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Abstract. This paper introduces the Repeated Rational Secret Sharing
problem. We borrow the notion of rational secret sharing from Halpern
and Teague[1], where players prefer to get the secret than not to get the
secret and with lower preference, prefer that as few of the other play-
ers get the secret. We introduce the concept of repeated games in the
rational secret sharing problem for the first time, which enables the pos-
sibility of a deterministic protocol for solving this problem. This is the
first approach in this direction to the best of our knowledge. We extend
the results for the mixed model (synchronous) where at most t players
can be malicious. We also propose the first asynchronous protocol for
rational secret sharing.

Keywords: Secret sharing, game theory, repeated games, distributed
computing.

1 Introduction

Secret sharing is a widely known primitive in modern cryptography. More for-
mally, in a secret sharing scheme there is a unique player called the dealer (player
0) who wants to share a secret s among n players, p1, . . . , pn. The dealer sends
every player a share of the secret in a way that any group of m (threshold value)
or more players can together reconstruct the secret but no group of fewer than
m players can. Such a system is called an (m, n)-threshold scheme.

Shamir’s Secret Sharing Scheme[2] is based on the fact that, it takes m points
to define uniquely a polynomial of degree (m − 1). The idea is that the dealer
who shares the secret among the players, chooses a random (m−1) degree poly-
nomial f , such that f(0) = s, and sends the shares to the players such that every
player pi, i = 1, . . . , n receives the share f(i). Any m players can recover the
secret by reconstructing the polynomial through Lagrange’s Interpolation. Any
subset of players of size less than m cannot reconstruct the polynomial (even if
they have infinite computing power).

1.1 Game Theory in Secret Sharing

Game theory provides a clean and effective tool to study and analyze the situ-
ations where decision-makers interact in a competitive manner. Game theoretic
� Work supported by Microsoft Project No. CSE0506075MICOCPAN on Foundation

Research in Cryptology.

L. Chen, Y. Mu, and W. Susilo (Eds.): ISPEC 2008, LNCS 4991, pp. 334–346, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Rational Secret Sharing with Repeated Games 335

reasoning takes into account, which strategy is the best for a player with respect
to every other player’s strategy. Thus, the goal is to find a solution that is the
best for all the players in the game. Every player’s decision is based on the de-
cision of every other player in the game and hence, it is possible to reach the
equilibrium state corresponding to the global optima.

In distributed computing or secret sharing or multi-party computation, the
players are mostly perceived as either honest or malicious players. An honest
player follows the protocol perfectly whereas a malicious player behaves in an
arbitrary manner. Halpern and Teague[1] introduced the problem of secret shar-
ing assuming that the players are rational, which is known as rational secret
sharing. In rational secret sharing, player’s behavior is selfish. They have their
own preferences and utility function (the profit they get). They always try to
maximize their profits and behave accordingly.

For any player pi, let w1, w2, w3, w4 be the payoffs obtained in the following
scenarios.

w1 − pi gets the secret, others do not get the secret
w2 − pi gets the secret, others get the secret
w3 − pi does not get the secret, others do not get the secret
w4 − pi does not get the secret, others get the secret

The preferences of pi is specified by w1 > w2 > w3 > w4. In brief, every player
primarily prefers to get the secret than to not get it and secondarily, prefers
that the fewer of the other players that get it, the better. The least preferred
scenario for pi is the situation, where he does not get the secret and others get
it. A rational player follows the protocol only if it increases his expected utility.

1.2 Related Work

Consider any arbitrary player, say pi. He needs (m − 1) shares from others to
compute the secret. If other players (at least (m − 1)) send him their shares,
then he gets the secret, otherwise he cannot. This does not depend on whether
he sends his share to others or not, as all the players are assumed to send their
shares simultaneously. So, there is no incentive for any player to send his share.
Reasoning in a similar way, no player might send his share. This impossibil-
ity result is proved by Halpern and Teague[1]. They show that rational secret
sharing is not possible with any mechanism that has a fixed running time by
iterated deletion of weakly dominated strategies (the strategy of not sending
the share weakly dominates the strategy of sending the share). They also pro-
posed a randomized protocol for n ≥ 3. All these results apply to multi-party
computation. Gordon and Katz[3] improved the original protocol and addition-
ally they proposed a protocol for n = 2 for rational secret sharing and rational
multi-party computation. Abraham et.al. [4] analyzed rational secret sharing
and rational multi-party computation in an extended setting where players can
form coalitions. They use a trusted third party as mediator. Lysyanskaya and
Triandopoulos[5] analyzed multi-party computation in mixed behavior model,
where players are rational or malicious using a trusted mediator. The malicious
adversary can control at most (�n/2� − 2) players. Recently, Maleka et al.[6]
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proposed a deterministic protocol for rational secret sharing by modifying the
existing protocol. They did little variation in the model, where dealer instead of
sending shares to the players, sends subshares of the shares.

