
Agents Do It for Money - Accounting Features
in Agents

Jan Keiser, Benjamin Hirsch, and Sahin Albayrak

DAI-Labor, Technische Universität Berlin, Germany
{Jan.Keiser,Benjamin.Hirsch,Sahin.Albayrak}@dai-labor.de

Abstract. This paper presents a novel way of incorporating accounting
features into agents. Network management techniques and methods are
investigated and adopted to the agent case. We then use an example
to show how sophisticated accounting technologies can be used. The
example has been implemented using the JIAC platform.

1 Introduction

In [1], Jennings et al. famously coined the phrase Objects do it for free, agents do
it for money. While the authors aimed to highlight that agents are autonomous
and therefore can choose to refuse the provision of services, it can nowadays
also be taken quite literally. In fact, according to the AgentLink Roadmap [2],
agent based technology will become a mainstream technology in the next 10
– 15 years. This also includes the commercial use of agents. Currently, agents
are used in commercial settings, but mainly within a closed system, where all
the participating agents belong to the same owner. This however will almost
necessarily change, as agents become more mainstream, and more and more
pervasive network access does not pose roadblocks to using services over the
internet. However, the commercial use of agents within an open architecture can
be difficult because of the distributed nature of agents, as the provided service,
the amount of work being done, as well as the necessary interaction is difficult
to turn into an appropriate cost.

The aim of this work is to enable agents to function within commercial and
open settings while still staying in the agent concepts. In our view, this requires
agent systems to deal with (complex) management issues in general, and ac-
counting in particular. While “standard” approaches concerning accounting and
even communication (via e.g. webservices) are certainly an option, this would
lead to the solutions living outside the agent oriented concepts.

In this paper, we present a method to incorporate accounting features into
agents while staying within the agent paradigm, allowing us to not only mea-
sure usage of agents but also create complex tariff schemes. The accounting
features are based on a general management layer within the agent framework
that is adapted from network management technologies. In network manage-
ment, proved and tested techniques are used to control and manage network
nodes.

M. Dastani et al.(Eds.): ProMAS 2007, LNAI 4908, pp. 42–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Agents Do It for Money - Accounting Features in Agents 43

While we implemented the techniques in the agent framework JIAC (Java
Intelligent Agent Componentware), the proposed management structure as well
as the accounting features can be applied to other agent frameworks as well.

The rest of this paper is structured as follows. In the next section (Section 2),
we give an overview of management technologies in general and accounting meth-
ods and technologies in particular. Section 3 describes a high-level model of how
agents and management techniques can be combined. We then describe in de-
tail our generic accounting infrastructure which is embedded in this model in
Section 4. Before we go into implementation details, we give an overview over
the agent framework which we used to implement the concepts described in this
paper. We conclude and give an outlook in Section 5.

2 Enterprise Management

Most of today’s technologies for management concern the network layer, and are
based on OSI Management [3]. OSI stands for Open Systems Interconnection,
and has been the basis of standardisation efforts for connecting open systems [4].

OSI Management

OSI management supports the user as well as the provider of communication
services during planning, supervision, and control of system activity. This is
achieved by providing technologies to coordinate, distribute, and assign resources
within the communication network. We can distinguish between three areas of
OSI management, which are systems management, n-layer management, and
n-layer operations (also known as protocol management).

– Systems management includes vertical management activities that concerns
all seven OSI layers, and happens on the application level.

– N-layer-management details functions, services, and protocols for a given
layer N.

– N-layer-operations or protocol management concern techniques for monitor-
ing connections with the given layer.

The ISO working group solely defines management standards for the first cate-
gory, systems management. Here, different standardisation efforts exist, includ-
ing the specification of procedures that offer specific management aspects.

There are also a number of actual implementations of management technolo-
gies. Here, we want to introduce two of them, the second of which is fairly known
even outside enterprise network management.

TMN for telecommunication networks [5] is based on OSI management. It
distinguishes three layers, namely an information architecture, a functional ar-
chitecture, and a physical architecture. Each of the architectures is described
using functional groups, functional components, reference points, and interfaces.
TMN generally supposes a distinct network for the transmission of management
relevant data, though it does allow to use the managed network to transmit data
as well.



