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Preface

Peter Fishburn has had a splendidly productive career that led to path-breaking con-
tributions in a remarkable variety of areas of research. His contributions have been
published in a vast literature, ranging through journals of social choice and welfare,
decision theory, operations research, economic theory, political science, mathemati-
cal psychology, and discrete mathematics. This work was done both on an individual
basis and with a very long list of coauthors.

The contributions that Fishburn made can roughly be divided into three major
topical areas, and contributions to each of these areas are identified by sections of
this monograph. Section 1 deals with topics that are included in the general areas of
utility, preference, individual choice, subjective probability, and measurement the-
ory. Section 2 covers social choice theory, voting models, and social welfare. Sec-
tion 3 deals with more purely mathematical topics that are related to combinatorics,
graph theory, and ordered sets. The common theme of Fishburn’s contributions to
all of these areas is his ability to bring rigorous mathematical analysis to bear on a
wide range of difficult problems.

Part 1 covers a variety of topics stemming from several of Fishburn’s books:
Decision and Value Theory [Fishburn (1964)], Utility Theory for Decision Making
[Fishburn (1970)], Mathematics of Decision Theory [Fishburn (1973a)], The Foun-
dations of Expected Utility Theory [Fishburn (1982)], and Nonlinear Preference and
Utility Theory [Fishburn (1988)]. Fishburn has made cutting-edge contributions to
the theory of utility, including work on nontransitive preference, stochastic utility,
and decision theory, broadly speaking. He has contributed greatly to the theory of
expected utility, including important work on axioms for expected utility, the study
of multiattribute expected utility, behavioral models of risk taking, and the study of
dominance relations, as well as fundamental contributions to the understanding of
subjective expected utility. He has also contributed to nonlinear utility theory, with
contributions dealing with risk and with uncertainty. Fishburn’s work on choice has
dealt with choice probability, choice functions, and nonprobabilistic preference and
utility. His work on measurement theory has concentrated on uniqueness of repre-
sentations, as well as on additive and on nondecomposable representations.
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The contributions in Part 1 reflect different facets of the aforementioned re-
search. They start with three papers that are related to the general topic of utility
theory. Luce, Marley and Ng (Entropy-Related Measures of the Utility of Gam-
bling) develop utility models to explain individual behavior in gambling situations
by adding an additional ‘entropy’ term to the individual’s utility function to ac-
count for an individual’s preference, or aversion, for gambling in specific situations.
Bell and Keeney (Altruistic Utility Functions for Joint Decisions) consider situa-
tions in which two or more individuals are involved in selecting some alternative
in a decision making situation. The specific situation that is considered describes
scenarios in which each of the decision makers has an underlying interest in se-
lecting an alternative that will please the other decision makers. Nakamura (SSB
Preferences: Nonseparable Utilities or Nonseparable Beliefs) extends aspects of
Fishburn’s Skew-symmetric Bilinear Utility model to the case of decision making
under uncertainty.

Four contributions are on the general topic of decision theory. The paper by Jia
and Dyer (Decision Making Based on Risk-Value Tradeoffs) starts this section with
a survey of risk-value decision models that have been developed in the last decade.
This paper merges two streams of research, the modeling of individual preference
and the modeling of risk judgment, in an effort to develop a more descriptively
powerful risk-value model. Bodurtha and Shen (Normally Distributed Admissible
Choices are Optimal) consider one particular aspect of risk-value models by exam-
ining mean-variance analysis to determine the characteristics of optimal solutions
for decisions involving both mutually exclusive investments and financial portfo-
lios of investments with normally distributed returns. Their analysis shows that
these optimal solutions meet the conditions that are described by Fishburn’s def-
initions of stochastic dominance of admissible choices. Bouyssou, Marchant and
Pirlot (A Conjoint Measurement Approach to the Discrete Suengo Integral) extend
Fishburn’s work on subjective expected utility in multiple criteria decision making
by showing conditions under which a noncompensatory multiple-criteria decision-
making model is equivalent to a model that is based on the discrete Suengo inte-
gral. Slinko (Additive Representability of Finite Measurement Structures) presents
a survey of recent developments that are related to Fishburn’s work on the addi-
tive representation of finite measurement structures, work relating closely to the
classical measurement-theoretic topic of additive conjoint measurement. The paper
highlights the remaining open problems that Fishburn formulated in this area.

Part 2 mirrors Fishburn’s interest in voting and social-choice theory that he devel-
oped in two major books: The Theory of Social Choice [Fishburn (1973b)] and Ap-
proval Voting [Brams and Fishburn (1983)]. He has made pioneering contributions
to the understanding of social choice functions, which includes work on anonymity
conditions, paradoxes of preferential voting, and Borda’s rule and Condorcet’s prin-
ciple. His research on scoring-rule sensitivity and scoring vectors is also significant.
Fishburn has been a leader in developing and analyzing new voting rules, with his
analysis of approval voting being an important case in point. His contributions to
the comparison of voting methods are also noteworthy, including work on two-
stage voting systems, single transferable vote, and positional voting rules. He has
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also undertaken important studies of majority choice, including finding conditions
on preferences that guarantee a simple majority winner and a location theorem for
single-peaked preferences. He has also studied Condorcet proportions and probabil-
ities, social-choice lotteries, and impossibility theorems. Finally, his work includes
beautiful results on social welfare and equity, including equity axioms for public
risks and fair-cost allocation schemes.

Four contributions in this part are connected to Fishburn’s work on identifying
conditions that require the existence of a Condorcet winner in an election and the as-
sociated probabilities of observing events in election outcomes. Monjardet (Acyclic
Domains of Linear Orders) presents a survey of work that has focused on the iden-
tification of domains of voters’ preferences that require an ‘acyclic set’ or transi-
tive majority rule relationship; he develops intriguing connections between some
of these domains. Saari (Condorcet Domains: A Geometric Perspective) addresses
the same topic, taking a geometric approach that offers intuitive insight to the prob-
lem. Gehrlein (Condorcet’s Paradox with Three Candidates) analyzes the probabil-
ity that a Condorcet winner will exist and shows that this probability is quite large
for a small number of candidates when voters have preferences that are at all close
to being mutually coherent (according to any of several possible measures of mu-
tual coherence in group preferences). Feix, Lepelley, Merlin, and Rouet (On the
Probability to Act in the European Union) extend some of Fishburn’s work on prob-
abilities of election outcomes to analyze the probability that the voting rules used
by the European Union will produce deadlock.

Two contributions consider properties of voting rules. Brams and Sanver (Voting
Systems that Combine Approval and Preference) provide an extensive analysis of
two hybrid voting systems that combine approval voting with voting procedures
that require either a complete ranking of candidates or a partial ranking of only the
candidates in the approved subset. Zwicker (Anonymous Voting with Abstention:
Weighted Voting) considers an extension of the standard case of yes-no legislative
voting in which abstention is viewed as being a voter preference position somewhere
between a yes and a no vote. Characterizations are provided in which a specified set
of weighted scores are linked to voter responses of yes, abstain or no.

Two contributions address the general topic of social choice. Campbell and Kelly
(Social Welfare Functions that Satisfy Pareto, Anonymity and Neutrality, but not
IIA: Countably Many Alternatives) extend earlier work that showed that in the pres-
ence of the conditions of Pareto, non-dictatorship, full domain, and transitivity, an
extremely weak independence condition is incompatible with anonymity and neu-
trality for a finite number of alternatives; here they consider the case of countably
many alternatives.

Hopkins and Jones (Bruhat Orders and the Sequential Selection of Indivisible
Items) extend some of Fishburn’s work on fair division by considering the case in
which two players sequentially make selections from a set of indivisible items. Nec-
essary and sufficient conditions are found under which players receive their most
preferred and least preferred outcomes.

Part 3 explores fundamental mathematical constructs that arise in the more ap-
plied work, described in Parts 1 and 2, through the study of binary relations, partial
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orders, graphs and networks, combinatorics, number theory, linear programming,
inequalities, and coding theory. Fishburn’s partial order work includes foundational
introductions to the theory of partial-order dimension, linear extensions of partial
orders, the FKG property, and so on, as well as research on geometric partial orders
such as angle orders and circle orders. Interval orders and semiorders are impor-
tant special classes of partial orders that arise in problems in economics, psychol-
ogy, biology, scheduling, and so on. Fishburn has made both theoretical and applied
contributions to the understanding of such orders, highlighted in his book, Interval
Graphs and Interval Orders [Fishburn (1985)].

Graph theory topics are the subject of a wide variety of Fishburn’s papers. His
research in that area includes important contributions to such topics as niche overlap
graphs (arising in ecology), tolerance graphs (arising in psychology and operations
research), and L(2,1)-colorings (arising in communications) as well as the design
of various kinds of communication and other networks. Combinatorial geometry
involves the study of various configurations, and Fishburn’s work here has included
the study of convex n-gons, planar sets, partial set covering, and a wide variety of
related topics.

In addition, coding problems often can be analyzed using combinatorial and re-
lated algebraic methods. Fishburn’s contributions to a variety of coding problems
have included important results on sequence-based methods for data transmission
and source compression, binary convolutional codes, and related lattice concepts.

Much of Fishburn’s work involves counting, enumeration, and asymptotic behav-
ior of structures, including posets and graphs, but also sequences arising in number
theory, solutions to inequalities, and types of geometries. This work falls at the inter-
face among combinatorics, probability, number theory, and a number of other sub-
disciplines and often intersects ideas of convexity, linear programming, and so on.

Seven contributions tie into Fishburn’s work on posets, graphs, and networks.
There are two different representations for interval orders and semiorders. The basic
definitions of interval orders and semiorders both relate a poset to a set of intervals
on the number line. A second representation describes interval orders as the subset
of posets that do not include a 2+2 configuration; it describes semiorders as the sub-
set of interval orders that do not include a 3 + 1 configuration. Shuchat, Shull and
Trenk (Fractional Weak Discrepancy of Posets and Certain Forbidden Configura-
tions) find the range of possible values of fractional weak discrepancy for the subset
of posets that contain a 3+1 but no 2+2. Isaak (Interval Order Representation via
Shortest Paths) develops an alternative proof of the second representation for inter-
val orders and semiorders by showing that they are special instances of existence
results that are related to the measure of potentials in digraphs. Brown and Langley
(Probe Interval Orders) investigate probe interval graphs that arise in molecular bi-
ology and are obtained with a variation of the model by which interval orders are
determined by intervals on the number line; they also consider restrictions that must
be placed on these intervals such that the resulting probe interval graph is a probe
interval order. Falmagne and Ovchinnikov (Mediatic Graphs) discuss the concept of
mediatic graphs that trace their study to “stochastic token theory” in mathematical
psychology. They show that the sets of all interval orders and semiorders on a finite
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set each can be represented as mediatic graphs. Poljak and Roberts (An Application
of Stahl’s Conjecture About the k-tuple Chromatic Numbers of Knesser Graphs)
analyze the chromatic number in graph coloring problems and apply known results
about Stahl’s Conjecture to answer two open questions about the relation between
the n-tuple chromatic number of a graph and n times the size of the largest clique
in the graph. Hwang and Dou (Optimal Reservation-Scheme Routing for Two-Rate
Wide-sense Nonblocking Three-Stage Clos Networks) study interconnection net-
works that are widely used in data communications and parallel computing. In par-
ticular, they are interested in using these networks for different media to communi-
cate. By using reservation-scheme routing, they show that such networks can require
much less hardware. Sahi (The Harris Inequality for Partially Ordered Algebras)
deals with inequalities concerning increasing functions on a distributive lattice. Par-
tially ordered algebras are associative algebras over the reals with a nonempty subset
closed under addition, multiplication and multiplication by positive real numbers. In
special cases, the results relate to the Harris inequality that arises in percolation on
random graphs and to the more general FKG inequality, both topics on which Fish-
burn has made important contributions.

Three papers tie in to a variety of issues at the intersection among combinatorics,
probability, number theory, and linear programming. Lagarias, Rains and Vanderbei
(The Kruskal Count) analyze a well-known (at least among mathematicians) card
trick that relies on the high likelihood that two processes with different starts (one
chosen by the subject, one by the magician) will converge before the deck runs out,
enabling the latter to appear clairvoyant. The trick is modeled by a Markov chain;
two different value distributions (geometric and uniform) are studied, the second
for the first time; and then the results are compared to MC simulations of a real
deck. Applegate, LeBrun, and Sloane (Descending Dungeons and Iterated Base-
Changing) study the special sequences where each term arises from interpreting the
previous term in a different base. These iterated base changes (dungeons) are dis-
tinguished from iterated exponentiation (or towers). They prove a theorem about
the asymptotic value of the nth term in such a sequence. Shepp (Updating Hardy,
Littlwood and Polya with Linear Programming) discusses ideas dating back to the
famous 1934 book, Inequalities, by the authors named in his title. He studies in-
equalities that can be proven using linear programming or convexity arguments.

No tribute to Peter Fishburn would be complete without saying something about
him as a person. The three of us have collaborated with him over many years on a
variety of topics. Peter is not only conscientious and responsible to a fault, but he
is also a delight to work with, always doing more than his fair share quickly and
efficiently. We marvel at his ability to come up with new ideas, develop extensions
of old ones, and demonstrate linkages–all cheerfully, with no fuss and bother. We
have great admiration for this brilliant scholar, and we take enormous pleasure in
having had the opportunity to work with him on so many exciting projects and to
interact with him as a colleague and a friend.

Piscataway, NJ Steven J. Brams
November 2008 William V. Gehrlein

Fred S. Roberts
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Part I
Utility, Preference, Individual Choice,

Subjective Probability, and Measurement



Utility Theory



Entropy-Related Measures of the Utility
of Gambling

R. Duncan Luce, Anthony J. Marley, and Che Tat Ng

1 Background of Work Reported

1.1 Roles of Peter Fishburn on this topic

The first author has known Peter for a very long time, dating back some 45 years to
when we met at a colloquium he gave at the University of Pennsylvania. After that
our paths crossed fairly often. For example, in the early 1970s, he spent a year at
the Institute for Advanced Study where Luce spent three years until the attempt to
establish a program in scientific social science was abandoned for a more literary
approach favored by the humanists and, surprisingly, the mathematicians then at the
Institute. The second author has learnt a tremendous amount about both substantive
and technical issues from Peter’s work, beginning with Peter’s book “Utility The-
ory for Decision Making” (Fishburn, 1970), which he reviewed for Contemporary
Psychology (see Marley, 1972).

Peter’s volume on interval orders (Fishburn, 1985) was a marvelous development
of various ideas related to the algebra of imperfect discrimination that elaborated the
first author’s initial work on semiorders (Luce, 1956).

Beginning in 1988, Peter made a major contribution in his integrative book “Non-
linear Preference and Utility Theory.” And in the first half of the 1990s, Fishburn
and Luce collaborated on three efforts to understand better the rank-dependent gen-
eralizations of expected utility that had attracted considerable notice in the 1980s
(Fishburn & Luce, 1995; Luce & Fishburn, 1991, 1995). It was here that we first
came up with the so-called p-additive form for the utility of joint receipts. All of
that played a major role in Luce’s (2000) attempt to pull together many of the re-
sults about utility, both experimental and theoretical, of the period starting in 1979.
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Institute for Mathematical Behavioral Sciences, University of California, Irvine, CA, USA,
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S.J. Brams et al. (eds.), The Mathematics of Preference, Choice and Order: Essays in Honor 5
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And joint receipts play a key role in our attempt to incorporate a concept of the
utility of gambling into the situation, which is described in this paper.

To our knowledge, Peter directly addressed the issue of the utility of gambling
just once (Fishburn, 1980), where he presented the first, but very restricted, formal
model of it (Sect. 1.2).

So, in sum, we have learned much from Peter and are still tilling grounds that
he was, in very many ways, influential in developing in modern utility theory. This
chapter pays tribute to Peter not by commenting directly on his contributions, but
by summarizing some generalizations found in several articles cited below.

1.2 Utility of Gambling

The founders of “modern” utility theory, Ramsey (1931), von Neumann and
Morgenstern (1947), and, less explicitly, Savage (1954, pp. 13–17) all noted that
their theories could not accommodate the existence of utility of gambling (UofG)
per se. For example Ramsey (1931, p. 172) contended that the method of establish-
ing beliefs in terms of bets is “. . . inexact. . . partly because the person may have a
special eagerness or reluctance to bet, because he either enjoys or dislikes excite-
ment. . . The difficulty is like that of separating two different cooperating forces.”
This 1931 essay was actually dated 1926. Over two decades later von Neumann and
Morgenstern (1947, p. 28) remarked: “Since [our axioms] secure that the necessary
construction can be carried out, concepts like a ‘specific utility of gambling’ cannot
be formulated free of contradiction on this level.” Adjoined is the footnote: “This
may seem to be a paradoxical assertion. But anybody who has seriously tried to
axiomatize that elusive concept, will probably concur with it.”

Furthermore, the sharp partition in these theories of valueless events and valued
consequences is often not the case in reality. Insurance on an airplane trip represents
such a separation, but not all of the events that might occur are valueless in their own
right – for instance, a crash of your flight.

Most theoretical work has ruled out UofG by incorporating in some fashion a ver-
sion of idempotence, namely, that attaching the same consequence x to each chance
event arising from a chance “experiment” is perceived as indifferent to receiving x
with certainty. Savage (1954) called such gambles “constant acts.” That indifference
means that no utility or disutility accrues either to the events themselves or to the
execution of the experiment, as such.

Ignoring both the value of events and the utility associated with uncertainty
and/or risk is a major idealization that has only rarely been questioned or addressed.
Some formal models of UofG appearing in the utility literature focused on the
risky cases1, and typically involved modifications of the expected utility represen-
tation. Conlisk (1993) summarizes them from an economic perspective and Luce
and Marley (2000) from a more psychological one, but with important economic

1 Those for which each of the possible consequences of the gamble occurs with a specified proba-
bility.
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influences. Fishburn (1980) gave the first formal model in which he appended a
UofG term to the expected utility of a risky gamble in such a way that this term
affects the choice between a pure consequence (sure-thing) and a risky gamble, but
does not influence the choice between two risky gambles. He also axiomatized sev-
eral possible forms for the UofG term, including the case where it is constant for
all gambles. Diecidue, Schmidt and Wakker (2004) generalized Fishburn’s formu-
lation, but, in the main, they continued to assume that preferences between risky
gambles agree with expected utility. Bleichrodt and Schmidt (2002) present a re-
lated model, with preferences between risky gambles again agreeing with expected
utility but with different utility functions depending upon whether or not one of the
alternatives is a pure consequence. Luce and Marley (2000) considered uncertain2

gambles, with a UofG term that depends on the events, but not the consequences. In
that model the UofG term can affect the choice between two gambles when they are
based on different events. They also motivate, but do not axiomatize, several pos-
sible forms for the UofG term for binary gambles. Le Menestrel (2001) and Pope
(1995 and earlier papers) offer process models for the utility of gambling. So far as
we know, no one before our work has dealt explicitly with valued uncertain events,
often because the underlying structure has been one of risk.

Meginniss (1976) seems to have been the first author to arrive at, in the context
of risk, a sensible theory incorporating UofG. Until quite recently, his result ap-
pears to have been unknown, ignored, and/or forgotten by utility theorists3, and its
ability to account for many anomalies has not been widely recognized. His result is
that the overall utility of a risky gamble is given by a linear weighted utility term
plus an (information-theoretic) entropy (Shannon, 1948) term dependent only on the
probabilities. His clever proof of the result rested on quite special, unaxiomatized,
representational assumptions. Unaware of Meginniss’ article, Yang and Qiu (2005)
proposed a closely related nonaxiomatized representation involving Shannon’s en-
tropy, explored some of its properties, and applied it to some of the well known
anomalies. We summarize similar explanations of several such anomalies in Sect. 5.

Ng, Luce, and Marley (2008a) generalized Meginniss’ approach in several ways,
fundamentally following his general ideas, whereas Luce, Ng, Marley and Aczél
(2008 a,b) and Ng, Luce, and Marley (2008b) take an axiomatic approach. Specifi-
cally, Luce et al. (2008a), summarized in Sect. 2, treat uncertain gambles and Luce
et al. (2008 b), summarized in Sect. 3, extend those results to risky gambles. Ng et al.
(2008b), summarized in Sect. 4, further extend the results to obtain representations
of the UofG term that involve a weighted value function over events, plus an entropy
term involving the same weights. The resulting representations include the “ratio-
nal” expected utility (EU) and subjective expected utility (SEU) representations as
very special cases, with no UofG term.

Section 5 applies a special case of these representations to several sets of data.
And Sect. 6 summarizes the results reported in this paper and states four major open
problems.

2 Those where the events have no readily agreed upon probabilities.
3 It was brought to our attention in 2004 by our collaborator János Aczél.
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1.3 Formulation of Gambles and Utility Representations

We begin with the general concept of uncertain gambles, then extend the results
to risky gambles and gambles involving valued events. Because we anticipate that
most of our readers are already familiar with standard notations in this domain and
need no more than reminders, we are not fully formal – that can be found in Luce
et al. (2008 a,b).

The set of pure consequences – no risk or uncertainty – is denoted X . Included in
X is a singular element e, called no change from the status quo, whose special prop-
erties are given below. The set of pure consequences is assumed to be closed under
the binary4 commutative and associative operation of joint receipt, ⊕. We postulate
a (preference) ordering, �, over 〈X ,⊕〉 that is assumed to be a weak order that is
strictly increasing in each argument of ⊕. As usual, strict preference is denoted by
� and indifference by ∼. The latter is an equivalence relation. We assume that e is
an identity of ⊕: for all x ∈ X , x⊕ e∼ e⊕ x∼ x. Moreover, X is assumed to satisfy
the structural restriction of solvability, namely, for each x,y, there exists z such that
x∼ y⊕ z. We define x� y := z.

Assume that the axioms of the theory of extensive measurement are satisfied
(Krantz et al., 1971, Chap. 3) leading to a mapping U : X → R such that:

x � y⇔U(x)≥U(y), (1)

U(x⊕ y) = U(x)+U(y). (2)

It follows immediately that U(e) = 0 and that U(x� y) = U(x)−U(y).
Let Ω denote a state space of the chance outcomes from some chance “experi-

ment.” Let (C1, . . .,Ci, . . .,Cn) denote a typical nontrivial, finite partition of Ω, i.e.,
Ci ∩Cj = ∅ if i = j, Ci = ∅, ∪n

i=1Ci = Ω. Unlike Savage (1954) and many subse-
quent treatments, we do not assume a single universal state space; rather we produce
a more versatile model in whichΩ is a variable, as is typical of both concrete exam-
ples of gambles, e.g., alternate modes of travel from A to B, and equally well of the
experimental realizations of gambles in various experiments, e.g., spin of a wheel,
withdrawal of a colored ball from a randomized urn, etc. One can, and airlines do it
all the time, subtract and/or add alternatives to an existing set of flight alternatives.
The versatility is essential to our approach using gamble decompositions.

An uncertain alternative, often called a gamble but with a far broader scope than
ordinary usage, is defined inductively: A first-order one is a mapping g[n] from such
a finite partition into X , a second-order one is a mapping to the union of X and
first-order ones, which are not of first order, etc. We use only these two levels. The
structure 〈X ,⊕,�〉 can be extended to include all gambles and their joint receipts,
G, and we assume that the extended preference order continues to be a weak order,
still called � . And the additive representation over ⊕ also extends in the obvious
way. With no loss of generality, we choose the indices so that the consequences
of the gamble are ordered, i.e., x1 � x2 � . . . � xn, and we assume that gambles
are comonotonic in the sense of ordinary monotonicity so long as the ordering of

4 Inductively, one constructs an algebraic version of commodity bundles of any size.
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consequence is unchanged (Wakker, 1990). We may write a gamble explicitly in
either of two equivalent ways:

g[n] =
(

C1, C2, . . ., Ci, . . ., Cn
x1, x2, . . ., xi, . . ., xn

)
(3)

= (x1,C1;x2,C2; . . .;xi,Ci; . . .;xn,Cn). (4)

We use which ever notation seems more useful at the occasion. Each consequence-
event pair (xi,Ci) is called a branch of the gamble. Thus, a gamble is a collection of
n disjoint branches.

Although gambles are stated in ranked form, we note that such rankings are only
a matter of convenience in stating both some axioms (e.g., comonotonicity) and
some results (e.g., rank dependent representations). In fact, we assume that gambles
differing only in a permutation of the branches are perceived as indifferent.

1.4 Assumptions about Kernel Equivalents and Elements
of Chance

Following Luce and Marley (2000), any gamble for which every consequence is no
change from the status quo, e, i.e., gambles of the form (e,C1;e,C2; . . .;e,Cn), is
called an element of chance. This is simply the realization of a chance “experiment”
with no assignment of consequences to the several events, meaning that the status
quo is maintained, which we denote by e. A trivial example is watching a spin of
a roulette wheel. For any gamble g[n] = (g1,C1;g2,C2; . . .;gn,Cn), where the gi are
first-order gambles, its kernel equivalent, denoted KE(g[n]), is defined to be the pure
consequence solution, which is assumed to exist, to the following indifference

g[n] ∼ KE(g[n])⊕ (e,C1;e,C2; . . .;e,Cn). (5)

Note that, because KE(g[n]) is a pure consequence, the right hand expression in-
volves only one realization of the experiment.

We see that (2) and (5) yield

U(g[n]) = U(KE(g[n]))+U(e,C1;e,C2; . . .;e,Cn). (6)

The utility of an element of chance is a possible measure of the UofG. Our goal
is to discover something about its mathematical form. The first step in doing so
is to weaken the classical assumptions about idempotence: The kernel equivalents
are idempotent (KE-idempotent) if for any gamble, denoted g[n](x), all of whose
consequences are x,

KE(g[n](x))∼ x. (7)

The elements of chance are e−idempotent if

e∼ (e,C1;e,C2; . . .;e,Cn). (8)
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Traditional theories of utility typically assume idempotence or prove it from other
assumptions. We explicitly do not assume e−idempotence and it is not a conse-
quence of our other assumptions.

Suppose that Ci, i = 1, . . .,n, form a partition of a universal event Ω and that C′i
is the same partition but arising from an independent realization of the underlying
experiment. We assume that

(e,C1;e,C2; . . .;e,Cn)∼ (e,C′1;e,C′2; . . .;e,C′n). (9)

This is obviously true if e−idempotence holds, but (9) does not imply
e−idempotence.

Although Luce and Marley (2000) derived a number of properties about such
a decomposition into KEs and elements of chance, they had no principled way of
getting results about the utility of elements of chance, partly because they considered
only binary gambles. We offer one remedy for that incompleteness.

1.5 Probabilities and Implicit Events

It is quite common to treat risky gambles in a fashion parallel to that for uncertain
ones, but instead of providing the event structure, one simply replaces the state Ci
by the probability pi as, for example,

g[n] = (x1, p1; . . .;xi, pi; . . .;xn, pn)

(
n

∑
i=1

pi = 1

)

This is the form commonly invoked in most experiments and in most of the develop-
ments emanating from economics. Nevertheless, to provide a sound basis for such
probabilities, there must be some implicit event structure – the risky gambles have
to be realized in some fashion.

So we first summarize properties and results for event structures, and then spe-
cialize them to risky situations.

2 Key Properties

2.1 Separable Representations of Binary Gambles

For binary gambles, conjoint measurement assumptions are easily stated that lead
to the following (multiplicative) separable, ordering preserving, (1), representation
U∗ over so-called unitary binary gambles in which one consequence is e:

U∗(KE(x,C;e,D)) = U∗(x)WC∪D(C), (10)
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where WC∪D(C) is a subjective weighting of the event C, conditional on the event
C∪D. Because U of (1) and U∗ each preserve the order �, they are strictly monoton-
ically related. Can one find a property linking the two underlying structures leading,
respectively, to order preservation by U and additivity, (2), and to order preser-
vation by U∗ and separability, (10)? To that end we assume simple joint-receipt
decomposability:

( f ⊕g,C;e,D)⊕ (e,C′;e,D′)∼ ( f ,C;e,D)⊕ (g,C′;e,D′), (11)

where the prime simply indicates an independent realization of the “experiment”
underlying the partition (C,D). Then, the result is that there exists κ > 0 such that
U = (U∗)κ and so we have the (multiplicative) separable form

U(KE(x,C;e,D)) = U(x)SC∪D(C) (12)

where SC∪D := W κ
C∪D. The weights SΩ for an event Ω are also involved in the rep-

resentation of UofGs, explicitly for uncertain gambles, implicitly for risky gambles.
Next come two steps: the first extending (12) to unrestricted binary gambles, and

the second extending the representation of binary gambles to general ones.

2.2 Two Alternative Binary Decompositions: Segregation
and Duplex Decomposition

Luce (1997, 2000) has studied two closely related, but distinct, forms for extending
unitary gambles (x,C;e,D) to full binary gambles. The first is segregation:

(x⊕ y,C;y,D)∼ (x,C′;e,D′)⊕ y. (13)

Kahneman and Tversky (1979) invoked segregation during the preliminary editing
phase of their prospect theory. Segregation with the earlier assumptions, where (10)
holds for gains only, leads to: For f � g

U [KE( f ,C;g,D)] = U( f )SC∪D(C)+U(g) [1−SC∪D(C)] . (14)

The alternative decomposition, duplex decomposition, which first appeared in
Slovic (1967) and in Slovic and Lichtenstein (1968), is:

(x,C;y,D)⊕ (e,C′;e,D′)∼ (x,C;e,D)⊕ (e,C′;y,D′). (15)

This with the earlier assumptions, where (10) is for both gains and losses, and results
leads to:

U [KE( f ,C;g,D)] = U( f )SC∪D(C)+U(g)SC∪D(D). (16)
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Note that segregation is significantly more restrictive than duplex decomposition
in that it associates 1−SC∪D(C) to the (g,D) branch whereas duplex decomposition
associates SC∪D(D) with no tie to SC∪D(C).

One empirical study, Cho, Luce and Truong (2002), suggests that some people,
perhaps 75% of them, satisfy one of these properties although that study was con-
ducted under the assumption of that (e,C′;e,D′)∼ e, which, of course, matters only
for duplex decomposition.

2.3 Inductive Properties: Branching and Upper Gamble
Decomposition

We invoke two inductive properties, neither of which has received experimental
evaluation. They are both cases of the reduction of compound gambles in the con-
text of events, not probabilities. Their mathematical role is to reduce the utility
expressions for gambles of order n > 2 to the those for binary gambles, which
were given in Sects. 2.1 and 2.2. In particular, they lead to equations characterizing
the utility of gambling, UofG, terms. The first, called upper gamble decomposition
(UGD), is:

g[n] =
(

C1, C2, . . ., Ci, . . ., Cn
x1, x2, . . ., xi, . . ., xn

)

∼

⎛
⎝C1 , Ω\C1

x1,

(
C2, . . ., Ci, . . ., Cn
x2, . . ., xi, . . ., xn

)
⎞
⎠ . (17)

One sees that if one is willing to consider compound gambles, it is highly rational
in nature, the “bottom lines” being the same.

The second property, branching, is

(
C1, C2, . . ., Ci, . . ., Cn
x1, x2, . . ., xi, . . ., xn

)

∼

⎛
⎜⎝

C1∪C2, C3, . . ., Ci, . . ., Cn(
C1, C2
x1, x2

)
, x3, . . ., xi, . . ., xn,

⎞
⎟⎠ . (18)

This, too, is highly rational.
Note that each property involves a binary gamble, the first with the partition

(C1,Ω\C1) and the second with (C1,C2). Thus, we are able to invoke either (14)
or (16).
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Under these two properties for n = 3, one is able to prove (Luce et al., in press,
a) the choice property5: for events C ⊆ D⊆ E,

SE(C) = SD(C)SE(D). (19)

One can construct a function μ from events to the real numbers such that for all
C ⊆ E, E = ∅,

SE(C) = μ(C)/μ(E). (20)

2.4 Main General Result

Under these assumptions one is able to arrive at a number of representations de-
pending on which decomposition is assumed and on whether or not SΩ is finitely
additive (FA).

A first, important, result is that, under segregation, the representation has to be
p-additive in the sense that for an appropriate choice for the unit of μ , there exists a
constant Δ such that

SΩ(C∪D) = SΩ(C)+SΩ(D)+Δμ(Ω)SΩ(C)SΩ(D). (21)

The weights are finitely additive iff Δ= 0.
Then the resulting representations are summarized in Table 1, which is to be read

as follows: It is the cell wise sum of two 2×2 matrices corresponding, respectively,
to the utility of kernel equivalents and to the utility of gambling terms. The matrix
rows are whether or not SΩ is finitely additive. The columns are by whether segre-
gation or duplex decomposition is assumed. The cell entries are the representations
listed below the table itself.

Table 1 Summary of representations for uncertain gambles∗

Codes: DD = Duplex Decomposition, FA = Finitely Additive,
KE = Kernel Equivalent, Seg = Segregation, UofG = Utility of
Gambling

U(KE) UofG

Seg DD Seg DD
(13) (15)

FA SEU SEU H H
SΩ +

Not FA RDU LWU 0,A H
∗Adapted from Table 1 of Luce, Ng, Marley, and Aczél (2008a),
with kind permission of Springer Science+Business Media.

5 With finitely additive weights, which we do not yet have, Luce (1959) called it the choice axiom.
Here we use a more neutral term.
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where

LWU
(
g[n]

)
:=

n

∑
i=1

U(xi)SΩ(Ci).

SEU(g[n]) := LWU(g[n]) with
n

∑
i=1

SΩ(Ci) = 1.

RDU(g[n]) :=
n

∑
i=1

U(xi) [SΩ(C(i))−SΩ(C(i−1))]

=
n

∑
i=1

U(xi)SΩ(Ci) [1+Δμ(Ω)SΩ(C(i−1))]

(
C(i) :=

i⋃
j=1

Cj

)
,

and when Ω is maximal H = A, a constant; otherwise it is 0.

H(C1, . . .,Cn) := U(e,C1; . . .;e,Cn) = K(Ω)−
n

∑
i=1

K(Ci)SΩ(Ci).

These results are based on theorems reported in Davidson and Ng (1981), Ebanks
(1982), and Ebanks, Kannappan and Ng (1988). The representation SEU + H is
known as generalized subjective expected utility (G-SEU) with H the utility of gam-
bling. The function K that arises in the form of H, the last form listed, is not other-
wise specified. The nonfinitely additive representation under segregation has RDU
as its kernel equivalent and H is a constant A assigned to Ω that is 0 when Ω is
not maximal. As we will see, the results under risk, given in Table 2, are far more
specific.

3 Risky Elements of Chance and An Application

3.1 Risk and Implicit Events

Next, we discuss the more specific forms for the UofG that we have derived in the
case of risky gambles (Luce et al., 2008 b), and later (Sect. 5) summarize the evalu-
ation of one of those forms vis-a-vis available data. As already mentioned, the case
of risk entails an explicit set of probabilities, pi, and a risky gamble is a function
assigning a consequence xi to pi, i = 1, . . .,n. These cases are important because,
first, they are the class of gambles most often postulated by economists, and sec-
ond, more often than not, these cases are studied in laboratory experiments by both
economists and psychologists. Usually in experiments, the events are implicit with
no clear indication as to exactly how the probabilities are to be generated except to
the extent that participants in the experiment are “educated” about how the prob-
abilities might be realized through mechanisms such as spins of a color-coded pie
chart or random draws from an urn of colored balls. In this sense, we might suggest
that there is an “implicit” event space underlying the probability distributions. In
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fact, we now assume that, even when the probabilities are presented explicitly, the
participant postulates an underlying implicit event space. Then, we add assumptions
concerning the linkage between uncertain gambles over the event space and risky
gambles over the probability space that allow us to use our previous results about
the representation of uncertain gambles to obtain representations of risky gambles
with specific entropy-based representations of the elements of chance.

3.2 Probabilities Realized by Implicit Events

Let pn = (p1, p2, . . ., pn) be any nontrivial, complete probability distribution, i.e.,
pi > 0 and ∑n

i=1 pi = 1. We assume, as is standard in the foundations of probability
theory, that in a particular decision making context of gambles with explicitly given
probabilities, the decision maker postulates a fixed, implicit, underlying algebra of
events that is associated with a maximal universal event Ω0 and a probability mea-
sure Pr on that algebra such that there is an ordered partition Cn := (C1,C2, . . .,Cn)
of Ω0, with Ci = ∅, in the algebra, and with6 Pr(Ci|Ω0) = pi, i = 1, . . .,n. This
implicit algebra is assumed to be fixed for the decision making context, e.g., a state
lottery, independent of any particular lotteries that the decision maker may confront.
Of course, there may be another partition Dn = (D1, . . .,Dn) ofΩ0, with Di in the al-
gebra, such that Pr(Di|Ω0) = pi = Pr(Ci|Ω0), i = 1, . . .,n. Our assumptions, below,
overcome this ambiguity.

The risky gamble is presented as g[n] = (x1, p1; . . .;xn, pn). Let � denote the pref-
erence ordering over pure consequences and risky gambles, and assume that a pref-
erence ordering �G exists over the event-based gambles G. We assume that �G
agrees with � over the structure of pure consequences, risky gambles, and their
joint receipt, so for simplicity we drop the subscript G.

We make two observations about the assumption of the existence of an implicit
algebra of events:

First, it is just that, an assumption. It is certainly conceivable that a deci-
sion maker may somehow deal with the probabilities without resorting at all to
an underlying algebra of events, as for example in a binary gamble given as
(x, p;y,1− p) where it is taken for granted that when carried out the decision maker
gets exactly one of x and y.

Second, the assumption of an implicit algebra permits us to invoke the earlier
assumptions about events and the corresponding results. As we shall see, this means
that there are several quite different types of decision makers, which has important
implications for the usual kind of data analysis that averages data over respondents
instead of analyzing each respondent separately.

Now we need the preference ordering over event-based gambles to be compatible
with the preference ordering over the conditional-probability-based risky gambles
in the following sense where we write C(n) = ∪n

i=1Ci, D(m) = ∪m
i=1Di:

6 Usually Pr(Ci|Ω0) is abbreviated to Pr(Ci), but we think it best in this article to keep it explicit.
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(x1,C1; . . .;xn,Cn) � (y1,D1; . . .;ym,Dm)
⇔ (x1,Pr(C1|C(n)); . . .;xn,Pr(Cn|C(n)))

� (y1,Pr(D1|D(m)); . . .;ym,Pr(Dm|D(m))) . (22)

Under the background conditions (but not including segregation or duplex decom-
position) and with (22) and p �→U(e, p;e,1− p) continuous, Luce et al. (2008 b)
show that there is a constant ρ > 0 such that

SΩ(C) = Pr(C|Ω)ρ , (23)

where SΩ is the subjective weighting function in the representation of the uncertain
gambles.

Under the above conditions and those leading to the results summarized in
Table 1 for uncertain gambles, we obtain the representations for risky gambles that
are summarized in Table 2, which is read in a fashion similar to Table 1.
where

EU(g[n]) =
n

∑
i=1

U(xi)pi,

and

I(ρ)(p1, . . ., pn) :=

⎧⎨
⎩
−∑n

i=1 pi log2 pi, ρ = 1

1
21−ρ−1 [∑n

i=1 pρi −1], 0 < ρ = 1
.

The UofG term when ρ = 1 is a constant A times the well-known Shannon (1948)
entropy. The sign of A determines whether UofG is positive or negative and the mag-
nitude of A determines the importance of UofG relative to the expected utility term.
The proof of these results rest upon the mathematical theory of information (en-
tropy) discussed by Aczél and Daróczy (1975). The sum in Table 2 corresponding
to ρ = 1, EU + AI(1), we call entropy-modified expected utility (EM-EU), and the
sum corresponding to ρ = 1 under duplex decomposition, ∑n

i=1 U(xi)pρi +AI(ρ), we
call linear power weighted utility (LPWU), which, clearly, coincides with EM-EU
when ρ = 1. As indicated in the table, the case where segregation holds and ρ = 1
cannot occur under our assumptions.

These results raise an interesting concern about the almost exclusive focus of
many utility theorists on probabilities without any regard to the underlying event
structure. Apparently, that focus can lead to overlooking cases with ρ = 1.

It is striking that we have not arrived at a risky version of RDU, such as cumula-
tive prospect theory, plus a UofG term. This lack invites modifying the assumptions
in some crucial way, in particular by replacing branching by some property, such as
coalescing, satisfied by the kernel equivalent of such a form.

Although purely rational considerations favor segregation and so EM-EU over
duplex decomposition, descriptively those considerations are not compelling and,
as we shall see in Sect. 5, some data reject EM-EU. Other data (Cho, Luce, &
Truong, 2002) strongly suggest that a substantial proportion of respondents are bet-
ter described by duplex decomposition than segregation. In that case, individual
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Table 2 Summary of representations for risky gambles∗

Codes: DD = Duplex Decomposition, FA = Finitely Additive,
KE = Kernel Equivalent, Seg = Segregation, UofG = Utility of
Gambling

U(KE) UofG

Seg DD Seg DD
(13) (15)

S1/ρ
Ω ρ = 1 EU EU I(1) I(1)

is + A×
FA ρ = 1 — ∑U(xi)pρi — I(ρ)

∗Adapted from Table 1 of Luce, Ng, Marley, and Aczél (2008 b),
with kind permission of Springer Science+Business Media.

differences abound, depending on the value of ρ . Therefore, it only makes sense to
look at data on an individual basis without averaging them. Despite that admonition,
most of the available data are for sets of people, not individuals.

3.3 An Application: Short-Term Gambling

Let b = b(g[n]) denote the maximum buying price of the gamble g[n] = (x1,C1;
. . .;xn,Cn), where we have in mind a quick resolution of the uncertainty. Thus,
we are not treating such long-term “gambles” as life insurance, long-term health
disability, and long-term financial investments. Our theory is timeless and so no
financial discounting is involved. The following definition of b is natural (Luce,
2000, and earlier references), where the subjective weights may or may not be fi-
nitely additive:

e∼ (x1�b,C1; . . .;xn�b,Cn).

It is obvious that when one buys a gamble one acquires the gamble with each con-
sequence reduced by the buying price.

In the following, to make clear that the utility and weighting functions belong to
the buyer, who is the gambler, we use the subscript b.

In those cases where SΩ,b is assumed to be finitely additive, as in this subsection,
we know that ∑SΩ,b(Ci) = 1, and so this definition is equivalent to

Ub(b) =
n

∑
i=1

Ub(xi)SΩ,b(Ci)+Hb(C1, . . .,Cn)

= Ub(KE(g[n]))+Hb(C1, . . .,Cn), (24)

which is equivalent to b∼ g[n].
The case of selling prices is a good deal more subtle and we do not take it up

here.
Let us apply this to the issue of commercial gambling. Suppose that the seller

is either a state (lottery) or a casino and the buyer, i.e., a gambler, is an individual.
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Assume, as seems to be the case, that pricing money lotteries by both states and
casinos is based on some factor times the expected rate of return, i.e., s = (1+α)EV,
α > 0. Assuming the special case where the buyer’s utility for money is the identity
function, then (24) yields

b≥ s⇔Ub(b)≥Ub
(
(1+α)EV (g[n])

)
= (1+α)EV (g[n])

⇔Ub(KE(g[n]))+Hb(C1, . . .,Cn)≥ (1+α)EV (g[n])

⇔ KE(g[n])+Hb(C1, . . .,Cn)≥ (1+α)EV (g[n]).

Let us suppose that, except for enjoying gambling, the gambler is fully rational and
identifies the kernel equivalent of the gamble with its expected value:

KE(g[n]) = EV (g[n]).

Then, s/he will gamble if and only if

Hb(C1, . . .,Cn)≥ αEV (g[n]),

namely, whenever the gambler’s utility of gambling exceeds the profit to the seller.
This suggests that the utility of gambling is a strong determinant of behavior, as, of
course, has been widely recognized if not previously modeled so formally.

4 Utility of Gambling with Valued Uncertain Events

The problem to be addressed in this section is motivated by the obvious, but widely
ignored, fact that in many important real-world situations not only do event par-
titions have consequences attached to the events, but some events themselves are
inherently valued by the decision maker. An example is airplane travel in which
some of the chance events, such as the trip being terminated in a crash, are them-
selves of (negative) value. Such a value is independent of any bet, – e.g., insurance
on the flight – that is placed on the trip. Moreover, we know of no principled way
that allows for the separate measurement of the inherent value of events. Nonethe-
less, by a novel conceptual device we are able to use the results of Table 1 to arrive
at the more specific forms given below.

The conceptual device is an ordering �X , which has an additive representation
over joint receipts, and a family O of order extensions of �X to include gambles.
Also, the model presumes, for each and every �∈ O, the formulation of Sects. 1
and 2 and the results summarized in Table 1. A difference arises because the weights
now depend on �, i.e., we have S�,Ω rather than SΩ. We make assumptions that are
sufficient for there to be some σ > 0 such that, for each pair (pn,Cn), there is some
�∈ O for which Sσ�,Ω(Ci) = pi. With these, and other assumptions, Ng, Luce, &
Marley (2008b) show that, for each order �∈ O with additive Sσ�, we can define
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H
(

C1, C2, . . ., Cn
p1, p2, . . ., pn

)
:= H�(C1, . . .,Cn) := U�(e,C1; . . .;e,Cn).

Then, under the assumptions about the family of orders, this family of functions
satisfies the conditions of what is known as inset entropy, introduced by Aczél and
Daróczy and Aczél in 1975 and Kannappen in 1978. In particular, (18) with xi = e,
i = 1, . . .,n, becomes

H
(

C1, C2, . . ., Cn
p1, p2, . . ., pn

)
= H

(
C1∪C2, C3, . . ., Cn
p1 + p2, p3, . . ., pn

)

+H
(

C1, C2
p1

p1+p2

p2
p1+p2

)
,(p1 + p2)1/σ . (25)

Using this, the utility of gambling becomes more specialized than in Table 1.
For both segregation and duplex decomposition with finitely additive SΩ, the

utility of gambling term becomes

n

∑
i=1

[V (Ω)−V (Ci)]S�,Ω(Ci)−A
n

∑
i=1

S�,Ω(Ci) log2 S�,Ω(Ci), (26)

where V maps events to numbers and A is a constant, both in the same units as
U . We call the left term subjective expected value and, of course, the right term is
the subjective Shannon entropy. As with risk, the sign of A determines whether the
subjective entropy is seen as having utility or dis-utility, whereas the magnitude of
A controls its importance relative to the two expectations.

For additive SσΩ where σ = 1, the segregation case is impossible and the duplex
decomposition one yields

V (Ω)−
n

∑
i=1

V (Ci)S�,Ω(Ci)−A

[
1−

n

∑
i=1

S�,Ω(Ci)

]
. (27)

In this case, the term following A is called subjective entropy of degree 1/σ (Havrda
and Charvát, 1967). The role of A is as before.

5 Data: Accommodated and Not Accommodated

In this section we focus mostly on the case of risk and illustrate the relation of EM-
EU to existing data sets, although we do consider one case involving uncertainty
(Sect. 5.2). Details for both the risky and the uncertain cases are presented in Luce
et al. (2008 b). We focus on risk because, in the vast majority of experiments, the
gambles are formulated as risky. Nonetheless, Luce et al. (2008 b) note that the con-
cept of a purely risky gamble may be a fiction of the theorist and experimentalist in
the sense that it need not really exist for a respondent. For instance, as discussed in
Sect. 3.1, the experimenter often “educates” respondents about specific event spaces
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whereby the probabilities stated in the risky gambles might be realized. A respon-
dent may have superstitions about the qualities, such as colors or numbers, used to
identify such events and that may well affect behavior. Also, in naturalistic settings,
people are confronted with valued events, such as a standard blood test, where the
unpleasantness of the test is independent of the probability of the possible test re-
sults, and the above comments suggest that they may also impute values to events
that an experimenter considers valueless. We are not aware of experimental studies
of gambles, with human respondents, that explicitly involve valued events, nor have
we thought through what impact imputing values to valueless events has for data
analysis.

A number of “paradoxes” have been raised over the years, each of which casts
doubt on the descriptive adequacy of progressively more general theories. The oldest
and most famous, the St. Petersburg paradox, questioned the descriptive adequacy
of expected value (EV); the Allais paradox questioned expected utility (EU); and
the Ellsberg paradox questioned SEU. More recently Michael Birnbaum in collab-
oration with several others has explored a series of “independence” properties (for
a summary and references, see Marley & Luce, 2005) that have cast considerable
doubt on rank-dependent utility (RDU) — including, of course, cumulative prospect
theory, SEU, and EU. The vast majority of these data are for the risky case, and Luce
et al. (2008 b) show that EM-EU can handle many, but by no means all, of the em-
pirical results. Here we summarize the results implied by EM-EU for the Allais
paradox and the independence conditions, all situations of risk. For the Ellsberg
paradox, which is based in part on uncertain events, we turn to the special case of
G-SEU, given below as (29), where H is the subjective Shannon entropy. One can
view this as a specialization of the finite additive cases of either Table 1 or of the
representation (26) for which the value function V is a constant.

Two basic principles are useful in deriving the properties of EM-EU and in com-
paring them with those of EU and various data.7 First, the properties of EM-EU
agree with those of EU when either A = 0 or when the Shannon entropy terms I(1)

in the various gambles under consideration are related in specific ways (some of
which we illustrate below). Second, the properties of EM-EU are likely to differ
from those of EU when A = 0 and the Shannon entropy terms I(1) in the various
gambles under consideration are not equal and do not “cancel” in appropriate ways.
We illustrate these principles with the Allais paradox, the Ellsberg paradox and one
of Birnbaum’s “independence” conditions.

As already mentioned, in the remainder of this section we develop most of the
arguments for EM-EU, i.e., for

U(g[n]) = EU
(
g[n]

)
+AI(1)(p1, . . ., pn), (28)

where I(1) is the Shannon (1948) entropy. This case arises under both segregation
and duplex decomposition.

7 Parallel principles apply to G-SEU, especially the special case that we apply to the Ellsberg
paradox.
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And, when gambles are based on uncertain events, – i.e., they are presented in
terms of events Ci rather than probabilities pi – we consider the following very
special, but important, case of G-SEU:

U(g[n]) = SEU
(
g[n]

)
−A

n

∑
i=1

SΩ(Ci) log2 SΩ(Ci), (29)

where the UofG term is the Shannon (1948) entropy of the subjective probabilities.

5.1 The Allais Paradox

The classic example of the Allais paradox arises when an individual has the follow-
ing pair of preferences (where M means million):

$1M � ($5M,0.10;$1M,0.89;$0,0.01),
($5M,0.10;$0,0.90)� ($1M,0.11;$0,0.89),

a pattern of choices that is shown easily to violate EU. However, note that each
gamble is based on a different probability distribution, which means that the entropy
terms do not in general “cancel” when A = 0. In fact, Luce et al. (2008 b) show
that the above preference pattern is compatible with EM-EU for a sufficiently large
negative A value. Such use of a negative A value makes sense as it corresponds to
an aversion to gambling.

5.2 The Ellsberg Paradox

We now provide an explanation of the Ellsberg paradox in terms of the entropy-
modified form of SEU given in (29).

The Ellsberg (1961) paradox in coalesced8 form is of the following form with
the choices between f vs. g and f ′ vs. g′ where9

f = (x,R;0,G∪Y )≡ (x, p;0,1− p)
g = (x,G;0,R∪Y )
f ′ = (x,R∪Y ;0,G)
g′ = (x,G∪Y ;0,R)≡ (x,1− p;0, p)

8 If there are two (or more) branches (x,C), (x,D) in a gamble, with the common consequence x,
then their coalesced form replaces the two by the single branch (x,C∪D). If the gambles are pre-
sented in uncoalesced form, then the following explanation of the paradox requires the additional
assumption that the participants convert the gambles to their coalesced forms.
9 The event notation R,G,Y arose from the interpretation of the chance experiment being a draw
from an urn with red, green, and yellow balls.
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with x� e. Note that the probability of G, and so of Y , is not specified beyond being
bounded to the interval (0,1− p). In the classic example, where Pr(R) = p = 1/3
and Pr(G∪Y ) = 1− p = 2/3, people typically pick f over g and g′ over f ′. It is
checked easily that this pattern of choices is incompatible with SEU.

Paralleling the reasoning for the Allais paradox, note that the gambles f and g
are based on different partitions of the events, as are f ′ and g′. This suggests that the
entropy terms given by the entropy-modified form of SEU, (29), do not in general
“cancel” when A = 0. In fact, Luce et al. (2008 b) show that the above prefer-
ence pattern is compatible with (29) provided that, in (29), the Shannon entropy
I(1)(SΩ(R),1− SΩ(R)) = I(1)(SΩ(G),1− SΩ(G)) and A is sufficiently large, either
positively or negatively.

5.3 Independence Properties

Consider n = 3, (p1, p2,r) and (q1,q2,r) arbitrary nontrivial complete probability
distributions, and consequences x1,y1,x2,y2,z,z′ with y1 � x1 � x2 � y2 � e and
y2 � z� e, y2 � z′ � e. Then branch independence of type10 (3,3)2 states that:

f[3] ∼ (x1, p1;x2, p2;z,r) � (y1,q1;y2,q2;z,r)∼ g[3] (30)

iff
f ′[3] ∼ (x1, p1;x2, p2;z′,r) � (y1,q1;y2,q2;z′,r)∼ g′[3]. (31)

Note that, under EM-EU, the above gambles are such that

EU( f[3])−EU(g[3]) = U(x1)p1 +U(x2)p2−U(y1)q1−U(y2)q2

= EU( f ′[3])−EU(g′[3]). (32)

Now, it is routine to show that, under EM-EU, (32) is sufficient for branch indepen-
dence of type (3,3)2 to hold, i.e., (30) iff (31). In fact, all cases of branch indepen-
dence when n = 3 reduce to such a condition, and hence EM-EU predicts that they
all hold, contrary to some data.

Applying similar arguments to other independence conditions, Luce et al.
(2008b) show that EM-EU accommodates various, but by no means all, of the
data obtained in tests of independence conditions not leading to simple cancellation
of the UofG terms.

10 The notation (3,3)2 indicates that the consequence z (respectively, z′) is the third consequence
of the ranked gamble.
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6 Conclusions

The major results, which are formally stated as theorems with proofs in our cited
papers, are the four representations found in Table 1 for uncertain gambles and the
three in Table 2 for risky ones. Those of Table 2 are, essentially, the same ones that
Meginniss (1976) first discovered in his long ignored paper. The difference is that we
have found an axiomatic basis for the results whereas he began by assuming a repre-
sentation of the form U(g[n]) =∑n

i=1 f (U(xi), pi), and that the common function f is
differentiable. In the proof he invoked, with little comment, what amounts to GDU.
His proof is far simpler and briefer than ours, but we feel it is less illuminating.

By using a conceptual construct of an (infinite) family O of order extensions of
�X , plus other assumptions, we were able to develop, for each order extension, a
representation of the UofG term as a subjectively weighted value of events plus a
subjective entropy term involving the same weights.

Four major problems are worth mentioning that are unresolved here. First, the
case where utility is p-additive rather than additive, i.e., U(x⊕ y) = U(x)+U(y)+
δU(x)U(y), is of considerable interest because the impact of the elements of chance
is amplified by the utility of the kernel equivalents:

U(g[n]) = U(KE(g[n]))+U(e,C1; . . .;e,Cn)
[
1+δU(KE(g[n]))

]
.

Ng, Luce, and Marley (2008c, submitted) obtains a very nice representation in
the uncertain case for segregation but obtains essentially nothing interesting un-
der duplex decomposition. Second, we need a fuller understanding of why RDU
(including, of course, cumulative prospect theory), which has been so popular, ad-
mits only a very restricted UofG for uncertain gambles and simply does not arise
for risky ones. To have a richer utility of gambling environment that permits rank
dependent utility with utility of gambling must require some changes in the axioms.

Third, the conceptual device invoked in Sect. 4 cannot be empirically realized
and tested because it applies to infinitely many orderings satisfying the same ax-
ioms and agreeing over 〈X ,⊕〉, whereas an individual generates just one. To make
the conceptual device seem a bit more concrete, some people are comfortable in
imagining an infinite family of individuals whose preference orders differ only due
to differences in their assignment of probability distributions to event partitions.
Others find it easier to think of a single individual whose extension is simply un-
known to a theorist who must be prepared to model whatever extension happens to
be true. The open problem is find some testable way to arrive at those results where
the utility of a gamble was partitioned into the sum of three subjective terms: a lin-
ear weighted utility of consequences plus a linear weighted value of events per se
plus an entropy term.

Fourth, although we have invoked the rank ordering induced by the consequences
of a gamble, we have also assumed invariance under permutations and so that con-
straint actually imposed no real limitation. It was done merely as a convenience
in stating certain assumptions and theorems. However, some of Birnbaum’s data
strongly suggest that whether an event underlies the best or the worst consequence



24 R.D. Luce et al.

actually matters greatly in how it is evaluated. Thus, a major open problem is to
work out a theory for the inherently ordered case. One possibility is to try to arrive
at weighted entropy,

n

∑
i=1

aiSΩ(Ci) logSΩ(Ci),

which has been mentioned in the literature. But this is certainly not the only
possibility.
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Altruistic Utility Functions for Joint Decisions

David E. Bell and Ralph L. Keeney

1 Introduction

All of us make decisions that are not entirely self-centered; we voluntarily anticipate
what we think to be the preferences of others and incorporate them into our decision
making. We do this, not because of legal requirements or social norms, but because
we are altruistic; we care intrinsically about the welfare of others. In this paper, we
illustrate for these types of decisions how confusion may arise because the distinc-
tion between our personal (egotistical) preferences and our altruistic concerns is not
carefully distinguished. We first define the distinction between personal and altru-
istic preferences, and then show how to use both of these kinds of preferences in
prescriptive decision making methodologies.

We confine ourselves to the class of problems where two or more people must
select a common course of action. The following story illustrates a simple exam-
ple. Joan and Dan have decided to have dinner and must choose a restaurant. They
quickly specify three possibilities: a Brazilian restaurant, a French restaurant, and a
Thai restaurant. Joan is thoughtful and wishes to choose a restaurant that Dan will
really like. Similarly, Dan wants to choose a restaurant that pleases Joan. So what
happens? Joan, thinking about what might be Dan’s preferences, decides that Dan
would like the French restaurant, followed by the Brazilian restaurant, followed by
the Thai restaurant. Dan, thinking about what Joan would like, also decides that the
French restaurant would be best, followed by the Brazilian restaurant, and then the
Thai restaurant. Joan speaks first and suggests the French restaurant. Dan, thinking
that this is what Joan wants, agrees and off they go. During dinner discussion, Joan
mentions that she would have preferred the Thai restaurant to the French restau-
rant. Somewhat surprised, Dan then says that he also would have preferred the Thai
restaurant. They wonder how this state of affairs came about.

R.L. Keeney (�)
Fuqua School of Business, Duke University, Durham, NC 27708, USA
e-mail: Keeney@duke.edu

S.J. Brams et al. (eds.), The Mathematics of Preference, Choice and Order: Essays in Honor 27
of Peter C. Fishburn, Studies in Choice and Welfare,
c© Springer-Verlag Berlin Heidelberg 2009



28 D.E. Bell and R.L. Keeney

Two compounding errors led to an inferior choice. First, each person guessed at
the others preferences. Second, the stated preferences are mistakenly interpreted as
those of the speaker. How could this have been avoided? Clearly both Dan and Joan
could have written down their personal preference order for restaurants, assuming
that they did not care about the other’s preferences, and then compared notes. In our
illustration, this would have led immediately to a mutually satisfactory decision.
Our experience is that even decision analysts are rarely that explicit. What often
happens instead is that through discussion, or generalized experience with the other
person, each person informally updates their own preferences to take account of the
other’s likes and dislikes. There are many ways this informal approach can produce
inadequate solutions.

There are many situations where a group of individuals must collectively choose
among alternatives and where each individual wishes to please the others. Examples
include parents making choices with their children, decisions by boards of directors,
decisions by departments or groups within organizations, decisions by legislative or
regulatory bodies, choices made by families, and decisions among friends. In many
of these cases, parties to the decision will take account of the preferences of the
others, not only for the expediency of arriving at a consensus, but often out of an
altruistic interest in their happiness. An altruistic decision maker will be willing to
forgo some direct personal gain to help others achieve their objectives.

The general problem of combining preferences of individuals into group
preferences is not new. There is a large body of published work on this topic
((Arrow, 1951), (Harsanyi, 1955), (Diamond, 1967), (Sen, 1979), (Broome, 1984),
and many others). Much of the work prior to 50 years ago is summarized in
(Luce & Raiffa, 1957). Since that time, there has been work on risk sharing (e.g.
Raiffa, 1968), group utility functions (e.g. Keeney & Raiffa, 1976), and utility
functions where a seller incorporates the preferences of a buyer (Edgeworth, 1881),
(Raiffa, 1982), (Keeney & Lilien, 1978), and (Keeney & Oliver, 2005). There
has also been work on preference dependencies in multiattribute utility functions
(Fishburn, 1965), (Bell, 1977), (Meyer, 1977), (Keeney, 1981). Several authors
have discussed the adaptation of preferences in a group context (Zizzo, 2005),
(Sobel, 2005), and (Cubitt & Sugden, 1998). Trautmann (2006) proposes a similar
approach to ours, but his proposal is based on the descriptive criterion suggested
by (Fehr & Schmidt, 1999), whereas ours is consistent with standard multiattribute
approaches, and amenable to assessment as we discuss later.

We focus in this paper on one particular type of joint decision. One could think
of this type as altruistic joint decisions, because each of the individuals has a fun-
damental preference for the other individuals being pleased. Section 2 defines an
altruistic joint decision and discusses its relevance. As conceptual distinctions are
extremely important in discussing problems with interpersonal dependence of pref-
erences, Sect. 3 outlines the relevant concepts and terminology used to analyze altru-
istic joint decisions. In Sect. 4, we focus on altruistic joint decisions involving two
individuals and illustrate the main results that collectively characterize a reason-
able set of altruistic utility functions to use in analyzing joint decisions. Section 5
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elaborates on the foundations for altruistic utility functions. Section 6 suggests how
one might assess these utility functions, and Sect. 7 is a discussion of the insights
from and uses of the concepts and results of the paper.

2 Altruistic Joint Decisions

The altruistic joint decisions that we investigate in this paper are characterized by
six properties:

1. A group of individuals have a decision that they must make jointly,
2. The alternatives are exogenously given,
3. All individuals in the group bear the same consequences,
4. Each individual has utilities for the alternatives,
5. Each individual is altruistic about the others; they prefer them to be happy even

at some cost to themselves and,
6. Each person is honest in revealing their preferences.

Property 3 rules out decisions that involve risk sharing or somehow dividing the
consequences among the individuals. With regard to Property 4, the individuals may
have utility functions over the consequences which can be used to derive utilities for
the alternatives. Property 5 is the one that states the altruism assumption. Without
it, we would have the more general situation sometimes referred to as the group
decision problem. Property 6 eliminates the need to worry about strategic gaming;
Property 2 is included to give the additional “safeguard” that individuals do not
introduce irrelevant alternatives to skew the decision making procedures.

It is useful to analyze altruistic joint decisions for many reasons. First, as sug-
gested above, they occur often in the real world. Second, the consequences are fre-
quently important. Poor choices increase the likelihood of a disastrous vacation or
a poor business outcome. Such consequences can contribute to dissolve what was
previously a wonderful group of friends, a terrific marriage, or an exciting and pro-
ductive business relationship. Third, ad hoc choices on altruistic decisions may con-
tribute to poor choices and hence less desirable consequences. The reason this may
occur is because there are sophisticated concepts necessary to take into account in
altruistic joint decisions. Self-centered preferences for consequences can get con-
fused or be confused with altruistic concerns for those same consequences. A little
analysis can help define and distinguish these aspects.

3 Concepts and Terminology

We characterize an altruistic decision as follows: There are J alternatives aj, j =
1, . . . ,J, one of which must be chosen by an altruistic group. The group has N indi-
viduals, referred to as I1, . . ., IN. Each individual Ii has a personal utility function ui
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over the alternatives. This egotistical utility function only incorporates the value of
the alternative directly to the individual and does not include any value to Ii due to
his or her altruistic feelings for the happiness of others. Thus, for each alternative
aj, individual Ii assigns an egotistical utility ui(aj).

Each individual also has what we refer to as an altruistic utility function Ui, i =
1, . . .,N which is the function that describes the preferences the person announces or
acts upon, which takes into account both his or her personal concerns and concerns
for the welfare of the others. For example, I1’s evaluation of alternative aj might be
expressed as U1(u1(aj),U2(aj), . . .,UN(aj)). An example of an individual altruistic
utility function for individual I1 is the additive form

U1
(
u1
(
aj
)
,U2

(
aj
)
, . . . ,UN

(
aj
))

= k1u1
(
aj
)
+

N

∑
i=2

kiUi
(
aj
)
, (1)

where u1 and Ui, i = 1, . . .,N are scaled 0 to 1, k1 > 0 (the person is not totally
altruistic) and the scaling factors k2, . . .,kN are also non-negative to incorporate the
altruism that individual I1 feels for individuals Ii, i = 2, . . .,N.

The group altruistic utility function UG is a utility function that incorporates the
preferences of each of the individuals in the group. In general the arguments in this
utility function can be each individual’s egotistical and/or altruistic utility function.
A possible example is the additive utility function

UG
(
aj
)

=
N

∑
i=1

KiUi
(
aj
)
, (2)

where the scaling factors Ki, i = 1, . . .,N must be positive to incorporate altruism of
each individual for the other individuals.

4 Main Results for Altruistic Decisions

In this section, we present our main analytical results. To focus on the conceptual
ideas, all of the work in this section concerns a joint altruistic decision made by
two individuals. We begin by stating our most important analytical results, though
the assumptions we use for Result 1 are stronger than necessary. In Sect. 5, these
assumptions are weakened. The ideas also extend to altruistic groups of more indi-
viduals as discussed in Sect. 7.

Result 1. An individual’s altruistic utility function should have two attributes which
are the egotistical utility functions of the two individuals. The resulting two-attribute
function, should be multiplicative (or additive) in those attributes. Thus,

U1
(
aj
)

= k1u1
(
aj
)
+k2u2

(
aj
)
+k3u1

(
aj
)

u2
(
aj
)

(3)

and
U2

(
aj
)

= k4u1
(
aj
)
+k5u2

(
aj
)
+k6u1

(
aj
)

u2
(
aj
)
, (4)
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where all utility functions are scaled 0 to 1, all ki scaling factors are positive, and
k1 +k2 +k3 = 1 and k4 +k5 +k6 = 1. The scaling factors indicate the relative impor-
tance of the ranges of consequences possible on the corresponding utility function
as discussed in the assessment Sect. 6.

Argument. As we will discuss in Sect. 5, it might be tempting to think that one per-
son’s altruistic utility function should be a function of the other person’s altruistic
function, but, as we shall see, this leads to problems. We believe that a fundamen-
tal property of altruism is that if individual I1, say, is personally indifferent among
the available alternatives then he or she would wish to select the alternative that
maximizes the other individual’s egotistical utility function. For example, if Dan
personally regards all of the restaurant alternatives as equally preferable, surely he
would wish to select the one that Joan most prefers. One might imagine that if Dan
dislikes the available restaurants, then he might be jealous if Joan is delighted, but
that does not meet our sense of altruism. Similarly if Joan is personally indiffer-
ent among the available restaurants, then surely Dan should feel comfortable se-
lecting his own favorite, especially since he knows Joan is altruistic towards him
(we assume all parties are altruistic). In the language of multiattribute utility, we
have therefore concluded that individual I1’s altruistic utility function should have
the two attributes and each should be utility independent of the other. Thus his al-
truistic utility function should have the form (3), and by symmetry, individual I2’s
should have the form (4).

The factors k1 and k5 are positive as each individual certainly cares about their
own direct consequences. Factors k2 and k4 are positive as both individuals are
altruistic. We argue below that k3 and k6 should at least be non-negative and more
likely are positive.

Suppose individual I1 has a choice between two alternatives, one with (u1,u2) =
(x,y) and the other with (u1,u2) = (x−b,y+c). Hence, I1 must decide if for her the
sacrifice of an amount of utility b is worth the improvement of an amount of utility
c to individual I2. Using her altruistic utility function (3), we see the answer is yes if
U1(x−b,y+c) >U1(x,y) which implies k1(x−b)+k2(y+c)+k3(x−b)(y+c) >
k1x+k2y+k3xy, so

−k1b+k2c+k3 (cx−by−bc) > 0. (5)

Dividing (5) by bc yields

−k1/c+k2/b−k3 +k3 (x/b−y/c) > 0. (6)

If k3 = 0, then this preference is independent of x and y. If k3 > 0, then I1 is relatively
more altruistic when x is high or y is low. We believe this is more in line with
how altruistic people will like to behave than when k3 < 0. Thus, in general, it
seems reasonable to have k3 > 0, so k6 > 0 also by the same argument. It is worth
mentioning that all of our results hold for the cases when k3 = 0 and/or k6 = 0
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though this is not required. It is quite possible that a person’s level of altruism could
vary depending on the actual disparity in egotistical utility each person derives from
a consequence.

Result 2. The group altruistic utility function should be additive over the two argu-
ments of the individual’s altruistic utility functions, so

UG
(
aj
)

= C1U1
(
aj
)

+C2U2
(
aj
)
, (7)

where all utility functions are scaled 0 to 1 and C1 +C2 = 1.

Argument. The utility function UG represents how the pair of individuals should
evaluate joint decisions. It seems reasonable to suppose that if individual I1 is
indifferent among alternatives using U1, then both individuals would be happy
to let the joint decision be consistent with U2. By symmetry the reverse would
be true. Hence UG should be multiplicative or additive in U1 and U2: UG(aj) =
C1U1(aj)+C2U2(aj)+C3U1(aj)U2(aj).

Now we argue that C3 should be zero. Consider two gambles involving lotteries
over the alternatives. Suppose that individual I1 has the same expected altruistic
utility under either gamble. Suppose this is also true for individual I2. Then both
individuals are indifferent between the two gambles so it seems reasonable that UG
should reflect that indifference. As proven in (Harsanyi, 1955) and (Fishburn, 1984),
this only occurs when C3 = 0. If C3 were greater than zero, for example, it would
mean that the group might prefer an alternative with lower values of U1 and U2
in order to achieve more concordance between U1 and U2. But since U1 and U2
already, respectively, incorporate all of I1’s and I2’s altruistic concerns, any further
sacrifice is counter-productive.

The conclusion that C3 = 0, while not obvious, is consistent with the observa-
tion of (Keeney, 1981), namely that when the objectives are fundamental, complete,
and do not overlap, an additive utility function is appropriate. The two individual
altruistic utility functions are fundamental and a complete set in that they consider
all objectives relevant to the decision (e.g. individual I1’s concerns are completely
expressed by U1) and do not overlap. Each individual altruistic utility function
addresses both direct and altruistic preference concerns. It is also consistent with
(Edgeworth, 1881) and (Harsanyi, 1955) who both argued that an altruistic solution
could be determined by maximizing the sum of the affected individual’s utilities.

Result 3. The group altruistic utility function is the multiplicative utility function
with the egotistical utility functions of the individuals as the arguments, so

UG
(
aj
)

= K1u1
(
aj
)

+K2u2
(
aj
)

+K3u1
(
aj
)

u2
(
aj
)
, (8)

where Ki, i = 1,2,3 are positive and K1 +K2 +K3 = 1.

Argument. The argument in this case is a proof using Results 1 and 2. Substituting
(3) and (4) into (7) and dropping the aj’s for clarity yields
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UG = C1 (k1u1 +k2u2 +k3u1u2) +C2 (k4u1 +k5u2 +k6u1u2)
= (C1k1 +C2k4)u1 +(C1k2 +C2k5)u2 + (C1k3 +C2k6)u1u2.

(9)

Equation (9) is (8) with K1 = C1k1 +C2k4, and so on.

The group utility function (8) is not necessarily additive in the individual’s per-
sonal utilities. This is because if the altruism of any member of the group (their
willingness to give up utility to help someone else) depends on their own level of
satisfaction, then the multiplicative term will be present in their individual altruistic
utility function, and therefore in the group function also. The functional form (8)
is mathematically identical to an analysis of the group decision problem (Keeney
and Kirkwood, 1975) that posited a possible concern by the group for equity. In
that development the multiplicative term reflects the desire by the group not to have
disparate outcomes. It is possible for both phenomena to occur at the same time;
someone could be altruistic but also concerned about equity.

5 Personal Utilities are Fundamental to Altruistic Decisions

In Result 1, we made a strong assumption that the arguments in an individual’s
altruistic utility function should be the egotistical utilities of the individuals. We did
this so the important results in Sect. 4, and the logic supporting them would be clear.
Here, from more basic reasoning, we provide support for having egotistical utilities
as arguments in altruistic utility functions.

Result 4. The egotistical utility functions should be the arguments in the altruistic
utility functions.

Argument. We asserted the truth of Result 4 in stating our Result 1. But why is
that the case? It might seem reasonable to think that the altruistic utility function of
individual I1 might depend on hers and on I2’s altruistic utility functions. But that is
circular. For example, if

U1 (U1,U2) = h1U1 +h2U2 +h3U1U2, (10)

where we have deleted the aj’s for clarity, it is evident that h1 = 1 and h2 = h3 = 0
is the only viable solution.

Another way to think about the appropriate attributes for U1 is that it can be a
function of u1 and U2 so individual I1’s altruistic utility function could be repre-
sented by

U1 (u1,U2) = h1u1 +h2U2 +h3u1U2, (11)

and similarly for individual I2,

U2 (U1,u2) = h4U1 +h5u2 +h6U1u2. (12)
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But (11) and (12) together lead to problems of double counting. One way to see this
is by substituting (12) into (11) which yields

U1 (u1,U2) = h1u1 +h2 (h4U1 +h5u2 +h6U1u2) +h3u1 (h4U1 +h5u2 +h6U1u2) .
(13)

Substituting (11) into (13) results in squared terms of u1 if either h3 or h6 is not
zero, and squared terms are unreasonable. The problem stems from the fact that
individual I1, in trying to please individual I2, who is trying to please individual
I1, ends up double counting his own interests. The intent of any utility function is
to maximize its expected value, which is a simple calculation, not to maximize its
square. Hence, h3 and h6 would necessarily have to be zero if (11) and (12) were
reasonable.

Even if h3 = h6 = 0 in (11) and (12), there are still difficulties. Substituting (12)
into (11) yields

U1 (u1,U2) = h1u1 +h2 (h4U1 +h5u2) . (14)

Solving (14) for U1, we find

U1 = (h1u1−h2h5u2)/(1−h2h4) . (15)

As a numeric example suppose that h1 = h4 = 0.2, h2 = h5 = 0.8, and h3 = h6 = 0.
That is, individual I1 is very altruistic and assigns 80% of the weight to the prefer-
ences of individual I2, whereas individual I2 is less altruistic but does assign a 20%
weight to individual I1’s preferences.

Substituting the values for the h’s into (15) we find

U1 =
5

21
u1 +

16
21

u2. (16)

Similar calculations for I2 yield

U2 =
1

21
u1 +

20
21

u2. (17)

Thus, although both individuals agree, in a sense, that 80% of the weight should be
on the preferences of individual I2, the calculations show that the double counting
leads to a different outcome. It is possible that in selecting weights for (10), individ-
ual I1 correctly anticipates the effect of the double counting, but we believe that for
most individuals this would be challenging.

If we consider the group altruistic utility function (7) in this case, any choice
of C1 and C2 necessarily leads to a weighting of individual I1’s personal utility
of less than 20%. We conclude that altruistic utility functions should be based
on individuals’ egotistical utility functions rather than on other altruistic utility
functions.
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6 Assessment Issues

Based on the results in Sect. 4, the group altruistic utility function could be assessed
based on either Result 2 or 3. The best way to make the necessary assessments is
to use Result 2. This requires first assessing the two individuals’ egotistical utility
functions, then both individuals’ altruistic utility functions (3) and (4), and then the
scaling factors C1 and C2 in (7).

The individuals’ egotistical utility functions should be assessed using standard
procedures as outlined in Keeney and Raiffa (1976) and many other sources. There
is nothing special about these utility functions as they are simply utility functions
for an individual concerned with consequences directly to that individual.

Assessing the individuals’ altruistic utility functions are also just individual as-
sessments. Relative weights on the individual egotistical utility functions in (3) and
(4) incorporate two separate issues. One of these is the well-known interpersonal
comparison of utility problem (Luce & Raiffa, 1957) and the other is the altruistic
value to each individual for pleasing each other. To make these assessments requires
understanding the relative desirability of the impacts for each individual of going
from the worst of their alternatives to the best of their alternatives. For instance, if
the two individuals are selecting a restaurant together, the range for individual I1
may be in qualitative terms from a poor restaurant that would be “acceptable food
and pleasant atmosphere” to a best restaurant that would be “good food and pleasant
atmosphere.” For the second individual I2, the range could go from “very unappeal-
ing food and objectionable atmosphere” to “excellent food and perfect atmosphere.”
In such a situation, each individual may decide to place greater weight on I2’s util-
ities as I2 seems to have a much more significant difference in desirability of the
worst and the best of restaurants.

To determine appropriate relative scaling factors (the k’s) for the individuals’
altruistic utility functions given by (3) and (4), each individual should consider the
range of the desirability of the various consequences to each individual as well as
how much weight she wants to place on pleasing the other individual. Consider the
scaling factors k1,k2, and k3 in (3). The best way to assess these factors is to compare
specific alternatives in terms of their egotistical utilities to both individuals I1 and I2
and look for pairs of alternatives that the individual feels are equally desirable. Once
two pairs of such joint consequences described by (u1, u2) are found indifferent,
the individual’s altruistic utility function (3) should equate the utilities of the pairs.
This provides two equations with three unknowns, namely k1,k2, and k3. The fact
that k1 + k2 + k3 = 1 is a third equation. These three equations can be solved to
yield specific values for the three scaling factors. Note that the altruistic function
just assessed is the function the individual would use if he or she were to make the
group decision unilaterally. Put another way, it represents the preferences that this
individual would use if the decision were left up to her.

Assessing C1 and C2 in the group altruistic utility function (7) is the only value
judgment in the assessment process requiring agreement of the two individuals. The
value judgments about C1 and C2 are basically assessments about the relative sig-
nificance of each person to the group. With individuals who have altruistic feelings
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for each other, it seems reasonable to select C1 = C2 = 0.5. That is because all of
the more conceptually difficult value judgments concerning altruism and strength
of preferences are incorporated into each individual altruistic utility function. As a
specific example, suppose individual I1 selected k1 = 0.6 and k2 = 0.4 in her utility
function (3), so k3 = 0. This would mean that she thought her personal utility func-
tion counted 1.5 times as much as I2’s personal utility function. It would not then
seem reasonable to underweight her altruistic preferences relative to those of indi-
vidual I2, with C1 < 0.5, or to overweight them, with C2 > 0.5. Obviously, similar
reasoning holds for individual I2.

7 Insights and Uses

The insights in this paper can be used informally or formally in making joint deci-
sions. Indeed, we would expect that the more common use of the concepts would be
in making decisions informally, but thoughtfully.

One basic finding is that the informal notion of agreement through discussion
and iterated compromise, while intuitively attractive, is fraught with difficulty: even
if the process converges, the compromise solution might not be the appropriate
solution.

Though it may appear to be selfish, it is important for altruistic decision makers
to focus initially on what they know best, their own personal (egotistical) utilities.
These are the utilities the individual has for the direct consequences of an alternative.
Each individual naturally knows much more about his or her own preferences than
about the other individual’s preferences. There is no reason for the guessing effort
to occur in altruistic decisions. Each individual should honestly first express their
own preferences for themselves. Once these are clearly laid out for both individuals
to understand, then any appropriate weighting by each individual to account for the
personal utilities and the altruistic concerns can more effectively occur.

An important insight from this work is that an altruistic utility function should be
over the egotistical utility functions. In particular, a multiplicative utility model is a
general model that can address these concerns for individuals and for joint decisions
of two individuals. The altruistic values that each of the individuals have can be
addressed in assessing the scaling factors in the multiplicative utility function.

So how would one use this theory on a simple decision like Joan and Dan’s
choice of a restaurant? First Joan and Dan should express their personal preferences
for the restaurants to each other. If they agree on their first choice, choose it. If
they disagree, eliminate any dominated alternatives. Then they should discuss their
personal strengths of preference among the remaining contenders, and then jointly
decide based on that information. Either the choice should be obvious or it should
not matter as they are about equally desirable in the joint sense.

Results 2 and 3 together state that the group altruistic utility function is additive
over the two individual’s altruistic utility functions and also multiplicative over those
two individual’s egotistical utility functions. This demonstrates the significance of
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how framing a decision, in this case specifying the objectives explicitly included
in the analysis of a decision, can and should influence the functional form of the
appropriate utility function.

The insights discussed above generalize to joint decisions involving more than
two individuals. Specifically, the multiplicative utility function is an appropriate
formulation for a joint altruistic utility function and the arguments of that function
should be the egotistical utility functions. The altruistic values of each of the individ-
uals are addressed in assessing the scaling factors in that altruistic utility function.
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SSB Preferences: Nonseparable Utilities
or Nonseparable Beliefs

Yutaka Nakamura

1 Introduction

It is around 1980 that new era for decision making under risk/uncertainty began to
uncover numerous alternative representations which generalize the traditional (sub-
jective) expected utility maximization. The initial major contributors include Chew
and MacCrimmon (1979), Chew (1983), Fishburn (1982), Kahneman and Tversky
(1979), Machina (1982), Quiggin (1981), and Schmeidler (1988) (first appeared in
1981 as a discussion paper). One of Fishburn’s works in this area is the discovery
of an axiomatic structure of SSB (skew-symmetric bilinear) preferences in deci-
sion making under risk, and its numerical representation, dubbed SSB utility (see
Fishburn, 1982). Since then, he published a series of papers which study SSB pref-
erences and their numerical representations in various contexts in decision making
under risk/uncertainty (see a survey, Fishburn, 1988b).

This paper further explores representational aspects of SSB preferences particu-
larly in decision making under uncertainty and discusses their necessary and suffi-
cient axiomatizations. Three representational forms will be examined. One of them
is known as an SSA (skew-symmetric additive) representation first explored by
Fishburn, 1984a. The other two are new in the literature, one of which seems to
be a more natural application of SSB utility to decision making under uncertainty
than SSA representation. A characteristic feature of the first two representations is
nonseparability of utilities for decision outcomes. The last one is a generalization of
subjective expected utility (SEU) which replaces subjective probabilities with non-
separable representation of comparative beliefs first discovered by Fishburn (1983a
and b).
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There may be three formulations in the literature, discussed in the next section,
to arrive at axiomatizations of preferences in decision making under uncertainty:
pure-act formulation (Savage’s approach), lottery-act formulation, and act-lottery
formulation. Fishburn’s axiomatizations of SSB preferences are based on the first
two formulations. We adopt the third formulation to develop necessary and sufficient
axiomatizations for the three nonseparable representations when the state space is
finite.

The paper is organized as follows. The next section introduces nonseparable rep-
resentations. In Sect. 3, axiomatic SSB preference structures and their numerical
representations are presented. Section 4 studies necessary and sufficient axioms for
two nonseparable utility representations. Then in Sect. 5, we explores necessary and
sufficient axioms for SEU with nonseparable beliefs. Section 6 concludes the paper.

2 Nonseparable Representations

Let A be the set of all (pure) acts that are functions from the set S of states of the
nature into the set X of outcomes. Each a ∈ X will be identified with constant act a
for which a(s) = a for all s ∈ S. Let � be a binary strict preference relation on A,
read as ‘is strictly preferred to’. The traditional SEU theories yield a utility function
u on X and a probability measure π on an algebra BS of subsets of S such that, for
all a,b ∈ A,

a� b⇐⇒ E(a,u,π) > E(b,u,π),

where E(a,u,π) is expected utility of act a with respect to π . We may have three
equivalent integral expressions of E(a,u,π):

(i) a� b ⇐⇒
∫

S (u(a(s))−u(b(s)))dπ(s) > 0,
(ii) a� b ⇐⇒

∫
S
∫

S (u(a(s))−u(b(t)))dπ(s)dπ(t) > 0,
(iii) a� b ⇐⇒

∫ +∞
−∞ (π({s : u(a(s))≥ τ})−π({s : u(b(s))≥ τ}))dτ > 0.

The aim of this paper is to axiomatically characterize nonseparable general-
izations of the SEU representation. The most general nonseparable representation
yields a real valued bivariate function Ψ on A×A such that, for all a,b ∈ A,

a� b⇐⇒Ψ(a,b) > 0.

We shall examine three specializations of Ψ. Two of them are concerned with the
first and second integral expressions (i) and (ii), where each of the integrands in
(i) and (ii), u(a(s))− u(b(s)) and u(a(s))− u(b(t)), are respectively replaced by
nonseparable utility representations, ψ(a(s),b(s)) and ψ(a(s),b(t)), i.e.,

(I) Ψ(a,b) =
∫

Sψ(a(s),b(s))dπ(s),
(II) Ψ(a,b) =

∫
S
∫

Sψ(a(s),b(t))dπ(s)dπ(t),

where ψ is a skew-symmetric bivariate function on X × X , i.e., for all x,y ∈ X ,
ψ(x,y)+ψ(y,x) = 0. Model (I) is known as an SSA representation. Bilinearity with
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respect to state probabilities is reflected in model (II), but not in model (I). Thus
model (II) may be dubbed an SSB representation under uncertainty. Observe that
model (I) satisfies the Savage’s sure-thing principle, i.e., preferences for acts are
independent of outcomes in some states as long as those outcomes are identical for
acts under consideration. It is well known that this principle is often behaviorally
violated. However, model (II) does not necessarily satisfy the principle.

The last one is concerned with the third integral expression (iii) in which the in-
tegrand π({s : u(a(s))≥ τ})−π({s : u(b(s))≥ τ}) is replaced by the nonseparable
belief representation ρ({s : u(a(s))≥ τ},{s : u(b(s))≥ τ}), i.e.,

(III) Ψ(a,b) =
∫ +∞
−∞ ρ({s : u(a(s))≥ τ},{s : u(b(s))≥ τ})dτ ,

where ρ is a bivariate function on BS×BS that satisfies:

(a) normalization: ρ(S, /0) = 1,
(b) monotonicity: for all A,B ∈ BS,A⊇ B =⇒ ρ(A,B)≥ 0,
(c) skew-symmetry: for all A,B ∈ BS,ρ(A,B) =−ρ(B,A),
(d) conditional additivity: for all A,B ∈ BS,A∩B = /0 =⇒

ρ(A∪B,C)+ρ( /0,C) = ρ(A,C)+ρ(B,C).

Note that when S is finite, conditional additivity implies that, for all A,B ∈ 2S,

ρ(A,B) = ∑
s∈A
∑
t∈B
ρ({s} ,{t})+(1−|B|)∑

s∈A
ρ({s} , /0)+(1−|A|)∑

t∈B
ρ( /0,{t}), (1)

where |A| denotes the number of elements of a set A (see Fishburn 1983b).
Let�∗ be a binary comparative belief judgement onBS, read as “is more probable

than”, which is defined by the preference relation � for pure acts as follows: for all
A,B ∈ BS, A�∗ B ⇐⇒ a� b whenever

a(s) =
{

a if s ∈ A
b otherwise and b(s) =

{
a if s ∈ B
b otherwise

for some a,b ∈ X with a� b. Then models (I) and (II) yield that, for all A,B ∈ BS,
A�∗ B ⇐⇒ π(A) > π(B). On the other hand, model (III) gives that, for all A,B∈BS,

A�∗ B ⇐⇒ ρ(A,B) > 0.

Thus ρ is a nonseparable representation of belief judgments for likelihoods of
events. When ρ is separable, i.e., for all A,B ∈ BS, ρ(A,B) = π(A)−π(B) for some
probability measure π on BS, model (III) is reduced to SEU model.

There are many axiomatizations of SEU models (see a survey Fishburn, 1981).
In Savage’s (pure-act) formulation, preferences for pure acts in A are axiomatized
to arrive at desired representations. On the other hand, in lottery-act and act-lottery
formulations, we respectively enlarge X andA by randomization. A gamble on a set
Y is a nonnegative real valued function f on Y for which{ f (y) : y ∈ Y and f (y) > 0}
is finite and ∑y f (y) = 1. Each f (y) is interpreted as (objectively known) probability
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number with which y obtains. Let G(Y ) denote the set of all gambles on Y . In lottery-
act formulation, we consider preferences for lottery-acts that map S into G(X). Thus
the set of pure-acts is enlarged by changing ‘internal’ structure of pure-acts, that is,
change from the set of pure-outcomes to the set of randomized outcomes. In act-
lottery formulation, we consider preferences for gambles in G(A), i.e., the set of all
randomized pure-acts. This means no alteration of internal structure of pure-acts.
This point seems to be a conceptual advantage of act-lottery formulation.

Model (I) was axiomatized in various contexts (see Fishburn 1984a, 1988a;
Fishburn & La Valle 1987a and b; Nakamura, 1998). Model (II) is new in the liter-
ature. When |X | = 2, Fishburn (1983a and b) provided two axiomatizations for the
existence of ρ in model (III) under act-lottery formulation and pure-act formulation.
Nakamura (1997) axiomatized a slightly more general representation of model (III)
under pure-act formulation.

3 SSB Preferences

We adopt act-lottery formulation to develop necessary and sufficient conditions
for the nonseparable representations (I), (II), and (III) when S is finite. Let S =
{s1, . . . ,sn}. Then the set A of all acts can be identified with the n-Cartesian prod-
uct of X , i.e., Xn = X ×·· ·×X (n times). Elements of Xn will be denoted by bold
faced small letters, x,y,z, and so forth. The i-component of x is written by xi, so
x = (x1, . . . ,xn), where each xi is the consequence of act x when state si is true.
Gambles in G(Xn) will be denoted by bold faced capital letters, P,Q,R and so forth.
For P ∈ G(Xn), let Pi denote the marginal probability distribution on i-component,
i.e., for all a ∈ X ,

Pi(a) =∑
{

P(x) : xi = a and x ∈ Xn} .

Each x ∈ Xn is identified with gamble P in G(Xn) for which P(x) = 1. For
P,Q ∈ G(Xn), the convex combination of P and Q with respect to probability
number λ , denoted 〈P,λ ,Q〉, is a gamble that yields outcome x with probability
λP(x)+(1−λ )Q(x) for all x∈Xn. The compound gamble of m gambles P1, . . . ,Pm
with equal probabilities is denoted by 〈P1, . . . ,Pm〉. In particular, 〈P,Q〉 is tanta-
mount to

〈
P, 1

2 ,Q
〉
.

We shall consider a binary preference relation � on G(Xn). Two binary relations
∼ and� on G(Xn) are defined as usual, i.e., P∼Q if ¬(P� Q ) and ¬(Q� P), and
P� Q if¬(Q� P). We say that a skew-symmetric functionΦ on Xn×Xn bilinearly
represents � if, for all P,Q ∈ G(Xn),

P� Q ⇐⇒ ∑
x
∑
y

P(x)Q(y)Φ(x,y) > 0,

where skew-symmetry means that Φ(x,y) = −Φ(y,x) for all x,y ∈Xn. We extend
the domain of Φ to G(Xn)×G(Xn) by
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Φ(P,Q) =∑
x
∑
y

P(x)Q(y)Φ(x,y)

for all P,Q ∈ G(Xn), so that Φ on G(Xn) × G(Xn) is skew-symmetric (i.e.,
Φ(P,Q) =−Φ(Q,P) for all P,Q ∈ G(Xn)) and bilinear (i.e.,

Φ(〈P,λ ,Q〉 ,R) = λΦ(P,R)+(1−λ )Φ(P,R),
Φ(R,〈P,λ ,Q〉) = λΦ(R,P)+(1−λ )Φ(R,Q)

for all P,Q,R ∈ G(Xn) and all 0 < λ < 1). Φ on G(Xn)×G(Xn) thus defined is
known as an SSB utility.

We say that � on G(Xn) is an SSB preference relation if the following three
axioms hold, which are understood as applying to all P,Q,R ∈ G(Xn) and all 0 <
λ < 1,

Axiom A1 (Continuity). If P�QandQ�R, thenQ∼〈P,α,R〉 forsome0 <α < 1.

Axiom A2 (Convexity). If P � R and Q � R, then 〈P,λ ,Q〉 � R; if R � P and
R� Q, then R� 〈P,λ ,Q〉; if P∼ R and Q∼ R, then 〈P,λ ,Q〉 ∼ R.

Axiom A3 (Symmetry). If P� Q, Q� R, and Q∼ 〈P,R〉, then

〈P,Q〉 ∼ 〈P,λ ,R〉 ⇐⇒ 〈Q,R〉 ∼ 〈R,λ ,P〉 .

The representational implication of axioms A1–A3 is given by the following propo-
sition (see Fishburn, 1982):

Proposition 1. � on G(Xn) is an SSB preference relation if and only if there is a
skew-symmetric functionΦ on Xn×Xn which bilinearly represents�. Furthermore,
Φ is unique up to a multiplicative transformation by positive constants.

Further generalizations of the proposition are found in (Fishburn & Nakamura 1991;
Nakamura 1990, 2001).

We shall write P ≈ Q when Pi = Qi for i = 1, . . . ,n. In what follows, we shall
require the SSB preferences to satisfy that all gambles in G(Xn) that yield identical
marginal probability distribution on each component are mutually indifferent. This
condition, which is necessary for models (I)–(III) under act-lottery formulation, is
stated in the following axiom, understood as applying to all P,Q ∈ G(Xn).

Axiom A4 (Marginality–Equivalence). If P≈ Q, then P∼ Q.

In multiattributed decision problem, however, notice that this axiom is generally
considered to be a restrictive assumption, where the i-th component xi of act x is
regarded as attribute i’s level of decision alternative x.

Although Φ in Proposition 1 is a multivariate function on X2n, marginality-
equivalence further decomposes Φ into sum of several bivariate functions on X2

and univariate functions on X , dubbed here a conditional additive decomposition. To
represent the decomposition, we need the following notations. Let N = {1, . . . ,n}.
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A partition of N is a collection of mutually disjoint subsets of N whose union equals
N. When {A1, . . . ,Am} is a partition of N, we shall allow some of A1, . . . ,Am to be
empty. When a1, . . . ,am ∈ X and {A1, . . . ,Am} is a partition of N, let a1

A1
· · ·am

Am
de-

note act x ∈ Xn for which, for i = 1, . . . ,n and k = 1, . . . ,m, xi = ak if i ∈ Ak. Given
x ∈ Xn, a ∈ X , and i ∈ N, we shall let x{i}a(i) denote a vector y ∈ Xn for which, for
k = 1, . . . ,n,

yk =
{

xi if k = i,
a otherwise,

and let aN denote a constant act x ∈ Xn for which xk = a for k = 1, . . . ,n. Note that
x{i}a(i) is the same as xi

{i}a{i}c , where {i}c = N \{i}, the complement of N.
The conditionally additive decomposition of Φ in proposition 1 is given by the

following proposition (see Fishburn, 1984b).

Proposition 2. Let Φ be a skew-symmetric function on Xn×Xn which bilinearly
represents � on G(Xn). Axiom A4 holds if and only if, for all x,y ∈ Xn and all
a ∈ X,

Φ(x,y) =∑
i, j
Φ(x{i}a(i),y{ j}a( j))− (n−1)∑

i
(Φ(x{i}a(i),aN)−Φ(y{i}a(i),aN)).

Fixing a ∈ X in the proposition, we see that Φ is additively decomposed into bivari-
ate functions Φ(x{i}a(i),y{ j}a( j)) on X ×X and univariate functions Φ(x{i}a(i),aN)
on X .

When X = {a,b} and aN � bN , Proposition 2 gives that, for all A,B⊆ N,

Φ(aAbAc ,aBbBc) =∑
i∈A
∑
j∈B
Φ(a{i}b(i),a{ j}b( j))

+(1−|B|)∑
i∈A
Φ(a{i}b(i),bN)+(1−|A|)∑

j∈B
Φ(bN ,a{ j}b( j))

(2)

This is equivalent to (1) by defining ρ(A,B) = Φ(aAbAc ,aBbBc) for all A,B ⊆ N.
Also, for all A,B⊆ N,

A�∗ B ⇐⇒ ρ(A,B) > 0.

We see that ρ satisfies skew-symmetry (c) and conditional additivity (d). By the
uniqueness of Φ, we can assume that ρ(N, /0) = 1, so normalization (a) is satisfied.
If a{i}b(i) � bN for i = 1, . . . ,n, then ρ thus defined satisfies monotonicity (b).

Given a subset Y of Xn, we say that � on G(Y ) is independent if, for all
P,Q,R ∈ G(Y ), 〈P,R〉 ∼ 〈Q,R〉 whenever P∼ Q. The representational implication
of independent� on G(Y ) is given by the following proposition (see Fishburn, 1982
for the proof).

Proposition 3. Let Y ⊆ Xn and Φ be a skew-symmetric function on Xn×Xn which
bilinearly represents� on G(Xn). Then� on G(Y ) is independent if and only if, for
all x,y,z ∈ Y , Φ(x,y)+Φ(y,z)+Φ(z,x) = 0.

Fixing z ∈ Y in the proposition, we obtain an additive decomposition of Φ on
Y ×Y , i.e., for all x,y ∈ Y , Φ(x,y) = u(x)−u(y), where u(·) =Φ(·,z).
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4 Axioms for Nonseparable Utilities

Throughout the rest of the paper, let Φ be a skew-symmetric function on Xn×Xn

which bilinearly represents marginality-equivalent� on G(Xn). We shall fix a0 ∈ X ,
so Proposition 2 yields that, for all x,y ∈Xn,

Φ(x,y) =∑
i, j
Φ(x{i}a0

(i),y{ j}a
0
( j))− (n−1)∑

i

(
Φ(x{i}a0

(i),a
0
N)−Φ(y{i}a

0
(i),a

0
N)
)

.

(3)

Necessary and sufficient axioms for models (I) and (II) will be discussed in this
section and those for model (III) will appear in the next section. A key axiom is
domain-restricted independence which says that � on G(Y ) is independent for any
subsets Y of Xn that are appropriately chosen for each model.

4.1 SSA Structures

We show necessary and sufficient axioms for model (I), which is stated in our frame-
work as follows: there exist a skew-symmetric function φ on X×X and a probability
vector (π1, . . . ,πn) ∈ R

n such that, for all x,y ∈ Xn,

Φ(x,y) =∑
i
πiφ(xi,yi),

where πi ≥ 0 for i = 1, . . . ,n and ∑iπi = 1.
The following axiom applies to all a,b,c ∈ X and all distinct i, j ∈ N.

Axiom B1 (Domain-restricted Independence).� on G
({

a{i}c(i),b{ j}c( j),cN
})

is
independent.

The representational implication of axiom B1 is given as follows.

Theorem 1. Axiom B1 holds if and only if there exist n skew-symmetric functions
φ1, . . . ,φn on X × X such that, for all x,y ∈ Xn, Φ(x,y) = ∑i φi(xi,yi). Further-
more, φi’s are unique up to a multiplicative transformations by common positive
constants.

Proof. The necessity of B1 easily follows. We show its sufficiency. Suppose axiom
B1 holds. Since � on G

({
x{i}a0

(i),y{ j}a
0
( j),a

0
N

})
is independent for all x,y ∈ Xn, it

follows from Proposition 3 that

Φ(x{i}a0
(i),y{ j}a

0
( j)) =Φ(x{i}a0

(i),a
0
N)+Φ(a0

N ,y{ j}a
0
( j)).
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We then substitute this additive decomposition for (3) and get

Φ(x,y) =∑
i
Φ(x{i}a0

(i),y{i}a
0
(i))+∑

i = j

(
Φ(x{i}a0

(i),a
0
N)+Φ(a0

N ,y{ j}a
0
( j))

)

− (n−1)∑
i

(
Φ(x{i}a0

(i),a
0
N)−Φ(y{i}a

0
(i),a

0
N)
)

=∑
i
Φ(x{i}a0

(i),y{i}a
0
(i)).

Thus defining n skew-symmetric functions φi on X × X by φi(a,b) =
Φ(a{i}a0

(i),b{i} a0
(i)) for i = 1, . . . ,n, we obtain the desired representation. �

Given gambles P1, . . . ,Pn in G(X), let (P1, . . . ,Pn) denote gamble Q in G(Xn) for
which Q(x) = P1(x1)×·· ·×Pn(xn) for all x∈ Xn. Thus Qi = Pi for i = 1, . . . ,n. Each
a ∈ X is identified with gamble P in G(X) for which P(a) = 1. When Pi = P and
P j = a for j = i, we shall write (P{i},a(i)) in place of (a, . . . ,a,P,a, . . . ,a) whenever
P is located at i-th position. We say that i ∈ N is null if (P{i},a(i)) ∼ (Q{i},a(i)) for
all P,Q ∈ G(X) and all a ∈ X .

The following axiom, which applies to all P,Q ∈ G(X) and all a ∈ X , says that
preferences for marginal probability distributions are independent of the state in
which those distributions are obtained whenever outcomes in other states are iden-
tical.

Axiom B2 (Interstate Consistency). If i, j ∈ N are not null, then (P{i},a(i)) �
(Q{i},a(i)) iff (P{ j},a( j))� (Q{ j},a( j)).

Since the underlying outcome space X is the same under all states, this axiom seems
to be plausible unless ex post evaluation of outcomes is state-dependent.

Model (I) is completely characterized by axioms B1 and B2 as follows.

Theorem 2. Axiom B1 and B2 hold if and only if model (I) holds.

Proof. Necessity of axioms B1 and B2 is trivial. We show their sufficiency. Suppose
axioms B1 and B2 hold. Then by Theorem 1, Φ(x,y) = ∑i φi(xi,yi). Assume that i,
j ∈ N are not null. Then

Φ((P{i},a(i)),(Q{i},a(i))) =∑
b
∑
c

P(b)Q(c)φi(b,c) > 0

if and only if

Φ((P{ j},a( j)),(Q{ j},a( j))) =∑
b
∑
c

P(b)Q(c)φ j(b,c) > 0.

Thus by the uniqueness of SSB utilities on G(X)×G(X), φi = αi jφ j for a positive
constant αi j. This completes the proof. �
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4.2 SSB Structures

We show necessary and sufficient axioms for model (II). The required decompo-
sition of Φ in our framework is given as follows: there exist a skew-symmetric
function φ on X ×X and a probability vector π ∈ R

n such that, for all x,y ∈ Xn,

Φ(x,y) =
n

∑
i=1

n

∑
j=1
πiπ jφ(xi,y j).

The following axioms apply to all a,b,c,d ∈ X and all i, j ∈ N.

Axiom C1 (Betweenness of Event-mixture). If aN � bN , then aN � a{i}b(i) � bN .

Axiom C2 (Consistent Comparative Beliefs). If aN � bN , cN � dN , and a{i}b(i) ∼
〈aN ,λ ,bN〉 for some 0 < λ < 1, then c{i}d(i) ∼ 〈cN ,λ ,dN〉 .

Axiom C3 (Strong Domain-restricted Independence). If a{i}b(i) ∼ 〈aN ,α,bN〉
and c{ j}d( j) ∼ 〈cN ,β ,dN〉 for some α,β ∈ (0,1), then

〈
a{i}b(i),〈cN ,β ,dN〉

〉
∼〈

c{ j}d( j),〈aN ,α,bN〉
〉
.

Betweenness of event-mixture seems plausible, although it may be violated in some
situations. Axiom C2 is crucial to derive subjective probabilities through preference
judgments. However, it is argued that indifference judgments in the axiom might
depend on selected pairs of outcomes.

Although axiom C3 does not look like domain-restricted independence condi-
tion, it does imply the independence on some restricted domains. To see this, we
need the following lemma.

Lemma 1. Suppose a{i}b(i) ∼ 〈aN ,α,bN〉 and a{ j}b( j) ∼ 〈aN ,β ,bN〉 for some
α,β ∈ (0,1). Then

(1) Φ(a{i}b(i),aN) = (1−α)Φ(bN ,aN).
(2) Φ(a{i}b(i),bN) = αΦ(aN ,bN).
(3) Φ(a{i}b(i),a{ j}b( j)) = (α−β )Φ(aN ,bN).

Proof. (1) Since a{i}a(i) ∼ 〈aN ,λ ,aN〉, Axiom C3 implies
〈
a{i}b(i),〈aN ,λ ,aN〉

〉
∼〈

a{ j}a( j),〈aN ,α,bN〉
〉
, so that

Φ(a{i}b(i),a{ j}a( j)) =Φ(〈aN ,α,bN〉 ,〈aN ,λ ,aN〉)
= (1−α)Φ(bN ,aN).

(2) and (3) similarly obtain. Q.E.D.

By Lemma 1(2) and Lemma 1(3), we have

Φ
(
a{i}b(i),a{ j}b( j)

)
=Φ

(
a{i}b(i),bN

)
+Φ(bN ,a{ j}b( j)).
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Substituting this for (2), we obtain that, for all A,B⊆ N,

Φ(aAbAc ,aBbBc) =∑
i∈A
∑
j∈B

(
Φ(a{i}b(i),bN)+Φ(bN ,a{ j}b( j))

)

+(1−|B|)∑
i∈A
Φ(a{i}b(i),bN)+(1−|A|)∑

j∈B
Φ(bN ,a{ j}b( j))

=∑
i∈A
Φ(a{i}b(i),bN)+∑

j∈B
Φ(bN ,a{ j}b( j))

=Φ(aAbAc ,bN)+Φ(bN ,aBbBc)

which implies that � on G({aAbAc ,aBbBc ,bN}) is independent.
The following theorem says that axioms C1–C3 completely characterize

model (II).

Theorem 3. Axioms C1–C3 hold if and only if model (II) holds.

