
5 Dynamic current feedback control for fast 
torque impression in drive systems 

The current control loop plays a decisive role in a 3-phase drive system 
operated with field orientation. The design of the superimposed 
mechanical systems (speed and position control) wishes for an inner 
current control loop with ideal behaviour: With undelayed impression 
of the stator current. The assumption that the ideal current control can be 
modeled by a dead time simplifies fundamentally the control design for 
often weekly damped oscillating mechanical systems. 

Besides the dead time behaviour, which could be achieved by a design 
aimed at dead-beat response, the current controller also should ensure an 
ideal decoupling between the field and torque forming components isd and 
isq, because the two components are strongly coupled with each other in 
the field synchronous coordinate system. This problem was not solved 
convincingly with the classic concept (fig. 1.4). From the view of the 
modern control engineering the current process model of IM or PMSM 
represents a multivariable process – a MIMO1 process – which can be 
mastered only by a multivariable controller. The multivariable controller 
contains besides controllers in the main (direct) path also cross (decoupling) 
controllers, so that the difficulties of the decoupling are solved automatically 
with the controller design. 

An important task of the controller design consists in considering a 
number of implementation dependent issues in controller approach and 
feedback. With conventional PI controllers such issues are usually 
neglected. 
• The delay of the control variable output of typically one sampling 

period: The stator voltage calculated by the current controller can only 
have an effect in the next sampling period. 

• The technique of the actual-value measurement: After all, different 
possibilities like instant value measuring (by ADC) or integrating 
measuring (by VFC, resolver and incremental encoder) are considered. 

                                                      
1 MIMO: Multi-Input – Multi-Output 
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Like all control equipment, the inverter can realize only a limited 
control variable because of the fixed DC-link voltage. To avoid possible 
oscillations and wind-up effects caused by the implicit integrating part 
after entering or leaving output limitation (at start-up, speed reversals, 
magnetization, field weakening), the controller must have the ability to 
take the limitation of control variables into account effectively. 

After discussing the discrete system models in the former chapters, new 
controllers will now be introduced with uniform and easily comprehensible 
design and which fulfill all mentioned requirements. But before the 
controller design is discussed a survey about the existing current control 
methods shall be given. 

5.1 Survey about existing current control methods 

The interested reader will find an overview in abbreviated form also in 
[Quang 1990]. Altogether, the known methods can generally be divided 
into two groups: nonlinear and linear current controllers. 

 

 
Fig. 5.1 Stator current control with three separate hysteresis (bang-bang) 
controllers 

a) Nonlinear current control 
Controllers of this group can show two- or three-point behaviour. A 

special method is the intelligent predictive control which reacts to the 
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stator current vector leaving a predefined tolerance circle with a pre-
calculated optimal firing pulse and therefore has also two-point behaviour. 
The most simple version of a current controller with two-point behaviour 
is to use three separate on-off controllers, refer to [Peak 1982], [Pfaff 
1983], [Hofmann 1984], [Brod 1985], [Le-Huy 1986], [Malesani 1987] 
and [Kazmierkowski 1988]. The principle is shown in the figure 5.1. 
 

 
Fig. 5.2 On-off controller for phase currents in vector representation: Components 
of vector of current error (a), tolerance range of one phase (b) and tolerance 
hexagon of all three phases (c) 

The sinusoidal set points of the phase currents are obtained by 
coordinate transformation from the field synchronous set points. 
Depending on the sign of the current errors, the corresponding phase is 
switched to „+“ or „–“ potential of the DC-link voltage at exceeding of the 
permitted error. This control variant stands out by the simplicity of its 
technical realization and by its convincing dynamic properties, but the 
following backdrops also have to be mentioned: 
• The pulse frequency varies with changing fundamental frequency and 

load which is particularly unwanted. 
• With isolated motor star point the current error can reach the double of 

the tolerance band. 
• The control quality directly depends on analogous comparators which 

are sensitive to offset and drift and could therefore lead to a slight pre-
magnetization of motor or transformer. 
The figure 5.2a shows the reference vector of the stator current s

*i , the 
actual vector si  and the error vector si . The phase current differences 
are obtained by the projection of the error vector to the axes of the 
corresponding phase windings. Upon the actual current vector leaving the 
tolerance hexagon the comparators will become active. 
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Fig. 5.3 Block structure of the drive system with inner current control loop using 
two-point controllers in field synchronous coordinates 

The figure 5.3 shows the realization of the control with two-point 
behaviour in field synchronous coordinates (cf. [Pfaff 1983], [Nabae 
1985], [Rodriguez 1987] and [Kazmierkowski 1988]). The current error is 
calculated in field synchronous coordinates. The field angle provides the 
necessary address to find, depending on the control errors, the fitting pre-
defined pulse patterns. The figure 5.4 explains this. 

 

 
Fig. 5.4 Definition of the switching hysteresis in two-point current controllers in 
field synchronous coordinates 
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The actual error vector si  and the position of the coordinate system 
are shown in figure 5.4a. Following the definition in figure 5.4b the 
controller behaviour can be summarized as follows: 

, , , ,
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The values 1 and 0 are the logical values which are assigned to the 
voltages ,d qU± . Index “x” can assume one of the values 0...7 and 
represents the standard voltage vector to be selected. The projection of 

s s s= *i i i  to the axes dq like in the figure 5.4a yields: 
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Accordingly, a pulse pattern or a voltage vector has to be chosen whose 
d and q components minimize these control errors. In the example of 
figure 5.4 the choice u2 follows immediately. The assignment 

logical values and position of field synchronous coordinate system 
→ firing pulse 

was determined off-line beforehand and then stored in table form in 
EPROM. [Rodriguez 1987] shows concrete examples. 

To control the stator currents, also controllers with three-point 
behaviour may be used. In [Kazmierkowski 1988] details about this 
approach can be found which is illustrated in the figure 5.5. In this method 
the control errors εα and εβ of the stator current are obtained by projection 
of the error vector to the αβ axes of the stator-fixed coordinate system. 
The way to choose the required pulse pattern is similar as in the figure 5.3. 

 

 
Fig. 5.5 Three-point current controller in stator-fixed coordinate system 



148      Dynamic current feedback control in drive systems 

 
Fig. 5.6 Three-point current controller in field synchronous coordinate system 

[Kazmierkowski 1988] further introduced a structure with three-point 
controllers in the field synchronous coordinate system as shown in the 
figure 5.6. In principle this variant works exactly like the one in figure 5.3. 
The only difference between both versions consists in aiming at a higher 
precision by a finer division of the overall vector space (figure 5.7) into 24 
sectors, combined with three-point behaviour. The EPROM table 
containing the pulse patterns accordingly gets more extensive. In contrast, 
Rodriguez keeps the six original sectors (figure 5.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7 Division of the 
vector space into 24 
sectors 
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The most intelligent version in the family of the nonlinear current 
controllers is the predictive control (more in [Holtz 1983, 1985]). This 
control reacts (figure 5.8) on the actual current vector leaving the 
tolerance-circle by a predictive calculation of the following, optimized 
voltage vector. Therefore, it also shows two-point behaviour. The method 
can be used in field synchronous as well as in stator-fixed coordinates. The 
principle block structure is shown in the figure 5.9. 