44 J. Keiser, B. Hirsch, and S. Albayrak

SNMP [6] is a well-known protocol for network management. While initially
designed as an interim protocol, it has established itself and is currently avail-
able in its third incarnation. It is based on four elements: a management station,
a management agent, a management information base, and a network man-
agement protocol. The first provides the user with management functionality,
while the agent is a purely passive element located in the different managed de-
vices. Manager and agent share a management information base which contains
information about resource administration. SNMP provides three functions to
interact, a namely get, set, and trap. The first two are for (manager initiated)
reading and manipulation of variables defined in the management information
base, while the last allows the managed entity to pro-actively send data to the
managing component. Communication is done via UDP, and is generally routed
over the managed network.

FCAPS

Management procedures are collected under the name FCAPS, which is an ab-
breviation for the five areas of management it covers.

Fault Management concerns all activities relating to the discovery, reaction, and
solution of faults. This includes the definition of classes of failures, monitoring
system behaviour, and the generation and transmission of failure-information.

Configuration Management details the identification, collection, control, provi-
sion, and execution of data which are important for the initialisation, execution,
and adaptation of the system.

Accounting Management deals with the evaluation of services as well as the
definition of rules governing accounting of (a combination of) those services.
Furthermore, processes and data required to do actual accounting, like customer
information and electronic bills are described. It should be noted that accounting
is a necessary requirement for any billing system. It provides information and
administration of communication, computing resources, storage space etc.

Performance Management or quality management concerns two areas. On the
one hand, we have the monitoring of performance parameters such as the num-
ber of messages received or sent, the amount of data transmitted, and reaction
times. Furthermore, it includes the possibility to configure monitored systems in
order to improve performance.

Security Management includes security technologies such as authentication, au-
thorisation, access control, and encryption, as well as the provision of security-
relevant information.

Accounting Management

Most research and development activities of accounting management exist un-
der the name AAA that is an abbreviation of authentication, authorisation and



Agents Do It for Money - Accounting Features in Agents 45

accounting. Accounting management contains the collection of resource con-
sumption data for the purposes of capacity and trend analysis, cost allocation,
auditing and billing [7]. This includes the measurement, rating and assignment
of the consumption data as well as the communication of these data between
appropriate parties.

Most of the proposals, specifications and solutions in the field of account-
ing management consider only the communication layer of applications (e.g.
data transfer and network access) or do not cover further aspects of accounting
such as charging. Simple accounting management architectures and protocols
are specified by ITU-T [8], IETF [7], OMG [9] and M3I [10,11]. Examples for
accounting attributes and record formats are ADIF [12] and IPDR [13].

3 Agents and Management

In the context of agents, accounting has to our knowledge not yet been im-
plemented in a general and re-usable fashion. As argued in the introduction
however it appears that, as agents move more towards open systems, metering
and accounting gains importance.

Rather than focussing on accounting alone and developing an accounting so-
lution from scratch, we base our work on the large body of work that has been
done within the network management community as detailed in the previous
section. In particular, we adopted the FCAPS management structure as a ba-
sis for our accounting implementation. We chose FCAPS for several reasons.
It is a thoroughly tested and established approach which is used widely. Also,
it allows us to extend our framework to provide not only accounting features
but potentially any of the other FCAPS areas such as failure or performance
management.

In the remainder of this section detail how we integrate management func-
tionality in agents. While we have implemented it within a particular agent
framework, we aimed at making the integration general enough to be applied to
most agent frameworks.

Figure 1 shows three layers which occur in a managed agent system. We focus
here on the functional aspects, and make no claim about the physical distribution
of those functionalities. However, most basic mechanisms are generally located
within the single agent. The layers describe on an abstract level the internal
structure of the agents (with respect to manageability), the basic management
techniques, and the abstract FCAPS management areas.

The lowest level details an agent architecture (e.g. a BDI architecture) which
is to be managed. This can be described in terms of communication, knowledge
management, execution, and events. Communication is of course an important
element of a multi-agent system, but is also important from the view of a sin-
gle agent. The low level technologies employed, as well as higher levels such as
ACL’s (e.g. FIPA ACL [14]) and protocols fall under that header. Knowledge
management details the internal state of the agent. Actual computation, manip-
ulation of knowledge, and the behaviour of the agent are based on an execution



46 J. Keiser, B. Hirsch, and S. Albayrak

Fig. 1. Three layer management architecture

engine. Lastly, agents have to have means to communicate changes in their state,
such as the sending and receiving of messages, invoked services, changes in the
knowledge base, plans, and goals etc. The event manager provides an interface
for management components to access those architecture specific events.