Proof. The necessity of axioms C1–C3 easily obtains. Thus we show their suffi-
ciency. Let aN � bN . Then by axiom C1, aN � a{i}b(i) � bN . By Axioms A1 and A2,
a{i}b(i) ∼ 〈aN ,πi,bN〉 for a unique 0 ≤ πi ≤ 1. By axiom C2, c{i}d(i) ∼ 〈cN ,πi,dN〉
whenever cN � dN . Since

〈
a{1}b(1), . . . ,a{n}b(n)

〉
≈
〈
aN , 1

n ,bN
〉
, axiom A4 implies〈

a{1}b(1), . . . ,a{n}b(n)
〉
∼
〈
aN , 1

n ,bN
〉
. Thus,

0 = nΦ
(〈

a{1}b(1), . . . ,a{n}b(n)
〉
,
〈
aN , 1

n ,bN
〉)

=∑
i
Φ
(
a{i}b(i),

〈
aN , 1

n ,bN
〉)

=∑
i

( 1
nΦ(a{i}b(i),aN)+

(
1− 1

n

)
Φ(a{i}b(i),bN)

)

=∑
i

( 1
n (1−πi)Φ(bN ,aN)+

(
1− 1

n

)
πiΦ(aN ,bN)

)
(by Lemma 1(1) and (2))

=Φ(bN ,aN)∑
i

(
πi−

1
n

)

so that ∑iπi = 1. Hence π = (π1, . . . ,πn) is a probability vector.
Take any x,y ∈ Xn. Assume that xi

N � a0 and yi
N � a0 for i = 1, . . . ,n. Then by

axiom C2, x{i}a0
(i) ∼

〈
xi,πi,a0

〉
and y{i}a0

(i) ∼
〈
yi,πi,a0

〉
for i = 1, . . . ,n. Thus by

axiom C3,
〈

x{i}a0
(i),
〈

y j
N ,π j,a0

〉〉
∼
〈

y{ j}a
0
( j),

〈
xi

N ,πi,a0
〉〉

for all i, j ∈ N, which
gives

Φ(x{i}a0
(i),y{ j}a

0
( j)) = πiπ jΦ(xi

N ,y j
N)+πi(1−π j)Φ(xi

N ,a0
N)+π j(1−πi)Φ(a0

N ,y j
N).
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Substituting this for (3), we obtain

Φ(x,y) =∑
i, j

(
πiπ jΦ(xi

N ,y j
N)+πi(1−π j)Φ(xi

N ,a0
N)+π j(1−πi)Φ(a0

N ,y j
N)
)

− (n−1)∑
i

(
πiΦ(xi

N ,a0
N)−πiΦ(yi

N ,a0
N)
)

=∑
i, j
πiπ jΦ(xi

N ,y j
N),

which does not depend on choice of a0. Letting φ(a,b) =Φ(aN ,bN) for all a,b∈ X ,
we obtain the desired result. �

5 SEU with Nonseparable Beliefs

We show necessary and sufficient axioms for model (III), which is stated in the
present framework as follows. Given any x,y ∈Xn, let xi,yi ∈

{
a1, . . . ,am

}
for i =

1, . . . ,nand a1 � ·· · � am. For k = 1, . . . ,m, let Ak =
{

i ∈ N : xi = ak
}

and Bk ={
i ∈ N : yi = ak

}
, so that {A1, . . . ,Am} and {B1, . . . ,Bm} are partitions of N. Note

that x and y are respectively represented by a1
A1
· · ·am

Am
and a1

B1
· · ·am

Bm
. Then model

(III) yields a real valued function u on X and a bivariate set function ρ on 2N ×2N ,
satisfying (a)–(d), such that

Φ(x,y) =Φ
(
a1

A1
· · ·am

Am
,a1

B1
· · ·am

Bm

)
=

m−1

∑
i=1

ρ

(
i⋃

j=1

A j,
i⋃

j=1

B j

)(
u(ai+1)−u(ai)

)
.

The following axiom applies to all a,b,c ∈ X with aN � bN and bN � cN and all
A,B⊆ N.

Axiom D1 (Domain-restricted Independence). � on G({aAbAc ,bN ,bBcBc}) is in-
dependent.

When A = N and B = /0, axiom D1 means that� on G({aN ,bN ,cN}) is independent,
so that � is a weak order (i.e., � and ∼ are transitive) if � is restricted to the set of
all constant acts.

The important implication of axiom D1 is the following decomposition of Φ,
whose proof will be deferred to the appendix.

Theorem 4. Axiom D1 holds if and only if, for all positive integers m, all partitions
{A1, . . . ,Am} and {B1, . . . ,Bm}, and all a1, . . . ,am ∈ X,

Φ(a1
A1
· · ·am

Am
,a1

B1
· · ·am

Bm)

=Φ(a1
A1

a2
A2∪···∪Am

,a1
B1

a2
B2∪···∪Bm

)+Φ(a2
A1∪A2

a3
A3
· · ·am

Am
,a2

B1∪B2
a3

B3
· · ·am

Bm
)

whenever a1 � ·· · � am.
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By applying the decomposition of the above theorem consecutively, it immediately
follows that

Φ(a1
A1
· · ·am

Am
,a1

B1
· · ·am

Bm
)

=Φ(a1
A1

a2
A2∪···∪Am

,a1
B1

a2
B2∪···∪Bm

)+Φ(a2
A1∪A2

a3
A3∪···∪Am

,a2
B1∪B2

a3
B3∪···∪Bm

)

+ · · ·+Φ(am−1
A1∪···∪Am−1

am
Am

,am−1
B1∪···∪Bm−1

am
Bm

). (4)

We need to further decompose each term in (4) asΦ(aAbAc ,aBbBc) = μ(a,b)ρ(A,B)
for two bivariate functions, μ ≥ 0 on X×X and ρ on 2N×2N , satisfying properties
specified in the Theorem 5 below. This decomposition requires that preferences for
gambles in G({aAbAc : A⊆ N}) depend on subsets A of N but not on choice of a,b∈
X with aN � bN . This requirement is stated in the following axiom, understood as
applying to all a,b,c,d ∈ X .

Axiom D2 (Consistent Comparative Probability). If aN � bN ,cN � dN , P,Q ∈
G({aAbAc : A⊆ N}), and P′,Q′ ∈ G({cAdAc : A⊆ N}), then P � Q ⇐⇒ P′ � Q′
whenever P(aAbAc) = P′(cAdAc) and Q(aAbAc) = Q′(cAdAc) for all A⊆ N.

It may be argued that as in axiom C2, preference judgments in axiom D2 depend
on selected pairs of outcomes in some situations. If this is the case, then likelihood
judgments about events cannot be derived from preference judgments for random-
ized acts.

The implication of axioms D1 and D2 is given as follows.

Theorem 5. Axioms D1 and D2 hold if and only if there exist a nonnegative bi-
variate function μ on {(a,b) ∈ X×X : aN � bN} and a skew-symmetric, condi-
tionally additive function ρ on 2N × 2N such that, for all a,b,c ∈ X with aN �
bN � cN, μ(a,c) = μ(a,b)+ μ(b,c), and, for all positive integers m, all partitions
{A1, . . . ,Am} and {B1, . . . ,Bm}, and all a1, . . . ,am ∈ X,

Φ(a1
A1
· · ·am

Am
,a1

B1
· · ·am

Bm
) =

m−1

∑
k=1

μ(ak,ak+1)ρ

(
k⋃

i=1

Ai,
k⋃

i=1

Bi

)
.

Proof. Necessity of axioms D1 and D2 easily obtains. Thus we assume that axioms
D1 and D2 hold. Assuming that the hypotheses of axiom D2 hold, we obtain that

∑
A⊆N
∑

B⊆N
P(aAbAc)Q(aBbBc)Φ(aAbAc ,aBbBc) > 0

⇐⇒ ∑
A⊆N
∑

B⊆N
P(aAbAc)Q(aBbBc)Φ(cAdAc ,cBdBc) > 0.

By the uniqueness of SSB utility, we obtain that, for all A,B ⊆ N, there is a λ > 0
such that Φ(aAbAc ,aBbBc) = λΦ(cAdAc ,cBdBc).

Fix a0,b0 ∈ X with a0
N � b0

N . Define ρ(A,B) =Φ(a0
Ab0

Ac ,a0
Bb0

Bc) for all A,B⊆ N.
Then for all a,b ∈ X with aN � bN , Φ(aAbAc ,aBbBc) = μ(a,b)ρ(A,B) for some
μ(a,b) > 0. When aN ∼ bN , let μ(a,b) = 0.

Skew-symmetry of ρ follows from skew-symmetry of Φ. Conditional additivity
of ρ follows from (2). It follows from the decomposition of Theorem 4 that, for
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all a,b,c ∈ X with aN � bN � cN , μ(a,c) = μ(a,b)+ μ(b,c). This completes the
proof. �

Since model (III) requires that μ(a,b) = u(a)− u(b) for a real valued function
u on X , we must have μ(a,b) = μ(c,d) whenever aN ∼ cN and bN ∼ dN . This is
ensured by the following axiom, which applies to all a,b,c,d ∈ X and all A,B⊆ N.

Axiom D3 (Consistent Outcome Utility). If aN � bN , aN ∼ cN , and bN ∼ dN , then
〈aAbAc ,λ ,cBdBc〉 ∼ 〈cAdAc ,λ ,aBbBc〉 for all 0≤ λ ≤ 1.

The last axiom, which applies to all a,b ∈ X and all A,B⊆ N, simply says that ρ
on 2N ×2N satisfies monotonicity (b).

Axiom D4 (Monotonicity). If aN � bN and A⊇ B, then aAbAc � aBbBc .

The implication of axioms D3 and D4 is stated in the following theorem.

Theorem 6. Axioms D1–D4 hold if and only if model (III) holds.

Proof. Necessity of axioms D1–D4 easily obtains. Thus we assume that axioms
D1–D4 hold. Let μ on {(a,b) ∈ X ×X : aN � bN} and ρ on 2N × 2N be obtained
in Theorem 5. If aN � bN and A⊇ B, then axiom D4 implies Φ(aAbAc ,aBbBc)≥ 0.
By Theorem 5, Φ(aAbAc ,aBbBc) = μ(a,b)ρ(A,B), so that ρ(A,B) ≥ 0. Hence ρ is
monotonic. Since aN � bN , Φ(aSb /0,a /0bS) > 0, so ρ(S, /0) > 0. By the uniqueness of
SSB utility, with no loss of generality, we can normalize ρ(S, /0) = 1.

It remains to show that if aN � bN , aN ∼ cN and bN ∼ dN , then μ(a,b) =
μ(c,d) > 0. By axiom D3, Φ(aAbAc ,cAdAc) = Φ(aBbBc ,cBdBc) = 0 and, for all
0 < λ < 1,

Φ(〈aAbAc ,λ ,cBdBc〉 ,〈cAdAc ,λ ,aBbBc〉) = λ (1−λ )(Φ(aAbAc ,aBbBc)
+Φ(cBdBc ,cAdAc)) = 0.

Thus Φ(aAbAc ,aBbBc) = Φ(cAdAc ,cBdBc). By Theorem 5, μ(a,b)ρ(A,B) =
μ(c,d)ρ(A,B), so μ(a,b) = μ(c,d). This completes the proof. �

6 Conclusions

We studied necessary and sufficient axiomatizations of three nonseparable repre-
sentations in decision making under uncertainty when the state space is finite. The
first two models (I) and (II) deal with nonseparability of outcome utilities but yield
additive subjective probabilities. On the other hand, the last one (III) is concerned
with nonseparability of subjective likelihood judgements but retains weakly ordered
preferences for decision outcomes.

Our axiomatizations are based on act-lottery formulation, in which pure-acts are
randomized. Thus internal structures of acts remain unchanged. Usual axiomatiza-
tions applying randomization in the literature adopt lottery-act formulation, which
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alters internal structures of acts by randomizing pure-outcomes. Although the for-
mer seems to have a conceptual advantage over the latter, marginality-equivalence
condition imposed on SSB preferences is rather restrictive. At present, I have no
idea how to escape from this restrictiveness. Thus it may be desirable to find axiom-
atizations in pure-act formulation, that is, without randomization, where only model
(I) has such an axiomatization.

Another open problem is to explore the extensions to infinite S. There are a few
axiomatizations for model (I), but no such an axiomatization for models (II) and
(III) is discovered.

Appendix

This appendix proves Theorem 4. Since the necessity of axiom D1 easily follows,
we show its sufficiency below. Assume that axiom D1 holds. We need the following
decompositional implications of axiom D1.

Lemma 2. Suppose that aN � bN � cN � dN and k, � ∈ N. Then

(1) Φ(a{k}c(k),b{�}c(�)) =Φ(a{k}b(k),bN)+Φ(b{k}c(k),b{�}c(�)).
(2) Φ(a{k}c(k),cN) =Φ(a{k}b(k),bN)+Φ(b{k}c(k),cN).
(3) Φ

(
a{k}d(k),c{�}d(�)

)
=Φ(a{k}b(k),bN)+Φ

(
b{k}d(k),c{�}d(�)

)
.

Proof. First we show (1) and (2) which are combined into

Φ(a{k}c(k),bIc(I)) =Φ(a{k}b(k),bN)+Φ(b{k}c(k),bIc(I)),

where I is either /0 or {�}. Since
〈
a{k}c(k),bN ,bIc(I)

〉
≈
〈
bIc(I),a{k}b(k),b{k}c(k)

〉
,

marginality-equivalence impliesΦ
(〈

a{k}c(k),bN ,bIc(I)
〉
,
〈
bIc(I),a{k}b(k),b{k}c(k)

〉)
= 0, which gives

Φ(a{k}c(k),bIc(I))+Φ(bN ,a{k}b(k))+Φ(bIc(I),b{k}c(k))

=Φ(a{k}b(k),a{k}c(k))+Φ(b{k}c(k),a{k}c(k))+Φ(bIc(I),bN)

+Φ(b{k}c(k),bN)+Φ(a{k}b(k),bIc(I)).

We show that the right-hand side vanishes. To show this, we need to have

Φ(a{k}b(k),a{k}c(k))+Φ(b{k}c(k),a{k}c(k)) =Φ
(
bN ,a{k}b(k)

)
+Φ(bN ,b{k}c(k)),

Φ(a{k}b(k),bIc(I)) =Φ(bN ,bIc(I))+Φ(a{k}b(k),bN).

Since
〈
a{k}b(k),b{k}c(k)

〉
≈
〈
a{k}c(k),bN

〉
, marginality-equivalence implies the first.

By axiom D1,

Φ(a{k}b(k),bN)+Φ(bN ,bIc(I))+Φ(bIc(I),a{k}b(k)) = 0,

which is the second.
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The claim (3) follows from (1) and (2) as follows:

Φ
(

a{k}d(k),c{�}d(�)

)
=Φ(a{k}c(k),cN)+Φ

(
c{k}d(k),c{�}d(�)

)
(by (1))

=Φ(a{k}b(k),bN)+Φ(b{k}c(k),cN)+Φ
(

c{k}d(k),c{�}d(�)

)
(by (2))

=Φ(a{k}b(k),bN)+Φ
(

b{k}d(k),c{�}d(�)

)
(by (1))

This completes the proof. �

Sufficiency proof of Theorem 4. Assume that a1 � ·· · � am and {A1, . . . ,Am} and
{B1, . . . ,Bm} are partitions of N. By Proposition 2, we obtain

Φ(a1
A1
· · ·am

Am
,a1

B1
· · ·am

Bm
)−Φ(a2

A1∪A2
a3

A3
· · ·am

Am
,a2

B1∪B2
a3

B3
· · ·am

Bm
)

=
m

∑
i=1

m

∑
j=1
∑

k∈Ai

∑
�∈B j

Φ
(

ai
{k}a

m
(k),a

j
{�}a

m
(�)

)
− (n−1)

m

∑
i=1
∑

k∈Ai

Φ
(

ai
{k}a

m
(k),a

m
N

)

+(n−1)
m

∑
j=1
∑

�∈B j

Φ
(

a j
{�}a

m
(�),a

m
N

)
−

m

∑
i=2

m

∑
j=2
∑

k∈A∗i

∑
�∈B∗j

Φ
(

ai
{k}a

m
(k),a

j
{�}a

m
(�)

)

+(n−1)
m

∑
i=2
∑

k∈A∗i

Φ
(

ai
{k}a

m
(k),a

m
N

)
− (n−1)

m

∑
j=2
∑

�∈B∗j

Φ
(

a j
{�}a

m
(�),a

m
N

)

= ∑
k∈A1

∑
�∈B1

Φ
(

a1
{k}a

m
(k),a

1
{�}a

m
(�)

)
+

m

∑
j=2
∑

k∈A1

∑
�∈B j

(
Φ
(

a1
{k}a

m
(k),a

j
{�}a

m
(�)

)

−Φ
(

a2
{k}a

m
(k),a

j
{�}a

m
(�)

))

+
m

∑
i=2
∑

k∈Ai

∑
�∈B1

(
Φ
(

ai
{k}a

m
(k),a

1
{�}a

m
(�)

)
−Φ

(
ai
{k}a

m
(k),a

2
{�}a

m
(�)

))

− ∑
k∈A1

∑
�∈B1

Φ
(

a2
{k}a

m
(k),a

2
{�}a

m
(�)

)

− (n−1) ∑
k∈A1

(
Φ
(

a1
{k}a

m
(k),a

m
N

)
−Φ

(
a2
{k}a

m
(k),a

m
N

))

+(n−1) ∑
�∈B1

(
Φ
(

a1
{�}a

m
(�),a

m
N

)
−Φ

(
a2
{�}a

m
(�),a

m
N

))
,

where A∗2 = A1 ∪A2,B∗2 = B1 ∪B2,A∗i = Ai, and B∗i = Bi for i = 2, . . . ,m. We are
to show that the last expression of the above equation, referred to as LE hereafter,
exactly equals Φ(a1

A1
a2

A2∪···∪Am
,a1

B1
a2

B2∪···∪Bm
).

By Lemma 2, for j = 2, . . . ,m,

Φ
(

a1
{k}a

m
(k),a

j
{�}a

m
(�)

)
−Φ

(
a2
{k}a

m
(k),a

j
{�}a

m
(�)

)
=Φ

(
a1
{k}a

2
(k),a

2
N

)
.
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We substitute this for LE and obtain

LE = ∑
k∈A1

∑
�∈B1

Φ
(

a1
{k}a

m
(k),a

1
{�}a

m
(�)

)
− ∑

k∈A1

∑
�∈B1

Φ
(

a2
{k}a

m
(k),a

2
{�}a

m
(�)

)

+
m

∑
j=2
∑

k∈A1

∑
�∈B j

Φ
(

a1
{k}a

2
(k),a

2
N

)
+

m

∑
i=2
∑

k∈Ai

∑
�∈B1

Φ
(

a2
N ,a1

{�}a
2
(�)

)

− (n−1) ∑
k∈A1

(
Φ
(

a1
{k}a

m
(k),a

m
N

)
−Φ

(
a2
{k}a

m
(k),a

m
N

))

+(n−1) ∑
�∈B1

(
Φ
(

a1
{�}a

m
(�),a

m
N

)
−Φ

(
a2
{�}a

m
(�),a

m
N

))
.

Noting by skew-symmetry of Φ that

− ∑
k∈A1

∑
�∈B1

Φ
(

a2
{k}a

m
(k),a

2
{�}a

m
(�)

)
= ∑

k∈A1

∑
�∈Bc

1

Φ
(

a2
{k}a

m
(k),a

2
{�}a

m
(�)

)

+ ∑
k∈Ac

1

∑
�∈N

Φ
(

a2
{k}a

m
(k),a

2
{�}a

m
(�)

)
,

LE is rearranged to give

LE = ∑
k∈A1

∑
�∈B1

Φ
(

a1
{k}a

m
(k),a

1
{�}a

m
(�)

)
+ ∑

k∈A1

∑
�∈Bc

1

(
Φ
(

a1
{k}a

2
(k),a

2
N

)

+Φ
(

a2
{k}a

m
(k),a

2
{�}a

m
(�)

))

+ ∑
k∈Ac

1

∑
�∈Bc

1

Φ
(

a2
{k}a

m
(k),a

2
{�}a

m
(�)
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This completes the proof. �



SSB Preferences: Nonseparable Utilities or Nonseparable Beliefs 55

References

Chew, S.H. & McCrimmon, K.R. (1979). Alpha-nu choice theory: a generalization of expected
utility theory. Unpublished mimeograph.

Chew, S.H. (1983). A generalization of the quasilinear mean with applications to the measurement
of income inequality and decision theory resolving the Allais paradox. Econometrica 51, 1065–
1092.

Fishburn, P.C. (1981). Subjective expected utility: a review of normative theories. Theory and
Decision, 13, 139–199.

Fishburn, P.C. (1982). Nontransitive measurable utility. Journal of Mathematical Psychology, 26,
31–67.

Fishburn, P.C. (1983a). Ellsberg revisited: a new look at comparative probability. Annals of Statis-
tics, 11, 1047–1059.

Fishburn, P.C. (1983b). A generalization of comparative probability on finite sets. Journal of Math-
ematical Psychology, 27, 298–310.

Fishburn, P.C. (1984a). SSB utility theory and decision-making under uncertainty. Mathematical
Social Sciences, 8, 63–94.

Fishburn, P.C. (1984b). Multiattribute nonlinear utility theory. Management Science, 30, 1301–
1310.

Fishburn, P.C. (1988a). Nontransitive measurable utility for decision under uncertainty. Journal of
Mathematical Economics, 18, 187–207.

Fishburn, P.C. (1988b). Nonlinear preference and utility theory. Baltimore: Johns Hopkins Univer-
sity Press.

Fishburn, P.C. & LaValle, I.H. (1987a). A nonlinear, nontransitive and additive probability model
for decisions under uncertainty. Annals of Statistics, 15, 830–844.

Fishburn, P.C. & LaValle, I.H. (1987b). Transitivity is equivalent to independence for state-additive
SSB utilities. Journal of Economic Theory, 44, 202–208.

Fishburn, P.C. & Nakamura, Y. (1991). Nontransitive measurable utility with constant threshold.
Journal of mathematical Psychology, 35, 471–500.

Kahneman, D. & Tversky, A. (1979). Prospect theory; an analysis of decision under risk. Econo-
metrica, 47, 263–291.

Machina, M.J. (1982). Expected utility analysis without the independence axiom. Econometrica,
50, 277–323.

Nakamura, Y. (1990). Bilinear utility and a threshold structure for nontransitive preferences. Math-
ematics of Social Sciences, 19, 1–21.

Nakamura, Y. (1997). A generalization of subjective expected utility without additivity and transi-
tivity. IPPS discussion paper No. 719, University of Tsukuba.

Nakamura, Y. (1998). Skew-symmetric additive representations of preferences. Journal of Mathe-
matical Economics, 30, 367–387.

Nakamura, Y, (2001). Totally convex preferences for gambles. Mathematical Social Sciences, 42,
295–305.

Quiggin, J. (1981). A theory of anticipated utility. Journal of Economic Behavior and Organiza-
tion, 3, 323–343.

Schmeidler, D. (1988). Subjective probability and expected utility without additivity. Economet-
rica, 57, 571–587.



Decision Theory



Decision Making Based on Risk-Value Tradeoffs

Jianmin Jia and James S. Dyer

1 Introduction

This essay provides a review for measures of risk and risk-value models that we
have developed for the past ten years. Risk-value models are a new class of decision
making models based on the idea of risk-value tradeoffs. Intuitively, individuals
may consider their choices over risky alternatives by trading off between risk and
return, where return is typically measured as the mean (or expected return) and
risk is measured by some indicator of dispersion or possible losses. This notion is
prevalent in the literatures in finance, marketing and other areas.

Markowitz (1959, 1987, 1991) proposed variance as a measure of risk, and a
mean-variance model for portfolio selection based on minimizing variance subject
to a given level of mean return. But arguments have been made that mean-variance
models are appropriate only if the investor’s utility function is quadratic or the joint
distribution of returns is normal. However, these conditions are rarely satisfied in
practice.

Previous researchers usually consider expected utility theory as the foundation
of mean-risk models and risk-return models (e.g., Fishburn, 1977; Meyer, 1987;
Bell, 1988, 1995; Sarin & Weber, 1993). However, the expected utility theory has
been called into question by empirical studies of risky choice (e.g., Allais, 1953,
1979; Kahneman and Tversky, 1979; Machina, 1987; Weber, 2001). This suggests
that an alternative approach regarding the paradigm of risk-return tradeoffs would
be of interest.

The notion of risk as a primitive concern has also been investigated extensively,
and a number of perceived risk models have been proposed (e.g., Pollatsek &
Tversky, 1970; Coombs & Lehner, 1981, 1984; Luce, 1980; Fishburn, 1982, 1984;
Luce & Weber, 1986; Sarin, 1987, Lowenstein et al., 2001, Weber et al., 2004).
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These risk models have two major problems: first, the validity of most of these risk
models as measures of perceived risk has not been supported by empirical stud-
ies (e.g., Coombs & Bowen, 1971; Coombs & Lehner, 1981, 1984; Weber, 1984;
Keller, Sarin & Weber, 1986; Weber & Bottom, 1989; Weber 2001); second, it is
not clear how to incorporate these risk measures into decision models because they
were developed separately from preference measures. Thus, the usefulness of these
risk measures is limited in efforts to model or to improve decision making.

In the main stream of decision research, the role of risk in determining prefer-
ence is usually considered implicitly. For instance, in the expected utility model
(von Neumann & Morgenstern, 1947), an individual’s attitude toward the risk in-
volved in choices among risky alternatives is defined by the shape of his or her
utility function (Pratt, 1964); and in some non-expected utility models, risk (or “ad-
ditional” risk) is also captured by some nonlinear functions over probabilities (e.g.,
see Kahneman and Tversky, 1979; Quiggin, 1982; Tversky & Kahneman, 1992, Wu
& Gonzalez, 1996). Thus, these decision theories are not, at least explicitly, com-
patible with the choice behavior based on the intuitive idea of risk-return tradeoffs
as often observed in practice. Therefore, they offer little guidance for this type of
decision making.

In this essay, we review our risk-value studies and provide a framework that
is compatible with choice behavior based on risk-value tradeoffs. In particular, our
framework unifies two streams of research: one in developing preference models and
the other in modeling risk judgments. This synthesis makes our risk-value models
more descriptively powerful than other preference models and risk models that have
been proposed separately.

The remainder of this paper is organized as follows. The next section provides a
preference-dependent measure of risk with several useful examples. Section 3 devel-
ops the basic framework of our risk-value studies and related preference conditions.
Section 4 presents three particular forms of risk-value models. Section 5 concludes
our risk-value studies and discusses topics for future research.

2 The Standard Measure of Risk

In order to develop risk-value models, we first propose a preference-dependent
measure of risk, called a standard measure of risk, that offers a new foundation
for research regarding risk judgments and decision making by risk-value tradeoffs
(Jia & Dyer, 1996). This general measure of risk is based on the converse ex-
pected utility of normalized lotteries with zero-expected values, so it is compatible
with the measure of expected utility and provides the basis for linking risk with
preference.

For lotteries with zero-expected values, we assume that the only choice attribute
of relevance for them is risk. A riskier lottery would be less preferable and vice
versa, by any risk averse decision maker. Therefore, the riskiness ordering of these
lotteries should be simply the reverse of the preference ordering. We consider
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decomposing a lottery X (i.e., a random variable) into its mean X̄ and its standard
risk, X ′ = X− X̄ , and the standard measure of risk is defined as follows:

R(X ′) =−E[u
(
X ′
)
] =−E[u(X− X̄)], (1)

where u(·) is a utility function (von Neumann & Morgenstern, 1947) and the symbol
E represents expectation over the probability distribution of a lottery. The mean of
the lottery serves as a status quo for measuring the standard risk.

One of the characteristics of our standard measure of risk is that it depends on
an individual’s utility function. When the form of the utility function is determined,
then we can derive the associated standard measure of risk. More important, our
standard measure of risk can offer a preference justification for some commonly
used measures of risk so that the suitability of those risk measures can be evaluated.

If a utility function is quadratic, u(x) = ax−bx2, where a,b > 0, then the standard
measure of risk is characterized by variance, R(X ′) = bE[(X − X̄)2]. However, the
quadratic utility function has a disturbing property; that is, it will be decreasing
after a certain point and it exhibits increasing risk aversion. Since the quadratic
utility function may not be an appropriate description of preference, it follows that
variance may not be a good measure for risk (unless the distribution of a lottery is
normal).

To obtain an increasing utility function based on the quadratic one, let us con-
sider a third-order polynomial (or cubic) utility model, u(x) = ax−bx2 +c′x3, where
a,b,c′ > 0. When b2 < 3ac′, the cubic utility model is increasing. This utility func-
tion is concave, and hence risk averse for low outcome levels (i.e., x < b/(3c′)),
and convex, and thus risk seeking for high outcome values (i.e., x > b/(3c′)). Such
a utility function may be used to model a preference structure consistent with the
observation that a large number of individuals purchase both insurance (a moderate
outcome-small probability event) and lottery tickets (a small chance of a large out-
come) in the traditional expected utility framework (see Friedman & Savage, 1948).
The associated standard measure of risk for this utility function can be obtained as
follows:

R(X ′) = E[(X− X̄)2]− cE[(X− X̄)3], (2)

where c = c′/b > 0. Model (2) provides a simple way to combine skewness with
variance into a measure of risk. This measure of risk should be superior to variance
alone since the utility function implied by (2) has a more intuitive appeal than the
quadratic one implied by variance.

Markowitz (1952) noted that an individual with the utility function that is con-
cave for low outcome levels and convex for high outcome values will tend to prefer
positively skewed distributions (with large right tails) over negatively skewed ones
(with large left tails). The standard measure of risk (2) clearly reflects this observa-
tion; i.e., a positive skewness will reduce risk and a negative skewness will increase
risk.

If an individual’s preference can be modeled by an exponential or the quadratic
utility function, u(x) = ax−bx2, where a ≥ 0, and b, c > 0, then its corresponding
standard measure of risk (with the normalization condition R(0) = 1) is:
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R(X ′) = E[e−c(X−X̄)−1]. (3)

Bell (1988) identified E[e−c(X−X̄)] as a measure of risk from the linear plus exponen-
tial utility model by arguing that the riskiness of a lottery should be independent of
its expected value. Weber (1990) also modified Sarin’s (1987) expected exponential
risk model by requiring that the risk measure be location free.

If an individual is risk averse for gains but risk seeking for losses (Fishburn &
Kochenberger, 1979; Kahneman and Tversky, 1979), then we can consider a piece-
wise power utility model as follows:

u(x) =
{

exθ1 , when x≥ 0
−d|x|θ2 , when x < 0

(4)

where e, d, θ1 and θ2 are non negative constants. According to (1), the correspond-
ing standard measure of risk is:

R(X ′) = dE−[|X− X̄ |θ2 ]− eE+[|X− X̄ |θ1 ], (5)

where E−[|X− X̄ |θ2 ] =
∫ X
−∞ |x− X̄ |θ2 f (x)dx,

E+[|X − X̄ |θ1 ] =
∫ ∞

X (x− X̄)θ1 f (x)dx and f (x) is the probability density of a
lottery.

The standard measure of risk (5) includes several commonly used mea-
sures of risk in the financial literature as special cases. When d > e > 0,
θ1 = θ2 = θ > 0 and the distribution of a lottery is symmetric, then we can have
R(X ′) = (d− e)E|X− X̄ |θ , which is associated with variance and absolute standard
deviation if θ = 2 and θ = 1 respectively. This standard measure of risk is also
related to the difference of d and e, which reflects the relative effect of loss and
gain on risk. In general, if the distribution of a lottery is not symmetric, the standard
measure of risk will not be connected with variance even if θ1 = θ2 = 2 but it is still
related to the absolute standard deviation if θ1 = θ2 = 1 (Jia, Dyer & Butler, 2001).

Based on preference considerations, the absolute standard deviation should be
a better choice than the variance as a measure of risk. In the financial literature,
this point has been made by Konno & Yamazaki (1992). In statistics, the absolute
standard deviation is also considered a more robust measure for dispersion than
variance.

Another extreme case of (5) arises when e = 0 (i.e., the utility function is non
increasing for gains); then the standard measure of risk R(X ′) = dE−[|X −X |θ2 ],
which is a lower partial moment risk model. When θ2 = 2, it becomes a semi-
variance measure of risk (Markowitz, 1959); and when θ2 = 0, it reduces to the
probability of loss.

In summary, some other proposed measures of risk are special cases of our stan-
dard measure of risk. The standard measure of risk is more normative in nature, as it
is independent of the expected value of a lottery. To obtain more descriptive power
and to capture perceptions of risk, we have also established measures of perceived
risk that are based on a two-attribute structure: the mean of a lottery and its standard
risk (Jia, Dyer & Butler, 1999).
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3 Frameworks for Risk-Value Tradeoff

When we decompose a lottery into its mean and standard risk, then the evaluation of
the lottery can be based on the tradeoff between mean and risk. We assume a risk-
value preference function f (X̄ ,R(X ′)), where f is increasing in X̄ and decreasing in
R(X ′) if one is risk averse.

Consider an investor who wants to maximize his or her preference function f
for an investment and also requires a certain level μ of expected return. Since f is
decreasing in R(X ′) and X̄ = μ is a constant, then maximizing f (X̄ ,R(X ′)) is equiv-
alent to minimizing R(X ′); i.e., max { f (X̄ ,R(X ′))|X̄ = μ} ⇒ min{R(X ′)|X̄ = μ}.
This conditional optimization model includes many financial optimization models
as special cases by choosing different standard measures of risk; e.g., Markowitz’s
mean-variance model, the mean-absolute standard deviation model, and the mean-
semivariance model. We can also propose some new optimization models based on
our standard measures of risk (2) and (5).

In the conditional optimization problem, we do not need to assume an explicit
form for the preference function f . The problem only depends on the standard mea-
sure of risk. However, we may argue that an investor should maximize his or her
preference functions unconditionally in order to obtain the overall optimal portfo-
lio. For an unconditional optimization decision, the investor’s preference function
must be specified. Here we consider two cases for the preference function f : (1)
when it is consistent with the expected utility theory; and (2) when it is based on a
two-attribute expected utility foundation.

Let P be a convex set of all simple probability or lotteries {X , Y, . . .} on a non-
empty set X of outcomes, and Re be the set of real numbers (assuming X ∈ Re is
finite). We define � as a binary preference relation on P.

Definition 1. For two lotteries X ,Y ∈ P with E(X) = E(Y ), if w0 + X � w0 +Y for
some w0 ∈ Re, then w+X � w+Y for all w ∈ Re.

This is called the risk independence condition. It means that for a pair of lotteries
with a common mean, the preference order between the two lotteries will not be
changed when the common mean changes; i.e., the preference order can be deter-
mined solely by the ranking of their standard risk.

Theorem 1. Assume that the risk-value preference function f is consistent with the
expected utility theory. Then f can be represented as the following standard risk-
value form,

f (X̄ ,R(X ′)) = u(X̄)−φ(X̄)[R(X ′)−R(0)], (6)

if and only if the risk independence condition holds, where ϕ(X̄) > 0 and u(·) is a
von Neumann and Morgenstern utility function.

Model (6) shows that an expected utility model could have an alternative repre-
sentation if the risk independence condition holds. If one is risk averse, then u(·)
is a concave function and R(X ′)−R(0) is always positive. u(X̄) provides a mea-
sure of value for the mean, and ϕ(X̄) is a tradeoff factor that may depend on the
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mean. If we further require the utility model to be continuously differentiable, then
it must be either a quadratic, exponential, or linear plus exponential model (Jia &
Dyer, 1996).

There are also some other alternative forms of risk-value models within
the expected utility framework under different preference conditions (Sarin &
Weber, 1993; Bell, 1995; Dyer & Jia, 1998). In addition, for non-negative lotteries
such as those associated with the price of a stock, we propose a relative risk-value
model that is compatible with the logarithmic (or linear plus logarithmic) and the
power (or linear plus power) utility functions (Dyer & Jia, 1997).

However, the notion of risk-value tradeoffs within the expected utility framework
is very limited. In particular, the risk measure and the value measure must be based
on the same utility function. Intuitively, a decision maker may deviate from this
“consistency” to have different measures for risk and value if his choice is based on
risk-value tradeoffs.

In order to be more realistic and flexible in the framework of risk-value tradeoffs,
we consider a two-attribute structure (X̄ , X ′) for the evaluation of a risky alternative
X . In this way we can explicitly base the evaluation of lotteries on two attributes,
mean and risk, so that the mean-risk (or risk-value) tradeoffs are not necessarily
consistent with the traditional expected utility framework.

We assume the existence of the von Neumann and Morgenstern expected utility
axioms over the two-attribute structure (X̄ , X ′) and require the risk-value model
to be consistent with the two-attribute expected utility model, i.e., f (X̄ ,R(X ′)) =
E[U(X̄ ,X ′)], where U is a two-attribute utility function. As a special case when the
relationship between X̄ and X ′ is a simple addition, the risk-value model reduces to a
traditional expected utility model, i.e., f (X̄ ,R(X ′)) = E[U(X̄ ,X ′)] = E[U(X̄ +X ′)] =
E[U(X)] = a E[u(X)]+b, where a > 0 and b are constants.

To obtain some separable forms of the risk-value model, we need to have a risk
independence condition for the two-attribute structure. Let P0 be the set of normal-
ized lotteries with zero-expected values, and � a strict preference relation for the
two-attribute structure.

Definition 2. For X ′,Y ′ ∈ P0, if there exists a w0 ∈Re for which (w0,X ′)� (w0,Y ′),
then (w,X ′)� (w,Y ′) for all w ∈ Re.

This two-attribute risk independence condition requires that if two lotteries have
the same mean and one is preferred to the other, then transforming the lotteries by
adding the same constant to all outcomes will not reverse the preference ordering.
This condition is generally supported by our recent experimental studies (Butler,
Dyer & Jia, 2005).

Theorem 2. Assume that the risk-value preference function f is consistent with the
two-attribute expected utility model. Then f can be represented as the following
generalized risk-value form,

f (X̄ ,R(X ′)) = V (X̄)−φ(X̄)[R(X ′)−R(0)] (7)

if and only if the two-attribute risk independence condition holds, where φ(X̄) > 0
and R(X ′) is the standard measure of risk.
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In contrast to the risk-value model (6), three functions V (X̄),R(X ′) and φ(X̄) in
this generalized risk-value model (7) can be considered independently, which leads
to a very flexible structure for risk-value tradeoffs. Thus we can choose different
functions for the value measure V (X̄) instead of the utility function. The expected
utility measure is only used for the standard measure of risk. Even though expected
utility theory has been challenged by some empirical studies for general lotteries,
we believe that it should be appropriate for describing risky choice behavior within a
special set of normalized probability distributions with the same expected values. In
fact, the generalized risk-value model can capture a number of decision paradoxes
that violate the traditional expected utility theory (Jia, 1995).

If the utility function u is strictly concave, then R(X ′)−R(0) > 0 and model (7)
will reflect risk averse behavior. In addition, if V (X̄) is increasing and twice con-
tinuously differentiable, φ(X̄) is once continuously differentiable and φ ′(X̄)/φ(X̄)
is nonincreasing, then the generalized risk-value model (7) exhibits decreasing risk
aversion if and only if −V ′′(X̄)/V ′(X̄) < −φ ′(X̄)/φ(X̄); and the generalized risk-
value model (7) exhibits constant risk aversion if and only if −V ′′(X̄)/V ′(X̄) =
−φ ′(X̄)/φ(X̄) is a constant. Thus, if a decision maker is decreasingly risk averse
and has a linear value function, then we must choose a decreasing function for the
tradeoff factor φ(X̄).

The basic form of the risk-value model may be further simplified if some stronger
preference conditions are satisfied. When φ(X̄) = k > 0, model (7) becomes the
following additive form:

f (X̄ ,R(X ′)) = V (X̄)− k[R(X ′)−R(0)]. (8)

When φ(X̄) = −V (X̄) > 0, then model (7) reduces to the following multiplicative
form:

f (X̄ ,R(X ′)) = V (X̄)R(X ′), (9)

where R(0) = 1 and V (0) = 1. In this multiplicative model, R(X ′) serves as a value
discount factor due to risk.

We also develop measures of perceived risk based on the converse interpretation
of the axioms of risk-value models, and thus a negative linear transformation of
the risk-value model (7) provides a measure of the perceived risk for an individual
(Jia et al., 1999). Our risk-value framework offers a unified approach to both risk
judgment and preference modeling.

4 Generalized Risk-Value Models

According to the generalized risk-value model (7), the standard measure of risk, the
value function, and the tradeoff factor can be considered independently. Some ex-
amples of the standard measure of risk R(X ′) are provided in Section 2. The value
measure V (X̄) should be chosen as an increasing function and may have the same
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functional form as a utility model. For appropriate risk averse behavior, the tradeoff
factor φ(X̄) should be either a decreasing function or a positive constant; e.g.,
φ(X̄) = ke−bX̄ , where k > 0 and b≥ 0. We consider three types of risk-value models,
namely moments risk-value models, exponential risk-value models and generalized
disappointment models as follows.

4.1 Moments Risk-Value Models

People often use mean and variance to make tradeoffs for financial decision mak-
ing because of their operational advantages and because they provide a reasonable
approximation for modeling decision problems (see Markowitz, 1959, 1987, 1991;
Sharpe 1970, 1991). In the past, expected utility theory has been used as a founda-
tion for mean-variance models. Now we can provide a better foundation, the risk-
value theory, for developing moments models that include the mean-variance model
as a special case.

As an example, the mean-variance model, X̄ − kE[(X − X̄)2]where k > 0, is a
simple risk-value model with variance as the standard measure of risk and a con-
stant tradeoff factor. Sharpe (1970, 1991) assumed this mean-variance model in his
analysis for portfolio selection and the Capital Asset Pricing Model. However, under
the expected utility framework, this mean-variance model is based on the assump-
tions that the investor has an exponential utility function and that returns are jointly
normally distributed.

According to our risk-value theory, this mean-variance model is constantly risk
averse. To obtain a decreasing risk averse mean-variance model, we can simply use
a decreasing function for the tradeoff factor:

f (X̄ ,R(X ′)) = X̄− ke−bX̄ E[(X− X̄)2] (10)

where b, k > 0.
For many decision problems, mean-variance models are an over simplification.

Based on our risk-value framework, we can develop some richer moment models
for risky decision making. First, let us consider the moment standard measure of
risk (2) for the additive risk-value model (8):

f (X̄ ,R(X ′)) = X̄− k{E[(X− X̄)2]− cE[(X− X̄)3]}, (11)

where c, k > 0. The three moments model (11) can be either risk averse or risk
seeking, depending on the distribution of a lottery. For symmetric bets or lotteries
not highly skewed (e.g., an insurance policy) such that E[(X− X̄)2] > cE[(X− X̄)3],
model (11) will be risk averse. But for highly positive skewed lotteries (e.g., lottery
tickets) such that the skewness overwhelms the variance, i.e., E[(X−X̄)2] < cE[(X−
X̄)3], then model (11) will exhibit risk seeking behavior.
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Markowitz (1952) noticed that individuals of all wealth levels have the same
tendency to purchase insurance and lottery tickets whether they are poor or rich. This
observed behavior contradicts a common assumption of expected utility theory that
preference ranking is defined over ultimate levels of wealth. For the three moments
model (10), the change of wealth level just causes a parallel shift for the model,
which will not affect the risk attitude and the choice behavior of this model. This
is consistent with Markowitz’s observation. In addition, the three moments model
implies an nonlinear weight of probability that can be consistent with Kahneman
and Tversky’s (1979) prospect theory (Jia, 1995).

4.2 Exponential Risk-Value Models

If the standard measure of risk is based on exponential or linear plus exponential
utility models, then the standard measure of risk is given by (3). To be compatible
with the form of the standard measure of risk, we can also choose the same form
of exponential functions, but with different parameters, for the value measure V (X̄)
and the tradeoff factor φ(X̄), which leads to the following model:

f (X̄ ,R(X ′)) =−he−aX̄ − ke−bX̄ E[e−c(X−X̄)−1], (12)

where a, b, c, h, and k are positive constants. When a = b = c and h = k, this model
reduces to an exponential utility model. Otherwise, these two models are different.
When b > a, model (12) is decreasing risk averse even though the traditional expo-
nential utility model exhibits constant risk aversion.

As a special case, when a = b and h = k, model (12) reduces to the following
simple multiplicative form:

f (X̄ ,R(X ′)) = ke−aX̄ E[e−c(X−X̄)]. (13)

This model is constantly risk averse, and therefore has the same risk attitude as
an exponential utility model. It has more flexibility since there are two different
parameters. This simple risk-value model can be used to explain some well known
decision paradoxes (Jia, 1995).

Choosing a linear function or a linear plus exponential function for V (X̄) leads
to the following models:

f (X̄ ,R(X ′)) = X̄ − ke−bX̄ E[e−c(X−X̄)−1], (14)

f (X̄ ,R(X ′)) = X̄ −he−aX̄ − ke−bX̄ E[e−c(X−X̄)−1]. (15)

Model (14) is decreasingly risk averse. Model (15) includes a linear plus exponential
utility model as a special case when a = b = c and h = k. It is decreasingly risk averse
if b≥ a.
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4.3 Generalized Disappointment Models

Bell (1985) proposed a disappointment model for decision making under uncer-
tainty. Although Bell’s development of the disappointment model has an intuitive
appeal, his model is only applicable to lotteries with two outcomes.

Jia et al. (2001) use the risk-value framework to develop a generalized version
of Bell’s (1985) disappointment model. Consider the following piece-wise linear
utility model:

u(x) =
{

ex when x≥ 0
dx when x < 0 (16)

where d, e > 0 are constant. Decision makers who are averse to downside risk or
losses should have d > e, as illustrated in Fig. 1. The standard measure of risk for
this utility model can be obtained as follows:

R(X ′) = dE−[|X− X̄ ]− eE+[|X− X̄ |] = [(d− e)/2]E[|X− X̄ |], (17)

where E−[|X − X̄ |] = ∑
xi<X̄

pi|xi− X̄ | and E+[|X− X̄ |] = ∑
xi>X̄

pi(xi− X̄), and E[|X −

X̄ |] is the absolute standard deviation. According to Bell’s (1985) basic idea,
dE−[|X−X̄ |] should be a general measure of expected disappointment and eE+[|X−
X̄ |] a general measure of expected elation, and then overall psychological satis-
faction is measured by - R(X ′), which is the converse of the standard measure of
risk (17).

If we assume a linear value measure and a constant tradeoff factor, then we
can have the following risk-value model based on the measure of disappointment
risk (17):

f (X̄ ,R(X ′)) = X̄−{dE−[|X− X̄ |]− eE+[|X− X̄ |]}
= X̄− [(d− e)/2]E[X− X̄ |].

(18)

Fig. 1 A piece-wise linear
utility function

u(x)

x

0

u(x) = ex

u(x) = dx
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For a two-outcome lottery, model (18) reduces to Bell’s disappointment model.
Thus, we call the risk-value model (18) a “generalized disappointment model.” This
model is a risk averse when d > e.

Using his two-outcome disappointment model, Bell (1985) gave an explanation
for the common ratio effect. Our generalized disappointment model (18) can ex-
plain the Allais Paradox (Allais, 1953, 1979), which involves an alternative with
three outcomes (Jia et al., 2001). Another concern for Bell’s model and our model
(18) is that they imply constant risk aversion. Thus, they are not appropriate for
decreasing risk averse behavior. To obtain a disappointment model with decreasing
risk aversion, we can use a decreasing function for the tradeoff factor:

f (X̄ ,R(X ′)) = X̄− ke−bX̄ E[|X− X̄ |]. (19)

Bell’s disappointment model and our model (18) imply that disappointment and ela-
tion are proportional to the difference between the expected value and an outcome.
Then we should use some nonlinear functions for disappointment and elation such
as the risk model (5), which leads to a more general form of disappointment model:

f (X̄ ,R(X ′)) = X̄−dE−[|X− X̄ |θ2 ]− eE+[|X− X̄ |θ1 ]. (20)

When θ1 = θ2 = 1, this model reduces to model (18). When e = 0 and θ2 = 2, model
(20) becomes a mean-semivariance model. This model also provides an interpreta-
tion for the decision weight in prospect theory based on the concept of disappoint-
ment (Jia et al., 2001).

Finally, our generalized disappointment models are different from Loomes and
Sugden (1986) model, X̄ + E[D(X − X̄)], where D(x− X̄) = −D(X̄ − x), and D is
continuously differentiable and convex for x > X̄ (thus concave for x < X̄). Even
though this model is different from our generalized disappointment models (20),
it is a special case of our risk-value model with a linear measure of value, a con-
stant tradeoff factor, and a specific form of the standard measure of risk (i.e.,
R(X ′) = −E[D(X−X̄)], where D(x−X̄) =−D(X̄−x)). Loomes and Sugden (1986)
used this model to provide an explanation for the choice behavior that violates
Savage’s (1954) sure-thing principle.

5 Conclusion

We have summarized our efforts to incorporate the intuitively appealing idea of
risk-value tradeoffs into decision making under risk. The risk-value framework ties
together two streams of research: one in developing preference models and the other
in modeling risk judgments, and unifies a wide range of decision phenomena includ-
ing both normative and descriptive aspects.

This development also refines and generalizes a substantial number of previously
proposed decision theories and models, ranging from the mean-variance model in
finance to disappointment models in decision science. It is also possible to create
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many new risk-value models. Specifically, we have discussed three classes of de-
cision models based on this risk-value theory: moments risk-value models, expo-
nential risk-value models and generalized disappointment risk-value models. These
models are very flexible in modeling preferences. They also provide new resolu-
tions for observed risky choice behavior and the decision paradoxes that violate the
independence axiom of the expected utility theory.

The most important assumption in this study is the risk independence condi-
tion, which leads to a separable form of risk-value models. Although some other
weaker condition could be used to derive a risk-value model that has more descrip-
tive power, this reduces the elegance of the basic risk-value form, and increases oper-
ational difficulty. Butler et al. (2005) conducted an empirical of this key assumption,
and found some support for it. This study also highlighted some additional patterns
of choices indicating that the translation of lottery pairs from the positive domain to
the negative domain often results in the reversal of preference and risk judgments.
To capture this phenomenon, we have extended risk independence conditions to al-
low the tradeoff factor in the risk-value models to change sign, and therefore to
infer risk aversion in the positive domain and risk seeking in the negative domain.
These generalized risk-value models provide additional insights into the reflection
effects in prospect theory (Kahneman and Tversky, 1979) and related empirical re-
sults (Fishburn & Kochenberger, 1979; Payne et al., 1980,1981).

Even though some other non-expected utility theories that have been proposed
(e.g., Prospect Theory and rank dependent utility models) may produce the same
predictions for the decision paradoxes as risk-value theory, it offers a new justifi-
cation for them based on an appealing and realistic notion of risk-value tradeoffs.
In particular, since the role of risk is merely considered implicitly in these decision
theories and models, they are not compatible with the choice behavior that is based
on risk and mean return tradeoffs as often faced in financial management and other
applied fields. Therefore, these theories and models offer little guidance in practice
for this type of decision making. We believe that the potential for contributions of
these risk-value models in finance is very exciting. And also applications of our
risk-value models in other fields such as economics, marketing, insurance and risk
management should be promising.

Risk-value theory can be made compatible with traditional utility theory by re-
stricting the choices of the components of model (6). However, the risk-value theory
can be extended to model (7) by basing it on the two-attribute expected utility frame-
work, which retains many appealing properties of the traditional expected utility
theory. In particular, our risk-value models reduce to single-attribute expected util-
ity models for lotteries that have the same expected values. Fishburn (1989) pointed
out, “in view of the accumulated evidence for persistent and predictable violation
of expected utility, new theories have been proposed to accommodate such viola-
tions without abandoning too much of the mathematical elegance of the traditional
theories.” Our risk-value theory is a further development toward achieving this goal.
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Normally Distributed Admissible Choices
are Optimal

James N. Bodurtha Jr and Qi Shen

1 Notation and Definitions

Generally accepted observable behavior has led to the following classes of continu-
ously differentiable utility functions, u(•):
I. Nonsatiation axiom: u′ > 0

II. Risk aversion: u′ > 0,u′′ < 0

Adopting the notation of (Bawa, 1975), let the uncertain prospects be character-
ized by random variables xi, i = 1,2, . . . ,n + 1, with known continuous probability
distribution functions defined over an open interval R1 given by (a,b),a < b.

Let the following progressively restrictive set of utility functions, u(·), describe
the decision maker’s preferences. The utility functions are defined over the space R1

of realizations of a random variable x:

U1 =
{

u(x) |u(x) is finite u′(x) > 0, for all x ∈ R
}

,

U2 =
{

u(x) |u(x) ∈U1,u′′(x) < 0, for all x ∈ R
}

.

These definitions lead to the following well-known second-order stochastic domi-
nance theorem and definition1:

1 First Order Stochastic Dominance is developed assuming only non-satiation, (Quirk &
Sapasnik, 1962) and (Fishburn, 1964). Assuming risk-aversion, several authors formulated
second-order stochastic dominance, (Hadar & Russell, 1969, 1971), (Hanoch & Levy, 1969), and
(Rothschild & Stiglitz, 1970, 1971). Third-Order Dominance (Whitmore, 1970), and decreasing
absolute risk aversion (Vickson, 1975) treatments followed. Algorithms for the first three orders of
stochastic dominancehave been specified, (Porter, Wart, & Ferguson, 1973), (Bawa, Lindenberg,
& Rafsky, 1979) and (Aboudi & Thon, 1994). Levy provides a review of Stochastic Dominance
(Levy, 1992). Convex Stochastic Dominance (CSD) identifies optimal choices among mutually ex-
clusive alternatives (Fishburn, 1974, 1975), and the associated algorithm determines First-, Second-
and Third-Order CSD (Bawa et al., 1985).

J.N. Bodurtha Jr (�)
McDonough School of Business, Georgetown University, Washington, DC 20057, USA,
e-mail: bodurthj@georgetown.edu

S.J. Brams et al. (eds.), The Mathematics of Preference, Choice and Order: Essays in Honor 73
of Peter C. Fishburn, Studies in Choice and Welfare,
c© Springer-Verlag Berlin Heidelberg 2009



74 J.N. Bodurtha Jr and Q. Shen

Theorem 1. Second-Order Stochastic Dominance (SSD). For any two cumulative
distributions Fi and Fj,Fi is (strictly) preferred to Fj for all utility functions in U2, if
and only if

∫ x

a
Fi (t)dt ≤

∫ x

a
Fj (t)dt ∀x ∈ R (and < for somex ∈ R). (1)

Definition 1. SSD Admissible Set - A subset C of choice set P, its members are not
second-order stochastically dominated.

If a choice in P is not in subset C (not admissible), then all investors unanimously
drop it from consideration. By dropping these choices, the SSD admissible set sub-
stantially reduces the full choice set. In the case of normally distributed choice al-
ternatives, convex second-order dominance is an optimal choice rule.

Definition 2. Convex Second-Order Stochastic Dominance (CSSD) - A distribution
functionFn+1 is convexsecond-order stochasticallydominatedby{Fi, i = 1,2, . . . ,n},
if ∀u ∈U2, there exists an Fj ∈ {F1,F2, . . . ,Fn} such that

∫ b

a
U(x)dFj (x) ≥

∫ b

a
U(x)dFn+1 (x)

Correspondingly, we introduce the CSSD admissible set.

Definition 3. CSSD Admissible Set - A subset C of choice set P is CSSD admissible
if ∀u ∈ U2, choice a is not CSSD dominated by any other members of P. Since
CSD admissibility is more restrictive than the usual SSD admissibility, the CSSD
admissible set is generally smaller than the SSD admissible set.

Let λ = (λ1,λ2 . . .λn) ,λ ∈Λn with λi≥ 0, i = 1,2, . . .n and∑n
i=1λi = 1. We state

the convex generalization of Theorem 1 (Fishburn, 1974).

Theorem 2. Convex Second-Order Stochastic Dominance (CSSD). Fn+1 is convex
second-order stochastically dominated by {Fi, i = 1,2, . . . ,n}, iff λ ∈ Λn such that

n

∑
i=1
λi

∫ x

a
Fi (t)dt ≤

∫ x

a
Fn+1 (t)dt ∀x ∈ R

(and < for some x ∈ R)

Conversely, if Fn+1 is not convex second-order stochastically dominated by
{Fi, i = 1,2, . . . ,n} then it is optimal:

∀λ ∈Λn,∃x ∈ R,
∫ x

a
Fn+1 (t)dt <∑n

i=1λi

∫ x

a
Fi (t)dt ⇔

∃u ∈U2,u(Fi) < u(Fn+1) ,∀{i = 1,2, . . . ,n}

Therefore, the CSSD admissible, C, is the optimal set.
We also define another important concept relevant to investment choice, the effi-

ciency of a choice set.
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Definition 4. Second-Order Efficient Set - A subset E of choice set P is second-order
efficient if it contains the maximizers for all U2.2

Obviously, investors with non-satiation and risk-aversion attributes should only
evaluate the minimal second-order efficient choice set in order to make their invest-
ment decisions. We show that the minimal efficient choice set is the CSSD admissi-
ble set.

2 Optimal Choices Among Mutually Exclusive Alternatives

Convex Stochastic Dominance (CSD) identifies choice distribution mixtures that
dominate other elements of the choice set (the dominated elements). Any choice
dominated by a mixture of other alternatives will not be chosen (Fishburn, 1974).
Conversely, any choice that is not so dominated is in the optimal set.

Our method of proof is straightforward. For normal distributions, the appropriate
SD decision rule is second-order (SSD). Since normal distributions cross in most
cases, first-order stochastic dominance (FSD) is precluded. Under Convex Second-
Order Stochastic Dominance (CSSD), we show that the set of mixture distributions
necessary to dominate any member of the admissible set is empty. Hence, the ad-
missible set is optimal.

For mutually exclusive choices, the choice space may be written as the following:

P =

{
n

∑
i=1
λiFi

∣∣∣∣∣λ ∈ Λn,Fi is normal for i = 1,2, . . . ,n

}
,

In Appendix A, we prove two needed Lemmas.
The set of non-SSD dominated distributions (the admissible set) is no smaller

than the set of non-CSSD dominated distributions (the optimal set). However, the
following theorem shows that in the case of normal distributions, these two concepts
coincide. In this case, the two choice sets are identical.

Proposition 1. Given a set of normal distributions Φ = {F1,F2, . . . ,Fn,Fn+1}, if Φ
is a U2 admissible set, then it is also the CSSD admissible set and optimal.

Proof. Φ is an admissible set; therefore, distributions are mutually undominated.
Since in the normal distribution case, SSD is equivalent to the mean-variance deci-
sion rule, we can order the distributions in Φ in such a way that

σ1 < σ2 < · · ·< σn, and μ1 < μ2 < · · ·< μn.

The mean and standard deviation of distribution Fn+1 may be anywhere in the se-
quence of F1,F2, . . .Fn.

2 The equivalence between SD admissibility and efficiency for the portfolio allocation problem has
been shown (Bawa & Goroff, 1983).
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Case 1: σn+1 < σn = max
1≤ j≤n

{
σ j
}

. We divide the set Φ in two parts: Φ1 =

{F1, . . . ,Fk}, andΦ2 = {Fk+1, . . . ,Fn}, such that μk < μn+1 < μk+1· and σk <σn+1 <
σk+1

We can take a degenerate distribution as a special case of the normal distribu-
tion, by defining its variance to be zero. We replace the set Φ1 with another set Φ̂1
such that

μ
(
F̂i
)
−μ (Fi) , σ

(
F̂i
)

= 0, i = 1,2, . . .k.

If Fn+1 cannot be dominated by Φ̂1 ∪Φ2, then Fn+1 also can’t be dominated by
Φ1 ∪Φ2 (since each member of Φ1 is dominated by the corresponding member in
Φ̂1). For members of set Φ2, we choose a sufficiently small number, r, such that the
Variance Dominance Rule can be applied to each element of Φ2. For simplicity, we
keep the notation of Fi, i = 1, . . . ,k, instead of F̂i.

From Lemma 1, for any given λ j > 0, there exists an r j such that
∫ r j

−∞
Fn+1 (t)dt < λ j

∫ r j

−∞
Fj (t)dt, j = k +1, . . .n

Therefore, there exists a real number r∈ R, r < min
{
μi : i = 1, . . . , k,rj : j = k+1,

. . . ,n}, for any given λ ∈ Λn,

∫ r

−∞
Fn+1 (t)dt <

n

∑
j=k+1

λ j

∫ r

−∞
Fj (t)dt =

n

∑
j=k+1

λ j

∫ r

−∞
Fj (t)dt +

k

∑
j=1
λ j

∫ r

−∞
Fj (t)dt

∫ r

−∞
Fn+1 (t)dt <

n

∑
j=1
λ j

∫ r

−∞
Fj (t)dt

Here, we have used the fact that
∫ r
−∞Fj (t)dt = 0 for j = 1, . . . ,k, since r < μ j.

We have shown that Fn+1 is not CSSD dominated by {F1, . . .Fn}.
Case 2: σn+1 > max

1≤ j≤n

{
σ j
}

= σn

In this case, from Lemma 1, there exists a sufficiently large number r j, such that

∫ +∞

r j

F1 (t)dt <
∫ +∞

r j

Fn+1 (t)dt j = 1,2, . . .n.

Thus,
∫ +∞

r Fn+1 (t)dt = 1−
∫+∞

r Fn+1 (t)dt

< 1−
n

∑
j=1
λ j

∫ +∞

r
Fj (t)dt =

n

∑
j=1
λ j

∫ r

−∞
Fj (t)dt

where r > max
1≤ j≤n

{
r j
}

. In this case, we have shown that Fn+1 can’t be CSSD domi-

nated by Φ. Q.E.D.
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3 CSSD Portfolio Choices

For portfolio choices, a choice vector, π, dominates the associated mixed strat-
egy, λπ, for all strictly concave von Neumann-Morgenstern utility functions
(Baron, 1977). We present a corollary to this result as Proposition 2.3

Our construct is, again, Fishburn’s CSSD. Additionally, we need two more lem-
mas (3 and 4), which are also in Appendix A. Our CSSD efficient portfolio propo-
sition follows:

Proposition 2. The mean-variance efficient portfolio frontier choices are CSSD
admissible.

Proof. Given Lemma 4, any mixture of alternatives is dominated by an associated
portfolio. Any portfolio not associated with the mean-variance efficient frontier is
dominated by some element of the set of portfolios on the efficient frontier. There-
fore, mean-variance efficient portfolio choices dominate mixtures of portfolio dis-
tributions, and all such portfolios are CSSD admissible.

Like mutually exclusive choice CSSD Proposition 1, Proposition 2 shows that
the entire mean-variance efficient portfolio frontier is optimal.

4 Conclusion

For sets of investors with non-satiation and risk-aversion attributes, U2, who face
mutually exclusive normally distibuted investment returns, we have shown that the
second-order stochastic dominance (SSD) admissible set is the optimal set (Bawa
et al., 1985) and the strictly best set (Bawa & Goroff, 1982). By our CSSD meth-
ods (Fishburn, 1974), or from an analogous portfolio choice problem specification
(Yitzhaki & Mayshar, 1997), we also know that efficient portfolio choices among
normally-distributed alternatives are optimal. Therefore, we conclude that admissi-
ble sets of normally distributed choice elements are optimal.

In the absence of mean and variance parameter estimation risk, our results high-
light Sharpe’s classic mean-variance ratio as an optimal delegated financial man-
agement choice measure (Sharpe, 1966). In this context, a portfolio manager should

3 This result has been proved in the context of Marginal Stochastic Dominance (Yitzhaki &
Mayshar, 1997) for general discrete distributions and in an alternative context for normal distribu-
tions. As in our case, there results generalize to a broader class of exchangeable distribution func-
tions. For the general discrete distribution cases, Post, like Yitzhaki–Mayshar, separates dominated
and efficient portfolios (Post, 2003). For the dominated allocations, two works, (Kousmanen, 2004)
and (Bodurtha, 2004), provide methods to identify efficient reallocations. The continuous distrib-
ution case has been treated as well.(Goroff & Whitt, 1980) For utility functions manifesting some
risk-seeking preference, separation of dominated and efficient portfolio allocations have been ana-
lyzed, (Post & Levy, 2005).
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identify inefficient or dominated choice set elements by this simple mean-variance
rule and should not reduce the choice set further before presenting choices to in-
vestors.4

Appendix – Lemmas

For the mutually exclusive choice case, we now state and prove two lemmas.

Lemma 1. Variance Dominance Rule

Given two distributions F1 andF2 with finite variances σ2
1 and σ2

2 , if we let
σ1 < σ2, then there exist three numerals x∗,r1, and r2 (with r1 < r2), such that

I. the density functions f1 (x) and f2 (x) satisfy f1 (x) < f2 (x), if x < r1 or x > r2
II. the distribution functions have the same value at x∗ and satisfy: F1 (x) <

F2 (x) if x < x∗ or F1 (x) > F2 (x) if x > x∗.

Proof. The proof has three steps.5

Step 1: There are exactly two intersection points for f1 (x) and f2 (x).
Therefore, the following equation must have exactly two real roots:

σ1e
(x−μ1)2

2σ2
1 = σ2e

(x−μ2)2

2σ2
2 (A.1)

4 Though we have noted that our results extend to some other continuous “location-scale” distri-
butions [e.g. (Bawa, 1975)], It has been shown that the SSD admissible set and various “optimal”
sets are not, in general, equal, (Peleg-Yaari 1975), (Peleg, 1975), (Bawa & Goroff, 1982), and
(Dybvig & Ross, 1982). Further analysis of the respective “risk-aversely efficient” and “regular
risk-aversely efficient” random variables, “strictly best choices,” and “portfolio efficient sets” is
needed. In the portfolio context and more generally for the mutually exclusive investment choices
(Dybvig & Ross, 1982), the potential for non-convex choice sets raises particular difficulties in
this analysis. Alternatively, the admissible set is dense in the optimal-strictly best set (Bawa &
Goroff, 1982). Therefore, the delegated manager who provides decision makers with admissible
choices is not grossly non-optimal.
5 By replacing the mean and variance with the Generalized Location and Scale (�,s) parameters,
this proof will show that mean-scale admissible densities within the following classes cross twice:
t distributions with the same degree of freedom, Cauchy distributions and log-normal distribu-
tions. In these cases, the densities are, like the normal, functions of a standardized random vari-
able,

(
(x− �)

/
s
)2. The differences between and ratios of any two admissible choices for these

distributions satisfy Lemma 1 (the double crossing property defined in location and scale) and
Lemma 2 (the distribution dominance condition.) Though no analytic density functions exist for
Stable Distributions other than the normal and Cauchy, the densities associated with stable dis-
tributions with the same characteristic exponent and skewness parameter also cross-twice. While
the uniform distribution is in the location scale family and admissible uniform distributions are
optimal, the switching nature of the mean-scale admissible rule over the range of uniform random
variables precludes our line of proof. (Bawa, 1975, 1979).
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Taking a logarithm of both sides of this equation, and collecting terms, we have

0 =
(
σ2

1 −σ2
2
)

x2 +2x
(
μ1σ2

2 −μ1σ2
1
)
+
(
σ2

1 μ2
2 −σ2

2 μ2
1 −2σ2

1σ2
2 ln

σ1

σ2

)

We then define the determinant as:

Δ= 4
(
μ1σ2

2 −μ2σ2
1
)2−4

(
σ2

1 −σ2
2
)[
σ2

1 μ2
2 −σ2

2 μ2
1 −2σ2

1σ2
2 ln

σ1

σ2

]
(A.2)

To show that this determinant is greater than zero, we show that the first term on
the right-hand side of equation (A.2) is greater than a quantity that is, itself, greater
than the second term on the right-hand side of equation (A.2).

Since ln σ1
σ2

> 0, we need only to show that,
(
μ1σ2

2 −μ2σ2
1
)2 ≥

(
σ2

1 −σ2
2
)

[
σ2

1 μ2
2 −σ2

2 μ2
1
]
. This inequality is equivalent to (μ2−μ1)

2 ≥ 0, so we denote the
two real roots as r1 and r2.

Step 2: To show (I), we reconsider equation (A.1). Let

h(x)≡ σ1e(x−μ1)2
/

2σ2
1 −σ2e(x−μ2)2

/
2σ2

2 .

Following Step 1, it is straightforward to verify that

h′ (x) < 0,x ∈ (−∞,r1) and h′ (x) > 0,x ∈ (r2,+∞)

Step 3: To show II, notice that F1 (∞) = F2 (∞) = 1.
Since F1 (r1) =

∫ r1
−∞ f1 (t)dt <

∫ r1
−∞ f2 (t)dt = F2 (r1), and

∫ ∞
r2

f1 (t)dt <∫ ∞
r2

f2 (t)dt, it must be that
∫ r2

r1
f1 (t)dt >

∫ r2
r1

f2 (t)dt.
Both F1 (x) and F2 (x) are increasing continuous functions on (−∞,∞).6 There-

fore, there exists a unique x∗ ∈ (r1,r2), such that

F1 (x∗) =
∫ x∗

−∞
f1 (t)dt =

∫ x∗

−∞
f2 (t)dt = F2 (x∗) , and

F1 (x) < F2 (x) i f x < x∗ Q.E.D.

The first part of the Variance Dominance Rule states that the density function curve
for the smaller variance distribution, F1, always lies below the other one with larger
variance, F2, on the interval (−∞,r1). However, a reversed relationship is true on an
interval (r2,+∞).

6 In the log-normal case, F1 (x) andF2 (x) are increasing continuous functions on (0,∞). The log-
normal density crossing points, r′1,r

′
2, are defined by location-scale and determined in the log

space. While the distribution crossing point is a unique x∗
′ ∈

(
er′1 ,er′2

)
, and distribution dominance

follows in the return space.
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Lemma 2. Given two distribution functions, as in Lemma 1, the value of F1 (x) is
negligible compared to the value of F2 (x) if x is sufficiently small.7

Proof. By L’Hopital’s Law, we show that

lim
x→−∞

F2 (x)
F1 (x)

=
lim

x→−∞
F ′2 (x)
F ′1 (x)

= +∞

Since f2(x)
f1(x) = σ1

σ2
e(x−μ1)2

/
2σ2

1−(x−μ2)2
/

2σ2
2 , we show that

σ2
2 (x−μ1)

2−σ2
1 (x−μ2)

2 →+∞ (A.3)

This is self-evident since σ1 < σ2. Similarly, we show that

lim
x→+∞

f2 (x)
f1 (x)

= +∞ Q.E.D.

This Lemma is another interpretation of the Variance Dominance Rule, and states
that the distribution curve of larger variance not only dominates the distribution
curve with a smaller variance, but also that the magnitude of the latter one is actually
negligible. In fact as x→−∞,F1 (x) approaches 0 much faster than F2 (x) does.

For the portfolio choice case, we now state and prove two additional lemmas.

Lemma 3. The SSD integral, (1), is convex.

Proof. The SSD integral is a twice continuously differentiable real-valued func-
tion on an open interval. Furthermore, its second derivative is the normal density
and hence, non-negative throughout its domain. Convexity follows by Theorem
4.4 of Rockefellar, and essentially strict convexity follows by his Theorem 26.3
(Rockefellar, 1970). (The SSD integral gradient is the normal distribution and is
positive over the real line.)

Lemma 4. A portfolio of normally distributed choices SSD dominates the associ-
ated mixture of normally distributed choices.

Proof. Given Lemma 3 [convexity of the SSD integral (1)], a convex combination
(mixture) of these integrals is no less than the SSD integral defined over the linear
combination (portfolio) of the associated random variables.

7 These limits apply for mean-scale admissible t distributions with the same degree of freedom and
stable distributions with the same characteristic exponent and skewness. For mean-scale admissible
log-normal distributions, (A.3) is defined in location, �, and scale parameters, s. The necessary SSD
log-normal distribution mean condition is imposed with �2 + s2

2
/

2 >�1 + s2
1
/

2. As in the normal
case for x, the terms that are quadratic in ln x are the difference in squared scale, which is positive.
In this case, the limits are evaluated approaching zero from the right, and all other terms are linear
in the natural logarithm of x.
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With integration by parts, we have the following:
∫ x

−∞
Fi (t)dt=σi

[(
x−μi

σi

)
Φ
(

x−μi

σi

)
+φ

(
x−μi

σi

)]
, andΦ

(
x−μi

σi

)
and φ

(
x−μi

σi

)
,

are the standard normal distribution and density, respectively.
For a portfolio to CSSD dominate a mixture requires

σp

[(
x−μp

σp

)
Φ
(

x−μp

σp

)
+φ

(
x−μp

σp

)]

≤ ασ1

[(
x−μ1

σ1

)
Φ
(

x−μ1

σ1

)
+φ

(
x−μ1

σ1

)]

+(1−α)σ2

[(
x−μ2

σ2

)
Φ
(

x−μ2

σ2

)
+φ

(
x−μ2

σ2

)]
,∀x ∈ .

Defining the portfolio weights to equal the mixture weights, we have

xp = αx1 +(1−α)x2,μp = αμ1 +(1−α)μ2, and

σ2
p = α2σ2

1 +2α (1−α)σ1σ2ρ+(1−α)2σ2
2 = [ασ1 +(1−α)σ2]

2 ,

However, setting the correlation equal to one implies that the portfolio standard
deviation is a convex combination of the other two standard deviations, and that this
standard deviation is an upper bound on the actual portfolio standard deviation:

σp ≤ σ p|ρ=1 = ασ1 +(1−α)σ2

Therefore,

σp

[(
x−μp

σp

)
Φ
(

x−μp

σp

)
+φ

(
x−μp

σp

)]

≤ σp|ρ=1

[(
x−μp

σp|ρ=1

)
Φ
(

x−μp

σp|ρ=1

)
+φ

(
x−μp

σp|ρ=1

)]

≤ ασ1

[(
x−μ1

σ1

)
Φ
(

x−μ1

σ1

)
+φ

(
x−μ1

σ1

)]

+(1−α)σ2

[(
x−μ2

σ2

)
Φ
(

x−μ2

σ2

)
+φ

(
x−μ2

σ2

)]
,

∀x ∈ (−∞,∞) and 0 < α < 1. Q.E.D.
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A Conjoint Measurement Approach
to the Discrete Sugeno Integral

Denis Bouyssou, Thierry Marchant, and Marc Pirlot

1 Introduction and Motivation

In the area of decision-making under uncertainty, the use of fuzzy integrals, most
notably the Choquet integral and its variants, has attracted much attention in recent
years. It is a powerful and elegant way to extend the traditional model of (subjective)
expected utility (on this model, see Fishburn, 1970, 1982). Indeed, integrating with
respect to a non-necessarily additive measure allows to weaken the independence
hypotheses embodied in the additive representation of preferences underlying the
expected utility model that have often been shown to be violated in experiments
(see the pioneering experimental findings of Allais, 1953; Ellsberg, 1961). Models
based on Choquet integrals have been axiomatized in a variety of ways (see Gilboa,
1987; Schmeidler, 1989; or Wakker, 1989, Chap. 6. For related works in the area of
decision-making under risk, see Quiggin, 1982; and Yaari, 1987). Recent reviews of
this research trend can be found in Chateauneuf and Cohen (2000), Schmidt (2004),
Starmer (2000) and Sugden (2004).

More recently, still in the area of decision-making under uncertainty, Dubois,
Prade, and Sabbadin (2000b) have suggested to replace the Choquet integral by a
Sugeno integral (see Sugeno, 1974, 1977), the latter being a kind of “ordinal coun-
terpart” of the former, and provided an axiomatic analysis of this model (special
cases of the Sugeno integral are analyzed in Dubois, Prade, & Sabbadin 2001b.
For a related analysis in the area of decision-making under risk, see Hougaard &
Keiding, 1996). Dubois, Marichal, Prade, Roubens, and Sabbadin (2001a) offer a
lucid survey of these developments.

Unsurprisingly, people working in the area of multiple criteria decision mak-
ing (henceforth, MCDM) have considered following a similar path to build models
weakening the independence hypotheses embodied in the additive value function
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model that underlies most of existing MCDM techniques. This offers an alterna-
tive to the decomposable and polynomial models studied in Krantz, Luce, Suppes,
and Tversky (1971, Chap. 7). The work of Grabisch (1995, 1996) has widely pop-
ularized the use of Choquet and Sugeno integrals in MCDM. Since then, there has
been many developments in this area. They are surveyed in Grabisch and Roubens
(2000) and Grabisch and Labreuche (2004) (an alternative approach to weaken the
independence hypotheses of the traditional model that does not use fuzzy integrals
is suggested in Gonzales & Perny, 2005).

It is well known that decision-making under uncertainty and MCDM are related
areas. When there is only a finite number of states of nature, acts may indeed be
viewed as elements of a homogeneous Cartesian product in which the underlying
set is the set of all consequences (this is the approach advocated and developped
in Wakker, 1989, Chap. 4). In the area of MCDM, a Cartesian product structure is
also used to model alternatives. However, in MCDM the product set is generally not
homogeneous: alternatives are evaluated on several attributes that do not have to be
expressed on the same scale.

The recent development of the use of fuzzy integrals in the area of MCDM should
not obscure the fact that there is a major difficulty involved in the transposition of
techniques coming from decision-making under uncertainty to the area of MCDM.
In the former area, any two consequences can easily be compared: considering con-
stant acts gives a straightforward way to transfer a preference relation on the set
of acts to the set of consequences. The situation is vastly different in the area of
MCDM. The fact that the underlying product set is not homogeneous invalidates
the idea to consider “constant acts”. Therefore, there is no obvious way to compare
consequences on different attributes. Yet, such comparisons seem to be prerequisite
for the application of models based on fuzzy integrals.

Traditional conjoint measurement models (see, e.g., Krantz et al., 1971, Chap. 6;
or Wakker, 1989, Chap. 3) lead to compare preference differences between conse-
quences. It is indeed easy to give a meaning to a statement like “the preference
difference between consequences xi and yi on attribute i is equal to the preference
difference between consequences x j and y j on attribute j” (e.g., because they exactly
compensate the same preference difference expressed on a third attribute). These
models do not lead to comparing in terms of preference consequences expressed on
distinct attributes. Indeed, in the additive value function model a statement like “xi is
better than x j” is easily seen to be meaningless (this is reflected in the fact that, in
this model, the origin of the value function on each attribute may be changed inde-
pendently on each attribute).

In order to bypass this difficulty, most studies involving fuzzy integrals in the
area of MCDM postulate that the attributes are somehow “commensurate”, while the
precise content of this hypothesis is difficult to analyze and test (see, e.g., Dubois,
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Grabisch, Modave, & Prade, 2000a). Less frequently, researchers have tried to build
attributes so that this commensurability hypothesis is adequate. This is the path
followed in Grabisch, Labreuche, and Vansnick (2003) who use the MACBETH
technique (see Bana e Costa & Vansnick, 1994, 1997, 1999) to build such scales.
Such an analysis requires the assessment of a neutral level on each attribute that is
supposed to be “equally attractive”. In practice, the assessment of such levels does
not seem to be an easy task. On a more theoretical level, the precise properties of
these commensurate neutral levels are not easy to devise.

A major breakthrough for the application of fuzzy integrals in MCDM has re-
cently been done in Greco, Matarazzo, and Słowiński (2004) who give conditions
characterizing binary relations on non-homogeneous product sets that can be repre-
sented using a discrete Sugeno integral, using this binary relation as the only prim-
itive. This is an important result that paves the way to a measurement-theoretic
analysis of fuzzy integrals in the area of MCDM (Greco et al., 2004, also relate the
discrete Sugeno integral model to models based on decision rules that they have
advocated in Greco, Matarazzo, & Slowinski, 1999, 2001). It allows to analyze the
discrete Sugeno integral model without any commensurateness hypothesis, which is
of direct interest to MCDM.

In the present paper, we will present a new model for the representation of
preferences, inspired from the work of Bouyssou and Marchant (2007). This non-
numerical model, called non-compensatory model, is slightly more general than the
discrete Sugeno integral but, when the preference relation is a weak order that has a
numerical representation, we will show that both models are equivalent. The analy-
sis of this new model will thus help us to better understand the discrete Sugeno
integral and, eventually, to answer some open questions. In particular, we will ad-
dress the following issues:

• Besides the standard completeness, transitivity and order density conditions,
Greco et al. (2004) used only one condition. We will show that it is possible
to factorize this condition into two more elementary ones. This helps us to better
understand the behavioural content of the conditions. It can also be useful for
empirically testing the conditions. Finally, this will permit us to show that the
discrete Sugeno integral model can be viewed as a particular case of a general
decomposable representation, investigated in Bouyssou and Pirlot (2004) and
Greco et al. (2004).

• The correspondence established between weak orders that are representable in
the noncompensatory model and those representable by the discrete Sugeno inte-
gral model has an interesting byproduct. Starting from any (bounded) numerical
representation of a weak order in the noncompensatory model, we provide for-
mulae that allow to build a representation of the weak order by a Sugeno integral.

• Greco et al. (2004) used four conditions in their characterization of the discrete
Sugeno integral. We will prove that they are independent.

• In the standard characterizations of the additive model for multi-attributed pref-
erences (e.g., Wakker, 1989), no commensurateness hypothesis is made. Yet, it is
well-known that the difference between two levels on attribute i can be compared
to the difference between two levels on attribute j. So, in this model, differences
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are commensurate and this can be derived from the axioms. This plays an impor-
tant role in most elicitation techniques.

In their characterization, Greco et al. (2004) did not make any commensurate-
ness hypothesis either. Yet, when we compute a discrete Sugeno integral, we com-
pare levels on different attributes. So, just as with the additive model, it seems that
commensurateness must be implied by the axioms and that this could be used in the
elicitation. Unfortunately, we will show that the picture is more complex with the
discrete Sugeno integral than with the additive model.

• Greco et al. (2004) have shown that, under some conditions, there exists utility
functions (one per attribute) that can be used to represent the preferences by
means of a discrete Sugeno integral. These utility functions are of course not
unique; but to what extent? We will provide a partial answer to this question.

By the way, since the non-compensatory model and the discrete Sugeno inte-
gral are equivalent under some conditions, our proof of the characterization of the
non-compensatory model can be used as a proof of the characterization of the dis-
crete Sugeno integral. This can prove useful since no proof of it has been published
so far.1

This paper is organized as follows. The result of Greco et al. (2004) is pre-
sented in Sect. 2. We there show how to factorize their main condition into two
simpler conditions. Section 3 introduces and characterizes what we will call the
noncompensatory model for weak orders. Section 4 analyzes the links between
the noncompensatory model for weak orders and the discrete Sugeno integral model.
Section 5 presents examples showing that the conditions used in the main result are
independent. Section 6 discusses the uniqueness of the representation in the dis-
crete Sugeno integral model and further investigates the commensurateness issue.
Section 7 briefly concludes with the mention of some directions for future research.

2 The Discrete Sugeno Integral

2.1 Background on the Discrete Sugeno Integral

Let β = (β1,β2, . . . ,βp) ∈ [0,1]p. Let (·)β be a permutation on P = {1,2, . . . , p}
such that β(1)β ≤ β(2)β ≤ ·· · ≤ β(p)β .

A capacity (see Choquet, 1953) on P is a function ν : 2P → [0,1] such that:

1 It should be mentioned that a related result for the case of ordered categories is presented without
proof in Słowiński, Greco, and Matarazzo (2002). This result is a particular case of the one pre-
sented in Greco et al. (2004) for weak orders with a finite number of distinct equivalence classes.
A complete and quite simple proof for this particular case was proposed in Bouyssou and Marchant
(2007), using comments made on an early version of the latter paper by Greco, Matarazzo, and
Słowiński.
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• ν(∅) = 0.
• [A,B ∈ 2P and A⊆ B]⇒ ν(A)≤ ν(B).

The capacity ν is said to be normalized if, furthermore, ν(P) = 1.
The discrete Sugeno integral of the vector (β1,β2, . . . ,βp) ∈ [0,1]p w.r.t. the nor-

malized capacity ν is defined by

Sν [β ] =
p∨

i=1

[
β(i)β ∧ν(A(i)β )

]
,

where A(i)β is the element of 2P equal to {(i)β ,(i+1)β , . . . ,(p)β}.
We refer the reader to Dubois, et al. (2001a) and Marichal (2000a, 2000b) for

excellent surveys of the properties of the discrete Sugeno integral and its several
possible equivalent definitions. Let us simply mention here that the reordering of
the components of β in order to compute its Sugeno integral can be avoided noting
that we may equivalently write

Sν [β ] =
∨

T⊆P

[
ν(T )∧

(∧
i∈T

βi

)]
. (1)

We will mainly use this presentation of the discrete Sugeno integral below.

2.2 The Model

Let � be a binary relation on a set X = ∏n
i=1 Xi with n ≥ 2. Elements of X will

be interpreted as alternatives evaluated on a set N = {1,2, . . . ,n} of attributes. The
relations � and ∼ are defined as usual. We denote by X−i the set ∏ j∈N\{i}Xj. We
abbreviate Not[x � y ] as x � y.

We say that � has a representation in the discrete Sugeno integral model if there
are a normalized capacity μ on N and functions ui : Xi → [0,1] such that, for all
x,y ∈ X ,

x � y⇔ S〈μ,u〉(x)≥ S〈μ,u〉(y),

where S〈μ,u〉(x) = Sμ [(u1(x1),u2(x2), . . . ,un(xn))].

2.3 Axioms and Result

A weak order is a complete and transitive binary relation. The set Y ⊆ X is said to
be dense in X for the weak order � if for all x,y ∈ X , x� y implies x � z and z � y,
for some z ∈ Y . We say that the weak order � on X satisfies the order-denseness
condition (condition OD) if there is a finite or countably infinite set Y ⊆ X that is
dense in X for �. It is well-known (see Fishburn, 1970, p. 27; or Krantz et al., 1971,
p. 40) that there is a real-valued function v on X such that, for all x,y ∈ X ,
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x � y⇔ v(x)≥ v(y),

if and only if � is a weak order on X satisfying the order-denseness condition.

Remark 1. Let � be a weak order on X . It is clear that ∼ is an equivalence and that
the elements of X/∼ are linearly ordered. We often abuse terminology and speak
of equivalence classes of � to mean the elements of X/∼. When X/∼ is finite, we
speak of the first equivalence class of � to mean the elements of X/∼ that precede
all others in the induced linear order.

The following condition was introduced in Greco et al. (2004). The relation � on
X is said to be strongly 2-graded on attribute i ∈ N (condition 2∗-gradedi) if, for all
x,y,z,w ∈ X and all ai ∈ Xi,

x � z
and

y � w
and

z � w

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
⇒

⎧⎨
⎩

(ai,x−i) � z
or

(xi,y−i) � w,

where (ai,x−i) denotes the element of X obtained from x ∈ X by replacing its ith
coordinate by ai ∈ Xi. The binary relation will be said to be strongly 2-graded (con-
dition 2∗-graded) if it is strongly 2-graded on all attributes i ∈ N.

Although the above condition may look complex, it has a simple interpretation.
Consider the particular case of condition 2∗-gradedi in which z = w. Suppose that
(xi,y−i) � w. Since (yi,y−i) � w and (xi,y−i) � w, this suggests that the level xi is
worse than yi with respect to the alternative w. In this case, (xi,x−i) � w implies that
(ai,x−i) � w, for all ai ∈ Xi. This means that, once we know that some level yi is
better than xi w.r.t. to w∈X , there does not exist an element in Xi that could be worse
than xi, so that, if (xi,x−i) � w, the same will be true replacing xi by any element
in Xi. This roughly implies that, for each w ∈ X , we can partition the elements of Xi
into at most two categories of levels: the “satisfactory” ones and the “unsatisfactory”
ones with respect to w. Condition 2∗-gradedi implies these twofold partitions are not
unrelated when considering distinct elements z and w in X .

Greco et al. (2004) state the following:

Theorem 1 (Greco et al. (2004, Theorem 3, p. 284)). Let � be a binary relation
on X. This relation has a representation in the discrete Sugeno integral model if and
only if (iff) it is a weak order satisfying the order-denseness condition and being
strongly 2-graded.

The necessity of the conditions in this theorem is easy to establish. It is indeed
clear that if � has a representation in the discrete Sugeno integral model, then it
must be a weak order satisfying OD. It is not difficult to show that it must also
satisfy 2∗-graded. Indeed, suppose that condition 2∗-gradedi is violated, so that, for
some x,y,z,w ∈ X and some ai ∈ Xi, we have x � z, y � w, z � w, (ai,x−i) � z and
(xi,y−i) � w. Using y � w and (xi,y−i) � w, we obtain ui(xi) < S〈μ,u〉(w). Because
z � w, we know that S〈μ,u〉(z) ≥ S〈μ,u〉(w), so that S〈μ,u〉(z) > ui(xi). Since x � z
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and S〈μ,u〉(z) > ui(xi), there is some I ∈ 2N such that i /∈ I, μ(I) ≥ S〈μ,u〉(z) and
u j(x j) ≥ S〈μ,u〉(z), for all j ∈ I. This implies S〈μ,u〉((ai,x−i)) ≥ S〈μ,u〉(z), so that
(ai,x−i) � z, a contradiction.

In Sect. 4, we give a proof of the sufficiency of the conditions, which links the
discrete Sugeno integral model with the noncompensatory model studied in Sect. 3.

2.4 Factorization of 2∗-Gradedi

We say that the relation � satisfies condition AC1i if, for all x,y,z,w ∈ X ,

x � y
and

z � w

⎫⎬
⎭⇒

⎧⎨
⎩

(zi,x−i) � y,
or

(xi,z−i) � w.

We say that � satisfies AC1 if it satisfies AC1i for all i ∈ N.
Condition AC1 was proposed and studied in Bouyssou and Pirlot (2004). It plays

a central role in the characterization of binary relations (that may be incomplete or
intransitive) admitting a decomposable representation of the type:

x � y⇔ G[u1(x1), . . . ,un(xn),u1(y1), . . . ,un(yn)]≥ 0,

with G being nondecreasing (resp. nonincreasing) in its first (resp. last) n arguments
(see Bouyssou & Pirlot, 2004, Theorem 2). We refer to Bouyssou and Pirlot (2004)
for a detailed interpretation of this condition. Let us simply mention here that condi-
tion AC1i, independently of any transitivity or completeness properties of �, allows
to order the elements of Xi in such a way that this ordering is compatible with �
(see Lemma 3 below).

We say that � is 2-graded on attribute i ∈ N (condition 2-gradedi) if, for all
x,y,z,w ∈ X and all ai ∈ Xi,

x � z
and

(yi,x−i) � z
and

y � w
and

z � w

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧⎨
⎩

(ai,x−i) � z
or

(xi,y−i) � w.

We say that � is 2-graded (condition 2-graded) if it is 2-graded on all attributes
i ∈ N. Condition 2-graded weakens condition 2∗-graded adjoining it the additional
premise (yi,x−i) � z. It has a similar interpretation. We have:

Lemma 1. Let � be a weak order on the set X. Then � satisfies AC1i and 2-gradedi
iff it satisfies 2∗-gradedi.
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Proof. [AC1i & 2-gradedi ⇒ 2∗-gradedi]. Suppose that x � z, y � w z � w. Using
AC1i, x � z and y � w implies either (yi,x−i) � z or (xi,y−i) � w. In the latter case,
one of the two conclusions of 2∗-gradedi holds. In the former case, we have x � z,
(yi,x−i) � z, y � w and z � w, so that 2-gradedi implies either (ai,x−i) � z, for all
ai ∈ Xi or (xi,y−i) � w, which is the desired conclusion.

[2∗-gradedi ⇒ AC1i & 2-gradedi]. It is clear that 2∗-gradedi implies 2-gradedi
since 2-gradedi is obtained from 2∗-gradedi by adding to it an additional premise.
Suppose that x � y and z � w. Since � is complete, we have either y � w or w � y.
If y � w, we have x � y, z � w and y � w, so that 2∗-gradedi implies (xi,z−i) � w or
(ai,x−i) � y, for all ai ∈ Xi. Taking ai = zi shows that AC1i holds in this case. The
proof is similar if it is supposed that w � y. ��

Why is this factorization interesting? First, it makes clear that the condition used
by Greco et al. (2004) combines two distinct properties: (1) the elements of Xi can
be ordered and (2) for each w ∈ X , we can partition the elements of Xi into at most
two categories with respect to w. This helps us better understand the behavioural
content of the conditions. It can also be useful for empirically testing the validity
of the discrete Sugeno integral model. Indeed, if we run an experiment for testing
whether a complex condition (like 2∗-graded) is satisfied by subjects, it is likely that
it will be rejected. This does not mean that the condition is completely wrong. It can
happen that only part of it is wrong. Therefore, testing more elementary conditions
can help identify what is wrong with a model. Finally, this factorization permit us to
show that the discrete Sugeno integral model can be viewed as a particular case of
a general decomposable representation, investigated and characterized in Bouyssou
and Pirlot (2004) and Greco et al. (2004). Furthermore, thanks to the factorization,
we know exactly what has to be imposed on the decomposable model in order to
obtain the discrete Sugeno integral model.

3 The Noncompensatory Model for Weak Orders

This section presents and characterizes the noncompensatory model for weak or-
ders. It will turn out to have intimate connections with the discrete Sugeno integral
model.

The following non-numerical model is inspired from the work of Słowiński et al.
(2002) and Bouyssou and Marchant (2007) who analyze ordered partitions of a
Cartesian product using similar models. A similar model was first suggested in
Fishburn (1978).

Definition 1. A weak order � on X has a representation in the noncompensatory
model if for all x ∈ X , there are sets:

1. Ax
i ⊆ Xi, for all i ∈ N.

2. Fx ⊆ 2N such that
[I ∈ Fx and I ⊆ J ∈ 2N ]⇒ J ∈ Fx, (2)
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that are such that, for all x,y ∈ X ,

x � y⇒

⎧⎨
⎩

Ax
i ⊆ Ay

i
and

Fx ⊆ Fy
(3)

and
x � y⇔{i ∈ N : xi ∈ Ay

i } ∈ Fy. (4)

We often write A(x,y) instead of {i ∈ N : xi ∈ Ay
i }.

The noncompensatory model2 can be interpreted as follows. For each x ∈ X we
isolate on each attribute a subset Ax

i ⊆ Xi containing the levels on attribute i that
are satisfactory for x. In order for an alternative to be at least as good as x, it must
have evaluations that are satisfactory for x on a subset of attributes belonging to
Fx. The subsets of attributes belonging to Fx are interpreted as subsets that are
“sufficiently important” to warrant preference on x.

With this interpretation in mind, the constraint (3) means that if x is at least as
good as y then every level that is satisfactory for x must be satisfactory for y. Further-
more, subsets of attributes that are “sufficiently important” to warrant preference on
x must also be “sufficiently important” to warrant preference on y. Given the above
interpretation of Fx, the constraint (2) simply says that any superset of a set that is
“sufficiently important” to warrant preference on x must have the same property.

Suppose that x � y and that xi ∈ Ay
i , for some i ∈ N. In the noncompensatory

model, we have (zi,x−i) � y, for all zi ∈Xi. It is therefore impossible, starting from x,
to obtain an alternative that would be at least as good as y by modifying the eval-
uation of x on the ith attribute. In other terms, the fact that A(x,y) /∈ Fy cannot be
compensated by improving the evaluation of x on an attribute in A(x,y). Hence, our
name for this model.

We first observe that a weak order having a representation in the noncompensa-
tory model must satisfy AC1 and 2-graded.

Lemma 2. If weak order � on X has a representation in the noncompensatory
model, then it satisfies AC1 and 2-graded.

Proof. [AC1i]. Suppose that x � y, z � w, (zi,x−i) � y and (xi,z−i) � w. It is easy
to see that x � y and (zi,x−i) � y imply xi ∈ Ay

i and zi /∈ Ay
i . Similarly, z � w and

(xi,z−i) � w imply zi ∈Aw
i and xi /∈Aw

i . Because � is complete, we have either y � w
or w � y. Hence, we have either Ay

i ⊆ Aw
i or Aw

i ⊆ Ay
i , a contradiction.

[2-gradedi]. Suppose that 2-gradedi is violated, so that, for some x,y,z,w ∈ X
and some ai ∈ Xi, (xi,x−i) � z, (yi,x−i) � z, (yi,y−i) � w, z � w, (ai,x−i) � z and

2 The noncompensatory model for weak orders must not be confused with “noncompensatory pref-
erences” as introduced in Fishburn (1976). Noncompensatory preferences in the sense of Fishburn
(1976) are preferences that result from an “ordinal aggregation” in the context of MCDM that is
quite close from the type of aggregation studied in social choice theory in the vein of Arrow (1963)
(for a recent analysis of such preferences, see Bouyssou and Pirlot (2005)). As first shown in Fish-
burn (1975), noncompensatory preferences that are weak orders are, except in degenerate cases,
lexicographic.
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(xi,y−i) � w. Using the definition of the noncompensatory model, (yi,y−i) � w and
(xi,y−i) � w imply yi ∈ Aw

i and xi /∈ Aw
i . Similarly, (xi,x−i) � z and (ai,x−i) � z

imply xi ∈ Az
i and ai /∈ Az

i . Since z � w, we have Az
i ⊆ Aw

i , a contradiction. ��

The main result of this section says that, for weak orders, the noncompensatory
model is fully characterized by condition 2∗-graded or, equivalently, by the con-
junction of AC1 and 2-graded.

Proposition 1. If a weak order on X satisfies AC1 and 2-graded then it has a repre-
sentation in the noncompensatory model.

Before proving Proposition 1, we will have to go through a few definitions and
lemmas.

Consider an attribute i ∈ N. We define the left marginal trace on attribute i ∈ N
letting, for all xi,yi ∈ Xi, all a−i ∈ X−i and all z ∈ X ,

xi �+
i yi ⇔ [(yi,a−i) � z⇒ (xi,a−i) � z].

Similarly, given a ∈ X , we define the left marginal trace on attribute i ∈ N with
respect to a ∈ X , letting, for all xi,yi ∈ Xi and all z−i ∈ X−i,

xi �+(a)
i yi ⇔ [(yi,z−i) � a⇒ (xi,z−i) � a].

The symmetric and asymmetric parts of �+
i (resp. �+(a)

i ) are denoted ∼+
i and �+

i

(resp. ∼+(a)
i and �+(a)

i ). It is clear that �+
i and �+(a)

i are always reflexive and
transitive. They may be incomplete however.

We note a few useful obvious connections between �+(a)
i , �+

i and � in the fol-
lowing lemma.

Lemma 3. We have, for all i ∈ N, all z,w ∈ X and all xi,yi ∈ Xi:

1. xi �+
i yi ⇔ [xi �+(a)

i yi, for all a ∈ X ].
2. [z � w,xi �+

i zi]⇒ (xi,z−i) � w.
3. Furthermore, if � is reflexive then, [z j ∼+

j w j, for all j ∈ N]⇒ z∼ w.
4. The relation �+

i is complete iff AC1i holds.

Proof. Parts 1 and 2 easily follow from the definitions. Part 3 follows from Part 2
and the fact that w � w. It is obvious that negating the completeness of �+

i is equiv-
alent to negating AC1i. ��

Remark 2. When � is a weak order, condition AC1i is equivalent to supposing that,
for all xi,yi ∈ Xi and all z−i,w−i ∈ X−i (xi,z−i) � (yi,z−i)⇒ (xi,w−i) � (yi,w−i),
i.e., that attribute i is weakly separable, using the terminology of Bouyssou and
Pirlot (2004).

Indeed suppose that � satisfies AC1i and is such that attribute i is not weakly
separable. Therefore there are xi,yi ∈ Xi and z−i,w−i ∈ X−i such that (xi,z−i) �
(yi,z−i) and (yi,w−i) � (xi,w−i). Since � is reflexive, we have (xi,z−i) � (xi,z−i)
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and (yi,w−i) � (yi,w−i). Using AC1i, we have either yi �+
i xi or xi �+

i yi, so that
either (yi,z−i) � (xi,z−i) or (xi,w−i) � (yi,w−i), a contradiction.

Conversely, suppose that � is complete and transitive and that attribute i is
weakly separable. Suppose that AC1i is violated so that, since � is complete,
(xi,x−i) � y, (zi,z−i) � w, y � (zi,x−i) and w � (xi,z−i), for some x,y,z,w ∈ X .
Since � is a weak order, we obtain (xi,x−i)� (zi,x−i) and (zi,z−i)� (xi,z−i), which
violates the weak separability of attribute i.

We say that a weak order � is weakly separable if, for all i ∈ N, it is weakly
separable for attribute i.

Hence, combining Lemma 1 with Theorem 1 shows that a relation has a repre-
sentation in the discrete Sugeno integral model iff it is a weakly separable weak
order satisfying OD and 2-graded.

Bouyssou and Pirlot (2004, Propositions 8 and B.3) have shown that, for weak
orders satisfying OD, weak separability is a necessary and sufficient condition to
obtain a general decomposable representation in which, for all x,y ∈ X ,

x � y⇔ F [u1(x1), . . . ,un(xn)]≥ F [u1(y1), . . . ,un(yn)],

with F being nondecreasing in all its arguments (see also Greco et al., 2004,
Theorem 1). Hence, condition 2-graded is exactly what must be added to go from
this general decomposable representation to a representation in the discrete Sugeno
integral model.

The following lemma makes precise the structure of the relations �+(a)
i when � is

a weak order satisfying AC1i and 2-gradedi.

Lemma 4. Let � be a weak order on X satisfying AC1i and 2-gradedi. Then:

1. �+(a)
i is complete for all a ∈ X.

2. xi �+(a)
i yi ⇒ [xi �+(b)

i yi for all b ∈ X ].
3. �+(a)

i has at most two distinct equivalence classes, for all a ∈ X.
4. [xi ∼+(a)

i zi and xi �+(a)
i yi]⇒ xi ∼+(b)

i zi, for all b ∈ X such that a � b.
5. If a � b and both �+(a)

i and �+(b)
i are nontrivial then the first equivalence class

of �+(a)
i is included in the first equivalence class of �+(b)

i .

Proof. Parts 1 and 2 follow from Lemma 3 since AC1i implies that �+
i is complete.

Part 3. Suppose that �+(a)
i has at least three distinct equivalence classes. This im-

plies that (xi,c−i) � a, (yi,c−i) � a, (yi,d−i)� a and (zi,d−i) � a, for some xi,yi,zi ∈
Xi, some c−i,d−i ∈ X−i and some a ∈ X . Using AC1i, (xi,c−i) � a, (yi,d−i) � a
and (yi,c−i) � a imply (xi,d−i) � a. Using 2-gradedi, (yi,d−i) � a, (xi,d−i) � a,
(xi,c−i) � a and a � a imply (yi,c−i) � a or (zi,d−i) � a, a contradiction.

Part 4. Suppose that xi ∼+(a)
i zi, xi �+(a)

i yi, a � b and xi �+(b)
i zi (the proof

for the case zi �+(b)
i xi being similar). By construction, we have (xi,w−i) � b,

(zi,w−i) � b, (xi, t−i) � a and (yi, t−i) � a. Since xi∼+(a)
i zi, we must have (zi, t−i) �

a. Using AC1i, (xi,w−i) � b, (zi, t−i) � a and (zi,w−i) � b imply (xi, t−i) � a. Using
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2-gradedi, (zi, t−i) � a, (xi, t−i) � a, (xi,w−i) � b and a � b imply (zi,w−i) � b or
(yi, t−i) � a, a contradiction.

Part 5. Suppose that a � b, xi �+(a)
i yi and zi �+(b)

i xi. Using Part 2, we know that
zi �+(a)

i xi. Because we know from Part 3 that �+(a)
i has at most two equivalence

classes, we must have zi ∼+(a)
i xi. Using Part 4, a � b, zi ∼+(a)

i xi and xi �+(a)
i yi

imply zi ∼+(b)
i xi, a contradiction. ��

Let � be a weak order on X satisfying AC1i and 2-gradedi. Let i ∈ N. For all a ∈ X ,
we know that either �+(a)

i is trivial or �+(a)
i has two distinct equivalence classes.

Define Ba
i ⊂ Xi as the empty set in the first case and as the elements in the first

equivalence class in the second case. Define Ca
i letting:

Ca
i =

⋃
{x∈X :x�a}

Bx
i .

The following lemma studies the properties of the sets Ca
i .

Lemma 5. Let � be a weak order on X satisfying AC1 and 2-graded. For all
x,y,z,w ∈ X and all i ∈ N:

1. z � w⇒Cz
i ⊆Cw

i .
2. { j ∈ N : y j ∈Cz

j} ⊆ { j ∈ N : x j ∈Cz
j}⇒ [xi �+(z)

i yi for all i ∈ N].
3. Cx

i � Xi.

Proof. Part 1. We have xi ∈Cz
i iff xi ∈ Ba

i , for some a � z. Because z � w and � is
a weak order, we have a � z. Hence, xi ∈ Ba

i , for some a � w, so that xi ∈Cw
i .

Part 2. If �+(z)
i is trivial, we have by definition xi ∼+(z)

i yi. If �+(z)
i is not trivial,

it follows from Part 5 of Lemma 4 that Cz
i is equal to the first equivalence class

of �+(z)
i . If yi ∈ Cz

i , we have xi ∈ Cz
i , so that xi ∼+(z)

i yi. If yi /∈ Cz
i , then we have

zi �+(z)
i yi.

Part 3. By construction, By
i is strictly included in Xi. As the set Cx

i is obtained by
taking the union of sets By

i , the conclusion follows. ��

Lemma 6. Let � be a weak order on X satisfying AC1i and 2-gradedi. Define, for
all x ∈ X, the set Gx ⊆ 2N letting I ∈Gx whenever we have {i ∈ N : zi ∈Cx

i } ⊆ I, for
some z ∈ X such that z � x. We have, for all x,y ∈ X:

1. x � y⇔ {i ∈ N : xi ∈Cy
i } ∈ Gy.

2. [I ∈ Gx and I ⊆ J]⇒ J ∈ Gx.
3. x � y⇒ Gx ⊆ Gy.