1.3 Practical Applications and Motivation

Game theory has wide range of applications in Political science, Economics, busi-
ness, Biology and Computer science (online algorithms). By combining game
theory and cryptography, we can solve game theoretic problems as shown by
Dodis et. al[7] and cryptography can be understood from a different perceptive.
Secret sharing has many applications like, need for the secret to keep in dis-
tributed environment (arises if the storage is not reliable and there is a high
chance that the secret may be lost). Analogously, if the owner of the secret does
not trust any single person, there is a threat that the secret may be misused.
Hence, the secret needs to be distributed among the members of a group to
achieve shared trust. The secret can provide access to important files or critical
resources like bank vault, missile launch pad, source code escrow, etc. In short,
to all the applications, which need simultaneously achieving secrecy, availability
and group trust.

Rational secret sharing has applications in highly competitive real world sce-
nario, where players are modeled selfish. Suppose by obtaining the secret, players
start their firm with it (or run online business activity), then they think that,
if many persons learn the secret then they will become competitors to him and
finally minimize his profit or payoff. A player gets maximum profit if only he
runs the firm having the secret and no one else has the secret. So, every player
behaves non-cooperatively, i.e., selfishly. We answer this question affirmatively
and provide a solution.

In several practical situations, a group of people may wish to share many
number of different secrets. Such scenario generally arises in applications where
the key (secret) becomes obsolete after a predefined time limit. We model this
as a secret sharing game, which is being played many number of times. Hence,
this game can be treated as a repeated game. In each game, players share only
one secret (not multiple secrets as in multi-secret sharing[8]). Thus, applying
the game theory concepts (rational behavior and repeated games), we extend
the work of Halpern and Teague[1] and introduce the Repeated Rational Secret
Sharing (RRSS) problem.

1.4 Intuition and Contribution

Our intuition is that, the rational players have an incentive to send their share
in repeated games by means of punishment strategy. If a player does not coop-
erate by not sending a share in the current game, then other players adopt the
punishment strategy and do not send him the share in the further games. Hence,
every player because of the fear of not receiving any share from other players
in the further games will cooperate in the current game. Thus, the punishment
strategy acts as an incentive for a player to cooperate. The major contribution
of our work is that we present the first deterministic protocol for rational secret
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sharing with repeated games. In an infinitely played repeated game or finitely
played repeated game (where players do not know how many times the game
will be repeated), we propose a deterministic protocol in both synchronous and
asynchronous models. We prove that secret sharing is not possible for finitely
played repeated games, where players know how many times the game will be
repeated. We extend these results to mixed model (synchronous) where there
can be few malicious players.

1.5 Model and Assumptions

We model the secret sharing as a game, denoted by Γ . The players of the game
are rational and the game will be repeated for several times. We consider the
scenario where m players come together and share the secrets repeatedly. That
is, we solve the problem when m players come together to play the secret shar-
ing game Γ repeatedly (the same set of m players). We do not consider the case
where every time a new (different) set of players come and repeatedly play the
game. Unlike the game defined by Halpern and Teague[1], our model considers
both synchronous and asynchronous rational secret sharing and proposes a de-
terministic protocol. In the synchronous model, the game is finite with respect to
time and the starting and ending points are precisely defined. The game proceeds
in the following manner. The game starts when the dealer distributes the shares
and the players send their shares simultaneously at a predefined synchronized
point of time and ends in finite time at another synchronized point of time. Thus,
the game has two possible outcomes, either players learn the secret or do not.
In short, the game has only one round. On the contrary, in the asynchronous
model, the game does not start and end at predefined points of time and has
only two possible outcomes as that of the synchronous model.

