domain.

The argument for the second case, where m and the blank region are the top
two rankings for a candidate is essentially the same. This requirement uniquely
defines the choices of never-middle for two faces. There are only two choices for
the remaining face; one creates a face with all rankings removed, so it reduces to the
earlier case having a Condorcet Domain of four rankings. The other choice leaves
one blank ranking for each face; e.g., rankings of the A > Ay > Az > A4, Ag > Az >
Ay = A, A3 = Al = Ay = Ay, and Ay = A4 = A| > A3, where each candidate is in
each position once, emerge.

Finally, it is easy to show that it is impossible to have three blank rankings in
a face. For four blank rankings, it is equally as easy to show that the situation is
equivalent to that of Fig. 4c. This completes the proof. O

Before providing a geometric description of Fishburn’s alternating scheme, no-
tice how the above approach can be used to answer several other questions. For
instance, is the set of rankings {A| = Ay > A3 = A4, Ay = A] = Ag > Az, Ax - Ay >~
A = Az} a Condorcet Domain? If so, is it a complete Condorcet Domain? If not,
how can it be completed? To find answers, use the above approach used to determine
whether a face can have the specified blank regions. In the same way, it is possible
to determine the associated Ward-Sen conditions. If such conditions can be found,
the set is a Condorcet Domain. If additional blank regions emerge, then the set is
not complete and the added regions define a completion.

This approach leads to a geometric description that is equivalent to Fishburn’s
alternating scheme. Start with face «. For each of the remaining three faces, use



Condorcet Domains: A Geometric Perspective 175

the never-bottom condition adjacent to the « edge. In this way, 12 rankings are
eliminated; all six in the o face and two from each of the other three faces. But
whatever Ward—Sen choice is made for &, never-top, never-middle, or never-bottom,
it eliminates four more regions from other faces, which defines a Condorcet Domain
of eight rankings. Alternatively, by using the never-top ranked choice with the same
vertex, whatever choice is made for the remaining face, four more rankings are
excluded.

The next natural approach coming from the calculus is to use two never-bottom
conditions, say for faces y and 8, where both eliminate all o face rankings, and two
never-top conditions, for the remaining faces o and f8, that use the same vertex. In
Fig. 6¢, the never-bottom choices are illustrated with the 1’s and 2’s; they eliminate
all o rankings. The only two choices for the common vertex of the o and 3 faces are
A, and Aj. Either works; I selected A, as given by the 3’s and 4’s. Observe how this
construction creates overlaps with the never-bottom condition, which means that the
Condorcet Domain has nine rankings —the nine blank regions in Fig. 6¢ outside of
the o face.

Using the above machinery of computing when all rankings from a face are elim-
inated, etc., it is not difficult to show that this is the maximum, and it can be attained
only in this manner. To recover Fishburn’s alternating scheme, select the names of
the vertices in an appropriate manner. Notice that while Fishburn proved that the
alternating scheme does not hold for all values of n, the calculus of the geometric
approach described above does apply to any number of alternatives.

3.4 More Candidates

The approach for n > 4 candidates is similar, but assistance coming from concrete
geometric objects is missing for n > 6. (For n = 5, the simplex opens into a tetra-
hedron, which can be opened into a 96 region version of Fig. 3b plus another copy
for 24 interior ranking regions.) Any Ward—Sen condition with triplet eliminates %’
rankings.

The structure remains similar; e.g., the “never-middle ranked” condition elimi-
nates rankings and their reversals; these rankings lie along two “indifference rank-
ing” surfaces. If a triplet includes two of the alternatives from the specified triplet,
the never-middle condition eliminates half of them; if it has one or none, it elimi-
nates all of the triplet rankings. The never-bottom ranked condition defines an edge
and eliminates all rankings in [%‘ — 3]/6 triplets. The never-top condition defines a
vertex; it eliminates all (n — 1)! rankings sharing this vertex (that is, all rankings
where the candidate identified with the vertex is top-ranked) and @ (n—3) other
rankings which involve rankings on both sides of edges from the designated vertex
to the other vertices not on this face. Again, if the triplet includes two alternatives
from the specified triplet, the excluded rankings are along an edge; if it includes one
or none, the triplet is eliminated.
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In this manner, calculus rules for combining Ward—Sen conditions can be deter-
mined. The way to do so is to emphasize the interactions among edges, bases, and
vertices. For instance, check whether any of the designated edges from the never-top
condition coincide with the edge from the never-bottom condition. In this manner,
the analysis to determine what happens with n = 5 turned out to be straightforward,
and it is not overly difficult to find conditions leaving a fixed number of blank re-
gions in a triangle. I have yet to examine what happens with n > 6.

4 Profile Coordinates

It is widely appreciated that a Condorcet Domain imposes a far too strict constraint
to avoid cyclic behavior. This is illustrated with the Fig. 7a profile, which fails all
of the Ward conditions. Nevertheless, the majority vote rankings are transitive, and,
going far beyond what could ever be expected from a Condorcet Domain, the differ-
ences in tallies satisfy an extreme “tally consistent transitivity” whereby adding the
difference in A, B tallies (13 —9 = 4) to the difference in B, C tallies (13 —9 = 4)
equals the difference in the A, C tallies (15 —7 = 8)! If we embrace the value of
the Condorcet Domain problem, then it becomes necessary to understand why this
example, which violates all of Ward conditions, enjoys a much stronger form of
majority vote transitivity.

This example was constructed by adding multiples of Figs. 7b, ¢ profiles with
appropriate permutations of the A; names; these component profiles do satisfy
Ward conditions. Indeed, the Fig. 7a profile is two units of the Fig. 7b profile where
{A1,A2,A3} ={A,B,C} plus one unit where {A;,A2,A3} = {B,A,C} plus two units
of Fig. 7c where {A1,A>,A3} = {C,A,B}.

The construction of this example suggests that, perhaps, a way to analyze voting
rules is to use appropriate configurations of rankings rather than individual rankings.
To make this comment more concrete, let me introduce what I call the “Generalized
Condorcet Domain” problem; it is to determine how to replace “individual rankings”
with specific “configurations of rankings” in a way so that any multiples of these
configurations never allow cycles.

This Generalized Condorcet Domain problem can be completely solved for any
n. For three candidates, not only can this generalized problem be solved, but the
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Fig. 7 A non-cylic example
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tallies always satisfy the tally-consistent transitivity of majority votes if and only
if the profile is a sum of multiples of permutations of the Fig. 7b, ¢ configuration
of rankings (Saari (1999))! Notice, these configurations of profiles define a five-
dimensional subspace, which is a dimension larger than possible with any Con-
dorcet Domain. Staying with the theme of the Condorcet Domain, it turns out that
with these Fig.7b. ¢, configurations, and only with these configurations, can any
multiple of them be added without ever encountering a cyclic outcome, or without
ever violating tally-consistency.

To generalize the discussion, recall that a “positional rule” tallies ballots by as-
signing specified number of points for candidates based on their position on a ballot.
The plurality vote assigns one point to a voter’s top-positioned candidate and zero
to all others. The Borda Count for n candidates assigns n — j points to a voter’s ;"
positioned candidate.

A recent approach (Saari (1999, 2000b,a, 2001b)), which currently is being re-
fined, is to find appropriate profile coordinate systems that will handle all possible
combinations of positional rules. The goal is similar to that of a Condorcet Domain;
it is to find appropriate configurations of profiles — profile coordinates —so that when
adding any multiple of a coordinate to a profile, we know in advance the effect it
will have on all possible positional methods. As true with the Condorcet Domain,
no restrictions are imposed on how much of a particular profile coordinate is added
or subtracted. The difference is that the Condorcet Domain problem concentrates on
individual rankings; the profile coordinate system concentrates on specified config-
urations of preferences.

As an illustration, the Fig. 7b, ¢ configurations define certain three-alternative
coordinate directions; it is easy to show that the Fig. 7b configurations never permit
conflict among positional and binary rankings while Fig. 7c configurations, which
consist of a ranking and its reversal, has no effect on binary rankings but change
positional outcomes. To further illustrate this program while connecting it with
Condorcet Domains, notice that to understand how and why positional outcomes
over triplets differ from positional outcomes over all four candidates and over pairs,
we need to find a coordinate direction that affects the positional election outcomes
of triplets without ever affecting binary or four-candidate positional rankings. An
example of how this can be done is with the earlier derived Condorcet Domain
{A1 Ay A3 - Ay, Ay - A3 = Ay = A1,A3 = A1 = Ay = Ar, Ay = Ay~ A >A3}
where each candidate is in each position precisely once (so all four-candidate posi-
tional outcomes end in a tie), and for each pair {A;,A;}, two rankings have A; > Ay
while two others have Ay =~ Aj; i.e., all pairwise outcomes end in ties. But with this
configuration of rankings, all non-Borda Count positional outcomes for any triplet
never are ties. By discovering and using configurations of this type, it becomes pos-
sible to explain all differences among all positional elections of all possible subsets
of candidates.

Of particular relevance for the current paper is that one part the emerging pro-
file coordinate system identifies all profile configurations that cause pairwise voting
cycles. As these coordinates are closely related to the Condorcet Domain problem,
they are described in more detail.
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5 The Source of All Pairwise Cycles

The Condorcet Domain problem searches for the maximal dimensional profile sub-
spaces where cycles never occur. The approach can be described as finding a space
of rankings by use of the Ward—Sen conditions that is orthogonal to Condorcet
triplets. In this analysis, the coordinate directions are determined by individual rank-
ings; this choice is what causes the inefficiencies of the Condorcet Domain in that
these domains form overly strict conditions to avoid cycles. To avoid these ineffi-
ciencies, precisely the same program is carried out next except that specific “profile
coordinate directions” replace individual rankings. Namely, the objective is to find
appropriate profile coordinates, and the associated profile subspace, so that any pro-
file orthogonal to this subspace never allows a cycle with the majority vote. The
following theorem states the result.

Theorem 3 (Saari (2000b, 1999)) For n > 3 alternatives, in the n! dimensional
profile space, there is a w dimensional subspace with the following property.
Any profile that is orthogonal to this subspace can never have a majority vote cycle.
Thus, this cycle-free subspace has dimension n! — @ = Q(Zn —1). Each
triplet {Aj,Ax,As} has the tally-consistent transitivity property where adding the
difference of the majority vote tallies between A and Ay, to the difference between

Ay and Ay equals the difference between A and As.

The last statement goes far beyond assuring non-cyclic outcomes to ensure the
transitivity of pairwise rankings and tally-consistent transitivity. These results, then,
are much stronger than possible with the Condorcet Domain. Also, the dimension

of the orthogonal space, <"_21)!, is much smaller than the number of dimensions

dismissed by just one Ward-Sen condition applied to just one triplet, which is %'
Thus, the cycle-free subspace ensured by Theorem 3 has a dimension significantly
larger than that of any Condorcet Domain. For instance, the largest dimension of a
subspace attached to a four-candidate Condorcet Domain is nine, while the subspace
from Theorem 3 has dimension 24 — 3 = 21, so it is more than twice as large. The
largest dimension of a subspace attached to a five-candidate Condorcet Domain has
dimension 20; the cycle-free subspace guaranteed by Theorem 3 for five candidates
is5!— % =120—12 = 108, or a five fold increase.

The following theorem illustrates some positive consequences possible from this
subspace.

Theorem 4 (Saari (2001a)) For any number of candidates, if profiles are restricted
to the n! — @ dimensional subspace defined in Theorem 3, an admissible rule
satisfying Arrow’s assumptions Arrow (1951) is the Borda Count. In the same sub-
space, there exist rules where Sen’s Paretian Liberal impossibility result Sen (1970)
does not lead to a cycle.
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Fig. 8 Profile coordinates to Condorcet Domains

5.1 Coordinates

To find a profile coordinate system for the orthogonal subspace, use what I call a
ranking wheel (Saari (2000b, 2001b)), which is a freely rotating wheel attached at
its center to a wall. With n candidates, list the numbers from 1 to » in a uniform
manner near the wheel’s edge. In Fig. 8a, this is illustrated with n = 6. Next, select
a ranking and list the names of the candidates on the wall next to the appropriate
“ranking number.” In Fig. 1, the generating rankingisA > B> C > D > E > F.

The first ranking is as given; for Fig. 8a it is the specified A >~ B>~ C >~ D >~ E > F.
Next, rotate the ranking wheel so that the ranking number “1” is positioned next to
the second candidate and read off the new ranking. Illustrating with Fig. 8a, the
rotated ranking wheel now has “1” next to B, so the new ranking is B >~ C > D >
E > F = A. Continue in this fashion until the ranking number “1” has been next to
each candidate precisely once. I call this the “Condorcet n-tuple” generated by the
starting ranking. With the Fig. 8a example, the “Condorcet six-tuple generated by
A~B>~C>D>E>F"is

A-B>~C-D>~E>~F, B~C~-D>~E>~F>~A,C>~D>~E>~F>A>B,
D-E-~F>A>~B>~C,E-F>A>~B>~C>~D F>~A>~B~C>~D>E
3)

A Condorcet n-tuple can be generated by any ranking, and each ranking is in pre-
cisely one Condorcet n-tuple. There are n! possible rankings, so there are precisely
n!

" = (n—1)! Condorcet n-tuples. To illustrate with n = 4, the six Condorcet triplets

are generated by

Name  Ranking |Name Ranking
1 A-B>~C>=D| 2 D>C>B>A
3 A-C>=B>~D| 4 D-B>~C+A
5 B-A-C»-D| 6 D-C-A>B

“4)
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Each Condorcet four-tuple has four rankings; by using the Eq. (4) assigned names,
the positioning of these rankings are located in Fig. 8b. Each face of the tetrahedron
has precisely one representative from each Condorcet four-tuple. For n candidates,
each of the n faces of the corresponding equilateral object has precisely one repre-
sentative from each of the Condorcet n-tuples.

On each row of Eq. (4), each ranking is the reverse of the other. The same ef-
fect occurs for any n, a Condorcet n-tuple generated by a ranking can be associated
with a Condorcet n-tuple generated by the reverse of the original ranking. Indeed, a
coordinate direction in profile space is given by one unit of one of these Condorcet
n-tuples and —1 units of the other. (To see the role of negative numbers in profiles,
see Saari (1999). It just means that when adding such a profile to another profile,
subtract voters from the specified rankings.) This defines the @ orthogonal co-
ordinate directions for the Theorem 3 subspace.

With three candidates, place a 1 in each Fig. 2 starred region, and a —1 in each
of the bulleted regions. Listing the Fig. 7a profile coordinates in a counterclockwise
manner starting from the lower left corner defines the vector (5,4,4,1,2,6) while
the Condorcet profile vectoris (1,—1,1,—1,1,—1). It now is trivial to show that the
two vectors are orthogonal, as required by Theorem 3. However, using Fig. la, with
the associated vector (0,x,y,z,w,0), it follows that Ward’s never-bottom condition
satisfies the tally-consistent property if and only if the coordinates satisfy the added
restriction x +z =y +w. A similar assertion holds for the other two Ward condi-
tions. Namely, profiles associated with Condorcet Domains still have vestiges of the
Condorcet n-tuples that the Ward-Sen approach tries to eliminate.

5.2 Condorcet Domains in Condorcet n-tuples

Central to the Ward-Sen condition is that any three rankings from a Condorcet n-
tuple creates a cycle. (For an illustrating example, notice that selecting any three
rankings from the six choices in Eq. (3) creates a cycle.) Consequently, a Condorcet
Domain cannot include more than two rankings from any n-tuple, so at least n — 2
of the rankings from each Condorcet n-tuple must be dropped. Thus a Condorcet
Domain can have at most 2(n — 1)! terms. The actual value is much smaller. The
reason is that, as illustrated in Fig. 8b with projections, the rankings of the different
Condorcet n-tuples are intimately intertwined. For instance, using a Ward—Sen con-
dition with any triplet drops rankings from each of the six Condorcet four-tuples.
Thus the choices of what rankings to eliminate from each four-tuple are closely
interrelated. As an illustration, the dashed lines shows that associated with the o
face and the A = B > C > D region in Fig. 8b are two rankings from the number 1
Condorcet four-tuple and specific number 4 and 6 rankings. If the never-bottom, or
never-middle, or never-top condition is used in this o face with A >~ B - C > D, then
each choice eliminates at least one ranking from the remaining number 2, 3, and 5
Condorcet four-tuples. Indeed, by using geometry with Fig. 8b and the above con-
ditions, it can be shown that the maximal number of rankings in a four-alternative
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Condorcet Domain is less than ten. This interesting connection between the Con-
dorcet four-tuples and the Ward—Sen conditions extends to any n > 3; i.e., the pro-
jection approach captures the weaving interactions needed to eliminate rankings
from among the Condorcet n-tuples.

6 Summary

It is interesting how geometry can capture the intricacies of the combinatoric prob-
lem of finding and characterizing all Condorcet Domains. As a special case and
as shown here, elementary geometry can be used to provide an alternative way to
explain Fishburn’s alternating scheme. Of course, for the practical issue of under-
standing and avoiding majority vote cycles, Theorem 3 is stronger and more useful
than the overly strict conditions imposed by Condorcet Domains. Nevertheless, the
Condorcet Domain problem remains an intriguing question in part because it un-
covers valued structures about voting that should be more carefully examined. The
projection approach introduced here is a new way to do so. Because this geometric
approach identifies all Condorcet Domains for any number of alternatives, it would
be interesting to carry out it out for n > 6; what needs to be done is to determine the
calculus conditions for the different Ward—Sen conditions.