 
 
 
 
 
 
 
 

Fig. 5.8 Tolerance-circle of the predictive 
current controller 

 
Fig. 5.9 Block structure of the predictive current control 

If the actual vector is overlaps the tolerance-circle at the time t0, the 
predictive controller must, using the information provided by the observer, 
• calculate all possible trajectories of the current vector (figure 5.10a) for 

each of the seven possible standard voltage vectors, and 
• following a certain criterion determine the optimal voltage vector for the 

chosen current trajectory. 
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Fig. 5.10 Possible current trajectories on output of all possible standard voltage 
vectors (a) and simplified equivalent circuit of the IM (b) 

The trajectories can be calculated as follows: 
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In the equation (5.1) the currents ( ) ( )0 0 and s st t*i i  are known. The 

numerical derivation of  produces s sd dt* *i i , and for calculation of sd dti  
the following equation is used: 

( ) ( ) ( )0s gs

s

k t td k
dt L

=u ui
    (5.2) 

with: 

The formula (5.2) follows from the figure 5.10b in which the stator 
resistance is neglected. The induced e.m.f. is calculated by a machine 
model in the observer. Depending on the chosen trajectory (k = 0, 1, ... , 7) 
the following error vector: 

( ) ( ) ( ), ,s s st k t t k= *i i i      (5.3) 
can be calculated. For a detailed derivation the interested reader is 

referred to the mentioned literature. Here only the final equation (5.4), 
which shows the different error trajectories (figure 5.10c) in dependency 
on the chosen voltage vectors, is given. 

0 0

             = 0, 1, ... , 7
       = one of the seven possible standard voltage vectors

 = the induced e.m.f. at instant 
           = leakage inductance on the stator side
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( ) ( ) ( ) ( )22 2
0 1 0 2 0,s st k t t a t t a t t= = + +i i   (5.4) 

The error trajectories have the form of a parabola. From the figures 
5.10a and 5.10c it can be seen, that the firing pulses corresponding to the 
voltage vectors 4 5 and u u  would increase the error, while all others would 
decrease it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.10c Possible 
current trajectories at 
instant t0 

But naturally only one of the five vectors u0,1,2,3,6 can be used. The 
choice is made according to one of the following criteria: 
1. For slow change of current (stationary operation): In this case the actual 

vector has to be kept within the tolerance circle as long as possible. In 
addition, the number of necessary switchovers of the semiconductor 
switches should be as small as possible. Therefore the following 
criterion is appropriate: 

( )
( )

max
t k

n k
=       (5.5) 

2. For fast change of current (dynamic operation): This case produces 
very fast changes of the set point vector s

*i , and it requires that the 
actual vector is follows the set point vector exactly and as fast as 
possible. us(k) will then be chosen according to the following criterion: 

( ) mint k =       (5.6) 
For the example in figure 5.10c, using the first criterion would result in 

choosing vectors u1 or u3, whereas the second criterion yields vector u6. 
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The predictive control is predominantly used in high power drives, 
where the assumption of a negligible stator resistance is fulfilled widely 
and where a very large rotor time constant allows the choice of a relatively 
large sampling period, what is necessary because of the extensive required 
calculations. 

The disadvantage of all nonlinear current control methods consists in the 
bad current impression in the area of inverter over-modulation, resulting in 
a certain orientation error and corresponding torque deviation. 

 
b) Linear current control 
Relevant references for this method are [Mayer 1988], [Meshkat 1984], 

[Rowan 1987] and [Seifert 1986]. The first classical version of linear 
current controllers was the application of three or two separate PI-
controllers to independently control the phase currents (see fig. 5.11). The 
sinusoidal output signals of the PI controllers would be forwarded to pulse 
width modulators (PWM) and compared with a sawtooth-shaped pulse 
sequence. The firing pulses are the immediate result of this comparison. 

 

 
Fig. 5.11 Phase current PI controllers with pulse width modulation 

The pulse width modulation was for long time the most widely used 
control method for inverters. Like all methods in stator-fixed coordinates, 
the control method shown in the figure 5.11 has the tracking error as a 
main disadvantage, because the PI controllers permanently have to work in 
dynamic operation due to the sinusoidal current set points. It was shown by 
[Rowan 1987] that an abrupt reduction of the PWM gain arises if the 
inverter control goes close to the maximum voltage amplitude (transition 
mode). This effect of the control variable limitation could not be taken into 
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account effectively with this control method. An essential improvement 
could be obtained by transforming the control algorithm into the field 
synchronous coordinate system (figure 1.4) in which the variables to be 
controlled represent DC quantities in stationary operation. 

This control version is very widely applied and possesses the following 
advantages: 

1. The precision is considerably higher because the controller does not 
have to work in dynamic operation, particularly the current phase 
error can be controlled to zero. 

2. The response near the transition mode is improved. 
3. The decoupling of the current components is improved, and therefore 

a higher accuracy of the field orientation is obtained. 
This method however still has a number of disadvantages which shall be 

mentioned here to motivate the development of improved algorithms in the 
following chapters. 

1. The response time (or the dynamics) of the control strongly depends 
on the stator leakage time constant. Therefore, a nearly undelayed 
current or torque impression as ideally required by the speed control 
loop is hardly achievable. 

2. The current components isd and isq are strongly coupled to each other 
in field synchronous coordinates. Can an adequate decoupling be 
ensured? 

3. Can the transfer characteristic of the current measuring technique 
actually used (measurement of instantaneous values, integrating 
measurement) be taken into account with this control concept 
effectively to guarantee a wide application range? 

4. Can the one-step delay of the control variable us, calculated by PI 
controllers, effectively be integrated into the control equations? 

5. How does the controller react to the control variable limitation, and 
can switching-off of the integral part (anti-reset wind up) be regarded 
as a sufficient method in the PI controllers? 

These questions will be answered in context with new designs of the 
current controller in this chapter. However, it has already to be highlighted 
that this variant represented a considerable progress to formerly applied 
methods. 

A last method shall be mentioned yet, being a mixture between a linear 
and nonlinear regulation. This is the method introduced in [Enjeti 1988] 
and [Zhang 1988] with current modulus and current phase control (fig. 
5.12a). The current modulus and current phase control loops are designed 
separately and have in principle linear characteristics. The decoupling of 
the two quantities, however, is of nonlinear nature. The references and the 
actual values are rectified and then compared with each other. The current 
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deviation is supplied to a PI controller. The phase angles are determined 
and compared with each other by phase detectors. The phase deviation has 
the form of a time interval during which a counter counts. The output of 
the A/D converter, following the PI modulus controller, and the output of 
the phase counter then build the address word for the corresponding 
switching pattern stored in a 64 Kbytes EPROM table. 