We assume that all players are connected to each other through secure pri-
vate channels independently, which ensures that a player can send his share to a
selected number of players. Initially, we make an assumption that the underly-
ing network is synchronous and the messages will be delivered in fixed amount
of time. Later we consider the asynchronous model. Here, the message delivery
time is indefinite. But, in both cases, the communication is guaranteed. In syn-
chronous model, all the players are synchronized with respect to a global clock.
Hence, all the players start and end the game at the same time whereas in asyn-
chronous model, there does not exist a global clock. The dealer authenticates
the shares, and therefore a player cannot send incorrect value as a share to other
players. All the players are assumed to be computationally bounded. There is
no trusted mediator and the dealer is assumed to be honest (so, he will not send
different messages to different players). We also assume that the players are pa-
tient enough and care for their future payoff, hence we assume that the discount
factor δ is sufficiently large and closer to 1.

1.6 Paper Outline

In the next section, we briefly explain the basics of Game Theory. Section 3
presents the protocol for the RRSS game, played both infinitely and finitely.
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Section 4 discusses the mixed model where few malicious players are also present.
Section 5 proposes a protocol for Asynchronous repeated rational secret sharing.
Finally, Section 6 concludes the paper and gives an insight on open problems in
further direction.

2 Basics of Game Theory

We define some basic terminology of game theory in this section [9].
A strategy can be defined as a complete algorithm for playing the game, implic-

itly listing all moves and counter-moves for every possible situation throughout
the game. And a strategy profile is a set of strategies for each player which fully
specifies all actions in a game. A strategy profile must include one and only one
strategy for every player.

Let Γ (N, L, U) represents an n persons game, where N is a finite set of n
players (p1, . . . pn), L = {L1, . . . , Ln} is a set of actions for each player pi,
i ∈ {1, . . . , n} and U = {u1, . . . , un} is a utility function for each player, where
ui : L−>R

Let a−i be a strategy profile of all players except for the player pi. When each
player pi, i ∈ {1, . . . , n} chooses strategy ai ∈ L resulting in strategy profile
a = {a1, . . . , an}, then player pi obtains payoff ui(a). Note that, the payoff de-
pends on the strategy profile chosen, i.e., on the strategy chosen by player pi as
well as the strategies chosen by all the other players.

Definition 1. (Strict Domination): In a strategic game with ordinal prefer-
ences, player p′is action a′′ ∈ Li strictly dominates his action a′ ∈ Li if

ui(a′′, a−i) > ui(a′, a−i) for every list L−i of the other players’
actions.

We say that the action a
′
is strictly dominated.

Definition 2. (Nash Equilibrium - NE): A strategy profile a∗ ∈ L is a Nash
equilibrium (NE) if no unilateral deviation in strategy by any single player is
profitable, that is

∀i,ui(a∗
i , a

∗
−i) ≥ ui(ai, a

∗
−i).

2.1 Repeated Games

Repeated games capture the idea that a player can condition his future game’s
move based on the previous game’s outcome. In repeated games, the players
interact several number of times (Γ1, Γ2, · · · ). We assume that the players make
their moves simultaneously in each game. The set of the past moves of all the
players is commonly referred to as the history H of the game. History is uniquely
defined at the beginning of each game (h1, h2, . . . and h1 = 0) and the future
move depends on the history. In repeated games, the users typically want to
maximize their payoff for all the game they play. Hence, every player pi tries
to maximize his payoff function ui. But for repeated games, we cannot simply
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add up the payoffs received at each stage. There is a discount factor δ ∈ (0, 1)
such that the future discounted payoff of player pi is given by

ui + δ1ui + δ2ui + δ3ui + · · ·
In some cases, the objective of the player can be to maximize their payoff only

for the current game (which is equivalent to a game, which is played only once).
Such game is known as shortsighted game. If the players try to maximize their
payoff throughout the repeated game, then it is a long-sighted game. If the game
is played finite number of times, then it is a finite repeated game. Otherwise, it
is an infinite repeated game.

Definition 3. (Feasible payoff): A payoff profile (payoff vector of n play-
ers), say y, is feasible if there exist rational, non-negative values αa such that
for all pi, we can express yi (payoff corresponding to pi) as

∑
a∈L αaui(a) with∑

a∈L αa = 1.