Even more, the symmetries disclosed by analyzing this Condorcet Domain issue
most surely have other applications in understanding other complex problems that
arise in social choice theory. As indicated above, for instance, such symmetries arise
when examining positional methods. To explain another benefit of this approach,
start with the fact that Fishburn was blessed with an intuitive insight about how
to handle the associated and complex combinatorics that are characteristic of this
research area. For those of us who are not gifted with such insight, it is important
to create a systematic approach to uncover the source of fundamental problems in
this area. My sense is that the appropriate tools involve mathematical symmetries,
and a way to uncover the appropriate symmetries of social choice is to appeal to the
underlying geometry.
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Condorcet’s Paradox with Three Candidates

William V. Gehrlein

Condorcet formally developed the notion of cyclical majorities over two centuries
ago (Condorcet, 1785), and Peter Fishburn introduced me to that phenomenon in
1971. When Peter first described the idea behind Condorcet’s Paradox during a
course in Social Choice Theory at Pennsylvania State University, my response was
that the phenomenon simply could not happen. When he reproduced the classic
example of its existence with three voters and three candidates, my immediate
response was that this phenomenon certainly could not be very likely to ever be
observed in realistic situations. Peter quickly suggested that I should work on de-
veloping some estimates of the probability that the paradox might occur, and very
soon afterward that pursuit began. We completed many co-authored papers on re-
lated topics over the following years, but it is only after more than 30 years of effort
that I feel a good answer can be given to the challenge that Peter presented in that
classroom in 1971. The following essay can be viewed as a long overdue course
project report, and we can finally see a theoretical model that clearly explains why
observations of Condorcet’s Paradox are so rare in elections on a small number of
candidates.

1 Introduction

We consider three-candidate elections in which each voter has a complete and transi-
tive preference ranking on the candidates {A,B,C}. There are six possible preference
rankings that each voter might have on the candidates, as shown in Fig. 1. Here, n;
denotes the number of voters with the corresponding preference ranking. The total
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Fig. 1 Possible linear pref- A A B C B C
erence rankings on three B C A A C B
candidates ¢ B C B A A

ni np n3 ny ns ng

number of voters is n = Y n;, and any given combination of n;’s is referred to as
a profile of voters’ preferences for a specified value of n.

A Pairwise Majority Rule Winner (PMRW) exists for a given profile if some
candidate can defeat each of the other two candidates by majority rule voting on
the corresponding pairs. For example, A beats B by pairwise majority rule, denoted
by AMB, if n| +ny +n4 > n3 4+ ns +ng. Then A is the PMRW in a profile if AMB
and AMC. Condorcet’s Paradox occurs when a PMRW does not exist, and there is a
majority-rule cycle like AMB, BMC and CMA. We assume that n is odd throughout
this study to avoid having to deal with ties by pairwise majority rule.

When we began studying this phenomenon, few empirical studies had been con-
ducted to attempt to find actual examples of Condorcet’s Paradox in real-life sit-
uations. In proceeding to develop some basic theoretical models to estimate the
probability that a PMRW exists in a random voting scenario, some elementary and
predictable assumptions were made regarding the likelihood that various profiles of
voters’ preferences would be observed. As more and more empirical studies were
performed to indicate that occurrences of Condorcet’s Paradox are relatively rare
with a small number of candidates, the basic theoretical models were modified to
try to develop an explanation of what was being observed. The preliminary theo-
retical models appeared to be treating the procedure as to how voters formed their
preferences as being much too random a process.

The general notion in work that followed was that as voters tend to have pref-
erences that are more consistently in mutual agreement with some logical model
to explain the process by which their preferences were formed, the probability that
a PMRW exists should tend to increase. Stated in an alternative form, the proba-
bility that Condorcet’s Paradox is observed should decrease as this happens. Many
studies, including (Fishburn and Gehrlein, 1980a, b), have been performed to try
to establish a relationship between the probability that a PMRW exists and various
forms of the internal consistency of voters’ preferences within a profile. A survey
of these studies in (Gehrlein, 2004) indicated that there is unfortunately only a very
weak relationship between the probability that a PMRW exists and most measures
of internal consistency of voters’ preferences that had been considered to that point.
The most promising studies of this type were developed by (Fishburn, 1973) and
by (Niemi, 1969). Fishburn (1973) measures the underlying consistency of voters’
preferences with Kendall’s Coefficient of Concordance and (Niemi, 1969) uses a
measure of the proximity of voter preference profiles to the condition of perfectly
single-peaked preferences.
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2 Probability Representations

The logic of developing a basic representation for the probability that a PMRW
exists is quite simple. We simply enumerate the subset of all profiles that have a
PMRW and sum their respective probabilities. It is therefore necessary to establish
some model of assigning probabilities to profiles. The model that is used in the cur-
rent study is a variation of Impartial Anonymous Culture (IAC), which assumes that
all combinations of #;’s that sum to a specified n are equally likely to be observed.

Gehrlein and Fishburn (1976) develop a representation for the probability,
PPMRW (33 JAC), that a PMRW exists for n voters under IAC as

15(n+3)?

PPMRW () 14C) —
(. IAC) = 16 2 1 8)

, foroddn >3 (D)
Lepelley (1989) develops a similar representation for even n.

It is well known from (Black, 1958) that a PMRW must exist if voters’ pref-
erences are perfectly single-peaked, and (Arrow, 1963) shows that voters’ prefer-
ences are perfectly single-peaked in three-candidate elections if and only if some
candidate is never ranked last in the preference ranking of any voter. The measure
proposed by (Niemi, 1969) is related to the minimum number, b, of times that any
candidate is bottom ranked by voters in a given profile, with

b = Min{ns+ ng,ny +ns,n; +ns} 2)

If b equals zero for a profile, the associated profile is perfectly single-peaked, and
profiles become more distant from the condition of perfect single-peakedness as b
increases.

Gehrlein (2004) develops a representation to link the probability that a PMRW
exists to b, with the expectation that this probability should decrease as b increases.
This was done by using algebraic techniques to develop representations for the con-
ditional probability, PL™RW (n,IAC|k), that a PMRW exists for n voters, given that b
has a specified value k. The basic logic behind the notion of IAC is used here since
all profiles with the specified conditional value k are assumed to be equally likely to
be observed. The representations for odd n are given by

PPMRY (5 TAC k)
Ak (=17 4+21k+ 1K) 4 (5— 26k —4k*) n+3 (2 — k) n* +n’ }
B (n—3k){(n+1)(n+5)—3k(2+k)}

for0<k<(n—1)/4,
{(n+1)(9+2n+n?) —6(1+n*)k+ 18nk* — 18k }
2(k+1){(n+1)(n+5)—3k(2+k)}
for (n+1)/4<k<(n—1)/3,
=3/4, fork=n/3. (3)
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The critical observation in (Gehrlein, 2004) is that PPMRW (n, IAC|k) generally de-
creases as k increases, in complete agreement with our intuition.

A PMRW must also exist for three-candidate elections if voters’ preferences are
perfectly single-dipped, and the proximity of a profile to perfect single-dippedness
can be measured in a manner similar to that used in the definition of b. A profile
will be perfectly single-dipped for three candidates if and only if some candidate
is never ranked as most preferred by any voter, and we follow the logic of earlier
discussion to define the proximity of a voter preference profile to perfectly single-
dipped preferences by the minimum number of times, #, that any candidate is top
ranked in voters’ preferences, with

t =Min{n; +ny,n3 +ns,ns +ne} 4)

We define the conditional probability PPMEW (n, IAC|k) following the logic of our
definition of P'MRY (n,IAC|k), and it follows directly from symmetry arguments
that PPMRY (n, IAC|k) = PPMRW (n,IAC|k) for any k.

A PMRW must also exist with three candidates if some candidate is never middle
ranked by any voter. This represents a perfectly polarized preference scenario since
some candidate is either most preferred or least preferred by all voters. We measure
the proximity of voters’ preferences in a profile to perfect polarization with m, where

m = Min{ns +ns,n, +ng,n +ns} (5)

The algebraic procedures that were used to obtain the representation in (3) are ex-
tremely cumbersome to implement, and (Gehrlein, 2005) develops a procedure,
called EUPIA2, that makes it much easier to obtain such representations. This pro-
cedure is used here to directly obtain a representation for PLMRW (n IAC|k) as

PPMRW (1) JTAC|Kk)

(k+1) {—3— 169+ 333k + 139k> +4 (14 — 95k — 7k*) n+ 18 (5 — 3k) n* + 16n° }
—3682{(6k* +24k —1) +4(k—2)n—2n*} }
16 (m+1) (n—3m){(n+1) (n+5) =3k (2+k)}
for0<k<(n—1)/4,

—3682{(6k* +24k—1) +4(k—2)n—2n*}
16 (k+1) (n—3k) {(n+1) (n+5) =3k (2+k)}
for(n+1)/4<k<(n—1)/3,

|:(n —3k) { (52 — 44k — 72k> + 39k>) + (88 4 48k — 63k>) n+ (20 +29k) n* — nS}}

_ 27+42n+4Tn?

fork=n/3.
8(n+3)* /

Q)

Here, 6,(2 = 1if k is an even number, otherwise 6,3 =0.
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A critical observation that can now be made from computed values is that
PPMRW (5 TAC|k) generally decreases as k increases, in complete agreement with
our intuition. So, the probability that a PMRW exists tends to increase as voter
preference profiles tend to become closer to perfectly single-peaked preferences,
perfectly single-dipped preferences or perfectly polarized preferences.

Unfortunately, this observation could be very misleading. In particular, these
probabilities remain quite large for relatively large values of k. However, this does
not account for the proportions of all possible profiles that they represent. For ex-
ample, PPMRY (n, IAC|k) could be quite large for a relatively wide range of k values,
but the results are meaningless if this range of k only accounts for a small propor-
tion of all possible profiles. In order to adequately address this issue, it is necessary
to develop representations for the cumulative number of profiles that have specified
parameter values in some given range.

3 Cumulative Probabilities

We begin this process by developing representations for the cumulative conditional
probabilities CPIMRY (n, IAC|k), CPPMRW (n,IAC|k) and CPIMRW (n,IAC|k), as de-
fined in the obvious fashion. All profiles with a specified parameter value k* with
0 < kx < k are assumed to be equally likely to be observed in these representa-
tions. Using algebraic summations on the equations that led to the numerators and

denominators in the representations above in (3) and (6), we find:
For parameters b and ¢:

CPPMRY (0, IAC|k) = CPPMRY (n, IAC k)

_2{(—41+ 69k +22k*) k+5 (5 — 18k — 2k*) n+ 10 (3 — k) n* 4 5n° }

{(=73+ 117k +36k2) k+5 (10 — 33k — 3k2) n+ 20 (3 — k) n> + 10n3 }

for0<k<(n—1)/4,

195 — 1968k — 720k? + 3840k” +4320k* + 1728k
+ (1661 — 1680k — 6000k> — 5760k> — 2880k*) n + 10 (165 + 200k + 216k + 192k* ) n?
+30(9— 8k —24k) n* +5 (15+32k) n* — 111
16 (k+ 1) (k+2){(=73+ 117k + 36k?) k+5 (10 — 33k — 3k?) n +20 (3 — k) n? 4 1003}

for (n+1)/4 <k < (n—1)/3,

o 15(n+3)? ke n
’16(n+2)(n+4)f k=n/3. (7)
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For parameter m:

CPPMRY (4, IAC k)

165 — 783k + 1743k2 + 1597k +278k* + 10 (71 — 233k — 143k> — 7k n
+30 (31 + 3k — 6k*) n? +80 (k+2)n’

—1587 {11+ 30k + 6k* —2(3 — 2k)n—2n*}
8 (k+1) (k+2){(—=73+ 117k+36k>) k+5 (10 — 33k — 3k?) n+ 20 (3 — k) n* + 10n°}

(k+1)

for0<k<(n—1)/4,

435 — 952k + 480k* + 2200k — 90k* — 468k
+ (1349 — 2520k — 4160k> + 840k> + 1140k*) n + 10 (177 + 120k — 162k* — 100k*) n
_ +10(39+72k+32k2)n —5(3+4k)n* +n> —308Z { 11+ 30k +6k> —2(3 —2k)n—2n}
16 (k+1) (k+2) {(=73+ 117k +36k>) k+5 (10 — 33k — 3k>) n +20 (3 — k) n> + 1003}

for(n+1)/4<k<(n—1)/3,

15(n+3)*

= = .
60112 (nsd) ork=n/3

®)
These representations have been verified by computer enumeration, but they are
totally intractable for any type of useful analysis in their present form. By consid-
ering the limiting form of these representations as n — oo, they can be significantly
simplified. The limiting case does not permit us to consider any specific finite val-
ues of k for any of the parameters b, ¢ or m. Instead, we must use the minimum
proportion,qy, of the n voter preference rankings that have the associated parame-
ters b, t or m. Based on the definitions of b, ¢ and m it is obvious that 0 < oy < 1/3.
To obtain the limiting representations, we replace k with no in the representations
above, and then let n — co. The resulting limiting representations are:
For parameters b and ¢:

CPYMRY (00, IAC| 0y) = CPMRY (o0, IAC| 0t

10 — 200y, — 2002 + 4403
- k ’;’L kL for0< oy < 1/4,
10— 200y — 150 + 360

2 3 4 5 (9)
~ —11+1600y — 7200 + 19200 — 28800y, + 172801
B 160 (10 — 200y — 150 + 3603}
forl/4 <oy <1/3.
For parameter m:
CPEMRY (o0, IAC| 0y:)
40 — 900y, — 3502 + 1390
- k ’;—’_ gforogak§1/4,
40 — 800y — 60a? + 14404 (10)

 1—200 + 3200 — 10000 + 11400 — 46805
B 160 (10 — 200y — 150 + 3603}
forl/4 <oy <1/3.
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These limiting representations are far easier to work with, and they represent the
potentially most interesting case of large electorates. Following previous discussion,
it is obvious from these limiting representations that

CPPMRY (00, IAC|0) = CEPMPY (o0, IAC|0) = CPIMRY (o0, 1ACI0) = 1, (1)
and that

(12)
CPPMRV (00 TAC|1/3) = 15/16.

4 Proportions of Profiles with Specified Parameters

A representation for the cumulative proportion, CP;3 rofiles (y JAC|k), of all possible
voter preference profiles that have their parameter b equal to £* in the specified
range with 0 < kx < k was also obtained, and the result is given by

cP " (n,1AC|k)
(=73 + 117k +36k*) k+
{3 (k+1)(k+2) { 5(10 — 33k — 3K%) n+20 (3 — k) n? + 10n° -
(n+1)(n+2)(n+3) (n+4)(n+5)
for0<k<(n—1)/3,

= lfork=n/3.

A representation for the limiting case, CP; rofiles (o JTAC| o), of all possible pro-
files that have parameter b in the specified range 0 < oy« < 0 as n — oo fol-
lows from discussion above. It also follows from earlier work in (Gehrlein, 2004)
that CP," " (00, IAC| ) = CP* /" (o0, 1AC|0y) = CPy" ™" (00, IAC| 0t). The
resulting representations are given by:

CP:’r ofiles (OO,IAC|(Xk) _ CPtPr ofiles (OO,IAC|ak)
_ CP,l;r ofiles (OO,IAC|OCk) (14)
=30 (10— 200y — 150 +360; ) , for 0 < o < 1/3.

A search procedure was used on the representation in (14) to obtain the spe-
cific B values of o that give CPIf)mf iles (e0,IAC|B}) = p for each proportion
p =0.00(.05)1.00, and the results are summarized in Table 1. The results in Table 1
indicate for example that 65% of all possible voter preference profiles are included
in the range of o, parameter values that are within the range 0 < oy, < .1924. Based
on discussion above, it follows that B} = B = B, for all p.

It is now possible to use the results that are included in Table 1 along with the
limiting representations from (9) to compute the limiting conditional cumulative
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Table 1 Computed values

of ﬁé?’ B7. BL, BY. and ﬁép p ﬁf =B7 =Bk B ng

for each proportion p = .00 .0000 .0000 .0000

0.00(.05)1.00 05 0428 0308 0256
10 0619 0449 0375
15 0772 0564 0473
20 .0908 0667 0562
25 1033 0763 0646
30 1150 0854 0727
35 1264 .0943 .0806
40 1374 1031 .0885
45 .1483 1118 0965
50 1591 1206 .1046
55 .1700 1296 1130
.60 1811 1388 1217
65 1924 1484 1308
70 2042 1585 1407
75 2166 1695 1514
80 2208 1815 1634
85 2445 1951 1774
90 2614 2117 1946
95 2829 2344 2191
1.00 3333 3333 3333

probability CPYMRW (o JAC|B}') that a PMRW exists for the p percent of profiles
that are closest to being perfectly single-peaked. For example, the limiting probabil-
ity that a PMRW exists for the 65% of all voter preference profiles that are closest
to being perfectly single-peaked is obtained by evaluating CPFMRW (e, JAC|.1924),
given the results in Table 1. In the same fashion, it is also possible to obtain sim-
ilar conditional probabilities for both CPMRW (co, JAC|B/) from (9) and for for
CPLMRW (oo, JAC|B#) from (10). Computed results for all three are summarized in
Table 2 for each proportion p = 0.00(.05)1.00.