 
Fig. 5.12 Structure of the concept using current modulus and current phase control 
(a): the modulus control loop (b) and the phase or frequency control loop (c) 

This control concept is mainly used in current source inverters with the 
control system designed according to the signal diagrams shown in figure 
5.12b,c (see [Enjeti 1988]). 

 
c) Closing remark to the overview 
This chapter tried to give a summary of the known current control 

methods. Where possible, the functional principle was outlined. In 
connection with this, reference sources are included so that the possibility 
for background investigation is always ensured. 



Because of the wide variety of the known methods deviations to the 
originals are conceivable. The aim of this summary was not to deliver a 
complete analysis about all methods, but rather to give a stimulus for own 
study. 

5.2 Environmental conditions, closed loop transfer 
function and control approach 

The consideration of all environmental conditions is one of the most 
important tasks of the controller design. Before the controller approach 
itself is developed these conditions shall be discussed here. In addition, the 
final closed loop behaviour to be achieved shall also be outlined. 

 
a) Environmental conditions 
The first condition to be considered is the applied technique for 

capturing the actual-values of current and speed. Basically, two main 
techniques exist: The measurement of instantaneous values using A/D 
converters, and the integrating measurement using V/f converters for the 
current and incremental encoder or resolver for the speed. The difficulties 
connected to this were discussed extensively in the chapter 4, but how they 
influence the controller design will be subject of this chapter 5. 

The second environmental condition is the one-step delayed output of 
the control variable us of the current controller. This delay must be taken 
into account in the controller approach. 

The rotor flux of the IM is, in comparison to other electrical quantities, a 
slowly changing variable. The pole flux of the PMSM is constant. 
Therefore the fluxes can be looked at as disturbance variables and shall be 
accounted for in the controller approach separately. 

 
c) Closed loop response 
The closed loop response is the intended transfer behaviour of the 

controlled system. In the case of the stator current controller, it is 
characterized by the following properties: 

1. The step rise time, characterizing the control dynamics, and 
2. the decoupling between the components in steady-state and dynamic 

operation. 
The ideal dynamic behaviour can be achieved by the so-called dead beat 

response which means that the actual value will match the reference value 
after one sampling period, or, if the one-step delay of the control output is 
taken into account, after two sampling periods. Considering that for some 
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systems working with very short sampling times (e.g. T = 100μs) this rise 
time of 2×100μs would be too small from the viewpoint of the required 
energy to drive the current, a rise time of 3×100μs or 4×100μs (meaning 
after three or four periods) could be more useful in these cases. The 
dynamics does not become worse because a rise time of 300μs or 400μs 
(still much smaller then 1ms) can only be wished for with conventional PI 
controllers. To be able to express the demanded behaviour in general terms 
we start from a closed loop response with n sampling periods (figure 5.13) 
for the SISO process. 

 
 
 
 
 

Fig. 5.13 Set point 
signal and its response 
of a SISO process 
controlled with dead-
beat behaviour 

The discrete control by means of micro computer allows for an exact 
tracking of the actual value so that it can reach the set point after n 
sampling periods exactly and without overshots. Such a controller is 
conceived, as well known, for finite adjustment time (FAT response). 
Considering the one-step delay of the control variable the FAT will then be 
exact (n+1) periods. Therefore, the approach for the output signal can be 
written in the z domain as follows (figure 5.13): 
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With z < 1 it can be obtained: 
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If a step change of the set point 

( ) 1
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1
s z

z
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is considered as characteristical excitation signal the general transfer 
function is obtained as: 
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for the controlled SISO process with FAT response (figure 5.13). 
The closed loop response of the vectorial stator current control is obtained 
from equation (5.10) to: 

( ) ( ) ( ) ( )1 1

1

11
n

n
s sz z z z z

n
+

=
= + *i i   (5.11) 

The closed loop response (5.11) means, 
1. that the dynamic as well as the static decoupling between the current 

components isd and isq will be guaranteed, because the transfer matrix 
is the unity matrix or a diagonal matrix respectively, and 

2. that the FAT response with FAT = (n+1) sampling periods will result 
for the decoupled current components. 

It will be shown later that a FAT response with a higher step number is 
always connected with a complete change of the controller structure or 
with an increased computing time. It is therefore impractical to increase 
the number of steps exaggeratedly. The investigation has shown that a 
FAT response with FAT = 2, 3 or 4 periods, referring to the computation 
effort which must be handled during a very short sampling period (e.g. 
100...200μs), would be realistic and practicable. Therefore, only controller 
designs for these three cases are offered later on. The reference transfer 
functions or the closed loop response are obtained as follows for: 

 
1. n=1: FAT = n+1 = 2 (dead beat behaviour) 

( ) ( )2
s sz z z= *i i       (5.12) 

2. n=2: FAT = n+1 = 3 

( ) ( ) ( )2 31
2s sz z z z= + *i i      (5.13) 

3. n=3: FAT = n+1 = 4 

( ) ( ) ( )2 3 41
3s sz z z z z= + + *i i     (5.14) 

c)  Controller approach 
It was tried in the subchapter 3.5 to agree on a common representation 

for the current control processes for IM and PMSM, resulting in the 
general process models (3.86) or (3.87) and the block structure in the 
figure 3.16. The equations represent the control process both in the field 
synchronous and in the stator fixed coordinate system. They are repeated 
here in favor of a better overview. 
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( ) ( ) ( ) ( )1s s sk k k k+ = + +i i Hu h    (5.15) 
In z domain: 

( ) ( ) ( ) ( )s s sz z z z z= + +i i Hu h     (5.16) 
Using these equations the controller design shall be carried out first in 

general and then applied for concrete cases. Under the assumption that y is 
the actual controller output quantity the following general controller 
approach arises. 

( ) ( ) ( )
( ) ( ) ( )

1

1

1   or

1 1

s
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k k k

=

+ = +

u H y h

u H y h
    (5.17) 

The term y(k-1) takes into account by the time shift (k-1), that in the 
current calculation the value of the controller output quantity y calculated 
in the period before is used. With that the one-step delayed output of the 
control variable is included in the approach. The 2nd term with ( )kh  
compensates the flux dependent part. After inserting equation (5.17) into 
the equation (5.15) this immediately becomes recognizable, and the 
compensated general current process model (5.18) arises for the IM as well 
as the PMSM: 

( ) ( ) ( )1 1s sk k k+ = +i i y     (5.18) 
In the z domain the following equation holds: 

[ ] ( ) ( )1
sz z z z=I i y      (5.19) 

The figure 5.14 illustrates the compensated current process model which 
serves as a starting point subsequently for all controller designs. In the 
following the methodical procedure will always be to address the general 
design first. After that the design will be specified to the concrete case: IM 
or PMSM, in field synchronous or in stator fixed coordinates. For this 
purpose the designs are always represented both in the form of equations 
and by circuit diagrams so that programming will be made easier. 