Proof. Part 1. By construction, if x � y then {i∈N : xi ∈Cy
i } ∈Gy. Let us show that

the reverse implication is true. Suppose that {i∈N : xi ∈Cy
i } ∈Gy. This implies that

{i ∈ N : zi ∈Cy
i } ⊆ {i ∈ N : xi ∈Cy

i }, for some z ∈ X such that z � y. Using Part 2
of Lemma 5, {i ∈ N : zi ∈Cy

i } ⊆ {i ∈ N : xi ∈Cy
i } implies xi �+(y)

i zi, for all i ∈ N.
Hence, z � y implies x � y.
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Part 2 follows from the definition of the sets Gx.
Part 3. Suppose that x � y and let I ∈ Gx. Let us show that we must have I ∈ Gy.

By construction, I ∈ Gx implies that {i ∈ N : zi ∈Cx
i } ⊆ I, for some z ∈ X such that

z � x. Consider the alternative w ∈ X defined in the following way:

• If zi ∈Cx
i , let wi = zi. We have wi ∈Cx

i . Using Part 1 of Lemma 5, we know that
this implies wi ∈Cy

i .
• If zi /∈Cx

i . Using Part 3 of Lemma 5, we know that Cy
i � Xi. We take wi to be any

element in Xi \Cy
i . Because, we know that Cx

i ⊆Cy
i , we have wi /∈Cx

i .

By construction we have, for all i ∈ N, zi ∈ Cx
i ⇔ wi ∈ Cx

i ⇔ wi ∈ Cy
i . Hence, we

have {i ∈ N : zi ∈ Cx
i } = {i ∈ N : wi ∈ Cx

i } = {i ∈ N : wi ∈ Cy
i }. The first equality

implies w � x. Using the fact that � is a weak order, we obtain w � y. Hence, we
have {i ∈ N : wi ∈Cy

i } ⊆ I and w � y. This implies I ∈ Gy. ��

Defining Ax
i = Cx

i and Fx = Gx, the sufficiency proof of Proposition 1 follows from
combining Lemmas 5 and 6.

4 The Noncompensatory Model and the Discrete Sugeno
Integral Model

The main result in this section says that if a weak order has a representation in the
noncompensatory model and has a numerical representation, then it has a represen-
tation in the discrete Sugeno integral model. This will help to complete the proof of
Theorem 1.

Proposition 2. Let � be a weak order on X. Suppose that � can be represented in
the noncompensatory model and that there is a real function v on X such that, for
all x,y ∈ X,

x � y⇔ v(x)≥ v(y). (5)

Then � has a representation in the discrete Sugeno integral model.

Proof. Let � be a weak order representable in the noncompensatory model and such
that there is a real-valued function v satisfying (5). We may assume w.l.o.g. that, for
all x ∈ X , v(x) ∈ [0,1]. Furthermore, if there are minimal elements in X for �, we
may assume w.l.o.g. that v gives the value 0 to these elements. We consider now any
such function v. For all i ∈ N, define ui letting, for all xi ∈ Xi,

ui(xi) =
{

sup{w∈X :xi∈Aw
i } v(w) if ∃w : xi ∈ Aw

i ,

0 otherwise.
(6)

Define μ on 2N letting, for all I ∈ 2N ,

μ(I) =
{

sup{w∈X :I∈Fw} v(w) if ∃w : I ∈ Fw,

0 otherwise.
(7)
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Since I ∈ Fw and J ⊇ I entails J ∈ Fw, we have that μ(J) ≥ μ(I). Hence, μ is a
nondecreasing set function.

Let us show that μ(∅) = 0. If there is no w ∈ X such that ∅ ∈ Fw, then we
have, by construction, μ(∅) = 0. Suppose that X∅ = {w ∈ X : ∅ ∈ Fw} = ∅. From
the definition of the noncompensatory model, it follows that, for all x ∈ X and all
w ∈ X∅, we have x � w. Hence, for all w ∈ X∅, w is minimal for �. We therefore
have v(w) = 0, for all w ∈ X∅ and, hence, μ(∅) = 0. This shows that μ defined by
(7) is a capacity on 2N . It is not necessarily normalized, i.e., we may not have that
μ(N) = 1.

Independently of the normalization of μ , we can compute, for all x ∈ X , Sμ,u(x)
letting:

S〈μ,u〉(x) =
∨

I⊆N

[
μ(I)∧

(∧
i∈I

ui(xi)

)]
. (8)

It is clear that, for all y ∈ X , S〈μ,u〉(y) ∈ [0,1]. Let us show that, for all y ∈ X ,
S〈μ,u〉(y) = v(y), which will complete the proof if μ happens to be normalized.

Let x,y ∈ X be such that x � y. This implies A(x,y) = {i ∈ N : xi ∈ Ay
i } ∈ Fy.

Hence, for all i ∈ A(x,y), y ∈ {w ∈ X : xi ∈ Aw
i }, so that ui(xi) ≥ v(y). Similarly,

y∈ {w∈X : A(x,y)∈Fw}, so that μ(A(x,y))≥ v(y). Hence, for I = A(x,y), we have

μ(I)∧
(∧

i∈I

ui(xi)

)
≥ v(y).

In view of (8), this implies S〈μ,u〉(x) ≥ v(y). Since � is reflexive, this shows that,
for all y ∈ X , S〈μ,u〉(y)≥ v(y).

We now prove that, for all y ∈ X , S〈μ,u〉(y) ≤ v(y). If y is maximal for � (i.e.,
y � x, for all x ∈ X), we have v(y) ≥ v(x), for all x ∈ X . The definition of ui and μ
obviously implies that they cannot exceed the maximal value of v on X . Hence, in
this case, we have S〈μ,u〉(y)≤ v(y).

Suppose henceforth that y ∈ X is not maximal for �, so that x � y, for some
x ∈ X . This implies that A(y,x) = {i ∈ N : yi ∈ Ax

i } /∈ Fx. Define Ay =
⋃

z�y A(y,z).
Because A(y,z) ⊆ N, N is a finite set, and z′ � z implies A(y,z′) ⊆ A(y,z), there is
an element z0 ∈ X with z0 � y that is such that A(y,z0) = Ay and A(y,z) = Ay, for all
z ∈ X such that z0 � z� y.

We claim the following:

Claim 1: for all j /∈ Ay, u j(y j)≤ v(y).
Claim 2: for all I ⊆ Ay, μ(I)≤ v(y).

Proof of Claim 1. Let j /∈ Ay, so that y j /∈ Az0
j . If the set {w ∈ X : y j ∈ Aw

j } is empty,
we have u j(y j) = 0 and the claim trivially holds. Otherwise, let w ∈ X such that
y j ∈ Aw

j . If w � z0, we have Aw
j ⊆ Az0

j , so that y j ∈ Aw
j implies y j ∈ Az0

j , a contra-
diction. If z0 � w � y, we know that A(y,w) = A(y,z0). This is contradictory since
y j ∈ Aw

j and y j /∈ Az0
j . Hence, when j /∈ Ay, we must have y � w, for all w ∈ X such

that y j ∈ Aw
j . This implies that u j(y j) = sup{w∈X :y j∈Aw

j } v(w)≤ v(y), for all j /∈ Ay.
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Proof of Claim 2. Let I ⊆ Ay. If the set {w ∈ X : I ∈ Fw} is empty, we have μ(I) = 0
and the claim follows. Otherwise, let w ∈ X such that I ∈ Fw. Suppose that w� z0.
This implies Fw ⊆ Fz0 , so that I ∈ Fz0 . Because I ⊆ Ay, we obtain Ay ∈ Fz0 . This
is contradictory since z0 � y implies that Ay = A(y,z0) /∈ Fz0 . Suppose now that
z0 � w � y. We have A(y,w) = Ay /∈ Fw. But, since I ∈ Fw and I ⊆ Ay, we obtain
Ay ∈ Fw, a contradiction. Hence, for all w ∈ X such that I ∈ Fw, we have y � w.
This implies μ(I) = sup{w∈X :I∈Fw} v(w)≤ v(y).

Using Claims 1 and 2, we establish that S〈μ,u〉(y)≤ v(y) for any y ∈ X that is not
maximal. Let I ⊆ N. We distinguish two cases in order to compute

μ(I)∧
(∧

i∈I

ui(xi)

)
.

1. If I is not included in Ay, we know that there is j ∈ I such that j /∈ Ay. Hence,
using Claim 1, u j(y j)≤ v(y) so that μ(I)∧ (

∧
i∈I ui(yi))≤ v(y).

2. If I is included in Ay, using Claim 2, we have μ(I)≤ v(y). Hence, we know that
μ(I)∧ (

∧
i∈I ui(yi))≤ v(y).

Hence, for all I ⊆ N, we have μ(I)∧ (
∧

i∈I ui(yi)) ≤ v(y), so that S〈μ,u〉(y) ≤ v(y).
This proves that, for all y ∈ X , S〈μ,u〉(y) = v(y).

It remains to show that we may always build a representation in the discrete
Sugeno integral model using a normalized capacity, i.e., a capacity ν such that
ν(N) = 1.

Using the above construction, the value of μ(N) is obtained using (7). We have
μ(N) = supw∈X v(w), since for all w ∈ X , N ∈ Fw. If the weak order � is not trivial,
we have μ(N) > 0. In order to obtain a representation leading to a normalized
capacity, it suffices to apply the above construction to the function u obtained by
dividing v by μ(N). If the weak order � is trivial, it is easy to see that it has a
representation in the noncompensatory model such that, for all x ∈ X and all i ∈ N,
Ax

i = Xi and Fx = {N}. Defining, for all i ∈ N and all xi ∈ Xi, ui(xi) = 1, μ(N) = 1
and μ(A) = 0, for all A � N, leads to a representation of this trivial weak order in
the discrete Sugeno integral model. ��

The sufficiency proof of Theorem 1 follows from combining Lemma 1 with
Propositions 1 and 2. This amounts to characterizing the discrete Sugeno inte-
gral model by the conjunction of any of the following three equivalent sets of
conditions:

• Completeness, transitivity, OD, AC1 and 2-graded
• Completeness, transitivity, OD, weak separability and 2-graded
• Completeness, transitivity, OD and 2∗-graded

The examples in the following section show no condition in the first set is redundant.

Remark 3. Consider a nontrivial weak order � on X that satisfies the hypotheses of
Proposition 2. The proof of this proposition establishes that any function v : X →
[0,1] satisfying (5) and giving a value 0 to the minimal elements in X for � (if any)
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can be used to define a representation in the Sugeno integral model. The functions
ui and the (non-necessarily normalized) capacity μ used in this representation can
be defined on the basis of v using (6) and (7).

In other words, any (bounded) numerical representation v of a weak order repre-
sentable in the noncompensatory model is essentially a Sugeno integral. By “essen-
tially”, we mean that a positive affine transformation may have to be applied first
to the numerical representation v in order that the minimal elements in X (if any)
receive the value 0 and that the supremum of v is 1. This transformation is only
needed to ensure that μ(∅) = 0 and μ is a normalized capacity. Note that applying
(6) and (7) to any bounded numerical representation of the preference would yield
ui’s and μ such that formula (8) would restate the value of v(x), even if μ does not
satisfy μ(∅) = 0 or is not normalized.

Furthermore, as shown in this proof, (6) and (7) can be viewed as inversion for-
mulas for the discrete Sugeno integral model in the following sense. If we know the
value of S〈μ,u〉(x), for all x ∈ X , without knowing the functions μ and ui, it is possi-
ble to use (6) and (7) to build functions u j and a capacity μ that allow to reconstruct
all these values using the discrete Sugeno integral formula (8).

5 Independence of Conditions

When strong 2-gradedness is factorized using AC1 and 2-gradedness, Theorem 1
uses five conditions: completeness, transitivity, AC1, 2-gradedness and order-dense-
ness. The five examples below show that none of these conditions can be dispensed
with.

Example 1. Let X = {x1,y1}×{x2,y2}. Let � be identical to the weak order

(y1,y2)� [(x1,y2),(y1,x2)]� (x1,x2),

except that we have removed two arcs from �, so as to have (x1,y2) � (y1,x2) and
(y1,x2) � (x1,y2). It is clear that � is transitive but is not complete. Since X1 and
X2 have only two elements, condition 2-graded trivially holds. It is not difficult to
check that we have y1 �+

1 x1 and y2 �+
2 x2, so that AC1 holds.

Example 2. Let X = {x1,y1}×{x2,y2}. Let � be identical to the trivial weak order
except that we have removed one arc from �, so as to have (x1,x2) � (y1,y2). It is
not difficult to see that the resulting relation is complete but not transitive (it is a
semi-order). Since X1 and X2 have only two elements, condition 2-graded trivially
holds. It is not difficult to check that we have y1 �+

1 x1 and y2 �+
2 x2, so that AC1

holds.

Example 3. Let X = {x1,y1,z1}×{x2,y2}×{x3,y3}. Let � be the weak order such
that:

[(x1,x2,x3),(y1,x2,x3)]
�
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[(x1,x2,y3),(x1,y2,x3),(y1,x2,y3),(y1,y2,x3),
(y1,y2,y3),(z1,x2,x3),(z1,x2,y3),(z1,y2,x3)]

�
[(z1,y2,y3),(x1,y2,y3)] .

We have y1 �+
1 x1 �+

1 z1, x2 �+
2 y2 and x3 �+

3 y3, which shows that AC1 holds.
Conditions 2-graded2 and 2-graded3 are trivially satisfied. Condition 2-graded1

is violated since (x1,x2,x3) � (y1,x2,x3), (y1,x2,x3) � (y1,x2,x3), (y1,y2,y3) �
(x1,x2,y3) and (y1,x2,x3) � (x1,x2,y3) but (z1,x2,x3) � (y1,x2,x3) and (x1,y2,y3) �
(x1,x2,y3).

Example 4. Let X = {x1,y1}× {x2,y2}× {x3,y3}. Let � be the weak order such
that:

[(x1,x2,x3),(x1,y2,x3),(y1,y2,x3)]
�

[(y1,y2,y3),(y1,x2,x3)]
�

[(x1,x2,y3),(x1,y2,y3),(y1,x2,y3)] .

Condition 2-graded trivially holds. We have y2 �+
2 x2 and x3 �+

3 y3, so that con-
ditions AC12 and AC13 hold. Since (x1,x2,x3) � (y1,y2,x3) and (y1,y2,y3) �
(y1,x2,x3) but (y1,x2,x3) � (y1,y2,x3) and (x1,y2,y3) � (y1,x2, x3), condition
AC11 is violated.

Remark 4. It is easy to check that the weak order in Example 4 satisfies the following
condition

x � y
and
z � y

⎫⎬
⎭⇒

⎧⎨
⎩

(zi,x−i) � y,
or

(xi,z−i) � y,

for all x,y,z ∈ X . This condition is a weakening of AC1i obtained by requiring that
y = w in the expression of AC1i (it is equivalent to requiring that all relations �+(a)

i
are complete). It is therefore not possible to weaken AC1i in this way.

Similarly, it is easy to check that the weak order in Example 3 satisfies the weak-
ening of 2-gradedi obtained by requiring that z = w in the expression of 2-gradedi
(and, hence, removing the last redundant premise), i.e., for all x,y,z ∈ X and all
ai ∈ Xi,

x � z
and

(yi,x−i) � z
and

y � z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
⇒

⎧⎨
⎩

(ai,x−i) � z
or

(xi,y−i) � z,

Hence, condition 2-gradedi cannot be weakened in this way.

Example 5. Let X = 2R × {0,1}. We consider the weak order on X such that
(x1,x2) � (y1,y2) if [x2 = 1] or [x2 = 0, y2 = 0 and x1 ≥∗ y1], where ≥∗ is any
linear order on 2R. It is easy to see that � is a weak order. It violates OD since
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the restriction of � to 2R×{0} is isomorphic to ≥∗ on 2R and ≥∗ violates OD.
The relation � has a representation in the noncompensatory model. Indeed, for all
x = (x1,1), take Ax

1 = ∅, Ax
2 = {1} and Fx = {{2},{1,2}}. For all x = (x1,0), take

Ax
1 = {y1 ∈ 2R : y1 ≥∗ x1}, Ax

2 = {1} and Fx = {{1},{2},{1,2}}. It is easy to check
that this defines a representation of the weak order � in the noncompensatory model.
Using Lemma 2, this implies that � satisfies AC1 and 2-graded.

6 Uniqueness

This section briefly discusses the uniqueness of the representation in the noncom-
pensatory model and the discrete Sugeno integral model. The “ordinal” character
of these models makes them especially attractive to deal with finite sets of alter-
natives. We therefore restrict our attention to this case in what follows. When X is
finite, combining Propositions 1 and 2 with Theorem 1, shows that a binary relation
has a representation in the noncompensatory model iff it has a representation in the
discrete Sugeno integral model.

6.1 Links Between Representations in the Noncompensatory
Model and the Discrete Sugeno Integral Model

Let � be a non-degenerate weak order on a finite set X with r > 1 distinct equiv-
alence classes. Suppose that � has a representation in the noncompensatory model
using sets Ax

i and Fx. It is easy to deduce from this representation a representation
of � in the discrete Sugeno integral model.

It follows from the definition of the noncompensatory model that, if x and y
belong to the same equivalence class, we have Ax

i = Ay
i , for all i ∈ N, and Fx = Fy.

Let A(k)
i = Ax

i and F(k) = Fx, for some x ∈ X belonging to the kth equivalence class
of �.

Take any numbers λk such that

λ1 = 1 > λ2 > · · ·> λr−1 > λr = 0. (9)

For all i ∈ N, define ui letting, for all xi ∈ Xi,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(xi) = λ1 if xi ∈ A(1)
i ,

ui(xi) = λ2 if xi ∈ A(2)
i \A(1)

i ,

ui(xi) = λ3 if xi ∈ A(3)
i \A(2)

i ,
...

ui(xi) = λr−1 if xi ∈ A(r−1)
i \A(r−2)

i ,
ui(xi) = λr otherwise,

(10)
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and μ on 2N letting, for all A ∈ 2N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ(A) = λ1 if A ∈ F(1),

μ(A) = λ2 if A ∈ F(2) \F(1),

μ(A) = λ3 if A ∈ F(3) \F(2),
...

μ(A) = λr−1 if A ∈ F(r−1) \F(r−2),
μ(A) = λr otherwise.

(11)

With such definitions, for all x ∈ X , the value S〈μ,u〉(x) belongs to {λ1,λ2, . . . , λr}.
It is easy to see that x ∈ X belongs to the kth equivalence class of � iff {i ∈ N : xi ∈
A(k)

i } ∈ F(k) iff S〈μ,u〉(x) = λk.
The above formulas therefore give a systematic way to build a representation in

the discrete Sugeno integral model on the basis of a representation in the noncom-
pensatory model.

Clearly, the real numbers λk may be chosen arbitrarily, provided that they satisfy
(9). Given a particular choice of λk, the representation built above is “minimal” in
the sense that it uses as few real numbers as possible in order to build the represen-
tation in the Sugeno integral model.

The minimal representation, given a particular choice of λk compatible with (9),
envisaged above is not the only possible one. Given the numbers λk, we can, for
instance, use them to define the values of μ through (11). When this is done, it is
clear that for each distinct xi ∈ A(k)

i \A(k−1)
i we can define ui(xi) to take an arbitrary

value in the interval [λk,λk−1). Other choices are clearly possible.

6.2 Uniqueness of Representations

It is easy to deduce from the results in Bouyssou and Marchant (2007) the unique-
ness of the representation in the noncompensatory model. Consider the kth equiva-
lence class of �. We say that attribute i ∈ N is influent for this equivalence class if
there are xi,yi ∈ Xi and a−i ∈ Xi such that (xi,a−i) belongs at least to the kth equiv-
alence class of � and (yi,a−i) belongs to a strictly lower equivalence class. Using
the results in Bouyssou and Marchant (2007), it is easy to show that, when each
attribute i ∈ N is influent for the kth equivalence class of �, the sets A(k)

i and F(k)

are uniquely determined. This condition is not necessary for such a uniqueness how-
ever. This is illustrated in the example below adapted from Bouyssou and Marchant
(2007).

Example 6. Let n = 3, X = {x1,y1}×{x2,y2}×{x3,y3}. Let � be such that:

(x1,x2,x3)� (y1,x2,x3)� [(x1,x2,y3),(x1,y2,x3)]

� [(x1,y2,y3),(y1,x2,y3),(y1,y2,x3),(y1,y2,y3)] .
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It is easy to check that all attributes are influent for the first equivalence class of
�. We must have A(1)

1 = {x1}, A(1)
2 = {x2}, A(1)

3 = {x3} and F(1) = {{1,2,3}}.
Similarly, all attributes are influent for the third equivalence class. We must have
A(3)

1 = {x1}, A(3)
2 = {x2}, A(3)

3 = {x3} and F(3) = {{1,2},{1,3},{2,3},{1,2,3}}.
Attributes 2 and 3 are influent for the second equivalence class of � while at-

tribute 1 is not. In order to satisfy the constraints of the noncompensatory model,
we must take A(2)

1 = {x1}, A(2)
2 = {x2}, A(2)

3 = {x3} and F(2) = {{2,3},{1,2,3}}.
The conditions ensuring the uniqueness of the representation in the noncompensa-
tory model are investigated in Bouyssou and Marchant (2007). Whenever this rep-
resentation is not unique, we may use each of these representations as a basis for the
analysis in Sect. 6.1.

In order to analyze the uniqueness of the representation in the discrete Sugeno
integral model, two points should therefore be kept in mind. First, given a repre-
sentation in the noncompensatory model, it is possible to deduce several distinct
representations in the discrete Sugeno integral model. Second, the representation in
the noncompensatory model may not be unique. Combining these two effects, it is
clear that the uniqueness of the representation in the discrete Sugeno integral model
is quite weak. Since its precise analysis does not seem to be informative, we do not
develop this point.

6.3 Commensurateness

When we compute a Sugeno integral, we compare levels on different attributes.
This seems to indicate that the axioms of the discrete Sugeno integral model imply
the existence of a relation �c defined on

⋃
i∈N Xi, with the following interpretation:

xi �c x j iff xi is better than x j. Given a preference relation �, there can exist several
representations in the discrete Sugeno integral model and it can happen that ui(xi) >
u j(x j) in one representation while u′i(xi) < u′j(x j) in another one. Hence, stating
xi �c x j (or the converse) does not make sense for such a pair. So, let us define �c

by xi �c x j iff ui(xi) > u j(x j) in all representations. In the following proposition,
we characterize this relation in terms of the primitive relation �.

Proposition 3. Let � be a weak order representable by means of a Sugeno integral.
We have zi �c z j if and only if, for some c,d ∈ X, wi ∈ Xi, w j ∈ Xj, a−i ∈ X−i and
b− j ∈ X− j, we have

⎧⎨
⎩

c � d,
(zi,a−i) � c, (wi,a−i) � c,
(w j,b− j) � d, (z j,b− j) � d.

(12)

Proof. If (12) holds, then, in any representation, ui(zi) ≥ S〈μ,u〉(c) ≥ S〈μ,u〉(d) >
u j(z j). So, in any representation, ui(zi) > u j(z j) and, therefore, zi �c z j.
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Suppose now zi �c z j and let (u∗i )i∈N be one of the representations constructed
by means of (9), (10) and (11). We therefore know that u∗i (zi) > u∗j(z j). There is thus
k and l with k < l such that u∗j(z j) = λ l and u∗i (zi) = λ k (this follows from (10)).

Hence, zi ∈ A(k)
i and z j /∈ A(k)

j . So, (12) holds for some c = d belonging to the kth
equivalence class of �. ��

From the definition of �c, it is clear that this relation is transitive and asymmetric,
i.e., zi �c z j implies z j �c zi. We now show that it is also negatively transitive, i.e.,
xi �c y j and y j �c zl implies xi �c zl . Hence, �c is the asymmetric part of a weak
order on the set

⋃
i∈N Xi. This is in line with the intuitive notion of commensurate-

ness.

Proposition 4. Let � be a weak order representable by means of a Sugeno integral.
Then �c is negatively transitive.

Proof. Let (u∗i )i∈N be one of the representations constructed by means of (9), (10)
and (11). Suppose xi �c y j and y j �c zl . If u∗i (xi) > u∗j(y j), then, as shown in the
proof of Proposition 3, (12) holds and, by Proposition 3, xi �c y j. This contradiction
implies u∗i (xi)≤ u∗j(y j). The same reasoning yields u∗j(y j)≤ u∗j(zl). By transitivity,
u∗j(xi) ≤ u∗j(zl). Suppose now, contrary to negative transitivity, that xi �c zl . This
implies u∗i (xi) > u∗l (zl), a contradiction. ��

To conclude this section, note that the “derived commensurateness”, i.e., the relation
�c, is not easy to interpret and analyze however. Indeed, the way the above relation
combines with � remains complex. As shown in the example below, it is quite
possible to have (xi,x j,x−i j) � y, z j �c xi and zi �c x j, while (zi,z j,x−i j) � y. This
calls for further analysis.

Example 7. Let n = 4 and X1 = X2 = X3 = X4 = {0,0.01,0.02, . . . ,0.99,1}. For all
i ∈ N, let ui(xi) = xi. Define a normalized capacity μ on N such that: μ(∅) = 0,
μ(A) = 0.1, for all A ⊆ N such that |A| = 1, μ({1,2}) = 0.1, μ({1,3}) =
0.2, μ({1,4}) = 0.301, μ({2,3}) = 0.31, μ({2,4}) = 0.2, μ({3,4}) = 0.3,
μ({1,2,3}) = 0.55, μ({1,2,4}) = 0.39, μ({1,3,4}) = 1, μ({2,3,4}) = 0.31,
μ(N) = 1. Define � on X as the relation obtained through the comparison of the
values S〈μ,u〉(x) = Sμ [x] using the utility functions and the capacity defined above.

We have
Sμ [(0.2,0,0.5,0)] = 0.2 > Sμ [(0.1,0,0.5,0)] = 0.1,

Sμ [(0,0.2,0,0.5)] = 0.2 > Sμ [(0,0.15,0,0.5)] = 0.15.

Since it is clear that Sμ [(0.2,0.2,0.2,0.2)] = 0.2 we thus have

(0.2,0,0.5,0) � (0.2,0.2,0.2,0.2) = c,
(0.1,0,0.5,0) � (0.2,0.2,0.2,0.2) = c,
(0,0.2,0,0.5) � (0.2,0.2,0.2,0.2) = d,

(0,0.15,0,0.5) � (0.2,0.2,0.2,0.2) = d,
c = (0.2,0.2,0.2,0.2) � (0.2,0.2,0.2,0.2) = d,

so that the level 0.2 on X1 is better than the level 0.15 on X2
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Similarly, we have

Sμ [(0,0.46,0.5,0)] = 0.31 > Sμ [(0,0.3,0.5,0)] = 0.3,
Sμ [(0.5,0,0,0.5)] = 0.301 > Sμ [(0.3,0,0,0.5)] = 0.3.

Since we have Sμ [(0.31,0.31,0.31,0.31)] = 0.31 and Sμ [(0.301,0.301,0.301,
0.301)] = 0.301, we obtain

(0,0.46,0.5,0) � (0.31,0.31,0.31,0.31) = c′,
(0,0.3,0.5,0) � (0.31,0.31,0.31,0.31) = c′,
(0.5,0,0,0.5) � (0.301,0.301,0.301,0.301) = d′,
(0.3,0,0,0.5) � (0.301,0.301,0.301,0.301) = d′,

c′ � d′,

so that the level 0.46 on X2 is better than the level 0.3 on X1.
We have Sμ [(0.3,0.15,0.29,0.4)] = 0.3. Since the level 0.2 on X1 is better than

the level 0.15 on X2 and 0.46 on X2 is better than the level 0.3 on X1, we should
obtain that Sμ [(0.2,0.46,0.29,0.4)]≥ 0.3, whereas it is equal to 0.29.

7 Discussion

In this paper, we have analyzed the relations between the discrete Sugeno integral
model and the noncompensatory model as well as proposed a factorization of the
main condition used in Greco et al. (2004, Theorem 3). By the same token, we have
presented a proof of Greco et al. (2004, Theorem 3). We have also discussed the
uniqueness of the representation in the discrete Sugeno integral model and shown
that the conditions used in Greco et al. (2004, Theorem 3) are independent. Besides,
we have analyzed the commensurateness that is implied by the discrete Sugeno
integral model and shown that it is more complex than what is usually thought in
the literature. Many questions are nevertheless left open. Let us briefly mention here
what seems to us the most important ones.

The result in Greco et al. (2004) is a first step in the systematic study of models
using fuzzy integrals in MCDM. A first and major open problem is to derive a
similar result for the discrete Choquet integral. This appears very difficult and we
have no satisfactory answer at this time.

A second open problem is to use the above result as a building block to study
particular cases of the discrete Sugeno integral. This was started in Greco et al.
(2004) who showed how to characterize ordered weighted minimum and maximum.
There are nevertheless many other particular cases of the discrete Sugeno integral
that would be worth investigating.

A third problem is to investigate assessment protocols of the various parameters
of the discrete Sugeno integral model using the above result and conditions. This
will clearly require a deeper investigation of the commensurateness at work in our
models.
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Finally, it should be mentioned that we have mainly used here the noncompen-
satory model for weak orders as a tool for analyzing the discrete Sugeno integral
model. The noncompensatory model that we introduced can be extended in many
possible directions. This will be the subject of a subsequent paper.
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Greco, S., Matarazzo, B., & Słowiński, R. (2004). Axiomatic characterization of a general utility
function and its particular cases in terms of conjoint measurement and rough-set decision rules.
European Journal of Operational Research, 158(2), 271–292.

Hougaard, J. L. & Keiding, H. (1996). Representation of preferences on fuzzy measures by a fuzzy
integral. Mathematical Social Sciences, 31, 1–17.

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement, Vol. 1:
Additive and polynomial representations. New-York: Academic.

Marichal, J.-L. (2000a). On Choquet and Sugeno integrals as aggregation functions. In
M. Grabisch, T. Murofushi, and M. Sugeno (Eds.), Fuzzy measures and integrals,
(pp. 247–272). Heidelberg: Physica.

Marichal, J.-L. (2000b). On Sugeno integrals as an aggregation function. Fuzzy Sets and Sys-
tems, 114, 347–343.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behaviour and Organiza-
tion, 3, 323–343.

Schmeidler, D. (1989). Subjective probability and expected utility without additivity. Economet-
rica, 57, 571–587. (first version: 1984)

Schmidt, U. (2004). Alternatives to expected utility: Some formal theories. In S. Barberà,
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Additive Representability of Finite
Measurement Structures

Arkadii Slinko

1 Introduction

The theory of additive conjoint measurement takes its roots in the papers by
Debreu, (1960) and Luce and Tukey (1964). It is presented in books (Pfanzagl
(1968); Fishburn (1970); Krantz, Luce, Suppes, & Tversky, 1971; Luce, Krantz,
Suppes, & Tversky, 1998; Suppes, Krantz, Luce, & Tversky, 1988; Roberts, 1979;
Narens, 1985) and excellent surveys, of which Fishburn’s survey (1999) is the most
recent. The goal of the present paper is twofold: we would like to describe some
recent developments that took place after Fishburn’s survey was published, and to
attract attention to several questions posed by Fishburn that remain unanswered.

The main object of this theory is a Cartesian product of finitely many mutually
disjoint sets Ai

A = A1×A2× . . .×An (1)

equipped with an order  . This product is usually interpreted as the set of alterna-
tives under the consideration of a decision maker, or the set of outcomes that may
result from her actions. We may also think that there are n criteria in place and each
set Ai is identified with the set of levels of the ith criterion. The order represents the
decision maker’s preference on the set of alternatives.

A decision maker often faces some kind of optimization problem. A solution of
this problem would be made feasible if it were possible to find an additive utility
representation over criteria of the decision maker’s preference order  on A. The
central theme of the theory of additive conjoint measurement is finding conditions
which imply the existence of such a representation. Another important question is
about uniqueness of this representation. It appeared that, in many aspects, the most
difficult case to study is the case of finite measurement structures, i.e. when A is
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finite. The main focus of this paper is on this case. In addition to that we restrict
ourselves with being a (strict) linear order, in which case the uniqueness question
does not emerge.

Kraft, Pratt, and Seidenberg (1959) established (see also Scott (1964)) that ad-
ditive utility representation of  is equivalent to a denumerable set of conditions,
called cancellation conditions, which is not equivalent to any finite subset of them.
However, for a finite Cartesian product of a particular size we need to check only
finitely many cancellation conditions for  to establish its additive representability.
Fishburn (see, e.g. his motivation of this in (1997, 1999)) considered that it is ex-
tremely important to know the exact number of cancellation conditions needed as
a function of the size of the product, or at least a good lower and upper bounds for
this number. He saw the absence of such bounds as a serious gap in understanding of
additive representability of preferences on finite measurement structures. Fishburn
made a significant contribution to this theory and formulated a large number of open
problems, which have guided and undoubtedly will continue to guide investigators
in this area. And although some recent progress has been made, only a few of the
great many questions posed by Fishburn have been answered to date.

Let us briefly outline what will be covered in the subsequent sections. In Sect. 2
we introduce the main types of finite measurement structures considered in the lit-
erature to date. They are Cartesian product structure, power set structure, power
multiset structure. Section 3 surveys the most general case, the Cartesian product
structure. In this case no significant progress has been recently made, and we high-
light a number of open questions.

Comparative probability orders, which represent one of the main cases of the
power set structure, are surveyed in Sect. 4. This measurement structure emerges
when Ai = {0,1} for i = 1,2, . . . ,n, in which case any n-tuple of the Cartesian prod-
uct can be identified with a subset of the set of atoms [n] = {1,2, . . . ,n}. Here we
reformulate the cancellation conditions for comparative probability orders in terms
of portfolios of desirable gambles. This framework allows for a better understanding
of Fishburn’s function f (n), the main object of his investigations in Fishburn (1996,
1997). We show that f (n) can be interpreted as a measure of rationality of a player
required to correctly evaluate any portfolio of gambles with n states of the world.
We report on the recent progress in estimation of f (n) and the related function g(n),
which was introduced by Conder and Slinko (2004). The reason for introducing
this new function is as follows. It is known that for comparative probability orders
the absence of arbitrage does not imply additive representation and some cancel-
lation conditions may still be violated. However the absence of arbitrage is a very
important condition and g(n) is a complete analogue of f (n) in the situation of no
arbitrage.

Fishburn showed by way of a sophisticated combinatorial construction that
f (n) ≥ n − 1, which together with the bound f (n) ≤ n + 1 of Kraft–Pratt–
Seidenberg (1959) gave quite a narrow range for this function. Fishburn conjectured
that f (n) = n−1. Recently however Conder and Slinko (2004) showed that f (7)≥ 7
and Marshall (2005, 2007) showed that f (p)≥ p for a large number of prime num-
bers p ≥ 131. Conder showed that f (n) ≥ n for all 7 ≤ n ≤ 13. Fishburn (1996,
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1997) also paid attention to minimal violations of the cancellation conditions which
he called irreducible patterns. Here we present a theorem of Auger (2005) which
says that there are only finitely many of them.

In Sect. 5, devoted to power multiset structure, sets are generalised to multisets
which allow multiple entry of identical elements. If Ai = {0,1, . . . ,mi} and if the ith
coordinate of an n-tuple from the Cartesian product is j, then we may think that the
multiset associated with this tuple has j copies of atom i. We see great advantages
in describing this measurement structure in multiset terms, because of the emerging
analogies with comparative probability orders. Orders on submultisets of a multiset
were first used in the computer science literature by Dershowitz (1979) to prove
termination of rewrite systems. Sertel and Slinko (2002) showed some important
applications of multisets in Economics and Political Science. In Economics rank-
ing multisets can be used for ranking income streams and investment projects. In
Political Science they can be used for ranking committees or parliaments.

Additive conjoint measurement on subsets of Cartesian products containing?
rank-ordered? n-tuples was considered by Wakker in (1991, 1993). He established
that, contrary rank-ordered to what has often been thought, additive conjoint mea-
surement on subsets of Cartesian products has characteristics different from additive
conjoint measurement on full Cartesian products.

Fishburn himself did not work with this preference structure but many of his ideas
work in this case too. An analogue of de Finetti’s axiom here is Independence of
Equal Submultisets (IES) introduced in Sertel and Slinko (2002); Sertel and Slinko
(2007). The analogues of functions f (n) and g(n) can be introduced and those ana-
logues will have k as an additional parameter, i.e. we obtain functions f (n,k) and
g(n,k). It is rather surprising that in this case better progress can be achieved in de-
scribing these functions than in the case of comparative probability orders (Conder,
Marshall and Slinko, 2007). The function g(n,k) is determined exactly: we have
g(n,k) = n−1 for (n,k) = (5,2) and g(5,2) = 3. We also have n≥ f (n,k)≥ g(n,k)
and we conjecture that f (n,k) = g(n,k).

2 Types of Finite Measurement Structures

In this paper we assume that the Cartesian product (1) is finite. Let mi denote the
cardinality of Ai and in this case the cardinality of the Cartesian product will be
|A|= m1m2 . . .mn. We interpret  as a nonstrict preference relation on A, i.e. a b
means a is not preferred to b. The corresponding strict preference relation ≺ and
indifference ∼ are defined in the usual way.

Sometimes Ai (i = 1, . . . ,n) are sets without any additional structure. This hap-
pens, when elements in each Ai belong to the same class but cannot be com-
pared and measured in units of something, e.g. A1 = {apple,banana} and A2 =
{pepsi,coca cola}. Here the Cartesian product consists of pairs

A = {(apple,pepsi),(apple,coca cola),(banana,pepsi),(banana,coca cola)}.
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We say that we have a Cartesian product structure. The additive utility representa-
tion in this case will then take the following form.

Definition 1. A binary relation  on a Cartesian product structure (1) is said to be
additively representable if there are n non-negative real-valued functions ui : Ai→R

such that for all a = (a1, . . . ,an) and b = (b1, . . . ,bn) in A

a b⇐⇒
n

∑
i=1

ui(ai)≤
n

∑
i=1

ui(bi). (2)

An important case emerges when we have n types of goods which are divisible to
a certain extent but not infinitely divisible (such as money, cars, houses, etc.). These
goods can be measured only in whole units of some quantity which is further indi-
visible. If the total number of available units of the good of type i is mi, then each Ai
can be identified with the set {0,1, . . . ,mi} which has the structure of the truncated
monoid of nonnegative integers Nmi . A truncated monoid Nk = ({0,1, . . . ,k−1},⊕)
of positive integers is an algebraic system on the base set {0,1, . . . ,k−1}, where the
addition ⊕ is defined as

m⊕n =
{

m+n if m+n < k,
undefined if m+n≥ k.

The representability of linear orders on such a Cartesian product must respect the
structure on the Ai’s, which means that for the ith utility function we must have

ui(k) = kui(1)

and, in particular, ui(0) = 0.
When m1 = . . . = mn = 2, and each Ai has the structure of N2, this is the case of

goods which are indivisible. A 1 in the ith position of an n-tuple a = (a1, . . . ,an)∈ A
means that the ith good is present in this bundle. The Cartesian product A thus can
be identified with the set of all indicator functions on [n] or with the set of all subsets
of [n]. Then the order  becomes an order on subsets of [n]. We call it the power set
structure. We will deal only with linear, i.e. antisymmetric orders on subsets, since
the general theory has not been developed yet. One obvious necessary condition for
additive representability of the power set structure is the famous axiom introduced
by de Finetti.

Definition 2. An order  on 2[n] is said to satisfy the de Finetti axiom if for any
A,B ∈ 2[n] and any C ∈ 2[n] such that C∩ (A∪B) = /0

A B⇐⇒ A∪C  B∪C. (3)

If a linear order  satisfies de Finetti’s axiom and /0 ≺ X for any non-empty
subset X ⊆ [n], then it is called a comparative probability order. Some significant
progress has been recently achieved in understanding of additive representability of
comparative probability orders. We report it in Sect. 4.
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A multiset M on a base set X is a collection of elements of X , where multiple
entries of the same element of X are possible (Stanley, 1997). In general, if X =
{x1, . . . ,xk} is a set, then a multiset on X is denoted as M = {xq1

1 ,xq2
2 , . . . ,xqk

k }, where
q j is the number of occurrences of x j in M, respectively. The number q j is normally
referred to as the multiplicity of x j in M. As some q j may be zero, not all elements
of the base set may be present. The number of unique elements of X in M we call
the width of M and the sum ∑k

j=1 q j we call the cardinality of M.
When the Cartesian product (1) is such that every Ai has a structure of Nmi , then

A can be identified with all submultisets of the multiset {1mi ,2m2 , . . . ,nmn} on [n]. In
the language of bundles of goods, we have n types of goods, denoted 1,2, . . . ,n, and
exactly mi copies of good i are available. We call it the power multiset structure. The
power multiset model has numerous useful interpretations (see e.g. Sertel and Slinko
(2007); Conder et al. (2007)). We report results on the power multiset structure in
Sect. 5.

In some applications not all alternatives of the Cartesian product (1) are actu-
ally available for choice. In this case we have to consider orders on a subset of
this Cartesian product. Section 6.5.5 of Krantz et al. (1971) points out the impor-
tance of additive conjoint measurement on subsets of Cartesian products. Interest
in this topic has increased during the last decade because of new developments in
the literature on decision making under risk/uncertainty where conditions like inde-
pendence are often required to hold only within certain subsets. Sertel and Slinko
(2002) showed that sometimes from the applications point of view it is necessary
to restrict ourselves to the submultisets {1ki ,2k2 , . . . ,nkn} of {1mi ,2m2 , . . . ,nmn} of
fixed cardinality k, i.e. those for which∑n

i=1 ki = k. The set of all submultisets of car-
dinality k we will denote as Pk([n]). They gave several important examples of such
applications (see also Conder et al. (2007)).

3 Cartesian Product Structure

When we deal with sequences of elements of the Cartesian product A, we will in-
dex them with superscripts, while leaving subscripts to numerate the coordinates of
elements of A. For example, if a1, . . . ,as is the sequence of elements of A, then a7

9 is
the ninth coordinate of the seventh vector.

If  is a binary relation on the Cartesian product A and a b is true, then, using
the preference elicitation terminology Fishburn, Pekeč, and Reeds (2002), we will
say that a b is a valid comparison of the two tuples a and b.

Definition 3. Let  be a relation on the Cartesian product A and

a1  b1, a2  b2, . . . , aq  bq (4)

be a sequence of valid comparisons of pairs of elements of A such that ai ≺ bi for
at least one i. We say that this sequence has the cancellation property if, for each
coordinate i = 1,2, . . . ,n, the sequence b1

i ,b
2
i , . . . ,b

q
i is a permutation of the sequence

a1
i ,a

2
i , . . . ,a

q
i .
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The number q of comparisons in the sequence (4) will be called its cardinality
and the number of unique comparisons in (4) will be called the width of this se-
quence. Note that this is consistent with the multiset terminology. This is because,
if we drop the order of elements in any sequence, it becomes a multiset.

Example 1. The following two sequences of comparisons

(1,2)≺ (3,4)
(3,4)≺ (1,2)

(1,2)≺ (2,3)
(2,3)≺ (3,4)
(3,4)≺ (1,2)

the first one, in the left column, of cardinality two, and the second, in the right col-
umn, of cardinality three, both have the cancellation property. If all the comparisons
of the first sequence are valid for  , then  is not antisymmetric, If all the compar-
isons of the second sequence are valid, then  is not transitive.

From the previous example we get a feeling that having a sequence of valid
comparisons with the cancellation property is some kind of a pathology.

Definition 4. We say that a binary relation on a Cartesian product (1) satisfies the
cancellation condition Ck if every sequence of comparisons which satisfies the can-
cellation property has width greater than k. We say that a binary relation  satisfies
the cancellation condition C†

k if every sequence of comparisons which satisfies the
cancellation property has cardinality greater than k.

The following example is taken from Fishburn (1999).

Example 2. Let A = {1,2,3}×{a,b,c}. Then the linear order

1a≺ 1b≺ 2a≺ 2b≺ 3a≺ 1c≺ 2c≺ 3b≺ 3c

satisfies C2 and C†
2 but fails both C3 and C†

3 since the sequence of valid comparisons

1b≺ 2a, 3a≺ 1c, 2c≺ 3b

has the cancellation property.

As the width of a multiset is not greater than its cardinality, Ck always implies
C†

k . Both Ck and C†
k group together a large number of conditions but they do it differ-

ently. Both are introduced to help us better comprehend the great many cancellation
conditions necessary for additive representability.

It is obvious that an additively representable binary relation does not have se-
quences of valid comparisons that satisfy the cancellation property and, hence, sat-
isfies all cancellation conditions. The converse is also true Krantz et al. (1971). The
basic rationality assumption for a preference relation on A is called Independence of
Equal Subalternatives. It says that for four n-tuples x,y,z,w ∈ A

x y⇐⇒ z w
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whenever there exists a proper subset S⊆ [n] such that xi = zi and yi = wi for all i∈ S,
and xi = yi and zi = wi for all i /∈ S. We take this terminology from Wakker (1989);
Fishburn calls it the first order independence Fishburn (1997); in Krantz et al. (1971)
this is called coordinate independence. Independence of Equal Subalternatives, be-
ing a consequence of C2, is not generally sufficient for additive representability.
However, as we shall see later, for a limited set of sizes it is true.

Given a relation on A, we may associate the following two numbers with it. Let
f ( ) be the smallest k such that violates the cancellation condition Ck and f †( )
be the smallest k such that  violates the cancellation condition C†

k . An obvious
relation between these two functions is, of course, f ( ) ≤ f †( ). However the
minimal violation of C†

k hypothetically may not have the smallest possible width.
Knowing only f ( ), we know only half of the story and knowing f ( ) and f †( )
gives us the full picture.

Now we will introduce two functions that were of primary interest to Fishburn.
We set

f (m1,m2, . . . ,mn) = max f ( ), f †(m1,m2, . . . ,mn) = max f †( ), (5)

where the maximum both times is taken over all binary relations on A. In other
words, any relation  on A, which satisfies cancellation conditions Ck with k ≤
f (m1,m2, . . . ,mn) is additively representable and f (m1,m2, . . . ,mn) is the smallest
number with this property. The second function f †(m1,m2, . . . ,mn) can be similarly
characterised. Fishburn concentrated his attention on the first function leaving the
second for future research. In this section we will not consider the important case of
(m1,m2, . . . ,mn) = (2,2, . . . ,2) since we will devote the whole next section to it.

Krantz et al. (1971) (see pp. 427–428), who made the initial contribution to this
topic, proved that f (2,m2) = 2 and that f (3,3) ≥ 3. Little else was known about
these functions until Fishburn’s papers (1997, 2001). One of the most significant
results of Fishburn (1997) was the general upper bound for f (m1,m2, . . . ,mn).

Theorem 1 (Fishburn, 1997). f (m1,m2, . . . ,mn)≤ ∑n
i=1 mi− (n−1).

As f (2,m2) is known, the case n = 2 with min(m1,m2) ≥ 3 naturally attracted
much attention Fishburn (1996, 1997).

Theorem 2 (Fishburn, 1997, 2001).

1. f (3,3) = 3, f (3,4) = f (4,4) = 4.
2. f (3,m2)≥ m2 for all even m2 ≥ 4, and f (3,m2)≥ m2−1 for all odd m2 ≥ 5.
3. f (m1,m2)≥ m1 +m2−10.
4. f (5,m2)≥ m2 +1 for all odd m2 ≥ 5.

We note that Theorem 1 gives us f (3,m2) ≤ m2 + 2 so the bounds for f (3,m2)
given by Theorem 2 are rather tight. Apart from obvious questions that these results
prompt, Fishburn (1997, 2001) formulated the following interesting ones.

Problem 1. What can be said about f †(m1,m2, . . . ,mn)?
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Problem 2. We can narrow the class of relations and define the functions f (m1,
m2, . . . ,mn) and f †(m1,m2, . . . ,mn) for strict linear orders. Will the values of these
functions remain the same? Fishburn conjectured that they would (see Conjecture 1
in Fishburn (1997)).

An important paper by Fishburn and Roberts (1988) studied the uniqueness ques-
tion, which we do not survey here due to lack of space.

4 Comparative Probability Orders

As we already noticed, in the case when m1 = . . . = mn = 2, the Cartesian product A
can be identified with the power set of n-element set [n]. Here we adopt de Finnetti’s
point of view (de Finnetti, 1931) and consider [n] as the set of the states of the world
in which case we can identify comparisons of subsets with gambles. This approach
was further developed by Fine (1973), Walley and Fine (1979) and Walley (1991,
1999) who believed that there are considerable advantages of basing the theory of
comparative probability on desirability of gambles. In our case orders on subsets
and desirability of gambles provide two equivalent characterisations but there are
some nuances. The shift from preference to desirability is subtle but important. The
word “preference” has an optimality flavour while the word “desirability” is more
in line with the concept of satisficing introduced by Simon (1982). The behavioral
aspect that can be introduced to comparative probability through the introduction of
gambles shed a new light on some old concepts of the theory. In particular, as will
be demonstrated below, the functions introduced by Fishburn (1996, 1997) become
measures of rationality of personal comparative probability.

4.1 Discrete Cones

Let [n] = {1,2, . . . ,n} be the set of possible states of the world, one of which will
materialise. We suppose that agents can somehow compare probabilities of events.
This is their personal probability assessment and it is subjective. If an agent believes
that B is more likely to occur than A, she should accept the gamble which pays 1 if
the state i∈A\B materialises,−1 if the state i∈B\A materialises, and pays nothing
in all other cases. On the other hand, if the agent considers this gamble desirable, she
must believe that B is more likely to happen than A. Thus it is clear that comparative
probability assessments of sets and desirability of gambles provide two equivalent
languages to discuss orders on subsets. Below we will make this connection formal.

Let T = {−1,0,1}. Any vector of T n represents a gamble. The gamble which
pays xi ∈ T if the state i materialises will be denoted x = (x1, . . . ,xn) ∈ T n. On
appearance of a nonzero gamble x∈ T n a participating agent must be ready to accept
either x or −x. The zero gamble 0 is neutral (no loss, no profit). Let us agree that it
is not desirable.
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The following properties will be assumed as basic rationality assumptions that
all agents possess:

C1. ei = (0, . . . ,1, . . . ,0) is a desirable gamble for all 1≤ i≤ n;
C2. If x and y are two desirable gambles and if x+y ∈ T n, then x+y is a desirable

gamble;
C3. For every nonzero gamble x ∈ T n, either x or −x (but not both) is desirable.

Definition 5. Any subset C of T n which contains 0 and whose nonzero vectors sat-
isfy C1 - C3 is called a discrete cone.

To summarise: the set of desirable gambles for an agent is the set of all nonzero
vectors of a certain discrete cone.

For each subset A ⊆ [n] we define the characteristic vector χA of this subset by
setting χA(i) = 1 if i ∈ A, and χA(i) = 0 if i /∈ A. For any pair of subsets A,B ∈ 2[n]

we define a gamble:
χ(A,B) = χB−χA ∈ T n.

Given an agent whose set of desirable gambles is a discrete cone C, the agent can
compare events as follows:

A B⇐⇒ χ(A,B) ∈ C. (6)

Due to properties of C,  is an order (reflexive, complete and transitive relation)
on 2[n]. This order satisfies de Finetti’s axiom (3) and hence is a comparative prob-
ability. This probability assessment is, of course, specific for this particular agent
only.

The study of discrete cones as algebraic objects was initiated by Kumar1 in his
PhD thesis (Kumar, 1982). This approach was rediscovered by Fishburn (1996)
who pioneered their combinatorial study. Further combinatorial properties of dis-
crete cones were studied in Fine and Gill (1976); Fishburn (1997); Fishburn, Pekeč,
and Reeds (2002); Maclagan (1999); Conder and Slinko (2004); Marshall (2005);
Christian and Slinko (2005). In this section we concentrate on combinatorics of ra-
tionality assessment.

If p = (p1, . . . , pn) is a probability measure on [n], where pi is the probability of i,
then we know the probability of every event A, by the rule p(A) = ∑i∈A pi. We may
now define an order  p on 2[n] by

A p B⇐⇒ p(A)≤ p(B).

Suppose the probabilities of all events are different. Then p is a comparative prob-
ability order on [n].

Definition 6. Any comparative probability order  on [n] is called additively repre-
sentable by a measure or simply representable if there exists a probability measure

1 I am grateful to Terry Fine for this reference.
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p on [n] such that  = p. A comparative probability order  on [n] is said to be
almost representable by a measure p if

A B =⇒ p(A)≤ p(B).

In this case we will also say that  is almost representable without specifying the
measure p.

If an order  is almost representable but not representable, then at least for one pair
of subsets A and B we must have A≺ B and at the same time p(A) = p(B).

4.2 Portfolios of Acceptable Gambles

Our way to measure rationality of an agent is to look at how consistent she was in
accepting and rejecting various gambles. We need the following concept.

Definition 7. Let C be a discrete cone. A multiset

P = {xa1
1 ,xa2

2 , . . . ,xam
m },

where xi ∈ C and ai ∈ N, is called a portfolio of desirable gambles.

Gambles are like risky securities. You may own different number of shares of the
same company. Similarly, a portfolio can contain several identical gambles. If the
personal comparative probability of an agent is representable by a measure, then all
portfolios of desirable gambles are (in the long run) profitable.

Definition 8. The portfolio P is said to be neutral if

a1x1 +a2x2 + · · ·+amxm = 0. (7)

The portfolio P is said to be a sure loss if

a1x1 +a2x2 + · · ·+amxm =
n

∑
i=1

biei (8)

with bi < 0 for all i = 1, . . . ,n.

If a sure-loss portfolio exists, an agent is said to provide an arbitrage. A fully
rational agent cannot accept a neutral portfolio and, of course, cannot provide an
arbitrage. Here is an example of a comparative probability order that has a neutral
portfolio of desirable gambles.

Example 3. Let n = 5 and consider the following comparative probability order:

/0≺ 1≺ 2≺ 3≺ 12≺ 13≺ 4≺ 14≺ 23≺
5≺ 123≺ 24≺ 34≺ 15≺ 124≺ 25≺ 134 . . . .

(further continuation is unique). The following four desirable gambles
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x1 = (−1,0,−1,1,0), x2 = (−1,1,1,−1,0),
x3 = (1,0,−1,−1,1), x4 = (1,−1,1,1,−1)

(they correspond to the underlined comparisons) form a neutral portfolio since x1 +
x2 +x3 +x4 = 0.

For an example of arbitrage we must have |Ω| ≥ 6. Such an example is given in Kraft
et al. (1959). Conder and Slinko (2004) used a computer program to help them find
that for n = 6 there are 5202 such comparative probability orders.

Definition 9. A comparative probability order satisfies cancellation condition Ck
when no neutral portfolio (7) of desirable gambles of width k exist, and satisfies
the cancellation condition C†

k when no neutral portfolio (7) of desirable gambles of
cardinality k exist.

The criterion of representability given by Kraft et al. (1959) can be reformulated
as follows.

Theorem 3. Suppose  is the agent’s comparative probability order on 2[n] and C
be the corresponding discrete cone. Then

1.  is representable iff C has no neutral portfolios of desirable gambles;
2.  is almost representable iff there is no arbitrage.

4.3 Fishburn’s Functions as Measures of Rationality

Let  be the agent’s comparative probability order. Let f ( ) be the smallest width
of a neutral portfolio of desirable gambles and f †( ) be the smallest cardinality
of a neutral portfolio of desirable gambles, if such portfolios exist. Otherwise set
f ( ) = f †( ) = ∞.

The idea is to measure the agent’s rationality by the minimum “size” of the port-
folio that she cannot handle properly with accepting a neutral portfolio being the
early sign of non-rationality. We have two measures for the size of a portfolio: its
width and its cardinality. Each measure gives us a measure of an agent’s rational-
ity. They are f ( ) and f †( ), respectively. The larger these functions are the more
rational is the agent. Fishburn defined these functions in terms of cancellation con-
ditions of two types Fishburn (1996). He and his coauthors used their combinatorial
interpretations in terms of multilists Fishburn, Pekeč, and Reeds (2002). Conder and
Slinko (2004) used their algebraic reformulation of cancellation conditions in terms
of linear dependencies of vectors of discrete cones. However in both cases the real
meaning of cancellation conditions is hard to grasp due to the intricacies of those
definitions. Portfolios clarify the real meaning of cancellation conditions.

Let Ln be the set of all comparative probability orders on 2[n], and let Rn be the
set of all almost representable comparative probability orders on 2[n]. Define
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f (n) = max
 ∈Ln

f ( ), f †(n) = max
 ∈Ln

f †( ),

These two functions were introduced and studied by Fishburn (1996, 1997). Also
we define

g(n) = max
 ∈Rn

f ( ), g†(n) = max
 ∈Rn

f †( ).

These functions were introduced by Conder and Slinko (2004). They are defined
similarly to Fishburn’s functions, but only for comparative probability orders which
do not admit arbitrage. By temporarily setting all orders with arbitrage aside, Conder
and Slinko showed that it is possible to achieve some progress and to answer some
questions of Fishburn about f ( ) and f †( ). The relationships between f ( ) and
f †( ) and their no arbitrage analogues g( ) and g†( ) are not completely clear.
All we can state is that g(n)≤ f (n) and g†(n)≤ f †(n).

Some initial values for these functions are known Kraft et al. (1959); Fishburn
(1996); Fishburn (1997); Conder and Slinko (2004):

f (n) = f †(n) = ∞, (n≤ 4),

g(5) = g†(5) = f (5) = f †(5) = 4,

g(6) = g†(6) = f (6) = f †(6) = 5.

It is also known that g(n) ≤ n Conder and Slinko (2004) and we will see later that
g(7) = 7. The following bounds are known for f (n), where the upper bound was
established by Kraft et al. (1959) and the lower by Fishburn (1996, 1997).

Theorem 4 (Kraft et al., 1959, Fishburn, 1997). n−1≤ f (n)≤ n+1.

The upper bound here is a rather trivial fact, the lower bound was obtained by a
non-trivial construction. Fishburn (1996, 1997) conjectured that f (n) = n−1. How-
ever, since f (n) ≥ g(n), the first part of the following theorem refutes Fishburn’s
conjecture.

Theorem 5 (Conder & Slinko, 2004). g(7) = 7 and g†(7)≥ 8.

This result is based on the following construction theorem.

Theorem 6 (Conder & Slinko, 2004). Let X = {x1, . . . ,xm} ∈ T n (m ≥ 4), such
that ∑m

i=1 aixi = 0 for some positive integers ai, and either

no proper subsystem X ′ ⊂ X is linearly dependent with positive coefficients

or

the sum ∑m
i=1 ai is minimal possible.

Suppose further that the m×n matrix A having the vectors x1, . . . ,xm as its rows
has the property that Ab = 0 for some positive integer-valued vector b = (b1, . . . ,bn)
with b1 > b2 > .. . > bn > 0, and that

b⊥ ∩T n = {±x1, . . . ,±xm}.
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Let p = (b1 + . . .+bn)−1b and C = {x ∈ T n | (x,p)≥ 0}. Then the discrete cone

C′ = C \{−x1, . . . ,−xm}

corresponds to an almost representable comparative probability order  which al-
most agrees with p, with either

f ( ) = m or f †( ) =
m

∑
i=1

ai,

respectively.

To prove the second part of Theorem 5 one may take the following 7×7 matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 0 1 −1
1 0 −1 −1 1 −1 −1
1 0 −1 −1 −1 0 1
−1 1 −1 1 1 0 1

0 −1 1 1 0 −1 1
0 −1 1 −1 1 1 1
−1 1 1 0 −1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and let x1, . . . ,x7 denote its rows. It is easy to check that rank(A) = 6,

x1 +x2 +x3 +x4 +x5 +x6 +2x7 = 0,

p⊥ = Span{x1, . . . ,x7}∩T 7 = {±x1, . . . ,±x7},
for the probability measure

p =
1

148
(48, 40, 27, 16, 12, 10, 7).

4.4 Extremal Cones and Comparative Probability Orders.
Marshall’s Theorem

In the previous section we saw that discrete cones and comparative probability or-
ders with the property g(n) = n do exist. Since this is the maximal possible value of
g(n), Marshall (2005) calls such objects extremal. He constructed a great many other
extremal comparative probability orders by using some clever algebra and number
theory. Before formulating Marshall’s theorem we remind the reader that, given a
prime p, an integer a is called a quadratic residue if there exists a b such that a = b2

(mod p); otherwise it is called a quadratic non-residue. The Legendre symbol
(

a
p

)
is 0 if a is a multiple of p, 1 if a is a quadratic residue mod p, and −1 if a is a
quadratic non-residue.
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Theorem 7 (Marshall, 2005). Let p be a prime greater than 131. If

(
1+

√(
−1
p

)
p

)p

−1 = a+b

√(
−1
p

)
p,

where gcd(a,b) = p, then there exists an almost representable discrete cone in T p

with g(p) = p.

The odd primes satisfying the above equation he calls optimus primes. The first
few non-optimus primes are

3,23,31,137,191,239,277,359, . . . .

Calculations that he and McCall conducted showed that 1,725 of the 1,842 primes
between 132 and 16,000 are optimus primes.

Problem 3. Is the number of optimus primes infinite?

The idea of Marshall’s construction is as follows. He uses the construction of
Theorem 6 (changing rows into columns) and constructs the matrix needed there
by altering the vector of Legendre quadratic residue symbols in the first two co-
ordinates as follows:

q =
(

1,

(
1
p

)
−1,

(
2
p

)
, . . . ,

(
p−1

p

))T

.

Then he forms a circulant matrix

Q =
[

q,Sq,S2q, . . . ,Sp−1q
]

from q, where S is the standard matrix of the circular shift operator. Finally he forms
A = Q−E11 +E1p which is Marshall’s matrix for prime p.

Theorem 8 (Conder, 2005). g(n) = n for 7≤ n≤ 13.

This result was proved with the help of the MAGMA system Bosma and Cannon
(1997) and announced in Marshall (2005). In the course of achieving it, Conder
found that Marshall’s matrices work not just for primes p satisfying the conditions
given in Theorem 7, but also for some others, including all primes p in the range
5≤ p≤ 23.

A number of questions remain open. The most important ones are:

Problem 4.

1. Is f (7) = 7 or is f (7) = 8?
2. What is g(14)?
3. Is g(n) = n for n≥ 7?
4. Is it true that f (n) = g(n)?
5. Does Marshall’s construction work for all primes p≥ 5?
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4.5 Patterns of Minimal Neutral Portfolios

Definition 10. Let  be a comparative probability order on 2[n] and C be the corre-
sponding discrete cone. Let

P = {xa1
1 ,xa2

2 , . . . ,xan
n }, (9)

be a neutral portfolio of desirable gambles satisfying

1. width(P) = m is minimal possible for a neutral portfolio,
2. for neutral portfolios of desirable gambles of width m the cardinality card(P) =
∑m

i=1 ai is minimal.

In this case we say that (a1, . . . ,am) is an irreducible pattern. The set of all irre-
ducible patterns of width m in 2[n] is denoted as Am,n. Let us denote

Am =
∞⋃

n=4

Am,n.

Theorem 9 (Fishburn, 1996).

A4 = {(1,1,1,1)},
A5 = {(1,1,1,1,1), (1,1,1,1,2)}.

Moreover, A5,5 = /0, and A5 =A5,9.

Theorem 10 (Conder–Slinko, 2004).

A5,6 = {(1,1,1,1,1)},
A7,7 ⊇ {(1,1,1,1,1,1,1),(1,1,1,1,1,1,2)}.

This means that we don’t know A5,7 and A5,8. We don’t know A6 either. An
unpublished recent result in this direction is the following theorem by Auger (2005),
for which we provide here a short proof.

Theorem 11 (Auger, 2005). For any positive integer m there are only finitely many
irreducible patterns of length m.

Proof. Let us consider the set of all vectors of R
m with non-negative integer coor-

dinates. Let us denote it Zm. All irreducible patterns from Am belong to Zm. For an
arbitrary a = (a1, . . . ,am) ∈ Zm we denote h(a) = ∑m

i=1 ai. We also define a set

R(a) =

{
{I,J} | I,J ⊆ [m], I∩ J = /0, ∑

i∈I
ai =∑

j∈J
a j

}
.
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The set R(a) has a cardinality smaller than the cardinality of the set of all pairs of
subsets {I,J} with I ∩ J = /0, which is (3m− 1)/2. Hence R(a) is finite. So it is
sufficient to prove that there are only finitely many irreducible patterns a with the
same R(a).

Suppose now that we have two irreducible patterns a and b with R(a) = R(b).
Let {x1, . . . ,xm} ⊆ T n such that ∑m

i=1 aixi = 0. Then each of the n coordinates of
this vector equation will give us an element of R(a) (they will not be necessarily
distinct). Hence if another vector b = (b1, . . . ,bm) ∈ Zm will satisfy R(a) = R(b),
then ∑m

i=1 aixi = 0 will always imply ∑m
i=1 bixi = 0 and vice versa. Thus, if a ∈ Zm

and b ∈ Zm are both irreducible patterns of Am, then we must have h(a) = h(b).
Since there are only finitely many vectors c in Zm with the given h(c), we see that
the set of irreducible patterns a with fixed R(a) is finite and hence Am is finite. ��

Problem 5. Let C be a discrete cone and P = {xa1
1 ,xa2

2 , . . . ,xam
m } be the neutral port-

folio of desirable gambles with the smallest height ∑m
i=1 ai. Is (a1, . . . ,am) an irre-

ducible pattern? Or, in other words, will the width of P also be smallest?

Axioms for unique additive representation of a comparative probability order
(which in this case cannot be strict) were given by Fishburn and Roberts (1989).

5 Orders on Submultisets of a Multiset

In this section we will consider multisets on the base set [n]. Every such multiset
M = {1mi ,2m2 , . . . ,nmn} is uniquely determined by its multiplicity function μ : [n]→
N such that μ(i) = mi. We say that M1 = ([n],μ1) is a submultiset of M2 = ([n],μ2),
if μ1(i)≤ μ2(i) for all i∈ [n], and we denote this by M1 ⊆M2. We remind the reader
that the set of all submultisets of cardinality k will be denoted as Pk([n]).

5.1 Independence of Equal Submultisets and Additive
Representability

Definition 11. An order  on Pk[n] is said to be (additively) representable if there
exist nonnegative real numbers u1, . . . ,um (utilities) such that for all M1 = ([n],μ1)
and M2 = ([n],μ2) belonging to Pk[n],

M1  M2 ⇐⇒
n

∑
i=1
μ1(i)ui ≤

n

∑
i=1
μ2(i)ui. (10)

The following basic rationality condition adopted for this situation was sug-
gested by Sertel and Slinko (2002, 2007), who called it consistency. Here we follow
Conder et al. (2007) who give a slightly different (but equivalent) definition of this
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concept, which makes it a close relative to the concept of the Independence of Equal
Subalternatives and de Finetti’s axiom.

Definition 12. An order  on Pk([n]) is said to satisfy the Independence of Equal
Submultisets condition (IES) if, for all 1 ≤ j ≤ k− 1, for every two multisets U,V
of cardinality j and for every two multisets W1,W2 of cardinality k− j,

U ∪W1  V ∪W1 ⇐⇒U ∪W2  V ∪W2. (11)

Certainly every additively representable order must satisfy IES. The converse
as we will see later is not true. However, it appeared that IES alone implies addi-
tive representability on Pk([3]) for all k. The following theorem was proved first in
Sertel and Slinko (2002) and later appeared in Sertel and Slinko (2007). We remind
the reader of the definition of one of the main number-theoretic functions φ , which
is Euler’s totient function. For any positive integer n, φ(n) is the number of posi-
tive integers which are smaller than n and relatively prime to n. Also, the famous
sequence of Farey fractions Fk is the increasing sequence of all fractions in lowest
possible terms between 0 and 1, whose denominators do not exceed k. For example,
the sequence of Farey fractions F6 will be:

0
1
,

1
6
,

1
5
,

1
4
,

1
3
,

2
5
,

1
2
,

3
5
,

2
3
,

3
4
,

4
5
,

5
6
,

1
1
.

The standard reference for Farey fractions is Hardy and Wright (1960).

Theorem 12 (Sertel and Slinko, 2002). Any order  on Pk([3]) satisfying IES is
additively representable. There are 2Φ(k)−1 of them, whereΦ(k) =∑k

h=1 φ(h) and
φ(h) is the Euler totient function, with exactlyΦ(k) orders being strict (antisymmet-
ric). Moreover, if utilities of 1 and 3 are normalized so that u1 = 1, u3 = 0, then the
ith strict order occurs when u2 belongs to the ith interval between consecutive Farey
fractions in the kth sequence of Farey fractions Fk.

Here we will choose a combinatorial way to introduce cancellation conditions
similar to Scott’s approach Scott (1964).

Definition 13. Let  be an order on Pk[n] and let

A1  B1, A2  B2, . . . , Aq  Bq (12)

be a sequence of valid set comparisons such that Ai ≺ Bi for at least one i =
1,2, . . . ,q. We say that this sequence satisfies the cancellation property if the fol-
lowing two multiset unions coincide

A1∪ . . .∪Aq = B1∪ . . .∪Bq. (13)

Definition 14. We say that an order  on Pk[n] satisfies the kth cancellation con-
dition Ck if no sequence of comparisons (12) of width ≤ k satisfy the cancellation
property and we say that it satisfies the kth cancellation condition C†

k if no sequence
of comparisons (12) of cardinality ≤ k satisfy the cancellation property.



130 A. Slinko

As in (Kraft et al., 1959, Theorem 2) it is easy to show that for an order  on
Pk([n]) to be additively representable, it is necessary and sufficient that all can-
cellation conditions C2,C3, . . . ,C�, . . . are satisfied or alternatively all cancellation
conditions C†

2 ,C†
3 , . . . ,C†

� , . . . are satisfied.

Example 4 (Sertel and Slinko (2002)). The following linear order on P2[4]

12 � 12� 13� 22 � 23� 14� 24� 32 � 34� 42

satisfies IES but is not representable. It does not satisfy the condition C3, since it
contains the following comparisons:

{1,3} � {22}, {2,3} � {1,4}, {2,4} � {32}. (14)

Indeed, the union of the multisets on the right and the union of the multisets on the
left are both equal to the multiset {1,22,32,4}. Thus C3 is violated with a1 = a2 =
a3 = 1, and hence C†

3 is also violated.

Definition 15. An order  on Pk[n] is said to be almost (additively) representable
if there exist nonnegative real numbers u1, . . . ,um, not all of which are equal, such
that for all M1 = ([n],μ1) and M2 = ([n],μ2) belonging to Pk[n],

M1  M2 =⇒
n

∑
i=1
μ1(i)ui ≤

n

∑
i=1
μ2(i)ui. (15)

If the only way to get u1, . . . ,un which satisfy (15) is to set u1 = u2 = . . . = un,
then the order fails to be almost representable. Papers Sertel and Slinko (2002);
Sertel and Slinko (2007) present such an order belonging to P3[4].

Let Ln,k be the set of all orders on Pk[n] satisfying the IES andRn,k be the set of
all almost representable comparative probability orders on Pk[n] satisfying the IES.
As in the case of comparative probability orders we define

f (n,k) = max
 ∈Ln,k

f ( ), f †(n,k) = max
 ∈Ln,k

f †( ).

Also we define

g(n,k) = max
 ∈Rn,k

f ( ), g†(n,k) = max
 ∈Rn,k

f †( ).

These functions have the same meaning as in the comparative probability orders
case. Conder et al. (2007) fully characterized the function g(n,k) as follows:

Theorem 13. For all n > 3 and k ≥ 2,

g(n,k) =
{

n−2 if (n,k) = (5,2),
n−1 otherwise.

This result leaves very little room for the function f (n,k), i.e. n−1≤ f (n,k)≤ n
whenever (n,k) = (5,2). Computer-assisted calculations show that g(n,k) = f (n,k)
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for small values of n and k (namely, for (n,k) = (4,2),(4,3),(5,2),(5,3),(6,2) and
(7,2)), and so Conder, Marshall, and Slinko conjecture that this is true in general.

Problem 6. Is it true that f (n,k) = g(n,k) for all n≥ 4 and k ≥ 1?

Problem 7. What can be said about the relationship between g†(n,k) and f †(n,k)?

Orders on the infinite set P[n] of all multisets on [n] satisfying the analogue of
the de Finetti axiom (3), where the union is understood as the multiset union and
the condition C∩ (A∪B) = /0 is not assumed, were considered by Danilov (1987)
and Martin (1989). Both independently prove that all orders on P[n] satisfying this
axiom are additively representable. For the set P≤k[n] of all multisets on [n] of
cardinality ≤ k, Danilov gives an example of nonrepresentable orders on P≤k[5]
satisfying the modified de Finetti axiom.

Apart from the aforementioned paper by Danilov, the representability of orders
on P≤k[n] has largely escaped the attention of researchers. However some interest-
ing things have been observed. For example, it can be easily checked that the linear
order on P≤2[3]

12 � 12� 22 � 13� 1� 23� 32 � 2� 3� /0

is not representable. Hence the analogue of Theorem 12 is not true.

Problem 8. Develop an additive representation theory for orders on P≤k[n].
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Fishburn, P. C., Pekeč A., & Reeds, J. A. (2002). Subset comparisons for additive linear orders.

Mathematics of Operations Research, 27, 227–243.
Fishburn, P. C. (1999). Preference structures and their numerical representations. Theoretical Com-

puter Science, 217, 359–383.
Fishburn, P. C. (1997). Cancellation conditions for multiattribute preferences on finite sets. In

M. H. Karwan, J. Spronk, & J. Wallenius (Eds.), Essays in decision making (pp. 157–167).
Berlin: Springer.

Fishburn, P. C. (2001). Cancellation conditions for finite two-dimensional additive measurement.
Journal of Mathematical Psychology, 45, 2–26.

Fishburn, P. C., & Roberts, F. S. (1988). Unique finite conjoint measurement. Mathematical Social
Sciences 16, 107–143.

Fishburn, P.C., & Roberts, F. S. (1989). Axioms for unique subjective probability on finite sets.
Journal of Mathematical Psychology, 33, 117–130.

Hardy, G. H., & Wright, E. M. (1960). An introduction to the theory of numbers. Oxford: Oxford
University Press.

Krantz, D. H., Luce, R. D., Suppes, P., & Tversky, A. (1971). Foundations of measurement (Vol. 1).
New York: Academic.

Kraft, C. H., Pratt, J. W., & Seidenberg, A. (1959). Intuitive probability on finite sets. Annals of
Mathematical Statistics, 30, 408–419.

Kumar, A. (1982). Lower probability on infinite spaces and instability of stationary sequences.
PhD Thesis. Cornell University.

Luce, R. D., Krantz, D. H., Suppes, P., & Tversky, A. (1988). Foundations of measurement (Vol. 3).
New York: Academic.

Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: A new type of funda-
mental measurement, Journal of Mathematical Psychology, 1, 1–27.

Maclagan D. (1999). Boolean term orders and the root system Bn. Order, 15, 279–295.
Marshall, S. (2005). On the existence of extremal cones and comparative probability orderings. In

Proceedings of the fourth international symposium on imprecise probabilities and their appli-
cations (ISIPTA 05) (pp. 246–255). Pittsburg, PA.

Marshall, S. (2007). On the existence of extremal cones and comparative probability orderings.
Journal of Mathematical Psychology, 51(5), 319–324.

Martin, U. (1989). A geometric approach to multiset ordering. Theoretical Computer Science, 67,
37–54.

Narens, L. (1985). Abstract measurement theory. Cambridge, MA: MIT.
Pfanzagl, J. (1968). Theory of measurement. New York: New York.
Roberts, F. S. (1979). Measurement theory with applications to decision making, utility, and the

social sciences. Reading, MA: Addison-Wesley.
Scott, D. (1964). Measurement structures and inequalities, Journal of Mathematical Psychology,

1, 233–247.



Additive Representability of Finite Measurement Structures 133

Sertel, M., & Slinko, A. (2002). Ranking committees, words or multisets. Nota di Laboro 50.2002.
Center of Operation Research and Economics. The Fundazione ENI Enrico Mattei, Milan.

Sertel, M., & Slinko, A. (2007). Ranking committees, income streams or multisets. Economic
Theory, 30(2), 265–287.

Stanley, R. P. (1997). Enumerative combinatorics (Vol. 1). Cambridge: Cambridge University
Press.

Suppes, P., Krantz, D. H., Luce, R. D., & Tversky, A. (1988). Foundations of measurement (Vol. 2).
New York: Academic.

Simon, H. A. (1982). Models of bounded rationality (Vol. 1). In Economic analysis and public
policy (pp. 235–441). Cambridge, MA : MIT.

Wakker, P. P. (1989). Additive representation of preferences. Dordrecht: Kluwer.
Wakker, P. P. (1991). Additive representations on rank-ordered sets. I. The algebraic approach.

Journal of Mathematical Psychology, 35, 260–266.
Wakker, P. P. (1993). Additive representations on rank-ordered sets. II. The topological approach.

Journal of Mathematical Economics, 22, 1–26.
Walley, P., & Fine, T. (1979). Varieties of modal (classificatory) and comparative probability. Syn-

these, 41(3), 321–374.
Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman and Hall.
Walley, P. (1999). Towards a unified theory of imprecise probability. In First international sympo-

sium on imprecise probabilities and their applications. Ghent, Belgium.



Part II
Social Choice, Voting, and Social Welfare



Condorcet Domains and Probabilities



Acyclic Domains of Linear Orders: A Survey

Bernard Monjardet

1 Notations and Preliminaries

A = {1,2. . .i, j,k. . .n} is a finite set of n elements that I will generally call alterna-
tives (but which could also be called issues, decisions, outcomes, candidates, ob-
jects, etc.). The elements of A will be also denoted by letters like x,y,z etc. A subset
of cardinality p of A will be called a p-set.

A2 (respectively, A3) denotes the set of all ordered pairs (x,y) (respectively, or-
dered triples (x,y,z) written for convenience as xyz) of A. When the elements of A
are denoted by the n first integers, P2(n) denotes the set of the n(n− 1)/2 ordered
pairs (i < j).

A binary relation on A is a subset R of A2 and we write xRy or (x,y) ∈ R when x
is in the relation R with y. For � integer ≥ 2, a cycle of length � of R, called also a
�-cycle, is a subset {x1,x2, . . ..x�} of A such that x1Rx2. . .. . ..x�Rx1. For B ⊆ A, the
restriction of a relation R to B is denoted by R/B.

A strict linear order on A is an irreflexive, transitive and complete (x = y implies
xRy or yRx) binary relation on A. Henceforth, we will omit the qualifier strict and
sometimes, when there is no ambiguity, the qualifier linear. Linear orders on A are
in a one-to-one correspondence with permutations of A. So if L is a linear order on
A one can write it as a permutation x1. . .xkxk+1. . .xn. Then one says that xk has rank
k and is covered by xk+1 and that xk and xk+1 are consecutive in L. I denote by τk
the transposition which exchange xk and xk+1 in L: τk(L) = x1. . .xk+1xk. . .xn.

The set of all linear orders on A is denoted by L or Ln if |A| = n. D denotes any
subset of L.

In all of this paper the preferences of what I will call a voter (but what could
also be called agent, person, individual, criterion, etc.) on a set A of alternatives is

B. Monjardet
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represented by a linear order L = x1x2. . .xn where x1 is assumed to be the last pre-
ferred alternative, x2 the next-to-last, etc. So, yLx or (y,x)∈ L means that alternative
x is preferred to alternative y in the linear order L.

Remark 1. One could consider that the notation yLx should mean that y is preferred
to x. But we are working in this paper with posets and, unfortunately, this choice
would be not in accordance with the usual convention of poset theory. Indeed in
this theory the symbol used for a (strict) order is generally < what means that yLx
is interpreted as y < x, and so as y is less than x. The reader must keep in mind a
consequence of our choice: in a linear order of preference L = x1x2. . .xn, the worst
alternative x1 (respectively, the best alternative xn) has rank 1 (respectively, n).

The problem of getting a collective preference from various voters’ preferences
was tackled by Borda and Condorcet at the end of 18th century. Condorcet criti-
cized Borda’s rank method and proposed the use of the majority rule on the pairs of
alternatives. Before we recall the definition of this rule, I introduce some notations.
I consider v voters, which express their preferences on the alternatives by linear
orders taken in a set D of linear orders (D ⊆ L). The state of their preferences is
given by a v-profile π= (L1, .Lq, .,Lv) where Lq is the linear order of D representing
the preference of voter q. Dv denotes the set of all these v-profiles. For a subset B
of alternatives, π/B = (L1/B, .Lq/B, .,Lv/B) denotes the profile of voters’ preferences
restricted to B.

For a v-profile π = (L1, .Lq, .,Lv) and two alternatives x and y, one denotes by
vπ(y,x) the number of voters preferring x to y in this profile.

In his “Essai sur l’application de l’analyse à la probabilité des décisions rendues
à la pluralité des voix” (1785) Condorcet recommended the rule now called Con-
dorcet’s majority rule.1 This rule associates with a profile π the collective preference
defined as the strict (simple) majority relation2 RSMAJ(π):

yRSMAJ(π)x if vπ(y,x) > ν/2

i.e., alternative x is collectively preferred to alternative y if it is preferred by a
(strict) majority of voters. It is clear that this majority relation is asymmetric i.e.,
has no 2-cycles. But Condorcet discovered that majority relations can have cy-
cles of length � ≥ 3: x1RSMAJx2. . .. . ..x�RSMAJx1. This fact that was rediscovered
for instance by Dodgson, Black and Arrow has been called the “Condorcet effect”
by Guilbaud (1952) and is also known as the “voting paradox”.3 I prefer the first
appellation, which emphasizes the fact that this occurrence of cycles is not really a
paradox (see Guilbaud, 1952 or Monjardet, 2006).

1 Condorcet uses other terms like “plurality”.
2 The (simple) majority relation is the relation defined by yRMAJ(π)x if vπ(y,x)≥ v/2. Observe that
since π is a profile of linear orders one has for x = y(y,x)∈RMAJ(π) if and only if (x,y) /∈RSMAJ(π).
3 Condorcet speaks of the “contradictory case”. Dodgson and Black speak of “cyclical majorities”
and I do not know who used the term paradox the first time (it appears in Arrow’s 1951 book).
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The simplest cases of the Condorcet effect occur when A = {i, j,k} and v = 3,
with the profiles (ijk, jki, kij) and (jik, ikj, kji)) since then majority relations are the
3-cycles iRSMAJ jRSMAJkRSMAJi and jRSMAJiRSMAJkRSMAJ j. I say that such profiles
are 3-cyclic profiles. More generally, for an integer �≥ 3, I say that a profile like π=
(x1x2x3. . .x�;x2x3. . .x�x1; . . ..;x�x1x2. . ..x�−1) is a �-cyclic profile. The strict majority
relation associated with such a profile is a �-cycle. Observe that arbitrary profiles
can contain the same linear order several times, but that �-cyclic profiles are subsets
of L.

A subset D of the set L of all linear orders on A is an acyclic domain (of linear
orders) if for every integer v and every profile π= (L1,L2, .,Lv) ∈Dv, RSMAJ(π) has
no cycles.4

Several classical characterizations of acyclic domains are given in the theorem
below. I need some definitions. For � integer greater than 2, I say that a set D of
linear orders contains a �-cyclic profile if there exists a subset B = {x1,x2, . . ..x�}
of A and a subset {L1, . . .Lq, . . .,L�} of � linear orders in D such that the profile
π/B = (L1/B, .Lq/B. . .L�/B) is a �-cyclic profile. When a set of three alternatives is
linearly ordered as i < j < k, then5 i has rank 1, j has rank 2 and k has rank 3. I say
that a set D of linear orders is value-restricted if for every subset {i, j,k} of A, there
exists an alternative which either never has rank 1 or never has rank 2 or never has
rank 3 in the set D/{i, j,k}. Finally in condition (7) of the theorem I use the majority
relation defined in footnote 2.

Theorem 1. Let D be a subset of the set L of all linear orders on a set A. The fol-
lowing conditions are equivalent:

1. D is acyclic (i.e., for every integer v and every profile π ∈ Dv, RSMAJ(π) has no
cycles),

2. For every integer v and every profile π ∈ Dv, RSMAJ(π) is a (strict) partial order,
3. For every odd integer v and every profile π ∈ Dv, RSMAJ(π) is a linear order,
4. For every integer �≥ 3, D does not contain �-cyclic profiles,
5. D does not contain 3-cyclic profiles,
6. D is value-restricted,
7. For every integer v, every profile π ∈ Dv and every B ⊆ A, {a ∈ B: for every

b ∈ B\{a}, bRMAJ(π)a} = Ø}.

Condition (2) means that when voters’ preferences belong to an acyclic domain, the
collective preference that is given by majority rule is transitive (and asymmetric)
which in particular implies that it can be extended into a linear order. For a given

4 Acyclic domains have been also called consistent profiles (Ward, 1965), valued-restricted do-
mains (Kim & Roush, 1980), transitive simple majority domains or consistent sets (Abello &
Johnson, 1984), “états d’opinion fortement condorcéens” (Chameni-Nembua, 1989), acyclic sets
(Fishburn, 1992,1997), majority-consistent sets (Craven, 1996) or Condorcet domains (Monjardet,
2006).
5 See the Remark on the ranks of linearly ordered alternatives in the previous page.
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profile I say that an alternative is a Condorcet winner if it is preferred to all other
alternatives in the majority relation (see footnote 2) associated with this profile.
Condition (7) means that for every profile and every subset of candidates there exists
at least a Condorcet winner. Condition (5) means that D is acyclic if and only if for
every subset C = {L1,L2,L3} of three different linear orders of D and every subset
{i, j,k} of three different alternatives, C is not a 3-cyclic profile on {i, j,k}. It was
introduced by Ward (1965) which proved the equivalence of conditions (1), (4) and
(5) of the above theorem. He called it the condition of Latin-square-lessness since a
3-cyclic profile forms a Latin square when it is disposed in a 3×3 array. Condition
(6) of value-restriction was introduced by Sen (1966).6

In what follows I will use Fishburn’s formulation of the condition of value re-
striction. One assumes that the n alternatives of A are ranked in an arbitrary linear
order, which in fact will be the natural order 1 < 2 < .. .i < j < k < .. ..n. There
are two 3-cyclic profiles on a 3-element set {i, j,k}, namely {i jk, jki, ki j} and
{ jik, ik j, k ji}. In each of these 3-cyclic profiles each element h of {i, j,k} appears
at rank 1, 2 and 3 in one of the three linear orders of the profile. In order to avoid
a 3-cyclic profile on {i, j,k}, it suffices to assume that one of the linear orders in
{i jk, jki, ki j} and one in { jik, ik j, k ji} never occurs. There are 3×3 = 9 different
ways to do that. But each of these ways comes back to assume that an element h
of {i, j,k} never appears at rank 1, 2 or 3 in a linear order on {i, j,k}. For instance,
to exclude ijk and jik comes back to assume that k never has rank 3 in the restric-
tions to {i, j,k} of the linear orders of D. I will write this condition kN{i, j,k}3. More
generally for h in {i, j,k} and r in {1,2,3}, the Never Condition hN{i, j,k}r means
that h never has rank r in the restrictions to {i, j,k} of the linear orders of D. With
these definitions a set of linear orders is an acyclic domain if and only if for every
ordered triple i < j < k there exists h ∈ {i, j,k} and r ∈ {1,2,3} such that hN{i, j,k}r.
Since 1 < 2. . . < n contains n(n-1)(n-2)/6 ordered triples and that for each ordered
triple i < j < k, one can choose one of the nine possible Never Condition hN{i, j,k}r,
one sees that there are many ways to get acyclic domains.7 I will say that an acyclic
domain satisfies the Never Condition hNr if for every ordered triple i < j < k, the
same Never Condition hN{i, j,k}r is satisfied. For instance D satisfies jN1 if for every
ordered triple i < j < k, j never has rank 1 (i.e., is never last) in the restrictions
to {i, j,k} of the orders of D. I will say that an acyclic domain satisfies the Never
Condition ijkNr if for every ordered triple i < j < k, one has either iNr or jNr or kNr
(one of the three alternatives never has rank r).

An obvious but useful observation is that the Never Conditions are “hereditary”.
Firstly if a set D of linear orders satisfies a set of Never Conditions any subset of
D satisfies the same set of Never Conditions. Secondly if a set D of linear orders

6 In fact Sen’s value-restriction condition is more general since it bears on the case where voters’
preferences are represented by weak orders (transitive and complete binary relations). But Sen
has immediately pointed out that when voters’ preferences are represented by linear orders his
condition is equivalent to Ward’s Latin-square-lessness condition. In this case Ward’s result and
Arrow’s theorem are “dual” (see Monjardet, 1978).
7 But the set of Never Conditions chosen must be satisfied by at least a linear order. For instance,
Raynaud (1981) has shown that for n ≥ 5 there does not exist a linear order satisfying jN2 for
every ordered triple i < j < k (and that this condition is satisfied by only four orders for n = 4).
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defined on A satisfies a set of Never Conditions then for every B⊆ A, D/B (the set of
linear orders restrictions to B of the linear orders of D) satisfies the same set of Never
Conditions. It is also interesting to mention the following fact on these conditions.
Let us denote by Ld the dual linear order of the linear order L : xLdy if and only
if yLx, and for D ⊆ L, call Dd = {Ld ,L ∈ D} the dual domain of D. Then a domain
satisfies the Never Condition hNr if and only if its dual satisfies the Never Condition
hN(4-r).

Now the interesting problem is: how large can domains of linear orders where
Condorcet’s majority rule works well be? Or more concisely, how large can acyclic
domains be? Observe that the problem becomes a purely combinatorial problem:
to construct large sets of linear orders satisfying the above restriction conditions.
I introduce some definitions and notations. An acyclic domain D is maximal if for
any linear order L not in D, D∪{L} is no longer an acyclic domain. Moreover a
(maximal) acyclic domain contained in Ln is maximum if it has the maximum size,
denoted by f(n), among all acyclic domains in Ln. An acyclic domain D ⊂ Ln is
connected if there always exists a path8 of Ln included in D between any two linear
orders in D; such a connected domain is of diameter d if the maximum length of a
shortest path between two linear orders of D is d. One can observe that the diameter
of Ln is n(n-1)/2. I denote by g(n) the maximum size of a connected acyclic domain
of diameter n(n-1)/2 contained in Ln. It has been shown that g(n) = f (n) for n≤ 6,
but it seems to be less than f (n) for n≥ 16.

The problem of determining f (n) or g(n) for all n is daunting. Up to now these
numbers are known only for n ≤ 6 (where they are equal). Then one has to search
good lower or upper bounds for them instead. Lower bounds are obtained by pro-
ducing (maximal) acyclic domains. The first maximal connected acyclic domain
obtained by Black contains only 2n−1 linear orders (compare to the n! possible lin-
ear orders). For a long time the other maximal acyclic domains found were also
connected and contained no more orders. I will present some of them in Sect. 2.
This perhaps raised up the conjecture f (n) = 2n−1; but this was unfortunate since it
can be disproved for n = 4 (see footnote 13 and Fig. 4). Breakthroughs came first
in the eighties with Abello and Chameni-Nembua’s works which I will present in
Sects. 3 and 4. They use the order on the “permutoèdre” and do not explicitly use
Never Conditions. For instance for n = 6, maximal connected acyclic domains with
44 or 45 linear orders were obtained (instead of 32 = 25). A clever use of the Never
Conditions by Fishburn and Craven allowed them to find larger maximal connected
acyclic domains for n > 6 (all of diameter n(n− 1)/2). They will be presented in
Sect. 5 along with Fishburn’s construction that allows still larger, but not connected,
maximal acyclic domains. Finally in Sect. 6, I will state Galambos and Reiner’s
work which allows to get a unified version of almost all the known results on max-
imal connected acyclic domains of diameter n(n− 1)/2. In the conclusion I will
point out two conjectures. The Appendix contains a Table giving numerical results
on lower or upper bounds for f (n) and g(n).

8 A path in Ln is a sequence of different linear orders L1. . .LkLk+1. . .Ls such that for k = 1,2. . .s-1,
Lk and Lk+1 differ only by a transposition (of two consecutive elements). In fact it is a path in the
“permutoèdre graph” defined in Sect. 3.
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2 The Beginnings: Small Maximal Acyclic Domains

As already noted the first maximal (connected) acyclic domain was produced by
Black (1948, 1958, 1988) who called it the domain of the single peaked preferences.
Assume that the set of alternatives is linearly ordered as 1 < 2 < .. . < p. . . < n by
a “reference” order. Let L be a linear order of preference on A for which p is the
preferred alternative. L is said single-peaked (with respect to the reference order <)
if i < j < p implies iLjLp and p < q < r implies rLqLp. This condition means that
given that p is the preferred alternative of the voter, he prefers alternative x to al-
ternative y if x is “closer” to p than y in the reference order (for instance such a
condition can be satisfied for political preferences, when the political parties can be
ranked from extreme left to extreme right). Now it is not difficult to see that a linear
order L is single-peaked (w.r.t. <) if and only if for every ordered triple i < j < k, jLi
implies kLj and jLk implies iLj, which is true if and only if L satisfies the condition
jN1, i.e., for every ordered triple i < j < k, jN{i, j,k}1 (in other words, the middle
alternative of the triple is never the least preferred). Then the domain of single-
peaked (w.r.t. <) linear orders is the domain of all linear orders satisfying jN1. It
is also easy to see that for n alternatives its size is 2n−1 (see for instance Kreweras
(1962) who used the fact, already observed by Ward that no more than two alterna-
tives can have rank 1 in these single-peaked linear orders). The set of the eight
single-peaked linear orders on {1,2,3,4} w.r.t. the linear order 1234 (= 1 < 2 <
3 < 4) is {1234,1243,1423,1432, 4123, 4132, 4312, 4321}. The permutoèdre L4 is
represented at Fig. 4 and on this figure a black square is attached to each of these
eight orders.

Black’s single-peakedness condition is a subcase of Arrow-Black’s single-
peakedness condition9 (1951), which is the condition ijkN1 i.e., for every 3-subset
{i, j,k}, there exists h in {i, j,k} such that hN{i, j,k}1. An acyclic domain satisfying
Arrow-Black’s single-peakedness condition does not necessarily satisfy Black’s
single-peakedness condition. But such an acyclic domain contains also at most
2n−1 linear orders. This results immediately from the point already mentioned
that a Never Condition is hereditary and from another easy observation: the set of
elements ranked 1 in the linear orders belonging to a domain satisfying Arrow-
Black’s single-peakedness condition has size at most 2.

Some other interesting domains satisfying Arrow-Black’s condition have been
investigated. For instance let be L and L′ denote two linear orders which rank the
alternatives of A according two different criteria. A decision maker can rank the
alternatives from the last by using alternatively the two criteria: he gives rank 1 to

9 The terminology of these conditions depends on authors. For instance what I call Black’s single-
peakedness condition (respectively, Arrow-Black’s single-peakedness condition) has been called
unimodality condition by Romero 1978 (respectively, pseudo-unimodality condition by Romero
and single-peakedness on the triples by Kelly 1978). In fact, as it was observed by Inada (1964),
Arrow-Black’s single-peakedness appears only implicitly in the proof of Theorem 4 in Arrow’s
book. This condition appears also in Dumett & Farquharson (1961). What is somewhat confusing
is that the term single–peakedness condition is sometimes used without making it clear as to which
of the two contexts above the term is being used.
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an alternative ranked 1 by one of the criteria (i.e., to the worst alternative according
to this criteria); then he deletes this alternative from the two linear orders and he
uses the same procedure on the restrictions obtained to determine his next to last
alternative, and so on. Romero (1978) said that a set of linear orders obtained by
this procedure satisfies the quasi-unimodality condition and he proved that this set
satisfies Arrow-Black’s single-peakedness condition. When the two linear orders L
and L′ are dual (xLy if and only if yL′x) one gets again the set of all single-peaked
linear orders (w.r.t. L).

It is obvious that the dual of an acyclic domain is also an acyclic domain. For
instance the dual of Black’s (respectively, Arrow-Black’s) single–peaked linear or-
ders, i.e., the set of linear orders satisfying jN3 (respectively, ijkN3) was called by
Vickrey (1960) the domain of single-troughed (respectively, by Inada (1964) the do-
main of single-caved) linear orders. One can find a systematic study of the domains
of linear orders satisfying one of the Never Conditions in Arrow and Raynaud’s
book 1986 (see also Kohler, 1978; Romero, 1978; Raynaud, 1981; Blin (1973)).

Another type of acyclic domains was discovered by Blin (1973) under the name
of multidimensional consistency: the chains of the “permutoèdre lattice”. It will be
described in the following section but one can already mention that the size of such
a domain is at most n(n−1)/2+1 and so less than 2n−1 (for n > 3).

3 Abello’s Work

I begin with Abello’s contributions that are contained in his doctoral dissertation
(1985) and several papers (1981, 1984 with Johnson, 1985, 1987, 1988, 1991, 2004).
In all these papers Abello works with Sn the set of all permutations on a set of
cardinality n. I will describe some of his results but I will continue to rather speak
of linear orders belonging to Ln. These results use the partial order known as the
weak Bruhat order (on Sn).10 Let L be an arbitrary linear order of Ln; it will be
convenient to take L = 1 < 2 < .. ..n. For L′ ∈ Ln, one sets InvL′ = {{i, j} ⊆ A
such that iLj and jL′i} (i.e., the set of pairs {i, j} on which L and L′ “disagree”).
For L′, L′′ ∈ Ln, one sets L′′ ≤ L′ if InvL′ ⊆ InvL′′. It has been shown by Guilbaud
and Rosenstiehl (1963) that the poset (Ln,≤) denoted henceforth simply by Ln is a
lattice11 called the “permutoèdre” lattice in French tradition (see for instance Barbut

10 Sn the symmetric group of all permutations on {1,2. . .,n} is an example of a finite Coxeter
group. All Coxeter groups can be partially ordered by the so-called weak Bruhat order (and also
by the strong Bruhat order).
11 That is two linear orders have a least upper bound and a greatest lower bound in this partial
order. Some authors attribute this result to Yanagimoto & Okamoto (1969). One can admit than a
paper published in French will be less known that a paper written in English. But Guilbaud and
Rosenstiehl’s paper which precedes Yanagimoto and Okamoto’s paper has been quoted in many
English-written papers; moreover its proof that Sn is a lattice is reproduced in Principles of com-
binatorics (Berge, 1971) and above all Yanagimoto and Okamoto’s paper does not contain a real
proof of their assertion (read it !). One can add that properties of the permutoèdre lattice are studied
in Barbut & Monjardet (1970), Le Conte de Poly-Barbut (1990), Duquenne and Cherfouh (1994),
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Fig. 1 The permutoèdre lattice L4

& Monjardet, 1970). Its maximum element is 1 < 2 < .. .n denoted by ϖ, and its
minimum element is the dual linear order n < .. .2 < 1 denoted by α .

The lattice L4 is represented on Fig. 1 by a (Hasse) diagram giving its covering
relation. The undirected covering relation of this lattice is the adjacency relation
between linear orders where a linear order is adjacent to another one if they differ
on a unique pair of elements. The set of all linear orders endowed with this adjacency
relation is called the permutoèdre graph.

Come back to acyclic domains. The first easy observation is that the set of ordered
triples ijk contained in the linear orders of an acyclic domain D of Ln has size at
most 4n(n−1)(n−2)/6 (if not D contains a 3-cyclic profile). So when one adds to
an acyclic domain D all the linear orders, which do not increase the set of ordered
triples already present in D one gets a maximal acyclic domain. More generally the
map, which adds to an arbitrary set of linear orders all the linear orders that do not
increase the set of ordered triples, is a closure operator on the subsets of Ln.

12

The second –also easy but significant– observation is that a maximal chain of
Ln is an acyclic domain (a fact already observed by Blin (1973) as noted above)
which contains exactly 4n(n−1)(n−2)/6 ordered triples. So by applying the above
closure operator to a maximal chain one obtains a maximal acyclic set. Now Abello
has proved several significant results and in particular the following ones:

1. A maximal acyclic domain D obtained by the closure operator applied to a maxi-
mal chain of Ln is a connected subset of Ln of diameter n(n−1)/2 and an upper
semimodular sublattice of the permutoèdre lattice;

Markowsky (1994) and Caspard (2000) and that more generally Bjorner (1984) proved that all
finite Coxeter groups partially ordered by the weak Bruhat order are lattices.
12 This closure operator appears already in Kim and Roush’s 1980 book (see Definition 5.12).
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2. For any maximal connected acyclic domain of Ln of diameter n(n− 1)/2, there
exists a maximal acyclic domain with the same size obtained by the closure of a
maximal chain;

3. Let us say that two maximal chains of the permutoèdre lattice Ln are equivalent
if they have the same closure (and so are two maximal chains of the associated
lattice). One goes from one of these chains to the other by “quadrangular trans-
formations” of linear orders: let L = x1 . . .xkxk+1 . . .xixi+1 . . .xn be a linear order
such that xkxk+1 and xixi+1 are four different alternatives; then L is transformed
into L′ = x1 . . .xk+1xk . . .xi+1xi . . .xn (= τiτk(L) = τkτi(L)).

Property 2 means that to search maximal connected acyclic domains of diameter
n(n− 1)/2 with large size, it suffices to consider those obtained by the closure of
a maximal chain. Abello gives an algorithm to get the maximal connected acyclic
domain obtained from a maximal chain L0 ≺ L1 . . . ≺ Ln(n−1)/2 of Ln. The algo-
rithm constructs a sequence D0 = {L0},D1, . . .Dn(n−1)/2 of acyclic domains. One
goes from Ds to Ds+1 by adding to Ds the linear order Lk+1 and the set of linear
orders obtained by applying to all the linear orders of a subset Es of Ds the trans-
position τi (of xi and xi+1) used to obtain Lk+1 from Lk; a linear order M is in Es if
there exists in Ds∪{Lk+1} a maximal chain from M to Lk+1, for which none of the
transpositions along this chain act on xi or xi+1.

A similar algorithm can be used with other acyclic domains to get maximal con-
nected acyclic domains. With this algorithm Abello and Johnson (1984) show that
f (n) ≥ 3(2n−2)− 4 (for n ≥ 4). Except for n = 4, where one gets a lower bound
of 8 and where a maximal acyclic domain of size 9 has been already found,13 the
acyclic domains so found were the first of size greater than 2n−1. One will see in the
following sections that there exist maximal connected acyclic domains with a much
greater size.

4 Chameni-Nembua’s Work

Chameni-Nembua’s work on acyclic domains is contained in his 1970 “thèse de 3ème

cycle” and in a paper that appeared the same year. I was his thesis’ director and his
work has answered some questions that I had asked him to investigate. The origin of
these questions comes back to Guilbaud’s paper in 1952. In this paper one finds an
analysis of Black’s domain showing that the set of single-peaked linear orders has
a distributive lattice structure and that the majority relation of a profile taken in this
domain is the median of the elements of the profile in this lattice.14 In particular one
finds (page 32 of the English translation) a figure showing the distributive lattice

13 An acyclic domain of size 9 in L4 is given in Kim and Roush’s book (1980) or in Raynaud (1982).
Such an acyclic domain is represented Fig. 4 as AS(4) (see Sect. 5).
14 The fact that in this case majority relation is both a metric and an algebraic median is a special
case of median’s theory in distributive lattices (or more generally in median semilattices). One will
find elements of this theory and references in Barthélemy & Monjardet (1981), Monjardet (2006a)
and in Day and McMorris 2005 book.
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BACDE → ΑBCDE

↑
CBADE BCADE (A<B) → ← (A<C)  ← (A<D)  ← (A<E)   

↑↑↑↑ ↑

DCBAE → CDBAE→ CBDAE→  BCDAE (B<C)  ← (B<D)  ← (B<E)
↑↑↑↑↑

↑↑

↑

DCBEA → CDBEA → CBDEA →  BCDEA (C<D) ← (C<E) 

↑ 
DCEBA → CDEBA  (D<E) 

EDCBA →DECBA    

2a 2b

Fig. 2 The distributive lattice of the 16 single-peaked linear orders on a 5-set and the associated
poset of the ordered pairs

of the sixteen single-peaked linear orders on a set of five alternatives. This figure is
reproduced below at Fig. 2a. One can observe that this lattice is a covering sublattice
of the permutoèdre lattice L5 that means that the covering relation in this sublattice
is the same as the covering relation in L5. Indeed, a single-peaked linear order is
covered by another single-peaked linear order if and only if they differ on a unique
pair of elements.

Several other acyclic domains that are covering distributive sublattices of the
permutoèdre lattice were given in Frey (1971) and in Frey and Barbut’s 1971 book.
For instance, the so-called “fuseaux bipolaires d’insertions” which are in fact the
sets of all linear orders containing a partial order formed by the (cardinal) sum of
two unrelated chains. Figure 3 here reproduces the figure on page 121 of Frey and
Barbut’s book that shows the case where the two unrelated chains are 1 < 2 < 3
and 4 < 5 < 6 (I have replaced letters by integers); one obtains a (not maximal)
covering distributive sublattice of L6. Other examples given in this book are the
so-called “faisceaux d’indifférence” which are the set of linear orders which differ
from a given linear order L only on consecutive elements of L15 and the set of “co-
blackiens” (= single-troughed) linear orders.

