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Preface

The 4th Information Security Practice and Experience Conference (ISPEC 2008)
was held at Crowne Plaza, Darling Harbour, Sydney, Australia, during April
21–23, 2008. The previous three conferences were held in Singapore in 2005,
Hangzhou, China in 2006 and Hong Kong, China in 2007. As with the previous
three conference proceedings, the proceedings of ISPEC 2008 were published in
the LNCS series by Springer.

The conference received 95 submissions, out of which the Program Committee
selected 29 papers for presentation at the conference. These papers are included
in the proceedings. The accepted papers cover a range of topics in mathemat-
ics, computer science and security applications, including authentication and
digital signatures, privacy, encryption and hash-function algorithms, security
analysis, network security, access control, security devices, pairing and elliptic
curve-based security practice, security computation and so forth. The conference
proceedings contain revised versions of the selected papers. Since some of them
were not checked again for correctness before publication, the authors (and not
the Program Committee) bear full responsibility for the contents of their papers.

In addition to the contributed papers, the program comprised two invited
talks. The invited speakers were Vijay Varadharajan (Macquarie University, Aus-
tralia) and Robert Huijie Deng (Singapore Management University, Singapore).
Special thanks are due to these speakers.

We would like to thank all the people who helped with the conference program
and organization. First, we thank the Steering Committee for their guidance
on the general format of the conference. We also heartily thank the Program
Committee and the sub-reviewers listed on the following pages for their hard
efforts and time contributed to the review process, which took seven weeks.
Each paper was carefully evaluated by at least two or three people. There was
significant online discussion about a large number of papers.

The submission and review process was run using the iChair software, written
by Thomas Baigneres and Matthieu Finiasz (EPFL, Switzerland).

We wish to thank all the authors who submitted papers, and the authors of
accepted papers for revising their papers according to referee suggestions and
sending their final versions on time. We thank the staff at Springer for their help
with producing the proceedings.

Finally, we would like to thank the Organizing Committee for their excellent
contribution to the conference.

April 2008 Liqun Chen
Yi Mu

Willy Susilo
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Verification of Integrity and Secrecy Properties of a
Biometric Authentication Protocol

A. Salaiwarakul and M.D. Ryan

School of Computer Science,
University of Birmingham, UK

{A.Salaiwarakul, M.D.Ryan}@cs.bham.ac.uk

Abstract. In this paper, we clarify and verify an established biometric authenti-
cation protocol. The selected protocol is intended to have three properties:
effectiveness (integrity checks are carried out on all hardware before enabling
transmission of biometric data), correctness (the user is satisfied that integrity
checks have been executed correctly before transmission of biometric data oc-
curs), and secrecy (unauthorized users cannot obtain biometric data by intercept-
ing messages between the system’s hardware components). We analyse the clari-
fied protocol using applied pi calculus and the ProVerif tool, and demonstrate that
it satisfies the intended properties of the protocol. Moreover, this paper shows that
the verification result between the naive interpretation and the clarified interpre-
tation is different.

1 Introduction

1.1 Biometric Authentication Protocols

Biometric authentication complements other methods of authentication such as pass-
words or smartcards. It may be used as an alternative to these, or in combination. Pass-
words used on their own are known to have certain weaknesses: users are liable to
choose easily guessable passwords, transfer passwords between each other in ways not
desired by the system owners, use the same password on multiple systems, or forget
their passwords. Authentication using smart cards also has some of these weaknesses,
such as undesired transfer between, or theft from, users. Biometric user authentication
can be utilised in a variety of applications, from logging into a local PC, to passenger
identification at a border control, to authentication on a remote server in e-commerce
transactions or online banking.

Potential biometric techniques include fingerprint and hand geometry, as well as
voice, retina, face and behavioural characteristics. The rapid move towards the use of
biometrics in user authentication comes from the method’s promise to offer secure and
reliable authentication. In well-designed and engineered systems for biometric authen-
tication, user A cannot authenticate as another user B, even with B’s cooperation. In
contrast to other types of credential, such as password or smartcard, which can be
transferred or stolen, biometric authentication promises a ”non-transferability” prop-
erty, which means that users cannot lose their credentials or acquire those belonging to
others.

L. Chen, Y. Mu, and W. Susilo (Eds.): ISPEC 2008, LNCS 4991, pp. 1–13, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 A. Salaiwarakul and M.D. Ryan

However, there are many obstacles to overcome before this potential can be realised.
Biometric authentication depends on biometric protocols, i.e. the way biometric data
is transmitted and stored. But protocol design is known to be very difficult. The well-
known paper that identified attacks on the Needham-Schroeder protocol that was be-
lieved to be invulnerable and had been used successfully for more than a decade [1]is
one example of how accurate protocol verification is crucial. The focus of this paper
concerns the handling and storage of biometric data. Biometric data cannot be consid-
ered a secret in the way that private keys or passwords can. In contrast with private keys,
biometric data is given to potentially hostile hosts when a user wishes to authenticate
herself, and unlike passwords, biometric data cannot be replaced - a user cannot con-
veniently choose different biometric data to present to different hosts in the way that
one might use a different (and lower security) password for a webmail account as for
a bank account. Moreover, in contrast with keys and passwords, biometric data such as
the user’s facial characteristics and fingerprints should be considered to be in the public
domain, and can be captured without the user’s consent or knowledge.

In spite of this, we take the view that biometric data should be kept private as a matter
of good practice. In this respect, it is rather like credit card numbers; they are not really
private, as we voluntarily cite them on the phone and by unencrypted email and allow
restaurant and other retail staff to handle the cards, often in our absence. Nevertheless,
it seems sensible not to allow such data to be spread around without restriction. The
same idea applies to biometric data; even if a user’s biometric data could be captured
by agents having access to smooth surfaces the user touches, or agents to whom the
user authenticates, it should not be made unnecessarily easy for malicious agents to
acquire it. However, biometric authentication methods cannot assume that biometric
data is secret. Such an assumption is false.

+Long version. The full paper that presents the ProVerif model is available at
http://www.cs.bham.ac.uk/˜mdr/research/papers/

1.2 Our Contribution

To demonstrate verification of biometric authentication protocols, we use an established
protocol, CPV02 [2], as a case study, and prove whether its intended properties are
satisfied.

In order to verify the properties of the biometric authentication protocol, we need to
clarify the operation of the protocol. We show that it is easy to interpret the protocol
incorrectly, and that this would affect the security properties. An example of a naive
interpretation and its verification result is given in a later section.

We set out and formalise the intended properties of the protocol. We present the
verification result of the naive interpretation, and clarification of the protocol’s detail
that is necessary in order to achieve successful verification. Moreover, we show that the
verification outcome of the naive interpretation of the protocol identifies an attack while
the result of the clarified one is different.

To obtain our findings, we use the verification tool ProVerif [5]. We explain the
protocol, clarify it, and provide a formal model of the protocol and its properties. We
then give the outcome of the verification, and some analysis.
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2 The CPV02 Protocol

In [2], Chen, Pearson and Vamvakas present a protocol for biometric authentication that
we call CPV02. This protocol prevents disclosure of biometric data both during data
transmission and within all system hardware. This is achieved through integrity metric
checking. The protocol is a generic protocol for biometric authentication. It can be used
as a protocol in applications that require authentication before the user is allowed to
proceed.

The system under consideration is composed of three connected components: a
smartcard (SC), a trusted computing platform (TCP) and a trusted biometric reader
(TBR).

The SC is used for storing credential information such as the user’s biometric code
or the user’s signature. The TBR is a device for reading the user’s biometric data for
use later in the matching process. In this protocol, the TBR and the SC generate session
keys to transfer the user’s submitted biometric data (BD) and the user’s stored biometric
code (BC).

A TCP is a device that behaves in an expected manner for the intended purpose and is
resistant to attacks by application software or viruses [3]. This is achieved because the
TCP contains a Trusted Platform Module (TPM), which stores keys and can perform
cryptographic operations. The TPM can check the integrity of the TCP. Specifically,
it can create an unforgeable summary of the software on the TCP, allowing a third
party to verify that the software has not been compromised. This can be accomplished
by presenting a certificate to the third party to confirm that it is communicating with
a valid TPM. Table 1 summarises notations and meanings that will be used through
out the paper. Figure 1 shows the basic system for this model. Informally, it can be
described as a user holding a smart card that contains her previously stored biometric
code, e.g. fingerprint code. To authenticate herself to the system, she first inserts the
smart card into a smart card reader. This triggers part of the protocol during which
the integrity of the computing platform and the biometric reader are checked and the
result is returned to the smart card. If the smart card is satisfied that the computing
platform and biometric reader have not been tampered with, it indicates this to the user,
e.g. by releasing a special image to be displayed by the computing platform. The user
recognises that image as an indication that the integrity checks have been successful
and proceeds to the second step, which is biometric authentication. To achieve that,
she submits her biometric data, e.g. by placing her fingerprint on a biometric reader.
The biometric code stored on the smart card and the submitted biometric data from the
biometric reader are then sent to the computing platform, which will validate whether

Table 1. Notations and Meanings

Notation Meaning
BC User’s stored biometric code
BD User’s submitted biometric data

TPM Trusted Platform Module
TCP Trusted Computing Platform
TBR Trusted Biometric Reader
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Fig. 1. The basic setup for CPV02 consists of a trusted biometric reader (TBR), a trusted com-
puting platform (TCP) that supports a trusted platform module(TPM), and a smart card device
(SC)

they match. If they match, the smart card will release the user’s credential data, e.g. her
signature on a message, to the computing platform.

The BC is stored in the SC and will be transferred to the TPM for comparison with
the BC. However, before this transmission is performed, the TPM and the SC must
authenticate each other by sending an authentication message, which includes a nonce
and integrity metric. The integrity metric is a measurement of the trustworthiness of the
component. Depending on its policy, the challenger will decide, based on this value,
whether to trust or allow any action to be performed.

The SC sends a nonce n1 and its identity to the TPM. The TPM generates a nonce
n2 and a message including n1, n2, the identity of the SC and integrity metric D3. The
integrity metric D3 is used to trigger the components involved in the communication to
do the integrity checking. The message sent back to the SC will be signed by the TPM
so that the SC can check its origin and the correctness of n1. After the authentication’s
success, the SC generates the session key SK1, shared by the SC and the TPM, for
encrypting the BC, before sending it together with the authentication messages. After
the TPM has verified the message, it then stores the BC.

When the TBR is presented to the system, it also performs mutual authentication
with the TPM and generates a session key to share between the TBR and the TPM.
In the same way as that in which the TPM and the SC authenticated each other, the
TBR sends an integrity metric D7 to the TPM. If the TPM has successfully verified the
message it receives, it will send back a message MF5. The TBR verifies the message.
After the authentication has succeeded, the TBR generates a session key SK2, shared
by the TBR and the TPM, for use in encrypting the BD from the TBR to the TPM.

The BD is encrypted by using the session key created in the previous stage to the
TPM. This data will be compared with the BC. After the message is verified, the TPM
decrypts the encrypted message and verifies the validity of the BD. If they match, the
user is allowed to use the system or perform the request. For example, the SC releases
the user’s signature. The message sequence of this protocol is shown in Figure 2.
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Fig. 2. Message Sequence Chart for CPV02 Protocol
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2.1 Intended Properties of CPV02 Protocol

The protocol has the following intended properties:

1. Effectiveness. The accessed computing platform is given neither the user’s stored
biometric code nor the user’s submitted biometric data until the integrity of both
the computing platform and biometric reader are checked by the smart card.

2. Correctness. The biometric reader is not given the user’s submitted biometric data
until the user is convinced of the correctness of both the computing platform and
biometric reader integrity checking.

3. Secrecy. An unauthorised entity that can listen to a message between the smart card
and computing platform, or between the biometric reader and computing platform,
cannot obtain either the user’s stored biometric code or the user’s submitted bio-
metric data.

2.2 Problem Encountered

To verify the three protocol properties presented in 2.1, we need to gain a detailed
understanding of how the protocol works and the sequence of messages.

If a naive verifier were to interpret the CPV02 protocol as it is presented in [2] (page
7-9), it would identify an attack. The sub-protocols are presented in a sequence order,
and since nothing is said about the order in which they should be run, the reader can
assume they are run in the order presented. We performed the verification on that as-
sumption. The result of the verification shows that one of the properties does not hold:
the biometric data is released before the TPM is checked.

The ProVerif model of this interpretation is shown in the full paper+. Let us briefly
describe this model. The code consists of 4 processes (excluding the main process):
TPM, TBR, SC and ProcessK. Processes TPM, TBR and SC perform the operations of
the TPM, TBR and SC respectively (as mentioned in section 2). ProcessK distributes the
verification key certificates to the three processes TPM, TBR and SC. The main process
generates private keys for each component and distributes them via private channels,
running these processes concurrently.

The result of the verification shows that the TCP is sent the BC before the TBR is
checked. This breaks one of the intended properties of the protocol: effectiveness.

2.3 The Clarified CPV02 Protocol

Email discussion with one of the authors of [2], Liqun Chen, has given us further vital
information about CPV02. We have learnt that the four sub-protocols can run at any
time and in any order. Moreover, the result from one sub-protocol may affect the other
sub-protocols. For example, sub-protocol (S1) cannot be run successfully without also
running sub-protocol (S2). These facts cannot be easily extracted from the paper with-
out the discussion and they are important in order to successfully verify the protocol.

Let us consider the message sequence chart of CPV02 in Figure 2. The protocol
consists of four sub-protocols (S1), (S2), (S3), and (S4) which can run in any order and
at any time. In (S1), the encrypted BC is sent from the SC to the TPM. In (S2), a session
key is created for use between the TPM and the TBR when the BD is encrypted. In (S3),
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the encrypted BD is sent from the TBR to the TPM. In (S4), a matching result on the
BC and BD is sent from the TPM to the SC.

The detailed ProVerif model for verifying the properties according to the clarified
protocol is presented in section 4.

3 Applied Pi Calculus and ProVerif

3.1 Applied Pi Calculus

Applied pi calculus is a language for describing concurrent processes and their interac-
tions [4]. It is based on pi calculus, but is intended to be less pure and therefore more
convenient to use. Properties of processes described in applied pi calculus can be proved
by employing either manual techniques or automated tools such as ProVerif [5]. As well
as reachability properties that are typical of model-checking tools, ProVerif can in some
cases prove that processes are observationally equivalent [6].

To describe processes in applied pi calculus, one starts with a set of names (which are
used to name communication channels or other constants), a set of variables, and a set
of function symbol which will be used to define terms. In the case of security protocols,
typical function symbols will include enc for encryption (which takes plaintext x and a
key k, and returns the corresponding cipher text) and dec for decryption (which takes
cipher text and a key k and returns the plaintext x). One can also describe equations
which hold on terms constructed from the function. For example:

dec(enc(x,k),k) = x

Terms are defined as names, variables, and function symbols applied to other terms.
Terms and function symbols are sorted, and of course function symbol application must
respect sorts and arities. In the applied pi calculus, one has (plain) proceses and ex-
tended processes. Plain processes are built up in a similar way to processes in the pi
calculus, except that messages can contain terms (rather than just names) [4,7].

3.2 ProVerif

ProVerif is a protocol verifier developed by Bruno Blanchet [8]. This tool has been
used to prove the security properties of various protocols [7,9]. It can be used to prove
secrecy, authenticity and strong secrecy properties of cryptographic protocols. It can
handle an unbounded number of sessions of the protocol and an unbounded message
space. The grammar of processes accepted by ProVerif is described in the long version
of the paper.

In order to verify properties of a protocol, query commands may be made. The
query ‘attacker: m’ is satisfied if an attacker may obtain the message m by observ-
ing the messages on public channels and by applying functions to them. The query
ev : f(x1, . . . , xn)⇒ ev : f ′(y1, . . . , ym) is satisfied if the event f ′(y1, . . . , ym) must
have been executed before any occurrence of the event f(x1, . . . , xn).

An advantage of using ProVerif as a verfier is it models an attacker which is compli-
ant with the Dolev-Yao model [10] automatically. We do not need to explicitly model
the attacker.
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4 Modelling the Clarified CPV02 in ProVerif

Now we model the CPV02 protocol based on the derived message sequence chart
(shown in Figure 2) from clarification and the following assumptions:

1. All the components, TPM, SC and TBR, hold the public key of certificate authority.
2. The integrity metric measurements have been made and are stored in the tamper-

resistant storage. Therefore we model it, as it is a stored secret value, and verify its
correctness with the challenger’s stored value.

The ProVerif code consists of signature and equational theory, a main process, a
process for certificate distribution, S1 process, S2 process, S3 process, and S4 process.
A detailed description of each process will be given in a later section.

4.1 Signature and Equational Theory

Our ProVerif model involves public key and host functions. We model cryptographic
function as enc and dec. Similarly, the symmetric cryptography is modelled as senc
and sdec. In order to introduce digital signature, function sign is added and function
checksign is used to verify the origin of messages.

The public key cryptography is represented in the first equation. To decrypt mes-
sages from symmetric cryptography, the second equation permits us to do so. In the
interest of verifying the origin of messages; the checksign equation is introduced in our
model.

equation dec(enc(x,pk(y)),y) = x.
equation sdec(senc(x,k),k) = x.
equation checksign(sign(x,y),pk(y)) = x.

4.2 Main Process

In the main process, the public keys, private keys, and the identities of each component
are created and distributed in the public channel. Moreover, the components can run at
any time and in any order.

4.3 Certificate Distribution

This process is intended to distribute the certificates of verification keys for the integrity
checking process and distribute them through the private channel to guarantee that each
identity will obtain them correctly.

4.4 (S1) Sending the Encrypted Biometric Code

This sub-protocol includes two processes: TPM1 and SC1. The mutual authentication
between the TPM and the SC is performed before the encrypted BC is transmitted.
Firstly, the TPM and the SC obtain their certificates. The TPM generates a fresh ran-
dom nonce. Then it sends its integrity metric with this nonce to the SC. The SC checks
the certificate it receives from the TPM and retrieves the public key of the TPM. The
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SC verifies the validity of messages and generates a session key and then sends the
BC encrypted by the key to the TPM. The TPM verifies the accuracy of the received
message, decrypts it, and stores the BC in its secure storage. Moreover, from email
discussion, we have learnt that (S1) cannot run successfully before (S2) has run. So we
add state checking to check that (S2) has run.

4.5 (S2) Creating a Session Key for Encrypting the User’s Submitted Biometric
Data

This sub-protocol represents mutual authentication between the TPM and the TBR. It
also creates a session key for sharing between the TPM and the TBR. This sub-protocol
runs when a TBR has been introduced to the system.

This sub-protocol includes the two processes TPM2 and TBR2. The certificates are
obtained via the private channels. Note that the TPM has already obtained this certificate
in the previous sub-protocol. TPM1 and TPM2 are indeed the same trusted platform
modules but they are run in different sub-protocols and therefore require distinct names.
So we model TPM2 to receive the certificate again but the certificate it receives is the
same certificate as that received by TPM1.

The TBR has to authenticate itself to the TPM using an integrity checking mecha-
nism. It creates a fresh random number and sends it with its integrity metric. If the TPM
is satisfied with the checking result, it will send its certificate along with the authentica-
tion message to the TBR. The TBR retrieves the public key of the TPM. It then checks
the correctness of the message. If it is valid, the TBR will create a session key SK2 for
the encryption and decryption of the BD.

While the processes TPM1, TPM2, TPM3, and TPM4 are on the same trusted plat-
form module, as seen in section 2, in order to fit the CPV02 protocol they need to run
as separate sub-protocols. This fact also applies to TBR2 and TBR3. All variables cre-
ated or received in one TPM process should be known to others. Hence, in the process
TPM2, two private channels are set up. One is used for acknowledging that S2 has run
and the other is used for transferring the session key SK2 from the process TPM2 to the
process TPM3. Similarly, a private channel is set up in process TBR2 to transmit the
session key from the process TBR2 to the process TBR3.

4.6 (S3) Sending Encrypted User’s Submitted Biometric Data from the
Biometric Reader to the Trusted Platform Module

The processes TPM3 and TBR3 run in sub-protocol (S3). Firstly, the TPM obtains the
session key SK2 via the private channel. The TBR also obtains the identity of the TPM
and the session key via the private channels from TBR2.

The TPM generates a fresh random nonce and sends it to the TBR. Again, from email
discussion about the sequence of the processes, (S3) cannot run successfully before (S1)
has run. The TBR verifies the message and sends back the BD encrypted by the session
key created in the previous stage. The TPM verifies the received message and decrypts
it to retrieve the BD. In order to check protocol properties later, after the BD is received,
an event tcpgetBD() is launched.
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4.7 (S4) Sending a Matching Result

The last sub-protocol (S4) represents the transfer of a matching result on the BC and
BD from the TPM to the SC. This sub-protocol includes process TPM4 and process
SC4. We model it to check the correctness of the messages received.

The TPM acquires its certificate via the private channel. The SC creates a fresh ran-
dom number and sends it with a request. The TPM verifies the message. It then signs
the match result message and sends it to the SC. We model a match result as a fresh
value since we are not concerned with the mechanism by which the TPM carries out the
matching process. The SC will check the signature and the correctness of the message.
If it is correct, the SC may release the user’s credential to the TPM. We do not model
how the SC releases this credential since it goes beyond the definition of the protocol.

5 Analysis

As described in section 2.2, if a naive interpretation of the protocol is applied, an attack
is found. After the clarification of the protocol is introduced, we intend to analyse the
properites of the protocol to see if the result of the verification is different.

We have analysed the three properties of CPV02, effectiveness, correctness and se-
crecy, using ProVerif. All three properties of the protocol are satisfied.

Using ProVerif as a verification tool means we can model a Dolev-Yao style at-
tacker that can compose and decompose messages (provided it has relevant crypto-
graphic keys), and has full control over messages that pass over public interfaces and
networks.

In the case of the CPV02 protocol, the USB cables are considered part of the public
network, since an attacker can interfere with them. The smart card interfaces are also
considered public. A prototype device is presented in [11] that can listen to the signal
between smart card and smart card reader. This sort of device could be used by an
attacker to try to capture a user’s biometric code.

5.1 Effectiveness

The TCP will not be given either the BC or the BD unless the integrity of the TPM and
TBR has been checked by the SC.

According to the protocol, the BC is transferred from the SC to the platform, and the
BD is read from the TBR and sent to the platform; then the two are compared. To protect
the BD from a malicious attacker, the device holding this data has to be convinced that
the destination to which it will transfer the data can be trusted before the transmission
is carried out. This is done by means of integrity checks.

To analyse this property, we use the event and query command. These two commands
are used to check the correctness of sequences of events. While the event command is
used for launching an event when a certain action is executed, the query command is
used to prompt ProVerif to verify the correctness of the sequence of events that we
specify. If the sequence is not correct, an attack is identified.

In order to verify this property in ProVerif, we encode the integrity check which en-
sures that the SC is satisfied with the integrity metric of the TCP and the TBR before
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the trusted platform module receives the user’s stored biometric code and user’s sub-
mitted biometric data. The event tcpChecked() is inserted after the SC has checked the
integrity of the TCP via the TPM, and the event tcpgetBC() is inserted after the TCP
has received the BC+.

Similarly, to verify that the integrity metric of the TBR is checked by the SC before
the BD is transferred, an event tbrChecked() is launched after the SC has checked the
integrity metric of the TBR.

It should be noted that there is no direct communication between the TBR and the
SC, so the TPM is responsible for checking the integrity metric of the TBR on behalf
of the SC. To model this situation, we code it in such a way that if the TPM is satisfied
with the integrity metric of the TBR, an event tbrChecked() is triggered. The TBR then
sends the encrypted BD to the TPM. The TPM verifies the message, stores the BD, and
then an event tcpgetBD() is inserted+.

We need to check that these events are executed in the correct order, i.e. that the
TPM’s integrity metric and the TBR’s integrity metric have been examined before the
TPM receives the BD. This should be the case even in the presence of an attacker that
can control the order of the subprotocols and the messages on the network. This check
is implemented using ProVerif’s query command:

query ev: tcpgetBD()⇒ ev: tcpChecked() & ev : tbrChecked().
query ev: tcpgetBC()⇒ ev: tcpChecked() & ev : tbrChecked().

5.2 Correctness

The TBR is not given the BD until the user is satisfied with the integrity checks on both
the TCP and TBR.

This property aims to protect the BD from being read by a malicious biometric
reader, the user places her biometric data only on the biometric reader that she trusts.
This property is important because if the BD is stolen or accidentally disclosed, it can-
not be altered, replaced or regenerated.

To verify this property, we check that the biometric reader (TBR) receives the BD
after the integrity metric of the TCP and the integrity metric of the TBR have been
checked.

To achieve this, we launch an event tbrgetBD() after the BD is created in the process
TBR3+.The event would not be triggered without satisfactory integrity checking. To
check the correct order of events, we use the query command:

query ev: tbrgetBD()⇒ ev: tcpChecked() & ev : tbrChecked().

5.3 Secrecy

An unauthorised entity that can listen to a message between the SC and TCP, or between
the TBR and TCP, cannot obtain either the BC or the BD.

As we remarked in section 1, the secrecy of biometric data cannot be relied upon. The
security of a protocol should not depend on the secrecy of biometric data. Indeed, this
protocol does not depend on it, since it uses a trusted biometric reader to guard against
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disclosure. Nevertheless, it is good practice to prevent widespread dissemination, and
this property verifies that the protocol does not give an attacker easy access to that data.

To model this property we use the query command to ask ProVerif whether an at-
tacker can access the BC or the BD. The commands for this verification are

query attacker : BC.
query attacker : BD.

Using these commands to check whether the specified arguments are secret, ProVerif
will exhaustively check whether there is any way that an attacker could obtain the in-
formation, BD and BC, that we want to protect. If an attacker can obtain the data, then
a potential attack has been identified.

6 Conclusion and Future Work

We have presented a specification of the CPV02 biometric authentication protocol,
obtained after clarifying details of the protocol through email discussion with one of
the authors. We modelled the clarified protocol using the applied pi calculus and the
ProVerif verification tool. We have encoded three intended properties of the protocol,
namely effectiveness, secrecy and correctness. The positive results from the verification
show that the properties of the protocol hold.

The protocol is successfully verified against the properties. Without this clarification,
verification of one of the properties fails.

The CPV02 protocol uses trusted computing platform and involves integrity check-
ing. The trusted computing platform module is an essential part of the protocol in order
to guarantee that the components that involved in biometric authentication data can-
not be tampered by an intruder. Similar to other classical protocols, nonces are used
for checking the freshness of message received and encryption and decryption are also
used for the secrecy of message content.

In future work, we will select other protocols with different properties and verify that
they hold in a similar way. We would also like to investigate biometric authentication
protocol which can be used for unsupervised remote authentication, such as in online
banking.

Acknowledgement. Many thanks to Liqun Chen, one of the authors of [2], for detailed
email discussion, which was crucial in clarifying the protocol and our understanding
of it.
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Abstract. The first generation e-passport standard is proven to be in-
secure and prone to various attacks. To strengthen, the European Union
(EU) has proposed an Extended Access Control (EAC) mechanism for
e-passports that intends to provide better security in protecting biomet-
ric information of the e-passport bearer. But, our analysis shows, the
EU proposal fails to address many security and privacy issues that are
paramount in implementing a strong security mechanism.

In this paper we propose an on-line authentication mechanism for
electronic passports that addresses the weakness in existing implemen-
tations, of both The International Civil Aviation Organisation (ICAO)
and EU. Our proposal utilises ICAO PKI implementation, thus requiring
very little modifications to the existing infrastructure which is already
well established.

1 Introduction

Due to increased risk of terrorism, countries are adopting biometric enabled pass-
port as a preventive measure to monitor and strengthen their border security.
The ICAO, an United Nation body responsible for setting international passport
standards, established five task forces under the New Technology Working Group
(NTWG) to develop a standard for Machine Readable Travel Documents (MRTD)
[1]. The ICAO standard DOC 9303 [1] for MRTD describes a contactless smart
card microchip that conforms with ISO-14443 [2], embedded within an e-passport
booklet. The microchip duplicates the information that appears on an passport’s
bio-data page and which is recorded in the Machine Readable Zone (MRZ). The
e-passport standard provides details about establishing a secure communication
between an e-passport and an Inspection System (IS), authentication of an e-
passport, details on storage mechanism and biometric identifiers that should be
used.

Ari Juels, et al. [3] presented some security and privacy issues that apply to the
first generation e-passports. The authors express concerns regarding the fact that
the contactless chip embedded in an e-passport allows the e-passport contents to
be read without direct contact with an Inspection System (IS) and, importantly,
with the e-passport booklet closed. The authors also raise concerns as to whether
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data on the chip could therefore be covertly collected by means of “skimming”
or “eavesdropping”. Because of low entropy, the key would be also vulnerable to
brute force attacks as demonstrated by [4]. The risk of eavesdropping is increased
by the surveillance environment in which border checks occur, particularly, as
the border control becomes more and more automated (as discussed in [5]), this
will ultimately assist in a covert collection of e-passport data. Kc and Karger [6]
presented the “splicing attack”, “fake finger attack” and other attacks that can
be carried out when an e-passport bearer presents the passport to hotel clerks.

In [7], V. Pasupathinathan et al. made a formal analysis and found that the
e-passport protocol does not satisfy security goals for data origin authentication
as it can be subject to replay and grandmaster chess attacks, and the weakness
can be exploited in cases where problems with facial biometric exists. They also
pointed out that data confidentiality is also compromised when an attacker is able
to obtain encryption and MAC keys stored in the e-passport chip using informa-
tion stored in MRZ. They were able to formally verify and prove that security goals
like, mutual authentication, key freshness and key integrity are also not satisfied.

To address these concerns the NTWG has planned further discussions in 2007
about standardising the next generation of e-passports that will support Ex-
tended Access Control (EAC), which is based on EU’s proposal [8] for EAC.
A primary goal of EAC is to provide mutual authentication (in particular,
authentication of IS) and additional security for biometrics. The first genera-
tion e-passports have a single biometric identifier, based on the facial biometric,
whereas the second generation will include both finger prints and iris scan bio-
metric identifiers.

This paper analyses the security features of the current proposal for EAC,
identifies its weaknesses and proposes an alternative mechanism. We believe
that, EAC proposal fails to provide adequate security and has introduced secu-
rity weaknesses and implementation issues on its own. Our proposed solution
addresses the drawbacks in the current EU EAC proposal and provides the fol-
lowing enhanced security features: (1) prevention of biometric information being
released to a malicious IS in possession of MRZ details, (2) enhancement of
communication security between an e-passport and a IS, (3) protection against
passport skimming and (4) reduction of PKI implementation.

1.1 Organisation

In Section 2 we provide a brief overview of EAC protocol and highlight some
security issues and weaknesses in proposed authentication mechanisms. In Sec-
tion 3, we propose our protocol for EAC that covers the entire e-passport protocol
suite. In Section 4, we provide a security analysis of our proposed system and
finally, Section 5 concludes our work.

2 EU Extended Access Control

EU has issued an e-passport specification [8] for EAC and is intended to re-
strict access to secondary biometric identifiers like finger prints and iris scans.
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Fig. 1. EAC PKI

The guideline is based on authentication techniques proposed by D. Klüger from
Federal Office for Information Security (BSI) [9,10]. Klüger proposed two proto-
cols, Chip Authentication (CA) and Terminal Authentication (TA). His proposal
also included modifications to the existing PKI. Country Signing Certification
Authority (CSCA) is required to certify Document Verifiers (DV) in other coun-
tries which in turn certifies Inspection Systems (IS) present at a country’s border
security checkpoint. Figure 1 provides an overview of the modified PKI hierarchy.

2.1 E-Passport Operation with EAC

The EU EAC proposal for e-passports involves the following four protocols:

1. An e-passport bearer presents his/her document to a border security officer
who scans the MRZ on the e-passport through a MRZ reader and then places
the e-passport near an IS to fetch data from the chip. The e-passport and
the IS establish an encrypted communication channel by executing the Basic
Access Control (BAC) protocol (described in Appendix A).

2. The IS and the e-passport then perform a mandatory chip authentication.
3. The chip authentication is followed by passive authentication as in the first

generation passport (described in Appendix A).
4. Terminal authentication.

Only if all protocols are completed successfully, the e-passport releases sensitive
information like secondary biometric identifiers. If an IS does not support EU
EAC, the e-passport performs the collection of protocols as specified in the first
generation e-passports.

2.2 Chip Authentication (CA)

Chip Authentication protocol is a mandatory EU EAC mechanism that replaces
active authentication proposed in the first generation e-passports. It involves
a Diffie-Hellman key agreement and is followed by passive authentication. It is
performed after a successful BAC and provides both an authentication of the
chip and generation of a session key. The chip sends its public key (PKchip) and its
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Chip IS
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Fig. 2. Chip Authentication

domain parameters (Dchip) to IS. IS then generates an ephemeral D-H key pair
(SK′R,PK′R) using the same domain parameters and sends the newly generated
public key to the chip. Both the chip and IS derive a new session key K. The
chip authentication is immediately followed by a passive authentication. This
allows IS to verify whether PKchip is genuine.

2.3 Terminal Authentication (TA)

Terminal Authentication is also a mandatory EU EAC mechanism that involves
a two-pass challenge-response protocol and allows the chip to authenticate an
IS. TA is only carried out after a successful run of chip authentication and
passive authentication as it provides only an unilateral authentication of IS.
During TA, the IS is required to send a certificate chain (CERTIS〈〉, CERTDV 〈〉,
CERTCV CAH 〈〉). The certificate CERTCV CAH 〈〉 represents a certificate issued by
the e-passport’s home country’s CA, which is also stored in the e-passport. The

Chip IS
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RndC−−−−−−−−−−−−−→
z = IDChip||RndC ||H(PK′

R)
sR = SIGNSK′

R
〈z〉

sR←−−−−−−−−−−−−−
VERIFYPK′

R
〈sR〉

Fig. 3. Terminal Authentication
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chain indicates that the visiting country’s IS is certified by a visiting country’s
Document Verifier (DV), which in turn is certified by a e-passport’s home coun-
try CVCA. After a certificate chain is validated by the e-passport, it sends a
challenge to IS. IS responds with a digitally signed message that contains the
received challenge, the IS’s ephemeral public key used in the chip authentication
and e-passport ID (IDchip), where, IDchip is the document ID obtained from
the e-passport’s MRZ. The e-passport verifies the signature received and if the
verification holds then it has successfully authenticated IS.

2.4 Security Issues in Second Generation E-Passports

EU proposal for EAC in e-passports provides much better security compared
to the first generation e-passports. Nevertheless, EAC proposal still relies on
BAC to derive the initial session key needed to access e-passport bearer’s details
including their facial biometric. Because of the inherent weaknesses of BAC as
previously described (e.g. keys that have insufficient entropy), the EAC proposal
also suffers from the same weaknesses.

EAC proposal makes extensive use of PKI. Both chip and terminal authenti-
cation protocols requires verification of certificates that invovles the entire cer-
tification hierarchy. The e-passport initially contains the root level certificate
(CERTCV CAH 〈〉 ) that was written by its document verifier at the time of issue. As
the e-passport chips are time-less devices, i.e they do not have any internal clock,
this makes them vulnerable to attacks using expired certificates. Klüger [9,10]
acknowledges this vulnerability and proposed that the e-passport should write
CERTCV CAH 〈〉 with the latest certificate it obtains when it performs a terminal
authentication with a visiting country’s IS. During the first run of terminal au-
thentication the time of expiry of CERTCV CAH 〈〉 that was initially written is used
as a reference time to validate visiting country’s IS certificate and after a success-
ful run of the protocol the e-passport will store the CERTCV CAH 〈〉 that is present
in the certificate chain received from an IS. But, the protocol is still vulnerable
to attacks using expired IS certificates. Validity of IS certificates are considerably
shorter when compared to CVCA certificates. A compromised IS even if its cer-
tificate was expired would still be able to authenticate itself to an e-passport and
obtain access to sensitive e-passport information including finger prints and iris
scans, that were intended to be protected by EAC. The attack is more effective
for infrequently used e-passports, because they have only the initially written
CERTCV CAH 〈〉 which themselves may be expired. As the e-passport uses the time
on CERTCV CAH 〈〉 as a reference point, it would accept any certificate, as long as
its validity is before the current reference time recorded on the e-passport.

The approach of sending certificate chains can also lead to a Denial-of-Service
(DOS) attack on an e-passport. Since an IS terminal is not authenticated during
or before chip authentication, a malicious terminal could flood the chip by send-
ing lots of public keys and certificates. Because of the limited memory that is
available in an e-passport chip, the chip could run out of memory and essentially
stopping the chip from functioning in a desired manner.
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The EAC proposal also has some new weaknesses. The e-passport should now
have write access to the chip, to update its CERTCV CAH 〈〉. This could be used
by an illegitimate e-passport bearer to update the chip with false information.
The EAC proposal does not specify how write access would be controlled by
the chip. Another drawback of EAC proposal is the cross certification among
countries. Every country implementing EAC would be required to certificate
other country’s document verifiers. That essentially means that each document
verifier that certifies IS will need to be certified by CSVA of every participating
country. EAC recommends the validity of document verifier certificates be one
third of CVCA certificate’s validity period. This becomes an extremely complex
undertaking for each country, with respect to certifying other participating coun-
try’s document verifiers and maintenance of revocation lists. EAC also does not
address Grandmaster Chess Attack [11] to which the first generation passports
were vulnerable to. The BAC protocol is used only to form a session key for an
encrypted communication channel between a chip and IS and does not provide
authentication. Therefore the chip establishes a session key even though it is not
sure if IS is genuine. EU EAC also does not provide any guarantees regarding
freshness or origin of messages.

There are also concerns regarding privacy of the e-passport bearer. The chip
sends its identification details (public key) during CA, even before it has authen-
ticated the IS. Therefore, this would make very easy for an attacker to track an
e-passport bearer, as an attacker is not required to authenticate to an e-passport
before obtaining details from an e-passport. H. Scherzer et al. from IBM devel-
oped a secure operating system called Caernarvon [12] for smart cards. In the
Caernarvon protocol a smart card reader authenticates itself to a smart card chip
using its public key first and then engages in the Diffie-Hellman key agreement to
form a session key. This makes the Caernarvon protocol more secure compared
to the current implementation in EAC, but the Caernarvon protocol shares the
same weaknesses EAC has with certificate verification as discussed above.

3 On-Line Secure E-Passport Protocol (OSEP Protocol)

In this section we present an on-line secure e-passport protocol. An on-line au-
thentication system for e-passport is similar to the current e-passport system
(or as in the standard non-electronic passport). Currently, most security or-
ganisations are involved in passive monitoring of border security checkpoints.
When a passport bearer is validated at a border security checkpoint, the bearers
details are collected and entered into a database. The security organisation com-
pares this databases against the databases of known offenders (e.g. terrorists and
wanted criminals). The OSEP protocol changes this to an active monitoring sys-
tem. The border security check-point or the DV can now cross check against the
database of known offenders, simplifying the process of identification of criminals.

Our proposal provides the following security features:

– An e-passport discloses its information stored on the chip only after a suc-
cessful authentication of IS. This prevents revealing e-passports identity to a
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third party that is not authorised or cannot be authenticated. This prevents
covert collection of e-passport data from ”skimming” or ”eavesdropping” at-
tacks that were very effective against both the ICAO e-passport and the EU
EAC standards.

– The OSEP protocol provides proof of freshness and authenticity for messages
between participating entities.

– The OSEP protocol uses existing ICAO PKI implementation (first genera-
tion passports) and eliminates the need for cross certification among partic-
ipating countries as required by EU EAC (second generation passports).

– The OSEP protocol eliminates the need for certificate chain verification by
an e-passport. Only the top level certificate (CVCA) is required to be stored
in an e-passport chip, reducing memory requirements and thus prevents a
malicious reader from performing a DOS attack on an e-passport.

– The OSEP protocol also requires an IS to provide proof of correctness for
public key parameters to an e-passport. This allows an e-passport to verify
that an IS is using correct domain parameters and to prevent related attacks
[13,14].

3.1 Initial Setup

All entities involved in the protocol share the public quantities p, q, g where:

– p is the modulus, a prime number of the order 1024 bits or more.
– q is a prime number in the range of 159-160 bits, such that q|(p− 1).
– g is a generator of order q, where ∀i < q, gi �= 1 mod p.
– Each entity has its own public key and private key pair (PKi,SKi), where

PKi = g(SKi) mod p
– Entity i’s public key (PKi) is certified by its root certification authority (j)

and is represented as CERTj〈PKi, i〉.
– Public parameters p, q, g used by an e-passport are also certified by its root

certification authority.

3.2 Phase One - IS Authentication (ISA)

Step 1 (IS): When an e-passport is presented to an IS, the IS reads MRZ
information using an MRZ reader and issues the smart card command GET
CHALLENGE to the e-passport chip.

Step 2 (C): The e-passport chip then generates a random c ∈R 1 ≤ c ≤ q − 1
and computes Kc = gc mod p, playing its part in the key agreement process
to establish a session key. Chip replies to the GET CHALLENGE command
by sending Kc and its domain parameters p, q, g.

C −→ IS : Kc, p, q, g

Step 3 (IS): On receiving the response from the chip, the IS generates a ran-
dom is ∈R 1 ≤ is ≤ q − 1 and computes its part of the session key as Kis

= gis mod p. IS digitally signs the message containing MRZ value of the
e-passport and Kc.
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SIS = SIGNSKIS 〈MRZ‖Kc〉
It then contacts the nearest DV of the e-passports issuing country and ob-
tains its public key. IS encrypts and sends its signature SIS along with
e-passports MRZ information and Kc using DV’s public key PKDV .

IS −→ DV : ENCPKDV 〈SIS , MRZ, Kc〉, CERTCVCA〈PKIS , IS〉
Step 4 (DV): DV decrypts the message received from IS and verifies

CERTCVCA〈PKIS , IS〉 and the signature SIS . If the verification holds, DV
knows that IS is genuine and creates a digitally signed message SDV to
prove IS’s authenticity to the e-passport.

SDV = SIGNSKDV 〈MRZ‖Kc‖PKIS〉, CERTCV CA〈PKDV ,DV〉
DV encrypts and sends the signature SDV using the public key PKIS of IS.

DV −→ IS : ENCPKIS 〈SDV , [PKChip]〉
DV may choose to send the public key of the chip if required. This has an
obvious advantage, because the IS system now trusts DV to be genuine,
it can obtain a copy of e-passport chip’s PK to verify during E-passport
authentication.

Step 5 (IS): IS on decrypting the message received, computes the session key
Kcis = (Kc)is and encrypts the signature received from DV, the e-passport
MRZ information and Kc using Kcis. It also digitally signs its part of the
session key Kis.

IS −→ C : Kis, SIGNSKIS 〈Kis, p, q, g〉, ENCKcis〈SDV , MRZ, Kc〉
Step 6 C: The chip on receiving the message from IS computes the session key

Kcis = (Kis)
c. It decrypts the message received using the session key and

verifies signature SDV and VERIFYPKIS 〈SIGNSKIS 〈Kis, p, q, g〉〉. On successful
verification, the chip is convinced that the IS system is genuine and can
proceed further in releasing its details. All further communication between
an e-passport and IS is encrypted using the session key Kcis

3.3 Phase Two - E-Passport Authentication (EPA)

Step 1 C: The IS issues an INTERNAL AUTHENTICATE command to the
e-passport. The e-passport on receiving the command creates a signature SC
= SIGNSKchip

〈MRZ‖Kcis〉 and sends its domain parameter certificate to IS.
The entire message is encrypted using the session key Kcis.

C −→ IS : ENCKcis〈SC , CERTDV 〈PKC〉, CERTDV 〈p, q, g〉〉
Step 2 (IS): IS decrypts the message and verifies CERTDV 〈p, q, g〉,

CERTDV 〈PKC〉 and SC . If all three verification holds then IS is convinced
that the e-passport is genuine and authentic.
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During ISA, IS sends the e-passports MRZ information to the nearest e-
passport’s DV, which could be an e-passport country’s embassy. Embassies are
DV’s as they are allowed to issue e-passport to their citizens and as most em-
bassies are located within an IS’s home country, network connection issues will
be minimal.

Sending MRZ information is also advantageous, as the embassy now has a list of
all its citizens who have passed through a visiting country’s border security check-
point. We do not see any privacy implications, because, most countries require
their citizen to register at embassies when they are visiting a foreign country.

4 Analysis of E-Passport Scheme

In this section we identify important security goals required in an e-passport
protocol and perform a security analysis of our proposed OSEP protocol.

4.1 Requirement Analysis

The two most important requirements for border security are,:identification of
the passport bearer and authentication of the passport data. Due to the digital
nature of data stored in an e-passport, it is easy for the data to be copied
or modified. An e-passport protocol will need to address security requirements
that will affect electronic data storage and transmission. The references [9,1]
provided a brief overview of security goals for e-passports. The description in the
references was limited and did not consider goals that are essential in the analysis
of cryptographic protocols. Our security goals for an e-passport system are:

Goal 1 Identification: After a successful completion of an e-passport protocol,
both an e-passport and IS must obtain guarantees (unforgeable proof) of the
other party’s identity.

Goal 2 Authenticity: After a successful completion of an e-passport protocol,
both an e-passport and IS must be sure about authenticity of messages
received during the conversation with each other, and should also have an
undeniable proof of the origin of messages.

Goal 3 Data confidentiality: Data confidentiality during an e-passport protocol
run is guaranteed by the security of session key agreed between an e-passport
and IS, therefore, if the e-passport completes a single protocol run with the
view that it has negotiated a session key K with IS, then the e-passport is
guaranteed that no other third-party has learnt key K and if IS completes
the protocol run then it associates the key K with the e-passport. Data
confidentiality of information stored in the e-passport chip is not considered
as it is protocol independent, but is necessary for an e-passport protocol to
detect if information was tampered, which is provided by our integrity goal.

Goal 4 Integrity: Integrity of data in an e-passport chip is guaranteed by
signatures, therefore, in a run of an e-passport protocol, if an IS successfully
verifies and validates signatures on messages from the e-passport, then the



An On-Line Secure E-Passport Protocol 23

IS obtains guarantee about information held in the e-passport chip has not
been modified by any third party or the e-passport bearer after chip’s ini-
tialisation by DS.

Goal 5 Privacy: In every run of an e-passport protocol, the e-passport bearer
is assured that, his/her e-passport’s digital identity is revealed only to an
authenticated IS involved in the current protocol run.

Goal 6 Session key security: Both entities, an e-passport and IS have proof
that, each run of the e-passport protocol is unique and compromise of long
term keys does not compromise session keys derived in the previous protocol
runs.

4.2 Security Analysis of the OSEP Protocol

In this section we present a brief security analysis of the OSEP protocol. We first
list our assumptions and then our claims about the OSEP protocol’s security
that corresponds to our security goals described in Section §4.1.

Assumptions

– In the OSEP protocol both an e-passport and IS instantiate a non-concurrent
protocol run (session) between them, whereas session connections between
IS and DV may run concurrently.

– IS is always the initiator of a protocol run and an e-passport is always the
responder.

– The underlying security for Diffie-Hellman (DH) key exchange, the Deci-
sional Diffie-Hellman (DDH) assumption holds.

– Cryptographic primitives like, symmetric and public key encryption, digital
signatures, message authentication codes and hash functions are secure under
the standard security notions.

Lemma 1. If the encryption scheme used in the protocol is secure against the
CCA2 attack then at the end of the OSEP protocol, both C and IS will complete
matching sessions and get the same session key.

Proof (Sketch): Since the signature algorithm is secure against existential forgery
under the adaptive chosen-message attack (by assumption), the MRZ informa-
tion along with randomness of Kc and Kis guarantees the freshness of the mes-
sage and binds the message with the two communicating parties. Therefore an
attacker cannot forge or modify a message. For an attacker to forge or modify a
message that is acceptable by IS or C, he would need to forge the signature on
SIGNSKIS

〈Ki, p, q, g〉 in phase 1, step 5 or forge the signature on SC in phase 2,
step 1. This contradicts our assumptions.

Furthermore, the digital signature by C contains the freshly generated session
key Kcis. This prevents replay of messages from a previous run by an adversary
who is not able to to generate signatures on both Kc and Kcis. 
�
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Theorem 1. The protocol provided in Section 3 is SK-secure if the encryption
scheme used is secure against the CCA2 attack.

Proof. In order to prove our protocol is SK-secure [15], we have to prove that
C and IS get the same session key after they complete matching sessions and
that an adversary cannot distinguish the session key Kcis from a random value
with a non-negligible advantage. The former directly follows Lemma 1 and the
following lemma provides proof for later.

Lemma 2. Assuming DDH and the signature scheme is secure, then an attacker
cannot distinguish the session key Kcis from a random value with a non-negligible
advantage.

Proof (Sketch): The proof is by contradiction. Lets assume that an attacker
can distinguish the session key Kcis from a random value with a non-negligible
advantage η. In the C-K model [15], the key exchange attacker is not permitted
to corrupt the test session or its matching session, so an attacker cannot directly
get the session key Kcis from an attack on the OSEP protocol. Therefore, the
attacker has two possible method to distinguish Kcis from a random value.

– The attacker learns the session key Kcis.
– The attacker successfully establishes a session (other than a test or its match-

ing session) that has the same session key as the test session.

The first methods means that given g, gc, gis, gα, the attacker is able to
distinguish α = Kcis from random. This contradicts our DDH assumption. For
the second method, there are two strategies an attacker can take. (A) After C
and IS complete the matching sessions, the attacker establishes a new session
with either C or IS. But this session key will be not the same as Kcis as the
values c and is are chosen randomly by C or IS. (B) The attacker intervenes
during the run of the protocol and makes C and IS get the same session key but
not complete matching sessions. But this is not feasible according to Lemma 1
and we know that an attacker cannot succeed. 
�

Thus from Lemma 1 and Lemma 2, we know that C and IS will get the same
session key after the completion of matching sessions and the attacker cannot
distinguish the session key from a random value with a non-negligible advantage.
In accordance with definition of SK-security [15](Definition 1) the OSEP is SK-
secure.

Theorem 2. The OSEP protocol provides undeniable proof of identification of
both C and IS.

Proof (Sketch): The message sent to C by IS in Step 5 of ISA includes the
values, SDV , MRZ and Kc. The signed message SDV contains public key of IS
verified by DV , so it is sufficient for C to verify SDV to successfully identify IS
as genuine.
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An adversary wishing to falsely identify of IS will need to forge SDV . SDV can
be only generated with a valid DV’s secret key (SKDV). The adversary cannot
forge SDV as he does not know SKDV .

An adversary who does not have Kcis and SKC , will not be able to identify
as a genuine C, because, in EPA C is required to digitally sign its MRZ and
the freshly generated session key Kcis. Therefore, the OSEP protocol provides
non-repudiable proof of identity for both IS and C. 
�

Remark 1. The strict privacy requirement is, the e-passport protocol guaran-
tees no information about an e-passport bearer is available to any unauthorised
entities and the relaxed privacy requirement is, when the e-passport protocol
guarantees that digital identity or biometric information of an e-passport bearer
is not be available to any unauthorised entities. The OSEP protocol provides
partial forward secrecy under the strict privacy requirement as loss of the long-
term secret key of both IS and DV will reveal the MRZ information of an
e-passport. But, compromise of long term key does not compromise the previous
session keys established. Also, any loss of session key in the previous protocol
does not compromise future runs of an e-passport protocol. Thus under the re-
laxed privacy requirement, the OSEP protocol provides perfect forward secrecy.

In addition, in the OSEP protocol, an e-passport bearer is sure about protection
of his/her digital identity against an unauthenticated IS and unknown adver-
saries as the digital identity of an e-passport bearer PKC is revealed only in the
step one of EPA. EPA follows a successful ISA, therefore C is also sure about
the IS identity. The digital identity is also protected from any adversary eaves-
dropping on the communication as it is encrypted using the fresh secure session
key established during ISA.

The OSEP protocol also provides tamper detectable integrity check for data
in an e-passport’s chip. Integrity of e-passport data provided in OSEP is similar
to what was provided by both first generation and second generation passports.
The data stored in an e-passport’s chip is hashed and digitally signed by the
e-passport’s DS at the time of initialisation. Therefore as a consequence of the
assumption four, that hash functions and digital signatures are secure, the OSEP
protocol provides integrity verification. An adversary wishing to authenticate
modified data will need to forge the digital signature of DS on the hash values.
This is infeasible as the adversary does not know the DS’s private key SKDS .

To summarise, OSEP is a simple and efficient protocol. Its main advantages
are that it not only protects the chip’s data during communication from an
eavesdropper, but also restricts access to an unauthenticated IS. The protocol
requires very little modification to existing PKI implemented by the first gener-
ation e-passport standard. A disadvantage of the OSEP protocol is, its on-line
nature of authentication mechanism. IS is required to contact the e-passport
countries DV and authenticate itself before it can continue communication with
an e-passport. This process might incur some delay, but we expect this delay
to be minimal as the communication between IS and DV will be through a
high-speed network.
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5 Conclusion

Security techniques implemented in both the first and second generation of e-
passports do not adequately protect an e-passport bearer. The first generation
e-passport standard is vulnerable to brute force attacks because session keys
generated have a very low entropy. The second generation e-passport proposal
requires extensive modifications to exiting infrastructure and it still relies on
the first generation standards to provide a secure connection to protect primary
biometric identifiers. Both the standard have ignored the need to protect e-
passports details during setting up a communication, which makes the e-passport
bearer vulnerable to identity theft and covert surveillance.

We have presented an on-line e-passport protocol that addresses many weak-
nesses in both the first and second generation e-passport protocols. Our proposal
also offers significant security advantages. The security measures will make an
e-passport extremely hard for a malicious user to authenticate as a genuine e-
passport bearer or as an IS. The proposed protocol also protects the details of an
e-passport bearer from an unauthorised IS thus reducing the threat of identity
theft. The OSEP protocol also uses existing PKI infrastructure in place for the
first generation e-passport standard and eliminates the need for sending certifi-
cate chain as proposed in the second generation e-passport standard, making an
e-passport in OSEP protocol less vulnerable to DOS based attacks. Electronic
passports are an important step in the right direction. They enable countries
to digitise their security at the border control and provide faster and safer pro-
cessing of an e-passport bearer. The OSEP protocol strengthens this process by
providing an enhanced e-passport security measure.
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10. Kügler, D.: Adavance security mechanisms for machine readable travel documents.
Technical report, Federal Office for Information Security (BSI), Germany (2005)

11. Desmedt, Y., Goutier, C., Bengio, S.: Special uses and abuses of the fiat-shamir
passport protocol. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp.
21–39. Springer, Heidelberg (1988)

12. Scherzer, H., Canetti, R., Karger, P.A., Krawczyk, H., Rabin, T., Toll, D.C.:
Authenticating mandatory access controls and preserving privacy for a high-
assurance smart card. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003.
LNCS, vol. 2808, pp. 181–200. Springer, Heidelberg (2003)

13. Wiemers, A.: Kommentare zu application interface for smart cards used as secure
signature creation device, part 1 - basic requirements. Technical Report Version
0.14, Bonn, Germany (2003)

14. ANSI: Public key cryptography for the financial services industry, key aggreement
and key transport using elliptic curve cryptography. Technical report, American
National Standards Institute (ANSI 2001) (2001)

15. Canetti, R., Krawczyk, H.: Analysis of key exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

A Basic Access Control and Passive Authentication

Basic access control is an optional security mechanism that uses ISO 11770-2
Key Establishment Mechanism 6 to form a secure channel between IS and a
chip. The protocol uses two secret keys (KENC , KMAC) that are stored in a
chip. IS derives both these keys using scanable data present in MRZ, namely
passport number, date of birth of the passport bearer, date of passport validity
and check digits for those values. The three pass challenge-response protocol
is initiated by IS which requests a challenge from the chip. On receiving the
challenge (RndC2) IS creates a checksum according to ISO/IEC 9797-1 MAC
algorithm 3 over the cipher text that contains IS’s response to chip’s challenge
RndR2 and keying material KR. The chip on obtaining IS’s response creates a
checksum that includes its keying material KC . Both IS and the chip verify the
MAC obtained and decrypt the message to reveal both keying materials, to form
the “key seed” Kseed. Kseed is used to derive a shared session key using the key
derivation algorithm described in [1] (Appendix 5). Passive authentication (PA)
provides only a basic level of security, as it is still vulnerable to skimming and
eavesdropping attacks. PA is used to verify the integrity and to authenticate data
stored in an e-passport. The e-passport bearer information is digitally signed by
DS (Documemnt Signer) and verified by IS during PA.



28 V. Pasupathinathan, J. Pieprzyk, and H. Wang

Chip IS
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Fig. 4. Basic Access Control and Passive Authentication
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Abstract. A digital multi-coupon is similar to a paper-based booklet containing
k coupons that can be purchased from one vendor and later redeemed at a vendor
in exchange for services. Current schemes, offering privacy-protection and strong
security properties such as unsplittability of multi-coupons, address business sce-
narios with a single vendor and multiple customers, and require customers to
redeem coupons in some fixed order.

In this paper, we propose a multi-coupon scheme for federated environments
that preserves the security and privacy properties of existing schemes, as well
as their asymptotic communication and computation complexity. We define a
generic formal security model and show that our scheme meets the formal re-
quirements of this framework. Moreover, in contrast to previous solutions, we
allow customers to redeem their coupons in an arbitrary order.

Keywords: coupons, privacy, unlinkability, unsplittability, payment system, loy-
alty, federation.

1 Introduction

Coupons are the basis for successful business models and are widely used in practice.
Companies distribute (paper-based) coupons to customers for various marketing pur-
poses, like encouraging loyalty, providing discounts, setting up prepayment models,
and attracting new customers. A special variant are coupon booklets, where all coupons
are contained in a booklet and are only valid as long as they are attached to the booklet.
This ensures a property we call unsplittability: the single coupons cannot be redeemed
autonomously; instead, they can only be shared among customers by giving away the
entire booklet each time a coupon is spent.

We call coupon booklets (and their electronic equivalents) multi-coupons (MCs).
A vendor provides a customer with a new multi-coupon in the issue procedure. The
customer can then use the coupons from this multi-coupon in the redeem procedure
to pay the vendor. During redemption, the vendor verifies that the coupon is valid and
authentic, and provides the customer with the specified good or service. Each coupon
in a multi-coupon can be used only once. In the following, we denote by object the
good or service implied by a coupon. Any item that can be bought may become an
object in practice, e.g., clothes, songs, books, videos, tickets, and even services, such as
discounts, access to computer resources, etc.
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Multi-Coupons in a Vendor Federation. Until now, multi-coupons were proposed in
use cases with a single vendor. Hence, one approach to make MCs more user-friendly
is to make them usable in a more general scenario, where a federation of vendors is
involved. For instance, consider a cooperation between transportation companies, dif-
ferent cultural institutions, restaurants, and shops offering joint coupons to tourists who
can then visit any of the indicated places of interest, eat at the participating restaurants,
and buy goods from the listed shops at discount prices. Note that paper-based variants
of such cooperations exist in many cities (e.g., [1,2,3]) and enjoy popularity. The gen-
eral case is that tourists buy a special card which is accompanied with coupons offering
discounts. This card should be presented prior to using any of the coupons (i.e., coupons
are unsplittable).

Obviously, it would be more convenient if a tourist could buy the MC at any in-
volved vendor and would not be forced to go to a central place like the tourist infor-
mation. A trivial solution could be to connect each vendor to one central server which
issues the electronic MCs, but more intelligent solutions which allow the vendors to act
autonomously as much as possible are certainly preferrable. Moreover, there might be
several competing vendors in the federation that provide the same service, e.g., differ-
ent restaurants, where a customer could get a meal at a reduced price. In such cases, it
might be desirable that the vendor who actually provided the service – e.g., the restau-
rant which served the meal – obtains money for it. In our scheme, a vendor can prove
that a customer redeemed a coupon to him, and hence he could charge the coupon issuer.

We remark that the above scenario is just a use case where a digital multi-coupon
scheme maintained by a federation of vendors would be of potential interest, and that
the scheme designed in this paper is general and could be employed in different business
models through the specification of its object types.

Electronic multi-coupon schemes (MCSs) are in several ways superior to paper-based
schemes. Despite the lower production costs and the possibility to buy and generate them
over the Internet, they enable finer business models tailored to the different types of cus-
tomers. However, new and specific security considerations need to be taken into account.

Security and Privacy Considerations. In contrast to paper-based coupon booklets, it
is very easy to create a perfect copy of an electronic MC. Further, when dealing with
an MCS, we must also consider attacks in which different users collude and attempt
to cheat on vendors. Moreover, privacy and anonymity of customers become more im-
portant since the vendor may try to infer and store additional information about them
including purchase habits, gender, age, etc. This would harm privacy and allow client
profiling and price discrimination [17]. For optimal user privacy, vendors should not be
able to link different transactions to one user (i.e., unlinkability should be provided).

Unforgeability and unsplittability are essential properties of an MCS (see [8,10,15]).
The users should not be able to forge coupons or share (“split”) an MC in such a way
that several users can spend coupons from one MC independently. In the literature, weak
unsplittability (also called all-or-nothing sharing) has been proposed (see, e.g., [10]): a
user who wants to share a single coupon with someone else has to share the entire MC
and all the secret data associated with that MC. Our scheme fulfills a stronger definition,
called unsplittability (cf. [11]): If two users share coupons from an MC, then if one of
them redeems, the second one cannot redeem any coupon from the same MC without
interaction with the first user, even if both users know the entire secret data. To support
business models where the vendor which provides the user with a service can charge
money from the issuer of the coupon, additional requirements must be met. During the



Secure Multi-Coupons for Federated Environments 31

redemption protocol, the issuer of the coupon must be identifiable, and other vendors
must be protected from being incorrectly held responsible for issuing this coupon. In
Section 3, we actually define two requirements, framing resistance (the requirement of
the issuer) and claimability (the requirement of the redeeming vendor).

Although payment issues are important for the deployment of an MCS in practice,
they cannot be completely solved by cryptographic techniques. Hence, these issues are
out of scope of this paper. Here, we assume that it suffices that a judge can execute an
algorithm Claim to verify that a coupon, issued by a given issuer, has been redeemed
to a given vendor.

Contribution. We introduce a new multi-coupon scheme deployable for a federation
of vendors. Our scheme provides unlinkability, unsplittability, unforgeability, framing
resistance and claimability. We introduce a formal security framework with definitions
of these properties in which we prove the security of our scheme.

Previous MCSs suffer from the problem that they either do not provide unsplittabil-
ity, or all the coupons in a multi-coupon have to be redeemed in sequential order (fixed
during issue). If an MCS is to be used with a federation of vendors, such a restriction
can be a strong limitation: imagine that the vendors want to offer an MC with coupons
for different types of goods. In that case, customers certainly would want to decide
themselves in which order they want to redeem their coupons. Hence, we need a non-
sequential MCS, where the coupons can be redeemed in arbitrary order. However, the
scheme of [11] offers nice features that we want to retain, in particular, coupon objects.
These allow to have different types of coupons in one MC. We improve and extend this
scheme in two important aspects: our scheme can be used by a group of vendors, which
also introduces new security requirements. Moreover, we do not require the order of
redemption of the single coupons to be fixed when the MC is issued. Furthermore, MCs
can be created and issued offline without any connection to the vendors at which the
coupons can be redeemed. For instance, this allows in practice to install a variety of
selling booths in the tourist card example mentioned above.

Redeem complexity (both computation and communication) is constant w.r.t. the size
k of the MC (i.e., the number of coupons it contains), and complexity of the protocol for
issuing MCs is linear in k, which is the best we can get when each coupon has individual
attributes (like coupon objects). If all coupons in an MC are the same (i.e., no coupon
objects are used), ideas from [6] can be used to further reduce the complexity.

Organization. First, we give an overview of our scheme, define general multi-coupon
schemes and describe our realization in Section 2. In Section 3, we give a formal frame-
work with game-based formal definitions of the requirements, and provide sketches for
security proofs. We discuss related work in Section 4. Finally, we conclude our article
in Section 5. Further details can be found in the extended version.1

2 Our Federated Multi-Coupon Scheme

2.1 Informal Description of a Multi-Coupon’s Lifecycle

In our scheme, a group of vendors V with common databases DB ,DB ′ (trusted by the
vendors) executes protocols with users U to issue and redeem coupons. The databases

1 See http://www.trust.rub.de/home/publications

http://www.trust.rub.de/home/publications
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are used only during the redeem protocol. A multi-coupon M contains k individual
coupons, which include, among other information, a coupon identifier id . The coupons
are all cryptographically tied to M , which has an MC identifier mid and a freshness
identifier fid . To simplify the description below, we temporarily omit coupon objects
ob and the MC identifier mid .

In the Issue protocol, a user U obtains an MC from a vendor V with one signature
on each individual coupon, and one signature validating the freshness fid , signed by the
issuing vendor V . The signatures on the individual coupons (on id ) prevent U from
forging coupons, whereas the signature on the MC (on fid ) ensures its freshness, which
is used to prevent splitting.

In the Redeem protocol, the user U redeems a single coupon from an MC to a ven-
dor V ′. For this, he has to prove knowledge of a signature on the single coupon and that
the MC is fresh. Double redemption of coupons is prevented by the vendor V ′ through
a lookup in a central database DB of coupon identifiers. Similarly, V ′ queries the cen-
tral database DB ′ of freshness IDs to verify the freshness of the MC. If the current
coupon id and freshness ID fid have not already been used, then they are inserted into
the corresponding database. Afterwards, the database DB sends a signature certDB

to the vendor V ′ certifying that V ′ is responsible for the redemption of this coupon.
V ′ will need this signature as an evidence to charge the coupon issuer. At the end of
Redeem, a new fid is generated and signed by V ′, so that this protocol can be executed
repeatedly, as long as there are coupons left in the MC.

After redemption, the Claim algorithm can be executed by any party to verify that a
user redeemed a coupon originally issued by a vendor V to a vendor V ′, and thus, that
V ′ is entitled to charge V for the corresponding coupon. The input to this algorithm
is the coupon ID id , a (non-interactive) proof of knowledge of a signature on id , and
the certificate certDB given by DB to V ′ during Redeem. The certificate is used to
prevent double charging. Note that the databases do not participate in this algorithm.

2.2 Components of a General Federated MCS

Basic Notation. For a finite set S, s ∈R S denotes the assignment of an element sam-
pled uniformly from S to the variable s. Let AlgA be a probabilistic algorithm. By
outA ← AlgA(inA) we denote that the variable outA is assigned the output of AlgA’s
execution on input inA. We denote by (AlgA(inA),AlgB(inB)) a pair of interactive
algorithms with private inputs inA and inB , respectively, and write (outA, outB) ←
(AlgA(inA),AlgB(inB)) to denote the assignment of AlgA’s and AlgB’s private out-
puts after their interaction to the variables outA and outB , respectively.

Here, we adapt the basic framework from [11] to our scenario with a federation of
vendors. The involved parties are a set of vendors V and a set of users U , where nV =
|V| denotes the number of vendors in the federation. We will refer to any particular user
simply by U , and V ,V ′ will denote particular vendors. We assume that each vendor
V has a unique identity IDV which is publicly known. Common system parameters
for the cryptographic building blocks (like commitment and signature schemes) will be
omitted in the notation for better readability.

Definition 1 (Multi-Coupon Scheme). A multi-coupon scheme (MCS) for a feder-
ation of vendors V consists of a set of protocols and algorithms {Setup, Issue,
Redeem, Claim}:

Setup algorithm. (PK , {SKVi}1≤i≤nV )← Setup(1κ, nV) is the (in general, dis-
tributed) initialization algorithm executed by the vendors once to generate one instance
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of the MCS, where κ is the security parameter, nV is the number of vendors. It outputs a
public key PK (which includes 1κ and kmax, the maximum allowed number of coupons
per MC), and a set of secret keys {SKVi}1≤i≤nV .The vendors’ states are initialized to
the empty string.

Issue protocol. In order to obtain an MC with k coupons, U performs the following
protocol with a vendor V : ((resu,M), resv)← (Issueu(k,V ,PK , ob0, . . . , obk−1),
Issuev(k,SKV , ob0, . . . , obk−1)) where, from now on, the subindices u and v denote
user and vendor algorithms, respectively. The common input ob0, . . . , obk−1 specifies
coupon objects (individual attributes) for the k individual coupons in the MC that is to
be issued. The output flags resu, resv ∈ {acc, rej} indicate success or failure. Issueu

outputs resu and a multi-coupon M , whereas Issuev only outputs resv .
Redeem protocol. A multi-coupon M (issued by V ) is redeemed to V ′ via the

protocol ((resu,M ′), (resv, crn, ob, π, s′)) ← (Redeemu(M , m,PK ), Redeemv(s,
SKV ′)). The parameters to Redeemu are the multi-coupon M from which the user
wants to redeem a coupon, a specification m of the coupon to be redeemed2, and the
public key PK of the MCS. The vendor algorithm takes the vendors’ state s and the
private key of the redeeming vendor SKV ′ as input. Redeemu outputs an updated
multi-coupon M ′ and a flag resu just like in Issue, and Redeemv outputs a new state
s′ of the vendors, a unique coupon reference number crn , an object ob, a proof π that
a user redeemed a coupon to V ′ (with reference number crn and object ob, issued by
V ), and a flag resv .

Claim algorithm. To verify that a coupon with reference number crn issued by V
has indeed be redeemed to vendor V ′, the (public) algorithm Claim can be run to
verify a proof π, i.e., res ← Claim(crn , ob, π,V ′,V ). The result res is true if π
proves that V issued a coupon with object ob that was redeemed to V ′ with reference
number crn; otherwise, res is false. crn is used to identify a redeemed coupon, i.e., it
can be noticed, when the same redeemed coupon is claimed twice.

Correctness (informal). Any MCS must fulfill the correctness requirement: if all partic-
ipants in the protocol are honest, each individual coupon from each MC that was issued
by any vendor can be redeemed successfully at any vendor (equal to or different from
the issuer), regardless of the order of redemption, i.e., a user can redeem any coupon
that she hasn’t spent yet at any time.

2.3 Building Blocks

Commitment Scheme (CS). We use the integer CS from [7], based on the scheme
in [12], with two bases g, h ∈ QRn (quadratic residues modulo n), and a special RSA
modulus n as a public key. A commitment to x has the form Cx = gx · hr, where r is a
random value.
Proofs of Knowledge (PoK). We use a number of honest-verifier statistical zero-know-
ledge PoKs. By PoK{(x̃1, . . . , x̃n) : R(x̃1, . . . , x̃n)} we denote an interactive PoK,
where a prover proves to a verifier that she knows a witness (x̃1, . . . , x̃n) (denoted by
tilded variables) such that relation R holds, and the verifier does not gain any useful
information beyond this assertion.
Proof of Equality of Representations. P proves that she is able to open two commit-
mentsC1 andC2 (for two possibly different instances of the commitment scheme), such

2 Details depend on the scheme; e.g., m could be the index in a list of all coupons in a multi-
coupon or an ID.
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that certain components of the openings are equal. For example, PoKEqRep{(x̃, r̃x,
ỹ, r̃y) : C1 = gx̃

1g
r̃x
2 ∧ C2 = ĝỹ

1 ĝ
r̃y

2 ∧ x̃ = ỹ} denotes the proof that the exponents x̃ and
ỹ are equal.
Camenisch Lysyanskaya signature scheme (CLS ). The CLS [7] is a signature
scheme with efficient protocols based on the strong RSA assumption. The protocols
for this scheme allow signing committed values, and proving knowledge of a signature
(see below). The following description is done in the context of our scheme.

CLS .Setup(1κ). The signer S generates a special RSA modulus n = pq, such
that n has size �n := 2κ, where κ is a security parameter. Then he chooses numbers
a, b, c ∈R QRn, where a, b are called bases. The public key CLSPK is (a, b, c, n), and
the secret key CLSSK is the prime p.

CLS .Sign(x,CLSSK ). To sign a message x ∈ [0; 2�m), the signer chooses a ran-
dom prime e of size �e := �m +2, a random number s of size at most �s := �n +�m +�,
where � is another security parameter, S computes v ← (axbsc)e−1

(mod n), and
outputs (e, s, v).

CLS .Verify(x, σ,CLSPK ). For (e, s, v) := σ, the algorithm tests if ve ≡ axbsc
(mod n), x ∈ [0; 2�m), s ∈ [0; 2�s), e is �e bits long, and outputs true or false.

The signature allows the following useful protocols:
Signature on a committed value and PoK of this signature [7]. Signature gener-
ation is a protocol from [7] between a user U and a signer S, who knows the se-
cret key CLSSK . Let CLSPK := (a, b, c, n) be the corresponding public key. The
common input to U and S is a commitment Cx, for which U (supposedly) knows
an opening (x, rx) : Cx = axbrx . At the end of the protocol U obtains a signature
σ := (e, s, v) on x, while x is statistically hidden from S. We denote this protocol as:
σ ← SigOnCommit{U (x, rx),S(CLSSK )}(Cx).

For a commitment C′
x, U can prove knowledge of (x, r′x, e, s, v) [7], such that

(x, r′x) is an opening of C′
x, and (e, s, v) is a valid signature on x, where x and σ

are hidden by the zero-knowledge property of the protocol. We denote this protocol as:
PoKSigOnCommit{(x̃, r̃′x, σ̃) : C′

x = ax̃br̃
′
x ∧ CLS.Verify(x̃, σ̃,CLSPK )}.

This signature scheme can be extended to sign message tuples (x1, . . . , xk) by in-
troducing k bases ai [7]. The extended scheme for k-tuples will be denoted by CLSk .
The protocols above can be extended to support multiple messages, and selective mes-
sage disclosure. E.g., abusing notation, we denote by SigOnCommit{ U (x̃1, r̃x1

),
S(CLS3 SK )}(Cx1

, x2, x3) a protocol to generate a signature on a 3-tuple (x1, x2, x3),
where the message x1 is blinded by a commitment Cx1

, and two messages x2 and
x3 are disclosed in clear. Similarly, by PoKSigOnCommit{(x̃3, r̃x3

, σ̃) : Cx3
=

ax̃3

3 br̃x3 ∧ CLS3 .Verify((x1, x2, x̃3), σ̃, CLS3PK )} we denote the corresponding
PoK that U knows a signature σ on a tuple (x1, x2, x3), where x1 and x2 are disclosed
to the verifier, but x3 is kept blinded. Again, the variables with˜are kept secret.

Non-interactive proofs and signatures of knowledge. Using a cryptographic hash
function, the PoKs described above can be turned into non-interactive PoKs by the
Fiat-Shamir heuristic [13]. We add the prefix NI- (“non-interactive”) to the PoKs to
indicate that a non-interactive proof is used instead of an interactive protocol, e.g.,
NI-PoKSigOnCommit to denote a non-interactive proof of knowledge of a signa-
ture on a commitment. If additional data (a “message”) is hashed, the NI-PoK becomes
a signature on this message (as in [19]) and is called a signature of knowledge (SoK).
Since the actual protocol remains the same, we use the same notation with simply ap-
pending the message (as in NI-PoKSigOnCommit{. . .}(m)). The security of SoKs
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can be shown in the random oracle model. In practice, it is assumed that this heuristic
is secure, as long as the hash function which is used is cryptographically strong. For a
more general and formal treatment of SoKs, see [9].

2.4 Concrete Construction

Overview. A multi-coupon M of size k ≤ kmax consists of its identifier mid , a fresh-
ness identifier fid , a signature σ′ on the pair (fid ,mid), and a list of k individual
coupons, where kmax is the maximal number of coupons an MC can contain. Each
individual coupon (id , ob, σ) is specified by a coupon identifier id , a coupon’s object
ob (i.e., the good or service represented by the coupon3), and a signature σ on the tuple
(id , ob,mid). Depending on the business model, the object IDs in an MC could either
be chosen by the user, or they could be determined by the issuer. We model object IDs
as common input to the issue protocol, leaving this decision to the concrete application.

We require that all signatures and non-interactive proofs in the protocols are always
verified by the recipient. If the verification fails, the protocol is aborted, and the respec-
tive party outputs rej (subsequently, verification steps will be omitted). All public keys
and parameters for the underlying protocols are known to all participants in the scheme
(e.g., the federation of vendors could maintain a server with a directory of all public
keys). The coupon reference number crn from our formal definitions is implemented
by a unique ID id i for each individual coupon.

Setup. For the setup of the MCS, the vendors have to create keys4: one common CLS2
key pair (PKFed , SKFed) for the federation, where all vendors know the private key,
and one CLS3 key pair (PKV ,SKV ) for each individual vendor V . Moreover, the
vendors have to create two empty common databases DB (for coupon IDs) and DB ′

(for freshness IDs), where all vendors can create new entries (of course, this can be
implemented by two tables in one database). Every vendor is allowed to insert entries
into the databases, but no vendor is allowed to delete them. DB possesses a key pair
(PKDB ,SKDB ) of an arbitrary signature scheme, e.g., RSA, to issue certificates to
vendors which inserted coupon IDs.

Remark. In this instantiation, the public key mentioned in Def. 1 consists of PKFed

and PKVi ; the secret key from Def. 1 includes SKFed and SKVi .

Issue. The Issue protocol is shown in Fig. 1. In step 1, the multi-coupon identi-
fier mid is selected by the vendor, whereas the freshness ID fid0 and IDs for the in-
dividual coupons id i are chosen by the user. The vendor only obtains commitments
Cfid

0
, Cid0

, . . . Cidk−1
to the values chosen by the user. In step 2, the user receives a

signature σ′
0 on (mid ,fid0) with the secret key of the federation SKFed , and in step 3,

he obtains signatures σi on (Cidi ,mid , obi) with the signing key SKV of the issuer.

Redeem. The Redeem protocol for the (j + 1)-th redemption from a multi-coupon,
where 0 ≤ j ≤ k−1, is shown in Fig. 2. During the first Redeem from a multi-coupon
(i.e., j = 0), the freshness ID fid0 and corresponding signature σ′

0 from Issue is
used and updated; in subsequent redemptions, the freshness ID and signature from the
previous execution of Redeem are used and updated. In step 1, the user blinds mid
by commitments (otherwise, the vendor could use mid to link transactions), and sends
the data of the coupon he wants to redeem (id i, obi, fid j), together with the ID of the
issuer IDV , to the vendor V ′. In step 2, U proves that the two commitments to mid are

3 The vendors must publish an encoding of coupon’s objects as integers.
4 We do not use group signatures, because coupon issuers should be identifiable.
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Common input: public keys PKV = (a1, a2, a3, b, c, n), PKFed = (â1, â2, b̂, ĉ, n̂),

User’s input: −
number of single coupons k, object identifiers obi, i = 0, . . . , k − 1

Vendor’s input: private keys SKV = p, SKFed = p̂

User U Vendor V

mid ∈R (0; 2�m);

mid

for each i = 0, . . . , k − 1 do

end for;

idi ∈R (0; 2�m);
ridi
∈R (0; 2�n);

Cidi ← aidi
1 bridi ; Cfid

0
, Cid0

, . . . , Cidk−1

for each i = 0, . . . , k − 1 do

SigOnCommit{U (fid0, rfid
0
),V (SKFed)}(Cfid

0
,mid)σ′

0 ←

end for;

fid0 ∈R (0; 2�m); rfid
0
∈R (0; 2�n);

Cfid
0
← â

fid
0

1 b̂rfid0 ;

SigOnCommit{U (id i, ridi
),V (SKV )}(Cidi

,mid , obi)σi ←

Step 3:

Step 2:

Step 1:

return (mid ,fid0, σ
′
0, {(idi, σi)}0≤i<k); return accept ;

Fig. 1. Issue Protocol

actually commitments to the same number. In step 3, the user proves knowledge of the
signature σi, and the vendor obtains a signature of knowledgeπ′ that allows him later to
prove that this coupon was redeemed to him. In step 4, the user proves knowledge of a
signature σ′

j on (fid j ,mid). The vendor has to verify that both id i and fid j are fresh by
quering the databases (i.e., he checks that these values are not yet in DB and DB ′), and
inserts these entries. After insertion, the database DB signs id i and sends the signature
to V ′. To prevent races between vendors, which open the door to some attacks, only
one vendor at any time is allowed to “query and insert”, as an atomic operation.

In step 5, U chooses a new random freshness ID fidj+1 for this MC and sends a
commitment to fidj+1 to V ′. At the end of the protocol (in step 6), the user obtains a
new freshness signature σ′

j+1 for this MC. The vendor sets π ← (π′, certDB , Cmid ),
and returns (id i, obi, π).

A malicious user cannot abuse Cfidj+1
to obtain signatures with SKFed on arbitrary

messages, because the second part of the signed message is proven to be a valid com-
mitment to mid . All signatures with SKFed on such messages will always be interpreted
as freshness signatures, thus this protocol cannot be used as signature oracle. For effi-
ciency reasons, the NI-PoKs and NI-SoKs could all be combined into one NI-SoK.

Claim. The deterministic Claim algorithm verifies the SoK that a vendor V ′ obtained
during the Redeem protocol and the certificate given by DB to V ′. It uses only public
information and hence can be run by anyone, for example, by a judge in case of dispute.
Double charging is prevented because a vendor will only pay back once for each coupon
identifier. The vendor V ′ can always charge the issuing vendor unless DB generates
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Common input: public keys PKV = (a1, a2, a3, b, c, n), PKFed = (â1, â2, b̂, ĉ, n̂)

User’s input: single coupon (id i,mid , obi,fid j , σi, σ
′
j) issued by vendor V , issuer’s ID IDV

bases g, h, ĝ, ĥ for internal use of PoKSigOnCommit protocols

Vendor’s input: private key SKFed = p̂, databases DB , DB ′

User U Vendor V ′

rmid , r
′
mid ∈R (0; 2�n);

Cmid ← amid
2 brmid ;

IDV , id i, Cmid , obi,fid j , C
′
mid

SigOnCommit{U (fid j+1, rfidj+1
,mid , r′mid),V ′(SKFed)}(Cfidj+1

, C ′
mid)σ′

j+1 ←

NI-PoKSigOnCommit{(m̃id , r̃mid , σ̃i) : Cmid = am̃id
2 br̃mid ∧ CLS3 .Verify((id i, m̃id , obi), σ̃i,PKV )}(IDV ′)

NI-PoKEqRep{(m̃id , m̃id
′
, r̃mid , r̃′mid) : Cmid = am̃id

2 br̃mid ∧ C′
mid = âm̃id

′
2 b̂r̃′

mid ∧ m̃id = m̃id
′}

insert fid j into DB ′;

C ′
mid ← âmid

2 b̂r
′
mid ;

NI-PoKSigOnCommit{(m̃id , r̃′mid , σ̃′
j) : C′

mid = âm̃id
2 b̂r̃′

mid ∧ CLS2 .Verify((fidj , m̃id), σ̃′
j ,PKFed)}

certDB ← insert id i into DB ;
fid j+1 ∈R (0; 2�m); rfidj+1

∈R (0; 2�n);

Cfidj+1
← â

fidj+1

1 b̂rfidj+1 ; Cfidj+1

π ← (π′, certDB , Cmid); return (id i, obi, π);

Step 6:

Step 5:

Step 4:

Step 3:

Step 2:

Step 1:

return (fid j+1, σ
′
j+1);

π′ ← output of step 3;

Fig. 2. Redeem Protocol

Claim(id , ob, π,V ′,V ) :
parse π as (π′, certDB , Cmid);
verify certDB w.r.t. id ,PKDB ;
verify π′ w.r.t. id , ob, Cmid ,PKV , IDV ′ ;

Fig. 3. Claim Algorithm

two certificates for the same coupon identifier. However, this misbehavior can always
be identified.

Efficiency. The communication (and computation) complexity of the Issue protocol
is linear in the number k of individual coupons in the multi-coupon to be issued. Corre-
spondingly, the size of the MC data is also linear in k. The Redeem protocol is constant
w.r.t. to k. The operations performed by DB and DB ′ (search, insert and sign) do not
depend on the size k of the MCs (but, of course, on the security parameter κ), and they
should not impact the efficiency unless the communication between the vendors and
the databases is slow. If coupon objects are not necessary, ideas from [6] could be used
to obtain logarithmic complexity (in k) for Issue, and also logarithmic size of the
MC data. Compared to the MCS from [11], one additional SigOnCommit protocol
has to be run instead of a local signature generation during Issue. In the Redeem
protocol, two additional IDs (V and fid j) are sent to the vendor in the first step, and we
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need an extra round to send a commitment to the vendor. Another difference is that we
use non-interactive versions of the protocols during Redeem, which slightly increases
efficiency – but this could also be done in the MCS from [11].

3 Security Framework and Analysis

Here, we generalize the adversarial model from [11] to a federation of vendors. The
security requirements are defined by games, and it can be shown that our scheme meets
these requirements. We only present some proof sketches and refer the reader to the
full version of this paper for more details. An adversary is a p.p.t. algorithm A, which
can play the role of either a collusion of vendors and users, or only of a group of users.
W.l.o.g., we let the adversary be specified by a sequence of algorithms (e.g., A :=
(A1, A2, A3)). Honest parties are assumed to communicate over secure channels.

We consider two types of users (resp. vendors): honest and corrupted users (resp.
vendors). Users (resp. vendors) belonging to the set of honest users (resp. vendors)
execute algorithms of the MCS if requested by A, but remain honest otherwise. A has
full control over the corrupted users and vendors, and he is provided with their previous
protocol views. Similar to [14], we allowA to interact with the system through a set of
queries5 handled by an interface, which partially simulates the MCS, executes protocols
with A, and records certain user’s or vendor’s activities. Note that the interfaces do not
restrict A in any way – they control the actions of the honest parties on behalf of A.
Correctness of the scheme can be easily verified (proof omitted).

Framing resistance and claimability. During the redemption protocol, the original is-
suer of the coupon must be identifiable (to allow the redeeming vendor to claim money
from the issuer), and other vendors must be protected from false claims. It must be en-
sured that a vendor who issued an MC can always be held responsible for all coupons
from this MC. We break down this property into two requirements: (1) framing resis-
tance: a collusion of vendors and users must never be able to claim that another vendor
issued a coupon with a specific object, when he didn’t; and (2) claimability: an honest
vendor who redeemed a coupon must always be able to claim money for it.

Interface I1. In the games defining “claimability” and “framing resistance”, the ad-
versary A plays the role of a coalition of all users and has the capability to corrupt
vendors.

Counters ctrCV ,ob (initially 0) for each coupon object ob are defined for each ven-
dor V , counting the coupons with object ob, that were issued by V . The following
queries are provided to A.
I1.Issuev(V , k, ob0, . . . , obk−1). If k ∈ [1; kmax] and V is an honest vendor, the

Issuev algorithm is executed. The counter for each coupon object ob is increased by the
number of times ob occurs in the MC issued by V , i.e., ∀λ ∈ [0; k−1]: ctrCV ,obλ

++.
I1.Redeemv(V ′,V ). If V ′ is an honest vendor, the Redeemv protocol is executed

for V ′, i.e., A wants to redeem a coupon (issued by V ) to V ′.
I1.Corrupt(V ). A receives all secrets of V (and V is removed from the set of

honest vendors).
In the FrameGame (see Fig. 4),A can interact with the system via the interface I1.

A outputs the identity V of the vendor he wants to “frame” (in order to win this game,

5 Like in existing schemes, queries must not be executed concurrently, which simplifies model
and construction.
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FrameGame(A, κ, nV):
(PK , {SKVi}1≤i≤nV ) ←

Setup(1κ, nV);
(V , ob,CRN , Π) ← AI1(1κ, PK );
if

(
V uncorrupted ∧ |CRN | > ctrCV ,ob ∧
(∀crn ∈ CRN :∃(π,V ′) ∈ Π :
Claim(crn , ob, π,V ′,V ) = true)

)

return broken;
else return unbroken;

ClaimGame(A, κ, nV):
(PK , {SKVi}1≤i≤nV ) ←

Setup(1κ, nV);
(V ′,V , sA) ← AI1

1 (1κ,PK );
if V ′ corrupted

return unbroken;
(ResA, (resv, crn, ob, π, s′)) ←

(A2(sA), I1.Redeemv(V ′,V ));
if (resv = acc ∧
Claim(crn, ob, π,V ′,V ) = false)

return broken;
else return unbroken;

Fig. 4. The games FrameGame and ClaimGame

A has to choose an uncorrupted vendor), an object ob, and a set of coupon reference
numbers CRN with a corresponding set Π of pairs (π,V ′) of proofs that V ′ was
involved in the redemption of a coupon with object ob issued by V . If Claim succeeds
for all of these proofs and there are more elements in CRN than coupons (with object
ob) issued by V (i.e., |CRN | > ctrCV ,ob), A wins the game, because then A must
be able to claim coupons V did not issue. (Of course, all elements of the set must be
distinct – i.e., A cannot “replay” the same crn multiple times).

Definition 2 (Framing resistance of an MCS). An MCS is resistant against framing
if there is no p.p.t adversary A that can win the FrameGame in Fig. 4 (i.e., Frame-
Game(A, κ, nV) = broken for some number of vendors nV ≥ 1) with non-negligible
probability (in κ).

Theorem 1 (Framing resistance). Assuming the security of CL signatures against ex-
istential forgery, the proposed MCS is resistant against framing, i.e., for all p.p.t adver-
sariesA and for all nV ≥ 1, Pr[FrameGame(A, κ, nV) = broken] is negligible (in κ)
in the random oracle model.

Proof (sketch). Assume a successful adversary A which breaks FrameGame with
non-negligible probability. From that, we construct an algorithm B that, given a sig-
nature oracle for an instance of the CLS3 signature scheme, produces an existential
forgery for this instance.
B has to simulate the FrameGame towardsA in the random oracle model. To do so,

B has to guess which issuer V will be “attacked” by A. The CLS3 signature oracle is
used by B for V ’s signatures – the keys for the other vendors and for the federation are
generated honestly by the respective algorithms. If A corrupts a vendor different from
V , B delivers the corresponding secret key to A. If A corrupts V , the simulation fails.
Assuming that A corrupts all vendors but one, the probability to guess the right vendor
is 1/nV . In [7], it is shown how to simulate the building blocks for our protocols.

In the Issue and Redeem protocols, it can be assumed that B can extract all secrets
(by rewinding) for each PoK and SoK fromA (it is shown in [7] that efficient knowledge
extractors exist for the sub-protocols we use). Since rewinding can be done for all sub-
protocols independently,B is still efficient.

When B executesIssue for V ,B stores σi together with the signed tuple (id i,mid ,
obi) (where id i is obtained by knowledge extraction). This information is used to iden-
tify a forged CL signature: B extracts the secrets from all SoKs that are returned by A
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(in the set Π in the FrameGame). The condition |CRN | > ctrCV ,ob in the Frame-
Game ensures that there are more distinct coupon IDs id i than signatures for coupons
with object ob have been queried by V . Therefore, one of the NI-SoKs π does not
correspond to a coupon issued by V and A must have produced a forgery of a CL sig-
nature. B can identify the forgery using the data stored during Issue, and outputs it
as the required existential forgery of a CLS3 signature. Of course, this only works, if
the vendor challenged by the adversary is actually the vendor V guessed by B at the
beginning of the simulation.

Since the probability of an adversary to forge a CL signature is negligible, so is the
probability of A to win the FrameGame. 	

To break the ClaimGame (see Fig. 4), A successfully redeems a coupon to an uncor-
rupted vendor V ′, but V ′ cannot claim money for it (i.e., the Claim algorithm fails).
In the first phase, A1 can interact arbitrarily with the honest vendors via I1. He must
output an issuer V of a coupon (possibly corrupted) and an uncorrupted vendor V ′,
and an arbitrary state sA for the second phase. To win the game, A2 must be able to
redeem a coupon, allegedly issued by V , to V ′, but Claim must fail for this coupon.
A2’s output ResA is discarded.

Definition 3 (Claimability of an MCS). An MCS is claimable if there is no p.p.t adver-
sary A := (A1, A2) that can win the ClaimGame in Fig. 4 (i.e., ClaimGame(A, κ,
nV) = broken for some number of vendors nV ≥ 1) with probability > 0.

Theorem 2 (Claimability). The proposed MCS provides claimability, i.e., for all p.p.t
adversaries A and for all nV ≥ 1, Pr[ClaimGame(A, κ, nV) = broken] = 0.

Proof (sketch). The checks in the Claim algorithm are a subset of the checks per-
formed in Redeem by the vendor. Therefore, the condition in the ClaimGame that V ′
accepts, but Redeem fails, is a contradiction (i.e.,A can never win). 	


SplitGame(A, κ, nV):
(PK , {SKVi}1≤i≤nV ) ← Setup(1κ, nV);

(s,V ,V ′
j0 , . . . ,V ′

jK
) ← A

I′
1

1 (1κ,PK )
if K < ctrMV

return unbroken;
for λ ← 0 to K do:

(resA, resv) ←
(A2(s), I ′

1.Redeemv(V ,V ′
jλ

));
if (resv �= acc)

return unbroken;
return broken;

Fig. 5. The game defining unsplittability (Split-
Game), where I ′

1 is the interface I1 without
Corrupt queries

Unforgeability and unsplittability.
No coalition of users should be able
to redeem more coupons than have
been issued by the vendors. More-
over, multi-coupons should be un-
splittable (cf. [11]): We require that
if a user U0 shares an MC with a
user U1, as soon as one user redeems
a single coupon, the other one can-
not redeem any more without inter-
acting with the user who redeemed
first (note that sharing can always be
achieved by copying all the data).

In the games, we have to restrict
the queries that are available toA: he
is not allowed to corrupt vendors, be-
cause a vendor could issue as many
coupons as he likes – and hence “unforgeability with corrupted vendors” would make
no sense. Moreover, we consider unsplittability to be a requirement of the entire fed-
eration. Therefore, we do not need to model corruptions: We assume that in the games
defining unforgeability and unsplittability, all users but no vendors are corrupted.
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Furthermore, we have to count the difference between the coupons (separately for
each object ob) a vendor V issued, and the number of coupons (issued by V , with
ob) that were already redeemed, i.e., the number of coupons issued by V with ob-
ject ob that are available to the adversary. Thus, a counter ctrDV ,ob (initially 0) is
introduced for each issuer V , which is increased during issue, and decreased after
a successful Redeem (possibly at a different vendor V ′). For the definition of un-
splittability, it is important to know how many MCs issued by V that still contain
redeemable coupons the users may have. In an unlinkable MCS, this cannot be done
precisely; therefore, the MC counter ctrMV (initially 0) is just an upper bound on
the users’ MCs (with valid redeemable coupons). To count the MCs the users might
have, ctrMV is increased by one whenever V issued a coupon. After successful re-
demption, the MC counter is adjusted if the number of coupons issued by V that are
still available to A is smaller than the number of MCs (issued by the same vendor):
ctrMV ← min(ctrMV , ctrDV ).

Interface I ′1. The modified interface I1 withoutCorrupt queries, but with counters
ctrMV and ctrDV ,ob is denoted by I ′1.

Intuitively, to win the splittability game (see Fig. 5), A has to create more (in the
game:K+1) “shares” than he has MCs (at most ctrMV ≤ K), which can be redeemed
independently from each other. The state of A2 is reset after each Redeem to the state
s that was output by A1; i.e., information gained in one execution of Redeem is not
available in the other executions.

Definition 4 (Unsplittability of an MCS). An MCS is unsplittable if there is no p.p.t
adversary A that can win the SplitGame in Fig. 5 (i.e., SplitGame(A, κ, nV) =
broken for some number of vendors nV ≥ 1) with non-negligible probability (in κ).

Theorem 3 (Unsplittability). Assuming the security of CL signatures against existen-
tial forgery, our MCS is unsplittable, i.e., for all p.p.t adversariesA and for all nV ≥ 1,
the probability Pr[SplitGame(A, κ, nV) = broken] is negligible (in κ) in the random
oracle model.

Proof (idea). We can show unsplittability by a reduction, similar to the one in the proof
of Theorem 1: Assuming an adversaryA against SplitGame, we construct an adversary
B against the security of the CL signature scheme (i.e., B will produce an existential
forgery of a CL signature). B has to simulate the interface I ′1, and play the SplitGame
with A. To do so, B has black-box access to signature oracles for the CLS2 and the
CLS3 signature schemes (these oracles can be used in the simulation because vendors
cannot be corrupted). If A wins the game, B has to come up with an existential forgery
of one of the signature schemes. The simulation proceeds like in the proof of Theorem 1,
and it can be proven that the counter ctrMV ensures that a forgery occurs, which can
be extracted from the adversary by rewinding. In this way, B produces an existential
forgery of one of the CL signature schemes. 	

In the unforgeability game, the adversary A can interact with the system via I ′1, and
he has to output the identity of an arbitrary vendor, an object ob of his choice. If more
coupons (with object ob) issued by this vendor have been redeemed than the vendor
originally issued (i.e., ctrDV ,ob < 0), A wins. Due to space restrictions, we omit the
formal definition, theorem, and proof (which are analogous to unsplittability).
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Unlinkability. To ensure privacy and anonymity of the customers, we require that the
vendors should not be able to link a Redeem procedure of a customer to the corre-
sponding Issue procedure, nor to another Redeem procedure where the customer
used the same MC. Unlinkability for one user has to be provided against a collusion of
vendors and other users.

Informally, unlinkability is achieved because the vendor’s knowledge about elements
of a single coupon depends on the actual procedure. During Issue, id and fid0 are
hidden, whereas mid , σ, σ′

0 are known to the vendor. During Redeem, id and fid0 are
disclosed to the vendor, but mid , σ, σ′

0 are hidden. fid j (0 ≤ j < k) is hidden from
the vendor during the j-th run of Redeem, but disclosed during the (j + 1)-th run; σ′

j

(0 ≤ j < k) is known to the vendor during the j-th run of Redeem, but hidden during
the (j + 1)-th run. The objects ob are known to the vendor during both Issue and
Redeem. If a certain coupon object is unique to a user, this could be used for linking.
Hence, the formal definition has to exclude “trivial linking” by objects. But if there are
more users with coupons of a given object, it cannot be used for linking. We assume
that in a system with many users, for each object there should be several users with a
corresponding coupon. Hence, privacy should be preserved, for practical purposes.

For a formal definition, theorem, and proof (which are quite similar to [11]), we refer
the reader to the extended version of this paper.

4 Related Work

Syverson et al. [20] introduced the concept of unsplittability in the context of unlinkable
serial transactions to discourage sharing, and suggested an extension of their scheme to
implement coupon books. Later, Chen et al. [10] described the properties that a privacy-
protecting MCS must provide, and proposed an unforgeable, unlinkable, and weakly
unsplittable scheme. However, their construction is less practical because redemption
complexity is linear in k (i.e., the number of coupons in the MC).

More recently, Nguyen [15] addressed some disadvantages of [10], and defined a
security model for MCSs, followed by an efficient construction based on a verifiable
pseudorandom function and bilinear groups. Its issue and redeem complexity is constant
w.r.t. k, it offers the same security properties as in [10], and adds a new feature to
revoke MCs. One drawback the schemes from [15,10] is that every issued MC must
contain the same number of coupons, i.e., k is a system parameter fixed for all MCs.
This limitation, as pointed out in [15], can be overcome in both schemes at the cost of
efficiency, by extending the issue protocol in a way that MCs with fewer than k coupons
can be issued. Another drawback of these schemes is that they do not provide coupon
objects (or coupon types [8]), and they support only one vendor.

Finally, a privacy-protecting MCS scheme with strong protection against splitting
has been proposed in [11]. In this scheme, the number k of coupons in an MC can
vary with different MCs. Moreover, coupon objects are supported, and the proofs for
the security (unforgeability, unlinkability, and unsplittability) are sketched. However,
all coupons in an MC must be redeemed in a sequential order that has to be fixed during
the issue protocol, and only a single vendor is considered.

As explained in [10,15], most related schemes (e.g., e-cash, digital credentials) can-
not be employed as privacy-protecting unsplittable MCSs because they have different
usage patterns [18,4], are inefficient in this setup [16], or lack at least one of the re-
quired properties [5], in particular unsplittability. Some e-cash systems (e.g., [6]) can
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be used as unlinkable or at least anonymous MCSs (cf. [8]). However, they are at most
weakly unsplittable. Although [6] provides logarithmic issue complexity (and size) in
k, it cannot support individual attributes per coupon. If coupon objects would be intro-
duced, the issue complexity (and multi-coupon size) would also be linear in k, as in our
scheme, but would not provide unsplittability.

5 Conclusion and Future Work

In this paper, we proposed a generic security model for multi-coupon schemes, suitable
for a federation of vendors. We designed an efficient scheme where coupons can be
redeemed in arbitrary order, and which is provably secure in this model. Future work
may focus on dynamic aspects of the scheme, considering the case where vendors join
and leave the federation, or on the design of more efficient schemes.
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Abstract. An oblivious signature with n keys (or messages) is a
signature that the recipient can choose one of n keys (or messages) to
get signed while the signer cannot find out on which key (or message)
the recipient has got the signature. This kind of signature is firstly
introduced by L. Chen in 1994. However, the previous reference does not
crisply formalize the notion. Furthermore, the proposed constructions
are less efficient in both communication and computation. In this paper,
we first give formal definitions on the model of oblivious signatures.
Then, based on the Schnorr signature, we propose our efficient oblivious
signature scheme. A comparison result is also provided in this paper
which shows that our scheme is more efficient than Chen’s schemes
and those using a combination of a signature scheme and an oblivious
transfer protocol.

Keywords: 1-out-of-n signature, oblivious signature, oblivious transfer,
Schnorr signature.

1 Introduction

Nowadays, as consumers increasingly rely on the internet for shopping, banking
and other activities, privacy has become more and more important for consumers
who worry about how personal information is used. Motivated by the increasing
interest in issues relating to the protection of personal privacy, L. Chen in 1994
proposed the concept of oblivious signatures [4].

In [4], L. Chen considered two types of oblivious signature schemes. The first
one is an oblivious signature scheme with n keys and the second one is an
oblivious signature scheme with n messages.

Oblivious signature with n keys could be considered a complement of group
signature [5]. This scheme is a multiparty protocol. The participants are a group
of n signers S1, · · · , Sn (or a signer with n different keys) and a recipient R. The
scheme has the following characteristics.
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1. By executing the protocol, the recipient R can get a message signed with
one of n keys which is chosen by himself.

2. The possible signers, even the holder of the accepted key, cannot find out
with which key the message is got signed.

3. When necessary, R can show that he has got a signature (on the message)
with one of the n keys without revealing with which special one.

The application of this scheme is made in the case of accessing sensitive
databases. In this case, a database can only be accessed with a permit (which is
possibly a signature signed by the administrator of the database) from the ad-
ministrator of the database. But the information about which database interests
the user may be sensitive. So the user chooses n databases and get the permit
(ie., a signature) for only one of n databases without revealing which one.

The second scheme involves a signer S and a recipient R. The common
input for both R and S contains n messages. The scheme has the following
characteristics.

1. By executing the protocol, the recipient R can choose only one the the n
messages to get signed.

2. The signer cannot find out on which message the recipient has got the sig-
nature.

3. When necessary, R can show that he has got a signature on one of the n
messages without revealing which special one.

This scheme is useful in the case of internet shopping. In this case, the user will
buy a software from the seller. In order to prevent illegitimate use, the software
can be used if and only if it is signed by the seller. However, the information
about which product interests the user may be sensitive in some stage. So the
user can choose n softwares and get one and only one signed by the seller without
revealing which one.

Motivation. Although the concept of oblivious signatures is not completely
new, previous references do not crisply formalize the notion, the model of the
schemes as well as the security model. Moreover, previously proposed construc-
tions are less efficient in both communication and computation. For example, in
L. Chen’s schemes [4], to generate an oblivious signature, a round of interaction
consisting of three movies between a signer and a recipient is required. Overall
overhead during the interaction of the schemes is at least 3072n bits, where n
is the number of keys or messages. The size of the generated signature is also a
problem. In L. Chen’s schemes, a signature consists of 9 parameters with more
than 7000 bits in total.

Our Contributions. Motivated by the above mentioned problems, in this pa-
per, we first give formal definitions on the model of oblivious signature schemes
and give the security requirements of the scheme. Then, based on the Schnorr
signature [14], we propose our efficient oblivious signature scheme. A comparison
result is also provided in this paper which shows that our scheme is more efficient
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than Chen’s schemes and those using a combination of a signature scheme and
an oblivious transfer protocol.

1.1 Related Works

Oblivious Transfer. Oblivious transfer was firstly introduced in 1981 by M.
Q. Rabin [13]. It is a protocol by which a sender sends some information to the
receiver while remains oblivious to what is received. Theoretically, an oblivious
signature can be implemented by an oblivious transfer. However, to construct
an oblivious signature in this way is inefficient.

Blind Signature. In cryptography, a blind signature, as introduced by D.
Chaum [3], is a form of digital signature which allows a user to get a mes-
sage signed by a signer without revealing any information about the message to
the signer. The resulting blind signature can be publicly verified in the manner
of a regular digital signature. Examples of applications include digital election
systems and digital cash schemes.

Note that we cannot use a blind signature to construct an oblivious signature
on n messages since, in this case, there is no guarantee that the message getting
signed is actually the one of n predetermined messages. In other words, a recipi-
ent may construct some other messages on which the signer is not going to offer
the signature. Furthermore, an oblivious signature with n keys cannot be gener-
ated from a blind signature since there is only one signer with one private/public
key-pair in a blind signature schemes.

2 Preliminaries

This section gives some cryptographic primitives and definitions required for our
construction.

Definition 1. Discrete Logarithm (DL) Problem: Let G be a cyclic group
of prime order p and g be a generator of G. The DL problem to the base g means
the following problem:

Given g, h ∈ G, where h = gx mod p for some unknown x, find x.

The DL problem is believed to be difficult and also to be the hard direction of
a one-way function.

Definition 2. Forking Lemma[12]: Let (K,S,V) be a digital signature
scheme with security parameter 1k, with a signature of the form (m,σ1, h, σ2),
where h = H(m,σ1) and σ2 depends on σ1 and h only. Let A be a proba-
bilistic polynomial time Turing machine whose input only consists of public
data and which can ask qh > 0 queries to the random oracle. Assume that,
within time bound T , A produces, with probability ε ≥ 7qh/2k, a valid signature
(m,σ1, h, σ2). Then, a replay of the attackerA, where interactions with the signer
are simulated, outputs two valid signature (m,σ1, h, σ2), and (m,σ1, h

′, σ′
2) such

that h �= h′, within time T ′ ≤ 84480Tqh/ε.
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3 Definition of Oblivious Signature

In this section, we formally define the notion of an oblivious signature and the se-
curity requirements behind the oblivious signature. One important modification
to the original definitions in [4] is that the characteristic of ambiguous verifica-
tion1 is neglected in our definition. This is because that, by implementing the
technique of universal 1-out-of-n signatures recently proposed by R. Tso et. al.
in [15], this characteristic can be easily achieved for any three-move type signa-
ture schemes [7]. Consequently, we should not consider ambiguous verification as
a unique feature of obvious signatures. It should be considered as an additional
feature for all three-move type signatures.

There are two types of oblivious signatures: a 1-out-of-n oblivious signature
with n keys and a 1-out-of-n oblivious signature with n messages. Due to the
space limitations, we only give the formal model for 1-out-of-n oblivious sig-
natures with n messages. However, we emphasize that the formal model for
1-out-of-n oblivious signatures with n keys can be easily defined accordingly.

3.1 Formal Model of Oblivious Signatures with n Messages

A 1-out-of-n oblivious signature scheme (abbreviated to OSn
1 ) with n messages

involves three types of entities: a recipient R, an oblivious signer S and a verifier
V .

• A recipient R: for any input of n messages, m1, · · · ,mn, R can choose any
one of these n messages to get signed by S.
• An oblivious signer S: S is able to sign the message chosen by R but is

not able to learn which one of the n messages is actually signed.
• A verifier V: R converts the oblivious signature into a generic signature σ

and transmits σ to V . V is able to verify the validity of the signature without
any secrete information.

The following definition gives the formal model of a OSn
1 .

Definition 3. An oblivious signature protocol OSn
1 consists of four tuples,

(G,S,R,V), where S,R are two interactive Turing Machines, G is a probabilistic
polynomial-time algorithm and V is a deterministic polynomial-time algorithm.

• (para, pk, sk) ← G(1k): A probabilistic polynomial-time algorithm G which
takes a security parameter 1k as input and the output is the public param-
eters, para. Based on para, a public/private key pair (pk, sk) of a signer S
can be defined accordingly.
• (completed/notcompleted, σ/fail)← interact(S(para, pk, sk,m1, · · · ,mn),
R(para, pk,ml)): S and R are a pair of polynomially-bounded probabilis-
tic interactive Turing machines. Both machines have the following tapes: a
read-only input tape, a write-only output tape, a read/write work tape, a

1 The characteristic that, when necessary, the recipient can show that he has got a
signature with one of n keys (or messages) without revealing with which special one.
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read-only random tape, a read-only communication tape and a write-only
communication tape. The input tape of S is given the public parameter,
para, the public/private key pair (pk, sk) and n messages (m1, · · · ,mn). The
input tape of R is given para, pk and a message ml ∈ {m1, · · · ,mn}. The
length of all inputs must be polynomial in the security parameter 1k of
the algorithm G. Then S and R engage in the interactive protocol of some
polynomial number of rounds. At the end of this protocol, the output tape of
S contains either completed or notcompleted and the output tape of R con-
tains either fail (if S outputs “notcompleted”) or a signature σ (if S outputs
“completed”) where σ is a generic signature on the message ml.
• 1/0 ← V(σ, para, pk,ml): A deterministic polynomial-time algorithm V

which takes the signature σ, the public parameters para, a public key pk
of a signer S and a messages ml as input, returns 1 or 0 for accept or reject,
respectively.

3.2 Security Requirements

We now define the securities required for oblivious signatures. The securities de-
fined in this section are modified from the security definitions of blind signatures
defined in [1] and [9].

In the coming definitions, negl(n) denotes any function which grows slower
than 1

nc for sufficiently large n and some constant c.

Definition 4. (Completeness) If S and R follow the signature issuing proto-
col properly and, at the end of the protocol, S outputs completed and R outputs
σ, then, with probability at least 1− negl(n), σ satisfies V(σ, para, pk,ml) = 1.
The probability is taken over the coin flips of G,S and R.

The signature σ on messages ml is said valid with regard to (para, pk) if it leads
V to accept.

Except the completeness of the protocol, in order to define security, we discuss
separately protecting the recipient and the signer. The security for signers is the
unforgeability of signatures and the security for recipients is the ambiguity in
selected messages (against signers). The security for signers is protected in the
sense of computational security and the security for recipients is protected in
the sense of unconditional security.

To define the security for signers, we first introduce the following game.

Definition 5. (Game A) Let R∗ be a probabilistic polynomial time forging
algorithm. R∗ executes the recipient’s part and tries to forge a new signature σ∗

on a message, m∗.

1. (para, pk, sk)← G(1k),
2. R∗(para, pk) engages in the signature issuing protocol with S(para, pk, sk)

for any message-setMi and any message m(i,j) ∈ Mi which are adaptively
chosen by R. This step can be executed in polynomially many number of
times where R∗ can decide in an adaptive fashion when to stop. In each
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execution, when S outputs completed, then R∗ obtains a valid signature σi

on the message m(i,j) ∈ Mi. Let t denote the number of executions where
S outputs completed, and m(i,ji) denote the message corresponding to the
signature σi, 1 ≤ i ≤ t.

3. R∗ outputs a new signature σ∗ on a message, m∗, where m∗ /∈ {m(1,j1),
· · · ,m(t,jt)}.

Definition 6. (Security for signers:Unforgeability) An oblivious signature
scheme provides the security for signers if, for any probabilistic polynomial-time
forging algorithm R∗ that plays the above game, we have

Pr (V(σ∗, para, pk,m∗) = 1) < negl(n).

The probability is taken over the coin flips of G,S and R∗.

Intuitively, the security for signers means that, except the signatures σi on
m(i,ji), 1 ≤ i ≤ t, it is computationally infeasible, without the knowledge of
the private key sk of S, to produce any valid signature which will be accepted
by V . This part is similar to the notion of Existential Unforgeability against
Adaptive Chosen Message Attack (EUF-ACMA) [8] for any standard publicly
verifiable signature scheme.

The security for recipients is defined through Game B.