The next layer provides basic management mechanisms which build on the
lower level. It works as a wrapper between the management interfaces of the
used agent architecture and the higher-level management functions. Agent in-
trospection provides standardised information about the state of the agent in
terms of the four elements detailed above. Furthermore, the state of the agent
should not only be monitored, but techniques for the manipulation of the in-
ternal state have to be provided. This includes changing the knowledge base,
triggering events, adapting, adding or deleting goals, and changing the execu-
tion state of the agent. Also, abilities of the agent that refer to the infrastructure,
such as migration, termination of the agent, and the (de-) registering of services
(see FIPA Management [15]) have to be manageable. Lastly, any mechanisms
pertaining to persistence of the agent need to be available.

Layer three uses the basic management mechanisms offered in layer two in
order to provide value-added management functions such as fault, configuration,
accounting, performance, and security management as independent from the
actual agent framework as possible. In terms of agent based systems, this would
provide

– detection of faulty or abnormally behaving agents, and providing means to
evaluate and recover from errors occurring in the system;

– configuration mechanisms to adapt the system to new requirements, for ex-
ample by including new features, or replacing old versions of agents with
newer ones in an organised fashion by consideration of dependencies between
modules;

– metering of resources and mapping to services offered by agents, allowing for
a centralised account management and billing mechanisms [7];



Agents Do It for Money - Accounting Features in Agents 47

– quality control, reliability, load balancing mechanisms (possibly based on
information outside the actual agent system) and detection as well as elimi-
nation of bottlenecks;

– secure communication, public key infrastructures, access control for agent
services, and trust relationships between agents and communities (see e.g.
[16,17,18]).

There are two ways of realising above requirements and provide management
technologies to agent frameworks. The first would be to extend the agent frame-
work with one of the management technologies described above. For example,
agents could be extended by adding an SNMP component which provides and
manages data. This would also require the extension of management technologies
to include agent relevant information. Alternatively, one can use the technology
provided by agents themselves to manage the system instead of extending net-
work management mechanisms. Here, existing techniques (such as FIPA com-
munication) can be adapted to reflect management mechanisms.

We have chosen the latter approach, and base management extensions on
FIPA standards.1 This has the advantage of keeping a reasonably homogeneous
system, where the available technologies are used as far as possible. Also, the
nature of agents allows to for example provide management agents which monitor
a set of agents, and which themselves can take advantage of agent technologies
such as flexibility, robustness and intelligent behaviour. Last but not least the
managed agents may keep their level of autonomy, e.g. by allowing them to refuse
management requests which are in conflict to the own goals.

In order to really get a management framework which can be applied to dif-
ferent agent frameworks and which allows the interoperability between different
implementations of this abstract model, several additional requirements should
be met. Layer two mechanisms provide clearly defined services, use FIPA-ACL
as communication language, and support most of the popular content languages
(such as FIPA-SL, KIF[19], and RDF[20]). To this end, FIPA protocols are
used. The Monitoring services use the FIPA Subscribe Interaction Protocol in
order to provide information about events that occurred within the agent (push-
strategy), and the FIPA Query Interaction Protocol to get the current state of
(an element of) the specified agent (pull strategy). Agent control is provided us-
ing the FIPA Request Interaction Protocol, allowing to request specified actions
from the agent.

In order to further detach the actual agent framework from the FCAPS man-
agement layer, ontologies describing the state, events, and agent elements should
be standardised to allow inter-operability of different agents with the manage-
ment framework. It should be noted that the nature of different systems precludes
a set of events and actions that map to all possible events and actions. However,
there is a common subset of events that can be specified. For example, the FIPA
Abstract Architecture is used as basis for standardised events. Furthermore,
many agent frameworks employ some sort of BDI-like architecture, which again
should be abstracted to a set of events including the creation, modification, and
1 The specifications mentioned in this paper can be found at http://www.fipa.org

http://www.fipa.org


48 J. Keiser, B. Hirsch, and S. Albayrak

deletion of beliefs, goals, and plans. Last but not least, events concerning the
life cycle of agents need to be provided. This includes the actual change of an
agent’s life-cycle state, such as creation, deletion, and migration.