Definition 4. (Friedman or Nash folk theorem for infinitely repeated
games) [10]: Let Γ be a strategic game in which each player has finitely many
actions and (y1, y2, . . . yn) be a feasible payoff profile of Γ and (e1, e2, . . . en)
denotes the payoff from a Nash equilibrium of Γ . If yi > ei for every player
i and if δ is sufficiently close to one, then there exists a Nash equilibrium of
infinitely repeated game Γ that achieves (y1, y2, . . . yn) as the payoff.

3 Protocol for Synchronous Repeated Rational Secret
Sharing

We denote our game by Γ (n, m), where n is the number of players participating
in the game and m is the threshold value of the number of shares to obtain the
secret. We consider the scenario where m players come together and share the
secrets repeatedly. That is, we solve the problem when m players come together
to play the secret sharing game Γ repeatedly (the same set of m players). We
do not consider the case where every time a new (different) set of players come
and repeatedly play the game. So, exchange of shares is between these m players
group, i.e., when a player sends his share to this set (selected players), they
intern send their shares, reasoning to this is given below.

For every player, we have two actions namely, sending and not sending. Let
us denote the action of sending the share to other (m − 1) players by ‘A’ and
not sending by ‘B’. Then, the strategy of a player for always not sending is
{B, B, . . .} and for always sending is {A, A, . . .}. In every game, the strategy
profile, strategies chosen by the all players is denoted by n-tuple (c1, c2, . . . , cn),
where ci = A or B, i ∈ {1, . . . , n}. The Repeated Rational Secret Sharing (RRSS)
is similar to the Repeated prisoners’ dilemma in many aspects [9].

In the modeled secret sharing game, the strategy which chooses not sending
benefits one player and losses the players. We introduce one more punishment
strategy known as Limited punishment strategy, which is explained in detail
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in the section 3.1. We first discuss the strategies of the players, then analyze
the cases for both the infinitely and finitely repeated rational secret sharing
game.

3.1 Punishment Strategies

1. Grim trigger strategy

– choose A as long as the other players choose A.
– In any game some player chooses not sending (i.e., chooses B), then choose

B in every subsequent game.

The grim trigger strategy for a repeated rational secret sharing game is defined
as:

si(φ) = A (player pi chooses A at the start of the game,
φ denotes initial history), and

si(h1, . . . , hq) =

⎧
⎪⎨

⎪⎩

A if (hj1, . . . , hjq) = (A, . . . , A)
for every other player pj

B otherwise.
That is, player pi chooses A after any history in which every previous action

of every player was A, and B after any other history. Even though the grim
trigger strategy is effective in achieving the Nash equilibrium, the cooperating
players are also getting the punishment. We propose one more strategy, which
punishes only the player who did not send his share and not the other players.

2. Limited Punishment Strategy

– choose A as long as the other players choose A.
– In any game some player chooses not sending (i.e., chooses B), then choose

B for k subsequent games.

The intention of this strategy is to punish only the player who did not send
his share. If a player pj does not send his share to a player pi, then pi chooses B
for k consequent games. pi will choose A only if pj keeps sending his share for k
consecutive games, even pi does not send his share. Otherwise pi will not send
share to pj . This is equivalent to outcast the player who does not send the data
from the game for k number of games. The value of k should be such that, the
gain obtained by not sending share should be less than loss that occurs in the
next k games (as he cannot obtain the secret and others get his share).

In general, both of the strategies discussed here work effectively. But, for the
sake of analysis we use only grim trigger strategy.

3.2 Infinitely Repeated Rational Secret Sharing Game

We make an assumption that players are patient enough and care for their future.
In other words, the discount factor δ is sufficiently large and close to 1. We first
analyze the game and then discuss the Nash equilibrium.
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Suppose, a particular player pj does not send his share to a player pi, then
the player pi does not get the secret in that particular game. So, the player
pi uses the grim trigger strategy and does not send his share to pj in further
games. Thus, the player pj will not get the secret from next game onwards.
The player pj realizes that he can no more obtain the secret and so there is no
motivation to send his share to other players. Thus, no player learns the secret in
further games. Hence, every player, because of the fear of not receiving any share
from other players in further games, will cooperate in the current game. This
punishment strategy acts as an incentive for a player to cooperate. Therefore, a
player pi’s strategy is to always send his share to other players. He stops sending
only when he does not receive a share from any other player. In this way every
player receives m shares and can get the secret.