Definition 7. (Game B) Let S∗ be an attacking algorithm with unlimited
computation power which executes the signer’s part andR be an honest recipient
that follows the signature issuing protocol. Letm0,m1 be two messages randomly
picked by S∗ andM⊇ {m0,m1} be a set of messages which is also determined
by S∗. Let b ∈R {0, 1} which is kept secret from S∗. The message mb is put on
the input tape of R which is also kept secret from S∗. The purpose of S∗ is to
predict b via the execution of the following game.

1. (para, pk, sk)← G(1k),
2. {m0,m1} ← S∗(para, pk, sk,M),
3. S∗ engages in the signature issuing protocol with R(para, pk,mb), b ∈R

{0, 1},
4. S∗ outputs a bit b′ ∈ {0, 1} according to the view from steps 1, 2, and 3 (ie.,
S∗ is not allowed to view the output of R at the end of the signature issuing
protocol).

We say that the attacking algorithm S∗ wins the game if b′ = b.

Definition 8. (Security for recipients against signers: Ambiguity in se-
lected messages) An oblivious signature scheme provides unconditional secu-
rity for recipients against signers if, for any attacking algorithm S∗ executing
the signer’s part, S∗ wins in Game B with probability at most 1/2 + negl(n).
The probability is taken over the coin flips of G, R and S∗.
Intuitively, the security for recipients against signers means that it is uncondi-
tionally infeasible for any attacker S∗ to find out which one of the messages in
M is chosen by a recipient R.
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4 Proposed Schemes

In this section, we propose our 1-out-of-n oblivious signatures with n messages.
In some applications, the message-set {m1, · · · ,mn} (in which one of them will
get signed) may be decided by the signer, while in other applications, they may
be decided by the recipient. In either case, they should not affect the security
of the scheme. In the following scheme, we assume that they are decided by the
recipient.

4.1 Proposed 1-out-of-n Oblivious Signatures with n Messages

System Setting: On input a security parameter 1k, a signer S runs the System-
Setup algorithm G. The following output forms the public parameters of the
scheme.

• p, q: two large primes such that q|(p− 1),
• g, h: two elements of Z

∗
p of the same order q where the discrete logarithm

logh
g is unknown to all.

• H : {0, 1}∗ → Z
∗
q : an one way hash function.

Key Generation: S picks a random number x ∈ Z
∗
q and computes y ← gx mod

p. x is kept secret as her private key and y is public as her public key.

Signature Generation: Assume that a recipientR would like to get a signature
σ on a message ml ∈ {m1, · · · ,mn} which is obliviously signed by S, then R
executes the following protocol with S:

Step 1. R starts the protocol by picking a random number r ∈ Z
∗
q , then computs

c = grhl mod p and sends c together with the n messages m1, · · · ,mn to the
signer S. Here l is the value of the subscript of ml.

Step 2. For i = 1, · · · , n, S picks a random number ki ∈R Z
∗
q and computes:

• Ki ← gki mod p,
• êi ← H(mi,Kic/(gh)i mod p), and
• ŝi ← ki − xêi mod q.
S then sends (êi, ŝi), 1 ≤ i ≤ n, to R.

Step 3. For 1 ≤ i ≤ n, R computes δi ← g(r−i)h(l−i) mod p and accepts the
oblivious signature if and only if

êi = H(mi, g
ŝiyêiδi mod p) 1 ≤ i ≤ n.

Step 4. To convert the oblivious signature into a generic (Schnorr) signature,
R computes:
• e← êl, and
• s← r − l + ŝl mod q,

The signature on ml is σ ← (e, s).

Signature Verification: Any verifier V accepts the signature σ as a valid sig-
nature on ml if and only if

e = H(ml, g
sye mod p)
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4.2 Security

Lemma 1. The proposed scheme is complete.

Proof. The completeness of the signature σ = (e, s) is depended on the Schnorr
signature. So, we only show the completeness of the oblivious signature σ′ =(∑

1≤i≤n′(êi, ŝi, δi)
)

in Step 3 of the Signature Generation Algorithm. For any
(êi, ŝi, δi) of mi ∈ {m1, · · · ,mn}, we have

H(mi, g
ŝiyêiδi mod p)

= H(mi, g
ki−xêiyêig(r−i)h(l−i) mod p)

= H(mi, g
ki−xêigxêig(r−i)h(l−i) mod p)

= H(mi, g
kig(r−i)h(l−i) mod p)

= H(mi,Kig
rhl/(gh)i mod p)

= H(mi,Kic/(gh)i mod p)
= êi.

�
We than proof that the proposed scheme provides the security for signers.

Theorem 1. If there exists an adaptively chosen message attacker B which wins
Game A with an advantage ε within a time T , then there exists an algorithm
A which can solve the DL problem with the same advantage within a time
T ′ ≤ 84480qhT/ε, where qh is the number of hash queries.

Proof: A is given a DL problem (p, q, g, y) where p, q are two large primes such
that q|(p− 1), and g, y are two elements of Z

∗
p of the same order q. The purpose

of A is to find logy
g , which is the solution to the DL problem.

In order to solve the problem, A utilizes B as a black-box. To get the black-
box B run properly, A simulates the environments of the proposed OSn

1 scheme.
In the following proof, we regard the hash function H as a random oracle. On
the other hand, in the following proof, we assume that B is well-behaved in
the sense that it always queries the random orale H on the message m∗ that it
outputs as its forgery. According to [2], we know that it is trivial to modify any
adversary-algorithm B to have this property.
A picks a random number h ∈< g > and sets (p, q, g, h) as the system-wide

parameters. Here < g > denotes the subgroup of Z
∗
p generated by g. In addition,

A sets y as the signer’s public key. A gives (p, q, g, h) and y to B and allows B
to run via Game A.

In Game A, via an interactive way with A, B takes part as a recipient in order
to get a signature obliviously signed by the signing key logy

g . In order to respond
for this query, for each Mi = {mi1 , · · · ,min} and ci = grihli chosen by B, A
does the following steps:

– For each j = 1, · · · , n, A picks a random number kij ∈R Z
∗
q and

• computes Kij = gkij mod p,
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• picks ŝij ∈R Z
∗
q ,

• sets êij ← H(mij ,Kijci/(gh)j mod p).
– A returns (êij , ŝij ), 1 ≤ i ≤ n, to B and records

(Mi, ci,Ki1 , · · · ,Kin , êi1 , · · · , êin , ŝi1 , · · · , ŝin) to a Sign-List which is as-
sumed to be initially empty.

The above execution can be executed at most t times. After the execution, B
outputs its forgery σ∗ = (e∗, s∗) on a message m∗. Assume σ∗ is a valid forgery
and B wins Game A. According to the protocol, we have

e∗ = H(m∗, ye∗
gs∗

mod p).

Since B is assumed to be well-behaved, we have e∗ = H(mij ,Kij ci/(gh)j mod
p) = êij for some êij and m∗ = mij which are on the Sign-List.

We are now ready to apply the Forking Lemma [12]. By replaying the game
with the same random tape but different choices of oracle H, at the end of the
second run, we obtain another valid forgery (m∗, e∗

′
, s∗

′
). Since s∗ = kij + ri −

li + xae
∗ and s∗

′
= kij + ri − li + xae

∗′
for the same kij + ri − li (according

to the Forking Lemma), we obtain xa = s∗−s∗′

e∗−e∗′ mod q. This is the solution to
the DL problem. The advantage of A is the same as the advantage of B and the
total running time T ′ of A is equal to the running time of the Forking Lemma
[12] which is bound by 84480qhT/ε. Here qh is the number of hash queries in the
game. �

Theorem 2. The proposed scheme provides perfect security for recipients. In
other words, the proposed scheme provides unconditional security on the ambi-
guity of the selected message.

Proof: It is sufficient to show that an attacker F , taking parts as a signer, wins
Game B with probability exactly the same as random guessing of b ∈ {0, 1}.

Assume M = {m1, · · · ,mn} and c = grhl, l ∈ {1, · · · , n}, where c is chosen
by the recipient R. It is easy to see that for any such c, there exists an ri ∈ Zq

such that

c = grhl = gr1h1 = · · · = grihi = · · · = grnhn mod p.

Consequently, we conclude that F wins Game B with probability exactly the
same as random guessing of b. This ends the proof. �

5 Discussions and Performance Comparisons

In Chen’s schemes [4], the signature consists of two random signatures: σ(g,y) (m′)
and σ(H(ml),m′) (ml). σ(g,y) (m′) is the signature on a random message m′ with
secret key x = logy

g and σ(H(ml),m′) (ml) is the signature on message ml with the
random secret key e = logm′

H(ml). On the other hand, σ(g,y) (m′) is generated by S
in an interactive way with R but σ(H(ml),m′) (ml) is computed by R individually,
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Table 1. Performance Comparison 1

Communication Cost
Scheme Numbers of Communication Over Head

Communication S → R (≈ bits) R → S (≈ bits) R → V (≈ bits)

New 2 2n|q| (≈ 320n) |q| (≈ 160) 2|q| (≈ 320)
Chen [4] 3 3n|p| + n|q| (≈ 3232n) |q| (≈ 160) 7|p| + 2|q| (≈ 7488)
DSA-OT 2 2n|p| + 2n|q| (≈ 2368n) |p| (≈ 1024) 2|q| (≈ 320)

Table 2. Performance Comparison 2

Computation Cost
Scheme Signer: S Receiver: R Verifier: V
New 2nEx. (2n + 2)Ex. 2Ex.

Chen [4] 3nEx. (2n + 10)Ex. 8Ex.
DSA-OT 5nEx. 3Ex. 2Ex.

so the oblivious property (from signer’s viewpoint) is preserved. The verification
of these two signatures assures anyone that the signer S with public key y indeed
signed the message ml.

Although, in Section 4, we only showed the construction of a 1-out-of-n obliv-
ious signature with n messages, we emphasize that the proposed scheme can be
easily modified into a 1-out-of-n oblivious signature with n keys. The technique
is to use the signing key yl in the proposed scheme instead of h. In this way, the
signing key can be designated by a recipient. We omit the details and focus only
on oblivious signature with n messages due to the space limitations.

In the following tables, we compare the efficiency of our scheme with that of
Chen’s scheme and the combination of the oblivious transfer (OT) scheme de-
fined in [16] and DSA signature standard [10]. We denote Ex the exponentiation
in Zp and ignore other operations such as reversion and hash in all schemes.

In Table 1, we see that Chen’s scheme requires three movies of communication
between the signer S and the recipient R whereas our scheme and DSA-OT
require only two movies of communication. In addition, our scheme enjoys small
size of communication over head comparing with these two schemes. Table 2
shows the computation cost of each scheme and we can see that our scheme is
more efficient than Chen’s scheme in every step and more efficient than DSA-OT
in the signing phase.

6 Conclusion

Oblivious signature is first proposed by Chen in 1994. However, previous ref-
erences do not crisply formalize the notion, the model of the schemes as well
as the security model. Moreover, previously proposed constructions are less ef-
ficient in both communication and computation. In this paper, we give formal
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definitions on the model of oblivious signature schemes and give the security
requirements of the scheme. We also propose a new oblivious signature scheme
which is more efficient than Chen’s scheme and the scheme based on DSA and
oblivious transfer. Based on the discrete logarithm problem, the security of our
scheme is proved in the random oracle model.
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Abstract. With their increasing popularity in cryptosystems, biomet-
rics have attracted more and more attention from the information secu-
rity community. However, how to handle the relevant privacy concerns
remains to be troublesome. In this paper, we propose a novel security
model to formalize the privacy concerns in biometric-based remote au-
thentication schemes. Our security model covers a number of practical
privacy concerns such as identity privacy and transaction anonymity,
which have not been formally considered in the literature. In addition,
we propose a general biometric-based remote authentication scheme and
prove its security in our security model.

1 Introduction

Privacy has become an important issue in many aspects of our daily life, especially
in an era of networking where information access may go far beyond our control.
When sensitive information such as biometrics is used, the privacy issues become
even more important because corruption of such information may be catastrophic
for the relevant applications. In this paper we focus on the issue of handling the
privacy concerns in remote biometric-based authentication schemes.

1.1 Related Work

Biometrics, such as fingerprint and iris, have been used to a higher level of secu-
rity in order to cope with the increasing demand for reliable and highly-usable
information security systems, because they have many advantages over typical
cryptographic credentials. For example, biometrics are believed to be unique, un-
forgettable, non-transferable, and they do not need to be stored. One of the most
important application areas is biometric-based authentication schemes, where an
authentication is simply a comparison between a reference biometric template
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and a new template extracted during the authentication process. Note that,
depending on the type of biometrics, comparison may mean image matching,
binary string matching, etc.

Despite of its advantages, in practice, there are some obstacles in a wide
adoption of biometrics.

First, biometrics are only approximately stable over the time, therefore,
they cannot be directly integrated into most of the existing systems. To ad-
dress this issue, error-correction concept is widely used in the literature (e.g.
[3,4,8,10,11,18,19,25,29]). Employing this concept, some intermediate informa-
tion (referred to as helper data in some work) is firstly generated based on a
reference biometric template, and later, a newly-extracted template could help
to recover the reference template or some relevant information if the distance
between the templates is small enough (depending on the type of biometrics).
Instead of employing this concept, a number of authors also suggest to compare
biometric templates directly (e.g. [1,12,34]). Atallah et al. [1] propose a method,
in which biometric templates are treated as bit strings and subsequently masked
and permuted during the authentication process. Du and Atallah [12,34] investi-
gate a number of biometric comparison scenarios by employing secure multiparty
computation techniques. Schoenmakers and Tuyls [27] propose to use homo-
morphic encryption schemes for biometric authentication schemes by employing
multi-party computation techniques.

Second, biometrics are usually regarded to be sensitive because they uniquely
identify an individual. The sensitivity of biometrics lies in the fact that disclo-
sure of biometrics in a certain application leads to the disclosure of the true
identity of the involved users in this application. In addition, if the same type
of biometrics of a user is used in two applications, then there is an undeni-
able link for the user’s activities in both applications. Nonetheless, it is worth
stressing that biometrics are normally considered to be public information. In
[20,28,29,31,33], the authors attempt to enhance privacy protection in biomet-
ric authentication schemes, where the privacy means that the compromise of
the database will not enable the adversary to recover the biometric template.
Ratha, Connell, and Bolle [2,24] introduce the concept of cancelable biometrics
in an attempt to solve the revocation and privacy issues related to biometric
information. Ratha et al. [23] intensively elaborate this concept in the case of
fingerprint-based authentication systems. Recently, Bringer et al. [5,6] propose a
number of biometric-based authentication protocols which protect the sensitive
relationship between a biometric feature and relevant pseudorandom username.

Practical concerns, security issues, and challenges about biometrics have been
intensively discussed in the literature (e.g. [2,17,21,24,26,32]). Tuyls, Skoric, and
Kevenaar [30] present a summary of cryptographic techniques for dealing with
biometrics.

1.2 Motivation and Contributions

The stability problem concerned with biometric measurements has been paid
pretty much attention and investigated very well at this moment. However,
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privacy issues concerned with biometrics have not been understood well. With
respect to biometric-based authentication schemes, we do not have a general
formalization of privacy concerns based on a clear system structure. In practice,
privacy may mean much more than the adversary cannot recover the user’s bio-
metric template. For instance, a user may also want the relationship between
its biometric template and username to remain secret in a service, where the
user uses a personalized (pseudorandom) username instead of his true name.
This requirement might become much stronger if the user wants to multiple
registrations under different usernames at the service provider.

In the rest of this paper, we consider the following scenario for biometric-based
authentication schemes: Suppose a human user registers at a service provider
to consume some service and would like to authenticate himself to the service
provider using his biometric (say, his iris). Typically, the user will choose a
personalized username and register his reference biometric information under
this username. In order to authenticate himself to the service provider, the user
presents his username and some fresh biometric information, and then the service
provider will perform a matching between the reference biometric information
and the fresh biometric information. The contributions of this paper can be
summarized as follows.

First, we propose a new system structure for biometric-based remote authen-
tication schemes. In the new structure, there are four types of components,
including human user, sensor client, service provider, and database. There are
two motivations for us to assume sensor client and service provider to be inde-
pendent, which means the service provider does not control the sensor client.

1. One is to protect human users’ privacy against a malicious service provider.
If a malicious service provider controls the sensor client, then it can easily
obtain human users’ biometric information and potentially manipulate the
information.

2. The other is based on the fact that human users may wish to access the
service provider wherever they are. In this case, it is natural to make the
assumption that sensor client could be provided by another party which has
business agreement with the service provider.

Different from any previous system, the database is assumed to be indepen-
dent from the service provider and serve as a secure storage for biometric infor-
mation. The motivations for the detachment are as follows.

1. The first is that a user may not trust a service provider to store his biometric
template regardless of the transformation which might be applied to the
template.

2. The second is that the service provider’s access to the biometric information
can be minimized, so is the database’s access. This structure makes it pos-
sible to protect human users’ privacy against a malicious service provider
or a malicious database. Under the traditional structure, where the service
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provider controls the database, we do not see how to achieve our privacy
goal1.

3. The third is that, in practice, the service provider has avoided the responsi-
bility for storing biometric templates. As data breaches for service providers
are reported more and more frequently nowdays, the need for the separation
becomes stronger and stronger.

With respect to the new structure, we formalize the following attributes re-
lated to privacy concerns which have not been formally considered in the liter-
ature.

– The security for private relationship between personalized username and
biometric template is defined to be an attribute identity privacy.

– The security for user’s transaction statistics is defined to be an attribute
transaction anonymity.

Note that, for non biometric-based (authentication) schemes, the requirement of
identity privacy might not be as significant as in our case because cryptographic
credentials are not bound to an individual permanently.

Second, we propose a general biometric-based remote authentication scheme
by employing a Private Information Retrieval (PIR) protocol [7,9,15] and the
ElGamal public-key encryption scheme [13]. The security of the scheme is based
on the semantic security of ElGamal, namely the DDH assumption. Instead of
ElGamal, other homomorphic encryption schemes can also be used for the same
purpose but the computational load will stay in a similar level. Our proposal is
not focused on a specific biometric, but rather on such type of biometrics that can
be represented as binary strings in the Hamming space and authentication can
be done through a binary string matching. For example, iris is one type of such
biometrics [16]. For other biometrics, how to construct a secure authentication
scheme in our security model remains as an open problem.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we provide some prelim-
inary definitions. In Section 3 we provide the security and privacy definitions for
biometric-based remote authentication schemes. In Section 4 we present a new
biometric-based remote authentication scheme. In Section 5 we provide security
analysis for the new scheme in our security model. In Section 6 we conclude the
paper.

2 Preliminary Definitions

2.1 The System Structure

In the new system structure for biometric-based authentication schemes, we
consider four types of components.
1 Especially, applying a one-way function to the biometric template will not be enough

to achieve our privacy goal.
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– Human user, which uses his biometric to authenticate himself to a service
provider.

– Sensor client, which captures the raw biometric data and extracts a biometric
template, and communicates with the service provider.

– Service provider, which deals with human user’s authentication request by
querying the database.

– Database, which stores biometric information for users, and works as a bio-
metric template matcher by providing the matching service to the service
provider.

Remark 1. Different from the local authentication environment, sensor client
and service provider are assumed to be independent components in our struc-
ture. We consider this to be an appropriate assumption in the remote authen-
tication environment, where human users access the service provider through
sensor clients, which are not owned by the service provider but have a business
agreement with the service provider.

Remark 2. In practice, there might be only very few organizations that can be
trusted by human users to store their biometric information though they may
want to use their biometrics for the authentication purpose at many service
providers. Therefore, in practice we suggest an scenario like that of Single Sign-
On systems [22], where biometric information for all service providers are cen-
tralizedly stored and managed. In addition, in our security model the centralized
database won’t be a bottleneck in the sense of security.

For the simplicity of description, in the following discussions, we assume N users
Ui (1 ≤ i ≤ N) register at a service provider S, these users authenticate them-
selves through a sensor client C2, and the database is denoted as DB. Moreover,
we would expect users to conduct their authentication services at different ser-
vice providers while registering their biometric templates in the same (trusted)
database.

2.2 The Authentication Workflow

Like most existing biometric-based cryptosystems, we also assume that a
biometric-based authentication scheme consists of two phases: an enrollment
phase and a verification phase.

1. In the enrollment phase, user Ui registers his reference biometric informa-
tion, which is computed based on his reference biometric template bi, at the
database DB and his personalized username IDi at the service provider S.
Note that a human user may have multiple registrations at the same service
provider.

2. In the verification phase, user Ui issues an authentication request to the
service provider S through the sensor client C. S matches Ui’s biometric
templates with help from the database DB.

2 In practice, there may be a number of sensor clients for human users to access the
service provider, but this simplification will not affect our security result.
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2.3 Assumptions and Trust Relationships

We make the following assumptions.

1. Biometric Distribution assumption: Let H be the distance function in a met-
ric space (in this paper, we assume it to be Hamming space). Suppose bi
and bj are the reference biometric templates for Alice and Bob, respectively.
There is a threshold value λ, the probability that H(bi, b′j) > λ is close to 1
and the probability that H(bi, b′i) ≤ λ is close to 1, where b′i and b′j are the
templates captured for Alice and Bob at any time.

2. Liveness assumption: We assume that, with a high probability, the biometric
template captured by the sensor is from a live human user. In other words,
it is difficult to produce a fake biometric template that can be accepted by
the sensor.

3. Security link assumption: The communication links between components are
protected with confidentiality and integrity. In practice, the security links can
be implemented using a standard protocol such as SSL or TLS.

The biometric distribution and the liveness assumptions are indispensable for
most of biometric-based cryptosystems and they are considered as a prerequisite
for the adoption of biometrics. Note that biometrics are public information,
additional credentials are always required to establish security links in order to
prevent some well-known attacks (e.g. replay attacks). Therefore, the security
link assumption is indeed also assumed in most cryptosystems, though it is not
as standard as others.

In a biometric-based authentication system, we assume the following trust
relationships.

1. Sensor client is always honest and trusted by all other components. By as-
suming this trust relationship, the liveness assumption is extended from sen-
sor client to service provider in the following sense: when the service provider
receives a username and some fresh biometric information, it can confirm
with a high probability that the the fresh biometric information is extracted
from a human user which has presented the username to the sensor client.

2. With respect to authentication service, service provider is trusted by human
users to make the right decision, and database is trusted by human users and
the service provider to store and provide the right biometric information.
Only an outside adversary may try to impersonate an honest human user.

3. With respect to privacy concerns, both service provider and database are
assumed to be malicious which means they may deviate from the protocol
specification, but they will not collude. In reality, an outside adversary may
also pose threats to the privacy concerns, however, it has no more advantage
than a malicious system component.

3 Security Model for Biometric-Based Authentication

We first describe some conventions for writing probabilistic algorithms and ex-
periments. The notation x

R← S means x is randomly chosen from the set S.
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If A is a probabilistic algorithm, then A(Alg; Func) is the result of running A,
which can have any polynomial number of oracle queries to the functionality
Func, interactively with Alg which answers the oracle queries issued by A. For
the clarity of description, if an algorithm A runs in a number of stages then we
write A = (A1,A2, · · · ). As a standard practice, the security of a protocol is
evaluated by an experiment between an adversary and a challenger, where the
challenger simulates the protocol executions and answers the adversary’s oracle
queries. Without specification, algorithms are always assumed to be polynomial-
time and the security parameter is assumed to be �.

Specifically, in our case, there are two functionalities Enrollment and
Verification, where Enrollment can be initiated only once to simulate the enroll-
ment phase and Verification can be initiated for any user to start an authentica-
tion session for any polynomial times. Without loss of generality, if Verification
is initiated for Ui, we write Verification(i).

In addition, we have the following definitions for negligible and overwhelming
probabilities.

Definition 1. The function P (�) : Z → R is said to be negligible if, for every
polynomial f(�), there exists an integer Nf such that P (�) ≤ 1

f(�) for all � ≥ Nf .
If P (�) is negligible, then the probability 1− P (�) is said to be overwhelming.

3.1 Soundness and Impersonation Resilience

Definition 2. A biometric-based authentication scheme is defined to be sound
if it satisfies the following two requirements:

1. With an overwhelming probability, the service provider will accept an au-
thentication request in the following case: sensor client sends (IDi, b) in an
authentication request, where H(b, bi) ≤ λ and bi is the reference template
registered for IDi.

2. With an overwhelming probability, the service provider will reject an au-
thentication request in the following case: sensor client sends (IDi, b) in an
authentication request, where H(b, bi) > λ and bi is the reference template
registered for IDi.

If b, where H(b, bi) ≤ λ, is extracted from a user different from the user registered
under bi, then we say false accept occurs. Otherwise, if b, where H(b, bi) > λ,
is extracted from the user registered under bi, then we say false reject occurs.
From a cryptographic point of view, the false reject rate and the false accept
rate may be very high. However, this issue is irrelevant to our privacy concerns,
hence, how to handle them is beyond the scope of our paper.

For authentication schemes, impersonation resilience should be the primary
goal, nonetheless, under the security link assumption and the liveness assump-
tion, soundness implies impersonation resilience in our case so that we omit the
formalization.
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3.2 Identity Privacy

In practice, a malicious service provider or a malicious database may try to
probe the relationships between personalized usernames and biometric tem-
plates, though they do not need such information in order to make the system
work. Informally, the attribute identity privacy means that, for any personal-
ized username, the adversary knows nothing about the corresponding biometric
template. It also implies that the adversary cannot find any linkability between
registrations in the case that the same human user has multiple registrations at
the service provider.

Definition 3. A biometric-based authentication scheme achieves identity pri-
vacy if A = (A1,A2) has only a negligible advantage in the following game,
where the advantage is defined to be |Pr[e′ = e]− 1

2 |.
ExpIdentity-Privacy

A
(i, IDi, b

(0)
i , b

(1)
i , (IDj , bj)(j �= i))← A1(1�)
bi = b

(e)
i

R← {b(0)i , b
(1)
i }

∅ ← Enrollment(1�)
e′ ← A2(Challenger; Verification)

Note that the symbol ∅ means that there is no explicit output (besides the state
information) for the adversary. In the experiment, presumably, the adversary
A2 will obtain the corresponding information3 from the challenger. The attack
game can be informally rephrased as follows:

1. The adversary A1 generates N pairs of username and relevant biometric
template, but provides two possible templates (b(0)i , b

(1)
i ) for IDi.

2. The challenger randomly chooses a template b(e)i for the username IDi, and
simulates the enrollment phase to generate the parameter for the sensor
client, the service provider, and the database.

3. The adversaryA2 can initiate any (polynomial) number of protocol instances
for the verification protocol, and terminates by outputting guess e′.

In this definition (and Definition 4), the adversary can freely choose the user-
name and biometric template pairs for the enrollment phase, therefore, it models
the security for any type of biometric regardless of its distribution in practice. It
is worth stressing that, if a scheme achieves identity privacy, then neither a ma-
licious service provider or a malicious database (or an outside adversary which
has compromised any of them) can recover any registered biometric template.

As to our knowledge, none of the existing biometric-based authentication
schemes (including those in Section 1) achieve identity privacy under our defini-
tion. Informally, these scheme suffers from the following vulnerability: Suppose
that human users use their iris to authenticate themselves to a service provider S.

3 The information refers to that of the malicious component at the end of the enroll-
ment phase.
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If S is malicious (or a hacker which has compromised the biometric database of
S), then it can easily determine whether a human being, say Alice, has registered.

3.3 Transaction Anonymity

Since the database is supposed to store biometric information, therefore, it might
obtain some transaction statistics about the service provider and registered hu-
man users. Informally, the attribute transaction anonymity means that, for every
query issued by the service provider, a malicious database knows nothing about
which user is authenticating himself to the service provider.

Definition 4. A biometric-based authentication scheme achieves transaction
anonymity if an adversary A = (A1,A2,A3) has only a negligible advantage
in the following game, where the advantage is defined to be |Pr[e′ = e]− 1

2 |.

ExpTransaction-Anonymity
A

(IDj , bj)(1 ≤ j ≤ N)← A1(1�)
∅ ← Enrollment(1�)

{i0, i1} ← A2(Challenger,Verification)
ie

R← {i0, i1}
∅ ← Verification(ie)
e′ ← A3(Challenger; Verification)

As the adversary is a malicious database, presumably the adversary A2 will
obtain the corresponding information from the challenger. The attack game can
be informally rephrased as follows:

1. The adversary A1 generates N pairs of username and relevant biometric
template.

2. The challenger simulates the enrollment phase to generate the parameters.
3. The adversary A2 can then initiate any (polynomial) number of protocol

instances for the verification protocol. At some point, A2 chooses two users
Ui0 , Ui1 and asks the challenger to initiate an instance for the verification
protocol.

4. The challenger chooses Uie and initiates an instance for the verification
protocol.

5. The adversary A3 can continue to initiate any number of protocol instances,
and terminates by outputting guess e′.

4 A General Biometric-Based Authentication Scheme

In this section we describe a general biometric-based authentication scheme,
where the biometric template matching can be done through binary string com-
parison. We first describe the enrollment phase and the verification phase, and
then provide some remarks.
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4.1 The Enrollment Phase

In the enrollment phase, every component initializes its parameters as follows.

– C generates a key pair (pkc, skc) for a signature scheme (KeyGen, Sign,Verify)
and publishes the public key pkc. In addition, C implements a (M,m, m̃, λ)-
secure sketch scheme (SS,Rec) [11], whereM is the space of biometric tem-
plate, m and m̃ can be any values, and λ is the threshold value in the
biometric distribution assumption described in Section 2.3.

– DB generates an ElGamal key pair (pkdb, skdb), where pkdb =
(Gdb, qdb, gdb, ydb), ydb = gxdb

db , and skdb = xdb, and publishes pkdb.
– S generates an ElGamal key pair (pks, sks), where pks = (Gs, qs, gs, ys),

Gs = Gdb, gs = gdb, ys = gxs
s , and sks = xs, and publishes pks.

– Ui generates his personalized username IDi and registers it at the service
provider S, and registers Bi at the database DB, where bi is Ui’s reference
biometric template and

Bi = Enc((gs)IDs||IDi||bi , pks)
= (Bi1, Bi2)

Note that Bi has two components since the encryption scheme is ElGamal.
In addition, Ui (publicly) stores a sketch sketchi = SS(bi).

4.2 The Verification Phase

If Ui wants to authenticate himself to the service provider S through the sensor
client C, they perform as follows.

1. The sensor client C extracts Ui’s biometric template b∗i and computes
the adjusted template b′i = Rec(b∗i , sketchi). If H(b∗i , b

′
i) ≤ λ, C sends

(IDi,Mi1,Mi2, σi) to the service provider S, where

Xi = Enc((gs)IDs||IDi||b′i , pks)
= (Xi1, Xi2),

Mi1 = Enc(Xi1, pkdb), Mi2 = Enc(Xi2, pkdb),

σi = Sign(IDs||Mi1||Mi2, skc).

Otherwise, C aborts the operation.
2. S first retrieves the index i for IDi and then forwards (Mi1,Mi2, σi) to the

database DB.
3. DB first verifies the signature σi. If the verification succeeds, DB decrypts
Mi1 and Mi2 to recover Xi. For every 1 ≤ � ≤ N , the database randomly
selects st ∈ Zqs and computes Rt = (Xi 	 B�)st , where, for any integer x
and two ElGamal ciphertexts (c1, c2) and (c3, c4), the operator 	 is defined
as follows: ((c1, c2)	 (c3, c4))x = (( c1

c3
)x, ( c2

c4
)x).

4. The server runs a PIR protocol to retrieve Ri. If Dec(Ri, sks) = 1, S accepts
the request; otherwise rejects it.
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4.3 Remarks on the Proposed Scheme

It is well known that, with ElGamal scheme, we need to encode the plaintext in
a certain way in order to obtain semantic security, however, there is no encoding
method which will fully preserve the homomorphic property. In our case, we set
Gs = Gdb and gs = gdb, so that all plaintexts are exponentiations of gs and we
avoid the encoding problem.

Under the original definition given in [11], a secure sketch scheme is typically
used to preserve the entropy of the input and allow the reconstruction of the
input in the presence of a certain amount of noise. In our case, we only need
the second functionality, namely the secure sketch scheme is used to remove the
noise in the fresh biometric template. Therefore, we allow the parameters m and
m̃ to be any values. The choice of λ depends on both the type of biometric and
the underlying application’s requirements on false accept and false reject rates.

User Ui does not need to register any information, either public or private,
at the sensor client, though it need to store some public information, namely
the secure sketch. The authentication is conducted through an exact equivalence
comparison between the reference template and the adjusted fresh template (say,
the output from the secure sketch scheme). As a result, we avoid the need to
perform approximate biometric matchings on the service provider side and are
able to use the underlying cryptographic techniques. This makes the scheme
more scalable and flexible than other similar schemes. Compared with the exist-
ing remote authentication schemes (e.g. those in [3,4,8]), the proposed scheme
demonstrates our concept of detaching biometric information storage from the
service provider and shows a way to enhance human users’ privacy in practice.
In addition, our scheme also demonstrates a method to transform the existing
schemes to satisfy our security definition, i.e. using a combination of plaintext
equivalence test and PIR.

The computational complexity is dominated by that of the databaseDB which
has to perform O(N) exponentiations, the sensor client needs to perform 6 ex-
ponentiations and sign one message for each authentication attempt, while the
service provider only needs to decrypt one message (one exponentiation) to make
a decision. In addition, there is some computational load in running the PIR pro-
tocol. The communication complexity is dominated by the PIR protocol. If it
is instantiated to be the single-database PIR protocol of Gentry and Ramzan
[14], then the communication complexity between the service provider and the
database is O(� + d), where d is the bit-length of an ElGamal ciphertext and
� ≥ logN is the security parameter.

5 Security Analysis of the Proposed Scheme

5.1 Soundness and Impersonation Resilience

From the biometric distribution assumption and the soundness of the secure
sketch, it is straightforward to verify that the proposed authentication scheme
is sound under Definition 2. In addition, Ui’s biometric templates bi and b′i are
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encoded in the form (gs)IDs||IDi||bi and (gs)IDs||IDi||b′i . Hence, if the entropy of
the adopted biometric is high, then the service provider and the database, even
if they collude, cannot recover the biometric templates based on the Discrete
Logarithm assumption.

5.2 Security Proof for Identity Privacy

In the verification protocol, even if security sketch is adopted, it is not guaranteed
that b′i = bi. Therefore, in the security proof, we assume that the difference
pattern, i.e. the distribution of b′i − bi mod q, is denoted as patterni. In fact,
the security results are independent from the difference patterns. Due to the
page limit, the proofs for both lemmas will appear in the full version of this
paper.

Lemma 1. The proposed scheme achieves identity privacy against malicious
S, based on the semantic security of the ElGamal scheme and the existential
unforgeability of the signature scheme.

Lemma 2. The proposed scheme achieves identity privacy against malicious
DB, based on the semantic security of the ElGamal scheme.

5.3 Security Proof for Transaction Anonymity

We next show that the proposed scheme achieves transaction anonymity. The
proof of this lemma will appear in the full version of this paper.

Lemma 3. The proposed scheme achieves transaction anonymity against mali-
cious DB, based on the semantic security of the ElGamal scheme and the security
(user privacy) of the PIR protocol.

5.4 Further Remarks

In our security analysis, as to an outside adversary, we only considered the case
where it has not compromised any system component. If the adversary has com-
promised the sensor client C, then it may impersonate an honest user to the
service provider if it obtains this user’s biometric template (note that biometrics
are public information). This is a common problem for many authentication sys-
tems, unless we adopt a tamper-resistant sensor client. If the adversary has com-
promised the service provider S or the database DB, then the identity privacy
property is still preserved. A possible vulnerability when DB is compromised is
that it may be able to impersonate any user in the system by impersonating
DB to the service provider. Again, this is a common problem for most authen-
tication systems, and one possible solution is to adopt a layered security design.
For example, tamper-resistant hardware can be used for establishing commu-
nication links. Then, even if the adversary has compromised the database, the
ciphertexts of biometric templates will not help him to impersonate any honest
user.
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6 Conclusion

In this paper we have proposed a specifically-tailored system structure and se-
curity model for biometric-based authentication schemes. In our security model,
we describe two privacy properties, namely identity privacy and transaction
anonymity, which are believed to be serious concerns because of the uniqueness
of biometrics. We have also proposed a general authentication scheme which
fulfills the security properties described in our security model. An interesting
characteristic of our scheme is that, assuming biometric template and secure
sketch to be public, a user does not need to store any private information and
register any information at the sensor client. In addition, the security require-
ments on the secure sketch scheme can be greatly relaxed (entropy preservation
is not required). As a further research direction, it is interesting to investigate
more efficient solutions in our security model.
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Abstract. Searchable encryption schemes allow users to perform keyword based
searches on an encrypted database. Almost all existing such schemes only con-
sider the scenario where a single user acts as both the data owner and the querier.
However, most databases in practice do not just serve one user; instead, they
support search and write operations by multiple users. In this paper, we systemat-
ically study searchable encryption in a practical multi-user setting. Our results
include a set of security notions for multi-user searchable encryption as well
as a construction which is provably secure under the newly introduced security
notions.

1 Introduction

With the prevalence of network connectivity, a typical paradigm of many enterprise
database applications is for multiple users to access a shared database via a local area
network or the Internet. For business-critical or security-sensitive data, encryption is
often used as the last line of defense to combat unsolicited data accesses. Consider
the following application example. A federation of healthcare institutes plans to estab-
lish a medical database so that their medical practitioners and researchers can share
clinic records and research results. To reduce the operational cost, management of the
database is outsourced to a database service provider. The database is encrypted in or-
der to comply with patient privacy related laws, such as HIPPA in the United States,
and yet the encrypted database must be searchable by authorized users.

Searchable encryption is a cryptographic primitive that enables users to perform
keyword-based searches on an encrypted database just as in normal database trans-
actions [8,10,12,19]. However, all the existing schemes are limited to the single-user
setting where the database owner who generates the database is also the single user
to perform searches on it. To support multi-user searches, Curtmola et. al. [8], by di-
rectly extending their single-user schemes, suggest to share the secret key for database
searching among all users. Their scheme allows only one user to write to the database,
though multiple users are able to search. Unfortunately, many practical applications
(e.g., the aforementioned healthcare federation example) require a database to support
both write and search operations by multiple users. Moreover, user revocation in their
scheme is based on broadcast encryption, where a revocation affects all non-revoked
users.

L. Chen, Y. Mu, and W. Susilo (Eds.): ISPEC 2008, LNCS 4991, pp. 71–85, 2008.
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Extending a single-user scheme to a full-fledged multi-user scheme by sharing se-
cret keys (or the private keys of public key based systems (see Section 2)) among all
users is a naı̈ve approach with several serious shortcomings. First, there is no feasible
means to determine the originator of a query in a provable manner, since all queries
are generated from the same key. This becomes unacceptable when accountability of
queries is desired by the database application. Secondly, user revocation can be pro-
hibitively expensive. In a multi-user application, user revocation is a routine procedure.
For a key-sharing based scheme, revocation often implies a new round of key distri-
bution involving all non-revoked users. Obviously, this is not scalable for large and
dynamic systems where user revocation may occur frequently. One may suggest us-
ing access control to complement key sharing in order to address the problem of user
revocation (i.e., user revocation does not entail key renewal). However, deployment of
access control in practice is prohibitively expensive as pointed out in [8], and worse yet,
users have to maintain an additional set of secrets. Thirdly, many searchable encryption
schemes follow the symmetric access paradigm, i.e., the same key is used for index
generation and search. Therefore, once a revoked user breaks the security perimeter of
a database system and gains illegal access to the encrypted database, she is still able to
search it at her will. One remedy could be to update the indexes after every user revo-
cation. However, it is obviously infeasible for large databases due to the immense cost
it entails.

In this paper, we systematically study searchable encryption in the multi-user setting.
We formulate a system model and define its security requirements. We also propose an
efficient construction, which offers not only the conventional query privacy, but also the
following new features.

- Our system allows a group of users, each possessing a distinct secret key, to insert
their encrypted data records to the database while every user in the group is able
to search all the records using her chosen keywords with the assistance from a
semi-trusted database server.

- Our system allows the user management of the database owner organization to dy-
namically and efficiently revoke users. Our revocation does not require distribution
of new keys, nor needs to update the encrypted database including the indexes. Af-
ter a revocation, the revoked users are no longer able to search the database, while
the revocation process is transparent to those non-revoked users. Our system also
allows for dynamic user enrollment, since a user joining does not affect other user’s
settings.

- Our system offers query unforgeability in the sense that neither a dishonest user nor
the database server is able to generate valid queries on behalf of another user unless
her secret key is compromised.

The rest of the paper is organized as follows. In the next section, we discuss the related
work and highlight the difference between our work and other searchable encryption
schemes. Then, we define the system and formulate security requirements in Section 3.
Our proposed construction, together with a rigorous security analysis and a performance
evaluation, are presented in Section 4. Concluding remarks are in Section 5.
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2 Related Work

Our work is under the umbrella of searchable encryption, which in general allows a
user to search among encrypted data and find the data containing a chosen keyword.
The first practical scheme of this kind is due to Song et al [19], who consider searches
across encrypted keywords within a file with an overhead linear to the file size. Goh [12]
and Chang and Mitzenmacher [10] propose to search encrypted indexes of a set of doc-
uments. Their approaches improve the search efficiency at the cost of a large storage for
the constructed indexes (the bit-length of the index for each document is proportional
to the total number of keywords). A formal security notion of searchable encryption
is defined in [8] which also constructs schemes provably secure against non-adaptive
and adaptive adversaries. Yang et al [20] apply the concept of searchable encryption to
dynamic databases. The work of [4] considers the variation of simultaneous search of
conjunctive keywords.

The first public-key based searchable encryption scheme is due to Boneh et al [2],
where the private key holder can perform a search among messages encrypted under
the corresponding public key. Park et al [18] and Hwang et al [15] propose variations of
conjunctive keywords search in the public key setting. Abdalla et al [1] further analyze
the consistency property of public key based searchable encryption, and demonstrate a
generic construction by transforming an anonymous identity-based encryption scheme.

Note that while public key based schemes allow for multi-user writing, only the key
holder who knows the private key can perform searches. As a result, applying public
key based searchable encryption schemes to the multi-user setting would face the same
problem as that of symmetric key based ones. Although Curtmola et al. suggest in [8] to
employ broadcast encryption to allow multiple user search, it only allows a single user
to write to the database. Moreover, their scheme is more suitable for a static collection of
documents than a dynamic database. By contrast, our work in this paper studies search-
able encryption in database applications where a group of users share data in a way that all
users are able to write to and search an encrypted database without sharing their secrets.

3 Model and Definitions

3.1 System Model

We consider a database system {D, UM, Serv, U}, whereD is a database; UM is the
user manager of the data owner organization that is responsible for the management of
users, e.g., user enrolment and user revocation; Serv is the database server providing
the search service; U is a group of users.

The database D consists of m records {d1, · · · , dm} of multiple attributes. One of
the attributes is the keyword used for search (note that it is straightforward to consider
multiple keyword attributes). The domain of the keyword attribute is denoted by W .
The keyword of di is denoted by di.w. Serv does not host the database D directly;
instead, it hosts an encrypted version of D, denoted by D′ = {d′1, · · · , d′m}, where
d′i = 〈E(di), I(di.w)〉: the first component is an encryption of di and the second is the
output of an index generation function I(·) on di.w. Let ED = {E(d1), · · · , E(dm)}
and ID = {I(d1.w), · · · , I(dm.w)}.
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Table 1. Notations

Notation Semantic

kUM the secret key of UM

e the encryption key for record encryption
qku, ComKu user u’s query key and her complementary key, respectively
U-ComK a list of 2-tuples (u, ComKu) maintained by Serv

With the assistance of Serv, an authorized user u ∈ U , is allowed to insert data
records to D′ and to search data records including those inserted by others based on her
chosen keywords. We use qu(w) to denote a query from user u on keywordw ∈ W . On
receiving query q = qu(w), Serv is expected to return aq = {E(di) | di ∈ D, di.w =
w}. Whenever necessary, UM may revoke a user’s privilege of searching the database.
Therefore, the user set U is divided into an authorized user set UA and a revoked user
set UR. Only users in UA are allowed to successfully search and write to the database.
UM is an offline user manager of the data owner organization and is responsible for

user enrollment and revocation; therefore we assume that UM is trusted and all inter-
actions with UM are secure (Please do not confuse UM with the system administrator
of the database server). We consider a semi-trusted Serv as in [13], in the sense that
it does not deviate from the prescribed protocol execution while it may try to derive as
much information as possible from user queries and database access patterns. In partic-
ular, we assume that it will not launch active attacks such as collusion with users. Our
trust model for Serv is based on the following observation. In practice, most database
hosting services are run by large and reputable IT service providers which clearly un-
derstand the paramount importance of corporate reputation for business success. There-
fore, it is logical to assume that the database hosting server follows trusted-but-curious
(semi-trusted) behavior. Active attacks are easy to detect/notice and therefore risk the
server from being caught. Even a rumor of violation of rules will result in very bad
publicity and damage a company’s reputation.

Throughout the rest of the paper, we use the following notations. For a set S, we
write x ∈R S to denote that x is selected uniformly at random from S, and write |S| to
denote the size of S. For an algorithm A, x ← A denotes that A outputs x. A function
ν : N → [0, 1] is negligible if for any polynomial p, there exists kp ∈ N such that for
all k ≥ kp, ν(k) ≤ 1/p(k). For convenience of reference, other notations used in the
sequel are listed in Table 1.

3.2 Definitions

We now define the multi-user encrypted database system and its security notions.
A multi-user encrypted database system, denoted by Γ , consists of the following
algorithms:

– Setup(1κ). A probabilistic algorithm executed by UM to set up the system and
to initialize system-wide parameters, where κ is the security parameter. The algo-
rithm outputs a secret key kUM for UM and the record encryption key e for a
semantically secure symmetric key encryption scheme.
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– Enroll(kUM , u). Executed by UM to enroll user u to the system. Taking as in-
put kUM and user identity u, it outputs a pair of query key and complementary
key (qku, ComKu) for u. qku and e are then securely transported to user u, and
ComKu is securely passed to Serv who then updates the U-ComK list by inserting
a new entry (u,ComKu).

– GenIndex(qku, w;ComKu). An interactive algorithm run between user u and
Serv to generate an index for keyword w. User u sends an index request on w
to Serv, who then computes a response using the correspondingComKu. Finally,
u outputs I(w) based on Serv’s response.

– Write(qku, e, di;ComKu). Run between user u and Serv to write an encrypted
record d′i to D′. The user u first invokes GenIndex(qku, di.w;ComKu) to gener-
ate I(di.w), then computesE(di) using e, and finally passes d′i = 〈E(di), I(di.w)〉
to Serv which appends it to D′.

– ConstructQ(qku, w). Run by a user u to construct a query. It takes as input the
secret query key qku and a chosen keyword w, and outputs a query qu(w).

– Search(qu(w), ComKu, D
′). Run by Serv to searchD′ for records containingw.

Namely, on a query qu(w), it outputs aq = {E(di) | di ∈ D, di.w = w}.
– Revoke(u). Run by UM to evict a user from the system. On an input user identity
u, it revokes u’s search capability. As a result, UA = UA \ {u}, UR = UR ∪ {u},
and u is no longer able to search the database.

A multi-user encrypted database system Γ is correct if an authorized user can always
get the correct query reply. More formally, ∀u ∈ UA, ∀w ∈ W ,
Search(ConstructQ(qku, w), ComKu, D

′) = {E(di) | di ∈ D, di.w = w}.
We also formalize several security requirements of the multi-user encrypted database

system, including query privacy, query unforgeability and revocability.

Query Privacy. A common security requirement for all searchable encryption schemes
is query privacy, which is a security notion on the amount of information leakage to the
server regarding user queries. As discussed in [8], any searchable encryption scheme
inevitably reveals certain query traces (defined shortly) to the server, unless using the
private information retrieval techniques, or PIR for short [9]. We refer interested readers
to [3,9,16,17] for various discussions on PIR. For searchable encryption, the server
always observes the database access patterns (e.g. two queries have the same reply),
albeit the server is unable to determine the keyword in a query. However, apart from the
information that can be acquired via observation and the information derived from it,
no other information should be exposed to the server.

For a record di, we use id(di) to denote the identifying information that is uniquely
associated with di, such as its database position or its memory location. For a query q
and its reply (i.e., the outputs of Search) aq, we define Ω(q) = {uq, id(aq)}, where
uq is the issuer of q and id(aq) represents the identifying information of each record
in aq . Let Qt = (q1, · · · , qt) be a sequence of t queries from the user group, and let
Wt = (w1, w2..., wt) be the corresponding queried keywords, andAt = (a1, a2, ..., at)
be the corresponding t replies, where t ∈ N and is polynomially bounded. We define Vt

as the view of an adversary (i.e., Serv) over the t queries as the transcript of the interac-
tions between Serv and the involved query issuers, together with some common knowl-
edge. Specifically, Vt = (D′ = (ED, ID), id(d′1), ..., id(d

′
|D′|),U-ComK list, Qt, At).
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Following the notation from [8], the trace of the t queries is defined to be: Tt =
(|D′|, id(d′1), ..., id(d′|D′|), Ω(q1), ..., Ω(qt), |UA|), which contains all the information
that we allow the adversary to obtain. Note that |UA| equals the number of entries in the
U-ComK list. A simulation-based definition of query privacy is formally presented as
follows.

Definition 1 (Query Privacy). A multi-user encrypted database system Γ achieves
query privacy if for all database D, for all t ∈ N, for all PPT algorithm A, there
exists a PPT algorithm (the simulator) A∗, such that for all Vt, Tt, for any function f :

|Pr[A(Vt) = f(D,Wt)]− Pr[A∗(Tt) = f(D,Wt)]| < ν(κ)

where the probability is taken over the internal coins of A and A∗.

Intuitively, the notion of query privacy requires that all information on the original
database and the queried keywords that can be computed by Serv from the transcript of
interactions she obtains (i.e., Vt) can also be computed from what it is allowed to know
(i.e. Tt). In other words, a system satisfying query privacy does not leak any information
beyond the information we allow the adversary to have. Note that query privacy implies
record secrecy, i.e. the encrypted database D′ = (ED, ID) does not reveal information
on the original database.

REMARK We stress that in the definition of query privacy, user-server collusion is
not included in our adversarial model. As we argued earlier, this is a practically rational
assumption. On the other hand, from a technical perspective, user-server collusion is
able to comprise any searchable encryption scheme, since the sever can always compare
the access patterns between a target user and the colluding user.

Query Unforgeability. In our system, queries issued by user u is generated by her
individual secret query key, which is distinct to any other user’s query key. It is thus
a basic requirement that neither another user nor the server can generate a legitimate
query on behalf of u. We refer to this property, which is only applicable to the multiple-
user setting, as query unforgeability. Query unforgeability allows a query to be uniquely
bound to its issuer in a provable way. Therefore, it is the security basis of other system
features, e.g. accountability and non-repudiation.

To define query unforgeability, we first define the legitimacy of user queries. For a
user u ∈ U , we define u’s legitimate query set as Qu = {qu(w)|qu(w)← ConstructQ
(qku, w), w ∈ W}. Namely, a query is user u’s legitimate query if it is indeed con-
structed by running ConstructQ with qku. Therefore, an informal meaning of query
unforgeability is that for any user u, no adversary is able to compute q satisfying q ∈ Qu

without compromising qku.
Query unforgeability is defined based on a game between an adversary and a chal-

lenger. We consider two types of adversaries: malicious users (possibly in a collusion)
and Serv. They have different knowledge and attack capabilities. Let AU be the ad-
versary representing malicious users and AS representing Serv. Let û be the target
user. InAU ’s game, the challenger simulates the execution of Γ and offers an oracleO
which answers AU ’s queries on the executions of Enroll, GenIndex, Write, Search,
and ConstructQ(qkû, ·) which allowsAU to obtain queries on keywords of her choices
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with respect to user û1. InAS’s game, she has the knowledge of all users’ complemen-
tary keys and a collection of û’s queries (gathered when û searches the database). Thus
the challenger givesAS the oracle access to ConstructQ(qkû, ·).

The game is the following: the adversary (eitherAU orAS) first picks her target user
û. Then for AU , she is given the query keys of the remaining users, and she queries O
at her will with the restriction that the number of queries is polynomial-bounded. For
AS , she is given the complementary keys of all users including the target user, and
the oracle access to ConstructQ(qkû, ·). In the end, the adversary halts and returns a
query q. Let Q′

û denote the set of û’s queries obtained by the adversary from querying
ConstructQ(qkû, ·). The adversary wins the game if and only if q ∈ Qû \ Q′

û. The
advantage of the adversary against query unforgeability is defined as the probability of
she winning the game. We summarize the notion of query unforgeability as follows.

Definition 2 (Query Unforgeability). A multi-user encrypted database system Γ
achieves query unforgeability if for any û ∈ U , for all PPT algorithmsAU andAS:

Pr[q ∈ Qû \Q′
û :(kUM , e)← Setup(1κ);
∀u ∈ U (qku, ComKu)← Enroll(kUM , u);
q ← AO

U ({qku|u ∈ U \ {û}})
or q ← AConstructQ(qkû,·)

S ({ComKu|u ∈ U})
] < ν(κ)

where the probability is taken over the internal coins of AU , AS ,Setup, and Enroll.

REMARK Since each user possesses a distinct query key, it would be a natural require-
ment to maintain secrecy of query keys, i.e., a query key is only known to its owner.
It is straightforward to observe that if a system is query unforgeable, it also preserves
secrecy of query keys. Otherwise, the knowledge of the target’s query key easily leads
to generating a legitimate query.

Revocability. User eviction is an indispensable part of a multi-user application. It is de-
sirable to allowUM to revoke the search capabilities of users who are deemed no longer
appropriate to search the database. Since the incapability of searching the database in-
dexes is implied by the incapability of distinguishing them, we define revocability based
on index indistinguishability.

An adversary’s advantage in attacking revocability is defined as her winning prob-
ability in the following game. The adversary A runs in two stages, A1 and A2: In the
first stage, A1 acts as an authorized user and is allowed to access the oracle O as in
Definition 2. At the end of the first stage, A1 chooses two new keywords w1 and w2,
which have not been queried thus far. Let state represent the knowledgeA1 gains dur-
ing the first stage. In the second stage, A2 is revoked, and is given the index of one of
the two keywords.A2 finally outputs a bit b′.A wins the game if and only if b′ = b. We
summarize the notion of revocability as follows.

Definition 3 (Revocability). A multi-user encrypted database query system Γ achieves
revocability if for all PPT algorithmsA = (A1,A2):

1 An malicious user may observe û’s queries by attacking her system or the communication
channel.
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Pr[b′ = b : (kUM , e)← Setup(1κ);
∀u ∈ UA (qku, ComKu)← Enroll(kUM , u);
(qkA, ComKA)← Enroll(kUM ,A);
(state, w0, w1)← AO

1 (qkA);
Revoke(A);
b ∈R {0, 1}, I(wb)← GenIndex(qku, wb;ComKu)u∈RUA ;
b′ ← A2(state, I(wb), w0, w1),

] < 1/2 + ν(κ)

where the probability is taken over the internal coins of A, Setup, Enroll, and the
instance of u.

Intuitively, the definition demands that all successful searches rely on the assistance
from Serv using the corresponding complementary keys. With this feature, UM is
able to efficiently revoke a user by instructing Serv to delete the relevant key.

REMARK. The definition of revocability based on the index indistinguishability ad-
dresses the cryptographic strength of the searching protocol. A revoked user might
mount attacks on the system or the communication channel in order to perform a search.
For instance a replayed query may help a revoked user to search the database. We argue
that this type of attacks can be neutralized by deploying secure communication channels
or a user authentication mechanism, which are out of the scope of this paper.

4 Our Construction

4.1 Technical Preliminaries

Pseudorandom Function and Pseudorandom Permutation. A pseudorandom function
is a function whose outputs cannot be efficiently distinguished from the outputs of truly
random functions. A keyed cryptographic hash function is often modeled as a pseu-
dorandom function. The main difference between a pseudorandom function and the
random oracle is that the former can be accessed only by the key holder, while the
latter is publicly accessible. If a pseudorandom function is a permutation, then it is
pseudorandom permutation. Symmetric key encryption schemes are often modeled as
pseudorandom permutations.

Bilinear Map. Let G1 and G2 be two groups of prime order p. A bilinear map is a
function ê : G1 ×G1 → G2, satisfying the following properties:

1. Bilinear: For all g1, g2 ∈ G1 and all x1, x2 ∈ Z∗
p , ê(gx1

1 , gx2

2 ) = ê(g1, g2)x1x2 .
2. Non-degenerate: If g is a generator of G1, then ê(g, g) is a generator of G2.
3. Computable: ê(g1, g2) can be efficiently computed for any g1, g2 ∈ G1.

Note that the G1 is a Gap-Diffie-Hellman group (GDH group), where the Decisional
DH problem (DDH) is easy while the Computational DH problem (CDH) is still hard.
The CDH problem is to compute gab, given g, ga, gb; and the DDH problem is to de-

termine c
?= gab, given g, ga, gb, c, where G is a cyclic group generated by g of prime

order p, c ∈R G, and a, b ∈R Z∗
p .
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BLS Short Signature. Boneh et al. proposed a short signature scheme in [6] based on
bilinear maps. A brief recall of the scheme is as follows: Let G1, G2, ê be defined as
the above, and g be a generator of G1; h : {0, 1}∗ → G1 be a collision resistant hash
function. A user’s key pair is (x ∈ Z∗

p , y = gx ∈ G1), where x is the private signing
key. Then, the signature on a message m is defined to be σ = h(m)x. Signature verifi-

cation is to check ê(g, σ) ?= ê(y, h(m)). The BLS short signature achieves existential
un-forgeability if h is modeled as a random oracle.

4.2 Protocol

We now present our construction. Let G1, G2 be two cyclic groups of a prime order p,
and a bilinear map ê : G1 × G1 → G2 between them as defined above. Let g be the
generator of G1. Let [m]k denote an encryption of a message m ∈ M under a secure
symmetric encryption scheme with the secret key k ∈ K, where M is the message
domain and K is the domain of the secret key. We use 〈c〉k to denote its decryption.
Let h : G2 → K be a collision-resistant hash function mapping an element in G2

to an element in K, and hs : S × W → G1 be a keyed hash function under a seed
s ∈ S that maps a keyword to an element in G1, where S is the domain of the secret
seeds. The details of our protocol for the multi-user encrypted database system (MuED)
are shown in Figure 1. In this construction, the encryption of records is performed
using a semantically secure symmetric key encryptionE() with the key e. Note that [.]k
and E() can be different symmetric encryption schemes (in fact, [.]k is not necessarily
semantically secure), so we distinguish them for clarity reason.

Note also that while the database server Serv maintains a Com K list, the list is not
intended to enforce access control, or to make any verification on the legitimacy of the
user or the relationship between the user and the complementary key ComKu. Serv
simply uses the complementary key indicated by the querying user in the algorithm of
Search.

4.3 Correctness

The correctness of the protocol is straightforward. Suppose that a record 〈E(di), I(w)〉
is generated by user u, where di.w = w and I(w) = 〈r, [r]k〉. Note that k essentially is
equal to h(ê(hs(w), g)x). Consider a user ū with a secret key xū and a complementary
key at Serv being ComKū. Her query on the keyword w is qū(w) = hs(w)xū ; and
the key used in Search is thus k′ = h(ê(qū(w), ComKū)) = h(ê(hs(w)xū , g

x
xū )) =

h(ê(hs(w), g)x). Since k = k′, E(di) is inserted into the reply set and returned to ū
according to the protocol. We remark that since h(·) and hs(·) are collision resistant
hash functions, the probability of computing the same key from two different keywords
are negligible.

4.4 Security Analysis

In this section, we analyze the security of our protocol, and in particular show that the
construction of MuED in Figure 1 satisfies the security requirements in Section 3.

Query Privacy. We first prove that our protocol achieves query privacy in the following
theorem.
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Setup(1κ) : UM sets up public system parameters G1, G2, and ê; selects x ∈R

Z∗
p and assigns kUM = x; selects the random data encryption key e

for E() and a random seed s ∈ S for the keyed hash function hs.
Enroll(kUM , u): UM sets UA = UA ∪ {u}; selects xu ∈R Z∗

p and computes

ComKu = g
x

xu ∈ G1; securely sends qku = (xu, s) and e to
user u, and sends ComKu to Serv, who then inserts a new entry
(u, ComKu) to U-ComK.

GenIndex(qku, w; ComKu): To generate an index for keyword w, user u first selects a random
blinding element rw ∈R Z∗

p , and computes and sends (u, hs(w)rw )
to Serv. Upon receiving the generate index request, Serv re-
turns ew = ê(hs(w)rw , ComKu) to u who then computes k =

h(e
xu/rw
w ) ∈ K, and sets the index for w as I(w) = 〈r, [r]k〉,

where r ∈R M. Outputs I(w).
Write(qku, e, di; ComKu): To write a record di to Serv, user u first generating the index of

di.w (i.e., I(di.w)) by invoking GenIndex(qku, di.w; ComKu).
Then u computes E(di) using e, and passes d′

i = 〈E(di), I(di.w)〉
to Serv.

ConstructQ(qku, w): User u computes qu(w) = hs(w)xu and outputs (u, qu(w)) as her
query on the keyword w.

Search(qu(w), ComKu, D′): Serv scans U-ComK to find ComKu. If no result, she out-
puts ⊥. Otherwise, using ComKu, she computes k′ =
h(ê(qu(w), ComKu)) and sets aqu(w) = ∅. For each Ii ∈ ID in
the form (A,B), she sets aqu(w) = aqu(w)∪{E(di)} if A = 〈B〉k′ .
Finally, she returns aqu(w) to user u.

Revoke(u): UM sets UA = UA \ {u} and UR = UR ∪ {u}. Then she instructs
Serv to delete the entry of (u, ComKu) from the U-ComK list.

Fig. 1. The Construction of MuED

Theorem 1. MuED achieves query privacy in Definition 1 if E(·) and [·]k are pseudo-
random permutations and hs(·) is a pseudorandom function.

Proof. It suffices for us to construct a PPT simulator A∗ such that for all t ∈ N, for
all PPT adversaries A, all functions f , given the trace of t queries Tt, A∗ can sim-
ulate A(Vt) with non-negligible probability. More specifically, we show that A∗(Tt)
can generate a view V ∗

t which is computationally indistinguishable from Vt, the ac-
tual view of A. Recall that Tt = (|D′| = m, 1, ...,m,Ω(q1), ..., Ω(qt), |UA|) and
Vt = (ED = {E(d1), ..., E(dm)}, ID = {I1, ..., Im}, 1, ...,m,U-ComK, Qt, At).

For t = 0 (Qt = ∅, At = ∅), A∗ builds V ∗
t = (E∗

D = {E(d1)∗, ..., E(dm)∗}, I∗D =
{I∗1 , ..., I∗m}, 1, ...,m,U-ComK∗) as follows. For 1 ≤ i ≤ m, it selects E(di)∗ ∈R

{0, 1}|E(di)|, and sets I∗i = 〈I∗i [1], I∗i [2]〉, where I∗i [1] ∈R M and I∗i [2] ∈R M. To
construct U-ComK∗, for each entryA∗ selects a random user identity and sets the corre-
sponding complementary key as a random element fromG1 (the total number of entries
is |UA|, which is contained in Tt). It is easy to check that V ∗

t and Vt are computation-
ally indistinguishable if the symmetric encryption (i.e., used to instantiateE and [·]k) is
pseudorandom permutation. Note that in this proof, we did not consider the process of
generating D′, and assume that D′ is already in place. In fact, the generation of D′ in
MuED does not provide A any additional knowledge on the keywords, since the only
extra information A obtains by observing the generation of D′ is hs(w)rw for each w
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(rw ∈R Z∗
p ), which clearly is computationally indistinguishable from a random element

from G1.
For t > 0, A∗ builds V ∗

t = (E∗
D, I

∗
D, 1, ...,m,U-ComK∗, Q∗

t , A
∗
t ) as follows. To be

general, we suppose that all queries in Qt are from distinct users (recall that the querier
of a query can be seen from Ω(qi)), but some of them may query the same keywords.
For 1 ≤ j ≤ |UA|, it selects x∗j ∈R Z∗

p and sets x∗ = x∗1 × ...× x∗|UA|.

– Generating E∗
D: Generation of E∗

D is the same as in the case of t = 0, where each
E(di)∗ is a random value.

– Generating Q∗
t : Recall that from Ω(q1), ..., Ω(qt) contained in Vt, A∗ can deter-

mine which queries ask the same keyword. For eachΩ(qi), it selects a random user
identity u∗i as the querier, and picks up an element from {x∗1, ..., x∗|UA|}, say x∗i , for
u∗i . If there does not exist j < i such that Ω(qj) = Ω(qi) (note that Ω(qj) = Ω(qi)
means that qi and qj ask the same keyword), selects a random element rg ∈R G1

and computes q∗i = r
x∗

i
g . Otherwise, re-uses the same rg for q∗j to compute q∗i .

– Generating U-ComK∗: We actually associate each x∗i with a user in UA. Accord-
ingly, the complementary key corresponding to x∗i is computed as gx∗/x∗

i . To orga-
nize the U-ComK∗, the users together with the corresponding complementary keys
involved in generating Q∗

t should be placed to the appropriate positions accord-
ing to Ω(q1), ..., Ω(qt), while the remaining users and complementary keys can be
placed randomly to fill the remaining entries of the list.

– Generating I∗D: From Ω(qi), 1 ≤ i ≤ t, A∗ knows which records are re-

trieved by query qi. Recall that for Ω(qi), q∗i is computed as rx∗
i

g . Computes
k∗ = h(ê(rg , g)x∗

), and for each of the records retrieved by qi, the index is set
as 〈r ∈R M, [r]k∗〉. At last, the index of each of the remaining records (i.e., those
are not retrieved by Qt) is set as 〈r1 ∈R M, r2 ∈R M〉.

– GeneratingA∗
t : Generation ofA∗

t is straightforward.A∗
t is simply the set of records

from E∗
D whose id’s are contained in Ω(q1), ..., Ω(qt).

We show that V ∗
t is computationally indistinguishable from Vt by comparing them

component by component. It is easy to see that ifE is a pseudorandom permutation,E∗
D

andED are computationally indistinguishable. ForQ∗
t andQt, let us consider an actual

query qu(w) = hs(w)xu and a simulated query q∗u = r
x∗

u
g , where rg ∈R G1: qu(w)

and q∗u are computationally indistinguishable if hs is a pseudorandom function. For
U-ComK∗ and U-ComK, an actual complementary key gx/xu and a simulated comple-
mentary key gx∗/x∗

u is indistinguishable, since xu and x∗u are random values. It is also
not hard to see that I∗D and ID are computationally indistinguishable if [·]k is pseudo-
random permutation. Finally, given the above indistinguishability results, the indistin-
guishability between A∗

t and At is straightforward. �

Query unforgeability. In the following, we prove that our protocol satisfies query un-
forgeability.

Theorem 2. If there exists a PPT adversary (either AU or AS) that breaks the query
unforgeability of MuED in Definition 2 with an advantage ε, then there exists a PPT
adversary B who can succeed in forging BLS short signatures with the same amount of
advantage.
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Proof. We prove the theorem relative to AU and AS , respectively. Given a BLS short
signature scheme as specified in Section 4.1, where x is the secret signing key and y
is the public key. Let B be a PPT adversary attempting to forge a short signature with
respect to y.

CASE 1 (For AU ): Intuitively, AU obtains a set of queries Q = {hs(w1)xû ,
hs(w2)xû , ...} of the target user û through the ConstructQ(qkû, ·) oracle. Note that
since AU knows s, hs cannot be modeled as a pseudorandom function; rather, it is
modeled as a random oracle. As a result, these queries are essentially the BLS short
signatures under the signing key xû. If A computes hs(w)xû from Q, it clearly forges
a signature on w. The detail of the proof follows.

The proof involves constructing BO(x)(Desc(O(x))), on input of Desc(O(x))
which is a description of an instance of the BLS short signature scheme, and is pro-
vided the signing oracle O(x). Note that Desc(O(x)) includes g ∈ G1, the public key
y = gx, hash function h used in the signature scheme, ê : G1×G1 → G2, and possibly
other parameters describing the scheme. The main idea is to set the signing key x to be
the secret query key of the target user. As such, the most challenging part of the simu-
lation is that if kUM is selected randomly as in the original protocol construction, we
have difficulty in computing the complementary key of the target user, which should
be gkUM/x, since we only know gx. The trick we have is to let B choose kUM in a
“controlled” way, but AU does not detect the difference. Specifically, the details of the
simulation are as follows.

1. Setup: In setting up the system, B uses G1, G2, ê of the BLS short signature
scheme as system parameters. B then selects a random seed s and a random data
encryption key e. To generate kUM , B chooses a set X = {x1, ..., xj , ...xmax},
where xj ∈R Z∗

p and max is the maximum number of user in the system which is

polynomially bounded by the security parameter κ. Then B sets k̃UM = y

|X|∏

j=1

xj

=

g
x.

|X|∏

j=1

xj ∈ G1. Note that B actually does not need to know the discrete logarithm
of kUM .

2. Enroll: To enroll users in U to the system, B assigns a random element from X to
a user as the query key. In particular, for each ui ∈ U \ {û}, chooses a distinct
xi ∈ X , and sets (qkui , ComKui) = ((xi, s), yx1...xi−1xi+1...x|X|). for the target

user û, it sets ComKû = g

|X|∏

i=1

xi

(as a result, x = xû is a component of qkû, which
B tries to compute); B then gives qkui , ui ∈ U \ {û}, together with e to AU .

3. AnswerO queries: B needs to answer the following types of queries fromAU : En-
roll, GenIndex, Write, Search, and ConstructQ(qkû, ·). It should be clear that B
can trivially answer the queries of Enroll, GenIndex, Write Search, because she
has the correct complementary keys of all users. We thus focus on how B answers
ConstructQ(qkû, ·) queries. AU can ask for queries on keywords of her choice
constructed using the target user’s query key. To answer a ConstructQ(qkû, ·)
query, B resorts to its oracle O(x): on receiving a keyword w, B submits the word
to O(x); on getting the reply from O(x), B tests the validity of the reply using
the verification algorithm of the signature scheme. If it is not valid, B continues
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to query O(x) until gets a valid reply. B then returns to AU the reply it gets from
O(x). Note that implicitly,O(x) simulates the random oracle h(·), and provides the
oracle access to B. Moreover, sinceAU knows s, B needs to simulates hs(·) toAU .
To simulate hs(·), B uses the oracle h(·) fromO(x): in particular, whenever getting
a message fromAU querying hs(·), B asks the same message to h(·), and returns to
AU what is returned from O(x). As a result, the set of {hs(w1)xû , hs(w2)xû , ...}
obtained byAU is actually {h(w1)xû , h(w2)xû , ...}, which is a set of the BLS sig-
natures.

4. B finally outputs whatAU outputs.

CASE 2 (For AS): The proof is similar to Case 1. To avoid redundancy, we only
highlight the differences between two proofs. AS also obtains a set of queries Q =
{hs(w1)xû , hs(w2)xû , ...} of the target user û through the ConstructQ(qkû, ·) oracle,
butAS does not know the seed s. This intuitively suggests that forging a query is much
harder forAS than forAU . In the actual proof, B does not choose s at all in Setup (the
trick is actually that B does not use any key for the hash function). Moreover, B does
not providesAS the oracle access to hs(·), sinceAS does not know s and thus does not
have access to hs(·).

The simulation by B is perfect in both cases. It is obvious that if q on w output by
AU or AS is a legitimate query of the target user û, then q must be equal to h(w)xû ,
which is a valid BLS short signature on w. This completes the proof. �

Revocability. The following theorem establishes that the construction of MuED satis-
fies revocability.

Theorem 3. MuED achieves revocability in Definition 3 if [·]k is a secure encryption
scheme.

Proof. The proof is pretty straightforward, and we only state the intuition behind the
proof. The indexes of the two keywords w1 and w2 are I(w1) = 〈r1, [r1]k(w1)〉 and
I(w2) = 〈r2, [r2]k(w2)〉, where r1, r2 ∈R M, and k(w1) and k(w2) denote the secret
keys generated fromw1 andw2, respectively. Since the complementary key of a revoked
user is deleted from the U-ComK list, the revoked user can never get k(w1) and k(w2)
from the keywords and the query key it has; moreover, it cannot get the keys either if
[·]k is a secure encryption scheme that does not expose the encryption key. As a result,
I(w1) and I(w2) are independent of w1 and w2, respectively, from the perspective of
the revoked user. So the advantage of the adversary guessing the correct bit cannot be
significantly more than 1/2. �

4.5 Performance

We focus on the online query process, as other procedures (algorithms) have constant
computational overhead. For query issuance, the main computation at the user side is
simply an exponentiation operation. Thus its computational complexity is O(1). For a
query process, the main computation at the server side includes a pairing operation, and
n symmetric key decryption, where n is the number of records. Thus the computational
complexity is asymptotically O(n). Note that all existing single-user searchable
encryption schemes except those in [8] requireO(n) server computation. This suggests



84 F. Bao et al.

that the searching efficiency of our protocol does not downgrade due to supporting
multiple users.

The computation cost of [8] is linear to the size of the keyword set, instead of the
document set. This performance gain is due to a preprocessing of all documents so that
the index of a keyword links together all relevant documents. However, it introduces
more cost in document deletion or insertion. An optimization approach for our scheme
is for the server to group the records retrieved by a reply together by sharing a com-
mon index (since they contain the same keyword). It saves the server from repetitively
searching the same keyword. As the system proceeds, this can greatly reduce the server
computation overhead.

5 Conclusion

Existing efforts on searchable encryption have focused on single-user settings. Directly
extending a searchable encryption scheme for the single-user setting to the multi-user
setting has several downsides, e.g., the considerable costs associated with re-distributing
query keys and re-generating the encrypted database. To solve theses problems, in this
paper we presented a systematic study on searchable encryption under a practical multi-
user database setting. We first formulated a system model as well as a set of security
requirements, then presented a concrete construction which provably satisfies those re-
quirements. In our construction, each user employs a distinct key, and consequently,
user revocation does not entail updating of query keys and re-encryption of the database,
and is transparent to the non-revoked users. Moreover, each authorized user can also in-
sert and search the database, an important feature to data sharing in the multi-user set-
ting. Our construction is efficient, achieving similar performance as most of the existing
single-user schemes.
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vol. 3783, pp. 414–426. Springer, Heidelberg (2005)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Proc. ACM Conference on Computer and Communications Security, CCS
1993, pp. 62–73 (1993)

6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

7. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. In: Proc.
STOC 1998, pp. 209–218 (1998)

8. Curtmola, R., Garay, J., Kamara, S., Ostrovskey, R.: Searchable Symmetric Encryption: Im-
proved Definitions and Efficient Constructions. In: Proc. ACM Conference on Computer and
Communications Security, CCS 2006, pp. 79–88 (2006)

9. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval. Journal of
the ACM (1995)

10. Chang, Y., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote Encrypted
Data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
442–455. Springer, Heidelberg (2005)

11. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (1987)

12. Goh, E.: Secure Indexes (2003), http://crypto.stanford.edu/˜eujin/
papers/secureindex/secureindex.pdf

13. Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge
(2004)

14. Goldreich, O., Ostrovsky, R.: Software Protection and Simulation on oblivious RAMs. Jour-
nal of ACM 43(3), 431–473 (1996)

15. Hwang, Y.H., Lee, P.J.: Public Key Encryption with Conjunctive Keyword Search and Its Ex-
tension to a Multi-User System. In: Proc. International Conference on Pairing-Based Cryp-
tography, Pairing 2007 (2007)

16. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally
private information retrieval. In: Proc. FOCS 1997, pp. 364–373 (1997)

17. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J.,
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Abstract. In recent years, many have suggested to apply encryption in
the domain of software protection against malicious hosts. However, little
information seems to be available on the implementation aspects or cost
of the different schemes. This paper tries to fill the gap by presenting our
experience with several encryption techniques: bulk encryption, an on-
demand decryption scheme, and a combination of both techniques. Our
scheme offers maximal protection against both static and dynamic code
analysis and tampering. We validate our techniques by applying them
on several benchmark programs of the CPU2006 Test Suite. And finally,
we propose a heuristic which trades off security versus performance, re-
sulting in a decrease of the runtime overhead.

1 Introduction

In the 1980s application security was achieved through secure hardware, such
as ATM terminals, or set-top boxes. Since the 1990s, however, secure soft-
ware has gained much interest due to its low cost and flexibility. Nowadays,
we are surrounded by software applications for online banking, communication,
e-voting, . . . As a result, threats such as piracy, reverse engineering and tamper-
ing have emerged. These threats are exacerbated by poorly protected software.
Therefore, it is important to have a thorough threat analysis (e.g., STRIDE [10])
as well as software protection schemes. The techniques discussed in this paper
protect against reverse engineering and tampering.

The goal of encryption is to hide the content of information. Originally, it was
applied within the context of communication, but has become a technique to
secure all critical data, either for short-term transmission or long-term storage.
More recently, commercial tools for software protection have become available.
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These tools need to defend against attackers who are able to execute the soft-
ware on an open architecture and thus, albeit indirectly, have access to all the
information required for execution.

Even though encryption is one of the best understood information hiding
techniques and has been used previously for software protection, little details on
its practical application and performance impact are available. In this paper we
discuss a number of practical schemes for self-encrypting code and report on our
experience. Furthermore, we introduce an on-demand decryption scheme which
operates at function granularity and which uses the hash of other code sections
as the decryption key.

The remainder of this paper is structured as follows. Section 2 describes soft-
ware security and its threats. Section 3 provides an overview of related work. In
Sect. 4 we discuss our on-demand code decryption scheme. A numerical evalua-
tion is given in Sect. 5. Section 6 discusses several attack scenarios and possible
countermeasures. Finally, conclusions are drawn in Sect. 7.

2 Software Security and Threats

Protecting code from reverse engineering is one of the main concerns for software
providers. If a competitor succeeds in extracting and reusing a proprietary al-
gorithm, the consequences may be major. Furthermore, secret keys, confidential
data or security related code are not intended to be analyzed, extracted, stolen
or corrupted. Even if legal actions such as patenting and cyber crime laws are in
place, reverse engineering remains a considerable threat to software developers
and security experts.

In many cases, the software is not only analyzed, but also tampered with.
Nowadays examples are cracks for gaming software or DRM systems. In a branch
jamming attack, for example, an attacker replaces a conditional jump by an
unconditional one, forcing a specific branch to be taken even when it is not
supposed to under those conditions. Such attacks could have a major impact on
applications such as licensing, DRM, billing and voting.

Before changing the code in a meaningful way, one always needs to under-
stand the internals of a program. If one would change a program at random
places one could no longer guarantee the correct working of the application after
modification. Several papers present the idea of self-verifying code [4,9] that is
able to detect any changes to critical code. These schemes, however, do not pro-
tect against analysis of code. In this paper tries to solve analysis and tampering
attacks simultaneously through encryption.

We focus on software-only solutions because of their low cost and flexibility.
Clearly, code encryption is more powerful if encrypted code can be sent to a se-
cure co-processor [21]. But when this component is not available, as is the case on
most existing systems, the problem becomes harder to tackle. Essentially, such
a co-processor can be assumed to be a black-box system, where the attacker
is only able to monitor I/O behavior. Software-only solutions against malicious
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hosts need to work within a white-box environment, where everything can be
inspected and modified at will.

3 Related Work

There are three major threats to software: piracy, reverse engineering and tam-
pering. In recent years, a number of countermeasures have been treated in the
literature. Software watermarking, for example, aims at protecting software re-
actively against piracy. It embeds a unique identifier into an application such
that it can be proved that a specific copy belongs to a specific individual or
company. As a result, one can trace copied software to the source unless the
watermark is destroyed.

A second countermeasure, code obfuscation, protects against reverse engi-
neering. Code obfuscation aims to generate a semantically equivalent, but less
intelligible version of a program.

The goal of a third countermeasure is to make software more tamper-resistant.
As this paper studies protection mechanisms against malicious analysis and tam-
pering, we will not elaborate on software watermarking.

3.1 Code Obfuscation

Once software is distributed, it is largely beyond the control of the software
provider. This means that attackers can analyze, copy, and change it at will. Not
surprisingly, a substantial amount of research has gone into making this analysis
harder. The developed techniques range from tricks to counter debugging, such
as code stripping, to complex control flow and data flow transformations that
try to hide a program’s internal operation. The goal is to achieve the security
objective of confidentiality. For example, when Java bytecode was shown to be
susceptible to decompilation – yielding the original source code – researchers
began investigating techniques to protect the code [6,13]. Protection of low-level
code against reverse engineering has been addressed as well [24].

3.2 Tamper Resistance

Tamper resistance protects data authenticity where, in this context, ‘data’ refers to
the program code. In ’96 Aucsmith [1] introduced a scheme to implement tamper-
resistant software. Through small, armored code segments, referred to as integrity
verification kernels (IVKs), the integrity of the code is verified. These IVKs are
protected through encryption and digital signatures such that it is hard to mod-
ify them. Furthermore, these IVKs can communicate with each other and across
applications through an integrity verification protocol. Many papers in the field
of tamper resistance base their techniques on one or more of Aucsmith’s ideas.

Several years later, Chang et al. [4] proposed a scheme based on software
guards. Their protection scheme relies on a complex network of software guards
which can mutually verify each other’s integrity and that of the program’s crit-
ical sections. A software guard is defined as a small piece of code performing a
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specific task (e.g., checksumming or repairing). When checksumming code de-
tects a modification, repair code is able to undo this malicious tamper attempt.
The security of the scheme relies partially on hiding the obfuscated guard code
and the complexity of the guard network. Horne et al. [9] discuss a related con-
cept called ‘testers’, small hash functions that verify the program at run time.
These testers can be combined with embedded software watermarks to result in
a unique, watermarked, self-checking program.

Other related research is oblivious hashing [5], which interweaves hashing
instructions with program instructions and which is able to prove to some extent
whether a program operated correctly or not.

However, in some cases, programmers might opt for self-checking code instead
of self-encrypting code, based on some of the following disadvantages:

– limited hardware support: self-modifying code requires memory pages to be
executable and writable at the same time. However some operating systems
enforce a WˆX policy as a mechanism to make the exploitation of security
vulnerabilities more difficult. This means a memory page is either writable
(data) or executable (code), but not both. Depending on the operating sys-
tem, different approaches exist to bypass – legally – the WˆX protection:
using mprotect(), the system call for modifying the flags of a memory page,
to explicitly mark memory readable and executable (e.g., used by OpenBSD)
or setting a special flag in the binary (e.g., in case of PaX). A bypass mech-
anism will most likely always exist to allow for some special software such
as a JVM that optimizes the translation of Java bytecode to native code on
the fly.

– implicit reaction to tampering: if an encrypted code section is tampered
with the program will crash after incorrect decryption, assuming that it is
hard to target bits flips in the plaintext by manipulating the ciphertext.
Furthermore, even if one succeeds in successful tampering with a specific
function, our dependency scheme will propagate faulty decryption along the
functions on the call stack whenever the modified function is verified (i.e. a
decryption key is derived from its code), which will sooner or later make the
program crash as well. However, crashing is not very user-friendly. In the
case of software guards [4,9], detection of tampering could be handled more
technically by triggering another routine that for example exits the program
after a random time, calls repair code that fixes the modified code (or a
hybrid scheme, which involves both techniques), warns the owner about the
malicious attempt through a hidden channel, . . .

3.3 Code Encryption

This section provides an overview of dynamic code decryption and encryption;
one often refers to this as a specific form of self-modifying or self-generating
code. Encryption ensures the confidentiality of the data. In the context of binary
code, this technique mainly protects against static analysis. For example, several
encryption techniques are used by polymorphic viruses and polymorphic shell
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code [18]. In this way, they are able to bypass intrusion detection systems, virus
scanners, and other pattern-matching interception tools.

Bulk Decryption. We refer to the technique of decrypting the entire program
at once as bulk decryption. The decryption routine is usually added to the en-
crypted body and set as the entry point of the program. At run time this routine
decrypts the body and then transfers control to it. The decrypting routine can
either consult an embedded key or fetch one dynamically (e.g., from user in-
put or from the operating system). The main advantage of such a mechanism is
that as long as the program is encrypted, its internals are hidden and therefore
protected against static analysis.

Another advantage is that the encrypted body makes it hard for an attacker
to statically change bits in a meaningful way. Changing a single bit will result
in one or more bit flips in the decrypted code (depending on the encryption
scheme) and thus one or more modified instructions, which may lead to program
crashes or other unintended behavior due to the brittleness of binary code.

However, as all code is decrypted simultaneously, an attacker can simply wait
for the decryption to occur before dumping the process image to disk.

On-demand Decryption. In contrast to bulk decryption, where the entire
program is decrypted at once, one could increase granularity and decrypt small
parts when they are needed at run time. Once they are no longer needed, they can
be re-encrypted. This technique is applied, a.o., by Shiva [14], a binary encryptor
that uses obfuscation, anti-debugging techniques, and multi-layer encryption to
protect ELF binaries. Viega et al. [23] provide a related method to write self-
modifying programs in C that decrypt a function at run time.

On-demand decryption overcomes the weaknesses of revealing all code in the
clear at once as it offers the possibility to decrypt only the necessary parts,
instead of the whole body. The disadvantage is an increase in overhead due to
multiple calls to the decryption and encryption routines.

4 On-demand Decryption Framework

In this section, we introduce our on-demand decryption scheme. The granularity
of this scheme is the function level, meaning that we will decrypt and encrypt
an entire function at a time.

4.1 Basic Principle

The scheme relies on two separate techniques, namely integrity checking and
encryption. The techniques from integrity-checking are used to compute the
keys for decryption and encryption. The integrity checking function can be a
checksum function or a hash function. Essentially, it has to map a vector of
bytes, code in this case, to a fixed-length value, in such a way that it is hard to
produce a second image resulting in the same hash.
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The basic idea is to apply the integrity checking function h to a function a
to obtain the key for the decryption of another function b. Using the notation
of D for decryption and E for encryption, this results in b = Dh(a)(Eh(a)(b)).
To this end, b needs to have been encrypted with the correct key on beforehand
(i.e. Eh(a)(b), denoted by b̄). We will refer to this scheme as a crypto guard.

We would like the guard to have at least the following properties:

– if one bit is modified in a, then 1 or more bits in b should change (after
decryption); and

– if one bit is modified in b̄, then 1 or more bits should change in b after
decryption.

For the first requirement, a cryptographic function with a as key could be
used. For example, Viega et al. [23] use the stream cipher RC4 where the key
is code of another function. The advantage of an additive stream cipher is that
encryption and decryption are the same computation, thus the same code. It is
also possible to construct stream ciphers out of block ciphers (e.g., AES) using
a suitable mode of operation. For more on the cryptographic properties of these
functions, we refer to [15]. The major disadvantage of these ciphers is that they
are relatively slow for our case, and relatively large as well. However, note that
we still require the integrity-checking function that also serves as a one-way
compression function, because each cipher requires a fixed, limited key size.

From a cryptographic point of view we require a second image resistant hash
function and secure encryption mode with suitable error propagation properties
(e.g., PCBC). However, size and speed of these algorithms is essential for the
overall performance of the protection scheme as its security assumes inlining the
guard code. This results in more code to be hashed and decrypted, and thus a
higher cost. It is also possible to link the hashing itself to other code by using
a keyed hash function, such as HMAC. Other proposals for hash-like functions
and encryption routines are constructions based on T-functions, introduced by
Shamir et al. [11]. These light-weight functions are popular as they have a di-
rect equivalent available in both software and hardware. Nevertheless, it is still
unclear whether constructions based on T-function are cryptographically secure.

As software tamper resistance is typically defined as techniques that make
tampering with code harder, we can illustrate that our crypto guards offer pro-
tection against tampering. Namely, using code of a to decrypt (i.e. deriving a
decryption key from a’s code) could be seen as an implicit way of creating tam-
per resistance; modifying a will result in an incorrect hash value (i.e. encryption
key), and consequently incorrect decryption of b̄.

Furthermore, changing b̄ will result in one or more changes to b; in case of an
additive stream cipher a bit change in the ciphertext will correspond to a bit
change the plaintext at the same location. However, if this plaintext itself is used
as key material in a later stage (e.g, to derive decryption keys for its callees), this
will result in incorrect code. Furthermore, due to the brittleness of binary code
and the denseness of the IA32 instruction set, a single bit flip in the clear code
might change the opcode of an instruction, resulting in an incorrect instruction
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to be executed, but also in desynchronizing the next instructions [12], which
most likely will lead to a crashing program.

Another advantage of this scheme is that the key is computed at run time,
which means the key is not hard-coded in the binary and therefore hard to find
through static analysis (e.g., entropy scanning [17]). The main disadvantage is
performance: loading a fixed-length cryptographic key is usually more compact
and faster than computing one at run time, which in our case may involve
computing a hash value.

Although we believe that cryptographic hash functions and ciphers are more
secure, we used a simpler XOR-based scheme – which satisfies our two properties
– to minimize the performance cost in speed and size after embedding the crypto
guards. We therefore do not claim that our encrypted code is cryptographically
secure, but rather sufficiently masked to resist analysis and tampering attacks
in a white-box environment, where the attacker has full privileges.

4.2 A Network of Crypto Guards

With crypto guards as building blocks we can construct a network of code depen-
dencies that make it harder to analyze or modify code statically or dynamically.

A first requirement is protection against static analysis. Therefore, all func-
tions in the binary image, except for the entry function, are encrypted with
unique dynamic keys. We opted to decrypt the functions just before they are
called and to re-encrypt them after they have returned. In this case, only func-
tions on the call stack will be in the clear.

Secondly, as the key for decryption should be fixed, regardless of how the
function was reached, we need to know in advance the state of the code from
which the key is derived (encrypted or in the clear). Many functions have multiple
potential callers. Therefore, we cannot always use the code of the caller to derive
the key. The solution is to use a dominator in the call graph. As a dominator is
by definition on the call stack when the function is called, it is guaranteed to be
in the clear. We have chosen to use the immediate dominator to derive the key.

Note that it is also possible to derive the key of other functions, allowing one
to create schemes which offer delayed failure upon malicious tampering [20]. On
the one hand, this may allow a tampered application to run longer, on the other
hand this does not correlate the moment of failure to the embedded checking or
reaction mechanism.

Thus, a good mode of operation for the encryption (i.e. with error propa-
gation) in combination with our dependency scheme, will propagate bit flips
(triggered by tampering):

– through the modified function due to the mode of operation,
– inheritably from caller to callee according to the call graph due to the de-

pendency scheme.

The latter, however, does not validate for multiple callers due to our relaxation
(using the dominator’s code instead of caller’s to derive the key) or to functions
with no callees. In theory this could be solved by using authenticated encryption
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Fig. 1. (a) Memory layout of function call with calls to a crypto guard prior to the
actual call and after its corresponding return. (b) After inlining the guard code. Note
that the caller will increase in size depending on the size of the guard code.

modes, such as EAX [2] or the more efficient OCB [16]. These modes aim to
efficiently offer confidentiality and integrity.

The operation of a function call is illustrated in Fig. 1. It consists of the
following steps:

1. the caller calls a guard to decrypt the callee;
(a) the guard computes a checksum of the immediate dominator of the callee;
(b) the callee is decrypted with the checksum as key;
(c) the guard returns;

2. the caller calls the callee;
3. the callee returns;
4. the caller calls the guard to encrypt the callee;

(a) the guard computes a checksum of the immediate dominator of the callee;
(b) the callee is encrypted with the checksum as key;
(c) the guard returns;

5 Numerical Evaluation

In our experiments we tested 5 benchmark programs out of the SPEC CPU2006
Test Suite [19] on an AMD Sempron 1200 MHz, running GNU/Linux with 1 GB
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of RAM. We first measure the impact of bulk encryption. Subsequently, we ap-
ply our on-demand encryption scheme where we protect a maximal number of
functions, such that our scheme can offer tamper-resistance according to the
properties mentioned in Section 4. To insert the guard code we used Diablo [7],
a link-time binary rewriter, allowing us to patch binary code, insert extra en-
cryption functionality, and perform dominator analysis on either the control flow
graph or the function call graph. As we are generating self-modifying code, we
mark all code segments to be readable and writable.

Our current implementation only handles functions which respect the call-
return conventions. Recursive functions (denoted by cycles in the function call
graph) are protected by decrypting ahead, i.e. just before entering a recursive
cycle, one decrypts all functions part of that cycle.

To report the performance cost we define the time cost Ct for a program P
and its protected version P̄ as follows:

Ct(P, P̄ ) =
T (P̄ )
T (P )

where T (X) is the execution time of program X .

5.1 Bulk Decryption

For the bulk decryption we added a decryption routine that is executed prior
to transferring control to the entry point of the program. For simplicity, we
encrypted the entire code section of the binary (including library functions as
Diablo works on statically compiled binaries). The resulting overhead in execu-
tion time is less than 1%.

5.2 On-demand Decryption

On-demand decryption protects functions by decrypting them just before they
are called and reencrypting them after they have returned. This limits their
exposure in memory. Despite the simplicity of this scheme, a number of issues
need to be addressed. An overview is given below.

Loops. A scheme considering only decryption should not be nested in a loop (un-
less it tests for the state – cleartext or ciphertext). Bulk decryption for example
should happen only once. However, the sooner this decryption is performed, the
longer code will be exposed. As our scheme operates on a function level and a
corresponding function call graph, we do not posses information on loops, unless
derived from further analysis (e.g., via profile information).

Recursion. If a function calls itself (pure recursive call), it should – according
to our scheme definitions – decrypt itself, although it might be in clear already.
Therefore, we suggest decrypting a recursive function only once: namely when
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Fig. 2. A partial function call graph containing recursive cycles: {f4, f5}, {f4, f5, f6},
and {f8, f9}. Functions f1, f2, and f3 are the functions giving control to the recursive
cycles after decrypting all functions in the reachable cycles.

it gets called by another function. We can extend this to recursive cycles, where
a group of functions together form a recursion. In this case, all functions in the
recursive cycle should be decrypted before entering the recursive cycle. Figure 2
illustrates this. For example, before giving control to f8 (via f3), cycles {f8, f9}
and {f4, f5, f6} have to be decrypted. Function f7 can be decrypted (before
calling) in f4 as it will always be re-encrypted (after returning) before f4 calls
it a second time (e.g., in another iteration of the recursion).

Multiple callers. In order to propagate errors through the whole call graph ac-
cording to the call stack, decryption of a callee should depend on the integrity
of all callers. This is not straightforward as we defined our scheme to rely on
cleartext code, but only one of the callers has to be in clear. Cappaert et al. [3]
is possible to decrypt the cleartext code of each caller. However, this requires
O(nd) decryptions (via a guard) where n represents the number of callers and
d the difference in the call graph depth of each encrypted caller relative to the
actual caller. To overcome this overhead we propose to apply a similar strategy
as proposed for recursion, namely to decrypt ahead of the call to the callee.
Thus, to decrypt a function b with multiple callers ai we can decrypt the code
of b before entering one its callers ai. This would only result in O(n) guards but
expose fb’s code a little longer.

In our implementation we rely on the immediate dominator instead of the
actual callers, but we only decrypt the code of b when it is called from one of
its callers ai. The reason is that the dominator is always on the call stack, and
thus in the clear, when a function is reached. This only requires O(n) guards.

Table 1 shows the time cost after applying our on-demand encryption scheme
to 5 benchmark programs out of the SPEC CPU2006 suite. It is clear that,
depending on the nature of the program (number of calls, function size, etc.),
the impact of our scheme is moderate for some, while expensive for others.
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Table 1. Time cost for on-demand encryption, using our tamper resistance scheme.
This table shows the total number of functions, functions protected with the on-demand
encryption scheme, the time cost, and the number of guard pairs (D and E) in the
binary.

Program Functions Speed cost Number of
name total on-demand Ct guard pairs

mcf 22 20 1.09 28

milc 159 146 8.17 543

hmmer 234 184 3.20 873

lbm 19 12 1.00 20

sphinx livepretend 210 192 6.65 1277

5.3 Combined Scheme

To address the trade-off between performance and protection we propose a com-
bined scheme. This scheme combines the merits of bulk encryption and the
tamper-resistant properties of our on-demand decryption scheme. To decide
whether a function is a good candidate for on-demand decryption, we define a
heuristic hotness that is correlated to the frequency a function is called, namely:

Definition 1. A function is hot when it is part of the set of most frequently
called functions that together contribute to K% of all function calls.

The call information was collected by analyzing dynamic profile information
gathered by Diablo. This definition can be expressed by the following formula:

f is hot↔ calls(f) ≥ threshold

with

threshold = calls(fi) |
i∑

j=1

calls(fi) > K

n∑

j=1

calls(fi)

assuming n functions, ordered descending according to the number of times a
function fi is called, i.e. calls(fi).

When a function is hot, it is not selected for on demand encryption but pro-
tected by bulk encryption. Table 2 contains the time costs of the same benchmark
programs tested when we apply the combined scheme. It is clear that defining a
hot threshold reduces the overhead introduced by our guards. We believe that
further fine-tuning of our threshold (e.g., increasing the K factor) will improve
the performance of all programs.

Furthermore, we also would like to stress that we are aiming to protect all
functions at all times, while most other software protection techniques focus on
the critical parts only, or all functions but not at all times (e.g., bulk encryption).
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Table 2. Time cost for our combined scheme, combining on-demand encryption with
bulk encryption for K = 0.90

Program Functions Speed cost Number of
name total on-demand Ct guard pairs

mcf 22 19 1.04 24

milc 159 135 1.95 486

hmmer 234 183 1.15 862

lbm 19 8 1.00 17

sphinx livepretend 210 181 1.72 1257

6 Attacks and Improvements

6.1 White-Box Attacks

Our guards, which modify code depending on other code, offer several advantages
over the software guards proposed by Chang and Attalah [4] and the those from
Horne et al. [9]:

Confidentiality. As long as code remains encrypted in memory it is protected
against dynamic analysis attacks. With a good scheme it is feasible to ensure
only a minimal number of code blocks are present in memory in decrypted form;

Tamper resistance. Together with a good dependency scheme, our guards offer
protection against any tampering attempt. If a function is tampered with stat-
ically or even dynamically, the program will generate corrupted code at a later
stage and thus will it most likely eventually crash due to illegal instructions.
Furthermore, if the modification generates executable code, this change will be
propagated to other functions, resulting in erroneous code.

Resistance to a hardware-assisted circumvention attack. This attack, proposed
by van Oorschot et al. [22], exploits differences between data reads and instruc-
tion fetches to bypass self-checksumming code. The attack consists of duplicating
each memory page, one page containing the original code, while another contains
tampered code. A modified kernel intercepts every data read and redirects it to
the page containing the original code, while the code that gets executed is the
modified one. However, more recent work of Giffin et al. [8] illustrates that self-
modifying code can detect such an attack and thus protect against it. As our
work focusses on self-encrypting code, a type of self-modifying code, these results
also apply to our techniques.

Nevertheless, in a white-box environment, an attacker has full privileges. For
example, he or she can debug and emulate the program at will. This implies that
our dynamically computed keys will be visible at some moment in time. The
same counts for addresses of the decryption areas, etc. Therefore, we propose to
protect guards in a diversified manner by obfuscation techniques [24] such that
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not all of them can be broken in an automated way. Another option is hardware
support, such as cryptographic co-processors [21]. However, this usually comes
a a higher cost.

6.2 Inlining Guard Code

Embedding a single decryption routine in a binary is not a secure stand-alone
protection technique. It should always be combined with other techniques such
as obfuscation or self-checking code. The strength of our scheme is a direct
consequence of its distributed nature, i.e. a network of guards (as explained in
Section 4.2). If implementation of the dependency scheme consists of a single
instance of the guard code and numerous calls to it, an attacker can modify the
guard or crypto code to write all decrypted content to another file or memory
region. To avoid that an attacker only needs to attack this single instance of
the guard code, inlining the entire guard could preclude this attack and force
an attacker to modify all instances of the guard code at run time, as all nested
guard code will initially be encrypted. This has been illustrated in Figure 1(b).
However, a disadvantage of this inlining is code expansion. Compact encryption
routines might keep the spacial cost relatively low, but implementations of secure
cryptographic functions are not always small.

Even though our initial results illustrated in Table 1 and Table 2 were per-
formed by inlining calls, we expect similar performance results as our guard code
in its most compact form does not exceed 40 bytes, while the calls we used for
testing are 47 bytes long (pushing and popping arguments included).

6.3 Increasing Granularity and Scheme Extensions

Our scheme is built on top of static call graph information and therefore uses
functions as building blocks. If one increases the granularity, and encrypts parts
of functions, the guards can be integrated into the program’s control flow which
will further complicate analyzing the network of guards especially when inlined.
However, we believe that such a fine-grained structure will induce much more
overhead. The code blocks to be encrypted will be much smaller than the added
code. Furthermore, more guards will be required to cover the whole program
code. Hence it is important to trade-off the use of these guards, focusing instead
on critical parts of the program and avoiding ‘hot spots’ such as frequently
executed code.

As implied by Figure 1, the caller remains in cleartext as long as it is part
of the call stack. Another extension involves encrypting the caller of a callee
when the callee executes. This corresponds to protecting functions on the call
stack. As such, only the executing function will be in cleartext. This extension
would double the number of guards per original function call inducing consider-
able overhead, see also [3]. However, using dedicated heuristics, such as hotness,
would help us make a better trade-off between on-demand encryption and bulk
encryption.
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7 Conclusions

This paper presents a new type of software guards which are able to encipher
code at run time, relying on other code as key information. This technique offers
confidentiality of code, a property that previously proposed software guards did
not offer yet. As code is used as a key to decrypt other code, it becomes possi-
ble to create code dependencies which make the program more tamper-resistant.
We propose a scheme that makes code depending on one of its dominators. We
compare our approach to the less secure bulk encryption. We introduce a heuristic
based on the frequency that a particular function is called to reduce overhead. To
validate our claims we implemented our scheme with Diablo, a binary rewriter,
and applied it on 5 programs of the SPEC CPU2006 benchmarks suite.
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Abstract. We offer an alternative Public Key Broadcast Encryption
(PKBE) scheme which is fully collusion-secure. Our construction
is based on the method for generating private keys in the Boneh,
Boyen and Goh’s hierarchical identity-based encryption scheme. Our
scheme provides a trade-off between ciphertext size and public key size.
With appropriate parametrization we achieve a PKBE scheme where
both ciphertexts and private keys are sublinear size for any subset of
receivers. Private keys shrink as revoked users increase, and public
key size is more reduced than other PKBE schemes. We extend our
scheme to obtain chosen ciphertext security by using hash-based method.
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1 Introduction

Broadcast encryption scheme [11] allows a sender to securely distribute mes-
sages to a dynamically changing set of users over an insecure channel. In gen-
eral, broadcast encryption schemes are used to support a hybrid (KEM-DEM)
encryption paradigm where a ciphertext encrypts a message encryption key used
to encrypt the messages under a symmetric key cipher. The sender can broadcast
the ciphertext to any receiver set S of his choice. Any user in S then decrypts
the ciphertext and revoked users (i.e., any user not in S) should obtain no infor-
mation about the messages.

Basically, the broadcast encryption scheme should provide a mechanism to
handle revocation of users. Since revoked users could collude, the scheme must
be secure against collusion attack of the revoked users. When the broadcast
encryption scheme is secure against any number of colluders, we say that the
scheme is fully collusion-secure. Broadcast encryption schemes are motivated
by applications such as pay-TV systems and the distribution of copyrighted
materials. In this paper, we mainly focus on the broadcast encryption scheme
with large number of users.
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There are two kinds of settings of broadcast encryption in the literature. In the
private key setting [11,15,14,13], only the trusted center generates all the private
keys and broadcasts messages to some set of users. The best known schemes
[15,14,13] in this setting achieve O(r) ciphertexts and O(log n) private keys,
where r is the number of revoked users and n is the number of total users. In the
public key setting [16,8,9,4,10] any user can encrypt to some set of users under a
public key initialized at system setup. It overcomes a shortcoming of the private
key setting, which is that the center may be a single point of failure. By the work
of Dodis and Fazio [9], some broadcast encryption schemes in the private key
setting could be transformed into schemes in the public key setting (i.e., Public
Key Broadcast Encryption (PKBE) scheme), using the Hierarchical Identity-
Based Encryption (HIBE) scheme [12]. Their method was further improved by
applying the HIBE scheme suggested by Boneh, Boyen and Goh [2], which results
in PKBE schemes with O(r) ciphertexts and O(log2 n) private keys.

Recently, Boneh, Gentry and Waters [4] proposed an efficient PKBE scheme
for large n users. In the BGW scheme, with appropriate parametrization both
ciphertexts and private keys are of O(

√
n) size (or O(

√
n) ciphertexts and O(1)

private keys when public key elements required to decrypt are transmitted to-
gether with ciphertexts). More recently, Delerablee, Paillier and Pointcheval [10]
suggested a new PKBE scheme that features O(r) ciphertexts and O(1) private
keys at the expense of computation cost upon decryption and public key size. In
terms of transmission cost, the DPP scheme is attractive when r is small (i.e.,
r <
√
n), but when r >

√
n the BGW scheme provides a better solution than the

DPP scheme. These schemes [4,10] are fully collusion-secure, unlike the previous
PKBE schemes [16,8,9] where the number of colluders is restricted to some fixed
t < n.
Our Results. In this paper we suggest an alternative PKBE solution which is
fully collusion-secure. Our construction makes use of an efficiently computable
bilinear map (i.e., pairing). Our scheme provides a trade-off between ciphertexts
size and public key size as in the BGW scheme [4]. When n(= ab) users are par-
titioned into a equal size subsets S1, . . . ,Sa, our scheme has O(

√
n) ciphertexts

and O(
√
n − r̃) private keys, where r̃ is the minimum value (as the worst case)

among the number of revoked users in each subset Si. The O(
√
n − r̃) means

that private keys in our scheme shrink as the revoked set becomes large. Also,
decryption procedure requires the same amount of computation as the BGW
scheme does, which is more efficient than the DPP scheme [10]. Another feature
is that the public key size is more shortened than the BGW and DPP schemes.
In particular, in comparison to the BGW scheme which is considered as the most
efficient one, our scheme is more preferable than the BGW scheme in applica-
tions where transmission is an important factor (a precise comparison is given
in Section 4).

The idea behind our construction is based on the method used to generate
user’s private key in the BBG HIBE scheme [2]. Briefly speaking, in the b-level
BBG scheme, the key generation algorithm outputs a private key dID for an
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identity ID = I1 of depth 1 as
(
gα
2 · (g3 · hI1

1 )r, gr, hr
2, . . . , h

r
b

)

for a random r ∈ Zp. After excluding g3 we add to the public key amore elements
x1, . . . , xa, which are representative of the subsets S1, . . . ,Sa respectively. We
then compute the private key di for a user i ∈ {1, . . . , n} such that i = (u−1)b+v
as (

gα
2 · (xu · hv)r, gr, hr

1, . . . , h
r
v−1, h

r
v+1, . . . , h

r
b

)
.

This modification leads to our PKBE scheme which can accommodate n(= ab)
users in total, and provides ours with the trade-off between ciphertext size and
public key size. We prove security of our proposed PKBE scheme under the
Bilinear Diffie-Hellman Exponent (BDHE) assumption, which was already used
to prove security of the BGW scheme [4].

Outline. Section 2 describes our security model for PKBE and the complexity
assumption. In Section 3 we present our scheme and prove its security, and
in Section 4 we give a performance comparison between the different PKBE
schemes. In Section 5 we show how our scheme can be extended to obtain chosen
ciphertext security by applying the hash-based method of [6].

2 Preliminaries

2.1 Public Key Broadcast Encryption

Following [4], we define public key broadcast encryption (PKBE) as below.

Setup(n) takes as input the number of receivers n. and outputs a public key
PK and n private keys d1, . . . , dn.

Encrypt(S,PK) takes a subset S ⊆ {1, . . . , n} and a public key PK as input,
and outputs a pair (Hdr,K) where Hdr is the header and K ∈ K is a message
encryption key, often called the broadcast ciphertext.

LetM be a message to be broadcast to the set S and let CM be the encryp-
tion of M under the symmetric key K. A broadcast message is (S,Hdr, CM ),
where the pair (S,Hdr) is often called the full header and CM is often called
the broadcast body.

Decrypt(di, S,Hdr,PK) takes as input the private key di for user i, a subset
S ⊆ {1, . . . , n}, a header Hdr, and the public key PK. If user i is in S, the
algorithm outputs the message encryption key K ∈ K, which is used to
decrypt CM and obtain the message M .

We require that for all S ⊆ {1, . . . , n} and i ∈ S, if (PK, (d1, . . . , dn)) R← Setup(n)
and (Hdr,K) R← Encrypt(S,PK) then Decrypt(di, S,Hdr,PK) = K.

To describe the chosen ciphertext security for PKBE, we define the following
game between an attacker A and a challenger C as in [4]. Both C and A are
provided with n, the total number of users, as input.
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Init: Attacker A outputs a set S∗ ⊆ {1, . . . , n} of receivers that it intends to
attack.

Setup: Challenger C runs Setup(n) to obtain a public key PK and private keys
d1, . . . , dn. It gives A the public key PK and all private keys dj for j /∈ S∗.

Query Phase 1: A adaptively issues decryption queries q1, . . . , qm where a
decryption query consists of the triple (i, S,Hdr) where S ⊆ S∗ and i ∈ S. C
responds with Decrypt(di, S,Hdr,PK).

Challenge: C runs algorithm Encrypt(S∗,PK) to obtain (Hdr∗,K) where K ∈
K. Next, the challenger picks a random b ∈ {0, 1}. If b = 1, it sets K∗ = K.
Otherwise, it sets K∗ to a random string of length equal to |K|. C gives a
challenge ciphertext (Hdr∗,K∗) to A.

Query Phase 2: A adaptively issues decryption queries qm+1, . . . , qqD where
a decryption query consists of (i, S,Hdr) with S ⊆ S∗ and i ∈ S. A cannot
issue a decryption query such that Hdr = Hdr∗. C responds as in Query
Phase 1.

Guess: Attacker A outputs a guess b′ ∈ {0, 1}. A wins if b′ = b.

The advantage of A in breaking a public key broadcast encryption scheme is
defined as

AdvPKBE
A,n =

∣
∣
∣Pr

[
b = b′

]− 1
2

∣
∣
∣

where n is given to both the C and A as input.

Definition 1. We say that a public key broadcast encryption scheme is
(t, ε, n, qD)-CCA secure if for all t-time attackers A who make qD decryption
queries, we have that AdvPKBE

A,n < ε.

This game above models an attack where all users not in the set S∗ collude to
try and expose a broadcast message intended only for users in S∗. The attacker
in this model is static as in [4]. That is, it chooses S∗ and obtains the keys for
users outside of S∗, before it sees the public key PK.

The game above can be used to define semantic security for a broadcast en-
cryption scheme if the attacker is not permitted to issue decryption queries. We
say that a public key broadcast encryption scheme is (t, ε, n)-semantically secure
if it is (t, ε, n, 0)-CCA secure.

2.2 Bilinear Pairing and Complexity Assumption

We briefly summarize the bilinear pairings and define the (b+1)-Bilinear Diffie-
Hellman Exponent (BDHE) assumption.

Bilinear Pairing: We follow the notation in [3,1]. Let G and GT be two (mul-
tiplicative) cyclic groups of prime order p. We assume that g is a generator of
G. Let e : G×G→ GT be a function that has the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) �= 1.
3. Computable: there is an efficient algorithm to compute the map e.