Having said that, it should also be noted that using agents to manage systems
can have serious implications on several levels. Most obviously perhaps, man-
agement mechanisms are also needed to control the system when the autonomy
of the agents leads to unpredictable and emergent behaviour that is in conflict
to the intrinsic intention. It seems counter-intuitive to employ agents (which can
behave unexpectedly) to control agents (though, by centralising and providing
means of control, this argument can be countered to a certain extend). Also,
management agents would be highly critical systems, and steps should be taken
to ensure that they can work as reliably and securely as possible.

4 Agents and Accounting

Now that we have detailed how agents and management technologies can be
combined, we describe how this theoretical approach can be applied in the con-
text of accounting. We do this first by providing a scenario which incorporates
accounting features. Using this, we will then describe the accounting architecture
and show how we implemented it in the agent framework JIAC.

4.1 Scenario

In order to make the issue a bit more touchable, we present the following scenario:
A small company provides the online game ”crazy eight”. Several users may

play against each other on virtual tables. Each table is represented by a game
master agent and each player is represented by a human player agent, which also
provides the user interface for the game and the online charge control. To pay for
playing games every registered user has chosen one of the provided tariffs and
decided to get information about the current account. A linear tariff based on the
duration of the game (e.g. one cent per 10 seconds) and a flat-rate (e.g. 20 cents
for a game) are available. The first tariff uses a charging function parameterised
by rate and period and a tariff scheme based on time events.

Additionally to these tariffs the company now wants to provide a new tariff
based on the played cards of the user without changing the implementation of
the game. To do so also the definition of a new tariff scheme is needed that is
based on the associated events.

At this point, we want to take a step back. Firstly, we observe that agents need
to have some sort of introspection, i.e. the ability to know about internals such
as service provisioning, resources consumed, time, and more. This data has to be
made available to other agents, or managing entities. Also, the other direction of
information flow is needed, i.e. the ability of outside agents (or managing entities)
to directly influence the behaviour of the agent, for example the accounting agent
telling the service provisioning agent to cancel the (executing) service if the credit
limit of the user is reached.



Agents Do It for Money - Accounting Features in Agents 49

4.2 Accounting Architecture

Figure 2 shows a generic accounting infrastructure while Figure 3 details the in-
teraction sequence that occurs in the example of Section 4.1. The user agent (e.g.
human player agent) requests application services (a card game service), which
are provided by the managed application provider (the game master agent). The
charging agents use the introspection services described in layer two of the man-
agement model to be informed about start and stop of application services. In
this case, during the initialization or negotiation phase after a charging agent has
received the information about the requested service, he uses a service of the user
management to get the profile of the application service and user. The service
profile contains a list of all supported tariffs or an empty list for non-commercial
services. The user profile contains the valid tariff (as contracted between cus-
tomer and provider) for the given service and user. Afterwards a service of the
tariff management gives the description of the tariff, which is related to a charg-
ing function to calculate the price.

Fig. 2. Roles and interactions during accounting management

Accordingly, also by using the introspection services provided by the applica-
tion provider the charging agent activates only the metering of events relevant
to the charging function of the tariff (e.g. playing a card realised by sending a
data speechact). If one of these events occurs during service provision (i.e. some
state on which the function depends changes) the current price will be calcu-
lated again. As a result of a changed price the accounting rules of the charging
agent may trigger actions, e.g. to stop the service or to inform the user about
the current price by using the manipulation services of the application provider.
If the application service stops, the metering will be deactivated and the final
charge will be calculated. The service provider also plays the role of a customer
if its application provider agents uses services of 3rd-party providers (see dashed
lines of Figure 2).