The computed values that are given in Table 2 show some very interesting and
compelling results. We see for example that the 10% of voter preference profiles
that are closest to being perfectly single-peaked have a PMRW with a probabil-
ity of .9980. An even more important observation is that the 50% of voter prefer-
ence profiles that are closest to being perfectly single-peaked have a PMRW with a
probability of .9857. Thus, the presence of any reasonable degree of internal con-
sistency within voters’ preferences that approaches perfectly single-peaked pref-
erences clearly results in a high likelihood that a PMRW will exist. The impact
of having voters’ preferences that indicate the presence of a candidate approach-
ing a perfectly polarizing candidate is also quite strong, but it is not as dramatic
as the presence of some proximity to single-peakedness or single-dippedness since
CP[MRW (0, JAC|BY) > CPEMRV (oo, IAC|Bf) for all 0 < p < 1.
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Table 2 Computed Values

of CPPMRY (oo JAC|BY), p b, t m u ¢
for B = By'. B’ . B 00 1.0000 1.0000 1.0000 1.0000
B/’ for each proportion 05 9991 9895 9995 9976
p =0.00(.05)1.00 10 19980 9850 19989 9963
15 19969 9814 9983 9951
20 19956 9782 9975 9940
25 9943 9753 9967 9928
30 9929 9726 9958 9916
35 9913 9701 9948 9903
40 19896 9676 9936 9890
45 9877 9652 9924 9876
50 9857 9628 9910 9860
55 9834 9605 9894 9843
60 19809 9582 9876 9825
65 9781 9558 9856 9804
70 9749 9535 9832 9781
75 9712 9510 9804 9753
80 9669 9486 9770 9721
85 9616 9460 9728 9680
90 9548 9433 9671 9628
95 9466 9405 9583 9550
1.00 9375 9375 9375 9375

5 More Dramatic Results with Combinations of » and ¢

We have seen that values of parameters b, t or m that reflect any significant degree
of proximity, respectively, to single-peakedness, single-dippedness or polarization
have a dramatic effect on the probability that a PMRW exists. Even more dramatic
results can be observed if various combinations of b, t and m are considered. We
begin by considering an overall measure, u, of the presence of a unifying candidate
where

u = Minimum{b,t} . (15)

If b is a small number relative to n, then some candidate is viewed as the least pre-
ferred candidate by very few of the voters, so that particular candidate can be viewed
as being positively unifying among the electorate. If ¢ is small relative to n, then there
is some candidate that is most preferred by very few of the voters. That particular
candidate is negatively unifying for the electorate in the sense that the voters are
generally in agreement in their opposition to having that candidate selected as the
winner.

Using the EUPIA2 procedure that is developed in (Gehrlein, 2005), we are able
to obtain a representation for CPE /"¢ (n,IAC|k) as:
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CPProfiles (n JAC|k)

6 (k+1) (k+2){2 (154 56k + 111k* + 13k>) — 5 (2 + 27k — 7k*) n+ 10 (3 — 4k) n®> + 10n° }
(n+1)(n+2)(n+3)(n+4)(n+5)

for0<ik<(n—1)/4,
3(n—28) 18 (k+1) (13 + 42k + 63k> +27k3) — 3 (35 + 250k + 360k> + 144k ) n
e
B + (25 +24k) (5 + 6k) n*> — 3 (5+6k) n® +n*
(n+1)(n+2)(n+3)(n+4)(n+5)
)

for(n+1)/4<k<(n—1)/3,

= Ifork=n/3. (16)

The same logic that was used in previous discussion is then used to obtain the lim-

iting representation for CPy"*/"** (e, IAC|0y) as n — oo.

CPProliles (oo JAC| 0y
=60 (10— 400y + 3507 +2605 ) for 0 < oy < 1/4,
=3(1-204) (1 — 180y + 1440 — 4320 + 486
forl/4 <oy <1/3.

A7)

A search procedure was then used with the representation in (17) to obtain the values
of B for which CP;"*/"* (e, IAC|BY) = p for each proportion p = 0.00(.05)1.00,
and the results are summarized in Table 1. As noted above, 65% of all possible
profiles are included in the range of o, parameter values within the range 0 < ¢, <
.1924. However, 65% of all possible profiles are included in a much smaller range
for parameter u, with 0 < o, < .1484.

Following the logic of earlier discussion, representations for the cumulative con-
ditional probability CPYMRW (i TAC|k) are obtained as

CPPMRW (5 TAC|k)

{30+ 121k + 261k +38k> — 10 (1 4 15k — 3k?) n+ 10 (3 — 4k) n* + 10n° }
{215+ 56k+ 111K+ 13k3) — 5 (2 + 27k — k) n+ 10 (3 — 4k) n? + 10n° }

for0<k<(n—1)/4,

27 (25 + 64k + 480k> + 1280k> + 1440k* + 576k%)
+9 (101 — 960k — 3840k — 5760k — 2880k*) n +90 (29 + 128k + 288k> + 192k ) n?
—10(85+ 576k +576k?) 3 + 15 (37 + 64k) n* — 59n°
18 (k+1) (13 442k + 63k +27k%) — 3 (35 +250k -+ 360k> + 144K>) n
+ (254 24k) (54 6k)n> —3(5+6k)n® +n*

16 (n—2u)

for (n+1)/4<k<(n—1)/3,

o 15(n+3)? B
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The resulting limiting cumulative conditional probability representations for
CPPMRW (o IAC|0y) as n — oo are given by:
CPIMRY (o0, IAC| 0y
10 — 400y + 3007 + 380t}
= L0000 for 0 < o < 1/4,
10 — 400y + 3504 + 260
—59+ 9600y — 57600 + 172800} — 259200 + 155520
16 (1—20y) (1 — 180y + 14402 — 4320} + 48601}
forl/4 <oy <1/3.

19)

This representation is used with entries from Table 1 to compute numerical values
of CPYMRW (o0 JAC|BY') for each p = 0.00(.05)1.00, and these values are shown in
Table 2. It is clear that by considering the joint measure of voter preference unifica-
tion, u, there is a much greater impact on the probability that a PMRW exists. The
results indicate that the 50% of voter profiles that are most closely related to voter
unification have a probability .9910 of having a PMRW and that the 65% of voter
profiles that are most closely related to voter unification have a probability .9856 of
having a PMRW. Any voter preference profiles that are at all close to representing
unified preferences, as measured by u, will clearly have a very high probability of
yielding a PMRW.

Ward (1965) defines a condition on profiles that requires the existence of a
PMRW for three candidates. This condition requires that voters’ preferences do not
contain any Latin Squares. This is equivalent to the requirement that there is some
candidate that is never ranked first, is never ranked last, or is never ranked in the
middle by any voter. We define a parameter ¢ to measure the proximity of a profile
to Ward’s Condition, with

€= Minimum{b,t,m} . (20)

If £ = 0 for a profile, that the profile does not contain any Latin Squares. We then
obtain a representation for CP,*/"* (n,IAC|k) by using the EUPIA2 procedure de-
scribed in (Gehrlein, 2005) as

CPM (n, 1AC k)
9(k+1) (k+2) {3k (17 +27k + 36k*) + 15 (2 + 3k + 9k*) n — 60kn* + 10n° }
(n+1)(n+2)(n+3)(n+4)(n+5)

for0<k<(n—1)/3
= lfork =n/3. Q1)

The limiting distribution CP}"*/"** (0, IAC|0t) as n — oo is found to be

CP}" T (o0, IAC| 0t

2 2 3 (22)
= 902 (10— 600y + 13502 — 1080 ) for 0 < o < 1/3
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This representation is then used to obtain ﬁf values for each proportion p =
0.00(.05)1.00, and the results are listed in Table 1. It was noted above that 65% of
all profiles are included in the range for parameter # with 0 < o, < .1484. Here,
65% of all possible profiles are contained in the range of the parameter ¢ with
0 < ay < .1308. Based on definitions, we must have ¢ < u for every profile so it
follows that o] < o for all p.

Following the logic of previous discussion, we develop a representation for
CPPMRW (1, IAC|k) with the EUPIA2 procedure as

CPPMRY (1, IAC|K)

(k1) —135 — 2547k — 4293k* — 6687k> — 2538Kk* + 10 (153 + 273k + 759k> + 327k ) n
+
—10 (3+295k + 146k?) n* +240 (2 + k) n®
+15682 {9 (1+2k+2k*) — 6 (1 +2k)n+2n%}
24 (k+1) (k+2){—3k (17 +27k + 36k2) + 15 (2 + 3k + 9k) n — 60kn> + 1023 }

for0<k<(n—1)/4,

27 (25 + 96k -+ 440k> + 840K> + 810k* + 324K%) +9 (69 — 880k — 2520k* — 3240k — 1620k*) n
+30 (83 +252k -+ 486K> + 324Kk%) n? — 10 (41 + 324k +324k2) > + 15 (23 + 36k) n* — 311
+3082 {9 (1+2k+2k*) — 6 (1 +2k)n+2n*}

48 (k+1) (k+2) {—3k (17 +27k +36k?) + 15 (2 + 3k + 9k>) n — 60kn> + 10n}

for(n+1)/4<k<(n—1)/3,

15(n+3)°

:Wfork:n/& (23)

The limiting distribution CPPMRW (c0, JAC| 0y ) as n — oo is given by

CPPMRY (o0, IAC 04t
120 — 7300y + 163507 — 12690}
= kTt kz 3k for0<oy<1/4
12 (10— 600y + 135017 — 10801}
—31 45400y — 32400 + 97200} — 145800y} + 87480
480 (10— 600y + 13507 — 10801?)

forl/4 <oy <1/3.

(24)

This representation is used with entries from Table 1 to compute numerical values
of CPIMRW (0, JAC| /) for each p = 0.00(.05)1.00, and these resulting values are
given in Table 2.

We noted above that CPIMRW (e JAC|B)) = CPPMRW (00, IAC|BF) and that
CPPMRW (o0 JAC|B)) > CPEMRW (o0, JAC|BR) for 0 < p < 1. The impact of having
a polarizing candidate is therefore not as strong as having a positively-unifying can-
didate or a negatively-unifying candidate. As a result, despite the fact that ,B[ <pBf
for all p, we find CPMRW (o JAC|B)) < CPIMRW (o0, IAC|BY) for all 0 < p < 1
in Table 2.
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6 Conclusion

When voter preference profiles are at all close to being single-peaked, single-dipped,
or completely polarized, the probability that a PMRW exists is quite high. When vot-
ers’ preferences are at all close to being unified, the probability that a PMRW exists
is very high. It must also be noted that the associated underlying models that lead
to single-peaked, single-dipped, or completely polarized preferences do not actually
have to be the basis of the formation of voters’ preference rankings in a profile. We
only require that the preferences in a profile could have been obtained by the asso-
ciated models. As a result, Condorcet’s Paradox should rarely be observed in any
real three-candidate elections with large electorates, as long as voters’ preferences
reflect any significant degree of group coherence.

These observations are in general agreement with numerous empirical studies
that are summarized in (Gehrlein, 2006). Only a few true examples of Condorcet’s
Paradox have been observed in results from real elections with large electorates on
three candidates, despite many attempts to find them. Riker (1982) presents evi-
dence that some other observations of Condorcet’s Paradox have been contrived by
politicians through the manipulation of voting situations by various means. Levmore
(1999) suggests that such actions would only be taken by political interest groups
for general election situations in which they would have the greatest likelihood of
success. In our analysis, that would suggest situations in which voters’ preferences
do not reflect any significant degree of mutual consistency, where parameters b, ¢
and m would have relatively large values.

Acknowledgement I appreciate the input from two anonymous reviewers who read the original
draft of this paper.
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On the Probability to Act in the European Union

Marec R. Feix, Dominique Lepelley, Vincent Merlin, and Jean-Louis Rouet

1 Introduction

Since its foundation by Arrow in his seminal contribution (Arrow, 1963), one of
the main merit of social choice theory has been to provide a coherent framework
for the analysis and comparison of different voting rules. First, many normative
requirements about voting rules can be expressed precisely in this framework. Then
it is possible to check whether a given voting rule satisfies a given property. Ideally,
this type of analysis may lead to the axiomatic characterization of a voting rule. At
last the propensity of situations for which a voting rule fails to satisfy a condition
can be evaluated.

Peter Fishburn’s contributions to this research program have been extremely
important. For example, he proposed many new normative conditions for the analy-
sis of voting rules (see in particular Fishburn, 1974, 1977; Fishburn & Brams, 1983),
and developed axiomatic analysis for binary voting (Fishburn, 1973) and approval
voting (Fishburn, 1978). Together with Gehrlein, he launched an important re-
search program on the probabilistic analysis of voting rules. After Guilbauld’s paper
(Guilbauld, 1952), the use of probability models in voting was limited to the eval-
uation of the majority voting paradox under the assumption that each voter would
pick his preference independently from the others from a uniform distribution. This
assumption, today called the Impartial Culture assumption, puts an equal weight on
each profile. Fishburn and Gehrlein developed the use of probabilistic models in two
directions. First, to analyze the occurrence of Condorcet cycles, they proposed in
Gehrlein and Fishburn (1976) a new probability assumption, the Impartial Anony-
mous Culture assumption, which assumes that each anonymous profile is equally
likely to appear. Secondly, they applied these two probability models to a wider
range of problems, the relationships between the scoring rules and the Condorcet
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principle being their favorite issue (see Fishburn & Gehrlein, 1976; Gehrlein &
Fishburn, 1978a, 1978b). The results we will present in this paper are clearly a con-
tinuation of this research program, as we will compare voting rules suggested for the
European Union on their propensity to fulfill a given property according to different
probability assumptions.

Indeed, in the last 5 years, a considerable body of research on the choice of the
best voting rules for federal unions have been inspired by the debates on the Treaty
of Nice and the projects for an European Constitution. Without being exhaustive, we
can mention the work by Baldwin, Berglof, Giavazzi, and Widgren (2001); Baldwin
and Widgren (2004); Barbera and Jackson (2006); Bobay (2001); Beisbart, Bovens,
and Hartmann (2005); Feix, Lepelley, Merlin, and Rouet (2007); Felsenthal and
Machover (2001); Felsenthal and Machover (2004b); Laruelle and Widgren (1998).
All these contributions share a common organization: the authors propose a voting
model, including an a priori probabilistic description of the behavior of the voters,
and then seek for the voting rule or the constitution that fits better according to some
normative criteria.

In particular, a key parameter for the analysis of voting systems is the a priori
probability by which a decision is taken against the status quo. This probability is
called by Coleman (1971) “the power of a collectivity to act”, and the “decision-
making efficiency” or the “probability of passage” by Baldwin and Widgren (2004).
There is clearly a trade off between a low and a high value of this probability. If the
probability to act is too low, the political system may be inefficient in the sense that
no decision, even those supported by a large majority of the voters, may ever be
approved. On the other hand, when the protection of minority opinion matters, the
probability of passage should decently stay below 50%. This criteria can be used
to analyze the different decision making procedures of the European Union with
27 members (EU27 hereafter). Currently, the decision scheme of the Council of
Ministers is the one described in the Treaty of Nice. First, each country is endowed
with a certain number of mandates, ranging from 3 for Malta to 29 for Germany.
A proposal must then receive 255 mandates out of 345." It should also pass two
extra conditions: it must be approved by a majority of states, gathering at least 62%
of the population. Felsenthal and Machover (2001) have shown that there is only
a handful of cases out of 227 where the second and third conditions are not met
while the first one is satisfied, which justifies the fact that most of the time, the
analysis only focuses on the first game. This simplification is no longer possible
for the decision scheme outlined in the draft constitution proposed by the European
Convention in 2003. The convention suggested that a decision would be adopted if it
could be supported by 50% of the states gathering 60% of the total population. The

! The Treaty of Nice specified that when all candidate countries have acceded, the blocking minor-
ity in a Union of 27 will be raised to 91. Thus, the quota has been lowered to 255 instead of 258,
which was first specified elsewhere in the treaty. This strange specification of the treaty explains
why the 255 and 258 thresholds have both been studied in the literature. For a detailed analysis of
the Treaty of Nice, see Felsenthal and Machover (2001).
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constitutional treaty finally proposes a similar procedure: a proposal must receive
the support of 55% of the states, representing at least 65% of the population.?

Recently a welcome and quite useful discussion between a Swedish diplomat
(Axel Moberg) and scientists (Dan Felsenthal and Moshe Machover) has developed
(Felsenthal & Machover, 2004a; Moberg, 2002). At the origin, the scientific analysis
of the Treaty of Nice (Baldwin et al., 2001; Baldwin & Widgren, 2004; Felsenthal
& Machover, 2001) claims that the need of 255 (resp. 258) votes on a total of 345 to
approve a proposition at the council of ministers of the European Union will result
in a serious deadlock with an a priori probability of passage of 2%. (resp. 1.7%).
A. Moberg disagrees strongly, pointing out that the result ignores the “strong con-
sensual culture of the EU”. Who is right? In fact, the scientific analysis given in
Baldwin et al. (2001) and Felsenthal and Machover (2001) is only a part of the full
story: it is based on the use of the Impartial Culture (IC hereafter) model, which
states that each country chooses to vote “yes” or “no” independently with equal
probability. In other words, each country flips a fair coin to take a decision! But
other models to describe the behavior of the voters exist. In particular, the Impar-
tial Anonymous Culture (IAC) model, proposed by Gehrlein and Fishburn (1976)
asserts that all the distributions of the votes at the Union level are equally likely.?

The aim of this note is to show that the use of a model related to the IAC one is
able to give answers which are closer to the reality of the European Union with 27
members and, in some way, takes into account the consensual character of the vote.
By departing from the common IC assumption, we obtain a theoretical probability
of passing a motion that turns out to be higher. Our result concerns not only the
Treaty of Nice with its famous 73.4% majority rule (one key vote), but also the
double key vote decision schemes that have been suggested during the debates for
the European Constitution. The position that has been defended during Spring 2007
by the Polish Government, i.e., attributing weights proportionally to the square root
of the state population and using one key vote, will also be considered.

The paper is organized as follows. In Sect. 2, we present the voting models and
the different probability assumptions, and we briefly discuss their adequacy to the
vote at the council. In Sect. 3, we give the theoretical probability of approval under
the Generalized Impartial Anonymous Culture assumption in the asymptotic limit,
i.e., when the number of countries (denoted by N in what follows) goes to infinity.
Section 4 checks the relevance of this asymptotic solution for an illustrative example
and for EU27, by providing numerical simulations. We present our conclusions in
Sect. 5.

2 When the Council of Ministers is not acting on the basis of a proposal made by the Commission
or on the initiative of the Union Minister for Foreign Affairs, this last quota is risen to 72% of the
population.