A New Public Key Broadcast Encryption 105

Then, we say that G is a bilinear group and the map e is a bilinear pairing in
G. Note that e(, ) is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

The Bilinear Diffie-Hellman Exponent Assumption: The (b + 1)-BDHE
problem in G is defined as follows: given a (2b + 2)-tuple (z, g, gα, . . ., gαb

,
gαb+2

, . . ., gα2b

) ∈ G
2b+2 as input, compute e(z, g)αb+1 ∈ GT . An algorithm A

has advantage ε in solving (b+ 1)-BDHE in G if

Pr
[A(z, g, gα, . . . , gαb

, gαb+2

, . . . , gα2b

) = e(z, g)αb+1] ≥ ε

where the probability is over the random choice of α in Zp, the random choice
of z ∈ G, and the random bits of A. Let gi = g(αi) and let −→g α,b = (g1, . . ., gb,
gb+2, . . ., g2b). Similarly, we say that an algorithm B that outputs b ∈ {0, 1} has
advantage ε in solving the decision (b+ 1)-BDHE problem in G if

∣
∣
∣Pr

[B(z, g,−→g α,b, e(z, gb+1)) = 0
]− Pr

[B(z, g,−→g α,b, T ) = 0
]∣∣
∣ ≥ ε

where the probability is over the random choice of α in Zp, the random choice
of z ∈ G, the random choice of T ∈ GT , and the random bits of B.

Definition 2. We say that the (decision) (t, ε, b + 1)-BDHE assumption holds
in G if no t-time algorithm has advantage at least ε in solving the (decision)
(b+ 1)-BDHE problem in G.

3 Chosen Plaintext Secure Construction

We first present a new PKBE scheme that is secure against chosen plaintext
secure. We show how to build the new PKBE scheme via a simple variation of
the HIBE scheme of Boneh, Boyen, and Goh [2]. To obtain a generalized PKBE
scheme which provides a trade-off between the public key and private key and
the ciphertext sizes, we use the idea of [4]. For a positive integer b dividing
n(= ab), the number of total users, we denote the proposed scheme by b-PKBE
scheme. The choice of b would depend on the concrete application.

3.1 Scheme

Let G and GT be groups of prime order p, and let e : G × G → GT be the
bilinear map. Note that the Decrypt algorithm does not require any public key
elements as input.

Setup(1k, n): To generate b-PKBE parameters, the algorithm picks a random
generator g ∈ G. It selects a random α ∈ Z

∗
p and sets g1 = gα. Next, it picks

random elements h, x1, . . . , xa, y1, . . . , yb ∈ G. The public key PK (with the
description of (G, GT , e, p)) is given by

PK = (g, g1, h, x1, . . . , xa, y1, . . . , yb) ∈ G
a+b+3.
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The private key for user i ∈ {1, . . . , n} is computed as follows: find two values
u, v (where 1 ≤ u ≤ a and 1 ≤ v ≤ b) such that i = (u − 1)b + v. It means
user i is assigned to index v within a subset Su. Then, pick a random r ∈ Zp

and set the private key for user i as

di =
(
hα · (xu · yv)r, gr, yr

1 , . . . , y
r
v−1, y

r
v+1, . . . , y

r
b

) ∈ G
b+1.

The algorithm outputs the public key PK and the n private keys d1, . . . , dn.

Encrypt(S, PK): A sender chooses a random s ∈ Zp and set K = e(h, g1)s ∈
GT . Wlog, assume that the set S is divided into subsets S1, . . . ,Sa. Next,
compute

Hdr =
( (

x1 ·
∏

j∈S1

yj

)s
, . . . ,

(
xa ·

∏

j∈Sa

yj

)s
, gs

)
∈ G

a+1.

The algorithm outputs the pair (Hdr,K). The sender broadcasts
(S,Hdr, CM ), where CM is an encrypted message under the K using a sym-
metric key cipher.

Decrypt(di, S, Hdr): Assume user i is assigned to index v within the subset
Su, and decrypts the Hdr using his private key di = (di,1, di,2, ki,1, . . ., ki,v−1,
ki,v+1, . . ., ki,b). Let Hdr = (A1, . . . , Aa, B). Then, output

K = e(di,1 ·
∏

j∈Su
j �=v

ki,j , B) / e(Au, di,2).

3.2 Correctness

We verify that K is correctly derived from the well-formed Hdr. Assuming user
i belongs to Su with index v, then it decrypts as follows:

K = e(di,1 ·
∏

j∈Su
j �=v

ki,j , B) / e(Au, di,2)

= e(hα · (xu · yv)r ·
∏

j∈Su
j �=v

yr
j , g

s) / e((xu ·
∏

j∈Su

yj)s, gr)

= e(hα · (xu ·
∏

j∈Su

yj)r, gs) / e((xu ·
∏

j∈Su

yj)s, gr)

= e(h, g1)s.

3.3 Security

The semantic security of the b-PKBE scheme above is proven under the decision
(b+ 1)-BDHE assumption.
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Theorem 1. Suppose that the decision (t, ε, b+ 1)-BDHE assumption holds in
G. Then the previous b-PKBE scheme is (t′, ε, n)-semantically secure for any
positive integers n, b and t′ < t− Θ(τbn), where τ is the maximum time for an
exponentiation in G.

Proof. Suppose there exists an adversary A which has advantage ε in attacking
the b-PKBE scheme. We want to construct an algorithm B that uses A to solve
the decision (b + 1)-BDHE problem in G. For a generator g ∈ G and α ∈ Zp,
let gi = g(αi) ∈ G. On input (z, g, g1, . . . , gb, gb+2, . . . , g2b, T ), B outputs 1 if
T = e(z, gb+1) and 0 otherwise. B works by interacting with A as follows:

Init: A outputs a set S∗ that it intends to attack.
Setup: B first divides the challenge set S∗ into subsets S∗

1, . . . ,S
∗
a. To generate

a public key PP, B selects a random ρ ∈ Zp and set h = gb ·gρ. Next, it picks
random γ1, . . . , γb, δ1, . . . , δa ∈ Zp. It sets yi = gγigi for i = 1, . . . , b and sets
xj = gδj · ( ∏

k∈S∗
j
gk

)−1 for j = 1, . . . , a. Finally, B gives A the public key

PK = (g, g1, h, x1, . . . , xa, y1, . . . , yb).

Since ρ, {γi}, and {δj} values are chosen uniformly at random, this public
key has an identical distribution to that in the actual construction.

Next, B needs to generate private keys di for i /∈ S∗. Consider a private
key for user i such that i = (u − 1)b+ v for some 1 ≤ u ≤ a and 1 ≤ v ≤ b.
B picks a random r ∈ Zp. Let r̃ = r − α(b+1−v). B generates the private key
di for user i as

(
hα · (xu · yv)r̃, gr̃, yr̃

1, . . . , y
r̃
v−1, y

r̃
v+1, . . . , y

r̃
b

)

which is a properly distributed private key for user i. We show that B can
compute all elements of this private key given the values that it knows. To
generate the first component of the private key, observe that

(xu · yv)r̃

=
(
gδu · (

∏

k∈S∗
u

gk)−1 · gγvgv

)r̃

=
(
gδu · (

∏

k∈S∗
u

gk)−1 · gγvgv

)r(
gδu · (

∏

k∈S∗
u

gk)−1 · gγvgv

)−αb+1−v

=
(
gδu · (

∏

k∈S∗
u

gk)−1 · gγvgv

)r(
gδu

b+1−v · (
∏

k∈S∗
u

gb+1−v+k)−1 · gγv

b+1−v

)−1

g−1
b+1.

Note that since i /∈ S∗, we see that v /∈ S∗
u and then k − v �= 0 for k ∈ S∗

u.
Since hα = gb+1 ·gρ

1 , the first component in the private key can be computed
as

gρ
1 ·

(
gδu · (

∏

k∈S∗
u

gk)−1 · gγvgv

)r

·
(
gδu

b+1−v · (
∏

k∈S∗
u

gb+1−v+k)−1 · gγv

b+1−v

)−1
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where the unknown term gb+1 is canceled out. The other terms gr̃ and yr̃
i are

computable since gr̃ = gr · g−1
b+1−v and yr̃

i = (gγi · gi)r · (gγi

b+1−v · gb+1−v+i)−1

for i = 1, . . . , v − 1, v + 1, . . . , b. Since i �= v, these values do not require
knowledge of gb+1.

Challenge: To generate a challenge (Hdr∗,K∗) under the receiver set S∗, B sets
Hdr∗ =

(
z

δ1+
∑

k∈S∗
1

γk , . . . , z
δa+

∑
k∈S∗a γk , z

)
and K∗ = T · e(g1, zρ), where z

and T are input values given to B. Observe that if z = gc for some (unknown)
c ∈ Zp, then

z
δi+

∑
k∈S∗

i
γk =

(
gδi · (

∏

k∈S∗
i

gk)−1 ·
∏

k∈S∗
i

gγkgk

)c

=
(
xi ·

∏

k∈S∗
i

yj

)c

for i = 1, . . . , a. If T = e(z, gb+1) then K∗ = e(h, g1)c and thus (Hdr∗,K∗)
is a valid challenge to A for the receiver set S∗. On the other hand, when T
is uniform and independent in GT , then Hdr∗ is independent of K∗ in the
adversary’s view.

Guess: A outputs a guess b′ ∈ {0, 1}. If b′ = 1 then it indicates T = e(z, gb+1).
Otherwise, it indicates T �= e(z, gb+1).

When T is random in GT then Pr[B(z, g,−→g α,b, T ) = 0] = 1/2. When T =
e(z, gb+1), B replied with a valid challenge (Hdr∗,K∗). Then |Pr[b = b′]−1/2| ≥ ε.
Therefore, B has that

∣∣
∣Pr

[B(z, g,−→g α,b, e(z, gb+1)) = 0
]− Pr

[B(z, g,−→g α,b, T ) = 0
]∣∣
∣ ≥ ε.

This completes the proof of Theorem 1. �

4 Performance Analysis

Let n be the total number of users the PKBE scheme can handle, and let n users
be divided into a subsets in which each set has at most b users. Let R be the
set of revoked users with r = |R|. As in the BGW scheme [4], when r 
 n, the
sender can broadcast (R,Hdr, CM ) to the set S instead of (S,Hdr, CM ), where
the Hdr is still constructed under the set S. In that case, the private key for user
i is computed as

di =
(
hα · (xu · yv)r · (

b∏

j=1

j �=v

yj

)r
, gr, yr

1 , . . . , y
r
v−1, y

r
v+1, . . . , y

r
b

)
∈ G

b+1.

Let R be split into R1, . . . ,Ra subsets. For the revoked set Ru, during the de-
cryption procedure, the value

∏
j∈Ru

yr
j is removed from the first component in

the private key and thereafter {yr
j}j∈Ru can be discarded. Thus, as the size of

the set Ru increases the private key becomes shortened. More precisely, all the
private keys di for i ∈ Su have (b+ 1− ru) elements in G where ru = |Ru|. Note
that remaining users, for example, in Su, do not need to store the information of
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Table 1. Performance Comparison of the PKBE schemes for n = ab

Transmission User Storage Computation PK

Cost Cost Cost Size

BGW-1 (a + 2b) G + r lid 1 G 2 p + r̂ m (a + 2b) G

BGW-2 (a + 1) G+ r lid (2b + 1) G 2 p + r̂ m (a + 2b) G

DPP-1 (r + 2) G + r Zp 2 G + 1 Zp 2 p + r · (e + m)† (n + 2) G +

(n + 1) GT + n Zp

DPP-2 2 G + r lid (n + 1) G + n Zp 2 p + r2/2 · (e + m)‡ same as above

Ours (a + 1) G+ r lid (b + 1 − r̃) G 2 p + r̂ m (a + b + 3) G

G; element in G, GT; element in GT , Zp; element in Zp

p; pairing in G, m; multiplication (or division) in G, e; exponentiation in G

r̂ = max{r1, . . . , ra} r̃ = min{r1, . . . , ra} lid = log2 n
†, ‡; extra calculation to perform about r (or r2/2) inversions in Zp is more required.

the revoked set Ru. For some new revoked set R′
u, the receiver firstly compares

the remaining elements {yr
j}j∈Su\Ru

with the set R′
u, and then identifies the set

of elements {yr
j}j∈(Su\Ru)∩R′

u
to be removed.

Performance Comparison of PKBE Schemes: Before we compare our
scheme with the previous PKBE schemes, we consider two cases in regard to
the BGW scheme; 1) when the PK elements required to decrypt are transmitted
along with the Hdr (BGW-1), 2) when the PK elements needed by decryption
procedure are included into the private key (BGW-2). The reason why we con-
sider these two cases is that in the BGW scheme, the Decrypt algorithm needs
some of the public key elements for decryption and thus each receiver should
obtain these elements. Basically, these elements may be stored into each user’s
device from the beginning. Also, these elements can be transmitted along with
the Hdr, because these elements are not required to be kept secret. Regarding
the DPP scheme [10], the authors suggested two kinds of PKBE constructions
to provide tradeoffs between ciphertext size and public key size. We refer to the
two PKBE constructions in [10] as DPP-1 and 2 (for more details, see [10]).

The efficiency of broadcast encryptions is mostly measured by transmission,
user storage, and computation costs at a user device. Here, the user storage cost
means the size of user’s private key needed to decrypt. In light of these aspects,
Table 1 shows the performances of the previous and our PKBE schemes in terms
of transmission cost, user storage cost, computation cost (in decryption), and
the public key size. For simplicity, we consider the case when the bilinear map
e is symmetric. Note that the DPP scheme does not provide such a generalized
version that the BGW and our schemes do for n = ab. Instead, the DPP scheme
is ‘dynamic’ in the sense that the system setup is fully independent from the
expected number n of users. We also note that the schemes [4,10] including ours
are all fully collusion-secure.
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With the appropriate parametrization, we can show that our PKBE scheme
has O(

√
n) ciphertexts and O(

√
n− r̃) private keys where r̃ = min{r1, . . . , ra} as

the worst case. We see that the DPP-1 achievesO(r) ciphertexts andO(1) private
keys at the expense of computation cost and PK size. In terms of transmission
cost (excluding the set information r lid or r Zp), the DPP-1 is more appealing
than the BGW-2 and our PKBE scheme when about r <

√
n, and vice versa when

about r >
√
n. Among the PKBE schemes above, our scheme has the shortest

PK size for n users, and the computation time for decryption is as efficient as
the BGW schemes.

In comparison to the BGW scheme which is considered as the most efficient
one, our scheme is located as an intermediate one. For example, in applications
where the transmission cost is an important factor, our scheme is more preferable
than the BGW-2 since the user storage cost of ours is more reduced than the
BGW-2. However, in some settings where user device has a very limited storage
capacity, then the BGW-1 is more favorable than ours.

Joinging and Revoking of Users: Like other PKBE schemes [8,9,4,10], our
scheme has an advantage over broadcast encryption schemes [11,15,14,13] in the
private key setting, which can avoid complex and costly re-keying procedures to
handle joining and revoking of users.

First, in order to deal with the incremental addition of new users, the Setup
algorithm may select value n (and a, b) large enough to accommodate expected
users. If users become larger than the initial value n, the Setup algorithm only
adds necessary (and random) values (xa+1, . . . , xa+δ) to the public keys, which
enables the scheme to deal with new bδ users. In this procedure, each element
xa+i ∈ G covers new b users respectively, and the preexisting user’s private key
remains the same. This is the same result as in the BGW scheme. In contrast,
whenever a new user joins the scheme the DPP scheme is required to add three
more elements (one in Zp, one in GT , and one in G) to the public key (although
the DPP scheme is dynamic). Second, whenever the sender wants to exclude or
newly construct a set of receivers, he has only to reconstruct the identity set S′

of receivers and compute a header under the new receiver set S′.

5 Chosen Ciphertext Secure Construction

In this section we propose a CCA secure PKBE scheme by applying the ideas
of hash-based method (so called “BMW transformation”) in [6] to our seman-
tically secure construction. Unlike the signature-based method [7] and message
authentication code (MAC)-based method [5], the BMW transformation does
not need to attach a one-time signature or a MAC to a ciphertext so that it
has shorter ciphertexts than both the signature and MAC-based methods. To
employ the BMW transformation, we need a family of collision resistant hash
functions Hk : G→ Zp indexed by k ∈ K. We say that a family of hash functions
is (t, ε)-collision resistant if no t-time adversary is able to find two distinct values
x, y such that Hk(x) = Hk(y) with probability at least ε. As in the previous
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section, we denote our construction by the b-PKBE scheme for a positive integer
b such that n = ab.

5.1 Scheme

Setup(1k, n): To generate b-PKBE parameters, the algorithm picks a random
generator g ∈ G. It selects a random α ∈ Z

∗
p and sets g1 = gα. Next,

it picks random elements h1, h2, x1, . . . , xa, y1, . . . , yb ∈ G. The algorithm
additionally picks a random hash key k ∈ K for hash function H . The public
key PK (with the description of (G, GT , e, p, H)) is given by

PK = (g, g1, h1, h2, x1, . . . , xa, y1, . . . , yb) ∈ G
a+b+4.

The private key for user i ∈ {1, . . . , n} is computed as follows: as before, find
two values u, v (where 1 ≤ u ≤ a and 1 ≤ v ≤ b) such that i = (u− 1)b+ v.
Pick a random r ∈ Zp and set the private key for user i as

di =
(
hα

1 · (xu · yv)r, hr
2, g

r, yr
1 , . . . , y

r
v−1, y

r
v+1, . . . , y

r
b

) ∈ G
b+2.

The algorithm outputs the public key PK and the n private keys d1, . . . , dn.

Encrypt(S, PK): A sender chooses a random s ∈ Zp and set K = e(h1, g1)s ∈
GT . Next, the sender computes gs and μ = Hk(gs). A header (Hdr) is gen-
erated as

Hdr =
( (

x1 · hμ
2 ·

∏

j∈S1

yj

)s
, . . . ,

(
xa · hμ

2 ·
∏

j∈Sa

yj

)s
, gs

)
∈ G

a+1.

The algorithm outputs the pair (Hdr,K).

Decrypt(di, S, Hdr, PK): Assume user i is assigned to index v within the
subset Su, and decrypts the Hdr using his private key di = (di,1, di,2, di,3,
ki,1, . . . , ki,v−1, ki,v+1, . . . , ki,b). Let Hdr = (A1, . . . , Aa, B). Compute μ′ =
Hk(B) and check that the following equality

e(Au, g) = e(xu · hμ′
2 ·

∏

j∈Su

yj, B)

holds. If not, output ⊥. Otherwise, output

K = e(di,1 · dμ′
i,2 ·

∏

j∈Su
j �=v

ki,j , B) / e(Au, di,3).

Note that the pair
(
di,1 · dμ′

i,2 ·
∏

j∈Su
j �=v

ki,j , di,3

)
is chosen from the following

distribution (
hα

1 ·
(
xu · hμ′

2 ·
∏

j∈Su

yj

)r̃
, gr̃

)

where r̃ is uniform in Zp. Next, the correctness of decryption algorithm is checked
by the similar calculation to the one in Section 3.1.
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5.2 Security

As opposed to the (b + 1)-BDHE assumption for the semantic security in Sec-
tion 3, the CCA security of the above b-PKBE scheme is based on the (b + 2)-
BDHE assumption.

Theorem 2. Suppose that the decision (t1, ε1, b + 2)-BDHE assumption holds
in G and the family of hash function {Hk} is (t2, ε2)-collision resistant. Then
the previous b-PKBE scheme is (t3, ε3, n, qD)-CCA secure for t3 < t1 − Θ(τbn)
and ε1 + ε2 ≥ ε3, where τ is the maximum time for an exponentiation in G.

Proof. Suppose there exists an adversary A which has advantage ε3 in attacking
the b-PKBE scheme. We build an algorithm B that uses A to solve the decision
(b+2)-BDHE problem in G. For a generator g ∈ G and α ∈ Zp, let gi = g(αi) ∈ G.
On input (z, g, g1, . . . , gb+1, gb+3, . . . , g2b+2, T ), B outputs 1 if T = e(z, gb+2) and
0 otherwise. B works by interacting with A as follows:

Init: A outputs a set S∗ that it intends to attack.
Setup: B first divides the challenge set S∗ into subsets S∗

1, . . . ,S
∗
a. To generate

a public key PK, B first computes μ∗ = Hk(z) and selects two random
ρ, τ ∈ Zp. It sets h1 = gb+1 · gρ and h2 = gb+1 · gτ . Next, it picks random
γ1, . . . , γb, δ1, . . . , δa ∈ Zp. It sets yi = gγigi for i = 1, . . . , b and sets xj =
gδj · (∏k∈S∗

j
gk)−1 · g−μ∗

b+1 for j = 1, . . . , a. Finally, B gives A the public key

PK = (g, g1, h1, h2, x1, . . . , xa, y1, . . . , yb).

Since ρ, τ, {γi}, and {δj} values are chosen uniformly at random, this public
key has an identical distribution to that in the actual construction.

Next, B needs to generate private keys di for i /∈ S∗. Consider a private
key for user i such that i = (u − 1)b+ v for some 1 ≤ u ≤ a and 1 ≤ v ≤ b.
B picks a random r ∈ Zp. Let r̃ = r − α(b+2−v). B generates the private key
di for user i as

(
hα

1 · (xu · yv)r̃, hr̃
2, g

r̃, yr̃
1, · · · , yr̃

v−1, · · · , yr̃
v+1, . . . , y

r̃
b

)

which is a properly distributed private key for user i. By the similar calcula-
tion to that in Section 3, we can show that B is able to compute all elements
of this private key given the input values, except hr̃

2. The term hr̃
2 becomes

hr̃
2 = (gb+1 · gτ )r · (g2b+3−v · gτ

b+2−v)
−1.

Since 1 ≤ v ≤ b, the unknown value gb+2 is not required to compute hr̃
2.

Query Phase 1: Let (i, S,Hdr) be a decryption query where S ⊆ S∗ and i ∈ S.
Let Hdr = (A1, . . . , Aa, B). Wlog, let i = (u − 1)b + v. When we divide S
into subsets (S1, . . . ,Sa), we have that i ∈ Su ⊆ S∗

u. To decrypt the queried
ciphertext, B does as follows:
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1. Compute μ′ = Hk(B) and check if the components (Au, B) in the Hdr
are of the valid form, using the following equation

e(Au, g) = e(xu · hμ′
2 ·

∏

k∈Su

yk, B).

If the equality does not hold, B responds with ⊥.
2. Otherwise, check that μ′ = μ∗. If the equality holds, B outputs a random

bit b ∈ {0, 1} and aborts the simulation (in this case, the collision of hash
function Hk occurs).

3. Otherwise, from the equation above, B has thatAu = (xu·hμ′
2 ·

∏
k∈Su

yk)s

for some (unknown) s ∈ Zp such that B = gs. Plugging in the values of
xu, h2, and yk, the Au becomes

Au =
(
gδu · (

∏

k∈S∗
u

gk

)−1 · g−μ∗
b+1 · (gb+1g

τ )μ′ ·
∏

k∈Su

gγkgk

)s

=
(
g
(μ′−μ∗)
b+1 · gη ·

∏

k∈S∗
u\Su

gk

)s

where η = δu + τμ′ +Σk∈Suγk. B computes

d̃i,1 = g
−η/(μ′−μ∗)
1 ·Au ·

( ∏

k∈S∗
u\Su

gk+1

)−1/(μ′−μ∗)

, d̃i,3 = B·g−1/(μ′−μ∗)
1 .

Since 1 ≤ k ≤ b, B does not require knowledge of gb+2 and then is able
to compute d̃i,1 with input values. Let r̃ = s− α/(μ′ − μ∗). Then,

d̃i,1 = g
−η/(μ′−μ∗)
1

(
g
(μ′−μ∗)
b+1 · gη ·

∏

k∈S∗
u\Su

gk

)s( ∏

k∈S∗
u\Su

gk+1

)−1/(μ′−μ∗)

= gb+2 ·
(
g
(μ′−μ∗)
b+1 · gη ·

∏

k∈S∗
u\Su

gk

)r̃

= gb+2 ·
(
xu · hμ′

2 ·
∏

k∈Su

yk

)r̃

,

d̃i,3 = gs · g−1/(μ′−μ∗)
1 = gr̃.

Recall that hα
1 = gb+2 · gρ

1 . For the re-randomization, B selects a random
r′ ∈ Zp and computes d̃′i,1 = d̃i,1 · gρ

1 · (xu · hμ′
2 ·

∏
k∈Su

yk)r′
and d̃′i,3 =

d̃i,3 · gr′
. For some (unknown) r̃′ = r̃ + r′,

d̃′i,1 = hα
1 ·

(
xu · hμ′

2 ·
∏

k∈Su

yk

)r̃′

, d̃′i,3 = gr̃′
.

B responds with e(d̃′i,1, B)/e(Au, d̃
′
i,3). This response is identical to the

Decrypt algorithm in a real attack, because r′ (and r̃′) is uniform in Zp.
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Challenge: B computes Hdr∗ as (zδ1+τμ∗+
∑

k∈S∗
1

γk , . . . , z
δa+τμ∗+

∑
k∈S∗a γk , z)

and K∗ = T · e(g1, zρ), where z and T are input values given to B. Re-
call that μ∗ = Hk(z). As before, if z = gc for some (unknown) c ∈ Zp,
then

z
δi+τμ∗+

∑
k∈S∗

i
γk =

(
gδi · (

∏

k∈S∗
i

gk

)−1 · g−μ∗
b+1 · (gb+1g

τ )μ∗ ·
∏

k∈S∗
i

gγkgk

)c

=
(
xi · hμ∗

2 ·
∏

k∈S∗
i

yj

)c

for i = 1, . . . , a. If T = e(z, gb+2) then K∗ = e(h1, g1)c and thus (Hdr∗,K∗)
is a valid challenge to A for the receiver set S∗. On the other hand, when T
is uniform and independent in GT , then Hdr∗ is independent of K∗ in the
adversary’s view.

Query Phase 2: A issues more decryption queries. B responds as in query
phase 1.

Guess: A outputs a guess b′ ∈ {0, 1}. If b = b′ then B outputs 1, indicating
T = e(z, gb+2). Otherwise, it outputs 0, indicating T �= e(z, gb+2).

When T is random in GT then Pr[B(z, g,−→g α,b+1, T ) = 0] = 1/2. Let Collision
denote the event that A submits a valid header Hdr = (A1, . . . , Aa, B) such that
μ∗ = Hk(B) as a decryption query. In the case of Collision, B cannot reply to
the decryption query and aborts the simulation. When T = e(z, gb+2), B replied
with a valid message encryption key unless event Collision occurs. Then, B has
∣
∣
∣Pr

[B(z, g,−→g α,b+1, T ) = 0
]− 1

2

∣
∣
∣ ≥

∣
∣
∣Pr

[
b = b′ ∧ Collision

]− 1
2

∣
∣
∣− Pr[Collision].

Since B provided A with perfect simulation when event Collision did not occur,
|Pr[b = b′ ∧ Collision]− 1/2| ≥ ε3. Also, note that Pr[Collision] is negligible. This
means that Pr[Collision] < ε2 since otherwise B finds two values z,B such that
Hk(z) = Hk(B), which is contradiction to the definition of H . Therefore,

∣
∣
∣Pr

[B(z, g,−→g α,b+1, e(z, gb+2)) = 0
]− Pr

[B(z, g,−→g α,b+1, T ) = 0
]∣∣
∣ ≥ ε3 − ε2.

This completes the proof of Theorem 2. �

6 Conclusion

We presented an alternative PKBE scheme which is fully collusion-secure, based
on the idea of generating private keys in the BBG HIBE scheme [2]. Our construc-
tion shows that a HIBE scheme can be another primitive for building a PKBE
scheme. Our resulting scheme provided a trade-off between ciphertext size and
public key size as in the BGW scheme [4]. With the appropriate parametrization
we achieved a new PKBE scheme which has O(

√
n) ciphertexts and O(

√
n− r̃)

private keys, where r̃ is the minimum number of revoked users in divided subsets.
The public key size can be more shortened than the BGW and DPP schemes
[10], and decryption time is as efficient as in the BGW scheme.



A New Public Key Broadcast Encryption 115

References

1. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X., Goh, E.: Hierarchical identity based encryption with constant
size ciphertext. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
440–456. Springer, Heidelberg (2005)

3. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

4. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

5. Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

6. Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-
based techniques. In: ACM Conference on Computer and Communications Security
- CCS 2005, pp. 320–329. ACM Press, New-York (2005)

7. Canetti, C., Halevi, S., Katz, J.: Chosen ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207–222. Springer, Heidelberg (2004)

8. Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003)

9. Dodis, Y., Fazio, N.: Public key broadcast encryption secure against adaptive cho-
sen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
100–115. Springer, Heidelberg (2002)

10. Delerablee, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic broad-
cast encryption with constant-size ciphertexts or decryption keys. In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
39–59. Springer, Heidelberg (2007)

11. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

12. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

13. Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in groups
of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
511–527. Springer, Heidelberg (2004)

14. Halevi, D., Shamir, A.: The lsd broadcast encryption scheme. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)

15. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001)

16. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)



RSA Moduli with a Predetermined Portion:

Techniques and Applications

Marc Joye

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory
1 avenue Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
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Abstract. This paper discusses methods for generating RSA moduli
with a predetermined portion. Predetermining a portion enables to rep-
resent RSA moduli in a compressed way, which gives rise to reduced
transmission- and storage requirements. The first method described in
this paper achieves the compression rate of known methods but is fully
compatible with the fastest prime generation algorithms available on
constrained devices. This is useful for devising a key escrow mechanism
when RSA keys are generated on-board by tamper-resistant devices like
smart cards. The second method in this paper is a compression technique
yielding a compression rate of about 2/3 instead of 1/2. This results in
higher savings in both transmission and storage of RSA moduli. In a
typical application, a 2048-bit RSA modulus can fit on only 86 bytes
(instead of 256 bytes for the regular representation). Of independent in-
terest, the methods for prescribing bits in RSA moduli can be used to
reduce the computational burden in a variety of cryptosystems.

Keywords: RSA-type cryptosystems, RSA moduli, RSA key lengths,
diminished-radix moduli, key compression, key generation, key trans-
port, key storage, key transmission, key escrow, tamper-resistant devices,
smart cards, kleptography, setup.

1 Introduction

In 1976, Diffie and Hellman introduced the concept of public-key cryptogra-
phy [11]. Soon after Rivest, Shamir, and Adleman proposed a concrete realiza-
tion that works for encryption as well as for digital signatures: the so-called RSA
algorithm [26]. RSA has withstood years of extensive cryptanalysis (see e.g. [4])
and is still the most widely deployed and used public-key cryptosystem.

The security of RSA relies on the problem of factoring large numbers, or more
exactly, on the problem of computing roots modulo a large composite number.
The largest factored RSA modulus is RSA-200 (663 bits), whose factorization
was reported by a team of German researchers on May 2005 [28]. Current RSA-
based applications typically use 1024-bit RSA moduli but we observe a trend to
push for larger moduli like 2048 bits or 4096 bits. It is meaningless to define a
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threshold value for the key length separating security from insecurity. Security is
defined relatively to a security model: the adversarial goal and the adversary’s re-
sources. Further, it is highly dependent on the implementation. There is no need
for strong cryptographic algorithms if they are poorly implemented. Clearly, se-
lecting the “appropriate” key length for a given application is a touchy problem.
A recent list of recommended key lengths and guidelines is provided in [12].

At first glance, the safe approach would be to increase the key length to
(hopefully) increase the security level. Amdahl’s law applied to security says
that strengthening a secure part (in this case using larger keys) does not help
much [16]. A system is as secure as its weakest point and cryptography is rarely
the weakest point. More importantly, the use of larger keys comes at a cost.
First, it affects the performance in terms of speed. Second, larger keys consume
more bandwidth. Third, larger keys imply more memory requirements for their
storage. This last point is particularly relevant for constrained devices whose
price is mainly dictated by the size of their different memories.

This paper is aimed at mitigating the impacts resulting from the use of larger
RSA keys. We develop simple methods to reduce considerably the transmission
and storage requirements of RSA moduli. We show how to construct RSA moduli
where many bits can be prescribed. Furthermore, such RSA moduli can give rise
to substantial speed improvements.

Let n denote the bit length of an RSA modulus and t the number of prescribed
bits. If the prescribed portion of the RSA moduli is shared among a group of
users, only (n − t) bits are needed to represent the RSA modulus of each user
together with a single copy of the t bits used by the entire group. Another sce-
nario is to use t bits of an RSA modulus to represent the user’s identity and
other publicly available information. In this case, there is no need to store or to
transmit the value of those t bits and an RSA modulus can be encoded with only
(n−t) bits. Alternatively, one can imagine that a string of t bits is constructed by
applying a public function to some seed σ. An RSA modulus is then represented
by σ and (n−t) bits; the so-obtained representation is particularly advantageous
for short σ’s. Yet another application is to make use of t bits of an RSA modulus
to convey certain information. This information may appear in clear or in an
encrypted form. An example of the first case is presented in [22] where the repre-
sentation of a DSA prime, p = α q+1, embeds the value of prime divisor q and a
certificate of proper generation. The second case (namely, encrypted form) can be
helpful for key-escrow purposes. For example, t bits of public modulus N can be
used to encode the encryption of the corresponding private key or a part thereof.

A modulus N is called a diminished-radix (DR) modulus if it has the special
form N = 2n−μ for some μ < 2n−t. DR moduli are attractive for implementing
the RSA (see, e.g., [21,24,34]) because they greatly simplify the modular reduc-
tions, which can be computed with only shifts, additions and single-precision
multiplications. RSA moduli N can also be constructed under a sparse form,
that is, with a reduced Hamming weight. This can be useful for the Paillier
cryptosystem [25] and its derivatives where one computes N th powers.
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1.1 Related Work

In [33], Vanstone and Zuccherato described several methods for generating RSA
moduli with a predetermined portion. Typically, for a n-bit RSA modulus, they
were able to specify up to n/2 bits but in a rather inefficient way. They also pro-
posed a faster method for specifying up to n/4 bits, as well as mixed methods of
intermediate efficiency for specifying between n/4 and n/2 bits. A much simpler
yet more secure method for specifying up to n/2 bits was later presented at
Asiacrypt ’98 by Lenstra. This method appears to have being reinvented many
times (see [18] and the references therein). It is similar to the method given in [17]
for producing RSA moduli with many leading 1-bits and further discussed in [20].
More recently, Shparlinski [29] considered an alternative approach and derived
a method with a rigorous analysis for specifying about n/4 bits. In [2] (see
also [3]), Bernstein reports an unpublished result by Coppersmith for specifying
up to 2n/3 bits using lattice reduction.

Methods for prescribing part of the public key are also found in key-escrow
systems: authorities want decryption keys to be escrowed for law enforcement
purposes. Pairs of public/private keys are generated using a setup (secretly
embedded trapdoor with universal protection) mechanism [35,36] by trusted
third parties or tamper-resistant devices. The notion of setup is related to that
of subliminal channel due to Simmons [30] (see also [10]). The setup allows the
secure leakage of the private key from the corresponding public key. For RSA
cryptosystem, RSA modulus N = p q (and/or public exponent e) is used to se-
cretly embed a representation of secret factor p [35] (see also [10]) or private
RSA exponent d [9].

1.2 Our Contribution

A simple yet efficient method for constructing RSA moduli with a predetermined
portion referred to as ‘folklore method’ is given in [18]. This method enables
to specify about half the bits of an RSA modulus. This paper presents other
methods for generating such moduli and discusses associated applications.

The first method is a simple variation of the folklore method. It generates an
RSA modulus N = p q with a predetermined portion (up to its half) by randomly
generating prime p and then prime q from a prescribed interval. The folklore
method proceeds similarly except that prime q is constructed incrementally,
which may result in prohibitively too long running times for constrained devices
like smart cards. We note that the fastest smart-card implementations of prime
generation algorithms [14] (see also [15]) require primes p and q to be chosen in
a prescribed interval. Efficient generation of RSA moduli with a predetermined
portion on smart cards is particularly relevant for key-escrow purposes as this
additional feature is often implemented through tamper resistance.

The second method makes use of an extended version of Euclid’s algorithm
and enables to generate RSA moduli where about the two thirds can be pre-
scribed. Prescribing more than one half is for example very useful to ensure the
interoperability of RSA-enabled devices with different key lengths. There are still
programs and/or devices designed in a way such that they cannot accommodate
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RSA moduli larger than 1024 bits whereas many applications are now requiring
at least 2048-bit RSA moduli. Using the folklore method, a 2048-bit RSA mod-
ulus can be represented in compact form with 1024 bits plus the seed needed
to recover the predetermined portion and so will not fit in a 1024-bit memory
buffer. If now the two thirds can be predetermined, this is possible since only
683 bits plus the seed are needed to represent a 2048-bit RSA modulus. More
generally, achieving a higher compression rate is always useful because this leads
to more savings in both storage and bandwidth.

The rest of this paper is organized as follows. In the next section, we provide
some necessary definitions and notation. We also review the folklore method for
generating RSA moduli with a predetermined portion. In Section 3 and 4, we
improve on it and present relevant applications. Section 3 describes an efficient
escrow mechanism for RSA keys well suited for constrained tamper-resistant de-
vices like smart cards. Section 4 presents highly compact representations of RSA
keys which greatly reduce the storage and transmission requirements. Finally,
we conclude in Section 5.

2 Preliminaries and Notation

We first introduce some notation. The concatenation of two bit stringsX0 andX1

is denoted by X0‖X1. To ease the presentation, we do not make the distinction
between an integer and its representation. For an integer X , we denote by |X |2
the bit length of X . By an �-bit integer, we mean an integer X such that 2�−1 �
X < 2�, that is, |X |2 = �.

Throughout this paper and unless otherwise specified, we consider a n-bit
RSA modulus N = p q which is the product of two large primes where p is a
(n − n0)-bit prime and q is a n0-bit prime, for some 1 < n0 < n. Without loss
of generality, we assume that |p|2 � |q|2, or equivalently, that 2n0 � n.

2.1 RSA Primitive

For a public exponent e with gcd(e, λ(N)) = 1, the corresponding private expo-
nent d satisfies the relation

e d ≡ 1 (mod λ(N)) ,

where λ is Carmichael’s function. For N = p q, we have λ(N) = lcm(p−1, q−1).
Given x < N , the public operation (e.g., message encryption or signature ver-
ification) consists in raising x to the e-th power modulo N , i.e., in computing
y = xe mod N . Then, given y, the corresponding private operation (e.g., decryp-
tion of a ciphertext or signature generation) consists in computing yd mod N .
From the definition of e and d, it readily follows that yd ≡ x (mod N). The pri-
vate operation can also be carried out at higher speed through Chinese remain-
dering (CRT mode). Computations are then independently performed modulo p
and q and then recombined.
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To sum up, a n-bit RSA modulus N = p q is the product of two large prime
integers p and q such that |p|2 = n− n0, |q|2 = n0, and gcd(p− 1, e) = gcd(q −
1, e) = 1. For security reasons, so-called ‘balanced’ RSA moduli are generally
preferred, which means n = 2n0.

2.2 Folklore Method

We review a simple yet efficient method for fixing the leading bits of N . The
goal is to construct an RSA modulus N of the form N = NH‖NL and where the
leading portion, NH , is predetermined.

Letting t the bit length of NH , we can write

N = NH 2n−t +NL for some 0 < NL < 2n−t . (1)

We follow the presentation of [18]. For some integer t′ � t, pick at random a
(n − t′)-bit prime p such that gcd(p − 1, e) = 1. Define N ′ = NH 2n−t and
upper round it to the nearest multiple of p to get q′ =

⌈
N ′
p

⌉
. Find the smallest

nonnegative integer m such that q = q′ + m is prime and gcd(q − 1, e) = 1. If
N = p q satisfies Eq. (1) then return {NL, p, q}; otherwise re-iterate the process.

We note that several variations of the previous method can be found in [18].

3 Escrowing RSA Keys

Key escrow allows one to get access to the decryption keys. This can be helpful
in certain situations. For example, if an employee leaves her company without
returning her private key, a key-escrow mechanism enables to ensure that data
intended to this employee is not lost. A key-escrow mechanism can also be used
by a manager to read all data of employees within her organization.

In the case of an RSA modulus N = p q, the knowledge of about half the
bits of p suffices to recover the private key using lattice reduction techniques [6]
(see also [5,7,8]). Therefore if about half the bits of p are encrypted under some
secret key K and embedded in the representation of public RSA modulus N then,
from N , an ‘authority’ knowing key K can reconstruct p and thus compute the
corresponding private RSA key. Alternative techniques are described in [9].

Remark 1. When RSA key generation is performed on-board in smart cards, it is
desirable that secret key K is not shared by all smart cards. It is much better that
each employee Id — where Id is a unique identifier (e.g., email address, badge
number, . . . ) — has a different secret key, say KId, embedded in the tamper-
resistant memory of her smart card. To facilitate the key management, the key-
escrow authority may hold a master secret key K from which the employees’
keys, KId’s, can be derived.

The folklore method can be adapted to this end. We present a solution in Algo-
rithm 1. It requires a secure length-preserving symmetric cipher E that on input
a plaintext x and a key KId returns the ciphertext c = EKId

(x).
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Algorithm 1. Given key lengths n, n0 and public exponent e, this algorithm
outputs an escrowed n-bit RSA modulus N = p q with |p|2 = n− n0 and |q|2 =
n0, and private exponent d.

1. [Prime p] Generate a random prime p ∈ [2n−n0−1 + 1, 2n−n0 − 1] such that
gcd(p− 1, e) = 1.

2. [SETUP] Let ph denote the κ high-order bits of p,

ph =
⌊

p

2n−n0−κ

⌋
with κ = �(n− 1)/4� .

Define
NH = 1‖EKId

(ph) and κ′ = |NH |2 = κ+ 1 .

3. [Prime q] Generate a random prime

q ∈
[⌊

2n−κ′
NH

p

⌋
+ 1,

⌊
2n−κ′

(NH + 1)− 1
p

⌋]

(2)

such that gcd(q − 1, e) = 1.
4. [Output] Return N = p q and d = e−1 mod (p− 1)(q − 1).

3.1 Analysis

In contrast with the folklore method, the two primes in the RSA key generation
of Algorithm 1 lie in a prescribed interval. Their generation can therefore fully
benefit from the fast prime generation techniques in [14] (see also [15]).

Suppose we have to generate a prime q ∈ [qmin, qmax]. Basically, define Π as
the product of many primes so that Π � qmax − qmin and φ(Π)/Π is as small
as possible (and thus contains a maximum number of small primes).1,2 Define
also an element a ∈ (Z/ΠZ)∗. Next, for a random element k ∈ (Z/ΠZ)∗ and a
random T ∈ [qmin, qmax + 1 − Π ], find the smallest nonnegative integer i such
that

q = [(ai k − T ) mod Π ] + T (3)

is prime. This method presents the advantage that all candidates tested for pri-
mality are by construction already coprime to Π : q ≡ ai k (mod Π) ∈ (Z/ΠZ)∗.
The expected number of candidates to be tried heuristically amounts to

n0 ln 2
φ(Π)
Π

(4)

where n0 = |q|2 (cf. [14, Section 2.3]).
The next proposition shows that the interval [qmin, qmax] in Step 3 of Algo-

rithm 1 is optimal w.r.t. the above prime generation (Eq. (3)).
1 φ denotes Euler’s totient function; φ(Π) = #(Z/ΠZ)∗.
2 In smart card implementations, parameter Π is predetermined before compile time

and hard-coded in the prime generation routine. As a consequence, since the values
of qmin and qmax depend on p and so change at each execution, parameter Π should
be chosen as the largest possible value so that the relation Π � qmax − qmin will
always be satisfied.
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Proposition 1. The integer interval q is chosen from is maximal and contains
(at least) 2n0−κ′

elements.

Proof. Define qmin =
⌊

2n−κ′
NH

p

⌋
+ 1 and qmax =

⌊ 2n−κ′
(NH+1)−1

p

⌋
. We have

p qmin = p

⌊
2n−κ′

NH

p

⌋
+ p

= 2n−κ′
NH + p− (2n−κ′

NH mod p) = NH‖N (min)
L

with 1 � N
(min)
L = p − (2n−κ′

NH mod p) � p. Therefore, since the least signif-
icant bit of NL must be 1, we see that p (qmin − 1) cannot be of the required
form. Likewise, we have

p qmax = p

⌊
2n−κ′

(NH + 1)− 1
p

⌋

= 2n−κ′
NH + 2n−κ′ − 1− (

[2n−κ′
(NH + 1)− 1] mod p

)
= NH‖N (max)

L

with 2n−κ′−p � N
(max)
L = 2n−κ′−1−(

[2n−κ′
(NH +1)−1] mod p

)
� 2n−κ′−1,

and p (qmax + 1) cannot be of the required form. Consequently, the interval is
maximal.

For the second part of the proposition, we have

qmax =
⌊

2n−κ′
(NH + 1)− 1

p

⌋
�

⌊
2n−κ′

NH

p

⌋
+

⌊
2n−κ′ − 1

p

⌋
.

So, we get

qmax − qmin �
⌊

2n−κ′ − 1
p

⌋
− 1 �

⌊
2n−κ′ − 1
2n−n0 − 1

⌋
− 1 � 2n0−κ′ − 1

since n− κ′ = n− (1 + �(n− 1)/4�) � n− (1 + �(2n0 − 1)/4�) � n− n0, which
concludes the proof. ��
The worst case for the generation of q appears for balanced RSA moduli (i.e.,
n = 2n0), in which case the length of Π is halved compared to the regular prime
generation (i.e., without key escrow). Hence, from Eq. (4) and using the figures
given in [15, Fig. 7], we get:

Table 1. Heuristic expected number of primality tests to generate a balanced n-bit
RSA moduli with and without key escrow

n 1024 1536 2048

With key escrow 70.73 99.14 126.56
Without key escrow 66.58 93.80 119.96

From this, we conclude that embedding the key-escrow mechanism described
in this section has little impact on the overall performance of the RSA key
generation. We refer the reader to [18] for security considerations.
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3.2 Recovering the Private Key

It remains to explain how to recover a private RSA key corresponding to a given
RSA modulus. The technique is based on a powerful result making use of the
LLL reduction algorithm [19].

Theorem 1 (Coppersmith). Let P(x, y) be an irreducible polynomial in two
variables over Z, of maximum degree δ in each variable separately. Let X, Y be
bounds on the desired solutions x0, y0. Define P̃(x, y) = P(xX, yY ) and let W
be the absolute value of the largest coefficient of P̃. If

X · Y � W 2/(3δ)

then in time polynomial in (logW, 2δ), we can find all integer pairs (x0, y0) with
P(x0, y0) = 0, |x0| < X, and |y0| < Y .

Proof. See [6, Corollary 2]. ��
Let NH denote the κ′ leading bits of n-bit RSA modulus N and let N ′

H denote
NH without its most significant bit: N ′

H = NH mod 2κ′−1. Using corresponding
secret key KId, the key-escrow authority can recover ph = EKId

−1(N ′
H). For com-

pleteness, we show below that if |ph|2 � �(n − 1)/4� then the knowledge of ph

suffices to recover the whole value of p (and thus the corresponding private key).
This is an application of Coppersmith’s theorem.

Write
p = p̄+ x0 and q = q̄ + y0

for some unknown integers x0 and y0, and where p̄ and q̄ are defined by

p̄ = 2n−n0−κ−1(2ph + 1) and q̄ =
⌊
N

p̄

⌋
.

It is easily verified that respective bounds X and Y on |x0| and |y0| are given
by

|x0| < 2n−n0−κ−1 = X and |y0| < 2n0−κ = Y .

Now, define the bivariate polynomial

P(x, y) = (p̄+ x)(q̄ + y)−N = q̄ x+ p̄ y + x y + (p̄ q̄ −N) ,

an integer solution of which is (x0, y0): P(x0, y0) = 0. Corresponding polyno-
mial P̃ is given by P̃(x, y) = q̄X x+ p̄ Y y+XY xy+(p̄ q̄−N). Hence, it follows
that

W := max{q̄X, p̄ Y,XY, |p̄ q̄ −N |} = p̄ Y = 2n−2κ−1(2ph + 1)

� 2n−2κ−1(2κ + 1) > 2n−κ−1 .

Noting that n− 1 � 4κ, this yields

X · Y = 2n−2κ−1 � (2n−κ−1)2/3 < W 2/3 .

Consequently, the conditions of Theorem 1 are satisfied and so the key-escrow
authority can recover (x0, y0) and thus the two secret factors of RSA modulus N ,
p = p̄ + x0 and q = q̄ + y0. The private RSA exponent is then recovered as
d = e−1 mod (p− 1)(q − 1).
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3.3 Variants

Analogously to [33,18], it is possible to fix the trailing bits of modulus N rather
than the leading bits. The SETUP phase then defines NL = EKId

(ph)‖1 and
prime q is generated as q = C + q′ 2κ′

with C = NL/p mod 2κ′
for some random

q′ in [⌈
2n−1 + 1− Cp

2κ′p

⌉
,

⌊
2n − Cp

2κ′p

⌋]

.

More generally, it is possible to fix some leading bits and some trailing bits of N .
The proposed method can also be adapted to support RSA moduli that are

made of more than two factors, for example, 3-prime RSA moduli or RSA moduli
of the form N = pr q [31].

4 Compressing RSA Keys

Compressing RSA moduli leads to substantial reductions in storage and trans-
mission requirements. This is even more true as standard bodies and organi-
zations are pushing for increasingly longer RSA keys. In particular, storage
requirements can be critical for constrained devices for which RSA moduli are
typically stored in eeprom-like memory, which is expensive. Halving the rep-
resentation of a 2048-bit modulus already frees 128 bytes in memory. In this
section, we will present a method that enables to compress a 2048-bit on only
86 bytes.

As exemplified in the introduction, the techniques of this section can also used
to reduce the computational requirements.

We require a mask generating function (MGF). A practical implementation
can be found in [1, Appendix A]. The MGF takes on input a seed s0 and expands
it into a binary string of κ′ bits. Moreover, we force the leading to 1 so as to obtain
a κ′-bit integer, NH = 2κ′−1 ∨ MGF(s0). Primes p and q are then generated so
that the κ′ leading bits of N = p q represent NH . The compressed RSA modulus
is given by the (n − κ′) bits of N , NL. If seed s0 is not public (or cannot be
publicly recovered), it should be returned together with NL.

Here is the detailed algorithm.

Algorithm 2. Given key lengths n, n0, public exponent e and compression
parameter κ′, this algorithm outputs (the representation of) a compressed n-bit
RSA modulus N = p q with |p|2 = n − n0 and |q|2 = n0, Ñ , and private
exponent d.

1. [Fixing NH ] Produce a κ′-bit integer NH from a seed s0:

NH := 2κ′−1 ∨ MGF(s0) ∈ [2κ′−1, 2κ′ − 1] .

2. [Primes p and q] Generate random primes p and q with gcd(p− 1, e) = gcd(q−
1, e) = 1, |p|2 = n− n0, |q|2 = n0, and such that

p q = NH‖NL for some 1 � NL < 2n−κ′
.
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3. [Output] Return Ñ = {NL [, s0]} and d = e−1 mod (p− 1)(q − 1).

Given the representation Ñ = {NL [, s0]}, anyone can recover the correspond-
ing n-bit RSA modulus N as NH‖NL with NH = 2κ′−1 ∨ MGF(s0). We note that
decompressing Ñ to recover N is very fast.

Remark 2. Clearly, Algorithm 1 can be used to generate primes p and q in the
previous algorithm. From Eq. (2), we see however that if 2n−κ′ � p then the
interval q is chosen from may be empty and thus κ′ should be at most n0.
Therefore, the method of Algorithm 1 can compress at best n-bit RSA moduli
up to n0 bits. For balanced RSA moduli (i.e., n = 2n0), this yields a compression
rate of 1/2.

4.1 Beyond the 1/2 Compression Rate

We consider now higher compression rates, that is, κ′ � n0 + 1. From the de-
scription of Algorithm 2, we have N = p q = NH‖NL = NH 2n−κ′

+NL, which
implies that NL = −NH 2n−κ′

mod p since NL < 2n−κ′ � 2n−n0−1 < p.
Consequently, achieving higher compression rates translates into the problem

of finding an (n− n0)-bit prime p such that

(−NH 2n−κ′
mod p) < 2n−κ′

.

Indeed, letting

q =
⌊
NH 2n−κ′

p

⌋
+ 1

and, provided that it is prime, we obtain

p q = NH 2n−κ′
+ p− (NH 2n−κ′

mod p)
︸ ︷︷ ︸

=NL<2n−κ′

as required.
The following algorithm derived from Okamoto-Shiraishi’s paper [23] (see

also [13]) seeks a solution to the above problem.

Algorithm 3. Given key lengths n, n0, compression parameter κ′ and κ′-bit
predetermined portion NH , this algorithm outputs the lower portion NL of n-bit
RSA modulus N = NH‖NL = p q with |p|2 = n− n0 and |q|2 = n0.

1. [Initialization] Choose a random (n− n0)-bit integer p0 and define

q0 =
⌊
NH 2n−κ′

p0

⌋
.

2. [Euclidean step] Form the list L of pairs (xi, yi) verifying

|zi − xi yi| < 2n−κ′−1 (5)
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where (xi, yi, zi) are defined as

{(
z0, x0, y0

)
=

(
(NH2n−κ′

mod p0) + 2n−κ′−1, 0, 0
)

(
zi, xi, yi

)
=

(
zi−1 mod di, xi−1 +

⌊
zi−1

di

⌋
ui, yi−1 +

⌊
zi−1

di

⌋
vi

)

and
{(
d0, u0, v0

)
=

(
p0, 0, 1

)
,

(
d−1, u−1, v−1

)
=

(
q0, 1, 0

)

(
di, ui, vi

)
=

(
di−2 mod di−1, ui−2 −

⌊
di−2

di−1

⌋
ui−1, vi−2 −

⌊
di−2

di−1

⌋
vi−1

) .

3. [Finished?] Find a pair (xi, yi) ∈ L such that p = p0 + xi and q = q0 + yi are
prime. If no such pair is found, go to Step 1.

4. [Output] Compute N = (p0 + xi)(q0 + yi) and return NL = N mod 2n−κ′
.

The next proposition shows that a solution returned by the algorithm is of
the correct form.

Proposition 2. Using the notations of Algorithm 2 and provided that |zi −
xi yi| < 2n−κ′−1, any pair (xi, yi) verifies

(p0 + xi)(q0 + yi) = NH 2n−κ′
+NL

for some 1 � NL < 2n−κ′
.

Proof. Let NL := 2n−κ′−1 + xi yi − zi. Since at Step 4, (xi, yi) ∈ L, it follows
that (zi, xi, yi) satisfies Eq. (5) and thus 1 � NL � 2n−κ′ − 1, as desired.

From this definition of NL, we also get zi = xi yi + 2n−κ′−1 − NL, which in
turn implies

q0 xi + p0 yi + zi = q0 xi + p0 yi + xi yi + 2n−κ′−1 −NL

= (p0 + xi)(q0 + yi)− p0 q0 + 2n−κ′−1 −NL

= NH 2n−κ′ − p0 q0 + 2n−κ′−1

= (NH 2n−κ′
mod p0) + 2n−κ′−1 (†)

by noting that p0 q0 = p0 
NH 2n−κ′
/p0� = NH 2n−κ′ − (NH 2n−κ′

mod p0).
Moreover, any tuple of (zi, xi, yi) verifies the property

q0 xi + p0 yi + zi = z0 .

This easily follows by construction:

q0 xi + p0 yi + zi = q0 xi−1 + p0 yi−1 +
⌊ zi−1

di

⌋
(q0 ui + p0 vi) + zi

= q0 xi−1 + p0 yi−1 +
⌊ zi−1

di

⌋
di + zi

= q0 xi−1 + p0 yi−1 + zi−1 = z0 .

Comparing with (†), we see that
(
(NH 2n−κ′

mod p0) + 2n−κ′−1, 0, 0
)

is a valid
choice for (z0, x0, y0). ��
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4.2 Analysis

Clearly, the sequences {ui}, {vi} and {di} defined in Algorithm 3 are those given
by extended Euclid’s algorithm: q0 ui + p0 vi = di. The sequence |zi − xi yi| is
decreasing and then increasing. This gives a condition break in the construction
of list L in Algorithm 3. For small compression parameters κ′, the algorithm
finds many pairs (xi, yi) ∈ L. When κ′ increases, the number of pairs decreases.

In the balanced case (that is, the worst case), we observed that list L is always
nonempty for κ′ � 2n/3. We conducted numerous experiments to assess this.
For each tested predetermined portion NH , a pair of matching primes p and q
was found. We give below one such pair of primes (p, q) when NH was set as the
1360 leading bits of the RSA-2048 challenge [27].

RSA2048 = c7970ceedcc3b075 4490201a7aa613cd 73911081c790f5f1 a8726f463550bb5b

7ff0db8e1ea1189e c72f93d1650011bd 721aeeacc2acde32 a04107f0648c2813

a31f5b0b7765ff8b 44b4b6ffc93384b6 46eb09c7cf5e8592 d40ea33c80039f35

b4f14a04b51f7bfd 781be4d1673164ba 8eb991c2c4d730bb be35f592bdef524a

f7e8daefd26c66fc 02c479af89d64d37 3f442709439de66c eb955f3ea37d5159

f6135809f85334b5 cb1813addc80cd05 609f10ac6a95ad65 872c909525bdad32

bc729592642920f2 4c61dc5b3c3b7923 e56b16a4d9d373d8 721f24a3fc0f1b31

31f55615172866bc cc30f95054c824e7 33a5eb6817f7bc16 399d48c6361cc7e5

p = f2cbf408c0712b00 bb40d1ff5ef0d42b 981ba43a174da647 a474918aea017483

e8406e140d522a09 da65cb960a912c3f 5bf031af675b7907 5f5eb2151ad9c0ff

7bd518dd0f01bdc2 ac68f8b8edd30426 7b58d3317ab47072 4a04313d85be7d88

f63fe405a7628b12 3b34217ca4d45e42 97b5d728c2f74cd9 7fa673e6483804f5

q = d2719ab388ad9e05 e9f46df9ce8c822e de61d36a7ce61b6c a4d3b4a3b41a8f42

0935eec7ce1a57c1 2e15bfaf4873e2d2 095297c6fd8d49d9 8ef44b955a983ba9

75f9f1be4f1730fb 2e9834e075988ed0 9229cb1514998172 7c1b58d2e20932d5

25a06de1111311af 5a88ae25f3e27e3d c2c44e9b51ffae50 2ed18dd903907931

p · q = c7970ceedcc3b075 4490201a7aa613cd 73911081c790f5f1 a8726f463550bb5b

7ff0db8e1ea1189e c72f93d1650011bd 721aeeacc2acde32 a04107f0648c2813

a31f5b0b7765ff8b 44b4b6ffc93384b6 46eb09c7cf5e8592 d40ea33c80039f35

b4f14a04b51f7bfd 781be4d1673164ba 8eb991c2c4d730bb be35f592bdef524a

f7e8daefd26c66fc 02c479af89d64d37 3f442709439de66c eb955f3ea37d5159

f6135809f85334b5 cb18fd5b056dbd78 01de0bb2fd1e7b5a b4d33205ac4c9a71

800cbfe76ac1424a 90121c232d945edc 6e7d34038e271b4c 92b620e5ddf836da

62eede67b33ab2b4 ae58d531cf27f090 6034201bf753711e 24417374f5e0bfe5

4.3 Variants

As in Section 3, the methods of this section are subject to numerous variants.
For example, it is possible to fix the trailing bits of N , or some leading bits and
some trailing bits of N .
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To achieve higher compression rates, multi-prime RSA moduli can be used (as
suggested in [32]) or RSA moduli of the form pr q [31]. Unbalanced RSA moduli
(i.e., n � 2n0) always offer better compression rates.

5 Conclusions

We have presented enhancements to the folklore method for generating RSA
moduli with a predetermined portion and pointed out relevant applications. We
have shown how to efficiently implement a key escrow mechanism. Special care
was taken to make it compatible with the fastest smart-card prime generation
algorithms and to optimally benefit from them to only mildly affect the global
performance. We have also presented a compression technique that enables to
represent RSA moduli with about three times fewer bits.

Acknowledgments. I thank Igor Shparlinski for sending a copy of [29], and
Alain Durand and Mohamed Karroumi for stimulating discussions. I also thank
the anonymous referees for useful comments.
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Abstract. The time memory trade-off (TMTO) algorithm, first intro-
duced by Hellman, is a method for quickly inverting a one-way function,
using pre-computed tables. The distinguished point method (DP) is a
technique that reduces the number of table lookups performed by Hell-
man’s algorithm.

In this paper we propose a new variant of the DP technique, named
variable DP (VDP), having properties very different from DP. It has
an effect on the amount of memory required to store the pre-computed
tables. We also show how to combine variable chain length techniques
like DP and VDP with a more recent trade-off algorithm called the
rainbow table method.

Keywords: time memory trade-off, Hellman trade-off, distinguished
points, rainbow table.

1 Introduction

In many cases, cryptanalysis of a cryptographic system can be interpreted as the
process of inverting a one-way function. Unlike most approaches that depend on
the specific target system, time memory trade-off (TMTO) is a generic approach
that can be used on any one-way function.

Let f : X → Y be any one-way function. For example, this could be a map
sending a key to the encryption of a specific fixed plaintext. A way to efficiently
invert this map would imply total breakdown of the encryption system. There
are two trivial ways to invert f that do not involve the inner workings of f .
Given a target y ∈ Y to invert, one may go about the time consuming process
of computing f(x) for every x ∈ X , until a match f(x) = y is found. The
other method is to do this exhaustive process in a pre-computation phase and
to store the resulting pairs (x, f(x)) in a table, sorted according to the second
components. Then, when a target y ∈ Y is given, it can be searched for in the
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table among the second components and the corresponding first component is
simply read off as the answer. Whereas the exhaustive search method takes a long
time, the table lookup method requires a large storage space. TMTO is a method
that comes between these two extremes and can invert a one-way function in
time shorter than the exhaustive search method using memory smaller than the
table lookup method.

Cryptanalytic TMTO was firstly introduced by Hellman [11]. If the one-way
function f to be inverted is defined on a set of size N , under typical parameters,
the pre-computation phase of his algorithm takes time O(N) in creating certain
one-way chains, after which a digest of this exhaustive computation is stored
in a table of size O(N

2

3 ). This table is used during the online phase to recover
the pre-image x of a given target f(x) in time O(N

2

3 ). Soon after Hellman’s
work, the idea of distinguished points (DP), attributed to Rivest in [9], was
introduced. When applied to Hellman’s algorithm, it reduces the number of
table lookups required during the online phase. This is useful when the table
is so large that table lookups become expensive. More recently, Oechslin [15]
suggested a different way of creating the one-way chain. It is called the rainbow
table method and a reduction in online time by a factor of two was claimed. It
is known that, asymptotically, these algorithms are the best one can hope for if
the structure of f is not to be used [5].

The contributions of this paper are two-folds. The first is the introduction of
a new technique which we shall call variable DP (VDP). As with the original DP
idea, VDP is a technique that can be used with the Hellman method and also
with the multi-target versions of the trade-off algorithms [3,10,6,13]. Simply put,
a DP is a point in the one-way chain that satisfies a preset condition. Whereas
the original DP idea had this condition fixed for all chains, VDP allows this
condition to depend on the chain’s starting point.

While VDP is a variant of the original DP, the two methods show very different
characteristics. The simple idea of allowing the chain stopping condition to vary
with the chains brings about unexpected consequences. It leads to the removal of
the sorting procedure that was needed in the Hellman method’s pre-computation
phase. Another surprising characteristic is that, whereas all previous trade-off
algorithms stored both ends of the one-way chains in the table, our method
completely removes the need to store the starting point. This is because the
chain end contains information about the chain beginning.

The second contribution of this paper is in successfully applying the DP (and
VDP) idea to the rainbow table method. A combination of the DP technique
with a variant of the rainbow table method was suggested in [5,4], but there
is a natural barrier to its combination with the original rainbow table method.
The one-way chain created during the pre-computation phase is re-traced in
the online phase in the opposite direction, and with rainbow tables, this is not
possible unless the chain length is known. So techniques like DP that disturb
the length of chains were thought to be incompatible with the rainbow table
method. We have overcome this difficulty by employing a sorting that takes the
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chain lengths into account. Our new technique VDP can also be combined with
the rainbow table method in a similar way.

The rest of the paper is organized as follows. We start by briefly reviewing
some of the previous TMTO works. Then, in Section 3, the new VDP technique
is presented. In Section 4, we show how to apply the DP and VDP ideas to
rainbow table method. This is followed by Section 5, giving a rough comparison
between various TMTO methods and explaining the issues involved in such a
comparison. We summarize this paper in Section 6.

2 Previous Works

In this section we will quickly review the theory of the time memory trade-offs,
recalling the basic concepts and fixing notation. Readers new to the trade-off
technique should refer to the original papers. For example, we shall not explain
matters related to the success probability of these methods [11,14,15].

Throughout this paper, we fix a finite set ZN = {0, 1, . . . , N−1} of size N and
we shall use f : ZN → ZN to denote the target one-way function that is to be
inverted. The amount of memory needed to store a digest of the pre-computation
is denoted by M and the online attack time is denoted by T .

All trade-off algorithms will involve parameters t,m ∈ ZN , satisfying mt2 =
N , known as the matrix stopping rule. We shall not be concerned with the
exact choice of these numbers, which depends on the resources available to the
attacker and also on his needs. All trade-off algorithms will involve a family of
permutations, ri : ZN → ZN , called the reduction functions. The range of i will
vary with each trade-off algorithm. Each of these defines an iterating function
fi : ZN → ZN through the equation fi(x) = ri ◦ f(x).

All trade-off algorithms consist of a pre-computation phase, in which tables are
prepared, and an online phase. In the online phase, an inversion target f(x0) is
given, to which the trade-off algorithm will return anX such that f(X) = f(x0).
As f is not injective, there is no guarantee that X = x0, and this has to be
checked outside the trade-off algorithm. If X is found to be an unsatisfactory
answer, a situation referred to as a false alarm, the trade-off algorithm is simply
resumed.

2.1 Hellman Trade-Off

Hellman’s original work [11] was presented as an attack on block ciphers, but we
shall describe his trade-off algorithm as a generic inversion technique, applicable
to any one-way function.

Pre-computation Phase. What is explained below shall be repeated t times,
once for each i in the range 0 ≤ i < t, to build t tables. We start by choosing,
preferably distinct, m starting points, labeled SPi

0 , SPi
1 , . . . ,SPi

m−1. For each 0 ≤
j < m, we set X i

j,0 = SPi
j and compute

X i
j,k = fi(X i

j,k−1) (1 ≤ k ≤ t),
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recursively. This is said to be the Hellman chain. The ending point is written
as EPi

j , so that EPi
j = f t

i (SPi
j ). All intermediate points of the Hellman chains

are discarded and just the ordered pairs {(SPi
j ,EPi

j )}m−1
j=0 are stored as the i-th

Hellman table HTi, after they have been sorted with respect to the ending points.
A set of Hellman chains that was used to create a single table is referred to as
the Hellman matrix. Note that we have t tables, each containing m entries, so
that the total storage cost is M = mt.

Online Phase. Given a target point f(x0), the process below is repeated for
each i. We first compute Y i

0 = ri(f(x0)) = fi(x0) and check if this appears as
an ending point in the i-th Hellman table HTi. This table lookup is done for each
recursively computed Y i

k = fi(Y i
k−1), where k = 1, 2, . . . , t − 1. To distinguish

this chain from the Hellman chain, in this paper, we shall refer to this Y i
k -chain

as the i-th online chain.
Whenever a match Y i

k = EPi
j is found, we compute X = X i

j,t−k−1 =
f t−k−1

i (SPi
j ). Since

fk
i (fi(X)) = fk+1

i (X) = f t
i (SPi

j ) = EPi
j = Y i

k = fk
i (Y i

0 ),

there is a large chance that fi(X) = Y i
0 , which is equivalent to f(X) = f(x0),

due to ri being injective. In such a case, the algorithm returns X . But, as fk
i

is not injective, there could be a merge between the Hellman and online chains,
and it is possible to have f(X) �= f(x0). This is also referred to as a false alarm,
in which case the next k is processed. Disregarding the time taken to process
false alarms, it takes t iterations of fi to process each of the t tables, so the
online time is T = t2.

Application of the matrix stopping rule to the online time T = t2 and storage
sizeM = mt brings out the Hellman trade-off curve TM2 = N2. Conversely, any
T and M satisfying the trade-off curve lead to parameters m and t appropriate
for the Hellman trade-off algorithm.

2.2 Distinguished Points

The distinguished point method was suggested by Rivest and issues concerning
its practical use were investigated in [8,16]. Rather than fixing the length of
each Hellman chain, the iteration X i

j,k = fi(X i
j,k−1) is continued until an X i

j,k

satisfying a certain condition is found, and we obtain chains of varying lengths.
For example, if one wants the average chain length to be t = 2d, DP are typically
defined to be points whose first d bits are all zero.

In practice, some of the chains created in this way could be too long for
practical use, and some chains may even fall into a loop and never reach a
DP. So we throw away chains longer than a preset t̂ = tmax. If needed, the
shortened average length can be adjusted by discarding chains shorter than a
preset ť = tmin. The effects of t̂ and ť are discussed in more detail in [16]. The
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length of each chain is usually recorded in the Hellman table so that they can
be used when resolving false alarms.

The main advantage of using the DP method is in the reduction of table
lookups made during the online phase. The generated point Y i

k = fk
i (Y i

0 ) can
appear as an endpoint in the Hellman table only if it is a DP. So it suffices to do
a search of the table only when the online chain reaches a DP, and the number
of table lookups is reduced by a factor of 2d.

As the ending point is the only DP in any Hellman chain, when a certain Y i
k

is found to be a DP, but not in HTi, the target cannot be in the i-th Hellman
matrix, and one can move onto the next table. So the average length of chains
generated online is expected to be about 2d. In this paper, we shall refer to this
trade-off method as Hellman+DP.

2.3 Rainbow Table

The rainbow table method was introduced by Oechslin [15]. Instead of using a
single reduction function for each table, t different reduction functions are se-
quentially used in each chain of length t to generate a single table. Explicitly, the
j-th rainbow chain is generated by iterating Xj,k+1 = fk+1(Xj,k), and we allow
j to run in the range1 0 ≤ j < mt. As with the Hellman method, {(SPj ,EPj)}
is stored in the rainbow table RT, after sorting.

In the online phase, for each 0 ≤ k < t, the k-th online chain

rt−k(f(x0))
ft−k+1−−−−→ ◦ ft−k+2−−−−→ · · · · · · ◦ ft−1−−−−→ ◦ ft−−−−→ Y k

is computed and Y k is searched for among the second component of the rainbow
table. Thus the online time of the rainbow table method is T = 1

2 t
2, and this

is one half of the original Hellman method, when the two are storing the same
number of entries. The rainbow table contains M = mt entries, and the rainbow
trade-off curve is given by TM2 = 1

2N
2.

2.4 Checkpoints

Experiments show that a considerable fraction of the online time is spent in
resolving false alarms. The checkpoint method [2] was introduced to solve this
problem. It allows recognition of false alarms without the costly regeneration of
the Hellman/rainbow chains. The checkpoint method is applicable to all three
trade-off algorithms we have described.

3 Variable Distinguished Points

In this section, we propose a new technique, named the variable distinguished
point (VDP) method, which is a variant of the DP method, but with very dif-
ferent properties.
1 This is non-restrictive choice that allows a direct comparison between Hellman and

rainbow methods.
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3.1 The Basic Idea

As with the original DP method, our VDP method terminates a Hellman chain
when a point satisfying a certain relation is reached. The crucial difference is
that, unlike DP, we allow this condition to depend on the starting point of the
chain. This results in the ending point containing information about the starting
point, so that by using information which is common to the table, one may be
able to recover the starting point from the ending point.

While the main objective of the original DP method was to reduce the number
of table searches, the VDP method aims to eliminate the need to store the
starting points so as to lessen storage requirements.

3.2 Applying VDP to Hellman Trade-Offs

Let us show how we may apply the VDP technique to the original Hellman
trade-off algorithm. To simplify our discussion, we shall restrict to the typical
parameters m = t = N

1

3 and set d = 1
3 log2N . Ways to use more general

parameters will be dealt with in Section 3.4.
When creating the j-th Hellman chain of the i-th table, we take our starting

point to be
SPi

j = (0 || i || j),
where each of the three concatenated components are of d bits. The Hellman
chain is created as usual through iterated computation of X i

j,k = fi(X i
j,k−1),

starting from X i
j,0 = SPi

j , but it is terminated only when the most significant
d bits of some X i

j,k is found to be j. Chains longer than a preset t̂ = tmax are
discarded. The ending point EPi

j we have reached in the j-th chain is stored at
HTi[j], the j-th position of the i-th Hellman table. There is no table sorting in-
volved. Since the chain length is variable, storing chain length information would
reduce online time spent dealing with false alarms, but this is not mandatory.
We remark that if we take the first d bits of an ending point as its hash2 value,
then the Hellman+VDP table we have created can be seen as a perfect hash
table.

Notice that since the storage position index j is equal to the first d bits of EPi
j

and also to the most meaningful part of SPi
j , neither the starting point nor the

first d bits of the ending point need to be stored. The pre-computation phase
of Hellman trade-off with VDP, under restricted parameters m = t = N

1

3 , is
summarized in Algorithm 1..

The online phase of the simplified version of VDP is given in Algorithm 2..
When we want to check whether a point from the online chain is an ending point,
we can look up the table entry at the position given by the point’s first d bits.
There is no searching involved. If we find a match, the corresponding starting
point can be recovered using the table number and the position index.

2 We are referring to the data structuring method and not to cryptographic hash
functions.
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Algorithm 1. Pre-computation Phase of Hellman+VDP
Require:

(1) parameters m, t, and t̂ = tmax.
(2) functions fi = ri ◦ f (i = 0, . . . , t − 1).
(3) empty tables HT0, HT1, · · · , HTt−1.

Ensure:
(1) m = t = N

1

3 = 2d.
1: for i = 0, . . . , t − 1 and j = 0, . . . , m − 1 do
2: X ← (0 || i || j) � X = SPi

j

3: for k = 1 to t̂ do
4: X ← fi(X) � iterate Hellman chain
5: if j == (significant d bits of X) then � check for DP
6: HTi[j] ← (less significant (n − d) bits of X)||k

� HTi[j] = (lower part of EPi
j )||(chain length)

7: break � process next chain if DP is reached
8: end if
9: end for � leave HTi[j] empty if t̂ is reach before a DP

10: end for
11: return HT0, HT1, · · · , HTt−1.

Algorithm 2. Online Phase of Hellman+VDP
Require:

(1) target f(x0)
(2) parameters t, t̂ = tmax and functions fi = ri ◦ f (i = 0, . . . , t − 1)
(3) pre-computed Hellman+VDP tables HT0, HT1, · · · , HTt−1

Ensure:
(1) m = t = N

1

3 = 2d.
1: for i = 0, . . . , t − 1 do
2: Y ← ri(f(x0))
3: for k = 1 to t̂ do
4: j ← (significant d bits of Y )
5: EP || l ← HTi[j] � HTi[j] = (lower bits of EPi

j )||(chain length)
6: if k < l and EP == (less significant (n − d) bits of Y ) then
7: X ← f l−k−1

i (0 || i || j) � X = f l−k−1
i (SPi

j )
8: if f(X) == f(x0) then � check for false alarm
9: return X � return pre-image of f(x0)

10: end if
11: end if
12: Y ← fi(Y ) � iterate online chain
13: end for
14: end for
15: return ‘failure’

3.3 Technical Details of Hellman+VDP

To maintain the success probability provided by the original Hellman trade-
off, we need to ensure that our Hellman+VDP method results in average chain
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length of approximately t = 2d and that not too many of the Hellman table
entries are left empty.

When the VDP is defined using d bits, the average chain length would natu-
rally become t = 2d, except that we are throwing away some of the longer chains.
The first issue can be approached, as with the original Hellman+DP method,
by setting an appropriate lower bound ť = tmin in addition to the upper bound
t̂ = tmax for chain lengths. But whereas the DP method may simply throw away
chains not falling within these bounds and generate more chains from other
starting point, with the VDP method, there are no other starting points that
can be used, and every discarded chain would imply an empty Hellman table
entry.

A solution to the empty table entry problem is to use starting points of the
form

SPi
j = τ || i || j ,

where τ is a counter that is incremented every time creation of the j-th chain
fails. Now, for reconstruction of SPi

j during the online phase to be possible, the
τ value will need to be stored, so we place a restriction on the size of τ . We allow
at most 2s trials to be done for the j-th chain, and if all trials fail, we use the
longest chain among those shorter than ť. The entry HTi[j] is left empty only if
all the 2s chains were longer than t̂.

For the parameters t = 2d and t̂ = c · t, the probability of generating a chain
longer than t̂ is

(
1− 1

2d

)t̂

≈ exp
(− t̂

2d

)
= exp(−c).

With the use of s-many extra bits per table entry, the probability of a table
position HTi[j] being left empty would become as small as exp(−c ·2s). When
m = N

1

3 chains are used for each Hellman table, by choosing s to satisfy m ·
exp(−c·2s) < 1, or equivalently,

log logN − log 3c
log 2

< s,

we can expect to find less than a single empty entry from each table, resulting in
a minimal perfect hash table. Note that the above bound on s is certainly small
and asymptotically negligible when compared to the number of bits needed for
the other major parts. Also, the attacker may choose to use an even smaller s
according to his needs.

The small number of empty entries can be marked by writing zero as the
chain length, or through use of one additional bit, when the chain length is not
recorded. One may even choose to fill it with random value and let it generate
false alarms at the worst. A typical Hellman+VDP table is depicted in Figure 1.

Note that the ending point is the only DP within that chain. So if an online
chain reaches a DP for the j-th Hellman chain and EPi

j is found to be a non-
match, the inversion target f(x0) cannot belong to the j-th Hellman chain. There
is no reason to refer to the j-th chain any further, even if the online chain reaches
another DP for the same chain. So by keeping track of which ending points have
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SPi
0 = (τ0 || i|| 0) f

l0
i−−−−→ (0 || R0) = EPi

0 � HTi[0] = {R0, τ0, l0}
SPi

1 = (τ1 || i|| 1) f
l1
i−−−−→ (1 || R1) = EPi

1 � HTi[1] = {R1, τ1, l1}
...

...
(EPi

j generation failure) � HTi[j] = {− , − , 0 }
...

...

SPi
m−1

= (τm−1||i||m−1)

f
lm−1

i−−−−−→ (m−1||Rm−1)
= EPi

m−1
� HTi[m-1] = {Rm−1, τm−1, lm−1}

Fig. 1. Typical i-th Hellman Table for Hellman+VDP

been processed, one may reduce the number of table lookups and the chance of
false alarms.

One undesirable property of the VDP method concerns its online time. We
need to go through t tables with each table costing t̂ iterations of fi, so that
the online time is T = t · t̂. Hence, one would wish to choose t̂ to be as small as
possible. But reducing t̂ must be paired with an increase in ť, and this has the
effect of increasing the pre-computation time, if the success probability is to be
maintained.

There is one trick that can be used to reduce online time, with no change given
to the pre-computation phase, and at a very small cost in success probability.
One can simply move onto the next Hellman table a little before the online chain
length reaches t̂. The effect of this on the inversion success probability will be
small due to two reasons. As was mentioned before, after the first lookup of the
ending point EPi

j , the whole j-th chain may be disregarded. The second reason is
that all chains shorter than the online chain generated so far may be disregarded.
So, only the long chains that have not yet been referred to has any chance of
containing the inversion target. Even for these chains, points that are closer to
the ending point than the length of currently generated online chain cannot be
the target of our inversion. Thus once the online chain reaches a certain length,
most of the Hellman matrix has already been searched for and skipping the rest
should have only a small effect on the success probability.

The above argument shows that the online phase of Hellman+VDP is much
more efficient at the start of each table processing than at the end. This is
somewhat similar to a characteristic of the rainbow table method and can be very
advantageous when the online phase of Hellman+VDP is carefully scheduled.

3.4 Using General Parameters

So far, we have only worked with parameters m = t = N
1

3 . Even though the
average length of the Hellman chains can be slightly adjusted by changing the
bounds ť = tmax and t̂ = tmin, other measures are needed when we want param-
eters m and t to differ by a large factor.
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Suppose the parameters m and t obtained from the matrix stopping rule
mt2 = N satisfy t = 2rm. To explain how to use these parameters, let us write
m = 2d and t = 2d+r. As before, we can set SPi

j = (0 || i || j) for the i-th table,
where 0 and i are of d + r bits and j is of d bits. It only remains to bring the
average chain length to t = 2d+r. This is easily done by defining the DP for the
j-th chain to be those points starting with j||0, where j is of d bits and 0 is of r
bits. In a way, this can be seen as a combination of the DP and VDP methods.

We next consider the oppositem = 2rt case. Let us writem = 2d+r and t = 2d.
The starting point for the j-th chain in the i-th table is set to SPi

j = (0 || i || j),
where 0 and i are of d bits and j is of d + r bits. A point in the j-th chain is
regarded as a DP if its most significant d bits are equal to the most significant
d bits of j. Since this distinguisher does not contain enough information to fully
distinguish between the possible j, ending points corresponding to the same
significant j parts are sorted before storage, and r bits of the starting point are
also stored. This is not as satisfactory as the previous case, but still reasonable
unless r is large. In any case, this can be seen as having placed more of the
original Hellman flavor back into Hellman+VDP.

To deal with m and t that are not powers of 2, one can use their closest powers
and also utilize t̂ and ť for fine adjustments.

4 Applying DP and VDP to the Rainbow Table Method

The rainbow table method applies a different function fi to every column in its
chain creation. During the online phase, creation of the online chain proceeds
in a backward direction, and having a fixed chain length is crucial in knowing
which fi to use. In this section, we show that by sorting the table in a slightly
different way, it is possible to use rainbow chains of variable lengths.

4.1 Rainbow+DP

As with the Hellman+DP situation, we can use t̂ = tmax and ť = tmin to ad-
just the average chain length. With these numbers fixed, we choose t̂ reduction
functions defining the iterating functions fi. The rainbow chains are generated
as with the original rainbow table method, setting Xj,0 = SPj and iteratively
computing Xj,k = fk(Xj,k−1). The chain is terminated when a DP is reached,
and the starting point, the ending point, and the chain length are stored. So far,
we have simply combined the rainbow table method with the DP technique.

Now, the rainbow table is sorted first with respect to chain lengths and then
with respect to the ending points within those chains of same length. If collisions
are found among those of the same length, one may optionally discarding all but
one of them and generating more chains to take their places. Note that collision
of ending points between chains of different lengths have minimal effect as they
do not correspond to collision within a rainbow matrix column. Also, no collision
within a rainbow matrix column is undetected, since any such colliding chains
would end at the same length.
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RTť

SP̌t,0
f1−−−−→ ◦ f2−−−−→ · · · · · · ◦ fť−−→ EP̌t,0

SP̌t,1
f1−−−−→ ◦ f2−−−−→ · · · · · · ◦ fť−−→ EP̌t,1

...
...

...
...

. . .

RTt̂−1

SP̂t−1,0

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦ fť−−→ · · · · · · ◦ ft̂−1−−→ EP̂t−1,0

SP̂t−1,1

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦ fť−−→ · · · · · · ◦ ft̂−1−−→ EP̂t−1,1

...
...

RTt̂

SP̂t,0

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦ fť−−→ · · · · · · ◦ ft̂−1−−→ ◦ ft̂−−→ EP̂t,0

SP̂t,1

f1−−−−→ ◦ f2−−−−→ · · · · · · ◦ fť−−→ · · · · · · ◦ ft̂−1−−→ ◦ ft̂−−→ EP̂t,1

...
...

Fig. 2. Sorted Rainbow Matrix for Rainbow+DP

The sorted data is stored in separate tables RTť, RTť+1, . . . , RTt̂, indexed by
the length of chains they correspond to and the length data within each entry
are discarded. It is also possible to store the whole data as one table together
with an index file containing the starting positions for each length. The resulting
rainbow+DP matrix of sorted rainbow chains is depicted in Figure 2.

During the online phase, we search through this matrix from right to left, and,
within each column, from top to bottom. Given a target f(x0), we first compute
Y 1

t̂
= rt̂(f(x0)). If this is a DP, it is searched for among the ending points of

RTt̂. In the next step, we search for Y 2
t̂−1

= rt̂−1(f(x0)) and Y 2
t̂

= ft̂(Y
2
t̂−1

) in
RTt̂−1 and RTt̂, respectively, if any of them are DP.

In the j-th iteration, starting from Y j

t̂−j+1
= rt̂−j+1(f(x0)), the online chain

Y j

t̂−j+1

ft̂−j+2−−−−→ Y j

t̂−j+2

ft̂−j+3−−−−→ · · · · · · ft̂−1−−−→ Y j

t̂−1

ft̂−−→ Y j

t̂

is computed. While computing, if we come across a Y j

t̂−j+k
, which is a DP and

we have t̂ − j + k ≥ ť, it is searched for among the ending points of RTt̂−j+k.
Whenever a DP is reached, the rest of that online chain is skipped and we proceed
with the next iteration.

Our j-th iteration requires j − 1 function iterations at the worst, and we go
through t̂ iterations. So the worst case online time is approximately T = t̂2

2 and
the number of table searches will be t̂ at the most. On average, for t̂ = c·t, we
can expect t̂− (1− 1

ec )t table searches and online time of t · (t̂− (1− 1
ec )t). This

is explained in the full version of this paper [12].
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4.2 Rainbow+VDP

To simplify discussion, we take parameters m = t = 2d = N
1

3 . We fix ť and t̂,
and choose t̂ reduction functions. We take mt = N

2

3 starting points of the form
SPi,j = (0 || i || j), where both i and j run over all d-bit values. The distinguished
points for the SPi,j-chain are defined to be points with most significant d bits
equal to i. So, chains can be split into groups of size 2d according to their
definition of DP.

Sorting is done within each DP group with respect to chain lengths.3 We
write them in 2d tables indexed by their DP definition, which is also equal to
the center d bits of the starting points they contain and also to the first d bits
of ending points. Unlike rainbow+DP, the chain length may not be discarded.

The online phase proceeds as with rainbow+DP, except that every computed
Y j

k is now a DP for some definition of DP. So after each computation of Y j
k , the

corresponding table is checked for a chain of correct length and matching ending
point. The worst case online time of rainbow+VDP is about t̂2

2 and this is also
the number of table searches needed.

5 Trade-Off Curves and Storage Issues

In this section, we make a very rough comparison of the various trade-off algo-
rithms and look into some storage optimization techniques, which can complicate
any serious attempt at comparison.

5.1 Trade-Off Curves

Let us make a very rough comparison of the trade-off algorithms we have dis-
cussed in this paper. The relevant facts are summarized in Table 1.

Table 1. Comparison of trade-off algorithms (mt2 = N , t̂ = c·t)

table entries
table lookups

function
trade-off curve

(M) evaluations (T )

Hellman mt t2 t2 TM2 = N2

Rainbow mt t 1
2
t2 TM2 = 1

2
N2

Hellman+DP mt t t2 TM2 = N2

Hellman+VDP mt t · t̂ t · t̂ TM2 = cN2

Rainbow+DP mt t̂ 1
2
t̂2 TM2 = c2

2
N2

Rainbow+VDP mt 1
2
t̂2 1

2
t̂2 TM2 = c2

2
N2

3 It is also possible to sort exactly as with rainbow+DP and obtain similar results.
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The table assumes that the parameters m and t satisfy the matrix stopping
rule and that we have t̂ = tmax = c · t. We have listed the total number of
pre-computed table entries M and the number of online fi iterations T . The
presented time complexity T disregards false alarms, and corresponds to the
worst case, rather than the average case. In any real world use of a trade-off
algorithm, there is a practical limit to how much can be loaded onto fast memory,
and with bigger tables, access speed of the cheaper and slower storage becomes
an important factor of the online time. So we have also given the number of
online table searches.

The last column contains the trade-off curves satisfied by T and M . A hasty
conclusion from this column alone would be that the rainbow method is the best
and that the three algorithms we have introduced are inferior. But this does not
seem to be the correct picture. For example, it is argued in [5] that each entry
of a rainbow table demands about twice as many bits than that of a Hellman
table. So, with equal amount of storage, the Hellman method would be faster
by a factor of two, contrary to the näıve interpretation. This shows that finding
the optimum number of bits to use for each table entry is crucial in comparing
these algorithms.

Another issue in interpreting the above table concerns success probability,
which is believed to be somewhat higher than 50% for all of the above algorithms.
There are arguments giving lower bounds or expected values for the success rate,
but this is not a very well understood subject, and a fair comparison of the
algorithms should compare them at the same success rate. A related issue is
how much pre-computation is needed to achieve this success rate.

For now, we can only state that the algorithms we have suggested are roughly
the same in performance to the previous trade-off algorithms. There will be
situations where one of the above algorithms is more suitable than the others,
but any difference of performance between them will be by a small multiplicative
factor.

Deferring a more exact and fair comparison between trade-off algorithms to a
future work, in the next subsection, we will take a closer look into the complexity
of finding the optimum number of bits to be allocated to a single entry.

5.2 Table Optimization

When using the Hellman trade-off, by setting the starting point to (0 || i || j), one
may store just j, and not i, which is common to HTi. There are many other
techniques for reducing storage that need to be considered. But, as these have
side effects, such as more false alarms, their use is not simple.

We have tested some of the techniques discussed below, using Hellman+VDP,
and the result is given in the full version of this paper [12]. Although the tests are
not conclusive about the optimum choice, it shows that the following techniques
should be considered.

Hash Table. Hash table is a way of structuring data in such a way that table
searches take constant time. The idea is to use a simple function of the data as
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the address in which to store a given data. As explained in [7] and [2], this can
also make ending point storage more efficient. One can save up to log(m) bits
per entry from a table containing m entries. When seen as a hash table, our
VDP method reaches this limit.

Ending Point Truncation. If a table contains m entries, we need at least
log(m) bits to distinguish between the entries. If we expect to do l table
lookups, we would want log(l) additional bits to filter out most of the acci-
dental matches. Hence, simply leaving only log(ml) bits from the ending point
could be an option. Depending on the trade-off algorithm, this method may or
may not give additional savings, when used in conjunction with the hash table
savings.

Storing Chain Lengths. With trade-off algorithms producing chains of vari-
able length, as indicated in [16], storage of chain lengths reduces effort spent on
false alarms. On the other hand, this requires log(tmax − tmin) additional bits
per table entry and we believe this may not be as cost effective as believed.

By storing only a few significant bits of the lengths or by simply not storing
the lengths, we may increase the time spent on each false alarm, but the saved
memory could be used to hold more (SP,EP) pairs and lead to smaller online fi

iterations. Moreover, proper use of the checkpoint method [2] may resolve the
false alarm issue with just few extra bits per entry.

6 Conclusion

In this paper we suggested a new time memory trade-off technique named vari-
able distinguished points (VDP), and showed how to combine the rainbow table
method with the DP and VDP ideas.

The original Hellman trade-off terminated a pre-computation chain when it
reached a certain fixed length, whereas chain termination in the DP method was
taken when a chain element satisfied some preset condition. Our VDP method
generalizes DP by allowing the termination condition itself to vary with each
chain. The properties of VDP are very different from those of DP, requiring no
sorting and aiming to reduce storage, rather than the number of table lookups.

Our combination of the rainbow method and DP or VDP, though simple, is
also a nontrivial result. The changing reduction function of the rainbow method
and varying chain length of the DP method presented a barrier to this combina-
tion, and the only known successful attempt [5,4] was on a rainbow variant that
uses repeating patterns of reduction functions. We have shown that it is possible
to overcome this barrier through a different sorting.

The performance of our algorithms is on a par with that of the previous trade-
off algorithms, and thus there are more candidates to be considered with time
memory trade-offs, than what was known before.
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Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 593–609.
Springer, Heidelberg (2003)

http://www.3gpp.org
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2006/PHD/PHD-2006-04
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2006/PHD/PHD-2006-04
http://eprint.iacr.org/2008/054


Secure Cryptographic Precomputation with

Insecure Memory�

Patrick P. Tsang and Sean W. Smith

Department of Computer Science
Dartmouth College

Hanover, NH 03755, USA
{patrick,sws}@cs.dartmouth.edu

Abstract. We propose a solution that provides secure storage for
cryptographic precomputation using insecure memory that is suscep-
tible to eavesdropping and tampering. Specifically, we design a small
tamper-resistant hardware module, the Queue Security Proxy (QSP),
that situates transparently on the data-path between the processor and
the insecure memory. Our analysis shows that our design is secure and
flexible, and yet efficient and inexpensive. In particular, both the timing
overhead and the hardware cost of our solution are independent of the
storage size.

1 Introduction

1.1 Precomputation

Precomputation is an optimization technique that reduces an algorithm’s exe-
cution latency by performing some of its operations before knowing the input
to the algorithm. The intermediate result produced by precomputation is stored
and later used, when the input arrives, to compute the final output of the algo-
rithm. As only the post-computation, i.e., the remaining computation that has
not been precomputed, needs to be done to produce the output upon the input’s
arrival, execution latency is reduced.

Cryptographic Precomputation. In cryptography, precomputation is an old
and well-known technique. For example, fixed-base modular exponentiation,
which is an operation fundamental to almost all public-key cryptographic al-
gorithms, can be sped up by precomputing a set of related exponentiations [6].
As another example, it has been widely observed that DSA signatures, as well
as ElGamal and Schnorr signatures, can be precomputed [6]. More generally, all
signature schemes converted from Σ-protocols [15] using the Fiat-Shamir trans-
formation [4], which include many group signatures and anonymous credential
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systems such as [5,7,29], can benefit from precomputation quite significantly, as
most of the heavyweight operations, namely group exponentiation, can be pre-
computed in these schemes. Finally, precomputing homomorphic encryption can
speed up mix-nets [8], as recently suggested in [1].

Reusable and Consumable Precomputation. Precomputation can be
reusable, i.e., a single precomputation can be reused in multiple algorithm ex-
ecutions, or consumable, i.e., a new precomputation is needed per execution.
Speeding up modular exponentiation using the sliding window method [31] is an
example of reusable precomputation: any modular exponentiation with the same
base can be sped up by one-time precomputing a set of values for that base. On
the other hand, the precomputation of DSA signatures is consumable: the group
generator must be exponentiated with a new exponent for every signature to be
signed.

Consumable precomputation poses a bigger challenge than reusable pre-
computation does when it comes to efficiently securing it against hardware
attacks. Precomputation, in general, requires integrity of the precomputation
results. Consumable precomputation usually requires confidentiality and protec-
tion against replay as well. Finally, the storage space necessary for consumable
precomputation grows with the rate and burstiness of the execution of an algo-
rithm, while it is a constant in reusable precomputation.

In this paper, we are interested in overcoming the bigger challenge, i.e., how
to efficiently secure consumable precomputation. In what follows, we refer to
consumable precomputation as precomputation, for simplicity’s sake.

1.2 The Challenge

Precomputation is capable of reducing the execution latency of an algorithm only
if a precomputed result is available upon an input’s arrival. In situations where
an algorithm is routinely being executed over time, computing and storing only
a single precomputation result would not sustain a low latency throughout the
executions; to sustain a low latency, one must therefore buffer up precomputation
results, i.e., precompute those results in advance and store them in such a way
that they are readily available when needed.

The Need for Secure Storage. It is therefore of paramount importance to
ensure that no security breach is introduced to a cryptographic algorithm by pre-
computing it. The safest approach when handling the precomputation results is
to treat them as internal states of the entity executing the algorithm, thereby
effectively assuming them to be unobservable and unmodifiable by anyone else.
Consequences could be devastating should such an assumption cease to hold. For
example, when precomputing DSA signatures, allowing an adversary to eaves-
drop, overwrite, or replay even only one precomputation result would leak the
private signing key.

As storing multiple precomputation results requires significantly larger mem-
ory than storing only the internal states needed for a single execution, it is
unrealistic to assume that the whole storage would fit in a tamper-resistant
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Fig. 1. (a) Keeping the storage inside the hardware TCB is unrealistic; (b) putting the
storage outside the hardware TCB exposes us to attacks
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Fig. 2. In our model, we keep the hardware TCB small by leaving the storage outside,
but adding a small Memory Security Proxy

module such as a hardened CPU (see Figure 1(a)). Leaving the memory outside
(see Figure 1(b)) exposes us to the attacks discussed above. In this paper, we
design a small tamper-resistant hardware module that effectively turns insecure
memory into one that is secure for storing precomputation results—see Figure 2.

1.3 Our Contributions

We make the following contributions in this paper:

– We motivate that, to sustain the reduced execution latency of cryptographic
algorithms made possible by precomputation, one needs to store a pool of
readily available precomputation results; and that the security of such stor-
age is critical to the security of the cryptographic algorithms.

– We design an architecture that transparently turns untrusted memory into
one that is secure for storing precomputation results. The design is very
efficient and has hardware and timing costs independent of the size of the
memory. Our analysis shows that the architecture we propose is secure.
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The rest of this paper is organized as follows. In Section 2, we provide some
background on hardware-based security and review the necessary cryptography.
In Section 3, we describe our approach to overcome the posed challenge. We
present our solution in detail in Section 4, and analyze its security and efficiency
in Section 5. We discuss several research directions that are worth exploring in
Section 6, and conclude the paper in Section 7.

2 Background

2.1 Hardware-Based Security

Designing hardware-based security mechanisms into the computing architecture
is important as software security solutions are incapable of defending against
hardware attacks and many software attacks. There are mechanisms that provide
security against physical tampering through means such as tamper resistance,
tamper evidence, and tamper detection and response. Deploying a hardware-
based security mechanism could be very expensive; different trade-offs between
security and cost can lead to radically different solution paradigms.

The IBM 4756 Approach. The IBM 4758/4764 cryptographic coproces-
sors [25,12] are secure crypto processors implemented on a programmable PCI
board, on which components such as a microprocessor, memory, and a random
number generator are housed within a tamper-responding environment. They
are general-purpose x86 computers with a very high security assurance against
physical attacks. While they find applications in the commerce sector such as
securing bank ATMs, their high costs prevent most end-users from benefiting
from them.

The Hardened-CPU Approach. A more realistic approach to secure general-
purpose computers such as today’s PCs against software and even certain
hardware attacks is by assuming that only CPUs are hardened. In their Obliv-
ious RAM (ORAM) work, Goldreich and Ostrovsky [14] formalized a general
approach to protecting the contents of exposed memory, including hiding ac-
cess patterns. However, ORAM is too inefficient to use in practice. Lie et al.’s
eXecute-Only Memory (XOM) [18] architecture built hardened-CPU prototypes
but is vulnerable to replay attacks. Suh et al. later proposed AEGIS [26], which
is immune to replay attacks and uses techniques such as Merkle-trees [20] for bet-
ter efficiency. Other advances include using AES in the Counter mode to reduce
memory-write latencies [27,30], prediction techniques to hide the memory-read
latencies in [22,24], and on-chip caches [13] and incremental multi-set hashes [9]
to reduce latency incurred by memory integrity checking.

The architecture we are going to propose in this paper falls under the
hardened-CPU approach. Rather than arbitrary software, however, our archi-
tecture deals only with precomputation. We note that although architectures
like AEGIS can provide the same functionality as ours, ours is simpler and
more efficient due to the exploitation of properties of precomputation. In fact,
while AEGIS aims to provide a secure execution environment for general-purpose
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computers such as x86 PCs, we gear our architecture towards a coprocessor for
embedded devices.

The TCG’s TPM Approach. The Trusted Computing Group (TCG) is a
consortium that works towards increasing the security of standard commodity
platforms. The group proposed a specification of an inexpensive micro-controller
chip called the Trusted Platform Module (TPM) [28] to be mounted on the
motherboard of commodity computing devices such as PCs. In the last few
years, major vendors of computer systems have been shipping machines that
have included TPMs, with associated BIOS support.

A TPM provides cryptographic functions, e.g., encryption, digital signature
and hardware-based random number generation, and internal storage space for
storing, e.g., cryptographic keys. TPMs act as a hardware-based root of trust
and can be used to attest the initial configuration of the underlying computing
platform (attestation), as well as to seal and bind data to a specific platform
configuration (unsealing or unwrapping). The aspiration is that if the adversary
compromises neither the TPM nor the BIOS, then the TPM’s promises of trusted
computing will be achieved. The reality is murkier: attacks on the OS can still
subvert protections; recent work (e.g., [17]) is starting to demonstrate some
external hardware integration flaws; and the long history of low-cost physical
attacks on low-cost devices (e.g., [2]) hasn’t caught up with the TPM yet.

2.2 Cryptographic Tools

Various symmetric and asymmetric cryptographic techniques provide security
guarantees such as confidentiality, authentication and integrity. For example,
AES is a block cipher that provides confidentiality of data, whereas HMAC
is a message authentication scheme that provides both message authentication
and integrity. Here we review a relatively recent cryptographic tool called au-
thenticated encryption, which effectively combines the functionality of AES and
HMAC. Our solution makes use of it.

Modes of Operation. A block cipher is a function that operates on block-
length bit strings based on a key; each key determines some way of mapping
block-length strings to block-length strings. Since using a block cipher on its
own leads to many problems—for example, what to do with messages that are
longer than a single block—modes of operation have been developed that describe
how to extend a cipher to a secure encryption scheme.

Standard modes of operation include Electronic Code Book (ECB), Cipher-
Block Chaining (CBC), and the Counter (CTR) mode. Different modes have
different properties. For instance, decryption is faster than encryption under the
CBC mode, which is preferable when decryption is on the critical path. The CTR
mode can potentially further reduce both encryption and decryption latency by
taking the AES operations away from the critical path.

Authenticated Encryption. Encryption constructed from block ciphers such
as AES operating under any of the modes aforementioned provides data confi-
dentiality but no data authenticity or integrity. The past decade has seen the
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emergence of modes of operation that efficiently provide both. When operating
under these modes, a block cipher effectively becomes authenticated encryp-
tion [3], rather than just encryption alone. Among these modes, the Counter
with CBC-MAC (CCM) mode and the Galois/Counter (GC) mode are partic-
ularly attractive because authentication is done without any feedback of data-
blocks. This means that both authentication and encryption can be parallelized
to achieve extremely high throughput. We use AES under GC mode (AES-GCM)
in our solution.

AES-GCM has two operations, authenticated encryption AEnc and authenti-
cated decryption ADec. AEnc takes four inputs: (i) a secret key K appropriate for
the underlying AES, (ii) an initialization vector IV , (iii) a plaintext P , and (iv)
an additional authenticated data (AAD) A. Both the plaintext and the AAD will
be authenticated; however, only the plaintext will be encrypted as well. AEnc
outputs (i) a ciphertext C whose length is the same as that of P and (ii) an
authentication tag T . The authentication tag is essentially the cryptographic
checksum of the message. ADec takes five inputs: K, IV , C, A and T . It out-
puts either P or a special symbol that indicates failure, i.e., the inputs are not
authentic. We refer the readers to [19,11] for details regarding the specification,
performance and security of AES-GCM.

3 Our Approach

We now return to the challenge we discussed in Section 1: how to cost-effectively
provide a secure storage for cryptographic precomputation so that it can provide
a sustainable benefit without breaking the security. We introduce in this section
our approach to overcome such a challenge.

3.1 Memory Security Proxy

Since putting memory within the hardware TCB would not meet our design goal
of being cost-effective, in our solution insecure memory will be used. To account
for the fact that insecure memory can be eavesdropped and tampered with,
we augment its use with security measures enforced by a small tamper-proof
hardware module through cryptographic techniques. We call such a module the
Memory Security Proxy (MSP). The MSP must be efficient in both space and
computation: its size (e.g., in terms of gate-count) and the timing overhead it
incurs should grow as slowly as possible with—or even better, be independent
of—the size of the insecure memory it is securing.

In our solution, the MSP situates between the insecure memory and the pro-
cessor, the latter of which executes (the pre- and post-computation of) the cryp-
tographic algorithm. The MSP effectively turns the insecure memory into a
secure one by instrumenting the processor’s read and write accesses. This means
that the MSP will incur timing overhead on these accesses, but should otherwise
be transparent to the processor: the processor is oblivious to whether it is access-
ing insecure memory without protection whatsoever, memory secured through
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hardware tamper-proof mechanisms, or our MSP. This is an attractive property,
as it simplifies designs and allows better interoperability and upgradability.

In a threat model where adversary is physically present and capable of launch-
ing hardware attacks against the computing devices, the processor that executes
the cryptographic operations must be trusted to behave securely regardless of
those attacks. Similarly, we rely on the MSP to be as trustworthy as the main
processor. This is a realistic assumption because any satisfactory MSP design is
going to have a very small physical size, most likely just a small fraction of the
size of the processor. Figure 2 depicts our architectural model.

We point out that the above model is not a new one; rather, all architec-
tures we reviewed in Section 2 that take the hardened-CPU approach follow this
model. However, all those architectures focus on securing general-purpose com-
puters such as PCs, in which the insecure memory being protected is randomly-
accessible. It has been proven in these works that it is very difficult to efficiently
secure insecure RAM. However, we only need to protect a storage of precom-
puted results. As we will show next, we can exploit the properties of crypto-
graphic precomputation to avoid some of the difficulties and thus achieve better
performance results.

3.2 Data Structure for Precomputation Storage

Applying precomputation to a cryptographic algorithm turns the algorithm’s
execution into a process that follows the producer-consumer model. Under such
a model, the producer produces, through precomputation, the goods (i.e., the
precomputation results) that are later consumed by the consumer, through post-
computation, upon the arrival of algorithmic inputs. The asynchronous commu-
nication channel between the producer and the consumer may be implemented
using data structures such as stacks, First-In-First-Out (FIFO) queues, regis-
ter arrays (a.k.a. RAM), depending on the desired order of the goods being
consumed (relative to them being produced).

We make the observation that using precomputation results in the same or-
der as they were produced always yields a correct execution of the cryptographic
algorithms. In fact, in many cases precomputation results are statistically un-
correlated to one another, and one may thus even use them in arbitrary or-
der. The precomputation of DSA signatures is one example. Consequently, data
structures such as RAM and FIFO queues are legitimate candidates for storing
cryptographic precomputation results. In our design to be presented in the next
section, we use FIFO queues rather than RAM because of the following reasons:

– Securing insecure RAM efficiently has been proven to be difficult. On the
contrary, as we will see, our securing insecure FIFO queues is very efficient.

– Insecure FIFO queues can be efficiently implemented using insecure RAM
(in both software and hardware) but not the other way round. Hence, our
solution requires only the “weaker” data structure.

From now on, we abbreviate FIFO queues as queues. Also, we call the Memory
Security Proxy we are going to build the Queue Security Proxy (QSP), as it is
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specialized for protecting queues. Next, we provide some formalism of queues,
which is necessary to reason about the correctness and security of our design.

Queues. A queue is a data structure that implements a First-In, First-Out
(FIFO) policy by supporting two operations, namely Enqueue and Dequeue,
which inserts and deletes elements from the data structure respectively. Such
a policy can be more rigorously specified using the axiomatic approach of
Larch [16], in which an object’s sequential history is summarized by a value
that reflects the object’s state at the end of the history. A queue implementa-
tion is said to be correct if the policy is satisfied. For simplicity’s sake, we also
use the following verbal definition of correctness: A queue is correct if the i-th
item dequeued has the same value as the i-th item enqueued for all i ∈ N. Note
that correctness is defined assuming the absence of an adversary.

3.3 Threat Model

We now define the security requirements of the QSP and the threat model under
which these requirements must be met. To attack the security of the QSP, a
computationally bounded but physically present adversary may launch physical
attacks on the untrusted zone of the architecture, as illustrated in Figure 2.
Such an adversary may also probe the input-output relationship of the QSP
as follows. She may arbitrarily and adaptively ask the processor to produce
a precomputation result and enqueue it to the QSP, as well as to dequeue a
precomputation result from the QSP and reveal it to her. Note that in reality
a precomputation result is never directly revealed to anybody. We give such a
capability to the adversary so that the security of the QSP can be agnostic to
the cryptographic algorithm being precomputed. Such a modeling provides a
confidentiality guarantee at least as strong as needed.

We regard a QSP design as secure if it has correctness, confidentiality and
integrity, defined as follows.

Correctness. If the underlying queue that a QSP is protecting is correct, then
the QSP behaves correctly as a queue in the absence of an adversary.

Confidentiality. We hinted earlier that the safest strategy to take when secur-
ing precomputation storage is to assume the entire precomputation result to be
as private as any algorithmic internal states. In certain scenarios, however, part
of the precomputation result can be made public. One such scenario is when
that part will eventually appear in the final algorithmic output, and its release
prior to the arrival of the input does not lead to security breaches. Not having
to encrypt the whole result improves efficiency.

As an example, the precomputation result of DSA signing is of the form
(r, k−1) (as defined in [21]). The knowledge of r alone, which will eventually be
a part of the output signature, does not give any extra information to any compu-
tationally bounded adversary, whereas knowing k−1 would allow the extraction
of the secret key and thus lead to universal compromise.
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If we denote a precomputation result to be enqueued as a data object D =
(A,P ), where confidentiality is necessary for P , but not A, then a QSP design
has confidentiality if no adversary, whose capabilities are as described above,
can learn, with non-negligible probability, any information about the P in any
D that the adversary did not ask the processor to reveal.

Integrity. Roughly speaking, a QSP with integrity is one that either responds
to accesses correctly as a queue, or signals an error when having been tam-
pered with. Note that this definition of integrity implies both authenticity and
freshness of precomputation results. Specifically, if an adversary can modify a
precomputation result, say the i-th one enqueued, without the QSP being able
to detect it no latter than it is being dequeued, then the QSP would not be
correct as what is dequeued at the i-th time is different from what was enqueued
at the i-th time. Similarly, the ability to replay an old result leads to the same
violation of integrity.

More formally, an adversary is successful in attacking the integrity of a QSP
when there exists an i ∈ N such that the precomputation results enqueued at
the i-th time differs from what is dequeued at the i-th time. A QSP design
has integrity if no adversary with capabilities described above can succeed with
non-negligible probability.

4 Our QSP Design

We first give the solution idea behind our QSP design. We then present the actual
design, first in the form of software pseudo-code to facilitate understanding of
the design and reasoning about its correctness and security, then in the form of
a hardware architectural design.

4.1 Solution Idea

The use of authenticated encryption makes our QSP design very simple. Pre-
computation results (Data in) generated by the processor are fed to the QSP.
The QSP encrypts these results with AES-GCM, incrementing the initialization
vector (IV out) per encryption. Incrementing the IV serves two purposes. First,
for AES-GCM to be secure, the IV should never be reused under the same key.
Second, the IV serves as a counter that gives a sequential and consecutive order-
ing to the precomputation results being operated on, and hence helps defending
against replay attacks. The output of the AES-GCM encryption (SecData out)
can then be enqueued into an insecure queue.

When the processor asks for a precomputation result from storage, the QSP
dequeues an entry from the insecure queue and decrypts that entry using AES-
GCM. Again, the initialization vector (IV in) increments per decryption. As long
as IV in and IV out are set to the same value (e.g. zero) during start-up before
any enqueue or dequeue operations, the precomputation result encrypted with
an IV value will eventually be decrypted with the same IV value.
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4.2 The Construction

System Parameters. Keys in the QSP may remain constant throughout the
lifetime of the QSP, or be randomly generated during boot-time. Using a new
set of keys effectively means all the old precomputation results are flushed. The
two IVs are set to zero during start-up. We chose AES-128 for AES-GCM. This
means a key size of 128-bit. The size of the IVs has to be such that the IVs never
overflow. We used 80-bit IVs. Finally we selected 96-bit as the size of the Tag.

Software Construction. Without loss of generality, we assume that the under-
lying insecure queue, denoted by Q, provides an interface for querying whether
it is full or not, and empty or not. Algorithms below show the software imple-
mentation of the enqueue and dequeue operations performed by the QSP.

Algorithm QSP.Enqueue(Datain)

private input: K, IVout, Q

1:if Q.isFull() then

2: return error

3:〈Pin, Ain〉 ← Datain

4:〈Cout, Tout〉 ← AEnc(K, IVout, Pin, Ain)

5:IVout ← IVout + 1

6:SecDataout ← 〈Ain, Cout, Tout〉
7:Q.enqueue(SecDataout)

Algorithm QSP.Dequeue()

private input: K, IVin, Q

1: if Q.isEmpty() then

2: return error

3: SecDatain ← Q.dequeue()

4: 〈Aout, Cin, Tin〉 ← SecDatain

5: res ← ADec(K, IVin, Cin, Aout, Tin)

6: if res = failure then

7: return error

8: else

9: IVin ← IVin + 1

10: Pout ← res

11: return Dataout ← 〈Pout, Aout〉

Hardware Construction. Figure 3 shows the architectural design of our QSP.
Data in and Data out are connected to the processor, while SecData in and
SecData out are connected to the insecure queue. We assume that the insecure
queue is asynchronous, i.e., it supports asynchronous enqueuing and dequeuing.
It is straightforward to modify the design if a synchronous queue is used instead.