 

 
Fig. 5.14 General compensated current process model of the IM and PMSM 
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5.3 Design of a current vector controller with dead-beat 
behaviour 

The designs in this chapter were introduced repeatedly in different 
papers [Quang 1991, 1993 and 1996]. 

5.3.1 Design of a current vector controller with dead-beat 
behaviour with instantaneous value measurement of the 
current actual-values 

The figure 5.15 shows the principle block structure of the current vector 
controller with instantaneous value measurement for the example of the 
measuring strategy in figure 4.1. The controller equation is for this case: 

( ) ( ) ( )s sz z z= *
Iy R i i      (5.20) 

( ) = Refer ence or  set poin t vector  of the cu r r en ts z*i  
After substituting equation (5.20) into the equation (5.19) the following 

transfer function of the current controlled IM or PMSM can be obtained: 

( ) ( )
11 1

s sz z z z z= + *
I Ii I R R i    (5.21) 

The approach (5.12) is valid for the closed loop response and 
respectively for the reference transfer function. The equation (5.12) will be 
identical with (5.21), if the following equation holds for RI: 

1

21
z
z

=I
IR       (5.22) 

The transfer function (5.12) illustrates by the diagonal matrix whose 
elements are z-2 a both statically and dynamically good decoupling 
between the current components. The controller RI (5.22) in figure 5.15 
shows that a decoupling network in the classical presentation (figure 1.4) 
can be abandoned. 

 
Fig. 5.15 Block structure of the current vector controller for IM or PMSM 
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With the current control error: 
( ) ( ) ( )w s sz z z= *x i i      (5.23) 

it will be obtained: 
( ) ( )wz z= Iy R x       (5.24) 

In the time domain the following controller equation results from 
equation (5.22): 

( ) ( ) ( ) ( )1 2w wk k k k= +y x x y    (5.25) 
After inserting equation (5.25) into the equation (5.17) the control 

variable and respectively the stator voltage, which must be applied on the 
motor by the vector modulation, is obtained. 

( ) ( ) ( ) ( ) ( )11 1 2 1s w wk k k k k+ = + +u H x x y h  (5.26) 

With the equation (5.26) the design is complete. Two notes, however, 
are still necessary here. 

1. The estimated rotor flux ( )1k +  (by equations 3.51, 3.55; in detail 
cf. subchapter 4.4) is used to compensate its disturbance effect. It is 
constant in the constant flux area and perhaps can be neglected in the 
practical implementation. The implicit I part in the controller is able 
to compensate for the missing flux compensation. However, the 
slowly variable flux in the field weakening area is exposed to 
permanent changes. It is therefore more advantageous to include the 
compensation into the equation (5.26). 

2. The voltage or the control variable us will be calculated by processing 
the equation (5.26) always one sampling period ahead. With that the 
delay of the control variable us by one sampling period is taken into 
account. 

 
a) Use of the controller for the IM in field synchronous coordinates 
To be able to use the design (5.22) and respectively the equation (5.26), 

the following matrix elements must be replaced corresponding to the 
models derived in chapter 3: 

11 1 12by ,  by  and  by f f fH H h  
From equation (3.54) it will be obtained: 
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If the matrix elements from (5.27), (5.28) and (5.29) are used in the 
equation (5.26) now, the following controller equations will be obtained 
considering that the cross component rq  of the rotor flux is zero because 
of an exact field orientation: 
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 (5.30) 

Because of the necessary storage of the temporary variable y through 
several sampling periods a direct programming of the equation (5.30) is 
impractical. The following sequence is more advantageous: 

1. Calculation of the vector y(k) using (5.25): 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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 (5.31) 
2. Then calculation of the stator voltage using (5.17): 
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+ = +

+ = + +
   (5.32) 

Now the equations (5.31) and (5.32) can be used for programming 
provided that the axis-related deviations xwd, xwq, and the accumulated 
quantity y still must be corrected at stator voltage limitation to avoid 
instabilities. The subchapter 5.5 will deal with the problem of the control 
variable limitation later in detail. 
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b) Use of the controller for the IM in stator-fixed coordinates 
, H and h are replaced by 11 1 12,  and s s sH  from the equation (3.50): 

11
11

11

1 11 0
0

0 1 10 1

s rs

s r

T
T T

T
T T

+
= =

+
 (5.33) 

13 14
12

14 13

1 1

1 1
rs

r

T T
T

TT
T

= =    (5.34) 

11
1

11

0
0

0 0

ss

s

T
Lh

h T
L

= =H     (5.35) 

If the matrix elements of (5.33), (5.34) and (5.35) are inserted into the 
equation (5.26), then the following voltage components in αβ coordinates 
will be obtained. 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
11 11

/ /
13 14

1
11 11

/ /
14 13

1 1 2

1 1

1 1 2

1 1

s w w

r r

s w w

r r

u k h x k x k y k

k k

u k h x k x k y k

k k

+ = +

+ +

+ = +

+ + +

 (5.36) 

The next steps are again useful to support programming: 
 
1. Calculation of the vector y(k) according to (5.25): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11

11

1 2

1 2
w w

w w

y k x k x k y k

y k x k x k y k

= +

= +
  (5.37) 

2. Then the calculation of the voltage using (5.17): 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 / /
11 13 14

1 / /
11 14 13

1 1 1

1 1 1

s r r

s r r

u k h y k k k

u k h y k k k

+ = + +

+ = + + +
 (5.38) 
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c) Use of the controller for the PMSM in field synchronous coordinates 
Instead of , H and h, the matrices ,  and f f

SM SMH h  from equations 
(3.71) and (3.72) are used for the PMSM: 

11 12

21 22

1

1

sq
s

sd sdf
SM

sd
s

sq sq

LT T
T L

L TT
L T

= =    (5.39) 

11

22 2

0 0
0 0

;
0 0

sdf
sSM

sq
sq

T
Lh

T
Th hL

L

= = = =H h   (5.40) 

After replacing the matrix elements of (5.39), (5.40), the dq components 
of the stator voltage result to: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
11 11 12

1
22 21 22 2

1 1 1 2

1 1 1 2

sd wd wd wq d

sq wq wd wq q p

u k h x k x k x k y k

u k h x k x k x k y k h

+ = +

+ = +
 

(5.41) 
and the following programming equations will be obtained: 
 
1. y(k) is calculated by using (5.25): 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