So I asked Chameni-Nembua to answer the following question: is any covering
distributive sublattice of the permutoèdre lattice an acyclic domain? His answer
was positive, based on the properties of meet and join in this lattice and the fact
that a distributive lattice must not contain some sublattices (see any book on lattice
theory and Monjardet, 1971 for the case of Ln). Moreover, he showed that maximal
covering distributive sublattices are maximal acyclic domains which contain the
minimum and the maximum elements of Ln (i.e., n < .. .2 < 1 and 1 < 2 < .. . .n)

15 Like the “fuseaux bipolaires”, the “faisceaux d’indifférence” are also the set of linear extensions
of some posets P of width 2 (where the width is the maximum number of incomparable elements
of P). More generally the set of linear extensions of any poset of width 2 is a covering distributive
sublattice of Ln (Chameni-Nembua, 1989).
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Fig. 3 The distributive lattice
of the linear extensions of a
poset sum of two chains
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Fig. 4 Two distributive lattices acyclic domains on a 4-set

and so a maximal chain of Ln. These results led us to search such large maximal
covering distributive sublattices of Ln. For n = 4, one founds the sublattice AS(4),
of size 9 represented on Fig. 4 (the linear orders with a black ellipsoid).
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Fig. 5 AS(6), a distributive lattice acyclic domain of size 45 on a 6-set

For n = 5, we found such a sublattice of size 20, and for n = 6, I found a sub-
lattice of size 45 which is the last Figure in Chameni-Nembua’s paper and which is
reproduced here at Fig. 5 (with integers instead of letters for the elements of A). This
last sublattice showed that it was possible to surpass the best Abello and Johnson‘s
lower bound known at this date ( f (6) ≥ 45 > 44 = 3(26–2)− 4). I was pretty sure
that there was a general construction to get such large acyclic domains but since
I didn’t find it, I sent these examples to Peter who was already working on the topic
and (obviously) found the construction described in the next section.16

16 I should be ashamed to have not having found this construction since as it will seen in section 5
it was sufficient to look the triples, and in fact it was also found by Dridi (1994 private letter). But
Fishburn achieved a much more difficult task: to compute the size of the corresponding acyclic
domains for n up to 25 (Dridi computed this size up to n = 8 with the exact values for n = 7 but he
found 220 instead of 222 for n = 8). By the way, it is worthwhile to mention here Fishburn’s prac-
tice, which should be more wide-spread in our scientific world. In his works on acyclic domains,
he always quoted the example that I sent to him. He always did the same in other circumstances
and/or for some other authors when I indicated to him a result that preceded one of his works.
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5 Fishburn’s and Craven’s Works

It seems that Peter’s interest for acyclic domains was motivated by Craven’s con-
jecture that was reported in Kelly’s 1991 paper. In his 1992 book Craven conjec-
tures that f (n) = 2n−1 and he gives an example of an acyclic domain of size 8
for n = 4 (but see17). Kelly exhibits for n ≥ 4 a maximal acyclic domain of size
2n−1 generalizing Craven’s example (in fact, this domain is a maximal Arrow-
Black’s single-peaked domain). In his 1992 note Fishburn mentions that the above
conjecture is false for n ≥ 4 (see footnote 13) and that in fact f (n)/2n−1 → ∞.
This is proved by using an iterative construction of acyclic domains where the
first one is the domain of size 9 on a 4-element set and one goes from an acyclic
domain of size p on a n-set to an acyclic domain of size 2p2 on a 2n-set. Fish-
burn’s paper also contains a replacement construction which for n = 2m and m≥ 4
that gives a much better lower bound than Abello and Johnson’s lower bound:
f (16) ≥ 59,049 > 3(214 − 2)− 4 = 49,148. In fact when Peter wrote his Notes
on Craven’s conjecture he didn’t remember that Abello had worked on the topic.
He remembered only after he read Kim, Roush and Intriligator’s 1992 Overview
of Mathematical Social Sciences where the problem to find f (n) was mentioned.
Therefore, when (in January 1993) I sent him Chameni-Nembua’s paper with my
example of Fig. 5 they were welcomed. A week later he sent me a seven page memo
containing the first elements of what became his 1996 and 1997’s papers (for which
I was referee or editor) and the personal details mentioned above. These papers
contain many significant results.

Firstly, Peter defines the alternating scheme which is the construction allowing
a generalization of my example. Let 1 < 2 . . . < p . . . < n be a linear order on A.
An acyclic domain D of Ln satisfies the alternating scheme, if for all i < j < k ei-
ther (1) jN1 if j is even and jN3 if j is odd, or (2) jN3 if j is even and jN1 if j
is odd (observe that these two domains are dual). So to define such a domain, de-
noted by AS(n), one combines the Never Conditions used for the single-peaked and
single-troughed domains. The size of AS(n) is computed by recursion up to n = 25.
Concerning these sizes, Peter writes that he was unable to find a closed formula for
them. Such a formula has been since obtained by Galambos and Reiner (2008 see
next section). The number of linear orders satisfying the alternating scheme is:

2n−3(n+3)−C(n−2,n/2−1)(n−3/2), for evenn > 2
2n−3(n+3)−C(n−1,(n−1)/2)(n−1)/2), for odd n > 1

where C(p,q) = p!/(p−q)!q! is the binomial coefficient.
Secondly, Fishburn proves that f (4) = 9, f (5) = 20 and that for n≤ 5, an acyclic

domain is maximum if and only if satisfies the alternating scheme. He conjectured
the same for n = 6 and 7 the first conjecture having been proved in his 2002 paper
(a difficult task!).
17 This is another example of the bad circulation of some scientific results, since this conjecture
had already been made by Johnson (1978) and disproved at least since 1980 (see footnote 13 and
Fig. 4).
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Thirdly, it is shown that at least for n≥ 16, the alternating scheme is not optimal
since the replacement scheme is better. This scheme uses two acyclic domains D
defined on {0,1,2 . . .m} and D′ defined on {m + 1, . . .m + p}. For every order in D
one replaces 0 by each of the orders in D′. It is easy to check that the domain of
linear orders obtained on {0,1,2 . . .m,m + 1, . . .m + p} is acyclic. Hence one gets
f (m+ p)≥ f (p) f (m+1) and in particular f (16)≥ 108,336 > 105,884 the size of
the acyclic domain given by the alternating scheme. Another result allows to show
that f (n) > (2.17)n for all large n and that |AS(n)|/ f (n)→ 0 as n→ ∞ i.e., that the
lower bound given by the alternating scheme becomes more and more inaccurate.

Finally, the paper attacks the “major challenge” to find good upper bounds for
f (n). The only upper bound already known 2[(n− 1)!] had been given in Arrow
and Raynaud’s book, but for instance it gives f (9) ≤ 103.698 whereas a clever
Fishburn’s Lemma allows us to obtain f (9) ≤ 22.680. The paper raises two con-
jectures. The first one is f (n+m)≤ f (n+1) f (m+1) for all n, m≥ 1 and in Fish-
burn’s 2002 paper it is shown that it would imply f (n) < (2.591)n−2. The second
conjecture is f (n)≤ cn for some constant c and this was proved later by Raz (2000).

I come back now to Craven’s works. In his 1994 note he gives a partition scheme
which generalizes a construction given in Fishburn’s 1992 note and which in a par-
ticular case is equivalent to Fishburn’s replacement scheme. So he obtains the same
formula f (m+ p)≥ f (p) f (m+1) allowing him to improve some lower bounds of
Fishburn’s note. In his 1996 paper, after reproving the fact that there are 2n−1 single-
peaked linear orders on a n-set (see Sect. 2), he studies the acyclic domains that are
generated by Fishburn’s alternating scheme. In particular he makes the linear or-
ders that are generated by this scheme more precise and he gives some recurrence
relations allowing him to obtain the sizes of the corresponding acyclic domains up
to n = 15.

6 Galambos and Reiner’s Work

In this section I consider the problem of computing g(n) or rather good lower
bounds to this number, i.e., to provide large connected acyclic domains. We have
seen that Abello had constructed such domains by applying a closure operator to
some maximal chains of the permutoèdre lattice. I gave an example showing that
it was possible to find larger such domains that are covering distributive sublat-
tices of the permutoèdre lattice (shown to be acyclic domains Chameni-Nembua).
Generalizing this example by means of his alternating scheme using the two Never
Conditions jN3 and jN1, Fishburn obtained the up to now best lower bound known
for g(n). I present now the link between these various results, as it is established
in recent Galambos and Reiner’s 2008 work (and anticipated in Guilbaud’s, 1952
paper; see Remark later).

Abello constructs maximal connected acyclic domains which are (upper) semi-
modular sublattices of the permutoèdre lattice by using the fact that the maximal
chains of these lattices have an invariant, namely the set of the ordered triples of
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elements appearing in the orders of the chain. Galambos and Reiner show that these
lattices are the same as Chameni-Nembua’s lattices, i.e., that they are (maximal)
covering distributive sublattices of the permutoèdre lattice and that their maximal
chains have another invariant, namely a poset defined on P2(n) (the set of n(n−1)/2
ordered pairs (i < j)). The fact that Abello’s maximal connected acyclic domains
are distributive lattices is significant since it allows to use the well-known Birkhoff’s
duality between posets and distributive lattices.

We need some notions of lattice theory. A join-irreducible element of a lattice is
an element covering a unique element and an ideal (respectively, a filter) of a poset
(X ,<) is a subset I of X such that x ∈ I and y < x implies y ∈ I (respectively, a
subset F of X such that x ∈ F and x < y implies y ∈ F). Now by Birkhoff’s dual-
ity between posets and distributive lattices, a distributive lattice D is isomorphic to
the set ordered by inclusion of all the ideals of the poset JD of its join-irreducible
elements (or to the set ordered by ⊇ of all the filters of JD). It is well-known that
in this duality the maximal chains of a distributive lattice are in a one-to-one cor-
respondence with the linear extensions of the poset JD (i.e., with the linear orders
containing the partial order between the join-irreducible elements); indeed when xk
is covered by xk+1 in a maximal chain of a distributive lattice then there exists a
unique join-irreducible element jk such that xk+1 = xk ∨ jk; so the covering relation
xk ≺ xk+1, can be labeled by jk and the linear order j1 j2 . . . . j|JD| obtained on JD is a
linear extension of the poset JD.

What are the join-irreducible elements of a covering distributive sublattice of
the permutoèdre lattice? I consider a covering distributive sublattice D containing
a maximal chain of Ln (then containing the maximum element ϖ = 1 < 2 < .. .n
and the minimum element α = n < .. .2 < 1 of the permutoèdre lattice). A linear
order L is a join-irreducible element of D if it covers a unique other element L′ of
D. Then one has L = x1 . . .xkxk+1 . . .xn = τk(L′ = x1 . . .xk+1xk . . .xn) with xk < xk+1
(in the order 1 < 2 < .. . .n). Yet, since on a maximal chain between α and ϖ any
of the n(n− 1)/2 ordered pairs j > i of α has to be transposed exactly once to
get ϖ, the transposition of the elements xk and xk+1 appears for the first time in
any maximal chain between α and x1 . . .xkxk+1 . . .xn. So we can identify the join-
irreducible L = x1 . . .xkxk+1 . . .xn with the ordered pair (xk, xk+1), and finally the
poset of join-irreducible elements of D is isomorphic to a poset PD = [P2(n),<D]
defined on the set P2(n) of all the ordered pairs i < j. Now, any linear order L in
D corresponds to an ideal of PD: L is obtained from α = n < .. .2 < 1 by applying
all the transpositions of the ordered pairs belonging to this ideal. And any maximal
chain of D corresponds to a linear order on P2(n), which is a linear extension of the
poset PD.

Using more general results on Bruhat orders (Ziegler,1993) Galambos and Reiner
characterize the linear orders on P2(n) which are admissible i.e., which correspond
to the sequence of transpositions of a maximal chain C of Ln: a linear order λ on
P2(n) is admissible if and only if it contain only triples (of ordered pairs) ordered
in the lexicographic order or in its dual, i.e., triples of the form i j < ik < jk or
jk < ik < i j (with i < j < k). Moreover, these two sets of ordered triples are the same
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for the linear orders corresponding to any maximal chain of the distributive lattice
D closure of the chain C. For instance, a maximal chain of the domain of single
peaked-linear orders of L4 is 4321≺ 4312≺ 4132≺ 1432≺ 1423≺ 1243≺ 1234,
the associated linear order on P2(4) is 12 ≺ 13 ≺ 14 ≺ 23 ≺ 24 ≺ 34 and the set
of ordered triples corresponding to any of the maximal chains in this domain is
{(12, 13, 23), (12, 14, 24), (13, 14, 34), (23, 24, 34)} (so it does not contain triples
dually lexicographically ordered). The domain AS(4) contains the maximal chain
4321 ≺ 4231 ≺ 4213 ≺ 2413 ≺ 2143 ≺ 2134 ≺ 1234; the associated linear order
on P2(4) is 23 ≺ 13 ≺ 24 ≺ 14 ≺ 34 ≺ 12; the associated set of lexicographically
(respectively, dually lexicographically) ordered triples is {(13, 14, 34), (23, 24, 34)}
(respectively, {(23, 13, 12), (24, 14, 12)}).

When one takes an arbitrary maximal chain C = α ≺ L1 ≺ L2 . . .≺ ϖ of Ln it is
a maximal chain in a maximal covering distributive sublattice D of the permutoèdre
lattice. In order to determine D it suffices to determine the poset PD associated to this
maximal chain. Galambos and Reiner constructs PD by using a notion of “arrange-
ment of pseudolines” allowing to represent PD and its ideals and so to recover the
linear orders in D. Another algorithm to get PD is proposed in Monjardet (2006b).

When PD is known, computing the size of D comes back to computing the num-
bers of ideals of this poset, a difficult task in general, since this computation is
known to be #P -complete (Provan and Ball 1983). In the case when D is given
by the alternating scheme, the corresponding poset has a very regular structure (its
covering relation is given in Monjardet 2006b). Galambos and Reiner describe it by
means of a certain arrangement of pseudolines and show that computing the ideals
of this poset comes back computing some lattice paths. By cleverly using path enu-
meration techniques they get the formula for |AS(n)| given in the previous section.

Another significant Galambos and Reiner’s result is the characterization of the
maximal covering distributive sublattices D of Ln by a set of Never Conditions.
Let C be a maximal chain of D and λ be the corresponding linear order admissi-
ble on P2(n), i.e., the linear order corresponding to the sequence of transpositions
of this maximal chain. It has been noted above that the restrictions of λ to any
subset {(i j),(ik),( jk)} of three ordered pairs are ordered either lexicographically
(i j < ik < jk) or dually lexicographically ( jk < ik < i j). Let us denote by LEX3λ
respectively, ALEX3λ) the set of triples i < j < k for which the set {(i j),(ik),( jk)}
is lexicographically ordered (respectively, dually lexicographically ordered) in λ. As
also already noted, LEX3λ and ALEX3λ are the same for any other maximal chain
of D. Then, D is the set of all linear orders satisfying the following Never Conditions:

jN1,∀i < j < k with i jk ∈ LEX3λ
jN3,∀i < j < k with i jk ∈ ALEX3λ

For instance, for any linear order λ associated to a maximal chain of |AS(4),
LEX3λ= {134,234} and ALEX3λ= {123,124} and one gets again the Never Con-
ditions 3N1 and 2N3 of formula (2) in Sect. 5.
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6.1 Remark

As noted before, Guilbaud’s paper contains an anticipation of a Galambos and
Reiner’s result in a particular case. Indeed Guilbaud not only pointed out the distrib-
utive lattice structure of the domain of single-peaked linear orders but he also gave
an explanation for it. He writes (page 29, English translation): “These observations
focus attention on a sort of hierarchy of judgments18; one judgment dominates sev-
eral others. . . This subordination is easy to designate in the form of an ordered net-
work” (he adds in note: “This is a partially ordered structure, called a lattice”19). He
represents this partial order by a triangular tableau for the domain of single-peaked
linear orders on a 6-element set (this tableau is reproduced here Fig. 2b) and he
adds below it: “Note that the affirmation of any one of these judgments implies the
affirmation of all the “consequents”; that is, the affirmation of those located either
in the same row and to the left, or in the same column and thus of all the judgments
located to the left and above”. He concludes that single-peaked orders corresponds
to frontiers separating judgments + (i.e., x > y) and judgments – (i.e., x < y) in the
triangular tableau. In other terms he shows that single-peaked orders correspond to
filters in the partial order defined between the ordered pairs.

7 Conclusion

The search for large acyclic domains appears as a fascinating quest all the more
that I have not said all. For instance, maximal chains of the permutoèdre lattice
are in one-to-one correspondence with other significant combinatorial objects the
standard Young tableaux and the balanced tableaux (see Edelman & Greene, 1987;
Abello 2004) and this allows other interpretations of the problems that have been
raised.20

There are also interesting algorithmic problems to answer the question of recog-
nizing acyclic domains. Some answers have been given, especially for Black’s single
peaked domains, by Romero 1978, see also Arrow & Raynaud, 1986), Bartholdi and
Trick (1986) and Doignon and Falmagne (1994).

18 In Guilbaud’s paper a (simple) judgment is an ordered pair of alternatives expressing a prefer-
ence between them; for example, x > y (see page 24ff of the translation).
19 Indeed in the case of the covering distributive sublattice corresponding to single-peaked orders,
it is not difficult to prove that the associated poset on P2(n) is the lattice where (i, j)∨ (k, l) =
(max(i,k), max( j, l)) and (i, j)∧ (k, l) = (min(i,k), min( j, l)). See also Monjardet (2006b).
20 A balanced tableau is a staircase tableau T of n(n−1)/2 cases – corresponding to the ordered
pairs (i < j) – containing the integers from 1 to n(n− 1)/2 and satisfying for every i < j < k,
t(i,k) between t(i, j) and t(k, j). Such a tableau codes a maximal chain of Ln by coding the linear
order λ on P2(n) associated to this chain: the integer in the case corresponding to (i, j) is the rank
of (i, j) in λ. Conversely a balanced tableau induces the maximal chain obtained by effecting the
sequence of transpositions of the ordered pairs in the order of the cases of the tableau. The much
more sophisticated bijection between maximal chains of Ln and standard Young tableaux allows to
Edelman and Greene to give a formula for computing the number of these chains.
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I end this paper by noting a final result and two conjectures. Instead of searching
for the maximal covering distributive sublattices of the permutoèdre lattice which
have a maximum size, one can ask what are those that have a minimum size. Since
such a sublattice is the closure of a maximal chain, one gets the answer if there exist
maximal chains that are closed. It’s actually the case as it is shown in Monjardet
2006b). This paper contains also some results on the distributive lattices given by
Fishburn’s alternating scheme and by Black’s single-peakedness condition.21

Conjecture 1 (Fishburn 1996, 1997)

f (n+m)≤ f (n+1) for alln, m≥ 1

The proof of this conjecture would imply (2.17)n < f (n) < (2.591)n−2 for all large
n since Fishburn (1997, 2002) proved the lower bound and the implication for the
upper bound. Then, if true, it would give a much better upper bound that the bound
4n−1 conjectured by Abello (1991). In the same paper Abello conjectures g(n) ≤
3n−1 for which the conjectured upper bound (2.591)n−2 would still be much better.

Let |AS(n)| be the size of the acyclic domain given by the alternating scheme.

Conjecture 2 (Galambos & Reiner, 2008)

g(n) = |AS(n)|

This conjecture is true for n ≤ 6 since in this case f (n) = |AS(n)| and Galambos
and Reiner checked it for n = 7.

Acknowledgements I warmly thank the anonymous referee and William Gehrlein as editor for
their suggestions and corrections on the first version of the paper.
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toire. Paris: Hachette.

Galambos, A., & Reiner, V. (2008). Acyclic sets of linear orders via the Bruhat order, Social Choice
and Welfare, 30(2), 245–264.
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historical notes. Social choice and Welfare, 25(2–3), 433–456.
Monjardet, B. (2006b). Condorcet domains and distributive lattices. Annales du LAMSADE, 6,

285–302.
Provan, J. S., & Ball, M. O. (1983). The complexity of counting cuts and of computing the proba-

bility that a graph is connected. SIAM Journal on Computing, 12, 777–788.
Raynaud, H. (1981a). Paradoxical results from Inada’s conditions for majority rule. Technical

Report 331. Institute for mathematical studies in the social sciences, Standford University,
Standford, CA.

Raynaud, H. (1981b). Conditions for transitivity of majority rule with algorithmic interpreta-
tions. Technical Report 347. Institute for mathematical studies in the social sciences, Standford
University, Standford, CA.

Raynaud, H. (1981c). How restrictive actually are the value restriction conditions. Technical Report
348. Institute for mathematical studies in the social sciences, Standford University, Standford,
CA.

Raynaud, H. (1982). The individual freedom allowed by the value restriction conditions. Techni-
cal Report 360. Institute for mathematical studies in the social sciences, Standford University,
Standford, CA.

Raz, R. (2000). VC-dimension of sets of permutations. Combinatoria, 20, 1–15.
Romero, D. (1978). Variation sur l’effet Condorcet. Third cycle thesis, Université scientifique et
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Appendix

Table 1 Table Exact values and bounds for g(n) (maximum size of a connected acyclic domain of
maximum diameter) and f(n) (maximum size of an acyclic domain)

A B C D E F G H

n 2n−1 2n−1 +2n−3–1 3.2n−2–4 AS(n) g(n) C(n) RS(n) f(n)

3 4 4 2 4 4 5 4 4
4 8 9 8 9 9 14 8 9
5 16 19 20 20 20 42 16 20
6 32 39 44 45 45 132 36 45
7 64 79 92 100 100 429 81 ?
8 128 159 188 222 ? 1,430 180 ?
9 256 319 380 488 ? 4,862 400 ?
10 512 639 764 1,069 ? 16,796 900 ?
11 1,024 1,279 1,532 2,324 ? 58,786 2,025 ?
12 2,048 2,559 3,068 5,034 ? 208,012 4,500 ?
13 4,096 5,119 6,140 10,840 ? 742,900 10,000 ?
14 8,192 10,239 12,284 23,266 ? 2,674,440 22,200 ?
15 16,384 20,479 24,572 49,704 ? 9,694,845 49,284 ?
16 32,768 40,959 49,148 105,884 ? 35,357,670 108,336 ?
17 65,536 81,919 98,300 224,720 ? 238,144 ?
18 131,072 163,840 196,604 475,773 ? 521,672 ?
19 262,144 826,680 393,216 1,004,212 ? 1,142,761 ?
20 524,288 671,359 805,628 2,115,186 ? 2,484,356 ?

Exact Values

E: n≤ 4 folklore, n = 5,6 Fishburn 1997, 2002, n = 7 Galambos and Reiner
H: n≤ 4 folklore, n = 5,6 Fishburn 1997, 2002

Lower Bounds

A: Craven’s conjecture, 1992 (!)
B: Kim and Roush, 1980
C: Abello and Johnson 1984 (N.B. 3.2n−2−4 = 2n−1 +2n−2−4)
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D: Fishburn 1997 (Alternating scheme, n = 6 BM 1989)
G: Fishburn 1997 (Replacement scheme f(n+m)≥ f(n).f(m+1))

For all large n, (2.17)n < f (n) (Fishburn 1997)

Upper Bounds

F: g(n) < C(n) = Catalan number2n!/n!(n+1)! (Abello 1991)
For all n, f (n) < cn for some n > 0 (Raz 2000)



Condorcet Domains: A Geometric Perspective

Donald G. Saari

1 Introduction

One of the several topics in which Fishburn (1997, 2002) has made basic contribu-
tions involves finding maximal Condorcet Domains. In this current paper, I intro-
duce a geometric approach that identifies all such domains and, at least for four and
five alternatives, captures Fishburn’s clever alternating scheme (described below),
which has advanced our understanding of the area.

To explain “Condorcet Domains” and why they are of interest, start with the fact
that when making decisions by comparing pairs of alternatives with majority votes,
the hope is to have decisive outcomes where one candidate always is victorious
when compared with any other candidate. Such a candidate is called the Condorcet
winner. The attractiveness of this notion, where someone beats everyone else in
head-to-head comparisons, is why the Condorcet winner remains a central concept
in voting theory. For a comprehensive, modern description of the Condorcet solution
concept, see Gehrlein’s recent book (2006).

But Condorcet also proved that pairwise rankings can lead to cycles, where a
Condorcet winner cannot exist. His three voter example Condorcet (1785),1 now
called the Condorcet triplet, has the preferences

A1 � A2 � A3, A2 � A3 � A1, A3 � A1 � A2 (1)

(“A1 � A2 � A3” means that the voter prefers A1 to A2 and A3, and A2 to A3). The
majority vote generates the cycle where A1 beats A2, A2 beats A3, and A3 beats A1
each with a 2:1 tally. The trouble with cycles is that they frustrate society’s ability to

1 Condorcet’s example in his Éssai Condorcet (1785) is not as concise; it involves about sixty
voters. But, I expect that somewhere in his writings, Condorcet explicitly stated this triplet.
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make a decision; e.g., who should be selected with this example? Not A1 because a
majority prefers A3. Not A3 because a majority prefers A2. Not A2 because a majority
prefers A1.

The difficulties associated with this behavior are much worse because the ways in
which cyclic behavior can be manifested extend beyond frustrating the majority vote
decision process to cause fundamental theoretical concerns. As we now know (Saari
(2001a)), for instance, aspects of cyclic outcomes are totally responsible for Arrow’s
seminal theorem Arrow (1951), which purportedly shows that no non-dictatorial
voting rule can satisfy seeming innocuous conditions, and Sen’s Paretian Liberal
Theorem Sen (1970), which identifies what is called a fundamental conflict between
individual and societal decisions. (For different interpretations of Arrow’s and Sen’s
theorems, see Saari (2001a); also see Saari and Petron (2006) and Li and Saari
(2004).)

A standard way to handle these difficulties is to restrict the preferences that voters
are permitted to have. (See Gaertner (2001) for other restricted domain conditions in
choice theory.) This leads to the Condorcet Domain problem: it is to identify sets of
preference rankings whereby, no matter how many voters have each of the specified
rankings, the outcome never admits a cycle. A goal is to find or characterize all such
domains – all sets of these preference rankings – and find the ones with a maximum
number of rankings.

This Condorcet Domain challenge has captured the attention of influen-
tial contributers to this area; for a brief history with references see Fishburn
(1997), Monjardet (2006b), Monjardet’s survey (2006), and Monjardet (2008)
that appears in this volume. Indeed, it was Monjardet’s interesting presentation
Monjardet (2006a,b) at an October 2006 DIMACS/LAMSADE conference in Paris
that awakened my interest in this issue and led to this paper. As Monjardet ex-
plained, Fishburn’s paper (1997) contains some of the deepest conclusions about
this issue. Fishburn credits his discovery of the “alternating scheme” to clever
examples that Monjardet created.

Fishburn’s and Monjardet’s approaches are essentially combinatoric. So, after
introducing the basic problem, I will introduce a geometric approach to describe
Fishburn’s alternating scheme. My expectation is that the symmetries, which be-
come apparent by use of geometry, will lead to other mathematical tools that can
be used to analyze this and other pressing questions. Then, after showing how
my geometric approach fits into a broader research theme, I generalize the Con-
dorcet Domain problem by replacing sets of “individual rankings” with sets of
“specific configurations of individual rankings.” Namely, instead of finding spe-
cific rankings that avoid cycles, the new goal is to find configuration of rankings
whereby if any number of groups of voters adopt any of these configurations, cycles
never occur. Although this generalized problem appears to be far more complicated,
the complete solution is in Sect. 4. The original problem, however, remains wide
open.
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2 Early Solutions

The Condorcet Domain problem is to identify subsets of preference rankings so
that, no matter how many voters are assigned to each ranking, the pairwise majority
vote outcomes never admit a cycle. As the number of voters with each ranking is
not restricted, each Condorcet Domain defines a subspace of profiles with which not
only majority pairwise voting, but several other voting issues avoid the difficulties of
pairwise comparisons; this includes Arrow’s Theorem (1951) as well as some deci-
sion problems from engineering (Saari and Sieberg (2004)). With these advantages,
it is natural to find Condorcet Domains that have the maximal number of rankings;
after all, such a domain defines a maximal dimensional profile subspace with these
desired properties.

An early Condorcet Domain solution, which continues to be widely used, is
Black (1948) single peaked condition. While his condition is slightly more gen-
eral than described next, a flavor of it can be obtained by placing each alternative at
a distinct point on a line. Next, place an individual’s “ideal point” anywhere on the
line; this individual’s preference ranking is defined by the distance from his ideal
point to each alternative where “closer is better.” It is not difficult to show how and
why this ordering of the voters’ preference rankings always results in orderly pair-
wise outcomes. (See, for instance, Black (1948), Saari (2001a) among many other
references.)

To see what happens with three candidates, notice that the alternative in the mid-
dle never is bottom-ranked by any voter. For special cases, if all ideal points are
on one side of the alternatives, some candidate never is top-ranked; if the voters
are split into polarized left-right regimes, some candidate never is middle-ranked.
Black’s condition probably motivated the Condorcet Domain solution advanced by
Ward (1965) and later generalized by Sen (1966). Namely, with three candidates at
least one of the following conditions is satisfied:

1. There is some candidate who never is bottom-ranked.
2. There is some candidate who never is middle-ranked.
3. There is some candidate who never is top-ranked.

As I indicate next with a geometric representation, when any of these conditions are
satisfied, a majority vote pairwise cycle cannot occur.

2.1 Geometry of Triangles

My preferred way Saari (2001b) to represent three-candidate profiles is with an
equilateral triangle, where the name of each candidate is assigned to a distinct vertex
as illustrated in Fig. 1. The ranking assigned to a point in the triangle is determined
by its distance to each vertex, where closer is better. Thus the vertical line represents
all A1 ∼ A2 tied rankings; the remaining two indifference lines connect a vertex
with the midpoint on the opposite edge. What results is a partitioning of the triangle
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into what I call “ranking regions;” the open triangles represent strict rankings. For
instance, any point in the small Fig. 1a triangle with an x is closest to A1, next closest
to A3, and farthest from A2, so it has the A1 � A3 � A2 ranking.

A way to represent a profile is to place the number of voters with each ranking
in the associated ranking region. The z in Fig. 1a, for instance, means that z voters
have the A3 � A2 � A1 ranking. A candidate never is bottom-ranked when there are
no entries in the two regions farthest from the candidate’s vertex; e.g., the Fig. 1a
profile never has A3 bottom-ranked. Figure 1b, c represent the remaining two Ward
conditions with respect to A3.

An indifference line associated with a particular pair divides the six rankings into
two regions with the two possible pairwise rankings; e.g., the vertical line in Fig. 1a
separates the three rankings on the left with A1 � A2 from the three rankings on
the right with A2 � A1. Thus a quick way to tally majority votes is to project the
numbers from the triangle to the appropriate edge and then add them; the sums are
listed next to each edge. This projection and summing process is indicated by the
dashed arrows in Fig. 1b, which represents all profiles where A3 is never middle-
ranked. Notice that the A1,A2 tallies are, respectively, x + y and z + w. As the A1,
A3 and A2, A3 tallies agree, A3 must be either the Condorcet winner or loser; in
either case, it follows that cycles cannot occur when some candidate never is middle-
ranked. A similar argument holds for the other figures; e.g., in Fig. 1a, if A1 beats
A2, then x + y > z + w, so A3 beats A2: as A2 is the Condorcet loser, cycles cannot
occur.

The complementary relationship between Ward conditions and the Eq. (1) Con-
dorcet triplet is illustrated with Fig. 2. There are two possible Condorcet triplets;
the Eq. (1) choice is illustrated with stars in the appropriate ranking regions,
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the other with bullets. To avoid the cycles caused by Condorcet triplets, it is worth
examining what happens if one ranking with a star and one with a bullet are prohib-
ited. By symmetry, it does not matter which star choice is selected, so choose the
one indicated in Fig. 2. Next, select one of the three bullets; as the figure indicates,
each choice corresponds to satisfying some Ward condition.

Ward’s conditions, then, should be viewed as being the sharpest possible restric-
tions that avoid a Condorcet triplet. Namely, a way to restate Ward’s conditions
is that they identify any set of rankings from which a Condorcet triplet cannot be
created. To complete the complementary connection between Ward and Condorcet,
each Condorcet triplet consists of the smallest number of rankings that violate all of
Ward’s conditions. In summary, a three-candidate Condorcet Domain is any set of
rankings from which a Condorcet triplet cannot be created; i.e., it is any set that sat-
isfies one of Ward’s conditions. As each candidate defines three different Condorcet
Domains, nine different four-dimensional subspaces in the six-dimensional profile
space are spared the problems of cyclic behavior.

2.2 More Candidates

What happens with more candidates? With four candidates, for instance, can pair-
wise cycles be avoided whenever some candidate never is bottom-ranked? As il-
lustrated with the Eq. (2) example, where A3 never is bottom-listed, the answer is
no.

A1 � A2 � A3 � A4, A2 � A3 � A4 � A1, A3 � A4 � A1 � A2. (2)

Here, A4 beats A1, A1 beats A2, A2 beats A3 (each by 2 : 1), and A3 beats A4 (unani-
mously) to form a cycle. Notice how this profile defines the A1 � A2, A2 � A3, A3 �
A1 cycle with the familiar 2 : 1 tallies. Indeed, by focussing attention on the relative
position of these three candidates, we find that they create a Condorcet triplet, which
means that all of Ward’s conditions are violated. This insight explains Sen’s condi-
tion Sen (1966) that a necessary and sufficient requirement for a set of rankings to
define a Condorcet Domain is that, when restricting the rankings to any triplet, one
of Ward’s conditions holds. So for {A1, . . . ,An}, a set of rankings is a Condorcet
Domain if and only if when restricted to each triplet, at least one candidate never
is top-ranked, or middle-ranked, or bottom-ranked; i.e, these relative rankings can
never be used to create a Condorcet triplet.

By knowing what creates Condorcet Domains, the next step is to find exam-
ples and maximal Condorcet Domains. This is where Fishburn (1997) alternat-
ing scheme and “never” conditions play a dominant role. To explain his condition
with an example, consider the five candidates {A,B,C,D,E}. Select a ranking; say
E � A� D�C � B. Assign temporary A j names according to the ranking’s order;
e.g., E is called A1, A is called A2, . . . , B is called A5.

Fishburn’s alternating scheme is as follows:
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List each triplet in the order of their temporary names; e.g., list {A3,A1,A4} in the order of
their subscripts as {A1,A3,A4}. If the subscript for the middle alternative is odd, as it is here
(it is 3), use the never-top ranked rule for this alternative with the triplet. If it is even, use the
never bottom-ranked rule with the alternative. Apply this rule to all triplets. Alternatively,
the rule used with all triplets could be that if the subscript for the middle alternative is odd,
then use the never-bottom ranked rule; if it is even, use the never-top ranked rule.

The value of this algorithm comes from Fishburn’s result stated next; proofs are
in his papers:

Theorem 1 (Fishburn (1997, 2002)) For n = 4,5,6 alternatives, a Condorcet Do-
main has the maximal number of rankings if and only if the set satisfies the al-
ternating scheme. For n ≥ 16, the alternating scheme does not define the maximal
Condorcet Domain.

What a delightful result! Beyond contributing to a long studied question, his
theorem creates a mystery that begs to be investigated. Why does it work? What
underlying mathematical structures permit this condition? Is there an intuitive way
to appreciate his alternating condition? What is magical about the n = 16 cutoff?
What happens between 7 and 15? As my objective is to develop insight and intuition,
I describe the Ward–Sen and Fishburn conditions in a geometric framework.

3 Geometry

To find all four-candidate Condorcet Domains by using elementary geometry,
replace the equilateral triangle with the Fig. 3a equilateral tetrahedron. Again, a
ranking is assigned to a point based on its distances to the vertices. To create a
two-dimensional representation of the tetrahedron, select a vertex (A4 in Fig. 3), cut
the three tetrahedron edges from the vertex to its base, and open the flaps to create
the Fig. 3b object. Each of the 24 small triangles, or ranking regions, represents a
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particular ranking; e.g., using distances to vertices, the region with the bullet has the
A2 �A1 �A4 �A3 ranking, while the one with the diamond has A4 �A2 �A3 �A1.
The four large equilateral triangles are the four original tetrahedron faces; alterna-
tively, they represent where one alternative is removed. For instance, the central
equilateral triangle with vertices A1,A2,A3 can be used to represent rankings when
A4 is dropped.

To motivate what is done next, recall that to construct a Condorcet Domain we
need to find all rankings where after dropping A4, the remaining triplet satisfies
the “A3 is never middle ranked” or some other Ward–Sen condition. Namely, we
need to avoid all rankings whereby dropping A4 leads to either A1 � A3 � A2 or
A2 � A3 � A1. More generally, we need to find a way to identify all rankings that
have a specified relative ranking after dropping a particular candidate.

To do this by using geometry, start with the three alternative setting of Fig. 3c.
Similar to tallying elections, ignoring A3 has the effect of projecting the rankings to
the A1-A2 edge; e.g., the dashed arrow in the triangle represents projecting all three
rankings with the A1 � A2 relative ranking to the A1 � A2 portion of the bottom
edge. (So, to find all rankings with A1 � A2, just follow that dotted line backwards.)
A similar projection occurs with Fig. 3a when an alternative is dropped, but we need
help to see the projections. Assistance is provided by Fig. 3b.

Figure 3b easily handles projections when A4 is ignored and a {A1,A2,A3} rank-
ing results. For instance, the starred region has the ranking A1 � A3 � A2 � A4,
with the A1 � A3 � A2 relative ranking when ignoring A4. The four rankings with
this A1 � A3 � A2 relative ranking are in the ranking regions with the dashed arrow
pointing to the star; i.e., ignoring A4 effectively projects these four rankings into
the starred region. Indeed, “above” (i.e., directly away from the center point of the
central triangle) each ranking region in the central equilateral triangle are the four
four-candidate rankings with the same relative ranking of the triplet.

Now consider a ranking that is not in the central triangle; e.g., treating the region
with a bullet as a triplet, the ranking is A2�A1�A4. As A3 is the missing candidate,
one way to handle to geometry is to return to the tetrahedron and open it from the A3
vertex. Doing so would create four attached equilateral triangles with the A1,A2,A4
triangle in the center; each adjacent triangle has the vertex A3. But this approach is
not satisfactory for our needs as we want to compute the rankings to be removed for
all triplets with one diagram. So, an equivalent way to create the same figure that
is formed by slicing the tetrahedron open from vertex A3 is to rotate (the circular
dotted line) the A1,A3,A4 triangle about vertex A1 so that the two A1-A4 edges meet,
and rotate the A2,A3,A4 triangle about A2 so that the two A2-A4 edges meet. By
doing so, it is clear that the ranking regions with the dashed arrow pointing to the
bullet are projected to this region. (Here, we did not need to rotate the faces.)

As a final example, the three-candidate ranking for the region with a diamond
is A4 � A2 � A3 where A1 is the ignored alternative. To find all rankings with this
relative ranking, rotate the A1,A4,A2 triangle about the A2 vertex, find the projection,
and then rotate back again to show that the desired ranking regions are those with
the dashed arrow combined with the circular arrow.
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Fig. 4 No middle ranked alternatives

3.1 Excluding Rankings

To illustrate how to use this geometry, the “never-middle ranked” condition is im-
posed in Fig. 4a for each triplet. With the A2,A3,A4 triplet, for instance, the 1’s
indicate those rankings where, when restricted to this triplet, A4 is middle-ranked;
thus, these two rankings are to be excluded and the other four are admitted. Similarly
the regions with 4’s indicate where A1 is middle-ranked when restricting admissible
rankings to the A1,A3,A4 triplet, so the other four rankings satisfy Ward’s condition
where A1 never is middle-ranked.

All rankings that satisfy these conditions, i.e., all ranking regions that project to
any of the marked Fig. 4a regions, are marked in Fig. 4b. The top “1” in Fig. 4a, for
instance, excludes the three regions indicated by the top circular arrow; one Fig. 4b
region already is excluded as it has a 4, the other two regions, marked with 1∗,
are excluded because they are projected to a 1. Similarly, the lower circular Fig. 4b
arrow identifies the three regions that project to the other 1; one region already is
excluded with its 3, and the two with 1∗ are excluded by being projected to this 1.

Doing this for all four numbers leaves only four ranking regions without a label;
these rankings, {A4 � A3 � A1 � A2, A4 � A3 � A2 � A1, A1 � A2 � A3 � A4, A2 �
A1�A3�A4} enjoy obvious symmetry relationships made apparent with the figure.
(For instance, notice that each ranking is accompanied by its reversal.) They define
a “complete Condorcet Domain” in that by adding any other ranking to the set, the
new set no longer is a Condorcet Domain.

In general, for each of the four triangles, select a Ward–Sen condition for some
alternative. Then, cross off all regions identified by the selected Ward–Sen choices,
and all regions that project onto one of these regions. In this manner, all possi-
ble four-alternative complete Condorcet Domains can be found. As this approach
shows, in profile space (which can be represented by the 24 dimensional Euclid-
ean space R

24) the Condorcet Domain is orthogonal to the space of regions that are
eliminated by the Ward–Sen conditions.

The geometric challenge, which has the flavor of a Sudoku or crossword puzzle,
is to determine which combinations of Ward–Sen structures leave the largest number
of blank spaces after the projected regions are crossed off. Thus, finding a Condorcet
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Domain with a maximal number of rankings requires finding combinations of Ward–
Sen conditions with the minimal number of crossed off regions. Clearly, for this to
occur, we need to select conditions so that some regions are eliminated by multiple
conditions. For instance the regions with a 3 on the right in the A1,A2,A4 triangle
is excluded twice; first by being the indicated middle ranking for that triangle and
then by being projected to a 1. The goal, then, is to determine which combinations
of the Ward–Sen conditions minimize, and which maximize, multiple counting of
ranking regions. The answer must involve the geometric structure and its associated
symmetries.

An example using symmetry is depicted in Fig. 4c where the four not-middle
choices, given by the numbers 1 to 4, are selected in a band. Notice, some num-
bers are in regions that are projected to other numbers. The projection regions are
depicted by dashed lines leading out of regions with a number; three dashed lines
are labeled with the donor number n∗. With this choice, five marked ranking re-
gions are used three times, six twice, and only five once. This arrangement leaves
eight blank regions that define a complete Condorcet Domain: the first part has A3
bottom-ranked,

{A1 � A2 � A4 � A3, A1 � A4 � A2 � A3, A4 � A2 � A1 � A3, A2 � A4 � A1 � A3}

and the second part has A3 is top-ranked

{A3 � A1 � A4 � A2, A3 � A1 � A2 � A4, A3 � A2 � A4 � A1, A3 � A4 � A2 � A1}.

Also notice, accompanying each ranking in this Condorcet Domain is its reversal.

3.2 Calculus of Ward–Sen Conditions

One of my contributions for this Condorcet Domain problem is to indicate how to
create a calculus to determine which ranking regions should be eliminated. To do
so, the Ward–Sen conditions are related to the geometry of a tetrahedron. Using the
bottom face of Fig. 3a, with vertices {A1,A2,A3}, which is the central face of Fig. 5a,
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the never-bottom condition defines an edge; e.g., the b’s in Fig. 5a are on the A1-A2
edge. Applying this condition to define a Condorcet Domain, it follows from the
dashed lines moving out of the “b” regions that it eliminates all rankings in the other
face that shares this edge; in Fig. 5a, it is the triangle {A1,A2,A4}. Thus, a never-
bottom condition defines one of the face’s edges; it eliminates the two specified
never-bottom rankings and all rankings in the face sharing the same edge.

A never-top condition defines two regions sharing a vertex; in Fig. 5a, the regions
are denoted by t’s, and the vertex is A3. As illustrated by the dashed lines moving out
of the two “t” regions, this condition eliminates all six rankings that share the same
vertex and two more along the “designated edge” that connects the specified vertex
with the vertex not in this face; here it is the A4 vertex. Notice that this A3-A4 edge is
depicted on two of the faces; the reason is that this is one of the edges along which
the tetrahedron was cut open. What is not so obvious is that this edge connects A3
from the A1,A2,A3 face to A4 from the A1,A2,A4 face. After all, the same A4 is on
three faces; to see that this is so, just fold up the faces into a tetrahedron.

As indicated by the m’s in Fig. 5a, the never-middle condition defines a face base
and two adjacent faces; the excluded regions are the two selected rankings and three
each in the adjacent faces. These eliminated rankings come in pairs; a ranking and
its reversal. Also notice how four of the Fig. 5a rankings are below the A1 ∼ A3 line,
the other four are below the A2 ∼ A3 line.

The next step is to identify what rankings disappear by combining these condi-
tions; the ideas can be illustrated by using the same condition with two faces α and
β ; the remaining two faces (equilateral triangles) are called γ and δ . The easiest case
is the never-bottom condition, which emphasizes selected edges.2 (See Figs. 3a, 5a.)
All possible combinations follow:

• If the never-bottom condition used with the α and β faces has the α identified
edge bordering face γ and the β identified edge bordering face δ , then there is
no overlap of eliminated regions. Thus 16 regions are eliminated; they are all of
the γ,δ ranking regions and the four initiating regions. To illustrate with Fig. 5a,
let the α face be given by the vertices A1,A2,A3, and the bordering γ face be
A1,A2,A4. Then the b’s in the α face eliminate all γ face rankings. Let the β face
be given by A2,A3,A4 where the two bottom ranked rankings are on the A3-A4
edge. These two choices eliminate all rankings in the δ face defined by vertices
A4,A1,A3. In total, all rankings from the γ and δ faces, 12 of them, are eliminated
along with the four selected rankings for a total of 16.

• If the α edge is on the β face, but the β edge is on face γ , then 14 regions are
eliminated – the β face condition eliminates all γ rankings, the α face condition
eliminates all β rankings including the two that drop all of the γ rankings, and
the two initiating regions in the α face. Again, illustrating with Fig. 5a with the
same α face but where the β face now is A1,A2,A4, the b’s in Fig. 5a satisfy the
first condition; all β face rankings are dropped. Now let the γ face be defined by
A2,A3,A4. To satisfy the specified conditions, the two bottom ranked rankings

2 The approach becomes clear and fairly easy with some experience. Therefore I strongly recom-
mend that the reader creates versions of the Fig. 5 triangles and carries out the described calculus.
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from β must be on the A2-A4 edge. These choices eliminate all β and γ rankings
(12 of them in total) and the two b rankings in the first face for a total of 14
rankings.

• If both conditions define the same edge, which connects the α and β faces, then
both faces, or 12 regions are eliminated. To illustrate, let α and β be as in the last
illustration. Let the b be as in Fig. 5a, and let the two choices for β be directly
across the A1-A2 edge. These choices eliminate all α and β rankings; 12 of them.

• Finally if the α and β edges both border on face γ , only 10 regions are elimi-
nated; each γ region is eliminated by both conditions; the remaining four are the
initiating choices in α and β . To illustrate, let α be as above, β the A2,A3,A4
face, and γ the A1,A2,A4 face. Let the b’s be as in Fig. 5a, so they eliminate all
of the γ rankings. Chose the bottom ranked rankings in β along the A2-A4 edge;
they, too, eliminate all γ rankings. So, the eliminated rankings are the six in face
γ and the four selected ones for a total of ten.

Using the “never-top” conditions with the α , β faces characterizes all combina-
tions of vertices that identify the never-top candidate and the interaction of desig-
nated edges.

• If both conditions use the same vertex, there will be overlap in the regions that are
eliminated. Here, there are only 10 dropped regions – both “never-top” choices
eliminate the six regions around the shared vertex, and each condition elimi-
nates two more regions along the designated edges. This is illustrated in Fig. 5b
where face α is given by A1,A2,A3; the two t’s eliminate three rankings along
the dashed line in the β face of A1,A3,A4 and three rankings along the dashed
line in the γ face of A2,A3,A4. The rankings selected in the β face are indicated
in Fig. 5b with the 1’s. In the γ face, this choice eliminates three rankings, but
two of them were already eliminated by t. Similarly, the other 1 eliminates three
rankings in the α face, but two of them are t’s. Thus this choice eliminates only
two additional regions; they are given by the 1∗’s. A total of 10 regions are elim-
inated.

• If the conditions use two different vertices that share the same designated edge,
some overlap occurs meaning that 12 regions are eliminated. In Fig. 5b, the α
face is defined by A1,A2,A3 and selected rankings are given by the t’s. Thus the
designated edge connects vertices A3 and A4. To find the other vertex, as the
designated edge is to be the same, the face cannot include vertex A3. Thus this β
face must be defined by A1,A2,A4. Moreover, to have the same designated edge,
A4 is the selected vertex, thus the selected regions must be given by the 2’s in
this face. One 2 eliminates three regions in γ defined by A1,A3,A4, but two of
these regions have a dashed line meaning they already were eliminated by the
t’s. The same behavior occurs in δ defined by A2,A3,A4. Thus the 2∗’s show the
two regions not already eliminated by the t’s, leading to a total of 12 dropped
regions.

• If the designated vertices differ and the designated edges meet only in a single
point, then the smaller overlap causes 14 eliminated regions. To illustrate why
and what this means, using the same α face and t’s, the designated edge connects
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A3 with A4. What we need is to select the β face and its identified never-top
rankings in a manner so that the designated line is the A j-A4 edge, where A j is
either A1 or A2. Suppose it is A1. Now there is a choice; do we have A1 or A4 as
the “never-top” ranked candidate? If it is A1, the face is A1,A2,A3, which is the α
face where the never top condition already is specified. Thus, the choice must be
A4 where, as in Fig. 5b, the β face must be given by A2,A3,A4 and the selected
never-top rankings must be given by the 3’s. The regions newly eliminated are
given by the 3∗’s in Fig. 5b. In total, 14 regions are eliminated.

• The remaining condition is for the two vertices differ and the two designated
edges not to meet. To see what this means, start with the same α face and the t’s.
This choice defines the designated line connecting vertices A3 and A4. Thus, the
other designated line must connect A1 and A2; one of these vertices identifies the
“never-top ranked” candidate for a particular triplet. If it is A2, then the choice
of the designated line means that the triplet cannot contain A1; the β face is
A2,A3,A4. In Fig. 5c, this situation is given by the 4’s. As the eliminated regions
do not meet, this last situation drops 16 regions.

The analysis for the never-middle condition is similarly easy. Using the never-
middle with faces α and β where both have the same edge as a base, the number
of eliminated regions is 12. If the ranking regions for two never-middle choices
are adjacent, so they share a portion of an edge of the tetrahedron, the number of
excluded regions also is 12. Otherwise, the number of excluded regions is 14. No
combination eliminates 16 rankings. Incidentally, for any n≥ 3, for each ranking not
eliminated by applying the condition to a triplet, its reversal also is not eliminated;
i.e., any Condorcet Domain defined strictly with never-middle conditions has an
even number of rankings.

Similar straightforward computations hold for other combinations; e.g., when
combining a never-bottom with a never-top, emphasize how the never-bottom edge
along with the never-top vertex and its designated edge, interact. For instance, us-
ing a never-bottom with α where the edge is the designated edge of a never-top
condition with face β provides overlap so 11 regions are eliminated. Combining
a never-middle with a never-top condition where both designated regions for the
never-top already have been eliminated leads to 13 dropped regions.

3.3 Combinations and Fishburn’s Alternating Scheme

The calculus for three conditions is similar, so, instead of doing so, the above com-
binatoric rules are now used to obtain insight into what happens with the various
combinations of conditions. The first result shows what can be obtained by using
the same constraint with each triplet.

Theorem 2 If the never-top or the never-bottom condition is used with each triplet,
then the smallest associated Condorcet Domain is empty; the largest Condorcet Do-
main has 8 rankings. If the never-middle requirement is used with each triplet, then
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the resulting Condorcet Domain has either 4 or 8 rankings. The unique arrange-
ment giving 8 rankings is equivalent to Fig. 4c. Each ranking in the never-middle
Condorcet Domain has its reversal in the Domain.

Proof. First consider the never-bottom condition. Use the never-bottom for the α
and β faces as defined by the connecting edge; this eliminates all α,β rankings.
Doing the same with the γ,δ faces means that all rankings have been eliminated,
so the Condorcet Domain is empty. To have a minimum number of eliminated re-
gions, select a face α; each edge of α connects to another face; using each of these
edges to define the never-bottom condition for the connecting face means that each
of these three conditions eliminate all α regions; in total 12 rankings have been
dropped. It remains to use the never-bottom with α; the selected edge will elimi-
nate the remaining four rankings from the connecting face, leaving the specified 8
rankings.

For the never-top condition, to eliminate all rankings, just use all four vertices.
About each vertex, the condition eliminates all six rankings where that candidate is
top-ranked, so all rankings are eliminated. At the other extreme, select a vertex; it
connects three faces. For each face, select the never-top condition defined by that
vertex. As the six rankings with that candidate top-ranked are eliminated three times,
the total number of eliminated rankings is 12. The choice for the last face must be
selected. The three conditions already selected define three designated legs. Select a
vertex in this face so that it defines the same designated leg; only four more regions
are eliminated. Hence the associated Condorcet Domain has 8 rankings. That this is
best possible follows from the construction and the above combinatoric rules.

The never-middle conditions are left for last as they indicate a general strategy.
For instance, to show that the never-middle conditions cannot have an empty Con-
dorcet Domain, assume that it could; thus all rankings from each face must be elim-
inated. So we try to find what conditions permit this to obtain a contradiction. With
the m’s in Fig. 6a, the required conditions to eliminate all rankings in this α face
defined by A1,A2,A3 follow immediately: There is one “never-middle” condition
from the β face of A2,A3,A4 that never eliminates any regions from α; the other
two never-middle choices from β leave two blank regions in α . A similar statement
holds for any of the three faces bordering on α . Indeed, it is easy to see that the
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positioning of the x’s in γ defined by A1,A3,A4 and the y’s in β , where the x is ad-
jacent to an m, and the y is lifted a region, will eliminate all α face rankings. This
choice is unique up to symmetry.

As the never-middle choices for three faces are uniquely specified to drop all α
face rankings, it remains to find the never-middle choice for the bottom face δ given
by A1,A2,A4. As it is easy to check, each of the three choices of u, v, or z leaves
four blank regions, so the associated Condorcet Domain has four rankings. Because
this setting describes where all rankings from one face are eliminated, it follows in
general that if all rankings from any face are not eliminated, then each face must
have at least one blank region; i.e., with the never-middle conditions, the Condorcet
Domain must always have at least four rankings.

If we do not want to have all rankings dropped from each face, then the next step
is to determine how to select never-middle conditions so that a face has precisely
one blank region. The two choices are where the blank region and one of the never-
middle rankings are either the bottom two, or the top two, rankings for some al-
ternative. For the first case, which is illustrated in Fig. 6b, the goal is to keep the
A3 � A1 � A2 � A4 ranking; this ranking region is identified with the bullet. It is
easy to see that the only choice for the x and y never-middle rankings are uniquely
determined as illustrated. It remains to find the rankings for the β face. To keep the
designated region blank, the only choices are denoted by u and v. If u is selected,
all rankings in the side face are eliminated, which returns to the earlier case of four
rankings in the Condorcet Domain. Selecting v is the Fig. 4c case of eight rankings
in the Condorcet Domain.

The argument for the second case, where m and the blank region are the top
two rankings for a candidate is essentially the same. This requirement uniquely
defines the choices of never-middle for two faces. There are only two choices for
the remaining face; one creates a face with all rankings removed, so it reduces to the
earlier case having a Condorcet Domain of four rankings. The other choice leaves
one blank ranking for each face; e.g., rankings of the A1 � A2 � A3 � A4, A4 � A3 �
A2 � A1, A3 � A1 � A4 � A2, and A2 � A4 � A1 � A3, where each candidate is in
each position once, emerge.

Finally, it is easy to show that it is impossible to have three blank rankings in
a face. For four blank rankings, it is equally as easy to show that the situation is
equivalent to that of Fig. 4c. This completes the proof. ��

Before providing a geometric description of Fishburn’s alternating scheme, no-
tice how the above approach can be used to answer several other questions. For
instance, is the set of rankings {A1 � A2 � A3 � A4, A2 � A1 � A4 � A3, A4 � A2 �
A1 � A3} a Condorcet Domain? If so, is it a complete Condorcet Domain? If not,
how can it be completed? To find answers, use the above approach used to determine
whether a face can have the specified blank regions. In the same way, it is possible
to determine the associated Ward-Sen conditions. If such conditions can be found,
the set is a Condorcet Domain. If additional blank regions emerge, then the set is
not complete and the added regions define a completion.

This approach leads to a geometric description that is equivalent to Fishburn’s
alternating scheme. Start with face α . For each of the remaining three faces, use
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the never-bottom condition adjacent to the α edge. In this way, 12 rankings are
eliminated; all six in the α face and two from each of the other three faces. But
whatever Ward–Sen choice is made for α , never-top, never-middle, or never-bottom,
it eliminates four more regions from other faces, which defines a Condorcet Domain
of eight rankings. Alternatively, by using the never-top ranked choice with the same
vertex, whatever choice is made for the remaining face, four more rankings are
excluded.

The next natural approach coming from the calculus is to use two never-bottom
conditions, say for faces γ and δ , where both eliminate all α face rankings, and two
never-top conditions, for the remaining faces α and β , that use the same vertex. In
Fig. 6c, the never-bottom choices are illustrated with the 1’s and 2’s; they eliminate
all α rankings. The only two choices for the common vertex of the α and β faces are
A2 and A3. Either works; I selected A2 as given by the 3’s and 4’s. Observe how this
construction creates overlaps with the never-bottom condition, which means that the
Condorcet Domain has nine rankings –the nine blank regions in Fig. 6c outside of
the α face.

Using the above machinery of computing when all rankings from a face are elim-
inated, etc., it is not difficult to show that this is the maximum, and it can be attained
only in this manner. To recover Fishburn’s alternating scheme, select the names of
the vertices in an appropriate manner. Notice that while Fishburn proved that the
alternating scheme does not hold for all values of n, the calculus of the geometric
approach described above does apply to any number of alternatives.

3.4 More Candidates

The approach for n ≥ 4 candidates is similar, but assistance coming from concrete
geometric objects is missing for n ≥ 6. (For n = 5, the simplex opens into a tetra-
hedron, which can be opened into a 96 region version of Fig. 3b plus another copy
for 24 interior ranking regions.) Any Ward–Sen condition with triplet eliminates n!

3
rankings.

The structure remains similar; e.g., the “never-middle ranked” condition elimi-
nates rankings and their reversals; these rankings lie along two “indifference rank-
ing” surfaces. If a triplet includes two of the alternatives from the specified triplet,
the never-middle condition eliminates half of them; if it has one or none, it elimi-
nates all of the triplet rankings. The never-bottom ranked condition defines an edge
and eliminates all rankings in [ n!

3 − 3]/6 triplets. The never-top condition defines a
vertex; it eliminates all (n− 1)! rankings sharing this vertex (that is, all rankings
where the candidate identified with the vertex is top-ranked) and (n−1)!

3 (n−3) other
rankings which involve rankings on both sides of edges from the designated vertex
to the other vertices not on this face. Again, if the triplet includes two alternatives
from the specified triplet, the excluded rankings are along an edge; if it includes one
or none, the triplet is eliminated.
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In this manner, calculus rules for combining Ward–Sen conditions can be deter-
mined. The way to do so is to emphasize the interactions among edges, bases, and
vertices. For instance, check whether any of the designated edges from the never-top
condition coincide with the edge from the never-bottom condition. In this manner,
the analysis to determine what happens with n = 5 turned out to be straightforward,
and it is not overly difficult to find conditions leaving a fixed number of blank re-
gions in a triangle. I have yet to examine what happens with n≥ 6.

4 Profile Coordinates

It is widely appreciated that a Condorcet Domain imposes a far too strict constraint
to avoid cyclic behavior. This is illustrated with the Fig. 7a profile, which fails all
of the Ward conditions. Nevertheless, the majority vote rankings are transitive, and,
going far beyond what could ever be expected from a Condorcet Domain, the differ-
ences in tallies satisfy an extreme “tally consistent transitivity” whereby adding the
difference in A, B tallies (13− 9 = 4) to the difference in B, C tallies (13− 9 = 4)
equals the difference in the A, C tallies (15− 7 = 8)! If we embrace the value of
the Condorcet Domain problem, then it becomes necessary to understand why this
example, which violates all of Ward conditions, enjoys a much stronger form of
majority vote transitivity.

This example was constructed by adding multiples of Figs. 7b, c profiles with
appropriate permutations of the A j names; these component profiles do satisfy
Ward conditions. Indeed, the Fig. 7a profile is two units of the Fig. 7b profile where
{A1,A2,A3}= {A,B,C} plus one unit where {A1,A2,A3}= {B,A,C} plus two units
of Fig. 7c where {A1,A2,A3}= {C,A,B}.

The construction of this example suggests that, perhaps, a way to analyze voting
rules is to use appropriate configurations of rankings rather than individual rankings.
To make this comment more concrete, let me introduce what I call the “Generalized
Condorcet Domain” problem; it is to determine how to replace “individual rankings”
with specific “configurations of rankings” in a way so that any multiples of these
configurations never allow cycles.

This Generalized Condorcet Domain problem can be completely solved for any
n. For three candidates, not only can this generalized problem be solved, but the
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tallies always satisfy the tally-consistent transitivity of majority votes if and only
if the profile is a sum of multiples of permutations of the Fig. 7b, c configuration
of rankings (Saari (1999))! Notice, these configurations of profiles define a five-
dimensional subspace, which is a dimension larger than possible with any Con-
dorcet Domain. Staying with the theme of the Condorcet Domain, it turns out that
with these Fig. 7b. c, configurations, and only with these configurations, can any
multiple of them be added without ever encountering a cyclic outcome, or without
ever violating tally-consistency.

To generalize the discussion, recall that a “positional rule” tallies ballots by as-
signing specified number of points for candidates based on their position on a ballot.
The plurality vote assigns one point to a voter’s top-positioned candidate and zero
to all others. The Borda Count for n candidates assigns n− j points to a voter’s jth

positioned candidate.
A recent approach (Saari (1999, 2000b,a, 2001b)), which currently is being re-

fined, is to find appropriate profile coordinate systems that will handle all possible
combinations of positional rules. The goal is similar to that of a Condorcet Domain;
it is to find appropriate configurations of profiles – profile coordinates –so that when
adding any multiple of a coordinate to a profile, we know in advance the effect it
will have on all possible positional methods. As true with the Condorcet Domain,
no restrictions are imposed on how much of a particular profile coordinate is added
or subtracted. The difference is that the Condorcet Domain problem concentrates on
individual rankings; the profile coordinate system concentrates on specified config-
urations of preferences.

As an illustration, the Fig. 7b, c configurations define certain three-alternative
coordinate directions; it is easy to show that the Fig. 7b configurations never permit
conflict among positional and binary rankings while Fig. 7c configurations, which
consist of a ranking and its reversal, has no effect on binary rankings but change
positional outcomes. To further illustrate this program while connecting it with
Condorcet Domains, notice that to understand how and why positional outcomes
over triplets differ from positional outcomes over all four candidates and over pairs,
we need to find a coordinate direction that affects the positional election outcomes
of triplets without ever affecting binary or four-candidate positional rankings. An
example of how this can be done is with the earlier derived Condorcet Domain
{A1 � A2 � A3 � A4, A4 � A3 � A2 � A1, A3 � A1 � A4 � A2, A2 � A4 � A1 � A3}
where each candidate is in each position precisely once (so all four-candidate posi-
tional outcomes end in a tie), and for each pair {A j,Ak}, two rankings have A j � Ak
while two others have Ak � A j; i.e., all pairwise outcomes end in ties. But with this
configuration of rankings, all non-Borda Count positional outcomes for any triplet
never are ties. By discovering and using configurations of this type, it becomes pos-
sible to explain all differences among all positional elections of all possible subsets
of candidates.

Of particular relevance for the current paper is that one part the emerging pro-
file coordinate system identifies all profile configurations that cause pairwise voting
cycles. As these coordinates are closely related to the Condorcet Domain problem,
they are described in more detail.
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5 The Source of All Pairwise Cycles

The Condorcet Domain problem searches for the maximal dimensional profile sub-
spaces where cycles never occur. The approach can be described as finding a space
of rankings by use of the Ward–Sen conditions that is orthogonal to Condorcet
triplets. In this analysis, the coordinate directions are determined by individual rank-
ings; this choice is what causes the inefficiencies of the Condorcet Domain in that
these domains form overly strict conditions to avoid cycles. To avoid these ineffi-
ciencies, precisely the same program is carried out next except that specific “profile
coordinate directions” replace individual rankings. Namely, the objective is to find
appropriate profile coordinates, and the associated profile subspace, so that any pro-
file orthogonal to this subspace never allows a cycle with the majority vote. The
following theorem states the result.

Theorem 3 (Saari (2000b, 1999)) For n ≥ 3 alternatives, in the n! dimensional
profile space, there is a (n−1)!

2 dimensional subspace with the following property.
Any profile that is orthogonal to this subspace can never have a majority vote cycle.
Thus, this cycle-free subspace has dimension n!− (n−1)!

2 = (n−1)!
2 (2n− 1). Each

triplet {A j,Ak,As} has the tally-consistent transitivity property where adding the
difference of the majority vote tallies between A j and Ak to the difference between
Ak and As equals the difference between A j and As.

The last statement goes far beyond assuring non-cyclic outcomes to ensure the
transitivity of pairwise rankings and tally-consistent transitivity. These results, then,
are much stronger than possible with the Condorcet Domain. Also, the dimension
of the orthogonal space, (n−1)!

2 , is much smaller than the number of dimensions
dismissed by just one Ward-Sen condition applied to just one triplet, which is n!

3 .
Thus, the cycle-free subspace ensured by Theorem 3 has a dimension significantly
larger than that of any Condorcet Domain. For instance, the largest dimension of a
subspace attached to a four-candidate Condorcet Domain is nine, while the subspace
from Theorem 3 has dimension 24− 3 = 21, so it is more than twice as large. The
largest dimension of a subspace attached to a five-candidate Condorcet Domain has
dimension 20; the cycle-free subspace guaranteed by Theorem 3 for five candidates
is 5!− 4!

2 = 120−12 = 108, or a five fold increase.
The following theorem illustrates some positive consequences possible from this

subspace.

Theorem 4 (Saari (2001a)) For any number of candidates, if profiles are restricted
to the n!− (n−1)!

2 dimensional subspace defined in Theorem 3, an admissible rule
satisfying Arrow’s assumptions Arrow (1951) is the Borda Count. In the same sub-
space, there exist rules where Sen’s Paretian Liberal impossibility result Sen (1970)
does not lead to a cycle.
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a. Ranking wheel b. Six Condorcet four-tuples
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Fig. 8 Profile coordinates to Condorcet Domains

5.1 Coordinates

To find a profile coordinate system for the orthogonal subspace, use what I call a
ranking wheel (Saari (2000b, 2001b)), which is a freely rotating wheel attached at
its center to a wall. With n candidates, list the numbers from 1 to n in a uniform
manner near the wheel’s edge. In Fig. 8a, this is illustrated with n = 6. Next, select
a ranking and list the names of the candidates on the wall next to the appropriate
“ranking number.” In Fig. 1, the generating ranking is A� B�C � D� E � F.

The first ranking is as given; for Fig. 8a it is the specified A�B�C�D�E �F.
Next, rotate the ranking wheel so that the ranking number “1” is positioned next to
the second candidate and read off the new ranking. Illustrating with Fig. 8a, the
rotated ranking wheel now has “1” next to B, so the new ranking is B � C � D �
E � F � A. Continue in this fashion until the ranking number “1” has been next to
each candidate precisely once. I call this the “Condorcet n-tuple” generated by the
starting ranking. With the Fig. 8a example, the “Condorcet six-tuple generated by
A� B�C � D� E � F” is

A� B�C � D� E � F, B�C � D� E � F � A, C � D� E � F � A� B,
D� E � F � A� B�C, E � F � A� B�C � D F � A� B�C � D� E

(3)

A Condorcet n-tuple can be generated by any ranking, and each ranking is in pre-
cisely one Condorcet n-tuple. There are n! possible rankings, so there are precisely
n!
n = (n−1)! Condorcet n-tuples. To illustrate with n = 4, the six Condorcet triplets
are generated by

Name Ranking Name Ranking
1 A� B�C � D 2 D�C � B� A
3 A�C � B� D 4 D� B�C � A
5 B� A�C � D 6 D�C � A� B

(4)



180 D.G. Saari

Each Condorcet four-tuple has four rankings; by using the Eq. (4) assigned names,
the positioning of these rankings are located in Fig. 8b. Each face of the tetrahedron
has precisely one representative from each Condorcet four-tuple. For n candidates,
each of the n faces of the corresponding equilateral object has precisely one repre-
sentative from each of the Condorcet n-tuples.

On each row of Eq. (4), each ranking is the reverse of the other. The same ef-
fect occurs for any n, a Condorcet n-tuple generated by a ranking can be associated
with a Condorcet n-tuple generated by the reverse of the original ranking. Indeed, a
coordinate direction in profile space is given by one unit of one of these Condorcet
n-tuples and −1 units of the other. (To see the role of negative numbers in profiles,
see Saari (1999). It just means that when adding such a profile to another profile,
subtract voters from the specified rankings.) This defines the (n−1)!

2 orthogonal co-
ordinate directions for the Theorem 3 subspace.

With three candidates, place a 1 in each Fig. 2 starred region, and a −1 in each
of the bulleted regions. Listing the Fig. 7a profile coordinates in a counterclockwise
manner starting from the lower left corner defines the vector (5,4,4,1,2,6) while
the Condorcet profile vector is (1,−1,1,−1,1,−1). It now is trivial to show that the
two vectors are orthogonal, as required by Theorem 3. However, using Fig. 1a, with
the associated vector (0,x,y,z,w,0), it follows that Ward’s never-bottom condition
satisfies the tally-consistent property if and only if the coordinates satisfy the added
restriction x + z = y + w. A similar assertion holds for the other two Ward condi-
tions. Namely, profiles associated with Condorcet Domains still have vestiges of the
Condorcet n-tuples that the Ward-Sen approach tries to eliminate.

5.2 Condorcet Domains in Condorcet n-tuples

Central to the Ward-Sen condition is that any three rankings from a Condorcet n-
tuple creates a cycle. (For an illustrating example, notice that selecting any three
rankings from the six choices in Eq. (3) creates a cycle.) Consequently, a Condorcet
Domain cannot include more than two rankings from any n-tuple, so at least n− 2
of the rankings from each Condorcet n-tuple must be dropped. Thus a Condorcet
Domain can have at most 2(n− 1)! terms. The actual value is much smaller. The
reason is that, as illustrated in Fig. 8b with projections, the rankings of the different
Condorcet n-tuples are intimately intertwined. For instance, using a Ward–Sen con-
dition with any triplet drops rankings from each of the six Condorcet four-tuples.
Thus the choices of what rankings to eliminate from each four-tuple are closely
interrelated. As an illustration, the dashed lines shows that associated with the α
face and the A � B �C � D region in Fig. 8b are two rankings from the number 1
Condorcet four-tuple and specific number 4 and 6 rankings. If the never-bottom, or
never-middle, or never-top condition is used in this α face with A� B�C�D, then
each choice eliminates at least one ranking from the remaining number 2, 3, and 5
Condorcet four-tuples. Indeed, by using geometry with Fig. 8b and the above con-
ditions, it can be shown that the maximal number of rankings in a four-alternative
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Condorcet Domain is less than ten. This interesting connection between the Con-
dorcet four-tuples and the Ward–Sen conditions extends to any n ≥ 3; i.e., the pro-
jection approach captures the weaving interactions needed to eliminate rankings
from among the Condorcet n-tuples.

6 Summary

It is interesting how geometry can capture the intricacies of the combinatoric prob-
lem of finding and characterizing all Condorcet Domains. As a special case and
as shown here, elementary geometry can be used to provide an alternative way to
explain Fishburn’s alternating scheme. Of course, for the practical issue of under-
standing and avoiding majority vote cycles, Theorem 3 is stronger and more useful
than the overly strict conditions imposed by Condorcet Domains. Nevertheless, the
Condorcet Domain problem remains an intriguing question in part because it un-
covers valued structures about voting that should be more carefully examined. The
projection approach introduced here is a new way to do so. Because this geometric
approach identifies all Condorcet Domains for any number of alternatives, it would
be interesting to carry out it out for n≥ 6; what needs to be done is to determine the
calculus conditions for the different Ward–Sen conditions.

Even more, the symmetries disclosed by analyzing this Condorcet Domain issue
most surely have other applications in understanding other complex problems that
arise in social choice theory. As indicated above, for instance, such symmetries arise
when examining positional methods. To explain another benefit of this approach,
start with the fact that Fishburn was blessed with an intuitive insight about how
to handle the associated and complex combinatorics that are characteristic of this
research area. For those of us who are not gifted with such insight, it is important
to create a systematic approach to uncover the source of fundamental problems in
this area. My sense is that the appropriate tools involve mathematical symmetries,
and a way to uncover the appropriate symmetries of social choice is to appeal to the
underlying geometry.
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Condorcet’s Paradox with Three Candidates

William V. Gehrlein

Condorcet formally developed the notion of cyclical majorities over two centuries
ago (Condorcet, 1785), and Peter Fishburn introduced me to that phenomenon in
1971. When Peter first described the idea behind Condorcet’s Paradox during a
course in Social Choice Theory at Pennsylvania State University, my response was
that the phenomenon simply could not happen. When he reproduced the classic
example of its existence with three voters and three candidates, my immediate
response was that this phenomenon certainly could not be very likely to ever be
observed in realistic situations. Peter quickly suggested that I should work on de-
veloping some estimates of the probability that the paradox might occur, and very
soon afterward that pursuit began. We completed many co-authored papers on re-
lated topics over the following years, but it is only after more than 30 years of effort
that I feel a good answer can be given to the challenge that Peter presented in that
classroom in 1971. The following essay can be viewed as a long overdue course
project report, and we can finally see a theoretical model that clearly explains why
observations of Condorcet’s Paradox are so rare in elections on a small number of
candidates.

1 Introduction

We consider three-candidate elections in which each voter has a complete and transi-
tive preference ranking on the candidates {A,B,C}. There are six possible preference
rankings that each voter might have on the candidates, as shown in Fig. 1. Here, ni
denotes the number of voters with the corresponding preference ranking. The total
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Fig. 1 Possible linear pref-
erence rankings on three
candidates

A A B C B C
B C A A C B
C B C B A A
n1 n2 n3 n4 n5 n6

number of voters is n = ∑6
i=1 ni, and any given combination of ni’s is referred to as

a profile of voters’ preferences for a specified value of n.
A Pairwise Majority Rule Winner (PMRW) exists for a given profile if some

candidate can defeat each of the other two candidates by majority rule voting on
the corresponding pairs. For example, A beats B by pairwise majority rule, denoted
by AMB, if n1 + n2 + n4 > n3 + n5 + n6. Then A is the PMRW in a profile if AMB
and AMC. Condorcet’s Paradox occurs when a PMRW does not exist, and there is a
majority-rule cycle like AMB, BMC and CMA. We assume that n is odd throughout
this study to avoid having to deal with ties by pairwise majority rule.

When we began studying this phenomenon, few empirical studies had been con-
ducted to attempt to find actual examples of Condorcet’s Paradox in real-life sit-
uations. In proceeding to develop some basic theoretical models to estimate the
probability that a PMRW exists in a random voting scenario, some elementary and
predictable assumptions were made regarding the likelihood that various profiles of
voters’ preferences would be observed. As more and more empirical studies were
performed to indicate that occurrences of Condorcet’s Paradox are relatively rare
with a small number of candidates, the basic theoretical models were modified to
try to develop an explanation of what was being observed. The preliminary theo-
retical models appeared to be treating the procedure as to how voters formed their
preferences as being much too random a process.

The general notion in work that followed was that as voters tend to have pref-
erences that are more consistently in mutual agreement with some logical model
to explain the process by which their preferences were formed, the probability that
a PMRW exists should tend to increase. Stated in an alternative form, the proba-
bility that Condorcet’s Paradox is observed should decrease as this happens. Many
studies, including (Fishburn and Gehrlein, 1980a, b), have been performed to try
to establish a relationship between the probability that a PMRW exists and various
forms of the internal consistency of voters’ preferences within a profile. A survey
of these studies in (Gehrlein, 2004) indicated that there is unfortunately only a very
weak relationship between the probability that a PMRW exists and most measures
of internal consistency of voters’ preferences that had been considered to that point.
The most promising studies of this type were developed by (Fishburn, 1973) and
by (Niemi, 1969). Fishburn (1973) measures the underlying consistency of voters’
preferences with Kendall’s Coefficient of Concordance and (Niemi, 1969) uses a
measure of the proximity of voter preference profiles to the condition of perfectly
single-peaked preferences.
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2 Probability Representations

The logic of developing a basic representation for the probability that a PMRW
exists is quite simple. We simply enumerate the subset of all profiles that have a
PMRW and sum their respective probabilities. It is therefore necessary to establish
some model of assigning probabilities to profiles. The model that is used in the cur-
rent study is a variation of Impartial Anonymous Culture (IAC), which assumes that
all combinations of ni’s that sum to a specified n are equally likely to be observed.

Gehrlein and Fishburn (1976) develop a representation for the probability,
PPMRW (n, IAC), that a PMRW exists for n voters under IAC as

PPMRW (n, IAC) =
15(n+3)2

16(n+2)(n+4)
, for oddn≥ 3 (1)

Lepelley (1989) develops a similar representation for even n.
It is well known from (Black, 1958) that a PMRW must exist if voters’ pref-

erences are perfectly single-peaked, and (Arrow, 1963) shows that voters’ prefer-
ences are perfectly single-peaked in three-candidate elections if and only if some
candidate is never ranked last in the preference ranking of any voter. The measure
proposed by (Niemi, 1969) is related to the minimum number, b, of times that any
candidate is bottom ranked by voters in a given profile, with

b = Min{n5 +n6,n2 +n4,n1 +n3} (2)

If b equals zero for a profile, the associated profile is perfectly single-peaked, and
profiles become more distant from the condition of perfect single-peakedness as b
increases.

Gehrlein (2004) develops a representation to link the probability that a PMRW
exists to b, with the expectation that this probability should decrease as b increases.
This was done by using algebraic techniques to develop representations for the con-
ditional probability, PPMRW

b (n, IAC|k), that a PMRW exists for n voters, given that b
has a specified value k. The basic logic behind the notion of IAC is used here since
all profiles with the specified conditional value k are assumed to be equally likely to
be observed. The representations for odd n are given by

PPMRW
b (n, IAC|k)

=

{
k
(
−17+21k +11k2

)
+
(
5−26k−4k2

)
n+3(2− k)n2 +n3

}
(n−3k){(n+1)(n+5)−3k (2+ k)}

for 0≤ k ≤ (n−1)/4,

=

{
(n+1)

(
9+2n+n2

)
−6

(
1+n2

)
k +18nk2−18k3

}
2(k +1){(n+1)(n+5)−3k (2+ k)}

for (n+1)/4≤ k ≤ (n−1)/3,

= 3/4, for k = n/3. (3)
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The critical observation in (Gehrlein, 2004) is that PPMRW
b (n, IAC|k) generally de-

creases as k increases, in complete agreement with our intuition.
A PMRW must also exist for three-candidate elections if voters’ preferences are

perfectly single-dipped, and the proximity of a profile to perfect single-dippedness
can be measured in a manner similar to that used in the definition of b. A profile
will be perfectly single-dipped for three candidates if and only if some candidate
is never ranked as most preferred by any voter, and we follow the logic of earlier
discussion to define the proximity of a voter preference profile to perfectly single-
dipped preferences by the minimum number of times, t, that any candidate is top
ranked in voters’ preferences, with

t = Min{n1 +n2,n3 +n5,n4 +n6} (4)

We define the conditional probability PPMRW
t (n, IAC|k) following the logic of our

definition of PPMRW
b (n, IAC|k), and it follows directly from symmetry arguments

that PPMRW
b (n, IAC|k) = PPMRW

t (n, IAC|k) for any k.
A PMRW must also exist with three candidates if some candidate is never middle

ranked by any voter. This represents a perfectly polarized preference scenario since
some candidate is either most preferred or least preferred by all voters. We measure
the proximity of voters’ preferences in a profile to perfect polarization with m, where

m = Min{n3 +n4,n1 +n6,n2 +n5} (5)

The algebraic procedures that were used to obtain the representation in (3) are ex-
tremely cumbersome to implement, and (Gehrlein, 2005) develops a procedure,
called EUPIA2, that makes it much easier to obtain such representations. This pro-
cedure is used here to directly obtain a representation for PPMRW

m (n, IAC|k) as

PPMRW
m (n, IAC|k)

=

[
(k +1)

{
−3−169k +333k2 +139k3 +4

(
14−95k−7k2

)
n+18(5−3k)n2 +16n3

}
−3δ 2

k

{(
6k2 +24k−1

)
+4(k−2)n−2n2

}
]

16(m+1)(n−3m){(n+1)(n+5)−3k (2+ k)}

for0≤ k ≤ (n−1)/4,

=

[
(n−3k)

{(
52−44k−72k2 +39k3

)
+
(
88+48k−63k2

)
n+(20+29k)n2−n3

}
−3δ 2

k

{(
6k2 +24k−1

)
+4(k−2)n−2n2

}
]

16(k +1)(n−3k){(n+1)(n+5)−3k (2+ k)}

for (n+1)/4≤ k ≤ (n−1)/3,

=
27+42n+7n2

8(n+3)2 fork = n/3.

(6)
Here, δ 2

k = 1if k is an even number, otherwise δ 2
k = 0.
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A critical observation that can now be made from computed values is that
PPMRW

m (n, IAC|k) generally decreases as k increases, in complete agreement with
our intuition. So, the probability that a PMRW exists tends to increase as voter
preference profiles tend to become closer to perfectly single-peaked preferences,
perfectly single-dipped preferences or perfectly polarized preferences.

Unfortunately, this observation could be very misleading. In particular, these
probabilities remain quite large for relatively large values of k. However, this does
not account for the proportions of all possible profiles that they represent. For ex-
ample, PPMRW

b (n, IAC|k) could be quite large for a relatively wide range of k values,
but the results are meaningless if this range of k only accounts for a small propor-
tion of all possible profiles. In order to adequately address this issue, it is necessary
to develop representations for the cumulative number of profiles that have specified
parameter values in some given range.

3 Cumulative Probabilities

We begin this process by developing representations for the cumulative conditional
probabilities CPPMRW

b (n, IAC|k), CPPMRW
t (n, IAC|k) and CPPMRW

m (n, IAC|k), as de-
fined in the obvious fashion. All profiles with a specified parameter value k∗ with
0 ≤ k∗ ≤ k are assumed to be equally likely to be observed in these representa-
tions. Using algebraic summations on the equations that led to the numerators and
denominators in the representations above in (3) and (6), we find:

For parameters b and t:

CPPMRW
b (n, IAC|k) = CPPMRW

t (n, IAC|k)

=
2
{(
−41+69k +22k2

)
k +5

(
5−18k−2k2

)
n+10(3− k)n2 +5n3

}
{(−73+117k +36k2)k +5(10−33k−3k2)n+20(3− k)n2 +10n3}

for 0≤ k ≤ (n−1)/4,

=

⎡
⎢⎣

195−1968k−720k2 +3840k3 +4320k4 +1728k5

+
(
1661−1680k−6000k2−5760k3−2880k4

)
n+10

(
165+200k +216k2 +192k3

)
n2

+30
(
9−8k−24k2

)
n3 +5(15+32k)n4−11n5

⎤
⎥⎦

16(k +1)(k +2){(−73+117k +36k2)k +5(10−33k−3k2)n+20(3− k)n2 +10n3}

for (n+1)/4≤ k ≤ (n−1)/3,

=
15(n+3)2

16(n+2)(n+4)
for k = n/3.

(7)
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For parameter m:

CPPMRW
m (n, IAC|k)

=

⎡
⎢⎣ (k +1)

[
165−783k +1743k2 +1597k3 +278k4 +10

(
71−233k−143k2−7k3

)
n

+30
(
31+3k−6k2

)
n2 +80(k +2)n3

]

−15δ 2
k

{
11+30k +6k2−2(3−2k)n−2n2

}

⎤
⎥⎦

8(k +1)(k +2){(−73+117k +36k2)k +5(10−33k−3k2)n+20(3− k)n2 +10n3}

for 0≤ k ≤ (n−1)/4,

=

⎡
⎢⎣

435−952k +480k2 +2200k3−90k4−468k5

+
(
1349−2520k−4160k2 +840k3 +1140k4

)
n+10

(
177+120k−162k2−100k3

)
n2

+10
(
39+72k +32k2

)
n3−5(3+4k)n4 +n5−30δ 2

k

{
11+30k +6k2−2(3−2k)n−2n2

}

⎤
⎥⎦

16(k +1)(k +2){(−73+117k +36k2)k +5(10−33k−3k2)n+20(3− k)n2 +10n3}

for (n+1)/4≤ k ≤ (n−1)/3,

=
15(n+3)2

16(n+2)(n+4)
, for k = n/3.

(8)

These representations have been verified by computer enumeration, but they are
totally intractable for any type of useful analysis in their present form. By consid-
ering the limiting form of these representations as n→ ∞, they can be significantly
simplified. The limiting case does not permit us to consider any specific finite val-
ues of k for any of the parameters b, t or m. Instead, we must use the minimum
proportion,αk, of the n voter preference rankings that have the associated parame-
ters b, t or m. Based on the definitions of b, t and m it is obvious that 0≤ αk ≤ 1/3.
To obtain the limiting representations, we replace k with nαk in the representations
above, and then let n→ ∞. The resulting limiting representations are:

For parameters b and t:

CPPMRW
b (∞, IAC|αk) = CPPMRW

t (∞, IAC|αk)

=
10−20αk−20α2

k +44α3
k

10−20αk−15α2
k +36α3

k
for 0≤ αk ≤ 1/4,

=
−11+160αk−720α2

k +1920α3
k −2880α4

k +1728α5
k

16α2
k

(
10−20αk−15α2

k +36α3
k

)
for1/4≤ αk ≤ 1/3.

(9)

For parameter m:

CPPMRW
m (∞, IAC|αk)

=
40−90αk−35α2

k +139α3
k

40−80αk−60α2
k +144α3

k
for 0≤ αk ≤ 1/4,

=
1−20αk +320α2

k −1000α3
k +1140α4

k −468α5
k

16α2
k

(
10−20αk−15α2

k +36α3
k

)
for1/4≤ αk ≤ 1/3.

(10)
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These limiting representations are far easier to work with, and they represent the
potentially most interesting case of large electorates. Following previous discussion,
it is obvious from these limiting representations that

CPPMRW
b (∞, IAC|0) = CPPMRW

t (∞, IAC|0) = CPPMRW
m (∞, IAC|0) = 1, (11)

and that
CPPMRW

t (∞, IAC|1/3) = CPPMRW
b (∞, IAC|1/3) =

CPPMRW
m (∞, IAC|1/3) = 15/16.

(12)

4 Proportions of Profiles with Specified Parameters

A representation for the cumulative proportion, CPPr of iles
b (n, IAC|k), of all possible

voter preference profiles that have their parameter b equal to k∗ in the specified
range with 0≤ k∗ ≤ k was also obtained, and the result is given by

CPPr of iles
b (n, IAC|k)

=

[
3(k +1)(k +2)

{ (
−73+117k +36k2

)
k+

5
(
10−33k−3k2

)
n+20(3− k)n2 +10n3

}]

(n+1)(n+2)(n+3)(n+4)(n+5)
for 0≤ k ≤ (n−1)/3,

= 1for k = n/3.

(13)

A representation for the limiting case, CPPr of iles
b (∞, IAC|αk), of all possible pro-

files that have parameter b in the specified range 0 ≤ αk∗ ≤ αk as n → ∞ fol-
lows from discussion above. It also follows from earlier work in (Gehrlein, 2004)
that CPPr of iles

b (∞, IAC|αk) = CPPr of iles
t (∞, IAC|αk) = CPPr of iles

m (∞, IAC|αk). The
resulting representations are given by:

CPPr of iles
b (∞, IAC|αk) = CPPr of iles

t (∞, IAC|αk)

= CPPr of iles
m (∞, IAC|αk)

= 3α2
k
(
10−20αk−15α2

k +36α3
k
)
, for 0≤ αk ≤ 1/3.

(14)

A search procedure was used on the representation in (14) to obtain the spe-
cific β p

b values of αk that give CPPro f iles
b

(
∞, IAC|β p

b

)
= p for each proportion

p = 0.00(.05)1.00, and the results are summarized in Table 1. The results in Table 1
indicate for example that 65% of all possible voter preference profiles are included
in the range of αb parameter values that are within the range 0≤ αb ≤ .1924. Based
on discussion above, it follows that β p

b = β p
t = β p

m for all p.
It is now possible to use the results that are included in Table 1 along with the

limiting representations from (9) to compute the limiting conditional cumulative
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Table 1 Computed values
of β p

b , β p
t , β p

m, β p
u , and β p

�
for each proportion p =
0.00(.05)1.00

p β p
b = β p

t = β p
m β p

u β p
�

.00 .0000 .0000 .0000

.05 .0428 .0308 .0256

.10 .0619 .0449 .0375

.15 .0772 .0564 .0473

.20 .0908 .0667 .0562

.25 .1033 .0763 .0646

.30 .1150 .0854 .0727

.35 .1264 .0943 .0806

.40 .1374 .1031 .0885

.45 .1483 .1118 .0965

.50 .1591 .1206 .1046

.55 .1700 .1296 .1130

.60 .1811 .1388 .1217

.65 .1924 .1484 .1308

.70 .2042 .1585 .1407

.75 .2166 .1695 .1514

.80 .2298 .1815 .1634

.85 .2445 .1951 .1774

.90 .2614 .2117 .1946

.95 .2829 .2344 .2191
1.00 .3333 .3333 .3333

probability CPPMRW
b

(
∞, IAC|β p

b

)
that a PMRW exists for the p percent of profiles

that are closest to being perfectly single-peaked. For example, the limiting probabil-
ity that a PMRW exists for the 65% of all voter preference profiles that are closest
to being perfectly single-peaked is obtained by evaluating CPPMRW

b (∞, IAC|.1924),
given the results in Table 1. In the same fashion, it is also possible to obtain sim-
ilar conditional probabilities for both CPPMRW

t
(
∞, IAC|β p

t
)

from (9) and for for
CPPMRW

m
(
∞, IAC|β p

m
)

from (10). Computed results for all three are summarized in
Table 2 for each proportion p = 0.00(.05)1.00.

The computed values that are given in Table 2 show some very interesting and
compelling results. We see for example that the 10% of voter preference profiles
that are closest to being perfectly single-peaked have a PMRW with a probabil-
ity of .9980. An even more important observation is that the 50% of voter prefer-
ence profiles that are closest to being perfectly single-peaked have a PMRW with a
probability of .9857. Thus, the presence of any reasonable degree of internal con-
sistency within voters’ preferences that approaches perfectly single-peaked pref-
erences clearly results in a high likelihood that a PMRW will exist. The impact
of having voters’ preferences that indicate the presence of a candidate approach-
ing a perfectly polarizing candidate is also quite strong, but it is not as dramatic
as the presence of some proximity to single-peakedness or single-dippedness since
CPPMRW

b

(
∞, IAC|β p

b

)
> CPPMRW

m
(
∞, IAC|β p

m
)

for all 0 < p < 1.
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Table 2 Computed Values
of CPPMRW

X
(
∞, IAC|β p

X

)
,

for β p
X = β p

b , β p
t , β p

m, β p
u ,

β p
� for each proportion

p = 0.00(.05)1.00

p b, t m u �

.00 1.0000 1.0000 1.0000 1.0000

.05 .9991 .9895 .9995 .9976

.10 .9980 .9850 .9989 .9963

.15 .9969 .9814 .9983 .9951

.20 .9956 .9782 .9975 .9940

.25 .9943 .9753 .9967 .9928

.30 .9929 .9726 .9958 .9916

.35 .9913 .9701 .9948 .9903

.40 .9896 .9676 .9936 .9890

.45 .9877 .9652 .9924 .9876

.50 .9857 .9628 .9910 .9860

.55 .9834 .9605 .9894 .9843

.60 .9809 .9582 .9876 .9825

.65 .9781 .9558 .9856 .9804

.70 .9749 .9535 .9832 .9781

.75 .9712 .9510 .9804 .9753

.80 .9669 .9486 .9770 .9721

.85 .9616 .9460 .9728 .9680

.90 .9548 .9433 .9671 .9628

.95 .9466 .9405 .9583 .9550
1.00 .9375 .9375 .9375 .9375

5 More Dramatic Results with Combinations of b and t

We have seen that values of parameters b, t or m that reflect any significant degree
of proximity, respectively, to single-peakedness, single-dippedness or polarization
have a dramatic effect on the probability that a PMRW exists. Even more dramatic
results can be observed if various combinations of b, t and m are considered. We
begin by considering an overall measure, u, of the presence of a unifying candidate
where

u = Minimum{b, t} . (15)

If b is a small number relative to n, then some candidate is viewed as the least pre-
ferred candidate by very few of the voters, so that particular candidate can be viewed
as being positively unifying among the electorate. If t is small relative to n, then there
is some candidate that is most preferred by very few of the voters. That particular
candidate is negatively unifying for the electorate in the sense that the voters are
generally in agreement in their opposition to having that candidate selected as the
winner.

Using the EUPIA2 procedure that is developed in (Gehrlein, 2005), we are able
to obtain a representation for CPPro f iles

u (n, IAC|k) as:
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CPPro f iles
u (n, IAC|k)

=
6(k +1)(k +2)

{
2
(
15+56k +111k2 +13k3

)
−5

(
2+27k−7k2

)
n+10(3−4k)n2 +10n3

}
(n+1)(n+2)(n+3)(n+4)(n+5)

for 0≤ k ≤ (n−1)/4,

=

3(n−2k)

[
18(k +1)

(
13+42k +63k2 +27k3

)
−3

(
35+250k +360k2 +144k3

)
n

+(25+24k)(5+6k)n2−3(5+6k)n3 +n4

]

(n+1)(n+2)(n+3)(n+4)(n+5)

for (n+1)/4≤ k ≤ (n−1)/3,

= 1for k = n/3. (16)

The same logic that was used in previous discussion is then used to obtain the lim-
iting representation for CPPro f iles

u (∞, IAC|αk) as n→ ∞.

CPPro f iles
u (∞, IAC|αk)

= 6α2
k
(
10−40αk +35α2

k +26α3
k
)

for 0≤ αk ≤ 1/4,

= 3(1−2αk)
(
1−18αk +144α2

k −432α3
k +486α4

k
)

for1/4≤ αk ≤ 1/3.

(17)

A search procedure was then used with the representation in (17) to obtain the values
of β p

u for which CPPro f iles
u

(
∞, IAC|β p

u
)

= p for each proportion p = 0.00(.05)1.00,
and the results are summarized in Table 1. As noted above, 65% of all possible
profiles are included in the range of αb parameter values within the range 0≤ αb ≤
.1924. However, 65% of all possible profiles are included in a much smaller range
for parameter u, with 0≤ αu ≤ .1484.

Following the logic of earlier discussion, representations for the cumulative con-
ditional probability CPPMRW

u (n, IAC|k) are obtained as

CPPMRW
u (n, IAC|k)

=

{
30+121k +261k2 +38k3−10

(
1+15k−3k2)n+10(3−4k)n2 +10n3}{

2
(
15+56k +111k2 +13k3

)
−5

(
2+27k−7k2

)
n+10(3−4k)n2 +10n3

}
for 0≤ k ≤ (n−1)/4,

=

⎡
⎢⎣

27
(
25+64k +480k2 +1280k3 +1440k4 +576k5)

+9
(
101−960k−3840k2−5760k3−2880k4)n+90

(
29+128k +288k2 +192k3)n2

−10
(
85+576k +576k2)n3 +15(37+64k)n4−59n5

⎤
⎥⎦

16(n−2u)

[
18(k +1)

(
13+42k +63k2 +27k3)−3

(
35+250k +360k2 +144k3)n

+(25+24k)(5+6k)n2−3(5+6k)n3 +n4

]

for (n+1)/4≤ k ≤ (n−1)/3,

=
15(n+3)2

16(n+2)(n+4)
for k = n/3.

(18)
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The resulting limiting cumulative conditional probability representations for
CPPMRW

u (∞, IAC|αk) as n→ ∞ are given by:

CPPMRW
u (∞, IAC|αk)

=
10−40αk +30α2

k +38α3
k

10−40αk +35α2
k +26α3

k
for 0≤ αk ≤ 1/4,

=
−59+960αk−5760α2

k +17280α3
k −25920α4

k +15552α5
k

16(1−2αk)
(
1−18αk +144α2

k −432α3
k +486α4

k

)
for1/4≤ αk ≤ 1/3.

(19)

This representation is used with entries from Table 1 to compute numerical values
of CPPMRW

u
(
∞, IAC|β p

u
)

for each p = 0.00(.05)1.00, and these values are shown in
Table 2. It is clear that by considering the joint measure of voter preference unifica-
tion, u, there is a much greater impact on the probability that a PMRW exists. The
results indicate that the 50% of voter profiles that are most closely related to voter
unification have a probability .9910 of having a PMRW and that the 65% of voter
profiles that are most closely related to voter unification have a probability .9856 of
having a PMRW. Any voter preference profiles that are at all close to representing
unified preferences, as measured by u, will clearly have a very high probability of
yielding a PMRW.

Ward (1965) defines a condition on profiles that requires the existence of a
PMRW for three candidates. This condition requires that voters’ preferences do not
contain any Latin Squares. This is equivalent to the requirement that there is some
candidate that is never ranked first, is never ranked last, or is never ranked in the
middle by any voter. We define a parameter � to measure the proximity of a profile
to Ward’s Condition, with

� = Minimum{b, t,m} . (20)

If � = 0 for a profile, that the profile does not contain any Latin Squares. We then
obtain a representation for CPPro f iles

� (n, IAC|k) by using the EUPIA2 procedure de-
scribed in (Gehrlein, 2005) as

CPPro f iles
� (n, IAC|k)

=
9(k +1)(k +2)

{
−3k

(
17+27k +36k2

)
+15

(
2+3k +9k2

)
n−60kn2 +10n3

}
(n+1)(n+2)(n+3)(n+4)(n+5)

for 0≤ k ≤ (n−1)/3
= 1fork = n/3. (21)

The limiting distribution CPPro f iles
� (∞, IAC|αk) as n→ ∞ is found to be

CPPro f iles
� (∞, IAC|αk)

= 9α2
k
(
10−60αk +135α2

k −108α3
k
)

for 0≤ αk ≤ 1/3
(22)
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This representation is then used to obtain β p
� values for each proportion p =

0.00(.05)1.00, and the results are listed in Table 1. It was noted above that 65% of
all profiles are included in the range for parameter u with 0 ≤ αu ≤ .1484. Here,
65% of all possible profiles are contained in the range of the parameter � with
0 ≤ α� ≤ .1308. Based on definitions, we must have � ≤ u for every profile so it
follows that α p

� ≤ α
p
u for all p.

Following the logic of previous discussion, we develop a representation for
CPPMRW

� (n, IAC|k) with the EUPIA2 procedure as

CPPMRW
� (n, IAC|k)

=

⎡
⎢⎢⎣

(k +1)

[
−135−2547k−4293k2−6687k3−2538k4 +10

(
153+273k +759k2 +327k3)n

−10
(
3+295k +146k2)n2 +240(2+ k)n3

]

+15δ 2
k

{
9
(
1+2k +2k2)−6(1+2k)n+2n2}

⎤
⎥⎥⎦

24(k +1)(k +2){−3k (17+27k +36k2)+15(2+3k +9k2)n−60kn2 +10n3}

for 0≤ k ≤ (n−1)/4,

=

⎡
⎢⎢⎣

27
(
25+96k +440k2 +840k3 +810k4 +324k5)+9

(
69−880k−2520k2−3240k3−1620k4)n

+30
(
83+252k +486k2 +324k3)n2−10

(
41+324k +324k2)n3 +15(23+36k)n4−31n5

+30δ 2
k

{
9
(
1+2k +2k2)−6(1+2k)n+2n2}

⎤
⎥⎥⎦

48(k +1)(k +2){−3k (17+27k +36k2)+15(2+3k +9k2)n−60kn2 +10n3}

for(n+1)/4≤ k ≤ (n−1)/3,

=
15(n+3)2

16(n+2)(n+4)
fork = n/3. (23)

The limiting distribution CPPMRW
� (∞, IAC|αk) as n→ ∞ is given by

CPPMRW
� (∞, IAC|αk)

=
120−730αk +1635α2

k −1269α3
k

12
(
10−60αk +135α2

k −108α3
k

) f or 0≤ αk ≤ 1/4

=
−31+540αk−3240α2

k +9720α3
k −14580α4

k +8748α5
k

48α2
k

(
10−60αk +135α2

k −108α3
k

)
for1/4≤ αk ≤ 1/3.

(24)

This representation is used with entries from Table 1 to compute numerical values
of CPPMRW

�

(
∞, IAC|β p

�

)
for each p = 0.00(.05)1.00, and these resulting values are

given in Table 2.
We noted above that CPPMRW

b

(
∞, IAC|β p

b

)
= CPPMRW

t
(
∞, IAC|β p

t
)

and that
CPPMRW

b

(
∞, IAC|β p

b

)
> CPPMRW

m
(
∞, IAC|β p

m
)

for 0 < p < 1. The impact of having
a polarizing candidate is therefore not as strong as having a positively-unifying can-
didate or a negatively-unifying candidate. As a result, despite the fact that β p

� ≤ β
p
u

for all p, we find CPPMRW
�

(
∞, IAC|β p

�

)
< CPPMRW

u
(
∞, IAC|β p

u
)

for all 0 < p < 1
in Table 2.
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6 Conclusion

When voter preference profiles are at all close to being single-peaked, single-dipped,
or completely polarized, the probability that a PMRW exists is quite high. When vot-
ers’ preferences are at all close to being unified, the probability that a PMRW exists
is very high. It must also be noted that the associated underlying models that lead
to single-peaked, single-dipped, or completely polarized preferences do not actually
have to be the basis of the formation of voters’ preference rankings in a profile. We
only require that the preferences in a profile could have been obtained by the asso-
ciated models. As a result, Condorcet’s Paradox should rarely be observed in any
real three-candidate elections with large electorates, as long as voters’ preferences
reflect any significant degree of group coherence.

These observations are in general agreement with numerous empirical studies
that are summarized in (Gehrlein, 2006). Only a few true examples of Condorcet’s
Paradox have been observed in results from real elections with large electorates on
three candidates, despite many attempts to find them. Riker (1982) presents evi-
dence that some other observations of Condorcet’s Paradox have been contrived by
politicians through the manipulation of voting situations by various means. Levmore
(1999) suggests that such actions would only be taken by political interest groups
for general election situations in which they would have the greatest likelihood of
success. In our analysis, that would suggest situations in which voters’ preferences
do not reflect any significant degree of mutual consistency, where parameters b, t
and m would have relatively large values.

Acknowledgement I appreciate the input from two anonymous reviewers who read the original
draft of this paper.
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On the Probability to Act in the European Union

Marc R. Feix, Dominique Lepelley, Vincent Merlin, and Jean-Louis Rouet

1 Introduction

Since its foundation by Arrow in his seminal contribution (Arrow, 1963), one of
the main merit of social choice theory has been to provide a coherent framework
for the analysis and comparison of different voting rules. First, many normative
requirements about voting rules can be expressed precisely in this framework. Then
it is possible to check whether a given voting rule satisfies a given property. Ideally,
this type of analysis may lead to the axiomatic characterization of a voting rule. At
last the propensity of situations for which a voting rule fails to satisfy a condition
can be evaluated.

Peter Fishburn’s contributions to this research program have been extremely
important. For example, he proposed many new normative conditions for the analy-
sis of voting rules (see in particular Fishburn, 1974, 1977; Fishburn & Brams, 1983),
and developed axiomatic analysis for binary voting (Fishburn, 1973) and approval
voting (Fishburn, 1978). Together with Gehrlein, he launched an important re-
search program on the probabilistic analysis of voting rules. After Guilbauld’s paper
(Guilbauld, 1952), the use of probability models in voting was limited to the eval-
uation of the majority voting paradox under the assumption that each voter would
pick his preference independently from the others from a uniform distribution. This
assumption, today called the Impartial Culture assumption, puts an equal weight on
each profile. Fishburn and Gehrlein developed the use of probabilistic models in two
directions. First, to analyze the occurrence of Condorcet cycles, they proposed in
Gehrlein and Fishburn (1976) a new probability assumption, the Impartial Anony-
mous Culture assumption, which assumes that each anonymous profile is equally
likely to appear. Secondly, they applied these two probability models to a wider
range of problems, the relationships between the scoring rules and the Condorcet
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principle being their favorite issue (see Fishburn & Gehrlein, 1976; Gehrlein &
Fishburn, 1978a, 1978b). The results we will present in this paper are clearly a con-
tinuation of this research program, as we will compare voting rules suggested for the
European Union on their propensity to fulfill a given property according to different
probability assumptions.

Indeed, in the last 5 years, a considerable body of research on the choice of the
best voting rules for federal unions have been inspired by the debates on the Treaty
of Nice and the projects for an European Constitution. Without being exhaustive, we
can mention the work by Baldwin, Berglof, Giavazzi, and Widgren (2001); Baldwin
and Widgren (2004); Barberà and Jackson (2006); Bobay (2001); Beisbart, Bovens,
and Hartmann (2005); Feix, Lepelley, Merlin, and Rouet (2007); Felsenthal and
Machover (2001); Felsenthal and Machover (2004b); Laruelle and Widgren (1998).
All these contributions share a common organization: the authors propose a voting
model, including an a priori probabilistic description of the behavior of the voters,
and then seek for the voting rule or the constitution that fits better according to some
normative criteria.