Notice that the authenticated encryption of a precomputation result is bigger
in size than the result itself. One may replace the data-bus for SecData (both
in and out) with a wider one. Another possibility is to change the software that
implements the cryptographic algorithm so that precomputation results do not
use up the whole bus-width and that they still fit in the bus after the expansion.
However, both approaches require modification to the existing hardware and/or
software and thus lack transparency and interoperability.

Our recommended approach is to have the QSP split up every incoming
precomputation result into two halves and enqueue each half as if it was a single
precomputation result. Splitting into two halves works as long as precomputa-
tion results are greater than tags in size, which is practical always the case (recall
that tags are 96-bit long). Similarly, when being dequeued, the QSP dequeues
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Fig. 3. The architectural design of our QSP. The upper region contributes to the
QSP.Enqueue logic; the lower region contributes to the QSP.Dequeue logic. Control
signals are omitted for clarity.

the insecure queue twice and combine the two items into a single precomputation
result. It is easy to see that a secure QSP remains secure with this splitting
mechanism in place.

5 Solution Analysis

5.1 Security

Correctness of our QSP design is a straightforward consequence of AES-GCM’s
correctness. It is also trivial to see that the confidentiality of AES-GCM implies
that our QSP design has confidentiality.

Our QSP design has integrity as well. We argue why below. Assume the
contrary that our QSP has no integrity, then there exists an adversary whose
capabilities are as described in Section 3.3 such that he, during an attack, was
successful in causing the QSP to return a precomputation result D′ at the i-
th dequeue for some i, where D′ is different from the precomputation result
D given to the QSP during the i-th enqueue. If i is not unique, let i be the
minimum value. Now since AES-GCM decryption did not return failure during
that particular dequeue of QSP, the security of AES-GCM implies that D = D′,
which contradicts to D �= D′. Therefore our QSP has integrity.
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5.2 Efficiency

Let n be the maximum number of precomputation results the insecure memory
will store. Let the bit-lengths of the key K, the IVs IVin and IVout, the plaintext
P , the AAD A and the tag T be �K , �IV , �P , �A and �T respectively. The bit-
length of a precomputation result �D is thus �A + �P .

Space Complexity. Our QSP requires a trusted storage of constant size inde-
pendent of the size of the storage for precomputation results; it has a untrusted
storage overhead of �T

�D
. In case of DSA precomputation, �D = 320 and the over-

head is thus 30% (recall that we picked �T = 96). Space overhead is generally
not a problem as insecure memory is inexpensive. Moreover, the figure would be
a lot smaller for many group signatures, as they can easily have precomputation
results comprised of 10 or more 160-bit elements.

Time Complexity. The latency incurred by our QSP during an enqueue op-
eration is the time it takes to do one—or two, if precomputation results are
split into halves as previously discussed—AES-GCM encryption. As discussed,
we chose AES-GCM to implement the authenticated encryption because of its
extremely low latency independent of �D, which is made possible by paralleliza-
tion. The actual throughput and latency of AES-GCM operations depend on the
hardware implementation. Some performance figures can be found in [19,23].
In [23], AES-GCM achieves 102 Gbps throughout with 979 Kgates using 0.13-μm
CMOS standard cell library.

The latency incurred by our QSP during a dequeue operation can be argued
similarly. However, we would like to highlight that enqueue latency is usually
not a concern as this operation, like precomputation itself, is not on the critical
path of the algorithmic execution. Therefore, one might not even care about
speeding up the QSP’s enqueue operation. For example, in case of a hardware
implementation, one could save cost by using less or even no parallelization, at
the expense of slower enqueuing.

Table 1. Many existing approaches can be used to secure insecure memory for storing
precomputation results, but their complexities grow with n, the number of precompu-
tation results to be stored; our QSP requires constant trusted storage size, and incurs
constant total latency when reading or writing precomputation results. (The log4 n
ORAM algorithm only becomes more efficient when n > 220.)

Trusted Storage Size Write Latency Read Latency

Hardened RAM O(n) O(1) O(1)

Oblivious RAM [14] O(log n)
O(

√
n log n), O(

√
n log n),

O(log4 n) O(log4 n)

AEGIS [26] O(1) O(log n) O(log n)

AEGIS with prediction
O(1) O(log n)

O(log n) total,
and caching [24,22,13] O(1) non-hideable

Our QSP O(1) O(1) O(1)
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On the other hand, since QSP dequeuing is usually on the critical path, de-
queuing latency is a concern. To dequeue more quickly, we suggest slightly chang-
ing the QSP design to pre-fetch and pre-decrypt the next precomputation result
stored in the insecure queue. (If splitting is employed, the next two results are
pre-fetched and pre-decrypted instead.) This way, precomputation results be-
come readily available to be dequeued at the QSP when the processor wants
them. Hence, our QSP provides all its security guarantees with virtually zero
timing overhead during dequeuing.

Table 1 compares the efficiency of our QSP with other approaches.

6 Discussion

A DSA Signing Coprocessor. One can build a cost-effective low-latency DSA
signature signing secure coprocessor by using our QSP to securely store DSA
precomputation. Such a coprocessor can be used to secure the communications
in critical infrastructures, especially those that impose stringent timing require-
ments on tolerable latency of message delivery such as some Supervisory Control
And Data Acquisition (SCADA) systems in the power grid.

Generalizing the Producer-Consumer Model. We have assumed that the
producer and the consumer of precomputation results are the same entity,
namely the processor. Alternatively, they can be two separated entities such that
the insecure queue through which precomputation results are piped is the only
communication channel between them. This allows dynamic pairing between the
producers and the consumers.

More interestingly, the number of producers and that of consumers can differ.
For example, multiple consumers may be coupled with only a single producer
trusted by the consumers. Consider a scenario where people carry electronic
devices. For security reasons, each device signs DSA signatures on its outgo-
ing messages when communicating with devices carried by other people and
therefore requires a DSA signing engine. However, if a person has a single DSA
precomputation module shared and trusted by all devices he carries, then those
devices need only to do the post-computation. The hardware saving is huge since
the circuitry for DSA postcomputation is a lot simpler than that for precomputa-
tion. Similar scenarios include communications among sensors installed in cars,
among household electrical appliances, as well as among sensors and actuators
in power substations.

MSPs for Other Data Structures. In this paper, we have focused on building
a Memory Security Proxy for FIFO queues as they fit naturally for cryptographic
precomputation. Some other works have looked at ways to secure RAM for
general-purpose computing. MSPs for other data structures, e.g., stacks, sets
and dictionaries, may also be useful. For instance, resource-limited devices such
as smart cards and set-top boxes may offload implementations of data structures
on to hostile platforms. As an example, Devanbu et al. [10] have proposed how
to protect the integrity (but not confidentiality) of stacks and queues.
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7 Conclusions

In this paper, we have motivated the need for a secure storage for cryptographic
precomputation to provide sustainable benefits securely. Our solution to the
challenge of how to construct such a storage is a small tamper-resistant module
called the Queue Security Proxy (QSP). We have demonstrated how our design
can guarantee the necessary security despite hardware attacks. We have also
shown, via analysis, that our proposed design provides these security benefits
without impacting performance.

In the future, we plan to prototype our QSP solution using FPGA to gain
empirical figures on its performance (in terms of throughput and latency) and
hardware costs (in terms of gate counts), and compare these figures with other
approaches.
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Abstract. Peer-to-peer (P2P) architectures offer a flexible and user-
friendly way to distribute digital content (e.g., sharing, rental, or su-
perdistribution). However, the parties involved have different interests
(e.g., user privacy vs. license enforcement) that should be reflected in
the P2P security architecture.

We identify characteristic P2P scenarios and demonstrate how these
can be realized by applying a few basic licensing operations. We present
a security architecture to realize these basic license operations (i) in a
generalized fashion and (ii) employing the ARM TrustZone technology,
which is popular for embedded systems. Lastly, we extend existing su-
perdistribution schemes for offline application, allowing a mobile peer
to access superdistributed content without the need to first contact the
actual licensor.

Keywords: Trusted Computing, security architectures, peer-to-peer, su-
perdistribution, TrustZone.

1 Introduction

In contrast to traditional client-server software distribution architectures, a party
in a peer-to-peer (P2P) distribution architecture is both client and server at the
same time, since it can both acquire and (re-)distribute content. Since no central
server is required, P2P architectures enable flexible, efficient, and user-friendly
means of distributing digital content such as lending, sharing, transfer of own-
ership, and superdistribution. To attain wide acceptance and become deployed
in commercial applications, P2P content distribution architectures need to carry
out adequate measures to preserve the security of all parties involved (e.g., user
privacy vs. license enforcement). Up to now, most content distribution systems
rely on traditional client-server architectures with a trusted server and a client
that connects to the corresponding server to acquire certain content. While the
server can be protected by various effective security mechanisms, the correspond-
ing client devices can hardly be verified for a proper configuration. Particularly,
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since clients are often devices that are logically and physically under the control
of their owners, client users can attack and circumvent even the most sophisti-
cated protection mechanisms by running exploits, re-configuring the underlying
operating system, or mounting even simple hardware attacks. Faced with these
difficulties, providers tend to impose inflexible usage conditions on their users
that, for instance, prevent users from transferring content between devices, lend-
ing or selling it to others or, even worse, blindly prevent the copying of protected
content at all.

Main Contribution. In this work, we present a generic security architec-
ture that is able to securely realize existing P2P distribution scenarios, even for
mobile devices that are completely under the control of their owners. To demon-
strate this, we first identify available P2P use cases and show how they can be
implemented by applying a few basic license operations. We show the technical
feasibility of securely realizing these license operations and propose an example
implementation applicable particularly to mobile devices based on the Trust-
Zone technology from ARM [1]. Further, we extend existing superdistribution
schemes for offline application, allowing a mobile peer to access superdistributed
content immediately without having to contact the actual licensor before.

Outline. Following this introductory discussion, in Section 2 we identify var-
ious P2P use cases and define a small set of basic license operations sufficient to
realize all these P2P use cases. In Section 3, we present a generic security archi-
tecture that is able to realize these basic license operations and the corresponding
security requirements. To demonstrate that the described architecture is suitable
also for mobile devices, in Section 4 we propose an exemplary implementation
based on ARM TrustZone technology [1].

Related Work. Superdistribution was devised by Ryoichi Mori in 1983. The
first implementation [7] is targeted at software rather than multimedia content
and uses a tamper-resistant hardware extension called S-Box, which contains
a microprocessor, RAM, ROM and a real-time clock. A software program dis-
tributed via superdistribution communicates with the S-Box in order to monitor
usage information. Thus, the software program has to include code to support
the S-Box. Also, the S-Box hardware has only been implemented as a proto-
type, therefore being complex and expensive. However, the authors conclude
that future versions could be designed on a single chip attached to the bus.

More recently, the Open Mobile Alliance (OMA) included superdistribution
into the OMA DRM 2.0 standard [9], which defines the requirements and archi-
tecture for superdistribution, but not how it should be implemented. However,
a lot of today’s mobile phones already support OMA DRM 2.0.

Sandhu and Zhang [11] present an architecture that provides access control
(which can be used to enable stateful licenses) using Trusted Computing technol-
ogy. Their architecture features a trusted hardware component such as a TPM, a
secure kernel, sealed storage, and a trusted reference monitor that interacts with
applications through secure channels. However, the authors only give a high-level
description of the distribution protocol, thus neglecting replay attacks.
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In [10], the authors present a security architecture based on Trusted Com-
puting technology as proposed by the Trusted Computing Group (TCG). This
approach, which is based on virtualization, a small security kernel and a TCG
Trusted Platform Module (TPM), provides protection on the client side, where
only authorized platforms with authorized configurations are able to access the
protected content. Moreover, it realizes the basic security functionality allowing
applications to securely manage and enforce stateful licenses, which maintain
state information about past usage. However, TPMs are not available in mobile
devices and thus, in this paper, we propose a generic approach based on some
core functionalities that have to be provided by the underlying generic hardware.

The authors of [8] propose a system for redistribution of digital content that
requires the following hardware functionalities: SHA-1, RSA, AES, secure stor-
age, secure RAM, and a secure content decoder. Thus, their system could be
implemented using both a TPM-based or TrustZone-based system. To secure
their system against replay attacks, for each content file a hash of the license
and the associated content is stored in secure non-volatile memory. Thus, the
memory requirements grow linear in the number of content files, in contrast to
our method which only requires a small constant amount of non-volatile memory.

Recently, the TCG published the Mobile Trusted Module (MTM) specifica-
tion [17], which can be seen as an extension of a TPM, adapted for mobile devices.
A MTM can be implemented in various ways, either by using an additional hard-
ware chip or by integrating some functionalities in the CPU core, complemented
by software. The latter option can be realized using a TrustZone-based system.
Although a full MTM implementation is more complex than required by our
security architecture, it could be used to realize our security architecture.

Prior to the TCG, there have been several approaches to run secure software
using secure hardware [5,13,18,19,20]. All of them have in common the concept
of a tamper-resistant module that runs security-critical applications. In con-
trast to these systems, which require (expensive and specialized) custom secure
coprocessors, our proposed architecture is based on cheap and easily available
commercial off-the-shelf (COTS) hardware (TPM or TrustZone).

2 Peer-to-Peer Distribution

In this section, various P2P use cases are identified before the basic license
operations, which are used to realize all use cases, are defined.

2.1 Identification of Use Cases

The use cases involve content providers (licensors) and various peers (licensees
resp. users). We consider a provider as the representative party for rights-holders,
whereas the peer represents the consumer of digital content. These parties have
only limited trust in each other. The provider distributes digital content (e.g.,
software, media files) together with the corresponding license, which defines the
usage rights (e.g., play, print) and alteration rights (e.g., loan, share) applicable
to the content. The peer consumes the content according to the license. Possible
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compensations (e.g., payments, subscriptions, gifts) can be negotiated indepen-
dently between the involved peers [3].

Transfer. A peer (sender) moves a content to another peer (receiver) while
invalidating the license on the sender’s site.

Sharing. A peer (sharer) copies a content to another peer (co-partner) that
is also entitled to use the content. Hence, in contrast to a transfer, the content
remains available on the sharer’s site.

Rental. A peer (lender) copies a content to another peer (borrower) while
disabling the content on the lender’s site during the loan period. After the loan
period, the content becomes inaccessible on the borrower’s platform and available
again on the lender’s platform (i.e., if sufficient rights are left). We distinguish
between an active rental, where the borrower has to return his lending actively
to the lender, and a passive rental, which ends automatically after a previously
defined period, without having the borrower to actively return his lending.

Preview. A peer (promoter) copies a limited copy of a content to another
peer (tester) as a sample. The tester can try out the corresponding content in a
(temporally or quantitative) limited manner without revealing his identity and
without giving any inherent commitments for the promoter or for the tester.
Once the previews are spent, the tester can convert the preview into a fully
legitimate content by reporting it to the promoter. Otherwise, the content trial
becomes inaccessible for the tester.

Superdistribution. A peer (superdistributor) copies a content to another
peer (sublicensee) while keeping the content completely available on the superdis-
tributor’s site. In contrast to the sharing use case, the sublicensee is required to
contact the superdistributor for necessary compensations before being able to
use the content. In this context, we introduce the idea of offline superdistribu-
tion, where the superdistributed copy can be used immediately without a prior
authorization (and thus involvement) of the initial content provider. Instead,
the sublicensee (or the superdistributor) is allowed to report (and compensate)
the additional copy to the initial content provider later (i.e., according to the
individual license conditions).

2.2 Basic License Operations

As noted in the previous section, the license defines the rights (e.g., usage, alter-
ation) applicable to the corresponding digital content. In the following, we define
six basic operations on licenses that suffice to realize all P2P use cases described
above. We therefore describe the respective license operations together with the
corresponding security objectives required by the involved users and providers.

Store and Load are used to save a license to and retrieve a license from persis-
tent storage. Thus, both operations have to ensure that unauthorized alterations
of licenses (integrity), unauthorized disclosures (confidentiality), and replay at-
tacks (freshness) are infeasible. Hence, a license being retrieved using Load is
always exactly the same as it has been saved using the last Store operation.

Transform conveys an input license into a set of new output licenses such
that the rights of the output licenses add up to the rights of the original input
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license. Therefore, Transform ensures that unauthorized alterations of licenses
are infeasible and that it is impossible to gain unauthorized rights by applying
arbitrary license transformations (logical integrity).

Invalidate irrevocably deactivates a license and all corresponding rights, en-
suring that replay attacks on invalidated licenses (freshness) and unauthorized
reactivations via modifications (integrity) are infeasible.

Transfer is used to copy a license from one device to another while ensuring
license integrity, freshness, and confidentiality with regard to other parties not
involved. Transfer further ensures that the copied license has appropriate transfer
rights and that the hardware and software configuration of the destination device
meets the demands of the copied license and thus of the initial licensor.

Report allows to contact the lender in order to return actively borrowed rights
(cf. Section 2.1), or to contact the initial licensor in order to acquire new rights
or to extend existing rights. Report does not handle possible compensations.
However, in case of superdistribution, Report ensures that it is infeasible to
gain more than a previously defined amount of new/extended rights without
contacting the initial licensor. Thus, the amount of unreported (pending) rights
stated in the license is individually defined by the licensor and can range from
zero (i.e., immediate contact required) to infinity (i.e., no contact is required).

2.3 Use Case Realizations Using Basic License Operations

We now show how the P2P use cases identified in Section 2.1 are realized using
only the few basic license operations defined in the previous Section 2.2. The
basic operations are provided by an application called distribution controller
(DC) that runs on top of our security architecture (cf. Section 3). All realizations
assume that licenses are securely read from (and written to) persistent storage
using the basic license operations Load and Store respectively.

Transfer. As shown in Figure 1, DCS first changes the owner of the trans-
ferred license to the identity of the receiver using Transform. Then, the license
is copied to the receiver DCD using Transfer and invalidated at the source DCS

using Invalidate at the same time (i.e., atomically).
Sharing. As shown in Figure 2, DCS of the sharer first uses Transform to split

the original license into two sublicenses, one for the initial sharer and one for the
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new co-partner(s)1. Finally, the license of the co-partner is moved from DCS to
DCD using Transfer and Invalidate atomically.

Rental. The rental use case is quite similar to the sharing use case. DCS

uses Transform to divide the original license of the lender into two new licenses
such that the rights of the two new licenses again add up to the rights of the
original license. Afterwards, DCS uses Transfer and Invalidate to securely move
the borrower’s license to DCD. However, in case of a passive timed rental, the
license for DCD is valid only for the loan period, whereas the license for DCS

remains invalid during the loan period2. In case of an active rental, the license
for DCD remains valid (and hence the license for DCS invalid) until DCD actively
returns the license back to DCS using Report.

Preview. The preview use case is also quite similar to the sharing use case.
DCS uses Transform to create an additional anonymous (stateful) license includ-
ing only some restricted (temporally3 or quantitative) usage rights according to
the preview policy of the original license. Note that a preview license includes
only preview rights, so the original license is not modified. DCS then uses Transfer
and Invalidate to securely move the preview license to DCD. Once the free pre-
views are used, DCD can offer the tester to convert the preview license into a
full license by contacting the initial licensor via Report. Alternatively, DCD ”re-
members“ the expired preview for a certain period (according the corresponding
preview conditions of the license) via Store to prevent immediate preview replays.

Superdistribution. The realization of the superdistribution use case is de-
picted in Figure 3. DCS first uses Transform to create a copy of the original license
with the identity of the sublicensee together with an authorization commitment,
whereas the original license remains unaffected and fully enabled. The autho-
rization commitment is used to report the respective transaction to the corre-
sponding content provider. It contains a reference to the original license and the
required compensation agreement (e.g., a payment obligation). A commitment
can be sender-reported or receiver-reported. In the first case, DCS is required to
report the new license to the initial licensor, otherwise DCD has to do so. Both
1 The original license must already include the usage rights for the sharer and its

co-partner(s), such that the rights of all new sublicenses add up to the rights of the
original license.

2 The realization of this use case requires the availability of a secure timer.
3 A temporally restricted usage right also requires the availability of a secure timer.
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DCS and DCD use Report to settle a commitment and hence to legitimate the
superdistributed license. Once the license has been successfully reported, DCS

(or DCD) apply Invalidate to securely remove the respective commitment and
enable the usage of the corresponding content. Figure 3, for instance, depicts a
sender-reported superdistribution, where DCS settles the commitment before it
moves the new license to the sublicensee using Transfer and Invalidate.

However, using this approach, a superdistributed copy cannot be used until
DCS or DCD have reported the new license to the initial licensor. This requires a
direct connection to the licensor, which may not always be available, particularly
not in mobile environments. Thus, our approach for an offline superdistribution
allows that a superdistributed copy can be used immediately without a prior
authorization by the initial licensors; the sublicensee (or the superdistributor)
is allowed to report (and compensate) the new copy to the actual licensor later.
However, each additional license created during a superdistribution has to be
reported once to fulfill the security objectives on Report (cf. Section 2.2).

Our basic idea for such an offline superdistribution scheme is that DC inter-
nally saves all unreported commitments cm in a set of unreported commitments
CM , with cm ∈ CM . DC additionally manages licensor-specific unreported com-
mitments counters ccm—one for each licensor P. The set of all counters −→ccm and
the set of all unreported commitments CM are persistently stored (and retrieved)
using Store and Load. To limit the number of unreported commitments ccm for
a certain licensor P, once ccm reaches a specific limit, DC (i) refuses to accept
further commitments for that licensor until some pending commitments are re-
ported, and (ii) may limit the usage of the corresponding content according to
the respective licensor policy. To settle an unreported commitment via Report,
the content provider sends a proof of compensation pcm that can be verified by
DC to remove the corresponding commitment cm from CM , the set of report-
pending commitments, and decreases the corresponding counter in −→ccm. The two
protocols involved are described in detail in the following. It is assumed that,
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on startup, DC uses Load to load its current index iDC that indexes all available
licenses and content, the set of unreported commitments CM , and the set of
report-pending counters −→ccm.

Offline Superdistribution Distribution Protocol. The distribution protocols
(Figure 4 shows the sender-reported variant) work as follows. To distribute a
license L (and corresponding content) to DCD, DCS first loads L and checks if all
conditions for the corresponding transfer-right are fulfilled, and asks for a sender-
reported or receiver-reported superdistribution. In case of sender-reported su-
perdistribution, DCS also checks whether the corresponding ccm ∈ −→ccm has
reached its limit. Second, DCS uses Transfer to verify that DCD’s configuration
conforms to the security policy of L. Third, on successful examination, DCS cre-
ates a new commitment cm and sends L (and the corresponding content) to DCD

via Transfer. Finally, in case of (i) a sender-reported superdistribution, DCS adds
the new commitment cm to CM , increments the corresponding counter in −→ccm

while synchronizing both with the values stored in persistent storage via Store.
In case of (ii) a receiver-reported superdistribution, on DCD’s acceptance, that
means after a successful license verification and verification of the corresponding
ccm , DCD updates its corresponding CM and −→ccm.

Offline Superdistribution Reporting Protocol. To report a pending commit-
ment from DC to a provider P (cf. Figure 5), DC first uses Report to send all
user-selected pending commitments cm ∈ CM to P and requests the proofs of
compensation pcm . Second, if P is the legitimate licensor of the commitments
and the compensations have been settled, P creates and returns pcm to DC. Fi-
nally, on successful verification of pcm , DC removes the commitments from CM ,
decreases the counter in −→ccm and stores both using Store.

3 Generic Security Architecture

In this section, we introduce a generic security architecture which provides two
high-level security abstractions, namely Trusted Storage and Trusted Channels,
that allow to securely realize all basic license operations. We then define essential
(mostly hardware-based) low-level platform security functionalities and show
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how the security abstractions can be securely implemented based on the generic
security architecture and the platform security functionalities.

3.1 Security Kernel Architecture

We assume a layered system structure running multiple (independent) processes
in parallel on top of a security kernel, which serves as a central control entity,
located between the hardware layer and the application layer. To enable the
security kernel to run in a trusted environment, the hardware includes a Trusted
Computing component, such as TrustZone or a TPM4.

Our application layer is able to execute several OS instances and individ-
ual applications (e.g., DC) independently and in parallel, while being strongly
isolated from each other. In this context, strong isolation ensures that it is im-
possible for separated subsystems, components, or even individual applications
to access (i.e., data, functionality) or even affect (e.g., performance) each other.
A process that is strongly isolated from other processes is called a compartment
henceforth.

To enable DC to realize the basic license operations, our security kernel pro-
vides two high-level security abstractions named Trusted Storage and Trusted
Channels. The security kernel in turn employs several low-level platform security
functionalities such as verifiable bootstrapping, secure non-volatile memory, and
random numbers to securely implement the two security abstractions.

3.2 Security Abstractions

In the following we describe the two security abstractions Trusted Storage and
Trusted Channels and show how they can be used to securely realize the basic
license operations identified in Section 2.2. In the context of security abstractions,
we introduce the terms configuration and measurement. The configuration of a
compartment unambiguously describes the compartment’s I/O behavior, while
the term measurement refers to the process of deriving the configuration of a
certain compartment (cf. Section 3.3).

Trusted Storage. The Trusted Storage abstraction provides persistent stor-
age preserving integrity, confidentiality, authenticity (by binding data to the
compartment configuration and/or user secrets), and freshness of the stored
data. Since a complete tamper-resistant storage unit would be very costly and
inflexible, we employ untrusted storage (e.g., external flash memory) with the
help of the platform security functionalities (cf. Section 3.4).

Trusted Channels. A Trusted Channel [14] is a secure channel5 that is
bound to the configuration of the respective communication endpoint. Therefore,
a Trusted Channel additionally allows each endpoint compartment to (i) validate
the configuration of the other endpoint compartment and (ii) to bind data to

4 A trusted environment has to be based on hardware components, as software-only
environments could be easily circumvented.

5 We define a secure channel to ensure confidentiality, integrity, and authenticity of
the communicated data.
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the configuration of the endpoint compartment such that only this compartment
with this specific configuration can access the data. To prevent replay attacks,
the Trusted Channel abstraction further has to provide freshness detection.

Based on the security architecture providing Trusted Storage and Trusted
Channels, all basic license operations can be implemented as follows.

Load, Store, and Invalidate require a persistent storage location to securely
save, retrieve, or deactivate/delete a license, while ensuring the integrity, confi-
dentiality, and freshness of the handled licenses. Trusted Storage is able to enforce
all these security requirements and thus can be employed to realize Load, Store,
and Invalidate. However, since DC represents the communication endpoint for
our Trusted Storage abstraction, it has to be ensured that solely and exclusively
a correctly configured DC can access its Trusted Storage location. By further
employing a (local) Trusted Channel to access the Trusted Storage, DC is (i)
securely authenticated and (ii) its corresponding data (e.g., licenses) is bound
to the configuration of DC.

Transform requires logical license integrity such that unauthorized alterations
of licenses are infeasible. All license transformations are done inside of DC by
an internal protocol engine, which can be verified for correctness by an involved
peer each time before it sends a new license (and corresponding content) using
a Trusted Channel. The strong isolation capability provided by our security ar-
chitecture prevents runtime modifications of DC and its protocol engine. Finally,
our Trusted Storage security abstraction assures that even offline modifications
of DC cannot affect the correctness of DC’s license transformations, as a (unau-
thorized) modified DC would not longer be able to access its data, since the
functionality of Load, Store, and Invalidate are mandatory bound the (correct)
configuration of DC.

Transfer and Report are used to securely communicate with authenticated
peers (e.g., other users, content providers) while requiring confidentiality, in-
tegrity, and freshness for transferred data. The Trusted Channel security
abstraction is able to fulfill these communication security requirements by enforc-
ing confidentiality, integrity, and freshness of communicated data and securely
authenticating involved communication endpoints (by validating their configu-
rations and binding the corresponding channel solely and exclusively to that
verified configuration). Trusted Channels together with the Trusted Storage ab-
straction further enforce the correctness of DC regarding the internal manage-
ment of transfer rights and commitments, while preventing unauthorized online
and offline manipulations.

3.3 Platform Security Functionalities

The implementation of our high-level security abstractions relies on the avail-
ability of several low-level platform security functionalities, which in turn can
only be implemented in combination with appropriate hardware (extensions).
Before describing possible realizations for Trusted Storage and Trusted Chan-
nels in Section 3.4, we first describe the necessary security functionalities of the
platform, which form the basis for the security abstractions.
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The platform security functionalities can be implemented in various ways,
for instance (i) by using virtualization technology and a TCG TPM chip [16],
(ii) by using ARM’s TrustZone technology [1] (optionally in combination with
virtualization technology), or (iii) by using a combination of hard- and software
that allows to securely implement the following set of security functionalities
(e.g., a smartcard/software combination or using a tamper-resistant cover).

Verifiable Bootstrapping. For a verifiable initialization of the security ker-
nel and DC, a secure chain of measurements that is anchored in tamper-resistant
hardware has to be established, using functions that measure6 all security ker-
nel binaries (i.e., system kernel, legacy OS, and compartments like DC) prior
to executing them. The functions to be provided are (i) init_measurement that
acts as root of trust and initializes the chain of measurements by measuring the
bootloader, (ii) extend_measurement to extend the chain of measurements with a
new measurement value (e.g., a hash value), and (iii) read_measurement to read
the current measurement value. After booting has completed, a (remote) party
can verify the integrity of the security kernel by comparing the measurement
values with “known good” references that are conform to its security policy.

Secure Non-Volatile Memory. To securely store at least one symmetric
key and a freshness detection value, the platform has to provide a small amount
of non-volatile secure memory with read and write access. The symmetric key
serves as the root key of a hierarchy of keys, used for example to securely em-
ploy external storage, whereas the freshness detection value refers to potential
freshness detection mechanisms such as monotonic counters or hash trees. The
secure memory interface consists of two functions, write_to_sm to store data
into secure memory and read_from_sm to retrieve data from secure memory.

Using this interface, a monotonic counter can be realized, providing the func-
tions create_counter to create the counter (using write_to_sm), read_counter to
read the current counter value (using read_from_sm), and increment_counter
to increment the counter value (using write_to_sm[read_from_sm[] + 1] in an
atomic operation). To prevent premature overflow, the counter should be suffi-
ciently large (at least 32-bit). Multiple monotonic counters can be realized in soft-
ware by employing virtual monotonic counters [12] on top of one physical counter.

True Random Number Generator. To securely implement various crypto-
graphic schemes, the security kernel has to provide a function rand that generates
true random numbers from an unpredictable source (physical process).

Strong Isolation. The security kernel has to implement a strong isolation
for applications, based either on hardware measures [1,15] or virtualization ap-
proaches [2,6], which permits the reutilization of legacy operating systems and
existing applications, e.g. by using (para-)virtualization techniques.

3.4 Realizing the Security Abstractions

In the following, we describe how the security abstractions can be realized using
just the platform security functionalities of Section 3.3.

6 Measuring can be done by computing the cryptographic hash of the software binary.
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Trusted Storage. As persistent storage is untrusted in our model, we em-
ploy the generic platform security functions of Section 3.3 to implement Trusted
Storage (similar to the approach in [10]). To ensure confidentiality and integrity,
data to be stored is first hashed and then encrypted using a symmetric root key
that is generated at initial installation using rand and bound to the configuration
of the Trusted Storage compartment derived during the verifiable bootstrapping.
It is stored in secure non-volatile memory using write_to_sm with a predefined
reference refTS that exclusively identifies the Trusted Storage compartment and
its actual configuration. Freshness can be detected by employing a monotonic
counter: Before writing data to untrusted storage, the counter is incremented
and the counter value is stored together with the data. After reading the data,
the stored counter value is compared to the current counter value, which must
be the same if the data is fresh.

Trusted Channels. To allow an endpoint compartment to validate the other
endpoint’s configuration and thus provide authenticity, a slightly modified ver-
sion of the protocol in [14] is employed. It uses binding of local keys and remote
attestation, which in turn is based on verifiable bootstrapping in combination
with a cryptographic protocol. The nonces and keys used in the protocol are gen-
erated using the rand function. To detect replay attacks and hence provide fresh-
ness, monotonic counters are used. Further, strong isolation ensures integrity and
confidentiality of the internal state of the Trusted Channels compartment.

4 ARM TrustZone-Based Implementation Proposal

ARM TrustZone [1] is a security technology for single-chip embedded processors,
which are called system-on-a-chip (SoC). For example, the Texas Instruments
OMAP platform (www.ti.com/omap) implements TrustZone on a SoC. As shown
in Figure 6, a TrustZone-based SoC includes a CPU with an ARMv6 core, cryp-
tographic hardware (SHA-1, AES, TRNG), a few write-once (hardware fuse)
keys, RAM, ROM, non-volatile memory, and a memory/bus controller for exter-
nal devices (normal and secure) and external memory (flash and SDRAM).

Crypto H/W

ARM TrustZone-based System-on-a-Chip (SoC)

Keys

On-Chip
RAM

Boot
ROM

ARMv6 Core
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Caches

TLB

Non-
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Device SDRAMFlashNormal

Device

lanr et xE
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Fig. 6. A TrustZone-based SoC Fig. 7. The TrustZone model
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The TrustZone model depicted in Figure 7 splits the computing environment
into two isolated worlds, the secure world and the non-secure world, that are
linked by a software monitor running in the secure world. Communication be-
tween the two worlds is only possible by calling the privileged Secure Monitor
Call (SMC) instruction from the non-secure kernel, which transfers execution to
the monitor. Throughout this section, we use the term trusted software to refer
to software running in the secure world.

4.1 Realizing the Platform Security Functionalities

In the following we explain how to implement the platform security functionali-
ties defined in Section 3.3 using TrustZone-based hardware.

Strong Isolation. To provide strong isolation between the two worlds, the
CPU provides an additional status bit called non-secure (NS) bit, which deter-
mines in which world the program executes. To switch back to the non-secure
world, the secure kernel sets the NS status bit, which is located in the CPU’s
Secure Configuration Register. When switching between the two worlds, the cur-
rent world’s processor context including registers is saved and the other world’s
context is restored. Cache lines and memory pages are also tagged as either se-
cure or non-secure by setting the appropriate NS bit, which can only be done by
code running in privileged mode in the secure world. Further, devices attached
to the bus can also be marked as secure or non-secure. A secure device (e.g.,
external flash memory) can only be controlled by a driver running in the se-
cure world.7 Thus, the TrustZone model provides strong isolation between the
secure world and the non-secure world. The two worlds have separate logical
address spaces, inter-process communication (IPC) is carried out by SMC calls,
and access control of hardware resources is implemented by secure device drivers.
The security-critical compartments run on top of a virtualization layer (the se-
cure kernel in Figure 7) in the secure world while the legacy OS and noncritical
applications run in the non-secure world.

Verifiable Bootstrapping. At reset, the TrustZone core executes bootstrap
code (8-12 kB) in the secure world. The code is located in the on-chip boot
ROM and considered to be tamper-resistant, since a modification would require
significant effort. As the boot ROM is limited in size, external (untrusted) flash
memory is used to store the binaries of the security kernel and DC. The bootstrap
code loads these binaries from external memory into secure on-chip RAM, where
they are then measured using init_measurement and extend_measurement, which
access the hardware SHA-1 hash function. The measurements are stored in secure
on-chip RAM, where they can be read out later by using read_measurement in
order to report the platform configuration to an external party.

Secure Non-Volatile Memory. The SoC’s non-volatile memory is assumed
to be secure, as tampering would require to manipulate the hardware chip.

7 On ARM, devices are addressed by memory-mapped I/O (MMIO). A device’s phys-
ical memory is mapped to secure or non-secure logical addresses by the MMU.
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4.2 Comparison of TrustZone- and TPM-Based Approaches

A prototype of the security architecture proposed in Section 3.1 based on a TCG
TPM 1.2 [16] and COTS hardware has been implemented in the EMSCB project
(www.emscb.org), where the platform security functionalities were realized us-
ing a TPM (verifiable bootstrapping, secure non-volatile memory, true random
number generation) and a microkernel (strong isolation).

For embedded and mobile devices, however, a full-fledged TPM chip would
cause additional costs. A TrustZone-based system, in contrast, can be efficiently
integrated on a single chip (SoC). Further, as the crypto engine is directly at-
tached to the CPU, cryptographic operations can be carried out faster and more
secure [4] than in a TPM-based system, where the communication is done using
the vulnerable LPC bus. On the other hand, using today’s technology, non-
volatile memory can be hard/expensive to integrate on a SoC. Also, the migra-
tion of secrets in case of a SoC failure remains an open question.

5 Conclusion and Future Work

We recapitulatory sketch that the defined platform security functionalities are
sufficient to satisfy the overall security objectives for all P2P distribution scenar-
ios identified in Section 2.1. As shown in Section 2.3, all existing P2P scenarios
can be securely realized by the distribution controller (DC) using only the few
basic license operations defined in Section 2.2. DC and its basic license opera-
tions in turn can be securely realized by the two security abstractions Trusted
Storage and Trusted Channels as shown in Section 3.2. Lastly, Section 3.4 de-
scribes how these two security abstractions can be securely implemented based
on our generic security architecture and the platform security functionalities as
defined Section 3.1 and Section 3.3 respectively. Thus, with the help of DC in
combination with our security architecture, the platform security functionalities
implement the two security abstractions Trusted Storage and Trusted Channels,
which realize the basic license operations, which again realize all P2P scenarios.

Due to the generic interfaces to the underlying platform, our security archi-
tecture can be implemented on top of any hardware that provides the defined
platform security functionalities, including Trusted Computing platforms such
as the TPM and the MTM. However, since neither TPMs nor MTMs are cur-
rently available for mobile devices, we proposed an exemplary implementation
based on ARM TrustZone technology, which is popular for embedded systems.
While the ARM TrustZone implementation is currently work-in-progress, we
further currently try to adapt our approach also for the OpenMoko project
(www.openmoko.org).
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Abstract. Internet worms and DDoS attacks are considered the two
most menacing attacks on today’s Internet. The traditional wisdom is
that they are different beasts, and they should be dealt with indepen-
dently. In this paper, however, we show that a unified rate limiting al-
gorithm is possible, which effectively works on both Internet worms and
DDoS attacks. The unified approach leads to higher worm traffic re-
duction performance than that of existing rate limiting schemes geared
toward worm mitigation, in addition to the added advantage of dropping
most DDoS attack packets. In our experiments with attack traffics gen-
erated by attacking tools, the unified rate limiting scheme drops 80.7%
worm packets and 93% DDoS packets, while 69.2% worms and 3.4%
DDoS packets are dropped at maximum by previous worm scan rate
limiting schemes. Also, the proposed scheme requires less computing re-
sources, and has higher accuracy for dropping attack packets but not
dropping legitimate packets.

1 Introduction

Internet worms and DDoS attacks are considered two main threats in today’s
Internet. The majority of Internet Service Providers (ISPs) view Distributed
Denial of Service (DDoS) attack as the most significant operational security
issue of today [1], while future worm epidemics are predicted to spread at yet
unprecedented rates [2].

As the broadband access technologies such as Fiber To The Node (FTTN)
and Fiber To The Home (FTTH) make their way to customer premises, the
problem aggravates, as higher “fire power” is given to the potential attackers. It
has even become possible for an attacker to launch an attack at such high speed
as 100Mbps or higher, from home. With “botnets” that can mobilize up to a few
hundred thousands of these high-speed agents [3], the collective attack intensity
becomes formidable. Therefore, the emergence of broadband access networks
raises the pressing need to monitor, and possibly control, the attack traffic near
the sources.
� To whom all correspondence should be addressed.
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In this paper, we focus on rate limiting for the specific defense mechanism to
deploy in the access networks near attack sources. Rate limiting has been used
in many defense mechanisms against worm and DDoS attacks. It controls the
rate of traffic so that the traffic under the specified rate is allowed, whereas the
traffic exceeding the rate is dropped or delayed.

Prior works in this field such as the rate limiting applications [4] and network-
side rate limiting against DDoS attacks have also been studied in various ways.
Pushback [5] uses the rate limiting to drop malicious packets and notify upstream
routers to drop such packets. Pushback works best against DDoS flooding-style
attacks, but it could sacrifice normal packets since it does not have distinction
standard between normal and malicious packets except traffic quantity. Secure
Overlay Services(SOS) [6] represents a private enterprise network for the rate
limiting. It offers resilience to node failure, as surviving nodes assume the role
of failed nodes, plus the resilience against denial of service on the system itself.
But it is designed to work with private services only, as it requires changes in
client software and an extensive overlay infrastructure. D-WARD [7] is another
inline system that collects two-way traffic statistics from the border router at the
source network and compares them to the network traffic models built upon the
specification of application and transport protocols. However, it should set up
and maintain complicated procedures to apply rate limiting. A study has shown
how to protect e-commerce networks with the application of D-WARD [8]. MUlti-
Level Tree for Online Packet Statistics(MULTOPS) [9] is proposed as an efficient
data structure against DDoS which can be used for rate limiting. MULTOPS is a
tree of nodes that contains packet rate statistics for subnet prefixes at different
aggregation levels. MULTOPS dynamically adapts its configuration to reflect
the changes in packet rates, and can avoid memory exhaustion attack. However,
the authors said, given the structure of the MULTOPS tree, the size of a table
(1040 bytes), the size of a record (28 bytes), a packet size of 34 bytes, and a
threshold of 1000 packets per second, an attacker is able to lead the memory
exhaustion to neutralize MULTOPS.

For preventing worms, a few rate limiting defense mechanisms have been
developed recently [10,11,12,13,14]. IP throttling [10] limits the sending rate at
an infected end host. Failed-connection-based scheme [11] and credit-based rate
limiting [12] concentrate on the fact that worm scanning activities produce high
number of failed connections. DNS-based rate limiting [13,14] investigates using
DNS behavior as a basis for the rate limiting. These worm rate limiting defense
mechanisms focus on the deployment of a host side or an edge router mechanism,
performing the distinction between worms and DDoS attacks. These mechanisms
will be discussed in detail in the next section, as we design our scheme coping
efficiently with worm and DDoS simultaneously.

The main contribution of this paper is the introduction of the unified rate
limiting scheme for the defending against both Internet worms and DDoS at-
tacks, which could be put as “killing two birds with one stone.” That is, while it
is generally thought that worm and DDoS defense are separately considered due
to their different attack behaviors, we attempt to effectively defend these two
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attacks using a single algorithm. We will demonstrate that its worm detection
accuracy is higher than that of the existing worm defense schemes, and that
it fares nicely in detecting DDoS attack packets. Furthermore, the overhead in
terms of CPU and memory usage is shown to be affordable for end hosts and
edge routers.

The remainder of this paper is organized as follows. Section 2 describes the de-
sign of a unified rate limiting scheme as well as the analysis of the traditional rate
limiting schemes. Section 3 explains the implementation details of the scheme,
and Sect. 4 presents the performance evaluation and comparison with other con-
ventional rate limiting schemes. Lastly, Sect. 5 concludes the paper.

2 The Design of the Unified Rate Limiting Scheme

2.1 The Problems of Existing Scan Rate Limiting Schemes

As rate limiting against worm is usually performed close to the attack sources,
we build our unified rate limiting scheme around it, adding the components nec-
essary for DDoS rate limiting. A major observation of the existing rate limiting
schemes listed above is that rate limiting decisions are always based on worm’s
aggressive connection attempts. For instance, they concentrate on the worm be-
havior that incurs a great number of TCP connections in a short period of time.
We term these schemes as scan rate limiting schemes. While they work for even
unknown worms, a drawback is that they are useless to defend against DDoS
attacks, as discussed below.

Scan rate limiting schemes bring about three major problems for it to be used
against DDoS attacks as well. The first is that they typically use a whitelist
policy. In the whitelist policy, once a flow (such as a TCP connection) is verified
as valid, then there would be no further examination so the subsequent packets in
the flow bypass the rate limiter. Thus the rate limiter is incapable of preventing
DDoS attacks flooding packets in an acceptable connection. The second problem
is due to the lack of IP spoofing prevention. Many attackers forge, or “spoof”,
the IP source address of each packet they send to conceal their location, thereby
forestalling an effective response [15]. The third problem is in the precision of
detecting attack packets. The information used in the scan rate limiting schemes,
such as TCP connection information, credit value and DNS record, is insufficient
to identify DDoS attacks. See [16] for an empirical study.

2.2 The Design Principles of Unified Rate Limiting Scheme

Now we design a rate limiting scheme, with two objectives. The first is to cover
both worm and DDoS attack as mentioned above. The second is to make our
rate limiting algorithm fast and light-weight so that it does not interfere with
the normal services.

Our unified rate limiting scheme consists of five modules to defense against
Internet worms and DDoS attacks simultaneously. The five modules are shown
in Fig. 1 and described as follows.
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Fig. 1. Unified rate limiting algorithm

– TCP connection congestion check(M1): monitoring whether connec-
tion failures excessively occurred.

– IP spoofing check(M2): checking source address spoofing to discard sus-
picious packets as many as possible before establishing a connection.

– TCP history check(M3): utilizing black and white lists to reduce the
execution time of rate limiter through the reuse of the existing lists.

– DDoS check(M4): allowing a connection only if the transmission rate does
not exceed the predefined threshold.

– TCP validation check(M5): updating connection information such as
ACK response time and request count, and deciding which list the IP should
belong to; whitelist or blacklist.

Using these five modules, it is possible to screen excessive traffic which is caused
by Internet worms and DDoS attack.

Even though the scheme prevents those attacks very well, it is useless if the
algorithm overhead is unaffordable. Figure 2 shows the reason why we set the
module order like Fig. 1. In Fig. 2, our scheme examines credit value first that
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Fig. 2. Unified rate limiting policy order

holds the largest number of packets to decide whether the packet should be
passed or blocked. IP spoofing check module handles second largest number of
packets. After that, only if a packet is in whitelist, we check the packet trans-
mission rate of the connection. From this order of module execution, we are able
to consume the smallest computation on the average for handling one packet.

Unified rate limiting scheme can be deployed in the various places such as
client PC’s, NAT boxes and edge routers. In Sect. 4, we will show that the
unified scheme has higher attack packet dropping ratio and lower false detection
than the existing rate limiting schemes.

2.3 The Details of Unified Rate Limiting Scheme

– M1(TCP connection congestion check): When a new TCP connection
setup request is made, we first check the “congestion” status of TCP con-
nections by the credit value Cv. A TCP packet is allowed to pass if Cv > 0.
We compute Cv as follows. We initialize Cv = Cb at the beginning, and
bound the maximum value of Cv to Cmax. Cb is a default credit value which
is normally set to small positive integer like 5. If the initiated TCP connec-
tion fails to set up, Cv is subtracted by Cf . Therefore, if a worm generates
a number of failed connections, we eventually have Cv < 0. Then further
connection attempts are blocked. As soon as we reach a negative value of
Cv, we run a timer, and the connection setup blocking is enforced until the
timer reaches Rt, when the credit value is reinitiated to Cb. If the three-way
handshake succeeds on the other hand, Cv is incremented by Cs. Cv > 0
upon the connection attempt means that there are not too many failed or
ongoing connection attempts, so we allow new attempts.

– M2(IP spoofing check): for the allowed connection attempt, we validate
the source address for forgery. We check the local address Ls against the
source address of an outgoing packet Os, and if Ls �= Os, we drop the
packet.
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– M3(TCP history check): two lists are used for the faster processing of
subsequent packets. If a TCP packet is transmitted, we check if the des-
tination address of the packet is recorded in WL(Tn, Rcnt) or BL(Tm). If
former, it is allowed to pass and Rcnt is incremented. If latter, the packet is
immediately dropped. The packet belonging to the blacklist should not be
dropped permanently so that the blacklist is reset in BLt, blacklist timeout.

– M4(DDoS check): If Rcnt above exceeds a predefined rate Rmax within
time Dt, it means that an excessive number of connections are made to
the destination of Tn in WL(Tn, Rcnt), i.e. a TCP flooding attack. Then,
the packets are dropped. In case of UDP or ICMP, we need to compare
the current sending rate UIrate to the predefined maximum rate UImax. If
UIrate > UImax within Dt, packets will be dropped. After passing Pt time
period, UIrate is reset to 0. To reduce the false positives incurred by lots of
legitimate retransmissions, Dt can be defined as a small period, e.g. 1 or 2
seconds. Thus, it is not possible that a legitimate user retransmitting packets
is regarded as an attacker.

– M5(TCP validation check): If not listed in neither the whitelist nor the
blacklist, the TCP packet should be validated to be registered in either list.
In case that the source address is validated and the outgoing TCP connection
attempt is allowed to pass the filter, we check if it gets an ACK within the
time Ct. Depending on the result of the check, all outgoing TCP packets
Tall are classified into two groups – normal group Tn or malicious group
Tm. Tn and Tm are stored with the request counter Rcnt in the whitelist
WL(Tn, Rcnt) and the blacklist BL(Tm), respectively. This is depicted in
Fig. 1 as V (Tall) → {Tn, Tm} for Ct.

3 Prototype Implementation

3.1 Packet Filter Driver and Application

To evaluate the performance of the unified rate limiting, we have implemented
a prototype as an application program based on the algorithm1. The program
takes control of packets in the user and the kernel mode in Microsoft Windows
system.

We implemented the packet filter driver with filter hook driver provided by
Windows Driver Development Kit (DDK). For the implementation, we let the
functions in filter driver use a number of control codes which determines to call
appropriate functions.

3.2 Network Simulator

We developed a network simulator in order to measure the possible impact of
the proposed algorithm on the Internet under partial deployment, and to find an

1 The application program and the network simulator developed are available at
http://ccs.korea.ac.kr/URL

http://ccs.korea.ac.kr/URL
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effective deployment strategy for a better performance. We utilize the Internet
AS connectivity graph of year 2006 obtained from the RouteView project [17]
as a network topology, which consists of 21,211 nodes. Even though the AS
graph represents the connectivity between AS’s instead of routers or computers,
we use it since it is closer to the real Internet topology than any artificially
generated graphs. The network simulator does not consider asymmetric routing
that exists in the real network because the routing path does not take any effect
on the proposed mechanism. The reason is that our mechanism only controls
the rate limiting of outgoing packets at the edge of network. Among 21,211
nodes, 21,022 terminal nodes are regarded as clients and 189 central nodes are
considered routers.

The inputs to the worm attack scenarios are scanning speed, the ratio of
infection success, and attack strategy. Attack strategy can be categorized as
random or local. In the random strategy, infection targets are chosen randomly.
In the local strategy, 50% of the targets are chosen randomly, whereas the other
50% of the targets are chosen in the local subnet where the infected node resides.
As to the DDoS attack scenario, attack packets per second, the number of attack
nodes, and attack strategy (random or local) are given as input. Meanwhile, the
defense configurations have the following elements – deployment ratio of a rate
limiting algorithm, deployment strategy (random or local), false positive and
negative rate of a rate limiting algorithm with respect to the worm and DDoS
attacks. In particular, the local deployment strategy represents a rate limiting
algorithm fully installed in a specific subnetwork (deployment ratio of 100%).
On the other hand, the random deployment strategy is to install the rate limiters
randomly.

The output of the network simulator includes a network graph with the infec-
tion status of each node, a sequence of infection steps for animating the progress
of infection on a network. In our experiments, statistics are collected for 10 min-
utes simulation in each case of worm and DDoS attacks. The working example
and sample output of the simulator is shown in Fig. 3.

Fig. 3. Network simulation: (left) the operation of the network simulator, (right) the
output of a network infection animation file
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4 Evaluation

4.1 Experimental Setup

We use the malicious worms such as Blaster, CodeRed, Sasser and Welchia. As
to DDoS attack traffic, we generate TCP, UDP, ICMP packets by the use of
publicly available attacking tools. The experimental system is equipped with
Pentium4 CPU running at 3.0GHz, 512MB main memory, on Microsoft Win-
dows XP. Additionally, we also run the network simulator with the results from
the experimental system as the input values, in order to measure the effect on
network.

We use the following settings for each rate limiting schemes in our experiment.
IP throttling has a five-address working set and a delay queue length of 100 [10].
Credit-based connection rate limiting is configured with its original setting in
the reference [12]. DNS-based rate limiting scheme is implemented with 100,000
DNS lists and the rest is the same as in the previous work [13]. Our unified rate
limiting scheme has the following configuration: Cb = 20, Co = −1, Cs = +3,
Cf = −1, Ct = 1sec, Dt = 1sec, Pt = 10sec, BLt = 10sec, Cmax = 100, Rmax =
500, and UImax = 1, 000. This is not necessarily an optimal setting, which can be
acquired by further tests. For the whitelist and the blacklist, hashmap [18] is used
in our experiments, since it performs well to record and retrieve IP address and
the request counter. The hashmap has dynamic size depending on the number
of connection, and its searching time guarantees O(1).

In the experiments, we consider four performance metrics. The first metric
is the dropping ratio of attack packets. This metric allows us to see defense
performance when we adopt a rate limiting scheme. Another performance metric
is false alarm rates - false positive and false negative. This shows the precision
of a rate limiting scheme. The third metric is the effectiveness of deployment
strategy such as local deployment or random deployment. The fourth metric is
the overhead.

4.2 Simulation Results

In the first place, we measure the attack packet dropping ratio and the detection
accuracy, i.e., false positive and negative. Figure 4 shows the results for the worm
attack, with rate limiting schemes2, at the end host.

As shown in the figure, the unified rate limiting scheme has the highest attack
packet dropping ratio. On the other hand, it shows the lowest false rates. In Fig. 4
(right), the curves represent the sum of false positive and false negative ratios.
The increased accuracy in the unified rate limiting is owing to the two validation
checks, i.e., with IP address and the credit value.

For the DDoS attack, we measured the attack packet dropping ratio and the
detection accuracy as well. The DDoS attack packets were comprised of 25%

2 IP RL: IP Throttling Rate Limiting, CB RL: Credit Based Rate Limiting, DNS RL:
DNS based Rate Limiting and UNI RL: Unified Rate Limiting (our proposed
scheme).
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Fig. 4. Simulation results for rate limiting schemes on worm attack in local environ-
ment: (left) attack packet dropping ratio, (right) sum of false positive and false negative
ratio
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Fig. 5. Simulation results for rate limiting schemes on DDoS attack in local environ-
ment: (left) attack packet dropping ratio, (right) sum of false positive and false negative
ratio

IP-spoofed TCP packet, 25% normal TCP packet, 25% UDP packet, and 25%
ICMP packet.

Figure 5 shows that the unified rate limiting scheme is highly effective for
dropping DDoS attack packets in both measures. Namely, most IP-spoofed TCP
packets are detected and prevented from going out into the network. In partic-
ular, the blacklist helps drop excessively requested IPs. In contrast, the existing
worm scan rate limiting schemes are quite ineffective, as only 5% packets are
dropped at maximum. This demonstrates the advantage of the unified limiting
scheme.

To measure the performance of a rate limiting algorithm and deployment
strategy in broadband access networks, we obtained the results as shown in
Fig. 6. Figure 6 shows the attack packet dropping ratio in various rate limiting
schemes with respect to the deployment ratio. In the figure, the unified rate
limiting scheme shows a strong detection capability, not only for worm attacks
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Fig. 6. Simulation of attack packet dropping ratio of rate limiting schemes with respect
to deployment ratio: (left) worm attack, (right) DDoS attack

but also for DDoS attacks. The unified rate limiting scheme drops 80.7% worm
scanning packets and 93% DDoS packets at the full deployment, while at most
69.2% worm scanning packets and 3.4% DDoS packets are dropped by existing
rate limiting schemes.

To show the effectiveness of the rate limiting schemes with respect to the
deployment strategy and the deployment ratio for worm and DDoS attack, we
make an experiment with 21,022 nodes in subnetworks measured for identifying
worm and DDoS attack. In the local deployment scenario of worm attack, worm
infection is more mitigated than in the random deployment. This implies the
installation of a rate limiting scheme in subnetwork can be effective for reducing
worm traffic. However, the wider the deployment goes, the less the performance
difference between local and random strategy results.

In addition, we notice that worm scan rate limiting schemes have virtually no
DDoS detection capability, and that they record more than 20,000 DDoS attack
nodes even though 100% deployment is provided, regardless of the deployment
strategy. However, the unified rate limiting scheme takes effect both in the local
and random deployment. Unlike in the worm attack scenario, the deployment
strategy has no significant impact on the performance.

4.3 Overhead Analysis

For each rate limiting scheme considered in this paper, its time and space com-
plexity is summarized in Table 1. Q represents the length of the queue for IP
throttling and DNS-based rate limiting scheme. L represents the length of the
DNS list in DNS-based rate limiting scheme. M and N represent the length of
the blacklist and whitelist of unified rate limiting scheme respectively. In terms
of the time complexity, IP throttling complexity includes the search time of
the queue and the whitelist. The complexity for the DNS-based rate limiting
includes the DNS list search time along with the queue and whitelist search
time. Credit-based rate limiting searches the whitelist when Cv < 0, which costs
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Table 1. Comparison of complexities and CPU usages of rate limiting algorithms

O(N). The unified rate limiting searches the whitelist and the blacklist so that
the complexity becomes O(N + M).

During the experiments, the overhead is measured as shown in CPU usages of
Table 1. We notice that CPU usage is tightly coupled with time complexity. But
even if 5,000 IP addresses should be simultaneously searched, it consumes only
3.2–7.5% of the CPU cycles in the hashmap data structure. Moreover, in case
of the credit-based rate limiting and the unified rate limiting scheme, there is
no need for the search with respect to the value of Cv. It drastically reduces the
CPU usage. In terms of the memory usage, all rate limiting schemes consume
6.5MB of memory, which is readily affordable on the modern computers.

5 Conclusion

As the broadband access technology brings high-speed pipes to the customers, it
also raises a security concern because the attackers can exploit the increased band-
width to mount stronger attacks. Thus the attack mitigation strategy that places
defense mechanisms close to the potential attack sources becomes important in
the Internet with emerging broadband access networks. The unified rate limiting
scheme that we propose in this paper works close to the attack sources, and deals
with the two most threatening attacks, Internet worms and DDoS attacks. Unlike
existing rate limiting schemes, it is effective to both, and the performance from the
unified monitoring is also higher than any existing rater limiters. In particular, it
sharply contrasts with the existing rate limiting schemes by drastically reducing
DDoS attack packets. Through extensive simulations, we show that the unified
approach drops more worm packets than any other rate limiting schemes, with
less false alarm. We also show that the unified rate limiting scheme is most effec-
tive in the locally and highly deployed networks. As being exploited unknowingly
in the worm propagation or DDoS attacks is an unpleasant experience to anybody,
we believe that ISPs can include the unified rate limiting scheme in their distribu-
tion packages to deploy on subscriber PCs. Or, the ISPs can deploy the scheme in
the ingress routers as the pipes which are not too thick, thereby rendering the de-
ployment cost low. Since a single piece of software can deal with both worms and
DDoS, separate installation is not necessary. As for the deployment cost, the pro-
posed unified scheme also operates with affordable CPU and memory overhead,
making it easily integrable into existing networks elements.
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Abstract. Cryptographic puzzles can be used to mitigate spam and
denial-of-service (DoS) attacks, as well as to implement timed-release
cryptography. However, existing crypto puzzles are impractical because:
(1) solving them wastes computing resources and/or human time, (2)
the time it takes to solve them can vary dramatically across comput-
ing platforms, and/or (3) applications become non-interoperable due to
competition for resources when solving them.

We propose the use of Trusted Computing in constructing crypto puz-
zles. Our puzzle constructions have none of the drawbacks above and
only require each client machine to be equipped with a small tamper-
resistant Trusted Puzzle Solver (TPS), which may be realized using the
prevalent Trusted Platform Module (TPM) with minimal modifications.

1 Introduction

1.1 Cryptographic Puzzles

Cryptographic puzzles are problems that require a designated amount of time
and/or resources to solve. Since 1978 when Merkle first proposed them for se-
curing key agreement [23], crypto puzzles have been used to overcome a range
of security challenges.

Proof-of-Work Puzzles. Spammers try to send as many spam emails (i.e.,
unsolicited bulk emails) as possible to maximize their profits; attackers can take
down a web server by requesting many webpages within a short period of time.
Unfortunately, although it is well-known that charging fees on service accesses
would provide the necessary disincentive for abuses as such, there is no practical
way to charge money in the electronic world today. One major use of crypto
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puzzles is to impose costs on the clients by forcing them to do some work per
service access (and hence the name “Proof-of-Work” [17]), thereby consuming
their resources, e.g., CPU cycles.

Proof-of-Work puzzles are also known as Client Puzzles [2,18,31], especially
when they are used to mitigate denial-of-service (DoS) attacks at the lower layers
of the communication protocol stack such as the network layer and the transport
layer. Client Puzzles have the additional property that their generation, as well
as the verification of their solution must be done efficiently because otherwise
these two operations would become new DoS attack surfaces.

There are scenarios when having the ability to obtain and solve Proof-of-Work
puzzles before the actual service accesses is desirable. For example, allowing the
puzzles to be “presolved” hides from the user the latency of solving the puzzles
when trying to access web servers for webpages, and can still rate-limit accesses
from the user. However, presolvable client puzzles are less effective in mitigating
DoS attacks because the adversary can accumulate enough puzzle solutions and
use all of them at the same time.

Dwork and Naor were the first to propose the use of crypto puzzles for
fighting spam [13]. Back independently invented “hashcash” [3]. Other appli-
cations of Proof-of-Work puzzles include metering visits to websites [15], pro-
viding incentives in peer-to-peer systems [27], mitigating (distributed) DoS
attacks [21,2,12], rate-limiting TCP connections [18] and defending against Sybil
attacks [7]. Finally, Roman et al. [26] proposed a scheme that uses pre-challenges
to fight spam, in which the pre-challenges can range from, e.g., security ques-
tions to micro-payments to CAPTCHAs [30]. While our work focuses on
constructing better crypto puzzles, their work provides insights on several com-
patibility and usability issues when one deploys our solution on existing email
infrastructures.

Time-Lock Puzzles. May [22] first discussed the idea of sending information
into the future, i.e., encrypting a message so that no one can decrypt it until
a predetermined time. Rivest et al. [25] later formally proposed Timed-Release
Cryptography (TRC) and Time-Lock puzzles—crypto puzzles that can be solved
only after a predetermined time—and their use to realize TRC.

The algorithm for solving Time-Lock puzzles must be non-parallelizable, i.e.,
a Timed-Lock puzzle with multiple machines won’t be any faster than solving it
with a single machine. For instance, puzzles that ask for the preimage of hash
values are bad Time-Lock puzzles because computing hash preimages can be
parallelized. Rivest et al.’s Time-Lock puzzles [25] ask for a series of modular
squarings, the computation of which no one knows how to parallelize.

Applications of TRC and hence some Time-Lock puzzles include sealed-bid
auctions [25], encapsulated key escrow [25,4], digital time capsule [24], and timed
release of digital signatures [16] and commitments [6]. Chan and Blake proposed
a timed-release encryption scheme that provides user anonymity [11] but requires
a passive server. Some other timed-release constructions are [9,10].
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1.2 Problems with Existing Crypto Puzzles

Existing crypto puzzles fail to effectively combat spams and DoS attacks, as they
all suffer from one or more of the drawbacks below. As we will see, our design of
crypto puzzles to be presented later in this paper has none of these drawbacks.

Impreciseness. A problem faced by all existing crypto puzzles is that it is
extremely difficult to precisely specify the time and/or resources required to
solve a puzzle, mostly due to the heterogeneity of computing devices available
today. For instance, solving a crypto puzzle that requires 1 minute to solve on a
Desktop PC could take an hour on a PDA.

For Proof-of-Work puzzles, this impreciseness adds complication to, if not ren-
dering it entirely infeasible, their use for defeating service abuse. For example, if
one sets the difficulty of solving the puzzles assuming the presence of resource-
ful spammers, then legitimate users will probably be practically unable to send
emails on their PDAs, or PCs they bought three years ago. The situation gets
no better for Time-Lock puzzles: timed-release cryptography becomes insecure
if Time-Lock puzzles can be solved faster than the puzzle creator expected. In
Internet-based contests, for example, a more resourceful candidate can decrypt
the test questions earlier, resulting in unfairness.

Environmental and User Unfriendliness. Solving crypto puzzles consumes
resources in the computing devices. Most existing constructions of crypto puzzles
are computationally intensive and exhaust CPU cycles for a continuous period
of time before their solutions can be computed. Unfortunately, the computation
involved in solving these puzzles does not result in any other useful output.

Worse still, crypto puzzles can waste human time, which could have a much
higher value than CPU cycles. For example, if a website limits users’ accesses
to webpages by giving out crypto puzzles that require 10s to solve per webpage
download, then users will experience a delay of 10s for every page they see. To
help cease this problem, some Proof-of-Work puzzles are designed so that they
can be pre-solved; by pre-fetching these puzzles and solving them before actual
service requests, the latency incurred can be hidden from the users.

Non-Interoperability. If a machine has two or more crypto puzzles to solve, all
of which require a common resources, then the machine can only solve them one
at a time. For example, if a mail server decides that a honest client machine will
only send at most one email per minute on average and thus gives out puzzles
that require one minute to solve, and a website thinks a honest client machine
will only get at most one webpage per minute on average and thus also gives
out puzzles that require one minute to solve, then a honest client machine won’t
be able to both send 1 email and visit 1 page per minute! By similar arguments,
users can only participate in one Internet-based contest at a time.

1.3 Trusted Computing

The term “trusted computing” has come to denote work in the spirit of the
Trusted Computing Group (TCG) consortium [29]: increasing the security of
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standard commodity platforms by adding a small amount of physical hardware
and careful integration of software support for it.

In the TCG approach, this hardware takes the form of a trusted platform
module (TPM) [28], which is an inexpensive chip on the motherboard that par-
ticipates in the boot process. The TPM maintains a set of platform configuration
registers (PCRs) that indicate the hardware and software configuration of the
platform, and provides services both to release secrets to the platform only if the
PCRs show the right values (“unsealing” or “unwrapping”), as well as to prove
to remote parties what the current platform configuration is (“attestation”).

This notion of trusted computing thus embodies two security design princi-
ples. One is the modern notion of cost-benefit tradeoff: the goal is to improve
security without spending too much money. Consequently, one adds a small chip,
rather than armoring the entire machine. Another is the classical notion of min-
imizing the trusted computing base (TCB). Although the TPM’s promises of
trusted computing initially rest on the assumption that the adversary compro-
mises neither the TPM nor the BIOS, the reality is murkier: attacks on the OS
can still subvert protection, and low-cost and highly-effective physical attacks
have begin to emerge (e.g., [20]).

1.4 Our Contributions

We present an alternative vision for trusted computing: using Trusted Puzzle
Solvers to construct crypto puzzles with many desirable properties missing from
existing constructions. Our solution is secure and efficient, and yet only requires
each client to be equipped with minimal tamper-resistant hardware.

Paper Organization. We explain in Section 2 the details of Trusted Puzzle
Solvers, the vital piece of trusted hardware that enables our constructions of
crypto puzzles, which are presented in Section 3 and Section 4. We discuss the
implications of our design in Section 5 before we conclude the paper in Section 6.

2 Trusted Puzzle Solvers

In our design of crypto puzzles to be presented in the next two sections, all client
machines are equipped with a hardware module that we call the Trusted Puzzle
Solver, or TPS. We make the assumption that all the functionality provided by
these modules are correct and secure, even when subject to certain hardware at-
tacks, such as probing, launched by adversaries in physical proximity. In other
words, these modules are the Trusted Computing Base (TCB) of our construc-
tions. It is therefore important to minimize their size, in terms of physical volume,
circuitry complexity, codebase, and etc, so that we can manufacture them at low
costs and yet with high assurance of them meeting our trust assumptions.

Every TPS has a distinct asymmetric key pair (a private key sk and a pub-
lic key pk),1 generated and installed by its vendor during manufacturing. The
1 As will become clear, the key pair is for digital signature in our Proof-of-Work puzzles

and for public-key encryption in our Time-Lock puzzles.
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private key sk resides in, and never leaves, the tamper-proof storage of the TPSs.
The public key pk is certified by one or more Certification Authorities (CAs),
such as the TPS vendors, which all servers recognize and trust. Client machines
know the public key and the associated certificate cert of the TPS they are
equipped with. Servers know the public keys of the CAs for certificate signing
and thus can verify the correctness of the public keys of the TPS modules.

TPSs also contain several other components within their tamper-resistance
boundaries. One such component is a clock. The clocks in the TPSs need not
be synchronized to a global clock and may be reset at power-on, as long as they
all are ticking at the same and reasonably precise frequency. Other components
include several registers for storing key materials and internal states, some simple
logic for arithmetics and control, and a cryptographically secure random number
generator (RNG). Finally, as we will explain in detail in the next section, TPSs
further contain the necessary circuit to perform cryptographic operations such
as computing HMACs, digital signature signing and public-key decryption.

3 Our Proposed Proof-of-Work Puzzles

Recall that the ultimate goal of having clients solve Proof-of-Work puzzles is to
rate-limit their service accesses. While existing constructions of Proof-of-Work
puzzles achieve this goal by imposing a computational cost on each access, our
design relies on the TPS of the client to do the policing: only TPSs know how
to solve the puzzles, and TPSs will only solve puzzles up to a certain rate.

More concretely, a puzzle consists of a nonce and a fee. The nonce prevents
the clients from replaying puzzle solutions. The fee is a parameter that precisely
specifies the time it takes to solve the puzzle. A valid solution to a puzzle is a
signature signed by a TPS on the puzzle. Thus only TPSs can solve the puzzles.

It suffices to make sure the TPS modules don’t solve the puzzles too quickly.
Each TPS has a register named balance, the value of which is incremented
periodically. In our construction, it is incremented by 1 every millisecond. TPSs
leave their factories with balance initialized to zero. The value stored in balance
may be persistent across up-times or set to zero upon reset. Given a puzzle with
a fee, a TPS solves it only if the current balance is no less than the fee, in which
case the TPS also deducts the fee from the balance.

3.1 Protocol Description

We now describe our proposed protocol executed between a server and a client,
during which the server would like the client to solve a Proof-of-Work puzzle
before granting a service request made by the client. We name the client Alice
and the server Bob.

We have also included a diagrammatic description of the protocol in Figure 1.

1. Alice → Bob : 〈request〉
Alice requests Bob for his service.
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Bob the Server Alice the Client Alice's TPS

N ∈R {0, 1}80

fee ∈ [0, 280)

puzzle := (N, fee)

puzzle

balance := balance− fee

σ ← Signsk(puzzle)
σ

puzzle, σ, pk, cert

record puzzle

puzzle in record?

forget puzzle

puzzle

pk, cert

σ valid?

balance ≥ fee ≥ 0?

grant request

request for service

sk, balance

cert valid?

come back when balance ≥ fee

Fig. 1. Diagrammatic Protocol Description of Our Proof-of-Work Puzzles

2. Bob → Alice : 〈puzzle〉
Bob challenges Alice to solve puzzle = (N, fee), where N is a 80-bit random
nonce and fee is a 80-bit non-negative integer. The fee may be a constant
or a function of the current load of the server, and/or even the identity of
the client. Bob records puzzle.

3. Alice examines the fee in the puzzle. If her TPS doesn’t have enough
balance to pay for the fee at the moment, she comes back later when
balance has become sufficient. In the meantime, she can do something mean-
ingful instead of busy-waiting or stalling. Alice knows when to come back by
keeping track of the time and her TPS usage. Alternatively, if Alice thinks
that the fee is too expensive, she may refrain from accessing Bob’s service
by terminating the protocol.

4. Alice → TPS : 〈puzzle〉
Alice relays puzzle to her TPS.

5. TPS → Alice : 〈σ〉
Alice’s TPS aborts if the current balance is less than fee. Otherwise, the
TPS deducts fee from balance, signs puzzle with its private key sk, re-
sulting in a signature σ = Signsk(puzzle). The TPS returns σ to Alice.

6. Alice → Bob : 〈soln〉
Alice answers Bob’s challenge with soln = (puzzle, σ, pk, cert).
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7. Alice’s soln = (puzzle, σ, pk, cert) is valid if and only if cert is a valid
certificate on the pk, σ is a valid signature on puzzle under pk, and puzzle
appears in Bob’s record. If soln is valid, Bob grants Alice’s service request
and removes puzzle from his record. He declines the request otherwise.

3.2 Analysis

Properties. Our construction has none of the drawbacks we discussed in Sec-
tion 1.2. First, the time it takes to solve a puzzle is as precise as the clock in
the TPS, and thus a PDA can solve as many puzzles as a resourceful desktop
PC. Also, there is no need to waste any resources such as CPU cycles on the
client machine, or human time waiting for puzzles to be solved as long as there
is enough balance in the TPS.

By having the TPS keep a separate balance for each application, our construc-
tion allows multiple applications to solve their own puzzles in parallel. The cost
per application is only one extra register (for storing the balance). Notice that
these extra registers need not be tamper-proof; one can store the balance values
in insecure memory outside the TPS by using techniques similar to “sealing” in
TCG’s TPMs. Thus, our TPS construction allows interoperability among any
number of applications requiring Proof-of-Work puzzles and yet requires only a
constant amount of trusted storage.

Parameters. We have chosen RSASSA-PKCS1-v1.5 [19, §8.1] using SHA-1 as
the digital signature scheme used by the TPS because all TPMs that are compli-
ant to the TCG’s TPM v1.2 specification [28] must support it. Nonces are 80-bit
and hence picking them uniformly at random prevents nonce reuse. We allow
the fee of a puzzle to be any 80-bit non-negative integer. A puzzle is thus only
20 bytes in size. The tamper-resistant register balance is 80-bit in size, which
will never overflow in practice at the rate of incrementing by 1 per millisecond.
In fact, one might want to set a much smaller upper bound for it so as to limit
the module’s ability to presolve puzzles.

Efficiency. The client has nothing to do except relaying a few messages at the
right time; the TPS signs one signature on the puzzle. Like any other Proof-of-
Work puzzle schemes, there are 4 rounds of communication between the server
and the client. Generating a puzzle is efficient, as it involves only picking a ran-
dom nonce and deciding on the fee of the puzzle. Verifying the solution of a puzzle
involves two digital signature verification. For each service request pending for
a puzzle solution, the server needs to remember a 20-byte puzzle only.

Security. A client in possession of a TPS for t milliseconds has a balance of
at most t at any time instant during the period of the possession. Assume the
contrary that the construction is insecure, then the client has been able to cor-
rectly solve puzzles such that the sum of their fees exceeds t during the same
time period. Hence there exists at least one correctly solved puzzle that was not
solved by the TPS. Since all puzzles are distinct (due to the nonces in them), the
solution to the one puzzle that was not solved by the TPS contains a forged sig-
nature, which contradicts to the unforgeability of the digital signature scheme.
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4 Our Proposed Time-Lock Puzzles

The traditional means of ensuring a puzzle to be solvable only after a predeter-
mined time by requiring the client to go through some tedious operation suffers
from all the drawbacks we listed in Section 1.2. Our solution relies on the TPSs
present in the client machines as trusted time servers: the TPSs make sure that
sufficient time has elapsed before they help the clients solve the puzzles.

Specifically, when a client machine receives a puzzle from the server, it relays
the puzzle to its TPS. In a naive solution, the TPS would wait for enough time
and then return the solution to the client machine. However, this is undesirable
since either the TPS is incapable of concurrently solving concurrent but indepen-
dent time-lock puzzles, or the TPS must keep in its tamper-resistant memory
states of size linear to the number of puzzles allowed to be solved at a time.
Rather, in our design, the TPS time-stamps the puzzle, thus witnessing that the
client machine has obtained the puzzle at a particular time. When the client
machine later comes back with the time-stamped puzzle after sufficient time has
elapsed, the TPS will solve the puzzle for the client machine.

We highlight that although our solution requires each machine to have a TPS,
we do not rely on the uniformity of the computational resources these TPSs
possess. In fact, we envision that as trusted hardware modules, be them TPSs
or TCG’s TPMs, become more and more prevalent, vendors will manufacture
these modules with different processing power and capability, much like any
other components in custody PCs we see nowadays. Our design is secure so long
as the TPS hardware satisfies certain basic requirements such as possessing a
trusted clock, some trusted circuitry and a few trusted storage.

4.1 Protocol Description

We now describe our proposed protocol executed between a server and a client
when the client requests a Time-Lock puzzle from the server. Again we name
the client Alice and the server Bob.

Figure 2 shows a diagrammatic description of the protocol.

1. Alice → Bob : 〈pk, cert〉
Alice requests Bob for a Time-Lock puzzle by sending him her TPS’s public
key pk and its certificate cert.

2. Bob → Alice : 〈puzzle〉
Bob aborts if cert is not a valid certificate for pk. Otherwise, he returns Alice
with puzzle = (Ñ , delay), where delay is a 80-bit non-negative integer
that denotes the time (in ms) necessary for solving the puzzle and Ñ is the
encryption of a 80-bit random nonce N concatenated with delay under the
TPS’s public key pk, i.e. Ñ = Encpk(N ||delay).

3. Alice → TPS : 〈Ñ〉
Alice relays the Ñ to her TPS.

4. TPS → Alice : 〈t0, tstamp〉
Let the current time be t0. The TPS returns t0 and tstamp to Alice, where
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Bob the Server Alice the Client Alice's TPS

pk, cert

cert valid?

pk, cert

t0 := cur time

t0, tstamp

t1 := cur time

t1 ≥ t0 + delay?

tstamp valid?

wait for enough time,

sk, k, cur time (in ms)

e.g. delay ms

delay

N ∈R {0, 1}80

Ñ ← Encpk(N ||delay)
puzzle = (Ñ , delay)

puzzle

Ñ

tstamp ← HMACk(Ñ ||t0)

Ñ , t0, tstamp

N ||delay ← Decsk(Ñ)

N

soln := N

Fig. 2. Diagrammatic Protocol Description of Our Time-Lock Puzzles

tstamp is the time-stamp on Ñ at time t0 under the TPS’s secret HMAC
key k, i.e. tstamp = HMACk(Ñ ||t0).

5. Alice comes back after sufficient time, i.e. after delay ms or more. Again, she
is free to do anything in the meantime, rather than busy-waiting or stalling.

6. Alice → TPS : 〈Ñ , t0, tstamp〉
Alice sends to her TPS Ñ , t0 and tstamp.

7. TPS → Alice : 〈N〉
Given Ñ , t0 and tstamp, Alice’s TPS proceeds as follows. It first decrypts Ñ
into N ||delay using its private key sk, i.e. N ||delay = Decsk(Ñ). If tstamp
is valid, i.e. tstamp = HMACk(Ñ ||t0), and t1 ≥ t0 + delay, where t1 is the
current time, the TPS returns N to Alice. The TPS aborts otherwise.

8. The solution to the puzzle is soln = N .

4.2 Analysis

Properties. Our proposed Time-Lock puzzles have all properties we have de-
sired. The puzzles have a solving time as precise as the clock in the TPSs. They
are environmental friendly because virtually no resources is wasted by the client
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in solving them. Finally, one client machine can solve multiple time-lock puzzles
concurrently, without any slowdown in solving any of them.

Parameters. We have picked RSA-ES-OAEP [19, §7.1] using SHA-1 as the asym-
metric encryption and HMAC-SHA-1 as the message authentication scheme.
Again the support of these functions is required by TPM specification v1.2 [28].
cur time is a 80-bit register that stores the current time in millisecond (relative
to, e.g., the time the TPS was last reset) and will never overflow in practice.

Efficiency. To create a puzzle, Bob needs to do one asymmetric encryption
of a one-block plaintext. The TPS has to do two HMACs and one asymmetric
decryption of a one-block ciphertext. Alice does not need to do any computation.

Neither the client nor the TPS has to stall when handling a Time-Lock puzzle
and thus practically any number of Time-Lock puzzles can be solved concur-
rently. Also, the TPSs needs not keep any state for each pending puzzle.

Security. A secure time-lock puzzle cannot be solved earlier than the specified
time. We argue in the following that this requirement holds in our construction.
Assuming the contrary that a client machine can solve a puzzle without having
waited for the specified delay after obtaining the puzzle, then the client must
have successfully decrypted the ciphertext in the puzzle before the predetermined
time (i.e., the time the machine received the puzzle plus the delay specified in
the puzzle). The TPS could not have decrypted the ciphertext as it would imply
a forgery of a time-stamp on the puzzle with a time earlier than the time the
machine obtained the puzzle, contradicting to the security of the HMAC. As a
result, the fact that the client was able to decrypt the ciphertext violates the
security guarantee of the encryption, which leads to a contradiction.

It is also crucial for time-lock puzzles to be solvable at the specified time
(rather than some time much later). For example, this property is necessary
to guarantee fairness in applications such as sealed-bid auctions and Internet-
based contests. It is easy to see that our construction of time-lock puzzles enjoys
this property. In fact, our construction enjoys it at a stricter sense—even when
some client machines are solving more than one time-lock puzzle at the same
time.

4.3 Realizing Timed-Release Encryption

How to use the Time-Lock puzzles we just proposed is application-dependent.
Here, we give an example of using our puzzles to realize Timed-Release Encryp-
tion, for applications such as Internet-based contests.

We will need in addition a secure symmetric encryption scheme and a secure
cryptographic hash function. Let � denote the length of the symmetric key used in
the encryption scheme, E andD denote the encryption and decryption algorithms
respectively, and H : {0, 1}∗ → {0, 1}� denote the cryptographic hash function.
We can implement the symmetric encryption scheme using AES operating under
Counter Mode [14] with 128-bit key, i.e. � = 128. We can implement H using
SHA-1 with proper encoding.
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To perform timed-release encryption, i.e., to encrypt a plaintext P so that
the resulting ciphertext can’t be decrypted by a client Alice until a release-time
predetermined by a server Bob, Bob does the following:

1. Create a Time-Lock puzzle for Alice with delay equal to the difference be-
tween the release-time and the current time in millisecond, according to the
protocol we described in Section 4.1.

2. Generate a symmetric encryption key s by hashing the nonceN in the puzzle,
i.e. s← H(N).

3. Encrypt the plaintext P under the symmetric encryption key s, resulting in
a ciphertext C, i.e. C = Es(P ).

4. Return C to Alice along with the Time-Lock puzzle.

Consequently, by the time Alice has solved the puzzle, she can reconstruct the
symmetric encryption key s, decrypt the ciphertext C, and recover the original
plaintext P , i.e. P = Ds(C).

Security. To see why such a Timed-Release Encryption is secure given that
the underlying Time-Lock puzzle is secure, consider the following arguments.
Assume the contrary that the above Timed-Release Encryption is insecure, then
the adversary can learn information about the plaintext from the ciphertext
prior to the predetermined release-time. Since the underlying Time-Lock puzzle
is secure, the puzzle leaks no information about the solution to the puzzle to any
computationally bounded adversary at the time when the adversary learned the
information. Now the security of the cryptographic hash function implies that
the symmetric key was picked uniformly at random in the computational sense.
Therefore, the adversary’s ability to learn information about the plaintext from
the ciphertext contradicts the security of the symmetric encryption scheme.

5 Discussion

Feasibility. The use of trusted hardware has been conceived by some as wav-
ing a magic wand: like invoking magic, it’s just unrealistic. We have different
opinions. All cryptographic security measures require, at the very least, the se-
cure execution of the cryptographic algorithms and a secure storage of the keys;
it is assumed, implicitly or explicitly, that some type of computing engine and
storage lies beyond the reach of the adversary. Using trusted hardware simply
makes this assumption explicit; designing it requires explicitly thinking about
the types of physical attacks an adversary might mount. Deploying it in the real
world requires considering trade-offs between strength of the tamper protections,
robustness, cost, and computational power. At one extreme, a powerful piece of
trusted hardware such as an IBM 4758 or 4764 secure coprocessor can securely
host a (small) application in its entirety but is very expensive; at the other end,
a resource-constrained piece of trusted hardware such as a TPM chip is inex-
pensive but does little beyond several primitive cryptographic operations. (We
note that both these devices exist in the real world—and that TPMs now are
ubiquitous in nearly all new desktop and laptop platforms.)
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The real challenge when designing a solution to a security problem is how to
cost-effectively provide sufficient security with confidence through intelligently
minimizing the TCB. Thus, one of our goals when designing the TPS was to
make its wide deployment feasible by minimizing the functionality requirements
on them. We aimed for something the size of a TPM. In fact, most of the func-
tionality needed by a TPS, such as HMAC-SHA1 and RSA operations, is already
present in TCG’s TPMs in their current specification, with the exception of a
trusted clock. One could therefore expect that the cost of a TPS is comparable
to, if not less than, that of a TPM (assuming that TPS manufacturing enjoys
the same economy of scale that TPM manufacturing does).

TPS Compromises. Given that it is not impossible to circumvent the tamper-
resistance of TPSs, it is worth looking at the security implications when tam-
pering happens. In both of our puzzle constructions, if an adversary can read
the registers, he learns the private signing/decryption key, and can then solve
puzzles at any rate. If the adversary can write to the registers or make the clock
tick faster, then he can increase the balance in case of Proof-of-Work puzzles, or
fast-forward the current time in case of Time-Lock puzzles. In both cases, the
adversary can solve puzzles faster than he should have been able to.

As a defensive mechanism, servers should audit TPS activities, become sus-
picious if they see some TPSs solving puzzles too quickly and eventually declare
those TPSs to have been compromised. Servers should revoke all compromised
TPSs by, e.g., using Certificate Revocation-Lists (CRLs) in X.509 [1], which is
a revocation mechanism currently also used by TCG’s TPMs.

Bot-nets. Nowadays spammers seldom use their own machines for spamming.
Rather, they take over machines on the network through the use of, e.g. worms
and malware, and “steal” resources, e.g., computational power, electrical power,
email addresses and IP addresses, from these “zombies” machines to send unso-
licited bulk emails. Conventional Proof-of-Work puzzles become ineffective when
spammers can summon their can zombies to solve puzzles for them. The problem
here is that these puzzles are solver-anonymous: anyone can solve a puzzle and
the solution contains no trail of who produced it. Our proposed Proof-of-Work
puzzles are more resilient to bot-nets than conventional puzzles because the so-
lution to a puzzle contains the identity of the solver’s TPS. This provides some
clues to the server whether the solving of the puzzles has been outsourced—and
can potentially be addressed by revocation.

User Anonymity. As discussed, being able to identify the TPSs helps revoke
compromised TPSs and resist bot-nets. However, this implies that our proposed
puzzles do not protect the anonymity of the user. In the case of Proof-of-Work
puzzles, the server knows which TPS has solved the puzzle by looking at the
digital signature; in the case of Time-Lock puzzles, the client must reveal the
public key of her TPS to the server when obtaining a puzzle.

Our proposed Proof-of-Workpuzzles can be modified to provide user anonymity
as follows. TPSs sign a group signature [5] instead of a digital signature to hide
their identity among the set of all TPSs. Since TPM v1.2 implements Direct
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Anonymous Attestation (DAA) [8], v1.2 TPMs already have the necessary cir-
cuitry to implement TPSs with user anonymity. We point out that the use of group
signatures makes puzzle solution verification more computationally intensive.
Augmenting user anonymity to our proposed Time-Lock puzzles in an efficient
way seems to be a lot more complicated. We thus leave it as future work.

Isn’t the TPS PKI Enough? Since each TPS possesses a certified key pair,
a wide deployment of TPS modules implies a global Public-Key Infrastructure
(PKI) as well. One might think that the mere existence of a global PKI would
suffice to mitigate spam and DoS attacks and thus using TPS to do the same
would be redundant. We believe this is not the case, for several reasons.

For PKI to be effective in deterring attacks, the certificates need to meaning-
fully bind a client to a key pair. Large-scale PKIs that do this have proven an
elusive and expensive proposition. However, the TPS PKI merely needs to assert
a key pair belongs a genuine TPS; as with the TPM PKI, already in existence,
it omits the expensive part.

Furthermore, a PKI alone won’t solve the problem. Even if we had a global
PKI, using it to fight spam and DoS attacks would still require us to ensure
the integrity of the client software and to isolate malware from the private keys;
these tasks rely on the security of the operating system and the hardware. This
almost dictates us to put the entire computing platform into the TCB, which is
not only costly but also infeasible. In our solution, the TCB only consists of a
small and simple hardware module.

By similar arguments, requiring authentication at the client side using, e.g.
TLS, during web browsing does not mitigate DoS attacks. In fact, the extra
communications and cryptographic computation required by TLS might actually
open up a new DoS attack surface.

Puzzle Pricing. Regardless of whether real currencies, traditional computation-
based crypto puzzles or our TPS-based puzzles are used, pricing the service
accesses right is the key to the effective mitigation of spam and DoS attacks
without adversely impacting the honest users. For instance, a web server may
want to hand out puzzles that are more difficult to solve as its load increases.
Similarly, some have suggested that the price for emailing to a mailing list should
be function of how big and commercial the list is.

Our TPS-based puzzles facilitate correct pricing better than existing puzzles
for a number of reasons. First, the fee of a puzzle can be set at a very fine-
grained level. Second, the effort to generate a puzzle and verify its solution is
independent of its fee. Third, the time it takes to solve a puzzle is very precise.

6 Conclusions

We have proposed the use of trusted computing in designing two types of crypto
puzzles, namely Proof-of-Work puzzles and Time-lock puzzles. In particular, we
have presented how to construct these puzzles by assuming that each client
machine is equipped a Trusted Puzzle Solver, or TPS, which is a small tamper-
resistant hardware module. Our proposed crypto puzzles are the first that achieve
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all the aforementioned desirable properties simultaneously, and can thus be used
to effectively combat spam and DoS attacks. Our analysis has shown that our
designs are secure and efficient.

TPSs are cost-effective and trustworthy because of their simplicity. Almost all
the necessary functionality is already present in TCG’s TPM architecture today.
These factors make it feasible for TPSs to be widely deployed.
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Abstract. Attacks using vulnerabilities are considered nowadays a se-
vere threat. Thus, a host needs a device that monitors system activities
for malicious behaviors and blocks those activities to protect itself. In this
paper, we introduce PROcess BEhavior (PROBE), which monitors pro-
cesses running on a host to identify abnormal process behaviors. PROBE
makes a process tree using only process creation relationship, and then it
measures each edge weight to determine whether the invocation of each
child process causes an abnormal behavior. PROBE has low processing
overhead when compared with existing intrusion detections which use
sequences of system calls. In the evaluation on a representative set of crit-
ical security vulnerabilities, PROBE shows desirable and practical intru-
sion prevention capabilities estimating that only 5% false-positive and 5%
false-negative. Therefore, PROBE is a heuristic approach that can also
detect unknown attacks, and it is not only light-weight but also accurate.

1 Introduction

According to a variety of attacks, security is a substantial issue in today’s net-
works. Malicious users are attempting enormous methods to successfully disrupt
a target system. Against them, many technologies such as firewalls, anti-virus
programs, and intrusion detection systems (IDSs) have been used to keep net-
works and hosts safe. However, according to the advent of sophisticated attacks,
we nowadays need a new method based on intrusion prevention systems (IPSs)
to protect systems. Even though network-based IPS can block malicious traffic,
some can pass through it [1]. Thus, host-based IPS plays an important role in
the last line of defense.

To defend these attacks, we propose PROcess BEhavior (PROBE) which is
a host-based intrusion prevention system that investigates system processes to
identify abnormal process behaviors. By using it, intrusions which use remote
exploits to infiltrate a system are detected because an attack is behaved out of
common behavior. We present a novel characterization for process sequences of
a system. This characterization is based on two observations: a process is always
executed when a user wants to execute a program, and a process on an operating
system runs in sequence. The previous researches [2,3,4] detect anomalous be-
havior of system programs by inspecting different system call sequences in com-
parison with normal patterns of short sequences of system calls. The approaches
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to the solutions are not practical for preventing the vulnerabilities in the real
world because of system call monitoring complexity. On the other hand, PROBE
is designed to detect major security violations by monitoring just several process
behaviors without tracing every system call triggered by running processes.

This paper’s main contribution lies in detecting unknown attacks and advanc-
ing a practical mechanism for intrusion detection. Our approach detects any
novel intrusions different from normal procedures without prior knowledge of
the attack mechanism. We represent processes’ relationship as a tree, and then
perceive the execution of an abnormal process just by examining a process’s
parent process and its child process. Thus, PROBE has low process monitoring
overhead and it is appropriate for adoption to protect a host from intrusions.

2 Related Work

Intrusion Detection Systems (IDSs) are designed to detect unwanted attack or
manipulation of a computer system. However, they cannot stop traffic, only
identify an attack as it occurs. On the contrary, Intrusion Prevention Systems
(IPSs) not only detect an attack, but also block the attack. Thus, it is considered
as a combination of both an IDS which has the power of detecting attacks and a
firewall which has the power of filtering attacks. Researchers have followed two
main directions in the investigation of techniques to identify attacks: anomaly
detection based IDS and misuse detection based IDS.

Anomaly detection based IDS generates an alert when a behavior deviates far
from the predefined normal behavior. There were studies of intrusion detection
for anomaly detection[2,3,4] using short sequences of system calls of running
processes. While this technique can detect unknown attacks, it unfortunately
generates false-positive1 problem. Thus, most IDS products in the market today
use misuse detection instead of anomaly detection[1].

Misuse detection based IDS contains signature database which has typical
patterns of exploits used by attackers. If the attack signature matches any of
some predefined set of signatures, IDS raises an alarm. Autograph[5] is a Internet
worm signature monitoring system. However, its main drawback is that one
must know the signature of attack to detect intrusion, so it is difficult to detect
unknown, novel attack. Polygraph[6] is a study about the automatic generation of
signatures that match polymorphic worms and the detection of them. To evade
the problem of signature database maintenance, the techniques which detect
malware on the basis of its behaviors are being studied.

Behavior-based Spyware Detection[7] is one of the typical behavior-based mal-
ware detection techniques. While this technique can detect obfuscation transfor-
mations which can easily be evaded by signature-based techniques, it has high
false-positive and false-negative2 as compared with signature-based detection.
1 False-positive represents a legitimate behavior that is incorrectly identified as a ma-

licious behavior.
2 False-negative denotes an abnormal behavior that is incorrectly identified as a legit-

imate behavior.
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These detection techniques of IDSs focus on how an attack works, so it de-
tects attacks after a system is already infected by malwares. To stop malicious
behavior before it causes any harm, IPSs, in contrast, focus on what an attack
does—its behavior[1]. Thus, we propose a dynamic detection system, PROBE,
that uses normal and abnormal characteristics of process connection. PROBE
does not require signatures for attacks as with misuse detection, nor monitor-
ing every system calls as previous system call trace studies. Thus, we instead
concentrate on the behavior of the system processes.

3 The PROBE Mechanism

Since it is difficult to find out all vulnerabilities of operating systems and to
patch them, we need a technique that can control abnormal access to a system
by discovering characteristics of process creation. Before we get down to details
of a technique that is based on the characterization of process behavior, we
should examine the execution procedure of normal boot processes closely to use
a control technique which can regulate an abnormal access within boot processes.
The majority of the actual intrusions do not follow normal system operations no
matter which exploit was used [8]. Thus, we will investigate from boot processes
running during the operating system startup, then explain a principle and control
procedures of abnormal processes.

3.1 Windows NT Boot Process

A process is a container for a set of resources used when executing an instance
of a program. As with other operating systems, Microsoft Windows system goes
through an elaborate boot up process. The boot process has a series of sequential
steps since the computer is powered on. By understanding the details of the boot
processes, we can diagnose problems that can arise during a boot. Our objective
is to make our host system safe against any intrusions since the host starts up.
The tracing abnormal behavior of system processes can achieve an execution of
safe system booting and correct booting procedure. Thus, we show the execution
steps of boot support files and the information on what some of the system files
are for. We can represent process execution sequences of an operating system
as a tree design. Figure 1 illustrates process execution sequences of Microsoft
Windows NT system. The sequence of Windows boot processes is all arranged
beforehand until application programs are executed. Application processes will
be corresponded to a leaf node which is a node that has zero child nodes. When
considering the process sequence tree, we can see that the path from a root node
to a leaf node has a regular pattern. If an unauthorized user accesses to a system
using a system’s vulnerabilities, the executed process sequence by the attacker
has a different characteristic from the normal process execution sequence. Thus,
we propose a model which can detect an abnormal execution of a process by
analyzing process execution relationship from a root node to a leaf node using
a process tree.
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System

ntoskrnl.exe

smss.exe

winlogon.execsrss.exe

lsass.exe userinit.exeservices.exe

explorer.exe•••

•••

< service processes >

< user processes >

Fig. 1. The process tree of Microsoft Windows NT system

3.2 Design

The boot processes are executed in sequence during the booting steps of an oper-
ating system. However, it is possible that an adversary is able to exploit a system
using specific bugs or vulnerabilities such as overflows during a boot. Since an
attacker executes at least one process to invoke an abnormal behavior to over-
whelm a system, a check of whether a process is executed by the operating system
came from a normal process or a non-related process helps prevent attacks such
as an overflowed buffer exploit. Thus, we design a host-based intrusion preven-
tion system beginning with boot processes to execute the system securely. Our
system, PROBE, takes a closer and deeper look at the activity of processes run
on the host, calculates three weights on each edge based on relationship between
a parent process and a child process, and determines acceptance or rejection of a
process using the three weights. Therefore, PROBE protects desktops or servers
by keeping operating systems securely from intrusions.

Process Information. To build a process tree and obtain the characteristics of
each path, we need some information related to processes. PROBE utilizes the
information which is provided by the operating system related to the processes.
A number of tools for viewing processes and process information are available[9]:
the tools included within Windows itself, Windows resource kits, and etc. The
most widely used tool to examine process activity is Task Manager. We arranged
these information into the six categories in Fig. 2.

3.3 Three-Phase PROBE Mechanism

PROBE inspects and detects abnormal behaviors by looking at processes within
a host. To facilitate the understanding the relationship of processes, we present
a process tree that shows parent and child connection between processes. For
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  UID, PID, PPID

  STime, CTime, MTime, ATime

  Name, Path, Cmd Line, Description, Company

  Winsock, GDI, Advapi, DirectX

  CPU, Memory, Stroage, Network

  Environment Values

ID

Time

Image

Module

Resource

EnvValue

Fig. 2. Process Information which presents a unique process characteristic that can be
gained from Windows

Tree Builder

Path Checker

Process Controller

Pass Drop
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Path

Plagued 
Path

Path Rule
Process

Information

PID
PPID

- Healthy Path
- Plagued Path

Fig. 3. The architecture of PBOBE that consists of three phases: Tree Builder, Path
Checker, and Process Controller

doing this, PROBE works according to following three phases: Tree Builder, Path
Checker, and Process Controller. We schematized the architecture of PROBE in
Fig. 3.

A process behavior-based host intrusion prevention system starts from creating
a tree structure. Tree Builder creates a process tree using PID and PPID of a pro-
cess. After the process tree is created, Path Checker analyzes each tree path based
on Healthy Path Rule and Plagued Path Rule. First, if the path is not determined
as a Leaf-Node path which is a Plagued Path Rule, the process is a healthy path.
Otherwise it is a suspicious process, so it needs additional steps. If there is a path
which is decided as a healthy path by Healthy Path Rule among plagued paths, it
becomes also a healthy path. Finally, Process Controller manages the process ac-
cording to the prejudged decision. Healthy paths are executed and plagued paths
are dropped in this phase. This procedure is illustrated in Fig. 4.

Tree Builder. Tree Builder monitors processes of a system, then creates a pro-
cess tree from running processes on an operating system. A node in a tree is a
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Fig. 4. The general algorithm of PBOBE. The θ threshold value represents a discrim-
inator to distinguish a normal process and an abnormal process. Thus, the value of θ
should be feasible for discriminating between a usual process and a unusual process.
We set the value as 0.7 in our simulation.

running process and it has references to other nodes. To construct a tree, we
use a process identifier which is a number used by an operating system kernel
to uniquely identify one specific process. Using two process identifiers, one for a
process’s PID (Process ID) and the other for a process’s PPID (Parent Process
ID), it can create a tree based on a relationship between a parent process and a
child process. The tree is created by first running system process with both child
pointers null. Thus, the root node of a tree is the node with no parents. After the
following process begins according to process steps required to boot a system, the
additional node is created and inserted into the root node as child node to build a
larger tree. Thus, a process which has a PID of a newly launched process creates
a node. After checking its PPID, the process becomes a child node of its parent
process node. The procedure of Tree Builder is described in Fig. 5.

Path Checker. Path Checker analyzes each directed edge of a tree which was
made at Tree Builder phase and detects if something abnormal occurs according
to Healthy Path Rule and Plagued Path Rule. For this, we use important infor-
mation from operating system about system objects—attributes, modification
time, etc. This Process Information is later used for checking the processes
whether they are under the rule of Healthy Path or Plagued Path. Path Checker
uses this Process Information to attempt to determine the intent of a process by
catching the relationship with a parent process and a child process. PROBE can
detect abnormal process execution just only examining local tree information of
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Fig. 5. The first phase of PROBE: Tree Builder

an edge between a parent node and a child node, which was connected by the
creation procedure of a process, not all tree information.
• Plagued Path: Abnormal path. It defines the edge in the process tree which

is constructed through Tree Builder phase when the process is executed by
a suspicious behavior. We assigned Leaf-Node Path into the plagued path
which has a probability of something abnormal behavior happening.

• Healthy Path: Normal path. It defines the edge in the process tree which is
constructed through Tree Builder phase when the process is executed by an
ordinary behavior. We assigned Shell-Leaf Path, the parent process serves
as a shell process, and Twins Path, two related processes triggered from one
program execution, into the healthy path.

Leaf-Node Path. Leaf-Node Path checks if the child process is an application
process node. Each downward path from a root node to a leaf node is unique. In
principle, processes from application programs are dangled at the bottommost
level of the tree. Typically, most of application processes do not create any
child processes except a process that carries out a function as a shell program.
Leaf node application processes are only executed by a particular parent process
such as a shell program. Figure 6 describes an algorithm that measures weight
of Leaf-node path. Thus, if it is perceived that both a parent process and a
child process are processes derived from any application programs, there might
be a possibility that something abnormal such as execution of exploits using
buffer overflow is happening. That is, it is considered as a doubtful activity that
application process creates another application process.

Shell-Leaf Path. Shell-Leaf Path checks if the parent node which executes a
child process node is a shell program process. A shell denotes not only the
system-defined shell, Explorer.exe, but also a program which serves as a shell
process. The way to determine normal behavior would be to monitor process
relationships in execution. Figure 7 shows these relationships. To identify a shell
process, sibling processes created from a same parent process are influenced to
weight a value of Shell-Leaf Path.
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Fig. 6. Leaf-Node Path, which is a plagued path, is considered to be a security risk if
the behavior of process is related to any of intrusion’s behaviors we defined as follows:
1) the parent process uses network services, 2) the child process uses network services,
3) the child process is not associated with Windows graphics, or 4) the child process
utilizes advanced Windows API’s.

Fig. 7. Shell-Leaf Path which is a healthy path to check the parent process fills the
role of characteristics of Windows shell

Twins Path. Twins Path checks a characteristic of closeness between two nodes.
We named it Twins Path that a path between a parent process and a child
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Fig. 8. Twins Path which is a healthy path to measure how much the parent process
and the child process are related. The δ threshold value denotes time interval to measure
the creation time difference of a parent process and a child process within a certain
span.

process has a similar characteristic. When there is a similarity between processes,
an application process can execute another application process. Thus, a process
not owned by the requesting process will be blocked by this phase. This is a signal
that an abnormal behavior is happening. To measure the similarity between a
parent process and a child process, we use the Process Information such as
process image creation time and company to reflect weight of similarity into
Twins Path as shown in Fig. 8.

Process Controller. Process Controller regulates process execution according
to whether the process path is healthy path or plagued path. When the process
behavior of a system deviates far from the Path Rule, alerts are generated and
the process cannot be executed.

4 Evaluation

Today attacks are often taking advantage of multiple vulnerabilities. In order
to measure the effectiveness of PROBE, we need to develop a means to produce
an accurate model of today’s Internet security vulnerabilities. It has been
tested using SANS Top-20 lists[10] released in recent two years, November 2006
and November 2005. SANS announces critical vulnerabilities, the most often
exploited Internet security flaws, that led to worms like Blaster, Slammer, and
Code Red every year since 2000. Among 40 vulnerabilities released in 2006 and
2005, there are 28 vulnerabilities (13 in 2006 and 15 in 2005) which are applicable
to Windows system. Out of 28, we selected 16 remotely exploitable vulnerabilities
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Table 1. The 16 remotely exploitable vulnerabilities in Windows system among critical
Internet security vulnerabilities (SANS Top-20 lists) released by SANS Institute in 2006
and 2005

on Windows system except for vulnerabilities overlapped or applied to a specific
application. We assumed that 16 vulnerabilities to be arisen in our system. Those
are shown in Table 1.

We simulated PROBE using vulnerability information on Microsoft Windows
XP Professional SP2. Figure 9 presents a system process tree that shows pro-
cesses used in our simulation. We need weight of Process Information such as
Winsock, GDI, Advapi, Storage, CTime, Path, and Company to calculate weight
of each edge between a parent process and a child process. We use these weights
to calculate Leaf-Node Path, Shell-Leaf Path, and Twins Path in PROBE’s 3
phases. In each phase, the weights of Process Information have a same value
within its phase. By using these weights of Process Information, each process
calculates three edge weights. The first one is Leaf-Node value. If its value is
close to 1, the process has a high possibility that it is an abnormal process. The
second value is Shell-Leaf. If a process relationship is Shell-Leaf, the value is
close to 0. It means that an abnormal behavior of a process has 1. The third
value is Twins. It checks how much the two processes are similar. If they are
totally different, it has a value close to 1. Thus, if all three weight values exceed
a predefined threshold, the process is regarded as an abnormal process. We can
see the results of PROBE simulation in Fig. 10. All attacks were detected except
for “attack 4” and it shows false-negative. This happens because the process
used vulnerabilities in “services.exe”. PROBE does not detect an intrusion in
case of an attack which uses a vulnerability of a known shell. Also, there is a
false-positive case. Because yahoo widget is not known as a process which roles
as a shell, it causes a false alarm.

Therefore, PROBE detects most of intrusions which utilize remotely
exploitable vulnerabilities except for attacks via normal processes. Thus, PROBE
shows desirable host-based intrusion prevention capabilities. By investigating
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Fig. 9. A system process tree that shows process relationships used in our simulation
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Fig. 10. The result of our simulation. Among 8 attack cases, 7 attacks are detected.
There happened one false-negative case and one false-positive case.

more Healthy Path Rule to strengthen PROBE, we will be able to reduce false-
positive and false-negative rate, and achieve a much better result than now.

5 Discussion

5.1 Benefits of PROBE

When an unauthorized user wants to have access to a system, the user utilizes
bugs or design flaws in the system. The flaw or weakness in the system makes
an opportunity to force it to conduct unintended operations by malicious users
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and vandals. Especially, the unknown attacks occur when prevalent signatures
of attacks are not able to identify the attacks. It takes a great deal of time until
patches to be applied and signatures to be updated. Fighting the unknown attack
is one of the greatest challenges facing the security industry today[11]. Thus, we
need to adopt an anomaly detection approach to reduce a false-negative effect
against unknown attacks.

Additionally, PROBE has very low process monitoring overhead and memory
requirements. The existing studies[2,3,4] for anomaly detection need enormous
traces of system calls which should be monitored to discriminate between nor-
mal and abnormal characteristics. In contrast to the earlier approach based on
system call behavior (normal database size of sendmail-1318, lpr-198, and ftpd-
1017, which is the unique sequence of system calls for each of the process to be
stored in each process database)[4], we only use 7 process information to deter-
mine a normal process and an abnormal process. Thus, it is light-weight and
practical solution for intrusion prevention. Also, Fig. 11 shows the PROBE’s
elapsed time of API calls in comparison with existing mechanisms. We can see
that PROBE has the highest efficiency in processing by comparing the elapsed
time of API calls. Our evaluation of PROBE demonstrates that it exhibits low
process monitoring overhead and memory requirements. PROBE rapidly and
efficiently detects novel attacks at exceedingly low memory and processing time.
When compared with existing intrusion detection methods which use system
call sequences, PROBE differs in that we use a much simpler way to detect
intrusions. For a program, the theoretical sets of system call sequences will be
huge. Complete attack prevention is not realistically attainable due to system
complexity. Thus, we rely on examples of normal system process runs rather
than normal databases of all unique sequences during traces of system calls. An
advantage of our approach is that we do not have to build up the set of nor-
mal system call patterns for the database. We simply compare with predefined
process creation rules by tracing processes of a system. Therefore, PROBE is an
efficient solution for detecting intrusions.

5.2 PROBE Limitations and Future Work

PROBE is a network-based intrusion prevention system that uses system
processes to detect attacks which use security vulnerabilities by looking for in-
trusions performing programs without passing through legal process creation
procedure. System damage due to an attack is caused by running programs that
execute system processes. Thus, we restrict our attention to running system
processes. Intrusions are detected when a process behaves out of its characteris-
tics of normal system processes. The Path Rule between processes is defined to
represent the ongoing behavior of the process creation.

It is important that intrusion detection systems are capable of detecting
attacks against the Windows NT operating systems because of its growing
importance in government and commercial environments[12]. There are lists
of Windows NT attacks developed for the 1999 DARPA Intrusion Detection
Evaluation[12]. These attacks categorize with groupings of the possible attack
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Fig. 11. We measured the elapsed time of API calls (milliseconds). PROBE is compared
with existing intrusion detection mechanisms: signature scanning (misuse detection),
syscall trace (system call traces), and selected syscall trace (partial system call traces).
We tested under 3 attack environments: attack1 (Remote-to-User attack which estab-
lishes backdoors), attack2 (Remote-to-User attack which is a trojan horse that allows
a remote attacker to control a system), and attack3 (Remote-to-User attack which uses
a buffer overrun vulnerability). Under these attacks, we can see that PROBE executes
intrusion detection at a low processing time.

types: Denial-of-Service, Remote-to-User, and User-to-Super-user. Table 2 shows
a description of each attack category and document the individual Windows NT
attacks in each category. These attacks spawn processes which deviate from
normal process execution. PROBE can detect intrusions which use system or
software bugs or exploits such as vulnerabilities in the victim computer or tro-
jan programs to establish backdoors on the victim system. Most attacks create a
new process which deviates from normal process behavior even in case of adding
a user to penetrate into the system by exploiting a vulnerability on a system.
Thus, it does not pass through normal process creation procedure.

The major problem is that system’s behaviors change with time. As a result,
the system’s behavior can deviate more from the Path Rule initially determined.
To solve the problem of false-negative by the unknown attacks, we followed
anomaly detection approach. However, it has a limitation to discriminate be-
tween attack and non-attack. To protect against newly discovered attacks, we

Table 2. Windows NT Attacks Developed for the 1999 DARPA Intrusion Detection
Evaluation
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need more Path Rule to evolve. Certain intrusions which can only be detectable
by examining other aspects of a process’s behavior, and so we might need to
consider them later. Future work will focus on extending PROBE to find other
abuses of privilege and to find an error in configuration of a system. Also, we
intend to expand our base of intrusions and gather more data for more processes
running in real environments, so we can get more realistic and accurate estimates
of false-positive and false-negative.

6 Conclusions

Our system, PROBE is a host-based intrusion prevention system which is in-
stalled on a particular host and detect attacks targeted to that host only. For
the purpose of protecting a system against host-based attacks, we proposed pro-
cess behavior-based protection approach. PROBE is designed to detect security
vulnerabilities in a host without monitoring every system calls. It only finds out
the characteristics of process relationship between a parent process and a child
process. Thus, it can detect unknown attacks by judging a behavior of process
creation relationship. Also, it is a light-weight solution, and shows practical and
accurate result for intrusion prevention. Our approach was evaluated on a test
set of SANS Top-20 Internet Security Attack Targets. The results demonstrate
that our approach can effectively identify the behavior of abnormal processes.
Future work will focus on extending PROBE to reduce false-positive by analyz-
ing process relationships and find out more accurate results. By using PROBE,
we expect to secure our systems against unknown system vulnerabilities of new
kinds of exploits.
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Abstract. QKD networks are of much interest due to their capacity
of providing extremely high security keys to network participants. Most
QKD network studies so far focus on trusted models where all the net-
work nodes are assumed to be perfectly secured. This restricts QKD net-
works to be small. In this paper, we first develop a novel model dedicated
to large-scale QKD networks, some of whose nodes could be eavesdropped
secretely. Then, we investigate the key transmission problem in the new
model by an approach based on percolation theory and stochastic rout-
ing. Analyses show that under computable conditions large-scale QKD
networks could protect secret keys with an extremely high probability.
Simulations validate our results.