3 Notice that the widely used Banzhaf power index relies upon the IC probability assumption,
which is known as the Independence assumption in the power index literature (Straffin, 1977). For
its part, the IAC model can be associated to the Shapley—Shubik power index, and is then called
the Homogeneity assumption (Straffin, 1977). The link between the probability models in social
choice theory and power indices literature was first emphasized by Berg (1999).
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2 The Model

2.1 The Voting Rules

We consider binary issue votes “yes” or “no” for the N states (elsewhere voters,
MPs, etc.) of a federal union. The decisions are made by the conjunction of two
weighted quota games. Each state has two mandates a; and b;, and his (her) vote
(“yes” or “no”) is used in two qualified majority games A and B, the respective
quotas being Q4 and Qp. Notice that for each state i, it is the same vote (“yes”
or “no”) which is used to compute the number of mandates obtained by a motion
respectively with keys A and B. The two quotas must be reached for final approval.
In the EU Constitution project, each key is related to a certain type of legitimacy.
For country i, it proposes a; = 1 and b; equal to the population of state i. Let A =
Zﬁ.vzl a;and B = Zﬁ.vzl b;. We will denote the relative quotas by g4 = Q4 /A and gp =
Os/B.

2.2 The Impartial Culture

In the IC model, each vote is independent of the others and each voter says “yes”
or “no” with equal probability p = 1/2. IC has serious drawbacks. It describes a
vote where everybody is undecided (no exchange of points of view allowing the
emergence of a majority has taken place) which leads to the existence of two blocks
of equal importance. When we consider one weighted quota game defined by a
quota (Q4) and a vector of weights (a;);—;.. y with (1) a large number of voters, and
(2) no dominant player in term of weight, a natural way to handle the IC case is to
notice that the probability that a proposal receives between x and x + Ax mandates
(with Ax small) can be approximated by a normal distribution (see Feix et al. 2007
for example) with mean m = %):f/:] a; and variance 62 = %Zf\':l a?. Then the vote
will be won by a margin in term of mandates going as ¢ as N grows. This explains
the low probability of approval with a quota of 255/345, i.e., 73.9% in the Treaty of
Nice decision scheme which is characterized by m = 172.5 and o = 39.84.

2.3 Toward Homogeneity

A natural way to escape from the divided society described by the IC assumption
has been, both in the game theory and in social choice literature, to consider that
all the partitions with x states in favor of a proposal and N — x against it should
be equally likely. Thus, the equiprobability assumption is put on the results of the
votes. This leads to the homogeneity assumption and the definition of the Shapley—
Shubick index in the power indices literature, and to the so called IAC assumption
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in social choice theory.* For binary vote, a classical interpretation of the IAC model
is to state that, before the vote, a probability p of voting for the proposal is drawn
from the uniform distribution on [0, 1].

The idea is consequently to introduce a model where a probability p different
from 1/2 has emerged. Moreover, our knowledge of p is itself of a probabilistic
nature, it is mathematically described by the function f(p) which is the density
function of p. The emergence of a probability p different from 1/2 seems rather nat-
ural in an assembly where certainly long discussions, explanations, compromises,
package deals, etc., precede each vote (the “consensual culture” of A. Moberg). No-
tice that, all these discussions result in a p # 1/2 and that the subsequent votes are
independent. Then the Generalized Impartial Anonymous Culture (GIAC) model is
characterized by a given f(p) with 0 < p <1, f(p) > 0 and fol f(p)dp = 1. The
function f(p) = 1 for all p gives back the IAC model. Strictly speaking, the “impar-
tial” specification implies a symmetric density function f(p) relatively to 0.5 (and
consequently f()l pf(p)dp = 1/2), nevertheless, we will here consider more general
cases only constrained by the normalization of f(p).

3 The Probability of Approval in the Asymptotic Limit

Till now, we have discussed the behavior of the voters and the distribution of their
votes, without taking into account their number of mandates. Indeed, we need this
information in order to evaluate the probability to act of the collectivity.?

Proposition 1. One key-vote case. Let (ax)y_, be a sequence of mandates, which
are strictly positive numbers, chosen once for all.

Let p € [0,1] be a fixed constant and (Uy)y_, a sequence of independent ran-
dom variables distributed uniformly on [0,1]. Let Xy be the proportion of mandates
brought by the states which, for this election, are in favor of a proposal, with

N
o Zk=1 ag ]lUk<p

X
N A )

(1
where A = Zg:l ay is the total number of mandates of the N states and 1y, <, takes
the value 1 if Uy < p (the k-state votes in favor of the proposal) and 0 otherwise (the
k-state does not vote for the proposal).

4 The IAC assumption has been introduced in social choice theory by Gehrlein and Fishburn (1976)
in order to compute a priori the likelihood of the Condorcet Paradox for three alternatives. Here,
there are six possible preference types, and a probability p is now a vector (pi, p2, p3, p4, Ps, P6)
in the unit simplex, where p; is the probability of picking preference type i for each voter. The IC
assumption is based upon the vector p = (1/6,1/6,1/6,1/6,1/6,1/6) while the IAC assumption
assumes that p is drawn from a uniform distribution on the unit simplex. For more on the likelihood
of the Condorcet paradox and the use of probability models in social choice, see the recent book
by Gerhlein (2006).

5 The number of mandates attributed to each state is also useful when one wants to evaluate their
influence by the mean of a power index.
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With the hypothesis: Y ;. ay = o0 and Y i, a,% < oo, 0F Yy a,% =ocoand 0 < a; <
a for any k, where o is a constant, in the limit when N goes to infinity, we have for

the single-key case
Xv S p. (2)

That is Xy tends to p with probability 1. The same is true if p is random in-
dependent of the (Uy). If p has the density function f, we have for any ¢ € [0,1]
fixed:

Pty <q)— [ * Py du. 3)

Proof. For one election, the sketch of the proof is the following:

e With Y a7 < oo, but Y7 | ax = o using martingale arguments it follows that
Xy — p with probability 1 as N goes to infinity (see Theorem (4.8) p.220 of
Durrett 1991).

o With Y77, a,% =oo and 0 < g < o for any k, where o is a constant, using
Theorem (4.9) p. 220 of Durrett (1991), we still have Xy — p with probability 1
as N goes to infinity.

But almost surely convergence implies convergence in distribution, so this
gives (3). O

Proposition 2. Two key-vote case. Let (ar)y_, and (by)y_, be two sequences of
strictly positive numbers (mandates of key A and key BB respectively) chosen once
for all.

For an election, let p € [0,1] be a fixed constant and (Uy)y_, a sequence of
independent random variables distributed uniformly on [0,1). Let Xy, resp. Yy, be
the proportion of mandates of first key, resp. second key, brought by the states which
are in favor of a proposal, with

N N
_ Zk:lak]lUk<p Yy = Zkzlbk]lUk<p

XN A ) B )

“)
where A = Zivzl ay and B = ):Q/:] by are the total number of mandates of first key,
resp. second key, of the N states.

With the same hypothesis on the a; and by as in Proposition 1, we have for the
double-key case

That is Xy and Yy tends to p with probability 1. The same is true if p is random
independent of the (Uy). If p has the density function f, we have for any g € [0, 1]
and any r € [0, 1] fixed:

min(q,r)
P(Xy < q,Yy < r)ﬂ/o f(u)du. (6)

Proof. The proof is the same as for Proposition 1 for each of the two keys. a
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Remarks:

e It is easy to extend these results for a three-key vote or more.

e [t could be shown that the propositions remain true if the mandates a; or b, are
themselves random. One could imagine that the mandates of the states vary from
one election to the other, but in this work, the mandates are attributed once for
all the elections.

From a practical point of view, Propositions 1 and 2 imply two limits. The first
one is clearly given by a number N of states which goes to infinity to reach the limit
p given by (2) or (5). Now as the number M of elections is going also to infinity,
we will be able to perform the empirical density function of Xy which will converge
toward f for the single-key vote case and the empirical density function of (Xy,Yy)
will converge toward 6(x = p,y = p)f(p) for the second key-vote case. This will
be illustrated be the Monte Carlo method presented in the next section.

In the limit where both the number N of states and then the number M of elections
go to infinity, the repartition of the proportion of mandates brought by the states in
favor of a proposal is given by f(p). For the double-key vote, the points are located
on the segment joining (0,0) and (1, 1) according to f(p), then, as a consequence,
in the case of unequal quota, the highest one will set up the frequency of “yes” votes.
In the special case of the IAC model (f(p) = 1) and a single-key vote, Proposition 1
means a flat density and for the double-key vote, the points are located uniformly
on the segment joining (0,0) and (1, 1).

Note that Propositions 1 and 2 hold for N going to infinity. It can be shown that
the first correction (N large but not infinite) provides a diffusion around these points
of the order of N~!/2. While this scattering slightly modifies the flatness of the
density distribution of Xy for the one key vote, it transforms the segment of the two
key vote into a long ellipse with a ratio long over small axes of the order of N'/2.
A simulation with 100 states will illustrate these facts in the next section. Now, from
an operational point of view, how large should be N? We will tackle this question for
the IAC model in the next section. First we will observe the convergence to the limit
with an example where the a; and the b; will be drawn randomly and independently
from a uniform distribution on the segment [1,5]. Next, we will study whether the
specific distribution of the mandates in the EU27 affects the convergence to the
limit.

4 Numerical Simulations Under the IAC Assumption

4.1 An Illustration of Propositions 1 and 2

In this section, the results of numerical simulations will be shown for the IAC case.
Because we want to reach the asymptotic limit which supposes both an important
number of elections and a large number of states, Monte Carlo method should be
used. Actually, it is not possible, when the number of voters is large, to enumerate,
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stock and compute the 2" configurations because of lack of memories and compu-
tation time. In addition, the Monte Carlo technique will illustrate clearly the double
probabilistic character of the IAC model.

The method has two steps. First a probability p is chosen at random from the
density function f(p) and a vote configuration is determined according to this prob-
ability p: for each of the N voters (or states), a random number is taken in a uniform
distribution, if this number is lower than p, the voter gives its mandates (it is a
“yes” vote) while he does not if the number is higher. This is in fact an acceptation-
rejection method and if the number of voters is large, the number of “yes” voters
divided by N will tend toward p. Then, the number of “yes” mandates divided by A
is also derived according to (1). Second, this process is repeated for a large number
M of elections with, at each election, a choice of a new p into f(p) and so on.®

We consider the results for N = 10 and N = 100 and M = 50,000 elections,
both for a single key and a double key vote using the Monte Carlo technique in
the TAC case (f(p) = 1). The mandates of the N states have been taken at random
from a uniform distribution between 1 and 5, and the sum has been normalized to
A = B = 100. We use the same set of mandates for the M elections. Notice that the
draws of g; and b; are independent. As a consequence, it is possible to find a pair of
states (i, j) such that a; > a; while b; < b;.

For the single key case, Figs. 1 and 3 show the histogram of the number of config-
urations, as a function of the related number of mandates. This normalization does
not change the ratio 5 between the highest value of the mandates and the smallest
one. The histogram becomes flatter as N increases in agreement with Proposition 1
and the probability of approval tends to (1 —ga).

For the double key case, Figs.2 and 4 give the results of the M elections in
the plane (x,y), one point representing one election. Because all the points have

fx;‘(X)
20

1.5

1.0

Fig. 1 One key vote.

Distribution of the results 0.5
of the votes for N = 10 voters

and 50,000 elections using

the Monte Carlo technique. 0.0
The histogram is built with an 0
increment Ax = 1

6 Notice that the results of the IC model could also be obtained by this technique. The probability
p of the N voters is then equal to 1/2 which corresponds to f(p) = d(p—1/2).
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Fig. 2 Double key vote. y
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Table 1 Double key vote.

Probability of passage for the Key A

simulation presented Fig. 3 as 50% 60% 70% 80%  90%
a function of the two quotas

ga and g 50% 49.04 40.25 3043 2058 10.54

60% 40.19 39.01 3043 2058 10.54
Key B 70% 30.27 3027 2931 20.58 10.54
80% 20.56 20.56 20.56 19.66 10.54
90% 10.61 10.61 10.61 10.61  9.86

the same weight, their density reaches d(x = p,y = p)f(p) in accordance with
Proposition 2. As expected, the points are roughly distributed on the segment de-
limited by the two points (0,0) and (A,B). In addition to this global behavior,
the distribution shows a certain scattering, which is less pronounced for N = 100.
We have checked that, for this case, the probability of approval is closely given
by 1 —max(ga,gp) as shown Table 1. With N = 100, for g4 = g = 70%, we get
29.31% of approval and for g4 = 50% and gp = 80%, we get 20.56%.

4.2 The Probability to Act for EU27

We have just seen that going to N = 100 was already enough to apply Propositions 1
and 2 for an illustrative example where the weights of the states were drawn in the
interval [1,5]. Now, the question is to know whether or not the asymptotic limit is
also a good approximation for the EU27, where the number of states is smaller, and
where the mandates, ranging from 3 to 29, are more dispersed.” Again, we focus on
the TAC case only. It is now possible to enumerate the 2%’ vote configurations (but
taking care of their different weights).

For the single key case, Fig.5 shows the histogram of the number of config-
urations as a function of the related number of mandates. The central part of
the curve is flat, in accordance with Proposition 1 but we cannot avoid the ef-
fect of a finite number of states on the edges. For Q4 = 255, the probability of
approval is 27.50%, rather close to the result predicted by the asymptotic limit,
(I —ga) = (1—-255/245) =26.08%. Also notice that we are far above the 2% level
of approval predicted by the IC model!

Figure 6 shows the histogram when the number of mandates have been taken
proportional to the square root of the state populations, according to the voting
mechanism that was defended by the Polish government in Spring 2007. This case
had been first considered by Sweden in early negotiations for the Nice Treaty as a
compromise between the state legitimacy and the citizen legitimacy (see Moberg,
2002). In Spring 2007, the Polish government unearthed the Penrose Square root

7 The number of mandates and the population data for 2003 can be found in Moberg (2002).
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Fig. 5 One key vote. f (X)

Distribution of the results Xy ‘

of the votes for the EU27 2.0

for the Treaty of Nice. The

histogram is built with a bin
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Fig. 6 One key vote.
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rule (Penrose, 1946, 1952) as a justification of its use. Again, the curve is flat, at
least for g between 0.2 and 0.8, indicating that the asymptotic limit could be used
for this single key vote.

We turn back to Monte Carlo simulations to analyze the dispersion of the votes
for the two keys (although complete enumeration is possible) because each point
has the same weight. Then, it is easier to interpret Fig. 7 which gives the distribution
of 2,700 vote configurations in the plane (x,y) (one point represents result for an
election) for the European Treaty voting procedure. For key A4, all the mandates are
equal to 1 (state legitimacy) while for key 5, the number of mandates of a state is
proportional to its population. The sum of the mandates of key 3 has been normal-
ized to 100. Because of the discrete nature of the key .4 mandates, the points are
aligned on vertical lines distant of 1. The scattering of the points, not negligible, is
compatible with the N ~1/2 Jaw as stated before.
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Fig. 7 Double key vote.
Distribution of the results 100
of the votes for the EU27.
For key A (x variable) all
the mandates are equal to
1, for key B (y variable) the
mandates are proportional to 60
the populations of the states
and the sum is normalized to
100

80

40

20

Table 2 Double key vote. Percentage of approval for the EU27 with the constitutional treaty under
IAC as a function of the two quotas Q4 and Qp. The results have been obtained by complete
enumeration of all the vote configurations

Key A

14/27 15/27 17/27 19/27  22/27 25/27
51.85% 55.56% 62.96% 70.37% 81.48% 92.59%

50% 4542 4342 3824 31091 21.42 10.71
60% 39.54  38.60 3557 3084  21.33 10.71
65% 35777 3524 3324 29.62  21.17 10.71
Key B 70%  31.55 3129  30.16  27.68  20.67 10.71
2% 29.84  29.66  28.79 2674  20.37 10.68
80% 2280 2277 2256  21.86 18.46 10.56
90% 13.86 13.86 13.86 13.82 12.97 9.10

For this double key case, the probability to act is given for different values of
the keys Q4 and Qp in Table 2 which proves that the rule 1 — max(Qa,Qp) for the
approval is fairly satisfied. In particular, we observe that for 15 states gathering 65%
of the population, the probability of passage is 35.24%, far above the probabilities
obtained by Baldwin and Widgren (2004) for different two key decision method
under the IC assumption.

5 Conclusion

In most of the applications of statistical models to voting theory, like the studies
computing the Condorcet effect probability or evaluating the Condorcet efficiency of
scoring rules, it was often found that the IC and IAC models were giving very similar
results in terms of the magnitude of the paradoxes. It is with the study of binary
votes that the fundamental differences between the two models become apparent.
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The issue is of great importance if we remember that the two main power indices
(Banhzaf and Shapley—Shubik) are respectively based on IC and IAC assumptions.
In particular any recommendation on the number of mandates to attribute to a state in
a federal union based upon a power index is contingent on the underlying probability
model that we use.

Similarly, in our study on the probability to act, except if we take quotas close
to % IC and TAC give results which differ by a large factor. While many studies
(Baldwin et al., 2001; Baldwin & Widgren, 2004) suggest a fast decline of the prob-
ability of passage under IC when the quota rises, the use of the IAC assumption to
model a more consensual behavior of the states gives a different picture. We have
shown, both for the IC case (see Feix et al. 2007) and for IAC (this paper) that the
density function of probability to get x yes votes in the EU27 is already quite close
to the results one would obtain in the asymptotic case. Thus, in the asymptotic limit,
the probability of passage tends to (1 —g4) for one key vote and 1 — max(q4,qp)
for two key vote under IAC. As a consequence, quotas of 60—70% can still be con-
sidered as acceptable with the IAC model, while a similar study done with IC would
lead to the opposite conclusion. To some extent, we have shown that the critics of
A. Moberg were directed against the IC model but can be easily answered through
the use of the IAC model or another GIAC model characterized by the adequate
f(p).