11 12

21 22

1 1 2

1 1 2
d wd wd wq d

q wq wd wq q

y k x k x k x k y k

y k x k x k x k y k

= +

= +
(5.42) 

2. then the voltage calculation using (5.17) follows: 
( ) ( )
( ) ( )

1
11

1
22 2

1

1
sd d

sq q p

u k h y k

u k h y k h

+ =

+ =
    (5.43) 

5.3.2 Design of a current vector controller with dead-beat 
behaviour for integrating measurement of the current 
actual-values 

In principle the process equations (5.18) and (5.19) are only valid for 
processes with instantaneous value measurement of the current values. In 
case of an integrating measurement (cf. subchapter 4.1) the measuring 
equipment is modeled by using the averaging function: 
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( ) ( ) ( )1 1
2

M
s s sk k k= +i i i      (5.44) 

r aised  ind ex M: aver age valu e  

and the result ( )M
s ki  is available for the control as actual value of the 

stator current. The final process equation in case of integrating 
measurement results from (5.44) by using (5.18): 

( ) ( ) ( ) ( )11 1 2
2

M M
s sk k k k+ = + +i i y y   (5.45) 

and in the z domain: 

[ ] ( ) ( )1 21
2

M
sz z z z z= +I i y     (5.46) 

 

 
Fig. 5.16 Block structure of the current vector controller for IM or PMSM with 
integrating measurement 

The controller equation starts from: 
( ) ( ) ( )M

s sz z z= *
Iy R i i      (5.47) 

After eliminating y(z) in (5.46) and (5.47) we obtain the transfer 
function: 

( ) ( ) ( ) ( )
1

1 2 1 21 1
2 2

M
s sz z z z z z z= + + + *

I Ii I R R i  (5.48) 

The approach for the closed loop response and respectively the 
reference transfer function is: 

( ) ( ) ( )2 31
2

M
s sz z z z= + *i i      (5.49) 
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This is equivalent to a dead beat response. The equations (5.48) and 
(5.49) are identical, if the following controller is chosen: 

( )
1

2 311
2

z

z z
=

+
I

IR      (5.50) 

The equation (5.50) looks as follows in the time domain: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 2 3
2w w

M
w s s

k k k k k

k k k

= + +

= *

y x x y y

x i i
 (5.51) 

The derivation of the equations for the controller application in figure 
5.16 can similarly be carried out – for the cases IM or PMSM, in field 
synchronous or stator fixed coordinates – like in the subchapter 5.3.1. For 
the problem of the control variable limitation it is again referred to the 
subchapter 5.5. 

5.3.3 Design of a current vector controller with finite 
adjustment time 

The controllers introduced in this chapter are derived like in chapter 
5.3.1 from the common theoretical approach (5.11) for the closed loop 
response. 

It was shown repeatedly in the literature references mentioned at the 
beginning of the subchapter 5.3 that the fastest dynamics can be achieved 
by a dead beat design. This approach provides a virtually undelayed torque 
impression which is particularly advantageous for the conception of 
superimposed control loops for mechanical systems (speed, position). Step 
response times of under 1 ms were reached. The application of fast 
microprocessors (digital signal processors, high performance 
microcontrollers) and the tendency toward higher pulse frequencies (10-
kHz and more) however result in yet faster sampling of the current control 
(T = 100...200 μs). If the current control was prepared for dead beat 
behaviour, the inverter could not produce the voltage over time areas 
necessary to drive the required current step amplitudes (at dynamic 
processes like magnetization, start up or speed reversal) within the very 
short demanded rise times of 2×100μs ... 2×200μs = 200...400μs. This is 
extremely critical for inverters with small control reserve (low DC link 
voltage). It becomes critical as well if the drive is operated at the voltage 
limit and dynamic processes (e.g. speed reversal out of the field weakening 
range) take place simultaneously. Preferably, at these small sampling times 
and with fast processors like DSP's the current control is not adjusted to 
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dead beat response any more, but to FAT behaviour with more than 2 steps 
response time. As indicated in the section 5.2 it would be realistic to 
realize the FAT behaviour with 3 or 4 sampling steps. 

For instantaneous value measuring of the stator currents the transfer 
function (5.21) results for the current-controlled IM in dq coordinates. The 
reference transfer functions for the recommended step number are given in 
(5.13) and (5.14). The equation (5.21) is identical with either (5.13) or 
(5.14), if for: 

 
1. n=2 (FAT = n+1 = 3) the following controller: 

( )
( )

1 1

2 3

11
12 1
2

z z

z z

+
=

+
I

I
R , and    (5.52) 

2. n=3 (FAT = n+1 = 4) the following controller: 

( )
( )

1 2 1

2 3 4

11
13 1
3

z z z

z z z

+ +
=

+ +
I

I
R     (5.53) 

is valid. The controller designs (5.52) and (5.53) can be used – 
regarding the available processing capacity – almost without problems by 
application of digital signal processors with a sampling period of 100 μs, 
including necessary functions like the vector modulation, the coordinate 
transformation, the flux model or flux observer and the feedback value 
processing. The outlined design was carried out assuming an instantaneous 
value measurement of the stator current. 

The current driving voltage over time area is – in comparison with the 
dead beat design – the same, but distributed over several steps. With that 
the control voltage us rarely goes into the limitation. This property is seen 
as an important advantage, especially for inverters with small control 
reserve (low DC voltage). This also takes effect particularly if the inverter 
is operated at the limits of the control reserve (e.g. in the field weakening 
area or at full load). The system stability is fundamentally improved while 
entering into and recovering from limitation. 
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5.4 Design of a current state space controller with dead 
beat behaviour 

The main advantage of the current vector regulators introduced in the 
chapters 5.3.1 and 5.3.3 is primarily the practically proven ruggedness 
when applied to machines whose data are known only inaccurately or 
calculated only from the name plate. This chapter on the other hand 
introduces a design in the state space which can produce superior qualities 
with respect to smooth running and dynamical or decoupling behaviour at 
higher stator frequencies if exact machine data are available. This allows 
the particularly advantageous use of the new controller, called the current 
state controller from now on (figure 5.17), in precision drives. 
 

 
Fig. 5.17 Block structure of the current state controller with pre-filter matrix V 
and feedback matrix K 

The design starts out as usual from the general approach (5.17) and from 
the compensated process model (5.18) or (5.19). The controller equation 
can be written in the z domain as: 

( ) ( ) ( )s sz z z= *y V i K i      (5.54) 
The equation of the closed loop system is obtained after inserting the 

equation (5.54) into (5.19): 

( ) ( ) ( )1 1
s sz z z z z= *I K i V i     (5.55) 

Using equation (5.55), the state controller can be designed now, and 
it has to be noticed that 

1. the feedback matrix K changes the pole positions of the closed loop 
system, and is therefore decisive for dynamics and stability. With 
that, different design strategies, such as the design 
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• on dead beat behaviour or 
• on well damped characteristic, can be derived, and 

2. the pre-filter matrix V serves the adjustment of the demanded 
working point, and therefore is responsible for the stationary transfer 
characteristic. 