1 Introduction

The problem of transmitting a secret key from an origin to a destination over the
network was considered for a long time. The current solution in most Internet
applications is using Public Key Infrastructure (PKI). PKI relies on plausible
but unproven assumptions about the computation power of eavesdroppers and
the non-existence of effective algorithms for certain mathematical hard problems.
As a result, PKI cannot meet the highest security level, also called unconditional
security. Quantum Key Distribution (QKD) technology is a prominent alterna-
tive [1]. It was proven that QKD can provide unconditional security [2, 3, 4]. It
is successfully implemented in realistic applications [5, 6, 7, 8]. However, QKD
only supports point-to-point connections and intrinsically causes serious limits
on throughput and range [5, 9]. A long-distance QKD transmission needs inter-
mediate nodes to relay the key. In realistic scenarios, some of these nodes could
be eavesdropped without the others knowing it. In consequence, the security of
key will be compromised. Larger networks are more vulnerable.

This paper studies a partially compromised QKD network model that allows
any member pair establishing securely a common key with almost certainty. The
contributions are (i) a model of partially compromised QKD networks, (ii) the use
of percolation theory techniques to find where almost-certainty can be achieved,
(iii) stochastic routing proposals capable of achieving a given secrecy level.

The remainder is organized as follows. Section 2 introduces the QKD net-
work’s context and proposes a novel model of the world-wide QKD network.
Section 3 presents related works. Section 4 seeks for the necessary condition to
achieve a given high secrecy of key transmissions. Section 5 presents our adaptive
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stochastic routing algorithms and analyzes their performances. We conclude in
Section 6. The proofs of the theorems are given in Appendix.

2 A Proposal for the World-Wide Quantum Network

Preliminary. QKD networks present two types of links: classical and QKD.
Classical links are easy to implement, capable of providing high-speed but low-
confidentiality communications. By contrast, QKD links aim at unconditional
security. This causes undesirable limits of rate and range [5, 9]. The ultimate
goal of QKD networks is unconditional security. QKD networks rather sustain
QKD’s restrictions to reach this goal. As such, there is no need to consider
classical links in studying QKD network prototypes. In the following we will
simply write links instead of QKD links.

The feasibly-implemented model of QKD networks so far is the trusted net-
work model. Its representers are SECOQC and DARPA networks [10, 6, 11, 12].
This model assumes that all the network nodes are perfectly secured. This as-
sumption is too strong in large-scale scenarios. Actually, eavesdroppers can in-
geniously attack a proportion of nodes without leaving any trace in large-scale
networks. Consequently, security may be compromised.

Restricted by a modest length of link, QKD networks don’t present many
choices of topology. Meshed topology would suit QKD networks [12]. Besides,
distributed architecture is considered to be good. This paper follows these ideas.
However we focus on the world-wide quantum network that is very different
from small-scale quantum networks like DARPA and SECOQC. For simplicity,
we choose the 4-connected grid topology. Nodes are represented by squares.
Links have no representation because they have no effect on security analysis
(see Fig. 1).

In QKD networks, intermediate nodes are vulnerable. Attacks are either de-
tectable or undetectable. In principle, if an attack is detectable then we can find
solutions to fix it. Undetectable attacks are very dangerous. We cannot detect
them until great damage has been done. We take into account such attacks.
Assume that each node sustains a probability pe being eavesdropped without
knowledge of the others. For simplicity, we focus only on cases where pe is the
same for all the nodes. Note that pe should be small unless eavesdropper re-
sources are much larger than those of legitimate users.

Modeling the World-Wide QKD Network Problem. Consider a 4-
connected grid lattice network (see Fig. 1). The network is large enough so that we
can ignore its borders. Nodes are represented by squares. Each node is connected
with its four neighbors. Links however are not represented since they do not affect
the security analysis. In graph theory our network is described as follows. Network
is the set of vertices V = Z2. A vertex is safe if it is not eavesdropped. Otherwise,
it is called unsafe. Each vertex is eavesdropped without any trace with probability
pe ∈ [0, 1]. As mentioned above, we focus only on the cases where pe is the same
for all the vertices. The probability that a vertex is safe is ps = 1− pe.
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Fig. 1. Two dimensional lattice network

Alice and Bob are represented by vertices vA and vB . Alice wants to convey a
secret key K to Bob. We study the secrecy probability Σ that K is not revealed
to the eavesdropper Eve. If vA and vB are adjacent then K certainly is safe, i.e.
Σ = 1. Otherwise, K must pass over l intermediate vertices v1, v2, .., vl whose
task is to relay K. The sequence π = vA, v1, v2, .., vl, vB is a path from vA to vB .
A path is safe if all its nodes are safe.

We define the length of path as the number of intermediate vertices. Since K
is transmitted in π, we have Σ(K) = pl

s. This implies that Σ is dramatically de-
creased with respect to (w.r.t) the length l. We focus on a simple way to improve
Σ: sending a number of sub-keys K1,K2, ..,KN by different paths π1, π2, .., πN .
K is computed by a bitwise XOR operation over K1,K2, ..,KN . As such, K is
safe unless Eve intercepts all π1, π2, .., πN . If the graph presents safe paths then
with a larger N , K is more likley to be safe. The following questions are basic:

1. When are all the safe vertices almost certainly connected? In other words,
find the condition on ps such that ∀Δ ∈ [0, 1] : Σ∞ = limN→∞(Σ) ≥ 1−Δ.

2. Assume that Σ∞ ≥ 1 −Δ. Given a pair of vertices (vA, vB), consider a set
of N paths π1, π2, .., πN from vA to vB generated by a proposed routing
algorithm. Let λ(N) be the secrecy probability of the final key if N sub-keys
are sent by π1, π2, .., πN . Find N0 such that for any small ε ≥ Δ, ε ∈ [0, 1],
we have: ∀N ≥ N0 : λ(N) ≥ 1− ε.

3 Related Work

Percolation Theory. This theory investigates the transition phase from the
non-existence to the existence of the giant wetted cluster when we pour water at
the center of a graph [13,14,15]. The 2-dimensional site percolation model can be
roughly described as follows. Let G = (V,E) be a graph with vertices set V and
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1

10

Fig. 2. The percolation probability θ(po)

edges set E. Vertices and edges are either open or closed. In the open status, they
allow water to pass through and water make them become wetted. Otherwise,
they do not allow the passage of water. All the edges are open. Each vertex is
open with open probability po ∈ [0, 1]. Let θ(p) be the percolation probability that
measures the proportion of wetted vertices to open vertices. Fig. 2 roughly shows
the behavior of θ w.r.t po. The value pc, the critical probability, is the minimum
po such that θ(po) > 0.

The 2-dimensional site percolation’s framework is similar to our network
model’s one. The open probability po and the safe probability ps play an equiv-
alent role. If we set ps = po and assume that vA sends to vB an infinite set of
sub-keys K1,K2, .. by an infinite set of different paths π1, π2, .., then the secrecy
probability Σ of the final key K is identical to the probability existing a safe
path between vA and vB. However this probability is equivalent to the probabil-
ity θ that almost open vertices belong to the infinite open cluster. We can apply
to Σ two important properties of θ [15]:

1. θ is a non-decreasing and continuous function in the right of pc (see Fig. 2).
2. The number of infinite open clusters is either 0 or 1 for θ = 0 or θ > 0,

respectively.

Stochastic Routing Algorithms. Traditional routing algorithms, such as
those used on the Internet, are mostly deterministic. Tailored to be efficient,
they are guessable, which is not a good property for our purpose. By contrast,
stochastic routing algorithms seem to be better. The basic idea is sending ran-
domly a packet to one of possible routes, not necessarily the “best” one. When
the message holder forwards a packet, the choice of next-hop is random, following
a next-hop probability distribution. The main challenge is how to determine the
best next-hop probabilities that optimize a given specific goal. Previous works
on stochastic routing [16,17,18] focus on performance metrics (latency, through-
put, acceptance rate, etc.) which are not of major importance to QKD networks
whose priority is security. Besides, the 4-connected grid topology also makes
previous optimizations on stochastic routing useless. We need to build our own
stochastic routing algorithms.
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4 Condition on ps for Σ ≥ 1 − Δ

Safe Connectivity Function. Two vertices vA and vB are safely connected if
there exists a safe path between them. In the percolation literature, Σ∞(vA, vB)
can be interpreted as the connectivity function τ(vA, vB). We can use the fol-
lowing approximation from [13]:

Σ∞(vA, vB) = τ(vA, vB) ∼ θ2 (1)

Given a non-negative small value Δ, we must find out the critical pc such that
∀ps : pc ≤ ps ≤ 1, we have Σ∞ ≥ 1 −Δ. Here, we propose a heuristic method
and use simulations to validate our method.

It is well known that the critical probability for the 2-dimensional lattice
percolation is about 0.6. From this value to 1, the percolation probability θ is
greater than zero, non-decreasingly and continuously tends to 1. Let ξ be the
probability that a given vertex is encircled by unsafe vertices, we have θ = 1− ξ.
From Approximation 1 we can derive the condition on ξ w.r.t a given Δ as
follows:

ξ ≤ 1−√1−Δ
Our task now turns into studying ξ in the region close to 0. The trivial case

where the given vertex is encircled by its four unsafe neighbors gives the lower
bound of ξ, or:

ξ ≥ (1− ps)4 (equality i.i.f ps = 1) (2)

If we set ps = 0.8 then from (2) we have ξ > 1.6 × 10−3. It is small enough
to temporarily set pc = 0.8 in order to incrementally study ξ in its low-value
region.

We first study ξ in the one-dimensional case. To distinguish ξ in the one-
dimensional and two-dimensional cases we denote by ξ(1) and ξ(2), respectively.
We measure ξ(1) for a given radius r (see Fig. 3.A).

ξ(1) =
(
Pr(At least one unsafe vertex in the left)

)×
(
Pr(At least one unsafe vertex in the right)

)
= (1− pr

s)
2

(3)

We now extend to ξ(2) from ξ(1). Assume that we are focusing on the vertex
O in the two-dimensional lattice. Let R(r) be the set of vertices of distance
r from O. We study unsafe circuits inside R(r). Denote by (see Fig. 3.C and
Fig. 3.B):

– G(r): the event that there are unsafe circuits that encircle the vertex O and
do not exceed R(r).

– GLR(r): the event that there are unsafe vertices at both the left and the
right of the vertex O. These unsafe vertices are inside the radius r from O.

– GUD(r): the event that are unsafe vertices both above and below the vertex
O. These unsafe vertices are inside the radius r from O.
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Fig. 3. Unsafe circuits in the one-dimensional and two-dimensional cases

Obviously, Pr
(
G(r)

) ≤ Pr
(
GLR(r)

) × Pr
(
GUD(r)

)
. That means

ξ(r) = ξ(2)(r) ≤ (
ξ(1)(r)

)2 (4)

By applying (3) to (4), we have:

ξ(r) ≤ (1− pr
s)

4 (5)

Based on G(r) we define the event G(r1, r2) is an event that there is no unsafe
circuit inside the inferior R(r1) but there is an unsafe circuit inside the exterior
R(r2). Let ξ(r1, r2) be the probability that the event G(r1, r2) appears. We have:

ξ(r2) = ξ(r1, r2) + ξ(r1)

Let r2 tend to infinity and set r1 = r, we have:

ξ = ξ(∞) = ξ(r) + ξ(r,∞) (6)

The upper bound of ξ is estimated by applying (5) to (6):

ξ = ξ(∞) ≤ (1− pr
s)

4 + ξ(r,∞) (7)

If a circuit belongs to the set G(r,∞) then its length must be equal or greater
than 2r. As such, the minimum degree of pe in the function ξ(r,∞) is 2r or
ξ(r,∞) = O

(
p2r

e

)
= O

(
(1− ps)2r

)
.

We consider the ratio between ξ and (1− ps)2r. From (2),

lim
r→∞

ξ

(1− ps)2r
≥ lim

r→∞
(1 − ps)4

(1− ps)2r
=∞

This is to say ξ >> (1 − ps)2r ∼ ξ(r,∞), or ξ >> ξ(r,∞) as r → ∞. Fig. 4
shows the ratio between two quantities (1 − ps)4 and (1 − ps)2r with values of
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Fig. 4. The ratio between (1 − ps)
4 and (1 − ps)

2r

ps in [0.8 : 1]. We realize that in order to get a great ratio about 108, we can
choose r = 8 for ps ∈ [0.8 : 0.9] and r = 6 for ps ∈ [0.9 : 1]. With these choices
of r, we can ignore ξ(r,∞) in the formula of the upper bound of ξ. We derive
from (7) to the following approximation:

ξ ≤
{

(1− p8
s)

4, if 0.8 ≤ ps < 0.9
(1− p6

s)4, if 0.9 ≤ ps ≤ 1

Simulations. We first determined the possible size of the world-wide quantum
network according to our proposed model. The Earth’s surface is 510,065,600
square kilometers. The optimal length of QKD links so far is believed to be
approximately 40 km long [11]. Thus, the network size is approximatively of
600× 600.

Simulation was done in the 2-dimensional grid lattice 600 × 600. For each
experiment, we randomly generated an untrusted network w.r.t a given ps. Then,
we used the spreading algorithm to find the greatest connected safe cluster. We
calculate the probability ξsi that a safe vertex does not belong to the greatest
safe cluster as follows:

ξsi = 1− The number of nodes belonging to the greatest safe cluster.
The number of all the safe nodes.

We executed 104 experiments for each ps. Table 1 shows theoretic values and
simulation results. We realize that as ps increases the mean of ξsi gets closer to
its lower bound, and both tends to 0. For ps ∈ [0.8 : 0.9], the upper bound of ξ
is important in comparison with pe = 1 − ps. This implies that the probability
that the final key is eavesdropped in its transmission is greater than that of the
final key being eavesdropped at the transmitter. This is out of our interest. By
contrast, for ps ∈ [0.93 : 1] the upper probability of ξ is approximate or less than
the probability of this vertex itself being unsafe. This seems more interesting.
Table 1 also suggests that ξ ∼ ξlb = (1− ps)4 for ps ∈ [0.93 : 1].
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Table 1. Lower bound ξlb, mean of simulations E(ξsi) and upper bound ξub

ps ξlb E(ξsi) ξub

0.8 1.6 × 10−3 2.14 × 10−3 4.79 × 10−1

0.83 8.35 × 10−4 1.03 × 10−3 3.6 × 10−1

0.86 3.84 × 10−4 4.47 × 10−4 2.4 × 10−1

0.9 1 × 10−4 1.12 × 10−4 4.82 × 10−2

0.93 2.4 × 10−5 2.7 × 10−5 1.55 × 10−2

0.95 6.25 × 10−6 7 × 10−6 4.92 × 10−3

0.97 8.1 × 10−7 1 × 10−6 7.78 × 10−4

5 Applying Stochastic Routing Algorithms

5.1 Some Proposed Routing Algorithms

An Adaptive Drunkard’s Routing Algorithm (ADRA). In the classic
drunkard’s walk problem, the next-hop probability distribution is unbiased. We
propose an adaptive drunkard’s routing algorithm, named ADRA, that is biased.
The idea is to give a bigger chance for the vertex that is closer to the destination
vertex. Assume that the vertex vA wants to send a message to the vertex vB .
The vertex vA computes next-hop probabilities for its neighbors. This compu-
tation is based on the coordinate correlations between neighbors and vB . The
higher probability is given to the vertex that is closer to vB . Then the vertex vA

randomly chooses one of its neighbors to forward the message, but according to
the probability distribution that has been computed. Anyone that subsequently
receives the message would do the same thing and the chain of communication
would continue to reach to vB .

A Constant-Length Stochastic Routing Algorithm (l-SRA). The length
of a path is the number of the vertices belonging to the path. A vertex may
be counted as many times as the path runs through this vertex. The distance
between two vertices is the length of the shortest path between these vertices.

Our constant-length stochastic routing algorithm, called l-SRA(l) or l-SRA for
short, is a stochastic routing algorithm that takes a value l as input and tries to
transmit a message by a random path of length l.

Assume that there are some different paths π1, . . . , πm that hold l(π1) = . . . =
l(πm) = l. Note that in the 4-connected grid lattice, it must l = d+ 2× k, k ≥ 0.
When sending a message l-SRA will choose randomly a path πi among π1, . . . , πm

according to a probability distribution that holds two following conditions:

1. ∀i, 1 ≤ i ≤ m : 0 ≤ Pr(l-SRA(l) takes πi) ≤ 1
2.

m∑

i=1

Pr(l-SRA(l) takes πi) = 1 (8)
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Theorem 1. The probability that l-SRA(l) chooses successfully a safe path to
send one message depends only on the safe probability p and the length l, not on
the distance d between Alice and Bob:

Pr(1, p, d, l-SRA(l)) = pl

A Parameterized-Length Stochastic Routing Algorithm (k-SRA). This
algorithm takes an input parameter k > 1, and tries to transmit the message by
a path of length l ≤ k× d. We call this algorithm k-SRA(k) or k-SRA for short.
It is built based on l-SRA. The idea is as follows. When k-SRA(k) receives the
input k > 1, it considers the paths of length l ≤ k × d. Note that the difference
between the length and the distance cannot be an odd number. Therefore, the
possible lengths are d, (d+ 2), . . . , (d+ 2×
 (k−1)×d

2 �). When sending a message
k-SRA(k) chooses randomly for l a value among d, (d+2), . . . , (d+2×
 (k−1)×d

2 �)
according to the uniform distribution, i.e:

∀i, 0 ≤ i ≤ u = 
 (k − 1)× d
2

� : Pr
(
(d+ 2× i) is taken for l

)
=

1
(k + 1)× d

Once l was chosen, k-SRA uses l-SRA to send the message. This implies that
the message will take a random path that has the length l.

Theorem 2. The probability that k-SRA(k) chooses successfully a safe path to
send one message depends on the safe probability p, the input parameter k, and
also the distance d between Alice and Bob:

λ = Pr(1, p, d, k-SRA(k)) =
pd × (1− p2×(u+1))
(u+ 1)× (1 − p2)

(9)

5.2 Our Proposed Routing Algorithms in Some Attack Strategies

We consider two attack strategies of Eve:

1. Dynamic attack: To catch a set of N messages Eve frequently re-chooses
nodes being attacked.

2. Static attack: Eve keeps her choice of the nodes being attacked until all N
messages have been sent.

Because the algorithm ADRA is based on random walk, it does not give
rigorous mathematical results. Its performance is estimated by experimental
statistics. The algorithm l-SRA is not a real routing solution. This algorithm only
executes one sub-task of the algorithm k-SRA. The algorithm k-SRA presents
some rigorous bounds.

Theorem 3. If Eve executes a dynamic attack, then the probability that there
is at least one safe path in N routings of k-SRA(k) depends on N , the safe
probability p, the input parameter k, and the distance d between Alice and Bob:

Pr(N, p, d, k-SRA(k)) = 1− (1− λ)N

Where λ is evaluated in (9).
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We have a lemma derived directly from the theorem 3.

Lemma 1. If Eve executes a dynamic attack, given ε and k-SRA(k), then we
have the threshold N0 responding to the second question stated in Section 2:

N0 =
lg(ε)

1− lg(λ)

Where λ is evaluated in (9).

Theorem 4. If Eve executes a static attack, then the upper bound of the prob-
ability that there is at least one safe path in N routings of k-SRA(k) depends
on N , the safe probability p, the input parameter k, and the distance d between
Alice and Bob:

Pr(N, p, d, k-SRA(k)) ≤ 1− (1− λ)N

Where λ is evaluated in (9). The equality is possible when N ≤ 4.

We have a lemma derived directly from the theorem 4.

Lemma 2. If Eve executes a static attack, given ε and k-SRA(k), we have the
threshold N0 responding to the second question stated in Section 2:

N0 ≥ lg(ε)
1− lg(λ)

Where λ is evaluated in (9). The equality is possible when N0 ≤ 4.

5.3 Simulations

ADRA’s Simulations. The next-hop probabilities computation can vary to
result in many ADRA’s variants. Here we reused the next-hop probabilities com-
putation presented in [19]. Then, we ran simulations in the lattice 600× 600, in
varying the safety probability ps ∈ [0.93 : 1] and the distance dAB between Alice
and Bob [19, 20]. For each ps, we generated a network with randomly spread
eave-droppers. For each distance dAB, we generated 400 (Alice, Bob) pairs. For
each such pair, we ran 400 experiments. In each one we generated stochastic
routes from Alice to Bob until we find a safe one (i.e., a route with no Eve).
For each 400 experiments we gathered the largest number of messages that were
needed. To avoid sending an infinite number of messages, we set the maximum
effort to 104 messages.

Table 2 presents simulation results. This suggests that there exists a threshold
of the number of sending messages above which we can be almost certain that
there exists at least one safe message.

k-SRA’s Simulations. Simulations were implemented in the lattice 600×600.
We ran 104 experiments. The table 3 shows the lower bounds, the simulation
values, and the upper bounds for the case of k = 2 and d = 10 with ps =
0, 93; 0.95; 0.97; 0.99. Note that the lower bound holds if N messages have taken
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Table 2. Worst cases’s experiment results. Symbol × stands for more than 10,000.

ps ps

d 0.99 0.98 0.97 0.96 0.95 0.94 0.93 d 0.99 0.98 0.97 0.96 0.95 0.94 0.93

1 8 12 12 22 14 12 14 10 149 169 340 1267 3731 1267 2854
2 44 105 122 68 82 425 106 20 127 338 829 9300 × × ×
3 87 51 273 99 122 233 439 30 315 1987 2908 × × × ×
4 95 171 160 408 244 1125 476 40 386 4111 × × × × ×
5 66 61 186 917 286 967 2149 50 437 × × × × × ×
6 34 397 356 377 644 583 921 60 656 × × × × × ×
7 43 194 155 395 625 420 2102 70 1911 × × × × × ×
8 72 1645 224 414 936 773 1663 80 3117 × × × × × ×
9 53 185 477 386 585 717 2794 90 7039 × × × × × ×
10 149 169 340 1267 3731 1267 2854 100 4117 × × × × × ×

110 × × × × × × ×

Table 3. Lower bound, experimental results, upper bound of the key secrecy for ps =
0.93; 0.95; 0.97; 0.99. λsi is the percentage in 104 experiments done.

ps = 0.93 ps = 0.97

N λlb(%) λsi(%) λub(%) N λlb(%) λsi(%) λub(%)

1 34.71 42.54 34.71 1 63.66 69.99 63.66

10 34.71 80.57 98.59 10 63.66 93.84 98.59

100 34.71 95.36 100 100 63.66 98.94 100

1000 34.71 99.52 100 1000 63.66 99.94 100

10000 34.71 99.96 100 10000 63.66 100 100

ps = 0.95 ps = 0.99

N λlb(%) λsi(%) λub(%) N λlb(%) λsi(%) λub(%)

1 47.04 54.31 47.04 1 86.05 88.75 86.05

10 47.04 87.96 98.59 10 86.05 98.40 100

100 47.04 97.59 100 100 86.05 99.81 100

1000 47.04 99.84 100 1000 86.05 99.99 100

10000 47.04 100 100 10000 86.05 100 100

the only possible path. The convergence of the experimental results to their
upper bound is significant. We realize that the secrecy probability of the final
key is a non-decreasing function. As the number of sent messages increases, this
probability converges to its upper bound. Moreover, both tend to 1 as N →∞.

6 Conclusions

We investigated constraints of quantum networks, in particularly, the ineluctable
probability that some nodes are compromised. Given the distance between source
and destination, we proposed routing algorithms and estimated the number of
pieces that the message must be divided into with respect to the distance and the
compromising probability distribution imposed over nodes. The principle result
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of our work is that it opens another door allowing to investigate QKD networks
using percolation theory and stochastic routing.

A lot of work remains to be done in the future. For example, we need to
take into account key authentication to complete our key exchange scheme. The
eavesdropping distribution was uniform in this paper. More complex probability
distributions seem more interesting. Studying other topologies will be of signif-
icance, grids are only the first step. We also aim at finding rigorous and tight
formulas. Besides, we must improve our stochastic routing proposals, e.g. hiding
routing information as onion routing. We attach importance to throughput and
computational overhead in practice. We plan to carry out a cost estimation with
respect to today’s QKD technology.

Acknowledgements. We thank Steve Frank and Daniela Becker for their
proofreading. All the mistakes are ours.
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Appendix

Proof of theorem 1. Pr
(
1, p, d, l-SRA(l)

)

=

k∑

i=1

(
Pr

(
l-SRA(l) takes πi

) × Pr(πi is safe)
)

=

k∑

i=1

(
Pr

(
l-SRA(l) takes πi

) × pl
)

=
( k∑

i=1

Pr
(
l-SRA(l) takes πi

)) × pl = pl ( from (8))

Proof of theorem 2. λ = Pr
(
1, p, d, k-SRA(k)

)

=
∑

l=d,..,d+2u

(
Pr

(
k-SRA(k) takes l

)× Pr
(
l-SRA(l) takes a safe path

))

=
∑

l=d,..,d+2u

(
1

(u+ 1)
×

(
Pr

(
1, p, d, l-SRA(l)

))
)

=
1

(u+ 1)
×

( ∑

l=d,..,d+2u

(
Pr

(
1, p, d, l-SRA(l)

))
)

=
1

(u+ 1)
×

( ∑

l=d,..,d+2u

p(l)
)

=
pd × (1− p2(u+1))
(u + 1)× (1− p2)

http://arxiv.org/abs/quant-ph/0701168
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Proof of theorem 3. It is a memoryless system. From (9),

Pr(All the N trials are failed) =
(
1− Pr(A trial is successful)

)N = (1 − λ)N

→ Pr(N, p, d, k-SRA(k)) = Pr(At least one of N trials is successful)

= 1− Pr(All the N trials are failed) = 1− (1− λ)N .

Proof of theorem 4. We must take into account the path dependence of N
paths taken by N messages sent. The probability that k-SRA(k) takes an unsafe
path for each trial is:

Pr(1, p, d, k-SRA(k)) =
∑

d≤l≤k×d

(
Pr

(
k-SRA(k) takes l

)×

Pr
(
l-SRA(l) takes an unsafe path

))
= 1− λ

(10)

The probability of N messages being intercepted is:

Pr(N, p, d, k-SRA(k)) =
∑

d≤l1≤k×d
...

d≤lN≤k×d)

(

Pr
(
k-SRA(k) takes (l1, . . . , lN )

) ×

( ∑

lπ1
=l1,
...

lπN
=lN

(
Pr(l-SRA takes π1 . . . πN )× (

Pr(π1 . . . πN are failed)
))

)) (11)

For a given path set (π1, . . . , πN ), we can prove the following inequality:

Pr(π1, . . . , πN are failed) ≥
N∏

i=1

Pr(πi is failed) (12)

Where the equality holds i.i.f π1, . . . , πN are independent.
We first prove with N = 2. Assume that π1, π2 have the length l1, l2 respec-

tively, and have l common nodes (0 ≤ l ≤ min(l1, l2)). We have:

Pr(π1, π2 are failed) = pl × (1− p(l1−l))× (1− p(l2−l)) + (1 − pl)

= (1− p(l1))× (1 − p(l2)) + (p(l1+l2−l) − p(l1+l2))

≥ (1− p(l1))× (1 − p(l2)) = Pr(π1 is failed)× Pr(π2 is failed)

Inequality (12) was proven with N = 2. We iterate this to obtain (12) for
∀N . Note that the equality holds iff π1 . . . πN are separated. In the square 4-
connected lattice there are maximum 4 separated paths between Alice and Bob.
Thus, if N > 4, the equality for (12) cannot appear. By applying (12) to (11),
we have:
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Pr(N, p, d, k-SRA(k)) >
∑

d≤l1≤k×d
...

d≤lN≤k×d)

(( N∏

i=1

Pr
(
k-SRA(k) takes li

)) ×

( ∑

lπ1
=l1,
...

lπN
=lN

( N∏

i=1

Pr(l-SRA takes πi)
) × ( N∏

i=1

Pr(πi is failed)
))

)

=
∑

d≤l1≤k×d
...

d≤lN≤k×d)

(
( N∏

i=1

Pr
(
k-SRA(k) takes li

)) ×

( lN∏

lj=l1

( ∑

lπi
=lj

(
Pr(l-SRA takes πi) × Pr(πi is failed)

))))

=
∑

d≤l1≤k×d
...

d≤lN≤k×d)

( N∏

i=1

Pr
(
k-SRA(k) takes li

) ×
lN∏

lj=l1

Pr
(
l-SRA(lj) takes an unsafe path

))

=
∑

d≤l1≤k×d
...

d≤lN≤k×d)

(( N∏

i=1

Pr
(
k-SRA(k) takes li

) × Pr
(
l-SRA(lj) takes an unsafe path

))
)

=

N∏

i=1

(( ∑

d≤li≤k×d

Pr
(
k-SRA(k) takes li

) × Pr
(
l-SRA(li) takes an unsafe path

))
)

=

N∏

i=1

(
Pr

(
k-SRA(k) takes an unsafe path

))
= (1 − λ)N (from (10))

Thus,

Pr(N, p, d, k-SRA(k)) = 1− Pr(N, p, d, k-SRA(k)) = 1− (1 − λ)N .
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Abstract. Preventing malware from causing damage to its host system
has become a topic of increasing importance over the past decade, as
the frequency and impact of malware infections have continued to rise.
Most existing approaches to malware defence cannot guarantee complete
protection against the threats posed. Execution monitors can be used to
defend against malware: they enable a target program’s execution to be
analysed and can prevent any deviation from its intended behaviour,
recovering from such deviations where necessary. They are, however, dif-
ficult for the end-user to define or modify.

This paper describes a high-level policy language in which users can
express a priori judgments about program behavior, which are compiled
into execution monitors. We show how this approach can defend against
previously unseen malware and software vulnerability exploits.

1 Introduction

Malware is software designed to penetrate or damage a computer system without
a user’s awareness or consent. It is written by a programmer with malicious intent
to purposefully compromise the confidentiality, integrity or availability of a user’s
data, services or devices. Defective software can cause similar problems: it has a
legitimate purpose but contains ‘bugs’ which may allow such harmful behaviour.
For these reasons it is difficult for a user to trust any executable they use. A
program may contain features the user requires but may also invoke unwanted
behaviour, which its user is generally unaware of.

1.1 Execution Monitoring

Execution monitoring is a technique which can be used to defend against malicious
or defective software.An execution monitor is a co-routine that executes in parallel
with a third-party application in order to fully regulate that program’s interaction
with its host machine, enabling harmful behavior to be prevented and recovered
from in real-time. By analysing the system calls a program makes, or by viewing
the calls it makes to some application programming interface (API), an execution
monitor affords the host a fine-grained view of a program behavior. Monitoring at
the system call level can be problematic: it is often difficult to attribute a sequence

L. Chen, Y. Mu, and W. Susilo (Eds.): ISPEC 2008, LNCS 4991, pp. 233–247, 2008.
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of system calls to a program event. Further, one may wish to analyse an action
which does not involve the target program making a system call [8,11].

API calls are give a more abstract representation of program behaviour, allow-
ing policies to reason about advanced behaviour with lower policy development
effort. Monitoring executions in this way presents new opportunities for defend-
ing against malware. However, authoring the policies which define an execution
monitor usually requires programming ability: even monitoring a program at the
API call level requires the policy author to predict the sequences of calls that a
target program will make to an API.

End-users and system administrators require a mechanism for translating
their own high-level requirements of a program’s execution into low-level repre-
sentations, like those which define an execution monitor.

BMSL [13] is a user-friendly policy language for reasoning about program
execution. It provides constructs for expressing high-level policies, though an
author must still forecast the type and order of any events which indicate a
policy violation. Where a policy is violated, its author must define a sequence
of events to recover from this violation. Both these requirements are infeasible
expectations of most end-users. BMSL’s enforcement engine is also unsuitable
for monitoring program execution: it was designed as an intrusion detection
and prevention system, so does not have access to as much information about
program state as other monitoring systems do.

1.2 Objectives

To allow end-users to access the benefits of execution monitoring, we address
these problems. Our work:

– Extends the BMSL language, to allow high-level requirements of a program’s
execution to be expressed simply in a policy.

– Develops an enforcement mechanism for our extended version of BMSL. Our
mechanism works by translating a BMSL policy into a policy enforcement
language called Polymer [3].

Polymer [3] is a fully-implemented language for specifying execution monitors
for Java programs. Its enforcement engine monitors the API calls a program
makes and responds to a policy violation by suggesting a bytecode insertion.

In this paper we assume that target programs are written in Java. The prin-
ciples we establish are not restricted to Java: they can be used with C programs
too, in which case, a policy would reason about system calls and enforce a policy
at that level.

1.3 Related Work

The foundations of execution monitoring are described by Schneider in [12],
where a formal treatment is given to techniques which analyse the actions of
a target program and terminate it where it violates a policy. This process is
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modelled by the security automaton. Schneider shows that this class of execution
monitor can only enforce safety properties.

Execution monitoring was first implemented by PoET (Policy Enforcement
Toolkit) which performed ‘in-line’ monitoring1 of a program binary using policies
expressed in declarative language called PSLang (Policy Specification Language)
[6]. PSLang cannot capture or store the values of arguments to events, making
it difficult to express the context in which an event occurs. Naccio [7] is another
‘in-line’ monitoring system, whose main advancement was the ability for policies
to contain abstract resource specifications. However, its policy language can
only check invariant properties on these specifications and is difficult for a non-
technical user to comprehend.

Ligatti [1,9] defined a more powerful model of an execution monitor that
could suppress or insert program actions, superseding Schneider’s model. This
class of monitor is modelled by the edit automaton, which is implemented by
the Polymer framework [3,2]. It defines policies as logical operations on a set
of security-relevant program points which are separate to the target program.
Its policies are easy to maintain, re-use, or compose into a hierarchy of policies.
The execution monitors it defines observe the principles of soundness2 and trans-
parency3, allowing correctness guarantees to be made. Polymer’s policy language
is imperative: it has high expressive power but is difficult for end-users to use or
comprehend; a realistic policy is around 1500-2000 lines of code.

Full paper. Due to space limitations, this version of our paper does not in-
clude all details of the approach we have developed to compute an enforcement
mechanism from a high-level policy. A full version of this paper is available at
http://www.cs.bham.ac.uk/∼ajb/files/ispec.pdf.

2 High-Level Security Policies

In order to bring execution monitors to a user-deployable level, we have extended
BMSL [13]: a high-level language for specifying policies which reason about arbi-
trary program events. Our intention is for end-users to express policies textually
(as a system administrator in an organisation might) or by means of a graphical
user interface (as an individual end-user would).

2.1 Behaviour Modelling Specification Language (BMSL)

BMSL is a policy specification language designed to reason about application
behavior using arbitrary events. Appendix A gives its BNF description.

A BMSL policy consists of a set of rules, or a set of variables followed by a
set of rules. Variable declaration may be local or global: a local variable’s scope
1 In-line monitoring generates new system libraries that include the checking code

necessary to enforce a policy.
2 Soundness: All observable outputs of a policy obey that policy.
3 Transparency: The semantics of an execution that already obeys a policy are

always preserved.
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is limited to a single rule, whereas a global variable applies to the whole policy.
A history, H, models the target program’s instruction stream and is expressed
by a pattern over a sequence of events: pat. A pat can measure event occurrence,
non-occurrence, sequencing, alternation and repetition to determine the temporal
properties of a target program’s behavior. This gives BMSL higher expressive
power than alternative mechanisms for specifying temporal properties [4].

A rule is of the form pat→ action, where pat denotes a pattern over a sequence
of actions and action denotes a response action where this pattern is matched.
Only if the sequence of actions a program invokes precisely matches pat will the
responsive steps in action be initiated. Atomic events are of the form e(x1, x2, ...,
xn)|cond, where e is a program action (a system call or a call to some API), x is an
argument to that action, and cond is a boolean-valued expression on that action’s
arguments. A condition can make use of the arithmetic, comparison and logical
operators, enabling precise identification of the context in which an event occurs.

A response action associated with the rule pat → action is launched where a
suffix of the event history matches pat. A response action can be an assignment
to a global variable, the invocation of a further sequence of recovery events, or
a call to an external support function, written in C. BMSL has the following
advantages over other policy specification languages [7,6,3,5]:

– It extends regular expressions to model events that are characterised by
argument values as well as by name.

– Response actions can be associated to patterns, which allow sequencing,
alternation, and repetition. A response is automatically launched when the
implementing system observes a match for the pattern.

– Variables give BMSL specifications more expressive power than regular ex-
pressions alone. Its policies are comparable to attribute grammars in terms
of what they can express.

2.2 Limitations

BMSL includes a number of intricacies that do not lend it to end-user policy
specification. Its limitations can be summarised as:

1. Specifying Event Histories: BMSL requires the policy author to explic-
itly state the sequence of events which a policy reasons about. The author
must populate a policy with system calls and their arguments, whose tem-
poral order must be accurately stated. This is an infeasible requirement of
most end-users, who do not have extensive knowledge about how programs
execute. The language does provide the abstract event construct, E, to which
events can be concatenated to form an execution trace. However, unless this
work is done on behalf of the user, their policies are likely to contain vulner-
abilities or redundancies.

2. Specifying Recovery Events: In a similar manner to event history spec-
ification, the policy author must specify a sequence of events (or abstract
events (E)) which should be invoked to recover from a policy violation. The
end-user is unlikely to be able to reason about recovering from a violation
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without having in-depth knowledge about how the target program executes.
Inaccurate specification of a recovery event sequence could introduce vulner-
abilities to the target system or may cause undesirable effects on dependent
processes.

3. Strong vs. Weak Temporal Order: BMSL does not make a clear dis-
tinction between strong and weak temporal order. Its default sequencing
construct assumes that strong temporal order is expressed. This represen-
tation is not suitable for many models of program execution where events
may happen simultaneously or housekeeping operations are performed be-
tween events. Weak ordering of events is more suitable for most policies
(where events which a policy does not reason about can occur in between
those which it does reason about). The concept can be expressed by a BMSL
policy, but only by calling an external function.

4. Counting Event Occurrence: Counting the number of occurrences of an
event can be important when monitoring a target program to enforce some
high-level requirement (e.g., a program may attempt to authenticate with a
service a maximum ‘n’ times in a time period, ‘t’). BMSL does not provide
a mechanism for measuring event occurrence.

5. Comparison Operators: Only the operators =, :=, and ∈ are made avail-
able by the language for comparison within a condition, cond. When moni-
toring a program with respect to a high-level requirement, more expressive
operators are required (e.g., to monitor whether a URL which a program
connects to starts with a particular substring).

2.3 Extensions

To address these limitations, we provide the following additions to BMSL:

1. Specifying Event Histories: Atomic events can be composed to form
abstract events using the construct, E, which is a non-empty set. An abstract
event allows the policy author to represent the actions that a program may
perform in a high-level way (e.g., read from a local file, send an e-mail on
a network port, receive an IMAP e-mail). We build upon this ability with
an abstract event referencing system which allows clear mapping of abstract
events to the APIs they refer to: our mechanism uses the abstract constructs
zone, resource and action, to allow the user to refer to the zone a program may
interact with (e.g., internet, lan, localhost), the resources within a zone it may
access, and the actions which it may perform on those resources. The events
which are referenced using this scheme exist as part of a pre-specified event
library, whose elements are Java classes of type AbstractAction. These
classes collect together the atomic event constructors, method calls, and their
arguments to which an abstract event reference refers. Policy 1 illustrates
this with some example specifications of this kind.

2. Specifying Recovery Events: We introduce a construct H → cond to
enable the policy author to specify their requirements of program execution
in a purely declarative manner. We consider this specification technique to
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Policy 1 Example abstract event specifications using our BMSL extension
– internet.service.Connect():

Target program (P) initiates a connection event to an unspecified Internet service.

– internet.data.Send(HttpRequest r):
P invokes a send event, which sends an HTTP request to a remote URL.

– lan.device.Print(Printer p)|p.name()=“picasso”:
P invokes a print event to a network printer whose name is “picasso”.

– localhost.localdisk.Write(File f)|f.extension()=“.txt”:
P invokes a write event to the local disk, of a file whose extension is “.txt”.

be more user-friendly as it does not require the user to enumerate the events
which should occur in response to a policy violation. Whenever the target
program’s execution history satisfies H, the condition cond is evaluated. If
cond evaluates to true, the program’s execution is allowed to continue. If,
however, cond evaluates to false, then a sequence of recovery actions derived
from cond at compile-time are executed through bytecode re-writing. If cond
is ⊥, program execution is aborted.

3. Strong vs. Weak Temporal Order: Our extensions to BMSL denote
strong temporal order by separating events with a semi-colon (‘;’), and weak
temporal order with a double semi-colon (‘;;’).

4. Counting Event Occurrence: We have added a modifier in order to count
event occurrences. An event pattern, pat can be an event E, one of a number
of events (E1 ∨ E2 ∨ ... ∨ En), or an event with our occurrence modifier
following it. This modifier allows the number of occurrences of an event to
be compared to an integer or to the number of occurrences of another event.
This feature is lacking from many declarative policy languages [7,6,5].

5. Comparison Operators: To enhance the expressive power of conditions
we add operators such as contains, startsWith, endsWith, and intersects. This
enables more advanced reasoning about the conditions of an event occur-
rence: for example, whether some argument to an event contains a particular
substring.

3 Monitoring Program Execution

Polymer [3] is a Java-based system which enables the security practitioner to
enforce first-class policies on untrusted Java programs by monitoring a target
program’s behaviour at execution time. The centralised nature of its policies
ensures that access control checks are not scattered throughout libraries and
binaries, as in [5,6,7]. Polymer policies can therefore be enforced on logically
separate components of a system. In the case of malware, Polymer can be used
to monitor a previously unseen binary, which could be obfuscated.

3.1 The Polymer Framework

Polymer is composed of two main tools. The first is a policy compiler that com-
piles execution monitors defined in Polymer’s language into Java source code and
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then into Java bytecode. The second tool is a bytecode rewriter that processes
bytecode in order to insert calls to an execution monitor in all necessary places.
This implementation ensures that every security-sensitive method is monitored
every time it is called by the target, guaranteeing soundness. The policy language
has well defined formal semantics, in [3], and can apply all Java’s conditional
constructs, primitive data types and logical operators. Expressive, fine-grained
policies can therefore be composed.

To construct a policy, the policy author extends Polymer’s Policy class. Each
Policy object contains three main elements: a security state which keeps track of
program activity during execution; a decision procedure which reacts to security-
sensitive program events; and, methods to update a policy’s state each time the
monitored application exhibits some behavior which the policy reasons about.
Each of these procedures are specified by overriding a Policy’s query() method.

A decision procedure is achieved by overriding a Policy’s query() method.
This uses method signatures (e.g., <public void java.sql.*.<init>(String s, ..)> –
any constructor in the java.sql package whose first argument is of type String)
to reference atomic events, or may use a composition of many events, encapsu-
lated by an Action object. An AbstractAction is a Java bean which collects
together Actions in order to express high-level program operations. This assists
the policy author in reducing redundant events and minimises the risk of then
neglecting critical events.

When a policy’s decision procedure is evaluated, one of six types of object can
be returned in order to suggest how the policy should be enforced at the bytecode
level. These objects are referred to as Suggestions, since they do not guarantee
that a policy will have an effectful reaction (e.g., where it is composed in a
hierarchy containing other policies). Example suggestions include OKSug (that
event can be invoked); InsSug (that event should be re-evaluated after some
additional code is inserted); and, ReplSug (that event’s return value should be
replaced with some pre-computed value). A HaltSug suggests that the target
application is terminated.

Imperative languages like Polymer often provide multiple constructs which
can achieve similar results in reasoning: it may be unclear to the author how
some policies might be expressed. This can impact on the accuracy, readability
and complexity of the policies a user specifies, or in the worst case, mean that a
user simply cannot write a policy. This motivates the need for a succinct high-
level language, like BMSL.

3.2 Our Use of Polymer

We bring the execution monitoring abilities of Polymer to a user-operable level by
creating a compiler (Section 5) between our extended version of BMSL and Poly-
mer. Our work creates a ‘layer’ between the target program in execution and the
Java Virtual Machine (JVM). Figure 1 shows an overview of how our system op-
erates. Most of the behaviour a target program invokes cannot be secured against
by the JVM – an execution monitor is required to achieve full regulation of the
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Fig. 1. System overview: Integration of
Polymer with the JVM

Fig. 2. System architecture: our en-
forcement model showing how we ex-
tend Polymer (shaded)

target’s interface with the JVM’s resources. The monitor passes all events it sees
directly to the JVM, except those which are explicitly reasoned about by a policy.

Figure 2 shows how an untrusted program can be translated into a securely
executed target program by our work. It indicates the target and a Polymer
monitor executing in parallel on the JVM. A BMSL policy is given as an ar-
gument to our compiler, which computes a Polymer Policy class from it. In
doing so, our compiler refers to a library of abstract program events which are
expressed as AbstractActions.

To determine the context in which an atomic event (e) occurs, one can popu-
late a set of arguments. An abstract event (E) can also refer to some abstract data
object, O. An O is a member of a set of data abstraction classes (cf. support class
library) and enables an abstract event’s meaning to be identified more precisely,
giving an execution monitor greater knowledge of the status of that event’s in-
vocation. For example, where a policy reasons about an program which sends an
HTTP response, an object is constructed to represent this response: it contains
that response’s header (e.g., status code, date, server, content-type), body (e.g.,
HTML, XML) and a reference to the HTTP request which invoked it. Our event
abstraction mechanism expands on the capabilities of previous works [7,6].

4 Securing an Untrusted Internet Browser

For many users, the Internet browser is arguably their most commonly used
application. Browsers are becoming increasingly important in everyday comput-
ing, providing a user with access to many remote services, some of which operate
solely inside the browser and negate the need for stand-alone desktop software.
Modern browser platforms (e.g., Microsoft Internet Explorer, Mozilla Firefox,
and Opera) support extensions and plug-ins which give the browser such addi-
tional functionality but which are a potential source of malware. This section
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illustrates how one might construct policies for a malicious Internet browser
which preserve as much of that program’s legitimate behaviour as possible.

4.1 Attacks

Cookies play a central role in ensuring that the multiple interactions a browser
makes with a remote service can be traced. They allow frequently required data
to be stored for the user, preventing them authenticating with a service on each
use, for example. Through the addition of a malicious extension to a browser,
or through a vulnerability within that browser, cookie data can compromise a
user’s privacy, confidentiality and data integrity in various ways.

We show how our work may assist in constructing a monitor for an untrusted
browser to prevent it executing malicious code which uses cookie data to com-
promise user privacy. Such attacks require a more interesting class of execution
monitor: one which must consider the data an event sequence uses in order to
prevent sensitive information being leaked.

1. Cookie Theft Using Session Hijacking: During normal operation, the
browser sends cookies to and from server (or a group of servers in the same
domain). Since cookies may contain sensitive information (a username, or a
token used for authentication), their values should not be accessible to other
hosts. Cookie theft is the act of cookies being intercepted by a third party,
usually via packet sniffing.

2. Cross-Site Cooking: Each site the browser accesses should only have per-
mission to read its own cookies: a site www.malicious.com should not be able
to read, alter or set cookies for another site, www.good.com. Cross-site cook-
ing vulnerabilities in web browsers allow malicious sites to break this rule;
the attacker exploits non-malicious users with vulnerable browsers instead of
attacking a site directly. The goal of such an attack may be session fixation:
the attacker attempts to authenticate with a site by setting the user’s session
identifier (SID) himself.

3. Monitoring Browsing History Using Cookies: Even where a policy
enforces that a cookie should only be sent to the server which set it, a web
page may contain images or other components stored on a server in another
domain. Cookies that are set during retrieval of these components are called
third-party cookies. A malicious advertising company might use these to
trace a user’s interaction with multiple sites where it has placed a common
component which reads from a cookie (e.g., a banner advert). Knowledge of
the user’s browsing history allows the malicious party to target them with
marketing based on their presumed preferences.

4.2 Policy Construction

The user requires the use of cookies, but they do not trust their Internet browser
or some of the remote sites they access. They can construct policies using BMSL
with our extensions to defend against the attacks they are aware of which involve
cookie data.
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Cookie Theft Using Session Hijacking: To prevent against Attack 1, the
browser should send any cookie that is likely to contain sensitive data using a
secure network protocol (e.g., HTTPS). The user wishes a policy to be enforced
whereby if the browser does not send cookie data using a secure protocol, the
event which sends that data should be prevented. Policy 2 illustrates how the
user might construct such a policy.

Policy 2 Policy to defend against cookie theft through session hijacking
Policy (English) The target program may send a cookie to the network only if that cookie is

sent using a secure network connection. A network connection is assumed
to be a secure connection where it uses the HTTPS protocol.

Policy format zone.resource.Action(Object)|cond → cond
Policy (BMSL) internet.data.Send(HttpRequest r)|r.hasCookie()

→ r.hasProtocol(“https”);
Policy meaning Any network send request which contains data that matches the definition of

a cookie may only be sent to the network where the protocol on which this
data is to be sent is HTTPS.

Abstract actions internet.data.Send(HttpRequest r)
Abstract conditions r.hasCookie()

r.hasProtocol(“https”)

The table shows an interpretation of the attack written in plain English: such
a sentence may be formulated by the end-user when considering how to prevent
Attack 1. The policy the user constructs is a purely declarative statement which
uses our addition to BMSL for specifying event histories, H→ cond (section 2.3).
If the conclusion of this policy is not satisfied at the point at which a cookie is
sent, any action which relates to sending an HTTP request which contains cookie
data is prevented. The abstract event internet.data.Send(HttpRequest r) relates to
the low-level actions that are used to send a cookie, which Polymer monitors. Our
policy enforcement model constructs an HttpRequest object when this abstract
event is triggered. This abstraction encapsulates the data being sent or received
by the untrusted browser.

Cross-Site Cooking: To prevent against Attack 2, one must compare the
content of the cookie’s path variable to the foremost characters contained within
the URL of the page previously loaded. Our additions to BMSL prove useful here:
the startsWith operator can compare the start of the URL string which was last
loaded by the browser to the content of the cookie’s path. The URL’s protocol
reference (e.g., http://) must be removed from the URL string for this to work.

Policy 3’s format is a result of our additions to BMSL and reads as: “an
event(x) such that condition(c) may happen iff an event(y) such that condition(d)
has already occurred”. Here, the invocation of internet.data.Send(HttpRequest r)
requires the event internet.data.Open(Url u) to have already occurred. For policies
of the form H→ cond, cond can itself be a reference to an abstract event, E. This
policy clearly indicates how event context is expressed: its conclusion only refers
to Open events to a URL which starts with the value of the global variable path,
and its premise only refers to Send events which contain an HTTP request that
includes a cookie, whose path variable is equal to path. This declarative structure
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Policy 3 Policy to defend against cross-site cooking
Policy (English) The target may send a cookie to the network only if the URL of the page

previously loaded starts with a value equal to the path variable of the cookie
being sent.

Policy format zone.resource.Action(Object)|cond → zone.resource.Action(Object)|cond
Policy (BMSL) internet.data.Send(HttpRequest r)|r.hasCookie(path)

→ internet.data.Open(Url u)|u.startsWith(path);
Policy meaning Any network send request that contains a cookie may only be sent to the

network where the URL of the page previously loaded starts with the path
defined by that cookie’s path variable.

Abstract actions internet.data.Send(HttpRequest r)
internet.data.Open(Url u)

Abstract conditions r.hasCookie(path)
u.contains(path)

enables the user to precisely mitigate program behaviour, ensuring they are not
required to specify an event sequence to enforce a policy sanction.

Browser History Monitoring Using Cookies: One can prevent against
Attack 3 by refining Policy 3 (specified for Attack 2). Policy 4 shows these
revisions, adding an extra condition to the policy’s conclusion.

In order to prevent a web-page component sending cookies to a different do-
main, one must analyse both the URL of the page previously loaded and the path
defined by the cookie’s path variable. Where these two values match the domain
to which the Send action will send the cookie, program execution can continue.
If, however, either of these conditions evaluates to false, then a sequence of recov-
ery actions derived from cond at compile-time are invoked. In this case, the Send
event would be suppressed by raising a Polymer Suggestion of type ExnSug:
the browser’s execution would proceed without that cookie being sent.

4.3 Restricting Information Flow

Our model of policy enforcement enables a class of policies to be enforced which
prevent malicious programs from leaking sensitive information. We ensure that
if an information flow constraint cannot be mitigated, the events which cause it
are denied.

Policy 4 Policy to defend against browser history monitoring using cookies
Policy (English) The target program may send a cookie to the network only if the URL re-

questing that cookie starts with that cookie’s path variable and contains the
URL of the page header previously loaded.

Policy format zone.resource.Action(Object)|cond → zone.resource.Action(Object)|cond ∧ cond
Policy (BMSL) internet.data.Send(HttpRequest r)|r.hasCookie(path)

→ internet.data.Open(Url u)|u.startsWith(path) ∧ r.contains(u)
Policy meaning Any network send request that contains a cookie may only be sent to the

network where the URL requesting that cookie starts with the path defined
by that cookie’s path variable AND where the URL of the page previously
loaded contains the the domain of the site requesting the cookie.

Abstract actions internet.data.Send(HttpRequest r)
internet.data.Open(Url u)

Abstract conditions r.hasCookie(path), u.contains(path), r.contains(u)
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Execution monitoring cannot capture all cases of information flow [12]: full
information flow analysis is required to achieve this [10]. The approach reasons
about the program’s internal structure and whether a trace of variable assign-
ments results in the target program leaking information. The difference between
our language and core BMSL [13] when considering information flow is its ability
to specify abstract data objects as arguments to abstract events. This provides
the monitor with a more fine-grained data representation than core BMSL does.

5 Synthesising Execution Monitors

Our work implements a compiler between BMSL and Polymer. This is designed
to operate in a just-in-time manner, allowing users to modify or refine policies
whilst the target program is being monitored. They may do this to weaken a pol-
icy where it denies some program behaviour they wish to permit, or strengthen
it where they learn of some security-relevant vulnerability in the target program.
Our extensions to BMSL enable policy refinement in a manageable way: Policy
5 in Section 4.2 gives an example of this.

Our compiler integrates with Polymer as shown in Figure 2. It takes a BMSL
policy as input and translates this to output a Polymer Policy class. For details
of how to translate a BMSL specification to a Policy class, and illustrations
showing the contents of such a class, please refer to the full version of this paper4.

5.1 Results

We have tested our compiler and our extensions to BMSL using the examples
given in Section 4. BMSL was originally unsuitable for specifying attacks like
those described. It could not reason about a program’s usage of cookie data,
for example, as it monitored events at the system call level where it was not
possible specify precisely which event sequence performed such an operation.
We have extended BMSL to monitor calls to an API and to express event and
data abstractions.

Whereas core BMSL requires one to specify the sequence of actions required
to recover from a policy violation, users of our work can simply specify policies
declaratively, using conditions which must become true before a triggering event
can occur. Our experiments have shown that our compiler can correctly compute
suggested recovery actions from these conditions alone.

In order to enforce policies 3, 4, and 5 and to mitigate the attacks we present
which use cookies, our policy compiler output 115 lines of Polymer policy code,
in three Policy classes. Equivalent policies can be expressed in BMSL (with
our extensions) using 7 lines of code: a policy name declaration, global variable
declarations and three lines of rules – one per attack. These policies are readable
and understandable by the non-technical user, who may also construct them
given a specification of the commands that can be used for their construction.
4 A full version of this paper is available at:
http://www.cs.bham.ac.uk/∼ajb/files/ispec.pdf
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Our tests have shown that our policies successfully prevented the attacks we
defined. In all cases, program execution was allowed to continue once a policy
violation had been dealt with. We tested our work using a network packet snif-
fer: when monitoring with the policies presented in Section 4.2 we did not see
any HTTP requests or responses which contained cookie data where the target
program did not adhere to a policy’s conditions.

6 Conclusion

Our work provides the basis for a user-operable sandboxing technique in which
execution monitors prevent and recover from an untrusted program’s invoking
of malicious behaviour.

6.1 Summary of Contributions

We have designed a high-level language, a policy enforcement model, and an
implementing system that:

– Uses purely declarative constructs to simplify policy specification and make
it feasible for end-users without programming knowledge to express policies
as direct translations of their own requirements.

– Is more expressive than other policy languages, without requiring imperative
constructs.

– Is able to associate atomic program actions and program data into suit-
able abstractions, such that program behaviour can be specified at a user-
comprehensible level. This reduces policy vulnerabilities and redundancies.

– Builds upon Polymer, which is fully implemented execution monitoring
scheme in which more powerful execution monitors can be expressed than in
previous schemes. Guarantees can be made about Polymer’s enforcement of
a policy.

6.2 Future Work

Our future work will prove that the policies we compute are at least as strong
as the BMSL policies which specified them, when enforced by our model. This
proof will enable users to place guarantees in our work, making it suitable for
deployment in the domains for which it is intended. We also intend to generalise
our work to enforce policies on programs written in languages other than Java:
most anti-malware solutions require the ability to monitor programs written in
other languages; C/C++, for example.

Our policies currently only reason about the execution of a single program,
on a single host. Managers in organisations may wish to specify and enforce
a policy on many programs or many hosts simultaneously: to do so they will
require an extended policy format in which policies can be composed using
meta-policies.
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A High-Level Policy Language

policy ::= policy* | name = {policy} | policy[name] | rule | var1; var2; ...; varn; rule;
rule ::= H → R
H ::= pat | pat* | pat1; pat2; ...; patn | pat1;; pat2;; ...;; patn | pat1 ∨ pat2 ∨ ... ∨ patn

R ::= E | cond | ⊥
pat ::= E | E1 ∨ E2 ∨ ... ∨ En | ¬(E1 ∨ E2 ∨ ... ∨ En) | E occ
E ::= E* | E(..) | E(O1, O2, ..., On) | action | zone.resource.action
O ::= O name | O(value1, value2, ..., valuen) name
zone ::= internet | lan | localhost
resource ::= data | service | device
action ::= e(value1, value2, ..., valuen)|cond | name
cond ::= ε | ¬cond | exp | (exp1 ∨ exp2 ∨ ... ∨ expn) | (exp1 ∧ exp2 ∧ ... ∧ expn)
occ ::= ATMOST times | ATLEAST times | MORETHAN times | LESSTHAN times
times ::= n | E
exp ::= var oper var | var oper value
var ::= name := value | name.const | name.action
oper ::= ¬oper | = | := | ∈ | startsWith | endsWith | contains | intersects | returns |...

E : Action | AbstractAction
O : AbstractDataObject
value : char | int | double | float | byte | long | bool | String
name : String
n ∈ N

Fig. 3. BMSL policy language with our additions, expressed in BNF
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Abstract. The current schemes for security policy interoperation in multi-
domain environments are based on a centralized mediator, where the mediator
may be a bottleneck for maintaining the policies and mediating cross-domain
resource access control. In this paper, we present a mediator-free scheme for
secure policy interoperation. In our scheme, policy interoperation is performed
by the individual domains, for which, a distributed multi-domain policy model is
proposed, and distributed algorithms are given to create such cross-domain poli-
cies. Specially, the policies are distributed to each domain, and we ensure that the
policies are consistent and each domain keeps the complete policies it shall know.

Keywords: Secure Policy Interoperation, Multi-Domain, RBAC.

1 Introduction

With the rapid development of internet and related technologies, interoperations in
multi-domain environments become more and more popular. Interoperations bring fea-
sibility to the resource sharing of domains and thus to their collaboration, but also bring
security problems at the same time. One problem is the access control of resources
across multiple domains. Access control of resources across multiple domains needs
secure interoperation among the interoperating domains, and the point is security pol-
icy interoperation.

The existing works [1,12,3,2,10,5,7,14,8] proposed to address security policy inter-
operation are mainly oriented to control resource sharing with the following characters.

1. It is with a considerable scale. Groups of resources are provided by individual do-
mains, groups of entities belonging to different domains access them, and some-
times some resources such as computing services become entities to access other
resources. It is of this state for a considerably long time, such as a collaboration
between two or more organizations lasting one year or longer. Besides, it is certain-
degree-coupled, which makes entities be able to access resources provided by the
domains they belong to in a cross-domain manner. And resources mostly contain
data or information.

� Corresponding author.
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2. It is in a domain-to-domain way. Each domain decides sharing which resources to
which domain or which entities of another domain. This is distinguished from the
popular peer-to-peer way in the open distributed environments, where a peer is an
entity with some attributes such as age and job — part or all or none of the attributes
probably are issued by many domains, and resources sharing is among the entities
(the concept of domain is weaken or none) and controlled based on the attributes.

3. It is in relatively closed environments — the domains involved in it are certain at
any time.

These existing works are all based on a mediator, where policy interoperation is
performed mainly as follows.

– There exists a mediator and a global policy for cross-domain resource access con-
trol. The mediator maintains the global policy: first it creates a global policy that
maybe violates the security of individual domains, and then it detects and removes
security violation.

– The mediator makes or aids in cross-domain resource access decision according to
the global policy.

However, the mediator may be a bottleneck for maintaining cross-domain policies and
mediating cross-domain resource access control.

We present a mediator-free scheme for secure policy interoperation. Our scheme
assumes RBAC policies [4, 6], and policy interoperation is achieved by inter-domain
role mapping. Besides, we assume that each domain in the collaboration trust other
domains. How to establish or manage trust relationship between or among domains is
out of the range of this paper.

In our scheme, there is no such mediator and global policy as in the mediator-based
schemes, and policy interoperation is performed only by the individual domains. The
details are as follows.

– It is the responsibility of all the domains in the collaboration to create and maintain
cross-domain policies. Because there is no more a mediator for policy management,
the policies are kept in the domains in a distributed way.

– The cross-domain policies may also violate the security of the domains in the col-
laboration. Any security violation to any domain can be detected by the domain
itself and each domain finding security violation to it inducts a negotiation among
domains to remove the security violation.

– Each domain is responsible for making the access decisions when entities from
other domains access resources kept in it. Corresponding to this responsibility, the
cross-domain policies kept in each domain is complete for the domain to make the
decisions. (We will give the precise meaning of “completeness” in Section 3.)

First, we give a multi-domain distributed graph-based policy model for cross-domain
policies free of security violation, with each domain maintaining two interoperation
policy graphs, which have two characters of consistency (or soundness or being free
of violation of individual domains’ security) and completeness (each domain keeps the
complete policies it shall know) and can be used to make cross-domain resource access
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decisions. Then we give a distributed algorithm for creating the interoperation policy
graphs of each domain.

This paper is organized as follows. In Section 2, we give some necessary prelimi-
naries. We propose our distributed multi-domain policy model in Section 3. We give
the distributed algorithms for creating cross-domain policies in Section 4. Section 5
discusses related work. Finally Section 6 concludes this paper.

2 Preliminaries

First, we give the concept of domains and roles1:

Definition 1. D is the set of domains. R is the set of roles. There is a set of roles
specific for each domain. A domain is related with any role specific for it through a pair
(r, domain), and RD is the set of these pairs. For any role r ∈ R, there exists one and
only one domain d such that (r, d) ∈ RD, and d is also denoted by Domain(r).

In practice, roles are identified by relating domain names (or id) with globally unique
role names. Role names can be made globally unique by a common vocabulary.

Each domain maintains a domain policy graph defined as follows.

Definition 2. Domain Policy Graph. For a domain domainn ∈ D, Gn = (Vn, En)
is its policy graph, which is an acyclic directed graph. V (GD

n ) is the set of roles spe-
cific for domainn, V (GD

n ) = {r|(r, domainn) ∈ RD}, E(GD
n ) is a set of role pairs

(r1, r2), where r1 ∈ V (GD
n ), r2 ∈ V (GD

n ), r1 is authorized to r2 (r1 is a junior role of
r2), and for any ri, rj ∈ V (Gn), if there exists a directed path from ri to rj , then ri is
authorized to rj (ri is a junior role of rj ).

We restrict this policy graph as Osborn etc. have done on their role graph model [22]:
in any domain policy graph, there exists no redundant edges, i.e. for any domain
domaini ∈ D, and for any two vertices vm, vn ∈ E(GD

i ), if there exists a path with the
length greater than 1 from vm to vn, then there exists no edge from vm to vn. Besides,
we give another restriction that for any domain policy graph there exists no self-loop.

The policy interoperation is based on single-directional role mapping. The following
is the definition of role map.

Definition 3. Role map. Map ⊆ R × R is a set of role maps. A role map is a pair
(role, role). The roles in a role map must belong to different domains, i.e. for any role
map (r1, r2) ∈ Map, there exists Domain(r1) �= Domain(r2). For any role map
(r1, r2) ∈Map, if an entity such as a user is authorized to r2, it is authorized to r1 too.
For any role map (r1, r2) ∈Map, it is a role-link-out of Domain(r1) to Domain(r2),
and is also a role-link-in of Domain(r2) from Domain(r1).

For domains’ autonomy in cross-domain authorization and for simplicity, we assume
that each domain can directly create or remove a role map that is from one of its roles to
one of the roles of another domain. Given domain policy graphs and role maps between
domains, we let each domain maintain an extended domain policy graph as follows.

1 A role is a collection of permissions; the description of permission is omitted here, for such a
description is not necessary for presenting our scheme. For further information, refer to [4, 6].
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Definition 4. Extended Domain Policy Graph. For each domain domaini ∈ D, Ge
i is

its extended policy graph, which is a directed graph and is extended from GD
i , and

the extension is made by adding the role maps for which domaini is link-in-domain or
link-out-domain as edges to GD

i . Formally, first let V (Ge
i ) = V (GD

i ) and let E(Ge
i ) =

E(GD
i ), then for any role-link-in (r1, r2), let r1 ∈ V (Ge

i ) and (r1, r2) ∈ E(Ge
i ), and

for any role-link-out (r1, r2), let r2 ∈ V (Ge
i ) and (r1, r2) ∈ E(Ge

i ).

We model cross-domain authorization as follows.

Definition 5. Let G denote the union of the extended policy graphs of all the domains.
For any two vertices vi, vj ∈ V (G), if there exists a directed path from vi to vj , then
the entities authorized to vj are also authorized to vi.

Policy interoperation may bring security violation. With respect to the policies our
scheme assumes, two kinds of security violation shall be considered.

Violation of Least Privilege. Some domains may adhere to the principle of least
privilege strictly; the principle states that an entity should be given only those privi-
leges that it needs in order to complete its task. Policy interoperation may violate this
principle to be adhered to in the individual domains involved in the interoperation. In
detail, suppose for a domainn ∈ D, and for ri, rj ∈ V (GD

n ), there exists no directed
path from ri to rj or from rj to ri in GD

n (ri and rj is incomparable in domainn), and
there exists a directed path p from ri to rj in G. Then rj is authorized to ri unnecessarily
by policy interoperation.

Role Cycle. If a cycle exists in the policy graph G, security policies of some
related domains are violated, with an exception that the cycles with the length of
2 like the following one will not violate any domain’s security: ri

(ri,rj)−−−→rj
(rj ,ri)−−−→ri,

Domain(ri) �= Domain(rj). Moreover, the cycles composed of these kinds of cy-
cles do not violate any domain’s security either. We assume there is no cycle if there
is no interoperation. Then we need not to consider the following case: given a cy-
cle r1

(r1,r2)−−−→r2
(r2,r3)−−−→r3, ..., rn

(rn,r1)−−−→r1, for any ri, rj ∈ {r1, r2, ..., rn}, there exists
Domain(ri) = Domain(rj).

In policy interoperation, security violation shall be removed.

Definition 6 (Consistent Policy Interoperation). We policy interoperation being con-
sistent if G is free of cycle and violation of least privilege principle of the domains
adhering to the principle strictly. Such G is denoted by Sec G.

3 Multi-domain Distributed Policy Model

The requirements of policy interoperation of domains can be seen as providing policies
for controlling cross-domain resource access. In the mediator-based scheme, a global
policy like G is created by the mediator and satisfies the requirements. In our scheme, G
is not created and maintained physically, and we just let each domain keep the policies
related with mediating access of its resources.

Definition 7 (Policy Graph). Any subgraph of G is a policy graph and we call any
subgraph of Sec G a consistent policy graph.
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Graph algorithms on edge traversal [11] are fundamental for our work. Informally, given
a policy graph G′ and a vertex v1 in it,

– by “forward traverse edges in G′ from v1” we mean traversing all the edges for
whose start-vertex there is a directed path from v1 to it;

– by “backward traverse edges in G′ from v1” we mean traversing all the edges for
whose end-vertex there is a directed path from it to v1.

Definition 8 (Interoperation Policy Graph 1). For any domaini ∈ D, GIOP−1
i is its

Interoperation Policy Graph 1, V (GIOP−1
i ) is the set of roles, E(GIOP−1

i ) is the set of
role pairs, it consists of all the policy for domaini to know which inner-domain roles
can be accessed by which roles of other domains. Then Interoperation Policy Graph 1
of domaini shall be equal to the policy graph obtained as follows.

– For each role-link-out (r1, r2) of domaini in Sec G, forward traverse all the edges
from r2 in Sec G, and backward traverse all the edges from r1 in Ge

i . Then compose
GIOP−1

i of all the traversed edges.

Definition 9 (Interoperation Policy Graph 2). For any domaini ∈ D, GIOP−2
i is its

interoperation policy graph 2, V (GIOP−2
i ) is the set of roles, E(GIOP−2

i ) is the set of
role pairs. E(GIOP−2

i ) consists of all the policies for domaini to know which roles of
other domains can be accessed by which roles of its own. Interoperation Policy Graph
1 of domaini shall be equal to the policy graph obtained as follows.

– For each role-link-in (r1, r2) of domaini in Sec G, forward traverse all the edges
from r2 in Ge

i , and backward traverse all the edges from r1 in Sec G. Then compose
GIOP−2

i of all the traversed edges.

There are two characters of Interoperation Policy Graphs.

– Consistency. Interoperation Policy graphs are sub policy graphs of Sec G, so they
are consistent — they do not violate the security of individual domains.

– Completeness. For any domainm ∈ D, if in Sec G, there exists a directed path
from vi to vj where Domain(vi) = domainm and Domain(vj) �= domainm,
then there must exist the same path in GIOP−1

m . For any domainm ∈ D, if in
Sec G, there exists a directed path from vi to vj where Domain(vj) = domainm

and Domain(vi) �= domainm, then there must exist the same path in GIOP−2
m .

Thus with respect to the authorization effect, for any domainm ∈ D, GIOP−1
m

is the same as Sec G in making domainm know which roles of it are authorized
to which roles of other domains, and GIOP−2

m is the same as Sec G in making
domainm know which roles of other domains are authorized to which roles of it.

About Cross-Domain Resource Access Decision. With the presence of interop-
eration policy graphs, cross-domain resource access can be controlled in the follow-
ing way. When entities attaching roles in other domains access resources of a domain
such as domaini ∈ D, domaini can convert the roles attached to the entities into
roles of domaini and make access decision according to the inner-domain roles: Given
GIOP−1

i and a role r1 from another domain, find the vertex r1 in GIOP−1
i , and find all

the paths to this vertex, then convert r1 into all the roles that are in the found paths and
belong to domaini.
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4 Creation of Cross-Domain Policies

From our model described in Section 3, the point of policy interoperation is to create
and maintain interoperation policy graphs for any domain joining the collaboration. In
this section, we describe the protocols or distributed algorithms for creating the policy
graphs for all the domains joining the collaboration. Note that G is not maintained
physically in our scheme as the global policy in the mediator-based schemes.

As a preparation, we have a definition of active joining.

Definition 10. For each domain domaini ∈ D, if it has any role-link-out to any other
domain, we call this domain joining the collaboration actively.

The domains’ active joining is dealt with domain by domain — dealing with one do-
main’s active joining is a subprocess. After all of the subprocesses, the initial collabo-
ration among domains is established.

First, each new domain domaini puts its domain policy graph as the origin of both
GIOP−1

i and GIOP−2
i .

For simplicity of description, we call two domains between which there exist role
maps as neighbor domains. In the whole process, domains keep sending policy graphs
to neighbor domains for updating their interoperation policy graphs. Suppose domainn

is a neighbor domain of domainm, we use GIOP−1
m−n to denote the policies sent by

domainm to domainn for updating GIOP−1
n , and GIOP−2

m−n for updating GIOP−2
n .

The process of dealing with the active joining of one domain such as domaini ∈ D
is as follows.

1. For each domainj of its neighbor domains, domaini sends a message msgi−j

to domainj for GIOP−1
j−i and GIOP−2

j−i . msgi−j is with the role-link-outs from
domaini to domainj .

2. Each domainj of the domains receiving msgi−j computes GIOP−1
j−i (as in Proce-

dure 1.1) and sends them to domaini by a reply message msgr
i−j .

3. After domaini receives all the reply messages, it updates its interoperation policy
graph 1 GIOP−1

i as the union of GIOP−1
i and all the received policy graphs.

4. For each domainj of its neighbor domains, domaini computes GIOP−1
i−j and

GIOP−2
i−j (as in Procedure 1.2), and sends them to domainj .

5. Each domainj of the neighbor domains updates its interoperation policy
graphs: compose a new and maybe insecure GIOP−1

j /GIOP−2
j of the original

GIOP−1
j /GIOP−2

j and GIOP−1
i−j /GIOP−2

i−j (by computing the union of them).

Fig. 1. Creation of Cross-Domain Policies
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6. Each domain updating its interoperation policy graphs detects security violation to
it. (This will be described in Subsection 4.1.)

7. Each domain whose security is violated inducts a negotiation among domains to
remove the security violation to it. (This will be described in Subsection 4.1.)

Procedure 1 Procedures for Local Algorithms in Creation of Cross-Domain Policies
1. Compute Requested Policies

Input Role Link In, the set of role-link-ins from domaini; GIOP−1
j ; GIOP−2

j

Output GIOP−1
j−i

Variable G1, a policy graph
a. G1 =GIOP−1

j ∪GIOP−2
j

b. For each role-link-in (r1, r2) ∈ Role Link In
Forward T raverse(GIOP−1

j−i , v2, G1)
2. Compute Neighbor−Needed Policies

Input GIOP−1
i

Output GIOP−1
i−j and GIOP−2

i−j

a. Let V (GIOP−1
i−j ) = ∅ and E(GIOP−1

i−j ) = ∅
b. Let V (GIOP−2

i−j ) = ∅ and E(GIOP−2
i−j ) = ∅

c. For each role-link-out (r1, r2) of domainj in GIOP−1
i ,

Forward T raverse(GIOP−1
i , r2, G

IOP−1
i−j )

d. For each role-link-in (r1, r2) of domainj in GIOP−1
i ,

Backward T raverse(GIOP−2
i , r1, G

IOP−2
i−j )

3. Subroutine Forward T raverse(G1, v1, G2)
Input G1, G2: policy graphs; v1, a vertex in G1.
a. For each vertex v ∈ V (G1), mark v unvisited.
b. forward traverse(v1).
c. Procedure forward traverse(v)

For each edge (v, v′) ∈ E(G1),
if v′ is marked unvisited,

let v′ ∈ V (G2) and (v, v′) ∈ E(G2), mark v′ visited,
and forward traverse(v′).

4. Subroutine Backward T raverse(G1, v1, G2)
Input G1, G2: policy graphs; v1, a vertex in G1.
a. For each vertex v ∈ V (G1), mark v unvisited.
b. backward traverse(v1).
c. Procedure backward traverse(v)

For each edge (v, v′) ∈ E(G1),
if v′ is unvisited,

let v′ ∈ V (G2) and (v, v′) ∈ E(G2), mark v′ visited,
and backward traverse(v′).

Next we give the algorithms or protocols used in the above algorithm to detect and
remove security violation, i.e. the algorithms or protocols used to make cross-domain
policies consistent.
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4.1 Detecting and Removing Security Violation

In the mediator-based scheme, a global policy like G is held by the mediator. Then
the mediator can detect role cycles and induct a negotiation among domains to break
them, and detect violation of least privilege principle with respect to some domains,
thus making policies free of role cycle and making certain domains strictly adhering
to the principle of least privilege. In our scheme, although the authorization effects of
G does exist — the effects of interoperation policy graphs, G does not physically exist
and is not held by a certain site. Then we have a lemma aiding in security violation
detection and removal in our scheme.

As a preparation, recall that the domain policy graph of each of the domains to join
the collaboration is the origin of its two interoperation policy graphs. According to
our assumption, the domain policy graphs are consistent; then before domains’ active
joining is dealt with, there exists no security violation. The lemma is as follows.

Lemma 1. In dealing with each of the active joining, such as domaini’s active joining,
assume that there exists no security violation before dealing with it. Then,

– after the neighbor domains of domaini update their two interoperation policy
graphs, for each domainj of them, the union of GIOP−1

j and GIOP−1
j includes

all the policies for detecting if domaini’s active joining brings any role cycle to
violate domainj’s security, and includes all the policies for detecting if domaini’s
active joining brings violation of least privilege principle with respect to domainj .

Thus, with respect to each active joining, each of the neighbor domains can finds all the
security violation to itself. Then all the security violation brought by each active joining
can be found. If all the security violation is removed, the domains establish consistent
secure interoperation after the process of creation of cross-domain policies.

4.1.1 Detecting Security Violation
According to the above analysis, detection of role cycle can be performed by the domain
joining the collaboration actively. Detection of violation of the least privilege principle
of each of the related domains can be performed by the domain itself.

An algorithm was given for finding out all the simple cycles in a finite directed graph
in [15]. We use this algorithm for each of the domains joining the collaboration actively
to find simple cycles in the union of its updated interoperation policy graphs. Cycles are
composed of simple cycles. If all the simple cycles (except the cycles with the length of
2) in the global policy graph are found and broken, then there are no cycles (except the
cycles with the length of 2) any more. In the remainder of this paper the term “cycle”,
when not otherwise modified, will be used only to refer to simple cycles with the length
greater than 2.

At the same time of detecting and breaking role cycles, detection and removal of vi-
olation of least privilege principle are performed. Suppose one domain domaini needs
to adhere to the least privilege principle. Then violation of this principle to domaini

can be detected by the following algorithm.

1. Compute all the vertex pairs from V (GD
i ) where between the two vertices there

exist no directed paths in GD
i .
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2. For each vertex pair rp, rq obtained above, find all the simple directed paths from
rp to rq in the union of the two interoperation policy graphs of domaini if there
exists no directed path from rq to rp in the union, or find all the simple directed
paths from rq to rp in the union if there exists no directed path from rp to rq in it. If
there exists any path found, the path brings violation of least privilege to domaini.

Furthermore, the paths causing the security violation are included in a sub policy
graph of the union; this graph is acquired by deleting all the vertices that are not con-
nected to any link-out-point or to which no link-in-point is connected to from the union.
Moreover, the vertex pairs needed to be considered can be further restricted to the pairs
that are in this sub policy graph and satisfy: between one of the two vertices and one of
the link-in-points (or link-out-points) there exists a directed path and the other one of
the two vertices is connected to one of the link-in-points.

An algorithm presented by Kleene for solving general path problems [23] can com-
pute all the paths between any two vertices in a direct graph in polynomial time. We
apply this algorithm to find the simple paths in the above algorithm.

Besides, an algorithm with a worst-case time complexity of O(m) can be created to
find whether there exists a directed path between two vertices in a finite directed graph.

4.1.2 Removing Security Violation by Concurrent Negotiation
After security violation detection, cycles or simple path(s) will be found if there exists
indeed secure violation. To remove the violations, all the cycles and paths shall be
broken, i.e. one edge in each of them shall be removed.

We present a concurrent negotiation protocol to break the cycles and paths. With
respect to the role cycles, the domain finding them inducts the negotiation among the
domains related with the cycles, deciding the edge(s) to remove. Similarly, with respect
to each of the paths, the domain finding it inducts a negotiation among all the domains
related with the path, and decides the edge(s) to remove. All the negotiations are per-
formed in a concurrent way.

Obviously, it does not further bring role cycle to remove any edge. If role pairs in
domain policy graphs are removed, this may violate the least privilege principle of the
domain removing the inheritance pairs, and can only bring this violation. For simplicity
the removed edges are only the ones whose removal does not cause violation of the
least privilege principle with respect to the related domains strictly adhering to it.

The following is the negotiation protocol.
There are six kinds of messages: Msginduction−1, for a domain whose security is vio-

lated to induct a negotiation among domains to remove security violation for the first time;
Msginduction−2, for a domain whose security is violated to induct a negotiation for the
second time — this is because the negotiation process it inducted for the first time cannot
remove the security violation to it; Msginduction−1−reply and Msginduction−2−reply ,
the reply messages of Msginduction−1 and Msginduction−2 respectively, attaching the
edges which domains volunteer to remove; Msgnegotiaiton−end, for domains which
have inducted a negotiation to inform the related domains of this negotiation being ended
and of the edge(s) to be removed; MsgEdge Removed, it is for a domain volunteering to
remove edge(s) to inform related domains that they shall update their policy graphs, and
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this is after the domain inducting the negotiation informs it that the edge(s) is indeed
selected to remove, and this message is with the edges removed.

For each domainn of the domains whose security is violated, it starts its actions as
follows.

– If no message received, it decides if the security violation can be removed by just
removing one or more edges from its policy graph. If so, it sends a message of
the kind MsgEdge Removed to each of the domains needing to update its policies
(domainn can decide the domains by only its interoperation policy graphs as in
Procedure 2); otherwise, it acts as follows.
1. It sends a message of the kind Msginduction−1 to each of the related domains

one or more of whose edges are in the path(s) or cycle(s).
2. It waits for messages of the kind Msginduction−1−reply , and waits for mes-

sages of the kind MsgEdge Removed from other negotiation(s).
– Otherwise, if one or more messages of the kind MsgEdge Removed has been re-

ceived from other domains, it finds if the edges removed in the messages plus the
edges it decides to remove from its domain policy graph are enough for removing
the security violation it found. If so, it updates its interoperation policy graphs ac-
cording to the removed edges (removing the edges in the policy graphs) and sends a
message MsgEdge Removed to each of the domains needing to update policies with
the edges it removed from its policy graphs. Otherwise, it acts as in Sub Item 1 and
Sub Item 2 of the last item.

For each of the domains whose security is violated, after its sending messages of
the kind of Msginduction−1, it follows the following actions upon different kinds of
messages.

– Upon one or more messages of the kind of MsgEdge Removed from other negoti-
ation(s) received, it checks if all the edges informed of their removal by these re-
ceived messages and all the received messages of the kind Msginduction−1−reply

are enough for removing violation of its security. If so, it sends a message of the
kind Msgnegotiation end to each domain in the negotiation it inducted. Then it up-
dates its interoperation policy graphs according to the removed edges. Otherwise,
• if there already exist replying messages from part of the other domains in

the negotiation, which is with the edges the replying domains volunteer to re-
move, then it checks if all these edges plus the edges just referred are enough
for removing violation of its security. If so, it sends a message of the kind
Msgnegotiation end to each domain in the negotiation it inducted, with the
edges selected from the ones in the replying messages to remove. Otherwise,
it waits for the messages from the domains whose replying messages are not
received yet, and for the messages of the kind of MsgEdge Removed from other
negotiations.
• if replying messages from all the other domains in the negotiation have been re-

ceived, then it checks if all these edges plus the edges just referred are enough
for removing violation of its security. If so, it sends a message of the kind
Msgnegotiation end to each domain in the negotiation it inducted, with the
edges selected from the ones in the replying messages to remove. Otherwise, it
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sends a message of the kind Msginduction−2 to the domains in the negotiation,
with the paths and cycles not yet broken.

– Upon one or more messages of the kind Msginduction−1−reply received, it checks
if all the edges informed of their removal by these received messages and the re-
ceived messages MsgEdge Removed are enough for removing violation of its secu-
rity. If so, it sends a message of the kind Msgnegotiation end to each domain in the
negotiation it inducted. Then it updates its interoperation policy graphs according
to the removed edges. Otherwise, it acts following the actions in the first or the
second sub item of the above item.

For each domainn of the domains whose security is violated, after its sending mes-
sages of the kind of Msginduction−2, it follows the following actions upon different
kinds of messages.

– Upon one or more messages of the kind Msginduction−2−reply received, it checks
if all the edges in the received messages plus the edges in the received mes-
sages of the kind MsgEdge Removed are enough for removing violation of its se-
curity. And if so, it selects the edges to remove, and sends a message of the kind
Msgnegotiation end to each of the domains in the negotiation, with the edges at-
tached in the messages. Otherwise,
• if messages of the kind Msginduction−2−reply from all the domains in the ne-

gotiation have been received, it removes a role-link-out to ensure its security.
• otherwise, it waits for messages of the kind Msginduction−1−reply , and waits

for messages of the kind MsgEdge Removed from other negotiation(s).
– Upon one or more messages of the kind MsgEdge Removed received, it checks

if all the edges in all the received messages (including those received before)
plus the edges in the replying messages are enough for removing violation of
its security. And if so, it selects the edges to remove, and sends a message of
the kind Msgnegotiation end to each of the domains in the negotiation, with the
edges attached in the messages. Otherwise, it waits for messages of the kind
Msginduction−1−reply , and waits for messages of the kind MsgEdge Removed from
other negotiation(s).

For each domainn of the domains receiving a message of the kind Msginduciton−1

or Msginduction−2 from a domain domainm, it selects the edges to remove from Ge
i

(excluding role-link-ins) and sends them to domainm. The set of the edges can be null.
For each domainn of the domains receiving a message Msginduction−end from

domainm, it follows the following actions. If this message is received before it sends
the replying message Msginduction−1−reply or Msginduction−2−reply in the negotia-
tion, it ends dealing with the message Msginduciton−1 or Msginduction−2. Otherwise,

1. it updates its interoperation policy graphs according to the removed edges.
2. if there exists edge(s) in Ge

n to be removed, then it finds the related domains needing
to update their policy graphs according to the removed edges and sends a message
MsgEdge Removed with the removed edges to the domains.

For each domainn of the domains receiving a message of the kind
MsgEdge Removed, if this domain has inducted one or more negotiations, the actions
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it shall follow have been given above; otherwise it just updates its interoperation policy
graphs according to the removed edges.

Procedure 2 Domains Related with Edge Removal
Input GIOP−1

n and GIOP−2
n , temporarily insecure Interoperation policy graphs of

domainn; edges removed, set of edges removed by domainn; D′, set of the domains
which domainn knows — roles of the domains are in the policy graphs of domainn.
Var G1 and G2, policy graphs.
Output D1, set of the domains needing to update their interoperation policy
graphs because of edge removal; Edges Removed1′ , Edges Removed2′ , ... ,
Edges Removed|D1|′ , sets of edges to be removed from view policy graphs of domains
(in D1) domain1′ , domain2′ ,..., domain|D1|′ respectively as a result of edges removal.
1. If edges removed �= ∅,

(a). Let G1 = GIOP−1
n ∪GIOP−1

n

(b). For each (ri, rj) ∈ edges removed,
A. let V (G2) = ∅ and E(G2) = ∅
B. Forward T raverse(Gg , rj , G1) and Backward T raverse(Gg, ri, G1),
C. let ri, rj ∈ V (G1) and (ri, rj) ∈ E(G1).
D. For each domainm ∈ D′,

for each vertex v ∈ V (G1)
if Domain(v) = domainm,

let (ri, rj) ∈ Edges Removedm and let domainm ∈ D1

break;

Besides, when a role pair in the domain policy graphs is removed and part of the
authorization effects of the corresponding edge shall be kept, some edge(s) can be added
without any security violation. For this, we have the following lemma.

Lemma 2. Suppose an edge (r1, r2) is added, and (r1, r2) is in the transition closure
of the former secure domain policy graph (before dealing with this active joining). Then
adding (r1, r2) will bring no security violation.

4.2 Remarks

We have the following claim about our distributed algorithms for creating cross-domain
policies.

Claim. By our distributed algorithms for creating cross-domain policies, the interoper-
ation policy graphs are got, with two characters: consistency and completeness.

We do not give its proof here, because it is trivial.
Assume that n domains join the collaboration, then the worst communication com-

plexity of the distributed algorithm for the process of creating cross-domain policies
is O(n3). The following is a detailed description. Each domain has role-link-outs to
at most n − 1 domains; so for each domain, it sends messages for policies to at most
n−1 different domains. In the dealing with each domain’s active joining, each domain’s
security may be violated in the worst case, and each of these domains inducts a negoti-
ation that maybe involves all the other n − 1 domains — sends and receives messages
from n− 1 domains for a constant number of times.
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5 Related Works

There are many works dealing with security interoperation in a way that a third party
or a centralized mediator creates or maintains cross-domain policies. De Capitani di
Vimercati, Samarati, Dawson, et al. gave a series of works [3, 10, 2] on authorization
and access control in federated systems — a collection of cooperating database sys-
tems or information systems. They presented many issues and ideas for access control
or authorization in federated systems, especially presented a modeling and architec-
tural solution to the problem of providing security and interoperation of heterogeneous
systems based on the use of wrappers and a mediator. Gong and Qian [1] studied the
complexity of secure interoperation of multiple domains employing access control lists.
Bonatti, Sapino and Subrahmanian [12] presented efficient approaches to merging mul-
tiple heterogeneous security orderings. The above works all did not consider RBAC
policies. There are also some other works (of mediator-based security interoperation)
assuming RBAC policies. Pan, Mitra and Liu [14]presented semantic interoperation of
RBAC policies. Du and Joshi [7] analyzed hybrid RBAC in the interoperation. Smithi
and Joshi [8] introduced time into the interoperation of RBAC policies. Basit, et al. [5]
proposed a policy integration framework for merging heterogeneous RBAC policies of
multiple domains into a global policy.

Shehab, Bertino and Ghafoor [9, 17] presented a decentralized scheme for cross-
domain resource access control. They presented the idea of secure access path. A set
of role maps between the domains are maintained, and the role map in the access path
must be selected from the set. The set cannot ensure security of domains, i.e. there is no
security analysis on this set. Users can ask for single access paths, and after evaluation
according to some rules, they can get a single secure access path, by which he can
access some resources. However, single secure path cannot achieve the scale of the
cross-domain policies needed by secure interoperation. Their scheme is not qualified
for secure interoperation of multiple domains, and is just for cross-domain resource
access control of small-scale. Moreover, there still exists a problem in their scheme, i.e.
the composition of multiple single secure paths may be insecure (A secure path forms
upon a path request), and this composition is possible.

Moreover, there are many works [16, 13, 19, 20, 21, 18] presenting credential-based
access control schemes for distributed environments. In these works, service providers
can issue credentials telling which entities or principals with which name, with which
properties or with which attributes can access which services they provide. These works
are most intended to perform authorization and access control in loose-coupled multi-
domain environments or open environments, where the scale of cross-domain policies
between any two domains is small and the concept of domain is weak or even none
(peer to peer). Besides, violation of security policies of individual domains are more
oriented to be less considered in these works.

6 Conclusion

In this paper we deal with secure policy interoperation of multiple domains without
a centralized mediator. In our scheme, cross-domain policies are created and maintained
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by the individual domains; access decision for cross-domain resource access can be
made in individual domains locally. Thus, our scheme is more appropriate for large-
scale secure interoperation than the mediator-based schemes, where the mediator may
be a bottleneck, and suitable for the situation where domains cannot get a centralized
mediator. Besides, in secure interoperation of multiple domains, there are three cases of
policy evolutions [5]: evolution of collaborating domains’ access control policies, addi-
tion of new domains in the collaborative system and removal of domains from collabo-
rations. We have a gradual policy evolution scheme and will present it in another paper.
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Abstract. Privacy is a major concern in RFID systems, especially
with widespread deployment of wireless-enabled interconnected personal
devices e.g. PDAs and mobile phones, credit cards, e-passports, even
clothing and tires. An RFID authentication protocol should not only
allow a legitimate reader to authenticate a tag but it should also protect
the privacy of the tag against unauthorized tracing: an adversary should
not be able to get any useful information about the tag for tracking or
discovering the tag’s identity. In this paper, we analyze the privacy of
some recently proposed RFID authentication protocols (2006 and 2007)
and show attacks on them that compromise their privacy. Our attacks
consider the simplest adversaries that do not corrupt nor open the tags.
We describe our attacks against a general untraceability model; from
experience we view this endeavour as a good practice to keep in mind
when designing and analyzing security protocols.

Keywords: RFID, authentication protocols, privacy, untraceability,
provably secure.

1 Introduction

RFIDs are widely used in inventory control and supply chain management
[1,7,18,19,25], in e-passports [12,6,11,15,20] e.g. for US’ visa waiver policies, in
contactless credit cards [10]. Thus the daily dealings of the present day indi-
vidual is in fact a wireless interconnected network involving interactions both
within his connected personal area network (PAN) among the things carried in
his bag or pocket, and between the PAN and the servers providing the services
and connectivitiy to those things. Among the things that the individual is car-
rying on him would include those that are RFID enabled i.e. items he bought
from a retail chain, the credit cards in his wallet that he uses to purchase the
items, and his e-passport to identify himself to authorities.
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Privacy, both in terms of tag anonymity and tag untraceability (or unlinka-
bility), is a significant concern that needs to be addressed if RFIDs are to be
as widely deployed as conceived by proponents. To date, a rigorous treatment
of privacy for RFID models is still being developed, notably the work of Avoine
[2], Juels and Weis [13], Le, Burmester and de Medeiros [16]; and Vaudenay
[27,28]. These models differ mainly in their treatment of the adversary’s ability
to corrupt tags. In fact, the recent privacy models [13,27,16,28] define privacy
in the untraceability sense. This is intuitive since untraceabile privacy (UPriv)
is a strictly stronger notion (i.e. it implies) than anonymous privacy (APriv). To
see this, note that if there exists an adversary breaking APriv then he can easily
also break UPriv; while the converse is not necessarily true.

In this paper, we analyze the privacy issues of recently (in 2006 and 2007)
proposed RFID protocols, namely [8,14,24,4,9]. Our attacks do not even need
the strong requirement of corrupting tags [26,13,27,17,16,28,22]. To the best of
our knowledge, attacks presented here are the first known analyses of ProbIP
[8], MARP [14], Auth2 [24], YA-TRAP+ [4], O-TRAP [4] and RIPP-FS [9].

2 RFID Privacy Models

We describe for completeness, the general untraceable privacy (UPriv) model that
will be the setting in which we use in later sections to demonstrate how to trace
tags and thus show that the schemes do not achieve the notion of untraceable
privacy. It is also good practice to design and analyze security protocols with
reference to a clearly-defined model [23].

We do not claim to define a new model, for our emphasis in this paper is
instead on the analysis of the privacy and security issues of recent RFID proto-
cols. In fact, the model defined herein can be seen as an alternative definition
of the Juels-Weis model [13] with some differences e.g. in constraints put on the
adversary (see the discussion in section 6.1) in a style that is more in line with
the Bellare et al. [3] models for authenticated key exchange (AKE) protocols,
for which RFID protocols have close relationship with.

A protocol party is a T ∈ Tags or R ∈ Readers interacting in protocol
sessions as per the protocol specifications until the end of the session upon which
each party outputs Accept if it feels the protocol has been normally executed
with the correct parties. Adversary A controls the communications between all
protocol parties (tag and reader) by interacting with them as defined by the
protocol, formally captured by A’s ability to issue queries of the following form:

Execute(R, T , i) query. This models passive attacks, where adversary A gets
access to an honest execution of the protocol session i between R and T by
eavesdropping.

Send(U1, U2, i,m) query. This query models active attacks by allowing the ad-
versary A to impersonate some reader U1 ∈ Readers (resp. tag U1 ∈ Tags)
in some protocol session i and send a messagem of its choice to an instance of
some tag U2 ∈ Tags (resp. reader U2 ∈ Readers). This query subsumes the



Privacy of Recent RFID Authentication Protocols 265

TagInit and ReaderInit queries as well as challenge and response messages
in the Juels-Weis model.

Corrupt(T ,K) query. This query allows the adversary A to learn the stored
secret K ′ of the tag T ∈ Tags, and which further sets the stored secret to
K. It captures the notion of forward security or forward privacy and the
extent of the damage caused by the compromise of the tag’s stored secret.
This is the analog of the SetKey query of the Juels-Weis model.

TestUPriv(U, i) query. This query is the only query that does not correspond to
any of A’s abilities or any real-world event. This query allows to define the
indistinguishability-based notion of untraceable privacy (UPriv). If the party
has accepted and is being asked a Test query, then depending on a randomly
chosen bit b ∈ {0, 1}, A is given Tb from the set {T0, T1}. Informally, A
succeeds if it can guess the bit b. In order for the notion to be meaningful,
a Test session must be fresh in the sense of Definition 2.

Definition 1 (Partnership & Session Completion). A reader instance Rj

and a tag instance Ti are partners if, and only if, both have output Accept(Ti)
and Accept(Rj) respectively, signifying the completion of the protocol session.

Definition 2 (Freshness). A party instance is fresh at the end of execution if,
and only if,

1. it has output Accept with or without a partner instance,
2. both the instance and its partner instance (if such a partner exists) have not

been sent a Corrupt query.

Definition 3 (Untraceable Privacy (UPriv)). Untraceable privacy (UPriv) is
defined using the game G played between a malicious adversary A and a collection
of reader and tag instances. A runs the game G whose setting is as follows.

Phase 1 (Learning): A is able to send any Execute, Send, and Corrupt
queries at will.
Phase 2 (Challenge)
1. At some point during G, A will choose a fresh session on which to be

tested and send a Test query corresponding to the test session. Note
that the test session chosen must be fresh in the sense of Definition 2.
Depending on a randomly chosen bit b ∈ {0, 1}, A is given a tag Tb from
the set {T0, T1}.

2. A continues making any Execute, Send, and Corrupt queries at will, sub-
jected to the restrictions that the definition of freshness described in
Definition 2 is not violated.

Phase 3 (Guess): Eventually, A terminates the game simulation and out-
puts a bit b′, which is its guess of the value of b.

The success ofA in winning G and thus breaking the notion of UPriv is quantified
in terms of A’s advantage in distinguishing whether A received T0 or T1, i.e.
it correctly guessing b. This is denoted by AdvUPriv

A (k) where k is the security
parameter.
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It remains to remark on the models other than Juels-Weis, namely the Le-
Burmester-de Medeiros (LBdM) model and the Vaudenay model. The LBdM
model similarly allows the corruption of tags. Nevertheless, proof of security is
in the universal composability (UC) model [5].

The Vaudenay model [27,28] is stronger than both the Juels-Weis and Le-
Burmester-de Medeiros models in terms of the adversary’s corruption ability. In
more detail, it is stronger than the Juels-Weis model in the sense that it allows
corruption even of the two tags used in the challenge phase. It is stronger than
the Le-Burmester-de Medeiros model in the sense that it considers all its privacy
notions even for corrupted tags, in contrast to the Le-Burmester-de Medeiros
model that only considers corruption for its forward privacy notion.

Our choice to describe our tracing attacks in later sections with reference to a
defined model is for more uniformity between similar attacks on different RFID
protocols, and for better clarity to illustrate how an adversary can circumvent
the protocols using precise types of interactions that he exploits, as captured by
his oracle queries. This will facilitate the task of a designer when an attempt is
made to redesign an attacked protocol.

3 ProbIP

At RFIDSec ’07, Castellucia and Soos [8] proposed an RFID protocol (ProbIP)
that allows tag identification by legitimate readers. Its security is based on the
SAT problem, which is proven to be in the NP class of complexity. See Fig. 1,
where the symbols in bold beneath each device denotes the stored state, and
K[ai] represents the ai-th bit of the �-bit length secret K. The authors of ProbIP
gave arguments [8] for its security in the Juels-Weis model.

For simplicity, we assume, and for the rest of this paper, that the reader and
backend database server (if it exists) are one entity. This is sound since it is
commonly assumed by RFID protocol designers that the channel between the
reader and server are secure.

Reader Tag
Database: {. . . , (ID, K), . . . } Shared Secret: K

hello−−−−−−−−−−→
Do P times:
generate ai, bi for i = 1 . . . L s.t.

Find (ID, K) s.t.
a1,b1,...,aL,bL←−−−−−−−−−−∑L

i=1 K[ai] ⊕ bi = L
2
.

K satisfies all the equations

Fig. 1. The ProIP protocol

3.1 Violation of Anonymous Privacy

We first start by two remarks:

1. The tag does not update its secret key so at each authentication, some in-
formation is leaked from the same key.
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2. The tag does not check the authenticity of the reader, i.e. an adversary can
query the tag as many times as he likes.

From an information-theoretic point of view, a severe consequence of these two
statements is that at one point an adversary will gather enough information to
extract the key K from the responses of the tag.

Let us consider an adversary that will keep sending hello messages via Send
queries to the tag until he gets � equations. Since at each request tags generate
P equations, an adversary would need to query the tag n

P times. After that, she
obtains the following system in which vj

i denotes a boolean variable that is set
to 1 if the K[i]-th bit of K is present in the j-th equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑L
i=1 v

1
i (K[i]⊕ b1i ) = L

2∑L
i=1 v

2
i (K[i]⊕ b2i ) = L

2

. . .
∑L

i=1 v
�
i (K[i]⊕ b�i) = L

2

(1)

As for any boolean v we can write v+ v̄ = 1, we replace any K̄[i] by the value
1−K[i]. As a consequence we can deduce that there are as many as 3n possible
equations because every variable K[i] can have three coefficients: 0, 1,−1.

This way, the adversary gets a linear system of n equations and n variables
that can be solved using standard methods such as the Gaussian elimination
method. In the case where the n equations are not linearly independant, the
adversary can still can obtain more equations from the tag by sending Hello
messages until she gets enough equations.

3.2 Countermeasure

The weakness of this authentication protocol comes from the fact that each
round the advesary gets some information from the same key. So a quick way to
counter our attack is to include a key-updating mechanism similar to OSK[21]
at the end of the protocol using a one-way function.

In this case, adversaries do not get more than P equations for each key so
that the security proof and reduction to the SAT problem become sound. The
resulting protocol is even forward-private providing that adversaries do not get
side-channel information from the reader [28].

4 MARP

MARP is proposed by Kim et al. [14] at CARDIS ’06. They first describe a
scheme consisting of separate phases, and then describe a more integrated one.
For lack of better names, we denote these as MARP-1 and MARP-2, respectively.
Here, a MARP is like a PDA to which several tags could be attached. The
channels between reader and MARP, and between MARP and tag, are assumed
by Kim et al. to be insecure.
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Reader MARP Tag
(Identifier Ridg, (Km

d , Km
e , (Uidt,

key pair Kg
d , Kg

e ) Ridg, Kg
e , Uidt, Keyt, P INt)

h(Keyt), P INt)
h(PINt)−−−−−−−−−−→

PINt⊕Uidt←−−−−−−−−−−
PINt⊕h(Keyt)←−−−−−−−−−−

Pick Rr.
Query||E

K
g
e

(Ridg||Rr)

−−−−−−−−−−−−−→
a1=E

K
g
e

(EKm
d

(Rr||Rm))

←−−−−−−−−−−−−−−− Pick Rm.
ar=EKm

e
(E

K
g
d

(Rm))

−−−−−−−−−−−−−→
a2=E

K
g
e

(EKm
d

(Uidt||Eh(Keyt)
(Uidt)))

←−−−−−−−−−−−−−−−−−−−−−−−−−
Pick R.

E
K

g
d

(R)

−−−−−−−−−−→
R−−−−−−−−−−→

at=h(R⊕Keyt)←−−−−−−−−−−
E(at)←−−−−−−−−−−

Fig. 2. The MARP-1 protocol, comprising 3 phases: setup, privacy protection, and
authentication

Reader MARP Tag
(Ridg, (Km

d , Km
e , (Uidt,

Kg
d , Kg

e ) Ridg, Kg
e , Uidt, Keyt, P INt)

h(Keyt), P INt)

Pick Rr.
Query||E

K
g
d

(Ridg ||Rr)

−−−−−−−−−−−−−→
a1=E

K
g
e
(EKm

d
(Rr||Rd))

←−−−−−−−−−−−−−−− Pick Rd.
ar=EKm

e
(E

K
g
d

(Rd))

−−−−−−−−−−−−→
a2=E

K
g
e

(EKm
d

(Uidt||Eh(Keyt)(Uidt)))

←−−−−−−−−−−−−−−−−−−−−−−−−−
Pick Rs.

h(Keyt)⊕Rs−−−−−−−−−−→
as=Rd||h(Rd⊕h(PINt))||h(PINt)⊕Rs−−−−−−−−−−−−−−−−−−−−−−−−→

a3=h(Keyt⊕Rs)←−−−−−−−−−−
a3←−−−−−−−−−−

Fig. 3. The MARP-2 protocol, comprising 2 phases: MARP authentication and tag
authentication

We summarize these schemes in Figs. 2 and 3, which show only the bare
minimal detail for understanding of our attacks. It suffices to note that 〈Kg

d ,K
g
e 〉

(resp. 〈Km
d ,K

m
e 〉) is the private-public key pair of the reader (resp. MARP).

Keyt and PINt are stored secrets of the tag. The reader is referred to [14] for
more detailed descriptions.

4.1 Cryptanalysis of MARP-1

Tracing. Note that a2 is fixed per tag, being a function of a particular tag
Tt’s unique identifier Uidt and secret key Keyt. As the channel between the
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reader and the MARP is not confidential, an adversary via Execute queries (i.e.
eavesdropping) can easily track the movement of Tt by checking for matches of
a2 with previously captured values, as long as the encryption is deterministic.
Alternatively, the adversary can replay an old R from MARP to the tag via Send
queries, and check if the response at matches the old value of at corresponding
to the replayed R.

We remark that these attacks have less requirement than the ones performed
by Juels and Weis [13] on some other older RFID protocols that require Corrupt
queries.

Violating the Anonymous Privacy. Note that the initial setup messages
allow to compute

z = [PINt ⊕ Uidt]⊕ [PINt ⊕ h(Keyt)]
= Uidt ⊕ h(Keyt).

Then the adversary simply issues Execute queries to be able to compute z, and
then issues a Send query to replace the message R from MARP to the tag with
R′ = 0, and so the tag responds with at = h(Keyt). This allows to compute:

z ⊕ at = [Uidt ⊕ h(Keyt)]⊕ h(Keyt)
= Uidt,

and so reveals a potential unique identifier of the tag, which can be cross-checked
against the possible list of identifiers for a match.

4.2 Tracing MARP-2

MARP-2 also allows tracing. By eavesdropping both messages via Execute
queries between the reader and the MARP and between the MARP and the
tag, an adversary gets h(keyt)⊕Rs and h(PINt) ⊕Rs. By XOR-ing these two
values, the adversary gets h(PINt) ⊕ h(keyt) which does not depend on the
session parameters and can be used to trace a tag.

This scheme is also vulnerable to a replay attack since the response of the tag
does only depend on the parameters sent by the MARP. So if an adversary sends
twice the same message as via Send queries, she will get the same response a3

which can also be used for tracing.

5 Auth2

At PerCom ’07, Tan et al. [24] proposed two RFID protocols. We are interested
here in the second protocol, and more exactly to the first variant described
therein. For lack of better names we simply call it Auth2, see Fig. 4 for a complete
description of the protocol, where rj is a unique identifier of the reader, f and h
are two collisions-resistant hash functions and h(.)m denotes the function that
truncates the output of h to its m first bits.
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Reader Rj Tag Ti

Database: {. . . , (IDi, ti, f(rj ||ti)), . . . } Shared secret: ti
request−−−−−−−−−−→

ni←−−−−−−−−−− Pick ni.

Pick nj .
nj ,ri−−−−−−−−−−→ h1 = h(f(rj ||ti)).

Check ∃ti s.t. h(f(rj ||ti))m = h1.
h1,h2←−−−−−−−−−− h2=h(f(rj ||ti)||nj ||ni) ⊕ IDi.

Compute IDi = h2 ⊕ h(f(rj ||ti)||nj ||ni).

Fig. 4. The Auth2 protocol

5.1 Cryptanalysis of Auth2

Definite Tracing. It was noted by Auth2 designers that indefinite tracing is
possible but not a concern since many tags could result in the same h(f(rj ||ti))m

value. We show how this tracing can be made definite, i.e. it can precisely track
a unique tag, not just a group of them that have the same h(f(rj ||ti))m.

1. Learning: The adversary eavesdrops via Execute queries for a short period
during the protocol sessions involving tag T0 and two readers R1,R2 to
obtain 〈r1, h(f(r1||t0))m〉 and 〈r2, h(f(r2||t0))m〉.

2. Challenge: Some time later, when the adversary wishes to track the tag
T0, he starts a session with the challenge tag Tb ∈ {T0, T1} replaying r1 via
a Send query and checks the response from the tag for a match on the first
message component with h(f(r1||t0))m. He starts another session replaying
r2 via a Send query and checks the response from the tag for a match on the
first message component with h(f(r2||t0))m. With both matches, it is highly
likely that this is the same tag whose session he had initially eavesdropped
on, i.e. Tb = T0. Else Tb = T1.

Violating the Anonymous Privacy. When analyzing the anonymous privacy
of their Auth2 scheme, the authors [24] assume that the adversary has access to
the reader’s list L of data corresponding to targeted tags, i.e. each entry in L is
of the form 〈IDi, f(rj ||ti)〉.

The adversary only needs two entries in L corresponding to the targeted tag
Ti, i.e.〈IDi, f(r1||ti)〉 and 〈IDi, f(r2||ti)〉.

Issue a Send query with r1 in a session, and then another Send query with r2
in another session to Ti. Check if both responses match f(r1||ti) and f(r2||ti)
respectively.

6 YA-TRAP, YA-TRAP+ and O-TRAP

At SecureComm ’06, Burmester et al. [4] proposed two RFID protocols with
formal proofs of security in the universal composability model [5], namely YA-
TRAP+ and O-TRAP. These were inspired by YA-TRAP proposed at PerCom
’06 by Tsudik [26].
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Reader Rj Tag Ti

Database L: {. . . , (tj , HMACKi(tj)), . . . } Shared secret: Ki, t0, ti, tmax
tj−−−−→

if (tj < ti) or (tj > tmax)

hj = PRNGj
i .

else
hj = HMACKi(tj) and

hj←−−−− update ti ← tj .
check ∃tj s.t. (tj , hj) ∈ L.

Fig. 5. The YA-TRAP protocol

6.1 YA-TRAP

The steps of YA-TRAP [26] are given in Fig. 5, where HMAC is a message
authentication code and PRNG is a pseudo-random number generator. It works
as follows: a tag is initialized with an initial timestamp t0 and the top timestamp
value tmax, as well as with a unique secret value Ki. Tags are also assumed to
be able to compute a PRNG, where PRNGj

i denotes the jth invocation by the
tag Ti of its own PRNG.

The main goal of YA-TRAP’s design was to achieve untraceable privacy
(UPriv) with adversaries assumed to be able to corrupt tags.

Two operating modes were proposed [26] for YA-TRAP, namely real-time and
batch. The difference is that for batch mode, responses from tags are collected by
the reader in batches for later communication to the server for offline processing
and identification. This latter mode is suited for settings e.g. inventory control
where tags are assumed honest, since they will only be authenticated later in
batches rather than online. Thus, this mode is not suitable for applications where
feedback is required on the spot, e.g. library check-outs, or retail outlets for both
tags in purchased items as well as tags in credit cards.

Tsudik observed that it was possible for denial of service (DoS) attacks to be
launched towards YA-TRAP, and remarks that DoS resistance is not among the
key goals of YA-TRAP.

What is more subtile, however, is the fact that a denial-of-service kind of
attack could lead to an adversary being able to track a tag in the YA-TRAP
protocol.

Tracing Tags in Real Time. In the YA-TRAP specification, it was suggested
[26] that the top value tmax of a tag’s timestamp need not be unique but could
instead be shared by a batch of tags.