50 J. Keiser, B. Hirsch, and S. Albayrak

Fig. 3. Sequence chart of the card game scenario where a card-based tariff is chosen
and one card was played

By using the introspection and manipulation mechanism introduced in Sec-
tion 3, the provided services need not be re-implemented for accounting pur-
poses. Furthermore, the possible tariffs are not restricted to just a few bits of
information like service duration or number of access, which have to be decided
upon before bringing the service online. Instead, all events measurable by the
underlying agent framework may be used. Also the charging information about
used subservices of 3rd-party provider may be considered by the tariffs. Some
frameworks (including JIAC ) allow even to add new (measurement) components
to agents during run-time. It should be noted that in the case of service chaining
with a revenue sharing model a proper prediction of final charges is very difficult



Agents Do It for Money - Accounting Features in Agents 51

if the number of involved services becomes large and the used tariff schemes are
more complex.

4.3 Accounting in JIAC

We have implemented our accounting approach in and with the FIPA-compliant
agent framework JIAC [21,22]. In the following we will describe the characteris-
tics of this agent framework, before detailing the implementation of accounting.
Note that the implemented management features are partially used in numerous
projects [23,24].

JIAC consists of a run-time environment, a methodology, tools that support
the creation of agents, as well as numerous extensions, such as web-service-
connectivity, an owl-to-Jadl translator and more. An agent consists of a set of
components.

JIAC ’s component model allows to exchange, add, and remove components
during run-time. The components interact among each other by agent internal
messages. Standard components (which themselves can be exchanged as well) in-
clude a fact-base component, execution-component, rule-component, and more
[25]. These components provide individual messages to manage the appropri-
ate actions, e.g. the MonitorGoalMessage executed by the GoalBean allows to
subscribe for changes on the goal stack.

Agents are programmed using the language Jadl [26]. It is based on three-
valued predicate logic [27], thereby providing an open world semantics, and im-
plements an BDI approach. It comprises four main elements: plans elements,
goals, rules, ontologies, and services.

Communication is based on services. A service invocation consists of several
steps, and is based on a meta-protocol, an extension of the FIPA request protocol.
First, the agent contacts the Directory Facilitator (DF) in order to receive a list
of possible services that could fulfil the current goal. After selecting a service
and informing the DF, the agent receives a list of agents providing that service.
Now an optional negotiation protocol can be executed with which the actual
service provider is chosen. Only then is the actual service protocol executed. The
meta protocol handles service-independent elements like security, communication
failures, and other management-related issues.

Now we describe the JIAC -based implementation of the accounting archi-
tecture as part of a comprehensive management framework. Firstly, for layer
two of the management model (see Figure 1) we have implemented management
components providing an consistent interface (within the agent) to the bottom
layer components of the agent architecture described above. This agent internal
interface allows to register or deregister for events matching a specified pattern.
These matched events may be delivered immediately or at regular intervals. The
ontology shown in Figure 4 describes the structure of the managed JIAC -specific
events that need to be monitored for management functionality (e.g. accounting),
such as speech acts, facts, goals, and intentions.

The introspection and manipulation services makes the internal interface
available to other agents. We use priority mechanisms of JIAC to give the



52 J. Keiser, B. Hirsch, and S. Albayrak

Fig. 4. Extensible ontology for the management of JIAC-based agents

management related actions and messages a higher importance than the ap-
plication services. At the moment, we do not consider access controls, or levels
of autonomy. The managed agents always provide all management capabilities
if the managing agent is authorised. Restrictions of actions on specified agent
elements and the ensuring of consistency of management actions with own goals
are future work. Having said that, it should again be noted that the provision of
those interfaces does not mean that agents necessarily loose all their autonomy.
Instead, it is left to the programmer to decide which methods to employ, or how
to react to management requests.

Up to now, standards for the introspection or manipulation of agents do not
exist. But nevertheless to provide interoperability, we plan to implement the
services using the referred FIPA protocols as alternative to the currently used
JIAC meta-protocol. This includes conversion of the content between Jadl and
the standardised languages SL, KIF or RDF, and translations between the dif-
ferent management ontologies (e.g. between the JIAC -management and a more

Fig. 5. Ontology for the description of tariffs



Agents Do It for Money - Accounting Features in Agents 53

general BDI-management). As proof of concept, we have implemented services
for multi-agent infrastructure of the abstract model using FIPA protocols, con-
version of the content to SL and the ontology fipa-agent-management.