In particular, a key parameter for the analysis of voting systems is the a priori
probability by which a decision is taken against the status quo. This probability is
called by Coleman (1971) “the power of a collectivity to act”, and the “decision-
making efficiency” or the “probability of passage” by Baldwin and Widgren (2004).
There is clearly a trade off between a low and a high value of this probability. If the
probability to act is too low, the political system may be inefficient in the sense that
no decision, even those supported by a large majority of the voters, may ever be
approved. On the other hand, when the protection of minority opinion matters, the
probability of passage should decently stay below 50%. This criteria can be used
to analyze the different decision making procedures of the European Union with
27 members (EU27 hereafter). Currently, the decision scheme of the Council of
Ministers is the one described in the Treaty of Nice. First, each country is endowed
with a certain number of mandates, ranging from 3 for Malta to 29 for Germany.
A proposal must then receive 255 mandates out of 345.1 It should also pass two
extra conditions: it must be approved by a majority of states, gathering at least 62%
of the population. Felsenthal and Machover (2001) have shown that there is only
a handful of cases out of 227 where the second and third conditions are not met
while the first one is satisfied, which justifies the fact that most of the time, the
analysis only focuses on the first game. This simplification is no longer possible
for the decision scheme outlined in the draft constitution proposed by the European
Convention in 2003. The convention suggested that a decision would be adopted if it
could be supported by 50% of the states gathering 60% of the total population. The

1 The Treaty of Nice specified that when all candidate countries have acceded, the blocking minor-
ity in a Union of 27 will be raised to 91. Thus, the quota has been lowered to 255 instead of 258,
which was first specified elsewhere in the treaty. This strange specification of the treaty explains
why the 255 and 258 thresholds have both been studied in the literature. For a detailed analysis of
the Treaty of Nice, see Felsenthal and Machover (2001).
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constitutional treaty finally proposes a similar procedure: a proposal must receive
the support of 55% of the states, representing at least 65% of the population.2

Recently a welcome and quite useful discussion between a Swedish diplomat
(Axel Moberg) and scientists (Dan Felsenthal and Moshe Machover) has developed
(Felsenthal & Machover, 2004a; Moberg, 2002). At the origin, the scientific analysis
of the Treaty of Nice (Baldwin et al., 2001; Baldwin & Widgren, 2004; Felsenthal
& Machover, 2001) claims that the need of 255 (resp. 258) votes on a total of 345 to
approve a proposition at the council of ministers of the European Union will result
in a serious deadlock with an a priori probability of passage of 2%. (resp. 1.7%).
A. Moberg disagrees strongly, pointing out that the result ignores the “strong con-
sensual culture of the EU”. Who is right? In fact, the scientific analysis given in
Baldwin et al. (2001) and Felsenthal and Machover (2001) is only a part of the full
story: it is based on the use of the Impartial Culture (IC hereafter) model, which
states that each country chooses to vote “yes” or “no” independently with equal
probability. In other words, each country flips a fair coin to take a decision! But
other models to describe the behavior of the voters exist. In particular, the Impar-
tial Anonymous Culture (IAC) model, proposed by Gehrlein and Fishburn (1976)
asserts that all the distributions of the votes at the Union level are equally likely.3

The aim of this note is to show that the use of a model related to the IAC one is
able to give answers which are closer to the reality of the European Union with 27
members and, in some way, takes into account the consensual character of the vote.
By departing from the common IC assumption, we obtain a theoretical probability
of passing a motion that turns out to be higher. Our result concerns not only the
Treaty of Nice with its famous 73.4% majority rule (one key vote), but also the
double key vote decision schemes that have been suggested during the debates for
the European Constitution. The position that has been defended during Spring 2007
by the Polish Government, i.e., attributing weights proportionally to the square root
of the state population and using one key vote, will also be considered.

The paper is organized as follows. In Sect. 2, we present the voting models and
the different probability assumptions, and we briefly discuss their adequacy to the
vote at the council. In Sect. 3, we give the theoretical probability of approval under
the Generalized Impartial Anonymous Culture assumption in the asymptotic limit,
i.e., when the number of countries (denoted by N in what follows) goes to infinity.
Section 4 checks the relevance of this asymptotic solution for an illustrative example
and for EU27, by providing numerical simulations. We present our conclusions in
Sect. 5.

2 When the Council of Ministers is not acting on the basis of a proposal made by the Commission
or on the initiative of the Union Minister for Foreign Affairs, this last quota is risen to 72% of the
population.
3 Notice that the widely used Banzhaf power index relies upon the IC probability assumption,
which is known as the Independence assumption in the power index literature (Straffin, 1977). For
its part, the IAC model can be associated to the Shapley–Shubik power index, and is then called
the Homogeneity assumption (Straffin, 1977). The link between the probability models in social
choice theory and power indices literature was first emphasized by Berg (1999).
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2 The Model

2.1 The Voting Rules

We consider binary issue votes “yes” or “no” for the N states (elsewhere voters,
MPs, etc.) of a federal union. The decisions are made by the conjunction of two
weighted quota games. Each state has two mandates ai and bi, and his (her) vote
(“yes” or “no”) is used in two qualified majority games A and B, the respective
quotas being QA and QB. Notice that for each state i, it is the same vote (“yes”
or “no”) which is used to compute the number of mandates obtained by a motion
respectively with keys A and B. The two quotas must be reached for final approval.
In the EU Constitution project, each key is related to a certain type of legitimacy.
For country i, it proposes ai = 1 and bi equal to the population of state i. Let A =
∑N

i=1 ai and B = ∑N
i=1 bi. We will denote the relative quotas by qA = QA/A and qB =

QB/B.

2.2 The Impartial Culture

In the IC model, each vote is independent of the others and each voter says “yes”
or “no” with equal probability p = 1/2. IC has serious drawbacks. It describes a
vote where everybody is undecided (no exchange of points of view allowing the
emergence of a majority has taken place) which leads to the existence of two blocks
of equal importance. When we consider one weighted quota game defined by a
quota (QA) and a vector of weights (ai)i=1...N with (1) a large number of voters, and
(2) no dominant player in term of weight, a natural way to handle the IC case is to
notice that the probability that a proposal receives between x and x +Δx mandates
(with Δx small) can be approximated by a normal distribution (see Feix et al. 2007
for example) with mean m = 1

2 ∑
N
i=1 ai and variance σ2 = 1

4 ∑
N
i=1 a2

i . Then the vote
will be won by a margin in term of mandates going as σ as N grows. This explains
the low probability of approval with a quota of 255/345, i.e., 73.9% in the Treaty of
Nice decision scheme which is characterized by m = 172.5 and σ = 39.84.

2.3 Toward Homogeneity

A natural way to escape from the divided society described by the IC assumption
has been, both in the game theory and in social choice literature, to consider that
all the partitions with x states in favor of a proposal and N − x against it should
be equally likely. Thus, the equiprobability assumption is put on the results of the
votes. This leads to the homogeneity assumption and the definition of the Shapley–
Shubick index in the power indices literature, and to the so called IAC assumption
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in social choice theory.4 For binary vote, a classical interpretation of the IAC model
is to state that, before the vote, a probability p of voting for the proposal is drawn
from the uniform distribution on [0,1].

The idea is consequently to introduce a model where a probability p different
from 1/2 has emerged. Moreover, our knowledge of p is itself of a probabilistic
nature, it is mathematically described by the function f (p) which is the density
function of p. The emergence of a probability p different from 1/2 seems rather nat-
ural in an assembly where certainly long discussions, explanations, compromises,
package deals, etc., precede each vote (the “consensual culture” of A. Moberg). No-
tice that, all these discussions result in a p = 1/2 and that the subsequent votes are
independent. Then the Generalized Impartial Anonymous Culture (GIAC) model is
characterized by a given f (p) with 0 ≤ p ≤ 1, f (p) ≥ 0 and

∫ 1
0 f (p)dp = 1. The

function f (p) = 1 for all p gives back the IAC model. Strictly speaking, the “impar-
tial” specification implies a symmetric density function f (p) relatively to 0.5 (and
consequently

∫ 1
0 p f (p)dp = 1/2), nevertheless, we will here consider more general

cases only constrained by the normalization of f (p).

3 The Probability of Approval in the Asymptotic Limit

Till now, we have discussed the behavior of the voters and the distribution of their
votes, without taking into account their number of mandates. Indeed, we need this
information in order to evaluate the probability to act of the collectivity.5

Proposition 1. One key-vote case. Let (ak)∞k=1 be a sequence of mandates, which
are strictly positive numbers, chosen once for all.

Let p ∈ [0,1] be a fixed constant and (Uk)∞k=1 a sequence of independent ran-
dom variables distributed uniformly on [0,1]. Let XN be the proportion of mandates
brought by the states which, for this election, are in favor of a proposal, with

XN =
∑N

k=1 ak 1Uk<p

A
, (1)

where A = ∑N
k=1 ak is the total number of mandates of the N states and 1Uk<p takes

the value 1 if Uk < p (the k-state votes in favor of the proposal) and 0 otherwise (the
k-state does not vote for the proposal).

4 The IAC assumption has been introduced in social choice theory by Gehrlein and Fishburn (1976)
in order to compute a priori the likelihood of the Condorcet Paradox for three alternatives. Here,
there are six possible preference types, and a probability p is now a vector (p1, p2, p3, p4, p5, p6)
in the unit simplex, where pi is the probability of picking preference type i for each voter. The IC
assumption is based upon the vector p = (1/6,1/6,1/6,1/6,1/6,1/6) while the IAC assumption
assumes that p is drawn from a uniform distribution on the unit simplex. For more on the likelihood
of the Condorcet paradox and the use of probability models in social choice, see the recent book
by Gerhlein (2006).
5 The number of mandates attributed to each state is also useful when one wants to evaluate their
influence by the mean of a power index.



202 M.R. Feix et al.

With the hypothesis: ∑∞k=1 ak =∞ and ∑∞k=1 a2
k <∞, or ∑∞k=1 a2

k =∞ and 0 < ak ≤
α for any k, where α is a constant, in the limit when N goes to infinity, we have for
the single-key case

XN
a.s.→ p . (2)

That is XN tends to p with probability 1. The same is true if p is random in-
dependent of the (Uk). If p has the density function f , we have for any q ∈ [0,1]
fixed:

P(XN < q)→
∫ q

0
f (u)du . (3)

Proof. For one election, the sketch of the proof is the following:

• With ∑∞k=1 a2
k < ∞, but ∑∞k=1 ak = ∞ using martingale arguments it follows that

XN → p with probability 1 as N goes to infinity (see Theorem (4.8) p. 220 of
Durrett 1991).

• With ∑∞k=1 a2
k = ∞ and 0 < ak ≤ α for any k, where α is a constant, using

Theorem (4.9) p. 220 of Durrett (1991), we still have XN → p with probability 1
as N goes to infinity.

But almost surely convergence implies convergence in distribution, so this
gives (3). ��

Proposition 2. Two key-vote case. Let (ak)∞k=1 and (bk)∞k=1 be two sequences of
strictly positive numbers (mandates of key A and key B respectively) chosen once
for all.

For an election, let p ∈ [0,1] be a fixed constant and (Uk)∞k=1 a sequence of
independent random variables distributed uniformly on [0,1]. Let XN, resp. YN, be
the proportion of mandates of first key, resp. second key, brought by the states which
are in favor of a proposal, with

XN =
∑N

k=1 ak 1Uk<p

A
, YN =

∑N
k=1 bk 1Uk<p

B
, (4)

where A = ∑N
k=1 ak and B = ∑N

k=1 bk are the total number of mandates of first key,
resp. second key, of the N states.

With the same hypothesis on the ak and bk as in Proposition 1, we have for the
double-key case

(XN ,YN) a.s.→ (p, p) . (5)

That is XN and YN tends to p with probability 1. The same is true if p is random
independent of the (Uk). If p has the density function f , we have for any q ∈ [0,1]
and any r ∈ [0,1] fixed:

P(XN < q,YN < r)→
∫ min(q,r)

0
f (u)du . (6)

Proof. The proof is the same as for Proposition 1 for each of the two keys. ��
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Remarks:

• It is easy to extend these results for a three-key vote or more.
• It could be shown that the propositions remain true if the mandates ak or bk are

themselves random. One could imagine that the mandates of the states vary from
one election to the other, but in this work, the mandates are attributed once for
all the elections.

From a practical point of view, Propositions 1 and 2 imply two limits. The first
one is clearly given by a number N of states which goes to infinity to reach the limit
p given by (2) or (5). Now as the number M of elections is going also to infinity,
we will be able to perform the empirical density function of XN which will converge
toward f for the single-key vote case and the empirical density function of (XN ,YN)
will converge toward δ (x = p,y = p) f (p) for the second key-vote case. This will
be illustrated be the Monte Carlo method presented in the next section.

In the limit where both the number N of states and then the number M of elections
go to infinity, the repartition of the proportion of mandates brought by the states in
favor of a proposal is given by f (p). For the double-key vote, the points are located
on the segment joining (0,0) and (1,1) according to f (p), then, as a consequence,
in the case of unequal quota, the highest one will set up the frequency of “yes” votes.
In the special case of the IAC model ( f (p) = 1) and a single-key vote, Proposition 1
means a flat density and for the double-key vote, the points are located uniformly
on the segment joining (0,0) and (1,1).

Note that Propositions 1 and 2 hold for N going to infinity. It can be shown that
the first correction (N large but not infinite) provides a diffusion around these points
of the order of N−1/2. While this scattering slightly modifies the flatness of the
density distribution of XN for the one key vote, it transforms the segment of the two
key vote into a long ellipse with a ratio long over small axes of the order of N1/2.
A simulation with 100 states will illustrate these facts in the next section. Now, from
an operational point of view, how large should be N? We will tackle this question for
the IAC model in the next section. First we will observe the convergence to the limit
with an example where the ai and the bi will be drawn randomly and independently
from a uniform distribution on the segment [1,5]. Next, we will study whether the
specific distribution of the mandates in the EU27 affects the convergence to the
limit.

4 Numerical Simulations Under the IAC Assumption

4.1 An Illustration of Propositions 1 and 2

In this section, the results of numerical simulations will be shown for the IAC case.
Because we want to reach the asymptotic limit which supposes both an important
number of elections and a large number of states, Monte Carlo method should be
used. Actually, it is not possible, when the number of voters is large, to enumerate,
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stock and compute the 2N configurations because of lack of memories and compu-
tation time. In addition, the Monte Carlo technique will illustrate clearly the double
probabilistic character of the IAC model.

The method has two steps. First a probability p is chosen at random from the
density function f (p) and a vote configuration is determined according to this prob-
ability p: for each of the N voters (or states), a random number is taken in a uniform
distribution, if this number is lower than p, the voter gives its mandates (it is a
“yes” vote) while he does not if the number is higher. This is in fact an acceptation-
rejection method and if the number of voters is large, the number of “yes” voters
divided by N will tend toward p. Then, the number of “yes” mandates divided by A
is also derived according to (1). Second, this process is repeated for a large number
M of elections with, at each election, a choice of a new p into f (p) and so on.6

We consider the results for N = 10 and N = 100 and M = 50,000 elections,
both for a single key and a double key vote using the Monte Carlo technique in
the IAC case ( f (p) = 1). The mandates of the N states have been taken at random
from a uniform distribution between 1 and 5, and the sum has been normalized to
A = B = 100. We use the same set of mandates for the M elections. Notice that the
draws of ai and bi are independent. As a consequence, it is possible to find a pair of
states (i, j) such that ai > a j while bi < b j.

For the single key case, Figs. 1 and 3 show the histogram of the number of config-
urations, as a function of the related number of mandates. This normalization does
not change the ratio 5 between the highest value of the mandates and the smallest
one. The histogram becomes flatter as N increases in agreement with Proposition 1
and the probability of approval tends to (1−qA).

For the double key case, Figs. 2 and 4 give the results of the M elections in
the plane (x,y), one point representing one election. Because all the points have

Fig. 1 One key vote.
Distribution of the results
of the votes for N = 10 voters
and 50,000 elections using
the Monte Carlo technique.
The histogram is built with an
increment Δx = 1

6 Notice that the results of the IC model could also be obtained by this technique. The probability
p of the N voters is then equal to 1/2 which corresponds to f (p) = δ (p−1/2).



On the Probability to Act in the European Union 205

Fig. 2 Double key vote.
Distribution of the results of
the votes for N = 10 voters
and 50,000 elections using the
Monte Carlo technique. Each
point represents the result of
an election

Fig. 3 Same as Fig. 1 but for
N = 100 voters

Fig. 4 Same as Fig. 2 but for
N = 100 voters
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Table 1 Double key vote.
Probability of passage for the
simulation presented Fig. 3 as
a function of the two quotas
qA and qB

Key A

50% 60% 70% 80% 90%

50% 49.04 40.25 30.43 20.58 10.54
60% 40.19 39.01 30.43 20.58 10.54

Key B 70% 30.27 30.27 29.31 20.58 10.54
80% 20.56 20.56 20.56 19.66 10.54
90% 10.61 10.61 10.61 10.61 9.86

the same weight, their density reaches δ (x = p,y = p) f (p) in accordance with
Proposition 2. As expected, the points are roughly distributed on the segment de-
limited by the two points (0,0) and (A,B). In addition to this global behavior,
the distribution shows a certain scattering, which is less pronounced for N = 100.
We have checked that, for this case, the probability of approval is closely given
by 1−max(qA,qB) as shown Table 1. With N = 100, for qA = qB = 70%, we get
29.31% of approval and for qA = 50% and qB = 80%, we get 20.56%.

4.2 The Probability to Act for EU27

We have just seen that going to N = 100 was already enough to apply Propositions 1
and 2 for an illustrative example where the weights of the states were drawn in the
interval [1,5]. Now, the question is to know whether or not the asymptotic limit is
also a good approximation for the EU27, where the number of states is smaller, and
where the mandates, ranging from 3 to 29, are more dispersed.7 Again, we focus on
the IAC case only. It is now possible to enumerate the 227 vote configurations (but
taking care of their different weights).

For the single key case, Fig. 5 shows the histogram of the number of config-
urations as a function of the related number of mandates. The central part of
the curve is flat, in accordance with Proposition 1 but we cannot avoid the ef-
fect of a finite number of states on the edges. For QA = 255, the probability of
approval is 27.50%, rather close to the result predicted by the asymptotic limit,
(1−qA) = (1−255/245) = 26.08%. Also notice that we are far above the 2% level
of approval predicted by the IC model!

Figure 6 shows the histogram when the number of mandates have been taken
proportional to the square root of the state populations, according to the voting
mechanism that was defended by the Polish government in Spring 2007. This case
had been first considered by Sweden in early negotiations for the Nice Treaty as a
compromise between the state legitimacy and the citizen legitimacy (see Moberg,
2002). In Spring 2007, the Polish government unearthed the Penrose Square root

7 The number of mandates and the population data for 2003 can be found in Moberg (2002).
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Fig. 5 One key vote.
Distribution of the results
of the votes for the EU27
for the Treaty of Nice. The
histogram is built with a bin
size equal to 3

Fig. 6 One key vote.
Distribution of the results
of the votes for the EU27. The
mandates are proportional to
the square root of the popula-
tions of the states and the sum
is normalized to 100

rule (Penrose, 1946, 1952) as a justification of its use. Again, the curve is flat, at
least for q between 0.2 and 0.8, indicating that the asymptotic limit could be used
for this single key vote.

We turn back to Monte Carlo simulations to analyze the dispersion of the votes
for the two keys (although complete enumeration is possible) because each point
has the same weight. Then, it is easier to interpret Fig. 7 which gives the distribution
of 2,700 vote configurations in the plane (x,y) (one point represents result for an
election) for the European Treaty voting procedure. For key A, all the mandates are
equal to 1 (state legitimacy) while for key B, the number of mandates of a state is
proportional to its population. The sum of the mandates of key B has been normal-
ized to 100. Because of the discrete nature of the key A mandates, the points are
aligned on vertical lines distant of 1. The scattering of the points, not negligible, is
compatible with the N−1/2 law as stated before.
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Fig. 7 Double key vote.
Distribution of the results
of the votes for the EU27.
For key A (x variable) all
the mandates are equal to
1, for key B (y variable) the
mandates are proportional to
the populations of the states
and the sum is normalized to
100

Table 2 Double key vote. Percentage of approval for the EU27 with the constitutional treaty under
IAC as a function of the two quotas QA and QB. The results have been obtained by complete
enumeration of all the vote configurations

Key A

14/27 15/27 17/27 19/27 22/27 25/27
51.85% 55.56% 62.96% 70.37% 81.48% 92.59%

50% 45.42 43.42 38.24 31.91 21.42 10.71
60% 39.54 38.60 35.57 30.84 21.33 10.71
65% 35.77 35.24 33.24 29.62 21.17 10.71

Key B 70% 31.55 31.29 30.16 27.68 20.67 10.71
72% 29.84 29.66 28.79 26.74 20.37 10.68
80% 22.80 22.77 22.56 21.86 18.46 10.56
90% 13.86 13.86 13.86 13.82 12.97 9.10

For this double key case, the probability to act is given for different values of
the keys QA and QB in Table 2 which proves that the rule 1−max(QA,QB) for the
approval is fairly satisfied. In particular, we observe that for 15 states gathering 65%
of the population, the probability of passage is 35.24%, far above the probabilities
obtained by Baldwin and Widgren (2004) for different two key decision method
under the IC assumption.

5 Conclusion

In most of the applications of statistical models to voting theory, like the studies
computing the Condorcet effect probability or evaluating the Condorcet efficiency of
scoring rules, it was often found that the IC and IAC models were giving very similar
results in terms of the magnitude of the paradoxes. It is with the study of binary
votes that the fundamental differences between the two models become apparent.
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The issue is of great importance if we remember that the two main power indices
(Banhzaf and Shapley–Shubik) are respectively based on IC and IAC assumptions.
In particular any recommendation on the number of mandates to attribute to a state in
a federal union based upon a power index is contingent on the underlying probability
model that we use.

Similarly, in our study on the probability to act, except if we take quotas close
to 1

2 , IC and IAC give results which differ by a large factor. While many studies
(Baldwin et al., 2001; Baldwin & Widgren, 2004) suggest a fast decline of the prob-
ability of passage under IC when the quota rises, the use of the IAC assumption to
model a more consensual behavior of the states gives a different picture. We have
shown, both for the IC case (see Feix et al. 2007) and for IAC (this paper) that the
density function of probability to get x yes votes in the EU27 is already quite close
to the results one would obtain in the asymptotic case. Thus, in the asymptotic limit,
the probability of passage tends to (1− qA) for one key vote and 1−max(qA,qB)
for two key vote under IAC. As a consequence, quotas of 60–70% can still be con-
sidered as acceptable with the IAC model, while a similar study done with IC would
lead to the opposite conclusion. To some extent, we have shown that the critics of
A. Moberg were directed against the IC model but can be easily answered through
the use of the IAC model or another GIAC model characterized by the adequate
f (p).

Thus, can we decide which model is the more appropriate? At this point, after
years of studies of the voting rules with a priori models, to which Peter Fishburn
greatly contributed, it is worth noticing that scientists are starting to look at the data
or stylized facts. For example, the fact that most of the decisions are taken at the
unanimity in the European Union have inspired Laruelle and Valenciano (2007) to
design their model of bargaining in committees. In voting theory, a recent study by
Gelman, Katz, and Bafumi (2004) gives first insights on the nature of the relevant
probability models for two candidates. The chief merit of this study is that it ana-
lyzes data from American and European elections. For the US example, they show
that margins between republicans and democrats measured in percent do not depend
upon the size of the state, a clear contradiction of the IC assumption.8 This confirms
that the search for the adequate f (p) (which must be reasonably stable from one
election to the other) is of crucial importance. Similarly, Regenwetter, Grofman,
Marley, and Tsetlin (2006) have started to analyze the repartition of the preferences
among three or more candidates, and revised the common wisdom on the probability
of voting paradoxes. Thus, after a first age, where the a priori assumption played a
crucial role, it seems that the probabilistic analysis of voting rules is entering a new
age, where the probability model must, in some way, be related to the observed be-
havior of the voters. Our results are a modest contribution to this approach, as they
clearly state that the conclusions on the probability of passage of different deci-
sion schemes could be wrongly evaluated if one does not consider the right a priori
probability model.

8 More precisely, using statistical techniques, the authors test different values of nα as a predictor
of the difference of votes, n being the number of voters per state. They arrive at α = 0.9, but
themselves insist that this value must be taken with caution and that a n scale may be correct.
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Voting Rules



Voting Systems that Combine Approval
and Preference

Steven J. Brams and M. Remzi Sanver

1 Introduction

Social choice theory, while postulating that voters have preferences over candidates,
does not ask them to stipulate where, in their preference rankings, they would draw
the line between acceptable and unacceptable candidates. Approval voting (AV)
does ask voters to draw such a line, but it ignores rankings above and below this
line.

Rankings and approval, though related, are fundamentally different kinds of in-
formation. They cannot necessarily be derived from one another. Both kinds of in-
formation are important in the determination of social choices. We propose a way
of combining them in two hybrid voting systems, preference approval voting (PAV)
and fallback voting (FV), that have several desirable properties.

Approving of a subset of candidates is generally not difficult, whereas ranking
all candidates on a ballot, especially if the list is long, may be arduous. PAV asks
for both kinds of information, whereas FV asks voters to rank only those candidates
they approve of, making it simpler than systems that elicit complete rankings.

We describe, analyze, and compare each of these systems in tandem. In Sect. 2
we give definitions and assumptions. In Sect. 3 we describe PAV and analyze which
candidates can and cannot win under this system. Although a PAV winner may not
be a Condorcet winner or AV winner, PAV satisfies what we call the strongest-
majority principle for voters. More specifically, if a majority-approved candidate
is preferred by a majority to the AV winner and other majority-approved candidates,
PAV “corrects” the AV result by electing the majority-preferred candidate. That is,
PAV elects the majority-approved candidate who is most preferred.

A majority-preferred candidate is likely to have a more coherent point of view
than an AV winner, who may be the most popular candidate because he or she is
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bland or inoffensive – a kind of lowest common denominator who tries to appease
everybody. However, this problem does not seem to be a common one (Brams &
Fishburn, 2005; Brams, 2008, Chap. 1). Sometimes not choosing such a candidate
when two or more candidates receive majority approval makes PAV coherence-
inducing for candidates by giving an advantage to candidates who are principled
but, nevertheless, command broad support.

In Sect. 4 we describe FV and compare its properties with those of PAV. Like
PAV, FV tends to help those candidates who are relatively highly ranked by a ma-
jority of voters. Both systems may give different winners from nonranking systems
(e.g., plurality voting and AV), ranking systems (e.g., the Borda count and single
transferable vote, or STV), and each other.

In Sect. 5 we show that PAV and FV are monotonic in two different senses:
Voters, by either approving of a candidate or raising him or her in their rank-
ings, can never hurt and may help this candidate get elected. The latter property
(rank-monotonicity) is not satisfied by a number of ranking systems, including STV,
whereas the former property (approval-monotonicity) is satisfied by AV.

Like all voting systems, PAV and FV are manipulable. In Sect. 6 we show that
voters may induce preferred outcomes either by contracting or by expanding their
approval sets. Because each voting system may give outcomes in equilibrium when
the other does not, neither system is inherently more stable than the other.

In Sect. 7 we develop a dynamic model of voter responses to polls in 3-candidate
elections, wherein voter preferences are either single-peaked or cyclic. If voters re-
spond to successive polls by adjusting their approval strategies to try to prevent their
worst choices from winning, they elect the Condorcet winner, though not necessarily
in equilibrium, if their preferences are single-peaked. If their preferences are cycli-
cal, the candidate ranked first or second by the most voters wins after voters respond
to several polls. These outcomes are in equilibrium under both PAV and FV.

We conclude in Sect. 8 that PAV, and to a less extent FV, subtly interweave two
different kinds of information: Approval information determines those candidates
who are sufficiently popular to be serious contenders if not outright winners; ranking
information enables voters to refine the set of potential winners if more than one
candidate receives majority approval.

Together, these two kinds of information facilitate the election of majoritarian
candidates with coherent positions. But more than abetting their election, PAV and
FV may well have a salutary impact on which candidates choose to run – and how
they choose to campaign – encouraging the entry of candidates who appeal to a
broad segment of the electorate but do not promise them the moon.

2 Definitions and Assumptions

Consider a set of voters choosing among a set of candidates. We denote individual
candidates by small letters a, b, c, . . ..
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We assume that voters strictly rank the candidates from best to worst, so there is
no indifference. Thus, for any candidates a and b, either a is preferred to b or b is
preferred to a. This assumption simplifies the subsequent analysis but does not in
any significant way affect our results, which can readily be extended to the case of
nonstrict preferences.

We assume that rankings are transitive, so that for any candidates a,b and c, a is
preferred to c whenever a is preferred to b and b is preferred to c. In addition, we
assume that a voter evaluates each candidate as either acceptable or unacceptable,
which we will refer to as approved and disapproved candidates.

The preference-approval of voters is based on both their rankings and their ap-
proval of candidates. Although different, these two types of information exhibit the
following consistency: Given two candidates a and b, if a is approved and b is dis-
approved, then a is ranked above b.

We represent a voter’s preference-approval by an ordering of candidates from left
to right and a vertical bar, to the left of which candidates are approved and to the
right of which candidates are disapproved. For example,

ab|cd

indicates that the voter’s two top-ranked candidates, a and b, are approved, and the
voter’s two bottom-ranked candidates, c and d, are disapproved.

At one extreme, a voter may approve of all candidates, and at the other extreme
of no candidates. As we discuss in Sect. 6, these extreme strategies are dominated
strategies in a voting game in which voters have strict preferences, but these strate-
gies are not illegal, as such, under PAV of FV.

Some voters will approve of a single favorite candidate, and some will approve
of all except a worst choice. Many voters, however, are likely to select some middle
ground, approving of two or three candidates in, say, a field of five (for empirical
data on this question under AV, see Brams & Fishburn, 2005; Brams, 2008, Chap. 1).

A preference-approval profile is a list of preference-approvals of all voters. A
social-choice rule, as we use the term here, aggregates preference-approval profiles
into social choices. Thereby our framework generalizes the standard social-choice
model – wherein a voter is characterized simply by his or her ranking of candidates –
to one that adds a line in the ranking separating the voter’s approvals from disap-
provals.

In subsequent sections, we will use a number of examples to illustrate results
as well as prove some propositions. Voters who have the same ranking of candi-
dates will be put into classes, distinguished by Roman numerals I, II, III, . . . For
simplicity, we assume in the examples that all voters in a class draw the line sep-
arating approvals and disapprovals at the same point in their rankings, but none of
our results depends on this assumption.

To describe PAV in the next section, we need two definitions. A Condorcet
winner is a candidate who is preferred by a majority to every other candidate in
pairwise comparisons. A cycle among 3 or more candidates a, b, c, . . . occurs if
a < b < c < .. . < a, where “<” indicates “is preferred by a majority to.” (Notice
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that there can never be an “approval cycle” – approval is strictly ordered from can-
didates with the most approval to candidates with the least, except, of course, in the
case of a tie.) The majority preference relation between any two candidates may
lead to a tie if and only if there is an even number of voters, which we assume is
broken by random tie-breaking.

3 Preference Approval Voting (PAV)

The winner under PAV is determined by two rules, the second comprising two cases:

1. If no candidate, or exactly one candidate, receives a majority of approval votes,
the PAV winner is the AV winner – that is, the candidate who receives the most
approval votes.

2. If two or more candidates receive a majority of approval votes, then (i) If one
of these candidates is preferred by a majority to every other majority-approved
candidate, then he or she is the PAV winner – even if not the AV or Condorcet
winner among all candidates. (ii) If there is not one majority-preferred candidate
because of a cycle among the majority-approved candidates, then the AV winner
among them is the PAV winner – even if not the AV or Condorcet winner among
all candidates.

It is rule 2 that distinguishes PAV from AV. It allows for the election of candidates
who are not the most approved and, therefore, not AV winners. As we will see, a
PAV winner may in fact be the least-approved candidate in a race.

Compared with preference-based voting systems, PAV is somewhat more de-
manding in the information that it requires of voters. Besides ranking candidates,
voters must indicate where they draw the line between acceptable and unacceptable
candidates, which is an issue we will return to when we compare the complexity of
PAV and FV.

In the remainder of this section, we show what kinds of candidates PAV may and
may not elect:

Proposition 1. A Condorcet winner may not be a PAV winner under rule 1, rule 2(i),
and rule 2(ii).

Proof. Rule 1. Consider the following 3-voter, 3-candidate example, in which the
voters divide into three preference classes:

Example 1.

I. 1 voter: ab|c
II. 1 voter: b|ac

III. 1 voter: c|ab

Candidate b is the AV winner, approved of by 2 of the 3 voters, whereas candidates a
and c are approved of by only 1 voter each. Because candidate b is the only candidate
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approved of by a majority, b is the PAV winner under rule 1. But it is candidate a,
who is preferred to candidates b and c by majorities of 2 votes to 1, that is the
Condorcet winner.

Rule 2(i). Consider the following 3-voter, 4-candidate example:

Example 2.

I. 1 voter: abc|d
II. 1 voter: bc|ad

III. 1 voter: d|acb

Candidates b and c tie for AV winner with majorities of 2 votes each. Because
candidate b is preferred to candidate c by 2 votes to 1, b is the PAV winner under
rule 2(i). But it is candidate a, who is preferred to candidates b, c, and d by majorities
of 2 votes to 1 (but who is not majority-approved), that is the Condorcet winner.

Rule 2(ii). Consider the following 5-voter, 5-candidate example:

Example 3.

I. 1 voter: d abc|e
II. 1 voter: d bca|e

III. 1 voter: e|d cab
IV. 1 voter: abc|d e
V. 1 voter: c|bad e

Candidates a (3 votes), b (3 votes), and c (4 votes) are all majority-approved and in a
cycle as well: a > b > c > a. Because the Condorcet winner, candidate d (2 votes),
is not majority-approved, he or she cannot be the PAV winner. Instead, the most
approved candidate in the cycle, c, is the PAV winner. Q.E.D.

Not only may PAV fail to elect Condorcet winners when they exist, but it may
also fail to elect unanimously approved candidates.

Proposition 2. A unanimously approved AV winner may not be a PAV winner under
either rule 2(i) or rule 2(ii).

Proof. Rule 2(i). Consider the following 3-voter, 3-candidate example:

Example 4.

I. 2 voters: ab|c
II. 1 voter: bc|a

Candidate b is approved of by all 3 voters, whereas candidate a is approved of by
2 voters and candidate c by 1 voter. Nevertheless, candidate a is the PAV winner,
because under rule 2(i) he or she is preferred by 2 votes to 1 to the other majority-
approved candidate, b.

Rule 2(ii). Consider the following 8-voter, 4-candidate example:
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Example 5.

I. 3 voters: abc|d
II. 3 voters: d ac|b

III. 2 voters: bd c|a

Candidate c is approved of by all 8 voters, whereas candidates a, b, and d are ap-
proved of by majorities of either 5 or 6 voters. The latter three candidates are in a
top cycle in which a > b > d > a; all are preferred by majorities to candidate c, the
AV winner. But because candidate a receives more approvals (6) than candidates b
and d (5 each), candidate a is the PAV winner under rule 2(ii). Q.E.D.

Proposition 2 shows how a unanimously approved AV winner may be displaced
by a less approved majority winner under PAV. In fact, the conflict between AV and
PAV winners may be even more extreme.

Proposition 3. A least-approved candidate may be a PAV winner under rule 2(i).

Proof. Consider the following 7-voter, 4-candidate example:

Example 6.

I. 2 voters: acb|d
II. 2 voters: acd|b

III. 3 voters: bcd|a

Candidate c is approved of by all 7 voters, candidates b and d by 5 voters each, and
candidate a by 4 voters. While all candidates receive majority approval, candidate
a is the PAV winner, because he or she is preferred by a majority (class I and II
voters) to the AV winner (candidate c), as well as candidates b and d, under rule 2(i)
Q.E.D.

When the PAV winner and the AV winner differ, as in Example 6, the PAV winner
is arguably the more coherent majority choice. Two of the three classes of voters
rank candidate a as their top choice in Example 6, whereas candidate c, the AV
winner, is not the top choice of any class of voters.

Finally, we show that PAV may give winners different from the two-best known
ranking systems (for more information on these and other voting systems, see Brams
and Fishburn, 2002).

Proposition 4. A PAV winner may be different from winners under the Borda count
and single transferable vote (STV).

Proof. If there are n candidates, the Borda count assigns n – 1 points to the first
choice of a voter, n – 2 points to the second choice,. . ., and 0 points to the last
choice; the candidate with the most points wins. In Example 6, candidate c wins with
14 points (2 points each from all 7 voters), whereas the PAV winner, candidate a,
receives 12 points (3 points each from 4 voters and 0 points from 3 voters).

Under STV, only first-place votes are counted initially. In Example 5, candidates a,
d, and b receive 3, 3, and 2 votes, respectively, from the voters who rank them first.
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Because candidate b receives the fewest votes, the votes or his or her supporters are
transferred to their second choice, candidate d, giving d a total of 5 votes, which is
a majority and makes candidate d the winner. By contrast, candidate a is the PAV
winner. Q.E.D.

In summary, we have shown that PAV may not elect Condorcet winners, or win-
ners under AV, the Borda count, or STV. Nevertheless, PAV winners are strong con-
tenders on grounds of both approval and preference, which we will say more about
later.

We turn next to a voting system that asks less than PAV, requiring voters to rank
only those candidates of whom they approve. It shares some properties of PAV but
by no means all.

4 Fallback Voting (FV)

Fallback voting (FV) proceeds as follows:

1. Voters indicate all candidates of whom they approve, who may range from no
candidate (which a voter does by abstaining from voting) to all candidates. Voters
rank only those candidates of whom they approve.

2. The highest-ranked candidate of all voters is considered. If a majority of vot-
ers agree on one highest-ranked candidate, this candidate is the FV winner. The
procedure stops, and we call this candidate a level 1 winner.

3. If there is no level 1 winner, the next-highest ranked candidate of all voters is
considered. If a majority of voters agree on one candidate as either their highest
or their next-highest ranked candidate, this candidate is the FV winner. If more
than one candidate receives majority approval, then the candidate with the largest
majority is the FV winner. The procedure stops, and we call this candidate a level
2 winner.

4. If there is no level 2 winner, the voters descend – one level at a time – to lower
and lower ranks of approved candidates, stopping when, for the first time, one or
more candidates are approved of by a majority of voters, or no more candidates
are ranked. If exactly one candidate receives majority approval, this candidate is
the FV winner. If more than one candidate receives majority approval, then the
candidate with the largest majority is the FV winner. If the descent reaches the
lowest rank of all voters and no candidate is approved of by a majority of voters,
the candidate with the most approval is the FV winner.

The appellation “fallback” comes from the fact that FV successively falls back on
lower-ranked approved candidates if no higher-ranked approved candidate receives
majority approval. This nomenclature was first used in Brams & Kilgour (2001), but
it was applied to bargaining rather than voting, in which the decision rule was as-
sumed to be unanimity (the assent of all parties was necessary) rather than a simple
majority.
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Brams & Kilgour (2001), in what they called “fallback bargaining with impasse,”
did not require that the bargainers rank all alternatives. Rather, the bargainers ranked
only those they considered better than “impasse,” because impasse was preferable to
any alternative ranked lower. Bargainers not ranking alternatives below impasse are
analogous to voters not approving of candidates below a certain level, whom they
do not rank.

Like FV, the “majoritarian compromise” proposed by Sertel and his colleagues
(Sertel & Yilmaz, 1999; Sertel & Yilmaz, 1999; Hurwicz & Sertel, 1999) elects the
first candidate approved of by a majority in the descent process. However, voters
are assumed to rank all candidates – they do not stop their ranking at some point at
which they consider candidates they rank lower unacceptable.

James W. Bucklin assumed, as we do with FV, that if a voter did not rank all
candidates, he or she disapproved of those not ranked.1 Thus, when the fallback
process descends to a level at which a voter no longer ranks candidates, that voter
is assumed to approve of no additional candidates should the process continue to
descend for other voters because no candidate has yet reached majority approval.
Bucklin’s system is FV absent the designation of approved candidates, who are im-
plicitly assumed to be only those candidates that voters rank.

In the analysis of FV that follows, we assume that voters have preferences for all
candidates, though they reveal their rankings only for approved candidates. As we
will see, the non-revealed information may lead to the election of different candi-
dates from PAV. First, however, we indicate properties that FV shares with PAV.

Proposition 5. Condorcet winners and unanimous AV winners may not be FV win-
ners, whereas least-approved candidates may be FV winners.

Proof. In Example 1, there is no level 1 winner. Because candidate b is the only
candidate approved of by a majority (voters II and III) at level 2, b is the FV winner,
whereas candidate a is the Condorcet winner.

In Example 4, candidate a is the FV winner at level 1, but candidate b is the unani-
mous AV winner. In Example 6, candidate a is the FV winner at level 1, but a is the
least approved of the four candidates. Q.E.D.

While FV and PAV share the properties listed in Proposition 5, FV, unlike PAV,
may fail to elect a majority-preferred candidate among the majority-approved can-
didates.

Proposition 6. Suppose there are two or more majority-approved candidates. If one
is majority-preferred among them, FV may not elect him or her.

Proof. Consider the following 5-voter, 4-candidate example:

1 Bucklin, a lawyer and founder of Grand Junction, Colorado, proposed his system for Grand
Junction in the early twentieth century, where it was used from 1909 to 1922 – as well
as in other cities – but it is no longer used today. See Hoag & Hallet (1926, pp. 485–
491), http://www.gjhistory.org/cat/main.htm, http://en.wikipedia.org/wiki/Bucklin voting, and
http://wiki.electorama.com/wiki/ER-Bucklin.
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Example 7.

I. 2 voters: ab|cd
II. 1 voter: d ca|b

III. 2 voters: ca|bd

There is no level 1 majority-approved candidate with at least 3 votes. Because can-
didate a receives more approval (4 votes) than candidate c (3 votes) at level 2, a is
the FV winner. But candidate c is majority-preferred to candidate a by 3 votes to 2.
Q.E.D.

In fact, candidate c is the Condorcet winner among all candidates, defeating can-
didates b and d as well. PAV, because of rule 2(i), picks candidate c, even though
candidate a is more approved at level 2 and is unanimously approved at level 3 (to
which FV never descends).

A similar conflict between FV and PAV may occur when there is no Condorcet
winner.

Proposition 7. A unanimously approved candidate in a cycle may not be the FV
winner.

Proof. Consider the following 9-voter, 4-candidate example:

Example 8.

I. 2 voters: abc|d
II. 3 voters: bd c|a

III. 4 voters: ca|d b

There is a cycle whereby a > b > c > a. Candidate c is the only candidate approved
of by all 9 voters and so would be the PAV winner under rule 2(ii). Under FV, no
candidate is majority-approved at level 1, but at level 2 candidate a receives 6 votes
and candidate b receives 5 votes, making a the FV winner. Q.E.D.

Proposition 8. FV, PAV, and AV may all give different winners for the same
preference-approval profile.

Proof. Consider the following 9-voter, 4-candidate example:

Example 9.

I. 4 voters: abc|d
II. 3 voters: bc|ad

III. 2 voters: d ac|b

There is no level 1 majority-approved candidate, but candidates a and b each re-
ceive majority approval (6 and 7 votes, respectively) at level 2. Because candidate
b (7 votes) is more approved of than candidate a (6 votes), FV elects candidate b.
But candidate c is unanimously approved (9 votes) – at level 3 for the class I and III
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voters (to which FV never descends) – so AV elects candidate c. Finally, PAV elects
candidate a, who is majority-preferred to the two other majority-approved candi-
dates, b and c. Q.E.D.

Note in Example 9 that no class of voters ranks the unanimously approved AV
winner (candidate c) first, so he or she is likely to be only a lukewarm choice
of everybody. Neither FV nor PAV favors such candidates if there are majority-
approved candidates ranked higher by the voters.

In Examples 7, 8, and 9, one can determine from the rankings of the approved
candidates that candidate a is majority-preferred to candidate b. Thus in Example 9,
even though the class II voters do not indicate that they prefer candidate b to candi-
date a when they rank their two approved candidates, b and c, the fact these voters
do not approve of candidate a implies that candidate b, whom they do approve of, is
ranked higher than candidate a. Similarly, one can ascertain from the ranking of the
class III voters that they prefer candidate a to candidate b.

That PAV would have given a different outcome from FV may not always be
revealed.

Proposition 9. Information used to determine an FV winner may not reveal that
PAV would have chosen a different winner.

Proof. Consider the following 3-voter, 4-candidate example:

Example 10.

I. 1 voter: abc|d
II. 1 voter: bd a|c

III. 1 voter: c|abd

There is no level 1 majority-approved candidate, but at level 2 candidate b receives
majority approval (2 votes) and is, therefore, the FV winner. Because the class III
voter does not rank candidates below candidate c under FV, it would not be known
whether candidate a would defeat candidate b, or vice versa, in a pairwise contest
between these two candidates (while candidate a is preferred by the class I voter,
candidate b is preferred by the class II voter, leaving the contest undecided). But
under PAV, wherein voters rank all candidates, the fact that the class III voter prefers
a to b would not only be revealed but also would render candidate a the winner,
because a is majority-preferred to b.2 Q.E.D.

That FV ignores information on the lower-level preferences of voters is one rea-
son why it gives different outcomes from PAV. Although we think information on
nonapproved candidates should not be ignored, we recognize that it sometimes may
be difficult for voters to provide it.

2 To be sure, if the class III voter did not rank any candidates below candidate c, the outcome under
PAV would, as under FV, be a tie between candidates a and b. While voters would be encouraged
to rank all candidates under PAV, we do not think their ballots should be invalidated if they do not
do so.
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5 Monotonicity of PAV and FV

Such well-known voting systems as STV, also called “instant runoff voting” (IRV),
do not satisfy a property called “monotonicity.” This renders them vulnerable to
what Brams and Fishburn (2002, p. 215) call “ranking paradoxes.” As an example
of such a paradox, a voter may, by ranking a candidate first, cause him or her to lose,
whereas this voter, by ranking the candidate last, enable him or her to win – just the
opposite effect of what one would expect a top ranking to have.

Because PAV and FV are hybrid voting systems, it is useful to define two kinds
of monotonicity.

1. A voting system is approval-monotonic if a class of voters, by approving of a new
candidate – without changing their approval of other candidates – never hurts and
may help this candidate get elected.

2. A voting system is rank-monotonic if a class of voters, by raising a candidate in
their ranking – without changing their ranking of other candidates – never hurts
and may help this candidate get elected.

A monotonicity paradox occurs when a voting system is not approval-monotonic
or rank-monotonic; violations of rank-monotonicity have been investigated by
Fishburn (1982), among others.

Proposition 10. PAV and FV are approval-monotonic.

Proof. Consider PAV. Under rule 1, a class of voters, by approving of a candidate,
helps him or her become the unique AV, and therefore the PAV, winner. Under rule
2(i), a class of voters, by approving of a candidate, helps him or her become one of
the majority-approved candidates and, therefore, a possible PAV winner. Under rule
2(ii), a class of voters, by approving of a candidate, helps him or her become the AV,
and therefore the PAV, winner among the majority-approved candidates in a cycle.
Consider FV. Approving of a candidate allows him or her to be ranked and receive
votes in the descent, thereby helping him or her become the FV winner. Q.E.D.

Proposition 11. PAV and FV are rank-monotonic.

Proof. Consider PAV. Under rule 1, ranks have no effect. Under rule 2(i), a class of
voters, by raising a candidate in their ranking, helps that candidate defeat other
majority-approved candidates in pairwise contests and thereby become the PAV
winner. Under rule 2(ii), a class of voters, by raising a candidate in their ranking,
helps that candidate be a member of the cycle – if there is no majority-preferred
candidate among the majority-approved candidates – and thereby become a pos-
sible PAV winner. Consider FV. A class of voters, by raising a candidate in their
ranking, helps that candidate become majority-approved at an earlier level, or re-
ceive the largest majority if two or more candidates are majority-approved at the
same level, and thereby become the FV winner. Q.E.D.

Thus, a class of voters can rest assured that giving either approval or a higher ranking
to a candidate can never hurt and may help him or her get elected under PAV and FV.
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However, this may lead to the defeat of an already approved candidate that one
prefers, which is illustrated by the following 7-voter, 4-candidate example:

Example 11.

I. 1 voter: ab|cd
II. 3 voters: b|acd

III. 2 voters: ca|bd
IV. 1 voter: d|abc

Under PAV, candidate b is the only candidate to be majority-approved (4 votes) and
so is the PAV winner under rule 1.

But now assume that the 3 class II voters approve of candidate a as well as
candidate b:

II′. 3 voters: ba|cd

Candidate a receives 5 votes and candidate b 4 votes, so both are majority-
approved. But because candidate a is majority-preferred to candidate b by 4 votes
to 3, candidate a is the PAV winner under rule 2(i), contrary to the interests of the
class II voters who switched from strategy b to strategy ba.

Similarly, for the original approval strategies of the voters in Example 11, candi-
date b is the FV winner, picking up 4 votes at level 2. But when the class II voters
switch from strategy b to strategy ba, candidate a wins with 5 votes at level 2. As
under PAV, the strategy shift by the class II voters is detrimental to their interests.

In Sect. 7, we will show how information from polls may affect voters’ calcula-
tions about how many candidates to approve of under PAV, and to approve of and
rank under FV. As we will see, these calculations may or may not result in equilib-
rium outcomes.

The stability of outcomes under PAV and under FV reflects their robustness
against manipulation, so it is important to assess its extent. Stability may be looked
at in either static or dynamic terms. In Sect. 6 we view it statically – when will
voters be motivated to try or not try to upset an outcome? – whereas in Sect. 7 we
analyze how unstable outcomes, based on a dynamic poll model, evolve over time.

6 Nash Equilibria Under PAV and FV

Because PAV and FV give the same outcome as AV when either no candidate or
one candidate receives the approval of a majority, they share many of the properties
of AV. For example, in a field in which at most one candidate is likely to obtain
majority approval, PAV and FV, like AV, give candidates an incentive to broaden
their appeal to try to maximize their level of approval.

When candidates reach out to try to attract more votes, voters are likely to con-
sider them acceptable and approve of more than one candidate. But if more than
one candidate actually receives majority approval, the preferences of voters under
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PAV and FV matter, so the most-approved candidate may not win, as we showed
earlier. Thus, a key question that both PAV and FV raise is how many candidates a
voter should approve of if he or she deems more than one acceptable. As we showed
in Sect. 5, sometimes voting for additional candidates may sabotage the election of
a preferred candidate.

In the analysis that follows, we assume that voters, in order to try to elect their
preferred candidates, choose strategically where to draw the line between approved
and disapproved candidates. But we assume that they are truthful in their rankings
of candidates, which is equivalent to assuming that they choose from among their
admissible and sincere AV strategies.3

An AV strategy S is admissible if it is not dominated in a game-theoretic sense –
that is, there is no other strategy that in all contingencies leads to at least as good
an outcome and in some contingency a better outcome. Admissible strategies under
AV involve always approving of a most-preferred candidate and never approving of
a least-preferred candidate (Brams & Fishburn, 1978, 1983, 2007).

An AV strategy S is sincere if, given the lowest-ranked candidate that a voter
considers acceptable, he or she also approves of all candidates ranked higher. Thus,
if S is sincere, there are no “holes” in a voter’s approval set: Everybody ranked above
a voter’s lowest-ranked, but acceptable, candidate is also approved; and everybody
ranked below this candidate is not approved.4

As we will illustrate shortly, voters may have multiple sincere strategies, which
some analysts consider desirable but which others consider problematic; this clash
has sparked considerable controversy about AV.5 Given the multiplicity of sin-
cere strategies, we are led to ask what, if any, strategies are stable under PAV
and FV.

We define an outcome to be in equilibrium if the approval strategies of each
preference class of voters that produce it constitute a Nash equilibrium. At such
an equilibrium, no class of voters has an incentive to depart unilaterally from its
approval strategy, because it would induce no better an outcome, and possibly a
worse one, by doing so.

3 In Sect. 7 we consider the possibility that voters may change their rankings as well as their ap-
proval in order to try to manipulate outcomes. For an excellent study of the manipulability of voting
systems that focuses on manipulation through the misrepresentation of rankings, see Taylor (2005).
4 Admissible strategies may be insincere if there are four or more candidates. For example, if
there are exactly four candidates, it may be admissible for a voter to approve of a first and third
choice without also approving of a second choice (see Brams & Fishburn 1983, 2007, pp. 25–26,
for an example). However, the circumstances under which this happens are sufficiently rare and
nonintuitive that we henceforth suppose that voters choose only sincere approval strategies under
PAV and FV. Sincere strategies are always admissible if we exclude “vote for everybody,” which
we henceforth do.
5 Saari & Van Newenhizen (1988) provoked an exchange with Brams, Fishburn, and Merrill
(1988) over whether the plethora of AV outcomes that different sincere strategies may produce
more reflected AV’s “indeterminacy” (Saari and Van Newenhizen) or its “responsiveness” (Brams,
Fishhburn, and Merrill); other critiques of AV are referenced in Brams & Fishburn (2005; Brams,
2008, Chap. 1). We view PAV and FV as ways to make AV more responsive to voter preferences.
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Proposition 12. Truth-telling strategies of voters under PAV and FV may not be in
equilibrium. In particular, voters may induce a better outcome either by contracting
or expanding their approval sets.

Proof. We first prove this proposition for PAV using the following 7-voter,
4-candidate example:

Example 12.

I. 3 voters: ab|cd
II. 2 voters: c|abd

III. 2 voters: d b|ac

Candidate b, approved of by 5 voters, is the only candidate approved of by a majority
and so is the PAV winner.

To show the possible effects of contraction, assume that the 3 class I voters con-
tract their approval set from strategy ab to strategy a:

I′. 3 voters: a|bcd
Then candidate a, who is preferred by the class I voters to candidate b, will win
under PAV rule 1, receiving 3 votes to 2 votes each for candidates b, c, and d.

To show the possible effects of expansion in the original Example 12, assume the
2 class II voters expand their approval set from strategy c to strategy ca:

II′. 2 voters: ca|bd
Then candidates a and b tie with 5 votes each (candidates c and d each receive 2
votes). Because candidates a and b both receive majority approval, we apply PAV
rule 2(i). Since candidate a is preferred to candidate b by a majority of 5 votes to 2,
candidate a, whom the class II voters prefer to candidate b, is the winner.

Thereby both the contraction and the expansion of an approval set by a class of
voters may induce a preferred outcome, rendering PAV strategies in Example 12
not in equilibrium. It is easy to show that the same contraction and expansion of
approval sets induces preferred outcomes under FV (candidate a instead of candi-
date b in the case of contraction I′; a tie between candidates a and b in the case of
expansion II′). Q.E.D.

We showed earlier that PAV, FV, and AV may lead to three different outcomes
for the same preference-approval profile (Proposition 8). The fact that an outcome
is in equilibrium under one system, however, does not imply that it is in equilibrium
under another system.

Proposition 13. When PAV and FV give different outcomes, one may be in equilib-
rium and the other not.

Proof. In Example 9, we showed that candidate a (the Condorcet winner) wins un-
der PAV and candidate b wins under FV. Candidate a is in equilibrium under PAV,
because none of the three classes of voters, by switching to a different approval
strategy, can induce an outcome they prefer to candidate a. On the other hand, can-
didate b is not in equilibrium under FV, because the 4 class I voters, by switching
from strategy abc to a, can induce the election of candidate a, whom they prefer to
candidate b. This example shows that PAV may give an equilibrium outcome when
FV does not.
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To show that FV may give an equilibrium outcome when PAV does not, consider
the following example:

Example 13.

I. 1 voter: ab|cd
II. 1 voter: ca|d b

III. 1 voter: c|bad
IV. 1 voter: d b|ac
V. 1 voter: d b|ca

Candidate b is the only candidate approved of by a majority of 3 voters. No voter, by
switching to a different approval strategy under FV, can induce a preferred outcome
to candidate b at level 2, making candidate b an equilibrium outcome. Candidate
b, being the sole majority-approved candidate, is also the winner under PAV. But
voter II, by switching from strategy ca to cad, can render both candidates d and b
majority-approved (3 votes each). Since d is preferred to b by a majority of 3 voters,
including voter II, voter II would have an incentive to induce this tied outcome under
PAV, showing that FV may give an equilibrium outcome when PAV does not. Q.E.D.

The fact that equilibria under PAV do not imply equilibria under FV, or vice
versa, indicates that one system is not inherently more stable than the other.6

7 The Effects of Polls in 3-Candidate Elections

In elections for major public office in the United States and other democracies,
voters are not in the dark. Polls provide them with information about the relative
standing of candidates and may also pinpoint their appeal, or lack thereof, to voters.

In this section, we focus on 3-candidate elections, because they are the simplest
example in which information about the relative standing of candidates can affect
the strategic choices of voters. Also, such elections are relatively common. We will
show how voter responses to a sequence of polls may dynamically change outcomes
under PAV and FV.7

To assess the effects of polls in 3-candidate elections, we make the following
assumptions:

1. No majority winner. None of the three candidates, a, b, or c, is the top choice of
a majority of voters.

6 AV yields candidates c in Example 9, and candidate b in Example 13 – but neither in equilib-
rium – showing that equilibria under PAV and FV are not always the same as under AV. Merrill
& Nagel (1987) suggest that outcomes under multistage systems like PAV and FV may be more
manipulable than outcomes under single-stage systems like AV, but the manipulation of PAV and
FV are computationally more demanding and, consequently, probably more impracticable.
7 The effects of polls under plurality voting and AV were analyzed in Brams (1982) and Brams &
Fishburn (1983, 2007, chap. 7) using a different dynamic model; see also Meirowitz (2004) and
citations therein.
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2. Initial support of only top choice. Before the poll, each voter approves of only
his or her top choice.

3. Poll information. The poll indicates the relative standing of the candidates. For
example, the ordering na > nb > nc indicates that candidate a receives the most
approval votes, candidate b the next most, and candidate c the fewest (for sim-
plicity, we do not allow for ties).

4. Strategy shifts. After the results of the poll are announced, voters may shift strate-
gies by approving of a second choice as well as a top choice. Voters will vote for
their two top choices if and only if the poll indicates (i) the about-to-become-
winner is their worst choice and (ii) they can prevent this outcome by approving
of a second choice, too, given they did not previously approve of this choice.

5. Repeated responses. After voters respond to a poll, they respond to new informa-
tion that is revealed in subsequent polls, as described in assumption 4 above.

6. Termination. Voters cease their strategy shifts when they cannot induce a pre-
ferred outcome.

We assume that voters truthfully rank the three candidates at the start and do not
change these rankings in response to the initial poll or any subsequent poll. We next
investigate what outcomes occur in response to polls under PAV for two different
kinds of preferences.

1. Single-peaked preferences. Voters perceive the candidates to be arrayed along
a left-right continuum, with candidate a on the left, candidate b in the middle, and
candidate c on the right. Each voter most prefers one of these candidates, next most
prefers an adjacent candidate, and least prefers the candidate farthest from his or her
most-preferred candidate, who may or may not be adjacent.

More specifically, a-voters on the left with preference ranking abc may switch
from strategy a to strategy ab, whereas c-voters on the right with preference ranking
cba may switch from strategy c to strategy cb. The b-voters in the middle split
into two groups: one group prefers candidate a over candidate c(bac), and the other
group prefers candidate c over candidate a(bca). The former group may switch from
strategy b to strategy ba, whereas the latter group may switch from strategy b to
strategy bc.

Because no candidate is the first choice of a majority and preferences are single-
peaked, the candidate preferred by the median voter, b, is the unique Condorcet
winner – he or she is preferred by a majority to both candidate a and candidate c.
We show in Table 1 the three qualitatively different poll rankings that the initial poll
may give:

(i) na > nb > nc; (ii) na > nc > nb; (iii) nb > na > nc,

where ni indicates the number of approval voters of candidate i. If the roles of can-
didates a and c are reversed, there are three analogous rankings, which we do not
show in Table 1:

(iv) nc > nb > na; (v) nc > na > nb; (vi) nb > nc > na.
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Table 1 Strategy switches of voters in response to a poll under PAV and FV: single-peaked pref-
erences with three poll rankings (b Condorcet winner)

Poll ranking (i) na > nb > nc (ii) na > nc > nb (iii) nb > na > nc

Initial strategies a|bc
b|ac
b|ca
c|ba

a|bc
b|ac
b|ca
c|ba

a|bc
b|ac
b|ca
c|ba

Outcome a a b
Shift in strategies (if any)
after initial poll

a|bc
b|ac
bc|a
cb|a

a|bc
b|ac
bc|a
cb|a

Outcome b b

For poll ranking (i) in Table 1, the voters with preference rankings bca and cba
will switch from strategies b and c, respectively, to strategies bc and cb to try to
prevent their worst choice, candidate a, from winning (assumption 4). This results
in the election of candidate b, whether candidate b is the unique majority-approved
candidate – with approval from three classes of voters – or candidate c also wins a
majority – with approval from two classes of voters – in which case candidate b will
defeat candidate c in a pairwise contest. Because no voters can effect a preferred
outcome under PAV through any subsequent shifts in their strategies – in response
to a poll that shows candidate b to be the unique or largest-majority winner – no
voters will have an incentive to make further shifts.

The same shifts will occur for poll ranking (ii), again boosting candidate b to
winning status. As for poll ranking (iii), no voters will have an incentive to shift in
response to the initial poll, because the plurality winner, candidate b, is not the worst
choice of any voters.

Under FV, candidate b will also prevail. In the case of poll rankings (i) and (ii),
this occurs because candidate b is the unique or largest-majority winner after the
shift. In the case of poll ranking (iii), candidate b is the initial plurality winner, after
which the descent of voters ceases because no voter ranks b last.

In summary, whichever of the three qualitatively different poll rankings occurs
when voter preferences are single-peaked, the responses of voters to an initial poll
leads to the election of Condorcet winner b under both PAV and FV. But when
preferences are cyclical and there is no Condorcet winner, the evolution of a winner
is more drawn out, requiring up to three shifts rather than just one.

2. Cyclical preferences. We consider the simplest case of cyclical preferences,
wherein three classes of voters, none with a majority of votes initially, have prefer-
ences abc, bca, and cab, so a > b > c > a. For simplicity, we exclude voters with
preferences that do not contribute to the cyclic component of these voters (e.g., acb).

If, as assumed earlier, voters initially approve of only their top choices, there are
two qualitatively different poll rankings that the initial poll may give:

(i) na > nb > nc; (ii) na > nc > nb.
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Table 2 Strategy switches of
voters in response to a poll
under PAV and FV: cyclic
preferences with two poll
rankings

Poll ranking (i) na > nb > nc (ii) na > nc > nb

Initial strategies a|bc
b|ca
c|ab

a|bc
b|ca
c|ab

Outcome a a
Shift I (Initial Poll) a|bc

bc|a
c|ab

a|bc
bc|a
c|ab

Outcome c c
Shift II (2nd Poll) ab|c

bc|a
c|ab

ab|c
bc|a
c|ab

Outcome b b
Shift III (3rd Poll) ab|c

bc|a
ca|b

Outcome a

The four other possible rankings are analogous, with candidate b ranked first in two
cases and candidate c ranked first in the other two:

(iii) nb > na > nc; (iv) nb > nc > na; (v) nc > na > nb; (vi) nc > nb > na.

In Table 2, we show the strategy shifts that voters will make in response to poll
rankings (i) and (ii). After an initial poll that shows candidate a to be in first place
in each case, there will be one shift by the bca voters (Shift I) – and up to two
additional shifts (Shift II and Shift III) in response to subsequent polls that show
other candidates to be in first place – as voters try to prevent their worst choice from
winning.

To illustrate for poll ranking (i), the bca voters will switch from strategy b to
strategy bc in Shift I to try to prevent candidate a from winning with a plurality of
votes. But when this shift leads to candidate c’s receiving a majority of votes, the
abc voters will switch from strategy a to strategy ab in Shift II, giving candidates b
and c each a majority.

Under PAV, candidate b will be majority-preferred to candidate c in the contest
between these two majority-approved candidates after Shift II. Under FV, candidate
b, with approval from both abc and bca voters at level 2, will receive a larger ma-
jority than candidate c – based on the initial poll ranking – with approval from bca
and cab voters.

At this stage, even if the cab voters switched from strategy c to strategy ca, they
could not induce the election of candidate a, who will get a smaller majority than
candidate b, based on the initial poll ranking. Hence, the shifts will terminate after
shift II, resulting in the election of candidate b, the candidate with more first and
second-place approval than any other candidate.
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For poll ranking (ii), three shifts are required to induce the election of candidate a.
In the absence of a Condorcet winner, the most approved candidate in the cycle –
when all voters support their two top candidates – emerges as the winner under PAV
and FV.

In summary, when preferences are cyclical, the candidate who is ranked first
or second by the most voters prevails after three shifts under both PAV and FV.
Together with our results on single-peaked preferences, we have the following:

Proposition 14. In the poll model for 3-candidate elections under PAV and FV,
strategy shifts result in the election of (1) the Condorcet winner if preferences are
single-peaked and (2) the candidate ranked first or second by the most voters if
preferences are cyclical.

These outcomes, however, may not be stable.

Proposition 15. In the poll model for 3-candidate elections under PAV and FV,
strategy shifts may result in outcomes that are not in equilibrium when there is a
Condorcet winner.

Proof. Assume that voter preferences are single-peaked (Table 1), and consider poll
ranking (ii) after the shift. Assume that the bca and cba voters constitute a majority.
Then the cba voters, by switching from strategy cb to strategy c (a contraction), will
induce the election of candidate c, whom they prefer to candidate b. As the sole
majority-approved candidate, candidate c wins under both PAV and FV, rendering
candidate b not in equilibrium. Q.E.D.

Surprisingly, it is not the cyclical preferences of voters (in Table 2) that produce
instability but the single-peaked preferences of voters (in Table 1) for poll ranking
(ii) – and poll ranking (i) as well if the bca and cba voters constitute a majority in this
situation – that produce instability. Thus, the strategy shifts of voters in response to
polls, while leading to the outcomes indicated in Proposition 14, may not terminate
at these outcomes because of the possible nonequilibrium status of candidate b for
poll rankings (i) and (ii) in Table 1.

This is not to say that the Condorcet winner (in Table 1), candidate b, cannot
be supported as a Nash equilibrium in this situation. It turns out that the “critical
strategy profile” of candidate b,

ab|c;b|ac;b|ca;cb|a,

which maximizes b’s approval vis-à-vis the other candidates, supports b as a strong
Nash equilibrium – no coalition of voter classes, by choosing different approval
strategies, can induce an outcome they prefer to candidate b. Not only is it impos-
sible for a coalition to replace b with a preferred candidate under PAV and FV, but
this is also true of AV. In fact, under AV, candidates are strong Nash equilibria at
their critical strategy profiles if and only if they are Condorcet winners (Brams &
Sanver, 2006; Brams, 2008, Chap. 2).

We have assumed up until now that while voters may changes their levels of
approval in order to try to induce preferred outcomes, they are steadfast in their
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rankings of candidates, which we assumed are truthful. But what if they can falsify
their rankings? Then the candidates will be more vulnerable. But falsifying rank-
ings, especially if information is incomplete, is a risky strategy that many voters are
likely to shun.8

8 Conclusions

It is worth emphasizing that PAV and FV duplicate AV when at most one candidate
receives a majority of approval votes. In such a situation, there seems good reason
to elect the AV winner, because if there is a different Condorcet winner, he or she
would not be majority-approved. If the AV winner also is not majority-approved,
his or her election seems even more compelling, because this is the most acceptable
candidate in a field in which nobody is approved of by a majority.

When two or more candidates are majority-approved, PAV and FV may elect
different winners from AV, the Borda count, STV, and each other. PAV chooses
the majority-preferred candidate, if there is one, among those who are majority-
approved, whereas FV chooses the first candidate to receive a unique or largest
majority in the descent.9

If there is no majority-preferred candidate among the majority-approved candi-
dates, PAV chooses the most approved candidate in the cycle. FV does the same
if this candidate is in the first set of candidates to receive majority approval in the
descent; if not, a majority-approved candidate with less approval – but received
earlier – will be the FV winner. PAV and FV winners, if different from the AV win-
ner, are likely to have more coherent majoritarian positions, not just be the lukewarm
choices of most voters.

Candidates with coherent positions are more likely to run if they believe, without
egregious pandering, that they can win. Consequently, PAV and FV may well en-
courage candidates to enter the fray who might otherwise be deterred because they
are unwilling to sacrifice their fundamental tenets in order to win.

PAV and FV afford voters the opportunity to approve of lower-ranked candi-
dates without necessarily helping them to win. Unlike AV, in which voting for a
less-preferred candidate can cause the displacement of a more-preferred candidate,
PAV and FV impede this event, though they do not rule it out entirely.

8 AV, of course, does not permit such falsification since voters do not rank candidates. While AV
leads to the same outcomes as PAV and FV in the poll model, it may give very different outcomes
in other situations, as we showed earlier.
9 Majority approval may be too high a bar to impose if the field of candidates is large. This bar
has been lowered in some plurality elections in the United States, wherein a candidate can win
outright if he or she obtains at least 40% of the vote; otherwise, there is a runoff election between
the two highest vote-getters. Our view is open about the amount of approval (1) that two or more
candidates must receive in order that rule 2 take effect under PAV or (2) that one candidate must
receive for the descent to stop under FV. Perhaps a simple majority should not be the sine qua
non. A lower threshold may be appropriate in elections in which at most one candidate is likely to
receive majority approval and, therefore, the winner will always be the AV winner, obviating the
need for PAV and FV.
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PAV, for example, takes into account voter preferences, which can override the
greater approval a less-preferred candidate receives. Both PAV and FV are are
approval-monotonic and rank-monotonic, so approving of a candidate or ranking
him or her higher never hurts, and may help, this candidate to get elected.

PAV is more information demanding than FV, which asks voters to rank only their
approved candidates. Without complete information on preference rankings, FV is
less able to ensure the election of a majority-preferred – or the most approved if
there is no majority-preferred – candidate among the majority-approved candidates.

PAV and FV may elect different candidates in equilibrium if voters contract or
expand their approval sets; neither system is inherently more stable than the other.
In the 3-candidate dynamic poll model, Condorcet winners are elected after one
shift when voter preferences are single-peaked – though not always in equilibrium –
whereas candidates ranked first or second by the most voters are equilibrium choices
after several shifts when voter preferences are cyclic.

By combining information on approval and preferences, PAV and FV may yield
outcomes that neither kind of information, by itself, produces. Although PAV is
more likely to lead to majority-preferred winners among the majority-approved, its
greater information demands of voters may make FV a better practical choice. Such
trade-offs require careful consideration, as do other ways of mixing approval and
preferences to coax better social choices out of a voting system.10

Finally, it is worth mentioning a situation in which PAV was recently adopted by
the New York University politics department because of a failure, at least initially,
of plurality voting (PV) to choose a candidate for a faculty position. Two candi-
dates, A and B, were vying for that position, with almost two-thirds of department
members favoring one or the other.

But the department split almost evenly over which candidate members preferred.
Because the more than one-third who favored neither candidate won under PV, it
seemed that neither candidate would be hired, though a substantial majority pre-
ferred either A or B over no hire. In the end, however, the majority prevailed in a
second vote over hiring one or the other, with a third vote showing which one of the
two candidates was preferred.

Under PAV, there would have been three options: Hire A, hire B, or hire nei-
ther (the position did not have to be filled). The nearly two-thirds who favored either
A or B over no hire presumably would have approved of both, at which point their
preferences for either A or B would have elected one of the two candidates (except
in the case of a tie).

10 Ossipoff & Smith (2005) survey a number of such voting methods, several of which disqualify
candidates if another candidate is ranked over them on more than half the ballots. Thus, if there
is a Condorcet winner, this candidate will disqualify all others and will, therefore, be elected,
independent of how approved he or she is. In our view, a Condorcet winner who receives less than
majority approval – as we showed can happen under very different circumstances in Examples 1,
2, and 3 – should not be elected when there are other candidates who receive majority approval.
Both PAV and FV give precedence to majority-approved candidates over Condorcet winners when
there is a conflict. But among majority-approved candidates, Condorcet winners take precedence
under PAV.
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Note that AV might not have succeeded, because some of the A and B supporters
might have approved of only their favorite, which could have prevented either from
winning. But under PAV, there is no good strategic reason for A and B supporters not
to approve of both, knowing that their preferences will determine a winner between
the two if both are majority-approved. Thus PAV mitigates, if not prevents, certain
kinds of strategizing to which AV may be vulnerable, including what Nagel (2006,
2007) calls the “Burr dilemma.”11

Acknowledgement This chapter appears in slightly different form in Brams (2008, chap. 3). We
thank an anonymous referee for helpful suggestions.
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Anonymous Voting Rules with Abstention:
Weighted Voting

William S. Zwicker

1 Introduction

We consider legislative voting rules that govern collective approval or disapproval
of a bill or a motion, and that allow abstention (or absence) as a “middle option” dis-
tinct from a yes or no vote. In contrast with Peter Fishburn’s work on representative
systems, or RSs, we do not treat collective approval and disapproval symmetrically;
a voting rule may have a built-in bias against passing motions, for example. In this
asymmetric case, the additional assumption that a rule is anonymous (all votes count
equally) still allows for a significant variety of rules, a number of which are used by
real voting bodies (see Freixas & Zwicker (2003)). We provide three characteriza-
tions of weighted voting in this context, and discuss potential applications.

In real legislative voting bodies an abstention or absence often does have an ef-
fect different from a voter’s yes or no vote. Yet since the publication of Theory
of Games and Economic Behavior von Neumann & Morgenstern (1949) the stan-
dard mathematical model for a legislative voting system has been the simple game,
which by virtue of its structure treats any non-yes vote as a no. Peter Fishburns
1973 work seems to be the earliest to have taken abstention seriously, but others fol-
lowed: Rubenstein (1980); Bolger (1986, 1993a,b); Felsenthal & Machover (1997,
1998); Amer et al. (1998); Freixas & Zwicker (2003); Côrte-Real & Pereira (2004);
Dougherty & Edward (2004); Bilbao, Fernández, Jiménez, & López (2005a,b).

Distinguishing features of a RS, as defined in Fishburn (1973), include:

• It is constant-sum (treats outcomes symmetrically): if each vote is flipped (from
no to yes, yes to no, and abstain to abstain), the outcome is flipped,1

• It admits ties in the outcome: a motion may neither pass nor fail, but be on the
border,

1 Fishburn refers to this property as “duality”.
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• Such a tie is “knife-edge”: a change in vote by any one non-dummy voter breaks
the tie,

• And voters may have different influence: the rule is not required to be anony-
mous.

Any constant-sum voting rule that allows abstention must admit ties,2 so the
second requirement is forced. However, a number of real voting rules that allow
abstention are not constant sum and do not admit ties (Freixas & Zwicker (2003,
2008)). We argue in Freixas & Zwicker (2003) that the appropriate model for such
a rule is a (3,2) game, and show that grade trade robustness (a generalization of El-
got’s asummability Elgot (1960/ 1961), or of trade robustness in Taylor & Zwicker
(1992); Taylor & Zwicker (1999), for simple games) characterizes weighted voting
for (3,2) games. Without the constant sum property, a weighted rule that assigns
weight 0 to each abstention may, for example, assign more (negative) weight to a
no than (positive) weight to a yes. In fact, this must be the case for a permanent
member of the UN Security Council (Freixas & Zwicker (2003)). A weighted RS is
quite different: the constant-sum property effectively requires us to assign to a voter
the same positive weight for her yes as negative weight for her no.

What happens when we impose anonymity on an RS? The constant-sum con-
dition (together with a monotonicity requirement saying that more yes votes never
cause a motion to fail) implies that a motion must pass with strictly more yes than
no votes, fail with strictly more no than yes votes, and tie with equal numbers of
each. So this version of majority rule with abstention – a weighted rule (as we’ll
see) – is the only anonymous RS. This assertion can be thought of as May’s Theorem
for Representative Systems. May’s original version of this theorem was in the “no
abstentions, no ties” setting; it asserts that the only anonymous, monotonic, voting
rule that is constant-sum (equivalently, that is neutral for two alternatives) is major-
ity rule with an odd number of voters (May (1952); Taylor (1995)). This is a very
special instance of weighted voting and the following restatement is helpful for our
purposes:

May’s Theorem (Recast) In the no ties, no abstentions, constant-sum setting, anonymity +
monotonicity implies weighted voting.

We show in Freixas & Zwicker (2008) that the situation is more interesting for
anonymous (3,2) games: many rules are possible, and not all are weighted (as we
will soon see). In fact, each such rule for n voters corresponds to a quota function
q that assigns, to each integer a in [0,n], the minimum number q(a) of yes votes
required for collective approval, given that there are a abstentions. Figures 1 and 2
show the quota function for relative majority rule (also called simple majority rule,
in which approval of a motion requires strictly more yes votes than no), and for
the majority threshold system used in certain referenda in Hungary (see Côrte-Real
& Pereira (2004)), wherein passage requires more yes votes than no, subject to the
requirement that at least 25% of all registered voters vote yes.

2 For example, when everyone abstains. But for most realistic constant sum voting rules, absten-
tions force many other ties, as well.
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Fig. 1 Quota function diagram: relative majority rule, with abstention, for 7 voters

In fact the monotonicity requirement for (3,2) games (see Definition 2.2) implies
that the graph of y = q(a) must share the following features with Fig. 1:

• It must be a step function
• The graph can never step up, and whenever the graph steps down, it can only step

down by one unit
• If the graph “runs off the edge” by crossing the hypotenuse of the triangular

grid of points, then it becomes undefined, and it remains undefined for all larger
values of a – that is, if it is possible for the number a of abstentions to become so
high that the bill fails to pass even when each non-abstainer votes yes then any
number of abstentions greater than a must also preclude passage.

These conditions are stated precisely in Freixas & Zwicker (2008), where we
show that they are necessary and sufficient for the function q to correspond to an
anonymous (3,2) game.

Theorem 1. Quota Function Characterization Theorem
Every anonymous (3,2) game corresponds to a quota function satisfying the

properties specified above, and every such quota function induces a unique anony-
mous (3,2) game.
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This result can be thought of as May’s Theorem for (3,2) games. As a corollary, in
Freixas & Zwicker (2008) we showed that for n voters the number of distinct anony-
mous voting rules with abstention (anonymous (3,2) games) is 2n+1 – significantly
greater than the number of anonymous RSs!

Our purpose in this note is to provide three characterizations of weighted voting
for the context of anonymous voting rules that allow abstention, but disallow ties:

Theorem 2. Main Theorem on Weighted Anonymous Voting with Abstention3 Let G
be an anonymous (3,2) game. Then the following are equivalent:

1. G is weighted
2. G is bimonotonic
3. G’s quota-function diagram is linearly separable
4. G satisfies the almost equal plateau sum condition, or a.e.p.s.

We’ll discuss weighted voting shortly. Bimonotonicity has two interpretations.
It is a very weak form of grade-trade robustness, the condition that character-
izes weightedness for ( j,k) games in general. Alternately, it is a strong form of
monotonicity. Keeping in mind this second interpretation, we now restate part of
the theorem:

Main Theorem (part (2) ⇒ (1), recast) In the no ties, abstentions allowed setting,
anonymity + bimonotonicity implies weighted voting.

A comparison with the previously recast version of May’s Theorem suggests that
this fragment of the main theorem may also lay claim to being May’s Theorem for
(3,2) games, although it is not the same as the version we mentioned earlier.

Linear separability and a.e.p.s. are conditions on the shape of the graph of the
quota function. The first asserts that the same separation accomplished by the step
function can be achieved by a straight line (as, in Fig. 1, we observe to be the case for
relative majority rule but not for the majority threshold rule of Fig. 2). The second
is a more constructive condition that puts precise limits on the amount by which the
plateaus (steps) in the step function qG can vary in length. It can be seen as a version
of the requirement that the convex hull of all losing profiles be disjoint from that of
all winning coalitions.

2 Anonymous (3,2) Games, Weighted Voting, and Linear
Separability

If we allow each voter in a yes-no voting system the additional option of abstain-
ing, then the profile of their individual decisions can be represented as an ordered
triple (Y,A,H) consisting of the sets of voters who choose yes, abstain, and no, re-
spectively. In Freixas & Zwicker (2003) we define a (3,2) game in terms of a value

3 In the body of the paper, Theorem 2 is separated into Proposition 1, Theorem 3, and Theorem 4.
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function that assigns, to each such ordered 3-partition (Y,A,H), a value in the set
{win, lose}. More generally, a ( j,k) game employs an ordered j-partition to profile
voters’ choices from among j ordered levels of input approval, and a value function
that assigns to each ordered j-partition an element from a value set containing k
ordered levels of output approval. We impose a certain monotonicity condition on
these structures, and argue that the resulting level of generality is the appropriate
one to model a broad variety of real decision rules. In the anonymous (3,2) context,
however, things can be kept more simple; we’ll record the profile of an election in
the form of three numbers y,a, and h representing the number of yes voters, abstain-
ers, and no voters, respectively.

Definition 1. Given a natural number n, an anonymous profile for n voters is an
ordered triple (y,a,h) of nonnegative integers with sum n. A value function V for n
voters assigns to each anonymous profile p for n voters a single value V (p) in the
set {win, lose}.

Of course, not every value function corresponds to a reasonable voting rule.

Definition 2. Given two anonymous profiles p = (y,a,h) and q = (y′,a′,h′) for n
voters we will write p <1 q if either y′ = y + 1,a′ = a− 1, and h′ = h, or if y′ =
y,a′ = a+1, and h′ = h−1. The left-shift order <LS is the transitive closure of <1,
and a value function V is monotonic if the winning profiles are closed upwards in
the left-shift order: whenever V (p) = win with p <LS q, it follows that V (q) = win.

Notice that p <LS q holds precisely when p can be transformed into q via a series
of switches in vote by individual voters, each of which is in the direction of greater
approval (from no to abstain or to yes, or from abstain to yes).

Definition 3. An anonymous (3,2) game for n voters is a pair G = (n,V ) in which n
is a natural number and V is a monotonic value function for n voters. We’ll say that
a profile p is winning if V (p) = win, and losing if V (p) = lose.4

Each anonymous profile (y,a,h) for 7 voters corresponds to a node in the quota
function diagram of Fig. 1. Figure 2 is a “population generic” diagram, in which
the black (losing) and white (winning) nodes have merged into darker and lighter
regions, respectively. We might imagine that the number n of voters is too great for
the nodes to resolve as individual points; alternately, such a diagram corresponds to
a sequence of voting rules, one for each positive integer n.

Definition 4. An anonymous (3,2) game G = (n,V ) is weighted if there exists a
weighted representation, consisting of a weight vector

w = (wyes,wabstain,wno)

4 Notice that we do allow the (3,2) game for which every profile is winning, as well as that for
which every profile is losing; this simplifies some theorem statements at the cost of admitting two
games that are of little use as real voting rules.



244 W.S. Zwicker

Fig. 2 Population generic quota function diagram: Hungarian “majority threshold” referendum
rule

with real number components satisfying wyes ≥ wabstain ≥ wno together with a
threshold or quota t such that for every anonymous profile p = (y,a,h) for n voters
we have

V (y,a,h) = win⇔ p ·w≥ t.

Thus yes, abstain, and no votes are each assigned a fixed weight. The dot product
represents the total weight Ww(p) = ywyes +awabstain +hwno cast by all voters, and
the motion carries if and only if this total meets or exceeds the preset threshold.
Notice that by subtracting the constant vector (wabstain,wabstain,wabstain) from the
weight vector (wyes,wabstain,wno), while subtracting the product nwabstain from t, we
can obtain an equivalent weighted representation in which the abstainers cast no
weight, yes-voters cast nonnegative weight, and no-voters cast non-positive weight,
which some readers may find more palatable.

But is this definition congruent with one’s naive notion of what weighted voting
with abstention ought to mean in the anonymous setting? Initially, one might guess
that each voter should receive a single vote, which is cast either against or for the
proposal (or not cast at all, in the case of an abstaining or absent voter). Perhaps col-
lective approval should require that the yes votes exceed the no votes by some fixed
margin m. Or perhaps it should require that some minimum ratio r of yes votes to no
votes be achieved, e.g. r = 2 if one requires for collective approval that of the active
voters (those present and not abstaining), at least two-thirds should vote yes. It is
easy to see that the first proposal is tantamount to restricting Definition 4 by requir-
ing that w = (1,0,−1) with t = m, while the second is equivalent to the restriction
w = (1,0,−r) with t = 0. Proposition 1, which follows, provides some justification
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for Definition 4, by suggesting that it represents a sort of minimal extension encom-
passing both the margin and the ratio approaches. However, we would argue that
a stronger justification is provided by the combinatorial characterization via grade
trade robustness of the non-anonymous version of Definition 4; we refer the reader
to Freixas & Zwicker (2003) for details.

With the help of three adjustments (none of which change the underlying (3,2)
game G) we can now put any weight vector w = (wyes,wabstain,wno) into a standard
form. First, we arrange, as described above, wyes≥ 0,wabstain = 0, and wno≤ 0. Next,
we exploit the “wiggle room” extant in any weighted rule with finitely many voters
by adding some small positive value to wyes. If this increment is sufficiently small,
then we preserve the requirement that Ww(p) > Ww(q) hold whenever p is winning
and q is losing, so that a threshold t can separate by squeezing strictly between the
weights of all winning profiles and those of all losing ones. Finally by multiplying
our transformed vector w through by the reciprocal of wyes (while multiplying the
threshold by the same factor) we obtain the standard form weight vector

w = (1,0,s);s≤ 0.

Thus we can specify any weighted rule via the two parameters s≤ 0 and t ≥ ns,
where s denotes the weight of a no vote and t is the threshold for passage. (Note that
any rule with t < ns produces the same outcomes as t = ns: all profiles are winning.)

In the rule with parameters s and t, a profile p = (y,a,h) is winning if and only if

y+hs≥ t. (1)

After substituting n− y− a for h in this inequality, it is easy to see that it is
equivalent to

y≥
( s

1− s

)
a+

( t−ns
1− s

)
. (2)

Now if we define new parameters

m =
s

1− s
,b =

t−ns
1− s

;−1 < m≤ 0,b≥ 0

(where the limits on m and b correspond to those on s and t), then inequality (2)
becomes

y≥ ma+b. (3)

These new parameters have a simple geometric interpretation. When the equa-
tion y = ma + b is graphed on the quota function diagram of G (in which y is the
vertical axis, and a is the horizontal) we obtain a straight line L with slope m and
y-intercept b.

Definition 5. An anonymous (3,2) game G is linearly separable if there exists a
straight line L with slope m satisfying −1 < m≤ 0 and with y intercept b≥ 0, such
that all winning nodes on the diagram lie on or above L, and all losing nodes lie
strictly below L.
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The previous discussion constitutes a proof of the following:

Proposition 1. Let G = (n,V ) be an anonymous (3,2) game. Then the following are
equivalent:

1. G is weighted
2. There are real number parameters s≤ 0 and t ≥ ns such that G’s winning profiles

p = (y,a,h) are precisely those satisfying y+hs≥ t.
3. G is linearly separable.

Relative majority rule (Fig. 1) is clearly linearly separable, while the majority
threshold rule of Fig. 2 is not. It is well-known (see, for example, Taylor & Zwicker
(1999)) that an ordinary simple game is weighted if and only if the winning coali-
tions (suitably plotted as a set of points in ℜn) are separable from the losing coali-
tions via a hyperplane. The line L can be thought of as a projection, onto a subspace
of small dimension, of a separating hyperplane.5

Note that in the majority threshold rule, the graph of the quota function q(a) runs
into the hypotenuse of the triangle and stops. For any rule sharing this feature, the
last (rightmost) node on the graph of q(a) represents a profile p = (K,n−K,0) in
which

• There are a certain number n−K of abstentions,
• Of the active voters, all K of them vote yes (where, in the case of the Hungarian

Referendum rule, K = 1
4 of the registered voters),

• And the rule grants collective approval for p.

Because this node is the lowest white (passing) node on the diagram, we know
that K is the absolute minimum number of yes votes that can ever achieve collective
approval. Establishing some type of floor for collective approval is not uncommon
among real voting rules, with the goal of avoiding situations wherein a tiny handful
of active voters can change the status quo body of law. However, the more typical
approach is to impose a quorum, which is a floor on the number of active voters,
rather than a majority threshold, where the floor is on the number of yes voters.
These two approaches have dramatically different effects, because a quorum typi-
cally violates monotonicity. The effect is to give an odd incentive to voters opposed
to the motion under consideration: in many cases, they have greater influence by
staying home than by voting no. In Italy the law governing abrogative referenda has
just such a quorum provision and according to Uleri (2002) the effect on partici-
patory democracy in Italy has been perverse – see further discussion in Côrte-Real
& Pereira (2004), and Axtman (2003) makes amusing reading for the US context.
A majority threshold has no such perverse effect, so in this respect it seems much
preferable to a quorum.

But if we are designing some voting rule that will allow abstention or absence,
imposing a majority threshold is not the only approach that simultaneously pre-
serves monotonicity and establishes a participation floor – these ends are met by

5 In this connection, see Remark after Definition 9.
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any quota function that both “crosses the hypotenuse” at some point (K,n−K,0)
and also satisfies the conditions of Theorem 1.

In particular, one can build any desired floor into a weighted rule. In Freixas &
Zwicker (2008) we refer to such rules as soft quorum weighted rules. An example
would be the rule that requires, for collective approval, that the number of yes votes
be at least 1

3 of the assembly together with at least 2
5 of any active voters beyond

this 1
3 :

y≥ n
3

+
2
5

(
y+h− n

3

)
.

Note that this rule can be thought of as a sort of sliding ratio quota. With all vot-
ers active a 60% approval rate is required for passage, but as the number of active
voters gradually falls, the required fraction of votes in favor gradually increases,
until it reaches 100% when only 1

3 of voters are active. With fewer than 1
3 of the vot-

ers active the percentage in effect rises above 100%, rendering collective approval
impossible and establishing the floor. The example suggests yet a third parameteri-
zation of weighted rules,6 using fractions r1 and r2 corresponding to the 1

3 and 2
5 of

the example.
As far as we know, no such rule has been implemented in practice. This is a bit

surprising, as the principle seems to be simple.

3 Grade Trade Robustness and Bimonotonicity

In the non-anonymous context, a profile for a (3,2) game G consists of a vector
pi = (yesAi, abstainAi, noAi) in which xAi denotes the set of x-voters for pi. Given a
vector P = (p1, p2, . . . , pk) of such profiles, a migration consists of a change pi

′, p j
′

in exactly two of the profiles pi, p j (i = j) from P, of the following kind: there exists
some individual voter s and some pair x,y∈ {yes,abstain,no} of possible votes such
that

• s ∈ xAi and s ∈ yA j
• s ∈ yAi

′ and s ∈ xA j
′

• there are no other differences between pi and p′i, or p j and p′j,

with P′ = (p1, p2, . . . , p′i, . . . , p′j, ...pk). A k-grade-trade consists of a finite sequence

P,P′,P′′, . . . ,P′′ · · ·′ = P∗

of migrations that convert a pre-trade vector P = (p1, p2, . . . , pk) into a post-trade
vector P∗ = (p1∗, p2∗, . . . , pk∗). We say that G is k-grade-trade robust if no such
trade can convert a vector P of winning profiles into a vector P∗ of losing profiles,

6 However, as described here r1 and r2 only parameterize that subclass of weighted rules for which
a participation floor exists.
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and is grade-trade robust if it is k-grade-trade robust for every integer k ≥ 2.
We show, in Freixas & Zwicker (2003), that G is grade-trade robust if and only
if it is weighted.7

We might expect that in the context of anonymous voting rules, something con-
siderably less than the full power of grade-trade robustness would suffice to guaran-
tee weightedness.

Definition 6. A shift is an ordered pair (u,v) of nonnegative integers. An anonymous
profile (y,a,h) and a shift (u,v) are compatible if a ≥ u + v, and the (u,v) shift of
a compatible anonymous profile (y,a,h) is the anonymous profile (y + u,a− u− v,
h+ v).

Definition 7. Let G = (n,V ) be an anonymous (3,2) game. We say that the shift
(u,v)

• Never hurts if the (u,v) shift of every winning compatible anonymous profile for
G is winning

• Sometimes helps if the (u,v) shift of at least one compatible losing profile is
winning

• Is big if it both never hurts and sometimes helps.

Similarly, the shift (u,v)

• Never helps if the (u,v) shift of every losing compatible anonymous profile for
G is losing

• Sometimes hurts if the (u,v) shift of at least one compatible winning profile is
losing

• Is small if it both never helps and sometimes hurts.

These definitions were suggested by the following observation. For any
weighted, anonymous (3,2) game G = (n,V ), consider a standard form weight
vector w = (1,0,s), s ≤ 0. Consider any (u,v) shift (y + u,a− u− v,h + v) of a
compatible (y,a,h). The effect of this shift is to increment the total weight cast by
the amount u + vs, which is nonnegative when u

v ≥ |s|. In the weighted case, then,
any (u,v) shift with u

v ≥ |s| never hurts, while any with u
v ≤ |s| never helps.

Definition 8. A symmetric (3,2) game is bimonotonic if every shift (u,v) either
never hurts or never helps.

Remark 1. (i) Notice that bimonotonicity is a strong form of monotonicity, in the
following sense: ordinary monotonicity is equivalent to the statement that shifts
of the form (u,0) never hurt, while those of form (0,v) never help.8

7 In fact, this characterization extends to (non-anonymous) ( j,2) games. An elaborated version
characterizes weighted voting for ( j,k) games.
8 As bimonotonicity does not actually imply monotonicity, it would be more accurate to say that
this property is a strong form of unateness (see Taylor & Zwicker (1999)) as recast in the (3,2)
setting.
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(ii) If bimonotonicity fails, there is a (u,v) that sometimes hurts, as witnessed by
a winning compatible (y,a,h) with (y+u,a−u−v,h+v) losing, and also some-
times helps, as witnessed by a losing compatible (y#,a#,h#) with (y# +u,a#−u−
v,h# + v) winning. It is straightforward to then see that a grade-trade can convert
the two winning profiles (y,a,h), (y# + u,a#− u− v,h# + v) into the two losing
profiles (y + u,a− u− v,h + v), (y#,a#,h#).9 Thus a failure of bimonotonicity
is equivalent to a certain particular type of failure of 2-grade-trade robustness.
In fact, for anonymous (3,2) games every failure of grade trade robustness be-
tween two non-anonymous profiles can easily be shown to induce a failure of
bimonotonicity. Thus, in the anonymous (3,2) setting, bimonotonicity is equiva-
lent to 2-grade trade robustness.

Theorem 3. An anonymous (3,2) game is weighted if and only if it is bimonotonic.

Proof. The earlier remarks of this section establish that weightedness implies bi-
monotonicity. For the other direction, let G = (n,V ) be a bimonotonic anonymous
(3,2) game. The following claim is key to the proof that G is weighted.

Claim. 1 If (u1,v1) is a big shift and (u2,v2) is a small shift, then u1v2 > u2v1. Of
course, when v1,v2 = 0 this inequality asserts u1

v1
> u2

v2
.

Proof of claim An ordered quadruple (u1,v1,u2,v2) of nonnegative integers
represents a counterexample of size u1 +v1 +u2 +v2 if (u1,v1) is a big shift, (u2,v2)
is a small shift, and

u1v2 ≤ u2v1. (4)

If a counterexample exists, then there is one of minimal size. Hence, to prove the
claim it suffices to show that from any purported counterexample C we can construct
a strictly smaller counterexample C†. Before the construction, it helps to establish
the following:

Claim. 2 Every counterexample C = (u1,v1,u2,v2) satisfies u1 > 0,v1 > 0,u2 > 0,
and v2 > 0.

To establish claim 2, note that ordinary monotonicity implies that (u2,0) is not
small and that (0,v1) not big, whence u1 > 0 and v2 > 0. Thus u1v2 > 0 and condi-
tion (4) implies u2 > 0 and v1 > 0.

The construction of C† proceeds by cases.

Case 1 Assume that u1 ≤ u2 and v1 ≤ v2. Let u2† = u2− u1 and v2† = v2− v1.
Let C† = (u1,v1,u2†,v2†). Clearly, C† consists of nonnegative integers and C† is
strictly smaller than C. As condition (4) holds of C, we obtain

0 ≤ v1u2 − u1v2 = v1(u1 + u2†)− u1(v1 + v2†) = v1u1 + v1u2†− u1v1 − u1v2† =
∗v1u2†−u1v2†

9 Literally, of course, the trade takes place between non-anonymous profiles, with the anonymous
profiles being vectors of cardinalities of the corresponding sets.
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whence C† also satisfies (4). To finish case 1 we need only show that (u2†,v2†)
sometimes hurts; our assumption of bimonotonicity then implies that (u2†,v2†) is
small. We know that (u2,v2) sometimes hurts, so we may pick a winning anonymous
profile p = (y,a,h) with a ≥ u2 + v2 such that p′ = (y + u2,a− u2− v2,h + v2) is
losing. Consider the sequence obtained by applying first a (u1,v1) shift to p, and
then a (u2†,v2†) shift to the result:

p = (y,a,h)
p1 = (y+u1,a−u1− v1,h+ v1)
p2 = (y+u1 +u2†,a−u1−u2†− v1− v2†,h+ v1 + v2†)

As (u1,v1) never hurts and p is winning, p1 is winning. As p1 is winning and p2
is losing, it follows that (u2†,v2†) sometimes hurts.

Case 2 Assume u1 ≥ u2 and v1 ≥ v2. Let u1† = u1−u2 and v1† = v1− v2. Using
arguments similar to those in case 1, we can show that C† = (u1†,v1†,u2,v2) is a
smaller counterexample than C.

Case 3 Assume u1 > u2 and v1 < v2. This case assumption violates (4), so the
case does not occur.

Case 4 Assume u1 < u2 and v1 > v2. We claim that by setting u2† = u1 we obtain
a smaller counterexample C† = (u1,v1,u2†,v2). As u2† = u1 and v1 > v2, (4) holds
for C†. By ordinary monotonicity, any anonymous profile (y,a,h) that is hurt by a
(u2,v2) shift is also hurt by any (u,v2) shift with u < u2, and from bimonotonicity
it now follows that (u2†,v2) is small.

This completes Case 4 and Claim 1. Returning to the proof of Theorem 3, we
note that there are but finitely many small shifts (uS,vS) and finitely many big shifts
(uB,vB), so we may choose a real number d such that

d >
uS

vS
and d <

uB

vB

holds for each small and big shift, respectively. Note that the first fraction uS
vS

is
always well defined, as vS is never zero for a small shift (by ordinary monotonicity).
While vB = 0 is indeed possible, we’ll simply declare “d < uB

vB
” true in this event.

We claim there exists a weighted representation of G that assigns each voter the
standard form weight vector (1,0,−d). It suffices to prove that the weight of an
arbitrary winning profile (yW ,aW ,hW ) is strictly greater than that of an arbitrary
losing profile (yL,aL,hL), i.e., that

yW −dhW > yL−dhL

for then we can insert some real number threshold t between the greatest weight
attained by any losing profile and the least weight achieved by any winning profile.

Assume first that yL ≥ yW . Then ordinary monotonicity implies that hL > hW so
that if we set u = yL−yW ,v = hL−hW , then a (u,v) shift converts the winning profile
(yW ,aW ,hW ) into the losing profile (yL,aL,hL). So (u,v) is too small, whence
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d >
u
v

=
yL− yW

hL−hW

so d(hL−hW ) > yL− yW , whence yW −dhW > yL−dhL, as desired.
The other possibility is that yL < yW . Then if hL ≥ hW , the desired inequality

yW − dhW > yL − dhL follows immediately. So let us assume hL < hW . Set u =
yW − yL,v = hW −hL. Then a (u,v) shift converts the losing profile (yL,aL,hL) into
the winning profile (yW ,aW ,hW ). Thus (u,v) is big, whence

d <
u
v

=
yW − yL

hW −hL

from which yW −dhW > yL−dhL, as desired.

4 The Almost Equal Plateau Sum Condition

For a small value of n, we can tell by inspection of the quota function diagram for G
whether or not the game is linearly separable, but with more voters the issue is not
so obvious. Can we find a more constructive condition on the degree of straightness
of qG’s graph that is equivalent to weightedness for a (3,2) game G? To motivate
the answer, consider 3, which depicts two plateaus of some quota function graph,
whose widths differ by 2. As can be seen in the figure, this leads to a failure of
bimonotonicity, because the (1,3) shift of the winning profile (y,a,h) is the losing
profile (y + 1,a− 4,h + 3), which in turn has as its (1,3) shift the winning profile
(y + 2,a− 8,h + 6). However, the failure would evaporate if the shorter plateau
owed its reduced length to the fact that q’s graph had run across the hypotenuse of
the triangular array of nodes (as in Fig. 4), or across the vertical (left) leg, and the
shorter plateau were thus “incomplete.” Similarly, the failure would disappear if the
longer plateau were a “bottom plateau” – owing its length to the fact that q’s graph
had bottomed out along the horizontal leg of the triangle, as in Fig. 5. Providing that
we set aside incomplete shorter plateaus, and bottomed out longer ones, it is easy to

(y, a, h)

(y+1, a-3, h+2)

(y+2, a-6, h+4)

Fig. 3 A plateau of width 5 and a plateau of width 3 result in a failure of bimonotonicity
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hypotenuse

(y, a, 0)

Fig. 4 The shorter plateau does not violate bimonotonicity, because it is incomplete (truncated by
the hypotenuse)

lower leg of triangle

Fig. 5 The longer plateau does not violate bimonotonicity, because it is bottom (runs along the
lower leg of the triangle)



Anonymous Voting Rules with Abstention: Weighted Voting 253

A

B

C

line L

Fig. 6 A failure of the almost equal plateau sum condition leads to a failure of bimonotonicity

see that a failure of bimonotonicity results whenever any plateau exceeds the width
of some shorter plateau by 2 or more (and we’ll see later that this is the case even
when the plateaus in question are not adjacent).

This leads us to the following necessary condition for weightedness of G: there
exists some positive integer j such that every complete non-bottom plateau has
width j or j +1, and every incomplete non-bottom plateau has width j +1 or less.

However, this condition is not sufficient. In Fig. 6 we see a (partial) quota func-
tion diagram for which each complete plateau has width 2 or 3, yet the nodes labeled
A,B, and C show that there is a failure of bimonotonicity

(
C is the (2,3) shift of B,

which is the (2,3) shift of A
)

arising from two adjacent plateaus with total width
3 + 3 = 6, in combination with another pair of adjacent (complete) plateaus with
total width of 4 = 2+2, which is 2 less.

Definition 9. A (3,2) game G = (n,V ) satisfies the almost equal plateau sum con-
dition (or a.e.p.s. condition) if for every k ≤ n, the sum of the widths of any k
consecutive non-bottom plateaus of qG never exceeds by more than 1 the sum of the
widths of any (other) k consecutive complete plateaus.

Remark 2. In fact, the line L of Fig. 6 shows that B is the midpoint of A and C; in
particular this reveals that the winning node B lies in the convex hull of the losing
nodes. Thus the equivalence of linear separability and the a.e.p.s. condition can be
interpreted as a special case of the well known fact that two closed compact sets can
be (strictly) separated by a hyperplane if and only if their convex hulls are disjoint.10

The intuitive meanings of the terms used in Definition 9 may already be clear,
but we’ll begin by being more precise.

Definition 10. If G is an anonymous (3,2) game and q = qG is the induced quota
function, then a plateau of q is a nonempty interval I = [ j, j + 1, . . . , j + r], (with

10 On the face of it, of course, the a.e.p.s. condition looks weaker than the assertion that the convex
hulls are disjoint . . . which is why there is something left to be proved.
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j,r≥ 0) of integers in Dom(q) such that q( j) = q( j +1) = . . . = q( j + r). A plateau
I is complete if conditions (i) and (ii) below are both met, and incomplete otherwise:

(i) j > 0
(
so j−1 ∈ Dom(q)

)
and q( j−1) = q( j)+1.

(ii) j + r +1 ∈ Dom(q) and q( j + r +1) = q( j + r)−1.

The width of the plateau I = [ j, j + 1, . . . , j + r] is the number r + 1 of integers
in I, the height of I is the common value of q on the integers in I, and I is bottom
if its height is 0. A sequence I1, I2, . . . , Ik of k plateaus is consecutive if the greatest
integer in Is−1 is one less that the least integer in Is, for each s = 2,3, . . . ,k.

According to this definition, any nonempty, proper subinterval of a plateau is also
a plateau – albeit an incomplete one; this feature eases the phrasing in the subsequent
proof. However, for a moment let us only consider maximal plateaus – those not
properly contained in other plateaus. Then, with the possible exception of the first
and last plateaus, it is easy to see that each is both non-bottom and complete. The
a.e.p.s. condition thus implies that these “middle” maximal plateaus come in either
one width, or two – a shorter width j and a longer one j + 1. When there are two,
the condition implies that the ratio of shorts to longs is roughly the same in any two
regions of q’s graph.

Theorem 4. An anonymous (3,2) game G is weighted if and only if its associated
quota function q = qG satisfies the almost equal plateau sum condition.

Proof. : [⇒] We’ll start by showing that if G is weighted then it satisfies the a.e.p.s.
condition. With the help of Theorem 3, it suffices to demonstrate that any failure of
the a.e.p.s. condition yields a failure of bimonotonicity. Assume there is an a.e.p.s.
failure, and choose a failure of minimal total width w – that is, choose an integer
k ≥ 1 together with k consecutive non-bottom plateaus I1, I2, . . . , Ik of G’s quota
function q whose widths sum to w, and k consecutive complete plateaus I′1, I

′
2, . . . , I

′
k

having total width w′ with w≥ w′+2, for which w is as small as possible.

Claim. In any such minimal failure, w = w′+ 2. To establish the claim, it suffices
to assume that w > w′+2, and construct a failure of a.e.p.s. having a smaller value
of w. This is easy to do if the width of Ik is at least 2; just modify the original failure
by deleting the largest integer of the last plateau Ik and the result is to lower w by 1.
If the width of Ik is 1, then w > w′+ 2 certainly implies that k ≥ 2. In this case,
delete the last intervals Ik and I′k of each consecutive sequence, reducing k to k−1.
It is easy to see that this decreases w′ by at least as much as it does w, preserving
w > w′+2.