Consider a scenario where tags have different tmax, operating in real-time
mode. Indeed, acknowledging the fact that tags are produced by different man-
ufacturers for diverse applications, it seems inevitable that some tags will have
differing tmax. An adversary can trace a tag, i.e. distinguish between two tags
(corresponding to a break of the privacy notion in the Juels-Weis model [13] and
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the UPriv notion we described in Section 2), as follows. For simplicity, assume
two tags T0 and T1 with respective tmax0 and tmax1, where tmax0 < tmax1.
1. Learning: Issue a Send query with tj = tmax0 to a tag T ∈ {T0, T1}.

Since tmax0 is much into the future than current ti value, a response
hj = HMACKi(tj) is expected, irrespective of which tag it is. Furthermore,
the tag will update its local time counter as ti = tmax0. This action serves
to send the tag into the future by marking it for future tracing.

2. Challenge: Some time later, when it is desired to trace the tag, issue a Send
query with tj for tmax0 < tj < tmax1. If T = T0, it will respond hj = PRNGj

i

and will not successfully pass the validation check by the reader. If T = T1,
it will respond hj = HMACKi(tj) and will successfully pass the validation
check. Thus by observing the reader-tag interaction via Execute queries, an
adversary can distinguish between T0 and T1 and win the privacy game.

Juels and Weis [13] gave two tracing attacks on YA-TRAP that are valid in
their privacy model, thus showing YA-TRAP does not meet their definition of
strong privacy. Nevertheless, their tracing attacks would no longer apply in a
weaker privacy model, and in fact one which better models the practical setting,
where the adversary is further restricted by limiting its access to the TagInit
message [13] as follows: when the TagInit message is issued to its two selected
tags T0 and T1 used during the challenge phase, the adversary does not know
which one of them was issued the message. This better models the practical
privacy setting as the adversary is unaware during the learning phase which tag
it has queried.

In contrast, our attack still applies in this weakened-adversary setting, and
thus our result shows that setting a common tmax for tags offers more advantage
over having individual tmax for each tag.

YA-TRAP was designed to specifically output a random response even if the
tag does not want to be validated by the reader, such that an adversary is
unable to distinguish between that random response and a proper response. Yet,
by observing the output of the reader-tag interaction, i.e. seeing if the tag passes
the validation or not, still allows the distinguishing. In this sense, using the
YA-TRAP approach of generating random responses by itself is not sufficient to
prevent tracing.

To reiterate, our attack can be prevented if the adversary is unable to observe
the output of the reader-tag interaction, i.e. it does not know if the tag success-
fully passes the reader’s validation check. This inability in fact corresponds to
the narrow adversary model defined in Vaudenay’s privacy model [28]. One ex-
ample setting that fits this narrow model is the batch mode suggested by Tsudik
[26] for YA-TRAP. Nevertheless, it is worth recalling here that batch mode is
not relevant for applications where immediate feedback is required e.g. retail and
library check-outs, and furthermore is only meaningful in the setting where tags
are assumed to be honest (not usually the case) since they are not authenticated
on the spot but later.

Cloning. An adversary can issue Send queries to the tag with arbitrarily many
values of tj and obtain the corresponding responses hj . These values allow the
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Reader Rj Tag Ti

Database L: {. . . , (tj , HMACKi(tj)), . . . } Shared secret: Ki, t0, ti
t,rt−−−−−−−−−−→

Pick ri.
if (t > ti)

h1 = HKi(00||t||rt)
else

ri,h1←−−−−−−−−−− h1 = HKi(01||ri||rt) if (t ≤ ti).

[∗] Calculate h2 = HKi(10||ri||t) [∗] ri,h2−−−−−−−−−−→
check ∃(tj , HMACKi(tj)) ∈ L s.t. [∗]check h2 = HKi(10||ri||t).

h1 = HKi(00||t||rt), if (t > ti)
or h1 = HKi(01||ri||rt). Update ti ← t.

Fig. 6. The YA-TRAP+ protocol

tag to be cloned so that when the cloned tag is queried a particular tj value,
it will reply with the captured response hj . The problem here stems from the
fact that tag responses hj are pre-computable only with the presence of the tag
and not the reader since the supposed reader-supplied challenge is a predictable
monotonically increasing timestamp tj .

6.2 Tracing YA-TRAP+ with Second Pass

The steps of YA-TRAP+ are shown in Fig. 6, where HK(·) denotes a keyed hash
function and the steps preceeded by [∗] are optional, and only meant to be used
by the reader if it is felt that DoS attacks are rampant. Legitimate readers share
with the tags their secret keys Ki.

It turns out that the tracing attack of subsection 6.1 is simpler when applied
to YA-TRAP+ if its optional second pass (preceeded in Fig. 6 by [∗]) is made
compulsory.

1. Learning: An adversary first issues Send queries to the tag T0 with some
rt and a value t that is predictably much larger than the tag’s ti, obtaining
the response ri, h1 = HK(00||t||rt). It then intentionally modifies via a Send
query the message h2 from reader to tag such that the tag does not success-
fully authenticate the reader and thus the tag does not update its internal
time counter ti to t.

2. Challenge: Issue a Send query to the tag in future (i.e. let the challenge
tag Tb ∈ {T0, T1} during the challenge phase) with the same rt and t. Since
t > ti, it will return the response r′i, h1 = HK(00||t||rt) for which h1 is the
same if the challenge tag Tb = T0. Otherwise, the adversary knows Tb = T1.
This allows to track the tag and win the privacy game.

Note that YA-TRAP+ was specifically designed to resist the kind of tracing
attack on its predecessor YA-TRAP that we mounted in subsection 6.1, and yet
this result shows that the optional second pass of YA-TRAP+ that requires to
check h2 before updating the stored secret, although meant to provide additional
security to resist denial of service attacks, will in fact cause the protocol to fall
to tracing.
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Reader Rj Tag Ti

Database L: {. . . , (ri, Ki), . . . } Shared secret: ri, Ki
rt−−−−−−−−−−→

ri,h←−−−−−−−−−− Compute h = HKi(rt, ri).
check ∃(ri, Ki) in DB: s.t. Update ri ← HKi(ri).

h = HKi(rt, ri) or h = HKi(rt, ri).
Update ri ← HKi(ri) ∈ L.

Fig. 7. The O-TRAP protocol

6.3 Tracing O-TRAP

The steps of O-TRAP are shown in Fig. 7. The reader contains a hash table
indexed by ri with entries 〈ri,Ki〉 where ri and Ki correspond to secrets of tags
to which it has legitimate access.

1. Learning: An adversary can issue a Send query to the tag T0 with random
values rt repeatedly, causing the tag to update its ri each time such that it
is way into the future compared to its synchronization with the reader.

2. Challenge: The adversary observes the future interaction between a tag
Tb ∈ {T0, T1} and a reader via Execute queries to see if the reader accepts
the tag as valid. If not, then the adversary knows this was the tag that it
marked during the learning phase, i.e. Tb = T0. Else, Tb = T1.

Note that this kind of attack has been independently applied by Juels and Weis
[13] to a couple of other older RFID protocols. Yet what is interesting as has been
demonstrated here, is that recent provably secure protocols like YA-TRAP+ and
O-TRAP in some sense still allow for tracing.

7 RIPP-FS

RIPP-FS was proposed by Conti et al. [9] at PerCom ’07. The steps of RIPP-FS
are given in Fig. 8.

Each tag Ti is initialized with a tag key K0
Ti

that it shares with the reader, as
well as the initial value-pair (K0, t0) generated by the reader, where K0 is the
last value in a hash chain

K� = w

Ki = H(Ki+1) = H�−1(w), i = 0, . . . , �− 1

for w a seed, and tj (j = 0, . . . , �) is a time interval counter.
A tag is also assumed to be able to compute a pseudo-random number gen-

erator (PRNG), where PRNGj
i denotes the jth invocation by the tag Ti of its

own PRNG.
One of the goals of RIPP-FS’s design was to achieve untraceable privacy

(UPriv) against adersaries able to corrupt tgs, and it is claimed to offer more
security properties than YA-TRAP, YA-TRAP+ and O-TRAP.
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Reader Rj Tag Ti

Database L: {. . . , (Ti, K
j
Ti

, HMAC
K

j
Ti

(tj)), . . . } Shared secret: Kj , tj

K′
j ,t′j−−−−−−−−−−→

δt = t′j − tj

if (δt > 0) and (Hδt(K′
j) = Kj)

tj = t′j ,
Kj = K′

j ,

KTi = Hδt(KTi),
hj = HMACKTi

(t′j).
else

hj = PRNGj
i .

hj←−−−−−−−−−−
check ∃Ti, hj : 〈Ti, K

j
Ti

, hj〉 ∈ L.

Fig. 8. The RIPP-FS protocol

7.1 Tracing Tags

We show how to trace tags in the RIPP-FS protocol.

1. Learning
(a) Query Send to the reader to initiate two protocol sessions, obtaining

(K ′
j , t

′
j) and (K ′

j+1, t
′
j+1), where t′j+1 > t′j , and K ′

j = H(K ′
j+1).

(b) Make a Send query to a tag T0 with the value (K ′
j+1, t

′
j+1). Since

this is a valid message generated from the reader, a response hj =
HMACKTi

(t′j+1) is expected. More importantly, the tag will update its
time interval counter as tj = t′j+1, as well as the other secrets Kj = K ′

j+1

and KTi = Ht′j+1
−tj (KTi).

2. Challenge: Some time later, when it is desired to trace the tag, issue a
Send query with (K ′

j , t
′
j) to the challenge tag Tb, and pass the response

hj+1 to the reader. If Tb = T0, it will respond hj+1 = PRNGj
i and will not

successfully pass the validation check by the reader. If Tb = T1, it will respond
hj+1 = HMACKi(t′j) and will successfully pass the validation check. Thus
by observing the reader-tag interaction via Execute queries, an adversary can
distinguish between T0 and T1 and win the privacy game.

8 Concluding Remarks

We first provided an alternative description of privacy models that captures
the notion of untraceable privacy (UPriv) and discussed its relation to existing
models. This was to pave the way for our analysis results in later sections.
We showed how the notion of UPriv cannot be achieved by some recent RFID
protocols.

Our emphasis in this paper was to analyze the level of untraceable privacy
offered by the protocols. We only discussed reasons why our attacks worked
and intentionally did not propose any tweaks nor fixes on the protocols; mainly
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because there are already many available in literature, and so we feel this was not
necessary unless there is a serious void of well designed provably secure RFID
protocols.

Final remarks: while a uniformly accepted privacy model for RFID protocols
is still being developed by the community, the results here serve to strengthen
the need for such a standard model to facilitate better design of RFID protocols
that offer both privacy and security. This has to be fulfilled if RFIDs are ever
to be widely used by each individual within his network space of interconnected
things.
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Abstract. The recently proposed Radio Frequency Identification (RFID) authen-
tication protocol based on a hashing function can be divided into two types ac-
cording to the type of information used for authentication between a reader and
a tag: either a value fixed or one updated dynamically in a tag. In this study we
classify the RFID authentication protocol into a static ID-based and a dynamic-
ID based protocol and then analyze their respective strengths and weaknesses and
the previous protocols in the static/dynamic ID-based perspectives. Also, we de-
fine four security requirements that must be considered in designing the RFID
authentication protocol including mutual authentication, confidentiality, indistin-
guishability and forward security. Based on these requirements, we suggest a
secure and efficient mutual authentication protocol. The proposed protocol is a
dynamic ID-based mutual authentication protocol designed to meet requirements
of both indistinguishability and forward security by ensuring the unlinkability of
tag responses among sessions. Thus, the protocol can provide more strengthened
user privacy compared to previous protocols and recognizes a tag efficiently in
terms of the operation quantity of tags and database.

Keywords: RFID, Authentication, User Privacy.

1 Introduction

An RFID system is an automatic cognition technology that can read individual informa-
tion remotely with a RF telecommunication that with a wireless interface. In general,
an RFID system is composed of three components: an RFID tag, an RFID reader and a
host system, each of which plays a role as a transponder, a transceiver and a back-end
server system (hereinafter referred to as a ‘tag’, a ‘reader’ and a ‘database’). An RFID
system purposes to recognize an entity attached with a tag. Normally, tags transmit their
identity to the reader in response to a reader’s wireless probe. This unique identity of a
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tag is sometimes referred as EPC (Electronic Product Code). However, as the tag and
the reader communicate through an insecure channel using a wireless interface, the tag
sends its own information responding to a signal of the reader without authenticating
if the reader is valid. Since this property of the RFID operation allows an attacker im-
personating a legal reader or a third party around a reader to obtain the user’s purchase
history and location information with ease, a user privacy problem can occur. The RFID
privacy protection schemes are widely classified into three types: hash-based approach,
re-encryption-based approach, and a XOR-based approach. Then, the hash-based RFID
mutual authentication protocol can be divided into static or dynamic ID-based proto-
cols according to whether information saved in a tag, which is used for authentication
between a reader and a tag, is fixed or updated for saving. In this paper, we analyze the
previous hash-based authentication protocols from the perspectives of static/dynamic
IDs and propose a new protocol that improves their security and efficiency. The pro-
posed protocol is a dynamic-ID based RFID mutual authentication protocol that updates
a tag’s ID information continuously using a one-way property of hash functions.

The remainder of this paper is organized as follows. In section 2, we review protocol
design issues and security requirements that should be considered for a secure and ef-
ficient RFID system. In section 3 and 4, we provide analysis of the previous protocols
in the perspective of the design issues discussed in section 2 and propose a new pro-
tocol based on the analysis. Section 5 analyzes security and efficiency of the proposed
protocol and finally conclusions are continued at Section 6.

2 RFID Protocol Design Issues and Security Requirements

2.1 Considerations for Efficiency and Security of the RFID System

Like other research fields, the RFID system has a trade-off between efficiency and se-
curity; the efficiency may be lowered to obtain security. In other words, a more efficient
protocol can be designed by excluding any security threat or an attack model. However,
it is not a right approach in the study to design mutual authentication protocol to provide
secure RFID service.

In this section, we will discuss the core research issues to be considered to design
a secure and efficient RFID protocol based on previous research results about a hash-
based RFID mutual authentication protocols.

Static/Dynamic ID-Based Mutual Authentication Protocol. As mentioned above,
the current hash-based RFID mutual authentication protocols can be divided into two
types; a static ID-based mutual authentication protocol [4] and a dynamic ID-based pro-
tocol [1,2,3,5]. The two types of mutual authentication protocols have unique merits and
demerits of their own, which should be considered in designing a protocol according to
a RFID system application.

First of all, in a static-ID based mutual authentication protocol, a tag responds to
a query of a reader with a fixed ID value (authentication/identification information).
This means that the response value changes by using a random value for every session,
while its own ID, which is saved in the tag, is always the same. The static ID-based
mutual authentication protocol has an advantage in implementing a global database



280 J. Lim, H. Oh, and S. Kim

because it can keeping the same ID for distributed database as it can keep the fixed
ID. However, the database requires operations proportional to the number of tags it
maintains to identify a tag because the tag hashes its ID with random number for ever
response. In addition, because it is not realistic for a tag to have a tamper resistant
function, an attacker can trace a tag user’s past behaviors using static ID information
saved in a tag so the forward security cannot be satisfied.

In a dynamic ID-based mutual authentication protocol, a tag updates an ID of a pre-
vious session for every session to change a response to a query of a reader. Normally a
protocol can recognize a tag directly by searching an ID saved in a database using a syn-
chronized ID and also ensure forward security by using a one-way function in updating
an ID. To do so, however the database and the tag should keep the ID and authentication
information synchronized. In particular the database needs to perform additional oper-
ations for resynchronization when the synchronization is broken. Because a fixed ID
cannot be kept in several databases, it is difficult to implement a distributed database.

To design a mutual authentication protocol using a dynamic ID, we focus on protect-
ing a user’s privacy by ensuring forward security rather than by implementing a global
database.

Synchronization Problem between a Database and a Tag and Operation Quan-
tity of the Database. As mentioned above, mutual authentication protocols designed
based on a dynamic ID have to keep a updated ID and authentication information syn-
chronized by both a database and a tag. Asynchronization between the database and
the tag may occur when a session cannot be normally completed because of an unusual
transmission error caused by an attacker in a wireless channel of the reader-tag section.
For resynchronization and control of it, the database process protocol becomes compli-
cated and needs additional operation. Because there are many easier physical ways of
attacks that incapacitate a tag, Dimitriou [1] suggested a mutual authentication protocol
without considering that an attack can cause asynchronization Although attacks causing
asynchronization have less possibility to occur [1] , they can make it impossible to ’rec-
ognize a tag’, which is the fundamental intent of the RFID system, if the asynchronous
problem happens in a protocol that does not consider synchronization.

The study here considers ensuring security of the RFID system more important rather
than considering additional costs of resynchronization. Thus, a protocol is designed
focusing on the purpose to reduce additional burdens of the database while considering
control of asynchronous problems and resynchronization.

User Location Privacy and Operation Quantity of the Database. To control asyn-
chronization and the problem of resynchronization to the database, authentication infor-
mation and IDs of a current session and a previous one can be kept in the database [2,3].
Lee [2] et al. suggested a protocol that can recognize a tag without additional data op-
eration in an asynchronous situation by keeping IDs of a current session and a previous
one as well as their hash values of the IDs in the database. Despite the efficiency of
the scheme, the tag cannot update the current ID with a new one and then transmits
the same ID and authentication information when an attacker blocks the last message
of a session in transmission from a reader to a tag. As a result, the location of the user
bearing the tag can be traced.
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The study thus designs a protocol to ensure a user’s location privacy as well as to
reduce database operation quantity by updating ID values unconditionally regardless of
closing status while keeping previous and current values in authentication fields only
so that an ID and authentication of a tag can be differentially updated according to a
session closing condition.

2.2 RFID Security Requirements

To protect a user’s privacy in the RFID system, it should be robust against forgery at-
tacks in order to pass an authentication process using unjust tags such as a replay attack
or a spoofing attack. This requirement should include the following security problems.

– Data Privacy: In the RFID system, a tag responds to a query of a ready uncondi-
tionally. Thus, transmitting a tag’s information to an unidentified reader without
protection through an insecure channel may cause a data privacy problem. An at-
tacker also can easily recognize a specific medication history and or possession of
a drug or expensive personal items of a RFID user.

– Location Privacy: Even when data privacy is protected, if an attacker can trace
a response message of a tag that is transmitted at every session, a user’s location
privacy problem may occur. In other words, transmitting authentication information
with the same value or distinguishable value according to a query of a reader may
cause a user’s mobile path to be exposed.

To solve the security problems above, the following security requirements should be
considered.

– Mutual Authentication: A tag and a reader should be able to confirm that an entity
communicating with is a just tag.
• A reader’s tag authentication: A reader should be able to verify a just tag to

authenticate and identify a tag safely from a replay attack or a spoofing attack.
• A tag’s reader authentication: A tag should be able to confirm that a just reader

is communicating with it. By using an assumption that only a just reader
can access a database, reader authentication by a tag can be excluded from
consideration.

– Confidentiality: An attacker should be able neither to analogize or calculate a cer-
tain value through all tag messages transmitted through an insecure channel nor
infer a tag’s own ID.

– Indistinguishability: An output value of a tag should be neither distinguished from a
random number nor connected to a tag ID. If possible to find out values of a certain
tag from a random tag message, he can distinguish the certain tag and trace a user’s
location.

– Forward Security: Even when confidential tag information is disclosed to an at-
tacker, the information should not be available to know a message or confidential
information of a previously calculated tag. If an attacker can figure out and calcu-
late past responses when it is possible to know current status and ID information of
a target tag obtained in a physical way, they could breach a user’s data and location
privacy based on knowledge about the user’s past behaviors.
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3 Related Work

3.1 Terminologies

The notation in Table 1 is used in related research and the proposed protocol.

3.2 CRAP Scheme by Rhee et al.

Challenge-Response based Authentication Protocol (CRAP) [4] proposed by Rhee et
al. is a static ID-based mutual authentication protocol that changes a tag response using
a hash function and the random number. A tag changes its response by hashing the
random number received from a reader and its own random number along with its static
ID value kept in the tag. CRAP guarantees mutual authentication, confidentiality and
indistinguishability among the four security requirements but not forward security. To
identify a tag, a database has to perform hash operation equal to the number of saved
tags (O(n)) every time.

3.3 LCAP Scheme by Lee et al.

Low-Cost Authentication Protocol (LCAP) [2] proposed by Lee et al. is a mutual au-
thentication protocol that improves database operation quantity for resynchronization
efficiently while solving an asynchronous problem between a tag and a database that
can occur in a dynamic ID-based mutual authentication protocol. A database keeps a
current ID, an ID-hashed value, a previous ID and its hashed value to control an asyn-
chronous status. A tag ID is updated through XOR with the random number received
from a reader, while a database can identify a tag only by searching a tag list without
additional operation. However, the protocol cannot provide forward security as it uses
the XOR operation to update an ID. Also, if an attacker intentionally blocks the last
message, the same value is given as a response to a query of a reader so as not to satisfy
indistinguishability and allow location tracing.

Table 1. Notation

D,R, T Database, Reader, Tag
K Symmetric key kept by a tag and a database
NX Nonce of a participating entity X
M1||M2 Concatenation of message M1 and M2

G, H An one-way hash function with 1 as a length of an output value and 0, 1∗0, 1l

H(K, M) A value after hashing the one-way hash function H with a key K and a message M
HL(K, M), HR(K, M) are the left half and the right half of a hash function for each

Fig. 1. CRAP by Rhee et al.
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Fig. 2. LCAP by Lee et al.

3.4 LTC Scheme by Dimitriou et al.

Dimitriou et al. suggested a Lightweight RFID protocol to protect against Traceability
and Cloning attacks (LTC) [1] protocol that can ensure forward security by updating a
tag ID using an one-way hash function. The LTC, a dynamic ID-based mutual authen-
tication protocol, updates a tag ID by hashing a previous session ID with an one-way
function. However, as this protocol keeps a current tag ID only, a database needs addi-
tional hash operations as many as the number of saved tags every time to identify a tag.
In addition, despite its design based on a dynamic ID, a database cannot distinguish a
tag when the last message is blocked by an attacker, because it does not consider control
of asynchronous status and resynchronization.

3.5 Hash Chain Scheme by Ohkubo et al.

The hash chain method [5] suggested by Ohkubo et al. is a dynamic ID-based au-
thentication protocol that changes a tag ID with two one-way hash functions and cre-
ates authentication information. A tag uses the following two hash functions, G, H :
0, 1∗ → 0, 1l Using a confidential value St,i for a query of a reader, a tag creates
St,i+1 = H(St,i) and then creates at,i = G(St,i) with a G hash function. A tag cre-
ates and transmits St,i+1 = H(St,i) and at,i = G(St,i)whenever a reader queries.
Among the four RFID security requirements, this scheme can satisfy confidentiality,
indistinguishability and forward security but can still allow a spoofing attack and a re-
ply attack as mutual authentication cannot be done. In addition, a database requires too
many operation to find out a tag responding to a transmitted value because it has to
figure out the seed value St,i that produces a′

t,i which is consistent with at,i received
from a reader by calculating seed values for all has changes St,i(1 ≤ t ≤ n) and
a′

t,i = G(Hi−1(St,i))(1 ≤ i ≤ m) for all hash chains. This means that, when n is the
number of tags saved in the database and m is the maximum length of a hash chain that

Fig. 3. LTC by Dimitriou et al.



284 J. Lim, H. Oh, and S. Kim

Fig. 4. Hash Chain Scheme by Ohkubo et al.

represents the maximum number of times to read a tag, the database should perform
hash operations equal to O(nm) times.

4 Proposed Protocol

In this paper, we propose an RFID mutual authentication protocol that meets all RFID
security requirements including mutual authentication, confidentiality, indistinguisha-
bility and forward security as mentioned in 2.1 and 2.2 above. It is also effective in
terms of database operation quantity. The proposed protocol is composed of two stages:
initialization and execution.

4.1 Initialization

In the proposed RFID system, a tag Ti that keeps the following information can be
distinguished only by EPCi.

– Ki: A symmetric key between a tag and a database. The symmetric key of each tag
is calculated as Ki = H(KD, EPCi) from the master key of a database KD.

– IDj : The jth dynamic ID of a tag, calculated as IDj=H(Ki, IDj−1). Here the
first tag ID ID0 is assumed as being shared between a tag and a database.

– Nk: A tag creates and uses a random number Nk to make a different response for
each query of a reader. Considering operation capacity of a tag, the random number
is calculated as Nk = H(Ki, Nk−1). Here the first random number N0 is assumed
to be saved in a tag when it is created.

A database keeps a master key KD and the following information.

– EPCi: The only identification code of a tag Ti

– IDj : The jth dynamic tag ID synchronized with a tag
– C Key: A current tag key value to be used when the tag is authenticated at the

next session. Under a normal operation of the protocol, key values of a tag and a
database are synchronized as the C Key value.

– P Key: A previous tag key value used for tag authentication at the previous
session. Under abnormal operation of a protocolłwhen synchronization between
a tag and a database is brokenłthe database can identify a tag using the P Key
value.
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4.2 Execution

In the execution stage of the proposed protocol, a tag, a reader and a database send and
receive the following message as shown in Figure 5 and operates as follows.

– Step 1: A reader creates and transmits a random number NR to prevent a reply or a
spoofing attack by ensuring message freshness for a tag response.

– Step 2: A tag calculates HL(Ki, NR||Nk) with NR received from a reader, its key
number and a random number and sends it to a reader. Then the tag updates the
current ID IDj as IDj+1 = H(Ki, IDj). A tag ID is updated regardless of normal
completion of a session. A tag updates its current ID after responding to a query of
a reader. A reader then sends its random number NR and a message received from
a tag to a database.

– Step 3: The database received the message at Step 2 searches for the same ID on
the tag list saved as a received value IDj . When the received ID and a saved ID
is coincident, the database regards the tag as just and calculates HL(Ki, NR||Nk)
with C Key of the tag to confirm synchronization status and update a key. If the
calculated value is coincident with the received value, it updates a current tag ID,
a current key value and a key value of a previous session. If HL(Ki, NR||Nk) is
not same with the value calculated with C Key, the current tag key Ki are syn-
chronized with P Key. Thus, the database does not update a key value but an ID
only. When the database received the message of Step 2 cannot search for a tag
with the received ID, it finds out a value coincident with a received value by cal-
culating HL(Ki, NR||Nk) with all saved C Key values. When the value is found,
the database updates a current key value and one of the previous session as well
as the current ID using the ID value of a received message. Step 3 may have many
exceptions caused by an attacker, which will be described in Section 5.

– Step 4: After tag identification, the database transmits a tag EPC and the authenti-
cation value HR(Ki, NR||Nk) to a reader. Then, a reader sends the authentication
value HR(Ki, NR||Nk) to a tag, while the tag verifies it. If HR(Ki, NR||Nk) is
authenticated in a right way, the tag updates and saves the current key as Ki+1 =
H(Ki||NR). If not, or when the message of Step 4 itself cannot be received, the tag
does not update the key value.

5 Analysis

This Section shows that the proposed protocol operates always normally and analyzes
stability of the security requirements defined in Section 2. Furthermore, efficiency of
the protocol is analyzed through comparing database and tag operation quantity with
precedent studies.

5.1 Attack Model and System Assumption

The proposed system assumes that an attacker has the following capabilities.

– An attacker can wiretap all messages in the reader-tag session, which is an insecure
channel, and has all messages of the previous session.
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Database Reader Tag
[ID, C Key, P Key, EPC] [IDj , Ki, Nk]

1 NR →
2 ← IDj ,Nk,HL(Ki,NR||Nk)

← add NR

3 if(storedID=receivedIDj){
compute H′

L=HL(C Key,NR||Nk)

if(received HL==H′
L){

update C Key: Ki+1=H(Ki||NR)

update P Key: Ki

}
update IDj+1=H(Ki,IDj)

}else{
for all C Key

compute H′
L=HL(?,NR||Nk)

if(received HL==H′
L)){ update

update C Key: Ki+1=H(Ki||NR) IDj+1=H(Ki,IDj)

update P Key: Ki

updateIDj+1=H(Ki, received IDj)

}else {
for all P Key

compute H′
L=HL(?, NR||Nk)

if(received HL==H′
L){

update IDj+1=H(Ki, received IDj)

}
}

}
4 EPC, HR(Ki,NR||Nk) →

HR(Ki,NR||Nk) →
5 if(HR==receivedHR){

(updateKi+1=H(Ki||NR))

}

Fig. 5. Proposed Protocol

– A communication channel between a reader and a database is regarded as secure.
Thus, an attacker cannot send a message to a database as if he is a just reader. This
means that an attacker can perform a reply attack to a just reader disguising as a tag
and communicate with a tag as if a reader. However, only a legal reader can access
to the database and obtain tag information.

5.2 Analysis of Protocol Completeness

This section shows that the proposed protocol can authenticate a tag normally and
resynchronize it even when synchronization between a tag and a database is broken
by an attacker’s intervention. Figure 6 show tag synchronization and resynchroniza-
tion process between a tag and a database according to session progress. Database-tag
synchronization status can be divided into 5 types (see top-left table of Figure 6).



A New Hash-Based RFID Mutual Authentication Protocol 287

Fig. 6. Synchronization statues of Tag and Database

Here we assume that an attacker can control a session by delivering a message like
that in bottom-left Table of Figure 6 to intervene normal protocol progress and break
synchronization.

Figure 7 shows changes of ID and key synchronization status of a tag and a database
according to session progress through an example. Top-left table of Figure 7 presents
how the ID synchronization (see Figure 6) is broken and changes to a synchronized
status between a previous key value of a tag saved in a database and the current key
value, after a session begins at tag-database synchronization (status 0) and ends by a
message block of Step 2. As shown at top-left table of Figure 7, the proposed protocol
can resynchronize IDs and keys when a session progresses in the Status 2 normally
without message blocks of Step 2 and 4. As the above results show, the proposed proto-
col can keep synchronization between a database and a tag regardless of attack attempts
(see state diagram of Figure 6). Also, when key or ID synchronization is partially bro-
ken, resynchronization can be normally done so that the database can always identify a
just tag.

Fig. 7. Intervention by an Attacker
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5.3 Security Analysis

This section shows that the proposed protocol meets the four RFID security require-
ments defined at Section 2 and can protect a user’s data and location privacy.

– Mutual Authentication: In the proposed protocol, the database can authenticate
a tag through a synchronized ID value, which is updated at every session and
created by a secret key shared by both a database and a tag. Thus, an attacker
without knowing the key cannot calculate it. Even when ID synchronization is
broken, the database can confirm if a tag knows a secret key Ki by calculat-
ing the received value, HL(Ki, NR||Nk). Meanwhile, the tag authenticates a just
database and renews a key value only it is identified by receiving the last message
HR(Ki, NR||Nk) of Step 4.

– Confidentiality: What the RFID system protects for data privacy is a tag’s EPC in-
formation. All messages transmitted in the proposed protocol do not include EPC
information and cannot be connected even when an attacker has collected dynam-
ically updated IDs. Thus, he cannot figure out which RFID tags the RFID user
possesses.

– Indistinguishability: The proposed protocol responds to a query of a reader with a
different value for each session by updating an ID dynamically. As the ID value
calculated with an one-way hash function uses a key value shared with database, an
attacker cannot calculate an ID for a next session from the current ID without know-
ing the key value. Also, the HL(Ki, NR||Nk) sent along with the ID changes by
associating with new random numbers of every session regardless of an attacker’s
intervention. Thus, an attacker who does not know a key value cannot associate two
different messages each other.

– Forward Security: The proposed protocol updates an ID and a key value every
session using an one-way hash function. Even when an attacker has obtained the last
key value of a tag through capturing a tag in a physical way, they cannot calculate a
key value of a previous session due to the one-way property of hash functions and
therefore cannot restore a message of a previous session to know or trace a user’s
past behaviors.

5.4 Efficiency Analysis

The proposed protocol is a dynamic ID-based mutual authentication protocol using an
one-way hash function. Figure 8 compares security and efficiency of protocols sug-
gested in the past. The Proposed protocol can identify a tag only with database search-
ing cost during ID synchronization and should perform a hash operation proportionate
to the number of tags saved in a database when the ID synchronization is broken. Also,
the proposed protocol needs a O(2n) database operation in the worst case, which occurs
only when the Step 4 message is blocked and the Step 2 message is sequentially blocked
in the next session by an attacker. However, when assuming that the attacks occur in-
frequently, the proposed protocol can ensure a user’s privacy strengthened compared to
past protocols with same or excellent efficiency in the perspective of database operation
quantity.
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Fig. 8. Security and Efficiency of Protocols Suggested by Related Studies

6 Conclusion

In this paper, we proposed a dynamic ID-based RFID mutual authentication protocol
to guarantee a RFID user’s data and location privacy. Furthermore, we reviewed RFID
design issues that should be considered to design a secure and efficient RFID authenti-
cation protocol. Then, the four security requirements were defined including mutual au-
thentication, confidentiality, indistinguishability and forward security related to a RFID
privacy infringement threat. The proposed protocol can meet the all four RFID security
requirements, provide strengthened privacy protection compared to past studies and is
effective in terms of database operation quantity.
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Abstract. Pairing-based cryptosystems have been widely researched,
and several efficient hardware implementations of pairings have also been
proposed. However, side channel attacks (SCAs) are serious attacks on
hardware implementations. Whelan et al. pointed out that pairings ex-
cept the ηT pairing might not be vulnerable against SCAs by setting the
secret point to the first parameter [25]. This paper deals with SCAs for
the ηT pairing over F3n . To our knowledge, the randomized-projective-
coordinate method has the smallest overhead among all countermeasures
against SCAs for the ηT pairing. The cost of that overhead is 3nM ,
where M is the cost of a multiplication in F3n . In this paper, we pro-
pose another countermeasure based on random value additions (xp + λ)
and (yp + λ), where P = (xp, yp) is the input point, and λ is a ran-
dom value in F3n . The countermeasure using the random value addition
was relatively slow in the case of the scalar multiplication of elliptic
curve cryptosystems. However, in the case of the ηT pairing, we can
construct an efficient countermeasure due to the form of the function
gP (x, y) = y3

py − (x3
p + x− 1)2 for a point P = (xp, yp). The overhead of

our proposed scheme is just 0.5nM , which is a reduction of more than
75% compared with the randomized-projective-coordinate method.

Keywords: ηT pairing, Tate pairing, side channel attacks, random value
addition.

1 Introduction

Pairings over elliptic curves are functions from two points on an elliptic curve
to an element over finite fields that exhibit bilinearity and non-degeneracy. Tate
pairing is a popular pairing and the Miller algorithm is the first efficient al-
gorithm for computing Tate pairing [18]. Barreto et al. improved the Miller
algorithm by denominator elimination, which is called the BKLS algorithm in
this paper [1]. Moreover, the ηT pairing [2] and Ate pairing [10] are efficient
algorithms for computing the Tate pairing for supersingular curves and ordinary
curves, respectively. The Ate pairing is a variation of the BKLS algorithm. How-
ever, the ηT pairing requires a special algorithm that arises from the function
gP (x, y) = y3

py − (x3
p + x− 1)2 for a point P = (xp, yp).

There have been many research studies on software and hardware implemen-
tations of pairings. Indeed, pairings have implemented on FPGAs [7,12,23,20,3]

L. Chen, Y. Mu, and W. Susilo (Eds.): ISPEC 2008, LNCS 4991, pp. 290–303, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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and smart cards [22]. On the other hand, side channel attacks (SCAs) reveal
secret data on hardware devices by monitoring side channel information such as
power consumption and timing [15,16]. Therefore, hardware devices executing
cryptographic algorithms with secret data need countermeasures against SCAs.

Countermeasures for pairing devices have recently been investigated [21,19,25]
[13,26]. Let e(P,Q) be a pairing for two points P = (xp, yp), Q = (xq, yq) on
the underlying elliptic curve. Scott proposed the method of randomizing the
intermediate value [21]. This method multiplies a random value in the finite field
by a Miller variable. The overhead of this method is 3.5nM for the ηT pairing
over F3n according to our estimation. On the other hand, Coron proposed some
countermeasures against SCAs on the scalar multiplication over an elliptic curve
cryptosystem (ECC) [6]. Page et al. applied Coron’s countermeasures to the
pairing, and proposed two countermeasures [19]. The first countermeasure is the
scalar multiplication and bilinearity method that computes e(αP, βQ)1/αβ for
randomized integers α and β instead of e(P,Q), and its overhead is about 18nM
for the ηT pairing over F3n . The second countermeasure is the point-blinding
method that computes e(P,Q + R)/e(P,R) for randomized point R, and its
overhead is about 7.5nM for the ηT pairing over F3n . Kim et al. evaluated their
efficiency for the ηT pairing over F2n . Moreover, they proposed the randomized-
projective-coordinate method [13]. In this method, settings Xp ← λxp, Yp ←
λyp, and Zp ← λ are performed, and its overhead is 3nM for the ηT pairing over
F3n . Whelan et al. also considered SCAs against pairings [25,26]. They concluded
that pairings using the BKLS algorithm (such as Ate pairing) might not be
vulnerable against SCAs by setting the secret point P to the first parameter of
e(P,Q). However, a countermeasure is needed for the ηT pairing algorithm due
to its symmetric structure.

In this paper, we provide an improved ηT pairing algorithm over characteristic
three, which is secure against SCAs. The proposed scheme is based on random
value additions (xp +λ) and (yp +λ), where P = (xp, yp) is the input point and
λ is a random value of F

∗
3n . The overhead of the proposed countermeasure is just

0.5nM for the ηT pairing over F3n . This method is similar to the randomized
linearly transformed coordinate (RLC) method for ECC [11,17] although RLC is
a relatively slow countermeasure against SCAs. However, our method is a very
efficient countermeasure for the ηT pairing. That is an interesting result. We
noted that changing “r0 ← xp + xq + d” to “r0 ← (xp + λ) + (xq − λ) + d”
using a random element λ at Step 5 in Algorithm 1 described in Section 2 fixes
r0. Although we have to randomize the y-coordinate, the resulting cost is not
large. Therefore, randomizations “xp ← xp + λ, yp ← yp + λ, xq ← xq − λ, and
yq ← yq − λ” in Algorithm 1 can be used to derive an efficient countermeasure
against SCAs.

The remainder of this paper is organized as follows. In Section 2, we explain
pairings and computational cost of some computations used in this paper. In
Section 3, we briefly review SCAs against hardware implementations of the ηT

pairing. Then, we describe existing countermeasures against SCAs for the ηT
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pairing. In Section 4, we propose an efficient countermeasure based on the ran-
dom value addition. In Section 5, we conclude this paper.

2 ηT Pairing and Computational Cost

In this section, we first explain the ηT pairing, which is one of the most efficient
pairings proposed by Barreto et al. [2]. Second, we discuss the costs of the multi-
plication in F36n and the scalar multiplication on the supersingular elliptic curve
over F3n . These cost estimations are applied to the comparison among various
countermeasures against SCAs for the ηT pairing.

2.1 ηT Pairing

Let F3n be an extension field of extension degree n over F3. Let Eb be a super-
singular elliptic curve defined by

Eb : y2 = x3 − x+ b with b ∈ {1, −1}. (1)

All supersingular curves are isomorphic to this curve. All points in Eb with the
point at infinity O are denoted by

Eb(F3n) = {(x, y) ∈ F3n × F3n : y2 = x3 − x+ b} ∪ {O}.
Then, Eb(F3n) forms a group, and the summation P + Q ∈ Eb(F3n) for any
P,Q ∈ Eb(F3n) is computed by an explicit formula [9,24]. For P ∈ Eb(F3n) and
an integer m(�= 0), the operation

mP = P + P + · · ·+ P (summation of m terms)

is called the scalar multiplication.
The extension degree n satisfies gcd(n, 6) = 1 because n is chosen to be a

prime [2]. Then, n satisfies n ≡ 1, 5, 7, 11 (mod 12).
Denote the number of elements in the set S by #S. Then, we know that

#Eb(F3n) = 3n + 1 + b′3(n+1)/2,

where b′ is defined by the following equation:

b′ =
{
b if n ≡ 1, 11 (mod 12),
−b if n ≡ 5, 7 (mod 12).

The distortion map ψ is defined by

ψ(x, y) = (ρ− x, yσ) (2)

with σ2 = −1 and ρ3 = ρ+ b.
Let l3P ′,b′P be a function of a line going through 3P ′ and b′P , and let

gR(x, y) = y3
ry − (x3

r + x− b)2
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Algorithm 1: Computation of ηT pairing for n ≡ 1 (mod 12)

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)

output: (ηT (P, Q)3
(n+1)/2

)W ∈ F
∗
36n

1. if b′ = 1 then yp ← −yp

2. R0 ← −yp(xp + xq + b) + yqσ + ypρ

3. d ← b

4. for i ← 0 to (n − 1)/2 do

5. r0 ← xp + xq + d

6. R1 ← −r2
0 + ypyqσ − r0ρ − ρ2

7. R0 ← R0R1

8. yp ← −yp

9. xq ← x9
q, yq ← y9

q

10. R0 ← R3
0

11. d ← d − b (mod 3)

12. end for

13. return RW
0

be a function whose divisor is (gR) = 3(R)+(−3R)−4(O) for R = (xr , yr). The
ηT pairing,

ηT : Eb(F3n)× Eb(F3n)→ F
∗
36n

is defined by

ηT (P,Q) = l3P ′,b′P (ψ(Q))
(n−1)/2∏

j=0

g3−jP ′(ψ(Q))3
j

, (3)

where P,Q ∈ Eb(F3n) and P ′ = 3(n−1)/2P . Note that gR only has such a simple
form for supersingular elliptic curve Eb(F3n). To obtain the bilinearity of the ηT

pairing, we need a powering by

W = (33n − 1)(3n + 1)(3n + 1− b′(3(n+1))) (= (36n − 1)/#Eb(F3n) ). (4)

Then, ηT (aP,Q)W = ηT (P, aQ)W = (ηT (P,Q)W )a holds for any non-zero inte-
ger a. This powering by W is called the final exponentiation.

Next, we explain a relationship between the ηT pairing and Tate pairing1

e : Eb(F3n)×Eb(F3n)→ F
∗
36n , which is often used in practice. Then, there is a

relationship between the ηT pairing and Tate pairing,

(ηT (P,Q)W )3T 2

= e(P,Q)Z ,

where T and Z are integers defined by

T = 3(n+1)/2 + b′, Z = −b′3(n+3)/2.

Eq. (3) provides Algorithm 1 for computing the ηT pairing over F3n , which is
the no-cube-root version proposed by Beuchat et al. [3].
1 More precisely e is the modified Tate pairing.
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2.2 Cost of Some Computations

In this section, we describe computational costs of a multiplication in F36n , Algo-
rithm 1, and a point addition and a scalar multiplication of a point on Eb(F3n).
These descriptions are required to compare the cost of our countermeasure with
other existing countermeasures.

Some notations about the computational costs in F3n are defined as follows:
M,C, I, A, and As are computational costs of a multiplication, a cubing, an
inversion, an addition/subtraction, and some additions/subtractions in F3n , re-
spectively. We know that the cost of cubing in F36n is 6M +As.

We use the basis {1, σ, ρ, σρ, ρ2, σρ2} for the extension field F36n , where σ and
ρ are defined for the distortion map (Eq. (2)). For simplicity, a0 + a1σ + a2ρ+
a3σρ+ a4ρ

2 + a5σρ
2 ∈ F36n is represented as (a0, a1, a2, a3, a4, a5).

We have the following computational costs of some multiplications with spe-
cial constant coefficients in F36n . Note that Step 7 in Algorithm 1 is computed
by (ii) (not (i)).

Property 1. Multiplications in F36n are computed by the Karatsuba method [14]
with the following costs:

(i) 18M+As for multiplication (a0, a1, a2, a3, a4, a5)×(b0, b1, b2, b3, b4, b5) [12],
(ii) 13M +As for multiplication (a0, a1, a2, a3, a4, a5)× (b0, b1, b2, 0,−1, 0) [8],
(iii) 15M +As for multiplication (a0, a1, a2, a3, a4, a5)× (b0, b1, b2, 0, b4, 0).

Proof. Refer to Appendix A for the proof of (iii). �	
The cost of Algorithm 1 except the final exponentiation (Step 13) is estimated
using Property 1. Note that a multiplication of Step 7, R0R1, costs 13M +
As according to Property 1. Thus, Steps 2, 5, 6, 7, 8, 9, and 10 cost M , As,
2M , 13M +As, As, 4C, and 6C +As, respectively. Therefore, the total cost of
Algorithm 1 except the final exponentiation is M + ((n + 1)/2) · (As + 2M +
13M +As+As+ 4C + 6C +As) = (7.5n+ 8.5)M + (5n+ 5)C +As.

A scalar multiplication on Eb(F3n) is efficiently performed with the tripling-
and-addition method because a computation of tripling the point is very efficient.
Indeed, a tripling point and a point addition using a projective coordinate sys-
tem cost M + 6C and 12M + 4C, respectively. Then, a computation of scalar
multiplication of mP costs

(9 log3m)M + (8.7 log3m)C + 2I (5)

on average because log3m point triplings and 2/3 · log3m point additions on
average and two inversions for restoring a point to the affine coordinate are
required [9].

3 Previous Countermeasures against SCAs

In this section, we review previously known SCAs on pairing and countermea-
sures against them.
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SCAs try to reveal the secret information on hardware devices by selectively
inputting data into the device and monitoring the side channel information such
as power consumption and timing while the device executes a cryptographic
algorithm [15,16].

Scott first pointed out that SCAs can be used against pairing devices when P
is public and Q is secret for the input of pairing e(P,Q) [21]. For example, such
a situation appears in Boneh and Franklin’s identity-based encryption [4]. More-
over, Scott proposed two countermeasures, namely the scalar multiplication and
bilinearity method and the method of randomizing the intermediate value. Page et
al. [19] showed that SCAs can reveal secret data by monitoring a multiplication of
the secret data by public data. They also proposed two countermeasures against
these attacks, the improved scalar multiplication and bilinearity method and the
point-blinding method. Kim et al. [13] showed that a computation of α · (β + γ)
can also be a subject of differential power analysis (DPA) attacks, where α and
β are secret, and γ is public. They proposed a countermeasure, the randomized-
projective-coordinate method, and that was improved by Choi et al. [5].

Whelan et al. [25] explained that a multiplication of secret data by public
data, and squaring and square-root computations of secret data became subjects
of SCAs if we use the pairing over finite fields of characteristic two. Moreover,
they discuss that one input point Q of pairing e(P,Q) is fixed (never changed)
during computation of the BKLS algorithm. Thus, one might resist SCAs by
setting the secret data to the updating point P . On the contrary, one needs a
countermeasure in the case of the ηT pairing due to its symmetric structure.

Let P = (xp, yp) and Q = (xq, yq) be points input into Algorithm 1. If P is a
secret point, the target operations of SCA are yp(xp + xq + b) in Step 2, r20 in
Step 6, ypyq in Step 6, or R0R1 in Step 7. Moreover, if Q is a secret point, then
x9

q or y9
q in Step 9 could also be the target of the attack.

In the remainder of this section, we explain details of the above countermea-
sures and estimate their costs when using the ηT pairing over F3n .

3.1 Scalar Multiplication and Bilinearity Method [19]

In the scalar multiplication and bilinearity method, an integer α with 0 ≤ α < l
is selected at random by a device, and another integer β = (α−1 mod l) is
computed, where l is the largest prime factor of the order of the points. The
device then computes

ηT (αP, βQ)W ,

which is equal to ηT (P,Q)W because ηT (αP, βQ)W=(ηT (P,Q)W )αβ=ηT (P,Q)W

due to the bilinearity of the ηT pairing. Even if point Q is selected by the at-
tacker, it is changed to βQ by the device, and the attacker cannot know βQ.
Therefore, this method provides a secure computation method for the ηT pairing
against SCAs. The overhead is two scalar multiplications on the elliptic curve,
which is 18nM + 17.4nC + 2I on average according to Eq. (5) because α and
β ≈ 3n and log3 α ≈ log3 β ≈ n. Now, the costs of the computation of β and
additions/subtractions is ignored.
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3.2 Point-Blinding Method [19]

The point-blinding method computes

(ηT (P,Q+R) · ηT (P,−R))W ,

where point R is selected by the device at random, and thus, the attacker can-
not control R. Note that this value is equal to ηT (P,Q)W because (ηT (P,Q +
R) · ηT (P,−R))W = ηT (P,Q + R)W · ηT (P,−R)W = ηT (P,Q)W · ηT (P,R)W ·
(ηT (P,R)W )−1 = ηT (P,Q)W due to the bilinearity of the ηT pairing. The over-
head is a point addition on the elliptic curve (12M + 2I) (2I is needed for
conversion of coordinates), a computation of the ηT pairing without final expo-
nentiation ((7.5n + 8.5)M + (5n + 5)C), and a multiplication in F36n (18M).
Note that there is no cost for the computation of −R because −R = (xr ,−yr)
for R = (xr , yr). Then, the overhead cost is (7.5n+ 38.5)M + (5n+ 5)C + 2I.

3.3 Method of Randomizing Intermediate Value [21]

In the method of randomizing the intermediate value proposed by Scott, ran-
domizations are performed for intermediate values related to Q and R0 in loops
of the pairing algorithm. Then, Steps 2, 5, and 6 in Algorithm 1 are modified as
follows:

2. R0 ← −λ · yp(xp + xq + b) + λ · yqσ + λ · ypρ
5. r0 ← λ · xp + λ · xq + λ · d
6. R1 ← −λ · r20 + λ · ypyqσ − λ · r0ρ− λ · ρ2

where λ is a random value in F
∗
3n selected by the device. Denote by Algorithm 1’

the modified Algorithm 1. Then, (R0 in Step 12 of Algorithm 1) = λ′(R0 in Step
12 of Algorithm 1’) for some λ′ ∈ F

∗
3n . However, the effect of λ′ is removed by

the final exponentiation, namely (λ′ ·ηT (P,Q))W = ηT (P,Q)W for W of Eq. (4).
Indeed, for r ∈ F

∗
33n or r ∈ F

∗
3n

rW = 1 (6)

is in general satisfied because

rW = r(3
3n−1)(3n+1)(3n+1−b′(3(n+1))) = 1(3n+1)(3n+1−b′(3(n+1))) = 1.

Scott recommends to multiply intermediate values by λ not at once but one by
one for security. Then, the overheads of Steps 2, 5, and 6 are 3M , 3M , and 3M ,
respectively. Note that Step 7 also creates an overhead because R1 has the form
of (b0, b1, b2, 0, b4, 0) not (b0, b1, b2, 0,−1, 0). Then, Step 7 takes 15M not 13M
according to Property 1; namely, the overhead of Step 7 is 2M . Therefore, the
total overhead of this method is (3.5n+ 6.5)M .

3.4 Randomized-Projective-Coordinate Method

Kim et al. proposed a randomized-projective-coordinate method for the ηT pair-
ing algorithm over characteristic two [13].
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Algorithm 2: Computation of the ηt pairing with the randomized
projective coordinate method for n ≡ 1 (mod 12)

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)

output: (ηT (P, Q)3
(n+1)/2

)W ∈ F
∗
36n

randomizing P randomizing Q

0. (Xp, Yp, Zp) ← (λxp, λyp, λ) 0. (Xq, Yq, Zq) ← (λxq, λyq, λ)

(λ is a random value in F
∗
3n) (λ is a random value in F

∗
3n)

1. if b′ = 1 then Yp ← −Yp 1. if b′ = 1 then yp ← −yp

2. R0 ← −Yp (Xp + Zp (xq + b)) 2. R0 ← −yp (Zq (xp + b) + Xq)

+Z2
p yqσ + Zp Ypρ +yqσ + Zq ypρ

3. d ← b 3. d ← b

4. for i ← 0 to (n − 1)/2 do 4. for i ← 0 to (n − 1)/2 do

5. r0 ← Xp + Zp (xq + d) 5. r0 ← Zq (xq + d) + Xq

6. R1 ← −r2
0 + Zp Yp yqσ 6. R1 ← −r2

0 + Zq yp Yqσ

−Zp r0ρ − Z2
p ρ2 −Zq r0ρ − Z2

q ρ2

7. R0 ← R0R1 7. R0 ← R0R1

8. Yp ← −Yp 8. yp ← −yp

9. xq ← x9
q , yq ← y9

q 9. Xq ← X9
q , Yq ← Y 9

q , Zq ← Z9
q

10. R0 ← R3
0 10. R0 ← R3

0

11. d ← d − b (mod 3) 11. d ← d − b (mod 3)

12. end for 12. end for

13. return RW
0 13. return RW

0

This paper gives a characteristic three version of the randomized-projective-
coordinate algorithm (Algorithm 2), where the left side uses the projective coor-
dinate for P , and the right side does that forQ. AlthoughR0 = λ′ηT (P,Q)3

(n+1)/2

holds for some λ′ ∈ F
∗
3n at Step 12 in both sides of Algorithm 2, the effect of

λ′ is removed by the final exponentiation as well as the method of randomizing
the intermediate value. Note that like the method of randomizing the interme-
diate value, the cost of Step 7 in each side of Algorithm 2 is 15M ; namely,
the overhead is 2M for each side. The cost of the left side of Algorithm 2
is (10.5 + 17.5)M + (5n + 5)C + As. Then, the overhead is (3n + 9)M . The
cost of the right side is (10.5 + 15.5)M + (6n + 6)C. Then, the overhead is
(3n+ 7)M + (n+ 1)C. When 2M > (n + 1)C, for example, when C = 0 using
a normal basis of F3n over F3, the left side is more efficient than the right side.
In other cases, the right side is more efficient than the left side.

4 Proposed Countermeasure

In this section, we propose an efficient countermeasure against SCAs for the
computation of ηT pairing over F3n . The basic strategy is as follows: (1) The
point (xp, yp) input into the ηT pairing is randomized by the random value
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Algorithm 3: Proposed secure ηT pairing algorithm against SCAs
for n ≡ 1 (mod 12)

input: P = (xp, yp), Q = (xq, yq) ∈ Eb(F3n)

output: (ηT (P, Q))3
(n+1)/2 ∈ F

∗
36n

1-1. if b′ = 1 then yp ← −yp

1-2. Yp ← λ′yp, Yq ← λ′yq (λ′ is a random value in F
∗
3n)

1-3. xp ← xp + λ, yp ← yp + λ, xq ← xq − λ, yq ← yq − λ, λ′′ ← λ2

(λ is a random value in F
∗
3n , λ = λ′ is possible)

2. R0 ← −Yp(xp + xq + b) + Yqσ + Ypρ

3. d ← b

4. for i ← 0 to (n − 1)/2 do

5. r0 ← xp + xq + d

6. R1 ← −(r0 + λ)(r0 − λ) − λ′′ + (ypyq + λ(yp − yq − λ))σ − r0ρ − ρ2

7. R0 ← R0R1

8. xp ← xp − λ + λ9, yp ← −yp + λ + λ9

9. xq ← x9
q , yq ← y9

q , λ ← λ9, λ′′ ← λ′′ 9

10. R0 ← R3
0

11. d ← d − b (mod 3)

12. end for

13. return RW
0

additions (xp + λ) and (yp + λ), where λ is a random value in F
∗
3n . (2) The

effects of the random additions are removed at some steps in the algorithm. The
proposed algorithm is represented as Algorithm 3.

4.1 Correctness of Algorithm 3

In the following, we prove that Algorithm 3 outputs the correct value of the ηT

pairing over F3n .
We try to investigate the differences between Algorithms 1 and 3. To dis-

tinguish the values in Algorithm 1 from those in Algorithm 3, each variable is
denoted by suffix “1” or “3”, respectively. For example, xp1 is denoted by xp in
Algorithm 1. Without of generality we can assume λ′ = 1 due to Eq. (6). Then,
we can prove the following lemma.

Lemma 1. Suppose λ′ = 1, then we have the following relationships

xp3 = xp1 + λ9i

, yp3 = yp1 + λ9i

, xq3 = xq1 − λ9i

, and yq3 = yq1 − λ9i

(7)

at the beginning of the i-th iteration of Algorithms 1 and 3.

Proof. We prove the lemma by induction. We can easily see that Eq. (7) is
satisfied for i = 0 at Step 1-3 of Algorithm 3. Next, suppose that at the i-th
iteration Eq. (7) is correct. In Algorithm 1, xp1, yp1, xq1, and yq1 are updated as
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xp1,−yp1, x
9
q1, and y9

q1, respectively. At Step 8 of the i-th iteration in Algorithm
3, xp3 is updated as

xp3 ← xp3 − λ9i

+ λ9i+1

= (xp1 + λ9i

)− λ9i

+ λ9i+1

= xp1 + λ9i+1

,

and yp3 is updated as

yp3 ← −yp3 + λ9i

+ λ9i+1

= −(yp1 + λ9i

) + λ9i

+ λ9i+1

= −yp1 + λ9i+1

.

At Step 9 of the i-th iteration in Algorithm 3, xq3 and yq3 are updated as

xq3← x9
q3 = (xq1−λ9i

)9 = x9
q1−λ9i+1

, and yq3 ← y9
q3 = (yq1−λ9i

)9 = y9
q1−λ9i+1

,

respectively. Therefore, Eq. (7) is satisfied at the beginning of every (i + 1)-th
iteration. �	
To prove the correctness of Algorithm 3, showing that

r03 = r01 and R13 = R11

are satisfied at every i-th iteration under the assumption λ′ = 1 is sufficient.
Indeed, at every i-th iteration we have the relationship

r03 = xp3 + xq3 + d = (xp1 + λ9i

) + (xq1 − λ9i

) + d = xp1 + xq1 + d = r01 (8)

and

R13 = −(r03 + λ)(r03 − λ)− λ′′ + (yp3yq3 + λ(yp3 − yq3 − λ))σ − r0ρ− ρ2

= −r203 + λ2 − λ′′ + (yp3yq3 + λ(yp3 − yq3 − λ))σ − r0ρ− ρ2

= −r201 + yp1yq1σ − r01ρ− ρ2

= R11

from Eqs. (7) and (8) because λ′′ = λ2 holds in every i-th iteration. Therefore,
we proved the correctness of Algorithm 3.

4.2 Security

We discuss the security of Algorithm 3 against SCAs. The attacker targets Steps
2, 5, 6, and 7 in Algorithm 3. However, all values are randomized by random
values λ and λ′′ for Steps 2, 5, and 6. Step 7 is also secure because, although R1

is not randomized, R0 is randomized by λ′ at Step 1-2. An explanation may be
needed for Step 6. Note that

−(r0 + λ)(r0 − λ)− λ′′ = −r20
because λ′′ is equal to λ2, as noted above. However, we need the computation
of “−(r0 + λ)(r0 − λ) − λ′′” (not r20) because r0 is unchangeable either with
the randomization at Step 1-3 or without it. Therefore, if this process is not
performed, then the attacker may guess r20 .



300 M. Shirase, T. Takagi, and E. Okamoto

Table 1. Comparison of overheads for countermeasure against SCAs

Countermeasure method Additional Cost

Point Multiplication and Bilinearity Method [19] 18nM + 17.4nC + 2I

Point-Blinding Method [19] (7.5n + 38.5)M + (5n + 5)C + 2I

Method of Randomizing the Intermediate Value [21] (3.5n + 6.5)M

Left Side of Algorithm 2∗ (3n + 9)M

Right Side of Algorithm 2∗ (3n + 7)M + (n + 1)C

The Proposed Method (Algorithm 3) (0.5n + 3.5)M + (3n + 3)C
∗ Algorithm 2 is the characteristic three version of the randomized-projective-
coordinate method [13].

4.3 Comparison with Other Methods

We estimate the computational cost of the proposed scheme and compare it with
the previously known methods described in Section 3. Now, we suppose that the
cost of a squaring is equal to that of a multiplication.

Here, we ignore the costs of additions/subtractions. Step 7 in Algorithm 3
requires 13M as well as Algorithm 1 because R1 in Algorithm 3 has the form of
(b0, b1, b2, 0,−1, 0) due to Property 1. Note that this sparse multiplication can be
applied to neither Algorithm 2 nor the method of randomizing the intermediate
value. Steps 1-2, 2, 6, 7, 8, 9, and 10 in Algorithm 3 cost 3M , M , 3M , 13M , 2C,
6C, and 6C, respectively. Therefore, the total cost of Algorithm 3 except the
final exponentiation is 3M +M + ((n+ 1)/2) · (3M + 13M + 2C + 6C + 6C) =
(8n+ 12)M + (7n+ 7)C. Then, the overhead is (0.5n+ 3.5)M + (3n+ 3C).

A comparison of the proposed countermeasure with existing countermeasures
is shown in Table 1. Note that the extension degree should satisfy n ≥ 97 for
security reasons. We estimate the cost of cubing to be C = 0.07M for the poly-
nomial basis [8,20] and C = 0 for the normal basis on hardware. The overhead of
the proposed method is 72.58M for C = 0.07M and n = 97 and that of the left
side of Algorithm 2 is 300M , which is the smallest of any algorithm. Then, the
overhead cost is reduced by 76%. When we choose a sufficiently large n, then the
overhead of the proposed method and Algorithm 2 becomes 0.5nM and 3nM ,
respectively, for C = 0. In this case, the overhead is reduced by 83%.

5 Conclusion

In this paper, we proposed a variation of the ηT pairing over F3n that is secure
against SCAs. The randomization technique in the proposed scheme uses the
random value additions xp +λ and yp +λ for the input point P = (xp, yp) and a
random value λ ∈ F

∗
3n . Interestingly, the symmetric structure of the ηT pairing

provides a simple algebraic equation with a random value of λ in the main loop.
Therefore, the proposed scheme has the smallest overhead of the randomization
secure against SCAs, which is just 0.5nM for the ηT pairing over F3n . That is
reduced by more than 75% compared with the randomized-projective-coordinate
method. The method of this paper is applied to the Duursma-Lee algorithm due
to its similarity with the ηT pairing algorithm.
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A Proof of Property 1

Property 1. Multiplications in F36n are computed by the Karatsuba method [14]
with the following cost:

(i) 18M+As for multiplication (a0, a1, a2, a3, a4, a5)×(b0, b1, b2, b3, b4, b5) [12],
(ii) 13M +As for multiplication (a0, a1, a2, a3, a4, a5)× (b0, b1, b2, 0,−1, 0) [8],
(iii) 15M +As for multiplication (a0, a1, a2, a3, a4, a5)× (b0, b1, b2, 0, b4, 0).

Proof. (i) and (ii) are known results. However, we provide proofs of all cases
because an explanation of (i) is needed to show (iii), and there may not be an
explicit proof of (ii). First, consider a multiplication in F32n

(a0 + a1σ)× (b0 + b1σ) = (a0b0 − a1b1) + (a0b1 + a1b0)σ.

Using the Karatsuba method costs 3M +As. Indeed, (a0b1 − a1b0) can be com-
puted as (a0b1 − a1b0) = (a0 + a1)(b0 + b1)− a0b0 − a1b1. Then, three multipli-
cations, a0b0, a1b1, and (a0 + a1)(b0 + b1) are needed to compute (a0 + a1σ) ×
(b0 + b1σ).

(i) Suppose that (a0, a1, a2, a3, a4, a5)×(b0, b1, b2, b3, b4, b5) = (c0, c1, c2, c3, c4, c5).
Let ãi(i+1), b̃i(i+1), and c̃i(i+1) be elements in F32n defined by ai +ai+1σ, bi +bi+1σ,
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and ci+ci+1σ, respectively, for i = 0, 2, 4.For example, (a0, a1, a2, a3, a4, a5) is rep-
resented as ã01 + ã23ρ+ ã45ρ

2. Then, (a0, a1, a2, a3, a4, a5)× (b0, b1, b2, b3, b4, b5)
is computed as follows:

d̃0 = ã01b̃01,

d̃1 = (ã01 + ã23)(b̃01 + b̃23)− ã01b̃01 − ã23b̃23,

d̃2 = (ã01 + ã45)(b̃01 + b̃45) + ã23b̃23 − ã01b̃01 − ã45b̃45,

d̃3 = (ã23 + ã45)(b̃23 + b̃45)− ã23b̃23 − ã45b̃45,

d̃4 = ã45b̃45,

(9)

and
c̃01 = d̃0 + bd̃3,

c̃23 = d̃1 + d̃3 + bd̃4,

c̃45 = d̃2 + d̃4,

where b = 1 or −1 defined by Eq. (1). Therefore, a multiplication in F36n takes
6 multiplications,

ã01b̃01, ã23b̃23, ã45b̃45, (ã01 + ã23)(b̃01 + b̃23), (ã01 + ã45)(b̃01 + b̃45),
and (ã23 + ã45)(b̃23 + b̃45),

and some additions/subtractions in F32n . Then a multiplication in F36n takes
18M +As.

(ii) In this case, b̃23 = b2 and b̃45 = −1 in Eq. (9). Each of ã01b̃01, (ã01+ã23)(b̃01+
b̃23), and (ã01+ã45)(b̃01+b̃45) takes 3M+As, but each of the other multiplications
takes a smaller cost. Indeed, ã23b̃23 = a2b2 + a3b2σ takes 2M + As, ã45b̃45 =
−a4 − a5σ takes no cost, and (ã23 + ã45)(b̃23 + b̃45) = (a2 + a4)(b2 − 1) + (a3 +
a5)(b2−1)σ takes 2M+As. Therefore, (a0, a1, a2, a3, a4, a5)×(b0, b1, b2, 0,−1, 0)
takes 13(= 3× 3 + 2 + 0 + 2)M +As.

(iii) In this case b̃23 = b2 and b̃45 = b4 in Eq. (9). Each of ã01b̃01, (ã01+ã23)(b̃01+
b̃23) and (ã01 + ã45)(b̃01 + b̃45) takes 3M +As as well as (ii). On the other hand,
each of the other multiplications takes 2M +As because ã23b̃23 = a2b2 + a3b2σ,
ã45b̃45 = a4b4 + a5b4σ, and (ã23 + ã45)(b̃23 + b̃45) = (a2 + a4)(b2 + b4) + (a3 +
a5)(b2 + b4)σ. Therefore, (a0, a1, a2, a3, a4, a5) × (b0, b1, b2, 0, b4, 0) takes 15(=
3× 3 + 3× 2)M +As. �
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Abstract. In elliptic curve cryptosystems, scalar multiplications performed on
the curves have much effect on the efficiency of the schemes, and many efficient
methods have been proposed. In particular, recoding methods of the scalars play
an important role in the performance of the algorithm used. For integer radices,
the non-adjacent form (NAF) [21] and its generalizations (e.g., the generalized
non-adjacent form (GNAF) [6] and the radix-r non-adjacent form (rNAF) [28])
have been proposed for minimizing the non-zero densities in the representations
of the scalars. On the other hand, for subfield elliptic curves, the Frobenius ex-
pansions of the scalars can be used for improving efficiency [25]. Unfortunately,
there are only a few methods apply the techniques of NAF or its analogue to the
Frobenius expansion, namely τ -adic NAF techniques on Koblitz curves [16,27,3]
and hyperelliptic Koblitz curves [10]. In this paper, we try to combine these tech-
niques, namely recoding methods for reducing non-zero density and the Frobe-
nius expansion, and propose two new efficient recoding methods of scalars on
more general family of subfield elliptic curves in odd characteristic. We also
prove that the non-zero densities for the new methods are same as those for the
original GNAF and rNAF. As a result, the speed of the proposed methods im-
prove between 8% and 50% over that for the Frobenius expansion method.

Keywords: Elliptic Curves, Non-Adjacent Form (NAF), Frobenius Expansions,
τ -adic NAF (τ -NAF), φ-adic NAF (φ-NAF).

1 Introduction

Elliptic curve cryptosystems (ECC) were proposed in 1985 independently by Victor
Miller [19] and by Neal Koblitz [14]. Since ECC provide many advantages, for exam-
ple, shorter key length and faster computation speed than those of RSA cryptosystems,
ECC have been the focus of much attention. In ECC, each protocol such as ECDH,
EC-ElGamal, and ECDSA involves scalar multiplications for given points on an ellip-
tic curve by positive integers. These multiplications have much effect on the efficiency
of the schemes, and many efficient methods have been proposed.
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As one such method, the use of subfield elliptic curves (i.e. elliptic curves over fi-
nite fields which are actually defined over some subfield [4]) is especially attractive
because by using the Frobenius maps, which is efficiently computed, scalar multipli-
cation on subfield elliptic curves can be performed much faster than that on curves
over prime fields. Koblitz [15] suggested anomalous binary curves, and Müller [18]
extended Koblitz’s idea to achieve the Frobenius expansions over small fields of char-
acteristic two. Smart [25] generalized Müller’s result to elliptic curves over small fields
of odd characteristic. Indeed, Smart [25] shows that every element d ∈ Z[φ] can be
written as d =

∑�−1
i=0 diφ

i, where di ∈ {0,±1, · · · ,±(q − 1)/2}, q is the order of the
defining field of an Fq-subfield elliptic curve E, φ is the q-th power Frobenius map on
E, t is the trace of φ, and (q, t) �= (5,±4), (7,±5). Therefore, scalar multiplication
method using φ in place of doublings can be deployed on subfield elliptic curves. Note
that neither of these methods can be applied in the case of curves over prime fields (the
case in which the group of prime field rational points is used for the cryptosystem). In
[11], the authors proposed efficiently computable endomorphisms other than Frobenius
endomorphisms that can be used for fast scalar multiplication. Moreover, in [20], the
authors proposed two kinds of endomorphisms from [11] that can be used together for
a certain class of curves, and they also presented a new expansion method.

In addition, the recoding method of the scalars also plays an important role in the
performance. In general, smaller non-zero densities in the representations of scalars
improve the efficiency. The non-adjacent form (NAF) [21] and its generalizations such
as the generalized non-adjacent form (GNAF) [6] and the radix-r non-adjacent form
(rNAF) [28], are methods used for minimizing the non-zero densities. So as to achieve
further improvement, it has been tried to combine the subfield curve method with the
recoding methods. In [27], Solinas proposed an efficient method of scalar multiplica-
tion on binary Koblitz curves, namely τ -adic NAF (τ -NAF), and [16] proposed τ -adic
NAF on some supersingular elliptic curves defined over the prime field of characteris-
tic three using the Frobenius endomorphism of the curves. In addition, [10] proposed
a generalization of τ -adic NAF on hyperelliptic Koblitz curves. Recently, in [3], the
authors proposed the radix-τ width-w NAF for every integer in all Euclidean quadratic
imaginary fields. But, only a few curves are available for the above methods so far.
Since the choice of curves can seriously affect the security and efficiency of ECC, it is
highly unlikely that only binary Koblitz curves will be used as subfield elliptic curves
for cryptographic usage. There might be demand for subfield elliptic curves other than
binary Koblitz curves. From this reason, to find suitable subfield elliptic curves and to
develop efficient scalar multiplication algorithms on those curves is a very important
matter. However, in [1], the authors say that “The study [18,25] is not as detailed as
Solinas’ ”(pp.367). This means that no method combining Frobenius expansions and
NAF or its analogue on the curves in [18,25] is known yet.

1.1 Contribution of This Paper

The contribution of this paper is to propose two generalizations of τ -NAF, that is, two
classes of φ-adic NAF (φ-GNAF and φ-rNAF) using the techniques of GNAF and
rNAF, respectively, which can be applied to a family of subfield elliptic curves defined
over finite fields of odd characteristic. The digit set of NAF is {0,±1} and the digit
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set of the Frobenius expansion is {0,±1, · · · ,±(q − 1)/2}. We may well not be able
to directly apply the technique of NAF to the Frobenius expansions except for τ -NAF
on binary Koblitz curves because of the narrowness of the digit set of NAF. Thus as a
natural development, we apply the GNAF and rNAF techniques, which are the gener-
alizations of the ordinary NAF, to apply τ -NAF to elliptic curves in odd characteristic.
For the resulting recoding methods, φ-GNAF and φ-rNAF, if the radix is small (e.g.,
3, 5), the difference between the computational costs for the precomputation tables of
φ-GNAF and φ-rNAF is relatively small (a few elliptic additions). But, if the radix is
significantly large, the computational cost for the precomputation table of φ-rNAF is
quite large compared to that for φ-GNAF. However the non-zero density for φ-rNAF
is significantly smaller than that for φ-GNAF. Thus, these two generalizations are com-
plementary. The speed of the proposed methods improve between 8% and 50% over
that for the Frobenius expansion method. In this paper, as the first step in the general-
izations of φ-NAF, we concentrate on investigating only φ-GNAF and φ-rNAF, and we
do not deal with the width-w versions of these. The family of subfield elliptic curves is
a natural generalization of binary Koblitz curves and some examples of the curves with
a large prime divisor in the group order are listed in [25]. These curves are considered
to be very useful for ECC.

This paper is organized as follows. Section 2 reviews the ordinary GNAF, rNAF,
and τ -adic NAF on binary Koblitz curves. Section 3 shows how to generalize τ -NAF
on binary Koblitz curves to two classes of φ-adic NAF on a family of subfield elliptic
curves and proves some properties of φ-GNAF and φ-rNAF. Section 4 compares the
total computational costs of several previous methods and the proposed methods.

2 Preliminaries

In this paper, in general, for any complex number ψ(�= 0), we denote ψ-expansion∑�−1
i=0 ciψ

i with ci ∈ Z by (c�−1, · · · , c0)ψ. The Hamming weight of (c�−1, · · · , c0)ψ

is defined by the number of non-zero ci’s. According to convention, we denote −a by
ā for any natural number a. We denote Z>0 = {x ∈ Z|x > 0}.

2.1 GNAF, rNAF

In this section, we review the ordinary GNAF and rNAF. Let r, α be relatively prime
positive integers. We denote Dr,α a set defined as follows.

Dr,α :=
{{0,±1, · · · ,±α} if α < r,
{0,±1, · · · ,±α} \ {±r,±2r, · · · ,±�α/r�r} otherwise.

For an integer radix r ≥ 2, GNAF and rNAF have been proposed for minimizing
the numbers of non-zero densities in the representations of integer scalars. In [6] and
[28], the authors calculate the non-zero densities using Markov chains. In this paper,
we regard non-zero densities of some representations as average densities of non-zero
digits of the representations (See Section 3 for precise definitions).

Definition 1. [GNAF [6]] A radix-r generalized non-adjacent form (GNAF) of a pos-
itive integer d is a representation d =

∑�−1
i=0 eir

i where ei ∈ Dr,r−1, e�−1 �= 0
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and for each i, one of the following holds : (1) ei+1ei = 0, (2) if ei+1ei > 0, then
|ei+1 + ei| < r, (3) if ei+1ei < 0, then |ei+1| > |ei|. The length of the GNAF is �.
For a, b ∈ Dr,r−1, if a, b satisfy one of the followings : (1) ab = 0, (2) if ab > 0, then
|a + b| < r, (3) if ab < 0, then |a| > |b|, then we call a pair (a, b) radix-r admissible
pair, and otherwise, we call (a, b) radix-r non-admissible pair.

Definition 2. [rNAF [28]] A radix-r non-adjacent form (rNAF) of a positive integer
d is a representation d =

∑�−1
i=0 eir

i where ei ∈ Dr,(r2−1)/2, e�−1 �= 0 and for each
i, it satisfies ei+1ei = 0 where we define e� = 0. The length of the rNAF is �. For
a, b ∈ Dr,(r2−1)/2, if ab = 0, then we call a pair (a, b) radix-r non-adjacent pair, and
otherwise, we call (a, b) radix-r adjacent pair.

In the above definitions, note that for the radix r = 2, GNAF and rNAF coincide, and
in this case, we call these recoding method “NAF”([28], pp.104). It can be seen that
GNAF and rNAF have some interesting properties. For details, consult [6] for GNAF,
and [28] for rNAF.

Proposition 1. [Properties of GNAF (resp. rNAF) [6,28]]
(1) Every positive integer d has a unique GNAF (resp. rNAF).
(2) GNAF (resp. rNAF) of d has the smallest Hamming weight among all signed repre-
sentations of d with digit set Dr,r−1 (resp. Dr,(r2−1)/2).
(3) The average non-zero density of GNAF (resp. rNAF) is asymptotically (r−1)/(r+1)
(resp. (r − 1)/(2r − 1)).

2.2 Subfield Elliptic Curves, Frobenius Expansion, and Scalar Multiplication

We briefly review subfield elliptic curves, the Frobenius expansion on subfield elliptic
curves, and scalar multiplication on subfield elliptic curves. For detail, refer to [25], [4]
and [24].

Definition 3. [Fq-subfield elliptic curves [25]] Let p be a prime, q = pr a power of
p, and Fq the finite field with q-elements. An elliptic curve defined over Fq is called an
“Fq-subfield elliptic curve” if for some cryptographic usage, we focus on the group of
Fqn -rational pointsE(Fqn) for some n ≥ 2. An Fq-subfield elliptic curve E is given by
a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where ai ∈ Fq , and if q � 5, then an Fq-subfield elliptic curve E is given by a short
Weierstrass equation

y2 = x3 + ax+ b,

where a, b ∈ Fq . Let us denote φ the qth-power Frobenius map on E.

φ : E → E, (x, y) �→ (xq , yq),

and set tn := qn + 1 − #E(Fqn), t := t1, where E(Fqn) means the set of Fqn -
rational points onE. We can regard φ as a complex number which satisfies the following
characteristic equation : φ2 − tφ+ q = 0.
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Scalar multiplication is the operation of computing dP for given P on an ellip-
tic curve by positive integer d. We describe a scalar multiplication algorithm using
window w-NAF method in [12] (Algorithm 3.36, pp.100). The computational cost of
Algorithm 1. is approximately

[

DP + (2w−2 − 1)AP

]

+

[
�

w + 1
AS + �DS

]

,

where AP ,DP (resp. AS ,DS) stand for the computational cost of the point addi-
tion, point doubling in the precomputational step (resp. scalar multiplication step),
respectively.

Algorithm 1. Scalar multiplication (win-
dow w-NAF) [12]
Input: d = (d�−1, · · · , d0)w-NAF ∈ Z>0,

di ∈ Dw-NAF

={0,±1,±3, · · · ,±(2w−1−1)},
� � 	log2(d)
+ 1,
P ∈ E(Fqn)

Output: dP
1: Compute Pi = iP

for i ∈ {1, 3, 5, · · · , 2w−1 − 1}
2: Q← O
3: for i from �− 1 downto 0 do
4: Q← 2Q
5: Q← Q+ Pdi

6: end for
7: return Q

Algorithm 2. Scalar multiplication
(Frobenius expansion)

Input: d = (d�−1, · · · , d0)φ ∈ Z>0,
di ∈ Dφ

= {0,±1,±2, · · · ,±α},
� � 	2 logq 2

√
NZ[φ]/Z(d)
+ 4,

P ∈ E(Fqn)
Output: dP

1: Compute Pi = iP
for i ∈ {1, 2, · · · , α}

2: Q← O
3: for i from �− 1 downto 0 do
4: Q← φ(Q)
5: Q← Q+ Pdi

6: end for
7: return Q

It is well-known that the cost of the Frobenius map φ is almost free in normal basis
representation. In [25], Smart shows that every element d ∈ Z[φ] has a φ-adic represen-
tation with some digit set. More precisely, they show the followings.

Theorem 1. [Frobenius expansion on subfield elliptic curves [25]] Let E be an el-
liptic curve over Fq , φ be its qth-power Frobenius map of E, t is the trace of φ. We
assume that (q, t) �= (5,±4), (7,±5). Let d ∈ Z[φ], then we can write d =

∑�−1
i=0 ciφ

i,
where ci ∈ {0,±1, · · · ,±(q − 1)/2} and � � 	2 logq 2

√
NZ[φ]/Z(d)
 + 4. We denote

�φ-EXP(d) the length of φ-adic expansion of d ∈ Z[φ].

From theorem 1, we can compute dP efficiently using a precomputation table
{
iP
∣
∣
∣i =

1, 2, · · · , q−1
2

}
and Horner’s method;

dP =

(
�−1∑

i=0

ciφ
i

)

P = φ
(· · ·φ(c�−1φ(P ) + c�−2P ) + · · ·+ c1P

)
+ c0P.
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We describe a scalar multiplication algorithm using Horner’s method based on
Frobenius expansion with digit set Dφ = {0,±1,±2, · · · ,±α}. The computational
cost of Horner’s method using Smart’s Frobenius expansion method (Algorithm 2. with
α = (q − 1)/2, digit set Dφ = Dq,(q−1)/2) is approximately

[
q − 1
q

�AS + �FS

]

(q = 3),

[

DP +
q − 5

2
AP

]

+

[
q − 1
q

�AS + �FS

]

(q � 5),

where FS stand for the computational cost of the Frobenius map in the scalar mul-
tiplication step. In step 5 of Algorithm 1. and Algorithm 2., if di < 0, we compute
Q← Q− P−di(= Q+ Pdi) and if di = 0, we do not need to compute Q← Q+ Pdi .
This is the reason that smaller non-zero densities in the representations of the scalars
improve the efficiency.

In [27], Solinas proposed τ -NAF which is a combining techniques of NAF and the
Frobenius expansion on binary Koblitz curves Ea/F2 : y2 + xy = x3 + ax2 + 1(a =
0 or 1) for reducing the non-zero density of the Frobenius expansion. Because of space
limitation, we omit an explanation about τ -NAF (See [27,2,1] for details). It is unknown
whether any analogue of τ -NAF exists on another subfield elliptic curves except for bi-
nary Koblitz curves and ellipitc curves in [3]. But, only a few curves are available for the
above methods so far. Our goal is to develop efficient scalar multiplication algorithms
on a more general family of subfield elliptic curves. However, because of the narrow-
ness of the digit set of NAF, we may well not be able to directly apply the technique of
NAF to the Frobenius expansions except for τ -NAF on binary Koblitz curves. So as to
reduce the non-zero densities of the Frobenius expansion, we use redundant digit sets
instead of the digit set of NAF. In these cases, it is necessary to know the non-zero den-
sities and the maximum lengths of the proposed methods. In the next section, we will
propose two classes of φ-NAF on a family of subfield elliptic curves. In the following,
we call these two classes of φ-NAF φ-GNAF and φ-rNAF, respectively.

3 Proposed Methods (Two Classes of φ-NAF)

In this section, we investigate how to expand two classes of φ-NAF on a family of
subfield elliptic curves. Let SECt[Fq] be the set of Fq-subfield elliptic curves with
the trace of the qth-power Frobenius map t. In the following, we focus on the case
t = 1 and consider a scalar multiplication for a given integer d and for a given point
P ∈ E(∈ SEC1[Fq]). In this case, it satisfies that

φ2 − φ+ q = 0
(
(1,−1, q)φ = 0

)
,

and by easy calculation, we have

φ3 + (q − 1)φ2 + q2 = 0
(
(1, q − 1, 0, q2)φ = 0

)
.

The property of being anomalous depends on the base field. If E is anomalous over Fq,
it is not necessarily anomalous over any Fqn for n � 2. For details, refer to [30]. Weil
descent attack (or GHS attack) in the case of odd characteristic [5] is presented in [8,9],
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etc. In order to keep the security, we should avoid the extension degree in [8,9,1], etc.
For details, refer to [1].

For all P ∈ E(Fqn), (φn− 1)P = O is satisfied. Hence dP = (d mod (φn − 1))P
for any integer scalar d. From [25], there existQ, d′ ∈ Z[φ] such that d = Q(φn−1)+d′

with d′ = 0 or Ψ(d′) < λΨ(φn − 1), where Ψ is a multiplicative function. Note
that this provides a 50% improvement in the performance thanks to a shorter length
of the Frobenius expansions of d. In this paper, “the Frobenius expansion” means the
expansion in [25].

3.1 The First φ-NAF (φ-GNAF)

At first, we show how to expand the multiplication by d map on E(Fqn) in terms of
φ-GNAF and prove some properties of this. We begin with the definition of φ-GNAF
on every subfield elliptic curves, and give two algorithms which compute φ-GNAF
for a given d ∈ Z[φ]. Algorithm 3. computes the φ-GNAF for a given d ∈ Z[φ] by
the conversion of the Frobenius expansions to φ-GNAF. Algorithm 4. computes the φ-
GNAF for a given d ∈ Z[φ] without the calculation of the Frobenius expansions and
reduces the memory consumption to compute the φ-GNAF compared to Algorithm 3.

Definition 4. [φ-GNAF] LetE ∈ SECt[Fq] and d ∈ Z[φ]. A φ-adic GNAF (φ-GNAF)
of d on E is a representation d =

∑�−1
i=0 eiφ

i where ei ∈ Dq,q−1 for each i, e�−1 �= 0,
and one of the followings holds : (1) ei+1ei = 0, (2) if ei+1ei > 0, then |ei+1 +ei| < q,
(3) if ei+1ei < 0, then |ei+1| > |ei|. Let a, b ∈ Dq,q−1. If a, b satisfy one of the
followings : (1) ab = 0, (2) if ab > 0, then |a + b| < r, (3) if ab < 0, then |a| > |b|,
then we call a pair (a, b)φ φ-admissible pair follow the lead of [29]. Otherwise, we call
(a, b)φ φ-non-admissible pair. We denote �φ-GNAF(d) the length of φ-GNAF of d ∈ Z[φ].

The following lemma and theorem show the correctness of Algorithm 3. and Algo-
rithm 4., thus the existence of φ-GNAF. From the lemma, for any given the Frobenius
expansion, we can have a sequence with digits in Dq,q−1 such that any adjacent dig-
its are φ-admissible. Moreover, the theorem below gives the finiteness of the sequence
(hence φ-GNAF) and evaluates the upper bound of the length of φ-GNAF. For the proof
of the lemma, it is easily seen that the proof of Theorem 12.2.3 in [29] can be applied.
For details, refer to [29].

Lemma 1. Let b ∈ Dq,(q+1)/2, b′ ∈ Dq,(q−1)/2, and e ∈ Dq,q−1. We assume that
(b′, e)φ is a φ-admissible pair and (b, b′)φ is a φ-non-admissible pair. If we convert

(b, b′, e)φ �→
{

(1̄, c, c′, e)φ := (1̄, b+ 1, b′ − q, e)φ if b′ > 0,
(1, c, c′, e)φ := (1, b− 1, b′ + q, e)φ otherwise,

then (c, c′)φ, (c′, e)φ are φ-admissible pairs.

Theorem 2. [Maximum length of φ-GNAF] Let d ∈ Z[φ] and � = �φ-EXP(d) be the
length of Frobenius expansion of d. Then d has a φ-GNAF with digit set Dq,q−1 such
that the length is at most �+ 2.

Proof. The proof can be found in [13].
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Algorithm 3. Generation of φ-GNAF on
SEC1[Fq] with Frobenius expansion

Input: d ∈ Z[φ]
Output: φ-GNAF of d

1: d′ ← d mod (φn − 1)
2: �← 	2 logq 2

√
NZ[φ]/Z(d′)
+ 4

3: Compute the Frobenius expansion
(c�−1, c�−2, · · · , c1, c0)φ of d′

4: b0 ← c0, b1 ← c1, b� ← 0, b�+1 ← 0
5: i← 0
6: while i � � do
7: if bi �= 0 and bi mod q = 0 then
8: bi+1 ← bi+1 − bi/q,

bi+2 ← ci+2 + bi/q, ei ← 0
9: else if (bi+1, bi) : φ-admissible pair

then
10: bi+2 ← ci+2, ei ← bi
11: else if bi > 0 then
12: bi+2 ← ci+2 − 1,

bi+1 ← bi+1 + 1, ei ← bi − q
13: else
14: bi+2 ← ci+2 + 1,

bi+1 ← bi+1 − 1, ei ← bi + q
15: end if
16: i← i+ 1
17: end while
18: return (e�+1, e�, · · · , e1, e0)φ

Algorithm 4. Generation of φ-GNAF on
SEC1[Fq] without Frobenius expansion

Input: d ∈ Z[φ]
Output: φ-GNAF of d

1: d0 +d1φ← d mod (φn−1)(d0, d1 ∈
Z)

2: Set d′ = d0 + d1φ
3: �← 	2 logq 2

√
NZ[φ]/Z(d′)
+ 4

4: Compute Q, b ∈ Z such that d0 =
Qq + b (b ∈ Dq,(q−1)/2) (see [25])

5: d0 ← Q+ d1, d1 ← −Q
6: i← 1
7: while i � �+ 1 do
8: Compute Q, a ∈ Z such that

d0 = Qq + a (a ∈ Dq,(q−1)/2)
9: d0 ← Q+ d1, d1 ← −Q

10: if (a, b) : φ-admissible pair then
11: ei−1 ← b, b← a
12: else if b > 0 then
13: ei−1 ← b− q, b← a+ 1,

d0 ← d0 − 1
14: else
15: ei−1 ← b+ q, b← a− 1,

d0 ← d0 + q
16: end if
17: end while
18: return (e�+1, e�, · · · , e1, e0)φ

From Lemma 1, we can easily see that step 7, 8 of Algorithm 3. are always skiped in the
case of q � 7. However, in the case of q = 3 or 5, there is a possibility that bi is a non-
zero multiple of q. If bi is a non-zero multiple of q (step 7), we convert (bi+1, bi)φ �→
(−bi/q, bi+1 + bi/q, 0)φ (step 8). It is easy to show that if bi is a non-zero multiple of
q, then it satisfies that bi = ±q. Thus for all i, we always have |bi+1| � (q + 1)/2,
|bi| � (q + 3)/2. Remark that it does not occur that bi+1 is a non-zero multiple of q.
This shows the correctness of Algorithm 3. and Algorithm 4.

Let φ-GNAF� be the set of φ-GNAF of length �. We put A� = #φ-GNAF�, S� =∑
d∈φ-GNAF�

(� − w(d)), and C� = # {d ∈ φ-GNAF� | w(d) = �}, where w(d) means
the Hamming weight of d. In other words, C� is the number of φ-GNAF with length �
such that all digits are non-zero. Then the non-zero density of φ-GNAF is defined by
1− lim�→∞ S�/(�A�).
φ-GNAF has properties same as GNAF. For details, refer to [13].

Proposition 2. [Properties of φ-GNAF]
(1) Every d ∈ Z[φ] has a unique φ-GNAF.



312 K. Hakuta, H. Sato, and T. Takagi

(2) The average number of non-zero digits for � digits numbers in Z[φ] is equal to
((q − 1)/(q + 1))� + 2/(q + 1) + O((−1/q)�). In particular, the average non-zero
density of φ-GNAF is asymptotically (q − 1)/(q + 1).

If we compute 2P = P+P, (i+1)P = P+iP for 1 � i � q−2, the computational cost
of Horner’s method using φ-GNAF (Algorithm 2. based on φ-GNAF with α = q − 1,
digit set Dφ = Dq,q−1) is approximately
[

DP +
q − 1
q + 1

�AS + �FS

]

(q = 3),

[

DP + (q − 3)AP +
q − 1
q + 1

�AS + �FS

]

(q � 5).

3.2 The Second φ-NAF (φ-rNAF)

Next, we show how to expand the multiplication by dmap onE(Fqn) in terms of φ-adic
rNAF and prove some properties of this. As with the previous section, we begin with the
definition of φ-rNAF on every subfield elliptic curves, and give two algorithms which
compute the φ-rNAF for a given d ∈ Z[φ]. Algorithm 5. computes the φ-rNAF for a
given d ∈ Z[φ] by the conversion of the Frobenius expansions to φ-rNAF. Algorithm
6. computes the φ-rNAF for a given d ∈ Z[φ] without the calculation of the Frobenius
expansions and reduces the memory consumption to compute the φ-rNAF compared to
Algorithm 5.

Definition 5. [φ-rNAF] Let E ∈ SECt[Fq] and d ∈ Z[φ]. A φ-adic rNAF (φ-rNAF)
of d on E is a representation d =

∑�−1
i=0 eiφ

i such that ei ∈ Dq,(q2−1)/2, e�−1 �= 0 and
ei+1ei = 0 for each i. Let a, b ∈ Dq,(q2−1)/2. If ab = 0, we call (a, b)φ φ-non-adjacent
pair. Otherwise, we call (a, b)φ φ-adjacent pair. We denote �φ-rNAF(d) the length of
φ-rNAF of d ∈ Z[φ].

At first sight, it seem that Algorithm 5. is a straightforward combination of the Frobe-
nius expansions and rNAF. But the proof of the correctness of Algorithm 5. is compli-
cated. To prove this, we focus on the fact that in Algorithm 5., the following conversion
does not occur:

(bi+1, bi)φ �→
{

(b̄′i, bi+1 + b′i, 0)φ if bi = b′iq for some b′i ∈ Z,
(b̄′i+1, bi+1, 0, bi)φ if bi+1 = b′i+1q for some b′i+1 ∈ Z.

In other words, there is no possibility that bi or bi+1 is a non-zero multiple of q when
we scan (bi+1, bi)φ. More precisely, the following lemma is satisfied. For the proof of
the lemma, consult [28].

Lemma 2. Let q � 7, c, c′, c′′ ∈ Dq,(q−1)/2, b ∈ Dq,(q+1)/2, b′ ∈ Dq,2q−1. We convert
(c, c′, c′′, b, b′)φ from right-to-left according to the following rule and we denote the
result of the conversion (a, a′, e, e′, e′′, e′′′)φ.

The rule: We assume that we scan consecutive two digits (a, b)φ, then
(Rule 1) If a �= 0, b �= 0, then convert (a, b)φ

(a, b)φ �→
⎧
⎨

⎩

(a, 0, aq + b)φ if |aq + b| � (q2 − 1)/2,
(1, a+ (q − 1), 0, (aq + b) + q2)φ else if aq + b < −(q2 − 1)/2,
(1̄, a− (q − 1), 0, (aq + b)− q2)φ otherwise.
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(Rule 2) If a �= 0, b = 0, then skip the 1-digit b. We scan the next consecutive two digits
which include a.
(Rule 3) if a = 0, b = 0, then skip the 2-digits a and b. We scan the next consecutive
two digits which do not include a.

Then, it always satisfy that (e, e′, e′′, e′′′)φ is a φ-rNAF, a ∈ Dq,(q+1)/2, a
′ ∈

Dq,2q−1. In particular, a and a′ are not divisible by q.

Algorithm 5. Generation of φ-rNAF on
SEC1[Fq] with Frobenius expansion

Input: d ∈ Z[φ]
Output: φ-rNAF of d

1: d′ ← d mod (φn − 1)
2: �← 	2 logq 2

√
NZ[φ]/Z(d′)
+ 4

3: Compute the Frobenius expansion
(c�−1, c�−2, · · · , c1, c0)φ of d′

4: b0 ← c0, b1 ← c1, b� ← 0,
b�+1 ← 0, b�+2 ← 0, b�+3 ← 0

5: i← 0
6: while i � �+ 2 do
7: if bi �= 0 and bi mod q = 0 then
8: bi+1 ← bi+1 − bi/q,

bi+2 ← ci+2 + bi/q, i← i+ 1
9: end if

10: if bi = 0 then
11: bi+2 ← ci+2, ei ← 0, i← i+ 1
12: else if |bi+1q+bi| � (q2−1)/2 then
13: bi+3 ← ci+3,

bi+2 ← ci+2 + bi+1,
ei+1 ← 0, ei ← bi+1q + bi,
i← i+ 2

14: else if bi+1q + bi < −(q2 − 1)/2
then

15: bi+3 ← ci+3 + 1,
bi+2 ← ci+2 + bi+1 + (q − 1),
ei+1 ← 0, ei ← bi+1q + bi + q2,
i← i+ 2

16: else
17: bi+3 ← ci+3 − 1,

bi+2 ← ci+2 + bi+1 − (q − 1),
ei+1 ← 0, ei ← bi+1q + bi − q2,
i← i+ 2

18: end if
19: end while
20: return (e�+3, e�+2, · · · , e1, e0)φ

Algorithm 6. Generation of φ-rNAF on
SEC1[Fq] without Frobenius expansion

Input: d ∈ Z[φ]
Output: φ-rNAF of d

1: d0 +d1φ← d mod (φn−1)(d0, d1 ∈
Z)

2: Set d′ = d0 + d1φ
3: �← 	2 logq 2

√
NZ[φ]/Z(d′)
+ 4

4: i← 0
5: while i � �+ 2 do
6: Compute Q, b ∈ Z such that d0 =

Qq + b (b ∈ Dq,(q−1)/2) (see [25])
7: d0 ← Q+ d1, d1 ← −Q
8: if b = 0 then
9: ei ← 0, i← i+ 1

10: else
11: Compute Q, a ∈ Z such that

d0 = Qq + a (a ∈ Dq,(q−1)/2),
d0 ← Q+ d1,
d1 ← −Q

12: if |aq + b| � (q2 − 1)/2 then
13: ei ← aq + b, ei+1 ← 0,

d0 ← a,
d1 ← −Q

14: else if aq+b < −(q2−1)/2 then
15: ei ← aq + b+ q2, ei+1 ← 0,

d0 ← a+ (q − 1),
d1 ← −Q+ 1

16: else
17: ei ← aq + b− q2, ei+1 ← 0,

d0 ← a− (q − 1),
d1 ← −Q− 1

18: end if
19: i← i+ 2
20: end if
21: end while
22: return (e�+3, e�+2, · · · , e1, e0)φ
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Theorem 3. [Maximum length of φ-rNAF] Let d ∈ Z[φ] and �φ-EXP(d). Then d has
a φ-rNAF with digit set Dq,(q2−1)/2 such that �φ-rNAF(d) is at most �+ 4.

Proof. The proof can be found in [13].

From Lemma 2, we can easily see that step 7, 8 of Algorithm 5. are always skiped in
the case of q � 7. However, Lemma 2 is not satisfied in the case of q = 3 or 5, namely
there is the possibility that bi is a non-zero multiple of q. If bi is a non-zero multiple
of q (step 7), we convert (bi+1, bi)φ �→ (−bi/q, bi+1 + bi/q, 0)φ (step 8). It is easy to
show that if bi is a non-zero multiple of q, then it satisfies bi = ±q. Thus for all i, we
always have

|bi+1| � (q − 1)/2, |bi| � q − 1 or |bi+1| � (q + 1)/2, |bi| � 2q − 1 (|bi| �= q).

Note that it does not occur that bi+1 is a non-zero multiple of q. This shows the correct-
ness of Algorithm 5. and Algorithm 6.

Let φ-rNAF� be the set of φ-rNAF of the length �. We put B� = #φ-rNAF�, T� =∑
d∈φ-rNAF�

(�−w(d)), wherew(d) means the Hamming weight of d. Then as is the case
with φ-GNAF, the non-zero density of φ-rNAF is defined by 1− lim�→∞ T�/(�B�).

For φ-rNAF, we also have similar properties. For the proof of the following propo-
sition, refer to [13].

Proposition 3. [Properties of φ-rNAF]
(1) Every d ∈ Z[φ] has a unique φ-rNAF.
(2) The average number of non-zero digits for � digits numbers in Z[φ] is equal to
((q − 1)/(2q− 1))�+ q/(2q − 1) + O(((1 − q)/q)�). In particular, the average non-
zero density of φ-rNAF is asymptotically (q − 1)/(2q − 1).

If we compute 2P = P + P, 3P = P + 2P (3P = φ(P ) − φ2(P ) when q = 3),
4P = P + 3P, (q − 1)P = P + (q − 2)P, (q + 1)P = P + (q − 1)P , and so on, the
computational cost of Horner’s method using φ-rNAF (Algorithm 2. based on φ-rNAF
with α = (q2 − 1)/2, digit set Dφ = Dq,(q2−1)/2) is approximately

[

DP + 2AP + 2FP +
q − 1
2q − 1

�AS + �FS

]

(q = 3),

[

DP +
q2 − q − 4

2
AP +

q − 1
2q − 1

�AS + �FS

]

(q � 5),

where FP stands for the computational cost of the Frobenius map in the precomputa-
tional step.

Remark. In this paper, we do not discuss the minimality of the Hamming weight of
φ-GNAF and φ-rNAF among various recoding methods with appropriate digit sets.
Although the property of minimality is desired, it can be easily seen that for φ-GNAF,
φ-rNAF, conventional proofs (for e.g., GNAF, rNAF, etc.) are not available. It can be
considered that these issues are caused by the difference between the rational integer
ring and quadratic imaginary integer rings or quadratic order, and we will need some
deep observation on number theoretical properties of quadratic integer rings. These
issues remain to be discussed.
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Table 1. The number of curve operations for each recoding method (q = 3)

Method #Table AP DP FP AS DS FS
w-NAF [27] 2w−2 (2w−2 − 1) 1 0 m2

w+1
� 0

Frobenius expansion [25] 1 0 0 0 0.67� 0 �

φ-GNAF 2 0 1 0 0.5� 0 �

φ-rNAF 3 2 1 2 0.4� 0 �

4 Comparisons

We compare several recoding methods for computing scalar multiplications for a point
on a subfield elliptic curve with the trace of the Frobenius map 1 using standard left-
to-right method (for details, refer to [12]). Let d be a large positive integer and we
focus on the group of Fqn -rational points E(Fqn) for sufficient large n which satisfy
d ≈ qn. Let mq be the length of the unsigned q-adic expansion of d with digit set
D = {0,±1, · · · ,±(q − 1)} and d0 = d mod (φn − 1), respectively.

As d ≈ qn, the norm of d will be equal to d2 ≈ q2n and d0 ≈ qn+1 (for detail, refer
to [25]). So mq = 	logq d
 ≈ 	logq q

n
 = n and � � 	2 logq 2
√
NZ[φ]/Z(d0)
 + 4 ≈

	2 logq 2q(n+1)/2
 + 4 � n + 6. To simplify the evaluation of the computational
cost, we assume that mq , �φ-EXP(d0), �φ-GNAF(d0) and �φ-rNAF(d0) are equal to each
other (Strictly speaking, we should analyze each average of �φ-EXP(·), �φ-GNAF(·) and
�φ-rNAF(·) among positive integers in the range [1,#E − 1] to evaluate the exact com-
putational costs. However, we do not deal with this analysis). In practical meaning, the
shift operations are essentially free, thus the cost of Frobenius map on subfield elliptic
curves is almost free in normal basis representation.

In the second column, the value #Table equals the number of elements, that have to
be precomputed and stored.

Table 2. The number of Fqn-field arithmetic operations (bit length of scalar and qn ≈ 192) and
total number of multiplications (S = 0.8M, I/M = 8) for each recoding method

Method #Table M S I total number of multiplications

192bit
w-NAF (w = 6) 16 1027.4 850.3 2 1731.3M

Frobenius expansion (q = 3) 1 658.7 244 1 855.9M

φ-GNAF (q = 3) 2 498 185 2 656M

φ-rNAF (q = 3) 3 404.4 150.4 3 434.6M

Frobenius expansion (q = 5) 2 541.2 201.2 2 639M

φ-GNAF (q = 5) 4 456.7 170 4 618.7M

φ-rNAF (q = 5) 12 303.1 120.7 10 491.5M

Frobenius expansion (q = 7) 3 485.3 180.3 3 602.6M

φ-GNAF (q = 7) 6 432 161.3 6 603M

φ-rNAF (q = 7) 24 302.8 119.5 21 558M
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Table 3. The number of Fqn-field arithmetic operations (bit length of scalar and qn ≈
224, 256, 384) and total number of multiplications (S = 0.8M, I/M = 8) for each recoding
method

Method #Table M S I total number of multiplications

224bit
w-NAF (w = 6) 16 1192 1009 2 2009.2

Frobenius expansion (q = 3) 1 765.3 284 1 994.5

φ-GNAF (q = 3) 2 578 215 2 752

φ-rNAF (q = 3) 3 468.4 174.4 4 609.9

Frobenius expansion (q = 5) 2 630.8 234.8 2 828.6

φ-GNAF (q = 5) 4 531.3 198 4 715.7

φ-rNAF (q = 5) 12 370.9 139.3 10 556.4

Frobenius expansion (q = 7) 3 560.6 208.7 3 745.5

φ-GNAF (q = 7) 6 498 186 6 688.8

φ-rNAF (q = 7) 24 343.4 131.8 21 610.8

256bit
w-NAF (w = 6) 16 1356.6 1150.7 2 2287.1

Frobenius expansion (q = 3) 1 872 324 1 1133.2

φ-GNAF (q = 3) 2 658 245 2 856

φ-rNAF (q = 3) 3 532.4 198.4 4 693.1

Frobenius expansion (q = 5) 2 720.4 268.4 2 945.1

φ-GNAF (q = 5) 4 606 226 4 812.8

φ-rNAF (q = 5) 12 420.7 158 10 621.1

Frobenius expansion (q = 7) 3 642.9 239.6 3 852.5

φ-GNAF (q = 7) 6 570 213 6 782.4

φ-rNAF (q = 7) 24 387.7 148.4 21 668.4

384bit
w-NAF (w = 6) 16 2014.9 1717.6 2 3399

Frobenius expansion (q = 3) 1 1304 486 1 1694.8

φ-GNAF (q = 3) 2 982 366.5 2 1277.2

φ-rNAF (q = 3) 3 791.6 295.6 4 1030.1

Frobenius expansion (q = 5) 2 1072.4 400.4 2 1402.7

φ-GNAF (q = 5) 4 899.3 336 4 1194.1

φ-rNAF (q = 5) 12 616.2 231 10 875.3

Frobenius expansion (q = 7) 3 886.8 330.8 3 1161.4

φ-GNAF (q = 7) 6 840 314.3 6 1133.4

φ-rNAF (q = 7) 24 553.8 210.7 21 884.4

An elementary multiplication in Fqn (resp. a squaring and an inversion) will be ab-
breviated byM (resp. S and I), and affine coordinates (resp. Jacobian coordinates) will
be abbreviated by A (resp.J ). If we choose

– AP : A+A → A (2M + S + I), DP : 2A → A (2M + 2S + I),

– AS : J +A → J (8M + 3S), DS : 2J → J (4M + 4S),
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the total number of M (resp. S and I) to compute scalar multiplication for each
method is as follows.

Table 2 shows that the speed of the proposed methods improves between 8% and
50% over that for the Frobenius expansion method.

5 Conclusion

It has been an unsolved problem to generalize τ -NAF techniques on binary Koblitz
curves to a more general family of subfield elliptic curves whose endomorphism rings
are not necessarily subrings of Euclidean quadratic imaginary number fields. In this pa-
per, we have described two generalized methods on a family of subfield elliptic curves.
Those methods are two classes of φ-NAF (φ-GNAF and φ-rNAF). Our proposed meth-
ods can be applied to every subfield elliptic curves with the trace of the Frobenius map
1 regardless of whether or not the endomorphism rings are Euclidean. We also prove
that these representations have the same non-zero densities as the corresponding origi-
nal GNAF and rNAF. Because of the high efficiency in computing Frobenius maps, our
proposed methods improve the efficiency of scalar multiplication significantly com-
pared to previous methods. The speed of the proposed methods improves between 8%
and 50% over that for the Frobenius expansion method. It is an open problem to develop
the width-w version of the proposed methods for w > 2.
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Abstract. Suppose two parties, holding vectors A = (a1, a2, . . . , an)
and B = (b1, b2, . . . , bn) respectively, wish to know whether ai > bi for all
i, without disclosing any private input. This problem is called the vector
dominance problem, and is closely related to the well-studied problem
for securely comparing two numbers (Yao’s millionaires problem). In this
paper, we propose several protocols for this problem, which improve upon
existing protocols on round complexity or communication/computation
complexity.

1 Introduction

Suppose Alice has a vector A = (a1, a2, . . . , an) and Bob has a vector B =
(b1, b2, . . . , bn), where ai and bi are natural numbers with bit size at most K. We
say that A dominates B if and only if ai > bi for all 1 ≤ i ≤ n. We define the
dominance predicate Dom(A,B) = (A dominates B), that is, Dom(A,B) has
value 1 if and only if A dominates B, and has value 0 otherwise.

In some applications, Alice and Bob want to participate in a protocol such
that one or both of them get to know the value ofDom(A,B), and this should be
the only piece of information acquired during the execution of the protocol. This
is called the Secure Two-party Vector Dominance (STVD) problem. Solutions of
the STVD problem have potential applications in the real life. As an example, in
a job advertisement, an employer may stipulate that a successful applicant must
meet a minimum requirement for several attributes. For instance, the applicant
must hold a bachelor’s or higher degree, and must have at least three years work
experience. Such requirements can be formulated as an instance of the STVD
problem.

The STVD problem can be viewed as a generalization of Yao’s millionaires
problem, where Alice and Bob are two millionaires who want to know which
one is richer without disclosing their respective wealth. A protocol for the mil-
lionaires problem is also called a GT (Greater Than) protocol in the literature.
Many protocols have been proposed for the millionaires problem [7,11,2,17,13].
In contrast, not much has been done for the vector dominance problem [1,15,16].
For a summary of known results on the vector dominance problem, see Chapter
2 of [15].
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Since the vector dominance problem is closely related to the millionaires prob-
lem, most known STVD protocols use a (modified) GT protocol as a subroutine.
We now overview some interesting techniques used in constructing GT protocols.

The notion of 0-encodings was first defined by Lin and Tzeng in [13] for
solving the GT problem. Let s = (s1s2 · · · sK) be a binary string of length K.
The 0-encoding of s is the set S0

s of binary strings defined as

S0
s = {s1s2 · · · si−11 | si = 0 for 1 ≤ i ≤ K}.

The GT protocol in [13] was based on the observation that, for two integers x
and y, x > y if and only if S0

y contains a prefix of x.
Another approach used to solve the GT problem is as follows. Let x and y be

two nonnegative integers with binary representation x1x2 . . . xK and y1y2 . . . yK

respectively, where xi, yi ∈ {0, 1}, and x1 and y1 are the most significant bits.
Consider the bitwise difference di = xi− yi for any position i. Then x > y if and
only if there exist a position l, such that di = 0 for all 1 ≤ i < l, and dl = 1.
This property was used by Blake and Kolesnikov [2,3] to construct protocols for
the GT problem.

Among the known constructions of STVD protocols, the protocol from [1]
is not suitable for the malicious model because it uses both symmetric and
asymmetric encryption schemes. Sang et al.’s protocols [16,15] are based on
properties of 0-encodings, and a protocol for the malicious model is presented in
[15].

For the GT problem, the communication complexity of the protocol in [2] was
smaller than that of the protocol in [13]. This motivates us to construct STVD
protocols based on bitwise differences. In this work, we consider STVD protocols
both for the semi-honest model and for the malicious model. In each case, we
present a one-round protocol with communication complexity O(Kn), and a
K-round protocol with communication complexity O(nK2). For the K-round
protocol, we demonstrate that its computation and communication complexity
is lower than that of [15], and in the special case where one of the two parties
can perform parallel computation on K + 1 platforms, the computation time
of our protocols is less than all previously known protocols. We also present a
�logK�-round protocol in the semi-honest model.

We will use the following notations throughout this paper. Suppose 0 ≤
ai, bi < 2K for 1 ≤ i ≤ n. Let the binary representation of ai be ai1ai2 . . . aiK ,
where ai1 is the most significant bit. The numbers b1, . . . , bn are represented in
the same way.

Now we introduce properties of the homomorphic encryption schemes that
will be used later in this paper. A public-key encryption scheme E is additively
homomorphic if for some operation

⊗
, E(x)

⊗
E(y) is an encryption of x + y

for any pair (x, y) of plaintext. Thus in such an encryption scheme, given a pair
of ciphertexts E(x),E(y) and a constant c, one can efficiently calculate E(x+ y)
and E(cx) without knowing x or y.

Now we introduce the additive ElGamal encryption scheme and its (2,2)
threshold variant, which will be needed later. Let G be a cyclic group of prime
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order q, and let g, f be random generators in G. Let s be a randomly chosen
element from Zq, and h = gs. The public key is the tuple < G, q, g, f, h >, and
s = logg h is the private key. Given a plaintext m ∈ Zq, the encryption algorithm
selects r randomly from Zq, and computes the ciphertext E(m) = (gr, hrfm) ∈
G × G. When a ciphertext (X,Y ) is given, the decryption algorithm calculates
D(X,Y ) = Y/Xs.

The (2,2) threshold additive ElGamal encryption scheme is similar to the
above, with the change that Alice and Bob hold sA, sB ∈R Zq as their private key
respectively, and h = gsA+sB . Alice and Bob also publishes hA = gsA and hB =
gsB respectively, with a proof of knowledge of the exponent. The encryption
algorithm is the same as the basic version, i.e., E(m) = (gr, hrfm) where r ∈R Zq.
For decryption of a ciphertext (X,Y ), Alice and Bob publishes dA = XsA and
dB = XsB , with a proof that logX dA = logg hA and logX dB = logg hB. Then
they calculate D(X,Y ) = Y/XsA+sB = fm.