Based on these implementations we have realised parts of the management
areas described by the abstract model, such as the accounting infrastructure in-
troduced before. Also, applicable tools for the run-time administration of agents,
user management, and the management of accounting information, including the
creation of tariffs and tariff-schemata, were developed.

(act getSpeechactLinearPrice
(var ?usageId:string ?account:ServiceAccount ?tariff:Tariff)
...
(script

(var ?meteredEvents:class:java.util.HashMap ?events:Event[]
?amount:real ?money:Money ?parameter:LinearParameter
?base:real ?rate:real ?unit:int ?currency:string)

(seq
// get tariff parameters
(eval (att parameter ?tariff ?parameter))
(eval (att currency ?parameter ?currency))
(eval (att base ?parameter ?base))
(eval (att rate ?parameter ?rate))
(eval (att unit ?parameter ?unit))

// get measured events
(getEvents (var ?usageId ?meteredEvents))
(bind ?events (fun getEntry ?meteredEvents "SpeechactFilter"))

// calculate current charge based on number of events
(bind ?amount (fun Real.add ?base (fun Real.mul ?rate

(fun int2real (fun Int.div (fun getLength ?events)
?unit)))))

// update current charge
(bind ?money (obj Money (amount ?amount) (currency ?currency)))
(update (att price ?account ?money))

)
)

)

Fig. 6. Code example for a charging function based on speechact events and linear
parameter

In JIAC tariffs are described using the ontology shown in Figure 5. A tariff
contains a tariff scheme and parameters. To get highest possible flexibility to
define new tariffs, tariff schemes are described by a list of filters for metering
events (see ontology in Figure 4), and the corresponding charging functions are
implemented as plan elements (see example in Figure 6). Because expertise is
needed for the flexible definition of tariff schemes, we have introduced tariff pa-
rameters which enables non-expert service providers to easily adapt the tariffs.
In this example the attributes of the linear parameter are evaluated before read-
ing out the list of metered events that match the speechact filter specified in the
tariff scheme. Afterwards the charged amount is calculated based on the linear
parameter and the length of the event list. Finally, the account will be updated
with the new amount.



54 J. Keiser, B. Hirsch, and S. Albayrak

(obj ReceivedDataSpeechactFilter SpeechactFilter
(EventFilter.name "SpeechactFilter")
(EventFilter.role "de.dailab.management.accounting.role.ControlRole")
(action "received")
(detail "protocol")
(speechacts (obj SpeechactPattern (performative "data")))

)

Fig. 7. An example of a Speechact-Filter

An example of a filter is shown in Figure 7. Here, the speechacts are filtered
based on the performative “data” and the fact that they are received within a
service protocol.

5 Conclusion

In this paper we have described how advanced accounting mechanisms can be
incorporated into agent frameworks. Based on management technologies known
from networking, we have provided a general framework which allows agents to
measure, meter, and bill for services they provide. This grounding allows us to
for example extend the agent frameworks towards other FCAPS areas such as
performance or configuration management.

We have implemented the underlying framework and the accounting infras-
tructure within JIAC, and shown how accounting features can be used in agent
frameworks. As through the use of webservices and the internet in general open
systems are bound to be more and more pervasive, it becomes necessary for agent
frameworks to provide methods to deal with the commercial implications of pro-
viding services to outside entities (as opposed to having an agent framework that
in essence is a distributed application).

Future work includes restrictions of actions on specified agent elements, as well
as ensuring consistency of management actions with the goals of the managed
agents. The extension of the framework to include more FCAPS areas (such as
security and failure) is another direction of future work. It should be noted that
in the end, the different areas cannot be viewed separately as they are often
intertwined. For example, the issue of trust management and its implications
on accounting needs to be investigated in the context of security. Also service
level agreements and their enforcement are important issues that need to be
addressed.