Now, let a denote the largest member of Ik, and note that q(a) ≥ 1, as Ik is non-
bottom. Let y denote q(a)−1, and h = n−a−q(a)+1 (so that y+a+h = n). Then
(y,a,h) is a losing profile (and its location in the quota function diagram is one node
directly beneath the right-most node of the right-most interval Ik). Also, a−w+1 is
the first member of I1, and as there are k consecutive plateaus in I1, I2, I3, . . . Ik, the
difference in height between I1 and Ik is k−1, so that q(a−w+1) = q(a)+k−1 =
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y+ k. It follows that
(
y+ k,a−w+1,h+(w−1− k)

)
is a winning profile (and its

location in the quota function diagram is the left-most node of the left-most interval
I1), so that the shift (k,w−1− k) sometimes helps.

We’ll complete this direction of the proof by using I′1, I
′
2, . . . , I

′
k to establish that

this same shift sometimes hurts. Let e′ be the largest member of I′k, and set a′ =
e′+1. As I′k is complete, we know that a′ is in q’s domain, and q(a′) = q(e′)−1. Let
y′ = q(a′) and h′ = n− y′ −a′. Then (y′,a′,h′) is a winning profile (and its position
in the quota function diagram is one below and one to the right of the right-most
node in the right-most plateau I′1). Now the first member of I′1 is

e′ −w′+1 = (a′ −1)− (w−2)+1 = a′ −w+2

and as there are k steps in the sequence, we know that

q(a′ −w+2) = q(e′ −w′+1) = q(e′)+ k−1 = q(a′)+ k = y′+ k.

As I′1 is complete, we know that a′ −w+1 is in q’s domain, with

q(a′ −w+1) = q(a′ −w+2)+1 = q(a′)+ k +1 = y′+ k +1.

It follows that (y′+ k,a′ −w+1,h′+(w−1− k)) is a losing profile (and its position
in the quota-function diagram is one to the left of the left-most node of the left-
most plateau I′1), whence (k,w− 1− k) sometimes hurts. This provides the desired
violation of bimonotonicity.

(⇐) To show that the a.e.p.s. condition implies weightedness, we again appeal to
Theorem 3.5 and show that any failure of bimonotonicity triggers a failure of a.e.p.s.
Assume that (u,v) is a shift that sometimes helps and sometimes hurts, and further
that among such shifts it is minimal in the following sense: the value of u is as small
as it can be (for the game G at hand) and the value of v is as small as it can be for this
smallest value of u. Choose a losing profile (y,a,h) such that (y+u,a−u−v,h+v)
is winning, and a winning profile (y′,a′,h′) such that (y′+ u,a′ − u− v,h′ − v) is
losing. Note that

(i) q(a)≥ y+1
(ii) q(a−u− v)≤ y+u,

(iii) q(a′)≤ y′ and
(iv) q(a′ −u− v)≥ y′+u+1.

From (iii) plus the fact that q never steps down by more than 1, it follows that

(v) q(a′ −1)≤ y′+1,

and from (iv) and the fact that q never steps down by more than 1, it similarly follows
that

(vi) q(a′ −u− v+1)≥ y′+u.
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Claim.

(i)* q(a) = y+1
(ii)* q(a−u− v) = y+u,
(v)* q(a′ −1) = y′+1, and

(vi)* q(a′ −u− v+1) = y′+u.

Proof of claim It suffices to show that, were any of the inequalities (i), (ii), (v),
or (vi) strict, we could contradict the presumed minimality of (u,v) by constructing
a shift (u∗,v∗) with u∗ < u, or with u∗ = u and v∗ < v, such that (u∗,v∗) sometimes
helps and sometimes hurts.

Case 1 Assume q(a) > y+1. Let u∗= u−1, and v∗= v+1. Let (y∗,a∗,h∗) = (y+
1,a,h−1), so that (y∗+u∗,a−u∗ − v∗,h∗+ v∗) = (y,a−u+ v,h+ v). Then by the
case assumption, (y∗,a∗,h∗) is still losing, while clearly (y∗+u∗,a−u∗−v∗,h∗−v∗)
is still winning, so (u∗,v∗) sometimes helps. Let (y′∗,a′∗,h′∗) = (y′,a′,h′), which is
winning. Then, as (y′+ u,a′ − u− v,h′+ v) was losing, monotonicity tells us that
(y′∗+u∗,a′∗ −u∗ −v∗,h′∗+v∗) = (y′+u−1,a′ −u−v,h′+v+1) is also losing, so
(u∗,v∗) sometimes hurts.

Case 2 Assume that q(a− u− v) < y + u. Let u∗ = u− 1,v∗ = v + 1, and
(y∗,a∗,h∗) = (y,a,h). Then (y∗,a∗,h∗) is still losing, while the case assumption tells
us that (y∗+u∗,a−u∗ −v∗,h∗+v∗) = (y+u−1,a−u−v,h+v+1) is winning, so
(u∗,v∗) sometimes helps. The argument that (u∗,v∗) sometimes hurts is exactly as
in case 1.

Case 3 Assume that q(a′ −1) < y′+1. Let (u∗,v∗) = (u,v−1), and (y∗,a∗,h∗) =
(y,a,h), so that (y∗,a∗,h∗) is still losing. As (y + u,a− u− v,h + v) was winning,
monotonicity tells us that (y∗+ u∗,a− u∗ − v∗,h∗+ v∗) = (y + u,a− u− v + 1,h +
v−1) is still winning, and thus (u∗,v∗) sometimes helps. Let (y′∗,a′∗,h′∗) = (y′,a′ −
1,h′ + 1). Then by our case assumption, (y′∗,a′∗,h′∗) is winning, whereas (y′∗ +
u∗,a′∗ −u∗ −v∗,h′∗+v∗) = (y′+u,a′ −u−v,h′+v) remains losing, so that (u∗,v∗)
sometimes hurts.

Case 4 Assume that q(a′ − u− v + 1) > y′ + u. Let (u∗,v∗) = (u,v− 1), and
(y∗,a∗,h∗) = (y,a,h). Exactly as in case 3, we can show that (u∗,v∗) sometimes
helps. Let (y′∗,a′∗,h′∗) = (y′,a′,h′), so (y′∗,a′∗,h′∗) remains winning, but (y′∗ +
u∗,a′∗ − u∗ − v∗,h′∗+ v∗) = (y′+ u,a′ − u− v + 1,h′+ v− 1) is losing by our case
assumption, so that (u∗,v∗) sometimes hurts.

This completes proof of the claim, establishing that (u,v) satisfies equations
(i)∗,(ii)∗,(v)∗,and(vi)∗. Our u plateaus I1, I2, . . . , Iu will now be defined as fol-
lows: recalling that q(a− v−u) = y + u, we will set I1 equal to the integer interval
[a−v−u, jy+u], where jm is defined to be the greatest integer j for which q( j) = m.
In general, for k = 2,3, . . . ,u− 1, Ik will equal the integer interval [ jy+u−k+2 +
1, jy+u−k+1], so thatIu−1 = [ jy+3 + 1, jy+2], and we will set Iu = [ jy+2 + 1,a]; here,
note that a ∈ [ jy+2 + 1, jy+1], as we know q(a) = y + 1

(
condition (i)∗

)
. Note that

the sum of the widths of these plateaus is (a)− (a− v−u)+1 = u+ v+1, and the
last (and lowest) interval Iu is non-bottom, as q(a) = y + 1 ≥ 1, so all the plateaus
are non-bottom.
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Finally, we define the sequence I′1, I
′
2, . . . , I

′
u. Recalling that q(a′ − u− v + 1) =

y′ + u
(
condition (vi)∗

)
and that q(a′ − u− v) ≥ y′ + u + 1

(
condition (iv)

)
, we

can conclude, using the fact that q’s graph never steps down by more than 1, that
q(a′ − u− v) = y′+ u + 1. Let I′1 be the integer interval [a′ − u− v + 1, jy′+u], and
notice that we have shown, in the previous sentence, that I′1 is complete. For k =
2,3, . . . ,u− 1, I′k will equal the integer interval [ jy′+u−k+2 + 1, jy′+u−k+1], so that
Iu−1 = [ jy′+3 +1, jy′+2], and we will set Iu = [ jy′+2 +1,a′−1]; here, note that a′−1∈
[ jy′+2 +1, jy′+1], as we know q(a′ −1) = y′+1. Furthermore, as a′ is in q′s domain,
and q(a′)≤ y′

(
condition (iii)

)
the fact that q’s graph never steps down by more than

1 tells us that q(a′) = y′, so that I′u is complete. The construction of the I′ sequence
then guarantees that all the intervening intervals are also complete. Finally, the sum
of the widths of the I′ intervals is (a′ − 1)− (a′ − u− v + 1)+ 1 = u + v− 1. Thus
we have constructed u sequential non-bottom plateaus I1, . . . , Iu and u sequential
complete plateaus I′1, . . . , I

′
u, such that the total width of the first sequence is 2 greater

than that of the second – a failure of the a.e.p.s. condition.
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Pareto, Anonymity or Neutrality, but Not IIA:
Countably Many Alternatives

Donald E. Campbell and Jerry S. Kelly

1 Introduction

We would like to express our indebtedness to Peter for his pioneering work in social
choice theory and our pleasure in co-authoring with him.1 More specific to this
paper, Peter had early doubts about rules that required preference information on all
alternatives in order to socially rank two alternatives. Addressing independence he
writes (see Fishburn, 1973):

If in fact the social choice can depend on infeasibles, which infeasibles should be used? For
with one set of infeasibles, feasible x might be the social choice, whereas feasible y = x
might be the social choice if some other infeasible set were adjoined to [feasible set] Y .
Hence, the idea of allowing infeasible alternatives to influence the social choice introduces
a potential ambiguity into the choice process that can be at least alleviated by insisting on
the independence condition.

Campbell and Kelly (2000) provides a formal answer to Fishburn’s question by
defining and exploring “relevance sets.” Fishburn continues:

This obviously ties into the choice of the universal set X of alternatives in a particular situa-
tion. If independence is adopted, then the contents of X are not especially important as long
as they include, at least conceptually, anything that might qualify as a feasible candidate or
alternative. If independence is not adopted, the ambiguity noted in the preceding paragraph
may cause significant problems in attempting to justify just what should and should not be
included in X .

For a finite number of alternatives, Campbell and Kelly (2007) have shown that
in the presence of Pareto, non-dictatorship, full domain, and transitivity, an ex-
tremely weak interprofile condition (see Fishburn, 1987) is incompatible with each

1 Campbell and Fishburn (1980); Fishburn and Kelly (1997).
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of anonymity and neutrality. This paper explores how those results are affected when
there are countably many alternatives.

We will show that there do exist neutral rules that satisfy all of Arrow’s con-
ditions except IIA and also anonymous rules that satisfy all of Arrow’s conditions
except IIA. There also exist anonymous rules that satisfy all of Arrow’s conditions
except IIA, and for which the social ordering on a pair depends only on the indi-
vidual preferences restricted to a finite set. We show that there do not exist neutral
rules for which the social ordering on even one pair depends only on the individual
preferences restricted to a proper subset of the outcome space. And that result will
not require either transitivity of the social ordering or a Pareto condition.

2 Framework2

X is the set of all alternatives or outcomes. In this paper, we assume X has countably
many elements. The binary relation � on X is read “x is weakly preferred to y” or
“x is preferred or indifferent to y.”

A binary relation � on X is complete if for all x,y ∈ X , either x � y or y � x
holds. Note that a complete relation is reflexive, which means that x � x holds for
each x ∈ X . The asymmetric part of � is denoted by �, so x� y if and only if x� y
holds but y� x does not. When x � y we often say that x is strongly preferred to y,
or that x ranks strictly above y in �. Relation � is transitive if for all x,y, and z in
X , if x� y and y� z then x� z; a complete and transitive relation � is an ordering.

In this paper, we will simplify our analysis by assuming that an individual is
never indifferent between distinct alternatives, in which case we say that the pref-
erence ordering is strong. Formally, we say that the complete binary relation � is
antisymmetric if for all x,y ∈ X , x� y and y� x imply x = y. A binary relation is a
strong ordering if it is complete, transitive, and antisymmetric. Let L(X) denote the
set of strong orderings on X .

The set N of individuals whose preferences are to be consulted is the (finite)
set {1,2, . . . ,n} with n > 1. A domain is some nonempty subset ℘ of L(X)N . A
member p of L(X)N is called a profile, and it assigns the ordering p(i) to individual
i ∈ N. We typically write x �p

i y to indicate that individual i strictly prefers x to y
in ordering p(i). When p is understood, we sometimes write �i for �p

i . A social
welfare function for outcome set X and domain℘ is a function f from℘ into the set
of complete binary relations on X . Social welfare functions are often called “rules.”
We say that rule f has full domain if℘= L(X)N . If x is ranked higher than y at the
image f (p) of f at profile p we write x� f (p) y.

We next introduce some restrictions on the social welfare function f on domain
℘ : If f (p) is transitive for each p ∈℘we say that f is transitive-valued or satisfies
transitivity. The rule f satisfies nondictatorship if there is no individual i such that
for every p in℘ and every x and y in X , x �p

i y implies x � f (p) y. Rule f satisfies

2 Much of this section is drawn from Campbell and Kelly (2007).
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the Pareto criterion if for every p ∈℘ and all x,y ∈ X , we have x � f (p) y if x �p
i y

for all i ∈ N. Rule f satisfies weak unanimity if for every p ∈℘ and all x ∈ X , we
have x � f (p) y for all y = x if x �p

i y for all y = x and all i ∈ N. In words, if x is at
the top of everyone’s ordering at p, then it is at the top of f (p).

The independence of irrelevant alternatives (IIA) condition is quite different in
spirit from the Pareto criterion or nondictatorship, each of which requires a kind of
responsiveness to individual preferences on the part of the social welfare function.
IIA requires the social ordering of x and y to be the same at two profiles if the
restrictions of those profiles to {x,y} are the same: Formally, rule f satisfies IIA if
for all p,q∈℘and all x,y∈X , p|{x,y}= q|{x,y} implies f (p)|{x,y}= f (q)|{x,y}, where
p|{x,y} and f (p)|{x,y} are the restrictions to {x,y} of profile p and social ranking f (p)
respectively.

We will also need some weaker versions of independence:
Independence of Some Alternative (ISA): For every pair of alternatives x and y

in X there is a proper subset Y of X such that for any two profiles p and p′ in the
domain, if p|Y = p′|Y then f (p)|{x,y} = f (p′)|{x,y}.

Weakest Independence (WI): For at least one pair of alternatives x and y in X
there is a proper subset Y of X such that for any two profiles p and p′ in the domain,
if p|Y = p′|Y then f (p)|{x,y} = f (p′)|{x,y}.

The modified independence conditions suggest some new terminology: Given a
rule f and a subset Y of X , we say that Y is sufficient for {x,y} if for any two profiles
p and p′ in the domain, f (p)|{x,y} = f (p′)|{x,y} if p|Y = p′|Y . If Y is sufficient for
{x,y} and Y ⊆ Z ⊆ X , then clearly Z is also sufficient for {x,y}. The family of
sufficient sets can place substantial restrictions on the possible departures from IIA,
as the following intersection principle, proven in Campbell and Kelly (2000), shows.
It is important to note that it does not assume finiteness of X , or the Pareto criterion,
or any independence condition, or any type of transitivity property for f (p).

Intersection principle: If the domain of f is L(X)N , and Y and Z are each suffi-
cient for {x,y} then Y ∩Z is sufficient for {x,y}.

For the case of finite X and for each pair {x,y} of distinct alternatives, the in-
tersection principle ensures the existence of a smallest set sufficient for {x,y} – a
sufficient set that is a subset of every set sufficient for {x,y}. Such a smallest set suf-
ficient for {x,y} is the relevant set for {x,y} and is denoted byΨ({x,y}) orΨ(x,y).
Thus IIA is equivalent toΨ(x,y) ⊆ {x,y} for all x,y in X . With countable X , some
pairs may not have a relevant set:

Example 1. For any profile p ∈ L(X)N set x� f (p) y if x�p
1 y unless individual 2 has

both (1) y�p
2 x and (2) infinitely many alternatives between y and x in p(2) in which

case set y� f (p) x. It is easy to confirm that f is transitive-valued and satisfies Pareto,
neutrality, and non-dictatorship. It is also easy to check that Y ⊂ X is sufficient for a
pair {x,y} if and only if {x,y} ⊆Y and X \Y is finite. Therefore, there is no relevant
set for any pair: If Y is sufficient for {x,y} then so is Y \{z} for any z ∈ Y \{x,y}.

Arrow (1963) has shown that for |X | ≥ 3 there does not exist any transitive-valued
social welfare function satisfying full domain, the Pareto condition, nondictatorship,
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and IIA. But if we simply delete the requirement of IIA, there are many rules sat-
isfying the rest of Arrow’s conditions plus the interprofile conditions (see Fishburn,
1987) of neutrality and anonymity which we define next.

Suppose that σ is a permutation of N. Such a permutation induces a map σ on
profiles where σ(p) assigns ordering p(σ(i)) to individual i. A rule f is anonymous
if for every permutation σ on N and for every profile p in the domain of f , σ(p) is
also in the domain and f (σ(p)) = f (p).

Turn now from individuals to alternatives. Any permutation μ of X , the set of
alternatives, induces a permutation on preference orders where μ(R) is defined by

μ(x)μ(R)μ(y) if and only if xRy.

In turn, this induces a permutation on profiles where μ(p) assigns ordering μ(p(i))
to individual i. A rule f is neutral if for every profile p in the domain of f and every
permutation μ on X , μ(p) is also in the domain and f (μ(p)) = μ( f (p)).

We clarify these symmetry conditions by contrasting them with other possible
versions. Several authors, e.g., Sen (1970, p. 72) and Fishburn (1973, p. 161), define
neutrality in such a way as to incorporate considerable independence. An informal
version of this is given by Rae and Schickler (1997, p. 167):

Neutrality: Suppose that all individual ordinal preferences over (x,y) are the same as they
are over (w,z), then the collective outcomes over the two pairs of options must be the same.

Because we want to work in weak independence contexts, we do not use their
definition.

It is also helpful to contrast our definitions with conditional versions from Camp-
bell and Fishburn (1980):

Conditional anonymity: For every permutation σ on N and for every profile p in
the domain℘of f , if σ(p) is also in℘ then f (σ(p)) = f (p);

Conditional neutrality: For every profile p in the domain℘ of f and every per-
mutation μ on X , if μ(p) is also in℘ then f (μ(p)) = μ( f (p)).

Our (unconditional) anonymity requires that℘ be closed under permutations of
individuals; (unconditional) neutrality requires that℘be closed under permutations
of alternatives.

An impossibility result for infinite X does not follow immediately from an im-
possibility theorem for the finite case. Consider the following result from Campbell
and Kelly (2007):

Theorem 1. If X is finite with |X | ≥ 3, there does not exist a social welfare function
satisfying full domain, transitivity, Pareto, nondictatorship, weakest independence,
and neutrality.

Suppose X is infinite and there exists a social welfare function f on X satisfying
full domain, transitive-valuedness, Pareto, nondictatorship, weakest independence,
and neutrality. Pick a finite subset Y of X with |Y | ≥ 3 and select an ordering Q
on X \Y . Define g on Y as follows, for each profile q on Y , extend each q(i) to all
of X by appending Q below q(i) to create p(i). Then g(q) is defined to be f (p)|Y .
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This g function inherits from f the full domain condition, Pareto, and neutrality.
But it need not inherit either nondictatorship or weakest independence (see Exam-
ple 5 below). So we cannot use the nonexistence of a rule satisfying full domain,
transitive-valuedness, Pareto, nondictatorship, weakest independence, and neutral-
ity for finite X to rule out the existence of such a rule when X is countably infinite.

3 Examples

For finite X , a paradigm example of a neutral and anonymous rule satisfying all
of Arrow’s conditions except IIA is Borda’s rule. Borda’s rule violates even weak-
est independence. As commonly defined this rule does not work in the countably
infinite context as there need not be a “first” (topmost) element, or “second,” etc.
However, there is an alternative definition that works for both finite and count-
ably infinite X (with a somewhat restricted domain). The resulting rule satisfies
transitive-valuedness, Pareto, non-dictatorship, anonymity, and neutrality (but vio-
lates both full domain and weakest independence):

Example 2. Let X be countable and let S be the largest subset of L(X) such that
for every ordering in S and every x and y in X , there are at most finitely many
alternatives between x and y. Then the following is a transitive-valued, Paretian,
neutral and anonymous social welfare function on℘= SN . At profile p, for any pair
x,y of distinct alternatives in X , let A(i,x,y) be defined as follows:

(1) If x �i y, then A(i,x,y) is (1 + the number of alternatives between x and y in
�i).

(2) If y�i x, then A(i,x,y) is the negative of (1 + the number of alternatives between
x and y in �i).
Then x� f (p) y if and only if ∑i∈N A(i,x,y) > 0.

This example can be extended to all of L(X)N so as to still satisfy neutrality (but
not anonymity):

Example 3. Let S be as in Example 2. For p in SN , let f (p) also be determined as
in Example 2. If p is in L(X)N \ SN , let i be the individual with the lowest label
such that p(i) /∈ S and set f (p) = p(i). Because S is closed under permutations of
alternatives, this rule is neutral.

Hence, even with countably infinite X , there do exist neutral rules that satisfy all
of Arrow’s conditions except IIA. We’ll see in the next section how far we will have
to deviate from IIA.

Turning from neutrality to anonymity, if X is countably infinite, there do exist
social welfare functions satisfying full domain, transitivity, the Pareto criterion, non-
dictatorship, and anonymity. Many examples below are, like Example 4, weighted-
scoring rules that employ “utility” representations. We are, of course, aware of the
problems presented in some contexts by utilitarianism.
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Example 4. Since X is countable we can write it as a list: X = < x(1),x(2), . . . >.
Let � be an arbitrary strong ordering on X ; there is a numerical representation of �
(in fact, one where all images are rational), i.e., there is a rational-valued function
u on X such that u(x) > u(y) just when x � y. See Birkhoff (1940, p. 200); also
Fishburn (1970), and Rader (1972). For each� select one such representation. Now,
given a profile r = (r(1),r(2), . . . ,r(n)) in L(X)N , let ui be the chosen representation
of r(i) and set x� y in the social ranking just when

n

∑
i=1

ui(x)≥
n

∑
i=1

ui(y).

This rule is defined on all of L(X)N and satisfies Pareto and anonymity. However,
other properties of the rule depend on the choice of representations. This is true for
neutrality and for independence conditions. For some choices, the rule will satisfy
a strong form of independence (relevant sets are all finite); for other choices, X is
the relevant set for every pair, in which case we might say that the rule is nowhere
independent. To illustrate, we present a rule where no finite set is sufficient for any
pair {x,y}.
Example 5. Start with any set of representations; they may, for example, yield small
relevant sets. We use these representations u to define a new representation v on
L(X). Partition L(X) into L1 ∪L2, where L1 consists of all those orderings with a
minimal element and L2 = L(X)\L1. Given � in L(X), define v by

v(x(i)) =

{
u(x(i)) if� ∈ L1,

2u(x(i)) if� ∈ L(X)\L1.

The rule is given by setting x� y in the social ranking just when

n

∑
i=1

vi(x)≥
n

∑
i=1

vi(y).

Then no finite subset Y of X that contains {x,y} is a sufficient set for {x,y}
because the ordering restricted to any finite subset of X cannot be used to determine
if the ordering is in L1 or L2.

In the next example, representations are chosen so that all relevant sets are finite.

Example 6. Since X is countable we can write it as a list: X =< x(1),x(2), . . . >. Let
� be an arbitrary strong ordering on X . We will describe a particular numerical rep-
resentation of�. Let u(x(1)) = 1. If x(2)� x(1), assign u(x(2)) = 2; if x(1)� x(2),
assign u(x(2)) = 0. Proceeding inductively, suppose that we have defined u(x(i)) for
all i < n. Then u(x(n)) is specified by one of the following three statements:

1. If x(n)� x(i) for all i < n, let θ be given by

u(x(θ)) = maxu(x(1)),u(x(2)), . . . ,u(x(n−1)),

then u(x(n)) = u(x(θ))+1.
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2. If x(i)� x(n) for all i < n, let θ be given by

u(x(θ)) = minu(x(1)),u(x(2)), . . . ,u(x(n−1)),

then u(x(n)) = u(x(θ))−1.
3. Otherwise, consider � restricted to {x(1),x(2), . . . ,x(n)}; let x(s) and x(p) be

the immediate successor and predecessor respectively of x(n); i.e., x(s)� x(n)�
x(p) and there are no alternatives in {s(1),s(2), . . . ,s(n− 1)} ranked between
x(s) and x(p). Then set

u(x(n)) = 0.5[u(x(s))+u(x(p))].

Now, given a profile r = (r(1),r(2), . . . ,r(n)) in L(X)N , let ui be the above rep-
resentation of r(i) and set x� y in the social ranking just when

n

∑
i=1

ui(x)≥
n

∑
i=1

ui(y).

This rule is defined on all of L(X)N , satisfies Pareto and anonymity, and for every
pair of alternatives, the relevant set is finite: given x(i) and x( j) in X , with i > j, the
relevant set for this pair is {x(1),x(2), . . . ,x(i)}. This rule is not neutral as it depends
on the initial listing of the elements of X .

If every pair in X has a finite sufficient set , we say the rule satisfies finite depen-
dence.

4 An Impossibility Result

Now that we know there is a rule, defined on all of L(X)N , that satisfies Pareto,
anonymity, and satisfies finite dependence we ask what happens when we substitute
neutrality for anonymity. We will show that no such rules exist, for any countably
infinite set of alternatives – whether or not we impose transitivity of social prefer-
ence or the Pareto criterion. Recall that for x,y in X and a given rule f ,Ψ({x,y})
denotes the smallest sufficient set for {x,y}, if there is such a set.3

Theorem 2. For X infinite, there does not exist a social welfare function on L(X)N

that is neutral but where there is even a single pair {x,y} such that

(1)Ψ({x,y})\{x,y} = /0.
(2)Ψ({x,y}) is a proper subset of X.

Proof. Suppose for social welfare function f on L(X)N there does exist a pair {x,y}
such that for some a and z,

3 Note, for example, that the rule of Example 1 has no relevance map.
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a ∈Ψ({x,y})\{x,y}; and
z ∈ X \Ψ({x,y}).

Since a ∈Ψ({x,y}), there exist profiles u and u∗ such that

u|Ψ({x,y})\{a} = u∗ |Ψ({x,y})\{a}

with x � f (u) y but y � f (u∗) x. We construct a profile u′ from u by taking each u(i)
and moving only z to the “same position” alternative a has in u∗(i).

To be more explicit:

(1) If u(i)|Ψ({x,y}) = u∗(i)|Ψ({x,y}), insert z just above a.
(2) If u(i)|Ψ({x,y}) = u∗(i)|Ψ({x,y}), insert z according to the following rules:

(a) u′(i)|X\{z} = u(i)|X\{z}.
(b) (z,w) ∈ u′(i) for all w ∈ X \{z} such that (a,w) ∈ u∗(i) while (w,z) ∈ u′(i)

for all w ∈ X \{z} such that (w,a) ∈ u∗ (i).
(c) Since u(i)|Ψ({x,y}) = u∗(i)|Ψ({x,y}), either in u(i) alternative a is preferred

to some w with (w,a) ∈ u∗(i) – in which case (a,z) ∈ u′(i) – or, in u(i)
alternative a is below some w with (a,w) ∈ u∗(i) – in which case (z,a) ∈
u′(i). The resulting u′(i) relation is transitive.

Since u and u′ agree onΨ({x,y}), we have x � f (u′) y. Finally, construct profile
u′′ from u′ by interchanging a and z. If f satisfied neutrality, the social ranking at
u′′ would be obtained from the social ranking at u′ by just interchanging a and z. In
particular, x� f (u′′) y. But that contradicts

u′′(i)|Ψ({x,y}) = u∗(i)|Ψ({x,y})

and y� f (u∗) x. Therefore f must not satisfy neutrality. ��

Note that the proof doesn’t use anything close to a full domain. The proof is valid
for any domain that is closed with respect to the operations employed to switch the
positions of alternatives.

Neutrality is one of the virtues of the Borda rule. A serious liability of that rule
is that a pair of alternatives typically cannot be socially ordered without obtaining
information about each individuals preference relation over the entire set X . The
theorem tells us that this drawback applies generally to neutral rules. Given any
neutral rule on a full domain, for every pair {x,y} that has a relevant set – i.e., a
smallest sufficient set – eitherΨ({x,y}) = {x,y}, or X is its only sufficient set. Pairs
without relevant sets have as sufficient sets only infinitely large sets; in fact, there
must be infinitely many infinitely large sufficient sets. All neutral rules that violate
IIA have extremely demanding information processing requirements.

A rule exhibits finite neutrality if for every profile p in the domain and every
permutation μ on X that moves only finitely many alternatives, μ(p) is also in the
domain and f (μ(p)) = μ( f (p)). Much of what we intend regarding equal treatment
of alternatives is captured by finite neutrality.
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There does exist a way of choosing utility representations that can lead to finite
neutrality.

Example 7. Let ∼ be the relation on L(X) that, for arbitrary orderings R and Q in
L(X), sets R ∼ Q just when Q = σ(R) for some permutation σ on X that moves
only finitely many alternatives of X . This is an equivalence relation that induces a
partition on L(X). For each partition component, select one ordering, R, from the
component and then select the representation u(R) given by Example 6. For any Q
in the same partition component, there is a unique σ with Q = σ(R). Permute the
representation in the same way to arrive at the utility representation of Q and then
set x� y in the social ranking just when

n

∑
i=1

ui(x)≥
n

∑
i=1

ui(y).

This rule satisfies Pareto, anonymity, and finite neutrality on L(X)N . Unfortu-
nately it violates finite dependence, and the need to elicit preference information
over an infinite set may make information processing prohibitively expensive.

Example 7 cannot be extended to include all infinite permutations. Given a Q in
the same partition component as R, there may be many different σ ’s with Q = σ(R).
For example, let R be an ordering with x and y on top and then a double-ended
ordering below:

xy . . .a3a2a1b1b2b3 . . . .

Next let Q reverse x and y:

yx . . .a3a2a1b1b2b3 . . . .

Q is in the same component of R, but there are infinitely many permutations
mapping R to Q. Besides the obvious transposition (x y), there is transposition-plus-
a-shift:

x y . . . a3 a2 a1 b1 b2 b3 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
y x . . . a4 a3 a2 a1 b1 b2 . . .

Accordingly, choosing a representation for R does not induce a unique represen-
tation for Q.

Finally, we observe that for countable X , there is a fundamental design problem
in implementing rules with countably many alternatives. How does an individual
submit her preference ordering to the social choice procedure? Obviously it is not
possible to write down an infinite ordering on a ballot. Of course, some orderings
have a finite description; the preference

. . .x(6)� x(4)� x(2)� ·· · � x(5)� x(3)� x(1)
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could be: “I prefer all even numbered alternatives to all odd-numbered alternatives;
within each of those two groups I prefer higher-numbered alternatives to lower-
numbered alternatives.”

The problem with this is that while there are only countably many orderings with
finite descriptions, the set L(X) is uncountable. So there are orderings with no finite
description and how are such orderings to be submitted?

Acknowledgements We would like to thank Lauren Merrill for technical assistance in preparing
this manuscript for publication.
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Fair Division



Bruhat Orders and the Sequential Selection
of Indivisible Items

Brian Hopkins and Michael A. Jones

1 Introduction

For two players with identical preferences, cake-cutting procedures, such as Cut-
and-Choose (Brams & Taylor, 1996) and the Surplus Procedure (Brams, Jones, &
Klamler, 2006), guarantee that each player receives exactly half of the cake, accord-
ing to their preferences. In essence, receiving exactly half is a worst-case scenario
because when their preferences are not identical, the opportunity often exists for
both players to receive more than half of the cake, measured by their preferences.
This potential reward is balanced by risk, as these differences in preferences provide
an incentive for players to misrepresent their preferences in an effort to gain a more
valuable piece. In contrast, players may not be able to exploit information about an
opponent’s preferences when indivisible objects are allocated to two players, even
when the players’ preferences are different. Our purpose is to determine the struc-
ture of, relationship between, and frequency of two players’ preferences for which
players receive their worst or best possible outcomes when dividing a finite set of
indivisible goods, independent of strategic behavior.

Kohler and Chandrasekaharan (1971) pose and solve three optimization prob-
lems in which a finite set of players, with linear preference orders over the items,
alternate taking turns selecting a number of items from a set of indivisible items. We
adopt their framework, as Brams and Straffin (1979) do, to the case when two play-
ers alternate selecting a single item from a set of indivisible items. Although Kohler
and Chandrasekaharan (1971) assume that players have values associated with each
item and subsets are valued according to the sum of the values of its objects, like
Brams and Straffin (1979), we assume that the players’ preferences for subsets of
items are partially ordered, induced by the linear orders.
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Brams and Fishburn (2000) consider fair divisions of a finite set of indivisible
items between two players with identical linear orders over the individual items, but
with possibly different preferences over subsets of items. They do not require the
players to alternate selecting items, but instead consider alternative procedures that
award possibly different-sized subsets of items to the players. Edelman and Fishburn
(2001) extend the work to three or more players. Their focus on identical linear or-
ders highlights potentially contentious divisions. When two players with identical
preferences alternate taking turns selecting an item, the division is no longer con-
tentious in that the subsets of items the players receive are the same, whether or
not either player acts strategically. In this instance, both players receive their worst
possible subsets of items.

Brams, Edelman, and Fishburn (2003) also require linear orders over items, but
allow for players to have different preferences. As in Brams and Fishburn (2000)
and Edelman and Fishburn (2001), they examine the compatibility of various fair-
ness criteria, including an evenness criterion, in which no player receives more than
one item more than any other player. By having the players select alternately, our
outcomes are guaranteed to satisfy the evenness property. For players with reversed
rankings over items, once again, as in the case in which players have identical pref-
erences, sequentially selecting items results in the same outcomes, whether or not
either player acts strategically. Notably, players with reversed linear orders both
receive their respective best outcomes. We determine necessary and sufficient con-
ditions for players to receive their worst and best outcomes.

In Sect. 2, we formulate and extend algorithms from Kohler and Chandrasekaha-
ran (1971) to our context. In Sect. 3, we survey background material on the com-
binatorics of permutations that we will use. In Sect. 4, we apply the combinatorics
of permutations to sequential selection procedures, focusing on preferences where
strategy has no impact and the outcomes are the best or worst possible for either of
the players, or both.

We write &x' for the least integer greater than or equal to x (the integer ceiling),
and (x) for the greatest integer less than or equal to x (the integer floor). We write
|A| for the cardinality of a set A.

2 Strategies for Sequential Selection

Assume two players, Left and Right, have linear preference orders over n indivisible
items. Label the items so that Left’s preferences are given by the ordering 1 . . .n.
Right’s preferences are given by some permutation π ∈ Sn where π(i) = j indicates
that item j is ranked in the ith position by Right. Starting with Left, the two players
alternate selecting an unclaimed item. Notice that if n is odd, Left will finish with
one more item than Right. Let �i denote the item selected by Left in round i. Define
ri similarly.
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Each player’s linear order induces a partial ordering≤ on sets of k items. Assume
that the elements in different sets of items S = {s1, . . . ,sk} and T = {t1, . . . , tk} are
arranged in decreasing preference to a player. Then a player prefers S to T if the
player prefers si to ti or si = ti for all i. As an example, Left prefers {1,2,4} to both
{1,3,4} and {1,2,5}. Yet, Left’s linear order does not indicate a preference between
{1,3,4} and {1,2,5}. See Fig. 3 for Left’s partial order on subsets of three elements
from {1,2,3,4,5}.

There are four strategy combinations that we analyze, as either player may use a
naı̈ve approach or be strategic. The details of each combination are described as an
algorithm and worked out for Right’s linear order π = 231645.

Definition 1 (Naı̈ve, Naı̈ve). Both players follow the “top-down” strategy of select-
ing the most preferred remaining item, according to his or her linear order.

For π = 231645, Left and Right select items in the following sequence �1 = 1,
r1 = 2; �2 = 3, r2 = 6; and �3 = 4, r3 = 5. We write LNN(π) = {1,3,4} and RNN(π) =
{2,5,6} to denote this outcome.

Definition 2 (Strategic, Naı̈ve). Left selects item 1 in round & j
2' where π( j) = 1.

For i = 2, . . . ,n, let π( j) = i. Left selects item i in round k where k is the greatest
positive integer less than or equal to & j

2' for which an item has not been determined.
If no such k exists, then Left would only be able to select item i at the expense of a
preferred item (less than i). Left continues to fill items for the rounds until she has
an item for each round. Right selects naı̈vely, as above.

The strategy uses Left’s knowledge of Right’s linear order to determine the latest
round that an item will be available. For π = 231645, Left does not select item 1
first, but in round & 3

2' = 2 because π(3) = 1. Left selects item 2 in round & 1
2' = 1

because π(1) = 2. For �3, Left would have to select item 3 in round & 2
2'= 1 because

π(2) = 3, but prefers �1 = 2. Left selects item 4 in round & 5
2'= 3 because π(5) = 4,

completing all three rounds. This gives LSN(π) = {1,2,3}, the best possible out-
come for Left.

This is an application of a more general result of Kohler and Chandrasekaharan
(1971). They solve a one-sided optimization problem in which Left selects items
with complete information about Right’s preferences and in which Right has no
knowledge of Left’s preferences, thereby selecting items naı̈vely. Their set up is
more general, allowing for players to select more than one item and a different
number of items each round.

Definition 3 (Naı̈ve, Strategic). For i = 1, . . . ,n, Right selects item π(i) in round
k where k is the greatest positive integer less than or equal to (π(i)

2 ), for which an
item has not been determined. If no such k exists, then either Right would have to
select item π(i) at the expense of an item ranked higher than π(i) or Right would
have to select before Left, in the event that π(1) = 1. Right continues to fill rounds
with items to select until he has an item for each round. Left selects naı̈vely.
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This is the other possibility of one-sided information. After Left takes item 1 in
the first round, this is the (Strategic, Naı̈ve) algorithm with the roles reversed. For
π = 231645. Right selects item π(1) = 2 in round ( 2

2)= 1. Right could only select
item π(2) = 3 in round ( 3

2) = 1, but he prefers π(1) to π(2). Right cannot select
item π(3) = 1, as �1 = 1 (the algorithm would require round ( 1

2)= 0). Finally, Right
selects item π(4) = 6 in round ( 6

2)= 3. Left selects naı̈vely in her linear order. The
optimality of this approach for Right is basically the same argument for (Strategic,
Naı̈ve).

Definition 4 (Strategic, Strategic). For n = 2k, consider the rounds in reverse order,
Right first. Each player selects the least-preferred item remaining on the other’s
linear order after items selected in later rounds have been deleted. So rk = 2k, Left
selects the last remaining item in Right’s linear order for �k, etc. For n = 2k−1, start
with �k = π(2k) and proceed as above. Actual selection begins �1,r1.

Kohler and Chandrasekaharan (1971) show this procedure is optimal for both
players when each player is aware of the other’s linear order. Brams and Straffin
(1979) refer to this algorithm as “bottom-up,” because players fill the bottom round
selections first. Essentially, this algorithm determines which item a player gets left
with in a particular round. For π = 231645, start from the bottom with r3 = 6 and
�3 = 5. Next, r2 = 4 (as 5 and 6 are removed from Left’s linear ordering) and �2 = 1
(as 4, 5, and 6 are removed). Finally, r1 = 3 and �1 = 2.

Table 1 summarizes the examples of selecting items under the four strategy com-
binations. The items selected by the players, according to the column-heading strate-
gies, are in numerical order. The ordered pairs below the columns indicate the order
by rounds in which the items were selected.

The examples collected in Table 1 show that the same preferences for Right can
lead to four different outcomes depending on the approaches taken by the two play-
ers. At the other extreme, there are also rankings for which strategy makes no dif-
ference. The following statements follow from more general proofs in Sect. 4, but
these two specific cases may be self evident.

If Right’s preferences are identical to Left’s, i.e., if π = 1 . . .n, then all possible
strategy combinations lead to the same result. We write LXY (π) = {1,3, . . .} and
RXY (π) = {2,4, . . .} to denote that the outcomes are the same for all strategy com-
binations (X ,Y ). This is the worst possible outcome for Left, and also the worst
possible outcome for Right.

Table 1 Outcomes under different strategy pairs for Right’s preferences π = 231645 followed by
(�1,r1)(�2,r2)(�3,r3)

N N
1 2
3 5
4 6

S N
1 3
2 5
4 6

N S
1 2
3 4
5 6

S S
1 3
2 4
5 6

(1,2) (3,6) (4,5) (2,3) (1,6) (4,5) (1,2) (3,4) (5,6) (2,3) (1,4) (5,6)
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If Right’s preferences are the reverse of Left’s, i.e., if π = n . . .1, then again all
possible strategy combinations lead to the same result: LXY (π) = {1, . . . ,&n/2'}
and RXY (π) = {&n/2'+ 1, . . . ,n}. This yields the best possible outcome for Left
and also the best possible outcome for Right.

We are interested in analyzing the preferences for which strategy has no effect. In
particular, the preferences that lead to the worst and best possible cases for Left, and
then for Right. We conclude with a description of the preferences, like 1 . . .n and
n . . .1, for which both Left and Right receive the worst or best possible outcomes.

3 Partial Orders on Permutations

In this section, we define two partial orders on permutations and collect various
properties that will be used later. See the references for further information. We
denote a permutation π ∈ Sn by π(1) . . .π(n), the one-line notation. Write e for the
identity permutation 1 . . .n and w0 for n . . .1. To each permutation, we associate the
following sets of ordered pairs.

Definition 5. For π ∈ Sn, let LI(π) = {(i, j) | i < j and π(i) > π(j)} and RI(π) =
{(π(i),π( j)) | i < j and π(i) > π(j)}.

Note that LI(π) records the positions of decreasing pairs, while RI(π) records
the decreasing pairs themselves. Examples are given in the Table 2.

Each of these sets is called the inversions of a permutation by various authors;
see Björner and Brenti (2005) and Bóna (2004). These sets are the basis for two
partial orders on partitions.

Definition 6. Let π,σ ∈ Sn. If LI(π)⊆ LI(σ), then π ≤L σ . If RI(π)⊆ RI(σ), then
π ≤R σ .

Referring to Table 2, 142536≤L 142635 but 142536 ≤R 142563 because (5,3) /∈
RI(142635). Similarly, 142536≤R 142563 but 142536 ≤L 142563 because (4,5) /∈
LI(142563). Also note that 142563 and 142635 are incommensurate under each
partial order.

The partial orders ≤L and ≤R are called the left and right weak Bruhat orders.
The names come from alternate definitions of the orders, involving left or right
multiplication of a permutation by neighborly transpositions. We will write the per-
mutation 123465 with the standard transposition notation (5,6). Notice that (5,6)

Table 2 Left and right inversions for three elements of S6

π LI(π) RI(π)

142536 {(2,3),(2,5),(4,5)} {(4,2),(4,3),(5,3)}
142563 {(2,3),(2,6),(4,6),(5,6)} {(4,2),(4,3),(5,3),(6,3)}
142635 {(2,3),(2,5),(4,5),(4,6)} {(4,2),(4,3),(6,3),(6,5)}
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composed with 142536 gives 142635 (the 5 and 6 are swapped), while 142536 com-
posed with (5,6) gives 142563 (the fifth and sixth entries are swapped). See Fig. 1
for the elements of S4 under the right weak Bruhat order (ignore the circles at this
point).

Proposition 1. Each of the weak Bruhat orders on Sn is an ortholattice, with rank
|LI(π)| = |RI(π)| which is also the standard length of permutation π . In addition,
the left and right weak Bruhat orders are related by π ≤L σ if and only if π−1 ≤R
σ−1, because LI(π) = RI(π−1).

Proofs of these results, including the equivalence of the different definitions, may
be found in Björner and Brenti (2005) and Aguiar and Mahajan (2006). There is one
additional definition we will use.

Definition 7. Let π,σ ∈ Sn. The interval [π,σ ]L = {ρ ∈ Sn | π ≤L ρ ≤L σ}. Define
[π,σ ]R similarly.

In Fig. 1, the permutations surrounded by four closed circles constitute
[1324,4321]R.

4 Results

We now apply the notions from algebraic combinatorics to the analysis of linear
preference orders. Throughout, we identify Right’s linear order and its correspond-
ing permutation.

Theorem 1. For n = 2k− 1 or 2k, there are Ck possible outcomes for Left, where
Ck = 1

k+1

(2k
k

)
is the kth Catalan number.

Proof. Let n = 2k. Notice that the tables showing the results of the various strategy
combinations in Table 1 may be considered as Young tableaux with two columns
having length 3. For n = 2k, there would be two length k columns filled with the
labels 1, . . . ,2k such that labels increase down columns and across rows. Conversely,
a Young tableau having two length k columns with first column �1 < · · ·< �k comes
from the (Naı̈ve, Naı̈ve) situation when Right’s preferences are �1r1 . . . �krk where
{r1, . . . ,rk} is the complement of {�1, . . . �k} listed in increasing order. (E.g., to have
LNN(π) = {1,2,3}, use π = 142536). Young tableaux of this shape are among the
many items counted by the Catalan numbers; see Stanley (1999).

For n = 2k−1, put an additional item 2k at the end of Right’s list, which adds 2k
to the bottom of the second column, and the same arguments apply.

The following theorem establishes the connection between strategies for sequen-
tial selection and the weak right Bruhat order.

Theorem 2. Let π,σ ∈ Sn with π ≤R σ , the right weak Bruhat order. In the partial
order of Left’s outcomes, LXY (π) ≤ LXY (σ) for each of the four strategy combina-
tions XY .
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Proof. It is sufficient to show that LXY (π) ≤ LXY (σ) for σ = πρ where ρ is the
transposition (i, i+1) with |RI(πρ)|= |RI(π)|+1. That is,

σ = π(1) · · ·π(i−1)π(i+1)π(i)π(i+2) · · ·π(n),

where π(i) < π(i + 1). The relationship between LXY (π) and LXY (σ) does not de-
pend on the strategy pair XY , but on which players receive π(i) and π(i+1).

Assume π(i) and π(i + 1) are both in LXY (π) or RXY (π). Under σ , π(i) and
π(i +1) are selected by the same player in the same rounds, only the order of their
selection may change. Hence, LXY (π) = LXY (σ).

Assume π(i) ∈ LXY (π) and π(i + 1) ∈ RXY (π). Under σ , Left selects π(i) and
Right selects π(i+1) in the same rounds as under π . Hence, LXY (π) = LXY (σ).

Assume π(i) ∈ RXY (π) and π(i + 1) ∈ LXY (π). Under π for XY = NN, SS, or
SN, if Right selects π(i) in round r, then Left must select π(i + 1) in round r + 1.
Under σ , Right selects π(i+1) in round r, allowing Left to take π(i) in round r+1.
Under π for XY = NS, from the floor function calculation, no round exists for Right
to select π(i + 1) without giving up a preferred item. Under σ , π(i + 1) is selected
instead of π(i). And, no round exists for Right to select π(i). Because Left now
receives π(i) instead of π(i+1), LXY (π)≤ LXY (σ).

Figure 1 shows S4 under the weak right Bruhat order and gives the results of
all four strategy combinations for each linear order (see caption for details). Notice
that, moving left to right along edges, i.e., from π to σ with π ≤R σ , there is never
a transition in a given position from a filled circle to an open circle, illustrating
Theorem 2.

We provide complete descriptions for linear orders that lead to the worst and best
outcomes for Left.

Fig. 1 S4 under the right weak Bruhat order with outcomes for the four strategy combinations:
open circle for Left outcome {1,3}, closed circle for Left outcome {1,2} with NN to the upper
left of the permutation, NS to the upper right, SN to the lower left, and SS to the lower right
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Theorem 3. The π ∈ S2k for which LXY (π) = {1,3, . . . ,2k−1}, the worst possible
outcome for Left, are the 2k permutations π ∈ [e, 2143 . . .(2k)(2k−1)]R.

The π ∈ S2k+1 with LXY (π) = {1,3, . . . ,2k + 1} are the 2k permutations π ∈
[e, 2143 . . .(2k)(2k−1)(2k +1)]R.

Proof. Since the best of the four possible outcomes for Left occurs when Left is
strategic and Right is naı̈ve, it suffices to show that LSN(π) is the worst possible
outcome for Left.

Assume first that n = 2k. The interval [e, 2143 . . .(2k)(2k − 1)]R comprises
permutations that are the product of any of the neighborly transpositions
(1,2),(3,4), . . . ,(2k− 1,2k) (because these transpositions are disjoint, they com-
mute and there is no need to distinguish left and right multiplication). I.e., these are
the permutations for which {π(2i−1),π(2i)}= {2i−1,2i} for all i = 1, . . . ,k.

Recall the (Strategic, Naı̈ve) algorithm. Left can delay selecting item i until round
&π(i)/2'. But for the permutations in [e, 2143 . . .(2k)(2k−1)]R, this is not different
from the naı̈ve approach, because &π(i)/2'= i. On turn i, Left will choose 2i−1 and
Right, choosing the highest remaining item on his list, will choose 2i. This results
in LSN(π) = {1,3, . . . ,2k−1}.

A permutation σ /∈ [e, 2143 . . .(2k)(2k−1)]R is characterized by having σ(2i) /∈
{2i− 1,2i} for some i = 1, . . . ,k. If σ(2i) > 2i, then Left’s strategy can delay her
choice of 2i to a later turn, allowing her to chose an item with lower label in round
i. If σ(2i) < 2i− 1, then Right will select 2i before round i, say in round j, which
allows Left to take item 2 j.

For n = 2k +1, the permutations arise from the same transpositions and all have
π(2k +1) = 2k +1; the same arguments apply. The count follows from the descrip-
tion of the permutations as products of k disjoint transpositions; the cases may be
unified by writing 2(n/2). Also, the terminal element of each interval has rank (n/2).

We mention that [e, 2143 . . .(2k)(2k − 1)]R (also an interval under ≤L) is a
Boolean sublattice, isomorphic to the k-dimensional hypercube.

Theorem 4. The π ∈ S2k−1 for which LXY (π) = {1, . . . ,k}, the best possible outcome
for Left, are the (2k− 1)[(k− 1)!]2 permutations π ∈ [1(k + 1)(k + 2) . . .(2k− 1)
23 . . .k, w0]R.

The π ∈ S2k with LXY (π) = {1, . . . ,k} are the 2k(2k−1)[(k−1)!]2 permutations
π ∈ [1(k +1)(k +2) . . .(2k−1)23 . . .k(2k), w0]R.

Proof. Since the worst of the four possible outcomes for Left occurs when Left is
naı̈ve and Right is strategic, it will suffice to show that LNS(π) is the best possible
outcome for Left.

Assume first that n = 2k−1. The specified interval comprises permutations π for
which

{(k +1,2), . . . ,(k +1,k), . . . ,(2k−1,2), . . . ,(2k−1,k)} ⊆ RI(π). (1)

Recall the algorithm for (Naı̈ve, Strategic). Notice, for the linear orders in this
interval, that 2, . . . ,k are all preceded by at least k− 1 items greater than 1, in
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particular, k + 1, . . . ,2k− 1. That means that Right will use all his rounds select-
ing items k+1, . . . ,2k−1, along with the guaranteed 2k. Thus LNS(π) = {1, . . . ,k}.

A permutation σ not in the interval has some (i, j) /∈ RI(σ) where k + 1 ≤ i ≤
2k− 1 and 2 ≤ j ≤ k. That is, j appears before i in σ and Right will choose it in
round ( j/2) before Left does, so that j /∈ LNS(σ).

For the size of the interval, consider the equivalent formulation in terms of RI(π).
There are (k− 1)! ways to order {k + 1, . . . ,2k− 1} in the one-line presentation of
π before the set {2, . . . ,k}, which can also be ordered in (k− 1)! ways. Item 1 can
be listed in any of the 2k− 1 positions among these 2k− 2 numbers, giving a total
of (2k−1)[(k−1)!]2 permutations.

For n = 2k, Right is guaranteed item 2k. The same description of RI(π) applies.
The count is adjusted by the 2k positions where item 2k can be added into the linear
order.

We note that, for both S2k−1 and S2k, the initial elements of the intervals have
rank (k−1)2.

All five possible outcomes for linear orders on five items are given in Fig. 2. The
interval [12345,21435]R giving LXY (π) = {1,3,5} is an example of Theorem 3,
and the interval [14523,54321]R giving LXY (π) = {1,2,3} is an example of
Theorem 4. Notice that [13245,43215]R giving LXY (π) = {1,2,5} is isomorphic to
[1324,4321]R in Fig. 1, and that the linear orders for which LXY (σ) = {1,2,4} do
not constitute an interval in the lattice.

Fig. 2 Subset of the S5 lattice under ≤R showing the permutations for which the four LXY (π) are
the same. Permutations are aligned horizontally by rank
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Table 3 Right’s five possible
outcomes for S5 (omit 0),
followed by a permutation
giving each outcome

R L
0 π(3)

π(1) π(4)
π(2) π(5)

R L
0 π(2)

π(1) π(4)
π(3) π(5)

R L
0 π(2)

π(1) π(3)
π(4) π(5)

R L
0 π(1)

π(2) π(4)
π(3) π(5)

R L
0 π(1)

π(2) π(3)
π(4) π(5)

34125 31425 31245 13425 13245

We also analyze the outcomes of the various sequential selection procedures from
the perspective of the second player, Right. From Table 1, we know RNN(231645) =
{2,5,6}, Right’s first, fourth, and sixth items. To emphasize this perspective, we
write RNN(231645) = {π(1),π(4),π(6)}.

Theorem 5. For n = 2k− 2 or 2k− 1, there are Ck possible outcomes for Right,
where Ck = 1

k+1

(2k
k

)
is the kth Catalan number.

Proof. Let n = 2k− 1. We modify the proof of Theorem 1 by placing an item la-
beled 0 at the beginning of Right’s preferences and allowing him to go first, which
will have no effect on the (Naı̈ve, Naı̈ve) algorithm after 0 is removed. The re-
sulting tables are then Young tableaux having two length k columns with labels
0,π(1), . . . ,π(2k− 1) ordered by their input (see Table 3 for the n = 5 possibili-
ties). Conversely, a Young tableau having two length k columns with first column
0,π(i1), . . . ,π(ik−1) where i1 < · · · < ik−1 arises from the modified (Naı̈ve, Naı̈ve)
algorithm with 0 when Right’s preferences have π(i1) = k, . . . ,π(ik−1) = 2k−2 and
the complementary numbers are placed in the remaining positions in increasing or-
der; see Table 3 for examples. For n = 2k− 2, put an additional item π(2k− 1) at
the end of Left’s list, which adds π(2k−1) to the bottom of the second column.

As Left’s outcomes are related to the weak right Bruhat order, Right’s outcomes
are related to the weak left Bruhat order. The next three theorems are analogous
to Theorems 2, 3, and 4 for Left’s outcomes. Proofs only note variations from the
previous arguments.

Theorem 6. Let π,σ ∈ Sn with π ≤L σ , the left weak Bruhat order. In the partial
order of Left’s outcomes, RXY (π)≤ RXY (σ) for all four strategy combinations XY .

Proof. It is sufficient to show that RXY (π) ≤ RXY (σ) for σ = ρπ where ρ is the
transposition (i, i+1) with |LI(πρ)|= |LI(π)|+1. That is,

σ = π(1) · · ·π( j−1)π(k)π( j +1) · · ·π(k−1)π( j)π(k +1) · · ·π(n),

where π( j) = i, π(k) = i+1, and j < k.
A similar analysis as the proof of Theorem 2 holds by considering the four cases

for which i or i + 1 may be in RXY (π). The result hinges on i and i + 1 being con-
secutive in Left’s linear order, as π(i) and π(i+1) are consecutive in Right’s linear
order.
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Theorem 7. The π ∈ S2k+1 for which RXY (π) = {π(2),π(4), . . . ,π(2k)}, the worst
possible outcome for Right, are the 2k permutations π ∈ [e, 132 . . .(2k +1)(2k)]L.

The π ∈ S2k+2 with RXY (π) = {π(2),π(4), . . . ,π(2k + 2)} are the 2k permuta-
tions π ∈ [e, 132 . . .(2k +1)(2k)(2k +2)]L.

Proof. The intervals comprise permutations that are the product of any of the com-
muting neighborly transpositions (2,3),(4,5), . . . ,(2k, 2k + 1). The cases may be
unified by writing 2((n−1)/2). Also, the terminal element of each interval has rank
((n−1)/2).

Theorem 8. The π ∈ S2k−2 for which RXY (π) = {π(1), . . . ,π(k−1)}, the best pos-
sible outcome for Right, are the [(k−1)!]2 permutations π ∈ [k . . .(2k−2)1 . . .(k−
1),w0]L.

The π ∈ S2k−1 with RXY (π) = {π(1), . . . ,π(k− 1)} are the (2k − 1)[(k− 1)!]2

orders π ∈ [k . . .(2k−2)1 . . .(k−1)(2k−1),w0]L.

Proof. The intervals comprise permutations π for which

{(1,k), . . . ,(1,2k−2), . . . ,(k−1,k), . . . ,(k−1,2k−2)} ⊆ LI(π). (2)

For n = 2k−2, there are (k−1)! ways to order {k, . . . ,2k−2} in the one-line presen-
tation of π before the set {1, . . . ,k−1}, which can also be ordered in (k−1)! ways.
For n = 2k−1, the count is adjusted by the 2k−1 positions where item 2k−1 can be
added into the linear order. The initial elements of the intervals have rank (k−1)2.

For S2k−1, the sizes of the intervals for the permutations giving the worst possible
case for Left and Right match, similarly for the best possible case, and both players
have Ck possible outcomes. In fact, their situations are completely analogous.

Proposition 2. For π ∈ Sn, let σ = w0πw0. There is a bijection between the left
inversions of π and σ , similarly the right inversions.

Proof. The mapping π �→ w0πw0 is an automorphism whose effect is to reverse
the order of the entries in the one-line presentation and to replace x with n + 1− x.
Suppose, for positions i < j, that π(i) = x and π( j) = y with x > y. That is, (i, j) ∈
LI(π) and (x,y)∈ RI(π). Then σ(n+1− j) = n+1−y and σ(n+1− i) = n+1−x,
so that (n+1− j,n+1− i) ∈ LI(σ) and (n+1− y,n+1− x) ∈ RI(σ).

This automorphism preserves rank, inclusion, and all lattice structure, switching
between the weak left and weak right Bruhat orders; see Björner and Brenti (2005)
for more details. Under the connections to Left and Right outcomes established
in Theorems 2 and 6, it follows that the Left outcome structure of S2k−1 under the
weak right Bruhat order is isomorphic to the Right outcome structure of S2k−1 under
the left weak Bruhat order. For example, the correspondences between the five sets
of permutations in S5 that give various outcomes for Left and Right regardless of
strategy are given in Fig. 3; this is equivalent to applying the automorphism to the
permutations in Fig. 2.
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Fig. 3 Permutations giving the specified Left outcome for S5 with corresponding data for Right
outcomes, along with the partial order on outcomes

The two intervals in the first row of Fig. 3 share 12 elements, [45123,54321]R
(also an interval in the left weak Bruhat order). That is, there are 12 permutations
for which Left and Right both receive the best possible outcome under all strategy
combinations. The two intervals in the last row of Fig. 3 have only e in common,
the one permutation in S5 for which Left and Right both receive the worst possible
outcome under all strategy combinations.

The connections are not so direct for S2k, as there are Ck outcomes for Left and
Ck+1 outcomes for Right. For example, Fig. 1 shows occurrences of the two pos-
sible outcomes for Left, while the analogous figure for Right would require five
symbols to denote his outcomes. Nonetheless, we can completely characterize the
permutations in arbitrary Sn for which Left and Right both receive the worst possible
outcome under all strategy combinations, and the same for best possible outcome.

Theorem 9.

(a) Only e = 1 . . .n ∈ Sn gives LXY (π) = {1,3, . . .} and RXY (π) = {π(2),π(4), . . .},
the worst possible outcomes for both Left and Right.

(b) The π ∈ S2k−2 for which LXY = {1, . . . ,k− 1} and RXY (π) = {π(1), . . . ,π(k−
1)}, the best possible outcomes for Left and Right, are the [(k−1)!]2 permuta-
tions

π ∈ [k . . .(2k−2)1 . . .(k−1),w0]L.

(c) The π ∈ S2k−1 for which LXY = {1, . . . ,k} and RXY (π) = {π(1), . . . ,π(k− 1)}
are the k!(k−1)! permutations

π ∈ [(k +1) . . .(2k−1)1 . . .k,w0]L.

Proof. (a) The permutations that give the worst possible outcome for Left, described
in Theorem 3, are generated by the transpositions (1,2),(3,4), . . . The permutations
that give the worst possible outcome for Right, described in Theorem 7, are gen-
erated by the transpositions (2,3),(4,5), . . . Therefore, e is the only permutation in
both intervals.

(b) For n = 2k− 2, the initial permutation of the interval from Theorem 8 giv-
ing the best outcomes for Right is in the interval from Theorem 4 giving the
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best outcomes for Left. That is, the right inversions of k . . .(2k− 2)1 . . .(k− 1)
include everything listed in (1) (with the index shifted down one) along with
(k,1), . . . ,(2k− 2,1). So the intersection of the two intervals is exactly the inter-
val from Theorem 8.

(c) For n = 2k−1, the intersection of the intervals from Theorems 4 and 8 com-
prises permutations having both the right inversions listed in (1) and the left inver-
sions listed in (2). The lowest rank permutation satisfying both sets of conditions is
(k+1) . . .(2k−1)1 . . .k, rank k(k−1). For the size of the interval, there are (k−1)!
ways to order {k + 1, . . . ,2k− 1} before the set {1, . . .k}, which can be ordered in
k! ways.

We believe that these are only initial steps in the application of the combina-
torics of permutations to the analysis of sequential selection, and we look forward
to further investigations along these lines.

We would like to thank Steven J. Brams for the invitation to contribute to this
volume. Extensive computation by Carl E. Bredlau of Montclair State University
was foundational for this research.
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Partial Orders and Interval Orders



Fractional Weak Discrepancy of Posets
and Certain Forbidden Configurations

Alan Shuchat, Randy Shull, and Ann N. Trenk

1 Introduction

A weak order is a poset P = (V,≺) that can be assigned a real-valued function
f : V → R so that a ≺ b in P if and only if f (a) < f (b) Bogart (1990). Thus, the
elements of a weak order can be ranked by a function that respects the ordering
≺ and issues a tie in ranking between incomparable elements (a ‖ b). When P is
not a weak order, it is not possible to resolve ties as fairly. The weak discrepancy
of a poset, introduced in Trenk (1998) as the weakness of a poset, is a measure of
how far a poset is from being a weak order [Gimbel and Trenk (1998); Tanenbaum,
Trenk, & Fishburn (2001)]. In Shuchat, Shull, and Trenk (2007), the problem of
determining the weak discrepancy of a poset was formulated as an integer program
whose linear relaxation yields a fractional version of weak discrepancy given in
Definition 1 below.

Definition 1. The fractional weak discrepancy wdF(P) of a poset P = (V,≺) is the
minimum nonnegative real number k for which there exists a function f : V → R
satisfying

(i) if a≺ b then f (a)+1≤ f (b) (“up” constraints)
(ii) if a ‖ b then | f (a)− f (b)| ≤ k. (“side” constraints)

Such a function f is called an optimal fractional weak labeling of P (or of V ).

As an example, consider the salary assignment problem described in Shuchat,
Shull, & Trenk (2006). A manager wishes to assign a salary f (a) to each em-
ployee a in her division in a fair way. She can partially order the employees in
her division based on their value to the company. The “up” constraints ensure that a
more valuable employee receives a higher salary. The “side” constraints are fairness

A. Shuchat (�)
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e-mail: ashuchat@wellesley.edu
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conditions that restrict the salary discrepancies between incomparable employees.
For a weak order, sets of pairwise incomparable employees (antichains) are assigned
the same salary level and the fractional weak discrepancy is zero (k = 0 satisfies the
definition). In general, with the appropriate choice of unit the manager can assign
f (a) according to Definition 1. The k in this definition is a measure of the fairness
of the assignment.

Denote the disjoint union of two chains with r and s elements, respectively, by
r+ s. A number of important classes of posets can be characterized in terms of for-
bidden r+ s configurations. For example, linear orders are posets with no induced
1+1, and it is not hard to show that weak orders are posets with no induced 2+1
[Bogart (1990)]. Posets with no induced 2+2 and no induced 3+1 are known as
semiorders. By a theorem of Scott and Suppes (1958), this class is equivalent to the
class of unit interval orders, that is, posets which can be represented as follows:
each element x of the ground set V is assigned a unit length interval Ix on the real
number line so that x≺ y if and only if the interval Ix is completely to the left of Iy.
In Shuchat et al. (2006) we show how we can use fractional weak discrepancy to
characterize the class of semiorders. In particular we establish the following two
results.

Theorem 1 (Shuchat et al. (2006)). If P is a semiorder then wdF(P) = r
r+1 for

some integer r ≥ 0. Furthermore, for each integer r ≥ 0, there exists a semiorder P
with wdF(P) = r

r+1 . Equivalently, {wdF(P) : P a semiorder}= {0, 1
2 , 2

3 , 3
4 , 4

5 , . . .}.

Theorem 2 (Shuchat et al. (2006)). If P is a poset that is not a semiorder then
wdF(P) is a rational number that is at least one. Furthermore, for each rational
number q ≥ 1, there exists a poset P (that is not a semiorder) with wdF(P) = q.
Equivalently, {wdF(P) : P a poset that is not a semiorder}= {q≥ 1 : q ∈Q}.

Combining the results of Theorems 1 and 2, we obtain the following characteri-
zation of semiorders.

Corollary 1 (Shuchat et al. (2006)). A poset P is a semiorder if and only if
wdF(P) = r

r+1 for some integer r ≥ 0.

Posets possessing no induced 2+2 and/or no 3+1 have been studied extensively
beyond the class of semiorders. Relaxing the requirement that the poset contain no
3+1, but retaining our restriction on no induced 2+2, yields the well-known class
of interval orders. These are, by definition, posets in which each element x can be
assigned an interval Ix on the real line so that x≺ y if and only if Ix lies completely
to the left of Iy [Fishburn (1985)]. Posets that are 3+1 free but may or may not con-
tain a 2+2 are not as well known as either semiorders or interval orders, but have a
number of important properties nevertheless. For example, Stanley’s generalization
of the chromatic polynomial is s-positive for the incomparability graph of such a
poset [Gasharov (1996); Stanley (1995)]. Skandera characterized posets containing
no induced 3+1 in terms of their antiadjacency matrices and used this characteri-
zation to give a simple proof that the chain polynomial of such posets has only real
zeros [Skandera (2001)].
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Table 1 Summary of results for the range of wdF

No 3+1 Yes 3+1

semiorders
No 2+2 {wdF (P)}= { r

r+1} {wdF (P)}= {rationals ≥ 1}
interval orders (Corollary 1) (Theorems 2, 5)
Yes 2+2 wdF (P) = 1 {wdF (P)}= {rationals ≥ 1}

(Corollary 4) (Theorem 4; Corollary 3; Fig. 3)

In this paper we study the fractional weak discrepancy of posets obtained by se-
lectively relaxing the restrictions on induced 2+2 and induced 3+1. Together with
Theorem 2, Theorem 5 will imply that the range of the fractional weak discrepancy
function for interval orders (no induced 2+2) that are not semiorders (contain an
induced 3+1) is precisely the set of all rational numbers greater than or equal to 1.
Indeed, Corollary 3 states that any poset with fractional weak discrepancy greater
than 1 must contain a 3+1. We also show that the range of wdF when an induced
2+2 is present also depends on the presence of a 3+1: when P contains no induced
3+1 then wdF(P) = 1 and when it does contain a 3+1 then the range is again the
set of rationals that are at least 1. These results are summarized in Table 1.

2 Forcing Cycles

We begin with some definitions and preliminary results.

Definition 2. A forcing cycle C of poset P = (V,≺) is a sequence C : x0,x1, . . . ,xm =
x0 of m≥ 2 elements of V for which xi ≺ xi+1 or xi ‖ xi+1 for each i : 0≤ i < m. If C
is a forcing cycle, we write up(C) = |{i : xi ≺ xi+1}| and side(C) = |{i : xi ‖ xi+1}|.

In Fishburn (1985), forcing cycles are called picycles (preference-indifference cy-
cles).

Let C be a forcing cycle as in Definition 2. We may choose to start the cycle at
an element x0 that is the beginning of a sequence of “up” steps, i.e., x0 ≺ x1 and
xm−1 ‖ xm = x0. We call x0 an upward starting point of C. In this case, C consists
of s successive chains of ai ≥ 1 elements each followed by an incomparability, i =
1,2, . . . ,s, where ∑s

i=1 ai = m. We write type(C) = [a1,a2, . . . ,as].
For example, the poset P in Fig. 1 has forcing cycle C : a ≺ b ‖ c ≺ d ‖ e ≺ f ≺

g ‖ a with up(C) = 4,side(C) = 3 and type(C) = [2,2,3]. In general, a forcing cycle
C with type(C) = [a1,a2, . . . ,as] has up(C) = ∑s

j=1(a j− 1) and side(C) = s. Note
that ai = 1 corresponds to two consecutive incomparabilities in the forcing cycle.

Given a forcing cycle C, we can obtain a closely related forcing cycle C′ by
choosing a different upward starting point. For example, in Fig. 1 we can start the



294 A. Shuchat et al.

�a

�b

�e

�f

�g

�c

�d

�
�

�
�

�

�
�

�
�

�

Fig. 1 A poset with similar
forcing cycles starting at a
with type [2,2,3] and at e with
type [3,2,2]

forcing cycle at e instead of a. Then we obtain C′ : e ≺ f ≺ g ‖ a ≺ b ‖ c ≺ d ‖ e,
which has type(C′) = [3,2,2].

Note that if P has no incomparable pair then it is a linear order, has no forcing
cycle, and wdF(P) = 0. The following result characterizes fractional weak discrep-
ancy in terms of forcing cycles when P has an incomparable pair. The analogous
result for weak discrepancy appears in Gimbel and Trenk (1998).

Theorem 3 (Shuchat et al. (2007)). Let P = (V,≺) be a poset with at least one
incomparable pair. Then wdF(P) = maxC

up(C)
side(C)

, taken over all forcing cycles C
in P.

The proof of Theorem 2 shows that for integers r ≥ s ≥ 2, if q = r
s (not neces-

sarily in lowest terms) then there exist a non-semiorder P with wdF(P) = q and a
forcing cycle C in P with up(C) = r,side(C) = s. It is thus natural to conjecture that
for integers r ≥ s ≥ 2, every poset P with wdF(P) = r

s has a forcing cycle C with
up(C) = r and side(C) = s. This is not the case even if r

s is in lowest terms, as the
following proposition shows.

Proposition 1. There exists a poset P with wdF(P) = 3
2 but no forcing cycle C with

up(C) = 3 and side(C) = 2.

Proof. We show that the poset P in Fig. 2 has the desired property. By Definition 1,
the labeling function shown there implies that wdF(P)≤ 3

2 . By Theorem 3 the forc-
ing cycle

x1 ≺ y1 ‖ x2 ≺ y2 ‖ x3 ≺ y3 ‖ z1 ≺ z2 ≺ z3 ≺ z4 ‖ x1

shows that wdF(P)≥ 6
4 = 3

2 , thus wdF(P) = 3
2 .

It is easy to see that there is no 4+1 in P because there is only one chain of four
elements, z1 ≺ z2 ≺ z3 ≺ z4, and every other element in P is comparable to some
zi. Similarly, one can check that there is no 3+2 in P by considering all possible
chains of three elements. This implies that P cannot contain a forcing cycle C with
up(C) = 3 and side(C) = 2 because we could choose an upward starting point for
such a cycle to yield one of type [4,1], a 4+1, or of type [3,2], a 3+2. ��
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Fig. 2 A poset with wdF (P) = 3
2 but no forcing cycle with up(C) = 3,side(C) = 2

Lemma 1, which appears as Proposition 9 of Shuchat et al. (2006), allows us to
describe optimal fractional weak labelings for forcing cycles whose “up” to “side”
ratios achieve the maximum value of wdF(P). In particular, every optimal labeling
is tight on such a forcing cycle in the following sense.

Lemma 1 (Shuchat et al. (2006)). Let C : x0,x1, . . . ,xm−1,xm = x0 be a forcing cycle
for poset P = (V,≺) such that k = wdF(P) = up(C)

side(C)
and let f : V →R be an optimal

fractional weak labeling of P. For each i ∈ {0,1, . . . ,m−1}
(i) if xi ≺ xi+1 then f (xi)+1 = f (xi+1)
(ii) if xi ‖ xi+1 then f (xi+1)− f (xi) =−k.

For example, the labeling shown in Fig. 2 is tight on the forcing cycle given in
the proof of Proposition 1.

3 The Range of wdF and Interval Orders

In Theorem 2 we find the range of the fractional weak discrepancy function for
posets that are not semiorders. In this section we divide the non-semiorders into two
types and find the range for each: non-interval orders and interval orders that are not
unit interval orders.

Theorem 4. If P is a non-interval order, then wdF(P) ≥ 1. Furthermore, for any
rational number q ≥ 1, there exists a non-interval order P with wdF(P) = q. Thus
for the class of non-interval orders, the range of wdF is {q ∈Q : q≥ 1}.

Proof. If P is not an interval order (i.e., possesses an induced 2+2) then P is not a
semiorder, so wdF(P)≥ 1 by Theorem 2.
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Fig. 3 A non-interval order P
with wdF (P) = 1

Now let q > 1 be rational. The proof of Theorem 2 includes the construction of
a poset P with wdF(P) = q. This construction, which appears in Proposition 14 of
Shuchat et al. (2006), contains an induced 2+2, so P is not an interval order.1

For the case of q = 1 we consider Fig. 3, which gives a poset P containing an
induced 2+2, so again P is not an interval order. By the first sentence of the proof
wdF(P)≥ 1, and the labeling of P shown in the figure demonstrates that wdF(P)≤ 1.
So wdF(P) = 1 = q. ��

We now establish a similar result for interval orders. In particular, we show how
to achieve any rational number that is at least one as the fractional weak discrepancy
of some interval order, which by Theorem 2 is necessarily not a semiorder. The proof
is constructive.

Theorem 5. For any rational number q ≥ 1, there exists an interval order P with
wdF(P) = q.

Proof. We write the given rational q as q = r/s with integers r ≥ s ≥ 2.
We will construct an interval representation of an order P = (V,≺) with
V = {x0,x1, . . . ,xr,y1,y2, . . . ,ys−1}. For 0 ≤ i ≤ r, let I(xi) = [is, is], that is, each
of these intervals is a point. Let I(ys−1) = [(s− 2)r,sr] and if s > 2, then for
1≤ j ≤ s−2, let I(y j) = [( j−1)r,( j +1)r− 1

2 ]. Figure 4 shows the representation
in the case r = 7 and s = 4. By construction, xi ≺ xi+1 for 0 ≤ i < r and y j ‖ y j+1
for 1 ≤ j ≤ s− 2. Furthermore, xr ‖ ys−1 and y1 ‖ x0. Thus P contains the forcing
cycle C : x0 ≺ x1 ≺ x2 ≺ ·· · ≺ xr ‖ ys−1 ‖ ys−2 ‖ · · · ‖ y1 ‖ x0 with up(C) = r and
side (C) = s. Thus wdF(P)≥ r/s by Theorem 3.

It remains to show wdF(P) ≤ r/s. Define the labeling function g : V → Z by
setting g(xi) = is for i = 0,1, . . . ,r and setting g(y j) = jr for j = 1,2, . . . ,s−1. (See
the example in Fig. 4.) We show

1 The 2+2 in that construction is formed by the chains xn−1 ≺ yn−1 and z1 ≺ z2.
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Fig. 4 An interval order P with wdF (P) = 7/4 and labeling function g

(i) if a≺ b then g(a)+ s≤ g(b) (“up” constraints)
(ii) if a ‖ b then |g(a)−g(b)| ≤ r. (“side” constraints)

Then it will follow that the function f : V → Q defined by f (x) = g(x)/s is an
optimal fractional weak labeling of P satisfying Definition 1.

We will consider all pairs (a,b) of elements of V , classify their relation in the
poset, and prove that the corresponding constraints are satisfied. First take xi,x j ∈V
with i < j. By construction, xi ≺ x j and g(xi)+ s = is + s = (i + 1)s ≤ js = g(x j),
satisfying (i) for this pair of elements.

Next consider yi,y j ∈ V with i < j. If j = i + 1, then I(yi)∩ I(y j) = /0 so yi ‖ y j
and |g(yi)−g(y j)|= |ir− jr|= r, satisfying (ii). Otherwise, j ≥ i+2. Let R be the
right endpoint of the interval I(yi) and L be the left endpoint of the interval I(y j).
Then R = (i + 1)r− 1

2 ≤ ( j− 1)r− 1
2 < L. Thus yi ≺ y j and g(yi) + s = ir + s ≤

ir + r = (i+1)r < jr = g(y j), satisfying (i).
Lastly, consider xi,y j ∈V . By construction, xi ‖ y j precisely when the point I(xi)

is contained in the interval I(y j). In this case, for 1≤ j ≤ s−1 we have ( j−1)r ≤
is ≤ ( j + 1)r. Subtracting jr yields −r ≤ is− jr ≤ r. Thus |g(xi)− g(y j)| = |is−
jr| ≤ r, satisfying (ii).

If instead xi ≺ y j then the point I(xi) lies strictly to the left of I(y j), so is <
( j−1)r. In this case, g(xi)+ s = is + s < ( j−1)r + s ≤ ( j−1)r + r = jr = g(y j),
satisfying (i). Finally, if y j ≺ xi then j < s−1 and the point I(xi) lies strictly to the
right of the interval I(y j), and thus ( j + 1)r− 1

2 < is. Since all the parameters are
integers, in fact, ( j +1)r ≤ is. In this case g(y j)+ s = jr + s≤ jr + r = ( j +1)r ≤
is = g(xi), satisfying (i). ��

We can now fill in the top-right entry of Table 1. If P contains an induced 3+1
but no 2+2, then Theorem 2 implies wdF(P) ≥ 1. Conversely, by Theorem 5 any
rational q ≥ 1 equals wdF(P) for some interval order P (contains no 2+2), but
Theorem 1 implies P is not a semiorder (thus contains a 3+1). We have shown the
following.
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Corollary 2. For the class of posets that are interval orders but not semiorders (con-
tain an induced 3+1 but no 2+2), the range of wdF is {q ∈Q : q≥ 1}.

4 An Upper Bound on wdF for Posets with no n+1

As in Shuchat et al. (2007); Shuchat et al. (2006), we define the (integer) weak
discrepancy wd(P) of a poset P = (V,≺) as the minimum nonnegative integer k for
which there exists a function f : V → Z satisfying (i) and (ii) of Definition 1. This
is equivalent to the concept of weakness first introduced in Trenk (1998). The fol-
lowing theorem (Proposition 7 of Shuchat et al. (2007)) allows us to calculate the
weak discrepancy of a poset from its fractional weak discrepancy.

Theorem 6 (Shuchat et al. (2007)). For any poset P we have wd(P) = &wdF(P)'.

In Trenk (1998), the author proved a result giving an upper bound on wd(P) for
posets with no induced n+1. We state the result in its contrapositive form.

Theorem 7 (Trenk (1998)). Let n be an integer, n≥ 2. Every poset P with wd(P) >
n−2 contains an induced n+1.

Neither forcing cycles nor fractional weak discrepancy had been defined when
Theorem 7 was first presented. In this section, we give a substantially simpler proof
of the analogous theorem for fractional weak discrepancy and show the two results
are in fact equivalent.

Theorem 8. Let n be an integer, n≥ 2. Every poset P with wdF(P) > n−2 contains
an induced n+1.

Proof. Let P = (V,≺) be a poset with k = wdF(P) > n− 2 and let f : V → R be
an optimal fractional weak labeling of P. By Theorem 3 there exists a forcing cycle
C : x0,x1, . . . ,xm = x0 such that k = wdF(P) = up(C)

side(C)
. Without loss of general-

ity, suppose that xm−1 ‖ xm = x0, i.e., the cycle closes with an incomparability. By
Lemma 1, the labeling f is tight on C. In particular, f (xm−1)− f (x0) = k.

Consider the sequence S of differences

f (x1)− f (x0), f (x2)− f (x1), . . . , f (xm−1)− f (xm−2).

Note that the sum of the elements of S is f (xm−1)− f (x0) = k. By Lemma 1, each
term of S is either +1 or −k. Let t be the largest number of consecutive +1’s in S.
If t < k then every partial sum of S, and in particular the sum of all the terms, is less
than k, a contradiction. Thus, t ≥ k and since t is an integer, t ≥&k'. By the definition
of t, there is a longest chain in C containing t elements. Let x j be its starting point
and consider its subchain x j ≺ x j+1 ≺ ·· · ≺ x j+&k' of length &k'. By the maximality
of t, x j−1 ‖ x j (if j = 0 we replace j by m) and thus f (x j−1)− k = f (x j). Now
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f (x j+&k') = f (x j)+ &k'= f (x j−1)− k + &k'< f (x j−1)+1. (1)

If x j−1 ≺ x j+&k' then (1) contradicts the “up” constraint in Definition 1. If x j+&k' ≺
x j−1 then x j ≺ x j+&k' ≺ x j−1, contradicting x j−1 ‖ x j. Thus, x j−1 ‖ x j+&k'. We con-
clude that x j ≺ x j+1 ≺ ·· · ≺ x j+&k' ‖ x j−1 is a (&k'+1)+1. Since k > n− 2 and
n−2 is an integer, &k' ≥ n−1 and P contains an induced n+1. ��

The bound given in Theorem 8 is the best possible, since P= (n−1)+(n−1)
has no induced n+1 but wdF(P) = 2(n−2)

2 = n−2.
The hypotheses of Theorems 7 and 8 are equivalent because n is an integer and

wd(P) = &wdF(P)'. Thus our proof of Theorem 8 gives a shorter proof of Theorem 7
as well. Notice also that the proof of Theorem 8 relies on the existence of a forcing
cycle and an optimal labeling that is tight on that cycle. This same argument cannot
be used to prove Theorem 7 directly since the tightness condition need not hold for
forcing cycles whose “up” to “side” ratios achieve the (integer) weak discrepancy
of the poset. For example, let P be a 3+2 with chains a0 ≺ a1 ≺ a2 and a3 ≺ a4.
An optimal integer labeling is f (a0) = 0, f (a1) = 1, f (a2) = 2, f (a3) = 1, f (a4) = 2
so wd(P) = 2, but the labeling is not tight on the forcing cycle a0 ≺ a1 ≺ a2 ‖ a3 ≺
a4 ‖ a0.

5 The Range of wdF and Non-interval Orders

In Theorem 4 we found the range of the fractional weak discrepancy function for
non-interval orders. In this section, we divide these orders into two types and find
the range for each: orders that contain an induced 3+1 and those that do not. This
will justify the entries at the bottom of Table 1.

The poset P in Fig. 2 has wdF(P) = 3/2 and contains no induced 4+1 but it does
have a 3+1, e.g., the elements of z1 ≺ z2 ≺ z3 are all incomparable to x2. Indeed,
all posets with fractional weak discrepancy greater than one must contain a 3+1 by
Theorem 8, with n = 3. We state that specific case so we can refer to it more easily.

Corollary 3. Every poset P with wdF(P) > 1 contains an induced 3+1.

This result is best possible since, by Theorem 2, if wdF(P) < 1 then P must be
a semiorder and thus does not contain a 3+1. On the other hand, Shuchat et al.
(2007) show that wdF(3+1) = wdF(2+2) = 1 so if wdF(P) = 1 then P may or
may not contain a 3+1.

Note that Theorem 4 implies that the range of wdF for posets possessing an in-
duced 2+2 is the set of all rational numbers greater than or equal to 1. In the case of
strict inequality, Corollary 3 implies all such posets must also have an induced 3+1.
The poset P given in Fig. 3 possesses both a 2+2 and a 3+1 and has wdF(P) = 1.
We conclude that the range of wdF for posets possessing both an induced 2+2 and
an induced 3+1 is also {q ∈ Q : q ≥ 1}, as indicated in the lower-right entry in
Table 1.
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By Corollary 3 a poset P with no induced 3+1 must satisfy wdF(P) ≤ 1. Also,
if P has an induced 2+2 then it has a forcing cycle C with up(C)

side(C)
= 1 and thus

by Theorem 3, wdF(P) ≥ 1. So wdF(P) = 1, which fills in the lower-left entry of
Table 1 and which we state as an additional corollary. The converse is clearly false
since wdF(3+1) = 1. We have

Corollary 4. Every poset P with an induced 2+2 but no induced 3+1 satisfies
wdF(P) = 1.

Although Corollary 3 gives the best possible bound for wdF(P) over the class
of all posets, the upper row of Table 1 suggests a slightly better bound when P is
restricted to the class of interval orders. In particular, if C is a forcing cycle for
P with up(C) > r and side(C) = r + 1 (so wdF(P) > r

r+1 ), then C must contain a
3+1. Furthermore, the proof of Theorem 1 given in Proposition 16 of Shuchat et
al. (2006) shows how to construct, for each r > 0, an interval order P possessing an
optimal forcing cycle C with up(C) = r and side(C) = r + 1 but no induced 3+1.
In the case n = 3, we can express the upper row as saying that if up(C) > (n− 2)r
and side(C) = r +1, then P must contain an n+1. In Shuchat, Shull, and Trenk (in
press) we extend this result to the case where n≥ 3.
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Interval Order Representation via Shortest
Paths

Garth Isaak

1 Introduction

Our goal in this paper is to illustrate how the representation theorems for finite
interval orders and semiorders can be seen as special instances of existence results
for potentials in digraphs. This viewpoint yields short proofs of the representation
theorems and provides a framework for certain types of additional constraints on the
intervals. We also use it to obtain a minimax theorem for the minimum number of
endpoints in a representation. The techniques are based on techniques used by Peter
Fishburn in proving results about bounded representations of interval orders.

Interval orders represent the order structure of a collection of intervals. For
example, this can be used to model the relations between a set of events each of
which occurs over some time interval. Semiorders are a special case where the in-
tervals have the same length. These can be viewed as representing comparisons of
values where a relation is noted only if the difference of values is above a certain
threshold. We will not go into more detail here as there are many good references
describing the various applications of interval orders and semiorders. See for ex-
ample Fishburn (1985); Luce, Krantz, and Suppes (1971, 1989, 1990); Pirlot and
Vincke (1997). See Fishburn (1997) for a good description of some more general
models based on intervals.

Recall that an interval order is an asymmetric binary relation ≺ on a set U that
satisfies (a≺ x and b≺ y implies a≺ y or b≺ x) for all a,b,x,y∈U . These are (strict
partial) orders as transitivity is implied by this definition. The name interval applies
because these orders can be represented by a set of intervals in a linear order with the
natural relation “less than” for the intervals. A (closed real) interval representation
of a strict order (U,≺) is a set of closed real intervals [lx,rx] for x ∈ U such that
x ≺ y if and only if rx < ly. A 2 + 2 in an order is the disjoint union of two chains
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each with two elements. That is, a 2 + 2 is a set of four elements x,y,a,b such that
a ≺ x,b ≺ y,a ∼ y,b ∼ x (with also x ∼ y, a ∼ b implied by transitivity). Here we
use the notation ∼ to represent incomparability, x∼ y if and only if x ≺ y and y ≺ x.
A 2 + 2 corresponds to a violation of the interval order condition above so we can
take as our definition that an interval order is a strict partial order with no 2+2.

This result that an order can be represented by intervals if and only if it has no
2 + 2 was anticipated by Wiener in 1914 (see Fishburn & Monjardet, 1992) and
shown by Fishburn (1970a, 1970b). Following Bogart (1993) we will refer to this as
Fishburn’s Theorem. When the ground set is finite we can use either open or closed
intervals in the real numbers for the interval representation. When the ground set is
infinite and in particular uncountable, things are a little more complicated. A linear
order other than the reals may be required. For more on this see Fishburn’s book
(Fishburn, 1985). For this paper we will stick to the finite version and consider real
number representations with the goal of seeing a connection to potentials, shortest
paths and negative cycles in digraphs. We will assume that all orders considered in
this paper are finite. We will not attempt to survey the many different proofs that
have been given for these theorems nor the various related results. See Fishburn’s
book (Fishburn, 1985) for a very nice description of results on interval orders.

Fishburn’s Theorem (for finite interval orders): A finite strict partial order has
a closed real interval representation if and only if it has no 2+2.

A finite unit interval order (also called a semiorder), introduced by Luce (1956)
is an interval order that has a real representation in which all of the intervals have
length 1. Such a representation will be called a unit interval representation. See
Fishburn (1985) for a discussion of the infinite case. A 3 + 1 is the disjoint union
of a chain with 3 elements and a chain with 1 element. That is, r,s, t,u such that
r ≺ s ≺ t and u ∼ r, u ∼ t (with u ∼ s implied by transitivity). This is the extra
condition for unit interval representations as shown by Scott and Suppes (1958).

Scott–Suppes’ Theorem (for finite unit interval orders): A finite strict partial
order has a closed real unit interval representation if and only if it has no
2+2 or 3+1.

We will give short proofs of these results using shortest paths in an associated
digraph and also show how this framework can be used to get results about rep-
resentations with certain side constraints on the intervals. This technique was first
used by Fishburn (1983) for representations with bounds on the interval lengths and
later by the author (Isaak, 1990, 1993) for representations with bounds and integral
endpoints. A similar technique was used by Pirlot (1990) for semiorder represen-
tation questions although with a different set of inequalities. It was also used by
Doignon (1988a). The books Fishburn (1985) and Pirlot and Vincke (1997) have
more details of these techniques in various settings. The representation theorems
are implicit in these results. However, without the bounds we can get short proofs of
the representation theorems. Finally we will use the framework to obtain a minimax
theorem for the minimum number of endpoints in a representation.
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2 Shortest Paths and Potentials

We first give a brief review of basic results on shortest paths and potentials which
will provide the framework for our proofs. This can be found, for example in
Schrijver (2003, p. 108).

A weighted digraph is a set V of vertices along with a set A of ordered pairs (x,y)
of vertices called arcs. Each arc (x,y) has an associated length w(xy). A potential
function p(x) defined on the vertices is a function satisfying p(y)− p(x) ≤ w(xy)
for all arcs (x,y). That is, the potential value at y is at most the potential at x plus
the length of arc (x,y). An x− y path in a digraph is a sequence of distinct vertices
x = x1,x2, . . . ,xt = y such that (xi,xi+1) is an arc for i = 1,2, . . . , t−1. A cycle is the
same as a path except that (xt ,x1) is also an arc. The length of a path (cycle) is the
sum of the arc lengths along the path (cycle). Let p(y) denote the shortest length of
a path ending at y. It is a basic result that these shortest path lengths are defined for
all vertices if and only if the graph has no negative cycle (i.e., a cycle with negative
length). It is easy to see that if p(x) is the length of a shortest path ending at x for
each x (assuming that these are well defined) then this is a potential. If a digraph has
a negative cycle with length −c < 0 then “adding” the inequalities for the arcs on
the cycle produces the inconsistency 0≤−c showing that there is no potential.

Hence a digraph has a potential function if and only if it has no negative cycle.
Furthermore, if there is no negative cycle then the lengths of shortest paths ending
at each vertex yield a potential.

3 Interval Orders

That an order with an interval representation has no 2+2 is easy to check. Our goal
is to show the converse: a finite order with no 2 + 2 has a closed interval repre-
sentation. For each element x ∈U create two variables p(rx) and p(lx) (which will
correspond to left and right endpoints of intervals in a representation). Consider
the p as representing placement of the endpoints and in what follows (with a slight
abuse of notation) a potential function.

Let γ be a positive number. Consider the following inequalities:
(C) For all x≺ y, p(rx)≤ p(ly)− γ , equivalently p(rx)− p(ly)≤−γ .
(I) For all x∼ y, p(rx)≥ p(ly), equivalently p(ly)− p(rx)≤ 0.

The intervals would be [p(lx), p(rx)]. The inequalities C enforce “less than” for
intervals of comparable elements and the inequalities I enforce “not less than” for
incomparable elements. It is not difficult to check that (U,≺) has an interval rep-
resentation using intervals [p(lx), p(rx)] if and only if the p(rx), p(lx) are a solution
to the system of inequalities above. The γ is just a convenience to avoid writing
strict inequalities. Note that when x = y in I we have p(rx) ≥ p(lx), ensuring that
these really are intervals, with the right endpoints at least as large as the left end-
points. Also, when x ∼ y, switching the roles of x and y we see that we have both
p(ly)− p(rx)≤ 0 and p(lx)− p(ry)≤ 0.
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Each inequality has two variables, one with coefficient +1 and one with
coefficient −1. We then recognize the inequalities as those for a potential func-
tion on a particular digraph.

For a given order (U,≺) we define (with a slight abuse of notation) a digraph
DU with vertices {lx,rx|x ∈U} and arcs C∪ I where C = {(ly,rx)|x≺ y} with length
−γ for some positive number γ and I = {(rx, ly)|x ∼ y} with length 0. Then, from
the preceding section, (U,≺) has an interval representation if and only if DU has no
negative cycles. Furthermore the length of a shortest path ending at rx can be used
for the right endpoints p(rx) and similarly the length of a shortest path ending at
ly can be used for the left endpoints p(ly). We note that directly writing down DU
one can fairly easily show this claim without going through the idea of potentials.
Looking at shortest paths, the length 0 on an arc (rx, ly) for x ∼ y forces a shortest
path ending at ly to have length no more than a shortest path ending at rx. That is
p(ly), would be at most p(rx) and so x ≺ y. Similarly the length−γ on arc (ly,rx) for
x ≺ y forces a shortest path ending at rx to have length strictly less a shortest path
ending at ly. That is, p(rx) would be less than p(ly) and so x≺ y. The framework of
potentials is useful as motivation for why we construct the digraph in this manner
and for easily yielding a proof that the technique works.

Proof of Fishburn’s Theorem for Finite Orders

From the discussion above we need to show that (U,≺) has a 2 + 2 if and only if
DU contains a negative cycle.

We have already noted that it is easy to check directly that an order with a
2 + 2 has no interval representation. We can also show this using the digraph: If
a≺ x,b≺ y, a∼ y,b∼ x is a 2+2 then lx,ra, ly,rb is a cycle with length −2γ < 0.

We now need to show that if DU contains a negative cycle then (U,≺) has a
2+2. Observe that DU is bipartite. Partition the vertex set into R = {rx|x ∈U} and
L = {ly|y ∈U}. Then there are two types of arcs, each with one end in R and the
other in L. Arcs from L to R have length−γ and arcs from R to L have length 0. Any
cycle must alternate between these two types of arcs and thus any cycle is negative.
So it is enough to show that if DU contains a cycle then (U,≺) has a 2+2.

Consider a cycle with the minimum number of vertices. It is easy to see that it
cannot have exactly two vertices. Since the digraph is bipartite the cycle contains
lx,ra, ly,rb for some x,a,y,b (not necessarily distinct). The arcs imply that a ≺ x,
b≺ y and a∼ y. If b≺ x then (lx,rb) is an arc and replace the segment with this arc
for a negative cycle with fewer vertices. If x≺ b then in the order a≺ x≺ b≺ y and
by transitivity a≺ y contradicting a∼ y. So x∼ b. Thus we have y∼ a, a≺ x, b≺ y
and x∼ b. Using transitivity it is easy to see that x,y,a,b are distinct and so x,y,a,b
induce a 2+2. ��

To prove Fishburn’s Theorem with open intervals in the representation we would
give an almost identical proof except that the arcs in I would have length −ε for
some positive ε and the arcs in C would have length 0 (and the corresponding
changes in the inequalities C and I).
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4 Unit Interval Orders

That an order with a unit interval representation has no 2 + 2 and no 3 + 1 is easy
to check. Our goal is to show the converse: a finite order with no 2+2 and no 3+1
has a closed unit interval representation. One approach is to use the same model
as for interval orders and replace the constraints p(rx) ≥ p(lx) that right endpoints
are at least as large as left endpoints with constraints p(rx) = p(lx)+ 1 written as
p(rx)− p(lx)≤ 1 and p(lx)− p(rx)≤−1. Then appropriately adjust the correspond-
ing digraph. Instead we will use a single variable for left endpoints, setting the right
endpoints to be 1 more than the left.

We will use the same notation for DU as the previous section however the con-
struction here is different.

For each element x ∈ U create a variable p(lx) (which will correspond to left
endpoint of intervals in a representation). Consider the p as representing placement
of the left endpoint and in what follows a potential function.

Let γ be a positive number. Consider the following inequalities:
(C) For all x≺ y, p(lx)+1≤ p(ly)− γ ,

equivalently p(lx)− p(ly)≤−(1+ γ).
(I) For all x∼ y with x = y, p(lx)+1≥ p(ly),

equivalently p(ly)− p(lx)≤ 1.

The intervals would be [p(lx), p(lx)+ 1]. The inequalities C enforce “less than”
for intervals of comparable elements and the inequalities I enforce “not less than”
for incomparable elements. Note that we do not need the condition x = y. How-
ever we include it to avoid these trivial inequalities which would add loops to the
digraph. It is not difficult to check that (U,≺) has an unit interval representation
using intervals [p(lx), p(lx)+ 1] if and only if the p(lx) are a solution to the system
of inequalities above. The γ is just a convenience to avoid writing strict inequalities.

As with the interval order case we recognize the system of inequalities as corre-
sponding to those for a potential in a particular digraph.

For a given order (U,≺) we define (with a slight abuse of notation) a digraph DU
with vertices {lx|x ∈U} and arcs C∪ I where C = {(ly, lx)|x≺ y} with length−(1+
γ) for some positive number γ and I = {(lx, ly)|x ∼ y} with length 1. Observe that
if x ∼ y we have both arcs (lx, ly) and (ly, lx) with length 1. From the connection to
potentials (U,≺) has a unit interval representation if and only if DU has no negative
cycles. Furthermore length of a shortest path ending at ly can be used for the left
endpoints p(lx). We note that directly writing down DU one can fairly easily show
this claim without going through the idea of potentials. Looking at shortest paths,
the length 1 on an arc (lx, ly) for x ∼ y forces a shortest path ending at ly to have
length at most 1 more than a shortest path ending at lx. That is the right endpoint
p(lx)+1, would be at most p(ly) and so x ≺ y. Similarly the length −(1+ γ) on arc
(ly, lx) for x ≺ y forces a shortest path ending at lx to have length more than 1 less
a shortest path ending at ly. That is, the right endpoint p(lx)+ 1 would be less than
p(ly) and so x≺ y.
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Proof of Scott–Suppes’ Theorem for Finite Orders

From the discussion on potentials we need to show that (U,≺) has a 2+2 or a 3+1
if and only if DU contains a negative cycle.

We have already noted that it is easy to check directly that an order with a 2+2 or
a 3+1 has no unit interval representation. We can also show this using the digraph:
If a≺ x,b≺ y,a∼ y,b∼ x is a 2+2 then lx, la, ly, lb is a cycle with length −2γ < 0.
If r ≺ s≺ t,u∼ r,u∼ t is a 3+1 then lt , ls, lr, lu is a cycle with length −2γ < 0.

We now need to show that if DU contains a negative cycle then (U,≺) has a 2+2
or a 3+1.

Observe that since arcs in C have length −(1 + γ) and arcs in I have length +1
there are at least as many arcs from C as from I in any negative cycle. Consider a
negative cycle with the minimum number of vertices. Using transitivity in the order,
it is easy to see that it cannot have 3 vertices. Since there are at least as many C
arcs as I arcs, the cycle either alternates between C arcs and I arcs or contains 2
consecutive arcs from C.

In the first case consider lx, la, ly, lb along the cycle with (lx, la),(ly, lb) in C and
(la, ly) in I. The arcs imply that a≺ x, b≺ y and a∼ y. If b≺ x then (lx, lb) is an arc
in C and replace the segment with this arc for a cycle with fewer vertices. If x ≺ b
then in the order a ≺ x ≺ b ≺ y and by transitivity a ≺ y contradicting a ∼ y. So
x∼ b. Thus we have y∼ a, a≺ x, b≺ y and x∼ b. So x,y,a,b induce a 2+2.

In the second case some pair of consecutive arcs from C is followed by an arc
from I. (If all arcs are from C we get a violation of transitivity in the order). Consider
lt , ls, lr, lu along the cycle with (lt , ls) and (ls, lr) in C and (lr, lu) in I. The arcs imply
that s ≺ t, r ≺ s and r ∼ u. If u ≺ t then (lt , lu) is an arc from C and replace the
segment by this arc for a cycle with fewer vertices. If t ≺ u then in the order r≺ s≺
t ≺ u and by transitivity r ≺ u contradicting r ∼ u. So t ∼ u. Thus we have s ≺ t,
r ≺ s and r ∼ u and t ∼ u. So r,s, t,u induce a 3+1. ��

To prove the Scott–Suppes’ Theorem with open intervals in the representation we
would give an almost identical proof except that the arcs in I would have length 1−ε
for some positive ε and the arcs in C would have length −1 (and the corresponding
changes in the inequalities C and I).

5 Side Constraints

We next briefly note how the framework of inequalities and shortest paths can
be used in a more general setting. We can, for example, place lower and up-
per bounds on the interval lengths in a representation. That is, given numbers
0≤α(x)≤ β (x) for each element x∈U we add the constraints p(rx)− p(lx)≥α(x)
and p(rx)− p(lx) ≤ β (x) for all x. These specify lower and upper bounds on each
interval length. The additional constraints add additional arcs to the digraph DU .
These representations have been examined by Fishburn (1985, 1983) and with the
additional requirement that the endpoints be integral in Isaak (1990, 1993). The use
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of shortest paths to construct an interval representation does imply an efficient algo-
rithm for determining when an order has a representation subject to the additional
constraints on interval length. However, while the result that there is a representation
if and only if DU contains no negative cycle is in a sense a characterization theorem
it would be good to translate this to minimal forbidden suborders as negative cycles
implied a 2+2 in the proof of Fishburn’s Theorem. Unfortunately this seems to be
fairly complicated. The minimal forbidden suborders for a representation with inte-
gral endpoints and interval lengths between 0 and some positive integer α is given
in Isaak (1990) but it is very messy. The same situation with a lower bound of 1 on
interval lengths appears even messier although a possible infinite list is suggested in
Isaak (1990).

Looking at the inequalities and not using the digraph model one can consider
interval representations that are “optimal” by some other measure. For example,
when there are lower bound on interval lengths, one could specify a utility for each
element and seek an interval representation that minimizes the sums of the interval
lengths weighted by the utilities. Linear programming algorithms and linear pro-
gramming duality immediately give an efficient algorithm to find such a “weighted
least length” interval representation as well as minimax theorem. It may be interest-
ing to investigate if this can be translated to a more direct statement in terms of the
order.

6 Magnitude

In this section we will show that the representation for interval orders constructed
with interval endpoints determined by the values of shortest paths in DU uses the
minimum number of distinct endpoint values among all interval representations.
This minimum value is called the magnitude and discussed in Sect. 2.3 of Fishburn
(1985). Magnitude is presented from a slightly different perspective here. In partic-
ular we obtain a minimax result equating the minimum number of endpoints to the
maximum “size” of a certain suborder.

Since the arc lengths in DU are 0 and −γ , the shortest path lengths p(rx), p(lx)
take on values 0,−γ,−2γ, . . . ,−mγ for some nonnegative integer m. The interval
representation constructed from DU uses m + 1 distinct endpoints. We will show
that the magnitude is m+1.

In this section we will assume that all orders are interval orders. That is, DU does
not have a negative cycle.

We use a particular class of orders, called sequences of linked chains to obtain
a lower bound on the magnitude and show that this bound matches the number of
endpoints used in the shortest paths construction. These orders are special cases of
the picycles introduced by Fishburn (1983) and what are called sequences of linked
chains in Isaak (1990).

A sequence of linked chains in an interval order (U,≺) is a sequence of chains
Ci = ui1� ui2� ·· · � uini for i = 1,2, . . . ,k such that the chains are nontrivial (ni≥ 2)
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and for i = 1,2, . . . ,k−1 we have uini ∼ u(i+1)1. In addition, elements of the chains
are distinct except that possibly an element can appear on two chains as uini = u j1

for some j > i+1. The size of the sequence of linked chains is 1+∑k
i=1(ni−1).

Observe that we have not specified all the relations between the elements so that
different orders on the same set of elements can be sequences of linked chains. The
relations that have been specified by the chains are enough for our proof.

Theorem 1. For a finite interval order (U,≺), the minimum number of distinct end-
points in an interval representation is equal to the maximum size of a sequence of
linked chains in (U ≺). Furthermore, the representation constructed from shortest
paths in DU uses this many endpoints.

Proof. Consider any interval representation of an order that contains a sequence
of linked chains with size m + 1. Use the notation [l(ui j),r(ui j)] for the intervals.
From ui(ni−1) � uini and uini ∼ u(i+1)1 we get l(ui(ni−1)) > r(uini)≥ l(u(i+1)1). Also,
from the chains, the left endpoints satisfy l(ui1) > · · ·> l(uini). Thus the endpoints
l(ui j) for i = 1,2, . . . ,k and j = 1,2, . . . ,ni − 1 are distinct. (It is possible that
l(uini) = l(u(i+1)1)). Finally, l(uknk) is distinct from any of these endpoints. Thus
any representation requires at least 1+∑k

i=1(ni−1) = m+1 endpoints.
As noted above, the length of a shortest path in DU will be −mγ for some

nonnegative integer m. Partition the I arcs in DU into I1 = {(rx, lx)|x ∈ U}
and I2 = {(rx, ly|x ∼ y,x = y}. Since arcs in I have length 0 we can assume
that a shortest path is of the form lu1 ,ru2 , . . . ,rut . Deleting the arcs from I2
leaves subpaths which alternate between C arcs and I1 arcs. That is, sub-
paths lui1 ,rui2 , lui2 , . . . ,rui(ni−1) , lui(ni−1) ,ruini

for some i = 1,2, . . . ,k (where we as-
sume the ith subpath appears before the (i + 1)st). These correspond to chains
ui1 � ui2 � ·· · � uuni in the order. From the deleted I2 arcs we have uini ∼ u(i+1)1
and hence the order contains a sequence of linked chains. For each of the chains
there are ni−1 corresponding arcs from C in the path in DU and these are the only
arcs from C. Hence the path length satisfies m = ∑k

i=1(ni− 1) and the sequence of
linked chains has size m+1.