It is easy to verify both encryption schemes above are additively homomor-
phic, i.e., for any plaintext m,m′, E(m) ·E(m′) is an encryption of m+m′. Also
note that since D(E(m)) = fm, an exhaustive search is needed to recover m.
However, in this work we only need to test whether m is equal to a particular
value (such as 0 or n).

2 The One-Round Protocols

In this section we consider a STVD variant as follows: Alice acts like a client
and Bob acts like a server. At the end of the one-round protocol, Alice obtains
Dom(A,B) while Bob obtains nothing.

2.1 The One-Round Protocol in the Semi-honest Case

In this subsection, we present the one-round protocol for the STVD problem
based on the additive ElGamal cryptosystem. It is shown in Figure 1.

Theorem 1. In the semi-honest model, the protocol Π1 in Fig. 1 achieves com-
pleteness and soundness for the STVD problem, and is secure under the as-
sumption that the ElGamal encryption is semantically secure. In other words, if
A dominates B, the probability of Alice outputting 0 is negligible; if A does not
dominate B, the probability of Alice outputting 1 is negligible. Furthermore, the
views of semi-honest adversaries in the ideal and real models are computationally
indistinguishable.

Proof. First consider the values γi,j for a fixed i. Note that γi,0 = 0, and γi,j =
ri,jγi,j−1 + di,j , where ri,j ∈R Zq, and di,j is the bitwise difference ai,j − bi,j .
We then have the following observation. If A dominates B, then for each i, there
exists some 1 ≤ j ≤ K such that γi,j = 1. Thus in the final set T , there must be
an encryption of n. So Alice outputs 1 with probability 1. If A does not dominate
B, then with overwhelming probability, for some 1 ≤ i ≤ n, none of the elements
γi,j , 1 ≤ j ≤ K is equal to 1. Thus with overwhelming probability, none of the
elements of the final set T is an encryption of n, and so Alice outputs 0.
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Protocol Π1:
Alice’s input: A = (a1, . . . , an); Bob’s input: B = (b1, . . . , bn), where 0 ≤
ai, bi < 2K .
Alice’s output: Dom(A, B); Bob has no output.

1. Alice runs the setup phase of an additive ElGamal encryption scheme
(G, q, g, h), where G is a group of order q, g is a generator of G, h = gx,
and x is the private key. Alice sends (pk, E(a1,1), E(a1,2) . . . E(an,K)) to
Bob. That is, she sends the public key (G, q, g, h) and the encryption of
all her bits to Bob.

2. Bob receives pk and the E(aij) for all i and j.
3. For i = 1 . . . n and for j = 1 . . . K, Bob does the following:

– calculates E(di,j), where di,j = ai,j − bi,j , and
– computes E(γi,j), where γi,0 = 0, γi,j = ri,jγi,j−1 + di,j , and ri,j ∈R

Zq;
4. Bob does the following. Let S be an empty multi-set. For each n-tuple

j1, j2, . . . , jn ∈ {1, 2, . . . , K}n, Bob puts the value

∏

1≤i≤n

E(γi,ji) = E

⎛

⎝
∑

1≤i≤n

γi,ji

⎞

⎠

into S.
5. Bob does the following. Let T be an empty multi-set. For each element

s = E(x) ∈ S, Bob picks an random element r ∈R ZN and puts the value
E(n + r(x − n)) into T .

6. Bob permutes the elements of T , and sends T to Alice.
7. Alice decrypts all the elements of T . If there exists an element t ∈ T such

that D(t) = n, then she outputs “Dom(A, B) = 1”, else “Dom(A, B) = 0”.

Fig. 1. The one-round protocol in the semi-honest case

Then we prove that Π1 computes the function Dom(A,B) privately. Since
this is a two-message protocol and we assume that ElGamal encryption is se-
mantically secure, Bob obtains no knowledge from participating in the protocol.
Now we demonstrate a simulator S such that the input of S is Alice’s private
input A and the output of the function Dom(A,B), and the output of S is
computationally indistinguishable from the view of Alice in the protocol. We
only need to show that S can generate a set T ′ which is computationally indis-
tinguishable from the set T received from Bob. If Dom(A,B) = 1, then let T ′

contain an encryption of E(n) and Kn − 1 encryptions of random elements of
Zq; if Dom(A,B) = 1, then let T ′ contain Kn encryptions of random elements
of Zq. Such a set T ′ meets the requirement above.

ThusΠ1 computes the functionDom(A,B) securely in the semi-honest model.
��

The first part of Bob’s computation is based on the following observation. If
ai > bi, with overwhelming probability, exactly one value among γi,1, . . . , γi,K is
1. This observation was used in the GT-Conditional Encrypted Mapping protocol



Secure Computation of the Vector Dominance Problem 323

in [3]. In the next part of Bob’s computation, Bob computes a multi-set S. If A
dominates B, then with overwhelming probability there is exactly one value in
S which is an encryption of n. In the final part, Bob transforms E(n) to E(n),
and transforms E(x), where x �= n, to an encryption of a random value.

Remark 1. This protocol can be easily adapted for the following scenario. Alice
and Bob respectively send the encryptions of their inputs to a server and obtain
the comparison result from the server’s output. The server learns nothing about
Alice and Bob’s inputs. For an example of protocol in this setting, see [3].

Remark 2. This protocol can also be adapted such that both Alice and Bob
obtains Dom(A,B) in the end, by using a 2-out-of-2 threshold additive ElGamal
encryption scheme.

2.2 A One-Round Protocol in the Malicious-Bob Case

The STVD protocol in Subsection 2.1 cannot be used when Bob is malicious.
The reason is that, in the final step, Alice concludes that A dominates B (i.e.,
Dom(A,B) = 1) if and only if the values she received from Bob contain an
encryption of n. A malicious Bob can put into T encryptions of Kn− 1 random
values of Zq and one encryption of n. Then Alice will be fooled into concluding
that Dom(A,B) = 1.

A similar problem appeared in protocols designed for the set-disjointness prob-
lem [8,12]. Hohenberger and Weis (HW) introduced a cryptographic primitive
called testable and homomorphic commitment (THC) to solve this problem [10].
A THC is essentially a BGN (Boneh, Goh and Nissim) encryption [4] set in
group G, which has order n = pq where p and q are prime numbers. In this
subsection, we will first introduce the properties of THC, and then use THC to
construct a STVD protocol secure in the case where Alice is semi-honest, while
Bob is malicious.

Informally, a THC scheme should support the following operations [10]:

– Commit: Com(m, r) is the commitment to message m and randomness r.
– Addition: ∀m, r,m′, r′,Com(m, r) · Com(m′, r′) = Com(m+m′, r + r′).
– Multiplication by a Constant: ∀m, r, c,Com(m, r)c = Com(cm, cr).
– Equality Test: Test(Com(m, r), x) returns 1 if m = x.

The definition of the HW testable and homomorphic commitment scheme [10]
is described in Figure 2.

It was shown in [10] that under the Subgroup Computation Assumption, the
HW THC scheme is computationally hiding over the distribution of r:

∀m0,m1 ∈ Z
∗
n, {G, n,m0,m1,Com(m0, r)} c≈ {G, n,m0,m1,Com(m1, r)}.

That is, the two distributions are computationally indistinguishable.
For brevity, when the randomness r is irrelevant, we use Com(m) in place of

Com(m, r) to denote a testable and homomorphic commitment of message m.
The one-round protocol in the malicious-Bob case is given in Fig. 3. Its structure
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Testable and Homomorphic Commitment Operations:

1. Setup: Let S(1k) be an algorithm that outputs (G, p, q) where G is a
group of composite order n = pq, and p < q are k-bit primes. Let g, u
be random generators of G and let h = uq . Then h has order p. Publish
(G, n) and keep (p, q, g, h) private.

2. Commit: Give m and r ∈ Z
∗
n, compute Com(m, r) = gmhr.

3. Addition: Com(m, r) ·Com(m′, r′) = gm+m′
hr+r′

= Com(m+m′, r+r′).
4. Multiplication by a Constant: Com(m, r)c = gcmhcr = Com(cm, cr).
5. Equality Test: If Test(Com(m,r), x) = (gmhr/gx)p = (gp)m−x = 1,

output 1; else, output 0.

Fig. 2. HW testable and homomorphic commitment scheme

Protocol Π2:
Alice’s input: A = (a1, . . . , an); Bob’s input: B = (b1, . . . , bn), where 0 ≤
ai, bi < 2K .
Alice’s output: Dom(A, B); Bob has no output.

1. Alice runs S(1k) to obtain (G, p, q), selects random generators g, u in G,
and computes n = pq and h = uq . Finally Alice publishes (G, n).

2. Alice sends Com(ai,j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ K. That is, she se-
lects randomly ri,j ∈ Z

∗
n for all 1 ≤ i ≤ n, 1 ≤ j ≤ K, and sends

(Com(a1,1, r1,1), Com(a1,2, r1,2) . . . Com(an,K , rn,K)) to Bob.
3. Bob receives Com(ai,j) for all i and j.
4. For i = 1 . . . n and j = 1 . . . K, Bob does the following:

– calculates Com(di,j), where di,j = ai,j − bi,j ;
– computes Com(γi,j), where γi,0 = 0, γi,j = ri,jγi,j−1+di,j , and ri,j ∈R

ZN ;
5. Bob does the following. Let S be an empty multi-set. For each n-tuple

j1, j2, . . . , jn ∈ {1, 2, . . . , K}n, Bob puts the value

∏

1≤i≤n

Com(γi,ji) = Com

⎛

⎝
∑

1≤i≤n

γi,ji

⎞

⎠

into S.
6. Bob does the following. Let T be an empty multi-set. For for each element

s = Com(x) ∈ S, Bob picks a random element r ∈R ZN and puts the value
Com(n + r(x − n)) into T .

7. Bob permutes the elements of T , and sends T to Alice.
8. Alice runs the equality test with n for all the elements of T . If there exists

an element t ∈ T such that Test(t, n) = 1, then she outputs “Dom(A, B) =
1”, else “Dom(A, B) = 0”.

Fig. 3. The one-round protocol in the malicious-Bob case
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is analogous to that of the protocol in the semi-honest case. The difference is
that we use testable and homomorphic commitments instead of encryptions, and
in the final step, we use equality tests instead of decryptions.

Theorem 2. In the malicious-Bob case, the protocol Π2 in Fig. 3 achieves com-
pleteness and soundness for the STVD problem under the assumption that El-
Gamal encryption is semantically secure. It achieves Malicious-Bob Zero Knowl-
edge and Honest-Alice Perfect Zero Knowledge under the Subgroup Computation
Assumption, i.e., a malicious Bob learns nothing about Alice’s set A, and a semi-
honest Alice learns nothing about Bob’s set B beyond Dom(A,B).

Proof. When both parties follow the protocol, the proof of completeness and
soundness is similar to the proof of Theorem 1. The fact that a malicious Bob
learns nothing about Alice’s set A follows from the computationally hiding prop-
erty of the THC scheme.

To show that a semi-honest Alice learns nothing about Bob’s set B beyond
Dom(A,B), we construct a simulator S such that the input of S is Alice’s private
input A and the function Dom(A,B), and the output of S is computationally in-
distinguishable from the view of Alice in the protocol. The simulator S generates
a set T ′ as follows. If Dom(A,B) = 1, let T ′ contain one element Com(n) and
Kn−1 commitments of random elements of Zq; if Dom(A,B) = 1, let T ′ contain
Kn commitments of random elements of Zq. Then the set T ′ is computationally
indistinguishable from the set T .

Thus Π1 computes the function Dom(A,B) securely in the malicious-Bob
case. ��

3 The K-Round Protocols

In this section, we assume that Alice and Bob share the private key of a 2-out-of-2
threshold additive ElGamal encryption scheme.

3.1 A K-Round Protocol in the Semi-honest Case

First, we present a subprotocol for comparing two K-bit numbers ai and bi. We
wish to achieve the following at the end of the subprotocol: If ai > bi, both Alice
and Bob get E(0); otherwise, they get E(r), where r is a random element of Zq.
Note that we cannot directly use the known GT protocols in the literature, since
none of them can achieve this.

The idea is as follows: ai > bi if and only if there exists a position l such that
for any 1 ≤ j < l, ai,j = bi,j , while ai,l = 1, bi,l = 0. This position is called the
important position. Note that for any index j and elements ai,j , bi,j ∈ {0, 1}, we
have ai,j ⊕ bi,j = (ai,j − bi,j)2 = ai,j − 2ai,jbi,j + bi,j.

Let ri,j ∈R Zq, and define

ei,j = ri,j ·
⎛

⎝
∑

1≤s<j

(ai,s − 2ai,sbi,s + bi,s)

⎞

⎠+ ai,j − bi,j − 1. (1)
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Obviously, if ai > bi and j is the important position, then ei,j = 0, and ei,s =
−1 for all 1 ≤ s < j; in all other cases, the probability that ei,j = 0 is negligible.
Thus with overwhelming probability, ai > bi if and only if

∏
1≤j≤K ei,j = 0. For

1 ≤ j ≤ K, we define Ti,j =
∏

1≤s≤j ei,j , then with overwhelming probability,
ai > bi if and only if Ti,K = 0. Below is a subprotocol for Alice and Bob to
compute E(Ti,K).

Subprotocol 3. for comparing ai and bi:

1. Alice sends E(ai) = (E(ai,1), . . . ,E(ai,K)) to Bob.
Bob computes α = E(bi,1−1) ·E(0), and sends E(Ti,1) = E(ai,1)/α = E(ai,1−
bi,1 − 1) to Alice.

2. For j = 2, . . . ,K,
(a) Alice computes and sends (E(Ti,j−1)ai,1 · E(0), . . . ,E(Ti,j−1)ai,j · E(0)) to

Bob.
(b) Using these received values, Bob selects ri,j ∈R Z

∗
q, computes E(Ti,j) =

E(Ti,j−1)ei,j , and sends it to Alice. Note that since Bob holds E(Ti,j−1)
and E(Ti,j−1)ai,s · E(0) for 1 ≤ s ≤ j, Bob is able to calculate E(Ti,j)
according to Equation (1).

3. Finally, they both get E(Ti,K) = E(
∏

1≤j≤K ei,j).

The K-round STVD protocol in the semi-honest case is shown in Figure 4.

Theorem 4. In the semi-honest model, the protocol Π3 achieves completeness
and soundness for the STVD problem, and is secure under the assumption that
threshold ElGamal encryption is semantically secure.

The proof of Theorem 4 is given in Appendix A.
The structure of our protocol is similar to that in [15], in the sense that

both protocols use a K-round subprotocol for comparing a pair (ai, bi), and the
comparison results for all the n pairs are added together. However, in that paper,
a structure based on 0-encodings was used in the sub-protocol for comparing ai

and bi. As we will see, by computing encryptions of the product of ei,j defined
in (1), our protocol achieves lower communication and computation complexity
than the protocol from [15].

Protocol Π3:
Alice’s input: A = (a1, . . . , an); Bob’s input: B = (b1, . . . , bn), where 0 ≤
ai, bi < 2K .
Alice’s and Bob’s output: Dom(A, B).

1. For 1 ≤ i ≤ n, Alice and Bob runs Subprotocol 3 for comparing ai and bi,
and they both get E(Ti,K).

2. Alice and Bob computes E(T ) =
∑

1≤i≤n E(Ti,K).
3. Alice and Bob jointly decrypt E(T ). If T = 0, they output “Dom(A, B) =

1”. Otherwise, they output “Dom(A, B) = 0”.

Fig. 4. The K-round protocol in the semi-honest case
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Table 1. Comparison of STVD Solutions

Computation Cost Communication Cost
Serial K + 1 Parallel

Protocol Π3 n(K2 + 5K − 2) 4nK [n(K2 + 5K − 2)]λ

[15] n(5K2 + 4K − 2) + 1 4nK + 2n + 1 [n(4K2 + 2K) + 2]λ

[17] 12nK + 25(n − 1) 12nK + 25(n − 1) [8nK + 12(n − 1)]λ

[1] 48nK + 40n 48nK + 16n + 8� n
K
� (32nK + 16n)λ

Now we analyze the computation and communication resources in Subpro-
tocol 3. In Step 1, Alice computes 2K modular exponentiations (mod-exps),
and sends 2K values to Bob; Bob computes 2 mod-exps and sends 2 values to
Alice. In each iteration of Step 2, for a certain j with 2 ≤ j ≤ K, Alice com-
putes 2j mod-exps and send 2j values; Bob computes 2 mod-exps and sends
2 values to Alice. Altogether, in Protocol 3, the total number of mod-exps is
2K + 2 + (2 · 2 + · · · + 2 · K) + 2(K − 1) = K2 + 5K − 2, and the number
of values exchanged is also K2 + 5K − 2. Thus the total computational cost is
n(K2 + 5K − 2).

Now we consider the case where Alice has K +1 platforms for parallel execu-
tion while Bob has only one. In practical applications such as multi-commodity
bidding, K is usually small and can be set as an integer between 5 and 10, and
one of the two parties (e.g. a server) may have larger computing power, so this is
a reasonable assumption. In Step 1, Alice computes 2 mod-exps, Bob computes 2
mod-exps. In each iteration of Step 2, Alice computes 2 mod-exps and Bob com-
putes 2 mod-exps. Altogether, in Protocol 3, the total number of mod-exps is
2 + 2+ ((2 + 2) ∗ (K − 1)) = 4K, so the total computational cost of the protocol
Π3 is 4nK.

Now we compare the computation and communication costs of Protocol Π3

and the protocols from [15], [17] and [1] in Table 1. Here λ is a security parameter.
When K is small, our protocol compares favorably with the known protocols,
and in the case where Alice has K + 1 platforms, the computational cost of our
protocol is smaller than that of the previous protocols.

3.2 A K-Round Protocol in the Malicious Case

In this subsection, we will equip the previous K-round protocol with zero knowl-
edge proofs of knowledge to make it secure against malicious behaviors. For
brevity we use the notations similar to those in [15]. For example, we write
ZK{x|y = gx} to denote a zero knowledge proof of knowledge of integer x such
that y = gx, where y and g are public.

In the sequel, we define ei,j as follows:

ei,j = −2 ·
⎛

⎝
∑

1≤s<j

(ai,s − 2ai,sbi,s + bi,s)

⎞

⎠+ ai,j − bi,j − 1. (2)

It is easy to verify that for a pair ai, bi, if ai > bi, then for some j, ei,j=0;
otherwise, ei,j is nonzero for all j. The reason for the appearance of the constant
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−2 in (2) is as follows. Consider the following example: ai = 00 · · · , bi = 10 · · · .
Then if we delete −2 from (2), we would have ei,2 = 0 but ai < bi.

In our protocol we need the following zero knowledge proofs. In an addi-
tive ElGamal cryptosystem, an encryption of message m with randomness r is
E(m, r) = (gr, gmhr), and let E(m) = {E(m, r) : r ∈ Z

∗
q}.

(1) Proof of knowledge of ElGamal plaintext: Given an ElGamal ciphertext c,
the prover P proves to V that he knows plaintext m and randomness r
such that E(m, r) = c. This proof comes from Schnorr’s protocol for proving
knowledge of a discrete logarithm [18] and Fujisaki-Okamoto’s protocol for
proving knowledge of (m, r) such that f = gmhr [9].

(2) Proof that a plaintext is in a two-valued domain: Given an ElGamal ci-
phertext c and two plaintexts m0, m1, the prover P proves to V that
c ∈ E(m0) ∪ E(m1). This comes from the proof of knowledge of ElGamal
plaintext (1) above, combined with the OR-composition of proofs of [6]. We
denote this proof by ZK{c ∈ E(m0) ∪ E(m1)}.

(3) Proof of knowledge of an exponent: ZK{r|c0 = E(x) ∧ c1 = E(r) ∧ c2 =
cr0 � E(0)}, where x is unknown to the prover and verifier. This comes from
the multiplication protocol in [5].

(4) Proof of computation of a particular form: For a given pair (i, j) where
1 ≤ i ≤ n, 2 ≤ j ≤ K, suppose the following are public: E(T ), E(ai,s),
E(bi,s), E(T )ai,s for all 1 ≤ s ≤ j, and a ciphertext c. The prover P proves
to V that c ∈ E(T )ei,j , where ei,j is defined in (2). It is easy to verify that
this proof can be constructed from the three proofs above.

Subprotocol 5. for comparing ai and bi:

1. For 1 ≤ j ≤ K, Alice computes αi,j = E(ai,j). Alice sends (αi,1, . . . , αi,K)
to Bob together with the proof ZK{αi,j ∈ E(0) ∪ E(1)}.

2. For 1 ≤ j ≤ K Bob computes βi,j = E(bi,j). Bob sends (βi,1, . . . , βi,K) to
Alice together with the proof ZK{βi,j ∈ E(0) ∪ E(1)}.

3. Alice and Bob computes E(Ti,1) = E(ai,1 − bi,1 − 1).
4. for j = 2, . . . ,K,

(a) For 1 ≤ s ≤ j, Alice computes γi,s = E(Ti,j−1)ai,s � E(0), and sends
(γi,1, . . . , γi,j) to Bob together with the proof ZK{r|c0 = E(Ti,j−1) ∧
αi,s = E(r) ∧ γi,s = cr0 � E(0)} for each 1 ≤ s ≤ j.

(b) Using these received values, Bob computes E(Ti,j) = E(Ti,j−1)ei,j , and
sends it to Alice. Note that according to (2), Bob is able to calculate
E(Ti,j) based on the above data received from Alice.

5. Finally, they both get E(Ti,K) = E(
∏

1≤s≤K ei,j).

The K-round STVD protocol in the malicious case is given in Figure 5.

Theorem 6. When either Alice or Bob is malicious, Protocol Π4 achieves com-
pleteness and soundness for the STVD problem, and is secure under the assump-
tion that threshold ElGamal encryption is semantically secure.
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Protocol Π4:
Alice’s input: A = (a1, . . . , an); Bob’s input: B = (b1, . . . , bn), where 0 ≤
ai, bi < 2K .
Alice’s and Bob’s output: Dom(A, B).

1. For 1 ≤ i ≤ n, Alice and Bob run Subprotocol 5 for comparing ai and bi,
and they both get E(Ti,K).

2. Alice and Bob both compute E(T ) =
∑

1≤i≤n E(Ti,K).
3. Alice selects rA ∈R Zq , sends c1 = E(rA), cA = E(T )rA to Bob, together

with the proof PK{r|c0 = E(T ) ∧ c1 = E(rA) ∧ cA = crA
0 � E(0)}.

4. Bob selects rB ∈R Zq, sends c1 = E(rB), cB = E(T )rB to Alice, together
with the proof PK{r|c0 = E(T ) ∧ c1 = E(rB) ∧ cA = crB

0 � E(0)}.
5. Alice and Bob both compute E(S) = cA · cB = E(T )rA+rB , and coopera-

tively decrypt E(S). If S = 0, they output “Dom(A, B) = 1”. Otherwise,
they output “Dom(A, B) = 0”.

Fig. 5. The K-round protocol in the malicious case

The proof of Theorem 6 is deferred to Appendix B. Like the semi-honest case,
the structure and proof of the our protocol in the malicious case is also similar
to those of [15]. However, since our protocol is based on the properties of ei,j

of (2) rather than properties of 0-encodings, it has lower communication and
computation complexity.

4 The �log K�-Round Protocol in the Semi-honest
Model

In this section, we require that at the end of the protocol, only Alice obtains the
comparison result. We will use the BGN cryptosystem [4] to improve the round
complexity of the protocols in Section 3 to �logK� in the semi-honest model, at
a slight expense of statistical indistinguishability.

4.1 The BGN Cryptosystem

Let G and G1 be two cyclic groups of order n. Let g be a generator of G. Let e
be a bilinear map e: G ×G→ G1. In other words, for all u, v ∈ G and a, b ∈ Z,
we have e(ua, vb) = e(u, v)ab.

The BGN public key system is made up of the following three algorithms [4]:
KeyGen(λ): Given a security parameter λ ∈ Z

+, obtain a tuple (q1, q2,G,G1, e),
where q1 and q2 are two random λ-bit primes, G and G1 are two cyclic groups of
order n = q1q2. Let e : G × G → G1 be the bilinear map. Let g be a random
generator of G. Let h be a random generator of the subgroup of G of order q1. The
public key is PK = (n,G,G1, e, g, h). The private key is SK = q1.

Encrypt(PK,m): We assume the message space consists of integers in the set
{0, 1, . . . , T} where T < q2. To encrypt a message m using public key PK, pick
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a random r ∈R {0, 1, . . . , n− 1} and compute the ciphertext

E(m) = gmhr ∈ G. (3)

Decrypt(SK, c): To decrypt a ciphertext c using the private key SK = q1,
observe that

cq1 = (gmhr)q1 = (gq1)m.

Let ĝ = gq1 . To recover m, it suffices to compute the discrete log of cq1 base
ĝ. Since 0 ≤ m ≤ T this takes expected time Õ(

√
T ) using Pollard’s lambda

method.
It can be seen from Equation (3) that this system is additively homomorphic.

Moreover, it is proved in [4] that anyone having the public key can multiply two
encrypted messages once using the bilinear map.

Lemma 1. [4] Let c1 = gm1hr1 and c2 = gm2hr2 be encryptions of m1 and m2,
respectively. Let h1 = e(g, h). Pick a random r ∈R Zn. Then c = e(c1, c2)hr

1 ∈ G1

is a uniformly distributed encryption of m1m2 mod n, but in the group G1 rather
than G.

We use E(m) and E1(m) to denote a ciphertext of m in G and G1, respectively.
Lemma 1 says that from E(x) and E(y), anyone can compute E1(xy) using only
public key. We now construct a procedure which allows to compute E(xy) by
interacting with the party holding the private key.

Procedure 7. Input: Alice has SK; Bob has PK, E(x) and E(y).
Output: Alice outputs nothing; Bob obtains E(xy).

1. From E(x), E(y), Bob obtains E1(xy), using the result in Lemma 1.
2. Bob chooses r randomly, computes and sends c1 = E1(xy + r) to Alice.
3. Alice decrypts c1 to obtain xy+r, computes and sends c = E(xy+r) to Bob.
4. From c = E(xy + r) and r, Bob computes E(xy).

Subprotocol 8. Alice’s input: ai and SK; Bob’s input: bi and PK.
Output: Alice outputs nothing; Bob obtains E(Ti,K) = E(

∏
1≤s≤K ei,j).

1. Alice sends E(ai,1), . . . , E(ai,K) to Bob. According to (2), Bob calculates
E(ei,1), E(ei,2), . . . , E(ei,K).

2. Bob carries out Procedure 7 with Alice for K − 1 times to obtain E(Ti,K) =
E(
∏

1≤s≤K ei,j). Note that this can be done in �logK� rounds as follows.
For brevity suppose K is a power of two. In the first round Alice and Bob
perform K/2 executions of Procedure 7 in parallel so that at the end Bob
obtains E(ei,1ei,2), E(ei,3ei,4), . . . , E(ei,K−1ei,K). In the second round, Bob
obtains E(ei,1ei,2ei,3ei,4), . . . , E(ei,K−3ei,K−2ei,K−1ei,K). This process con-
tinues and after �logK� rounds, Bob obtains E(Ti,K) = E(

∏
1≤s≤K ei,j).

The �logK�-round STVD protocol in the semi-honest case is as follows. We omit
the proof here since it is similar to that of Theorem 4.

Remark 3. Note that in Step 2 of Procedure 7, we didn’t specify from which
domain we can choose r. Note that in our application, from Equation (2), we



Secure Computation of the Vector Dominance Problem 331

Protocol Π5:
Alice’s input: A = (a1, . . . , an) and SK; Bob’s input: B = (b1, . . . , bn) and
PK, where 0 ≤ ai, bi < 2K .
Alice’s output: Dom(A, B); Bob outputs nothing.

1. For 1 ≤ i ≤ n, Alice and Bob runs Subprotocol 8 for comparing ai and bi,
and Bob obtains E(Ti,K). Note that this step takes �log K� rounds, since
the executions for all 1 ≤ i ≤ n can be performed in parallel.

2. Bob computes E(T ) =
∑

1≤i≤n E(Ti,K).
3. Bob selects rB ∈R Zq , and sends c = E(T )rB = E(rBT ) to Alice.
4. Alice decrypts c. If the decryption algorithm succeeds and the out-

put is 0, Alices outputs “Dom(A, B) = 1”. Otherwise, Alice outputs
“Dom(A, B) = 0”.

Fig. 6. The �log K�-round protocol in the semi-honest case

have −2j ≤ ei,j ≤ 0 for all i, j. To ensure that xy+r ∈ {0, . . . , T}, we can choose
r randomly from {2KK!, . . . , T − 2KK!}. Thus the distribution of E(xy + r) is
not statistically identical to E(m), where m is a random plaintext. However, the
statistical difference is negligible if we choose the parameters T , K with T � K.

5 Concluding Remarks

In this paper, we proposed five protocols for securely computing the vector
dominance relation. We presented a one round and a K-round protocol for
the semi-honest and malicious cases, respectively, and demonstrated that the
K-round protocols improve on known solutions in communication/computation
complexity in certain cases. We also presented a �logK�-round protocol in the
semi-honest case, which has the same order of communication/computation com-
plexity as the K-round protocol, at a slight cost of statistical indistinguishability.
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A Proof of Theorem 4

Proof. In the end of Protocol Π3, Alice and Bob cooperatively decrypt E(T )
to get T =

∑
1≤i≤n

∏
1≤j≤K ei,j . For each i, if ai > bi, then ei,j = 0 for some

1 ≤ j ≤ K; if ai ≤ bi, then with overwhelming probability ei,j �= 0 for all j.
Thus Protocol Π3 achieves completeness and soundness.

ProtocolΠ3 is secure because all exchanged data are ciphertexts of the thresh-
old ElGamal encryption, and due to semantic security Alice or Bob alone can
obtain no knowledge from these ciphertexts. ��

B Proof of Theorem 6

Proof. The proof of completeness and soundness is similar to that of Protocol
Π3. Now let M = (M1,M2) be a pair of admissible strategies of Alice and
Bob respectively in the real model (i.e., at least one of M1 and M2 follows the
execution prescribed byΠ4). When either Alice or Bob is malicious, we construct
a pair of admissible strategiesM = (M1,M2) in the ideal model, and then prove
that the view of the two pairs of strategies are computationally indistinguishable.

If Alice is malicious, the execution ofM = (M1,M2) is as follows:

1. For 1 ≤ i ≤ n:
(a) M1 invokes M1 for computing αi,j = E(ai,j) and checks ZK{αi,j ∈

E(0) ∪ E(1)} for 1 ≤ j ≤ K. If any proof is incorrect,M1 aborts; other-
wise, M1 sends the values αi,j to the Trusted Third Party (TTP).

(b) Bob sends bi,j to the TTP for 1 ≤ j ≤ K.
(c) The TTP computes E(Ti,1) = E(ai,1 − bi,1 − 1) and sends E(Ti,1) toM1

and M2.M1 sends E(Ti,1) to M1.
(d) For j = 2, . . . ,K,

i. M1 invokesM1 for computing γi,s = E(Ti,j−1)ai,s�E(0), andM1 also
sends (γi,1, . . . , γi,j) to M1 with the proof ZK{r|c0 = E(Ti,j−1) ∧
αi,s = E(r) ∧ γi,s = cr0 � E(0)} for each 1 ≤ s ≤ j. M1 checks these
proofs. If any proof is incorrect,M1 aborts.

ii. M1 sends (γi,1, . . . , γi,j) to the TTP. The TTP computes E(Ti,j) =
E(Ti,j−1)ei,j , and sends it to M1 andM2. M1 passes it to M1.

(e) Finally, M1 and M2 get E(Ti,K) = E(
∏

1≤s≤K ei,j).
2. M1 andM2 both computes E(T ) =

∑
1≤i≤n E(Ti,K).

3. The TTP selects rA, rB ∈R Zq, computes cA = E(T )rA , cB = E(T )rB , and
sends cA and cB toM1 andM2 with the proof that cA was formed correctly.
M1 passes cA and the proof to M1.

4. M1 andM2 both computes E(S) = cA · cB = E(T )rA+rB , and cooperatively
decrypt E(S). If S = 0, they output “Dom(A,B) = 1”. Otherwise, they
output “Dom(A,B) = 0”.

It can be easily verified that due to the property of zero knowledge proofs,
the output pair of M in the real model and the output pairM in the ideal
model are computationally indistinguishable. The case that Bob is malicious
can be analyzed similarly.

��
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Abstract. This paper introduces the Repeated Rational Secret Sharing
problem. We borrow the notion of rational secret sharing from Halpern
and Teague[1], where players prefer to get the secret than not to get the
secret and with lower preference, prefer that as few of the other play-
ers get the secret. We introduce the concept of repeated games in the
rational secret sharing problem for the first time, which enables the pos-
sibility of a deterministic protocol for solving this problem. This is the
first approach in this direction to the best of our knowledge. We extend
the results for the mixed model (synchronous) where at most t players
can be malicious. We also propose the first asynchronous protocol for
rational secret sharing.

Keywords: Secret sharing, game theory, repeated games, distributed
computing.

1 Introduction

Secret sharing is a widely known primitive in modern cryptography. More for-
mally, in a secret sharing scheme there is a unique player called the dealer (player
0) who wants to share a secret s among n players, p1, . . . , pn. The dealer sends
every player a share of the secret in a way that any group of m (threshold value)
or more players can together reconstruct the secret but no group of fewer than
m players can. Such a system is called an (m,n)-threshold scheme.

Shamir’s Secret Sharing Scheme[2] is based on the fact that, it takes m points
to define uniquely a polynomial of degree (m − 1). The idea is that the dealer
who shares the secret among the players, chooses a random (m−1) degree poly-
nomial f , such that f(0) = s, and sends the shares to the players such that every
player pi, i = 1, . . . , n receives the share f(i). Any m players can recover the
secret by reconstructing the polynomial through Lagrange’s Interpolation. Any
subset of players of size less than m cannot reconstruct the polynomial (even if
they have infinite computing power).

1.1 Game Theory in Secret Sharing

Game theory provides a clean and effective tool to study and analyze the situ-
ations where decision-makers interact in a competitive manner. Game theoretic
� Work supported by Microsoft Project No. CSE0506075MICOCPAN on Foundation
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reasoning takes into account, which strategy is the best for a player with respect
to every other player’s strategy. Thus, the goal is to find a solution that is the
best for all the players in the game. Every player’s decision is based on the de-
cision of every other player in the game and hence, it is possible to reach the
equilibrium state corresponding to the global optima.

In distributed computing or secret sharing or multi-party computation, the
players are mostly perceived as either honest or malicious players. An honest
player follows the protocol perfectly whereas a malicious player behaves in an
arbitrary manner. Halpern and Teague[1] introduced the problem of secret shar-
ing assuming that the players are rational, which is known as rational secret
sharing. In rational secret sharing, player’s behavior is selfish. They have their
own preferences and utility function (the profit they get). They always try to
maximize their profits and behave accordingly.

For any player pi, let w1, w2, w3, w4 be the payoffs obtained in the following
scenarios.

w1 − pi gets the secret, others do not get the secret
w2 − pi gets the secret, others get the secret
w3 − pi does not get the secret, others do not get the secret
w4 − pi does not get the secret, others get the secret

The preferences of pi is specified by w1 > w2 > w3 > w4. In brief, every player
primarily prefers to get the secret than to not get it and secondarily, prefers
that the fewer of the other players that get it, the better. The least preferred
scenario for pi is the situation, where he does not get the secret and others get
it. A rational player follows the protocol only if it increases his expected utility.

1.2 Related Work

Consider any arbitrary player, say pi. He needs (m − 1) shares from others to
compute the secret. If other players (at least (m − 1)) send him their shares,
then he gets the secret, otherwise he cannot. This does not depend on whether
he sends his share to others or not, as all the players are assumed to send their
shares simultaneously. So, there is no incentive for any player to send his share.
Reasoning in a similar way, no player might send his share. This impossibil-
ity result is proved by Halpern and Teague[1]. They show that rational secret
sharing is not possible with any mechanism that has a fixed running time by
iterated deletion of weakly dominated strategies (the strategy of not sending
the share weakly dominates the strategy of sending the share). They also pro-
posed a randomized protocol for n ≥ 3. All these results apply to multi-party
computation. Gordon and Katz[3] improved the original protocol and addition-
ally they proposed a protocol for n = 2 for rational secret sharing and rational
multi-party computation. Abraham et.al. [4] analyzed rational secret sharing
and rational multi-party computation in an extended setting where players can
form coalitions. They use a trusted third party as mediator. Lysyanskaya and
Triandopoulos[5] analyzed multi-party computation in mixed behavior model,
where players are rational or malicious using a trusted mediator. The malicious
adversary can control at most (�n/2� − 2) players. Recently, Maleka et al.[6]
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proposed a deterministic protocol for rational secret sharing by modifying the
existing protocol. They did little variation in the model, where dealer instead of
sending shares to the players, sends subshares of the shares.

1.3 Practical Applications and Motivation

Game theory has wide range of applications in Political science, Economics, busi-
ness, Biology and Computer science (online algorithms). By combining game
theory and cryptography, we can solve game theoretic problems as shown by
Dodis et. al[7] and cryptography can be understood from a different perceptive.
Secret sharing has many applications like, need for the secret to keep in dis-
tributed environment (arises if the storage is not reliable and there is a high
chance that the secret may be lost). Analogously, if the owner of the secret does
not trust any single person, there is a threat that the secret may be misused.
Hence, the secret needs to be distributed among the members of a group to
achieve shared trust. The secret can provide access to important files or critical
resources like bank vault, missile launch pad, source code escrow, etc. In short,
to all the applications, which need simultaneously achieving secrecy, availability
and group trust.

Rational secret sharing has applications in highly competitive real world sce-
nario, where players are modeled selfish. Suppose by obtaining the secret, players
start their firm with it (or run online business activity), then they think that,
if many persons learn the secret then they will become competitors to him and
finally minimize his profit or payoff. A player gets maximum profit if only he
runs the firm having the secret and no one else has the secret. So, every player
behaves non-cooperatively, i.e., selfishly. We answer this question affirmatively
and provide a solution.

In several practical situations, a group of people may wish to share many
number of different secrets. Such scenario generally arises in applications where
the key (secret) becomes obsolete after a predefined time limit. We model this
as a secret sharing game, which is being played many number of times. Hence,
this game can be treated as a repeated game. In each game, players share only
one secret (not multiple secrets as in multi-secret sharing[8]). Thus, applying
the game theory concepts (rational behavior and repeated games), we extend
the work of Halpern and Teague[1] and introduce the Repeated Rational Secret
Sharing (RRSS) problem.

1.4 Intuition and Contribution

Our intuition is that, the rational players have an incentive to send their share
in repeated games by means of punishment strategy. If a player does not coop-
erate by not sending a share in the current game, then other players adopt the
punishment strategy and do not send him the share in the further games. Hence,
every player because of the fear of not receiving any share from other players
in the further games will cooperate in the current game. Thus, the punishment
strategy acts as an incentive for a player to cooperate. The major contribution
of our work is that we present the first deterministic protocol for rational secret
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sharing with repeated games. In an infinitely played repeated game or finitely
played repeated game (where players do not know how many times the game
will be repeated), we propose a deterministic protocol in both synchronous and
asynchronous models. We prove that secret sharing is not possible for finitely
played repeated games, where players know how many times the game will be
repeated. We extend these results to mixed model (synchronous) where there
can be few malicious players.

1.5 Model and Assumptions

We model the secret sharing as a game, denoted by Γ . The players of the game
are rational and the game will be repeated for several times. We consider the
scenario where m players come together and share the secrets repeatedly. That
is, we solve the problem when m players come together to play the secret shar-
ing game Γ repeatedly (the same set of m players). We do not consider the case
where every time a new (different) set of players come and repeatedly play the
game. Unlike the game defined by Halpern and Teague[1], our model considers
both synchronous and asynchronous rational secret sharing and proposes a de-
terministic protocol. In the synchronous model, the game is finite with respect to
time and the starting and ending points are precisely defined. The game proceeds
in the following manner. The game starts when the dealer distributes the shares
and the players send their shares simultaneously at a predefined synchronized
point of time and ends in finite time at another synchronized point of time. Thus,
the game has two possible outcomes, either players learn the secret or do not.
In short, the game has only one round. On the contrary, in the asynchronous
model, the game does not start and end at predefined points of time and has
only two possible outcomes as that of the synchronous model.

We assume that all players are connected to each other through secure pri-
vate channels independently, which ensures that a player can send his share to a
selected number of players. Initially, we make an assumption that the underly-
ing network is synchronous and the messages will be delivered in fixed amount
of time. Later we consider the asynchronous model. Here, the message delivery
time is indefinite. But, in both cases, the communication is guaranteed. In syn-
chronous model, all the players are synchronized with respect to a global clock.
Hence, all the players start and end the game at the same time whereas in asyn-
chronous model, there does not exist a global clock. The dealer authenticates
the shares, and therefore a player cannot send incorrect value as a share to other
players. All the players are assumed to be computationally bounded. There is
no trusted mediator and the dealer is assumed to be honest (so, he will not send
different messages to different players). We also assume that the players are pa-
tient enough and care for their future payoff, hence we assume that the discount
factor δ is sufficiently large and closer to 1.

1.6 Paper Outline

In the next section, we briefly explain the basics of Game Theory. Section 3
presents the protocol for the RRSS game, played both infinitely and finitely.
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Section 4 discusses the mixed model where few malicious players are also present.
Section 5 proposes a protocol for Asynchronous repeated rational secret sharing.
Finally, Section 6 concludes the paper and gives an insight on open problems in
further direction.

2 Basics of Game Theory

We define some basic terminology of game theory in this section [9].
A strategy can be defined as a complete algorithm for playing the game, implic-

itly listing all moves and counter-moves for every possible situation throughout
the game. And a strategy profile is a set of strategies for each player which fully
specifies all actions in a game. A strategy profile must include one and only one
strategy for every player.

Let Γ (N,L,U) represents an n persons game, where N is a finite set of n
players (p1, . . . pn), L = {L1, . . . , Ln} is a set of actions for each player pi,
i ∈ {1, . . . , n} and U = {u1, . . . , un} is a utility function for each player, where
ui : L−>R

Let a−i be a strategy profile of all players except for the player pi. When each
player pi, i ∈ {1, . . . , n} chooses strategy ai ∈ L resulting in strategy profile
a = {a1, . . . , an}, then player pi obtains payoff ui(a). Note that, the payoff de-
pends on the strategy profile chosen, i.e., on the strategy chosen by player pi as
well as the strategies chosen by all the other players.

Definition 1. (Strict Domination): In a strategic game with ordinal prefer-
ences, player p′is action a′′ ∈ Li strictly dominates his action a′ ∈ Li if

ui(a′′, a−i) > ui(a′, a−i) for every list L−i of the other players’
actions.

We say that the action a
′
is strictly dominated.

Definition 2. (Nash Equilibrium - NE): A strategy profile a∗ ∈ L is a Nash
equilibrium (NE) if no unilateral deviation in strategy by any single player is
profitable, that is

∀i,ui(a∗i , a
∗
−i) ≥ ui(ai, a

∗
−i).

2.1 Repeated Games

Repeated games capture the idea that a player can condition his future game’s
move based on the previous game’s outcome. In repeated games, the players
interact several number of times (Γ1, Γ2, · · · ). We assume that the players make
their moves simultaneously in each game. The set of the past moves of all the
players is commonly referred to as the history H of the game. History is uniquely
defined at the beginning of each game (h1, h2, . . . and h1 = 0) and the future
move depends on the history. In repeated games, the users typically want to
maximize their payoff for all the game they play. Hence, every player pi tries
to maximize his payoff function ui. But for repeated games, we cannot simply
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add up the payoffs received at each stage. There is a discount factor δ ∈ (0, 1)
such that the future discounted payoff of player pi is given by

ui + δ1ui + δ2ui + δ3ui + · · ·
In some cases, the objective of the player can be to maximize their payoff only

for the current game (which is equivalent to a game, which is played only once).
Such game is known as shortsighted game. If the players try to maximize their
payoff throughout the repeated game, then it is a long-sighted game. If the game
is played finite number of times, then it is a finite repeated game. Otherwise, it
is an infinite repeated game.

Definition 3. (Feasible payoff): A payoff profile (payoff vector of n play-
ers), say y, is feasible if there exist rational, non-negative values αa such that
for all pi, we can express yi (payoff corresponding to pi) as

∑
a∈L αaui(a) with∑

a∈L αa = 1.

Definition 4. (Friedman or Nash folk theorem for infinitely repeated
games) [10]: Let Γ be a strategic game in which each player has finitely many
actions and (y1, y2, . . . yn) be a feasible payoff profile of Γ and (e1, e2, . . . en)
denotes the payoff from a Nash equilibrium of Γ . If yi > ei for every player
i and if δ is sufficiently close to one, then there exists a Nash equilibrium of
infinitely repeated game Γ that achieves (y1, y2, . . . yn) as the payoff.

3 Protocol for Synchronous Repeated Rational Secret
Sharing

We denote our game by Γ (n,m), where n is the number of players participating
in the game and m is the threshold value of the number of shares to obtain the
secret. We consider the scenario where m players come together and share the
secrets repeatedly. That is, we solve the problem when m players come together
to play the secret sharing game Γ repeatedly (the same set of m players). We
do not consider the case where every time a new (different) set of players come
and repeatedly play the game. So, exchange of shares is between these m players
group, i.e., when a player sends his share to this set (selected players), they
intern send their shares, reasoning to this is given below.

For every player, we have two actions namely, sending and not sending. Let
us denote the action of sending the share to other (m − 1) players by ‘A’ and
not sending by ‘B’. Then, the strategy of a player for always not sending is
{B,B, . . .} and for always sending is {A,A, . . .}. In every game, the strategy
profile, strategies chosen by the all players is denoted by n-tuple (c1, c2, . . . , cn),
where ci = A orB, i ∈ {1, . . . , n}. The Repeated Rational Secret Sharing (RRSS)
is similar to the Repeated prisoners’ dilemma in many aspects [9].

In the modeled secret sharing game, the strategy which chooses not sending
benefits one player and losses the players. We introduce one more punishment
strategy known as Limited punishment strategy, which is explained in detail
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in the section 3.1. We first discuss the strategies of the players, then analyze
the cases for both the infinitely and finitely repeated rational secret sharing
game.

3.1 Punishment Strategies

1. Grim trigger strategy

– choose A as long as the other players choose A.
– In any game some player chooses not sending (i.e., chooses B), then choose
B in every subsequent game.

The grim trigger strategy for a repeated rational secret sharing game is defined
as:
si(φ) = A (player pi chooses A at the start of the game,

φ denotes initial history), and

si(h1, . . . , hq) =

⎧
⎪⎨

⎪⎩

A if (hj1, . . . , hjq) = (A, . . . , A)
for every other player pj

B otherwise.
That is, player pi chooses A after any history in which every previous action

of every player was A, and B after any other history. Even though the grim
trigger strategy is effective in achieving the Nash equilibrium, the cooperating
players are also getting the punishment. We propose one more strategy, which
punishes only the player who did not send his share and not the other players.

2. Limited Punishment Strategy

– choose A as long as the other players choose A.
– In any game some player chooses not sending (i.e., chooses B), then choose
B for k subsequent games.

The intention of this strategy is to punish only the player who did not send
his share. If a player pj does not send his share to a player pi, then pi chooses B
for k consequent games. pi will choose A only if pj keeps sending his share for k
consecutive games, even pi does not send his share. Otherwise pi will not send
share to pj . This is equivalent to outcast the player who does not send the data
from the game for k number of games. The value of k should be such that, the
gain obtained by not sending share should be less than loss that occurs in the
next k games (as he cannot obtain the secret and others get his share).

In general, both of the strategies discussed here work effectively. But, for the
sake of analysis we use only grim trigger strategy.

3.2 Infinitely Repeated Rational Secret Sharing Game

We make an assumption that players are patient enough and care for their future.
In other words, the discount factor δ is sufficiently large and close to 1. We first
analyze the game and then discuss the Nash equilibrium.
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Suppose, a particular player pj does not send his share to a player pi, then
the player pi does not get the secret in that particular game. So, the player
pi uses the grim trigger strategy and does not send his share to pj in further
games. Thus, the player pj will not get the secret from next game onwards.
The player pj realizes that he can no more obtain the secret and so there is no
motivation to send his share to other players. Thus, no player learns the secret in
further games. Hence, every player, because of the fear of not receiving any share
from other players in further games, will cooperate in the current game. This
punishment strategy acts as an incentive for a player to cooperate. Therefore, a
player pi’s strategy is to always send his share to other players. He stops sending
only when he does not receive a share from any other player. In this way every
player receives m shares and can get the secret.

Suppose, in kth game a player pi does not send his share to a player pj . Then,
player pj chooses grim trigger strategy and henceforth never sends his share to
pi. Thus, player pi cannot obtain secret from (k + 1)th game onwards and his
payoff will be (w1, w3, w3, . . .). If the player pi always sends his share, then his
payoff would be (w2, w2, w2, . . .). So, for any player the payoff is high if he chooses
always sending rather than not sending in any particular game. And every player
primarily prefers to get the secret than not to get the secret (players care about
future). Hence, every player always chooses to send his share.

But for infinitely repeated games, we cannot simply add up the payoffs re-
ceived at each stage. The payoff is discounted by a factor, δ ∈ (0, 1) such that
the future discounted payoff of player pi is given by

∑∞
j=0 δ

jui(Γj). If δ is closer
to 0, then the player does not care about his future payoff and concentrates more
on the current payoff where as if δ is closer to 1, then the player is very patient
and cares much about his future payoff.

Suppose if the player chooses the strategy always send (A,A, . . .), with payoff
ui(A) = w2, then the overall discounted payoff will be

∑∞
j=0 δ

jw2 = w2

(1−δ) .
If the player finks at rth round, then till (r−1)th round the player gets payoff

of w2, at rth round payoff of w1 and from (r + 1)th onwards payoff of w3.

∑∞
j=0 δ

jui(Γj) = w2 + δw2 + δ2w2 + . . .+ δr−1w2 + δrw1 + δr+1w3 + δr+2w3+
δr+3w3 + . . . .

= w2(1+ δ+ δ2 + . . .+ δr−1)+ δrw1 + δr+1w3(1+ δ+ δ2 + . . .)
= w2()1−δr

1−δ + δrw1 + δr+1w3

1−δ

= w2(1−δr)+δrw1+(δr+1w3)
1−δ

As δ is close to one,

w2(1− δr) + δrw1 + (δr+1w3)
1− δ <

w2

1− δ
So, every player chooses the strategy of always sending (A,A, . . . ).

Theorem 1: Infinitely Repeated Rational Secret Sharing (RRSS) game, Γ (n,m)
has a deterministic protocol when a group of m players come together, where n
is the number of players and m is the threshold of shares.
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Proof: Given, a player sends his share to (m − 1) players and in-turn receives
their shares, his payoff would be (w2, w2, . . .). The strategy profile (A,A, . . .) is
a feasible payoff profile of the game and (B,B, . . .) be the Nash equilibrium of
the single game Γ . As the players are patient enough and care for their future
payoff, δ is sufficiently closer to one. As payoff corresponding to the strategy
A, w2 is greater than the minmax value, w3 (ui(A) > ui(B)), from Nash folk
theorem (Definition 4), the strategy profile (A,A, . . .) is a Nash equilibrium of
infinitely repeated game Γ (n,m) and the strategy, A is the best strategy for a
player provided that every other player also plays his best strategy. In this way,
all the players send their shares and thus obtain the secret. Hence, there exists
a deterministic protocol for the RRSS game Γ (n,m). �

Nash Equilibrium
The strategy (A,A, . . .) is a Nash equilibrium. Similarly, (B,B, . . .) is also a
Nash equilibrium. But a player prefers to get the secret rather than not getting
the secret. Hence, every player prefers to be in the state (A,A, . . .).

3.3 Finitely Repeated Rational Secret Sharing Game

First we discuss the issue what if the RRSS game is played only once ? Next we
propose, in a finitely repeated rational secret sharing game, we have a determin-
istic protocol if the players are not aware of the last game. If the last game is
known in advance, we do not have a solution for the game, Γ (n,m).

3.3.1 What if the RRSS Game Is Played only Once?
Before analyzing the cases of infinitely and finitely repeated rational secret shar-
ing game, we make an insight to the RRSS game when played only once (equiv-
alent to a static game). Here, the players do not have a threat of not getting the
secret in future games. So, the incentive of sending the share is lost. Lemma 1
proves the impossibility of secret sharing in such a game.

Lemma 1: Secret Sharing is not possible in an RRSS game Γ (n,m) if the game
is played only once, where n is the number of players and m is the threshold of
shares (considering our model and game Γ (n,m)).
Proof: There is no punishment involved in the game, Γ (n,m) as it is played
only once. If the player pi gets the secret and everyone else does not get the
secret, then the payoff is w1. If everyone (including pi) gets the secret, then the
payoff is w2. Thus player pi can obtain the payoff w1 by not sending his share
and w2 by sending. As w1 > w2, the strategy B (not sending) strictly dominates
the strategy A (sending). So, every player chooses strictly dominating strategy
and no player sends his share. Hence, secret sharing is not possible in an RRSS
game Γ (n,m) if the game is played only once. �

3.3.2 Players Are Not Aware of the End of the Game
A finitely repeated game can be modeled as an infinitely repeated game, if the
players are not aware of the end of the game. Therefore, we can always obtain a
solution in this case, which is illustrated in the theorem 2.
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Theorem 2: Finitely Repeated Rational Secret sharing (RRSS) game, Γ (n,m)
has a deterministic protocol, if the players are not aware of the last game.
Proof: As players do not know the last game, in every ith game, players are
not sure about whether they play the (i + 1)th game or not. If a player does
not send his share in ith game, he might loss the chance of getting the secret in
(i + 1)th game onwards (if the game is going to be repeated). The punishment
strategy acts as incentive for the players to send their shares. This scenario is
similar to that of the infinitely repeated rational secret sharing game. Hence,
from theorem 1, every player gets the secret. �

3.3.3 Players Are Aware of the Last Game
When players are aware of the end of the game, we can apply the concept of
backward induction because, the game is of complete information (players know
the number of times the game will be played). Let us consider the last game.
Every player concludes that their dominant strategy is not to send the share of
secret to others (i.e., to play ‘B’). Given this argument, the best strategy is to
play ‘B’ in the penultimate game. Following the same argument, this technique
of backward induction dictates that every player should choose the strategy ‘B’
in every game. Thus, secret sharing is not possible for the finitely repeated game,
given the players are aware of the end of the game. More formal proof is given
by the lemma 2 and theorem 3.

Lemma 2: If the players know that rth game is the last game of finite RRSS
game Γ (n,m), then secret sharing is not possible in the rth game.
Proof: Given, the game is going to be played r number of times. As there is no
punishment involved for the rth game, there is no incentive for a player to send
his share. Thus, this game is equivalent to a game, which is played only once.
Hence, from lemma 1, there is no solution for the rth game. �

Theorem 3: Secret sharing is not possible for the RRSS game Γ (n,m), if the
players are aware of last game.
Proof: We prove it by backward induction. Suppose, the game is being played
r number of times. Given, the players are aware of the value of r, from the
lemma 2, there is no solution for the rth game. That is, no player sends his share
in rth game. So, in (r − 1)th game, there is no effective punishment strategy,
hence there is no incentive for a player to send their share. Hence (r − 1)th

game is equivalent to a single game. From Lemma 1, there is no solution for
the (r − 1)th game. Same reasoning applies to (r − 2)th, (r − 3)th . . . 1st game.
Therefore, in a finitely repeated game where players know the end of the game,
repeated rational secret sharing Γ (n,m) is not possible. �

Theorem 4: Repeated Rational Secret Sharing game, Γ (n,m) has a determinis-
tic protocol for infinitely repeated games and finite repeated games (where players
are not aware of number of times the game is going to be played), where n is the
number of players and m is the threshold of shares.
Proof: Easy observation from theorems 1 and theorem 3. �
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3.3.4 Nash Equilibrium
For the finitely repeated rational secret sharing game, we have two cases. One,
when players do not know the end of the game. In this case the Nash equilibrium
is same as that of an Infinitely repeated game(A,A, . . . , A). Another, when the
players are aware of the last game. In this case the Nash equilibrium is not to
send the share, that is (B,B, . . . , B).

4 Mixed Model

We assume there are at most ’t’ computationally bounded malicious players. So
the malicious players cannot send the wrong shares to other players. According
to the protocol, every player distributes his shares to (m − 1) players and in-
turn obtains their shares. If malicious players are present, then they choose not
to send their shares to other players so that, no player learns the secret (even
though they do not get the secret). To solve this problem, every player sends his
share to (m + t − 1) players and in-turn obtains at least (m − 1) shares (as at
least (m − 1) players are honest). If a player pi did not receive the share of pj ,
then player pi considers pj as a malicious player and stops sending the shares to
pj alone (sends to every one else).

Theorem 5: In the presence of at most t malicious players, Repeated Rational
Secret Sharing (RRSS) game Γ (n,m) has a deterministic protocol for infinitely
repeated games and finite repeated games (where players are not aware of number
of times the game is going to be played), where n is the number of players and
m is the threshold of shares.
Proof: In mixed model, at most t players can be malicious and every player
obtains at least (m− 1) shares. Hence, from theorem 4, repeated rational secret
sharing (RRSS) game, Γ (n,m) with at most t malicious players has a determin-
istic protocol. �

5 Asynchronous Repeated Rational Secret Sharing

We consider the Asynchronous model of the RRSS game. Here, we do not have
a global clock and messages can be indefinitely delayed. For the dealer to know
the end of the game and distribute new shares, the players are asked to send a
message whenever they obtain the secret. If the dealer receives such messages
from all the players, then he will distribute the shares of next secret, thus start-
ing the next game. This protocol followed by the dealer acts as a punishment
strategy (players wait indefinitely until every player gets the secret) and creates
an incentive for every player to send his share.

Protocol for the Dealer and the Players
1. Protocol for player pi

1. pi sends his share to other (m− 1) players.
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2. In every game, after receiving (m−1) players’ shares, calculate the secret and
send a message to the dealer that the secret has been obtained mentioning
the game.

For e.g., msgi = “ secret obtained in kth game ”.

2. Protocol for dealer

1. In the first game, send the shares to all the players (p1, p2, . . . , pn).
2. After distributing shares in kth game, k ≥ 1 wait until n number of messages

are received, (msg1,msg2, . . .msgn). If all the messages are received, then
distribute the new shares of (k + 1)th game to all the players.

Lemma 3: In Asynchronous model, a player has an incentive to send his share
(in every game) to the (m − 1) players, in an infinite RRSS game and a finite
RRSS game (where players are not aware of the last game).
Proof: We prove this by contradiction. Assume that there is no incentive for
a player pi to send his share in kth game. So, pi will not send his share to any
player in kth game and no one gets the secret. Now, as per the protocol, the
dealer waits indefinitely for the messages from the players and the next game
never starts. So, the payoff of pi from kth game onwards will be (w1, w3, . . .). But,
if he sends his share, the payoff would have been (w2, w2, . . .). Given the player
does not know about the last game, he prefers (w2, w2, . . .) than (w1, w3, . . .),
which is a contradiction. So, there is an incentive for a player to send his share
in any given kth game. �

Theorem 6: Asynchronous Repeated Rational Secret Sharing (RRSS) game,
Γ (n,m) has a deterministic protocol for infinitely repeated game and finitely
repeated game (where players are not aware of the last game), where n is the
number of players and m is the threshold of shares.
Proof: We prove this by contradiction. Assume that there is no incentive for a
player pi to send his share in kth game. So, pi will not send his share to any player
in kth game and no one gets the secret. Now, as per the protocol, the dealer waits
indefinitely for the messages from the players and the next game never starts.
So, the payoff of pi from kth game onwards will be (w1, w3, . . .). But, if he sends
his share, the payoff would have been (w2, w2, . . .). Given the player does not
know about the last game, he prefers (w2, w2, . . .) than (w1, w3, . . .), which is a
contradiction. So, there is an incentive for a player to send his share in any given
kth game. So, every player sends his share. By considering Theorem 2, it can be
observe that the game Γ (n,m) finitely repeated games (where players are not
aware of last game) is similar to infinitely repeated game. Hence, RRSS game
has a deterministic protocol for infinitely repeated games and finitely repeated
games (where players are not aware of last game). �

6 Conclusions and Open Problems

We have modeled the secret sharing as a repeated game (the game is played for
some r number of times). We analyzed the repeated secret sharing game when
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r is both finite and infinite. We propose a deterministic protocol for the infinite
repeated game (r−>∞) and the finite repeated game (r is a finite number and
the players do not know the value of r) in both synchronous and asynchronous
models. We proved the impossibility for the finite repeated game when players
know the value of r. We extended these results to the mixed model where at most
t players are malicious, considering the synchronous model. The main advantage
of introducing repeated games is that the players choose the strategy, which
is mutually beneficial in terms of long-term gain rather than the one, which
gives instantaneous benefit. We expect that the concept of repeated games can
be introduced into various other problems of distributed computing (where the
players are rational) and the scope for problem solving strategies in asynchronous
model can be enhanced.
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Abstract. Motivated by the need of private set operations in a distributed
environment, we extend the two-party private matching problem proposed by
Freedman, Nissim and Pinkas (FNP) at Eurocrypt’04 to the distributed setting.
By using a secret sharing scheme, we provide a distributed solution of the FNP
private matching called the distributed private matching. In our distributed private
matching scheme, we use a polynomial to represent one party’s dataset as in FNP
and then distribute the polynomial to multiple servers. We extend our solution to
the distributed set intersection and the cardinality of the intersection, and further
we show how to apply the distributed private matching in order to compute dis-
tributed subset relation. Our work extends the primitives of private matching and
set intersection by Freedman et al. Our distributed construction might be of great
value when the dataset is outsourced and its privacy is the main concern. In such
cases, our distributed solutions keep the utility of those set operations while the
dataset privacy is not compromised. Comparing with previous works, we achieve
a more efficient solution in terms of computation. All protocols constructed in
this paper are provably secure against a semi-honest adversary under the Deci-
sional Diffie-Hellman assumption.

Keywords: private matching, private set operation, homomorphic encryption.

1 Introduction

Freedman, Nissim and Pinkas [1] gave a protocol for private matching, a specialized
version of oblivious polynomial evaluation [2], using a public-key homomorphic cryp-
tosystem. We will call it the FNP protocol. This protocol enables one party, Alice, with
a dataset A to interact with another party, Bob, for testing if Bob’s input b matches any
element in the Alice’s dataset in an "oblivious" way. At the end of the protocol, Bob
learns nothing about Alice’s dataset, while Alice only learns whether b ∈ A or not, and
does not gain any additional information about b.

To run the above protocol in parallel with a set of elements {b1, . . . , bn} owned
by Bob, the FNP protocol offers an efficient tool to solve the private set intersection
problem. The private computation of the two datasets intersection is a useful primitive
for various applications. For example, Alice may be a fruit-farm supplying fresh fruits
to a collection of supermarkets in a town; while another local dairy-farm, Bob, supplies
dairy products to another collection of supermarkets in the same town. For their mutual
interests, Alice and Bob may agree to cooperate in order to deliver both fruits and
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dairy products to their shared supermarkets by a single truck. To obtain the list of their
shared customers, they would like to perform a private set intersection operation on
their databases without compromising their customers’ privacy.

This private set intersection can be computed by using the FNP protocol directly.
However, such an approach could be problematic if Bob outsources his database to a
database service provider. In this case, Bob could risk his database privacy if he assumes
that all database administrators act "professionally" and do not leak any information
related to his database. To protect his database privacy, he could encrypt all the data
stored in the provider’s server with his public-key. In general, however, querying on
such encrypted database could be extremely expensive; and in some cases this may not
even be possible without letting a third party know the private key.

Motivated by the database outsourcing trend and the security and privacy concerns,
this work extends the two-party private matching FNP protocol to the distributed setting.
In such a setting, we distribute Bob’s dataset, represented by a polynomial, to several
servers using a (t, w)-Shamir secret sharing scheme. This way, any t− 1 or less servers
cannot discover Bob’s original dataset. Alice has to contact t servers to test if her input
matches any element in Bob’s dataset without revealing her input to him. In addition,
she is going to obtain no additional information about Bob’s dataset.

We further apply the distributed private matching scheme to private set operations.
In the distributed setting, Alice, who owns a dataset, wishes to perform a set operation
for both her and Bob’s datasets. To do so, Alice runs the distributed private matching
protocol in parallel for each element of her dataset. We consider the set intersection, the
cardinality of set intersection and the subset relation problems in this paper. The security
of our constructions is ensured as long as the underlying homomorphic cryptosystem is
semantically secure.

1.1 Private Matching and Set Intersection Protocols in FNP

Polynomial Representation of Datasets and Private Matching. We briefly review the
FNP protocol. Let (K, E ,D) be a semantically-secure public-key cryptosystem with ad-
ditive homomorphic properties, such as Paillier’s [3]. Recall that, given Epk(a), Epk(b)
and a constant c, one can compute Epk(a + b) = Epk(a) � Epk(b) and Epk(a · c) =
Epk(a)c.

There are two parties in the protocol, namely, Alice and Bob. Bob owns a value b,
while Alice possesses a dataset A = {a1, . . . , am} and wants to test if b ∈ A or not.
Alice does not want to reveal A to Bob, and Bob is unwilling to disclose b to Alice.

The protocol runs as follows. Alice first presents her dataset A in the form of a

polynomial P(y) =
∏

ai∈A

(y − ai) =
m∑

i=0

αiy
i where αm = 1. Let (pk, sk) be Alice’s

public and private keys, respectively, applied in the homomorphic cryptosystem.
Alice encrypts her polynomial P with her public-key pk. Note that the encrypted

polynomial Epk(P) contains the encryptions of the coefficients αi except αm. Next she
sends Epk(P) to Bob. Because of the homomorphic properties, Bob can evaluate the
polynomial at his input b as:

Epk(P(b)) = Epk(α0)� Epk(α1)b � Epk(α2)b2 � . . .� Epk(αm−1)bm−1 � Epk(1)bm

,
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and sends Epk(γP(b) + b) to Alice where γ is a random non-zero value. Note that
b ∈ A if and only if P(b) = 0. When Alice receives the cryptogram, she decrypts it
and checks if the decrypted message belongs to the setA; otherwise it is a random value.

Private Computation of Set Intersection. Suppose Alice and Bob, each has a private
dataset of values denoted by A = {a1, . . . , am} and B = {b1, . . . , bn} respectively,
where the set cardinalities m and n are publicly known. Alice wishes to learn the in-
tersection of two sets A ∩B. To compute the set intersection, we simply run the above
private matching protocol m times in parallel for each of bj ∈ B. In the end, Alice
decrypts all the cryptograms and checks if each one is in A, and then establishesA∩B.

We can also slightly modify the original FNP protocol to give a solution for evaluat-
ing the cardinality of the set intersection. That is, Bob sends Epk(γP(bj) + 0) to Alice
for j ∈ {1, . . . , n}, then Alice counts the number of ciphertexts received that decrypt
to 0.

1.2 Overview of Our Construction on Distributed Private Matching and Set
Operations

We consider distributed private matching and set operations. As in the basic FNP pro-
tocol, there are two parties, Alice and Bob. Bob has a dataset B = {b1, . . . , bn}, rep-
resented by a polynomial P(y) =

∏
bj∈B(y − bj) =

∑n
i=0 υiy

i with υn = 1, while
Alice possesses a value a, and wants to test if a ∈ B, i.e. to check whether P(a) = 0.
In our setting, a variant ElGamal encryption is used and the message space is over Zq.
The details is given in Section 2.1.

In our distributed construction, Bob defines a bivariate polynomial F(x, y) to mask
P(y), such thatF(0, y) = P(y). Using a (t, w)-Shamir secret sharing scheme, Bob then
computes w shares of the functionF , denoted by F(1, y), . . . ,F(w, y), and distributes
F(�, y) (a set of shared coefficients) to the server S�.

To privately test if a ∈ B, Alice sends the encrypted a with her public key to t
or more servers. Denote 〈g〉, the subgroup of Z

∗
p generated by g and f ∈ 〈g〉. Each

contacted server uses the homomorphic properties of the cryptosystem to obliviously
compute fγF(�,a) in the encrypted form, and sends encrypted fγF(�,a) to Alice where
γ is a random non-zero value chosen by Bob and known by all servers. When Alice
decrypts received cryptograms, she uses Lagrange interpolation to compute fγF(0,a),
and concludes a ∈ B if and only if fγF(0,a) = 1.

In a similar manner, the FNP two-party set intersection protocol can be extended
to the distributed setting. Let Alice, who owns a dataset A = {a1, . . . , am}, runs the
above distributed private matching protocol m times in parallel for each element in A
against the Bob dataset B. Alice concludes that ai ∈ B if and only if fγF(0,ai) = 1 for
i ∈ {1, . . . ,m}. At the end of the protocol, Alice is able to compute A ∩B.

We further extend our distributed set intersection solution to the cardinality of set
intersection problem. Let Bob send his private permutation function π to all servers
along with the shares of his polynomialF to evaluate the size of the intersection, rather
than the intersection itself. Comparing with the intersection protocol, the only differ-
ence is that all contacted servers permute their computed cryptograms before sending
them back to Alice. Alice is still able to find if any fγF(0,aπ(i)) = 1, but cannot identify
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the original index in the set A related to π(i). Consequently, she could only discover
the information of |A ∩B|.

In our distributed scheme, we are also able to test if A ⊆ B. The idea is that if∑m
i=1 F(0, ai) = 0, then A ⊆ B. Indeed, note that

m∑

i=1

F(0, ai) =
m∑

i=1

t∑

j=1

cjF(�j , ai) =
t∑

j=1

(

cj

m∑

i=1

F(�j , ai)

)

, (1)

where cj’s are Lagrange interpolation coefficients. So each contacted server S�j only
needs to return one encrypted value

∑m
i=1 F�j(ai) to Alice. Then, Alice evaluates (1)

to test if A ⊆ B or not.
All protocols proposed in this paper require a single round. The communication and

computation complexities of our distributed private matching scheme are O(tm). It is
about t times of the FNP protocol. For our distributed set intersection, the cardinality
of the intersection and subset relation protocols, the communication and computation
complexities areO(tmn). All the protocols are secure against a semi-honest (also called
honest but curious) adversary. The homomorphic encryption is based on the ElGamal
scheme [4], which is semantically secure if the Decisional Diffie-Hellman (DDH) as-
sumption holds [5].

1.3 Related Work

The problem of secure computation of the subset relation of two private datasets is
another variant of the private set intersection problem where the intersection is one
party’s whole dataset. This can be computed by extending the FNP protocol. The appli-
cations of the subset relation was discussed in [6, 7]. Private disjointness tests of two
datasets are considered in [8, 9]. The solutions still rely on oblivious polynomial evalua-
tion techniques, but with somewhat different security requirements. Only one party can
learn whether two datasets are disjoint or not and with no other information revealed.
Protocols for private equality tests are a special case of the private disjointness tests,
where each party has a single element in the database. These protocols were considered
in [10, 2, 11].

Kissner and Song [12] present FNP-inspired schemes for various private set opera-
tion problems. In particular, they address set intersection, set union, threshold cardinal-
ity of the set intersection, and multiplicity test. They also suggest a multiparty model
with the computation on a multiset. Sang et al. [13] use threshold homomorphic cryp-
tosystem technique to further improve the communication and computation complexity
on the set intersection protocol compared to Kissner and Song. Using the same tech-
nique, they provide a novel solution for private set matching problem in the multiparty
model.

Recently, Ye, Wang and Tartary (YWT) propose a similar distributed scheme to com-
pute private set intersection in [14]. YWT also uses secret sharing scheme and homo-
morphic encryption scheme. However, our approach is different from theirs and is more
efficient. Our polynomial formulation is based on the representation of dataset as the
roots of the polynomial (we follow the idea of the FNP protocol), while Ye et. al. present
dataset as the coefficients of a polynomial. Accordingly, our computation relies on the



Distributed Private Matching and Set Operations 351

oblivious polynomial evaluation in a distributed fashion. The private computation of
the YWT protocol is based on private equality testing [10] in a distributed setting. The
YWT protocol requires that one party checks each element of his/her dataset against all
elements in another distributed dataset to see if there are matches between two datasets.
It turns out that the computational complexity of our protocol is only one third of the
YWT protocol. In addition, we also consider the distributed subset relation problem in
this paper, while the paper by Ye et. al. only deals with distributed set intersection and
the cardinality of set intersection problems.

Organization. The paper is organized as follows. In Section 2, we introduce the ho-
momorphic encryption scheme, the model of the distributed setting, and our adversary
model. In Section 3, we present a protocol for the distributed private matching and dis-
cuss its security. We extend our distributed private matching construction to distributed
solutions for the set intersection, the cardinality of set intersection and the subset rela-
tion problems in Section 4. In that section, we also analyze the efficiency of our pro-
tocols and compare our solutions to other related schemes. Finally, we give concluding
remarks and discuss possible future work in Section 5.

2 Preliminaries

2.1 Additively Homomorphic Encryption

Let Epk(·) denote an additively homomorphic encryption function with a public key pk.
The cryptosystem supports the following operations, which can be performed without
knowing the private key.

– Given Epk(a) and Epk(b), we can efficiently compute Epk(a+b) = Epk(a)�Epk(b).
– Given a constant c and Epk(a), we can efficiently compute Epk(ca) = Epk(a)c.

In our schemes, the computations are carried out in Zp where p is prime, and the
message space is Zq, where q = (p − 1)/2 is also a prime number. We note that all
of our constructions can be based on the standard variant of ElGamal encryption. This
variant has been employed recently for constructing protocols for privacy-preserving
set operations (see, for example [8, 15, 11]). Let the triple (K, E ,D) be the variant of
ElGamal where

– K is the key-generation algorithm. Given a security parameter l = �log2 p	,
K(1l) generates the tuple (pk, sk), where the public-key pk := 〈p, g, h, f〉 and
the corresponding secret-key sk := logg h are such that g is an element of order q
in Z

∗
p and h, f ∈ 〈g〉;

– E is the encryption algorithm. Given the public-key pk and a plaintextm ∈ Zq, one

encrypts as Epk(m) = (gr, hrfm), where r
R← Zq \ {0};

– D is the decryption algorithm. Given the secret-key denoted sk and a ciphertext
(G,H) the decryption algorithm returnsG−skH mod p. Notice that this will only
return fm rather than m, however this suffices for our setting. In our protocols, we
are only interested in testing whether m = 0, which is equivalent to testing if
G−skH ≡ 1 mod p.
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Let Epk(a) = (gr, hrfa) and Epk(b) = (gr′
, hr′

f b). It is easy to see that Epk(a) �
Epk(b) = (g(r+r′), h(r+r′)f (a+b)) = Epk(a + b) and Epk(a)c = (gcr, hcrf ca) =
Epk(ca) for a given constant c.

2.2 Dataset Distribution

This section defines a polynomial representation of a Bob dataset and shows how a
(t, w)-Shamir secret sharing is going to be used in our distributed protocols. The similar
distributed construction can be also found in [16, 14].

Suppose that Bob holds a dataset B = {b1, b2, . . . , bn}, where bi ∈ Zq. Let

P(y) = (y − b1)(y − b2) . . . (y − bn) ≡
n∑

i=0

υiy
i mod q,

where υn = 1. Bob constructs a random masking bivariate polynomial in the following
form:

Q(x, y) =
t−1∑

j=1

n∑

i=0

αj,ix
jyi where αj,i

R← Zq.

He forms the bivariate polynomial F(x, y) = P(y) + Q(x, y). Note that we have
F(0, y) = P(y). For 1 ≤ � ≤ w, Bob computes and sends F�(y) to server S� as

F�(y) = F(�, y) = P(y) +Q(�, y)

≡
n∑

i=0

(υi + ϑi,�)yi mod q, where ϑi,� =
t−1∑

j=1

αj,i�
j .

Let βi,� = υi + ϑi,�, the server S� receives a shared-polynomial F�(y) defined by the
coefficients {β0,�, . . . , βn,�}. By the Lagrange interpolation formula, we know that
any coalition of t or more servers can reconstruct the original polynomial P .

For the simplicity, we omit modulus p in the rest of the presentation, if no confusion
occurs.

2.3 Security Model

We consider the semi-honest adversary (also called honest-but-curious) model. In this
model, all involved parties honestly follow all prescribed steps of the protocol, but may
try to learn extra information from the messages received during the protocol execution.

In our protocols, we assume that Alice does not interact with Bob directly. Instead
Alice contacts a threshold of servers to perform private set operations. We assume also
that no server colludes with Alice to cheat and only Alice learns the output of any op-
eration. More precisely, the following conditions should hold.

Correctness. If Alice and the contacted servers faithfully follow the steps of the proto-
col, the protocol works and Alice learns the correct result of the operation specified in
the protocol.
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Alice’s security. Given that each server gets no output from the protocol, Alice’s privacy
requires simply that any server cannot distinguish the client’s inputs from random values.

Bob’s security. Provided that no server colludes with Alice, the protocol ensures that Al-
ice does not get any extra information other than the output of the operation. In addition,
any t-1 or less servers should not able to find out any information about Bob’s dataset.

3 Distributed Private Matching

Suppose that Alice has an input a and Bob owns a dataset B. The construction of the
polynomial F from the dataset B, the initial shares construction and distribution are

given in Section 2.2. In addition, Bob broadcasts γ
R← Zq \ {0} to the w servers.

The purpose of γ is to prevent Alice learning extra information about F if a /∈ B by
randomizing the result of F(0, a). Each server S� knows γ and a shared-polynomialF�

with the coefficients {β0,�, . . . , βn,�} for 1 ≤ � ≤ w. Assume that n = |B| is public.
We define the distributed private matching problem as follows. Alice contacts the

threshold of t or more servers to test if a ∈ B. She must not gain any other information
about the dataset B. The contacted servers do not learn any information about a.

The protocol is illustrated in Fig. 1. Note that the elements of the dataset B are
represented as roots of a polynomialP and F(0, y) = P(y) in our setting. The element
a ∈ B if and only if P(a) = 0 (or equivalently fγF(0,a) = 1).

Theorem 1. The distributed private matching scheme described in Fig. 1 is correct and
semantically secure against a semi-honest adversary if the Decisional Diffie-Hellman
assumption holds.

The proof of Theorem 1 is given in Appendix A.

Setup: Alice generates a key pair (pk, sk) ← K(1l), rτ
R← Zq \ {0} for τ ∈ {1, . . . , n}.

Bob constructs a polynomial F for the dataset B, computes the shares of the polynomial F
and distributes the shares to w servers as in Section 2.2.

1. Alice broadcasts {Epk(a),Epk(a2), . . . , Epk(an)} along with her public key pk to t
servers S�1 , . . . , S�t .

2. For j = 1, . . . , t, each contacted server S�j computes

Epk(F�j (a)) = Epk(1)
β0,�j � Epk(a)

β1,�j � . . . � Epk(an)
βn,�j

and sends Epk(γF�j (a)) back to Alice.
3. Alice

(a) computes dj ← Dsk(Epk(γF�j (a))) for j ∈ {1, . . . , t},

(b) computes fγF(0,a) ←
t∏

j=1

(dj)
cj , where cj ’s are Lagrange interpolation coeffi-

cients,
(c) concludes a ∈ B if fγF(0,a) = 1.

Fig. 1. Distributed private matching protocol
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4 Applications of Distributed Private Matching on Private Set
Operations

Applying the distributed private matching protocol described in Section 3, we give so-
lutions for private set operation problems in a distributed setting. That is the private set
intersection, its cardinality and the subset relation.

Let the Alice dataset beA = {a1, . . . , am}. The random value γ, the Bob dataset B,
its polynomial representation F and the distribution of F are the same as in Section 3.
Suppose also that there exists a public pseudo-random number generator Gγ , using γ
as a seed so that the outputs of Gγ are uniformly distributed in Zq \ {0}. Assume that
the size of both datasets, |A| and |B|, are public. Each server S� has the value γ and the
shares of the polynomial F , {β0,�, . . . , βn,�} for 1 ≤ � ≤ w.

4.1 Distributed Set Intersection

The distributed set intersection problem is defined as follows. Alice contacts the threshold
of t or more servers to compute the intersection of A and B. She must not gain any ad-
ditional information about the setB. The contacted servers do not learn any information
aboutA. The protocol, given in Fig. 2, is simply a m-fold application of our distributed
private matching protocol. The properties of this protocol are stated in Theorem 2.

Theorem 2. If Alice and the contacted servers follow the protocol faithfully, the dis-
tributed set intersection protocol is correct; and the privacy of Alice’s dataset A is
assured assuming the underlying homomorphic cryptosystem is semantically secure,
while the privacy of Bob’s dataset B is unconditionally secure.

Setup: Alice generates a key pair (pk, sk) ← K(1l), rτ
R← Zq \ {0} for τ ∈ {1, . . . , n}.

Bob constructs a polynomial F for the dataset B, computes the shares of the polynomial F
and distributes the shares to w servers as in Section 2.2.

1. Alice broadcasts {{Epk(a1), . . . , Epk(an
1 )}, . . . , {Epk(am), . . . , Epk(an

m)}} along
with her public key pk to t servers S�1 , . . . , S�t .

2. For j = 1, . . . , t, each contacted server S�j

(a) computes Epk(F�j (ai)) = Epk(1)
β0,�j � Epk(ai)

β1,�j � . . . � Epk(an
i )

βn,�j for
i ∈ {1, . . . , m},

(b) generates γi for 1 ≤ i ≤ m from Gγ ,
(c) sends {Epk(γ1F�j (a1)), . . . , Epk(γmF�j (am)) } to Alice.

3. For i = 1, . . . , m, Alice

(a) computes di,j ← Dsk(Epk(γiF�j (ai))) for j ∈ {1, . . . , t},

(b) computes fγiF(0,ai) ←
t∏

j=1

(di,j)
cj , where cj’s are Lagrange interpolation coef-

ficients,
(c) concludes ai ∈ B, if fγiF(0,ai) = 1.

4. When this process concludes, Alice learns A ∩ B.

Fig. 2. Private distributed set intersection protocol
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Its proof is same as the one in Theorem 1 except the Bob’s security. Since the informa-
tion of A ∩ B is known to Alice, she can correct guess the Bob’s polynomial F(0, y)
from the result γF(0, a) with the probability 1

(q−|A∩B|)|B|−|A∩B| .

4.2 Cardinality of Distributed Set-Intersection

As in [14], we can compute the cardinality of a set intersection by adding a permutation
in our distributed set intersection protocol. In this protocol, Alice learns |A ∩ B|, but
does not know the actual contents of the set intersection.

Assume that Bob randomly chooses a private permutation π over {1, . . . ,m}, and
sends it to w servers along with the shares of the polynomialF . The protocol shown in
Fig 2 needs to be upgraded by adding the following extra step just before the step 2.(c).
We call it step 2.(c0). Note that all servers permute m cryptograms according to the
same permutation π.

2. (c0) runs π(Epk(γ1F�j (a1)), . . . , Epk(γmF�j (am))) and gets
(Epk(γπ(1)F�j (aπ(1))), . . . , Epk(γπ(m)F�j (aπ(m)))).

Clearly, the steps 3 and 4 in Fig. 2 ought to be replaced by the steps 3′ and 4′ as follows:

3′. For π(i) = 1, . . . ,m, Alice
(a) computes dπ(i),j ← Dsk(Epk(γπ(i)F�j (aπ(i)))) for j ∈ {1, . . . , t},

(b) computes fγπ(i)F(0,aπ(i)) ←
t∏

j=1

(
dπ(i),j

)cj , where cj’s are Lagrange in-

terpolation coefficients,
(c) checks if fγπ(i)F(0,aπ(i)) = 1.

4′. When this process concludes, Alice learns |A ∩B|.

Note that, this protocol works in the same way as the distributed set intersection pro-
tocol except the additional step 2(c0). The permutations performed by t servers prevent
Alice from learning A ∩ B. However, the property of our distributed private matching
scheme still allow Alice to determine |A ∩B|. That is γπ(i)F(0, aπ(i)) = 0 if and only
if aπ(i) ∈ B with unknown index π(i).

The security proof for this protocol trivially follows from the distributed set intersec-
tion protocol.

4.3 Distributed Subset Relation

Based on our distributed set intersection protocol, we design a distributed subset rela-
tion, which enables Alice to decide whether or not her dataset A is a subset of B by
contacting any t out ofw servers. The idea follows from the fact thatA ⊆ B if and only
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if A ∩B = A or in other words
∑

ai∈A

F(0, ai) = 0 from the construction of our private

matching.
The protocol, given in Fig. 3, is the same as our distributed set intersection protocol

for Step 1. In the second step, the servers S�j (1 ≤ j ≤ t) first compute Epk(F�j (ai))
for i ∈ {1, . . . ,m} as in the distributed set intersection protocol, and then compute

Epk

(
m∑

i=1

F�j (ai)
)

by multiplying computed m cryptograms together. When Alice re-

ceives all Epk

(
m∑

i=1

F�j(ai)
)

’s from t servers, she decrypts them and uses Lagrange

interpolation to compute

t∏

j=1

(

f

m∑

i=1

F�j
(ai)

)cj

= f

m∑

i=1

t∑

j=1

(cjF�j
(ai))

= f

m∑

i=1

F(0,ai)
.

The conclusion is obvious: if f

m∑

i=1

F(0,ai)
= 1, then A ⊆ B.

The security and its proof for this protocol is similar to the one in the distributed
private matching protocol.

Setup: Alice generates a key pair (pk, sk) ← K(1l), rτ
R← Zq \ {0} for τ ∈ {1, . . . , n}.

Bob constructs a polynomial F for the dataset B, computes the shares of the polynomial F
and distributes the shares to w servers as in Section 2.2.

1. Alice broadcasts {{Epk(a1), . . . , Epk(an
1 )}, . . . , {Epk(am), . . . , Epk(an

m)}} along
with her public-key pk to t servers S�1 , . . . , S�t .

2. For j = 1, . . . , t, each contacted server S�j ,

(a) computes Epk(F�j (ai)) = Epk(1)
β0,�j � Epk(ai)

β1,�j � . . . � Epk(an
i )

βn,�j for
i ∈ {1, . . . , m},

(b) caculates

Epk

(
m∑

i=1

F�j (ai)

)

= Epk(F�j (a1)) � Epk(F�j (a2)) � . . . � Epk(F�j (am))

(c) sends Epk

(
m∑

i=1

F�j (ai)

)
to Alice.

3. Alice

(a) computes dj ← Dsk

(
Epk

(
m∑

i=1

F�j (ai)

))
for j ∈ {1, . . . , t},

(b) finds f

m∑

i=1

F(0,ai) ←
t∏

j=1

(dj)
cj , where cj ’s are Lagrange interpolation coeffi-

cients and,

(c) concludes A ⊆ B if f

m∑

i=1

F(0,ai)

= 1.

Fig. 3. Privacy-preserving distributed subset relation protocol
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4.4 Efficiency Analysis

All protocols in this paper require only a single round communication. The overall
communication cost is measured in terms of number of elements that need to be trans-
mitted during the protocol. Note that each of them can be represented over �log2 p	
bits. The computation cost is expressed by the number of multiplications, where one
exponentiation takes at most log2(p− 1)� multiplications using the Fast Exponentia-
tion Algorithm from [17].

Distributed Private Matching Protocol. During a single round communication, Alice
broadcasts her input as a set of encryptednmessages to t servers. Each contacted server
responds with a single message. So the communication complexity of this protocol is
O(tn).

Our computations are done in the field Zp and Alice needs n+2 modular exponenti-
ations and n multiplications for encrypting her input; t exponentiations and multiplica-
tions, respectively for decryptions; t modular exponentiations and t− 1 multiplications
for the Lagrange interpolation. Each contacted server needs 2(n + 1) exponentiations
and n+1 multiplications for inputing its shares of the coefficients. So, the computation
complexity of this protocol is O(tn) multiplications.

For a fair comparison with a two-party case without distribution such as the one in
[1], we assume that the variant of ElGamal is used to conduct the polynomial evalua-
tion. Such an evaluation requires O(n) multiplications and O(n) communication. This
shows that our protocol is just t times more expensive than the two-party case without
distribution.

Distributed Set Intersection and the Cardinality of the Intersection Protocols. Our
distributed set intersection protocol uses m parallel threads and each thread applies
the underlying distributed private matching protocol. Therefore, the complexity of both
communication and computation areO(tmn). In the paper by Freedman et al., the two-
party protocol requires O(m + n) communication and O(mn) multiplications. Note
that our communication complexity is not O(t(m + n)). The reason is that in the FNP
protocol, the Alice dataset is represented as a polynomial, while we represent the Bob
dataset as a polynomial to suit our setting. As such, Alice has to send each of her
encrypted element ai as Epk(ai), Epk(a2

i ), . . . , Epk(an
i ) to t servers.

The protocol that enables two parties to compute the cardinality of distributed set
intersection works in the same way as our protocol for distributed set intersection except
the servers perform an additional permutation. Since the permutation cost is linear, it is
negligible. As a result, the communication complexity is the same as the distributed set
intersection protocol, and the computation cost is similar to that of the distributed set
intersection.

Comparing our protocols to the ones developed by Ye et al. in [14], we can say that
communication complexity of their protocols is similar to ours although the computa-
tion complexity is three times higher.

Distributed Subset Relation Protocol. Alice broadcasts her dataset as a set of en-
crypted mn messages to t servers. Each contacted server responds with only a single
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message. For computation cost, Alice needsmn modular exponentiations and the same
number of multiplications for encrypting her input; t exponentiations and multiplica-
tions for decryption; t modular exponentiations and t − 1 multiplications for the La-
grange interpolation. Each contacted server needs to perform 2m(n+1) exponentiations
and mn + m multiplications for inputing its shared-coefficients, then 2m multiplica-
tions for multiplying m cryptograms together. The overall cost for communication and
computation are thus both O(tmn).

5 Conclusion

In this paper, we proposed a protocol for the distributed private matching. We then
applied this technique to solve several private distributed set operations: the set inter-
section, the cardinality of the set intersection and the subset relation. Our solutions rely
on the polynomial representing of datasets, Shamir threshold secret sharing scheme and
homomorphic encryption.

Our distributed protocols are useful in databases outsourcing while an individual
server is not trusted by the data owner. All protocols constructed in this paper are prov-
ably secure against a semi-honest adversary if the Decisional Diffie-Hellman assump-
tion holds.

As the future work, it would be interesting to extend the protocols in the semi-honest
model to the case of active adversary, such as the cooperation of Alice and any server,
malicious Alice, malicious servers or both.
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A Proof of Theorem 1

A.1 Proof of Correctness

For the correctness, we need to show that a ∈ B if and only if fγF(0,a) = 1 in our
distributed private matching protocol.

Alice first encrypts her input a by using her public key as Epk(a), Epk(a2), . . . ,
Epk(an) and broadcasts all encrypted elements to t servers. Then, each of the contacted
servers S�j (1 ≤ j ≤ t) computes Epk(F�j(a)) with the coefficients of the shared-
polynomial F�j based on the homomorphic properties of the cryptosystem, and sends
Epk(γF�j(a)) to Alice. Note that F�j(a) =

∑n
i=0 βi,�ja

i. When Alice receives all
cryptograms from the t servers, she decrypts them and uses the Lagrange interpolation
coefficients cj’s to compute

t∏

j=1

(
fγF�j

(a)
)cj

=
t∏

j=1

f
γ cj

n∑

i=0

aiβi,�j = f
γ

n∑

i=0

ai(
t∑

j=1

cjβi,�j
)

= fγF(0,a).



360 Q. Ye, H. Wang, and J. Pieprzyk

From Section 2.2, we know that F(0, y) = P(y) =
∏

bi∈B(y − bi). So if a ∈ B,

then we can get fγF(0,a) = 1. On the other hand, if fγF(0,a) = 1, then P(a) = 0, that
is, a is a root of P . Due to the definition of P(y), we get a ∈ B.

A.2 Proof of Alice’s Security

Given that each server has no output in the protocol, Alice’s security requires that t
servers cannot distinguish her input a, encrypted as Epk(a), . . . , Epk(an), from a ran-
dom value if the DDH assumption holds.

To prove this, we will describe a simulator S, who selects s
R← Zq \ {0} for s �= a,

executing this protocol. We will then demonstrate that Bob cannot infer the value s from
{Epk(s), Epk(s2), . . . , Epk(sn)}, or distinguish the value s from Alice’s input a.

Let S generate a new key pair (pk, sk) ← K(1l), r′τ
R← Zq \ {0} for

τ ∈ {1, . . . , n}. S broadcasts {Epk(s), Epk(s2), . . . , Epk(sn)} along with the public
key pk to t servers S�1 , . . . , S�t .

From our cryptosystem discussed in Section 2.1, we know 〈g〉 is a subgroup of Z
∗
p

generated by g with an order q, and h, f ∈ 〈g〉. Note that the encryptions
Epk(a) = (gr1 , hr1fa) and Epk(s) = (gr′

1 , hr′
1fs). Since r1 and r′1 are chosen uni-

formly at random over 〈g〉, the pairs (gr1 , hr1) and (gr′
1 , hr′

1) are uniformly distributed
over 〈g〉 × 〈g〉.

As the discrete logarithm problem is assumed to be hard over Zp, any contacted
server cannot compute r1, r′1 from gr1 , gr′

1 with non-negligible probability in poly-
nomial time as a function of the bit size of p. Therefore, the pairs (gr1 , hr1fa) and
(gr′

1 , hr′
1fs) are uniformly distributed over 〈g〉. Consequently, Bob cannot distinguish

Epk(a) and Epk(s).
Using an identical argument, we can prove that the set of Epk(si)’s does not give

any information about the value s. We choose i′ ∈ {1, . . . , n}, where i′ �= i. Let each
contacted server know i′ and i. As r′i, r

′
i′ are randomly picked over 〈g〉, the correspond-

ing (gr′
i , hr′

i) and (gr′
i′ , hr′

i′ ) are uniformly distributed over 〈g〉 × 〈g〉. Hence, t servers
cannot deduce the value s from two uniformly distributed Epk(si′) and Epk(si).

A.3 Proof of Bob’s Security

The only message Alice receives from each contacted server is fγF�j
(a) for

j ∈ {1, . . . , t}. Suppose that Alice knows the value γF�j(a) from fγF�j
(a). Since γ

is uniformly distributed over Zq \ {0}, if γF�j(a) �= 0, then there are qn+1−1 possible
polynomials for each of F�j (y)’s, where n is the degree of F�j(y). On the other hand,
if γF�j(a) = 0, then there are still qn − 1 possible polynomials for F�j(y). Therefore,
the probability of Alice can correctly reconstruct F(0, y) from F�j(y)’s is about 1

qtn .

Alice also knows fγF(0,a) after the interpolation. Assume also that Alice knows the
value γF(0, a) from fγF(0,a). The proof is the same as before. Since γ is uniformly
distributed over Zq \ {0}, the probability that Alice correctly guesses F(0, y) from the
value γF(0, a) is about 1

qn−1 .
In addition, the cooperation of less than t servers cannot compute Bob’s polynomial

F(0, y). This is guaranteed by the perfectness of Shamir secret sharing.
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Abstract. This paper aims to find a proper security notion for commit-
ment schemes to give a sound computational interpretation of symbolic
commitments. We introduce an indistinguishability based security defini-
tion of commitment schemes that is equivalent to non-malleability with
respect to commitment. Then, we give a construction using tag-based
encryption and one-time signatures that is provably secure assuming the
existence of trapdoor permutations. Finally, we apply this new machinery
to give a sound interpretation of symbolic commitments in the Dolev-Yao
model while considering active adversaries.

1 Introduction

Over the last few decades, two main stream approaches have been developed for
the analysis of security protocols. On the one hand, the cryptographic approach
considers an arbitrary computationally-bound adversary that interacts with hon-
est participants and tries to break a security goal. This model is satisfactory as it
deals with every efficient attacker. On the other hand, the symbolic or Dolev-Yao
approach idealizes the security properties of the cryptographic primitives, which
are axiomatized in a logic. Moreover, the capabilities of the adversary are also
specified by a set of inference rules. This approach is appealing because there
are automated techniques for the verification of some security properties.

Abadi and Rogaway in [AR02] pioneered the idea of relating these two mod-
els and showed that, under appropriate assumptions on the underlying cryp-
tographic primitives, a simple language of encrypted expressions is sound with
respect to the computational model in the case of passive adversaries.

Such a relation maps symbolic messages m to distributions over bitstrings
[[m]]. This map then should relate messages that are observationally equivalent
in the symbolic world to indistinguishable distributions over bitstrings. Such a
map allows one to use formal methods, possibly even automated, to reason about
security properties of protocols and have those reasonings be valid also in the
standard computational model.
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Several extensions to the original Abadi-Rogaway logic [AR02] have been pro-
posed in the literature. These extensions deal with public key encryption [MW04,
Her05], key cycles [ABHS05], partial information leakage [ABS05], active in-
stead of passive adversaries [MW04,JLM05], and more realistic security notions
[AW05]. Other extensions add new primitives to the logic such as bilinear pair-
ings [Maz07], modular exponentiation [BLMW07] and hash functions [CKKW06,
GvR06]. There are also frameworks dealing with generic equational theories
[BCK05,ABW06,KM07]. So far there is no work in the literature, that we are
aware of, that relates these two approaches for commitment schemes.

Commitment schemes are fundamental cryptographic primitives and are used
in protocols like zero-knowledge proofs [GMW91], contract signing [EGL85], and
can be used for bidding protocols. A commitment consists of two phases: the com-
mitment phase where the principals commit to a message without revealing any
information; and the opening phase where the principals reveal the message and
it is possible to verify that this message corresponds to the value committed to
during the commitment phase. After the commitment phase it should be infea-
sible to open the commitment to a different value than the one committed. This
property is called binding. In the context of bidding protocols, non-malleability
is also a desirable property. This means that an adversary cannot modify an
intercepted commitment, say into a commitment to a slightly higher bid.

Our contribution. The first objective of this paper is to find sufficient secu-
rity assumptions to give a sound computational interpretation of commitments
schemes in the Dolev-Yao model, under active adversaries. Pursuing that ob-
jective we propose a new indistinguishability-based security definition for com-
mitment schemes in the presence of adaptive adversaries. Then we give a novel
generic construction for a non-malleable commitment scheme based on one-way
trapdoor permutations. This construction is secure with respect to our new def-
inition and has some additional properties such as being non-interactive, per-
fectly binding and reusable, which makes it of independent interest. This new
definition allows us to prove soundness of the Dolev-Yao model extended with
commitments, following the directions of Micciancio and Warinschi [MW04].

Overview. Section 3 introduces basic notation and definitions from the litera-
ture. Section 4 elaborates on different definitions of non-malleability for commit-
ment schemes and discusses the relations among them. In Section 5 we propose a
new commitment scheme and we give a security proof. Section 2 describes sym-
bolic protocol executions, its computational counterparts and the map between
them and also states the soundness result. Finally in Section 7 there are some
concluding remarks.

2 Symbolic Protocols

We are going to apply this theory to give sound computational interpretation to
symbolic commitments. Recall from the introduction that the symbolic approach
to protocol verification deals with symbolic or algebraic messages and idealized
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cryptographic primitives. In this setting the adversary is unbounded in running
time and has full control over the communication media but is completely inca-
pable of breaking the underlying cryptographic primitives.

We now describe the message space and the closure operator. These messages
are used to formally describe cryptographic protocols. The closure represents the
knowledge that can be extracted from a message, and it is used to define what valid
algebraic protocol runs are. Intuitively a protocol run is valid if every message sent
by a principal can be deduced from its knowledge except maybe for some fresh
randomness. Much of this is standard (see, e.g., [AR02, MW04, MP05, GvR06]),
except that we model commitments and decommitments as well as encryption.

Definition 2.1. Let Nonce be an infinite set of nonce symbols, Const a finite
set of constant symbols, Key an infinite set of key symbols, and Random an
infinite set of randomness labels. Nonces are denoted by n, n′, . . . , constants by
c, c′, . . . , keys by k, k′, . . . , and randomness labels by r, r′, . . . . Using these build-
ing blocks, messages are constructed using symbolic encryption, commitments,
decommitments, and pairing operations:

Msg � m := c | n | {|m|}rk | comr(m) | decr(m) | 〈m,m〉.
A message of the form {|m|}rk is called an encryption and the set of all such mes-
sages is denoted by Enc. Similarly, messages of the form comr(m) are called com-
mitments and the set of all these messages is denoted by Com. The messages of
the form decr(m) are called decommitments and the set of all these messages is
denoted by Dec. In a protocol run decr(m) is a valid decommitment of comr′

(m′)
only if m = m′ and r = r′. We say that elements in Const ∪ Nonce ∪ Key
are primitive and we denote this set by Prim. For a public key k we denote its
associated private key as k−1.

The closure of a set U of messages is the set of all messages that can be con-
structed from U using tupling, detupling, commitment, decommitment, and en-
cryption and decryption. It represents the information an adversary could de-
duce knowing U . Note that, due to secrecy of the commitment scheme, knowing
comr(m) does not provide an adversary with any information about m.

Definition 2.2 (Closure). Let U be a set of messages. The closure of U , de-
noted by U , is the smallest set of messages satisfying: 1. Const ⊆ U ; 2. U ⊆ U ;
3. m,m′ ∈ U =⇒ 〈m,m′〉 ∈ U ; 4. m ∈ U ∧ k ∈ U =⇒ {|m|}rk ∈ U ;
5. {|m|}rk ∈ U ∧ k−1 ∈ U =⇒ m ∈ U ; 6. m ∈ U =⇒ comr(m), decr(m) ∈ U ;
7. decr(m) ∈ U =⇒ m ∈ U ; 8. 〈m,m′〉 ∈ U =⇒ m,m′ ∈ U .

Next we need to find the right security notions to give sound computational
interpretation to symbolic encryption and commitments.

3 Computational Setup

This section introduces syntaxis and security definitions for different crypto-
graphic primitives. Much of this is standard, we refer the reader to [GM84,RS92]
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and [NY90] for a thorough explanation. Some of this primitives will be used to
interpret algebraic operations and some of them are used as building blocks for
our construction of Section 5.

3.1 Commitment Schemes

Definition 3.1. A commitment scheme is a triple Ω = (TTP, Snd,Rcv) of
probabilistic polynomial-time algorithms. TTP, the trusted third party, takes
as input the security parameter 1η and produces a common reference string σ.
We require that |σ| ≥ p(η) for some non-constant polynomial p. Snd, the sender,
takes as input σ and a message m and produces a commitment com to this mes-
sage and a corresponding decommitment dec. Rcv, the receiver, takes as input
σ, com, and dec and produces a message or ⊥.

MeaningfulnessΩ(A):
σ ← TTP(1η)
m ← A(σ)
(com, dec) ← Snd(σ, m)
m1 ← Rcv(σ, com, dec)
return m �= m1

SecrecyTTP,Snd(A1, A2):
σ ← TTP(1η)
m0, m1, s ← A1(σ)
b ← {0, 1}
(com, dec) ← Snd(σ, mb)
b′ ← A2(s, com)
return b = b′

BindingTTP,Rcv(A):
σ ← TTP(1η)
(com, dec1, dec2) ← A(σ)
m1 ← Rcv(σ, com, dec1)
m2 ← Rcv(σ, com, dec2)
return m1 �= ⊥ �= m2

∧ m1 �= m2

The following three conditions must hold.

1. For all probabilistic polynomial-time algorithms A, the probability
P[MeaningfullnessΩ(A)] is a negligible function of η.

2. For all probabilistic polynomial-time algorithms (A1, A2), the advantage
|P[SecrecyTTP,Snd(A1, A2)]− 1/2| is a negligible function of η.

3. For all probabilistic polynomial-time algorithms A, the probability
P[BindingTTP,Rcv(A)] is a negligible function of η.

Definition 3.2. A commitment scheme is said to be perfectly binding if for all
unbounded algorithms A, the probability P[BindingTTP,Rcv(A)] is zero.

Definition 3.3. A commitment scheme is said to be perfectly hiding if for all
unbounded algorithms (A0, A1), |P[SecrecyTTP,Snd(A1, A2)]− 1/2| is zero.

3.2 Encryption Schemes

Definition 3.4. An encryption scheme is a triple Π = (K, E ,D) of probabilis-
tic polynomial-time algorithms. K takes as input the security parameter 1η and
produces a key pair (pk, sk) where pk is the public encryption key and sk is the
private decryption key. E takes as input a public key pk and a plaintext m and
outputs a ciphertext. D takes as input a private key sk and a ciphertext and out-
puts a plaintext or ⊥. It is required that P[(pk, sk)← K(1η); c← E(pk,m);m′ ←
D(sk, c) : m = m′] = 1.
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IND-CCAΠ(A0, A1) :
(pk, sk) ← K(1η)
m0, m1, s ← AD

0 (pk)
b ← {0, 1}
c ← E(pk, mb)
b′ ← AD

1 (s, c)
return b = b′

Definition 3.5. An encryption scheme Π = (K, E ,D) is said to be IND-CCA
secure if for all probabilistic polynomial-time adversaries A = (A0, A1) the ad-
vantage of A, defined as |P[IND-CCAΠ(A0, A1)]−1/2|, is a negligible function
of η. This adversary has access to a decryption oracle D that on input c′ outputs
D(sk, c′) with the only restriction that c = c′.

3.3 One-Time Signatures

Definition 3.6. A signature scheme is a triple (Gen, Sign,Vrfy) of probabilistic
polynomial-time algorithms. Gen takes as input the security parameter 1η and
produces a key pair (vk, sk) where vk is the signature verification key and sk is
the secret signing key. Sign takes as input sk and a message m and produces a
signature s of m. Vrfy takes as input vk, a message m and a signature s and
outputs whether or not s is a valid signature of m.

OTSΣ(A0, A1) :
(vk, sk) ← Gen(1η)
m, s ← A0(vk, 1η)
σ ← Sign(sk, m)
m′, σ′ ← A1(s, σ)
return σ �= σ′ ∧ Vrfy(vk, (m′, σ′))

Definition 3.7. A signature scheme Σ = (Gen, Sign,Vrfy) is a strong, one-
time signature scheme if the success probability of any probabilistic polynomial-
time adversary (A0, A1) in the game OTSΣ(A0, A1) is negligible in the security
parameter η.

3.4 Tag-Based Encryption

Definition 3.8. A tag-based encryption scheme (TBE) handling tags of length �
(where � is a polynomially-bounded function) is a triple of probabilistic
polynomial-time algorithms (KeyGen,Enc,Dec). KeyGen takes a security pa-
rameter 1η and returns a public key pk and secret key sk. The public key pk
includes the security parameter 1η and �(η); as well as the description of sets
M,R, C, which denote the set of messages, randomness and ciphertexts respec-
tively. These descriptions might depend on the public key pk. Enc takes as inputs
pk, a tag t ∈ {0, 1}� and m ∈ M. It returns a ciphertext c ∈ C. Dec takes as
inputs the secret key sk, a tag t and c ∈ C, and returns m ∈ M or ⊥ when c is
not a legitimate ciphertext. For the sake of consistency, these algorithms must
satisfy Dec(sk, t, c) = m for all t ∈ {0, 1}�, m ∈M, where c = Enc(pk, t,m).
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Definition 3.9. Let E = (KeyGen,Enc,Dec) be a TBE scheme. We say E is
IND-TBE-CCA secure if for any 3-tuple of PPT oracle algorithms (A0, A1, A2)
and any polynomially-bounded function � the advantage in the following game
is negligible in the security parameter 1η:
A0(1η, �(η)) outputs a target tag t. KeyGen(1η) outputs (pk, sk) and the ad-

versary is given pk. Then the adversary A1 may ask polynomially-many queries
to a decryption oracle D(t′, c′) = Dec(sk, t′, c′) for pairs tag-ciphertext (t′, c′)
of its choice, with the restriction t = t′. At some point, A1 outputs two equal
length messages m0,m1. A bit b← {0, 1} is chosen at random and the adversary
is given a challenge ciphertext c ← Enc(pk, t,mb). A2 may continue asking the
decryption oracle for pairs tag-ciphertext (t′, c′) of its choice, with the restriction
t = t′. Finally, A2 outputs a guess b′.

IND-TBE-CCA E(A0, A1, A2) :
t, s1 ← A0(1

η, �(η))
(pk, sk) ← KeyGen(1η)
m0, m1, s2 ← AD

1 (s1, pk)
b ← {0, 1}
c ← Enc(pk, t, mb)
b′ ← AD

2 (s2, c)
return b = b′

We define the advantage of A as |P[IND-TBE-CCA(A)]− 1/2|.

3.5 Interpretation

Suppose we have an encryption scheme Π , a commitment scheme Ω and a func-
tion that maps symbolic constants to constant bitstrings. Then we can define a
mapping [[·]] from algebraic messages m ∈ Msg to distributions over bitstrings
[[m]] ∈ Str. This interpretation maps nonces to random bitstrings of length η;
encryptions are interpreted by running the encryption algorithm E and for in-
terpreting commitments and decommitments we use the commit algorithm Snd.

In order to achieve sound interpretation we will explore the security require-
ments on these cryptographic primitives. For the case of encryption it is satis-
factory to use any IND-CCA encryption scheme as shown in [MW04]. For the
case of commitments, using standard security definitions is not straightforward
as they are not strong enough nor indistinguishability based. To achieve sound
interpretation of the idealized Dolev-Yao model, throughout the next section we
elaborate on a convenient security definition for commitment schemes.

4 Definitions of Non-Malleability

As noticed by Fischlin and Fischlin [FF00], there are two different versions of
non-malleability for commitment schemes, namely: NM with respect to opening
(NMO) and NM with respect to commitment (NMC). NMC was the version
originally proposed by Dolev, Dwork and Naor in [DDN91]. It means that given
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a commitment to a message m, the adversary is unable to build a different
commitment to m′, with m related to m′. This version of non-malleability is
appropriate while considering perfectly binding commitments and only makes
sense for schemes that are not perfectly hiding.

The other version NMO, seemingly weaker, means that an adversary that is
first given a commitment tom and on a second stage its decommitment, is unable
to find a different commitment-decommitment pair that decommits to a message
m′ related to m. This notion was studied by Di Crescenzo, Ishai and Ostro-
vsky [CIO98] and later by Di Crescenzo, Katz, Ostrovsky and Smith [CKOS01].
Intuitively a commitment scheme is non-malleable if the adversary can do no
better than a simulator which has no information at all about the message that
was committed to. Next we recall their definition.

NMOΩ(A1, A2, D, R):
σ ← TTP(1η)
m1 ← D
com1, dec1 ← Snd(σ, m1)
com2 ← A1(σ, com1)
dec2 ← A2(σ, com1, com2, dec1)
m2 ← Rcv(σ, com2, dec2)
return com1 �= com2 ∧ R(m1, m2)

SIM(S, D, R):
m1 ← D
m2 ← S(1η, D)
return R(m1, m2)

Definition 4.1 (Non-malleability [CIO98,CKOS01]). Let Ω=(TTP, Snd,
Rcv) be a commitment scheme. Ω is called non-malleable if for all PPT adver-
saries (A1, A2) there is a PPT simulator S such that for all distributions D and
all relations R,

P[NMOΩ(A1, A2, D,R)]− P[SIM(S,D,R)]

is a negligible function of η.

Remark 4.2. To prevent that the adversary trivially wins, by refusing to de-
commit, the following restriction over the relation R is imposed: for all messages
m, we have R(m,⊥) = 0.

4.1 NMC-CCA: Non-Malleability against Chosen Commitment
Attacks

The previous definition deals with non-malleability with respect to opening.
For the relation between symbolic and computational cryptography we need the
stronger notion of non-malleability with respect to commitment. Intuitively, this
is because in the algebraic setting comr(m′) cannot be deduced from comr(m),
with m′ somehow related to m. Therefore we adapt the NMO definition to non-
malleability with respect to commitment and we strengthen it by incorporating
active adaptive security, allowing the adversary to mount chosen commitment
attacks (CCA in short). Specifically, we empower the adversary with access to
a decommitment oracle D. To do so, from now on, we restrict our attention
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to non-interactive, perfectly binding trapdoor commitment schemes. The oracle
D has access to the trapdoor information. It takes as argument a commitment
c with the restriction that c is not equal to the challenge commitment com1.
Then if the commitment c has been correctly generated, the oracle returns a
decommitment d which opens c, and otherwise it outputs ⊥.