This means with respect to the decoupling between the torque and flux 
forming current components that K determines the dynamic and V the 
static decoupling properties. 

5.4.1 Feedback matrix K 

By using (5.55) the characteristic equation of the closed loop system is: 

( )1det 0z z =I K      (5.56) 

The polynomial on the left side of (5.56) has the following general 
form: 

( )1

0
det i

i
i

z z a z
=

=I K     (5.57) 

The system has two poles. To achieve dead beat behaviour, both poles 
must be located (see e.g. Föllinger [1982]) in the coordinate origin. This 
means that 

20  for  2 ; 1ia i a= =  
Following the Cayley-Hamilton theorem (cf. Föllinger [1982], Isermann 

[1987]) the matrix 1( )z K  fulfils its own characteristic equation. 
From that, we obtain: 

21 1  or  z z= =K 0 K 0    (5.58) 

and then: 
z=K        (5.59) 

Two remarks shall follow to interpret this result: 
1. The equation (5.59) contains a z operator, which means that a 

prediction (one sampling period in advance) of the actual-value of the 
stator current is necessary. 

2. The dead beat behaviour would cause large control amplitudes (as 
explained in the subchapter 5.3.3) at set point steps, and from this, 
strong control movements for stochastically disturbed control 
variables. Therefore the design (5.59) could have an unfavourable 
effect for inverters with small control reserve (low DC link voltage). 
A FAT behaviour according to the subchapter 5.3.3 would be sensible 



Design of a current state space controller with dead beat behaviour      169 

and useful. The application of this reference transfer function in the 
state space, however, is not possible. A behaviour prepared for a good 
damping is, on the other hand, practicable. The poles then should not 
be assigned directly in the coordinate origin but in its near vicinity. 

( ) ( )21
1 1det   with  0z z z z z=I K   (5.60) 

From (5.60) it will be obtained: 
[ ]1z z=K I       (5.61) 

For practical realization it suffices to determine the satisfactory behaviour 
by varying z1 experimentally without having to exaggerate the theory here 
further. 

5.4.2 Pre-filter matrix V 

A stationary exact transfer characteristic and good decoupling between 
the two current components can be expected if the following is valid: 

( ) ( ) ( )1   für  s s sk k k k+ = = *i i i  
or: 

( ) ( )  für  1s sz z z= *i i  
It follows from (5.55): 

[ ]=V I K       (5.62) 
After using the matrix K like (5.59) or (5.61) it will be obtained: 
1. For the dead beat behaviour: 

=V I        (5.63) 
2. For the design with good damping: 

( )11 z=V I       (5.64) 
With K and V calculated by equations (5.59) and (5.63) or (5.61) and 

(5.64) we obtain from (5.55) the following transfer function of the 
controlled process: 

1. For the dead beat behaviour: 
( ) ( )2

s sz z z= *i i       (5.65) 
2. For the design with good damping: 

( ) ( )1

1

1
1s s

zz z
z z

= *i i       (5.66) 

The two state space designs point to a good dynamic decoupling judging 
from their diagonal transfer matrices. In contrast to the current vector 
controller (cf. subchapter 5.3) however, a stationary error has always to be 
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expected because of the missing integral term. This stationary error, partly 
caused by the first order approximation of the discrete state models and 
partly caused by parameter deviations, shall be eliminated by introducing 
an additional integral term. Because the current components are 
dynamically and statically decoupled by the controller design with K and 
V, the elimination of the stationary error or deviation can be realized 
separately for every single current component. Therefore the control 
structure is extended by two additional integral controllers (figure 5.18). 
 

 
Fig. 5.18 Current state space control with two additional integral controllers 

The equation of the additional integral controller RI will be: 

( ) ( ) ( )
( ) ( ) ( )

11   or

1

I s

I s

z z V z

k V k k

=

= +

I

I I

y i

y i y
   (5.67) 

The controller output variables yI have the task to eliminate the 
stationary errors Δis of the stator current. yI and Δis also fulfill the process 
equations (5.18) and (5.19): 

[ ] ( ) ( )
( ) ( ) ( )

1   or

1 1
s

s s

z z z z

k k k

=

+ = +
I

I

I i y

i i y
   (5.68) 

Since an effective decoupling between the current components is 
already ensured by the basic structure of the current state space control, the 
equations (5.67) and (5.68) can be re-written in component notation as 
follows: 

    Controller gain
   Stationary current error

     Output variable of the integral controller

I

s

V

I

i
y
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( ) ( )

( ) ( )

,
, ,1

2

, ,1
11

Controller
1

Process
1

Id q
Id q sd q

sd q Id q

V
: y z i z

z
z: i z y z

z

=

=

1  (5.69) 

The equation (5.69) is substituted into the closed loop transfer function 
to calculate the gain factors VId,q which are usually chosen identical. 
Because these factors correspond to the ratio T/TI, (TI is in comparison 
with the sampling time T a very big integration time), it suffices in the 
practice to choose for these factors after the normalizing (about 
normalizing: subchapter 12.1) a value of approx. 0.05 … 0.25. 

An even better choice would be to feed the integral controller with the 
current feedback not directly but through a model of the closed loop 
control system. This would prevent the controller from being invoked at 
every set point change. 

The reader's attention was already drawn to the z operator in equations 
(5.59), (5.61). The z operator requires a prediction of the stator current. 
With the actually realized stator voltage, the estimated rotor flux and the 
measured stator current this prediction can be simply carried out according 
to the equation (3.74). 

( ) ( ) ( ) ( )1+ = + +s s sk k k ki i Hu h    (5.70) 
The equation (5.70) has to be adapted to the usage of IM or PMSM and 

in which coordinate system the motor will be controlled. The complete 
structure of the current state space control is represented in the figure 5.19. 
 

 
Fig. 5.19 Detailed block structure of the current state space controller for the IM 
and PMSM 
                                                      

1 Caution: Instead of  Φ11, Φ22 is used for q axis in the case PMSM 
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5.5 Treatment of the limitation of control variables 

Generally, the control variable or the stator voltage is limited by the DC 
link voltage. At uncertain time, e.g. because of a dynamic transient, the 
current controller requires excessive amplitudes of the control variable 
which, however, cannot be provided by the inverter. So the control 
variable hits its maximum consuming all available control reserve. After 
the current has reached its reference the control variable still stays on its 
maximum until the integral part has decayed. In this process, oscillations 
or vibrations of the controlled variable around limitation may develop. 

