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Formula symbols and abbreviations 

A System matrix 
B Input matrix 
C Output matrix 
dq Field synchronous or rotor flux orientated 

coordinate system 
E Sensitivity function 
EI, ER Imaginary, real part of the sensitivity function 
eN Vector of grid voltage 
f General analytical vector function 
fp, fr, fs Pulse, rotor, stator frequency 
G Transfer function 
Gfe Iron loss conductance 
H, h Input matrix, input vector of discrete system 
h General analytical vector function 
i Vector of magnetizing current running through Lm
im Vector of magnetizing current 
imd, imq dq components of the magnetizing current 
iN, iT, iF Vectors of grid, transformer and filter current 
is, ir Vector of stator, rotor current 
isd, isq, ird, irq dq components of the stator, rotor current 
is , is  components of the stator current
isu, isv, isw Stator current of phases u, v, w
J Torque of inertia 
K Feedback matrix, state feedback matrix 
Lfg Lie derivation of the scalar function g(x) along the 

trajectory f(x)
Lm, Lr, Ls Mutual, rotor, stator inductance 
Lsd, Lsq d axis, q axis inductance 
L r, L s Rotor-side, stator-side leakage inductance 
mM, mG Motor torque, generator torque 
N Nonlinear coupling matrix 
pCu Copper loss 
pv Total loss 
pv,fe, pFe Iron loss 



RI, RIN Two-dimensional current controller 
RF, RD Filter resistance, inductor resistance 
Rfe Iron loss resistance 
Rr, Rs Rotor, stator resistance 
R  Flux controller 

r Vector of relative difference orders 
r Relative difference order 
s Complex power 
S Loss function 
s Slip 
T Sampling period 
Tp Pulse period 
Tr, Ts Rotor, stator time constant 
Tsd, Tsq d axis, q axis time constant 
tD Protection time 
ton, toff Turn-on, turn-off time 
tr Transfer ratio 
tu, tv, tw Switching time of inverter leg IGBT’s 
u Input vector 
u0, u1, … , u7 Standard voltage vectors of inverter 
UDC DC link voltage 
uN Vector of grid voltage 
us, ur Vector of stator, rotor voltage 
usd, usq, urd, urq dq components of the stator, rotor voltage 
us , us   components of the stator voltage 
V Pre-filter matrix 
w Input vector 
x State vector 
xw Control error or control difference 
z State vector 
zp Number of pole pair 
Zs Complex resistance or impedance 

 Stator-fixed coordinate system 
 Transition or system matrix of discrete system 
 Main flux linkage 

p, r, s Vector of pole, rotor, stator flux 
/ /,r s  Vector of rotor, stator flux in terms of Lm 

sd, sq, rd, rq dq components of the stator, rotor flux 
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/ / / /, , ,rd rq r r  Components of /
r  

/ /,sd sq  Components of /
s  

i Eigen value 
, r, s Mechanical rotor velocity, rotor and stator circuit 

velocity 
, s Rotor angle, angle of flux orientated coordinate 

system 
 Total leakage factor 

ϕ Angle between vectors of stator or grid voltage and 
stator current 

 
 

 

ADC Analog to Digital Converter 
CAPCOM Capture/Compare register 
DFIM Doubly-Fed Induction Machine 
DSP Digital Signal Processor 
DTC Direct Torque Control 
EKF Extended Kalman Filter 
FAT Finite Adjustment Time 
GC Grid-side Converter or Front-end Converter 
IE Incremental Encoder 
IGBT Insulated Gate Bipolar Transistor 
IM Induction Machine 
KF Kalman Filter 
MIMO Multi Input – Multi Output 
MISO Multi Input – Single Output 
MRAS Model Reference Adaptive System 
NFO Natural Field Orientation 
PLL Phase Locked Loop 
PMSM Permanent Magnet Excited Synchronous Machine 
PWM Pulse Width Modulation 
SISO Single Input – Single Output 
VFC Voltage to Frequency Converter 
VSI Voltage Source Inverter 

C, P Microcontroller, microprocessor 
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From the principles of electrical engineering it is known that the 3-phase 
quantities of the 3-phase AC machines can be summarized to complex 
vectors. These vectors can be represented in Cartesian coordinate systems, 
which are particularly chosen to suitable render the physical relations of 
the machines. These are the field-orientated coordinate system for the 3-
phase AC drive technology or the grid voltage orientated coordinate 
system for generator systems. The orientation on a certain vector for 
modelling and design of the feedback control loops is generally called 
vector orientation. 

1.1 Formation of the space vectors and its vector 
orientated philosophy 

The three sinusoidal phase currents isu, isv and isw of a neutral point 
isolated 3-phase AC machine fulfill the following relation: 

( ) ( ) ( ) 0su sv swi t i t i t+ + =      (1.1) 

 
Fig. 1.1 Formation of the stator current vector from the phase currents 

1 Principles of vector orientation and vector 
orientated control structures for systems 
using three-phase AC machines 



These currents can be combined to a vector is(t) circulating with the 
stator frequency fs (see fig. 1.1). 