Thus, can we decide which model is the more appropriate? At this point, after
years of studies of the voting rules with a priori models, to which Peter Fishburn
greatly contributed, it is worth noticing that scientists are starting to look at the data
or stylized facts. For example, the fact that most of the decisions are taken at the
unanimity in the European Union have inspired Laruelle and Valenciano (2007) to
design their model of bargaining in committees. In voting theory, a recent study by
Gelman, Katz, and Bafumi (2004) gives first insights on the nature of the relevant
probability models for two candidates. The chief merit of this study is that it ana-
lyzes data from American and European elections. For the US example, they show
that margins between republicans and democrats measured in percent do not depend
upon the size of the state, a clear contradiction of the IC assumption.8 This confirms
that the search for the adequate f(p) (which must be reasonably stable from one
election to the other) is of crucial importance. Similarly, Regenwetter, Grofman,
Marley, and Tsetlin (2006) have started to analyze the repartition of the preferences
among three or more candidates, and revised the common wisdom on the probability
of voting paradoxes. Thus, after a first age, where the a priori assumption played a
crucial role, it seems that the probabilistic analysis of voting rules is entering a new
age, where the probability model must, in some way, be related to the observed be-
havior of the voters. Our results are a modest contribution to this approach, as they
clearly state that the conclusions on the probability of passage of different deci-
sion schemes could be wrongly evaluated if one does not consider the right a priori
probability model.

8 More precisely, using statistical techniques, the authors test different values of n* as a predictor
of the difference of votes, n being the number of voters per state. They arrive at @ = 0.9, but
themselves insist that this value must be taken with caution and that a n scale may be correct.
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Voting Rules



Voting Systems that Combine Approval
and Preference

Steven J. Brams and M. Remzi Sanver

1 Introduction

Social choice theory, while postulating that voters have preferences over candidates,
does not ask them to stipulate where, in their preference rankings, they would draw
the line between acceptable and unacceptable candidates. Approval voting (AV)
does ask voters to draw such a line, but it ignores rankings above and below this
line.

Rankings and approval, though related, are fundamentally different kinds of in-
formation. They cannot necessarily be derived from one another. Both kinds of in-
formation are important in the determination of social choices. We propose a way
of combining them in two hybrid voting systems, preference approval voting (PAV)
and fallback voting (FV), that have several desirable properties.

Approving of a subset of candidates is generally not difficult, whereas ranking
all candidates on a ballot, especially if the list is long, may be arduous. PAV asks
for both kinds of information, whereas FV asks voters to rank only those candidates
they approve of, making it simpler than systems that elicit complete rankings.

We describe, analyze, and compare each of these systems in tandem. In Sect. 2
we give definitions and assumptions. In Sect. 3 we describe PAV and analyze which
candidates can and cannot win under this system. Although a PAV winner may not
be a Condorcet winner or AV winner, PAV satisfies what we call the strongest-
majority principle for voters. More specifically, if a majority-approved candidate
is preferred by a majority to the AV winner and other majority-approved candidates,
PAV “corrects” the AV result by electing the majority-preferred candidate. That is,
PAV elects the majority-approved candidate who is most preferred.

A majority-preferred candidate is likely to have a more coherent point of view
than an AV winner, who may be the most popular candidate because he or she is
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bland or inoffensive — a kind of lowest common denominator who tries to appease
everybody. However, this problem does not seem to be a common one (Brams &
Fishburn, 2005; Brams, 2008, Chap. 1). Sometimes not choosing such a candidate
when two or more candidates receive majority approval makes PAV coherence-
inducing for candidates by giving an advantage to candidates who are principled
but, nevertheless, command broad support.

In Sect. 4 we describe FV and compare its properties with those of PAV. Like
PAV, FV tends to help those candidates who are relatively highly ranked by a ma-
jority of voters. Both systems may give different winners from nonranking systems
(e.g., plurality voting and AV), ranking systems (e.g., the Borda count and single
transferable vote, or STV), and each other.

In Sect. 5 we show that PAV and FV are monotonic in two different senses:
Voters, by either approving of a candidate or raising him or her in their rank-
ings, can never hurt and may help this candidate get elected. The latter property
(rank-monotonicity) is not satisfied by a number of ranking systems, including STV,
whereas the former property (approval-monotonicity) is satisfied by AV.

Like all voting systems, PAV and FV are manipulable. In Sect. 6 we show that
voters may induce preferred outcomes either by contracting or by expanding their
approval sets. Because each voting system may give outcomes in equilibrium when
the other does not, neither system is inherently more stable than the other.

In Sect. 7 we develop a dynamic model of voter responses to polls in 3-candidate
elections, wherein voter preferences are either single-peaked or cyclic. If voters re-
spond to successive polls by adjusting their approval strategies to try to prevent their
worst choices from winning, they elect the Condorcet winner, though not necessarily
in equilibrium, if their preferences are single-peaked. If their preferences are cycli-
cal, the candidate ranked first or second by the most voters wins after voters respond
to several polls. These outcomes are in equilibrium under both PAV and FV.

We conclude in Sect. 8 that PAV, and to a less extent FV, subtly interweave two
different kinds of information: Approval information determines those candidates
who are sufficiently popular to be serious contenders if not outright winners; ranking
information enables voters to refine the set of potential winners if more than one
candidate receives majority approval.

Together, these two kinds of information facilitate the election of majoritarian
candidates with coherent positions. But more than abetting their election, PAV and
FV may well have a salutary impact on which candidates choose to run — and how
they choose to campaign — encouraging the entry of candidates who appeal to a
broad segment of the electorate but do not promise them the moon.

2 Definitions and Assumptions

Consider a set of voters choosing among a set of candidates. We denote individual
candidates by small letters a, b, c, .. ..
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We assume that voters strictly rank the candidates from best to worst, so there is
no indifference. Thus, for any candidates a and b, either a is preferred to b or b is
preferred to a. This assumption simplifies the subsequent analysis but does not in
any significant way affect our results, which can readily be extended to the case of
nonstrict preferences.

We assume that rankings are transitive, so that for any candidates a,b and c, a is
preferred to ¢ whenever a is preferred to b and b is preferred to c. In addition, we
assume that a voter evaluates each candidate as either acceptable or unacceptable,
which we will refer to as approved and disapproved candidates.

The preference-approval of voters is based on both their rankings and their ap-
proval of candidates. Although different, these two types of information exhibit the
following consistency: Given two candidates a and b, if a is approved and b is dis-
approved, then a is ranked above b.

We represent a voter’s preference-approval by an ordering of candidates from left
to right and a vertical bar, to the left of which candidates are approved and to the
right of which candidates are disapproved. For example,

ablcd

indicates that the voter’s two top-ranked candidates, a and b, are approved, and the
voter’s two bottom-ranked candidates, ¢ and d, are disapproved.

At one extreme, a voter may approve of all candidates, and at the other extreme
of no candidates. As we discuss in Sect. 6, these extreme strategies are dominated
strategies in a voting game in which voters have strict preferences, but these strate-
gies are not illegal, as such, under PAV of FV.

Some voters will approve of a single favorite candidate, and some will approve
of all except a worst choice. Many voters, however, are likely to select some middle
ground, approving of two or three candidates in, say, a field of five (for empirical
data on this question under AV, see Brams & Fishburn, 2005; Brams, 2008, Chap. 1).

A preference-approval profile is a list of preference-approvals of all voters. A
social-choice rule, as we use the term here, aggregates preference-approval profiles
into social choices. Thereby our framework generalizes the standard social-choice
model — wherein a voter is characterized simply by his or her ranking of candidates —
to one that adds a line in the ranking separating the voter’s approvals from disap-
provals.

In subsequent sections, we will use a number of examples to illustrate results
as well as prove some propositions. Voters who have the same ranking of candi-
dates will be put into classes, distinguished by Roman numerals I, II, III, ... For
simplicity, we assume in the examples that all voters in a class draw the line sep-
arating approvals and disapprovals at the same point in their rankings, but none of
our results depends on this assumption.

To describe PAV in the next section, we need two definitions. A Condorcet
winner is a candidate who is preferred by a majority to every other candidate in
pairwise comparisons. A cycle among 3 or more candidates a, b, c,... occurs if
a<b<c<...<a,where “<” indicates “is preferred by a majority to.” (Notice
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that there can never be an “approval cycle” — approval is strictly ordered from can-
didates with the most approval to candidates with the least, except, of course, in the
case of a tie.) The majority preference relation between any two candidates may
lead to a tie if and only if there is an even number of voters, which we assume is
broken by random tie-breaking.

3 Preference Approval Voting (PAV)

The winner under PAV is determined by two rules, the second comprising two cases:

1. If no candidate, or exactly one candidate, receives a majority of approval votes,
the PAV winner is the AV winner — that is, the candidate who receives the most
approval votes.

2. If two or more candidates receive a majority of approval votes, then (i) If one
of these candidates is preferred by a majority to every other majority-approved
candidate, then he or she is the PAV winner — even if not the AV or Condorcet
winner among all candidates. (ii) If there is not one majority-preferred candidate
because of a cycle among the majority-approved candidates, then the AV winner
among them is the PAV winner — even if not the AV or Condorcet winner among
all candidates.

It is rule 2 that distinguishes PAV from AV. It allows for the election of candidates
who are not the most approved and, therefore, not AV winners. As we will see, a
PAV winner may in fact be the least-approved candidate in a race.

Compared with preference-based voting systems, PAV is somewhat more de-
manding in the information that it requires of voters. Besides ranking candidates,
voters must indicate where they draw the line between acceptable and unacceptable
candidates, which is an issue we will return to when we compare the complexity of
PAV and FV.

In the remainder of this section, we show what kinds of candidates PAV may and
may not elect:

Proposition 1. A Condorcet winner may not be a PAV winner under rule 1, rule 2(i),
and rule 2(ii).

Proof. Rule 1. Consider the following 3-voter, 3-candidate example, in which the
voters divide into three preference classes:

Example 1.

L. 1 voter: ab|c
II. 1 voter: blac
ML 1 voter: c|lab

Candidate b is the AV winner, approved of by 2 of the 3 voters, whereas candidates a
and c are approved of by only 1 voter each. Because candidate b is the only candidate
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approved of by a majority, b is the PAV winner under rule 1. But it is candidate a,
who is preferred to candidates b and ¢ by majorities of 2 votes to 1, that is the
Condorcet winner.

Rule 2(i). Consider the following 3-voter, 4-candidate example:

Example 2.

L. 1 voter: abc|d
II. 1 voter: bclad
L. 1 voter: d|acb

Candidates b and c tie for AV winner with majorities of 2 votes each. Because

candidate b is preferred to candidate ¢ by 2 votes to 1, b is the PAV winner under

rule 2(i). But it is candidate a, who is preferred to candidates b, ¢, and d by majorities

of 2 votes to 1 (but who is not majority-approved), that is the Condorcet winner.
Rule 2(ii). Consider the following 5-voter, 5-candidate example:

Example 3.

L. 1 voter: dabcle
II. 1 voter: dbcale
L. 1 voter: e|dcab
IV. 1 voter: abc|de
V. 1 voter: c|bade

Candidates a (3 votes), b (3 votes), and ¢ (4 votes) are all majority-approved and in a
cycle as well: a > b > ¢ > a. Because the Condorcet winner, candidate d (2 votes),
is not majority-approved, he or she cannot be the PAV winner. Instead, the most
approved candidate in the cycle, c, is the PAV winner. Q.E.D.

Not only may PAV fail to elect Condorcet winners when they exist, but it may
also fail to elect unanimously approved candidates.

Proposition 2. A unanimously approved AV winner may not be a PAV winner under
either rule 2(i) or rule 2(ii).

Proof. Rule 2(i). Consider the following 3-voter, 3-candidate example:

Example 4.

L. 2 voters: ab|c
1. 1 voter: bcla

Candidate b is approved of by all 3 voters, whereas candidate a is approved of by
2 voters and candidate ¢ by 1 voter. Nevertheless, candidate a is the PAV winner,
because under rule 2(i) he or she is preferred by 2 votes to 1 to the other majority-
approved candidate, b.

Rule 2(ii). Consider the following 8-voter, 4-candidate example:
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Example 5.

L. 3 voters: abcld
I1. 3 voters: dac|b
III. 2 voters: bd c|a

Candidate c is approved of by all 8 voters, whereas candidates a, b, and d are ap-
proved of by majorities of either 5 or 6 voters. The latter three candidates are in a
top cycle in which a > b > d > a; all are preferred by majorities to candidate c, the
AV winner. But because candidate a receives more approvals (6) than candidates b
and d (5 each), candidate a is the PAV winner under rule 2(ii). Q.E.D.

Proposition 2 shows how a unanimously approved AV winner may be displaced
by aless approved majority winner under PAV. In fact, the conflict between AV and
PAV winners may be even more extreme.

Proposition 3. A least-approved candidate may be a PAV winner under rule 2(i).
Proof. Consider the following 7-voter, 4-candidate example:

Example 6.

L. 2 voters: achld
II. 2 voters: acd|b
IIL. 3 voters: bed|a

Candidate c is approved of by all 7 voters, candidates b and d by 5 voters each, and
candidate a by 4 voters. While all candidates receive majority approval, candidate
a is the PAV winner, because he or she is preferred by a majority (class I and II
voters) to the AV winner (candidate c), as well as candidates b and d, under rule 2(i)
Q.E.D.

When the PAV winner and the AV winner differ, as in Example 6, the PAV winner
is arguably the more coherent majority choice. Two of the three classes of voters
rank candidate a as their top choice in Example 6, whereas candidate ¢, the AV
winner, is not the top choice of any class of voters.

Finally, we show that PAV may give winners different from the two-best known
ranking systems (for more information on these and other voting systems, see Brams
and Fishburn, 2002).

Proposition 4. A PAV winner may be different from winners under the Borda count
and single transferable vote (STV).

Proof. If there are n candidates, the Borda count assigns n — 1 points to the first
choice of a voter, n — 2 points to the second choice,..., and 0 points to the last
choice; the candidate with the most points wins. In Example 6, candidate ¢ wins with
14 points (2 points each from all 7 voters), whereas the PAV winner, candidate a,
receives 12 points (3 points each from 4 voters and O points from 3 voters).

Under STV, only first-place votes are counted initially. In Example 5, candidates a,
d, and b receive 3, 3, and 2 votes, respectively, from the voters who rank them first.
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Because candidate b receives the fewest votes, the votes or his or her supporters are
transferred to their second choice, candidate d, giving d a total of 5 votes, which is
a majority and makes candidate d the winner. By contrast, candidate a is the PAV
winner. Q.E.D.

In summary, we have shown that PAV may not elect Condorcet winners, or win-
ners under AV, the Borda count, or STV. Nevertheless, PAV winners are strong con-
tenders on grounds of both approval and preference, which we will say more about
later.

We turn next to a voting system that asks less than PAV, requiring voters to rank
only those candidates of whom they approve. It shares some properties of PAV but
by no means all.

4 Fallback Voting (FV)

Fallback voting (FV) proceeds as follows:

1. Voters indicate all candidates of whom they approve, who may range from no
candidate (which a voter does by abstaining from voting) to all candidates. Voters
rank only those candidates of whom they approve.

2. The highest-ranked candidate of all voters is considered. If a majority of vot-
ers agree on one highest-ranked candidate, this candidate is the FV winner. The
procedure stops, and we call this candidate a level 1 winner.

3. If there is no level 1 winner, the next-highest ranked candidate of all voters is
considered. If a majority of voters agree on one candidate as either their highest
or their next-highest ranked candidate, this candidate is the FV winner. If more
than one candidate receives majority approval, then the candidate with the largest
majority is the FV winner. The procedure stops, and we call this candidate a level
2 winner.

4. If there is no level 2 winner, the voters descend — one level at a time — to lower
and lower ranks of approved candidates, stopping when, for the first time, one or
more candidates are approved of by a majority of voters, or no more candidates
are ranked. If exactly one candidate receives majority approval, this candidate is
the FV winner. If more than one candidate receives majority approval, then the
candidate with the largest majority is the FV winner. If the descent reaches the
lowest rank of all voters and no candidate is approved of by a majority of voters,
the candidate with the most approval is the FV winner.

The appellation “fallback” comes from the fact that FV successively falls back on
lower-ranked approved candidates if no higher-ranked approved candidate receives
majority approval. This nomenclature was first used in Brams & Kilgour (2001), but
it was applied to bargaining rather than voting, in which the decision rule was as-
sumed to be unanimity (the assent of all parties was necessary) rather than a simple
majority.
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Brams & Kilgour (2001), in what they called “fallback bargaining with impasse,”
did not require that the bargainers rank all alternatives. Rather, the bargainers ranked
only those they considered better than “impasse,” because impasse was preferable to
any alternative ranked lower. Bargainers not ranking alternatives below impasse are
analogous to voters not approving of candidates below a certain level, whom they
do not rank.

Like FV, the “majoritarian compromise” proposed by Sertel and his colleagues
(Sertel & Yilmaz, 1999; Sertel & Yilmaz, 1999; Hurwicz & Sertel, 1999) elects the
first candidate approved of by a majority in the descent process. However, voters
are assumed to rank all candidates — they do not stop their ranking at some point at
which they consider candidates they rank lower unacceptable.

James W. Bucklin assumed, as we do with FV, that if a voter did not rank all
candidates, he or she disapproved of those not ranked.! Thus, when the fallback
process descends to a level at which a voter no longer ranks candidates, that voter
is assumed to approve of no additional candidates should the process continue to
descend for other voters because no candidate has yet reached majority approval.
Bucklin’s system is FV absent the designation of approved candidates, who are im-
plicitly assumed to be only those candidates that voters rank.

In the analysis of FV that follows, we assume that voters have preferences for all
candidates, though they reveal their rankings only for approved candidates. As we
will see, the non-revealed information may lead to the election of different candi-
dates from PAV. First, however, we indicate properties that FV shares with PAV.