Suppose, in kth game a player pi does not send his share to a player pj . Then,
player pj chooses grim trigger strategy and henceforth never sends his share to
pi. Thus, player pi cannot obtain secret from (k + 1)th game onwards and his
payoff will be (w1, w3, w3, . . .). If the player pi always sends his share, then his
payoff would be (w2, w2, w2, . . .). So, for any player the payoff is high if he chooses
always sending rather than not sending in any particular game. And every player
primarily prefers to get the secret than not to get the secret (players care about
future). Hence, every player always chooses to send his share.

But for infinitely repeated games, we cannot simply add up the payoffs re-
ceived at each stage. The payoff is discounted by a factor, δ ∈ (0, 1) such that
the future discounted payoff of player pi is given by

∑∞
j=0 δjui(Γj). If δ is closer

to 0, then the player does not care about his future payoff and concentrates more
on the current payoff where as if δ is closer to 1, then the player is very patient
and cares much about his future payoff.

Suppose if the player chooses the strategy always send (A, A, . . .), with payoff
ui(A) = w2, then the overall discounted payoff will be

∑∞
j=0 δjw2 = w2

(1−δ) .
If the player finks at rth round, then till (r−1)th round the player gets payoff

of w2, at rth round payoff of w1 and from (r + 1)th onwards payoff of w3.

∑∞
j=0 δjui(Γj) = w2 + δw2 + δ2w2 + . . .+ δr−1w2 + δrw1 + δr+1w3 + δr+2w3+

δr+3w3 + . . . .
= w2(1+ δ + δ2 + . . .+ δr−1)+ δrw1 + δr+1w3(1+ δ + δ2 + . . .)
= w2()1−δr

1−δ + δrw1 + δr+1w3
1−δ

= w2(1−δr)+δrw1+(δr+1w3)
1−δ

As δ is close to one,

w2(1 − δr) + δrw1 + (δr+1w3)
1 − δ

<
w2

1 − δ

So, every player chooses the strategy of always sending (A, A, . . . ).

Theorem 1: Infinitely Repeated Rational Secret Sharing (RRSS) game, Γ (n, m)
has a deterministic protocol when a group of m players come together, where n
is the number of players and m is the threshold of shares.
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Proof: Given, a player sends his share to (m − 1) players and in-turn receives
their shares, his payoff would be (w2, w2, . . .). The strategy profile (A, A, . . .) is
a feasible payoff profile of the game and (B, B, . . .) be the Nash equilibrium of
the single game Γ . As the players are patient enough and care for their future
payoff, δ is sufficiently closer to one. As payoff corresponding to the strategy
A, w2 is greater than the minmax value, w3 (ui(A) > ui(B)), from Nash folk
theorem (Definition 4), the strategy profile (A, A, . . .) is a Nash equilibrium of
infinitely repeated game Γ (n, m) and the strategy, A is the best strategy for a
player provided that every other player also plays his best strategy. In this way,
all the players send their shares and thus obtain the secret. Hence, there exists
a deterministic protocol for the RRSS game Γ (n, m). �

Nash Equilibrium
The strategy (A, A, . . .) is a Nash equilibrium. Similarly, (B, B, . . .) is also a
Nash equilibrium. But a player prefers to get the secret rather than not getting
the secret. Hence, every player prefers to be in the state (A, A, . . .).

3.3 Finitely Repeated Rational Secret Sharing Game

First we discuss the issue what if the RRSS game is played only once ? Next we
propose, in a finitely repeated rational secret sharing game, we have a determin-
istic protocol if the players are not aware of the last game. If the last game is
known in advance, we do not have a solution for the game, Γ (n, m).

3.3.1 What if the RRSS Game Is Played only Once?
Before analyzing the cases of infinitely and finitely repeated rational secret shar-
ing game, we make an insight to the RRSS game when played only once (equiv-
alent to a static game). Here, the players do not have a threat of not getting the
secret in future games. So, the incentive of sending the share is lost. Lemma 1
proves the impossibility of secret sharing in such a game.