The described process is known and understandable. It is also known 
that these difficulties can be normally solved by switching off the integral 
part (anti-reset windup) once the control variable goes into the limitation. 
Regarding the new current controllers this strategy could be applied for the 
additional integral parts of the current state space controller because these 
parts do obviously exist separately. What would, however, happen with the 
current vector controllers? The integral part is here not recognizable as part 
of the design in its own right. Furthermore, being a rather empirical 
method, turning-off the integrating part does not fit into a fully consistent 
design and leaves a number of open questions as to the optimal instants to 
disable and re-enable integration. A better and consistent solution can be 
provided by reverse-correction of the control deviation (cf. Schönfeld 
[1985]) which is elaborated on further in this chapter. 

 

 
Fig. 5.20 Limitation of control variable: (a) Voltage vector us with arbitrary phase 
angle ϑu and (b) the maximum modulation ratio 

maxsu of inverter 
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Instead of measuring the stator voltage to detect when entering 
limitation, the stator voltage can be limited intentionally to the maximum 
modulation ratio. 

From the chapter 2 is known, that the maximum usable stator voltage 
lies within a hexagon (fig. 5.20) and furthermore, that only the limitation 
of the amplitude of the voltage vector is of importance. However, the 
stator voltage actually exists in components, usd and usq or usα und usβ. That 
means: 

The voltage limitation must be split into components as well. 
Suitable methods for this have to be worked out for the chosen 
coordinate system. 

The voltage limitation itself is completed with its splitting into 
components. But as mentioned above: 

A reverse correction strategy, which prevents the vibrations or 
oscillations caused by the implicitly existing integral part, must be 
worked out. 

The figure 5.20a has pointed to the possibilities of setting the limitation 
boundaries on the inner circle touched by the hexagon or on the outer 
hexagon. The limitation most simply works with the circle, but a loss of 
control reserve (the area between hexagon and circle) would be the result. 
The phase angle ϑu of the stator voltage then is: 

arctan sq
u su

sd

u
u

= +      (5.71) 

With the help of (5.71) and fig. 5.20b the maximum amplitude of the 
voltage vector or the maximum modulation ratio (at normalization with 
2UDC/3) depending on the phase angle can be found as: 

max
3 1

2 sin
3

=
+

su 1     (5.72) 

The limitation on the outer hexagon according to (5.72) yields the best 
actuator utilization with respect to deliverable control voltage, however, 
causes an additional third harmonic in the current. This is unwanted in the 
stationary operation where the field and torque forming components 
represent DC quantities. It is therefore recommended for high-quality 
servo drives to limit on the inner circle. The maximum modulation 
ratio then is: 
                                                      

1 After normalizing with 2UDC/3 the voltage is formulated as modulation ratio 
here; the angle γ is defined in fig. 5.20b. 
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max
3

2
=su       (5.73) 

In principle the limitation can be implemented on one of the three 
following levels (fig. 5.21). 

1. Level of dq components: This is the mostly applied, most effective 
variant for the limitation. The decoupling between the dq axes or 
between torque formation and magnetization can be ensured largely 
with a correct splitting strategy (cf. chapter 5.5.1). 

2. Level of αβ components: The application of this variant is only 
possible if the torque impression is implemented using a current 
controller in the stator-fixed coordinate system. Unfortunately, the 
decoupling between torque formation and magnetization cannot be 
ensured any more. 

3. Level of switching times: This variant is rarely used. The decoupling 
is not ensured any more. For low-quality drives, where 
microprocessor power (for splitting and reverse correction) is missing 
and/or slow semiconductor components are used, the use of this 
variant could be interesting. 

The following chapters only deal with the limitation at the level of the 
dq coordinate system. 

 

 
Fig. 5.21 Possible levels for the realization of the control variable limitation 

5.5.1 Splitting strategy at voltage limitation 

Geometrically the voltage limitation is equivalent to shortening the 
voltage amplitude. For non-reactive loads, i.e. current and voltage have the 
same sign, the current gets smaller at reduced voltage. For reactive, 
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inductive/capacitive or mixed (ohmic-inductive, ohmic-capacitive) loads – 
i.e. current and voltage can have different signs – a voltage shortening 
would be able to cause the current to increase and duly cause the system to 
become instable. It is known that usd and isd as well as usq and isq very often 
have different signs which indicate the operating state (motor, generator) 
of the system. 

These introductory words make already clear that a splitting 
strategy, which ensures the system stability, must be able to 
recognize priorities for the coordinate axes depending on the 
operating state and then perform the limit splitting according to 
the geometric possibilities. 

 
a) Geometric possibilities for limitation 
From geometrical point of view and depending on whether the outer 

hexagon or the inner circle is chosen as the limitation curve, one of the 
three following possibilities (cf. figure 5.22) can be used for the splitting: 

1. usd is cut down, usq will be kept or has priority: 

( ) 2 2
max  ;  sdr sd sq sqr squ sign u u u u= =su    (5.74) 

2. usd and usq are truncated in the same proportion (called: the phase 
correct limitation): 

2 2
max max

2 2 2 2 ;  sdr sd sqr sq
sd sq sd sq

u u u u
u u u u

= =
+ +

s su u
  (5.75) 

3. usq is cut down, usd will be kept or has priority: 

( ) 2 2
max ;  sdr sd sqr sq sdu u u sign u u= = su    (5.76) 

 
 
 
 
 

Fig. 5.22 Geometric 
possibilities for 
limitation splitting: (1) 
only d component, or (2) 
d and q component in the 
same proportion, or (3) 
only q component will 
be truncated 
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The figure 5.22 clarifies that with the inner circle as limitation curve the 
value of the maximum modulation ratio maxsu  is always given according 

to (5.73). Unlike this, maxsu  using the outer hexagon can adopt different 
values (cf. fig. 5.22) for the same reference voltage vector, whose complex 
calculation cannot be handled by every microprocessor and therefore is 
rarely used. For this reason the limitation on the hexagon will not be 
further followed here. 

The equations (5.74) and (5.76) point to the possible case in which even 
the component with priority can exceed the value of maxsu . In this case 
the component with priority must also be shortened. 

 
b) Splitting strategy by [Quang 1994] 
The strategy starts out from an analysis of the possible operating states 

of the electrical machine. 
 
Asynchronous drive using IM 
In stationary operation the following system of equations is valid for the 

stator voltage: 
sd s sd s s sq

sq s sq s s sd

u R i L i

u R i L i

=

= +
     (5.77) 

The operating states which lead to the voltage limitation are always 
connected to higher frequencies so that resistive voltage drops are 
negligible in the equation (5.77). Therefore they can be reduced to: 

sd s s sq

sq s s sd

u L i

u L i
      (5.78) 

The equation (5.78) obviously points to a static coupling between d and 
q axes and implies that in the area of higher frequencies (where limitations 
often take place) the components usd and usq usually have to provide the 
greater part for overcoming this coupling than for keeping its own current 
component. The following facts can be stated in evaluation of equation 
(5.78): 
• The field forming current isd always has positive sign in stationary 

operation. (Remark: The field forming current isd could accept negative 
sign only for feedback-controlled flux for a short time). 