Proposition 5. Condorcet winners and unanimous AV winners may not be FV win-
ners, whereas least-approved candidates may be FV winners.

Proof. In Example 1, there is no level 1 winner. Because candidate b is the only
candidate approved of by a majority (voters II and III) at level 2, b is the FV winner,
whereas candidate a is the Condorcet winner.

In Example 4, candidate a is the FV winner at level 1, but candidate b is the unani-
mous AV winner. In Example 6, candidate a is the FV winner at level 1, but a is the
least approved of the four candidates. Q.E.D.

While FV and PAV share the properties listed in Proposition 5, FV, unlike PAYV,
may fail to elect a majority-preferred candidate among the majority-approved can-
didates.

Proposition 6. Suppose there are two or more majority-approved candidates. If one
is majority-preferred among them, FV may not elect him or her.

Proof. Consider the following 5-voter, 4-candidate example:

! Bucklin, a lawyer and founder of Grand Junction, Colorado, proposed his system for Grand
Junction in the early twentieth century, where it was used from 1909 to 1922 — as well
as in other cities — but it is no longer used today. See Hoag & Hallet (1926, pp. 485-
491), http://www.gjhistory.org/cat/main.htm, http://en.wikipedia.org/wiki/Bucklin_voting, and
http://wiki.electorama.com/wiki/ER-Bucklin.
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Example 7.

I. 2 voters: ab|cd
II. 1 voter: dcalb
IIL. 2 voters: calbd

There is no level 1 majority-approved candidate with at least 3 votes. Because can-
didate a receives more approval (4 votes) than candidate ¢ (3 votes) at level 2, a is
the FV winner. But candidate ¢ is majority-preferred to candidate a by 3 votes to 2.
Q.E.D.

In fact, candidate c is the Condorcet winner among all candidates, defeating can-
didates b and d as well. PAV, because of rule 2(i), picks candidate ¢, even though
candidate a is more approved at level 2 and is unanimously approved at level 3 (to
which FV never descends).

A similar conflict between FV and PAV may occur when there is no Condorcet
winner.

Proposition 7. A unanimously approved candidate in a cycle may not be the FV
winner.

Proof. Consider the following 9-voter, 4-candidate example:

Example 8.

I. 2 voters: abc|d
I1. 3 voters: bd cla
III. 4 voters: cald b

There is a cycle whereby a > b > ¢ > a. Candidate c is the only candidate approved
of by all 9 voters and so would be the PAV winner under rule 2(ii). Under FV, no
candidate is majority-approved at level 1, but at level 2 candidate a receives 6 votes
and candidate b receives 5 votes, making a the FV winner. Q.E.D.

Proposition 8. F'V, PAV, and AV may all give different winners for the same
preference-approval profile.

Proof. Consider the following 9-voter, 4-candidate example:

Example 9.

L. 4 voters: abcld
II. 3 voters: bclad
L. 2 voters: dac|b

There is no level 1 majority-approved candidate, but candidates a and b each re-
ceive majority approval (6 and 7 votes, respectively) at level 2. Because candidate
b (7 votes) is more approved of than candidate a (6 votes), FV elects candidate b.
But candidate ¢ is unanimously approved (9 votes) — at level 3 for the class I and 11T
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voters (to which FV never descends) — so AV elects candidate c. Finally, PAV elects
candidate a, who is majority-preferred to the two other majority-approved candi-
dates, b and c¢. Q.E.D.

Note in Example 9 that no class of voters ranks the unanimously approved AV
winner (candidate c¢) first, so he or she is likely to be only a lukewarm choice
of everybody. Neither FV nor PAV favors such candidates if there are majority-
approved candidates ranked higher by the voters.

In Examples 7, 8, and 9, one can determine from the rankings of the approved
candidates that candidate a is majority-preferred to candidate ». Thus in Example 9,
even though the class II voters do not indicate that they prefer candidate b to candi-
date @ when they rank their two approved candidates, b and c, the fact these voters
do not approve of candidate a implies that candidate b, whom they do approve of, is
ranked higher than candidate a. Similarly, one can ascertain from the ranking of the
class III voters that they prefer candidate a to candidate b.

That PAV would have given a different outcome from FV may not always be
revealed.

Proposition 9. Information used to determine an FV winner may not reveal that
PAV would have chosen a different winner:

Proof. Consider the following 3-voter, 4-candidate example:

Example 10.

L. 1 voter: abc|d
II. 1 voter: bdalc
L. 1 voter: clabd

There is no level 1 majority-approved candidate, but at level 2 candidate b receives
majority approval (2 votes) and is, therefore, the FV winner. Because the class 111
voter does not rank candidates below candidate ¢ under FV, it would not be known
whether candidate a would defeat candidate b, or vice versa, in a pairwise contest
between these two candidates (while candidate a is preferred by the class I voter,
candidate b is preferred by the class II voter, leaving the contest undecided). But
under PAV, wherein voters rank all candidates, the fact that the class III voter prefers
a to b would not only be revealed but also would render candidate a the winner,
because a is majority-preferred to b.> Q.E.D.

That FV ignores information on the lower-level preferences of voters is one rea-
son why it gives different outcomes from PAV. Although we think information on
nonapproved candidates should not be ignored, we recognize that it sometimes may
be difficult for voters to provide it.

2 To be sure, if the class I11 voter did not rank any candidates below candidate c, the outcome under
PAV would, as under FV, be a tie between candidates a and b. While voters would be encouraged
to rank all candidates under PAV, we do not think their ballots should be invalidated if they do not
do so.
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5 Monotonicity of PAV and FV

Such well-known voting systems as STV, also called “instant runoff voting” (IRV),
do not satisfy a property called “monotonicity.” This renders them vulnerable to
what Brams and Fishburn (2002, p. 215) call “ranking paradoxes.” As an example
of such a paradox, a voter may, by ranking a candidate first, cause him or her to lose,
whereas this voter, by ranking the candidate last, enable him or her to win — just the
opposite effect of what one would expect a top ranking to have.

Because PAV and FV are hybrid voting systems, it is useful to define two kinds
of monotonicity.

1. A voting system is approval-monotonic if a class of voters, by approving of a new
candidate — without changing their approval of other candidates — never hurts and
may help this candidate get elected.

2. A voting system is rank-monotonic if a class of voters, by raising a candidate in
their ranking — without changing their ranking of other candidates — never hurts
and may help this candidate get elected.

A monotonicity paradox occurs when a voting system is not approval-monotonic
or rank-monotonic; violations of rank-monotonicity have been investigated by
Fishburn (1982), among others.

Proposition 10. PAV and FV are approval-monotonic.

Proof. Consider PAV. Under rule 1, a class of voters, by approving of a candidate,
helps him or her become the unique AV, and therefore the PAV, winner. Under rule
2(i), a class of voters, by approving of a candidate, helps him or her become one of
the majority-approved candidates and, therefore, a possible PAV winner. Under rule
2(ii), a class of voters, by approving of a candidate, helps him or her become the AV,
and therefore the PAV, winner among the majority-approved candidates in a cycle.
Consider FV. Approving of a candidate allows him or her to be ranked and receive
votes in the descent, thereby helping him or her become the FV winner. Q.E.D.

Proposition 11. PAV and FV are rank-monotonic.

Proof. Consider PAV. Under rule 1, ranks have no effect. Under rule 2(i), a class of
voters, by raising a candidate in their ranking, helps that candidate defeat other
majority-approved candidates in pairwise contests and thereby become the PAV
winner. Under rule 2(ii), a class of voters, by raising a candidate in their ranking,
helps that candidate be a member of the cycle — if there is no majority-preferred
candidate among the majority-approved candidates — and thereby become a pos-
sible PAV winner. Consider FV. A class of voters, by raising a candidate in their
ranking, helps that candidate become majority-approved at an earlier level, or re-
ceive the largest majority if two or more candidates are majority-approved at the
same level, and thereby become the FV winner. Q.E.D.

Thus, a class of voters can rest assured that giving either approval or a higher ranking
to a candidate can never hurt and may help him or her get elected under PAV and FV.
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However, this may lead to the defeat of an already approved candidate that one
prefers, which is illustrated by the following 7-voter, 4-candidate example:

Example 11.

L. 1 voter: ab|cd

II. 3 voters: blacd
IIL. 2 voters: calbd
IV. 1 voter: d|abc

Under PAYV, candidate b is the only candidate to be majority-approved (4 votes) and
so is the PAV winner under rule 1.

But now assume that the 3 class II voters approve of candidate a as well as
candidate b:

II'. 3 voters: balcd

Candidate a receives 5 votes and candidate b 4 votes, so both are majority-
approved. But because candidate a is majority-preferred to candidate b by 4 votes
to 3, candidate a is the PAV winner under rule 2(i), contrary to the interests of the
class II voters who switched from strategy b to strategy ba.

Similarly, for the original approval strategies of the voters in Example 11, candi-
date b is the FV winner, picking up 4 votes at level 2. But when the class II voters
switch from strategy b to strategy ba, candidate a wins with 5 votes at level 2. As
under PAV, the strategy shift by the class II voters is detrimental to their interests.

In Sect. 7, we will show how information from polls may affect voters’ calcula-
tions about how many candidates to approve of under PAV, and to approve of and
rank under FV. As we will see, these calculations may or may not result in equilib-
rium outcomes.

The stability of outcomes under PAV and under FV reflects their robustness
against manipulation, so it is important to assess its extent. Stability may be looked
at in either static or dynamic terms. In Sect. 6 we view it statically — when will
voters be motivated to try or not try to upset an outcome? — whereas in Sect. 7 we
analyze how unstable outcomes, based on a dynamic poll model, evolve over time.

6 Nash Equilibria Under PAV and FV

Because PAV and FV give the same outcome as AV when either no candidate or
one candidate receives the approval of a majority, they share many of the properties
of AV. For example, in a field in which at most one candidate is likely to obtain
majority approval, PAV and FV, like AV, give candidates an incentive to broaden
their appeal to try to maximize their level of approval.

When candidates reach out to try to attract more votes, voters are likely to con-
sider them acceptable and approve of more than one candidate. But if more than
one candidate actually receives majority approval, the preferences of voters under
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PAV and FV matter, so the most-approved candidate may not win, as we showed
earlier. Thus, a key question that both PAV and FV raise is how many candidates a
voter should approve of if he or she deems more than one acceptable. As we showed
in Sect. 5, sometimes voting for additional candidates may sabotage the election of
a preferred candidate.

In the analysis that follows, we assume that voters, in order to try to elect their
preferred candidates, choose strategically where to draw the line between approved
and disapproved candidates. But we assume that they are truthful in their rankings
of candidates, which is equivalent to assuming that they choose from among their
admissible and sincere AV strategies.

An AV strategy S is admissible if it is not dominated in a game-theoretic sense —
that is, there is no other strategy that in all contingencies leads to at least as good
an outcome and in some contingency a better outcome. Admissible strategies under
AV involve always approving of a most-preferred candidate and never approving of
a least-preferred candidate (Brams & Fishburn, 1978, 1983, 2007).

An AV strategy S is sincere if, given the lowest-ranked candidate that a voter
considers acceptable, he or she also approves of all candidates ranked higher. Thus,
if S is sincere, there are no “holes” in a voter’s approval set: Everybody ranked above
a voter’s lowest-ranked, but acceptable, candidate is also approved; and everybody
ranked below this candidate is not approved.*

As we will illustrate shortly, voters may have multiple sincere strategies, which
some analysts consider desirable but which others consider problematic; this clash
has sparked considerable controversy about AV.> Given the multiplicity of sin-
cere strategies, we are led to ask what, if any, strategies are stable under PAV
and FV.

We define an outcome to be in equilibrium if the approval strategies of each
preference class of voters that produce it constitute a Nash equilibrium. At such
an equilibrium, no class of voters has an incentive to depart unilaterally from its
approval strategy, because it would induce no better an outcome, and possibly a
worse one, by doing so.

3 In Sect. 7 we consider the possibility that voters may change their rankings as well as their ap-
proval in order to try to manipulate outcomes. For an excellent study of the manipulability of voting
systems that focuses on manipulation through the misrepresentation of rankings, see Taylor (2005).

4 Admissible strategies may be insincere if there are four or more candidates. For example, if
there are exactly four candidates, it may be admissible for a voter to approve of a first and third
choice without also approving of a second choice (see Brams & Fishburn 1983, 2007, pp. 25-26,
for an example). However, the circumstances under which this happens are sufficiently rare and
nonintuitive that we henceforth suppose that voters choose only sincere approval strategies under
PAV and FV. Sincere strategies are always admissible if we exclude “vote for everybody,” which
we henceforth do.

5 Saari & Van Newenhizen (1988) provoked an exchange with Brams, Fishburn, and Merrill
(1988) over whether the plethora of AV outcomes that different sincere strategies may produce
more reflected AV’s “indeterminacy” (Saari and Van Newenhizen) or its “responsiveness’” (Brams,
Fishhburn, and Merrill); other critiques of AV are referenced in Brams & Fishburn (2005; Brams,
2008, Chap. 1). We view PAV and FV as ways to make AV more responsive to voter preferences.
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Proposition 12. Truth-telling strategies of voters under PAV and FV may not be in
equilibrium. In particular, voters may induce a better outcome either by contracting
or expanding their approval sets.

Proof. We first prove this proposition for PAV using the following 7-voter,
4-candidate example:

Example 12.

L. 3 voters: ab|cd
II. 2 voters: clabd
L. 2 voters: dblac

Candidate b, approved of by 5 voters, is the only candidate approved of by a majority
and so is the PAV winner.

To show the possible effects of contraction, assume that the 3 class I voters con-
tract their approval set from strategy ab to strategy a:

I'. 3 voters: albcd
Then candidate a, who is preferred by the class I voters to candidate b, will win
under PAV rule 1, receiving 3 votes to 2 votes each for candidates b, ¢, and d.

To show the possible effects of expansion in the original Example 12, assume the
2 class II voters expand their approval set from strategy c to strategy ca:

Il'. 2 voters: calbd
Then candidates a and b tie with 5 votes each (candidates ¢ and d each receive 2
votes). Because candidates a and b both receive majority approval, we apply PAV
rule 2(i). Since candidate a is preferred to candidate b by a majority of 5 votes to 2,
candidate a, whom the class II voters prefer to candidate b, is the winner.

Thereby both the contraction and the expansion of an approval set by a class of
voters may induce a preferred outcome, rendering PAV strategies in Example 12
not in equilibrium. It is easy to show that the same contraction and expansion of
approval sets induces preferred outcomes under FV (candidate a instead of candi-
date b in the case of contraction I; a tie between candidates a and b in the case of
expansion I'). Q.E.D.

We showed earlier that PAV, FV, and AV may lead to three different outcomes
for the same preference-approval profile (Proposition 8). The fact that an outcome
is in equilibrium under one system, however, does not imply that it is in equilibrium
under another system.

Proposition 13. When PAV and FV give different outcomes, one may be in equilib-
rium and the other not.

Proof. In Example 9, we showed that candidate a (the Condorcet winner) wins un-
der PAV and candidate b wins under FV. Candidate a is in equilibrium under PAV,
because none of the three classes of voters, by switching to a different approval
strategy, can induce an outcome they prefer to candidate a. On the other hand, can-
didate b is not in equilibrium under FV, because the 4 class I voters, by switching
from strategy abc to a, can induce the election of candidate a, whom they prefer to
candidate b. This example shows that PAV may give an equilibrium outcome when
FV does not.
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To show that FV may give an equilibrium outcome when PAV does not, consider
the following example:

Example 13.

L. 1 voter: ab|cd
1. 1 voter: caldb
L. 1 voter: c|bad
IV. 1 voter: dblac
V. 1 voter: db|ca

Candidate b is the only candidate approved of by a majority of 3 voters. No voter, by
switching to a different approval strategy under FV, can induce a preferred outcome
to candidate b at level 2, making candidate b an equilibrium outcome. Candidate
b, being the sole majority-approved candidate, is also the winner under PAV. But
voter II, by switching from strategy ca to cad, can render both candidates d and b
majority-approved (3 votes each). Since d is preferred to b by a majority of 3 voters,
including voter II, voter II would have an incentive to induce this tied outcome under
PAV, showing that FV may give an equilibrium outcome when PAV does not. Q.E.D.

The fact that equilibria under PAV do not imply equilibria under FV, or vice
versa, indicates that one system is not inherently more stable than the other.°

7 The Effects of Polls in 3-Candidate Elections

In elections for major public office in the United States and other democracies,
voters are not in the dark. Polls provide them with information about the relative
standing of candidates and may also pinpoint their appeal, or lack thereof, to voters.

In this section, we focus on 3-candidate elections, because they are the simplest
example in which information about the relative standing of candidates can affect
the strategic choices of voters. Also, such elections are relatively common. We will
show how voter responses to a sequence of polls may dynamically change outcomes
under PAV and FV.

To assess the effects of polls in 3-candidate elections, we make the following
assumptions:

1. No majority winner. None of the three candidates, a, b, or c, is the top choice of
a majority of voters.

6 AV vyields candidates ¢ in Example 9, and candidate » in Example 13 — but neither in equilib-
rium — showing that equilibria under PAV and FV are not always the same as under AV. Merrill
& Nagel (1987) suggest that outcomes under multistage systems like PAV and FV may be more
manipulable than outcomes under single-stage systems like AV, but the manipulation of PAV and
FV are computationally more demanding and, consequently, probably more impracticable.

7 The effects of polls under plurality voting and AV were analyzed in Brams (1982) and Brams &
Fishburn (1983, 2007, chap. 7) using a different dynamic model; see also Meirowitz (2004) and
citations therein.
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2. Initial support of only top choice. Before the poll, each voter approves of only
his or her top choice.

3. Poll information. The poll indicates the relative standing of the candidates. For
example, the ordering n, > n;, > n. indicates that candidate a receives the most
approval votes, candidate b the next most, and candidate ¢ the fewest (for sim-
plicity, we do not allow for ties).