Lemma 1: Secret Sharing is not possible in an RRSS game Γ (n, m) if the game
is played only once, where n is the number of players and m is the threshold of
shares (considering our model and game Γ (n, m)).
Proof: There is no punishment involved in the game, Γ (n, m) as it is played
only once. If the player pi gets the secret and everyone else does not get the
secret, then the payoff is w1. If everyone (including pi) gets the secret, then the
payoff is w2. Thus player pi can obtain the payoff w1 by not sending his share
and w2 by sending. As w1 > w2, the strategy B (not sending) strictly dominates
the strategy A (sending). So, every player chooses strictly dominating strategy
and no player sends his share. Hence, secret sharing is not possible in an RRSS
game Γ (n, m) if the game is played only once. �

3.3.2 Players Are Not Aware of the End of the Game
A finitely repeated game can be modeled as an infinitely repeated game, if the
players are not aware of the end of the game. Therefore, we can always obtain a
solution in this case, which is illustrated in the theorem 2.
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Theorem 2: Finitely Repeated Rational Secret sharing (RRSS) game, Γ (n, m)
has a deterministic protocol, if the players are not aware of the last game.
Proof: As players do not know the last game, in every ith game, players are
not sure about whether they play the (i + 1)th game or not. If a player does
not send his share in ith game, he might loss the chance of getting the secret in
(i + 1)th game onwards (if the game is going to be repeated). The punishment
strategy acts as incentive for the players to send their shares. This scenario is
similar to that of the infinitely repeated rational secret sharing game. Hence,
from theorem 1, every player gets the secret. �

3.3.3 Players Are Aware of the Last Game
When players are aware of the end of the game, we can apply the concept of
backward induction because, the game is of complete information (players know
the number of times the game will be played). Let us consider the last game.
Every player concludes that their dominant strategy is not to send the share of
secret to others (i.e., to play ‘B’). Given this argument, the best strategy is to
play ‘B’ in the penultimate game. Following the same argument, this technique
of backward induction dictates that every player should choose the strategy ‘B’
in every game. Thus, secret sharing is not possible for the finitely repeated game,
given the players are aware of the end of the game. More formal proof is given
by the lemma 2 and theorem 3.

Lemma 2: If the players know that rth game is the last game of finite RRSS
game Γ (n, m), then secret sharing is not possible in the rth game.
Proof: Given, the game is going to be played r number of times. As there is no
punishment involved for the rth game, there is no incentive for a player to send
his share. Thus, this game is equivalent to a game, which is played only once.
Hence, from lemma 1, there is no solution for the rth game. �

Theorem 3: Secret sharing is not possible for the RRSS game Γ (n, m), if the
players are aware of last game.
Proof: We prove it by backward induction. Suppose, the game is being played
r number of times. Given, the players are aware of the value of r, from the
lemma 2, there is no solution for the rth game. That is, no player sends his share
in rth game. So, in (r − 1)th game, there is no effective punishment strategy,
hence there is no incentive for a player to send their share. Hence (r − 1)th

game is equivalent to a single game. From Lemma 1, there is no solution for
the (r − 1)th game. Same reasoning applies to (r − 2)th, (r − 3)th . . . 1st game.
Therefore, in a finitely repeated game where players know the end of the game,
repeated rational secret sharing Γ (n, m) is not possible. �

Theorem 4: Repeated Rational Secret Sharing game, Γ (n, m) has a determinis-
tic protocol for infinitely repeated games and finite repeated games (where players
are not aware of number of times the game is going to be played), where n is the
number of players and m is the threshold of shares.
Proof: Easy observation from theorems 1 and theorem 3. �
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3.3.4 Nash Equilibrium
For the finitely repeated rational secret sharing game, we have two cases. One,
when players do not know the end of the game. In this case the Nash equilibrium
is same as that of an Infinitely repeated game(A, A, . . . , A). Another, when the
players are aware of the last game. In this case the Nash equilibrium is not to
send the share, that is (B, B, . . . , B).

4 Mixed Model

We assume there are at most ’t’ computationally bounded malicious players. So
the malicious players cannot send the wrong shares to other players. According
to the protocol, every player distributes his shares to (m − 1) players and in-
turn obtains their shares. If malicious players are present, then they choose not
to send their shares to other players so that, no player learns the secret (even
though they do not get the secret). To solve this problem, every player sends his
share to (m + t − 1) players and in-turn obtains at least (m − 1) shares (as at
least (m − 1) players are honest). If a player pi did not receive the share of pj ,
then player pi considers pj as a malicious player and stops sending the shares to
pj alone (sends to every one else).