References

1. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, 1, 275–306 (1998)

2. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology Roadmap
(2005)



Agents Do It for Money - Accounting Features in Agents 55

3. ITU-T: Information technology – Open Systems Interconnection – Systems man-
agement overview. ITU-T Recommendation X.701, ISO/IEC 10040 (1998)

4. ITU-T: Information Technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model. ITU-T Recommendation X.200, ISO/IEC 7498-1 (1994)

5. ITU-T: Principles for a Telecommunications Management Network. ITU-T Rec-
ommendation M.3010 (2000)

6. Case, J., Fedor, M., Schoffstall, M., Davin, J.: A Simple Network Management
Protocol (SNMP). In: RFC 1157, IETF (1990)

7. Aboba, B., Arkko, J., Harrington, D.: Introduction to Accounting Management.
In: RFC 2975, IETF (2000)

8. ITU-T: Information technology – open systems interconnection – systems man-
agement:usage metering function for accounting purposes. Technical report, ITU
Telecommunication Standardization Sector (1995)

9. OMG: Federated charging and rating facility. Technical report, Fraunhofer FOKUS
(2002)

10. M3I-Consortium: Charging and accounting system (cas) design. Technical report,
Market Managed Multi-service Internet Consortium, ETH Zürich (2000)

11. M3I-Consortium: Cas implementation. Technical report, Market Managed Multi-
service Internet Consortium, ETH Zürich (2001)

12. Aboba, B., Lidyard, D.: The accounting data interchange format (adif). Technical
report, IETF (2000)

13. IPDR: Network data management - usage: For ip-based service. Technical report,
IPDR Organisation (2001)

14. FIPA: FIPA ACL Message Structure Specification. FIPA Specification SC00061G
(2002)

15. FIPA: FIPA Agent Management Specification. FIPA Specification SC00023K
(2004)

16. Schmidt, T.: ASITA: Advanced Security Infrastructure for Multi-Agent-
Applications in the Telematic Area. PhD thesis, Technische Universität Berlin
(2002)

17. Bsufka, K.: Public Key Infrastrukturen in Agentenarchitekturen zur Realisierung
dienstbasierter Anwendungen. PhD thesis, Technische Universität Berlin (2006)

18. Bsufka, K., Holst, S., Schmidt, T.: Realization of an Agent-Based Certificate Au-
thority and Key Distribution Center. In: Albayrak, Ş. (ed.) IATA 1999. LNCS
(LNAI), vol. 1699, pp. 113–123. Springer, Heidelberg (1999)

19. Genesereth, M.R., Fikes, R.E.: Knowledge interchange format version 3.0 refer-
ence manual. Technical Report Logic-92-1, Stanford University, Computer Science
Department (1992)

20. Lassila, O., Swick, R.: Resource description framework (rdf) model and syntax
specification. Technical Report WD-rdf-syntax-971002, W3C (1999)

21. Fricke, S., Bsufka, K., Keiser, J., Schmidt, T., Sesseler, R., Albayrak, S.: Agent-
based Telematic Services and Telecom Applications. Communications of the
ACM 44(4), 43–48 (2001)

22. Sesseler, R., Albayrak, S.: Service-ware framework for developing 3g mobile ser-
vices. In: The Sixteenth International Symposium on Computer and Information
Sciences (2001)

23. Albayrak, S., Milosevic, D.: Generic intelligent personal information agent. In:
International Conference on Advances in Internet, Processing, Systems, and Inter-
disciplinary Research (2004)



56 J. Keiser, B. Hirsch, and S. Albayrak

24. Wohltorf, J., Cissée, R., Rieger, A.: BerlinTainment: An agent-based context-aware
entertainment planning system. IEEE Communications Magazine 43(6), 102–109
(2005)

25. Sesseler, R.: Eine modulare Architektur für dienstbasierte Interaktion zwischen
Agenten. PhD thesis, Technische Universität Berlin (2002)

26. Konnerth, T., Hirsch, B., Albayrak, S.: JADL – An Agent Description Language
for Smart Agents. In: Baldoni, M., Endriss, U. (eds.) DALT 2006. LNCS (LNAI),
vol. 4327, pp. 141–155. Springer, Heidelberg (2006)

27. Kleene, S.C.: Introduction to Metamathematics. Wolters-Noordhoff Publishing and
North-Holland Publishing Company (1971) (Written in 1953)


	Agents Do It for Money - Accounting Features in Agents
	Introduction
	Enterprise Management
	Agents and Management
	Agents and Accounting
	Scenario
	Accounting Architecture
	Accounting in $JIAC$

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