4. Strategy shifts. After the results of the poll are announced, voters may shift strate-
gies by approving of a second choice as well as a top choice. Voters will vote for
their two top choices if and only if the poll indicates (i) the about-to-become-
winner is their worst choice and (ii) they can prevent this outcome by approving
of a second choice, too, given they did not previously approve of this choice.

5. Repeated responses. After voters respond to a poll, they respond to new informa-
tion that is revealed in subsequent polls, as described in assumption 4 above.

6. Termination. Voters cease their strategy shifts when they cannot induce a pre-
ferred outcome.

We assume that voters truthfully rank the three candidates at the start and do not
change these rankings in response to the initial poll or any subsequent poll. We next
investigate what outcomes occur in response to polls under PAV for two different
kinds of preferences.

1. Single-peaked preferences. Voters perceive the candidates to be arrayed along
a left-right continuum, with candidate a on the left, candidate b in the middle, and
candidate ¢ on the right. Each voter most prefers one of these candidates, next most
prefers an adjacent candidate, and least prefers the candidate farthest from his or her
most-preferred candidate, who may or may not be adjacent.

More specifically, a-voters on the left with preference ranking abc may switch
from strategy a to strategy ab, whereas c-voters on the right with preference ranking
cba may switch from strategy ¢ to strategy cb. The b-voters in the middle split
into two groups: one group prefers candidate a over candidate ¢(bac), and the other
group prefers candidate ¢ over candidate a(bca). The former group may switch from
strategy b to strategy ba, whereas the latter group may switch from strategy b to
strategy bc.

Because no candidate is the first choice of a majority and preferences are single-
peaked, the candidate preferred by the median voter, b, is the unique Condorcet
winner — he or she is preferred by a majority to both candidate @ and candidate c.
We show in Table 1 the three qualitatively different poll rankings that the initial poll
may give:

(i) ng > np > ne; (ii) ng > ne > np; (iii) np > ng > ne,

where n; indicates the number of approval voters of candidate i. If the roles of can-
didates a and c are reversed, there are three analogous rankings, which we do not
show in Table 1:

(iv) ne > np > ng; (V) ne > ng > np; (Vi) np > ne > ny.
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Table 1 Strategy switches of voters in response to a poll under PAV and FV: single-peaked pref-
erences with three poll rankings (b Condorcet winner)

Poll ranking (i) ng >np >ne (i) ng >ne >np  (iii) np > ng > ne
Initial strategies albe albe albe
blac blac blac
blca blca blca
clba clba clba
Outcome a a b
Shift in strategies (if any) albe albe
after initial poll blac blac
bcla bcla
cbla cbla
Outcome b b

For poll ranking (i) in Table 1, the voters with preference rankings bca and cha
will switch from strategies b and c, respectively, to strategies bc and cb to try to
prevent their worst choice, candidate a, from winning (assumption 4). This results
in the election of candidate b, whether candidate b is the unique majority-approved
candidate — with approval from three classes of voters — or candidate ¢ also wins a
majority — with approval from two classes of voters — in which case candidate b will
defeat candidate ¢ in a pairwise contest. Because no voters can effect a preferred
outcome under PAV through any subsequent shifts in their strategies — in response
to a poll that shows candidate b to be the unique or largest-majority winner — no
voters will have an incentive to make further shifts.

The same shifts will occur for poll ranking (ii), again boosting candidate b to
winning status. As for poll ranking (iii), no voters will have an incentive to shift in
response to the initial poll, because the plurality winner, candidate b, is not the worst
choice of any voters.

Under FV, candidate b will also prevail. In the case of poll rankings (i) and (ii),
this occurs because candidate b is the unique or largest-majority winner after the
shift. In the case of poll ranking (iii), candidate b is the initial plurality winner, after
which the descent of voters ceases because no voter ranks b last.

In summary, whichever of the three qualitatively different poll rankings occurs
when voter preferences are single-peaked, the responses of voters to an initial poll
leads to the election of Condorcet winner b under both PAV and FV. But when
preferences are cyclical and there is no Condorcet winner, the evolution of a winner
is more drawn out, requiring up to three shifts rather than just one.

2. Cyclical preferences. We consider the simplest case of cyclical preferences,
wherein three classes of voters, none with a majority of votes initially, have prefer-
ences abc, bca, and cab, so a > b > ¢ > a. For simplicity, we exclude voters with
preferences that do not contribute to the cyclic component of these voters (e.g., acbh).

If, as assumed earlier, voters initially approve of only their top choices, there are
two qualitatively different poll rankings that the initial poll may give:

(i) ng > np > ne; (ii) ng > ne > ny.
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Table 2 Strategy switches of

voters in response to a poll Poll ranking ) na >mnp >ne (i) ng > ne > np
under PAV anq FV: cyclic Initial strategies albe albe
preferences with two poll blea blca
rankings clab clab
Outcome a a
Shift I (Initial Poll) albe albe
bcla bcla
clab clab
Outcome c c
Shift IT (2nd Poll) ab|c ablc
bcla bcla
clab clab
Outcome b b
Shift IIT (3rd Poll) ablc
bcla
calb
Outcome a

The four other possible rankings are analogous, with candidate b ranked first in two
cases and candidate ¢ ranked first in the other two:

(iil) np > ng > ne; (V) np > ne > ng; (V) ne > ng > np; (Vi) ne > np > ng.

In Table 2, we show the strategy shifts that voters will make in response to poll
rankings (i) and (ii). After an initial poll that shows candidate a to be in first place
in each case, there will be one shift by the bca voters (Shift I) — and up to two
additional shifts (Shift II and Shift III) in response to subsequent polls that show
other candidates to be in first place — as voters try to prevent their worst choice from
winning.

To illustrate for poll ranking (i), the bca voters will switch from strategy b to
strategy bc in Shift I to try to prevent candidate a from winning with a plurality of
votes. But when this shift leads to candidate ¢’s receiving a majority of votes, the
abc voters will switch from strategy a to strategy ab in Shift II, giving candidates b
and ¢ each a majority.

Under PAV, candidate b will be majority-preferred to candidate ¢ in the contest
between these two majority-approved candidates after Shift II. Under FV, candidate
b, with approval from both abc and bca voters at level 2, will receive a larger ma-
jority than candidate ¢ — based on the initial poll ranking — with approval from bca
and cab voters.

At this stage, even if the cab voters switched from strategy c to strategy ca, they
could not induce the election of candidate a, who will get a smaller majority than
candidate b, based on the initial poll ranking. Hence, the shifts will terminate after
shift II, resulting in the election of candidate b, the candidate with more first and
second-place approval than any other candidate.
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For poll ranking (ii), three shifts are required to induce the election of candidate a.
In the absence of a Condorcet winner, the most approved candidate in the cycle —
when all voters support their two top candidates — emerges as the winner under PAV
and FV.

In summary, when preferences are cyclical, the candidate who is ranked first
or second by the most voters prevails after three shifts under both PAV and FV.
Together with our results on single-peaked preferences, we have the following:

Proposition 14. In the poll model for 3-candidate elections under PAV and FV,
strategy shifts result in the election of (1) the Condorcet winner if preferences are
single-peaked and (2) the candidate ranked first or second by the most voters if
preferences are cyclical.

These outcomes, however, may not be stable.

Proposition 15. In the poll model for 3-candidate elections under PAV and FV,
strategy shifts may result in outcomes that are not in equilibrium when there is a
Condorcet winner.

Proof. Assume that voter preferences are single-peaked (Table 1), and consider poll
ranking (ii) after the shift. Assume that the bca and cha voters constitute a majority.
Then the cha voters, by switching from strategy cb to strategy ¢ (a contraction), will
induce the election of candidate ¢, whom they prefer to candidate b. As the sole
majority-approved candidate, candidate ¢ wins under both PAV and FV, rendering
candidate b not in equilibrium. Q.E.D.

Surprisingly, it is not the cyclical preferences of voters (in Table 2) that produce
instability but the single-peaked preferences of voters (in Table 1) for poll ranking
(ii) — and poll ranking (i) as well if the bca and cba voters constitute a majority in this
situation — that produce instability. Thus, the strategy shifts of voters in response to
polls, while leading to the outcomes indicated in Proposition 14, may not terminate
at these outcomes because of the possible nonequilibrium status of candidate b for
poll rankings (i) and (ii) in Table 1.

This is not to say that the Condorcet winner (in Table 1), candidate b, cannot
be supported as a Nash equilibrium in this situation. It turns out that the “critical
strategy profile” of candidate b,

ab|c;blac;b|ca;cbla,

which maximizes b’s approval vis-a-vis the other candidates, supports b as a strong
Nash equilibrium — no coalition of voter classes, by choosing different approval
strategies, can induce an outcome they prefer to candidate b. Not only is it impos-
sible for a coalition to replace b with a preferred candidate under PAV and FV, but
this is also true of AV. In fact, under AV, candidates are strong Nash equilibria at
their critical strategy profiles if and only if they are Condorcet winners (Brams &
Sanver, 2006; Brams, 2008, Chap. 2).

We have assumed up until now that while voters may changes their levels of
approval in order to try to induce preferred outcomes, they are steadfast in their
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rankings of candidates, which we assumed are truthful. But what if they can falsify
their rankings? Then the candidates will be more vulnerable. But falsifying rank-
ings, especially if information is incomplete, is a risky strategy that many voters are
likely to shun.®

8 Conclusions

It is worth emphasizing that PAV and FV duplicate AV when at most one candidate
receives a majority of approval votes. In such a situation, there seems good reason
to elect the AV winner, because if there is a different Condorcet winner, he or she
would not be majority-approved. If the AV winner also is not majority-approved,
his or her election seems even more compelling, because this is the most acceptable
candidate in a field in which nobody is approved of by a majority.

When two or more candidates are majority-approved, PAV and FV may elect
different winners from AV, the Borda count, STV, and each other. PAV chooses
the majority-preferred candidate, if there is one, among those who are majority-
approved, whereas FV chooses the first candidate to receive a unique or largest
majority in the descent.’

If there is no majority-preferred candidate among the majority-approved candi-
dates, PAV chooses the most approved candidate in the cycle. FV does the same
if this candidate is in the first set of candidates to receive majority approval in the
descent; if not, a majority-approved candidate with less approval — but received
earlier — will be the FV winner. PAV and FV winners, if different from the AV win-
ner, are likely to have more coherent majoritarian positions, not just be the lukewarm
choices of most voters.

Candidates with coherent positions are more likely to run if they believe, without
egregious pandering, that they can win. Consequently, PAV and FV may well en-
courage candidates to enter the fray who might otherwise be deterred because they
are unwilling to sacrifice their fundamental tenets in order to win.

PAV and FV afford voters the opportunity to approve of lower-ranked candi-
dates without necessarily helping them to win. Unlike AV, in which voting for a
less-preferred candidate can cause the displacement of a more-preferred candidate,
PAV and FV impede this event, though they do not rule it out entirely.

8 AV, of course, does not permit such falsification since voters do not rank candidates. While AV
leads to the same outcomes as PAV and FV in the poll model, it may give very different outcomes
in other situations, as we showed earlier.

° Majority approval may be too high a bar to impose if the field of candidates is large. This bar
has been lowered in some plurality elections in the United States, wherein a candidate can win
outright if he or she obtains at least 40% of the vote; otherwise, there is a runoff election between
the two highest vote-getters. Our view is open about the amount of approval (1) that two or more
candidates must receive in order that rule 2 take effect under PAV or (2) that one candidate must
receive for the descent to stop under FV. Perhaps a simple majority should not be the sine qua
non. A lower threshold may be appropriate in elections in which at most one candidate is likely to
receive majority approval and, therefore, the winner will always be the AV winner, obviating the
need for PAV and FV.
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PAV, for example, takes into account voter preferences, which can override the
greater approval a less-preferred candidate receives. Both PAV and FV are are
approval-monotonic and rank-monotonic, so approving of a candidate or ranking
him or her higher never hurts, and may help, this candidate to get elected.

PAV is more information demanding than FV, which asks voters to rank only their
approved candidates. Without complete information on preference rankings, FV is
less able to ensure the election of a majority-preferred — or the most approved if
there is no majority-preferred — candidate among the majority-approved candidates.

PAV and FV may elect different candidates in equilibrium if voters contract or
expand their approval sets; neither system is inherently more stable than the other.
In the 3-candidate dynamic poll model, Condorcet winners are elected after one
shift when voter preferences are single-peaked — though not always in equilibrium —
whereas candidates ranked first or second by the most voters are equilibrium choices
after several shifts when voter preferences are cyclic.

By combining information on approval and preferences, PAV and FV may yield
outcomes that neither kind of information, by itself, produces. Although PAV is
more likely to lead to majority-preferred winners among the majority-approved, its
greater information demands of voters may make FV a better practical choice. Such
trade-offs require careful consideration, as do other ways of mixing approval and
preferences to coax better social choices out of a voting system.!?

Finally, it is worth mentioning a situation in which PAV was recently adopted by
the New York University politics department because of a failure, at least initially,
of plurality voting (PV) to choose a candidate for a faculty position. Two candi-
dates, A and B, were vying for that position, with almost two-thirds of department
members favoring one or the other.

But the department split almost evenly over which candidate members preferred.
Because the more than one-third who favored neither candidate won under PV, it
seemed that neither candidate would be hired, though a substantial majority pre-
ferred either A or B over no hire. In the end, however, the majority prevailed in a
second vote over hiring one or the other, with a third vote showing which one of the
two candidates was preferred.

Under PAYV, there would have been three options: Hire A, hire B, or hire nei-
ther (the position did not have to be filled). The nearly two-thirds who favored either
A or B over no hire presumably would have approved of both, at which point their
preferences for either A or B would have elected one of the two candidates (except
in the case of a tie).

10 Ossipoff & Smith (2005) survey a number of such voting methods, several of which disqualify
candidates if another candidate is ranked over them on more than half the ballots. Thus, if there
is a Condorcet winner, this candidate will disqualify all others and will, therefore, be elected,
independent of how approved he or she is. In our view, a Condorcet winner who receives less than
majority approval — as we showed can happen under very different circumstances in Examples 1,
2, and 3 — should not be elected when there are other candidates who receive majority approval.
Both PAV and FV give precedence to majority-approved candidates over Condorcet winners when
there is a conflict. But among majority-approved candidates, Condorcet winners take precedence
under PAV.
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Note that AV might not have succeeded, because some of the A and B supporters
might have approved of only their favorite, which could have prevented either from
winning. But under PAV, there is no good strategic reason for A and B supporters not
to approve of both, knowing that their preferences will determine a winner between
the two if both are majority-approved. Thus PAV mitigates, if not prevents, certain
kinds of strategizing to which AV may be vulnerable, including what Nagel (2006,
2007) calls the “Burr dilemma.”!!

Acknowledgement This chapter appears in slightly different form in Brams (2008, chap. 3). We
thank an anonymous referee for helpful suggestions.
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Anonymous Voting Rules with Abstention:
Weighted Voting

William S. Zwicker

1 Introduction

We consider legislative voting rules that govern collective approval or disapproval
of a bill or a motion, and that allow abstention (or absence) as a “middle option” dis-
tinct from a yes or no vote. In contrast with Peter Fishburn’s work on representative
systems, or RSs, we do not treat collective approval and disapproval symmetrically;
a voting rule may have a built-in bias against passing motions, for example. In this
asymmetric case, the additional assumption that a rule is anonymous (all votes count
equally) still allows for a significant variety of rules, a number of which are used by
real voting bodies (see Freixas & Zwicker (2003)). We provide three characteriza-
tions of weighted voting in this context, and discuss potential applications.

In real legislative voting bodies an abstention or absence often does have an ef-
fect different from a voter’s yes or no vote. Yet since the publication of Theory
of Games and Economic Behavior von Neumann & Morgenstern (1949) the stan-
dard mathematical model for a legislative voting system has been the simple game,
which by virtue of its structure treats any non-yes vote as a no. Peter Fishburns
1973 work seems to be the earliest to have taken abstention seriously, but others fol-
lowed: Rubenstein (1980); Bolger (1986, 1993a,b); Felsenthal & Machover (1997,
1998); Amer et al. (1998); Freixas & Zwicker (2003); Corte-Real & Pereira (2004);
Dougherty & Edward (2004); Bilbao, Ferndndez, Jiménez, & Lépez (2005a,b).

Distinguishing features of a RS, as defined in Fishburn (1973), include:

e It is constant-sum (treats outcomes symmetrically): if each vote is flipped (from
no to yes, yes to no, and abstain to abstain), the outcome is ﬂipped,1

e [t admits ties in the outcome: a motion may neither pass nor fail, but be on the
border,

! Fishburn refers to this property as “duality”.
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e Such atie is “knife-edge”: a change in vote by any one non-dummy voter breaks
the tie,

e And voters may have different influence: the rule is not required to be anony-
mous.

Any constant-sum voting rule that allows abstention must admit ties,” so the
second requirement is forced. However, a number of real voting rules that allow
abstention are not constant sum and do not admit ties (Freixas & Zwicker (2003,
2008)). We argue in Freixas & Zwicker (2003) that the appropriate model for such
arule is a (3,2) game, and show that grade trade robustness (a generalization of El-
got’s asummability Elgot (1960/ 1961), or of trade robustness in Taylor & Zwicker
(1992); Taylor & Zwicker (1999), for simple games) characterizes weighted voting
for (3,2) games. Without the constant sum property, a weighted rule that assigns
weight O to each abstention may, for example, assign more (negative) weight to a
no than (positive) weight to a yes. In fact, this must be the case for a permanent
member of the UN Security Council (Freixas & Zwicker (2003)). A weighted RS is
quite different: the constant-sum property effectively requires us to assign to a voter
the same positive weight for her yes as negative weight for her no.