Theorem 5: In the presence of at most t malicious players, Repeated Rational
Secret Sharing (RRSS) game Γ (n, m) has a deterministic protocol for infinitely
repeated games and finite repeated games (where players are not aware of number
of times the game is going to be played), where n is the number of players and
m is the threshold of shares.
Proof: In mixed model, at most t players can be malicious and every player
obtains at least (m− 1) shares. Hence, from theorem 4, repeated rational secret
sharing (RRSS) game, Γ (n, m) with at most t malicious players has a determin-
istic protocol. �

5 Asynchronous Repeated Rational Secret Sharing

We consider the Asynchronous model of the RRSS game. Here, we do not have
a global clock and messages can be indefinitely delayed. For the dealer to know
the end of the game and distribute new shares, the players are asked to send a
message whenever they obtain the secret. If the dealer receives such messages
from all the players, then he will distribute the shares of next secret, thus start-
ing the next game. This protocol followed by the dealer acts as a punishment
strategy (players wait indefinitely until every player gets the secret) and creates
an incentive for every player to send his share.

Protocol for the Dealer and the Players
1. Protocol for player pi

1. pi sends his share to other (m − 1) players.
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2. In every game, after receiving (m−1) players’ shares, calculate the secret and
send a message to the dealer that the secret has been obtained mentioning
the game.

For e.g., msgi = “ secret obtained in kth game ”.

2. Protocol for dealer

1. In the first game, send the shares to all the players (p1, p2, . . . , pn).
2. After distributing shares in kth game, k ≥ 1 wait until n number of messages

are received, (msg1, msg2, . . . msgn). If all the messages are received, then
distribute the new shares of (k + 1)th game to all the players.

Lemma 3: In Asynchronous model, a player has an incentive to send his share
(in every game) to the (m − 1) players, in an infinite RRSS game and a finite
RRSS game (where players are not aware of the last game).
Proof: We prove this by contradiction. Assume that there is no incentive for
a player pi to send his share in kth game. So, pi will not send his share to any
player in kth game and no one gets the secret. Now, as per the protocol, the
dealer waits indefinitely for the messages from the players and the next game
never starts. So, the payoff of pi from kth game onwards will be (w1, w3, . . .). But,
if he sends his share, the payoff would have been (w2, w2, . . .). Given the player
does not know about the last game, he prefers (w2, w2, . . .) than (w1, w3, . . .),
which is a contradiction. So, there is an incentive for a player to send his share
in any given kth game. �

Theorem 6: Asynchronous Repeated Rational Secret Sharing (RRSS) game,
Γ (n, m) has a deterministic protocol for infinitely repeated game and finitely
repeated game (where players are not aware of the last game), where n is the
number of players and m is the threshold of shares.
Proof: We prove this by contradiction. Assume that there is no incentive for a
player pi to send his share in kth game. So, pi will not send his share to any player
in kth game and no one gets the secret. Now, as per the protocol, the dealer waits
indefinitely for the messages from the players and the next game never starts.
So, the payoff of pi from kth game onwards will be (w1, w3, . . .). But, if he sends
his share, the payoff would have been (w2, w2, . . .). Given the player does not
know about the last game, he prefers (w2, w2, . . .) than (w1, w3, . . .), which is a
contradiction. So, there is an incentive for a player to send his share in any given
kth game. So, every player sends his share. By considering Theorem 2, it can be
observe that the game Γ (n, m) finitely repeated games (where players are not
aware of last game) is similar to infinitely repeated game. Hence, RRSS game
has a deterministic protocol for infinitely repeated games and finitely repeated
games (where players are not aware of last game). �

6 Conclusions and Open Problems

We have modeled the secret sharing as a repeated game (the game is played for
some r number of times). We analyzed the repeated secret sharing game when
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r is both finite and infinite. We propose a deterministic protocol for the infinite
repeated game (r−>∞) and the finite repeated game (r is a finite number and
the players do not know the value of r) in both synchronous and asynchronous
models. We proved the impossibility for the finite repeated game when players
know the value of r. We extended these results to the mixed model where at most
t players are malicious, considering the synchronous model. The main advantage
of introducing repeated games is that the players choose the strategy, which
is mutually beneficial in terms of long-term gain rather than the one, which
gives instantaneous benefit. We expect that the concept of repeated games can
be introduced into various other problems of distributed computing (where the
players are rational) and the scope for problem solving strategies in asynchronous
model can be enhanced.
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