The first paragraph shows that the minimum number of endpoints in an interval
representation of (U,≺) is at least the maximum size of a sequence of linked chains.
If the shortest path length in DU is −mγ then the construction in the proof of Fish-
burn’s theorem yields a representation with exactly m + 1 distinct endpoints. The
second paragraph shows that (U,≺) contains a sequence of linked chains of size
m+1. ��

7 Conclusion

The technique of using systems of linear inequalities and shortest paths in digraphs
naturally arising from these systems has been used to prove a variety of results about
interval orders and semiorders. These have included representations with additional
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constraints on interval lengths and endpoints and also investigation of minimal
representations. See Doignon(1988a, 1988b); Fishburn (1985, 1983); Isaak (1990,
1993); Pirlot (1990); Pirlot and Vincke (1997) for some of these. In this paper we
have shown how this technique that has been used in more general settings can also
be used to give short proofs of basic representation theorems including a structural
perspective on minimal representations.

Acknowledgements Thanks to the referees for useful comments. I would also like to thank Peter
Fishburn for his valuable support and encouragement early in my career.
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Probe Interval Orders

David E. Brown and Larry J. Langley

1 Introduction

A graph G is a probe interval graph if there is a partition of V (G) into P and N
and a collection {Iv : v ∈ V (G)} of intervals of R in one-to-one correspondence
with V (G) such that uv ∈ E(G) if and only if Iu ∩ Iv = Ø and at least one of u,v
belongs to P. The sets P and N are called the probes and nonprobes, respectively,
and {Iv = [l(v),r(v)] : v ∈V (G)} together with the partition will be referred to as a
representation. An interval graph is a probe interval graph with N = Ø and this class
of graphs has been studied extensively; see the texts Fishburn (1985), Golumbic
(1980), and Roberts (1976) for introductions and other references.

The probe interval graph model was invented in connection with the task called
physical mapping faced in connection with the human genome project (Zhang,
1994, 1997; Zhang et al., 1994). In DNA sequencing projects, a contig is a set of
overlapping DNA segments derived from a single genetic source. In order for DNA
to be more easily studied, small fragments of it, called clones, are taken from multi-
ple copies of the same genome. Physical mapping is the process of determining how
DNA contained in a group of clones overlap without having to sequence all the DNA
in the clones. Once the map is determined, the clones can be used as a resource to
efficiently contain stretches of genome. If we are interested in overlap information
between each pair of clones, we can use an interval graph to model this problem:
vertices are clones and adjacency represents overlap. Using the probe interval graph
model, we can use any subset of clones, label them as probes, and test for overlap
between a pair of clones if and only if at least one of them is a probe. This way
there is flexibility, in contrast to the interval graph model, since all DNA fragments
need not be known at time of construction of the probe interval graph model. Con-
sequently, the size of the data set, which by nature can be quite large, is reduced.
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We now mention some of the recent results on probe interval graphs. The paper
(McMorris, Wang, & Zhang, 1998) has results similar to those for interval graphs
found in Fulkerson and Gross (1965) and Golumbic (1980); e.g., probe interval
graphs are weakly chordal, in analogue to interval graphs being chordal, and, as
maximal cliques are consecutively orderable in interval graphs, so-called quasi-
maximal cliques are in probe interval graphs. The neighborhood of graph classes
surrounding probe interval graphs has begun to be described in Brown and Lundgren
(2006), Brown, Lundgren, and Flink (2002), and Golumbic and Lipshteyn (2001).
Relationships between bipartite probe interval graphs, interval bigraphs and the
complements of circular arc graphs are presented in Brown and Lundgren (2006).
In Golumbic and Lipshteyn (2004) chordal graphs have been generalized to what
are called “chordal probe graphs” in a way analogous to how probe interval graphs
generalize interval graphs.

There are two recognition problems for probe interval graphs: partitioned and
non-partitioned. The former entails recognizing, finding, and representing possible
layouts of intervals for probe interval graphs with a prior specification of partition of
vertices into probes and nonprobes. The latter problem entails determining whether
a given graph is a probe interval graph with no partition specified. An O(n2) recog-
nition algorithm for the partitioned case is described in Johnson and Spinrad (2001),
and an O(n+m logn) algorithm is given in McConnell and Lundgren (2002), where
m is the number of edges and n the number of vertices of the graph under consid-
eration. An application of an algorithm for constructing probe interval graph mod-
els occurred in recognizing circular arc graphs (McConnell, 2001). The results on
chordal probe graphs in Berry, Golumbic, and Lipshteyn (2004) have been useful for
developing a recognition algorithm for the class of probe interval graphs we study,
see Sect. 4.

A class of graphs is hereditary if any induced subgraph from that class is a mem-
ber of that class. It is easy to see the class of probe interval graphs is hereditary. One
way to describe the structure of a hereditary class of graphs is through a character-
ization via forbidden induced subgraphs. As far as this task goes for probe interval
graphs there are the following results. In Sheng (1999) the first step was taken and
cycle-free probe interval graphs were characterized by two forbidden induced sub-
graphs for the case with no specified probe/nonprobe partition, and by six for the
case where probes are specified. A unit probe interval graph is a probe interval
graph such that a representation exists where all intervals are of identical length.
And in Golumbic and Trenk (2004) and Lipshteyn (2001) unit probe interval graphs
were shown to be identical to proper probe interval graphs, which are probe interval
graphs that admit a representation in which no interval contains another properly. In
Brown, Lundgren, and Sheng (2008) the unit probe interval graphs that are cycle-
free were characterized by two forbidden induced subgraphs and one infinite family
in the non-partitioned case, and for the case where probes are specified, there are
five forbidden induced subgraphs. Bipartite unit probe interval graphs are character-
ized in Brown and Langley (2006) by five forbidden induced subgraphs that are in
addition to those in Brown et al. (2008) for trees. For more general classes of probe
interval graphs, the task of characterization in this way appears difficult. To wit, in
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Corneil and Pržulj (2005) it is shown that there are at least 62 forbidden induced
subgraphs for 2-trees that are probe interval graphs.

We now give a few definitions and some notation we will use in the sequel,
and which will give this paper more context. G denotes the complement of graph
G, and u → v means that there is a directed edge from u to v. A cocomparability
graph is a graph whose complement has a transitive orientation, and hence yields
an order on its vertices via this orientation; hence the graph can be thought of as
the incomparability graph of the vertices with respect to the order given by the
orientation. If G is an interval graph, then its representation {Iv : v ∈V (G)} gives a
natural transitive orientation to its complement: put u→ v in G if Iu lies entirely to
the left of Iv. An order with such a representation is an interval order; that is, (V,≺)
is an interval order if to each x ∈ V an interval Ix can be assigned so that x ≺ y if
and only if Ix is entirely to the left of Iy. One notable characterization of interval
orders, first proven by Fishburn (1970) (and independently by Mirkin, 1972, 1970)
is that an ordered set is an interval order if and only if it contains no 2 +2. A 2 +2
is a set of four elements {w,x,y,z} where x is comparable to w, y is comparable
to z and all other pairs are incomparable. One consequence of this theorem is that
a cocomparability graph is an interval graph if and only if it contains no 4-cycle.
For additional discussion of the relationship between interval orders and interval
graphs, see Bogart, Rabinovitch, and Trotter (1976); Fishburn (1985); Greenough
(1974).

Here is a summary of this paper’s structure and content. We give several char-
acterizations for probe interval graphs that are cocomparability graphs, and hence
give rise to a probe interval order. One characterization specifies conditions on the
vertex set’s partition into probes and nonprobes when restricted to 4-cycles in the
graph. Another gives conditions on the part of a probe interval graph’s representa-
tion restricted to the intervals for the nonprobes; specifically, the set of intervals cor-
responding to nonprobes must be such that no interval properly contains another, see
Sects. 2 and 3. A probe interval graph with a representation in which no nonprobe in-
terval contains another nonprobe interval properly will be called a nonprobe–proper
probe interval graph. We adapt recognition algorithms of chordal probe graphs to
recognize nonprobe–proper probe interval graphs, both in the partitioned and the
non-partitioned case; see Sect. 4. Also in Sect. 4, we describe the graph classes in
the neighborhood of nonprobe–proper probe interval graphs.

2 Nonprobe–Proper Probe Interval Graphs

An asteroidal triple in a graph is a set of three vertices with a path between
each pair that avoids the neighborhood of the third. Interval graphs and, more
generally, cocomparability graphs are asteroidal triple-free (Boland & Lekkerk-
erker, 1962; Gallai, 1967), whereas probe interval graphs are not. Thus, in order
to identify the probe interval graphs that are cocomparability graphs we investi-
gated the mechanism by which a probe interval graph can contain an asteroidal
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Fig. 1 A probe interval graph with an asteroidal triple and representation that exemplifies the
general case of an asteroidal triple’s presence in a probe interval graph. Darkened vertices are
probes. Intervals are displaced vertically for easier visualization

triple. The observations we made lead us to define a nonprobe–proper probe inter-
val graph. For example, consider the graph T2 in Fig. 1 which has an asteroidal triple
on {a,b,c}. The reader can verify that a representation of T2 must have x a nonprobe
and, up to symmetry, Ix must contain Ib properly.

Theorem 1 precisely identifies the class of probe interval graphs that has each
member possessing a transitive orientation on its complement as the nonprobe–
proper probe interval graphs. We prove only one direction of Theorem 1 here and
defer the rest of the proof to Sect. 3.

Theorem 1. A probe interval graph is a cocomparability graph if and only if it is a
nonprobe–proper probe interval graph.

Proof ⇐: It turns out that the representation of a nonprobe–proper probe inter-
val graph naturally yields a transitive orientation of its complement. Let G be a
nonprobe–proper probe interval graph with V (G) partitioned into P∪N and repre-
sentation {I(v) = [l(v),r(v)] : v ∈V}. In G, put u→ v if and only if I(u) is entirely
to the left of I(v), or l(u) < l(v) and u,v ∈ N. It is easy to check that this orientation
is transitive, and hence G is a cocomparability graph.

Alternative proof ⇐: To show that a nonprobe–proper probe interval graph is a
cocomparability graph, we could also show that the former has a representation
as a parallelogram graph. Since parallelogram graphs are cocomparability graphs
(Golumbic & Trenk, 2004), the result then follows. Let G be a nonprobe–proper
probe interval graph with partition V (G) = P∪N, L1 and L2 be two parallel hori-
zontal lines some vertical distance apart, and {I(v) : v ∈ V} the representation for
G. Place a copy of the representation on each of the lines L1 and L2. Supposing
P = {p1, . . . , pr} and N = {n1, . . . ,ns} let the parallelogram for pi be defined by the
region bounded by I(pi) on L1 and on L2 and the line from l(pi) on L1 to l(pi) on L2
and the line from r(pi) on L1 to r(pi) on L2. Then let the parallelogram for ni be the
line segment from l(ni) on L1 to r(ni) on L2. Since no nonprobe interval properly
contains another, the line segments now representing nonprobes never cross, while
I(pi)∩ I(p j) = Ø if and only if regions now representing pi and p j intersect; simi-
larly I(pi)∩ I(n j) = Ø if and only if the region for pi intersects the line segment for
n j; cf. Fig. 2. �
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Fig. 2 A parallelogram rep-
resentation of a nonprobe–
proper probe interval graph.
The thick intervals correspond
to probes

3 Probe Interval Orders

Above we described how a representation of a probe interval graph G with proper
containment among nonprobe intervals leads naturally to a transitive orientation of
G. This orientation in turn gives an ordering, say+, of V (G) by putting u+ v if and
only if u→ v in G. So, we define a probe interval order by, for x,y ∈ V (G), x+ y
if and only if either r(x) < l(y) or both x and y are in N and l(x) < l(y). Notice that
this order restricted to N is a total ordering.

To complete the proof of Theorem 1 we will change our perspective to orders,
and prove that an ordered set in which the 2+2’s can be partitioned in a certain way
is conducive to constructing a nonprobe–proper probe interval graph. But for now
we will keep to the graph perspective and prove the following lemma for the sake of
exposition, but note that it follows from a result in McMorris et al. (1998). Lemma 1
translates into a corresponding lemma about 2+2’s in a probe interval order.

Lemma 1. In any induced 4-cycle of a probe interval graph, two nonadjacent ver-
tices must be nonprobes.

Proof. Let 〈a,b,c,d,a〉 be an induced 4-cycle in probe interval graph G. Since a
4-cycle is not an interval graph, at least one of a,b,c,d must be a nonprobe, while
no three can be all nonprobes, since nonprobes induce an independent set in G.
Relabeling if necessary, assume l(a) < l(b) < l(c), l(b) < r(a), l(c) < r(b), and
that d is the only nonprobe. Since I(d) must intersect both I(a) and I(c), we have
r(a), l(c) ∈ I(d), and hence I(b)∩ I(d) = Ø, a contradiction. Therefore exactly two
vertices are nonprobes, and they are nonadjacent by definition. �

Corollary 1. In a probe interval order, every 2 + 2 has one 2-chain in P and the
other in N.

We are now ready to prove the other direction of Theorem 1, if G is a cocompara-
bility probe interval graph, then it has a representation in which no nonprobe interval
properly contains another nonprobe interval. We will begin with a partially ordered
set having 2-chains partitioned according to Corollary 1, and construct a nonprobe–
proper probe interval graph. Since we will not specify a transitive orientation, the
proof also shows that a probe interval order is a cocomparability invariant. The
methods of this construction closely follow those of Greenough (1974) and Langley
(1995), using the notation from the latter. Let D = (V,+) be a partially ordered set,
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with + strict. If neither a + b nor b + a, then a and b are incomparable and we
write a ∼ b. Define the predecessor set of x, pred(x) = {y ∈ V : y+ x}. For a set
S ∈ V , define pred(S) =

⋂
x∈S pred(x) = {y ∈ V : ∀x ∈ S,y+ x}. Similarly define

the successor sets, succ(x) and succ(S). Note that for any x ∈V , x ∈ pred(succ(x)).

Theorem 2. Suppose D is a partially ordered set, with V partitioned into two sets
N and P, such that D restricted to N is a total order, and for any 2 + 2 in D, one
2-chain is in N and one is in P. Then D corresponds to a nonprobe–proper probe
interval graph, with probes P and nonprobes N.

To prove Theorem 2, we first note that the order restricted to P is an interval order
since P contains no 2+2, and prove the following lemmas. For these lemmas and the
proof of Theorem 2 we define T = /0∪V ∪{pred(v)|v∈P}∪{pred(succ(v))|v∈P}.
We will show that this set T is linearly ordered, and then use this order as a guide
for constructing intervals for the representation.

Lemma 2. Let A, B be in T . Let a ∈ A and b ∈ B. If a+ b, then a ∈ B.

Proof. Let A, B be in T . Let a ∈ A and b ∈ B with a+ b. Clearly B = /0. If B = V ,
then a∈ B. If B = pred(x), then b+ x and by transitivity a+ x, so a∈ pred(x) = B.
If B = pred(succ(x)), then, for all y ∈ succ(x), we have b+ y. By transitivity a+ y
as well, so a ∈ B. �

Lemma 3. T is totally ordered by set inclusion.

Proof. Let A, B ∈ T . We will show that one set must be contained in the other by
contradiction. Suppose there exists a ∈ A, a ∈ B and b ∈ B,b ∈ A. Clearly neither A
nor B = /0, nor is either equal to V . By Lemma 2 a∼ b. We consider three cases:

(1) A = pred(x), B = pred(y) for some x,y ∈ P. By definition a+ x and b+ y.
Since b ∈ A, b + x. Likewise x + b, since by transitivity, if x+ b then a+ b which
is not possible by Lemma 2. So we have x ∼ b and by similar arguments y ∼ a.
Therefore a,x and b,y form a 2 + 2 in D. Since both x and y are in P, this is a
contradiction.

(2) A = pred(x), B = pred(succ(y)) for some x,y ∈ P. Consider the vertex y,
y ∈ B. If y ∈ A, then y+ x, so x ∈ succ(y). However, then b+ x and, consequently,
b ∈ A. Therefore y ∈ A. By the arguments for case 1, y∼ x. Since a ∈ B, there must
be some z in succ(y), with z∼ a. So we have a+ x and y+ z form a 2+2 in D, but
x and y are both in P, a contradiction.

(3) A = pred(succ(x)), B = pred(succ(y)). If succ(x)⊆ succ(y), then A⊆ B, so
there is some vertex w, x+ w, y∼ w. Likewise there is some vertex z, y+ z, x∼ z.
x,w and y,z form a 2+2 with x,y ∈ P, a contradiction. �

We are now ready to constructively prove Theorem 2 and hence complete the
proof of Theorem 1.

Proof. Order the elements of T by set inclusion and let r(A) be the rank of set A in
T . Label the vertices of N, x1, . . . ,xn, so xi + x j if and only if i < j.
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We will assign an interval to each element of V as follows:
If v ∈ P let I(v) = [r(pred(v)),r(pred(succ(v)))−0.5]. Since v ∈ pred(succ(v))

but v ∈ pred(v), r(pred(succ(v))) > r(pred(v)), so this interval is well defined.
If v = xi ∈N, let A(v)∈ T be the largest set contained within pred(v), and B(v)∈

T be the smallest set containing pred(succ(v)). Let xi be the label of v, let I(v) =
[r(A(v))− (n− i)ε,r(B(v))−0.5+ iε]. Since v ∈ B(v) and v ∈ A(v), this interval is
well defined.

Let x,y ∈ P. x + y if and only if pred(succ(x)) ⊆ pred(y), so if x + y, I(x)
is completely to the left of I(y) and if x ∼ y, then pred(y) ⊂ pred(succ(x)) and
pred(x)⊂ pred(succ(y)) so the intervals have non trivial overlap.

Let x ∈ P, y ∈ N. We know x+ y if and only if pred(succ(x))⊆ pred(y). There-
fore, pred(succ(x)) ⊆ A(y), and the interval for x is completely to the left of the
interval for y. If y + x, then pred(succ(y)) ⊆ pred(x) and hence B(y) ⊆ pred(x),
so the interval for y is completely to the left of the interval for x. If x ∼ y, then
A(y)⊆ pred(y)⊂ pred(succ(x)) and pred(x)⊆ pred(succ(y))⊆ B(y), so the inter-
vals have nonempty intersection.

Finally Let x,y both be in N. Without loss of generality, assume x + y. Then
A(x) ⊆ pred(x) ⊆ pred(y). So A(x) ⊆ A(y), and thus the left hand end point of
the interval for x is to the left of the left hand endpoint of the interval of y. Likewise
pred(succ(x))⊆ pred(succ(y))⊆B(y), so B(x)⊆B(y), and the right hand end point
of the interval for x is to the left of the right hand end point of the interval for y. �

Corollary 2. Probe interval order is comparability invariant.

Proof. Reorienting the underlying graph of D will not change the structure of a
2 + 2 except perhaps reordering the vertices within a 2-chain. Thus, the conditions
that decide if an order is a probe interval order will not change upon reorienting the
underlying graph. �

4 Recognition Algorithms and a Hierarchy

We will adapt algorithms to recognize cocomparability probe interval graphs, either
given a fixed partition of the vertices or not. Currently the fastest known algorithm
for recognizing if G is a comparability graph or a cocomparability graph is O(n2.38)
(McConnell & Spinrad, 1999).

If G is partitioned, we may construct the proper non-probe interval representation
using the methods of the proof of Theorem 2 in O(n3) time. However there are two
faster algorithms to determine if G is a partitioned probe interval graph in general,
Johnson and Spinrad (2001) of O(n2) and McConnell and Lundgren (2002) of O(n+
m logn), as mentioned in the introduction. This reduces the speed of recognition
of a partitioned cocomparability probe interval graph to the speed of recognizing
whether it is a cocomparability graph.
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In the non-partitioned case we will adapt a recognition algorithm for chordal
probe graphs described by Golumbic and Lipshteyn (2004). Recall that a stable
set in a graph G is a set of vertices S that induces a subgraph with no edges, so,
in a probe interval graph, the non-probes must form a stable set. An equivalent
definition for a probe interval graph, is any graph G with a vertex partition into
a stable set N and a set P such that by adding edges between vertices in N we
can create an interval graph. Golumbic and Lipshteyn (2004) generalize the no-
tion of probe interval graphs to chordal probe graphs. A chordal graph G has no
induced chordless cycle on more than two vertices. A chordal probe graph has a
vertex partition into sets N and P where it is possible to create a chordal graph by
adding edges between vertices of N. Since interval graphs are chordal, it follows that
probe interval graphs are also chordal probe graphs. If a graph G is weakly chordal
neither G nor its complement contain a chordless cycle of length greater than or
equal to 5.

Theorem 3. Let G be a graph. The following are equivalent:

1. G is a cocomparability graph and has a partition into P and a stable set N so
that every 4-cycle alternates between N and P.

2. G is a probe interval graph with a proper nonprobe representation.
3. G is a bounded tolerance graph and a probe interval graph.
4. G is a cocomparability probe interval graph.
5. G is a cocomparability chordal probe graph and a weakly chordal graph.
6. G is a cocomparability chordal probe graph.

Proof. The implication 1 ⇒ 2 follows immediately from Theorem 2. That 2 ⇒ 3
follows from the construction in Sect. 2. All bounded tolerance graphs are cocompa-
rability graphs (Golumbic, Monma, & Totter, 1984), so 3⇒ 4. For the implication
4 ⇒ 5, note that probe interval graphs have no chordless cycles of length greater
than 5, so they are weakly chordal; this was mentioned in Golumbic and Lipshteyn
(2004). The implication 5⇒ 6 is obvious. Chordal probe graphs by definition have a
partition into P and a stable set N, and according to Golumbic and Lipshteyn (2004)
every chordless even cycle in a chordal probe graph alternates between N and P.
Cocomparability graphs have no chordless cycles of length greater than four, thus
6⇒ 1. �

Golumbic and Lipshteyn provide an algorithm to recognize graphs that are both
weakly chordal and chordal probe in the nonpartitioned case. The complexity of
this algorithm is O(m2). The first step of the algorithm is to check to see if the
graph is weakly chordal. By substituting a check for cocomparability instead, we
may identify nonprobe–proper probe interval graphs.

The containment relationships identified in Theorem 3, and some others that are
known, for classes of graphs in the neighborhood of cocomparability probe interval
graphs are summarized in Fig. 3.
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Fig. 3 Containment diagram including cocomparability probe interval graphs with separating
examples
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Mediatic Graphs

Jean-Claude Falmagne and Sergei Ovchinnikov

1 Background and Introduction

The core concept of this paper can occur in the guise of various representations.
Four of them are relevant here, the last one being new:

1. A MEDIUM, that is, a semigroup of transformations on a set of states, constrained
by strong axioms (see Eppstein, Falmagne, & Ovchinnikov, 2008; Falmagne,
1997; Falmagne & Ovchinnikov, 2002).

2. An ISOMETRIC SUBGRAPH OF THE HYPERCUBE, OR “PARTIAL CUBE.” By
“isometric”, we mean that the distance between any two vertices of the sub-
graph is identical to the distance between the same two vertices in the hypercube
(Djoković, 1973; Graham & Pollak, 1971). Each state of the medium is mapped
to a vertex of the graph, and each transformation corresponds to an equivalence
class of its arcs. Note that, as will become clear later on, no assumption of finite-
ness is made in this or in any of the other representation.

3. An ISOMETRIC SUBGRAPH OF THE INTEGER LATTICE. This representation is
not exactly interchangeable with the preceding one. While it is true that any iso-
metric subgraph of the hypercube is representable as an isometric subgraph of the
integer lattice and vice versa, the latter representation lands in a space equipped
with a considerable amount of structure. Notions of “lines”, “hyperplanes”, or
“parallelism” can be legitimately defined if one wishes. Moreover, the dimen-
sion of the lattice representation is typically much smaller than that of the partial
cube representing the same medium and so can be valuable in the representation
of large media (see, in particular, Eppstein, 2005, in which an algorithm is de-
scribed for finding the minimum dimension of a lattice representation of a partial
cube).
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4. A MEDIATIC GRAPH. Axiomatic definitions are usually regarded as preferable
whenever feasible, and that is what is given here.

The definition of a medium is recalled in the next section, together with some
key concepts and the consequences of the axioms that are useful for this paper. Note
that two axioms are used, which are equivalent to the original four used by Falmagne
(1997) (see also Falmagne & Ovchinnikov, 2002; Eppstein & Falmagne, 2008). The
graph of a medium and those graphs that induce media, called “mediatic graphs” are
defined and studied in the following two sections. The last two sections of the paper
are devoted to specifying the correspondence between mediatic graphs and media,
for a given possibly infinity set – of vertices or states depending on the case.

The subject of this paper may at first seem to be singularly ill chosen for a vol-
ume honoring Peter Fishburn’s, as its topic does not readily evoke any of Peter’s
favorite concepts. But the enormously rich span of his accomplishment is not so
easily escaped: indeed, the set of all interval orders (Fishburn, 1971; Brightwell,
Fishburn, & Winkler, 1993) on any finite set is representable as a mediatic graph,
and so is the set of all semiorders (Fishburn, 1985; Fishburn & Trotter, 1999) on the
same set, these few citations heading a list far too long to be included here. For the
representability of families of interval orders or semiorders by mediatic graphs, see
the concluding paragraph of this paper.

2 The Concept of a Medium

We begin with the terminology of “token systems” which provides a convenient
framework.

Definition 1. Let S be a set of states. A token is a function τ : S �→ Sτ map-
ping S into itself. We shall use the abbreviations Sτ = τ(S), and Sτ1τ2 · · ·τn =
τn[· · ·τ2[τ1(S)] · · · ] for the function composition. By definition, the identity func-
tion τ0 on S is not a token. Let T be a set of tokens on S. The pair (S,T ) is called
a token system. We suppose that |S| ≥ 2 and T = ∅.

Let V and S be two distinct states. Then V is adjacent to S if Sτ = V for some
token τ . A token τ̃ is a reverse of a token τ if, for any two adjacent states S and V ,
we have

Sτ = V ⇐⇒ V τ̃ = S, (1)

and thus Sττ̃ = S. It is clear that a token has at most one reverse. If the reverse τ̃ of
a token τ exists, then ˜̃τ = τ; that is, τ and τ̃ are mutual reverses. If every token has
a reverse, then adjacency is a symmetric relation on S.

Definition 2. A message is a string of symbols representing tokens in the set T .
The message τ1 . . .τn defines a function S �→ Sτ1 · · ·τn on the set of states S.
If m = τ1 . . .τn denotes a message, we also (by abuse of notation) write m = τ1 · · ·τn
for the corresponding function. No ambiguity will arise from this double usage.
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A message may consist in (the symbol representing) a single token. The content
of a message m = τ1 . . .τn is the set C(m) = {τ1, . . . ,τn} of its tokens. We write
�(m) = n to denote the length of the message m. (We have thus |C(m)| ≤ �(m).)
A message m is effective (resp. ineffective) for a state S if Sm = S (resp. Sm=S).
A message m = τ1 . . .τn is stepwise effective for S if Sτ1 · · ·τk = Sτ0 · · ·τk−1, 1 ≤
k ≤ n. A message which is both stepwise effective and ineffective for some state is
called a return message or, more brief, a return (for that state).

A message is consistent if it does not contain both a token and its reverse, and in-
consistent otherwise. Two messages m and n are jointly consistent if mn (or, equiva-
lently, nm) is consistent. A consistent message which is stepwise effective for some
state S and does not have any of its token occurring more than once is said to be
concise (for S). A message m = τ1 . . .τn is vacuous if the set of indices {1, . . . ,n}
can be partitioned into pairs {i, j}, such that τi and τ j are mutual reverses. By abuse
of language, we sometimes call “empty” a place holder symbol that can be deleted,
as in: “let mn be a message in which n is either a concise message or is empty”
(that is, in the latter case, mn = m). If m = τ1 . . .τn is a stepwise effective message
producing a state V from a state S, then the reverse of m is defined by m̃ = τ̃n . . . τ̃1.
We then have clearly V m̃ = S and moreover τ ∈ C(m) if and only if τ̃ ∈ C(m̃).

Axioms for Medium 3 A token system (S,T ) is called a medium (on S) if the two
following axioms are satisfied.

[Ma] For any two distinct states S,V in S, there is a concise message producing V
from S.

[Mb] Any return message is vacuous.

A medium (S,T ) is finite if S is a finite set. The concept of a medium was
proposed by Falmagne (1997) who proved various basic facts about media. Other
results were obtained by Falmagne and Ovchinnikov (2002) (see also Eppstein &
Falmagne, 2008; Ovchinnikov, 2008; Ovchinnikov & Dukhovny, 2000).

3 Some Basic Results

The material in this section, only part of which is new, is instrumental for the graph-
theoretical results presented in this paper. We omit the proofs of straightforward or
previously published results (see Falmagne, 1997; Falmagne & Ovchinnikov, 2002).

Lemma 4. (i) No token can be identical to its own reverse.
(ii) Let m be a message that is concise for some state; we have then l(m) = |C(m)|

and C(m)∩C(m̃) = ∅.
(iii) For any two adjacent (thus, distinct) states S and V , there is exactly one token

producing V from S.
(iv) No token can be a 1–1 function.
(v) Suppose that m and n are stepwise effective for S and V , respectively, with Sm =

V and V n = W. Then mn is stepwise effective for S, with Smn = W.
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(vi) Let m and n be two distinct concise messages transforming some state S. Then

Sm = Sn ⇐⇒ C(m) = C(n).

(vii) Any two consistent messages producing the same state and stepwise effective
for two not necessarily distinct states are jointly consistent.

Lemma 4(vi) suggests an important concept.

Definition 5. Let (S,T ) be a medium. For any state S, define the (token) content of
S as the set Ŝ of all tokens each of which is contained in at least one concise message
producing S; formally:

Ŝ = {τ ∈ T ∃V ∈ S,V m = S, for m concise with τ ∈ C(m)}.

We refer to the family Ŝ of all the contents of the states in S as the content family
of the medium (S,T ).

Remark 6. In view of Condition (vii) of Lemma 4, the content of a state cannot
contain both a token and its reverse.

Writing , for the symmetric set difference, and + for the disjoint union, we
have:

Theorem 7. If Sm =V for some concise message m (thus S =V ), then V̂ \ Ŝ = C(m),
and so V̂ , Ŝ = C(m)+C(m̃).

Theorem 8. For any token τ and any state S, we have either τ ∈ Ŝ or τ̃ ∈ Ŝ; so,
|Ŝ|= |V̂ | for any two states S and V with S = V if and only if Ŝ = V̂ . Moreover, if S
is finite, then |Ŝ|= |T |/2 for any S ∈ S.

Definition 9. If m and n are two concise messages producing, from a state S, the
same state V = S, we call mñ an orderly circuit for S.

By Axiom [Mb], an orderly circuit is vacuous; therefore its length must be even.
The following result is of general interest for orderly circuits.

Theorem 10. Let S, N, Q and W be four distinct states of a medium and suppose
that

Nτ = S, Wμ = Q, Sq = Nq′ = Q, Sw′ = Nw = W (2)

Fig. 1 For Theorem 10.
Illustration of the conditions
listed in Eq. (2).
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for some tokens τ and μ and some concise messages q, q′, w and w′ (see Fig. 1).
Then, the four following conditions are equivalent:

(i) �(q)+ �(w) = �(q′)+ �(w′) and μ = τ̃ .
(ii) τ = μ .

(iii) C(q) = C(w) and �(q) = �(w).
(iv) �(q)+ �(w)+2 = �(q′)+ �(w′).

Moreover, any of these conditions implies that qμ̃w̃τ is an orderly circuit for S
with Sqμ̃ = Sτ̃w = W . The converse does not hold.

Proof. We prove (i)⇒ (ii)⇔ (iii)⇒ (iv)⇒ (i).
(i) ⇒ (ii). Suppose that τ = μ . The token τ̃ must occur exactly once in either q

or in w̃. Indeed, we have μ = τ̃ , both q and w are concise, and the message τqμ̃w̃
is a return for N, and so is vacuous by [Ma]. It can be verified that each of the two
mutually exclusive, exhaustive cases: (a) τ̃ ∈C(q)∩C(w′); and (b) τ̃ ∈C(w̃)∩C(q̃′)
lead to

�(q)+ �(w) = �(q′)+ �(w′), (3)

contradicting (i). Thus, we must have τ = μ .
We only prove Case (a). The other case is treated similarly. Since τ̃ is in C(q),

neither τ nor τ̃ can be in C(q′). Indeed, both q and q′ are concise and qq̃′τ is a return
for S. It follows that both τ̃q′ and q are concise messages producing Q from S. By
Theorem 7, we must have C(τ̃q′) = C(q), which implies �(τ̃q′) = �(q), and so

�(q) = �(q′)+1. (4)

A argument along the same lines shows that

�(w)+1 = �(w′). (5)

Adding (4) and (5) and simplifying, we obtain (3). The proof of Case (b) is similar.
(ii) ⇔ (iii). If μ = τ , it readily follows (since both q and w are concise and

Sqτ̃w̃τ = S) that any token in q must have a reverse in w̃ and vice versa. This im-
plies C(q) = C(w), which in turn imply �(q) = �(w), and so (iii) holds. As qμ̃w̃τ is
vacuous, it is clear that (iii) implies (ii).

(iii) ⇒ (iv). Since (iii) implies (ii), we have τ ∈ Q̂ \ N̂ by Theorem 7. But both
q and q′ are concise, so τ ∈ C(q′) \ C(q). As τqq̃′ is vacuous for N, we must have
C(q)+{τ}= C(q′), yielding

�(q)+1 = �(q′). (6)

A similar argument gives C(w)+{τ}= C(w′) and

�(w)+1 = �(w′). (7)
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Adding (6) and (7) yields (iv).
(iv) ⇒ (i). As (iv) is a special case of the first statement in (i), we only have to

prove that μ = τ̃ . Suppose that μ = τ̃ . We must assign the token τ̃ consistently so to
ensure the vacuousness of the messages qq̃′τ and τw′w̃. By Theorem 7, C(q) = Q̂\ Ŝ.
Since τ̃ ∈ Q̂ and, by Theorem 8, τ̃ /∈ Ŝ, the only possibility is τ̃ ∈ C(q)\C(q′). For
similar reasons τ ∈ C(w) \ C(w′). We obtain the two concise messages τ̃q′ and q
producing Q from S, and the two concise messages w and τw′ producing W from
N. This gives �(q) = �(τ̃q′) and �(w) = �(τw′). We obtain so �(q) = �(q′)+ 1 and
�(w) = �(w′)+1, which leads to �(q)+�(w) = �(q′)+�(w′)+2 and contradicts (iv).
Thus, (iv) implies (i). We conclude that the four conditions (i)–(iv) are equivalent.

We now show that, under the hypotheses of the theorem, (ii) implies that qμ̃w̃τ
is an orderly return for S with Sqμ̃ = Sτ̃w = W . Both q and w are concise by hy-
pothesis. We cannot have μ in C(q) because then μ̃ is in C(q̃) and the two concise
messages q̃ and τ = μ producing S are not jointly consistent, yielding a contradic-
tion to Condition (vii) of Lemma 4. Similarly, we cannot have μ̃ in C(q) since the
two concise messages q and μ producing Q would not be jointly consistent. Thus,
qμ̃ is a concise message producing W from S. For like reasons, with τ = μ , τ̃w is a
concise message producing W from S. We conclude that, with τ = μ , the message
qμ̃w̃τ is an orderly return for S. The example of Fig. 2, in which we have

μ = τ, q = ατ̃, w = μ̃α, w′ = ατ̃ μ̃, and q′ = α,

displays the orderly return ατ̃ μ̃α̃μτ for S. It serves as a counterexample to the
implication: if qμ̃w̃τ is an orderly return for S, then τ = μ . ��

Fig. 2 Under the hypotheses
of Theorem 10, the hypothesis
that qμ̃w̃τ is an orderly circuit
for S does not imply τ = μ ,
with q = ατ̃ , w = μ̃α , q′ = α ,
and w′ = ατ̃ μ̃

S
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Q
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t m
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In Definition 9, the concept of an orderly circuit was specified with respect to
a particular state. The next definition and theorem concern a situation in which a
circuit is orderly with respect to everyone of its states. In such a case, any token
occurring in the circuit must have its reverse at the exact “opposite” place in the
circuit (see Theorem 12(i)).

Definition 11. Let τ1 . . .τ2n be an orderly return for a state S. For 1≤ i≤ n, the two
tokens τi and τi+n are called opposite. A return τ1 . . .τ2n from S is regular if it is
orderly and, for 1≤ i≤ n, the message τiτi+1 . . .τi+n−1 is concise for Sτ1 · · ·τi−1.
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Theorem 12. Let m = τ1 . . .τ2n be an orderly return for some state S. Then the fol-
lowing three conditions are equivalent:

(i) The opposite tokens of m are mutual reverses.
(ii) The return m is regular.

(iii) For 1≤ i≤ 2n−1, the message τi . . .τ2n . . .τi−1 is an orderly return for the state
Sτ1 · · ·τi−1.

Proof. We prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i). In what follows Si = Sτ0τ1 . . .τi for 0 ≤
i≤ 2n, so S0 = S2n = S.

(i)⇒ (ii). Since m is an orderly return, for 1≤ j≤ n, there is only one occurrence
of the pair {τ j, τ̃ j} in m. Since τ̃ j = τ j+n, there are no occurrences of {τ j, τ̃ j} in
p = τi · · ·τi+n−1, so it is a concise message for Si−1.

(ii) ⇒ (iii). Since m is a regular return, any message p = τi · · ·τi+n−1 is concise,
so any token of this message has a reverse in the message q = τi+n . . .τ2n . . .τi−1.
Since p is concise and �(q) = n, the message q is concise. It follows that pq is an
orderly return for the state Si−1.

(iii) ⇒ (i). Since the message τi . . .τ2n . . .τi−1 is an orderly return for Si−1, the
messages q = τi+1 . . .τi+n−1 and q′ = τi . . .τi+n−1 are concise for the states S′ = Si
and N = Si−1, respectively, and produce the state Q = Si+n−1. Likewise, the mes-
sages w = τ̃i−1 . . . τ̃2n . . . τ̃i+n and w′ = τ̃i . . . τ̃2n . . . τ̃i+n are concise for the states
N = Si−1 and S′ = Si, respectively, and produce the state W = Si+n. It is clear that
�(q)+ �(w)+2 = �(q′)+ �(w′). By Theorem 10, τi+n = τ̃i. ��

4 The Graph of a Medium

For graph-theoretical concepts and terminology, we usually follow Bondy (1995).

Definition 13. A graph representation of a medium (S,T ) is a bijection γ : S →V ,
where V is a set of vertices of a graph (V,E), such that two distinct states S and T
are adjacent whenever {γ(S),γ(T )} is an edge of the graph; formally,

{γ(S),γ(T )} ∈ E ⇐⇒ (∃τ ∈ T )(Sτ = T ) (S,T ∈ S, S = T ). (8)

We say then that the graph (V,E), which has no loops, represents the medium. A
graph (V,E) representing a medium (S,T ) is called the graph of the medium (S,T )
if V = S, the edges in E are defined as in (8), and γ is the identity mapping. Clearly,
any medium has its graph. We shall prove in this paper that the converse also holds,
namely: the graph of a medium defines its medium (see Theorem 35). We recall that
two graphs (V,E) and (V ′,E ′) are isomorphic if there is a bijection ϕ : V →V ′ such
that

{P,Q} ∈ E ⇐⇒{ϕ(P),ϕ(Q)} ∈ E ′ (P,Q ∈V, P = Q). (9)

Lemma 14. A graph isomorphic to a graph representing a medium M also repre-
sentsM.



332 J.-Cl. Falmagne and S. Ovchinnikov

It is intuitively clear that shortest paths in the graph of a medium correspond to
concise messages of that medium. Our next lemma states that fact precisely.

Lemma 15. Let γ : S →V be the representation of a medium (S,T ) by a graph G =
(V,E). If m = τ1 . . .τm is a concise message producing a state T from a state S, then
the sequence of vertices (γ(Si))0≤i≤m, where Si = Sτ0τ1 · · ·τi, for 0≤ i≤m, forms a
shortest path joining γ(S) and γ(T ) in G. Conversely, if a sequence (γ(Si))0≤i≤m is
a shortest path connecting γ(S0) = γ(S) and γ(Sm) = γ(T ), then m = τ1 . . .τm with
Sτ0τ1 · · ·τi = Si, for 0≤ i≤ m, is a concise message producing T from S.

Proof. (Necessity.) Let γ(P0) = γ(S),γ(P1), . . . ,γ(Pn) = γ(T ) be a path in G joining
γ(S) to γ(T ). Correspondingly, there is a stepwise effective message n = ρ1 · · ·ρn
such that Pi = Tρ1 · · ·ρn−i for 0≤ i < n. The message mn is a return for S. By Axiom
[Mb], this message is vacuous. Since m is a concise message for S, we must have
�(m) = m≤ �(n) = n.

(Sufficiency.) Let γ(S0) = γ(S),γ(S1), . . . ,γ(Sm) = γ(T ) be a shortest path from
γ(S) to γ(T ) in G. Then, there are some tokens τi, 1≤ i≤m such that Siτi+1 = Si+1
for 0≤ i < m. The message m = τ1 . . .τm produces the state T from the state S. An
argument akin to that used in the foregoing paragraph shows that m is a concise
message for S.

We now establish a result of the same vein for the regular returns of a medium
(cf. Definition 11).

Definition 16. We recall that a sequence of vertices sm = (vi)0≤i≤m such that
{vi,vi+1} are edges in a graph is a circuit if vm = v0 and all the vertices v1, . . . ,vm are
different. By abuse of language, we say that the edges {vi,vi+1}, for 0≤ i≤ m−1,
belong to the circuit sm. The circuit sm is even if it has an even number of edges:
m = 2n; any two of its edges {vi,vi+1} and {vi+n,vi+n+1}, 0 ≤ i ≤ n− 1 are then
called opposite. A circuit is minimal if at least one shortest path between any two
of its vertices is a segment of the circuit. A graph is even if all its circuits are even.

Lemma 17. Let γ : S → V be the representation of a medium M = (S,T ) by a
graph G = (V,E). If m = τ1 . . .τ2n is a regular return for some state S ∈ S, then
the sequence of vertices (γ(Si))0≤i≤2n, where Si = Sτ0τ1 · · ·τi, for 0 ≤ i ≤ 2n,
forms an even, minimal circuit of G (with S = S0 = S2n). Conversely, if a se-
quence (γ(Si))0≤i≤2n is an even minimal circuit of G, then m = τ1 . . .τm with
Sτ0τ1 · · ·τi = Si, for 0≤ i≤ 2n is a regular return for S inM.

Proof. In the notation of the lemma, let m be a regular return for state S. Thus, by
definition of a regular return (cf. 11), τ1 . . .τn and τ̃2n . . . τ̃n+1 are concise messages
for S. By Lemma 15, the sequence of vertices (γ(Si))0≤i≤n, where Si = Sτ0τ1 · · ·τi,
for 0 ≤ i ≤ n, forms a shortest path joining γ(S) and γ(T ), with T = Sτ1 · · ·τn.
Similarly, the sequence γ(S2n),γ(S2n−1), . . . ,γ(Sn+1) is another shortest path joining
γ(S) and γ(T ). Since γ is a 1-1 function, all the vertices γ(Si) are distinct, and so
the sequence (γ(Si))0≤i≤2n is an even circuit. This circuit is a minimal one. Indeed,
by definition of a regular return, all the messages τiτi+1 . . .τi+n−1 are concise for
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Sτ1 · · ·τi−1. So, by Lemma 15, all the sequences γ(Si), . . . ,γ(Si+n−1) are shortest
paths between γ(Si) and γ(Si+n−1), which implies that at least one shortest path
between any two vertices of the circuit (γ(Si))0≤i≤2n is a segment of that circuit.
We omit the proof of the converse part of this lemma. The argument is based on the
converse part of Lemma 15 and is similar.

Remark 18. A close reading of this proof shows that opposite tokens τi, τi+n = τ̃i in
a regular return correspond to opposite edges {γ(Si),γ(Si+1)}, {γ(Si+n,γ(Si+1+n)}
in the even minimal circuit of the representing graph, with Si+1 = Siτi and Si+n =
Si+n+1τi+n.

5 Media Inducing Graphs

Our next task is to characterize the graphs representing media in terms of graph con-
cepts. Some necessary conditions are easily inferred from the axioms of a medium.
For example, Axiom [Ma] forces the graph to be connected, and [Mb] demands that
it is even. By convention, the graph should not have any loops. However, as shown
by the two examples below, these two conditions are not sufficient to characterize
the graph of a medium. To simplify the figures, only one token from each pair of
mutually reverse tokens is indicated, so the graphs of media are shown as digraphs.

Two Counterexamples 19. The graphs corresponding to the digraphs A and B in
Fig. 3 are connected and all their circuits are even. Moreover, they have no loops.
Yet, neither A nor B can yield the graph of a medium. We leave to the reader to
prove this for Fig. 3A.

Here is why in the case of B. The circuit pictured in thick lines is even and mini-
mal. By Lemma 17, it must represent a regular return in a medium. From Remark 18,
we know that the same token must be matched to opposite edges of the circuit. Ac-
cordingly, the same token ν has been assigned to the arcs JM and RW . The circuit
containing the six vertices L,K,N,W,R and H is also even and minimal. Thus, the
arcs LK and RW must be assigned the same token, and since RW has been assigned
token ν , that token must also be assigned to LK. The argument governing the place-
ment of the token τ are similar. The consequence, however, is that there is no concise
message from L to J: any message producing J from L contains either both ν and ν̃ ,

Fig. 3 Neither of these di-
graphs is that of a medium.
The token system correspond-
ing to Digraph (B) contradicts
[Ma]. Which of the properties
of a medium is contradicted
by Digraph (A)?
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Fig. 4 Two examples of
digraphs of media. In
Example B, notice that dif-
ferent tokens are assigned
to the opposite arcs HL and
MW , which are opposite in
the circuit N,H,L,J,W,M,N.
This circuit is not minimal.
Compare with the situation
of the arcs LJ and NW in
Example A.

or both τ̃ and τ . This example will be crucial in our understanding of the appropriate
axiomatization of a graph capable of representing a medium.

In our failed attempt at representing a medium in Fig. 3, we have chosen to pic-
ture the arcs representing the same token by parallel segments (forming two sides of
an implicit rectangle). The intuition that the opposite arcs of even minimal circuits
should be parallel is a sound one, and suggests the construction of an equivalence
relation on the set of arcs of the digraph. Such a construction is delicate, however,
and the two examples of media pictured below by their digraphs must be taken into
account.

Examples 20 . Together with the examples of Fig. 3, Examples A and B in Fig. 4
will also guide and illustrate our choice of concepts and axioms.

Definition 21. We write �E = {ST {S,T} ∈ E} for the set of all the arcs of a graph
G = (V,E). The like relation of the graph G is a relation L on �E defined by

ST LPQ⇐⇒ (δ (S,P)+1=δ (T,Q)+1=δ (S,Q)=δ (T,P)) ({S,T},{P,Q} ∈ E),

where δ denotes the graph theoretical distance between the vertices of the graph. In
Example B of Fig. 4, we have NH LWJ because

δ (H,J)+1 = δ (N,W )+1 = δ (H,W ) = δ (N,J),

but HLLMW does not hold since

δ (H,M) = δ (L,W ) = 2 and 3 = δ (H,W ) = δ (L,M) = 1.

The point is that the arcs HL and MW are opposite in the circuit H,L,J,W,M,N,H,
but this circuit is not minimal.

The like relation is clearly reflexive and symmetric; and moreover

ST LPQ ⇐⇒ T SLQP ({S,T}, {P,Q} ∈ E). (10)
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Two binary relations on the set of edges of a graph play a central role in character-
izing partial cubes. They are Djoković’s relation θ (Djoković, 1973) and Winkler’s
relation Θ (Winkler, 1984) which are identical on bipartite graphs. These relations
are germane to, but different from the like relation of this paper. Indeed, the like
relation is defined on the set of arcs of a graph, whereas Djoković and Winkler’s
relations are defined on the set of edges. Also, the distance equations defining the
like relation represent just a special instance of the distance inequality in Winkler’s
definition (Ovchinnikov, 2007).

We now come to the main concept of this paper. We recall that a graph is bipartite
if and only if it is even (König, 1916).

Definition 22. Let G = (V,E) be a graph equipped with its like relation L . The
graph G is called mediatic if the following three axioms hold:

[G1] G is connected.
[G2] G is bipartite.
[G3] L is transitive.

The set of vertices is not assumed to be finite. It is easily verified that any graph
isomorphic to a mediatic graph is mediatic.

Axiom [G3] eliminates the counterexample of Fig. 3B. Indeed, since

δ (L,J) = 4, δ (K,M) = 2, δ (L,M) = 3 = δ (K,J)
we have

LK LRW LJM but not LK LJM.

The following result is immediate.

Lemma 23. The like relation L of a mediatic graph (V,E) is an equivalence relation
on �E.

Definition 24. We denote by

〈ST 〉= {PQ ∈ �E ST LPQ}

the equivalence class containing the arc ST in the partition of �E induced by L .

We will show that a graph representing a medium is mediatic (see Theorem 27).
Our next lemma is the first step.

Lemma 25. Let γ be the representation of a medium M= (S,T ) by a graph G =
(S,E) which is equipped with its like relation L . Suppose that γ(N)γ(S)Lγ(W )γ(Q).
Then Nτ = S and Wτ = Q for some τ ∈ T . In fact, there exists an orderly circuit
qτ̃w̃τ for S inM, with Sqτ̃ = Sτ̃w = W ; thus q and w are concise with �(q) = �(w).
Such a circuit is not necessarily regular.
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Proof. We abbreviate our notation for this proof, and write Sγ = γ(S) for all S ∈ S.
By definition, NγSγ LW γQγ implies that δ (Sγ ,Qγ) = δ (Nγ ,W γ) = δ (Nγ ,Qγ)−1 =
δ (Sγ ,W γ)−1; so, there are, for some n ∈ N, two shortest paths

Sγ0 = Sγ ,Sγ1, . . . ,S
γ
n = Qγ and Nγ

0 = Nγ ,Nγ
1 , . . . ,Nγ

n = W γ

between Sγ and Qγ , and Nγ and W γ , respectively. Moreover,

Sγ0 = Sγ,Sγ1, . . .,S
γ
n = Qγ,W γ and Nγ

0 = Nγ,Nγ
1, . . .,N

γ
n = W γ,Qγ

are also shortest paths. Using Lemma 15, we can assert the existence of two concise
messages q and w such that Sq = Q and Nw = W , with �(q) = �(w) = n. Also, for
some tokens τ and μ , we have Nτ = S and Wμ = Q with q′ = τq and w′ = τ̃w
concise for N and S, respectively, and �(q′) = �(w′) = n + 1. We are exactly in
the situation of Theorem 10 (see Fig. 1). Using the implication (iv) ⇒ (ii) of this
theorem, we obtain τ = μ . Condition (iv) also implies that qτ̃w̃τ is an orderly circuit
for S, with Sqτ̃ = Sτ̃w = W . The Example B of Fig. 4 shows that, with q = w = νζ ,
such a circuit need not be regular.

Convention 26. Any graph representing a medium comes implicitly equipped with
its like relation L . When several such graphs are considered (say, for different me-
dia), their respective like relations are distinguished by diacritics, such as L ′ or L∗.

Theorem 27. Any graph representing a medium is mediatic.

Proof. Because any graph isomorphic to a mediatic graph is mediatic, we can in-
voke Lemma 14 and content ourselves with proving that the graph of a medium is
mediatic (which simplifies our notation). Denote the medium by M = (S,T ), and
let G = (S,E) be its graph. We prove that G satisfies [G1], [G2] and [G3]:

[G1] Axiom [Ma] requires that G be connected.
[G2] Axiom [Mb] implies that G must be even. Hence, by König’s Theorem, it

must be bipartite.
[G3] Suppose that NSLPRLWQ. By Lemma 25 (applied twice), there must be

some tokens τ and μ such that Nτ = S, Pτ = R, Pμ = R and Wμ = Q, so
τ = μ . Let then q and w′ be two concise messages from S, and let w and bq′

be two concise messages from N, such that

Sq = Q, Sw′ = W, Nw = W, Nq′ = Q.

The situation is exactly as in Theorem 10, with the same notation. Because
τ = μ , Condition (ii) of this theorem holds. We conclude that Conditions (iii)
and (iv) also hold, which leads to

δ (S,Q)+1 = δ (N,W )+1 = δ (S,W ) = δ (N,Q).

We have thus NSLWQ; so Axiom [G3] holds.

We omit the proof of the next lemma, which is straightforward.
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Lemma 28. Let G = (V,E) and G′ = (V ′,E ′) be two mediatic graphs, with their
respective like relations L and L ′, and let ϕ be a bijection of V onto V ′. Then ϕ is
an isomorphism of G onto G′ if and only if

ST LPQ ⇐⇒ ϕ(S)ϕ(T )L ′ϕ(P)ϕ(Q) (S,T,P,Q ∈V ).

Remark 29. The like relation is the fundamental tool for the study of mediatic
graphs. We shall see that any mediatic graph G can be used to construct a medium
M that has G as its graph. Each of the equivalence classes 〈ST 〉 of the like relation
contains ‘parallel’ arcs of the graph, and will turn out to correspond to a particular
token, say τ , of the medium under construction, with the class 〈T S〉 corresponding
to the reverse token τ̃ . Before proceeding to such a construction, we establish in
Theorem 31 a useful result which precisely links the isomorphism of media to that
of their graphs.

Definition 30. Two media (S,T ) and (S′,T ′) are isomorphic if there exists a pair
(α,β ) of bijections α : S → S′ and β : T → T ′ such that

Sτ = V ⇐⇒ α(S)β (τ) = α(V ) (S,V ∈ S, τ ∈ T ). (11)

6 Paired Isomorphisms of Media and Graphs

Isomorphic media yield isomorphic mediatic graphs, and vice versa.

Theorem 31. Suppose that M = (S,T ) and M′ = (S′,T ′) are two media and let
G = (S,E) and G′ = (S′,E ′) be their respective graphs. Then M and M′ are iso-
morphic if and only if G and G′ are isomorphic; more precisely:

(i) If (α,β ) is an isomorphism ofM ontoM′, then α : S → S′ is an isomorphism
of G onto G′ in the sense of (9).

(ii) If ϕ :S →S′ is an isomorphism of G onto G′ in the sense of (9), then there exists
a bijection β : T → T ′ such that (ϕ,β ) is an isomorphism ofM ontoM′.

Proof. (i) Suppose that (α,β ) is an isomorphism of M onto M′. For any two dis-
tinct S, T in S, we have successively

{S,T} ∈ E

⇐⇒ (∃τ ∈ T )(Sτ = T ) (G is the graph ofM)
⇐⇒ (∃τ ∈ T )(α(S)β (τ) = α(T )) (M andM′ are isomorphic)
⇐⇒{α(S),α(T )} ∈ E ′ (G′ is the graph ofM′),

and so

{S,T} ∈ E ⇐⇒ {α(S),α(T )} ∈ E ′ (S,T ∈ S, S = T ).

We conclude that α : S → S′ is an isomorphism of G onto G′.
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(ii) Let ϕ : S → S′ be an isomorphism of G onto G′. Define a function β : T →
T ′ by

β (τ) = τ ′ ⇐⇒ (∀S,T ∈ S)(Sτ = T ⇔ ϕ(S)τ ′ = ϕ(T )). (12)

We first verify that the r.h.s. of the equivalence (12) correctly defines β as a bijection
of T onto T ′. For any τ ∈ T , there exists distinct states S and T in S such that
Sτ = T and {S,T} ∈ E. Fix S and T temporarily. By the isomorphism ϕ : S → S′
of G onto G′, we have {ϕ(S),ϕ(T )} ∈ E ′, and because G′ is the graph of M′, we
necessarily have ϕ(S)τ ′ = ϕ(T ) for some τ ′ ∈ T ′, which is unique by Lemma 4(i).
The hypothesis that ϕ is an isomorphism of G onto G′ ensures that the r.h.s. of (12)
is indeed an equivalence.

Next, we show that β (τ) does not depend upon the choice of S and T . Let P,Q
be another pair of distinct states in S such that Pτ = Q, and let P = Sm and Q = T n
for some concise messages m = τ1 . . .τm and n = μ1 · · ·μn. By Condition (vii) in
Lemma 4, τn and mτ are concise messages, and so Theorem 10 applies. Invoking
its implication (ii) ⇒ (iii), we get �(m) = �(n) and C(m) = C(n), yielding m = n.
Denote by L and L ′ the like relations of G and G′ respectively. We have thus shown
that ST LPQ. By Lemma 28, we also have

ϕ(S)ϕ(T )L ′ϕ(P)ϕ(Q).

Since we have ϕ(S)τ ′ = ϕ(T ), we can apply Lemma 25 and derive ϕ(P)τ ′ = ϕ(Q).
We still have to prove that β is indeed a bijection. For any τ ′ ∈ T ′ there are

some S′,T ′ ∈ T ′ such that S′τ ′ = T ′. We have thus {S′,T ′} ∈ E ′, and since ϕ is an
isomorphism of G onto G′, also {ϕ−1(S′),ϕ−1(T ′)} ∈ E, with ϕ−1(S′)τ = ϕ−1(T ′)
for some τ ∈ T . Thus β maps T onto T ′. Suppose now that β (τ) = β (μ) = τ ′ ∈ T ′.
This implies that for some S,T,P,Q ∈ S and N,M ∈ S′, we must have

Sτ = T, Pμ = Q, and Nτ ′ = M, (13)

together with ϕ(S) = ϕ(P) = N and ϕ(T ) = ϕ(Q) = M by the definition of β . As ϕ
is a 1-1 function, we obtain S = P and T = Q in (13). Using Lemma 4(ii), we get
τ = μ . Thus, β is a 1-1 function and so a bijection.

The fact that (ϕ,β ) is an isomorphism ofM ontoM′ follows from the definition
of β by (12). We have

Sτ = T ⇐⇒ ϕ(S)β (τ) = ϕ(T ) (S,T ∈ S)

whether or not {S,T} ∈ E.

Having defined the graph of a medium and shown that such a graph was neces-
sarily mediatic, we now go in the opposite direction and construct a medium from
an arbitrary mediatic graph.
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7 From Mediatic Graphs to Media

Definition 32. Let G = (S,E) be a mediatic graph and let L be its like relation. For
any ST ∈ �E, define a transformation τST : S → S : P �→ PτST by the formula

PτST =

{
Q if ST LPQ,

P otherwise.
(14)

We denote by T = {τST ST ∈ �E} the set containing all those transformations. It is
clear that the pair (S,T ) is a token system. Such a token system is said to be induced
by the mediatic graph G. The theorem below establishes that a token system K
induced by a mediatic graph G is in fact a medium. We say that K is the medium of
the graph G. Notice that, since L is an equivalence relation on �E, we have τST = τPQ

whenever ST LPQ. In such a case, we have in fact 〈ST 〉 = 〈PQ〉. The choice of
a particular pair ST ∈ 〈PQ〉 to denote a token τST is thus arbitrary. Notice that, as
a consequence of this definition, whenever {S,T} ∈ E, then also ST LST , and so
SτST = T .

This construction is motivated by the following theorem.

Theorem 33. The token system (S,T ) induced by a mediatic graph G = (S,E) is
a medium. In particular, the tokens τST and τT S defined by (14) are mutual reverses
for any {S,T} ∈ E.

Proof. We verify that (S,T ) satisfies Axioms [Ma] and [Mb] of a medium.
[Ma] For any S,T ∈ S, there is a shortest path S0 = S,S1, . . . ,Sn = T between

S and T in G. This implies that, for 0 ≤ i ≤ n− 1, we have {Si,Si+1} ∈ E, which
yields SiτSiSi+1

= Si+1. It follows that the message m = τS0S1
. . .τSn−1Sn

produces T
from S and is stepwise effective. To prove that m is concise, we must still show that
it is consistent and without repetitions. The message m is consistent since otherwise
we would have

ShτMN = Sh+1 and SkτNM = Sk+1 (15)

for some indices h and k, with h < k, and some NM ∈ �E. Since τMN is the reverse of
τNM , the last equality in (15) can be rewritten as Sk+1τMN = Sk. Thus, by definition of
the tokens in (14), the above statement (15) leads to ShSh+1 LMN LSk+1Sk which,
by transitivity, gives SkSk+1 LSh+1Sh . Because h < k, we derive by the definition of
the like relation L

k +1−h = δ (Sk+1,Sh) = δ (Sk,Sh+1) = k−1−h

yielding the absurdity 1 = −1. Thus, m is consistent. Suppose that m has repeated
tokens, say SiτSiSi+1

= Si+1 and Si+kτSiSi+1
= Si+k+1 for some indices 0≤ i < n and

0≤ i+ k < n. This would give SiSi+1 LSi+kSi+k+1, leading to

d(Si,Si+k+1) = k +1 > k−1 = d(Si+1,Si+k),
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while by the definition of L we should have d(Si,Si+k+1) = d(Si+1,Si+k), a contra-
diction. Thus, the message m is concise.

[Mb] Let m = τS0S1
τS1S2

. . .τSn−1Sn
be a return message for some state S; we have

thus S0 = Sn = S. In the terminology of G, we have a closed walk S = S0,S1, . . . ,Sn =
S. We denote this closed walk by W and we write �EW for the set of all its arcs SiSi+1,
0≤ i≤ n−1. By [G2] and König’s Theorem, such a closed walk is even; so n = 2q
for some q ∈ N. We prove by induction on q that m is vacuous. The case q = 1 (the
smallest possible return) is trivial, so we suppose that [Mb] holds for any 1≤ p < q
and prove that [Mb] also holds for q = p. We consider two cases.

Case 1: W is an isometric subgraph of G. Thus, W is a minimal circuit of G.
Take any token τSiSi+1

in m. Since (with the addition modulo k in the indices), we
have for 0≤ i < n

δ (Si+1,Si+k) = δ (Si,Si+k+1) = k−1,

δ (Si,Si+k) = δ (Si+1,Si+k+1) = k,

we obtain SiSi+1 LSi+k+1Si+k. By the definition of the tokens in (14) and the transi-
tivity and symmetry of L , we get for any P,Q ∈ S

PτSiSi+1
= Q⇐⇒ SiSi+1 LPQ

⇐⇒ Si+k+1Si+k LPQ

⇐⇒ PτSi+k+1Si+k
= Q

⇐⇒ QτSi+kSi+k+1
= P.

We conclude that τSi+kSi+k+1
and τSiSi+1

are mutual reverses, and so m is vacuous.
(Note that the induction hypothesis has not been used here.)

Case 2: W is not an isometric subgraph of G. Then, there are two vertices Si and
S j in W, with i < j, and a shortest path L from Si to S j in G with

δi j = δ (Si,S j) < min{ j− i, i+n− j}

(see Fig. 5). Thus, j− i and i + n− j are the lengths of the two segments of W
with endpoints Si and S j. For simplicity, we can assume without loss of generality
that Si and S j are the only vertices of L that are also in W. Let p the concise mes-
sage producing S j from Si and corresponding to the shortest path L in the sense of
Lemma 15.

We also split m into the three messages:

m0i = τS0S1
. . .τSi−1Si

,

mi j = τSiSi+1
. . .τS j−1S j

,

m j0 = τS jS j+1
. . .τSn−1S0

.
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Fig. 5 Case 2 in the proof of
Axiom [Mb] in Theorem 33:
the closed walk W is not an
isometric subgraph.
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Fig. 6 The non-isometric
subgraph W of Case 2 in the
proof of [Mb] in Theorem 33
is pictured in thick lines. The
inductive stage of the proof
leads to form temporarily,
in each of the two smaller
closed walks delimited by the
shortest path L, pairs {μ, μ̃}
and {ν , ν̃} corresponding to
the same pair of mutually
reverse tokens in W.

Sj

L

p

Si

S0

W

We have thus m = m0imi jm j0. Note that the two messages m0ipm j0 and p̃mi j have a
length strictly smaller that n = 2q. By the induction hypothesis, these two messages
are vacuous. Accordingly, for any token τ of p, there is an reverse token τ̃ either in
m0i or in m j0. (In Fig. 5 the token τ̃ is pictured as being part of m0i.) Considered
from the viewpoint of the message p̃mi j from S j, the token τ̃ is in p̃ with its reverse
τ in mi j. The two reverses of the tokens in p and p̃, form a pair of mutually reverse
tokens {τ, τ̃} in m. Such a pair can be obtained for any token τ in p. Augmenting
the set of all those pairs by the set of mutually reverse tokens in m0i, mi j and m j0,
we obtain a partition of the set C(m) into pairs of mutually reverse tokens, which
establishes that the message m is vacuous.

We have shown that the token system (S,T ) satisfies Axioms [Ma] and [Mb].
The proof is thus complete.

Remark 34. In the above proof, the inductive argument used to establish Case 2 of
[Mb] may convey the mistaken impression that the situation is always straightfor-
ward. The simple graph pictured in Fig. 5 is actually glossing over some intricacies.
The non-isometric subgraph W is pictured by the thick lines in Fig. 6 and is not
“convex”. We can see how the inductive stage splitting the closed walk W by the
shortest path L may lead to form, in each of the two smaller closed walks, pairs
{μ , μ̃} and {ν , ν̃} which correspond in fact to the same pair of tokens in W. Since
the arcs corresponding to μ and ν are in the like relation L , the mistaken assignment
is temporary.
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We finally obtain:

Theorem 35. Let S an arbitrary set, with |S| ≥ 2. Denote by M the set of all me-
dia on S, and by G the set of all mediatic graphs on S. There exists a bijection
f : M→ G : M �→ f(M) such that G = f(M) is the graph of M in the sense of
Definition 13 if and only if M is the medium of the mediatic graph G in the sense
of Definition 32.

Proof. Because the set S of states is constant in M and confounded with the con-
stant set of vertices in G, we could reinterpret the function f as a mapping of the
family T of all sets of token T making (S,T ) a medium, into the family E of all
sets of edges E making (S,E) a mediatic graph. However, any set of edges E of a
mediatic graph on S is characterized by its like relation L , or equivalently, by the
partition of �E induced by L . We choose the latter characterization for the purpose
of this proof, and denote by �E|lr the set of all the partitions of the sets of arcs �E
induced by the like relations characterizing the sets of edges in the collection E.

From Lemmas 27 and 33, we know that the graph of a medium is mediatic, and
that the token system induced by a mediatic graph is a medium. We have to show
that the functions

f : T→�E|lr and g :�E|lr → T

implicitly defined by (8) and (14), respectively, are mutual inverses. Note that, for
any T ∈ T, the partition f(T ) is defined via a function f mapping T into the parti-
tion f(T ). Writing as before 〈ST 〉 for the equivalence class containing the arc ST ,
we have

Pτ = Q ⇐⇒ f (τ) = 〈PQ〉 (τ ∈ T ; P,Q ∈ S). (16)

Proceeding similarly, but inversely, for the function g, we notice that it defines, for
each �E|lr in�E|lr the set of tokens g(�E|lr) via a function g mapping �E|lr into the set of
tokens g(�E|lr); we obtain

〈ST 〉= 〈PQ〉 ⇐⇒ Pg(〈ST 〉) = Q (S,T,P,Q ∈ S). (17)

Combining (16) and (17) we obtain

Pτ = Q⇐⇒ f (τ) = 〈PQ〉 ⇐⇒ P(g◦ f )(τ) = Q (τ ∈ T ; P,Q ∈ S).

We have thus g = f−1 and so g = f−1. Conversely, we have

〈ST 〉= 〈PQ〉 ⇐⇒ Pg(〈ST 〉) = Q⇐⇒ ( f ◦g)(〈ST 〉) = 〈PQ〉
(S,T,P,Q ∈ S),

yielding f = g−1 and so f = g−1. ��

Two Examples 36. In the last paragraph of our introductory section, we announced
that the collection I of all the interval orders on a finite set X was representable
as a mediatic graph. The argument goes as follows. Doignon and Falmagne (1997)
proved that such a collection I is always “well-graded”, that is, for any two interval
orders K and L, there exists a sequence K0 = K,K1, . . . ,Kn = L of interval orders on
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X such that |Ki,Ki+1|= 1 for 0≤ i≤ n−1 and |K,L|= n. It is easily shown (see
Falmagne, 1997) that any well-graded family F can be cast as a medium M(F):
the states of the medium are the sets of the family, and the tokens consist in either
adding or removing an element from a set in F . By Theorem 27, the graph of the
medium M(J ) is mediatic. A similar argument applies to the family of all the
semiorders on X , and to some other families on X (for example, partial orders and
biorders, cf. Doignon & Falmagne, 1997).

Acknowledgement We are grateful to David Eppstein for many useful exchanges pertaining to
the results presented here.
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An Application of Stahl’s Conjecture
About the k-Tuple Chromatic Numbers
of Kneser Graphs

Svata Poljak and Fred S. Roberts†

1 Introduction

Graph coloring is an old subject with many important applications. Variants of graph
coloring are not only important in their various applications, but they have given rise
to some very interesting mathematical challenges and open questions. Our purpose
in this mostly expository paper is to draw attention to a conjecture of Saul Stahl’s
about one variant of graph coloring, k-tuple coloring. Stahl’s Conjecture remains
one of the long-standing, though not very widely known, conjectures in graph the-
ory. We also apply a special case of the conjecture to answer two questions about
k-tuple coloring due to N.V.R. Mahadev.

An interesting and important variant of ordinary graph coloring involves assign-
ing a set of k colors to each vertex of a graph so that the sets of colors assigned to
adjacent vertices are disjoint. Such an assignment is called a k-tuple coloring of the
graph. k-tuple colorings were introduced by Gilbert (1972) in connection with the
mobile radio frequency assignment problem (see Opsut & Roberts, 1981; Roberts,
1978, 1979; Roberts & Tesman, 2005). Other applications of multicolorings include
fleet maintenance, task assignment, and traffic phasing. These are discussed in Opsut
and Roberts (1981); Roberts (1979); Roberts and Tesman (2005) and elsewhere.
Among the early publications on this topic are Chvátal, Garey, and Johnson (1978);
Clarke and Jamison (1976); Garey and Johnson (1976); Scott (1975); Stahl (1976).
Given a graph G and positive integer k, we seek the smallest number t so that there
is a k-tuple coloring of G using colors from the set {1,2, . . . , t}. This t is called the
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k-th multichromatic number or k-tuple chromatic number of G and is denoted by
χk(G). Of course, if k = 1,χk(G) is just the ordinary chromatic number χ(G).

A homomorphism from graph G to graph H is a function h assigning each vertex
of G to a vertex of H so that if x and y are adjacent in G, then h(x) and h(y) are
adjacent in H. It is well known that an ordinary graph coloring of a graph G with
m colors is a homomorphism from G into the complete graph Km of m vertices.
Similarly, an n-tuple coloring of a graph G with m colors is a homomorphism from
G into the Kneser graph K(m,n). This is the graph whose vertex set consists of all
n-element subsets of {1,2, . . . ,m}, and which has an edge between two such sub-
sets if they are disjoint. (We assume m ≥ 2n, for otherwise K(m,n) has no edges.)
Lovász (1978) computed the ordinary chromatic number χ(K(m,n)) in the process
of settling the famous Kneser Conjecture:

Kneser’s Conjecture: If the n-element subsets of a 2n+ p-element set are split into
p+1 classes, then one of the classes will contain two disjoint n-element sets.

Restated, the conjecture says the following:

Kneser’s Conjecture Restated: χ(K(2n+ p,n))≥ p+2.

Lovász proved this conjecture by showing the following:

Theorem 1.1 (Lovász, 1978). χ(K(m,n)) = m−2n+2,m≥ 2n.

This leads naturally to the question: What is χk(K(m,n))? Stahl (1976) conjec-
tured the following:

Stahl’s Conjecture: If k = qn− r,q≥ 1,0≤ r < n, then χk(K(m,n)) = qm−2r.

This conjecture has remained open since 1976 and very little progress has been
made on it since Stahl’s original paper. Section 2 summarizes what is known about
Stahl’s Conjecture. We make use of Lovász’ Theorem and a special case of Stahl’s
Conjecture in Sect. 3. Our purpose is to illustrate an amusing application of these
two ideas and at the same time highlight Stahl’s Conjecture.

It is easy to show that nω(G) ≤ χn(G) ≤ nχ(G), where ω(G) is the size of the
largest clique of G. Hence, the weakly γ-perfect graphs, those for which χ = ω ,
have the property that χn(G) = nχ(G). This observation led Mahadev (1990) to ask
how good the lower bound nω(G) for χn(G) is. In particular, he asked the following
questions, which we settle in Sect. 3.

• Question 1: If χn(G) = nω(G), does this imply that χ(G) = ω(G)?

Question 1 suggests that if χ(G) = ω(G), then χn(G) ≥ nω(G) + 1. Mahadev
conjectured that the answer to the following question is true:

• Question 2: Is χn(G)≥ nω(G)+ [χ(G)−ω(G)]?
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In Sect. 3, we settle these questions, using Lovász’ Theorem and a special case
of Stahl’s Conjecture.

2 Known Results Concerning Stahl’s Conjecture

Here we recall some known results.
Stahl (1976) showed that the upper bound in his conjecture always holds:

Theorem 2.1 (Stahl, 1976). If k = qn− r,q ≥ 1,0 ≤ r < n, then χk(K(m,n)) ≤
qm−2r.

We will need the following result in the next section. It also gives a simple proof
that Stahl’s Conjecture holds if 1≤ k ≤ n.

Theorem 2.2 (Stahl, 1976). If G has an edge and n > 1, then χn(G)≥ 2+χn−1(G).

Theorem 2.3 (Stahl, 1976). If 1≤ k ≤ n, then χk(K(m,n)) = m−2(n− k).

Proof. The upper bound follows by Theorem 2.1. The lower bound follows by re-
peated use of Theorems 2.2 and 1.1. ��
Corollary 2.4 (Stahl, 1976). Stahl’s Conjecture holds if 1≤ k ≤ n.

Theorem 2.5 (Stahl, 1976). χun(K(m,n)) = um,u > 0.

Corollary 2.6 (Stahl, 1976). Stahl’s Conjecture holds if k = un,u > 0.

Theorem 2.7 (Stahl, 1976).

χk(K(2n+1,n)) = 2k +1+ (k−1
n
).

Corollary 2.8 (Stahl, 1976). Stahl’s Conjecture holds if m = 2n+1.

Theorem 2.9. Stahl’s Conjecture holds for n = 2,3.†

Theorem 2.10 (Garey and Johnson, 1976). Stahl’s Conjecture holds if n = 3,
k = 4, m≥ 6.

By using qn + p = (q + 1)n− (n− p), we see that Stahl’s conjecture is equiva-
lent to

If k = qn+ p,q≥ 0,0 < p≤ n, then χk(K(m,n)) = qm+m−2n+2p.

By Theorem 2.1, we know that the upper bound in Stahl’s conjecture holds. By
Theorems 2.2 and 2.5, the lower bound follows if

χnq+1(K(m,n))≥ χnq(K(m,n))+m−2n+2,

† This was proven in Stahl (1998). According to Stahl (1998), it was independently and previously
proven for n = 2 by Claude Tardif.
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i.e., if the lower bound holds for p = 1. As Ostënyi (2007) points out, it follows
from a result of Stahl (1998) that

χnq+1(K(m,n))≥ χnq(K(m,n))+m−n+2− f (n),

where f (n) = n2−3n+4. This shows that, given n and c ∈ (0,1), we have

χnq+1(K(m,n))≥ χnq(K(m,n))+ c[m−2n+2]

for m large enough. Note that if m≤ n2−n+4, Stahl’s results in Stahl (1998) imply
that

χnq+1(K(m,n))≥ χnq(K(m,n))+2.

Ostënyi (2007) shows that, in fact,

χnq+1(K(m,n))≥ χnq(K(m,n))+3

for all positive integers n,m,q.†

There have been few other results about Stahl’s conjecture over the years, though
it is mentioned from time to time in the literature. Frankl and Füredi (1986) discuss
extremal problems on Kneser graphs and mention the Stahl Conjecture. Tardif and
Zhu (2002) show that if the conjecture is true, then only very few Kneser graphs are
multiplicative. (A graph K is called multiplicative if for any two graphs G and H
that are not homomorphic to K, their categorical product or tensor product is also
not homomorphic to K.)

3 Answers to Mahadev’s Questions

We first show that Question 2 has an affirmative answer if ω = 2.

Proposition 3.1. If ω(G) = 2, then

χn(G)≥ nω(G)+ [χ(G)−ω(G)].

Proof. Suppose ω(G) = 2. By Theorem 2.2,

χn(G)≥ 2(n−1)+χ1(G).

Thus, since ω(G) = 2 and χ1(G) = χ(G),

χn(G)≥ nω(G)+ [χ(G)−ω(G)].

��

We observe next that the bound in Question 2 fails in general.

† The author thanks József Ostényi for sharing an early version of his paper, in which these ideas
are developed.
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Proposition 3.2. There are graphs for which

χn(G) < nω(G)+ [χ(G)−ω(G)].

Proof. By Theorem 2.5, we know that

χn(K(m,n)) = m. (1)

By Theorem 1.1,
χ(K(m,n)) = m−2n+2. (2)

Since a clique in K(m,n) consists of a disjoint collection of n-element subsets of
{1,2, . . . ,m}, we note that

ω(K(m,n)) = (m
n
) (3)

If
χn(G)≥ nω(G)+ [χ(G)−ω(G)],

then by (1), (2), and (3), we have

m = χn(K(m,n))≥ n×(m
n
)+(m−2n+2)−(m

n
)≥ n(

m
n
−1)+(m−2n+2)−m/n,

so

3n−m+
m
n
−2≥ 0. (4)

Certainly if m = pn, p≥ 4,n≥ p, then (4) fails. ��

We next observe that the answer to Question 1 is “no”.

Proposition 3.3. There are graphs for which χn(G) = nω(G), but χ(G) = ω(G).

Proof. Consider the Kneser graph K(m,2) for m even. By (1) and (3),

χ2(K(m,2)) = m = 2ω(K(m,2)).

However, by (2),

χ(K(m,2)) = m−2,

while by (3),

ω(K(m,2)) = m/2,

so χ = ω already for m = 6. ��
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4 Closing Remarks

Several other related directions of work are of interest. Hilton, Rado, and Scott
(1975) define the multichromatic number (sometimes called the ultimate chromatic
number) χ∗(G) to be infk(χk(G)/k). Clarke and Jamison (1976), Lovász (1972),
and Scott (1975) independently showed that this is equal to χq(G)/q for some q.
Of course, if G is weakly γ-perfect, then q = 1. Johnson et al. (1997) showed that
χ∗(K(m,n)) = m/n, if n ≥ 2,m > n. They studied the relation between the multi-
chromatic number and star chromatic number introduced by Vince (1988). Another
long-standing conjecture in graph theory is the conjecture in Johnson et al. (1997)
that the star chromatic number of a Kneser graph is equal to its chromatic number.
Simonyi and Tardos (2004) proved this conjecture if the chromatic number is even.
The star chromatic number arises by considering the set of colors M = {1,2, . . . ,m}
as residue classes modulo m. Thus, the distance d(x,y) between two colors x,y in M
is the distance between x and y around the circle of M points, i.e., the minimum of
(x− y)mod(m) and (y− x)mod(m). Assume that m,D are positive integers, G has
at least one edge and has chromatic number at most m. Then an (m,D)-coloring
of G is an assignment of a color f (a) to every vertex a of G using residue classes
modulo m so that the minimum d( f (a), f (b)) is at least D. We define ηm(G) to be
the maximum D so that G has an (m,D)-coloring. The star chromatic number η(G)
is infmηm(G).

Clarke and Jamison (1976), Lovász (1972), and Scott (1975) observed that the
multichromatic number can be calculated by a linear program. This number and
the k-tuple chromatic number are closely related to the fractional chromatic number
that can also be calculated by a linear program. For an early summary of the rela-
tionships among k-tuple chromatic numbers, multiple chromatic numbers, fractional
chromatic numbers, and their analogues for independence number, clique number,
and clique covering number, see Hell and Roberts (1982). For a comprehensive sum-
mary of the literature of fractional chromatic number, see Scheinerman and Ullman
(1997).

Klostermeyer and Zhang (2002) showed that any planar graph G with odd girth
at least 10n−7,n≥ 2, has a homomorphism to the Kneser graph K(2n+1,n), i.e.,
χn(G) ≤ 2n + 1. (The case n = 1 fails since that would say that every planar graph
of odd girth at least 3 is 3-colorable. However, by Grötzsch’s Theorem (Grötzsch,
1958/1959), every planar graph of odd girth at least 5 is 3-colorable.)

It is not hard to show that for any graph G,

χk+1(G)≤ χk(G)+χ(G)≤ 2χk(G). (5)

Indeed, the first part follows from the more general result in Stahl (1976) that

χqp+r(G)≤ qχp(G)+χr(G). (6)

Equation (5) for G = K(m,n) follows directly from Theorem 2.3 if 1≤ k≤ n. Lovász
asked (see Erdös (n.d.)) asked whether, for every k, there are graphs G for which
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χk+1(G) >
(2− ε)χk(G). Chvátal et al. (1978) showed that this was indeed the case.

It should be noted that χn(G) can be arbitrarily larger than nω(G) + [χ(G)−
ω(G)]. Indeed, the odd cycles C2p+1 illustrate this point. Stahl (1976) shows that

χn(C2p+1) = 2n+1+ (n−1
p
).

However,
nω(C2p+1)+ [χ(C2p+1)−ω(C2p+1)] = 2n+1.

One can ask for a characterization of graphs for which

χn(G) = nω(G)+ [χ(G)−ω(G)]

and also for a characterization of graphs for which

χn(G) > nω(G)+ [χ(G)−ω(G)]

and one of graphs for which

χn(G) < nω(G)+ [χ(G)−ω(G)].

These make for intriguing open questions.

Acknowledgements Fred Roberts thanks the National Science Foundation for its support under
grant CCF-0514703 to Rutgers University. He is indebted to the late Svata Poljak for his insights
and ideas that form the basis for many of the results in this paper.
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Optimal Reservation Scheme Routing
for Two-Rate Wide-Sense Nonblocking
Three-Stage Clos Networks

Wenqing Dou and Frank K. Hwang

1 Introduction

The well-known Clos network has been widely employed for data communica-
tions and parallel computing systems, while the symmetric three-stage Clos network
C(n,m,r) is considered the most basic and popular multistage interconnection net-
work. A lot of efforts have been put on the research of the three-stage Clos network.
Let us first introduce some related concepts.

The three-stage Clos network C(n,m,r) is a three-stage interconnection network
symmetric with respect to the center stage. The network consists of r (n×m)-
crossbars (switches) in the first stage (or input stage), m (r× r)-crossbars in the
second stage (or central stage), r (m× n)-crossbars in the third stage (or output
stage). The n inlets (outlets) on each input (output) crossbar are the inputs (outputs)
of the network. Thus the total number the inputs (outputs) of C(n,m,r) is rn. There
exists exactly one link between every center crossbar and every input (output) cross-
bar. These links are the internal links while the inputs and outputs are the external
links of the network.

In the classical circuit switching, a call between an idle pair (input, output) is
routable if there exists a path connecting them such that no link on the path is used
by any other connection paths. A call is often referred to as a request before it
is connected, and connection after it is. A network is strictly nonblocking (SNB)
if regardless of the routing of existing connections in the network, a new request
is always routable. A network is wide-sense nonblocking (WSNB) if a new request is
always routable as long as all connections were routed according to a given routing
algorithm. The problem is to estimate the minimum number mo such that for all m≥
mo, C(n,m,r) is SNB (or WSNB, respectively). Clos (1953) proved that mo = 2n−1
for SNB. Since SNB implies WSNB, we have mo ≤ 2n−1 for WSNB. Beneš (1965)
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introduced the notion of WSNB. Using the packing routing algorithm, he showed
(Beneš, 1985) that for C(n,m,2), mo = (3n/2). While mo for WSNB is still not
completely settled for r ≥ 3, Chang, Guo, Hwang, and Lin (2004) proved that for
a set of routing algorithms including almost all studied in the literature, C(n,m,r)
at r ≥ 3 is WSNB if and only if m ≥ 2n−1, the same as for SNB. Moreover, Tsai,
Wang, and Hwang (2001) showed that for r sufficiently large, the latter result holds
for any routing algorithm, i.e., that mo = 2n−1.

Melen and Turner (1989) initiated the study on nonblocking properties in multi-
rate interconnection networks. In the multirate environment, a connection is a triple
(x,y,w) where x is an inlet, y an outlet, and w a weight which can be thought of
as the bandwidth requirement (rate) of that connection. In the uniform model, each
internal and external link is assumed to have the same capacity, which is normalized
to be one. An external link can generate many requests, while an internal link can
carry many connections, as long as the sum of rates does not exceed capacity one.
In applications, the number of distinct rates is often confined to a small number k.
We call this a k-rate environment.

Unlike the circuit switching case in which no general routing algorithm is helpful
to improve mo over the SNB result mo = 2n− 1, Gao and Hwang (1997) proposed
a reservation-scheme routing for multirate three-stage Clos network which does the
job. Suppose all rates lie in the interval [b,B], where 1 ≥ B ≥ b > 0. In Gao and
Hwang (1997) it was proved

Theorem 1. C(n,m,r) is WSNB if m≥ 5.75n.

This is achieved by employing a routing algorithm which reserves 2n−1 central
crossbars only for calls with w > 1/2, and another 2.25n central crossbars for calls
with 1/2≥ w > 1/3. Note that currently the best SNB result was due to Melen and
Turner (1989) requiring 2&(n− B)/(1− B)' central crossbars, which approaches
infinity for B approaching 1.

Gao and Hwang (1997) also refined the reservation scheme to obtain

Theorem 2. For two rates 1/2≥ B≥ b > 0, C(n,m,r) is WSNB if m≥ 3n.

Note that Theorem 2 does not cover the B > 1/2 case. Further, for b > 1/2, each
link can carry only one call and hence the case is equivalent to circuit switching.
In this paper, we give the best reservation-scheme routing for the B > 1/2 case to
complete the discussion on the general two-rate case.

2 Two-Rate Routing

We first quote a recent result of Chen, Hwang, and Zhu (2004).

Theorem 3. A multistage interconnection network is SNB for circuit switching if
and only if it is so for the one-rate (any rate) environment.
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From which, we immediately obtain the following result:

Theorem 4. C(n,m,r) is two-rate WSNB for m≥ 4n−2.

Proof. Consider the routing algorithm which assigns one set of 2n−1 central cross-
bars to route B-calls, and another set of 2n−1 central crossbars to route b-calls. By
Theorem 3, no B-call or b-call would be blocked. ��

However, we can do better than that with a reservation scheme. We first give a
statement stronger than Theorem 3 when the network is the three-stage Clos net-
work. Define l = (1/b) and t = ((1−B)/b). Then l is the maximum number of
b-calls a link can carry and t is the corresponding number for a link already carry-
ing a B-call. For convenience of writing, we assume that the current request is from
input i of input crossbar I to output j of output crossbar J. An I-input is an input of
I, while a J-output is an output of J.

Lemma 1. For two rates B and b satisfying 1 ≥ B > 1/2 ≥ b > 0, a b-call can
always be routed in a set of 2n−1 central crossbars in C(n,m,r). Furthermore, no
fewer central crossbars can guarantee the routing.

Proof. Assume that I carry exactly x B-connections. Then each of these x links
can generate at most t b-connections, while the other n− x links can each generate
at most l b-connections. But the link which generates the current request cannot
have generated a full load of connections. On the other hand, a central crossbar
is not available to I if and only if either it carries l b-connections from I, or one
B-connection and t b-connections. Namely, each link of I generating a full load
corresponds to a central crossbar not available to I. Therefore at most n−1 central
crossbars are not available to I. Similarly, at most n− 1 central crossbars are not
available to J. Thus when there are 2n−1 central crossbars, at least one is available
to both I and J to carry the current request.

To prove the second part of Lemma 1, suppose all calls are b-calls and every I-
input and J-output generates a full load (including the current request). Then clearly
2n−1 central crossbars are needed. ��

Note that the assumption of B > 1/2 is necessary for otherwise the full load
pattern of inputs and that of central crossbars can be different. For example, suppose
B = 0.4 and b = 0.3. Then six inputs can each generate a load (B,b,b) which causes
seven central crossbars to be unavailable to I with three of them having load (B,B)
and four of them having load (b,b,b).

We say that a link carries a w-saturating load if its load exceeds 1−w (thus un-
able to carry another w-call). Let p(w) denote the minimum number of w-saturated
I-inputs and J-outputs to induce the full-load situation, i.e., each nonreserved cross-
bar has either a w-saturated I-link or a w-saturated J-link. Let R(v) denote the reser-
vation scheme which reserves v central crossbars for routing of B-calls only. We first
state a general result.

Theorem 5. Suppose 1≥ B > 1/2≥ b > 0. Then C(n,m,r) is two-rate WSNB under
the optimal reservation scheme R(2n−1− p(B)) if and only if m ≥ 4n−2− p(B).
Moreover, no other reservation scheme can improve this bound.



358 W. Dou and F.K. Hwang

Proof. Consider the routing algorithm R(2n−1− p(B)). By Lemma 1, a b-request
can always be routed by the 2n−1 nonreserved crossbars. Now consider a B-request
from an I-input i to a J-output j. Suppose it is blocked in the 2n− 1 nonreserved
crossbars. Then at least p(B) I-inputs and J-outputs are B-saturated with all their
loads carried by the nonreserved crossbars. Therefore the B-connections carried by
the reserved crossbars must all come from the other 2n− p(B)− 2 I-inputs and J-
outputs (not including i and j), while each such B-connection occupies a distinct re-
served crossbar. So one extra reserved crossbar then can connect the (i, j) B-request.
The total number of central crossbars needed is

2n−1+2n−2− p(B)+1 = 4n−2− p(B).

Thus we have shown that R(2n−1− p(B)) is WSNB.
Next we show that R(v) cannot be WSNB if v < 2n− 1− p(B). By Lemma 1,

the b-connections need 2n−1 nonreserved crossbars. More specifically, when each
I-input and each J-output carries l b-connections and the connections generated by
I-inputs do not go to the J-outputs, then each of the 2n− 1 nonreserved crossbars
will either has an I-link or a J-link carrying l b-connections (hence B-saturated).
Delete all connections except those in the p(B)-pattern. Let each other I-input and
J-output generates a B-connection. Then the same computation as given in the first
half of proof yields a requirement of 4n−2− p(B) crossbars. ��

We now compute p(B) for the general B > 1/2 > b case. Define q = (2n− 1)
(t +1)/(2t +1).

Lemma 2. Suppose B > 1/2 > b. Then

p(B) =
{
((2n−1)(t +1)/l), if l ≥ 2t +1;
min{(2n−1)(t +1)/l− (2t +1− l)(q)/l,&q'}, if l < 2t +1.

Proof. Without loss of generality, assume among the 2n−1 nonreserved crossbars,
x of them each carries a B-call in its I(J)-link, and each of the others carries t + 1
b-calls. This constitutes the minimum load which induces 2n− 1 B-saturated I(J)-
links one for each nonreserved crossbars. We now compute p(B) for the I-inputs and
J-outputs. Since each B-calls must occupy a distinct I(J)-port, the tightest packing
is to assign t b-calls to as many I(J)-ports (carrying B-calls) as possible. If this
assignment does not exhaust the (2n− 1− x)(t + 1) b-calls from the nonreserved
crossbars, then we pack the remaining b-calls into I(J)-ports not carrying B-calls,
each carrying l b-calls except perhaps the last one. Thus

p(B) = min
0≤x≤2n−1

f (x),

where x takes only integer values and

f (x) = x+max{(((2n−1− x)(t +1)− tx)/l),0}
= x+max{(((2n−1)(t +1)− (2t +1)x)/l),0}.
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For x ≤ q, f (x) = (x + ((2n− 1)(t + 1)− (2t + 1)x)/l)}. Since the underlying
expression is linear in x, the minimum of f on [0,(q)] occurs at one of the endpoints,
0 or (q). More specifically, the minimum occurs at x = 0 if l ≥ 2t +1 and at x = (q)
if otherwise (since B > 1/2, l ≥ 2t; hence “otherwise” can be replaced by l = 2t).
For x ≥ q, f (x) = x and therefore min

q≤x≤2n−1
f (x) = &q'. Finally, for l ≥ 2t + 1, it is

easy to see that f (0)≤ &q' since the two terms differ only in the denominator, one
is l and the other 2t +1. Thus

p(B) =
{

f (0), if l ≥ 2t +1;
min{ f ((q)),&q'}, if l < 2t +1.

��

Corollary 1. For B > 1/2≥ b and B+b > 1, a sufficient condition for C(n,m,r) to
be two-rate WSNB is m≥ 4n−2−((2n−1)/l).

Tsai et al. (2001) proved that for r large enough, n ≥ 2 and two rates, B and b,
satisfying B > b and B+b > 1, C(n,m,r) is not WSNB if m = min{l +2n−3,3n−
3} ≤ 3n−3. We show that the sufficient condition for WSNB in Corollary 1 barely
crosses this 3n−3 threshold and hence is pretty tight.

Note that B + b > 1 implies t = 0. Also, b ≤ 1/2 implies l ≥ 2. Thus l > 2t + 1
and by Lemma 2, p(B) = ((2n− 1)/l). Further, l ≥ 2 > (2n− 1)/(n + 1) implies
((2n−1)/l) ≤ (2n−1)/l < n+1. Hence 4n−2−((2n−1)/l)> 3n−3.

3 Some Concluding Remarks

In circuit switching, we know that WSNB cannot improve over SNB for three-stage
Clos network, symmetric or asymmetric, except for one special case. In fact, such
a conclusion has been extended to other networks, for example, the Logd(N,m, p)
network (Chang, Guo, & Hwang, 2006). We have shown that this is not the case for
the two-rate model by using the reservation scheme fruitfully.

For the one-rate model, the notion of reservation scheme is not defined. So it
is intriguing to ask whether WSNB can improve over SNB. By Theorem 3, one-
rate and circuit switching have no difference as far as SNB is concerned. If this
is also the case for WSNB, then the above question is already answered since the
question in circuit switching is answered. Surprisingly, Fishbun, Hwang, Du, and
Gao (1997) proved that for one-rate C(n,m,2), mo = &3n/2', differing from (3n/2)
in the circuit switching case. Thus one-rate and circuit switching are not completely
the same for WSNB, casting uncertainty to the question posed at the beginning of
the paragraph. Our conjecture is that the answer to the question is similar to the
circuit switching case, namely, C(n,m,2), or its asymmetric version, is the only
exception to the general rule that WSNB cannot improve over SNB.

Note that the two-rate model has a wider interpretation than its definition. Sup-
pose a set S of rates can be classified into two groups G1 and G2 where each rate
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r in Gi satisfies 1/ki ≥ r ≥ 1/(ki + 1). Suppose k1 < k2. Then we can reduce S to
any two rates B and b satisfying 1/k1 ≥ B > 1/(k1 + 1) ≥ 1/k2 ≥ b > 1/(k2 + 1)
and the routing algorithm for B,b can be used for S by substituting any G1-call for
B and any G2-call for b. It is also easily verified that all results reported in Sect. 2
can be extended to the asymmetrical three-stage Clos networks C(n1,r1,m,n2,r2)
by changing 2n to n1 +n2.

We hope that the concept used in analyzing the two-rate model can be extended
to other k-rate model for some small k ≥ 3.
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Correlation Inequalities for Partially Ordered
Algebras∗

Siddhartha Sahi

1 Introduction

The proof of many an inequality in real analysis reduces to the observation that
the square of any real number is positive. For example, the AM–GM inequality
1
2 (a+b)≥

√
ab is a restatement of the fact that

(√
a−

√
b
)2
≥ 0.

On the other hand, there exist useful notions of positivity in rings and algebras,
for which this ‘positive squares’ property does not hold, viz. the square of an element
is not necessarily positive. An interesting example is provided by the polynomial
algebra R [x], where one decrees a polynomial to be positive if all its coefficients are
positive. A noncommutative example is furnished by the algebra of n×n matrices,
where one declares a matrix to be positive if all its entries are positive. Neither
example satisfies the positive squares property, however in each case the product of
two positive elements is positive.

Generalizing this, we consider the following setting:

Definition 1. A partially ordered algebra is a pair (A,P) where A is an associative
algebra over R and P is a nonempty subset closed under addition, multiplication and
multiplication by positive real numbers.

This concept goes back at least to the work of Fuchs (1963) and McShane (1953).
See also Seidman and Schneider (2006) for a discussion of spectral theory in this
context.

The set P is a convex cone in A, and we will call its elements positive. By an
inequality for (A,P), we mean the assertion that some expression in A is positive.
The purpose of this paper is to show that several useful inequalities continue to hold
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even in this ‘minimal’ setting. This is somewhat surprising since traditional proofs
of these inequalities tend to involve the positive squares property alluded to above.

The inequalities we consider are concerned with increasing functions on a dis-
tributive lattice Ω. For simplicity of exposition, we treat only the case in which
Ω= 2S is the lattice of all subsets of a finite set S, partially ordered by set inclusion.

We first extend the notion of increasing/decreasing functions to this setting, in
the obvious manner:

Definition 2. If (A,P) is a partially ordered algebra, a function f : 2S → A is said
to be increasing (resp. decreasing) if f (α)− f (β ) is positive for all β ⊆ α (resp.
α ⊆ β ).

Our first main result is the following ‘diagonal squares’ theorem for partially
ordered algebras:

Theorem 1. If (A,P) is a partially ordered algebra, and f : 2S → A is an increasing
function, then the following expression is positive

Φ(S, f ) := ∑
{ω,S\ω}

[ f (ω)− f (S\ω)]2

(where the sum ranges over all unordered pairs of complementary subsets of S.)

The set 2S may be naturally regarded as the vertices of an |S|-dimensional hy-
percube and the pairs {ω,S\ω} are precisely the endpoints of the various principal
diagonals – i.e. those not contained within a proper face of the hypercube.

The theorem is nontrivial because squares are not necessarily positive in A. In
fact, in the expression for Φ(S, f ) only the term [ f (S)− f ( /0)]2 , corresponding to
the ‘main’ diagonal, is guaranteed to be positive.

For the statements of the remaining results we need to introduce a class of mea-
sures on 2S.

Definition 3. A product measure on the set 2S is a measure of the form

μ (ω) =∏
x∈ω

ax∏
y/∈ω

(1−ay)

where each ax satisfies 1≥ ax ≥ 0.

It is easy to see that such a μ is a probability measure on 2S. Indeed μ (ω) repre-
sents the probability of choosing the set ω if each element x is chosen independently
with probability ax. Moreover product measures are characterized by the relation

μ (α ∪β )μ (α ∩β ) = μ (α)μ (β ) for all α,β ⊆ S.

If f : 2S → A is a function and μ is a probability measure on 2S, we define the
expectation and variance of f with respect to μ as follows

E ( f ) = E (μ , f ) =∑μ (ω) f (ω) , V ( f ) = V (μ , f ) = E
(

f 2)−E ( f )2 ,

where by f 2 we mean the function f 2 (ω) = f (ω)2.
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The diagonal squares theorem implies the following ‘positive variance’ result:

Theorem 2. If (A,P) is a partially ordered algebra, μ is a product measure on 2S,
and f : 2S → A is an increasing function, then the variance V ( f ) is positive.

Now given two functions f ,g : 2S → A, we define the covariance of f ,g to be

C ( f ,g) = C (μ , f ,g) = E ( f ·g)−E ( f ) ·E (g) .

Here a ·b = 1
2 (ab+ba) is the anticommutator. Note that this expression is symmet-

ric in f and g, even if A is noncommutative.
Our third result is the following ‘positive covariance’ theorem for partially or-

dered algebras:

Theorem 3. If (A,P) is a partially ordered algebra, μ is a product measure on 2S,
and f ,g : 2S → A are increasing functions, then the covariance C ( f ,g) is positive.

We note that in the special case in which A is the ring of real numbers with
the usual notion of positivity, the variance theorem becomes trivial. However the
covariance theorem is nontrivial even in this case; in fact it is precisely the Harris
inequality (Harris, 1960), which plays a key role in the study of percolation on
random graphs. The beauty of our more general setting is that the covariance result
becomes an immediate consequence of the variance result! This is analogous to the
method of polarization in classical invariant theory.

Of course the three previous results hold equally well for decreasing functions.
However one can also prove the following analog of the Cauchy–Schwartz inequal-
ity for a partially ordered commutative algebra, which involves an increasing func-
tion and a decreasing function. This proof is remarkably similar to the proof of the
positive variance theorem.

Theorem 4. If (A,P) is a partially ordered algebra, A is commutative, μ is a prod-
uct measure on 2S, f : 2S → P is increasing, and g : 2S → P is decreasing, then
E
(

f 2
)

E
(
g2
)
−E ( f g)2 is positive.

We conclude with some comments on possible generalizations of the results in
this paper.

First of all, the Harris inequality was generalized by Fortuin, Kasteleyen and
Ginibre (1971) and Sarkar (1969) to the case in which the measure satisfies the
weaker condition

μ (α ∪β )μ (α ∩β )≥ μ (α)μ (β ) for all α,β ⊆ S.

This form, called the FKG inequality, has proved extremely useful for applica-
tions (see e.g. Bricmont, Fontaine, Lebowitz, Lieb, & Spencer, 1980/81; van den
Berg, Häggström, & Kahn, 2006; Fishburn, 1984, 1992; Fishburn, Doyle, & Shepp,
1988; Graham, 1983; Karlin & Rinott, 1988; Lebowitz, 1972; Percus, 1975; Shepp,
1982). Other proofs and further generalizations of the FKG inequality have been
obtained in (Alon & Spencer, 1992; Den Hollander & Keane, 1986; Glimm & Jaffe,
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1987; Holley, 1974; Preston, 1974) culminating in the Ahlswede–Daykin inequal-
ity (Rinott & Saks, 1993; Ahlswede & Daykin, 1978). It is natural to ask whether
these more general inequalities also hold in the present setting. It turns out that the
FKG inequality does hold while the Ahlswede–Daykin result does not. The proofs
are quite different from the arguments in this paper and we shall report on them
elsewhere (Sahi, 2006).

We also remark that higher-order analogs for the FKG inequality have been in-
troduced in Richards (2004) and Sahi (2007). They are of the form

En ( f1, . . . , fn)≥ 0

where En is a certain correlation functional of the n increasing positive functions
f1, . . . , fn : 2S → R≥0, with respect to an FKG measure. For n = 2 this is the FKG
inequality, while for n = 3 one has

E3 ( f1, f2, f3) = 2E ( f1 f2 f3)+E ( f1)E ( f2)E ( f3)
− [E ( f1 f2)E ( f3)+E ( f1 f3)E ( f2)+E ( f1)E ( f2 f3)] .

However these higher order analogs are known to hold only under additional as-
sumptions. It seems quite likely that the ideas of this paper have some bearing on
this issue and we shall consider this possibility in a future paper.

2 Diagonal Squares

In this section we give the proof of the diagonal squares theorem (Theorem 1), which
asserts for increasing f the positivity of the expression

Φ(S, f ) := ∑
{ω,S\ω}

[ f (ω)− f (S\ω)]2 .

The result is trivial for |S|= 0,1 while the proof for |S|= 2 already contains the
germ of the main idea. For clarity of exposition we treat this case explicitly before
proceeding to the general situation. Thus suppose S = {1,2} and write

a = f (S) ,b = f ({1}) ,c = f ({2}) ,d = f ( /0) .

Then we have
Φ(S, f ) = (a−d)2 +(b− c)2

and the trouble, of course, is that (b− c)2 need not be positive.
To get around this problem we rewrite Φ(S, f ) as follows:

Φ(S, f ) =
1
2

[(a−d)+(b− c)]2 +
1
2

[(a−d)− (b− c)]2

=
1
2

[(a− c)+(b−d)]2 +
1
2

[(a−b)+(c−d)]2 .
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This last expression is clearly positive, since by assumption each of a− b, c− d,
a− c, b−d is positive.

Note also that the argument does not require A to be commutative or even asso-
ciative. Furthermore we do not require that the product of two positive elements be
positve, only that the square of a positive element is positive.

We now consider the case of general |S|> 1, proceeding by induction on |S| . Fix
x ∈ S, and define two functions on subsets of the set T = S\{x} as follows:

g(α) := f (α ∪{x})+ f (α) ,

h(α) := f (α ∪{x})− f (α) .

Since f is increasing on 2S, it follows that g is increasing on 2T and h is positive
(takes values in P).

We claim the following identity holds

Φ(S, f ) =
1
2 ∑
{α,T\α}

[h(α)+h(T \α)]2 +
1
2 ∑
{α,T\α}

[g(α)−g(T \α)]2 .

This suffices for the result, since the first sum is clearly positive, while the second
sum, which is equal to 1

2Φ(T,g) , is positive by induction.
To prove the identity, we fix a pair {α,T \α} and consider all the terms on the

left and right involving the quantities

a = f (α ∪{x}) ,b = f (α) ,c = f (T \α ∪{x}) ,d = f (T \α) .