What happens when we impose anonymity on an RS? The constant-sum con-
dition (together with a monotonicity requirement saying that more yes votes never
cause a motion to fail) implies that a motion must pass with strictly more yes than
no votes, fail with strictly more no than yes votes, and tie with equal numbers of
each. So this version of majority rule with abstention — a weighted rule (as we’ll
see) —is the only anonymous RS. This assertion can be thought of as May’s Theorem
for Representative Systems. May’s original version of this theorem was in the “no
abstentions, no ties” setting; it asserts that the only anonymous, monotonic, voting
rule that is constant-sum (equivalently, that is neutral for two alternatives) is major-
ity rule with an odd number of voters (May (1952); Taylor (1995)). This is a very
special instance of weighted voting and the following restatement is helpful for our
purposes:

May’s Theorem (Recast) In the no ties, no abstentions, constant-sum setting, anonymity +
monotonicity implies weighted voting.

We show in Freixas & Zwicker (2008) that the situation is more interesting for
anonymous (3,2) games: many rules are possible, and not all are weighted (as we
will soon see). In fact, each such rule for n voters corresponds to a quota function
g that assigns, to each integer a in [0,7], the minimum number g(a) of yes votes
required for collective approval, given that there are a abstentions. Figures 1 and 2
show the quota function for relative majority rule (also called simple majority rule,
in which approval of a motion requires strictly more yes votes than no), and for
the majority threshold system used in certain referenda in Hungary (see Corte-Real
& Pereira (2004)), wherein passage requires more yes votes than no, subject to the
requirement that at least 25% of all registered voters vote yes.

2 For example, when everyone abstains. But for most realistic constant sum voting rules, absten-
tions force many other ties, as well.
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increasing y

A

O = winning profile

@ = losing profile

graph of y = q(a)

separating line

P increasing a

Fig. 1 Quota function diagram: relative majority rule, with abstention, for 7 voters

In fact the monotonicity requirement for (3,2) games (see Definition 2.2) implies
that the graph of y = g(a) must share the following features with Fig. 1:

e It must be a step function

e The graph can never step up, and whenever the graph steps down, it can only step
down by one unit

e If the graph “runs off the edge” by crossing the hypotenuse of the triangular
grid of points, then it becomes undefined, and it remains undefined for all larger
values of a — that is, if it is possible for the number a of abstentions to become so
high that the bill fails to pass even when each non-abstainer votes yes then any
number of abstentions greater than a must also preclude passage.

These conditions are stated precisely in Freixas & Zwicker (2008), where we
show that they are necessary and sufficient for the function ¢ to correspond to an
anonymous (3,2) game.

Theorem 1. Quota Function Characterization Theorem

Every anonymous (3,2) game corresponds to a quota function satisfying the
properties specified above, and every such quota function induces a unique anony-
mous (3,2) game.
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This result can be thought of as May’s Theorem for (3,2) games. As a corollary, in
Freixas & Zwicker (2008) we showed that for n voters the number of distinct anony-
mous voting rules with abstention (anonymous (3,2) games) is 2"*! — significantly
greater than the number of anonymous RSs!

Our purpose in this note is to provide three characterizations of weighted voting
for the context of anonymous voting rules that allow abstention, but disallow ties:

Theorem 2. Main Theorem on Weighted Anonymous Voting with Abstention’ Let G
be an anonymous (3,2) game. Then the following are equivalent:

1. G is weighted

2. G is bimonotonic

3. G’s quota-function diagram is linearly separable

4. G satisfies the almost equal plateau sum condition, or a.e.p.s.

We’ll discuss weighted voting shortly. Bimonotonicity has two interpretations.
It is a very weak form of grade-trade robustness, the condition that character-
izes weightedness for (j,k) games in general. Alternately, it is a strong form of
monotonicity. Keeping in mind this second interpretation, we now restate part of
the theorem:

Main Theorem (part (2) = (1), recast) In the no ties, abstentions allowed setting,
anonymity + bimonotonicity implies weighted voting.

A comparison with the previously recast version of May’s Theorem suggests that
this fragment of the main theorem may also lay claim to being May’s Theorem for
(3,2) games, although it is not the same as the version we mentioned earlier.

Linear separability and a.e.p.s. are conditions on the shape of the graph of the
quota function. The first asserts that the same separation accomplished by the step
function can be achieved by a straight line (as, in Fig. 1, we observe to be the case for
relative majority rule but not for the majority threshold rule of Fig.2). The second
is a more constructive condition that puts precise limits on the amount by which the
plateaus (steps) in the step function g¢ can vary in length. It can be seen as a version
of the requirement that the convex hull of all losing profiles be disjoint from that of
all winning coalitions.

2 Anonymous (3,2) Games, Weighted Voting, and Linear
Separability

If we allow each voter in a yes-no voting system the additional option of abstain-
ing, then the profile of their individual decisions can be represented as an ordered
triple (Y,A, H) consisting of the sets of voters who choose yes, abstain, and no, re-
spectively. In Freixas & Zwicker (2003) we define a (3,2) game in terms of a value

3 In the body of the paper, Theorem 2 is separated into Proposition 1, Theorem 3, and Theorem 4.
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function that assigns, to each such ordered 3-partition (Y,A,H), a value in the set
{win, lose}. More generally, a (j,k) game employs an ordered j-partition to profile
voters’ choices from among j ordered levels of input approval, and a value function
that assigns to each ordered j-partition an element from a value set containing k
ordered levels of output approval. We impose a certain monotonicity condition on
these structures, and argue that the resulting level of generality is the appropriate
one to model a broad variety of real decision rules. In the anonymous (3,2) context,
however, things can be kept more simple; we’ll record the profile of an election in
the form of three numbers y, a, and & representing the number of yes voters, abstain-
ers, and no voters, respectively.

Definition 1. Given a natural number n, an anonymous profile for n voters is an
ordered triple (y,a,h) of nonnegative integers with sum n. A value function V for n
voters assigns to each anonymous profile p for n voters a single value V(p) in the
set {win,lose}.

Of course, not every value function corresponds to a reasonable voting rule.

Definition 2. Given two anonymous profiles p = (y,a,h) and g = (y/,d’,h’) for n
voters we will write p <; g if either y =y+1,d/ =a—1,and ¥ = h, orif y =
v,d =a+1,and h' = h— 1. The left-shift order <ys is the transitive closure of <1,
and a value function V is monotonic if the winning profiles are closed upwards in
the left-shift order: whenever V (p) = win with p < ¢, it follows that V(g) = win.

Notice that p <5 g holds precisely when p can be transformed into g via a series
of switches in vote by individual voters, each of which is in the direction of greater
approval (from no to abstain or to yes, or from abstain to yes).

Definition 3. An anonymous (3,2) game for n voters is a pair G = (n,V) in which n
is a natural number and V is a monotonic value function for n voters. We’ll say that
a profile p is winning if V (p) = win, and losing if V (p) = lose.*

Each anonymous profile (y,a,h) for 7 voters corresponds to a node in the quota
function diagram of Fig. 1. Figure 2 is a “population generic” diagram, in which
the black (losing) and white (winning) nodes have merged into darker and lighter
regions, respectively. We might imagine that the number n of voters is too great for
the nodes to resolve as individual points; alternately, such a diagram corresponds to
a sequence of voting rules, one for each positive integer n.

Definition 4. An anonymous (3,2) game G = (n,V) is weighted if there exists a
weighted representation, consisting of a weight vector

w= (WyeS7 Wabstain Wno)

4 Notice that we do allow the (3,2) game for which every profile is winning, as well as that for
which every profile is losing; this simplifies some theorem statements at the cost of admitting two
games that are of little use as real voting rules.
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Fig. 2 Population generic quota function diagram: Hungarian “majority threshold” referendum
rule

threshold or quota t such that for every anonymous profile p = (y,a,h) for n voters
we have

with real number components satisfying Wyes > Wapstain = Wno together with a

V(y,a,h) =win< p-w>1t.

Thus yes, abstain, and no votes are each assigned a fixed weight. The dot product
represents the total weight Wy, (p) = YWyes + aWapstain + hwio cast by all voters, and
the motion carries if and only if this total meets or exceeds the preset threshold.
Notice that by subtracting the constant vector (Wapstain, Wabstains Wabstain) from the
weight vector (Wyes, Wabstain, Wno)» While subtracting the product nwpgqin from ¢, we
can obtain an equivalent weighted representation in which the abstainers cast no
weight, yes-voters cast nonnegative weight, and no-voters cast non-positive weight,
which some readers may find more palatable.

But is this definition congruent with one’s naive notion of what weighted voting
with abstention ought to mean in the anonymous setting? Initially, one might guess
that each voter should receive a single vote, which is cast either against or for the
proposal (or not cast at all, in the case of an abstaining or absent voter). Perhaps col-
lective approval should require that the yes votes exceed the no votes by some fixed
margin m. Or perhaps it should require that some minimum ratio r of yes votes to no
votes be achieved, e.g. r = 2 if one requires for collective approval that of the active
voters (those present and not abstaining), at least two-thirds should vote yes. It is
easy to see that the first proposal is tantamount to restricting Definition 4 by requir-
ing that w = (1,0,—1) with 7 = m, while the second is equivalent to the restriction
w = (1,0, —r) with r = 0. Proposition 1, which follows, provides some justification
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for Definition 4, by suggesting that it represents a sort of minimal extension encom-
passing both the margin and the ratio approaches. However, we would argue that
a stronger justification is provided by the combinatorial characterization via grade
trade robustness of the non-anonymous version of Definition 4; we refer the reader
to Freixas & Zwicker (2003) for details.

With the help of three adjustments (none of which change the underlying (3,2)
game G) we can now put any weight vector w = (Wyes, Wabstain, Wno) i0lto a standard
form. First, we arrange, as described above, Wyes > 0, Wapstain = 0, and wy, < 0. Next,
we exploit the “wiggle room” extant in any weighted rule with finitely many voters
by adding some small positive value to wyey. If this increment is sufficiently small,
then we preserve the requirement that W, (p) > W,,(¢) hold whenever p is winning
and q is losing, so that a threshold 7 can separate by squeezing strictly between the
weights of all winning profiles and those of all losing ones. Finally by multiplying
our transformed vector w through by the reciprocal of wy,, (while multiplying the
threshold by the same factor) we obtain the standard form weight vector

w=(1,0,5);s <0.
Thus we can specify any weighted rule via the two parameters s < 0 and ¢ > ns,
where s denotes the weight of a no vote and ¢ is the threshold for passage. (Note that

any rule with # < ns produces the same outcomes as ¢t = ns: all profiles are winning.)
In the rule with parameters s and ¢, a profile p = (y,a, k) is winning if and only if

y+hs>1. ey

After substituting n —y — a for h in this inequality, it is easy to see that it is
equivalent to
s t—ns
() (2
I—s 1—s

Now if we define new parameters

K t—ns
b=
1—ys

—1<m<0,b>0

(where the limits on m and b correspond to those on s and #), then inequality (2)
becomes
V> ma+b. 3)

These new parameters have a simple geometric interpretation. When the equa-
tion y = ma + b is graphed on the quota function diagram of G (in which y is the
vertical axis, and a is the horizontal) we obtain a straight line L with slope m and
y-intercept b.

Definition 5. An anonymous (3,2) game G is linearly separable if there exists a
straight line L with slope m satisfying —1 < m < 0 and with y intercept b > 0, such
that all winning nodes on the diagram lie on or above L, and all losing nodes lie
strictly below L.
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The previous discussion constitutes a proof of the following:

Proposition 1. Let G = (n,V') be an anonymous (3,2) game. Then the following are
equivalent:

1. Gis weighted

2. There are real number parameters s < 0 and # > ns such that G’s winning profiles
p = (y,a,h) are precisely those satisfying y+ hs > 1.

3. Gis linearly separable.

Relative majority rule (Fig. 1) is clearly linearly separable, while the majority
threshold rule of Fig. 2 is not. It is well-known (see, for example, Taylor & Zwicker
(1999)) that an ordinary simple game is weighted if and only if the winning coali-
tions (suitably plotted as a set of points in R") are separable from the losing coali-
tions via a hyperplane. The line L can be thought of as a projection, onto a subspace
of small dimension, of a separating hyperplane.’

Note that in the majority threshold rule, the graph of the quota function g(a) runs
into the hypotenuse of the triangle and stops. For any rule sharing this feature, the
last (rightmost) node on the graph of ¢(a) represents a profile p = (K,n— K,0) in
which

e There are a certain number n — K of abstentions,

e Of the active voters, all K of them vote yes (where, in the case of the Hungarian
Referendum rule, K = % of the registered voters),

e And the rule grants collective approval for p.

Because this node is the lowest white (passing) node on the diagram, we know
that K is the absolute minimum number of yes votes that can ever achieve collective
approval. Establishing some type of floor for collective approval is not uncommon
among real voting rules, with the goal of avoiding situations wherein a tiny handful
of active voters can change the status quo body of law. However, the more typical
approach is to impose a guorum, which is a floor on the number of active voters,
rather than a majority threshold, where the floor is on the number of yes voters.
These two approaches have dramatically different effects, because a quorum typi-
cally violates monotonicity. The effect is to give an odd incentive to voters opposed
to the motion under consideration: in many cases, they have greater influence by
staying home than by voting no. In Italy the law governing abrogative referenda has
just such a quorum provision and according to Uleri (2002) the effect on partici-
patory democracy in Italy has been perverse — see further discussion in Corte-Real
& Pereira (2004), and Axtman (2003) makes amusing reading for the US context.
A majority threshold has no such perverse effect, so in this respect it seems much
preferable to a quorum.

But if we are designing some voting rule that will allow abstention or absence,
imposing a majority threshold is not the only approach that simultaneously pre-
serves monotonicity and establishes a participation floor — these ends are met by

5 In this connection, see Remark after Definition 9.
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any quota function that both “crosses the hypotenuse” at some point (K,n — K,0)
and also satisfies the conditions of Theorem 1.

In particular, one can build any desired floor into a weighted rule. In Freixas &
Zwicker (2008) we refer to such rules as soft quorum weighted rules. An example
would be the rule that requires, for collective approval, that the number of yes votes
be at least % of the assembly together with at least % of any active voters beyond
this %:

y= 2+%(y+h—ﬁ).
-3 5 3

Note that this rule can be thought of as a sort of sliding ratio quota. With all vot-
ers active a 60% approval rate is required for passage, but as the number of active
voters gradually falls, the required fraction of votes in favor gradually increases,
until it reaches 100% when only % of voters are active. With fewer than % of the vot-
ers active the percentage in effect rises above 100%, rendering collective approval
impossible and establishing the floor. The example suggests yet a third parameteri-
zation of weighted rules,® using fractions r; and r, corresponding to the % and % of
the example.

As far as we know, no such rule has been implemented in practice. This is a bit
surprising, as the principle seems to be simple.

3 Grade Trade Robustness and Bimonotonicity

In the non-anonymous context, a profile for a (3,2) game G consists of a vector
Pi = (yesAi, abstainAis noAi) in which (A; denotes the set of x-voters for p;. Given a
vector P = (p1,p2,. .., pk) of such profiles, a migration consists of a change p/’, p;’
in exactly two of the profiles p;, p; (i # j) from P, of the following kind: there exists
some individual voter s and some pair x,y € {yes, abstain,no} of possible votes such
that

o sc Ajands € A,
e scyA/andse A/
e there are no other differences between p; and p}, or p; and p'j,

with P = (p1,p2,...,ply- -, Py -Pk)- A k-grade-trade consists of a finite sequence
PP, P =P

of migrations that convert a pre-trade vector P = (p1, pa,...,px) into a post-trade
vector P* = (p1%, pa*,...,prx). We say that G is k-grade-trade robust if no such
trade can convert a vector P of winning profiles into a vector P* of losing profiles,

6 However, as described here r; and r, only parameterize that subclass of weighted rules for which
a participation floor exists.
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and is grade-trade robust if it is k-grade-trade robust for every integer k > 2.
We show, in Freixas & Zwicker (2003), that G is grade-trade robust if and only
if it is weighted.”

We might expect that in the context of anonymous voting rules, something con-
siderably less than the full power of grade-trade robustness would suffice to guaran-
tee weightedness.

Definition 6. A shift is an ordered pair (u, v) of nonnegative integers. An anonymous
profile (y,a,h) and a shift (u,v) are compatible if a > u+ v, and the (u,v) shift of
a compatible anonymous profile (y,a,h) is the anonymous profile (y+ u,a —u —v,
h+v).

Definition 7. Let G = (n,V) be an anonymous (3,2) game. We say that the shift
(u,v)

o Never hurts if the (u,v) shift of every winning compatible anonymous profile for
G is winning

o Sometimes helps if the (u,v) shift of at least one compatible losing profile is
winning

e Is big if it both never hurts and sometimes helps.

Similarly, the shift (u,v)

e Never helps if the (u,v) shift of every losing compatible anonymous profile for
G is losing

o Sometimes hurts if the (u,v) shift of at least one compatible winning profile is
losing

o Is small if it both never helps and sometimes hurts.

These definitions were suggested by the following observation. For any
weighted, anonymous (3,2) game G = (n,V), consider a standard form weight
vector w = (1,0,s), s < 0. Consider any (u,v) shift (y +u,a —u—v,h+v) of a
compatible (y,a,h). The effect of this shift is to increment the total weight cast by
the amount u + vs, which is nonnegative when % > |s|. In the weighted case, then,
any (u,v) shift with % > |s| never hurts, while any with % < [s| never helps.

Definition 8. A symmetric (3,2) game is bimonotonic if every shift (u,v) either
never hurts or never helps.

Remark 1. (i) Notice that bimonotonicity is a strong form of monotonicity, in the
following sense: ordinary monotonicity is equivalent to the statement that shifts
of the form (u,0) never hurt, while those of form (0, v) never help.®

7 In fact, this characterization extends to (non-anonymous) (j,2) games. An elaborated version
characterizes weighted voting for (j,k) games.

8 As bimonotonicity does not actually imply m