• The product mM×ωs or isq×ωs is always positive in motor operation. I.e. 
isq and ωs always have the same sign. This means, that: 

 usd < 0, or usd and isd have different signs, and 
 usq and isq have the same sign. 
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• The product mM×ωs or isq×ωs is always negative in generator operation. 
I.e. isq and ωs always have different signs. This means, that: 

 usd > 0, or usd and isd have the same sign, and 
 usq and isq have different signs. 

The above short analysis says, that: 
• In motor operation the component usd and 
• in generator operation the component usq 

will get priority. If the priority component already exceeds the value 
|us|max, so approx. 95% of |us|max shall be assigned to this component. 

 
Synchronous drive using PMSM 
The following relation will be arrived at for the synchronous drive in 

stationary operation similar to the case of the asynchronous drive: 
sd s sd s sq sq

p
sq s sq s sd sd

sd

u R i L i

u R i L i
L

=

= + +
    (5.79) 

or 
sd s sq sq

p
sq s sd sd

sd

u L i

u L i
L

+
     (5.80) 

In the two above equations, the term ( )sd p sdi L+ , in which the 

current isd assumes the value zero in the basic operation range and negative 
values only in the field weakening range, represents the substitute 
magnetization current with always positive values. The equation (5.80) can 
be interpreted now similarly to (5.78) of the IM so that the following 
conclusions can be drawn: 
• The product mM×ωs or isq×ωs is always positive in motor operation. isd is 

either zero or negative. This means, that: 
 usd < 0, or usd and isd have the same sign, and 
 usq and isq have the same sign. 

• The product mM×ωs or isq×ωs is always negative in generator operation. 
isd is either zero or negative. This means, that: 

 usd > 0, or usd and isd have different signs, and 
 usq and isq have different signs. 

The analysis has shown the clear difference between the IM and the 
PMSM: While in the motor operation with the IM the component usd shall 
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get the priority obviously, the priority must be assigned to none of the axis 
voltages in the case PMSM. 

The generator operation with PMSM seems to be more problematic than 
with IM because both couples usd , isd and usq , isq have different signs. Also 
this case can be realized exactly as for the IM: I.e. priority for usq. 
Amplification of |isd| for a short time after shortening |usd| only weakens the 
permanent magnetization which in turn would increase the control reserve, 
and the limitation would disappear. With these considerations a simple 
algorithm outlined in figure 5.23 can be worked out for both types of 
machines. 
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Fig. 5.23 Algorithm for voltage limitation by [Quang 1994] (index r: actually 
realized) 

c) Splitting strategy by [Dittrich 1998] 
The basic idea of this strategy is ensure decoupling between rotor flux 

and torque in large-signal behaviour. To achieve this, an intervention in 
form of a limitation should as much as possible only effect the voltage 
component, which has caused the maximum voltage vector to exceed its 
limit, and leave the other component uninfluenced. This concept presumes 
that such a separation of causes is actually possible and that the voltage 
vector can be reduced to its maximum value by reduction of one 
component only. The context is generally more complex and requires a 
detailed analysis, in particular, if the controlled system must be operated 
for longer time at the limit of the control variable. 

For splitting the voltage limitation after [Dittrich 1998] two questions 
must be answered: 
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1. Which component obtains the priority, i.e. which component must 
remain as unchanged as possible? 

2. Which value does the other component get? 
The algorithm which is found and realized eventually answers these 

questions as follows: 
 
Priority decision 
Stability considerations are decisive. If current and voltage have 

different signs in one axis, a limitation of the voltage leads to a temporarily 
unstable and uncontrollable behavior. If current and voltage signs are 
different in one axis, this axis must get the priority. If the signs are 
different in both axes, the axis with the larger current amplitude gets the 
priority, or the phase correct limitation (using equation (5.75)) is applied. 
Equal or different signs in the q axis are equivalent to motor or generator 
operation. 

 
Voltage in the non-priority axis 
Two cases have to be distinguished. If the priority component is smaller 

than the maximum voltage, i.e. the limitation was caused by the non-
priority component essentially, the non-priority component results simply 
from the geometric difference between the maximum voltage and the 
priority component. In the other case, the non-priority component is 
assigned the share from the cross-coupling of the current components to 
support the stationary decoupling of the current components also at control 
variable limitation. 
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Fig. 5.24 Algorithm for voltage limitation by [Dittrich 1998] 

The figure 5.24 shows the described algorithm in the overview. A 
similar approach was attended in [Wiesing 1994]. 
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5.5.2 Correction strategy at voltage limitation 

The basic idea of the reverse correction is a correction of the control 
error xw to prevent the windup-integration of the integral part which 
implicitly exists in the control algorithm. 

 
Fig. 5.25 Complete structure of the current vector controller with dead-beat-
behaviour 

To derive – the design in the chapter 5.3.1 serves as an example – the 
formula for the reverse correction, the equation (5.17) is re-written as 
follows: 

( ) ( ) ( )1 1sk k k= + + +y Hu h     (5.81) 
Assuming a largely constant rotor flux the following result will be 

obtained after substituting the equation (5.81) into (5.25): 
( ) ( ) ( ) ( )1 2 2s w w sk k k k= +Hu x x Hu   (5.82) 

Assumed that the voltage goes into the limitation in time instant (k), i.e. 
instead of the voltage us(k) to be realized only usr(k)  was realized, (5.82) 
turns into the equation (5.83). 

( ) ( ) ( ) ( )1 2 2sr wc w sk k k k= +Hu x x Hu   (5.83) 
 =  Con tr ol er r or s  cor r ected

  =  Voltage actually r ealized  after  lim ita tion
w c

sr

x
u

 

The subtraction of the equations (5.82) and (5.83) produces for the 
corrected deviation: 

( ) ( ) ( ) ( )1 1wc w s srk k k k=x x H u u    (5.84) 
Also the accumulated values y according to the equation (5.25) have to 

be corrected according to the equation (5.17) with the correct voltage 
values: 



Treatment of the limitation of control variables      181 

( ) ( ) ( )1 1k srk k k= + + +y Hu h     (5.85) 
The formulae for the reverse correction for the designs with FAT 

behavior or for the additional integral controllers of the state space design 
can also be derived similarly. The figure 5.25 exemplarily illustrates 
the design with dead beat behaviour. 

The implementation of the complete control algorithm in figure 5.25 is 
outlined by the program flowchart in figure 5.26. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.26 Program flowchart 
of the current vector 
controller with dead beat 
behaviour 
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