This reduces matters to verification of the following simple equality

(a−d)2 +(b− c)2 =
1
2

[(a−b)+(c−d)]2 +
1
2

[(a+b)− (c+d)]2 ,

which is the same calculation as before. �
We note again that the proof remains valid under the following weaker

hypotheses:

(1) A is an arbitrary algebra over R (i.e. not necessarily associative)
(2) P is closed under addition, multiplication by positive scalars, and squaring (but

need not be closed under multiplication).

3 Positive Variance

We now prove the positive variance theorem (Theorem 2), which asserts the posi-
tivity of the variance V (μ , f ) of an increasing function f with respect to a product
measure μ .
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Since μ is a probability measure we can rewrite the variance in following, more
homogeneous, form:

V (μ , f ) =
[
∑
ω
μ (ω)

][
∑
ω
μ (ω) f (ω)2

]
−
[
μ (ω)∑

ω
f (ω)

]2

= ∑
(α,β )

μ (α)μ (β ) f (β )2− ∑
(α,β )

μ (α)μ (β ) f (α) f (β )

= ∑
{α,β}

μ (α)μ (β ) [ f (α)− f (β )]2

Here the intermediate expression involves sums over ordered pair of subsets
(α,β ), but the final expression involves a sum over unordered pairs. In terms of
the hypercube interpretation discussed in the introduction, we see that the variance
is a weighted sum of squares corresponding to all the diagonals (and edges) of the
cube, and not just the principal diagonals.

We now observe that each diagonal is a principal diagonal in a unique face of
the cube. To make this precise, we note that a face of the cube is determined by a
nested pair of subsets ω0 ⊆ ω1. The vertices of the face consist of all α such that
ω0 ⊆ α ⊆ ω1, and the principal diagonals of the face are unordered pairs {α,β}
such that α ∩β = ω0 and α ∪β = ω1.

Since μ is a product measure it follows that

μ (α)μ (β ) = μ (α ∪β )μ (α ∩β ) = μ (ω0)μ (ω1) .

This means that in the above formula for the variance, the weight is constant on
each face. Thus we obtain the following “facial expression” for the variance

V (μ , f ) = ∑
ω0⊆ω1

μ (ω0)μ (ω1)Φ
(
Sω0,ω1 , fω0,ω1

)

where Sω0,ω1 = ω1 \ω0 and fω0,ω1 is the function on ω1 \ω0 defined by

fω0,ω1 (α) := f (ω0∪α) .

Since f is an increasing function, so is fω0,ω1 . Thus by the diagonal squares
theorem, each Φ

(
Sω0,ω1 , fω0,ω1

)
is positive, and hence so is the variance. �

This theorem too holds under the weaker hypotheses of the previous section.

4 Positive Covariance

We now prove the positive covariance result (Theorem 6), which asserts that if (A,P)
is a partially ordered algebra, μ is a product measure on 2S, and f ,g : 2S → A are
increasing functions, then the covariance
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C ( f ,g) = E ( f ·g)−E ( f ) ·E (g)

is positive.
We shall deduce this from the variance theorem by a “polarization” argument.
For this we let A′ = A [x1,x2] be the set of polynomials in two variables with co-

efficients in A, and let P′ denote the subset of polynomials with all coefficients in P.
Then A′ is an algebra over R (with the usual definition of polynomial multiplication)
and P′ is a convex cone. Furthermore for polynomials p,q in A′ the coefficients of pq
are themselves sums of products of the coefficients of p and q. Since P is closed un-
der addition and multiplication, it follows that (A′,P′) is a partially ordered algebra.

We define a function f ′ : 2S → A′ as follows:

f ′ (ω) = x1 f (ω)+ x2g(ω) .

Since f and g are increasing, it follows immediately that f ′ is an increasing function
for the partially ordered algebra (A′,P′). By the positive variance theorem it follows
that V (μ , f ′) belongs to P′, i.e. all its coefficients are in P.

Now we calculate as follows

V
(
μ , f ′

)
= E

(
[x1 f + x2g]2

)
− [E (x1 f + x2g)]2

= E
(
x2

1 f 2 + x2
2g2 +2x1x2 f ·g

)
− [x1E ( f )+ x2E (g)]2

= x2
1E
(

f 2)+ x2
2E
(
g2)+2x1x2E ( f ·g)

− x2
1E ( f )2− x2

2E (g)2−2x1x2E ( f ) ·E (g)

= x2
1V ( f )+ x2

2V (g)+2x1x2C ( f ,g) .

Considering the coefficient of x1x2, we deduce the positivity of C ( f ,g) . �
Note that the polarization argument above (deducing positive covariance from

positive variance) makes no use of the fact that μ is a product measure.

5 The Cauchy–Schwartz Inequality

We now prove the analog of the Cauchy–Schwartz inequality (Theorem 7), which
asserts that if (A,P) is a partially ordered commutative algebra, μ is a product mea-
sure on 2S, f is a P-valued increasing function, and g is a P-valued decreasing
function, then E

(
f 2
)

E
(
g2
)
−E ( f g)2 is positive.

We first show that if (A,P) is a partially ordered algebra, f1, f2 are increasing
and P-valued, then the product f1 f2 is also increasing and P-valued. To see this,
choose α ⊇ β :and calculate as follows:

f1 (α) f2 (α)− f1 (β ) f2 (β ) = f1 (α) [ f2 (α)− f2 (β )]+ [ f1 (α)− f1 (β )] f2 (β ) .

Since f1, f2 are increasing and P-valued, it follows that the expression is positive.
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Now in our situation, g is a decreasing function. It follows that α �→ g(S\α) is
increasing, and by the above argument so is the function

h(α) = f (α)g(S\α) .

We now compute

E
(

f 2)E
(
g2)−E ( f g)2

=
(
∑μ (α) f (α)2

)(
∑μ (β )g(β )2

)
−
(
∑μ (α) f (α)g(α)

)2

= ∑
α,β
μ (α)μ (β ) f (α)2 g(β )2−∑

α,β
μ (α)μ (β ) f (α)g(α) f (β )g(β )

= ∑
{α,β}

μ (α)μ (β ) [ f (α)g(β )−g(α) f (β )]2 .

This is a weighted sum over all edges and diagonals of the hypercube 2S and
arguing as in the proof of the covariance theorem, we arrive at the following facial
expression

E
(

f 2)E
(
g2)−E ( f g)2 = ∑

ω0⊆ω1

μ (ω0)μ (ω1)Φ
(
Sω0,ω1 ,hω0,ω1

)

where
hω0,ω1 (α) = h(ω0∪α) .

As remarked earlier in the proof, h(α) = f (α)g(S\α) is an increasing function.
Therefore so is each hω0,ω1 and the positivity follows from the diagonal squares
theorem. �
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The Kruskal Count

Jeffrey C. Lagarias, Eric Rains, and Robert J. Vanderbei

1 Introduction

The Kruskal Count is a card trick invented by Martin D. Kruskal (who is well known
for his work on solitons) which is described in Fulves and Gardner (1975) and
Gardner (1978, 1988). In this card trick a magician “guesses” one card in a deck
of cards which is determined by a subject using a special counting procedure that
we call Kruskal’s counting procedure. The magician has a strategy which with high
probability will identify the correct card, explained below.

Kruskal’s counting procedure goes as follows. The subject shuffles a deck of
cards as many times as he likes. He mentally chooses a (secret) number between
one and ten. The subject turns the cards of the deck face up one at a time, slowly,
and places them in a pile. As he turns up each card he decreases his secret number
by one and he continues to count this way till he reaches zero. The card just turned
up at the point when the count reaches zero is called the first key card and its value is
called the first key number. Here the value of an Ace is one, face cards are assigned
the value five, and all other cards take their numerical value. The subject now starts
the count over, using the first key number to determine where to stop the count at
the second key card. He continues in this fashion, obtaining successive key cards
until the deck is exhausted. The last key card encountered, which we call the tapped
card, is the card to be “guessed” by the magician.

The Kruskal counting procedure for selecting the tapped card depends on the sub-
ject’s secret number and the ordering of cards in the deck. The ordering is known
to the magician because the cards are turned face up, but the subject’s secret num-
ber is unknown. It appears impossible for the magician to know the subject’s secret
number. The mathematical basis of the trick is that for most orderings of the deck
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most secret numbers produce the same tapped card. For any given deck two dif-
ferent secret numbers produce two different sequences of key cards, but if the two
sequences ever have a key card in common, then they coincide from that point on,
and arrive at the same tapped card. The magician therefore selects his own secret
number and carries out the Kruskal counting procedure for it while the subject does
his own count. The magician’s “guess” is his own tapped card. The Kruskal Count
trick succeeds with high probability, but if it fails the magician must fall back on his
own wits to entertain the audience.

This paper gives a mathematical analysis of the success probability for this trick,
based on two simplified mathematical models of the Kruskal counting procedure.
We are concerned with the ensemble success probability averaged over all possible
orderings of the deck (with the uniform distribution). Our objective is to estimate
ensemble success probabilities for mathematical idealizations of such counting pro-
cedures. Then we numerically compare the ensemble success probabilities on a
52-card deck with that of the Kruskal Count trick itself. The success probability
of the trick depends in part on the magician’s strategy for choosing his own secret
number. We show that the magician does best to always choose the first card in the
deck as his first key card, i.e., to use secret number 1.

The general mathematical problem we consider applies the Kruskal counting pro-
cedure to a deck of N labelled cards with each card label a positive integer, in which
each card has its label drawn independently from some fixed probability distribu-
tion on the positive integers N

+. We call such distributions i.i.d. deck distributions;
they are specified by the probabilities {π j : j ≥ 1} of a fixed card having value j.
We assume that the subject chooses an initial secret number from an initial proba-
bility distribution on N

+ = {1, 2, 3, . . .}, and that the magician independently does
the same from a possibly different initial probability distribution, and that thereafter
each follows the Kruskal counting procedure. It is convenient to view the cards of
the deck as turned over at unit times, so that the card in the M-th position is turned
over at time M. If the M-th card is a key card for both magician and subject and no
previous card is a key card for both, then we say that M is the coupling time for the
sequences. Let t be a random variable denoting the coupling time on the resulting
probability space with t = +∞ if coupling does not occur. We wish to estimate the
“failure probability” P[t > N].

The set of permutations of a fixed deck (with uniform distribution) does not have
the i.i.d. property, and is not Markovian, but it can be reasonably well approximated
by such a distribution. The advantage of the simplifying assumption of an i.i.d. deck
distribution is that the random variable t can be interpreted as a stopping time for a
coupling method for a Markov chain, as is explained in Sect. 2.

The mathematical contents of the paper are determination of P(t > n) for a geo-
metric i.i.d. deck distribution, which is carried out in Sect. 3, and estimation of
P(t > n) for a uniform i.i.d. deck distribution, which is carried out in Sect. 4. The
proofs of several results stated in Sect. 4 are given in an appendix.

In Sect. 5 we consider the actual Kruskal count trick, and compare its suc-
cess probability with the approximations given by the models above. Because the
Kruskal count trick using an actual deck of 52 cards involves a stochastic process
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that is not Markovian, we estimate the success probability by Monte Carlo simu-
lation. We consider the effect on this success probability of varying the magician’s
strategy for choosing his key card, and of varying the value assigned to face cards.
The magician should choose his key card value to be 1. Assuming this strategy for
the magician, the success probability of the original Kruskal Count trick is just over
85%. Both the i.i.d. geometric distribution and i.i.d. uniform distribution models
above give good approximations; the geometric distribution is off by less than 3%,
and the uniform approximation is within 1%.

There has been previous work on mathematical models motivated by the Kruskal
count. In Mallows (1975) determined that the expected value of the coupling time of
two sequences {Z1,i,Z2,i} given as sums Z1,i := X1 + · · ·+Xi, Z2,i := Y1 + · · ·+Yi, of
i.i.d. positive integer valued random variables Xi (resp. Yi), possibly having different
distributions, is E[Xi]E[Yi]. He also observed that if the Xi were geometrically dis-
tributed then the variance of the coupling time could be determined as well. In Haga
and Robins (1997) analyzed a simplified Markov chain model for the Kruskal count
which is related to, but different from, the models considered here. We discuss their
model at the end of Sect. 4.

2 Coupling Methods for Markov Chains

The coupling time random variable t is a special case of a stopping time random
variable t∗ associated with a coupling method for studying a Markov chain. This
motivates our terminology.

To explain this connection, consider a homogeneous Markov chain (Xn : n ≥ 0)
on a countable discrete state space S. Given two initial probability distributions p
and p′ on S a coupling method constructs a bivariate process (X1

n , X2
n ) consisting of

two copies of process Xn with X1
0 having distribution p, X2

0 having distribution p′,
and the two copies evolve independently until some (random) stopping time t∗ at
which X1

t∗ = X2
t∗ and then requires them to be equal thereafter, evolving as a single

process Xn. The stopping time t∗ is not necessarily required to be the first time t at
which X1

t = X2
t occurs, and the particular rule for choosing t∗ defines the coupling

method. Let μn, μ′n denote the distribution at time n of the process Xn starting from
the distribution p, p′ respectively, at time 0, and let the variation distance ||p−p′||
between two distributions on S be

||p−p′|| := 1
2∑s∈S

|p(s)− p′(s)| . (1)

The basic coupling inequality is

||μn−μ′n|| ≤ P[t∗ > n] . (2)
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Such inequalities can be used to prove ergodicity of a Markov chain and to bound
the speed of convergence to the equilibrium distribution, by bounding the right side
of the inequality.

The first coupling method was invented by Doeblin (1938), and many other cou-
pling methods have been proposed since, see Griffeath (1978) for a survey. Appli-
cations to card shuffling and random walks on groups are described in Aldous and
Diaconis (1986) and Diaconis (1988). The basic coupling inequality (2) is also valid
for non-ergodic Markov chains, e.g., null-recurrent or transient Markov chains on
the state space N, as was observed by Pitman (1976). Coupling methods are tradi-
tionally used as an auxiliary device to get information on the rate of convergence to
equilibrium of an ergodic Markov chain. In this paper, we are interested in obtain-
ing upper and lower bounds for the coupling probability itself, since it represents
the failure probability of the Kruskal Count trick. We do not use the basic coupling
inequality, but instead in Sect. 4 use inequalities relating coupling probabilities for
various different Markov chains.

For an i.i.d. deck the Kruskal counting procedure can be viewed as moving on a
Markov chainMπ on the state space N where a state j represents a current value of
the Kruskal counting procedure, with state 0 representing being at a key card, and
state j represents that the next key card be reached after exactly j more cards are
turned over. Each transition of the Markov chain will correspond to turning over one
card in the deck. Let the random variable Xn denote the state of the Markov chain at
time n; it indicates the current Kruskal count value at location n of the deck, except
that Xn = 0 indicates a key card at location n. The transition probability for this chain
from state j≥ 1 is probability 1 to state j−1 and 0 to all other states, and from state
0 to state j is probability π j+1, where {π j : j≥ 1} is the distribution π of card labels.
(That is, π1 is the probability that the key card has value 1, and the chain transitions
from state 0 to state 0.) The initial distribution of secret numbers are distributions
p, p′ on the state space N. We define the random variable t = t(p, p′) to be the
stopping time associated to the coupling method that combines the chains X1

n and
X2

n at the first time that X1
n = X2

n = 0. (This is not necessarily the first time that
X1

n = X2
n .) The basic coupling inequality (2) forMπ and t then gives

||μn−μ′n|| ≤ P[t > n] , (3)

where μn and μ′n are the n-step state probabilities for the chain Mπ started with
initial distributions p and p′. We note that the Markov chainMπ is ergodic if E[π] =
∑∞j=1 jπ j is finite, and is null-recurrent otherwise. In the ergodic case the stationary
distribution π̃ = (π̃0, π̃1, π̃2, . . .) is given by

π̃ j = (1−π1−π2−· · ·−π j)(1+E[π])−1 (4)

for j ≥ 0. This chain is ergodic for the deck distributions that we consider, and our
object is to estimate the “failure probability” P[t > n].

In the remainder of the paper, rather than considering Markov chains of the type
Mπ , we study simplified Markov chains that jump from one key card to the next, but
which retain enough information for coupling methods to apply.
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3 Geometric Distribution

We consider an idealized deck consisting of cards whose labels are independently
and identically distributed random variables drawn from N

+ = {1, 2, 3, . . .} with
the geometric distribution Gp given by πk = (1− p)pk−1, 0 < p < 1. The geometric
distribution has mean

E[p] =
∞

∑
k=1

kπk =
1

1− p
. (5)

Let GN(p) denote the deck distribution induced on a deck of N cards.
Assume that the magician and subject both pick a secret number drawn from

the same geometric distribution Gp. Let P[t > N] denote the probability (choosing a
deck of cards at random as above) that the magician and subject have no common
key card in positions 1 through N.

For the geometric deck distribution there is a simple exact formula for all cou-
pling probabilities.

Theorem 3.1. For the geometric deck distribution GN(p) with initial geometric
value distributions Gp,

P[t > N] = pN(2− p)N . (6)

Proof. We use the memorylessness property of the geometric distribution, which
is that for a Gp-distributed variable X the conditional probability P[u = k | u ≥ �]
satisfies

P[u = k | u≥ �] = P[u = k− �] . (7)

By direct computation

P[t > 1] = 1− (1− p)2 = p(2− p) . (8)

Now for N ≥ 2,

P[t > N] = P[t > N|X1
1 ≥ 2 and X2

1 ≥ 2] P[X1
1 ≥ 2 and X2

1 ≥ 2]
+P[t > N|X1

1 = 1 and X2
1 ≥ 2] P[X1

1 = 1 and X2
1 ≥ 2] (9)

+P[t > N| X1
1 ≥ 2 and X2

1 = 1] P[X1
1 ≥ 2 and X2

1 = 1]
+P[t > N| X1

1 = 1 and X2
1 = 1] P[X1

1 = 1 and X2
1 = 1],

in which the last condition X1
1 = X2

1 = 1 has zero probability for N ≥ 2. Now by (7)

P[t > N|X1
1 ≥ 2 and X2

1 ≥ 2] = P[t > N−1] . (10)

In the second case X2
2 −1 is geometrically distributed, hence by (7) again

P[t > N|X1
1 = 1 and X2

1 ≥ 2] = P[t > N−1] . (11)
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The same holds for the third case, so (9) becomes

P[t > N] = P[t > N−1]P[max(X1
1 ,X2

1 )≥ 2]
= p(2− p)P[t > N−1] .

The theorem follows. ��

For the geometric distribution the magician can improve his chances by always
selecting the first card. Let t ′ denote the coupling time for this process where the
subject draws his secret number from Gp. Then one finds by a similar calculation
that

P[t ′ > N] = p(p(2− p))N−1 = pN(2− p)N−1 , (12)

which is smaller than (6) by a factor 1
2−p .

4 Uniform Distribution

Consider a deck of N cards having a uniform i.i.d. distribution of card values drawn
from [1, B]. We estimate P[t > N] where t is the coupling time assuming that both
the magician and the subject draw a secret value uniformly from [1, B].

For our analysis we introduce two auxiliary finite state Markov chains. The first
of these is a chain LB that we call the leapfrog chain. View the subject and ma-
gician as performing the Kruskal counting procedure on two independently drawn
decks. The subject will use a white pebble to mark the location of key cards and the
magician will use a black pebble, according to their decks, and simultaneously each
moves to their respective first key card. After this is done, the person having his peb-
ble furthest behind in the deck moves it to his next key card. In case of a tie, where
both pebbles are in the same relative position in the deck, a move consists of both
persons simultaneously moving their pebbles to their next key cards, respectively.
(Since the players have separate decks, the next key card values of the two players
need not be the same.) The states of the chain LB represent the distance the white
pebble is currently ahead of or behind the black pebble in the card numbering, so
there are 2B− 1 states i with −(B− 1) ≤ i ≤ B− 1. A transition occurs whenever
a pebble is moved; a transition from state 0 corresponds to both pebbles moving
(independently), while a transition from any other state corresponds to exactly one
pebble being moved. A transition often involves one pebble leapfrogging over the
other, hence the choice of name for LB. The transition probabilities pi j are deter-
mined by the uniform distribution on card values. For i = 0 the transition from i to
j is determined by the value v of the key card by

v = sign(i)(i− j) , (13)
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so that

pi j =

⎧⎪⎨
⎪⎩

1
B

if 1≤ sign(i)(i− j)≤ B,

0 otherwise,

(14)

while for i = 0 the transition probabilities are

π j := p0 j =
B−| j|

B2 . (15)

This chain is ergodic, and it is easy to check that π j in (15) gives the stationary
distribution for LB. Table 1 gives the state transition matrix [pi j] for L4.

Now consider the case that the subject and magician perform the Kruskal count-
ing procedure on the same deck. As long as their sequences of key cards remain
disjoint, these key card values are independent random variables, and their relative
positions of current key cards are described by transitions of the leapfrog chain. This
persists until they have a key card in common, i.e., until the state 0 is reached on the
leapfrog chain. Thus P[t > N] corresponds to the probability of those sequences of
transitions in the leapfrog chain starting from 0 that avoid the 0 state until one peb-
ble has moved to a position beyond N. We can keep track of sequences that never
visit 0 by forming the reduced leapfrog chain L̄B obtained by deleting the 0 state
and assigning new transition probabilities

P̄i j := (1− pi0)−1 pi j. (16)

For LB the probability of going to 0 is a constant, hence

P̄i j =
(

1− 1
B

)−1

pi j, (17)

so that all values P̄i j are either 1
B−1 or 0. Table 2 gives the state transition probabili-

ties [Pi j] for L̄4.
The initial state distribution on the reduced leapfrog chain L̄B corresponds to

that obtained after one transition of the leapfrog chain from the 0 state, conditioned

Table 1 Leapfrog chain L4

Exit state j

−3 −2 −1 0 1 2 3

3 0 0 1/4 1/4 1/4 1/4 0
2 0 1/4 1/4 1/4 1/4 0 0

Entering 1 1/4 1/4 1/4 1/4 0 0 0
state 0 1/16 2/16 3/16 1/4 3/16 2/16 1/16
i −1 0 0 0 1/4 1/4 1/4 1/4

−2 0 0 1/4 1/4 1/4 1/4 0
−3 0 1/4 1/4 1/4 1/4 0 0
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Table 2 Reduced Leapfrog chain L̄4

Exit state j

−3 −2 −1 1 2 3

3 0 0 1/3 1/3 1/3 0
2 0 1/3 1/3 1/3 0 0

Entering 1 1/3 1/3 1/3 0 0 0
state −1 0 0 0 1/3 1/3 1/3
i −2 0 0 1/3 1/3 1/3 0

−3 0 1/3 1/3 1/3 0 0

on not staying at 0. Here let (ib, iw) denote the initial key card positions, yielding
j = ib− iw as the next state of the leapfrog chain, and we condition on j = 0. The
resulting distribution is

π̄ j :=
(

1− 1
B

)−1 B−| j|
B2 , for 1≤ | j| ≤ B−1. (18)

This chain L̄B is ergodic and has π̄ j as its stationary distribution.
We next define a random variable t̄N,B which counts the total number of key

cards produced during the Kruskal count by the subject and magician, up to and
including the first key card that occupies a position exceeding N, provided that no
collision of key cards occurs until after time N. We call t̄N,B the travel time beyond
position N. (This random variable is undefined if a collision occurs by position N,
and the trick works.) This number equals 2 plus the number of moves of the reduced
leapfrog chain L̄B until some key card exceeds N. To determine this number from
the reduced leapfrog chain sequence of states, we need to know additionally the top
key card it := min(ib, iw), which is the position of the key cards of the magician and
subject that is closest to the top of the deck. Given that initially the chain is in state
j = ib− iw = 0, the conditional probability ri j that the top key card is in position it is

ri j =
1

B−| j| 1≤ i≤ B−| j|, (19)

and is 0 otherwise. The position of the top key card together with the sequences of
successive states of the reduced L̄B allow the reconstruction of all moves during the
Kruskal count, and the determination of the travel time t̄N,B.
Lemma 4.1. If N ≥ B then

P[t > N] =
N

∑
j=1

(
1− 1

B

) j−1

P[t̄N,B = j]. (20)

Proof. The event [t > N] consists of all sequences of state transitions in the leapfrog
chain LB starting at state 0 that never return to 0 before some pebble moves to a
position≥ N +1. Such a sequence of transitions is matched (after the first move) by
a corresponding sequence of state transitions in the reduced leapfrog chain L̄B. The
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probabilities between LB and L̄B differ by a multiplicative factor
(
1− 1

B

)
, and these

weights appear for each step of the reduced leapfrog chain. The steps of the reduced
leapfrog chain do not count the first step of the leapfrog chain (which moves two
pebbles), so there is one less factor of

(
1− 1

B

)
than t̄N,B counts. ��

Lemma 4.1 is useful because the distribution of the travel time t̄N,B is strongly
peaked and relatively tractable to estimate. Since no move of a pebble is larger than
B, and since both pebbles are within B cards of the N-th card at the stopping time
t̄N,B, one has

t̄N,B ≥
2N
B
−1 . (21)

Lemma 4.1 then yields

P[t > N]≤
(

1− 1
B

) 2N
B −2

. (22)

This shows the (well-known) fact that P[t > N] decreases exponentially as a function
of N.

Using large-deviation theory we obtain the following asymptotic behavior of
P[t > N] as N → ∞.

Theorem 4.1. For fixed B there is a positive constant αB such that

P[t > N] = exp(−αBN +o(N)) (23)

as N → ∞.

We relegate the proof of this result to the appendix, where we also give a formula
for αB in (52). We easily obtain from (22) the inequality

αB ≥
(

2
B

)∣∣∣∣log
(

1− 1
B

)∣∣∣∣= 2
B2 +O

(
1

B3

)
. (24)

It is intuitively clear that the expected value of a key card is ≥ B
2 in all states, hence

one expects that P
[
t̄N,B ≤ N

B

]
≥ 1

2 , which with Lemma 4.1 would imply that αB ≤
4

B2 +O( 1
B3 ). Theorem 4.2 below shows that B2αB → 4 as B→ ∞, see (33).

We next obtain upper and lower bounds for P[t̄N,B > k] by approximating the
reduced leapfrog chain L̄B with two simpler Markov chains L+

B and L−B , as follows.
These chains both describe the leapfrog motion of two colored pebbles at most
B units apart, with the states representing the current distance the white pebble is
ahead:

(1) In L−B the pebble further behind jumps v units with v drawn uniformly from
the range [1, B−1].

(2) In L+
B the pebble further behind jumps v units with v drawn uniformly from

the range [2, B].
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The chain L−B has 2B− 1 states labelled by |i| ≤ B− 1, while the chain L+
B has

2B + 1 states labelled by |i| ≤ B. Both these chains can occupy the state 0, i.e.,
they permit collisions, and from the state 0 only one pebble is moved at the next
transition, namely the pebble that did not move in arriving at the 0 state. Both
chains L+

B and L−B have the property that the card values drawn are independent of
the current state. For the chain L−B we define a travel time t−N,B beyond position N,
which is obtained by starting the chain in state 0, with both pebbles in position 0,
associating a movement of pebbles on a line with each state transition, and counting
the total number of state transitions up to and including the first time that a pebble
is moved beyond position N. For the chain L+

B we define a travel time t+N,B beyond
position N similarly. Note that these travel times are defined even when collisions
occur before time N; the pebble locations may separate again after such collisions.

Lemma 4.2. For all N, B and k, one has

P[t+N,B > k] ≥ P[t̄N,B > k] ≥ P[t−N,B > k] . (25)

We give the proof of Lemma 4.2 in the appendix. Lemmas 4.1 and 4.2 when
combined yield the bounds

P+
N,B ≥ P[t > N]≥ P−N,B , (26)

where

P±N,B :=
N

∑
j=1

(
1− 1

B

) j−1

P[t±N,B = j] . (27)

The simple form of the chains L+
B and L−B allows the asymptotic behavior of P+

N,B
and P−N,B to be explicitly determined, as follows.

Theorem 4.2. For fixed B as N → ∞ one has

P±N,B = exp(−α±B N +o(N)) (28)

for explicit constants α±B . Here 1
2α

−
B is the unique root α of

B−1

∑
i=1

exp(iα) = B , (29)

and 1
2α

+
B is the unique root of

B−1

∑
i=1

exp((i+1)α) = B. (30)
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As B→ ∞ these quantities satisfy

α+
B =

4
B2 −

20/3
B3 +O(B−4), (31)

α−B =
4

B2 +
4/3
B3 +O(B−4). (32)

The proof of this result is given in the appendix. Theorem 4.1 together with the
inequalities (26) shows that for large B one has

P[t > N] = exp
(
−
(

4
B2 +O

(
1

B3

))
(1+o(1))N

)
(33)

as N → ∞.
We relate these results to the model of Haga and Robins (1997). The Markov

chain studied by Haga and Robins is obtained from the leapfrog chain by identi-
fying states k and −k for all k ≥ 1; thus it has exactly B states. The resulting chain
factors out the action of the involution sending k to−k under which the chain proba-
bilities are invariant, and this loses the “leapfrog” information which is necessary for
computing exact coupling probabilities. Haga and Robins estimate instead the prob-
ability of avoiding absorption in the absorbing state 0 in the first M transitions of
the resulting factor chain. This probability asymptotically decays like O((λB)M) as
M→∞, where λB is the modulus of the second largest eigenvalue of the characteris-
tic polynomial of their Markov chain. The characteristic polynomial of the transition
matrix of the Haga–Robins Markov chain is pB(x) := (x+1/B)B−(1+1/B)BxB−1,
and it can be shown that the modulus of its second largest eigenvalue satisfies

λB = 1− 2
B

+O
(

1
B2

)
(34)

as B→ ∞. To relate λB to the asymptotic coupling probability decay rate exp(−αB)
in Theorem 4.1, we note that the expected size of a step in the Haga–Robins chain
is about B/2, so that after M steps the location of the chain should be around the
position N ≈MB/2. One should therefore compare (λB)2/B and exp(−αB), and one
finds that both of these quantities are asymptotic to 1− 4

B2 +O( 1
B3 ) as B→∞, using

(34) and Theorem 4.2.

5 Numerical Results: The Kruskal Count

We compare predictions obtained from the two models studied in this paper with
the performance of the actual Kruskal Count trick.

For the actual Kruskal count we consider a standard deck of 52 cards, and we
assume that the subject draws a key card using a uniform distribution from the set of
available key card values. We study the effects of varying the magician’s strategy on
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the success probability of the Kruskal Count trick. The magician has the freedom to
choose his key card, and he also has the extra freedom to specify a rule for assigning
values to the “face cards” J, Q, K. We study three possible variants:

1. Assign the values 11, 12, 13 to J, Q, K, respectively.
2. Assign the value 10 to each of J, Q, K,
3. Assign the value 5 to each of J, Q, K.

The first two of these variants are presented as “straw men” useful for comparison
with the models of this paper. To obtain numerical values for the Kruskal count
trick we used a Monte Carlo simulation with 106 trials for each data point. For
simulations of the i.i.d. uniform deck distribution, an “exact” calculation was done
using an enlarged Markov chain which keeps a running total of the value of the
position N of the leading pebble, and enters an absorbing final state whenever a
pebble jumps past the end of the deck. Since the smallest step size is 1, this chain
reaches an absorbing state after a number of steps equal to the size of the deck;
consequently, it suffices to compute the state of the chain after that number of steps.
Simulations of the i.i.d. “semiuniform” distributions for variants 2 and 3 were done
similarly to the i.i.d. uniform case.

Variant 1 corresponds to the uniform distribution on {1,2, . . . ,13}. The average
key card size is 7. We therefore consider as an approximation the i.i.d. geomet-
ric deck distribution with p = 6

7 , which has mean key card size 7. According to
Theorem 3.1, the failure probability for a magician drawing his first key card from
a deck of N = 52 cards according to the geometric distribution is

FP(Ga) =
(

6
7

)52(8
7

)52

= 0.342254. (35)

If the magician chooses the first card to be his first key card, by (3.5) his failure
probability for N = 52 is

FP(G′a) =
7
8

FP(Ga) = 0.299472 (36)

Table 3 presents data for variant 1 for the Kruskal Count and the i.i.d. uniform
deck distribution on {1,2, . . . ,13}. The table gives failure probabilities in which
the magician’s strategy is to choose as first key card the j-th card, for 1 ≤ j ≤ 13,
plus a final row that gives the failure probability when the magician draws a card
uniformly in {1,2, . . . ,13}. The data in Table 3 show that the magician does best to
choose j = 1 as his key card. The non-Markovian nature of the actual deck causes
the failure probabilities to differ from the i.i.d. uniform deck distribution; the effect
is a decrease of about 0.3%. We also see that the failure probability for the i.i.d.
geometric distribution is an overestimate of the failure probability for the Kruskal
Count when the magician picks a random card as first key card, and underestimates
the failure probability when the magician picks the first card as key card.

We next consider variants 2 and 3. For variant 2 the expected key card size is 85
13 ,

so for comparison we consider the i.i.d. geometric deck distribution with p = 72
85 . If
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Table 3 Failure probabilities
for variant 1 Kruskal Uniform

1 0.315180 0.319486
2 0.318564 0.322994
3 0.321975 0.326492
4 0.325298 0.329981
5 0.328794 0.333461
6 0.332235 0.336929
7 0.336055 0.340385
8 0.339264 0.343827
9 0.342758 0.347251
10 0.346780 0.350655
11 0.349464 0.354034
12 0.353367 0.357385
13 0.357044 0.360703
Avg. 0.335906 0.340276

the magician chooses his first key card according to the same geometric distribution,
then the failure probability is

FP(Gb) =
(

72
85

)52(98
85

)52

= 0.292064, (37)

while if the magician draws the first card as his key card, then

FP(G′b) =
85
98

FP(Gb) = 0.253320. (38)

For variant 3 the expected key card size is 70
13 , so for comparison we consider the

i.i.d. geometric deck distribution with p = 57
70 . If the magician chooses his first key

card with the same geometric distribution, then the failure probability is

FP(Gc) =
(

57
70

)52(83
70

)52

= 0.161197, (39)

while if the magician chooses the first card as his key card, the failure probability is

FP(G′c) =
70
83

FP(Gc) = 0.135949. (40)

Table 4 presents failure probability data for variants 2 and 3 for the Kruskal
Count and for the i.i.d. semiuniform deck distributions which have the card val-
ues {1,2, . . . ,10} chosen with the same probabilities as variants 2 and 3 impose
on the actual deck. The non-Markovian nature of the actual deck results in the
Kruskal count failure probabilities differing from the corresponding i.i.d. deck dis-
tributions; they are smaller by about 0.6%. The failure probability for the i.i.d. geo-
metric distribution when the magician chooses the first card as first key card gives
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Table 4 Failure probabilities for variants 2 and 3

Kruskal 2 Semiuniform 2 Kruskal 3 Semiuniform 3 Uniform

1 0.277869 0.284060 0.146238 0.152658 0.150944
2 0.280756 0.287235 0.148801 0.155266 0.153684
3 0.284330 0.290447 0.151204 0.157847 0.156407
4 0.287163 0.293623 0.153736 0.160399 0.159109
5 0.290317 0.296782 0.156075 0.162918 0.161789
6 0.293557 0.299920 0.159744 0.166357 0.164444
7 0.296910 0.303034 0.162474 0.168973 0.167070
8 0.300023 0.306118 0.164977 0.171553 0.169665
9 0.303194 0.309171 0.167735 0.174094 0.172225
10 0.306383 0.312185 0.170064 0.176591 0.174747
Avg. 0.292050 0.298258 0.158105 0.164666 0.163008

an underestimate for the failure probabilities of the Kruskal Count in variants 2 and
3. The numerical results show that the magician should choose the first card as his
key card. The effect of the choice of the magician’s key card on the failure probabil-
ity is small, at most 2.5%. In comparing variants 2 and 3 we see that the choice to
have face cards take the value 5 rather than 10 has a much larger effect on the failure
probability than the magician’s choice of first key card position. The final column
of Table 4 presents the failure probabilities for the i.i.d. uniform deck distribution
on {1,2, . . . ,10}. One expects this i.i.d. uniform distribution to be comparable with
rules variation 3 rather than 2, because the expected key card size is similar to case
3. (The Kruskal Count 3 mean value is slightly lower.)

To conclude: The variants that counts face cards as having value 5 rather than 10
is important to the practical success of the Kruskal Count trick; the choice of the
first card as key card offers a further small improvement in success probability.

Appendix: Proofs of Theorem 4.1, Lemma 4.2 and Theorem 4.2

Proof of Theorem 4.1. Let B be fixed. In view of Lemma 4.1, one has

MN ≤ P[t < N]≤ NMN , (41)

where

MN := max
1≤k≤N

{(
1− 1

B

)k

P [t̄N,B = k]

}
. (42)

It suffices to show that there is a positive constant αB such that MN = exp(−αBN +
o(N)) as N → ∞.

We note that the travel time t̄N,B beyond position N depends on the successive
transitions of the chain L̄B. We convert this to a problem about successive states
of the jump chain L̄J

B having 2B(B− 1) states which correspond to all possible
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transitions of the chain L̄B. A jump chain state (i, v) will mean state i of L̄B together
with an allowable key card value v which determines the next state of L̄B. The
allowable values are 1 ≤ v ≤ B with v = |i|. The transition probability Ps,s′ from
s = (i, v) to s′ = ( j, v′) is 1

B−1 when j is uniquely determined by (13) and 1≤ v′ ≤ B
with v′ = j, and is 0 otherwise.

We let {(ik, vk) : k = 1,2, . . .} denote a sequence of states of L̄J
B, and introduce

the modified travel time

t̃N,B := min{k : v1 + . . .+ vk ≥ 2N}. (43)

It is easy to show that
t̄N,B ≤ t̃N,B ≤ t̄N,B +B, (44)

and this yields
P[t̃N,B ≤ k]≤ P[t̄N,B ≤ k]≤ P[t̃N,B ≤ k−B] . (45)

Now, for a fixed 0 < γ ≤ 1, the quantity P[t̃N,B ≤ γN] can be estimated using
large deviation theory, as a special case of Theorem 1 of Donsker and Varadhan
(1975), see also Varadhan (1984) for the general theory.

Theorem A.1. For fixed B and fixed γ with 0 < γ < 1, one has as N → ∞,

P[t̃N,B ≤ γN] = exp(− fB(γ)N +o(N)), (46)

where the function fB(γ) := γI∗(γ) where

I∗(γ) := inf{I(μ) : weight(μ)≥ 2
γ
} . (47)

Here μ runs over the set of probability measures on the state space S of the chain
L̄J

B, and
weight(μ) := ∑

s=(i, v)∈S
vμ((i, v)), (48)

gives the expected value of a card drawn using the measure μ , and

I(μ) :=− inf
u

{
∑
s∈S

log
(
πu(s)
u(s)

)
μ(s) : u : S→ R

+

}
, (49)

where πu(s) := ∑s′∈S ps,s′u(s′).

This theorem computes a large deviations rate for an additive functional deter-
mined from pairs of successive states of an (irreducible, aperiodic) finite Markov
chain, a situation already treated by Miller (1961), prior to the development of
the general theory of large deviations. An important feature in the (irreducible,
aperiodic) finite Markov chain case is that the function fB(γ) is a continuous (real-
analytic), strictly convex function, in the interval where it is finite (Miller, 1961,
Theorem 2). In Theorem A.1 the function fB(γ) = +∞ for 0 ≤ γ ≤ 2

B by virtue of
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(21), fB(γ) is positive and finite on 2
B < γ < 1 and one can show fB(1) = 0. The con-

stant given in the o(N) error term in (46) depends on γ , and can be made uniform on
[ 2

B ,1]. Sharper bounds on the error are available in the literature, see the treatment of
large deviations for additive Markov processes in Iscoe, Ney, and Nummelin (1985,
Example 7(ii)) and Ney and Nummelin (1987a 1987b); strict convexity of the rate
function in more generality appears in Ney and Nummelin (1987b, Lemma 3.3).

Combining Theorem A.1 and (45) with k = γN we see that for fixed γ the quan-
tities t̄N,B and t̃N,B have the same asymptotic behavior, with

P[t̄N,B ≤ γN] = exp(− fB(γ)N +o(N)) (50)

as N → ∞. Now we have from (42) that

logMN = max
1≤k≤N

{
k log

(
1− 1

B

)
+ logP[t̄N,B = k]

}

= max
0<γ<1

{
γN log

(
1− 1

B

)
− fB(γ)N +oγ(N)

}
. (51)

We now define the desired constant by the formula

−αB := sup
0<γ<1

[
γ log

(
1− 1

B

)
− fB(γ)

]
. (52)

Here strict convexity of fB(γ) guarantees a unique point γB attaining the supremum.
We derive from (51) and (52) the estimate

MN = exp(−αBN +o(N)) (53)

as N → ∞, provided one shows that the error term oγ(N) in (51) is bounded uni-
formly in 0 < γ < 1. This can be done; we omit details. The bound of Theorem 4.1
follows. ��

Proof of Lemma 4.2. We first compare the reduced leapfrog chain L̄B with the chain
L−B , to prove the right side inequality in (25). Let q−i j(k) and qi j(k) denote the prob-
ability distributions of the locations (i, j) of the white and black pebbles after k
pebble moves, of L−B and L̄B, respectively. We use the convention that the initial
state L̄B (plus a choice of top key card it) counts as 2 pebble moves. Note that

P[t̄N,B > k] = 1− ∑
i≤N
j≤N

qi j(k) (54)

and
P[t−N,B > k] = 1− ∑

i≤N
j≤N

q−i j(k). (55)
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Therefore it suffices to prove that the majorization inequalities

∑
i≤i0
j≤ j0

q−i j(k)≥ ∑
i≤i0
j≤ j0

qi j(k) , all i0 ≥ 1, j0 ≥ 1, (56)

hold for all k ≥ 2. Comparing these formulas (56) for i0 = j0 = N with (55) and
(54), yields

P[t̄N,B > k]≥ P[t−N,B > k] (57)

for all k ≥ 2, which is the desired right side inequality of (25). We now establish
(56) by induction on k, using a stochastic dominance argument. The following is
the base case k = 2 of the induction.

Claim. There is a mapping φ− of the probability mass qi j(2) on (i, j) for L̄B to
various (i′, j′) having i′ ≤ i and j′ ≤ j whose image is the distribution q−i j(2).

To prove the claim, we have by definition

q−i j(2) =

{
1

(B−1)2 1≤ i, j ≤ B−1,

0 otherwise;
(58)

qi j(2) =
{ 1

B(B−1) 1≤ i, j ≤ B with i = j,
0 otherwise.

(59)

One can find by hand a direct shifting of mass of (58)–(59) to establish the claim; we
omit details. It is well known that a coordinate-monotone probability rearrangement
φ− as in the claim is equivalent to a two-dimensional majorization inequality, see
Marshall and Olkin (1979), which here are exactly the majorization formulas (56)
for k = 2, and all (i0, j0).

Now let (i, j)� (i′, j′) mean min(i, j)≥min(i′, j′) and max(i, j)≥max(i′, j′),
i.e., the two pebbles (i, j) are both moved further along the line than (i′, j′), ig-
noring their colors. The claim establishes for k = 2 a (stochastic) pairing of peb-

ble positions (i, j)
φ→ (i′, j′) such that (i, j) � (i′, j′) between L̄B and L−B . For

each subsequent move, both chains have B− 1 possible transitions with probabil-
ities each 1

B−1 . For L̄B in state k + i− j the set of admissible values of the next
move is {1, 2, . . . ,B}−{|k|}. We map these transitions to transitions of L−B in lin-
ear order, with a mapping ψ|k| having ψ|k|(i) = i for i ≤ |k| and φ j(i) = i− 1 for
i≥ |k|+ 1. One easily sees that if pebbles in L̄B are at (i1, j1) and the correspond-
ing ones are at (i2, j2) with (i1, j1)� (i2, j2), and if the pebble closer to the origin
is moved i resp. φ|k|(i) for the two chains resulting in positions (i∗1, j∗1), (i∗2, j∗2)
then (i∗1, j∗1) � (i∗2, j∗2). This gives a stochastic pairing of pebble positions at all
subsequent moves, with both pebbles of L−B always being behind those of L̄B in
the ordering �. Consequently we deduce by induction on k that the majorization
inequalities (56) hold for all k ≥ 2.
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We next compare L̄B and L+
B , to deduce the left side inequality in (25). This is

proved in similar fashion. Here we have

q−i j(2) =

{
1

(B−1)2 2≤ i, j ≤ B,

0 otherwise.
(60)

If q+
i j(t) is the probability that the pebbles are at (i, j) after t steps, then we obtain

similarly the majorization inequalities

∑
i≤i0
j≤ j0

qi j(t)≥ ∑
i≤i0
j≤ j0

q+
i j(t) , all i0 ≥ 1 , j0 ≥ 1, (61)

for all t ≥ 2. ��

Proof of Theorem 4.2. We let A(N)≈ B(N) mean A(N) = B(N)1+o(1) as N → ∞.
Consider first P−N,B. Let t̃−B (M) denote the travel time for the chain L−B , which

counts the number of transitions up to and including the transition at which the sum
of the jumps of the chain exceeds M. Then for any fixed sequence of transitions

t−B (2N)≥ t−N,B ≥ t−B (2N−N) . (62)

Hence

P−N ≤ N max
1≤ j≤N

{(
1− 1

B

) j−1

P[t̃−B (2N) = j]

}
(63)

and

P−N ≥ N max
1≤ j≤N

{(
1− 1

B

) j−1

P[t̃−B (2N−B) = j]

}
. (64)

It is easy to check that

Q−N := max
1≤ j≤N

{(
1− 1

B

) j−1

P[t̃−B (2N) = j]

}

≈ max
1≤ j≤N

{(
1− 1

B

) j−1

P[t̃−B (2N−B) = j]

}
(65)

using P[t−B (2N−B)≥ j]≥ P[t−B (2N)≥ j +B]. This shows that it suffices to asymp-
totically estimate Q−N . Since the sizes of the steps of the chain L−B are identically
distributed independent of which state we are in the chain, one obtains

Q−N ≈ sup
0≤γ≤1

{
B−γN

(
γN

γ1N,γ2N, . . . ,γB−1N

)
: γi ≥ 0 ,

B−1

∑
i=1

γi = γ ,
B−1

∑
i=1

iγi = 2

}
.

(66)
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(Here j≈ γN and B−γN arises as
(
1− 1

B

)γN (B−1)−γN .) Using Stirling’s formula to
estimate the multinomial coefficient, one obtains Q−N ≈ exp(Z−N) where Z− is the
optimal value of the constrained maximization problem (M−) given by:

maximize Z =−γ logB+ γ logγ−
B−1

∑
i=1

γi logγi (67)

subject to
B−1

∑
i=1

iγi = 2, (68)

B−1

∑
i=1

γi = γ , (69)

γi ≥ 0 for 1≤ i≤ B−1. (70)

To determine Z−, introduce Lagrange multipliers λ1, λ2 for the two equality con-
straints and let

G =−γ logB+ γ logγ−
B−1

∑
i=1

γi logγi +λ1

(
B−1

∑
i=1

iγi−2

)
+λ2

(
B−1

∑
i=1

γi− γ
)

(71)

denote the Lagrangian. Necessary conditions for an interior extremal are

∂G
∂γ

=− logB+1+ logγ−λ2 = 0, (72)

∂G
∂γi

=−1− logγi + iλ1 +λ2 = 0. (73)

These yield
γ = Bexp(λ2−1), (74)

γi = exp(λ2−1)exp(iλ1), 1≤ i≤ B−1. (75)

Substituting these expressions into (69) and cancelling exp(λ2−1) from both sides
yields

B−1

∑
i=1

exp(iλ1) = B, (76)

which shows that λ1 = 1
2α

−
B , as defined in the theorem statement as the unique real

root of (29). (Uniqueness follows from strict convexity of the left side of (76) as a
function of λ1.) Substituting the same expressions into (68) and simplifying yields

exp(λ2−1) =
2

∑B−1
i=1 iexp(iλ1)

. (77)
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Using this formula, (74) and (75) become

γ =
2B

∑B−1
i=1 iexp(iλ1)

, (78)

γi =
2exp(iλ1)

∑B−1
i=1 iexp(iλ1)

. (79)

Using these formulas the objective function value Z is evaluated at the maximum
(with F = ∑B−1

i=1 iexp(iλ1)) as

Z− =
2B
F

(
log

2B
F
− logB

)
−

B−1

∑
i=1

2exp(iλ1)
F

log
(

2exp(iλ1)
F

)

=
2B
F

log
2
F
− 2

F

(
B−1

∑
i=1

exp(iλ1)
[

log
2
F

+ iλ1

])

= −2λ1

F

(
B−1

∑
i=1

iexp(iλ1)

)
=−2λ1 =−α−B . (80)

Thus Z− = −α−B , and this gives P−N,B ≈ Q−N = exp(−α−B N(1 + o(1))) , which is
(28) provided one establishes that the maximum of (M−) occurs at an interior point
where all γi > 0. We omit the details of checking that boundary extremals having
some γi = 0 do not give the absolute maximum in (M−).

The case of P+
N,B is handled by analogous arguments. One reduces it to finding

the optimal value Z+ of the constrained maximization problem (M+) given by

maximize Z =−γ logB+ γ logγ−
B−1

∑
i=1

γi logγi (81)

subject to
B−1

∑
i=1

(i+1)γi = 2, (82)

B−1

∑
i=1

γi = γ , (83)

γi ≥ 0 for 1≤ i≤ B−1. (84)

Again Z+ = −2λ1 at the extremal point, and λ1 is determined as the unique real
root of

B−1

∑
i=1

exp((i+1)λ1) = B, (85)

so that λ1 = 1
2α

+
B , cf. (30).
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Finally, the asymptotic formulae (31) and (32) as B→ ∞ are obtained from the
formulas (29) and (30), by setting exp( 1

2α) = 1 + 2
B2 + δ

B3 + O( 1
B4 ), in which δ is

an unknown to be determined. We find it by noting that

exp(iα) = 1+2i
(

2
B2 +

δ
B3

)
+

4i2

B4 +O
(

i
B4

)
, (86)

substituting these formulas (29) and (30) and asking for the O( 1
B ) term to vanish. ��
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Descending Dungeons and Iterated
Base-Changing

David Applegate, Marc LeBrun, and N.J.A. Sloane

TO OUR FRIEND AND FORMER COLLEAGUE PETER FISHBURN, ON THE
OCCASION OF HIS 70TH BIRTHDAY.

1 Introduction

The starting point for this paper was the question: what is the asymptotic behavior
of the sequences

10, 1011, 101112
, 10111213

, . . . ,

10, 1110, 121110
, 13121110

, . . . , (1)

where, for real numbers a,b > 1, ab (or, more conveniently although less graphi-
cally, a b) denotes the result of interpreting a in base b instead of base 10? That is,
if a is a real number > 1, with decimal expansion

a =
k

∑
i=−∞

ci10i, for some k ≥ 0, all ci ∈ {0,1, . . . ,9}, and ck = 0 , (2)

and b is a real number > 1, then

ab := a b :=
k

∑
i=−∞

cibi . (3)
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We use text-sized subscripts in expressions like ab to help distinguish them from
symbols with ordinary subscripts. The sum in (3) converges, since

1 < ab < 9bk+1/(b−1) , (4)

and ab is well-defined if we agree to avoid decimal expansions ending with infinitely
many 9’s. This restriction is needed, since (for example) 3b = 3 for any b > 1,
whereas

2.999 . . .b = 2+
9
b

+
9
b2 +

9
b3 + · · ·= 2+

9
b−1

= 3

unless b = 10. Equation (3) is meaningful for some values of a and b ≤ 1, but to
avoid exceptions we only consider a,b > 1. In this range a b is a binary operation
for which 10 is both a left and right unit.

In fact, since the iterated subscripts can be grouped either from the bottom up-
wards or from the top downwards, there are really four sequences to be considered
(it is convenient to index these sequences starting at 10):

(α) = (α10,α11,α12, . . .) := 10, 10 11, 10 (11 12), 10 (11 (12 13)), . . . ,

(β ) = (β10,β11,β12, . . .) := 10, 10 11, (10 11) 12, ((10 11) 12) 13, . . . ,

(γ) = (γ10,γ11,γ12, . . .) := 10, 11 10, 12 (11 10), 13 (12 (11 10)), . . . ,

(δ ) = (δ10,δ11,δ12, . . . ) := 10, 11 10, (12 11) 10, ((13 12) 11) 10, . . . .

Sequence (α), for example, begins

10, 10 11 = 11, 10 (11 12) = 10 13 = 13 ,

10 (11 (12 13)) = 10 (11 15) = 10 16 = 16 ,

10 (11 (12 (13 14))) = 10 (11 (12 17)) = 10 (11 19) = 10 20 = 20, . . . .

The terms grow quite rapidly – see Table 1. These are now sequences A121263,
A121265, A121295 and A121296 in Sloane (2008).

In Theorem 1 we will show that, if sn is the nth term in any of the four sequences
(α), (β ), (γ) or (δ ), indexed by n = 10,11, . . ., then

loglogsn ∼ n log logn as n→ ∞ (5)

(in this paper all logarithms are to the base 10).
Since expressions like

10111213

are called towers, we will call expressions like those in (1) and (α), (β ), (γ) or
(δ ), dungeons. For reasons that will be given in Sect. 2, we believe that the standard
parenthesizing of dungeons should be from the bottom upwards, and we will take
this as the default meaning if the parentheses are omitted. For towers of exponents,
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Table 1 Initial terms of sequence (α), (β ), (γ), (δ )

n (α) (β ) (γ) (δ )

10 10 10 10 10
11 11 11 11 11
12 13 13 13 13
13 16 16 16 16
14 20 20 20 20
15 25 30 25 28
16 31 48 31 45
17 38 76 38 73
18 46 132 46 133
19 55 420 55 348
20 65 1640 110 4943
21 87 11991 221 22779
22 135 249459 444 537226
23 239 14103793 891 11662285
24 463 5358891675 1786 46524257772
25 943 19563802363305 3577 1092759075796059
. . . . . . . . . . . . . . .
30 38959 3.6053 . . .×1080 171999 2.5841 . . .×1089

. . . . . . . . . . . . . . .
35 9153583 8.6168 . . .×10643 41795936 1.2327 . . .×10898

. . . . . . . . . . . . . . .
100 4.0033 . . .×1057 . . . 4.9144 . . .×10114 . . .
. . . . . . . . . . . . . . .
. . . 6.8365 . . .×101098 . . . 3.4024 . . .×10917 . . .

at n = 109 at n = 103

parenthesizing from the top downwards is clearly better (for otherwise the tower
collapses). The tower with nth term

tn := 10 ↑ (11 ↑ (12 ↑ · · ·((n−1) ↑ n) · · ·)) , n = 10,11, . . . ,

(where a ↑ b denotes ab) has the property that the iterated logarithm log(n) tn → ∞
(note that log(n) tn is well-defined for n sufficiently large). When parenthesized from
the bottom upwards, the tower with nth term

un := (· · ·((10 ↑ 11) ↑ 12) · · ·(n−1)) ↑ n = 1011·12· ... ·n , n = 10,11, . . . ,

has the property that log logun ∼ n logn. Equation (5) shows that the dungeon se-
quences have a slower growth rate than either version of the tower.

In Sects. 3 and 4 we prove Theorem 1 and give some other properties of these
sequences, such as the fact that sequence (α) converges 10-adically – for example,
from a certain point on, the last 10 digits are always . . .9163204655.

In Sect. 5 we investigate the behavior as n increases of the sequence with nth
term (n = 1,2, . . .)

a(n) := a (a (a (a · · ·a))) (with n copies of a) (6)
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for a fixed real number a > 1. If the parameter a exceeds 10 this sequence certainly
diverges, and for a = 10 we have a(n) = 10 for all n≥ 1. Somewhat surprisingly, it
seems hard to say precisely what happens for 1 < a < 10. The mapping from a(n)
to a(n + 1) = aa(n) is a discrete dynamical system, which converges either to a
single number (e.g., to the golden ratio if the parameter a = 1.1), to a two-term limit
cycle (e.g., if a = 1.05) or diverges (e.g., if a = 100

99 ). But we do not have a simple
characterization of the parameters a that fall into the different classes.

Section 2 contains some general properties of the subscript notation.
The following definition will be used throughout. If a > 1 is a fixed real number

with decimal expansion given by (2) and x is any real number, we define the Laurent
series

L〈a〉(x) :=
k

∑
i=−∞

cixi, (7)

so that a b = L〈a〉(b). We use angle brackets to show the dependence on the para-
meter a. Note also that L〈a〉(10) = a10 = a for all a.

Remark 1. The choice of base 10 in this paper was a matter of personal preference.

Remark 2. To answer a question raised by some readers of an early draft of this
paper, as far as we know there is no connection between this work and the base-
changing sequences studied by Goodstein (1944).

2 Properties of the Subscript Notation

In this and the following section we will be concerned with the numbers ab defined
in (3) when a and b are integers ≥ 10.

Lemma 1. Let N =∑k
i=0 νi10i, where the νi are nonnegative integers (not necessar-

ily in the range 0–9), and suppose b is an integer ≥ 10. Then

Nb ≥
k

∑
i=0
νibi . (8)

Proof. If the νi are all in the range {0, . . . ,9} then the two sides of (8) are equal.
Any νi ≥ 10, say νi = 10q + r, q ≥ 1, r ∈ {0, . . . ,9}, causes the term νibi on the
right-hand side of (8) to be replaced by qbi+1 + rbi ≥ (10q + r)bi = νibi on the
left-hand side, and so the difference between the two sides can only increase. ��

Corollary 1. If f (x) is a polynomial with nonnegative integer coefficients, and b is
an integer ≥ 10, then f (10)b ≥ f (b).

Lemma 2. Assume a,b,a′,b′ are integers ≥ 10. Then:

(1) a′ ≥ a if and only if a′b ≥ ab .
(2) b′ ≥ b if and only if ab′ ≥ ab .
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(3) (a+a′)b ≥ ab +a′b .
(4) a(b+b′) ≥ ab +ab′ .

(5) ab ≥max{a,b} .

Proof. (1) Suppose a′ = ∑r′
i=0 c′i10i > a = ∑r

i=0 ci10i, with all c′i, ci ∈ {0, . . . ,9},
and let k be the largest i such that c′i = ci. Then a′b − ab = ∑k

i=0(c
′
i − ci)bi ≥

bk −∑k−1
i=0 9bi > 0. The converse has a similar proof. Claims (2), (4) and (5) are

immediate, and (3) follows from Lemma 1. ��

Note that all parts of Lemma 2 may fail if we allow a and b to be less than 10
(e.g., 122 = 4 < 72 = 7; 63 = 6≥ 64 = 6, but 3 < 4).

Lemma 3. Assume a,b,c are integers ≥ 10. Then

(a b) c≥ a (b c) . (9)

Proof. The left-hand side of (9) is (in the notation of (7)) L〈a〉(L〈b〉(10))c = (L〈a〉 ◦
L〈b〉)(10)c, where ◦ denotes composition. The right-hand side is L〈a〉(L〈b〉(c)) =
(L〈a〉 ◦L〈b〉)(c), and the result now follows from Corollary 1. ��

We can now explain why we prefer the “bottom-up” parenthesizing of dungeons.
The reason can be stated in two essentially equivalent ways. First, a (b (c d)), say,
is simply

L〈a〉 ◦L〈b〉 ◦L〈c〉(d) ,

whereas no such simple expression holds for ((a b) c) d. To put this another way,
consider evaluating the nth term of sequence (α) of Sect. 1. To do this, we must
repeatedly calculate values of rs where r is ≤ n and s is huge. But to find the nth
term of (β ), we must repeatedly calculate values of rs where r is huge and s ≤ n.
The latter is a more difficult task, since it requires finding the decimal expansion
of r. Again, when computing the sequence a(1),a(2),a(3), . . . for a given values of
a (see (6)), as long as the terms are parenthesized from the bottom upwards, only
one decimal expansion (of a itself) is ever needed.

In Sect. 3 we will also need numerical estimates of ab. If a,b ≥ 10 then ab is
roughly 10loga logb (remember that all logarithms are to the base 10). More precisely,
we have

Lemma 4. Assume a,b are integers ≥ 10. Then

10(loga)(logb) ≤ 10(loga) logb ≤ ab ≤ 10loga logb . (10)

Proof. Suppose a = ∑k
i=0 ci10i where k := (loga),ci ∈ {0,1, . . . ,9} for i =

0,1, . . . ,k, ck = 0. The left-hand inequalities in (10) are immediate. For the right-
hand inequality we must show that

k

∑
i=0

cibi ≤ bloga ,
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or equivalently that

log

{
ckbk(1+

k−1

∑
i=0

ci

ckbk−i )

}
≤ (logb)

(
log{ck10k(1+

k−1

∑
i=0

ci

ck10k−i )}
)

,

and this is easily checked to be true using b≥ 10. ��

3 Growth Rate of the Sequences (α), (β ), (γ), (δ )

Theorem 1. If sn (n ≥ 10) denotes the nth term in any of the sequences (α), (β ),
(γ), (δ ) then

log logsn ∼ n log logn as n→ ∞ .

Proof. From Lemma 4 it follows that

n

∏
i=10
(log i) ≤ logsn ≤

n

∏
i=10

log i .

For the upper bound, we have

loglogsn ≤
n

∑
i=10

log log i≤ n log logn .

For the lower bound,

logsn ≥
n

∏
i=10
(log i) ≥

n

∏
i=10

log i(1− 1
log i

) ,

log logsn ≥
n

∑
i=10

log log i−
n

∑
i=10

1
log i

,

and the right-hand side is ∼ n log logn+O(n). ��
A slight tightening of this argument shows that there are positive constants c1,c2

such that
n log logn− c1

n
logn

< log logsn < n log logn− c2
n

logn

for all sufficiently large n.
Table 1 suggests that sequences (β ) and (δ ) grow faster than (α) and (γ). We

can prove three of these four relationships.

Theorem 2. For n≥ 10, βn ≥ αn and δn ≥ γn.

Proof. This follows by repeated application of Lemma 3. ��
Lemma 5. If for some real number k > 10 we have a ≥ kb and logc ≥ logk/
(log k − 1), then a c≥ k(c b).
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Proof. From Lemma 4 and the assumed bounds, we have

a c ≥ 10(loga) logc

≥ 10(loga−1) logc

≥ 10(logb+logk−1) logc

= 10(logc)(logk−1)10logb logc

≥ k(c b) .

��

Theorem 3. For n≥ 10, βn ≥ γn.

Proof. From Table 1, this is true for n≤ 23. For n > 23, since βn+1 = (βn) (n+1)
and γn+1 = (n + 1) γn, the previous lemma (with k = 104) gives us the result by
induction. ��

4 p-Adic Convergence of the Sequence (α)

For the next theorem we need a further lemma. Let us say that a polynomial f (x) ∈
Z[x] is m-stable, for a positive integer m, if all its coefficients except the constant
term are divisible by m. In particular, if f (x) is m-stable, f (x)≡ f (0) (mod m).

Lemma 6. If the polynomial f (x) ∈ Z[x] is m-stable and the polynomial g(x) ∈ Z[x]
is n-stable, then the polynomial h(x) := f ◦g(x) is mn-stable.

Proof. If f (x) := ∑i fixi, g(x) := ∑ j g jx j, then h(x) = ∑i fi
(
∑ j g jx j

)i = ∑k hkxk

(say). When the expression for hk (k > 0) is expanded as a sum of monomials,
each term contains both a factor fi for some i > 0 and a factor g j for some j > 0. ��

Theorem 4. The sequence α10,α11,α12, . . . converges 10-adically.

Proof. We know from the above discussions that, for any 10≤ k < n,

αn =Φ [k]((k +1) (k +2) (k +3) . . . n) ,

where Φ [k](x) is the polynomial

Φ [k](x) := L〈10〉 ◦L〈11〉 ◦L〈12〉 ◦ · · · ◦L〈k〉(x) .

(We would normally write Φk(x), but since there are already two different kinds
of subscripts in this paper, we will use the temporary notation Φ [k](x) in this proof
instead.) Now L〈20〉(x), L〈21〉(x), . . . ,L〈29〉(x) are 2-stable and L〈50〉(x), . . . ,L〈59〉(x)
are 5-stable, so by Lemma 6, Φ [59](x) is 1010-stable. This means that for n ≥ 60,
αn ≡ Φ [59](0) (mod 1010), and so is a constant (in fact 5564023619) mod 1010.
Similarly, L〈500〉(x), L〈501〉(x), . . . ,L〈509〉(x) are 5-stable, so αn is a constant mod
1020 for n≥ 510; and so on. ��
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Remark 3. The same proof shows that α10,α11,α12, . . . converges l-adically, for any
l all of whose prime factors are less than 10.

5 The Limiting Value of a a a a . . .

In this section we consider the behavior of the sequence a(1),a(2),a(3), . . . (see (6))
as n increases, for a fixed real number a in the range 1 < a < 10. For example, we
have the amusing identity

1.11.11.11.11.11.11.1...

=
1+

√
5

2
. (11)

The sequence (6) is the trajectory of the discrete dynamical system x �→ L〈a〉(x)
when started at x = a. (Since L〈a〉(10) = a, we could also start all trajectories
at 10.)

Suppose a = ∑∞i=0 ci10−i with all ci ∈ {0,1, . . . ,9} and c0 = 0. The graph of
y = L〈a〉(x) is a convex curve, illustrated1 for a = 1.1 in Fig. 1, which decreases
monotonically from its value at x = 1 (which may be infinite) and approaches c0 as
x→∞. This curve therefore meets the line y = x at a unique point x =ω (say) in the
range x > 1. The point ω is the unique fixed point for the dynamical system in the
range of interest.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

L<1.1>(x)

Fig. 1 Trajectory of L<1.1>(x) starting at x = 1.1

1 This is a “cobweb” picture – compare Fig. 1.4 of Devaney (1989).
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The general theory of dynamical systems (Devaney, 1989; Lauwerier, 1986) tells
us that the fixed point ω is respectively an attractor, a neutral point or a repelling
point, according to whether the value of the derivative L〈a〉

′
(ω) is between 0 and

−1, equal to −1, or less than −1. For our problem this does not tell the whole story,
since we are constrained to start at a. However, since L〈a〉(x) is a monotonically
decreasing function, there are only a few possibilities. Cycles of length three or
more cannot occur.

Theorem 5. For a fixed real number a in the range 1 < a < 10, and an initial real
starting value x > 1, consider the trajectory x, L〈a〉(x), L〈a〉 ◦ L〈a〉(x), L〈a〉 ◦ L〈a〉 ◦
L〈a〉(x), . . .. Then one of the following holds:

(1) x = ω is the fixed point, and the trajectory is simply ω,ω,ω, . . . .
(2) The trajectory converges to ω .
(3) x is in a two-term cycle, and the trajectory simply repeats that cycle.
(4) The trajectory converges to a two-term limit cycle.
(5) The trajectory diverges, alternately approaching 1 and ∞.

Proof. If a is an integer, then the trajectory is simply x,a,a,a, . . . , and either case
(1) or (2) holds. Suppose then that a is not an integer. Since a is fixed, we abbreviate
L〈a〉 by L in this discussion, and write L(k) to indicate the k-fold composition of L, for
k = 1,2, . . .. Because L(x) is strictly decreasing, if L(2)(x) > x, then L(3)(x) < L(x),
L(4)(x) > L(2)(x) > x; if L(2)(x) < x, then L(3)(x) > L(x), L(4)(x) < L(2)(x) < x; and
if L(2)(x) = x, then L(3)(x) = L(x), L(4)(x) = L(2)(x) = x. Hence if x < L(2)(x), then
x < L(2)(x) < L(4)(x) < · · · and if x > L(2)(x), then x > L(2)(x) > L(4)(x) > · · · . This
means the even-indexed iterates form a monotonic sequence, so either converge or
are unbounded, and similarly for the odd-indexed iterates. Equation (4) implies that
if the trajectory diverges then the lower limit must be 1. ��

Note also that if x < y < L(2)(x), then L(2k)(x) < L(2k)(y) < L(2k+2)(x), and if
x > y > L(2)(x), then L(2k)(x) > L(2k)(y) > L(2k+2)(x). So every y between x and
L(2k)(x) converges to the same limiting two-cycle as x does, or diverges as x does.

The following examples illustrate the five cases in the situation which most in-
terests us, the trajectory a,a a,a (a a), . . . of (6), that is, when we set x = a in the
theorem:

1. This case holds if and only if a is one of {2,3, . . . ,9}.
2. Examples are a = 1 + m

10 , for m ∈ {1, . . . ,9}, when ω = (1 +
√

4m+1)/2 is an
attractor (see (11)); a = 1+ m

100 for m ∈ {1,2,3}, when ω , the real root 1.465 . . .,
1.695 . . . or 1.863 . . . of x3− x2−m = 0 is an attractor; and a = 1 + 4

100 , when
ω = 2 is neutral, but the trajectory still converges to ω .

3. Examples are a = 1 + m
9 , m ∈ {1, . . . ,8}, ω is a neutral point, and the two-term

cycle is {a,10}. (The trajectory does not include ω .)
4. Examples are a = 1 + m

100 , m ∈ {5, . . . ,9}, ω is a repelling point, and the tra-
jectory approaches a two-term limit cycle consisting of a pair of solutions to
L〈a〉 ◦L〈a〉(x) = x; also a = 1.1110000099, ω is an attractor, but again the trajec-
tory approaches a two-term cycle given by L〈a〉 ◦L〈a〉(x) = x.
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5. Examples are a = 1+ 1
10r−1 ,r ∈ {2,3, . . .}, ω is a repelling point, and the trajec-

tory alternately approaches 1 or ∞.

We do not know which values of a fall into classes (2) through (5). The distribution
of the five classes for 1 < a < 10 seems complicated.
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Updating Hardy, Littlewood and Pólya
with Linear Programming

Larry Shepp

1 Proving Two Simple Inequalities with Convexity Methods

Some of the standard inequalities that mathematicians use can be proven with con-
vexity arguments or linear programming.1 Perhaps others cannot, so we might say
that an inequality is “simple” if there is a convexity based proof. The Cauchy–
Schwarz inequality, which may be the most famous and useful inequality ever found
is simple in this sense Steele (2004), but there are so many proofs of it that it seems
that almost any method will give one, so it may be that it is simple in any sense. The
Schwarz inequality can be stated for a general measure space but it easily reduces
to the statement that

EX2EY 2 ≥ (EXY )2,

where X and Y are any r.v.’s on a common probability space, Ω. Equality holds if
and only if X and Y are proportional.

To give a convexity based proof, one thinks of the probability measure, μ , on the
space, (Ω,F ,P), on which X and Y are defined as an element of the convex set of all
probability measures. Then one finds a linear functional, L(μ), of μ , which is based
on a function, fL(x,y) which must be everywhere nonnegative and whose integral,
L(μ) =

∫
Ω fL(X ,Y )dμ , would therefore be nonnegative. This would then give an

inequality which must then be the same as the Schwarz inequality. At this stage,
this is not possible because the Schwarz inequality by its very nature is non-linear
in μ – indeed both terms, (EXY )2 and EX2EY 2 are quadratic when looked upon as

1 The methods of linear programming came along only in 1944 with the appearance of the book of
von Neumann and Morganstern (1944). The book of Hardy, Littlewood, and Polya (1934), which
systematically developed the theory of inequalities, appeared 10 years earlier. It is not surprising
that the methods of the earlier book did not include linear programming. This paper is an attempt to
call attention to the need for a systematic update of the theory of inequalities in which the method
of linear programming is used.
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functionals of μ . Instead we must encode the quadraticity in the statement in order
to linearize the problem and we do this by going to the product probability space,
Ω×Ω, with the product measure, so that X1,Y1 and X2,Y2 are two independent pairs
of r.v.’s on the product space each with the joint distribution of X ,Y . Note that for
any four numbers, x1,y1,x2,y2, the homogeneous polynomial

f (x1,y1,x2,y2) = x2
1y2

2 + x2
2y2

1−2x1y1x2y2 = (x1y2− y1x2)2 ≥ 0,

is indeed nonnegative. If we now substitute Xi,Yi for xi,yi, i = 1,2 and take expecta-
tions, using the independence of r.v.’s with different subscripts we obtain that

2EX2EY 2 ≥ 2(EXY )2

and the proof is complete after dividing by 2. The only case of equality is when
X1Y2−X2Y1 ≡ 0, that is when the ratios Xi

Yi
are constant since they are independent

for i = 1,2 and it is easy to see that two independent r.v.’s which are equal must each
be constant. We have linearized the problem and we have encoded all the conditions
we need to make the proof work. This is what one does in linear programming, and
so this is a “linear programming” or “convexity” proof. This proof appeared in the
paper with Olkin and Shepp (2006), which uses the same technique to prove a more
difficult inequality due to M. Brown, among others which I now discuss. I reproduce
this material here for clarity and convenience.

M. Brown’s inequality states that for positive and independent r.v.’s on a common
probability space

E 1
X+Y

E 1
(X+Y )2

≥
E 1

X

E 1
X2

+
E 1

Y

E 1
Y 2

.

Equality holds if and only if both X and Y are constants.
The Brown inequality is proved in Olkin and Shepp (2006) by the same method,

and the encoding of all the conditions is similar. I refer to Olkin and Shepp (2006)
for some details but the idea of the proof is completely analogous. We first “clear of
fractions” by multiplying by EX−2EY−2E(X +Y )−2, and so it is equivalent to show
that

E
1

X +Y
EX−2EY−2−E

1
(X +Y )2 (EX−1EY−2 +EX−2EY−1 ≥ 0.

To use the linear functional or convexity method as above for the Schwarz inequal-
ity, we again construct the product probability space on which two independent
pairs of independent r.v.’s Xi,Yi are defined. Then if we could show that for any four
numbers x1,y1,x2,y2 the function

f (x1,y1,x2,y2)≡
1

x1 + y1

1
x2

2

1
y2

2
− 1

(x1 + y1)2 (x−1
2 y−2

2 + x−2
1 y−1

2 )

is everywhere nonnegative, then it would easily follow that

E f (X1,Y1,X2,Y2)≥ 0
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which would then prove the Brown inequality, but (alas) f takes negative values.
Alternatively, if we could show that f (x1,y1,x2,y2)+ f (x2,y2,x1,y1) is everywhere
nonnegative, then the same proof would give the Brown inequality because upon
substituting r.v.’s Xi,Yi for xi,yi we would get the desired inequality after dividing
by two. Again (alas), there are numbers xi,yi, i = 1,2 for which this form is also
negative. Fortunately, we have one last chance. If we can show that the doubly mixed
(symmetric in x1,x2 and in y1,y2) form

f (x1,y1,x2,y2)+ f (x1,y2,x2,y1)+ f (x2,y1,x1,y2)+ f (x2,y2,x1,y1)≥ 0

for all positive values of xi,yi, i = 1,2, then substituting Xi,Yi for xi,yi, taking ex-
pectations and using the independence of X1,X2,Y1,Y2 we get the Brown inequality
after dividing by 4. The last inequality is true and the proof is easy provided one
does it in the right way. I refer to Olkin and Shepp (2006) for the details. Note in the
Brown inequality we have to encode the independence and all the symmetry of the
problem, but it is all quite natural.

2 An Inequality with Both a Convexity Proof
and an Alternative Proof

Another example of how linear programming methodology can provide new in-
equalities is taken from a paper of Reeds, Shepp, and Win (in press). Some recent
work in wireless communications engineering Conti, Win, and Chiani (2003) raised
the problem of determining the best constants L and U such that

n

∏
k=1

1
L+ak

≤
∫ ∞

0

n

∏
k=1

1
x+ak

m(dx) ≤
n

∏
k=1

1
U +ak

hold uniformly for all values of ak > 0, 1≤ k ≤ n, where

m(dx) =
1

π
√

x(1− x)
dx on [0,1].

If we can prove the following general result for a given probability measure μ , and
if it holds for μ(dx) = m(dx), then we can easily find the best values of L and U .

Given a probability measure μ on [0,∞), and positive ak, define c(a,μ) =
c(a1, . . . ,an,μ) to be that positive real value of c such that

∫ ∞

0

n

∏
k=1

c+ak

x+ak
μ(dx) = 1.

Theorem 1. For any probability measure μ , c(a,μ) is monotone increasing in
each ak. More precisely, c(a1, . . . ,an,μ) is defined by the implicit equation

H(a1, . . . ,an,μ ,c(a1, . . . ,an,μ)) = 1,
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where H is defined by

H(a1, . . . ,an,μ ,c) =
∫ ∞

0

n

∏
k=1

c+ak

x+ak
μ(dx).

One can interpret c(a1, . . . ,an,μ) as a generalized mean, Mφ [μ ], in the sense
of Hardy, Littlewood, and Pólya (1934), Chap. VI, for a suitable function φ(x) =
φ(x,a1, . . . ,an). A generalized mean wrt. a strictly monotonic function φ(x), de-
notedMφ [μ ], is defined by the equation

φ(Mφ [μ ]) =
∫
φ(x)μ(dx).

In our case, φ(x,a1, . . . ,an) =∏n
k=1

1
x+ak

for x≥ 0 givesMφ [μ ] = c(a1, . . . ,an,μ).
We prove by linear programming arguments that the desired monotonicity fol-

lows for any probability measure μ . It can alternatively be proved by applying a
criterion of Hardy et al. (1934, Chap. III), which gives necessary and sufficient con-
ditions on pairs of monotonic functions (φ ,ψ) for Mφ [μ ] ≤Mψ [μ ] for all μ . For
details of the alternative proof see Reeds et al. (in press) [Appendix]. Our proof
seems simpler but it is also indirect.

We reformulation the problem by first implicitly differentiating H with respect
to ai which gives

∂H(a,μ ,c)
∂ai

|c=c(a,μ) +
[
∂c(a,μ)
∂ai

]
∂H(a,μ ,c)

∂c
= 0.

Clearly ∂H
∂c (a,μ ,c) > 0, so to show that c(a,μ) is increasing in ai it suffices to

show that
Hi ≡

∂H(a,μ ,c)
∂ai

|c=c(a,μ) ≤ 0,

whenever H(a,μ ,c) = 1.
This leads to consideration of the set C(a,c)⊂R2 of possible values of the pair

(H(a,μ ,c), Hi(a,μ ,c)) as μ ranges over all probability measures, for fixed c and a.
Indeed, the closure of C(a,c) is the convex hull of the union of (0,0) ∈ R2 and the
curve

x �→ (h(x), hi(x))

inR2 traced out by x ∈ [0,∞), where

h(x) =
n

∏
k=1

c+ak

x+ak
(1)

and

hi(x) =
∂
∂ai

(
n

∏
k=1

c+ak

x+ak

)∣∣∣∣∣
c=c(a,μ)

.
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Then
H =

∫ ∞

0
h(x)μ(dx)

and
Hi =

∫ ∞

0
hi(x)μ(dx) .

The main fact that we use about C(a,c) is a linear inequality.

Lemma 1. There exists a λ > 0 such that for all (s, t) ∈ C(a,c),

s+λ t ≤ 1 .

The theorem follows directly from the lemma since from

H(a,μ ,c)+λHi(a,μ ,c)≤ 1

and H(a,μ ,c) = 1 it follows that Hi(a,μ ,c)≤ 0, as desired.

Proof. We will exhibit a λ > 0 such that for all x≥ 0,

h(x)+λhi(x)≤ 1 (2)

and

hi(x) =
[

1
c+ai

− 1
x+ai

]
h(x) . (3)

Integrating (2) against μ will then finish the proof. �

To see that such a λ exists, we rearrange (2) into the equivalent form

x+ai +λ
x− c
c+ai

≤ (x+ai)
n

∏
k=1

x+ak

c+ak
. (4)

The right hand side of (4), which we are to prove, is a polynomial function in x
with positive coefficients, and hence convex on [0,∞). The left hand side is an affine
function of x, agreeing with the right hand side when x = c. With appropriate choice
of λ the left hand side’s derivative matches the right hand side’s derivative at x = c,
too. For that choice of λ , (4) will hold for all x≥ 0.

It remains to check the positivity of the chosen λ , namely, of the solution of

d
dx

∣∣∣∣
x=c

x+ai +λ
x− c
c+ai

=
d
dx

∣∣∣∣
x=c

(x+ai)
n

∏
k=1

x+ak

c+ak
,

that is, of

1+
λ

c+ai
= 1+(c+ai)

n

∑
k=1

1
c+ak

.
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But clearly

λ = (c+ai)2
n

∑
k=1

1
c+ak

> 0 ,

which finishes the proof. �

3 Discussion

The argument given here follows the pattern of a typical application of the “weak
duality theorem” of finite dimensional linear programming. Finite dimensional lin-
ear programming deals with the problem of maximizing a linear form such as (c,x)
with respect to x ∈Rn subject to constraints of the form

n

∑
j=1

ai jx j = bi i = 1, . . . ,mx j ≥ 0 j = 1, . . . ,n.

Associated with each such problem Vanderbei (2001, pp. 73,74), is its dual prob-
lem, that of minimizing (y,b) with respect to y ∈Rm, subject to the constraints

m

∑
i=1

yiai j ≥ c j j = 1, . . . ,n.

This in fact is not the “standard form” for presenting primal and dual linear pro-
gramming problems, but an equivalent one which matches this application more
exactly.

The weak duality theorem Vanderbei (2001, p. 58), asserts that if x ∈ Rn and
y ∈ Rm satisfy the constraints of the original problem and of its dual, respectively,
then (c,x)≤ (y,b).

In our case, working formally and ignoring all differences between finitely many
dimensions and uncountably many, consider the problem of finding a finite signed
measure μ on [0,∞) which maximizes the linear form Hi(μ) =

∫ ∞
0 hi(x)μ(dx) sub-

ject to the constraints
∫ ∞

0
1μ(dx) = 1;

∫ ∞

0
h(x)μ(dx) = 1;μ(dx)≥ 0 for all x≥ 0.

The dual problem would be that of minimizing u + v over R2, subject to the
uncountably many constraints

u ·1+ vh(x)≥ hi(x) f or all x≥ 0 . (5)

The weak duality theorem would then say that if μ and (u,v) satisfied their re-
spective constraints, then
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∫ ∞

0
hi(x)μ(dx)≤ u+ v . (6)

But the λ > 0 of the lemma obeys (2), namely h(x)+λhi(x) ≤ 1 for all x ≥ 0,
which means (u,v) = (1/λ ,−1/λ ) satisfies the constraint (5). So (6) would then
imply

Hi =
∫ ∞

0
hi(x)μ(dx)≤ 0 ,

which of course gives us the theorem.
Although our proof of the theorem and lemma would have been perfectly com-

prehensible to mathematicians such as Caratheodory and Markov working in the
early 1900s, the formalism of linear programming duality – which seems to have
originated half a century later Vanderbei (2001), p.87, – would not have been avail-
able to them.

4 Examples of Known Inequalities Where There May or May
Not be a Convexity Proof

My next two examples are incomplete and suggestions for further work; I suggest
trying to prove each of the Schur and FKG inequalities via convexity, which may or
may not be possible.

Schur: It would be nice to see a proof of Schur’s inequality via convexity. Schur’s
inequality (Morehead’s inequality in Hardy et al. (1934) states that if f (x1, . . . ,xn)
is permutation symmetric in its arguments x j ≥ 0, and differentiable, and if

∂ f (x)
∂x1

≥ ∂ f (x)
∂x2

whenever x1 ≥ x2, then f (x) ≥ f (y) whenever y = Ax where A is a matrix with
nonnegative entries and row sums one. An example is f (x) = ∑n

i=1 x2
i . It’s clear that

the set, C, of all such f is convex and so there has to be a linear functional,

Fx,y(g) =
∫

g(x,y,z)μx,y(dz)

for which the hyperplane f (x)− f (y)≥ 0 for all f ∈C. Indeed the usual proof as in
Hardy et al. (1934) gives such a μ , if written from this point of view, see also Olkin
and Shepp (2006). Is μ unique?

FKG: It would be nice to see a proof of the FKG (1971), inequality via convexity.
This extremely useful inequality came along after Hardy et al. (1934). Ahlswede and
Daykin (1978) gave a later and sometimes more useful version Fishburn and Shepp
(2000), but I will discuss only the original version. Here Λ is a partially ordered set
which is also a distributive lattice, and μ ≥ 0 is a function on x ∈ Λ satisfying the
property P: μ(x∨ y)μ(x∧ y)≥ μ(x)μ(y), where x∨ y is the unique largest element
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of Λ smaller than both x and y and x∧ y is the unique smallest element of Λ larger
than both. If now f ,g are a pair of monotinic functions on Λ, f (x) ≤ f (y) and
g(x)≤ g(y) when x < y, then the FKG inequality asserts that

∑
x∈Λ

f (x)g(x)∑
y∈Λ

μ(y)≥ ∑
x∈Λ

f (x)μ(x)∑
y∈Λ

g(y)μ(y).

A new proof has been given by Siddharti Sahi in this volume, but I would like to
see a convexity proof. There are at least two approaches to a convexity proof: one
can look at the convex set of all f satisfying the given inequalities with g,μ held
fixed; or one can fix f ,g and try to imitate the proof of the Schwarz or Brown
inequality. It is well known that property P is not “sharp”, but how to make a better
general condition on μ for the same conclusion is unclear. It’s a long shot, but maybe
convexity can help.

5 An Example Where We Can Show that There is No Convexity
Proof

Finally, I discuss a conjectured inequality that I will show cannot be proved by using
convexity. I believe it to be true but I have no proof for it. This example has not been
published before and I owe the formulation of the problem to J. Denny.

Let X ,Y denote a pair of symmetric (about zero) independent r.v.’s with common
variance σ2, given, and with cumulative distribution functions, F,G, respectively.
Define the functional F(F,G) = P(X +Y ≥ 1), and let φ(σ) denote the supremum
of F(F,G) over all such choices of F,G, so that,

φ(σ) = sup
X ,Y

P(X +Y ≥ 1)

under the constraints that each of X and Y are symmetric about zero, each has vari-
ance σ2, and X ,Y are independent. We want to explicitly find φ(σ). First note that

F(F,G) = P(X +Y ≥ 1) =
∫ ∞

−∞

∫ ∞

−∞
χ(x+ y≥ 1)F(dx)G(dy)

is bi-linear in the pair F,G but is not convex. This causes the problem and it becomes
even worse (quadratic) if we impose F = G as is the case if X ∼ Y are assumed to
have the same distribution. In case F and G can be chosen separately, the for each
fixed F , F(F,G) is linear in G and for each fixed G, F(F,G) is linear in F . Since
the class of symmetric distributions with given variance is convex, a theorem of
Lester Dubins (1962), says that for the extreme “points” at which the supremum of
F(F,G) must occur, each of X and Y have at most 4 values. Thus the answer can
be numerically determined via a search through a 4 dimensional parameter space.
This leads me to believe that I know the exact formula for φ(σ) for every σ , but a
rigorous proof that the formula is correct escapes me. For σ < c where c ∼ 0.724,
I indicate next that a rigorous proof might be devised based on linear programming,
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but for σ > c, it can be proven that the linear programming argument breaks down
and some other method of proof has to be found. I do not know how to move ahead
to find an honest proof that the search gives the correct maximum.

If we relax the independence condition on X ,Y , which is a non-linear condition,
and replace it by the weaker condition that

E[X2−σ2|Y ]≡ 0

and
E[Y 2−σ2|X ]≡ 0

which of course holds if X ,Y are independent, then the problem becomes a lin-
ear programming problem (infinite dimensional, but linear). We have linearized the
problem and in the wider class of X ,Y pairs satisfying the last two conditions if it
turns out that the maximum value is just the one obtained by the search then this
in principle would give a rigorous proof that the search found the optimum. For
σ < ∼0.724 the upper bound seems to coincide with the value for φ(σ) obtained
from the search (at least numerically) which would then give a rigorous proof that
there is no “duality gap” between the linear and nonlinear problems. But we show
that a duality gap does exist for larger σ . The best pair under the relaxed conditions
on conditional expectations above are no longer independent for σ > 0.724. Some
method other than linear programming will be required to give a rigorous proof for
these values of σ .

We find convincingly that the maximum value of φ(σ) = P(X +Y ≥ 1) taken
over all pairs of independent symmetric r.v.’s X ,Y each with variance ≤ σ2 strictly
increases in σ for 0 ≤ σ ≤ 1, and thereafter, i.e., for σ ≥ 1, φ(σ) ≡ 1

2 , although
there is no i.i.d. pair that achieves the value 1

2 for any value of σ . The range [0,1]
breaks up into 5 intervals, (σi,σi+1), i = 0, . . . ,4, with σ0 = 0,σ1 = 1

2 ,σ4 = 1. In
each interval the optimal X ,Y has a different form and in the first, third, and fourth
interval the optimal pair are i.i.d., but this is not so for the second and fifth intervals,
which seems surprising. More precisely, we have that

I. for 0 ≤ σ ≤ σ0 an optimal X ,Y pair (not necessarily unique) is identically
distributed and each of X ,Y is equal to ±1 w.p. σ2

2 and equal to zero w.p.
1−σ2. It is easy to verify that this makes φ(σ) = σ2− 3

4σ
4 for 0≤ σ ≤ σ0.

II. for σ0 < σ ≤ 1
2 = σ1, surprisingly, the (apparently unique up to an interchange

of X ,Y ) optimal X ,Y pair is not identically distributed (except at σ = 1
2 ). One

of the variables, say X has the distribution X = ±σ w.p. 1
2 , while Y has the

unequal distribution Y =±(1−σ) w.p. σ2

2(1−σ)2 and Y = 0 w.p. 1− ( σ
1−σ )2. Of

course X and Y could be interchanged here so there are at least two different
optimal pairs now. It is easy to check that for σ in this range this gives φ(σ) =
1
4 ( σ

1−σ )2. Here σ0 ∼ 0.46 is the root of the quartic equation

σ2− 3
4
σ4 =

1
4

(
σ

1−σ

)2

,

required to make φ continuous at σ0 (smooth-fitting).
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III. for the next range, 1
2 ≤ σ ≤ σ1 ∼ 0.65, the optimal X ,Y pair are again identi-

cally distributed and

X ∼ Y =±3
2

w.p.
1
4

(
σ2− 1

4

)

and

X ∼ Y =±1
2

w.p.
1
4

(
9
4
−σ2

)
.

This gives the value φ(σ) = 23
128 + 5

16σ
2− 1

8σ
4.

IV. for the next range, σ1 ≤ σ ≤ σ2 ∼ 0.78, the optimal pair X ,Y is again identi-
cally distributed and has the same distribution as the earlier identical pair for
0≤ σ ≤ σ0 and the same formula for φ , φ(σ) = σ2− 3

4σ
4.

V. for σ2 ≤ σ ≤ 1, the optimal pair is not identically distributed and have the
distributions

X =±1w.p.
1
2
σ2,X = 0 w.p. 1−σ2,

Y =±2w.p.
σ2

8
,Y = 0 w.p. 1− σ

2

4
.

This gives the value for this range of σ as

φ(σ) =
5σ2−σ4

8
,σ2 ≤ σ ≤ 1.

The above particular choices of the pair X ,Y give a lower bound on φ(σ). In the
next section we will use linear programming, or duality, to obtain an upper bound
which is tight for some σ , but alas, not for all σ . The upper bound will be a “linear
programming bound” despite the fact that we are maximizing a non-linear (actually
bilinear) functional:

P(X +Y ≥ 1) =
∫ ∞

−∞

∫ ∞

−∞
χ(x+ y≥ 1)F(dx)G(dy)

which is linear in the d.f. F of X for each fixed d.f. G of Y , and is linear in G for
each fixed F , but is not linear in the pair F,G since it involves products. It is even
“less” linear if X ∼Y is imposed as an extra condition – more on this later. It is well-
known that a linear functional on a compact convex set C is maximized at an extreme
point of C. Here C might be the set of pairs F,G with G fixed and F the d.f. of
any symmetric X with variance σ . It’s a consequence of the Dubins–Caratheodory
theorem that an extreme point of C is a distribution with at most 4 points in its
support which is a set of the form {−b,−a,a,b} or {−a,0,a}, or {−a,a} or (for
σ = 0, just {0}). Similarly for each fixed F the best G has at most four points in its
support. It follows rigorously that the best F,G are each “four-pointers”. A search of
this set of distributions for each of F,G led to the conjecture above for φ(σ). Each
of the above 4 particular choices for X ,Y gives a lower bound for φ(σ), and the
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maximum for each σ of the 4 lower bounds is also a lower bound for φ(σ) which
we call φ0(σ). Note that pair I (or IV) can be used for any value of σ ≤ 1 but II is
allowed for σ ≤ 1

2 , III for σ ∈ [ 1
2 , 3

2 ], and V for σ ∈ [ 1
2 ,1].

We summarize this as follows, φ(σ)≥ φ0(σ), where:

φ0(σ) = σ2− 3
4
σ4,0≤ σ ≤ σ0,

φ0(σ) =
1
4

σ2

(1−σ)2 ,σ0 ≤ σ ≤ σ1 =
1
2
,

φ0(σ) =
23

128
+

5
16
σ2− 1

8
σ4,

1
2
≤ σ ≤ σ2,

φ0(σ) = σ2− 3
4
σ4,σ2 ≤ σ ≤ σ3,

φ0(σ) =
5σ2−σ4

8
,σ3 ≤ σ ≤ 1,

where the values of σi, i = 0,1,2,3 are defined to make φ0(σ) continuous, and each
is the solution of an algebraic equation of degree at most four. Note also the value
of φ0(σ) ≡ 1

2 for σ ≥ 1 and since P(X +Y ≥ 1) ≤ 1
2 because X +Y is symmetric,

we see that φ(σ)≡ 1
2 for σ ≥ 1.

Remark: Under the additional constraint that X ∼Y are equi-distributed it is impos-
sible to make P(X +Y ≥ 1) = 1

2 . Maximizing P(X +Y ≥ 1) under this additional
constraint is a harder problem because this functional of the d.f. of X is non-linear
(quadratic). The optimal X is not necessarily a four-pointer.

A graph of φ0(σ) is shown in Fig. 1.

Fig. 1 The maximum value
of P(X +Y ≥ 1) as a function
of σ for independent and
symmetric r.v.’s X ,Y with
variance σ2 s
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At this point we only know that φ(σ) ≥ φ0(σ). We wanted to show that the
two functions are the same, but we now believe that this is actually false in general
although it seems to hold for σ <∼ 0.724. In the course of conducting the search our
“best” guess kept getting better especially as we also studied upper bounds given in
the next section. Searches are only as good as the searcher, and it’s better to have a
rigorous proof that you have found the least upper bound.

5.1 Upper Bounds

Even though the above problem is not linear, as remarked above, we may use a
Chebyshev method, or a “duality” method to obtain upper bounds for φ(σ). Suppose
for a given value of θ there is a function f = f (x),0 ≤ x < ∞ for which | f (x)| ≤
A+Bx2 for some fixed constants A,B, and for which for all values of x,y∈ (−∞,∞),

f (x)(y2−σ2)+ f (y)(x2−σ2)+θ

≥ 1
4
(χ{x+ y≥ 1}+χ{x− y≥ 1}+χ{−x+ y≥ 1}+χ{−x− y≥ 1}).

Then θ is an upper bound on φ(σ). The proof is to observe that if X(ω),Y (ω)
are defined on some probability space Ω, and X ,Y are independent, symmetric, and
have variance σ2, then we may set x = X(ω),y =Y (ω) and take expectations. By the
symmetry, each of the four expectations on the right is the same, i.e. P(X +Y ≥ 1,
and so this immediately gives that for any such X ,Y pair, P(X +Y >= 1)≤ θ . The
infimum of all such θ is called φ1(σ) and we therefore have

φ0(σ)≤ φ(σ)≤ φ1(σ).

We can make the problem slightly simpler if we take into account the symmetry.
All we really need is to find f (x) for a given θ such that for all x,y ∈ [0,∞), rather
than on the whole line, we have

f (x)(y2−σ2)+ f (y)(x2−σ2)+θ ≥ 1
4
(χ{x+ y≥ 1}+χ{|x− y| ≥ 1}). (7)

Then we can merely set f (x) = f (−x) to define f for negative values of x, and we
can easily verify that the first set of inequalities hold for all x,y. Note that we do not
expect that f will be unique. We remark that, of course, for θ < φ0(σ) such an f
cannot exist.

If for some σ , the strict inequality φ0(σ) < φ1(σ) then there is a “duality gap”.
The problem of minimizing θ subject to the linear constraints above is a (continu-
ous) linear programming problem in the infinitely many unknowns, f (x),0≤ x <∞
and θ . Minimizing θ , which is a linear form in the unknowns, subject to the inequal-
ities (7) above for all x,y is thus a linear problem. The dual problem is equivalent to
maximizing P(X ′+Y ′ ≥ 1) over all jointly distributed symmetric r.v.’s X ′,Y ′ which
now are not necessarily independent but which satisfy E[X2−σ2|Y = y] ≡ 0 and
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E[Y 2−σ2|X = x]≡ 0 for all x,y ∈ [0,∞). To see this, observe that if we multiply in
(7) by t(x,y)≥ 0 for x,y in a discrete finite set S and add we get the latter problem
provided that

∑
x,y

tx,y = 1,

∑
x

tx,y(x2−σ2)≡ 0, and

∑
y

tx,y(y2−σ2)≡ 0,

which becomes the latter problem if we interpret tx,y as P(X = x,Y = y). This con-
ditional expectation condition is of course weaker than independence, if X ,Y are
actually independent then the conditional expectations vanish because the variances
are σ2. Thus the dual version of the upper bound problem drops the independence
assumption. Does this increase the value of φ(σ) and leave a “duality gap”? Alas
there is gap for some values of σ as we will see below, but for small σ <∼ 0.724
there seems to be no gap.

We believe one can produce f (·,σ) for σ <∼ 0.724, which satisfies (7), at least
numerically on a fine lattice x,y consisting of all multiples of a small spacing. This
seems to leave little doubt that there is no duality gap for these cases. A rigorous
proof that the inequalities (7) hold for the given f ’s for all x,y and these σ ’s still
needs to be supplied.

For the first range, 0≤ σ ≤ σ0, the f , which was found by discretizing the prob-
lem to a finite set of values, x1, . . . ,xn, and then solving the linear programming
problem of finding the least θ for which the inequalities (7) hold for some values
fi = f (xi), i = 1, . . . ,N. We then guessed the solution to the continuous version by
finding the set of i, j for which equality holds in the inequalities with x = xi,y = x j.

This led to the guess that the inequalities (7) hold with equality when 0≤ σ ≤ σ0
when y = y(x) = x,x≥ 1

2 , which indicates that, for

θ0 = φ0(σ) = σ2− 3
4
σ4,

f (x) =
1
2 −θ0

2(x2−σ2)
,x≥ 1

2
.

The linear programming solution also indicated that there is a function, a = a(σ)
for 0≤ σ ≤ σ0 such that for 0≤ x≤ a, equality holds in (7) when y = y(x) = x+1.
This indicates that

f (x) =
1
2 −θ0− ( 1

4−θ0)(x2−σ2)
((1+x)2−σ2)

(1+ x)2−σ2 ,0≤ x≤ a,
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Fig. 2 The function
f (x, sigma = .1) in (7) giving
the least upper bound
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and also when a≤ x≤ 1
2 , that equality holds when y = 1−x which, in turn, indicates

that

f (x) = (
1
4
−θ0)

1− (x2−σ2)
((1− x)2−σ2)

(1− x)2−σ2,a≤ x≤ 1
2
,

and f (x) is defined for all x ≥ 0. There is only one value of a(σ) that makes f
continuous and consistently defined. Thus for example for σ = 0.1 the value of
a(σ)∼ 0.1777, found only numerically. A graph of f (x,σ = 0.1) is given in Fig. 2.

I tried to use the same technique to guess a function f (x) = f (x,σ) for σ in the
second range σ0 < σ ≤ 1

2 but I could not verify all the inequalities and I am not sure
whether or not this case has a duality gap or not.

The linear program now gives different y = y(x) where equality holds. It now
indicates that for x ≥ 1−σ , equality holds when y = x, which indicates that with
the new optimal value for θ ,

θ1 = φ0(σ) =
1
4

σ2

(1−σ)2 ,

f (x) =
1
2 −θ1

2(x2−σ2)
,x≥ 1−σ .

For this second range of σ , σ0≤σ ≤ 1
2 , there is a threshold b = b(σ)≤σ , analogous

to the threshold a(σ for the range 0≤ σ ≤ σ0 and now, for 0≤ x≤ b, equality holds
when y = 1 + x, whereas for b ≤ x ≤ σ , the l.p. indicates that y = 1− x. This leads
to the guessed f obeying the equations
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f (x)((1+ x)2−σ2)+ f (x+1)(x2−σ2)+θ1 =
1
2
, for 0≤ x≤ b

which determines f (x) on this range since we know f (x + 1), except that we don’t
yet know b, in particular we now know f (0). Next,

f (x)(02−σ2)+ f (0)(x2−σ2)+θ1 = 0, for σ ≤ x≤ 1
2

which determines f (x) in this range. Next.

f (x)((1− x)2−σ2)+ f (1− x)(x2−σ2)+θ1 =
1
4
, for b≤ x≤ 1

2
, for b≤ x≤ 1

2
,

which determines f (x) in the range b ≤ x ≤ σ (noting that this range reflects into
[1−σ ,1− b] where f is known). There is a unique b which will make f (x) con-
tinuous on [0, 1

2 ]. Supposing b is so defined (there is an equation for b and we have
found numerically, for example, for σ = 0.48 > σ0, that b(σ)∼ 0.311784. The rest
of the range (b, 1

2 ) reflects into ( 1
2 ,1−b) and since 1−b > 1−σ this allows us to

determine f (x) on ( 1
2 ,1−σ). This makes f well-defined everywhere. A graph of

f (x,σ = 0.48) is given in Fig. 3.
It remains to determine f (x,σ). It is an indication of trouble that the f in Fig. 2

indicates a discontinuity near x = 0.5, and that (7) does not seem to hold as cleanly as
in case I. Though I believe there is no duality gap for σ <∼0.724, the above method
to find f (x,σ) for this range is not a good one because it produces an extreme point
of the set of functions f satisfying (7). It would be better to look for a smooth f or
one in the “center” of the set of solutions of (7).

Fig. 3 The function f x,σ =
.48) in (7) giving the least
upper bound x
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5.2 A Duality Gap Seems to Exist for σ >∼ 0.724

Since the problem of finding the smallest value of θ for which there exists a func-
tion f = f (x) satisfying the inequalities of (7) for all nonnegative x,y is a linear
programming problem (even finite if we restrict x,y to a discrete truncated lattice of
values, it can be solved numerically for any fixed value of σ . We did this for various
values of σ and found that the maximal value of θ is φ0(σ) for σ < around 0.7 or
so, but for σ around 0.8 or so a strictly larger θ was found, and it was further found
that the dual linear program was solved by a distribution of X ,Y which satisfies

E[X2−σ2|Y ] = E[Y 2−σ2|X ]≡ 0 (8)

but one for which X ,Y fail to be independent. The actual example found for the case
σ = 0.8 led to the following distribution:

P(X = Y = 0) = α =
4
S

(1−σ2)(4−σ2)
σ4 ,

P(X =±1
2
,Y =±1

2
) = β =

1
S

(4−σ2)(1−σ2)
(σ2− 1

4 )2
,

P(X = 0,Y =±1) = P(X =±1,Y = 0) = γ =
1
S

4−σ2

σ2 ,

P(X =±1
2
,Y =±2) = P(X =±2,Y =±1

2
= δ =

1
S

4−σ2

σ2− 1
4

,

P(X =±1,Y =±2) = P(X =±2,Y =±1) = ε =
1
S
,

where S is chosen so that all these probabilities add to unity. It’s easy to verify that
this distribution of X ,Y satisfies (8) and that

P(X +Y ≥ 1) = β +4(γ+δ + ε).

We will call the right side of the last equation φ1(σ); a graph is given in Fig. 4.
We have verified numerically that φ0(σ) > φ1(σ) for σ <∼0.724 but thereafter

φ(σ)+ φ1(σ). There is little doubt that this is right because we have run a linear
program to maximize P(X +Y ≥ 1) over X ,Y satisfying (8) and taking values in
a large finite set S for various values of σ . We found that for σ slightly less than
0.724 the best X ,Y pair are independent but this fails for σ slightly greater than
0.724. The value 0.724 is approximately the σ where P(X +Y ≥ 1) in the above
example coincides with φ(σ) and occurs in the range (σ2,σ3). This of course just
means that the upper bound given by linear programming is no longer tight. We still
believe that for all σ ,

φ(σ) = φ0(σ),

though we see no way to prove this. It seems that the only proof rests on a maxi-
mization of P(X +Y ≥ 1) over all 4 point symmetric independent r.v.’s.
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Fig. 4 The function
φ1(σ) = P(X +Y ≥ 1) for
the nonindependent pair satis-
fying (8)
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5.3 More General Versions of the Problem

Consider the problem of maximizing P(X +Y ≥ 1) under the restriction that X ,Y
are independent and symmetric and have variances less than or equal to σ2. This
will have the same answer as if the variance are equal to σ2 because we can always
place ε probability of X or Y far out and increase the variance without changing the
value, so any value that can be achieved can also be achieved with variance equal
to σ2.

What if we impose the additional condition that X ∼ Y are equi-distributed?
It seems likely that the optimal X will be discrete and the number of points in its
support will go to infinity with σ . If we denote by ψ(σ) the maximum value of
P(X +Y ≥ 1) over all r.v.’s X ,Y , symmetric, identically distributed, and indepen-
dent then it seems very hard to determine ψ except that when the maximum of the
former problem is attained for iid X ,Y then of course φ(σ) = ψ(σ). In particular
this happens for σ ≤ σ0, and for 1

2 ≤ σ ≤ σ2. But for σ ≥ 1 it can be seen that

φ(σ) =
1
2

> ψ(σ),σ ≥ 1

because no iid pair can ever give P(X +Y ≥ 1) = 1
2 .
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