NMC-CCAΩ(A0, A1, R):
σ ← TTP(1η)
D, s1 ← AD

0 (σ)
m1 ← D(σ)
com1, dec1 ← Snd(σ, m1)
com2, sr ← AD

1 (s1, com1)
dec2 ← D(com2)
m2 ← Rcv(σ, com2, dec2)
return com1 �= com2 ∧ R(sr, m1, m2)

SIM-CCATTP(S0, S1, R):
σ ← TTP(1η)
D, s1 ← S0(σ)
m1 ← D(σ)

com2, sr ← S1(s1)
dec2 ← D(com2)
m2 ← Rcv(σ, com2, dec2)
return R(sr,m1,m2)

Definition 4.3 (NMC-CCA). Let Ω = (TTP, Snd,Rcv) be a commitment
scheme. Ω is called NMC-CCA secure if for all PPT adversaries (A0, A1) there
is a PPT simulator (S0, S1) such that for all relationsR (with the same restriction
as in 4.2),

P[NMC-CCAΩ(A0, A1, R)]− P[SIM-CCATTP(S0, S1, R)]

is a negligible function of η.

4.2 An Indistinguishability Based Definition

Next we introduce an equivalent formulation of NMC-CCA that is more conve-
nient to prove soundness of the Dolev-Yao model with respect to commitment
schemes.

IND-COM-CCAb(A0, A1):
σ ← TTP(1η)
m0, m1, s1 ← AD

0 (σ)
com1, dec1 ← Snd(σ, mb)
b′ ← AD

1 (s1, com1)
return b′

Definition 4.4 (IND-COM-CCA). Let Ω = (TTP, Snd,Rcv) be a commit-
ment scheme. Ω is said to be IND-COM-CCA secure if for all PPT adversaries
(A0, A1)

P[ IND-COM-CCA1(AD
0 , A

D
1 ) = 1]− P[ IND-COM-CCA0(AD

0 , A
D
1 ) = 1]

is a negligible function of η.

Next we show that NMC-CCA and IND-COM-CCA are equivalent. We discuss
it briefly as it is basically the proof that NM-CCA and IND-CCA are equivalent,
adapted to commitment schemes.
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Theorem 4.5. Let Ω = (TTP, Snd,Rcv) be a commitment scheme. Then Ω is
IND-COM-CCA secure if and only if Ω is NMC-CCA secure.

Proof. (IND-COM-CCA ⇐ NMC-CCA) Let (B0, B1) be an adversary for IND-
COM-CCA. Then we build the following adversary (A0, A1) against NMC-CCA.

Algorithm AD
0 (σ) :

m0, m1, s1 ← BD
0 (σ)

D ← U({m0, m1})
return D, (σ, m0, m1, s1)

Algorithm AD
1 ((σ, m0, m1, s1), c1) :

b ← BD
1 (s1, c1)

c2 ← Snd(σ, mb)
return c2, ε

where U is the uniform distribution. Now take the relation R(sr,m1,m2) as m1

equal to m2. It should be clear, after unfolding (A0, A1) in the NMC-CCA
game, that this adversary has the same advantage that (B0, B1) has against
IND-COM-CCA.

(IND-COM-CCA ⇒ NMC-CCA) Let (A0, A1) be an adversary for NMC-
CCA. Then we build the following adversary (B0, B1) against IND-COM-CCA.

Algorithm BD
0 (σ) :

D, s1 ← AD
0 (σ)

m0, m1 ← D
return m0, m1, (σ, m0, m1, s1)

Algorithm BD
1 ((σ, m0, m1, s1), c1) :

c2 ← AD
1 (s1, c1)

m ← D(c2)
if m = m1 then return 1
else return 0

Again, just by unfolding these adversaries in the IND-COM-CCA game, it is
easy to verify that they have the same advantage that (A0, A1) has against
NMC-CCA.

It remains to show that such a security notion for a commitment scheme is
achievable. In the next section we give a practical construction that achieves
IND-COM-CCA security.

5 The Construction

We now propose a new construction for IND-COM-CCA that is computationally
hiding, perfectly binding, reusable, non-interactive, non-malleable under adap-
tive adversaries, and provably secure under the assumption that trapdoor per-
mutations exist.

Next we outline the idea of our construction. As pointed out by Di Crescenzo,
Katz, Ostrovsky and Smith [CKOS01], an IND-CCA secure public key encryp-
tion scheme can be converted into a perfectly binding non-malleable commitment
scheme. Let Π = (KeyGen,Enc,Dec) be an indistinguishable against adaptive
chosen-ciphertext attacks secure public key encryption scheme. The idea is to
commit to a message m by encrypting it using random coins r; commitment
is set to be the ciphertext c = Enc(pk,m; r); de-commitment is set to be the
pair (m, r); finally the opening algorithm takes (c,m, r) and checks whether
c = Enc(pk,m; r). When trying to directly use this construction to instantiate
an IND-COM-CCA commitment scheme one might not be able to simulate the
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de-commitment oracle. The reason is that given a ciphertext/commitment c, one
recovers the purported embedded message m by using the decryption algorithm,
but not necessarily the randomness r. One way to break through this situation
is to include in the commitment a second ciphertext c′ = Enc(pk′, r; r′) encrypt-
ing the randomness r used in the first ciphertext c = Enc(pk,m; r). This is the
key idea of our construction. We additionally use one-time signatures and this
together with tag-based encryption schemes ensure the de-commitment oracle
does not leak vital information.

Let Π = (KeyGen,Enc,Dec) be a tag based encryption scheme and let Σ =
(Gen, Sign,Vrfy) be a signature scheme. Define (TTP, Snd,Rcv) as follows:

– TTP runs KeyGen(1η) twice to obtain (pk1, sk1) and (pk2, sk2). The common
reference string includes pk1, pk2.

– To commit to a message m, the sender Snd computes and outputs the com-
mitment C = (vk, c1, c2, s) where c1 =Enc(pk1, vk,m; r1), c2 =Enc(pk2, vk,
r1; r2), with r1, r2 ← R, (vk, sk) ← Gen(1η) and s ← Sign(sk, (c1, c2)). The
decommitment is set to be (m, r1).

– To de-commit ciphertext C = (vk, c1, c2, s) using (m, r1), the receiver Rcv
first checks if the signature on (c1, c2) is correct, and afterwards whether or
not c1 = Enc(pk1, vk,m; r1).

We assume R =M.

Theorem 5.1. Assume that (KeyGen,Enc,Dec) is an IND-TBE-CCA secure
tag based encryption scheme and that (Gen, Sign,Vrfy) is a one-time strongly
unforgeable signature scheme. Then (TTP, Snd,Rcv) is an IND-COM-CCA se-
cure commitment scheme.

Proof. We transform an adversary A against the IND-COM-CCA security of
the commitment scheme into adversaries against the TBE and the OTS. Next
we will describe a sequence of games following the methodology advocated
in [Sho04, BR06]. Let Xi be the event that A learns the challenge bit b in the
i-th game.

Game 0. This is the unmodified IND-COM-CCA game. Trivially, |P[X0]− 1/2|
equals the advantage of A against IND-COM-CCA.

Game 1. In this game we disallow decryption queries C = (vk, c1, c2, s) s.t.
vk = vk� where (vk�, c�1, c

�
2, s

�) is the challenge commitment. Then, we get that
|P[X1] − P[X0]| is less or equal than the advantage any PPT algorithm has in
breaking the one-time strong unforgeability security of the OTS.

Game 2. Still decryption queries with vk = vk� are forbidden. In this game
we use the IND-CCA security of the second instance of the TBE scheme. The
components c�1 and c�2 of the challenge ciphertext are changed to c�1 = Enc(pk�

1,
vk�,m�

b ; r1), and c�2 = Enc(pk�
2, vk�, r′) where r′, r1 ←R. Now, we have |P[X2]−

P[X1]| is less or equal than the advantage any PPT algorithm has in breaking
the selective IND-CCA security of the TBE.
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Finally it is shown that |P[X2]− 1/2]| is bounded by the advantage any PPT
algorithm has in breaking the selective IND-CCA security of the first instance
of the TBE.

Putting everything together, we get that |P[X0]− 1/2| is bounded by the ad-
vantages in breaking the OTS scheme plus twice the advantage in breaking the
selective IND-CCA of the TBE scheme. Next we describe the concrete adver-
saries,

Game 0 ≈ Game 1. Assume that there is an adversary (A0, A1) that is able
to distinguish the environments of Game 0 and 1. Then we build an adversary
(B0, B1) against the one-time strong unforgeability of the signature scheme.

Algorithm B0(1
η, vk) :

pk1, sk1 ← KeyGen(1η)
pk2, sk2 ← KeyGen(1η)
m0, m1, s1 ← AD

0 (pk1, pk2)
b ← {0, 1}
r1 ← R
c1 ← Enc(pk1, vk, mb; r1)
c2 ← Enc(pk2, vk, r1)
return (c1, c2), (s1||vk||c1||c2||sk1||sk2)

and B1((s1||vk||c1||c2||sk1||sk2), s) = [b′ ← AD
1 (s1, (vk, c1, c2, s))]. Calls to the

decommitment oracle D(vk′, c′1, c
′
2, s

′) are simulated by firstly verifying the sig-
nature Vrfy(vk′, (c′1, c

′
2), s

′). If the verification succeeds then the oracle returns
the pair (Dec(sk1, vk′, c′1),Dec(sk2, vk′, c′2)) and otherwise it outputs ⊥. If the
adversary eventually performs a query D(vk′, c′1, c

′
2, s

′) with vk′ = vk then the
execution of the adversary is aborted and B outputs ((c′1, c

′
2), s

′), thus breaking
the one-time strong unforgeability of the signature scheme.

Game 1 ≈ Game 2. Assume that there is an adversary (A0, A1) that is
able to distinguish the environments of Game 1 and 2. Then we build an ad-
versary (B0, B1, B2) against the IND-CCA security of the second TBE. Take
B0(1η, �(η)) = [(vk, sk) ← Gen(1η); return vk, (vk||sk)] and B1(s1, pk2) =
[r′, r1 ←R; return r′, r1, (s1||r′||r1||pk2)] and

Algorithm B
Osk2

2 ((vk||sk||r′||r1||pk2), c2) :
pk1, sk1 ← KeyGen(1η)
m0, m1, s1 ← AD

0 (pk1, pk2)
b ← {0, 1}
c1 ← Enc(pk1, vk, mb; r1)
s ← Sign(sk, (c1, c2))
b′ ← AD

1 (s1, (vk, c1, c2, s))
if b = b′ then return 1
else return 0

Calls to the decommitment oracle D(vk, c1, c2, s) are simulated by firstly verify-
ing the signature Vrfy(vk, (c1, c2), s). If the verification succeeds then the oracle
returns (Dec(sk1, vk, c1),Osk2

(c2)) and otherwise it outputs ⊥.
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Finally we show that |P[X2] − 1/2]| is bounded by the advantage any PPT
algorithm has in breaking the selective IND-CCA security of the first instance
of the TBE. Assume that there is an adversary (A0, A1) for Game 2. Then we
build an adversary (B0, B1, B2) against the IND-CCA security of the first TBE.
Take B0(1η, �(η)) = [(vk, sk)← Gen(1η); return vk, (vk||sk)] and

Algorithm B
Osk1

1 ((vk||sk), pk1) :
pk2, sk2 ← KeyGen(1η)

m0, m1, s1 ← AD
0 (pk1, pk2)

return (m0, m1), (vk||sk||pk1||s1||pk2||sk2)

Algorithm B
Osk1

2 ((vk||sk||pk1||s1||pk2||sk2), c1) :
r′ ← R
c2 ← Enc(pk2, vk, r′)
s ← Sign(sk, (c1, c2))
b′ ← AD

1 (s1, (vk, c1, c2, s))
return b′

Calls to the decommitment oracle D(vk, c1, c2, s) are simulated by firstly verify-
ing the signature Vrfy(vk, (c1, c2), s). If the verification succeeds then the oracle
returns (Osk1

(c1),Dec(sk2, vk, c2)) and otherwise it outputs ⊥.

6 Protocol Execution and State Traces

We now prove that it is possible to port proofs in the symbolic framework to
the computational one. First, for the sake of self-containment we describe the
adversarial model and the execution environment following the directions of Mic-
ciancio and Warinschi [MW04]. We refer the reader to this paper for a thorough
explanation.

The message space and the closure operator were defined in Section 2. Mes-
sages are used to formally describe cryptographic protocols. The closure rep-
resents the knowledge that can be extracted from a message, and is used to
define what valid algebraic protocol runs are. Intuitively a protocol run is valid
if every message sent by a principal can be deduced from its knowledge except
maybe for some fresh randomness. In this setting an adversary is in control of
the communication media and is able to interact with honest participants. Con-
sider then an adversary that has access to an oracle that will play the role of the
honest participants. This adversary can start new sessions of the protocol and
send messages to a principal of a given session and get the respective answer
back. Formally, the adversary A can perform one of the following queries to the
execution oracle O.

1. newsession([I1 . . . In]) that takes a list of user identities Ii and returns a new
session identifier s.

2. send(s, I,m) that delivers the message m to the principal I of session s.
Then O updates I’s state and returns the answer to the adversary.
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In case that the adversary performs a query that is not according to the protocol,
for the specific state of the receiver, the oracle aborts the execution of this session.

In a formal protocol, the messages exchanged are algebraic expressions from
the message algebra. A formal adversary Af will interact with the formal oracle
Of in a symbolic protocol run.

On the other hand, a computational adversaryAc is a probabilistic polynomial-
time Turing machine that operates on bitstrings. For a fixed value of the security
parameter there is a set of primitive bitstrings for constants and nonces denoted
by Primη. The set of bitstrings Msgη is build from Primη by tupling, encryp-
tions, commitments and decommitments. There is a set Sid of session identifiers;
a set Uid of user identities and a set Vars of variables in the abstract protocol
description.

Let F : Sid×Uid→ (Vars→Msg,N) be the state maintained by the formal
oracle Of . On input (s, I) it returns the state of principal I in session s together
with his instruction pointer. The instruction pointer indicates on which step of
the abstract protocol this principal is. Similarly, C : Sid × Uid → (Vars →
Msgη,N) is the state maintained by the computational oracle Oc. Assume with-
out loss of generality that all the sessions are created at the beginning. Then, a
formal adversary Af is just a sequence of send(s, I,m) queries. We say that a
formal adversary Af is a valid Dolev-Yao adversary (Af ∈ DY) if each message
he sends to the oracle is in the closure of his initial knowledge plus the answers
he gets from the oracle Of . A protocol execution, thus, is the sequence of states
F0, F1, . . . of the formal oracle Of and is denoted by trace(Af ,Of ). After fixing
the randomness of the adversary and that of the oracle environment to τA and τO,
we can similarly define a computational execution trace trace(Ac(τA),Oc(τO))
as the sequence of states C0, C1, . . . of the computational oracle Oc.

Definition 6.1. We say that [[·]] : Prim→ Primη is an interpretation function
if it is injective and structure preserving (i.e., maps formal nonces to nonce
bitstrings, formal commitments to commitments and so on).

Definition 6.2. Let F = F0, F1, . . . be a formal execution trace and let C =
C0, C1, . . . be a concrete execution trace. We say that F � C if there exists an
interpretation function [[·]] such that [[F0]] = C0, [[F1]] = C1, . . . .

The following theorem shows that a computational adversary has no more power
than an algebraic adversary.

Theorem 6.3. Let (TTP, Snd,Rcv) be an IND-COM-CCA secure commitment
scheme and let (K, E ,D) be an IND-CCA secure encryption scheme. For any
computational adversary Ac, the probability

P[ ∃Af ∈ DY : trace(Af ,Of ) � trace(Ac(τA),Oc(τO))]

is overwhelming. Here the probability is taken over the random choices τA of the
adversary and τO of the oracle.

Proof. First fix the randomness τA and τO. Running the computational adver-
sary Ac, it produces a sequence of queries/answers to/from the computational
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oracle. Because we know all the trapdoor information that the oracle gener-
ates and because the adversary has to send properly typed messages, we can
de-construct any message sent into primitive terms. Choosing new algebraic
terms for each distinct primitive bitstring encountered we build a sequence of
algebraic queries which constitutes an algebraic adversary Af . Note that for dif-
ferent random choices of τA and τO we get the same Af (up to renaming) with
overwhelming probability.

It remains to show that the adversary we just built is Dolev-Yao. Suppose
that it is not. Then Af must, at some point, send a query that contains a non-
adversarial nonce n� that is not in the closure of the messages he received before.
If this nonce occurs inside an encryption (with an unknown key) then one can
build an adversary breaking the IND-CCA security of the encryption scheme
[MW04]. Assume then that it occurs inside a commitment. We now build an
adversary that breaks the IND-COM-CCA security of the commitment scheme.

This adversary simulates the environment to Ac using the de-commit oracle
when necessary except for the query that contains n�. There it generates two
interpretations (n0, n1) for n� and gives them as challenge plaintext for the IND-
COM-CCA game. The challenger gives back a commitment to nb where b is the
challenge bit. This commitment to nb is used to answer the oracle queries. At
the moment AC outputs the interpretation of n� we can check whether it is n0

or n1.

A formal security notion is a predicate Pf on formal traces. A protocol Π |=f

Pf if for all adversaries Af ∈ DY holds that trace(Af ,Of ) ∈ Pf . Similarly,
a computational security notion is a predicate Pc on computational traces. A
protocol Π |=c Pc if for all probabilistic polynomial-time adversaries Ac holds
that trace(Af ,Of ) ∈ Pc with overwhelming probability (taken over the random
choices of the adversary and the ones of the oracle environment). The proof of
the following theorem follows as in [MW04].

Theorem 6.4. Let (TTP, Snd,Rcv) be a IND-COM-CCA secure commitment
scheme and let (K, E ,D) be an IND-CCA secure encryption scheme. Let Pf and
Pc be respectively formal and computational security notions such that for all
formal traces ft and all computational traces ct it holds that (ft ∈ Pf ∧ ft �
ct) =⇒ ct ∈ Pc. Then

Π |=f Pf =⇒ Π |=c Pc .

7 Conclusions

We presented two equivalent security notions for commitment schemes: a sim-
ulation based definition and a indistinguishability based one. We then gave a
concrete scheme satisfying this security notion. This construction is of interest
on itself as it is generic and has some interesting features like being reusable,
perfectly binding and secure against adaptive chosen-commitment attacks. We
then applied this new machinery to give sound interpretation of symbolic com-
mitments while considering active adversaries.



Computational Soundness of Non-Malleable Commitments 375

References

[ABHS05] Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness of formal en-
cryption in the presence of key-cycles. In: de Capitani di Vimercati, S.,
Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679,
pp. 374–396. Springer, Heidelberg (2005)

[ABS05] Adão, P., Bana, G., Scedrov, A.: Computational and information-
theoretic soundness and completeness of formal encryption. In: CSFW
2005, pp. 170–184. IEEE Computer Society Press, Los Alamitos (2005)

[ABW06] Abadi, M., Baudet, M., Warinschi, B.: Guessing attacks and the compu-
tational soundness of static equivalence. In: Aceto, L., Ingólfsdóttir, A.
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[CKKW06] Cortier, V., Kremer, S., Küsters, R., Warinschi, B.: Computationally
sound symbolic secrecy in the presence of hash functions. In: Arun-
Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 176–187.
Springer, Heidelberg (2006)

[CKOS01] Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-
interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001)

[DDN91] Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC
1991, pp. 542–552. ACM Press, New York (1991)

[EGL85] Even, S., Goldreich, O., Lempel, A.: A randomizing protocol for signing
contracts. Comm. ACM 28(6), 637–647 (1985)

[FF00] Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes.
In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431.
Springer, Heidelberg (2000)



376 D. Galindo, F.D. Garcia, and P. van Rossum

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Computer and
System Sciences 28(2), 270–299 (1984)

[GMW91] Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but
their validity and a methodology of cryptographic protocol design. J.
ACM 38(1), 691–729 (1991)

[GvR06] Garcia, F.D., van Rossum, P.: Sound computational interpretation of
symbolic hashes in the standard model. In: Yoshiura, H., Sakurai, K.,
Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006.
LNCS, vol. 4266, pp. 33–47. Springer, Heidelberg (2006)

[Her05] Herzog, J.: A computational interpretation of Dolev–Yao adversaries.
Theoretical Computer Science 340(1), 57–81 (2005)

[JLM05] Janvier, R., Lakhnech, Y., Mazar, L.: Completing the picture: Soundness
of formal encryption in the presence of active adversaries. In: Sagiv, M.
(ed.) ESOP 2005. LNCS, vol. 3444, pp. 172–185. Springer, Heidelberg
(2005)
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Square Attack on Reduced-Round Zodiac Cipher
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Abstract. Zodiac is a block cipher with 128-bit blocks and designed for
the Korean firm SoftForum in 2000. This paper discusses the security
of Zodiac against the Square attack. We first construct two 8-round dis-
tinguishers to build a basic Square attack against the reduced 9-round
Zodiac with 128-bit keys, and then extend this attack to 12, 13, 14,
and 15-round Zodiac, which finds their round keys with the complexities
292.3, 2124.8, 2157.2, and 2189.5, respectively. Moreover, our attack can
find the round keys of the full 16-round Zodiac with 256-bit keys with
a complexity of 2221.7 which is better than the exhaustive search and in
this attack we just need 216.5 chosen plaintexts. This result shows that
the Square attack is not only applicable to Square-like ciphers but also
to ciphers with Feistel structure once more.

Keywords: block cipher, Zodiac, square attack.

1 Introduction

Zodiac [1] is a block cipher designed in 2000 by Chang-Hyi Lee for the Korean
firm SoftForum and this algorithm was submitted to the ISO/IEC JTC1/SC27-
Korea in September of the same year. This cipher has a 16-round Feistel structure
with an initial and final key whitening, and in its design there are an initial
permutation and a final permutation before the first round and after the last
round, respectively. The round function of the Zodiac cipher includes a linear
transformation layer which consists of just exclusive or operations and includes
a nonlinear transformation layer, namely the S-box.

Up to now, the most efficient method analyzing Zodiac is the impossible differ-
ential cryptanalysis [2]. This attack uses two 14-round impossible characteristics
to derive the 128-bit master key of the full 16-round Zodiac with the complexity
of 2119 encryption times and in this attack 2103.6 chosen plaintext pairs are used.

Square attack [3] or integral attack is a chosen plaintext attack, which was
originally designed as a dedicated attack against the Square cipher and is later
applicable to similar block ciphers based on Substitution-Permutation networks
such as Crypton [5] and AES [6]. This attack is also one of the most effective
attack against AES. To apply Square attack on the Feistel structure, Lucks in-
troduced the saturation attack in the FSE’01 conference [4], which is a variation
of the Square attack, and in the same paper he used it to attack the Twofish
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cipher. Since then, his method has been applied to a number of other ciphers,
including Skipjack [9], Fox [10], and Camellia [8, 11].

This paper proposes two 8-round distinguishers for Zodiac and uses them to
construct a basic Square attack against the reduced 9-round Zodiac with 128-
bit keys (denoted Zodiac-128). Further, we extend this attack to the reduced
12, 13, 14, and 15-round Zodiac-128 and find all round keys of each of such
versions of Zodiac with complexities of 292.3, 2124.8, 2157.2 and 2189.5 cipher
executions, respectively and they correspondingly need 215.1, 215.6, 216 and 216.3

chosen plaintexts. This paper also shows that we can obtain all round keys of the
full 16-round Zodiac-256 (Zodiac with 256-bit keys) with a complexity of 2221.7

encryption times which is faster than the exhaustive key search and in this case
we just need 216.5 chosen plaintexts. Therefore, 12, 13-round Zodiac-128, 14, 15-
round Zodiac-192 and the full-round Zodiac-256 are not immune to the attack
presented in this paper. The result shows again that the Square attack is not
only effective for structure similar to Square-like ciphers but also for Feistel-type
ciphers.

This paper is organized as follows. In section 2 we describe the Zodiac cipher
briefly. Two 8-round distinguishers of Zodiac and the basic 9-round Square attack
are discussed in section 3. Section 4 extends the basic 9-round attack to 12, 13,
14, 15, and the full 16 rounds, and the corresponding complexities are analyzed.
The last section concludes the paper.

2 Description of the Zodiac Cipher

The design of Zodiac is based on a 16-round Feistel iterated structure. The block
size of Zodiac is 128 bits and this cipher supports 128, 192, and 256-bit keys.
Within its design, there are key whitening layers and an initial and a final per-
mutations Π before the first round and after the last round, respectively. Since
the initial and final permutations do not affect the properties of the input and
the output values, we ignore these two transformations in the sequel discussion.
In addition, the key whitening can be incorporated into the internal round keys,
so we will also ignore this transformation.

For 0 ≤ r ≤ 15, let X(r)
L and X

(r)
R be the left and the right halves of the

(r + 1)-th round inputs, respectively, K(r) be the r-th round key. With these
notations the Feistel structure of Zodiac can be written as

X
(r+1)
L = X

(r)
R ⊕ F (X(r)

L ⊕K(r+1))
X

(r+1)
R = X

(r)
L , for 0 ≤ r ≤ 15.

Figure 1 shows the overall structure of Zodiac [2].
The round function F : GF(28)8 → GF(28)8 adoptes the substitution and

permutation structure, and is defined as the composition of permutations S
and P :

X → S(P (X)),
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Fig. 1. The structure of Zodiac

where the substitution function S : GF(28)8 → GF(28)8 is an one-to-one trans-
formation defined by

(x0, · · · , x7) �→ (S1(x0), S2(x1), S1(x2), S2(x3),
S1(x4), S2(x5), S1(x6), S2(x7)),

here xi ∈ GF(28) and the two S-boxes S1 and S2 are generated by the following
functions h(x) and g(x), respectively:

h(x) = h0(h0(x)), where h0(x) = (45x mod 257) mod 256,
g(x) = (170 + x)−1 in GF(28),with irreducible polynomial

x8 + x4 + x3 + x+ 1.

The function P : GF(28)8 → GF(28)8 is a linear permutation which maps
(y0, y1, y2, y3, y4, y5, y6, y7) to (z0, z1, z2, z3, z4, z5, z6, z7), where

z0 = y2 ⊕ y3 ⊕ y4, z1 = y0 ⊕ y1, z2 = y1 ⊕ y2, z3 = y2 ⊕ y3,
z4 = y6 ⊕ y7 ⊕ y0, z5 = y4 ⊕ y5, z6 = y5 ⊕ y6, z7 = y6 ⊕ y7.

The key schedule algorithm of Zodiac is basically constructed from its round
function. For the detail, see [1].
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3 Basic Square Attack

The concept of Λ-set is the base of the Square attack. Let Λ be a collection of
state vectors X = (x0, · · · , xn−1) where xi ∈ GF(28) is the i-th byte of X. If
the i-th bytes of vectors in Λ are pairwisely distinct, then the i-th byte is called
an “active” byte; and if the i-th byte of each vector in Λ correspondingly has a
same value, then this byte is called a “passive” byte. The i-th byte in a collection
Λ is balanced, if

⊕

X∈Λ

xi = 0. Below is a strict definition of Λ-set.

Definition 1. Let Λ be a set of n-byte vectors and λ be the index set of the state
bytes. If

∀x, y ∈ Λ⇒
{
xi 	= yi for i ∈ λ
xi = yi for i 	∈ λ

holds, then the collection Λ is said to be a Λ-set and λ is the index set of active
bytes.

From the definition of Λ-set and the three basic functions in Zodiac, namely
key exclusive or (XOR) transformation, nonlinear transformation S, and linear
transformation P described in the previous section, it is easy to see that S and
key XOR convert a Λ-set to a Λ-set with invariant index set λ, but P dose not
necessarily transform a Λ-set into a Λ-set. Additionally, if the input of S-boxs
Si (i = 1, 2) is an active (passive) byte of a Λ-set, then the output of it is also
active (passive). However, the output of Si (i = 1, 2) may be not balanced when
its input is balanced.

3.1 8-Round Distinguishers

In this paper we only consider Λ-sets in which only one byte is active, and then
trace the evolution of this active byte through 8 rounds to construct two 8-round
distinguishers for Zodiac cipher.

Let X(r)
L , X

(r)
R ∈ GF(28)8 be the left and right inputs of the (r+1)-th round.

Select two Λ-sets called Λ-set 1 and Λ-set 2 to be the input plaintexts.
The Λ-set 1 has the form:

X
(0)
L = (C,C,C,C,C,C,C,C), X(0)

R = (C,A,C,C,C,C,C,C),

and the Λ-set 2 has the form:

X
(0)
L = (C,C,C,C,C,C,C,C), X(0)

R = (C,C,C,C,C,A,C,C),

where each letter C denotes a constant byte (it is distinct at different positions);
A is an active byte and ranges over all possible values in GF(28).

By the structure of the Zodiac cipher, we can find how the states of the vectors
in these two Λ-sets evolute round-dependently. See Tables 1 and 2. Table 1 is
for vectors of Λ-set 1 and Table 2 is for vectors of Λ-set 2. In these two tables,
the notation “B” denotes a balanced byte, which means the XOR of all bytes of
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the Λ-set occur at this position is zero, and the symbol “?” stands that we do
not know what characteristic the byte can possess. After an iteration of 8 round
transformations, we will not know any characteristic of byte in every position,
so we get two 8-round distinguishers for the cipher.

Table 1. Distinguisher 1

Round Num. Left 64 bits Right 64 bits
0 (C,C,C,C,C,C,C,C) (C,A,C,C,C,C,C,C)
1 (C,A,C,C,C,C,C,C) (C,C,C,C,C,C,C,C)
2 (C,A,A,C,C,C,C,C) (C,A,C,C,C,C,C,C)
3 (A,B,?,A,C,C,C,C) (C,A,A,C,C,C,C,C)
4 (?,?,?,?,A,C,C,C) (A,B,?,A,C,C,C,C)
5 (?,?,?,?,?,A,C,C) (?,?,?,?,A,C,C,C)
6 (?,?,?,?,?,?,A,C) (?,?,?,?,?,A,C,C)
7 (?,?,?,?,?,?,?,A) (?,?,?,?,?,?,A,C)
8 (?,?,?,?,?,?,?,?) (?,?,?,?,?,?,?,A)
9 (?,?,?,?,?,?,?,?) (?,?,?,?,?,?,?,?)

Table 2. Distinguisher 2

Round Num. Left 64 bits Right 64 bits
0 (C,C,C,C,C,C,C,C) (C,C,C,C,C,A,C,C)
1 (C,C,C,C,C,A,C,C) (C,C,C,C,C,C,C,C)
2 (C,C,C,C,C,A,A,C) (C,C,C,C,C,A,C,C)
3 (C,C,C,C,A,B,?,A) (C,C,C,C,C,A,A,C)
4 (A,C,C,C,?,?,?,?) (C,C,C,C,A,B,?,A)
5 (?,A,C,C,?,?,?,?) (A,C,C,C,?,?,?,?)
6 (?,?,A,C,?,?,?,?) (?,A,C,C,?,?,?,?)
7 (?,?,?,A,?,?,?,?) (?,?,A,C,?,?,?,?)
8 (?,?,?,?,?,?,?,?) (?,?,?,A,?,?,?,?)
9 (?,?,?,?,?,?,?,?) (?,?,?,?,?,?,?,?)

3.2 Basic 9-Round Square Attack

In this subsection we exploit the two 8-round distinguishers to derive a basic
Square attack on the reduced 9-round Zodiac. Let X(r)

Li
, X

(r)
Ri

be the i-th byte of

X
(r)
L and X(r)

R , respectively. From distinguisher 1, the byte X(8)
R7

ranges over all
possible values of GF(28), so the XOR of these values is zero. For distinguisher
2, the byte X(8)

R3
has the same property.

According to the structure of the round function in Zodiac, we can get the
following equation:

X
(8)
R7

= X
(9)
L7
⊕ S2(X

(8)
L6
⊕X(8)

L7
⊕K(9)

6 ⊕K(9)
7 ), (1)
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and
X

(8)
R3

= X
(9)
L3
⊕ S2(X

(8)
L2
⊕X(8)

L3
⊕K(9)

2 ⊕K(9)
3 ). (2)

Below we will only discuss the distinguisher 1, the distinguisher 2 can be con-
sidered in the same way from the equation (2).

Since X(8)
L = X

(9)
R and (X(9)

L , X
(9)
R ) is exactly the ciphertext, X(8)

L6
and X

(8)
L7

can be obtained easily. By the equation (1), if we guess a value for K(9)
6 ⊕K(9)

7 ,

then for each element of Λ-set 1, the value in the position of X(8)
R7

can be cal-
culated from this equation. If the XOR of these values is not zero, then the
guessed byte is incorrect. In the worst case, we must check all 28 possible values of
K

(9)
6 ⊕K(9)

7 to get the correct one. For each guessed value, the calculation of X(8)
R7

from equation (1) are not more complicated than the encryption, so the complex-
ity is 28× 28 = 216 cipher executions. Since the case of distinguisher 2 is similar
to distinguisher 1, we can obtain the correct values ofK(9)

6 ⊕K(9)
7 andK(9)

2 ⊕K(9)
3

after 2× 28 × 28 = 217 cipher executions with 2× 28 = 29 chosen plaintexts.

4 Attacks on Reduced-Round Zodiac

In this section we extend the basic 9-round Square attack to 12, 13, 14, 15 and
the full 16-round Zodiac.

As we know, if the round key of each round is obtained, then the cipher can
be decrypted entirely. This means that we can attack the cipher successfully
without the master key.

4.1 Extended Attack to the 12-Round Zodiac

In this subsection, we discuss the Square attack on the reduced 12-round Zodiac
and obtain all round keys according to the testing bytes in the traces of the two
distinguishers by 8-step operations.

Step 1: Similar to the 9-round case, we exploit the testing bytes in the 8th
round of the two distinguishers. From the round transformation, to compute the
values of X(8)

R7
on Λ-set 1, and X(8)

R3
on Λ-set 2, we need to guess the bytes which

are shown in Table 3. Then we check whether the XOR of these values in the
position X(8)

R7
on Λ-set 1 (or X(8)

R3
on Λ-set 2) is zero or not.

From Table 3, to compute the values in the position X
(8)
R7

or X(8)
R3
, we need

to guess 10 bytes shown in the 1st and 2nd column of Table 3, respectively.
And to get the 12th-round round key, we need to consider the two distinguishers
simultaneously. Obviously, the computation complexities of the two distinguish-
ers are the same to each other. For distinguisher 1, we need to guess 210×8 bits,
which is also the time of 12-round Zodiac encryption. By checking a single Λ-set
of plaintexts leaves about 1/256 incorrect values as possible candidates, so the
whole process must be repeated for 10 different Λ-sets with the same structure,
that is, we need 10×28×2 = 212.3 chosen plaintexts. Thus we can get the round
key for the 12th round with a complexity 10× 210×8× 28× 2 = 10× 289 ≈ 292.3

encryptions.
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Table 3. Values needed in Step 1

X
(8)
R7

X
(8)
R3

K
(9)
6 ⊕K(9)

7 K
(9)
2 ⊕K(9)

3

K
(10)
5 ⊕K(10)

6 K
(10)
1 ⊕K(10)

2

K
(10)
6 ⊕K(10)

7 K
(10)
2 ⊕K(10)

3

K
(11)
4 ⊕K(11)

5 K
(11)
0 ⊕K(11)

1

K
(11)
5 ⊕K(11)

6 K
(11)
1 ⊕K(11)

2

K
(11)
6 ⊕K(11)

7 K
(11)
2 ⊕K(11)

3

K
(12)
4 ⊕K(12)

5 K
(12)
0 ⊕K(12)

1

K
(12)
5 ⊕K(12)

6 K
(12)
1 ⊕K(12)

2

K
(12)
6 ⊕K(12)

7 K
(12)
2 ⊕K(12)

3

K
(12)
0 ⊕K(12)

6 ⊕K(12)
7 K

(12)
2 ⊕K(12)

3 ⊕K(12)
4

Step 2: Decrypting the 12th round with the round key obtained in Step 1, we
get the output of the 11th round. In this case, we use the testing bytes X(7)

R6

in distinguisher 1 and X
(7)
R2

in distinguisher 2, which are all active bytes. To

compute X(7)
R2

and X
(7)
R6
, we need the bytes presented in Table 4. Since some of

them has shown in Table 3, we only guess the bytes newly appeared in this table.
By computation, we get the 10th and 11th-round round key with complexity of
6 × 26×8 × 28 × 2 = 6 × 257 ≈ 259.6 encryptions, and the number of chosen
plaintexts is 6× 28 × 2 = 211.6.

Table 4. Values needed in Step 2

X
(7)
R6

X
(7)
R2

K
(8)
5 ⊕K(8)

6 K
(8)
1 ⊕K(8)

2

K
(9)
4 ⊕K(9)

5 K
(9)
0 ⊕K(9)

1

K
(9)
5 ⊕K(9)

6 K
(9)
1 ⊕K(9)

2

K
(10)
4 ⊕K(10)

5 K
(10)
0 ⊕K(10)

1

K
(10)
5 ⊕K(10)

6 K
(10)
1 ⊕K(10)

2

K
(10)
0 ⊕K(10)

6 ⊕K(10)
7 K

(10)
2 ⊕K(10)

3 ⊕K(10)
4

K
(11)
4 ⊕K(11)

5 K
(11)
0 ⊕K(11)

1

K
(11)
5 ⊕K(11)

6 K
(11)
1 ⊕K(11)

2

K
(11)
6 ⊕K(11)

7 K
(11)
2 ⊕K(11)

3

K
(11)
0 ⊕K(11)

6 ⊕K(11)
7 K

(11)
0 ⊕K(11)

6 ⊕K(11)
7

K
(11)
2 ⊕K(11)

3 ⊕K(11)
4 K

(11)
2 ⊕K(11)

3 ⊕K(11)
4

Step 3: Decrypting the 10th and 11th round with their corresponding round
keys obtained in Step 2, we get the output of the 9th round. Then we use the
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testing bytes X(6)
R5

in distinguisher 1 and X
(6)
R1

in distinguisher 2, and check
whether the XOR of the values in these two positions, which are computed from
their corresponding Λ-sets, are zero or not. To compute these values, we need
the bytes shown in Table 5 and guess the bytes which do not appear in Tables 3
and 4. After computation we obtain the correct round key of the 9th round with
the complexity of 4×24×8×28×2 = 243 encryptions, and the number of chosen
plaintexts needed in this step is 4× 28 × 2 = 211.

Table 5. Values needed in Step 3

X
(6)
R5

X
(6)
R1

K
(7)
4 ⊕K(7)

5 K
(7)
0 ⊕K(7)

1

K
(8)
4 ⊕K(8)

5 K
(8)
0 ⊕K(8)

1

K
(8)
0 ⊕K(8)

6 ⊕K(8)
7 K

(8)
2 ⊕K(8)

3 ⊕K(8)
4

K
(9)
4 ⊕K(9)

5 K
(9)
0 ⊕K(9)

1

K
(9)
5 ⊕K(9)

6 K
(9)
1 ⊕K(9)

2

K
(9)
6 ⊕K(9)

7 K
(9)
2 ⊕K(9)

3

K
(9)
0 ⊕K(9)

6 ⊕K(9)
7 K

(9)
0 ⊕K(9)

6 ⊕K(9)
7

K
(9)
2 ⊕K(9)

3 ⊕K(9)
4 K

(9)
2 ⊕K(9)

3 ⊕K(9)
4

Step 4: Decrypting the 9th round with its round key obtained from Step 3,
we get the output of the 8th round. In this step we use the testing byte X(5)

R4

in distinguisher 1 and X
(5)
R0

in distinguisher 2, which are all active. Similarly

to Step 3, for computing X(5)
R4

and X
(5)
R0
, we need the values shown in Table 6.

Since some of these values were determined in previous steps, we only guess
the remaining bytes. By computation, the 7th and 8th-round round keys can be

Table 6. Values needed in Step 4

X
(5)
R4

X
(5)
R0

K
(6)
0 ⊕K(6)

6 ⊕K(6)
7 K

(6)
2 ⊕K(6)

3 ⊕K(6)
4

K
(7)
5 ⊕K(7)

6 K
(7)
1 ⊕K(7)

2

K
(7)
6 ⊕K(7)

7 K
(7)
2 ⊕K(7)

3

K
(7)
2 ⊕K(7)

3 ⊕K(7)
4 K

(7)
0 ⊕K(7)

6 ⊕K(7)
7

K
(8)
1 ⊕K(8)

2 K
(8)
0 ⊕K(8)

1

K
(8)
2 ⊕K(8)

3 K
(8)
1 ⊕K(8)

2

K
(8)
4 ⊕K(8)

5 K
(8)
2 ⊕K(8)

3

K
(8)
5 ⊕K(8)

6 K
(8)
5 ⊕K(8)

6

K
(8)
6 ⊕K(8)

7 K
(8)
6 ⊕K(8)

7

K
(8)
0 ⊕K(8)

6 ⊕K(8)
7 K

(8)
2 ⊕K(8)

3 ⊕K(8)
4
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obtained in this step with complexity of 5 × 25×8 × 28 × 2 = 251.3 encryptions
and 5× 28 × 2 = 211.3 chosen plaintexts.

Step 5: Decrypting the 7th and 8th rounds with their round keys we get the
output of the 6th round. In this step we exploit testing bytes X(4)

R0
and X(4)

R1
of

distinguisher 1 and X
(4)
R4

and X
(4)
R5

of distinguisher 2. From Tables 1 and 2, we

know that X(4)
R0

and X
(4)
R4

are active and that X(4)
R1

and X
(4)
R5

are balanced. In
order to compute these four bytes from the values in their corresponding Λ-sets,
we need the bytes shown in Tables 7 and 8, but we only guess some of them with
prior knowledge of Table 6.

After computation we obtain the round key for the 6th round with a com-
plexity of 3× 23×8 × 28 × 2 + 2× 22×8 × 28 × 2 ≈ 234.6 + 226 cipher executions
and 3× 28 × 2 + 2× 28 × 2 = 210.6 + 210 chosen plaintexts are needed in all.

Table 7. Values needed in Step 5 (A)

X
(4)
R0

X
(4)
R4

K
(5)
2 ⊕K(5)

3 ⊕K(5)
4 K

(5)
0 ⊕K(5)

6 ⊕K(5)
7

K
(6)
1 ⊕K(6)

2 K
(6)
5 ⊕K(6)

6

K
(6)
2 ⊕K(6)

3 K
(6)
6 ⊕K(6)

7

K
(6)
0 ⊕K(6)

6 ⊕K(6)
7 K

(6)
2 ⊕K(6)

3 ⊕K(6)
4

Table 8. Values needed in Step 5 (B)

X
(4)
R1

X
(4)
R5

K
(5)
0 ⊕K(5)

1 K
(5)
4 ⊕K(5)

5

K
(6)
0 ⊕K(6)

1 K
(6)
4 ⊕K(6)

5

K
(6)
2 ⊕K(6)

3 ⊕K(6)
4 K

(6)
0 ⊕K(6)

6 ⊕K(6)
7

Step 6: Decrypting the 6th and 7th round with their round keys, we get the
output of the 5th round. From Tables 1 and 2, in this step we use the testing
bytes: X(4)

R3
, X(3)

R1
, and X

(3)
R2

in distinguisher 1, and X
(4)
R7
, X

(3)
R5

, and X
(3)
R6

in
distinguisher 2. They are all active. To get the round key of the 5th round, we

Table 9. Values needed in Step 6 (for distinguisher 1)

X
(3)
R1

X
(3)
R2

X
(4)
R3

K
(4)
0 ⊕K(4)

1 K
(4)
1 ⊕K(4)

2 K
(5)
2 ⊕K(5)

3

K
(5)
0 ⊕K(5)

1 K
(5)
0 ⊕K(5)

1

K
(5)
2 ⊕K(5)

3 ⊕K(5)
4 K

(5)
1 ⊕K(5)

2
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need to guess some of the values shown in Tables 9 and 10. The computation
complexity is 2 × 22×8 × 28 × 4 + 28 × 28 × 2 = 227 + 217 encryptions and the
number of chosen plaintexts is 2× 28 × 4 + 2× 28 = 211 + 29.

Table 10. Values needed in Step 6 (for distinguisher 2)

X
(3)
R5

X
(3)
R6

X
(4)
R7

K
(4)
4 ⊕K(4)

5 K
(4)
5 ⊕K(4)

6 K
(5)
6 ⊕K(5)

7

K
(5)
4 ⊕K(5)

5 K
(5)
4 ⊕K(5)

5

K
(5)
0 ⊕K(5)

6 ⊕K(5)
7 K

(5)
5 ⊕K(5)

6

Step 7: Decrypting the 5th round, we get the output of the 4th round. In
this step, we exploit the testing bytes X(2)

R1
and X(0)

R1
in distinguisher 1, X(2)

R5
and

X
(0)
R5

in distinguisher 2. From Tables 1 and 2, they are all active, and we need the
values presented in Tables 11 and 12 to compute these testing bytes. Considering
Tables 9 and 10 in mind, we only guess some of them. After computation, with
complexity 2 × 22×8 × 28 × 2 + 7 × 27×8 × 28 × 2 = 226 + 267.8, the 4th-round
round key can be obtained and 2 × 28 × 2 + 7 × 28 × 2 = 210 + 211.8 chosen
plaintexts must be used in this step.

Table 11. Values needed in Step 7 (for distinguisher 1)

X
(2)
R1

X
(2)
R5

K
(3)
0 ⊕K(3)

1 K
(3)
4 ⊕K(3)

5

K
(4)
0 ⊕K(4)

1 K
(4)
4 ⊕K(4)

5

K
(4)
2 ⊕K(4)

3 ⊕K(4)
4 K

(4)
0 ⊕K(4)

6 ⊕K(4)
7

Step 8: As for the 1st, 2nd and 3rd-round round keys with the relation between
them in Tables 11 and 12, we can get them by using key scheduling algorithm
three times. According to [1], the main transformation of key schedule includes
only two round transformations of the encryption algorithm, so, the complexity
of computing the first three round keys can be ignored. Thus, with the results
obtained from the previous steps, the complexity of getting a round key for each
round of the reduced 12-round Zodiac cipher can be computed as follows:

292.3 + 259.6 + 243 + 251.3 + 234.6 + 226 + 227 + 217 + 226 + 267.8 ≈ 292.3.

And the whole process needs

212.3 + 211.6 + 211 + 211.3 + 210.6 + 210 + 211 + 29 + 210 + 211.8 ≈ 215.1

chosen plaintexts.
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Table 12. Values needed in Step 7 (for distinguisher 2)

X
(0)
R1

X
(0)
R5

K
(1)
0 ⊕K(1)

1 K
(1)
4 ⊕K(1)

5

K
(2)
0 ⊕K(2)

1 K
(2)
4 ⊕K(2)

5

K
(2)
2 ⊕K(2)

3 ⊕K(2)
4 K

(2)
0 ⊕K(2)

6 ⊕K(2)
7

K
(3)
0 ⊕K(3)

1 K
(3)
4 ⊕K(3)

5

K
(3)
1 ⊕K(3)

2 K
(3)
5 ⊕K(3)

6

K
(3)
2 ⊕K(3)

3 K
(3)
6 ⊕K(3)

7

K
(3)
0 ⊕K(3)

6 ⊕K(3)
7 K

(3)
0 ⊕K(3)

6 ⊕K(3)
7

K
(3)
2 ⊕K(3)

3 ⊕K(3)
4 K

(3)
2 ⊕K(3)

3 ⊕K(3)
4

K
(4)
0 ⊕K(4)

1 K
(4)
1 ⊕K(4)

2

K
(4)
1 ⊕K(4)

2 K
(4)
2 ⊕K(4)

3

K
(4)
2 ⊕K(4)

3 K
(4)
4 ⊕K(4)

5

K
(4)
5 ⊕K(4)

6 K
(4)
5 ⊕K(4)

6

K
(4)
6 ⊕K(4)

7 K
(4)
6 ⊕K(4)

7

K
(4)
0 ⊕K(4)

6 ⊕K(4)
7 K

(4)
0 ⊕K(4)

6 ⊕K(4)
7

K
(4)
2 ⊕K(4)

3 ⊕K(4)
4 K

(4)
2 ⊕K(4)

3 ⊕K(4)
4

4.2 Extended Attack to the 13 and More Round Zodiac

In this subsection the above attack for the 12-round Zodiac is extended to the
13-round Zodiac by adding an additional round at the end. To build the relation-
ship between (X(8)

R7
, X

(8)
R3

) and the ciphertext (X(13)
L , X

(13)
R ), we need to guess the

bytes presented in the first and second columns of Table 13, respectively. Simi-
larly to the case of the 12-round Zodiac, we need to check whether the XOR of
256 values of X(8)

R7
on Λ-set 1 and 256 values of X(8)

R3
on Λ-set 2 are zero or not.

As Table 13 shown, both K(13)
0 ⊕K(13)

6 ⊕K(13)
7 and K(13)

2 ⊕K(13)
3 ⊕K(13)

4 occur
in column 1 and column 2. In order to decrease the computational complexity,
we just need to guess one of them in the first column and the other in the sec-
ond column, that is, we may guess K(13)

0 ⊕K(13)
6 ⊕K(13)

7 in distinguisher 1 and
K

(13)
2 ⊕K(13)

3 ⊕K(13)
4 in distinguisher 2, respectively. By computation, we get the

13th round key with a complexity of 14×214×8×28×2 = 2×14×215×8 ≈ 2124.8

encryptions and using

14× 28 × 2 + 211.6 + 211 + 211.3 + 210.6 + 210 + 211 + 29 + 210 + 211.8 ≈ 215.6

chosen plaintexts we can obtain all round keys of the 13-round Zodiac.
Further, we extend this attack to the 14-round Zodiac and get the 14th-round

round key by adding a further round at the end of the 13-round Zodiac. To
complete the computation we need to guess more values shown in Table 14
besides those in Table 13. It is easy to find that there are repeated bytes in the
two columns of Table 14. With the same consideration to Table 13, we only need
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Table 13. Values guessed for the 13th round

X
(8)
R7

X
(8)
R3

K
(9)
6 ⊕K(9)

7 K
(9)
2 ⊕K(9)

3

K
(10)
5 ⊕K(10)

6 K
(10)
1 ⊕K(10)

2

K
(10)
6 ⊕K(10)

7 K
(10)
2 ⊕K(10)

3

K
(11)
4 ⊕K(11)

5 K
(11)
0 ⊕K(11)

1

K
(11)
5 ⊕K(11)

6 K
(11)
1 ⊕K(11)

2

K
(11)
6 ⊕K(11)

7 K
(11)
2 ⊕K(11)

3

K
(12)
4 ⊕K(12)

5 K
(12)
0 ⊕K(12)

1

K
(12)
5 ⊕K(12)

6 K
(12)
1 ⊕K(12)

2

K
(12)
6 ⊕K(12)

7 K
(12)
2 ⊕K(12)

3

K
(12)
0 ⊕K(12)

6 ⊕K(12)
7 K

(12)
2 ⊕K(12)

3 ⊕K(12)
4

K
(13)
4 ⊕K(13)

5 K
(13)
0 ⊕K(13)

1

K
(13)
5 ⊕K(13)

6 K
(13)
1 ⊕K(13)

2

K
(13)
6 ⊕K(13)

7 K
(13)
2 ⊕K(13)

3

K
(13)
0 ⊕K(13)

6 ⊕K(13)
7 K

(13)
0 ⊕K(13)

6 ⊕K(13)
7

K
(13)
2 ⊕K(13)

3 ⊕K(13)
4 K

(13)
2 ⊕K(13)

3 ⊕K(13)
4

Table 14. Values guessed for the 14th round

X
(8)
R7

X
(8)
R3

K
(14)
1 ⊕K(14)

2 K
(14)
0 ⊕K(14)

1

K
(14)
2 ⊕K(14)

3 K
(14)
1 ⊕K(14)

2

K
(14)
4 ⊕K(14)

5 K
(14)
2 ⊕K(14)

3

K
(14)
5 ⊕K(14)

6 K
(14)
5 ⊕K(14)

6

K
(14)
6 ⊕K(14)

7 K
(14)
6 ⊕K(14)

7

K
(14)
0 ⊕K(14)

6 ⊕K(14)
7 K

(14)
0 ⊕K(14)

6 ⊕K(14)
7

K
(14)
2 ⊕K(14)

3 ⊕K(14)
4 K

(14)
2 ⊕K(14)

3 ⊕K(14)
4

to guess half of these bytes in one column and the remains in the other column
for decreasing the computational complexity.

The complexity of getting the 14th-round round key is

18× 218×8 × 28 × 2 = 2× 18× 219×8 ≈ 2157.2

encryptions and we can get all round keys of the reduced 14-round Zodiac with

18× 28 × 2 + 211.6 + 211 + 211.3 + 210.6 + 210 + 211 + 29 + 210 + 211.8 ≈ 216

chosen plaintexts.
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For attacking on the 15-round Zodiac, we need to guess values in Table 15
and the values present in Tables 13 and 14. And for the repeated bytes we just
guess half of them in the first column and another half in the second column in
each table. Thus, the computation complexity is

22× 222×8 × 28 × 2 = 2× 22× 223×8 ≈ 2189.5

and

22× 28 × 2 + 211.6 + 211 + 211.3 + 210.6 + 210 + 211 + 29 + 210 + 211.8 ≈ 216.3

chosen plaintexts are used to obtain all the round keys of the 15-round Zodiac.

Table 15. Values guessed for the 15th round

X
(8)
R7

X
(8)
R3

K
(15)
0 ⊕K(15)

1 K
(15)
0 ⊕K(15)

1

K
(15)
1 ⊕K(15)

2 K
(15)
1 ⊕K(15)

2

K
(15)
2 ⊕K(15)

3 K
(15)
2 ⊕K(15)

3

K
(15)
4 ⊕K(15)

5 K
(15)
4 ⊕K(15)

5

K
(15)
5 ⊕K(15)

6 K
(15)
5 ⊕K(15)

6

K
(15)
6 ⊕K(15)

7 K
(15)
6 ⊕K(15)

7

K
(15)
0 ⊕K(15)

6 ⊕K(15)
7 K

(15)
0 ⊕K(15)

6 ⊕K(15)
7

K
(15)
2 ⊕K(15)

3 ⊕K(15)
4 K

(15)
2 ⊕K(15)

3 ⊕K(15)
4

Finally, we extend the attack to the full round Zodiac. In this case we need
to guess the bytes shown in Tables 13–16. Also, the bytes in these tables are not
guessed repeatedly. After computation, we can obtain the 16th-round round key
with the complexity

Table 16. Values guessed for the full 16th round

X
(8)
R7

X
(8)
R3

K
(16)
0 ⊕K(16)

1 K
(16)
0 ⊕K(16)

1

K
(16)
1 ⊕K(16)

2 K
(16)
1 ⊕K(16)

2

K
(16)
2 ⊕K(16)

3 K
(16)
2 ⊕K(16)

3

K
(16)
4 ⊕K(16)

5 K
(16)
4 ⊕K(16)

5

K
(16)
5 ⊕K(16)

6 K
(16)
5 ⊕K(16)

6

K
(16)
6 ⊕K(16)

7 K
(16)
6 ⊕K(16)

7

K
(16)
0 ⊕K(16)

6 ⊕K(16)
7 K

(16)
0 ⊕K(16)

6 ⊕K(16)
7

K
(16)
2 ⊕K(16)

3 ⊕K(16)
4 K

(16)
2 ⊕K(16)

3 ⊕K(16)
4
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26× 226×8 × 28 × 2 = 2× 26× 227×8 ≈ 2221.7

cipher executions. In this case we need

26× 28 × 2 + 211.6 + 211 + 211.3 + 210.6 + 210 + 211 + 29 + 210 + 211.8 ≈ 216.5

chosen plaintexts to obtain each round key of the full round Zodiac.
The computational complexity of the Square attack on different cases of

reduced-round Zodiac ciphers is listed in Table 17.

Table 17. Complexity and the number of plaintexts

Round Num. Plaintext Complexity
12 215.1 292.3

13 215.6 2124.8

14 216 2157.2

15 216.3 2189.5

16 216.5 2221.7

5 Conclusion

The Square attack on the Zodiac cipher is discussed in this paper. We presented
a basic 9-round attack and extended it detailedly to 12, 13, 14, 15 and the full
round Zodiac. The corresponding complexities of attack on the 12 to 16-round
Zodiac are 292.3, 2124.8, 2157.2, 2189.5, and 2221.7 encryptions. And in order to
obtain all the round keys of the full round Zodiac we just need 216.5 chosen
plaintexts, which is much smaller than the case 2103.6 of impossible differential
cryptanalysis. The attacks presented in this paper show again that the Square
attack works not only against block ciphers with similar structure as the Square
cipher but also against the Feistel-like ciphers.
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Abstract. At CRYPTO 2005, Coron etc. proposed several modified
methods to make the usual hash functions based on MD method indiffer-
entiable from random oracles. However, the compression functions used
in Coron’s schemes are supposed to be random oracles. This assumption
is too strong. To achieve Coron’s goal in the real world, Liskov pro-
posed Zipper structure and implemented a new scheme indifferentiable
from random oracle based on this structure. Unlike Coron’s schemes, the
indifferentiability of Liskov’s scheme does not depend on strong com-
pression functions and insecure compression functions can be used to
implement Liskov’s scheme. In this paper, we show that the security of
Liskov’s scheme is not ideal as a hash function. We also analyze those
Zipper schemes whose compression functions are insecure PGV com-
pression functions instead of Liskov’s weak compression functions, and
we find that some insecure PGV compression functions whose security
is stronger than Liskov’s weak compression function cannot be used to
build indifferentiable and collision-resistant Zipper schemes.

Keywords: Zipper, Hash Function, Compression Function.

1 Introduction

A hash function is a mapping from an arbitrary-length input to a fixed-length
output and it can be described as follows.

H : {0, 1}∗ → {0, 1}n

Merkle-Damg̊ard method (abbreviated to MD method) is an important method
which is widely used to build hash functions [4,15]. Most hash functions used
in practice are based on this method, such as MD4 [17], MD5 [18], SHA-0 [5],
SHA-1 [6] etc. These hash functions are also called MD hash functions. MD
method is also named iterated method and can be described as follows.

h0 = IV

hi = f(hi−1,mi), 1 ≤ i ≤ l
H(m) = hl

L. Chen, Y. Mu, and W. Susilo (Eds.): ISPEC 2008, LNCS 4991, pp. 392–403, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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where f and IV denote respectively a compression function and the fixed initial
value of the hash function, h1, · · · , hl denote chain values, H denotes the hash
function built on f , m = m1, · · · ,ml denotes the input message which is padded
with some padding rule and divided into l blocks. The most important padding
rule is called MD-Strengthening rule which appends 1 to the message and then
appends enough 0s to make the padded length a multiple of |mi| and finally
stores the binary length of the original message into the last block i.e. ml. Lai
etc. pointed out that if the message processed by a hash function is not padded
with MD-Strengthening rule, it is possible to construct an effective attack to
find its collisions [12].

A secure(ideal) hash function must resist collision attack, pre-image attack
and second pre-image attack. The three types of attacks can be described as the
following [11].

Definition 1 (collision attack). Given a hash function H and its initial value
(IV) h0, find m and m

′
where m �= m

′
such that H(h0,m) = H(h0,m

′
).

Definition 2 (pre-image attack). Given a hash function H and its initial
value(IV) h0 and a randomly selected value σ, find m such that H(h0,m) = σ.

Definition 3 (second pre-image attack). Given a hash function H and its
initial value(IV) h0 and m, find m

′ �= m such that H(h0,m) = H(h0,m
′
).

In the above, H denotes a hash function, m and m
′

denote different messages,
h0 denotes the initial value. Assuming the output length of a hash function is n
bit, the complexity to find a collision and a (second)pre-image for a secure(ideal)
hash function should be O(2

n
2 ) and O(2n) respectively. The secure hash function

above is also called collision resistant and (second)pre-image resistant hash func-
tion. The three attacks above are also called generic attacks. Except the generic
attacks mentioned above, there are some other attacks on hash functions.

Definition 4 (multicollision attack). An r-way collision is an r-tuple mes-
sages: m1,m2, · · · ,mr such that H(IV,m1) = H(IV,m2) = · · · = H(IV,mr),
where H denotes a hash function and IV is the initial value of it.

Here H denotes a hash function, IV denotes the initial value, m1, · · · ,mr de-
note different messages. If a hash function behaves randomly, the complexity to
find r-way collision for it should be O(2

n(r−1)

r ) [19]. However, Joux has shown
that the complexity to find 2t-way collision for a usual MD hash function is only
O(t2

n
2 ) [8]. Kelsey etc. made use of Joux’s tricks to construct an effective sec-

ond pre-image attack [10] and herding attack [9] for usual MD hash functions,
both of them are based on multicollision attack. Therefore, if a hash function
which could resist multicollision attack is used, Kelsey’s attacks will fail. Lucks
proposed a double-pipe hash function and a wide-pipe hash function to resist
multicollision attack [14]. Lucks improved the complexity of finding a collision
for a compression function from O(2n/2) to O(2n) by extending the length of
chain values from n bit to 2n bit. This trick makes the usual multicollision attack
impossible.
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Merkle and Damg̊ard proved that if the compression function is collision re-
sistant, the MD hash function built on it is also collision resistant. Therefore,
a secure compression function is the most important component in a MD hash
function. However, sometimes, a secure compression function is insufficient to
ensure the security of a MD hash function. The MAC scheme described below
is a widely known example.

MAC(K,m) = H(IV,K||m)

where m denotes the message, H denotes a MD hash function, K denotes the
secret key and ‖ denotes the concatenation of two binary strings. Obviously,
secure hash functions cannot guarantee the security of this scheme. Assuming
we have got h = H(IV,K||m), then we can forge the MAC of m||y by com-
puting H(h, y) without knowing the secret key. However, if the hash function is
a random oracle, the forgery is computationally infeasible. Coron etc. modified
the usual MD method and made hash functions based on the modified meth-
ods indifferentiable from random oracles. If a hash function is indifferentiable
from random oracle, it can be used as a substitution of random oracle without
decreasing the security level. The definition of indifferentiability is as blow.

Definition 5. [3] A Turing machine C with oracle access to an ideal primitive
G is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive F if there
exists a simulator S, such that for any distinguisher D it holds that:

|Pr[DC,G = 1]− Pr[DF,S = 1]| < ε

where an ideal primitive is a block-box whose internal details are unavailable such
as a random oracle or a compression function. The simulator has oracle access
to F and runs in time at most tS. The distinguisher runs in time tD and makes
at most q queries. Similarly, CG is said to be (computationally) indifferentiable
from F if ε is a negligible function of the security parameter k (for polynomially
bounded tD and tS).

Coron etc. proposed four modified methods coming from the original MD
method. However, the compression functions used in Coron’s schemes are sup-
posed to be random oracles. This assumption is too strong. To achieve Coron’s
goal in the real world, Liskov proposed Zipper structure and implement a new
scheme indifferentiable from random oracle based on this structure [13]. Unlike
Coron’s schemes, Zipper can be implemented with insecure compression func-
tions instead of random oracles. In this paper, We firstly review Zipper structure
and Liskov’s scheme and then in section 2 we show that Liskov’s scheme is not
ideal as a hash function under pre-image attack and second pre-image attack. We
also analyze those Zipper schemes which are implemented with insecure PGV
compression functions instead of Liskov’s weak compression functions, and we
find that some insecure PGV compression functions whose security is stronger
than Liskov’s weak compression functions cannot be used to build indifferen-
tiable and collision-resistant Zipper hash functions.
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1.1 Description of Zipper Structure and Liskov’s Zipper

Unlike the usual MD hash functions, Zipper structure iterates two weak com-
pression functions and can be described as the following.

Mid = f0(ml, · · · , f0(m3, f0(m2, f0(m1, IV ))) · · · )
Out = f1(m1, · · · , f1(ml−2, f1(ml−1, f1(ml,Mid))) · · · )

where f0 and f1 are two different compression functions. See figure 1 for a more
clear description. In Liskov’s scheme(Liskov’s Zipper), f0 and f1 are two weak

IV

L

1m 2m 3m lm

L0f 0f 0f 0f

1f1f1f1f

Fig. 1. Zipper structure description

compression functions. Likov showed that a weak compression function is a kind
of compression function which has the following two oracles [13].

1. querying f−1 on input (x, z), the oracle f−1 returns a random value y such
that f(x, y) = z.

2. querying f∗ on input (y, z), the oracle f∗ return a random value x such that
f(x, y) = z.

In the above, f denotes a compression function, f−1 and f∗ denote two oracles
of f . Obviously, weak compression functions are susceptible to any generic attack.
Weak compression functions cannot be used simply in MD method. It has been
shown that Liskov’s Zipper hash function which is based on weak compression
functions is indifferentiable from random oracle. However, Liskov’s Zipper is not
sufficiently ideal as a hash function, and we give analysis in detail in the following
sections.

2 Security Analysis of Liskov’s Zipper as a Hash Function

As mentioned above, a secure hash function should be collision attack resistant,
pre-image attack resistant and second pre-image attack resistant, and in some
special circumstance, a hash function needs to be indifferentiable from random
oracle or resist multicollision attack. It has been shown that Liskov’s Zipper is
indifferentiable from random oracle, which implies collision attack resistant. In
the remaining part of this section, we analyze the security of Liskov’s Zipper
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under pre-image attack, second pre-image attack and multicollision attack. We
will show that the security of Liskov’s Zipper under pre-image attack and second
pre-image attack is not ideal and its security under multicollision attack is weaker
than the usual MD hash functions.

2.1 Notation

We define a number of notions that are used in this section. x ← y denotes
assigning the value of y to x. x $← {0, 1}n denotes randomly selecting a value
from {0, 1}n and assigning it to x. f denotes a weak compression function and f∗,
f−1 denote the random oracles mentioned above. hout, hi,j(i = 0, 1; j = 1, · · · , l)
and IV denote the chain values. n denotes the bit length of output and HS

denotes the set of chain values.

2.2 Security Bound of Liskov’s Zipper under Pre-image Attack

Our pre-image attack on Zipper can be described as follows.

Step 1. hout
$← {0, 1}n. The following steps below will find a pre-image for hout

Step 2. h1,1
$← {0, 1}n, query oracle f∗

1 on (hout, h1,1) to get a message pair
(m1,m

′
1) such that

f1(h1,1,m1) = f1(h1,1,m
′
1) = hout

Then for each i ∈ {2, 3, · · · , n/2−1}, h1,i
$← {0, 1}n, query f∗

1 on (h1,i−1, h1,i)
to find a pair (mi,m

′
i) such that

f1(h1,i,mi) = f1(h1,i,m
′
i) = h1,i−1

Step 3. Assuming that the message is padded by MD-Strengthening padding
rules and the last block needs to store the length of the whole message, so
the last message block mn/2+1 remains intact. Then query f−1

1 oracle on
(h1,n/2−1,mn/2+1) to get h1,n/2 such that

f1(h1,n/2,mn/2+1) = h1,n/2−1

Query f−1
1 oracles 2n/2 times to get a set HS which contains 2n/2 values for

h1,n/2.
Step 4. At last, the output value of the f0 line should fall in the set HS accord-

ing to the figure of Zipper. Let C denote the event that the output value falls
in HS then Pr[C] = 1

2n/2 . After step 2, there are 2n/2 different messages for
choice and make the probability Pr[C] innegligible.

In the attack above, the first step randomly selects a target value for which
a pre-image will be found, the second step uses the f∗ oracle to construct a
collision at each step, the third step constructs a sufficiently large set of chain
values for the next step and the fourth step finds a matching in the set. From
the attack demonstrated above, the following theorem can be concluded.
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Theorem 1. The complexity of pre-image attack for Liskov’s Zipper is n+(n
2 +

1)2n/2.

Proof. In step 2, the number of queries on oracle on f∗
1 is n. In step 3, the

number of queries on oracle on f∗
1 is 2n/2. In step 4, to find the matching in the

set, all the 2n/2 messages may be processed and each of them has n/2 blocks.
Thus the total number of queries on oracles will be n+ (n

2 + 1)2n/2.

Figure 2 illustrates the above pre-image attack in a clear way.

1,0h
• LIV • • •

•
•

•L•• SH
1m

'
1m

2/nm

'
2/nm

•
•outh 1,1h

2,0h

12/,1 −nh22/,1 −nh

12/ +nm

Fig. 2. pre-image attack and second pre-image attack on Liskov’s Zipper

2.3 Security Bound of Liskov’s Zipper under Second Pre-image
Attack

Our second pre-image attack is similar to the above pre-image attack and can
also be described in figure 2. The difference is only at the first step. Our second
pre-image attack can be shown as follows.

Step 1. Randomly chose messageM and then compute hout = Z(IV,M), where
Z denotes a Liskov’s Zipper hash function. The attack will find another
message M

′
such that Z(IV,M

′
) = hout.

Step 2. h1,1
$← {0, 1}n, query oracle f∗

1 on (hout, h1,1) to get a message pair
(m1,m

′
1) such that

f1(h1,1,m1) = f1(h1,1,m
′
1) = hout

Then for each i ∈ {2, 3, · · · , n/2−1}, h1,i
$← {0, 1}n, query f∗

1 on (h1,i−1, h1,i)
to find a pair (mi,m

′
i) such that

f1(h1,i,mi) = f1(h1,i,m
′
i) = h1,i−1

Step 3. Assuming that the message is padded by MD-Strengthening padding
rules and the last block needs to store the length of the whole message, so
the last message block mn/2+1 remains intact. Then query f−1

1 oracle on
(h1,n/2−1,mn/2+1) to get h1,n/2 such that

f1(h1,n/2,mn/2+1) = h1,n/2−1
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Query f−1
1 oracles 2n/2 times to get a set HS which contains 2n/2 values for

h1,n/2.
Step 4. At last, the output value of the f0 line should fall in the set HS accord-

ing to the figure of Zipper. Let C denote the event that the output value falls
in HS then Pr[C] = 1

2n/2 . After step 2, there are 2n/2 different messages for
choice and make the probability Pr[C] innegligible. If it is done, a second
pre-image is found.

In the first step, the target value for which a second pre-image will be found is
selected, in the second step, f∗ oracle is used to construct a collision at each
step, in the third step a sufficiently large set of chain values is constructed for
the next step and in the fourth step a matching in the set is found. It should
be noted that the second pre-image found in the attack above does not need to
be as long as the original message. Actually, the second pre-image attack and
the pre-image attack in this paper is only related to the final output value. The
following theorem gives the complexity of our second pre-image attack.

Theorem 2. The complexity of second pre-image attack for Liskov’s Zipper is
n+ (n

2 + 1)2n/2.

Proof. the proof is the same as the one for theorem 1.

It should be noted that we used a padding rule in the two attacks above. How-
ever, in [13], no padding rules are recommended. Actually it does not affect
the complexity of the two attacks whether a padding rule is used. We use the
padding rule just because it is needed in practice.

2.4 Security of Liskov’s Zipper under Multicollision Attack

The messages for Zipper can be regarded as M = m‖p(m), where p() is a permu-
tation, and in Zipper, p() reverses the order of original message blocks. Zipper
can be regarded as nested two hash functions such that

Z(IV,m) = H1(H0(IV,m), p(m))

where H0 denotes the hash function built on f0, H1 denotes the one built on
f1 and Z denotes a Zipper hash function. Hoch etc. proved that all schemes in
concatenated or nested way cannot resist multicollision attack [7]. The hash
functions discussed in [7] are usual MD hash functions whose compression func-
tions are random oracles. However, the compression functions in Liskov’s scheme
are weak compression functions, so the multicollision attack on Liskov’s scheme
is much easier than on the scheme which combines two usual MD hash functions.
In the following analysis, it is shown that the complexity to find 2t collisions for
H0 is only O(t) instead of O(t2n/2) if weak compression functions are used . Our
multicollision attack on Liskov’s scheme can be shown as follows.

Step 1. h1
$← {0, 1}n, query oracle f∗

0 on (IV, h1) to get a message pair (m1,m
′
1)

such that
f0(IV,m1) = f0(IV,m

′
1) = h1.
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Then for each i ∈ {2, 3, · · · , l − 1}, hi
$← {0, 1}n, query f∗

0 on (hi−1, hi) to
find a pair (mi,m

′
i) such that

f0(hi−1,mi) = f0(hi−1,m
′
i) = hi

After l − 1 steps, there are 2l−1 messages whose outputs are hl.
Step 2. For H1, divide the l−1 message blocks except the last block into 2(l−1)

n
groups each of which contains n

2 message blocks. According to the message
blocks found at step 1, there are 2n/2 different messages in each group. Then
a birthday attack can be implemented to find a collision for each group with
a high probability. Assuming 2(l−1)

n = t, then 2t collisions for H1 are found.

In the first step, 2l collisions are found for H0 and in the second step, those
message blocks found in the first step are divided into t groups to find 2t collisions
for H1. Figure 3 describes this attack in a more clear way.
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• • •2h lh
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Fig. 3. multicollision attack on Liskov’s Zipper

Theorem 3. The complexity to find 2t collisions for Liskov’s Zipper is O(t2n/2)
if 2(l−1)

n = t, where l is the amount of message blocks and n is the output length.

Proof. The complexity to find multicollision in step 1 is O(l) which is negligible.
The complexity to find a collision for each group in step 2 is O(2n/2) and there
are t such groups. It can be concluded that The complexity to find 2t collisions
is O(t2n/2).

The concatenation of any traditional MD hash function cannot resist multicol-
lision attack [7]. Liskov’s Zipper is weaker than the concatenation of two MD
hash functions. Moreover the analysis of the second pre-image attack and the
pre-image attack shows that Liskov’s Zipper as a hash function is a weaker hash
function than a MD hash function. However, Liskov’s Zipper can be used when
the message blocks are too few to implement our attacks. For example, Liskov’s
Zipper can be used to build an ideal compression function as follows:

f(hi−1,mi) = Z(IV, hi−1‖mi)

where hi−1 denotes the chain value, mi denotes a message block and Z denotes
a Liskov’s Zipper hash function.
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3 Implementation of Zipper Hash Function

Practicability is one of the most important aspects for a hash function. Without
considering the strength of compression functions, Zipper can be implemented
with all compression functions used in practice. It essentially requires two tra-
ditional compression functions, yet if the traditional compression functions are
employed, Zipper hash function will be slower than a MD hash function. How-
ever, the compression function used in Zipper can be a weak one, therefore, if
weak compression functions run faster than those stronger ones, the problem will
be well solved. In this paper, we focus on 64 PGV schemes [16]. PGV schemes
are compression functions based on block ciphers and firstly discussed by Pre-
neel etc. who focus on attacks on those schemes instead of the formal proofs.
They claimed that 12 of the 64 schemes are secure. Afterwards, Black etc. proved
the security of all PGV schemes in the black-box model and find that 20 of the
64 schemes are collision resistant and the others are not [2]. The 20 collision-
resistant schemes, however, need to schedule the keys for block ciphers at each
step because the keys for each step should be different. It is widely accepted that
scheduling keys at each step makes the hash functions base on block cipher slow.
Among the remaining 44 insecure schemes, some do not need to schedule the keys
at each step and they are faster than those stronger ones. We call these faster
compression functions highly efficient compression functions. These schemes are
listed in table 1. In table 1, E denotes a block cipher, ı and j denote respec-
tively the index in this paper and the corresponding index in Black’s paper, Y
and N denote whether the scheme can be used or cannot be used to implement
Zipper. Obviously, there is only one key for these scheme, so key schedule is not
necessary.

Liskov used weak compression functions to implement a Zipper hash func-
tion which is indifferentiable and collision resistant. In table 1, we find that the
weaker ones such as the first 7 schemes whose security is weaker than Liskov’s
compression functions cannot be used to implemented Zipper and the stronger
ones such as the 8-th scheme cannot either. Comparing the 8-th scheme with
Liskov’s weak compression function, it is obvious that the former is stronger.
For example, for a weak compression function f(x, y) = z, querying oracle f∗ on
(y, z), the oracle randomly returns a value x

′
such that f(x, y) = f(x

′
, y) = z.

It is impossible to find two different x and x
′
such that Ev(x)⊕ y = Ev(x

′
)⊕ y

if E is an ideal cipher.
For the 8-th scheme in table 1, its output is independent of the sequence of the

message blocks. If a MD hash function H is built on this compression function,
we have

H(IV, (m1,m2, · · · ,ml)) = H(IV, (mi1 ,mi2 , · · · ,mil
))

= Ev(m1)⊕ Ev(m2)⊕ · · · ⊕Ev(ml)⊕ IV
where {i1, i2, · · · , il} denotes a permutation on {1, 2, · · · , l}. If it is used to im-
plement Zipper, it is easy to find a collision. For example, m = (m1,m2, · · · ,ml)
and m

′
= (ml,ml−1, · · · ,m1) are two collision messages. The 9-th scheme and

the 10-th scheme are the same as the 8-th one.
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Table 1. Highly efficient compression functions

ı j hi = secure

1 4 Ev(mi) ⊕ v N

2 8 Ev(mi) ⊕ mi N

3 20 Ev(hi−1) ⊕ v N

4 28 Ev(hi) ⊕ hi−1 N

5 52 Ev(v) ⊕ v N

6 56 Ev(v) ⊕ mi N

7 60 Ev(v) ⊕ hi−1 N

8 12 Ev(mi) ⊕ hi−1 N

9 16 Ev(mi) ⊕ mi ⊕ hi−1 N

10 64 Ev(v) ⊕ mi ⊕ hi−1 N

11 24 Ev(hi−1) ⊕ mi Y

12 32 Ev(hi−1) ⊕ hi−1 ⊕ mi Y

13 36 Ev(hi−1 ⊕ mi) ⊕ v Y

14 40 Ev(hi−1 ⊕ mi) ⊕ mi Y

15 44 Ev(hi−1 ⊕ mi) ⊕ hi−1 Y

16 48 Ev(hi−1 ⊕ mi) ⊕ hi−1 ⊕ mi Y
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Fig. 4. Comparison between two compression functions

11 − 16 schemes in table 1 can be used to implement indifferentiable Zip-
per hash function which implies collision-resistant hash function. Black etc.
claimed that it is impossible to build a collision-resistant hash function with the
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highly efficient compression functions [1]. Actually it is impossible if the mes-
sages are processed only once by these highly efficient compression functions,
but in Zipper, the messages are processed twice. Zipper partly and positively
answers the question whether there are collision-resistant hash functions based
on highly efficient compression functions although the scheme is not sufficiently
efficient.

The speed comparison between the highly efficient compression functions and
the secure compression functions when they are used in Zipper structure is shown
in figure 4. We choose the 8-th scheme in the table as the highly efficient PGV
function and chooseEmi(hi−1)⊕hi−1 as the secure PGV function. Figure 4 shows
time cost of the two functions when the same message blocks are processed. It
is obvious that the weaker one is more efficient.

4 Conclusion

In this paper, we analyzed the security of Liskov’s Zipper as a hash function.
It is shown that the complexity of second pre-image and pre-image attack on
this scheme is O(2n/2) instead of the ideal one O(2n). Actually, Liskov’s scheme
can be indifferentiable from random oracle and it could be used to build ideal
compression functions when the input message blocks are too few to imple-
ment our attacks. The result in this paper does not contradict the properties of
Liskov’s Zipper, and shows that only indifferentiability is not sufficient to build
a secure hash function. On the other hand, Zipper is a good method to build
collision-resistant hash functions using weak compression functions. Since the
compression functions are weak, it should be more careful to implement Zip-
per. In this paper, we find that some compression functions whose security is
stronger than Liskov’s weak compression function cannot be used to implement
a Zipper hash function which is collision resistant and indifferentiable from ran-
dom oracle. Another defect of Zipper is its low efficiency. Compared with the
traditional MD method, Zipper has lower efficiency even employing highly effi-
cient compression functions. As a future research point, we focus on improving
the efficiency of Zipper. Another interesting future work is to find a weak com-
pression function to build a secure Zipper hash function where ’secure’ means
collision attack resistant, second pre-image attack resistant and pre-image attack
resistant.
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Abstract. The key separation principle for different modes of operation
of the block ciphers is a cryptographic folklore wisdom that states: One
should always use distinct keys for distinct algorithms and distinct modes
of operation. If this principle is violated, then there are generic attacks
that can recover the whole or a part of the encrypted messages. By the
advent of software packages and libraries that offer some or all modes of
operation of block ciphers, the violation of this principle is really possible
in practice. We show that under the same key, OFB mode of operation
is a special case of the CBC mode of operation, and that if CBC and
CTR modes of operation are interchangeably used under the same secret
key - then the security of the encryption process is seriously weakened.
Moreover in the chosen plaintext attack scenario with interchanged use
of CBC and OFB mode under the same key, we give a concrete list
of openssl commands that can extract the complete plaintext without
knowing the secret key.

Keywords: block ciphers, modes of operation, quasigroup string
transformations.

1 Introduction

Block cipher modes of operation were introduced to allow block ciphers to pro-
vide data confidentiality and/or authentication. In 1980, NIST (at that time
National Bureau of Standards) approved confidentiality modes of operations for
the DES block cipher [11]. Later, with the advent of new block ciphers such as the
AES, new modes needed to be developed and standardized. Several block cipher
modes of operation for confidentiality and/or authentication have been proposed:
Accumulated Block Chaining (ABC) by Knudsen [9], Rogaway’s Parallelizable
Authenticated Encryption (OCB) [16], Key Feedback Mode proposed by H̊astad
and Näslund [4], eXtended Ciphertext proposed by Gligor and Donescu, Block
Chaining (XCBC) schemes [3] and a parallelizable encryption mode with mes-
sage integrity by Jutla [8].
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As a result of an extensive public discussion (including two public workshops)
and vast number of suggestions and comments given by numerous cryptographers
and practitioners in the field, in 2001 NIST compiled the Special Publication
800-38A (SP800-38A in short) “Recommendation for Block Cipher Modes of
Operation” [13]. In this document NIST recommends and fully specifies five
modes of operation: Electronic Codebook (ECB), Cipher Block Chaining (CBC),
Cipher Feedback (CFB), Output Feedback (OFB), and Counter mode (CTR).

Wide international information security community, has also recognized the
importance of precisely defined modes of operations for the block ciphers. Thus,
in 1991 ISO/IEC adopted the first ISO/IEC 10116 standard [5] for modes of
operations of n-bit block cipher, and have updated the standard in 1997 [6] and
in 2006 [7]. The latest update from 2006 has the same five modes of operation
that are defined in the NIST SP-800-38A.

Both international standards thoroughly discuss the particular use and the
security concerns of all five modes. However, it is a very surprising fact that
they do not mention the security flaws that may occur if different modes of
operation are used interchangeably under the same encryption key, even though
the so-called Key Separation Principle is well known in the cryptographic
folklore. It states that One should always use distinct keys for distinct algorithms
and distinct modes of operation.

This principle is mentioned in two other NIST documents: NIST Special Pub-
lication 800-21 2005, “Guideline for Implementing Cryptography In the Federal
Government” and NIST Special Publication 800-57 2007, “Recommendation for
Key Management Part 1: General (Revised)” [14,15]. In the first document on
page 14 Sec. 3.3 the mentioning of this principle is like this: “Keys used for one
purpose shall not be used for other purposes. (See SP 800-57)”. In the second
document this principle is mentioned on page 44 Sec. 5.2 with the following
sentence: “In general, a single key should be used for only one purpose (e.g.,
encryption, authentication, key wrapping, random number generation, or digital
signatures)”. Further on in that section, it is stated that one of the reasons for
applying the key separation principle is that “Some uses of keys interfere with
each other”, but the interference is explained only by interchangeable use of one
key for key transport and digital signatures.

On the other hand in the ISO/IEC 10116 standard [7] there is just a brief
mentioning that: “How keys and starting variables are managed and distributed
is outside the scope of this International Standard”. However, the examples that
are given for the modes of operations in that standard are very misleading since
they are actually breaking the key separation principle and all examples that
explain different modes of operation use a same encryption key.

In the open literature there is no mentioning of possible interference between
modes of operation of the block ciphers when the keys are the same. While it is a
well known fact that keystream reuse within the same mode is insecure, (and the
SP8000-38A elaborates on this matter several times where the recommendations
of how to choose initial values for modes are given), it is perfectly possible
and allowed by the NIST and ISO/IEC recommendations for two modes to use
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the same secret key. Then, the following situation may emerge: a keystream
is produced for the first time in one of the modes of operation, and the same
keystream is produced by the other mode in form of a ciphertext (under the same
secret key). Thus, the request for not reusing a keystream within a particular
mode is certainly obeyed, but yet the same keystream has been produced by
another mode of operation. And this may cause complete or partial disclosure
of the plaintext because the principle of key separation has been violated.

Therefore, the key separation principle is essential and it must be included
in any forthcoming new updates of documents such as SP800-38A or ISO/IEC
10116. One possible short and elegant intervention in these documents would
be to use the following phrase for every mode of operation: “The key should be
secret and should be used exclusively for this mode of operation”. Additionally,
the examples in the ISO/IEC 10116 standard certainly should be changed to be
in a compliance with the key separation principle. Moreover, findings and claims
in this paper can be used as a technical support for addressing the key separation
principle in more detail than it is done in the key management documents SP800-
21, and SP800-57 [14,15] to avoid unnecessary risk of confidentiality violation.

It is natural to raise the question: “Is the interchanged use of several modes of
operation under the same secret key possible in practice?” We think it is possi-
ble. One scenario is software packages or libraries offering a set of block ciphers,
with the option to use the five standardized modes of operation (e.g. OpenSSL –
http://www.openssl.org/ or Crypto++ – http://www.cryptopp.com/). Ne-
glecting the problem may easily bring the users to the undesirable situation of
performing insecure communication.

As a formal framework for our results in this paper we use the algebraic
concept of quasigroup string transformations. We show that all the three modes
of operation, CBC, OFB and CTR can be represented as quasigroup string
transformations. Using these representations we observe that the OFB mode is
a special case of the more general CBC mode. This implies that software packages
that offer both CBC and OFB modes of operation, and yet fully comply with
the NIST or ISO/IEC recommendations, are insecure as the interplay between
the two modes opens up a scenario for a possible attack. We show that an
attacker without knowing the secret key can successfully extract parts or the
entire plaintext from the ciphertext. In addition, we describe a possible attack
on the CTR mode when it is used together with the CBC mode if they both
use the same secret key. We emphasize that the described scenario is allowed by
the NIST or ISO/IEC recommendations, but as the key separation principle is
not obeyed, the confidentiality property is broken without having any knowledge
about the secret key.

The organization of the paper is the following: In section 2 we give a short in-
troduction, some basic definitions and some properties of the quasigroup string
transformations. We also shortly describe the three modes of operations used
in the paper, CBC, OFB and CTR, and describe their representation as quasi-
group string transformations. In section 3 we give several scenarios in which the
attacker is able to extract the complete or partial plaintext without having any

http://www.openssl.org/
http://www.cryptopp.com/
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knowledge of the secret key. In addition, we list a concrete sequence of openssl
commands that results in breaking the OFB mode when used interchangeably
with CBC. Section 4 concludes the paper.

2 Basic Definitions

2.1 Quasigroup String Transformations

Here we give just a few definitions related to quasigroups and quasigroup string
transformations. A more detailed explanation can be found in [1,2,10,17].

Definition 1. A quasigroup (Q, ∗) is a groupoid satisfying the law

(∀u, v ∈ Q)(∃! x, y ∈ Q) u ∗ x = v & y ∗ u = v. (1)

Thus, if (Q, ∗) is a quasigroup, for each a, b ∈ Q there is a unique x ∈ Q such
that a ∗ x = b. ∗ induces an other binary operation on Q, called left parastrophe,
defined as x = a \∗ b iff a ∗ x = b. It is obvious that (Q, \∗) is a quasigroup and
that the algebra (Q, ∗, \∗) satisfies the identities

x \∗ (x ∗ y) = y, x ∗ (x \∗ y) = y. (2)

Definition 2. Let (Q, ·) and (Q, ∗) be two quasigroups with the same carrier.
Quasigroup (Q, ·) is autotopic to quasigroup (Q, ∗) iff there are bijections α, β, γ :
Q→ Q, such that γ(x·y) = α(x)∗β(y) for each x, y ∈ Q. Then the triple (α, β, γ)
is called an autotopism from (Q, ·) to (Q, ∗).
Note that if (Q, ·) is autotopic to quasigroup (Q, ∗) then the operation · is fully
defined by ∗ and the corresponding bijections (α, β, γ). As a consequence, both
quasigroups (Q, ·) and (Q, ∗) have the same algebraic properties. Sometimes
bijections α and β are interpreted as rows and columns rearrangements of the
multiplicative scheme of (Q, ∗) and the bijection γ is interpreted as a renaming
of elements of (Q, ∗) (see [17] p. 5).

Consider an alphabet (i.e., a finite set) Q. By Q+ we denote the set of all
nonempty words (i.e., finite strings) formed by the elements of Q. In this paper,
depending on the context, we use two notations for elements of Q+: a1a2 . . . an

and (a1, a2, . . . , an), where ai ∈ Q.

Definition 3. Let (Q, ∗) be a quasigroup and M = a1a2 . . . an ∈ Q+ For each
l ∈ Q we define two functions el,∗, dl,∗ : Q+ −→ Q+ as follows:

el,∗(M) = b1b2 . . . bn ⇐⇒ b1 = l ∗ a1, b2 = b1 ∗ a2, . . . , bn = bn−1 ∗ an,

dl,∗(M) = c1c2 . . . cn ⇐⇒ c1 = l ∗ a1, c2 = a1 ∗ a2, . . . , cn = an−1 ∗ an,

The functions el,∗ and dl,∗ are called a quasigroup string e–transformation
(or e–transformation for short) and a quasigroup string d–transformation (or
d–transformation for short) of Q+ based on the operation ∗ with leader l.
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a1 a2 . . . an−1 an

l b1 b2 . . . bn−1 bn
�

���
�

���
�

���
�

���
�

���� � � �

l a1 a2 . . . an−1 an

c1 c2 . . . cn−1 cn

� � � � �

� � � �

Fig. 1. Graphical representations of the el,∗ and dl,∗ transformations

Graphical representations of e–transformation and d–transformation are
shown in Fig. 1.

Using Definition 3 and the identities (2) it is easy to prove the following
theorem.

Theorem 1. If (Q, ∗) is a finite quasigroup, then el,∗ and dl,\∗ are mutually
inverse permutations of Q+, i.e.,

dl,\∗(el,∗(M)) = M = el,∗(dl,\∗(M))

for each leader l ∈ Q and for every string M ∈ Q+. 	


2.2 Representation of CBC, OFB and CTR Mode as Quasigroup
String Transformations

We will use the same terminology and notation as is defined in SP800-38A [13].

– The forward cipher function of the block cipher algorithm under the key K
applied to the data block X is denoted as CIPHK(X).

– The inverse cipher function of the block cipher algorithm under the key K
applied to the data block X is denoted as CIPH−1

K (X).
– The bitwise exclusive-OR of two bit strings X and Y of the same length is

denoted as X ⊕ Y .
– The plaintext will be denoted as a sequence of n blocks P = P1, P2, . . . , Pn−1,
Pn where every Pi has the length in bits that is characteristic for a particular
block cipher.

– The ciphertext will be denoted as a sequence of n blocks C = C1, C2, . . . ,
Cn−1, Cn where every Ci has the length in bits that is also characteristic for
a particular block cipher.

– The block size in bits is characteristic for each block cipher and will be
denoted with b. (For AES b = 128.)

– The key size in bits will be denoted with k. (For AES k = 128, 192, 256.)
– The string consisting of all zero bits will be denoted as 0.
– The set of all blocks of b bits will be denoted by Q = {0, 1}b.
Some modes of operation allow the last plaintext block Pn or the last cipher-

text block Cn to be of a smaller length than the block size, and in the NIST
publication they are denoted as P ∗

n and C∗
n. However, without a loss of gen-

erality concerning the security issues, throughout this paper we will apply the
ISO/IEC approach, namely we will assume that the last blocks of the plaintext
and ciphertext have exactly the length of the block size.
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Definition 4. Let K ∈ {0, 1}k. We define the following binary operation on
Q = {0, 1}b, for every A,B ∈ Q

A ∗K B ≡ CIPHK(A⊕B). (3)

In the sequel, we will omit the subscript K in ∗K if it is clear from the context
and any use of ∗ will refer to Definition 4 if not stated differently.

Theorem 2. (Q, ∗) is a commutative quasigroup for any key K.

Proof. The commutativity of the operation ∗ follows immediately from the com-
mutativity of the operation ⊕. Namely, for any chosen key K the following holds:

A ∗B = CIPHK(A⊕ B) = CIPHK(B ⊕A) = B ∗A.
Next, to prove that (Q, ∗) is a quasigroup, it is sufficient to show that the

equation A ∗ X = B (and similar for X ∗ A = B) has a unique solution on
X , for any A,B ∈ {0, 1}b. This follows directly from the fact that the block
cipher function CIPHK(·) is a bijection on {0, 1}b. Therefore, the equation
A ∗ X = B, which is equivalent to the equation CIPHK(A ⊕ X) = B, has
X = CIPH−1

K (B)⊕A as its unique solution. 	

Proposition 1. The operation CIPH−1

K (B)⊕A is the left parastrophe operation
that corresponds to the operation ∗K, that is:

A \∗K B ≡ CIPH−1
K (B)⊕A.

Proof. Again, we omit the subscript K on ∗. We have to prove that identities
(2) are satisfied. We have,

A\∗(A∗B) = CIPH−1
K (A∗B)⊕A = CIPH−1

K (CIPHK(A⊕B))⊕A = (A⊕B)⊕A = B,

and

A ∗ (A \∗ B) = A ∗ (CIPH−1
K (B) ⊕ A) = CIPHK(A ⊕ (CIPH−1

K (B) ⊕ A)) =

= CIPHK(CIPH−1(B)) = B. 	


Representation of the CBC mode. According to SP800-38A: “The Cipher
Block Chaining (CBC) mode is a confidentiality mode whose encryption process
features the combining (chaining) of the plaintext blocks with the previous ci-
phertext blocks. The CBC mode requires an initial vector IV to be combined
with the first plaintext block. The IV need not be secret, but it must be un-
predictable. Also, the integrity of the IV should be protected.” The CBC mode
encryption and decryption are defined in the following way:

CBC Encryption: Cj = CIPHK(Cj−1 ⊕ Pj), j = 1, . . . , n

CBC Decryption: Pj = CIPH−1
K (Cj)⊕ Cj−1, j = 1, . . . , n

where C0 = IV is the initial vector.
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Theorem 3. The encryption and decryption in the CBC mode of operation is
a pair of e and d quasigroup string transformations on Q = {0, 1}b defined as:

CBC Encryption: C = eIV,∗(P1, P2, . . . , Pn),

CBC Decryption: P = dIV,\∗(C1, C2, . . . , Cn),

Proof. It follows directly from the definition of the e–transformation and d–
transformation (Definition 3) by taking the initial vector IV as the leader in
both transformations. 	

Representation of the OFB mode. According to SP800-38A: “The Output
Feedback (OFB) mode is a confidentiality mode that features the iteration of
the forward cipher on an IV to generate a sequence of output blocks that are
exclusive-ORed with the plaintext to produce the ciphertext, and vice versa.
The OFB mode requires that the initial vector IV is a nonce, i.e., the IV must
be unique for each execution of the mode under the given key.” The OFB mode
is defined as follows (supposing that the plaintext has length that is a multiple
of the block size):

OFB Encryption: I1 = IV ;
Ij = Oj−1, for j = 2, . . . , n;
Oj = CIPHK(Ij), for j = 1, . . . , n;
Cj = Pj ⊕Oj , for j = 1, . . . , n;

OFB Decryption: I1 = IV ;
Ij = Oj−1, for j = 2, . . . , n;
Oj = CIPHK(Ij), for j = 1, . . . , n;
Pj = Cj ⊕Oj , for j = 1, . . . , n;

Note that in OFB mode the encryption of the plaintext is performed “stream
cipher style” by XORing blocks of plaintext with blocks of keystream bits. In
the sequel we will use the shorthand notation COFB = OFBK,IV,encrypt(P ) for
OFB encryption of plaintext P with key K and initial value IV .

Theorem 4. The encryption and decryption of the OFB mode of operation is
a pair of e and d quasigroup string transformations on Q = {0, 1}b given as:

OFB Encryption: C = eIV,∗(0)⊕ P,

OFB Decryption: P = eIV,∗(0)⊕ C,
Proof. From Definition 3, by performing an e–transformation with leader IV on
the string 0 we will obtain the corresponding values of the ciphertext C and the
plaintext P . 	

From the last theorem it is clear that the OFB mode is a special case of the
CBC mode. Namely, OFB encryption is indeed CBC encryption applied on the
zero string 0. This situation opens up several possibilities to define attacks with
chosen plaintext, that employ interchanged use of CBC and OFB modes of op-
eration. Such attacks are described in the next section.
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Representation of the CTR mode. According to SP800-38A: “The Counter
(CTR) mode is a confidentiality mode that features the application of the for-
ward cipher to a set of input blocks, called counters, to produce a sequence of
output blocks that are exclusive-ORed with the plaintext to produce the cipher-
text, and vice versa. The sequence of counters must have the property that each
block in the sequence is different from every other block. This condition is not
restricted to a single message: across all of the messages that are encrypted under
the given key, all of the counters must be distinct.” The counters for a given mes-
sage will be denoted T1, T2, . . . , Tn. Given a sequence of counters, T1, T2, . . . , Tn,
and supposing that the plaintext has length that is multiple of the block size,
the CTR mode is defined as:

CTR Encryption: Oj = CIPHK(Tj), for j = 1, . . . , n;
Cj = Pj ⊕Oj , for j = 1, . . . , n;

CTR Decryption: Oj = CIPHK(Tj), for j = 1, . . . , n;
Pj = Cj ⊕Oj , for j = 1, . . . , n;

Since for every block of a plaintext a new counter is required, the plaintext
may have the maximum length of 2b blocks, so n ≤ 2b. In the remainder, we
write CCTR = CTRK,T1,encrypt(P ) as a shorthand notation for CTR encryption
of plaintext P with key K and initial counter value T1.

Note that in the CTR mode the plaintext is encrypted by XORing each
plaintext block by the encryption of the counter that corresponds to the pro-
cessed block of the plaintext. As a consequence, the CTR encryption of plaintext
P = P1P2 . . . Pn with counters T1, T2, . . . , Tn can be written as

CTRK,T1,encrypt(P ) = (CTRK,Tj,encryp(Pj))j=1,...,n,

for Pj , Tj ∈ {0, 1}b, j = 1, . . . , n, n ≤ 2b.
One of the essential observations used to reason about the CTR mode in

terms of quasigroups is that the CTR encryption function produces exactly the
encryption of the counter if the zero string with length b-bits, 0, is taken as the
input plaintext.

Definition 5. We define function γ : Q → Q as γ(t) = CTRK,t,encrypt(0) for
every t ∈ Q = {0, 1}b.
Lemma 1. For every t ∈ Q = {0, 1}b, γ(t) = CIPHK(t).

Proof. It follows directly from the definitions of γ, CTR encryption and ⊕
operation. 	

Recall that the set of all b-bit blocks Q = {0, 1}b under the exclusive-OR oper-
ation forms a quasigroup, i.e. that (Q,⊕) is a quasigroup.

Theorem 5. The quasigroup (Q,⊕) is autotopic with the quasigroup (Q, ∗)
where the operation ∗ is defined by equation (3). The autotopism is (1Q,1Q, γ),
where 1Q is the identity map on Q, and γ is defined by Definition 5.
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Proof. For any x, y ∈ Q from Lemma 1 we obtain that:

γ(x⊕ y) = CIPHK(x⊕ y) = x ∗ y = 1Q(x) ∗ 1Q(y).

	

We illustrate the previous theorem with the following example.

Example 1. For the example we fix b = 4. Thus, Q = {0, 1, . . . , 15} where the
numbers 0, 1, . . . , 15 are represented as 4-bit nibbles. Let the encryption function
be given by the bijection CIPHK : Q→ Q:

CIPHK =
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
12 2 13 6 7 10 5 14 3 9 11 1 15 8 0 4

)
.

The quasigroups (Q,⊕) and (Q, ∗) are given in Table 1.

Table 1. Two autotopic quasigroups (Q,⊕) and (Q, ∗)
⊕ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

∗ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 2 13 6 7 10 5 14 3 9 11 1 15 8 0 4

1 2 12 6 13 10 7 14 5 9 3 1 11 8 15 4 0

2 13 6 12 2 5 14 7 10 11 1 3 9 0 4 15 8

3 6 13 2 12 14 5 10 7 1 11 9 3 4 0 8 15

4 7 10 5 14 12 2 13 6 15 8 0 4 3 9 11 1

5 10 7 14 5 2 12 6 13 8 15 4 0 9 3 1 11

6 5 14 7 10 13 6 12 2 0 4 15 8 11 1 3 9

7 14 5 10 7 6 13 2 12 4 0 8 15 1 11 9 3

8 3 9 11 1 15 8 0 4 12 2 13 6 7 10 5 14

9 9 3 1 11 8 15 4 0 2 12 6 13 10 7 14 5

10 11 1 3 9 0 4 15 8 13 6 12 2 5 14 7 10

11 1 11 9 3 4 0 8 15 6 13 2 12 14 5 10 7

12 15 8 0 4 3 9 11 1 7 10 5 14 12 2 13 6

13 8 15 4 0 9 3 1 11 10 7 14 5 2 12 6 13

14 0 4 15 8 11 1 3 9 5 14 7 10 13 6 12 2

15 4 0 8 15 1 11 9 3 14 5 10 7 6 13 2 12

Note that the bijection CIPHK : Q → Q appears as the first row of the
quasigroup (Q, ∗). Moreover, although the two quasigroups are different, since
they are autotopic, they have the same structure. For example, the main diagonal
in (Q,⊕) is filled with the element 0, while in the (Q, ∗) that element is 12, which
is encryption of 0. Actually, the autotopism is just element renaming, while the
structure remain the same. This property, and the fact that the quasigroup (Q, ∗)
is defined only by its first row will be used in the next sections for mounting
different attack scenarios when the same key is used interchangeably between
CBC and CTR.

3 Scenarios of Attacks with Chosen Plaintext on the
Interchanged Use of the CBC, OFB and CTR Modes
of Operation

From the definitions, properties and theorems in the previous section it is clear
that the following theorem holds.
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Theorem 6. Let K ∈ {0, 1}k be a secret key and let IV ∈ {0, 1}b be an initial
value. Let CCBC = eIV,∗(0) be a cipher text obtained by the encryption of the
plaintext PCBC = 0 in the CBC mode of encryption, with the secret key K
and initial value IV . Then, any ciphertext COFB obtained by the OFB mode
of operation with the same secret key K and the same initial value IV can be
decrypted simply by the operation

P = CCBC ⊕ COFB . 	


Recall that, as long as it appears as a nonce, the use of one IV under OFB mode
which has been used under CBC as well, complies with the NIST or ISO/IEC
recommendations.

(a) (b)

(c)

Fig. 2. Screen dumps for original, encrypted and extracted file

In the remainder of the section we will discuss four variants of a known plain-
text attack, where interchanged use of the CBC, OFB or CTR modes of op-
eration are performed, and where the requirements of the NIST or ISO/IEC
recommendations are adhered to.
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Attack 1 is just a step-wise application of Theorem 6.

Attack 1

Step 1. The attacker Eve knows1 the encryption of the string 0, i.e. she knows
CCBC = eIVCBC ,∗(0). She also knows the initial value IVCBC of the encryp-
tion, but does not know the secret key K.

Step 2. Alice and Bob possess the secret key K, and decide to perform a secure
communication using the OFB mode.

Step 3. Alice and Bob decide to use IVCBC as an initial value for the OFB
mode. According to the NIST recommendations, the use of IVCBC is allowed
since it has never been used in OFB mode before.

Step 4. Alice encrypts the plaintext P performing COFB =OFBK,IVCBC ,encrypt(P ).
Step 5. Eve extracts the plaintext without the knowledge of the secret key K

simply applying P = CCBC ⊕ COFB.

Example 2. With this example we demonstrate possibility of the Attack 1. to
occur in practice. We give a concrete set of openssl commands and the corre-
sponding screen dumps showing the effects of those commands.

We will use the aes-128-cbc and aes-128-ofb options of the “enc” command
in the openssl. For the purpose of this example we have prepared a short plaintext
file containing the song of Dire Straits, “Once Upon A Time In The West” from
the album “Communiqué” from 1979.

– The command “vi OnceUponATimeInTheWest.txt” displays the content of
the file and the screen dump of that operation is shown in Figure 2a.

– The command “dd if=/dev/zero of=zero.txt bs=4096 count=1024”
creates a file of length 4 MBytes all with zeroes.

– The command “openssl enc -aes-128-cbc -in zero.txt -out zero.bin
-K 01234567890123456789012345678901
-iv 0123456789abcdef0123456789abcdef -nopad” encrypts the file

zero.txt in CBC mode using key K and initial vector IV . This is the
part of the known plaintext attack done by Eve.

– The command “openssl enc -aes-128-ofb -in OnceUponATimeInTheWest.txt
- out EncryptedDoc.bin -K 01234567890123456789012345678901
-iv 0123456789abcdef0123456789abcdef -nopad” encrypts the file

OnceUponATimeInTheWest.txt in OFB mode with the same key and IV used
in the CBC encryption. The resulting ciphertext file is named EncryptedDoc.bin.

– By applying the command “vi EncryptedDoc.bin” the content of the en-
crypted file is displayed and the screen dump of that operation is shown in
Figure 2b.

1 There are a number of ways that a cryptanalyst can get knowledge about the en-
crypted version of a specifically formatted plaintext, e.g. by participating in crypt-
analytic challenge.
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– The command “./XORFiles zero.bin EncryptedDoc.bin Extracted.txt”
invokes a program that XORs two files and produces the third file. The
length of the produced file is same as the length of the smaller file. Note
that the command ./XORFiles is not a part of any operating system and it
should be specially prepared (programmed).

– By applying the command “vi Extracted.txt” we can see the content of
the file and see the extracted plaintext. The screen dump of that operation
is shown in Figure 2c. As expected, the file contains the original text from
OnceUponATimeInTheWest.txt file.

A variant of the Attack 1 can be launched even if the IVCBC is not used in
the OFB mode.

Attack 2

Step 1. The attacker Eve knows the encryption of the string 0, i.e. she knows
CCBC = eIVCBC ,∗(0). She does not know the secret key K.

Step 2. Alice and Bob possess the secret key K, and decide to perform a secure
communication using the OFB mode.

Step 3. They choose to use an IV that has never been used in any OFB session
before, but it happens that this IV is identical to a block of the ciphertext
CCBC that Eve possess. According to the NIST recommendations, the use
of such an IV is allowed since it has never been used in OFB mode.

Step 4. Alice encrypts the plaintext P performing COFB=OFBK,IV,encrypt(P ).
Step 5. Represented as concatenation of blocks, the ciphertext that Eve possess

looks like: CCBC = C1, . . . , Cj−1, IV, Cj+1, . . . , CN . She checks and finds out
that the used IV is a block of her ciphertext, thus she cuts the first part of the
ciphertext CCBC (the first part including IV) obtaining the string C′

CBC =
Cj+1, . . . , CN . She extracts the plaintext (all or parts of it) without having
any knowledge of the secret key K simply applying P = C′

CBC ⊕ COFB . If
the lengths of C′

CBC and COFB are different, then by convention, the output
of ⊕ operation will have a length that is equal to the smaller length of the
two input strings C′

CBC and COFB .

The third attack does not even require that the known plaintext have to
consist of all zeroes. Actually it is sufficient that the plaintext has many zero-
blocks i.e. is of the form: P = P1, . . . , Pi1−1,0i1 , . . . ,0i2 , Pi2+1, . . . Pi3−1, 0i3 , . . .,
0i4 , Pi4+1, . . ..

Attack 3

Step 1. The attacker Eve knows the encryption of the string P , i.e. she knows
CCBC = eIVCBC ,∗(P ) = C1, . . . Ci1−1,Ci1 , . . ., Ci2 , Ci2+1, . . . Ci3−1, Ci3 ,
. . ., Ci4 , Pi4+1, . . .. The parts of the ciphertext that are the result of the
CBC encryption of the zero-block parts are denoted in bold. Eve does not
know the secret key K.
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Step 2. Alice and Bob possess the secret key K, and decide to perform a secure
communication using the OFB mode.

Step 3. They chose to use an IV that has never been used in previous OFB
sessions, but it happens that this IV is a part of the ciphertext blocks Cj

that Eve possesses. According to the NIST recommendations, the use of such
an IV is allowed since it has never been used in OFB mode.

Step 4. Alice encrypts the plaintextM performingCOFB=OFBK,IV,encrypt(M).
Step 5. Similarly, as in the Attack 2, Eve extracts the part of the ciphertext

CCBC , Cj , that is identical to the used IV, and obtain the string C′
CBC . She

extracts the plaintext (all or parts of it) without the knowledge of the secret
key K simply by applying M = C′

CBC ⊕ COFB.

In the fourth attack there is no need for the known plaintext to have any
particular structure, i.e., it is just of the form: P = P1, . . . , PN .

Attack 4

Step 1. The attacker Eve knows the encryption of the string P , i.e. she knows
CCBC = eIVCBC ,∗(P ) = C1, . . . CN . Eve does not know the secret key K.

Step 2. Alice and Bob possess the secret key K, and decide to perform a se-
cure communication using the CTR mode. They chose to use a sequence of
counters T1, T2, . . . , Tn following the NIST recommendations.

Step 3. Eve also knows the values of the counters. She checks whether there
are values Ci−1 and Pi such that Ci−1 ⊕ Pi = Tj , for some i ∈ {1, . . . , N}
and for some j ∈ {1, . . . , n}.

Step 4. Alice encrypts the plaintext M = M1M2 . . .Mn performing CCTR =
CTRK,T1,encrypt(M).

Step 5. Eve extracts the part Mj of the plaintext that corresponds to the
counter Tj . As she has Ci−1 and Pi such that Ci−1 ⊕ Pi = Tj, she can
simply obtain the value of Mj as
Mj = CTRK,Tj ,encrypt(Mj)⊕ Ci = CTRK,Tj,encrypt(Mj)⊕ (Ci−1 ∗ Pi)

= CTRK,Tj ,encrypt(Mj)⊕ CIPHK(Ci−1 ⊕ Pi),
where the last equation holds due to Theorem 5.

4 Conclusions

In this paper we have represented two popular modes of operation of block
ciphers (CBC and OFB) as quasigroup string transformations, and also estab-
lished the relations between quasigroups and the CTR mode of operation. We
have shown that the OFB mode is a special case of the CBC mode of operation
where the encryption of a string of all zeroes is performed. We have also shown
that the quasigroup obtained by the CBC mode of operation is autotope with
the linear quasigroup of bitwise XOR-ing of b-bit words. From this, under the
assumption that the principle of key separation was not properly applied, we
have constructed several successful attacks.
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The attacks in question are not probabilistic, and does not go against the
cipher algorithms or their modes of operation as such. The underlying problem
is that the operating procedures do not properly address the key separation
principle in either of the two dominating standards referenced in this paper. In
fact, both standards have presented suggestions or examples that are suited to
mislead a prospective user/implementer of different modes of operation, even to
a degree where complete extraction of the plaintext without any knowledge of
the secret key can be made, and the implementation may still not be in violation
with either standard. From the formal point of view, in those attacks, the NIST
or ISO/IEC recommendations for the nature of IVs and counters were followed,
but still by employing these attacks we were able to reconstruct the plaintext
without having any knowledge of the secret key.

This highlights the necessity to urgently adopt and publish a new and more
detailed key separation principle both in the ISO/IEC 10116 standard and in
the NIST recommendations SP800-38A, SP800-21 and SP800-57.
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