( ) ( ) ( ) 22 with 2 3
3

j j
s su sv swi t i t e i t e= + + =i  (1.2) 

The three phase currents now represent the projections of the vector is 
on the accompanying winding axes. Using this idea to combine other 3-
phase quantities, complex vectors of stator and rotor voltages us, ur and 
stator and rotor flux linkages s, r are obtained. All vectors circulate with 
the angular speed ωs. 

In the next step, a Cartesian coordinate system with dq axes, which 
circulates synchronously with all vectors, will be introduced. In this 
system, the currents, voltage and flux vectors can be described in two 
components d and q. 

;

;

;

s sd sq r rd rq

s sd sq r rd rq

r rd rq s sd sq

u ju u ju

i ji i ji

j j

= + = +

= + = +

= + = +

u u

i i     (1.3) 

 

 
Fig. 1.2 Vector of the stator currents of IM in stator-fixed and field coordinates 

Now, typical electrical drive systems shall be looked at more closely. If 
the real axis d of the coordinate system (see fig. 1.2) is identical with the 
direction of the rotor flux r (case IM) or of the pole flux p (case 
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PMSM), the quadrature component (q component) of the flux disappears 
and a physically easily comprehensible representation of the relations 
between torque, flux and current components is obtained. This 
representation can be immediately expressed in the following formulae. 
• The induction motor with squirrel-cage rotor: 

( ) 3;
1 2

m m
rd sd M p rd sq

r r

L Ls i m z i
sT L

= =
+

  (1.4) 

• The permanentmagnet-excited synchronous motor: 
3
2M p p sqm z i=       (1.5) 

In the equations (1.4) and (1.5), the following symbols are used: 
         Motor torque

                Number of pole pairs

, Rotor and pole flux (IM, PMSM)

, Direct and quadrature components of stator current

, Mutual and rotor inductance
with ( : rotor leaka

M

p

rd p p

sd sq

m r

r m r r

m
z

i i

L L
L L L L

=

= + ge inductance)
Rotor time constant with ( : rotor resistance)
Laplace operator

r r r r rT T L R R
s

=

 

The equations (1.4), (1.5) show that the component isd of the stator 
current can be used as a control quantity for the rotor flux rd. If the rotor 
flux can be kept constant with the help of isd, then the cross component isq 
plays the role of a control variable for the torque mM. 

The linear relation between torque mM and quadrature component isq is 
easily recognizable for the two machine types. If the rotor flux rd is 
constant (this is actually the case for the PMSM), isq represents the motor 
torque mM so that the output quantity of the speed controller can be directly 
used as a set point for the quadrature component *

sqi . For the case of the 

IM, the rotor flux rd may be regarded as nearly constant because of its 
slow variability in respect to the inner control loop of the stator current. 
Or, it can really be kept constant when the control scheme contains an 
outer flux control loop. This philosophy is justified in the formula (1.4) by 
the fact that the rotor flux rd can only be influenced by the direct 
component isd with a delay in the range of the rotor time constant Tr, which 
is many times greater than the sampling period of the current control loop. 
Thus, the set point *

sdi  of this field-forming component can be provided by 

the output quantity of the flux controller. For PMSM the pole flux p is 



maintained permanently unlike for the IM. Therefore the PMSM must be 
controlled such that the direct component isd has the value zero. Fig. 1.2 
illustrates the relations described so far. 

If the real axis d of the Cartesian dq coordinate system is chosen 
identical with one of the three winding axes, e.g. with the axis of winding 
u (fig. 1.2), it is renamed into αβ coordinate system. A stator-fixed 
coordinate system is now obtained. The three-winding system of a 3-phase 
AC machine is a fixed system by nature. Therefore, a transformation is 
imaginable from the three-winding system into a two-winding system with
α and β windings for the currents isα and isβ. 

( )1 2
3

s su

s su sv

i i

i i i

=

= +
      (1.6) 

In the formula (1.6) the third phase current isw is not needed because of 
the (by definition) open neutral-point of the motor. 

Figure 1.2 shows two Cartesian coordinate systems with a common 
origin, of which the system with  coordinates is fixed and the system 

with dq coordinates circulates with the angular speed s sd dt= . The 
current is can be represented in the two coordinate systems as follows. 
• In αβ coordinates:  s

s s si j i= +i  

• In dq coordinates:  f
s sd sqi j i= +i  

 (Indices: s - stator-fixed, f - field synchronous coordinates) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.3 Acquisition of 
the field synchronous 
current components 
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With 
cos sin

sin cos
sd s s s s

sq s s s s

i i i

i i i

= +

= +
    (1.7) 

the stator current vector is obtained as: 

     
[ ]

cos sin cos sin

cos sin s

f
s s s s s s s s s

jf s
s s s s s s

i i j i i

i j i j e

= + +

= + =

i

i i
   

In generalization of that the following general formula results to 
transform complex vectors between the coordinate systems: 

ors sj js f f se e= =v v v v     (1.8) 
                v: an arbitrary complex vector 
The acquisition of the field synchronous current components, using 

equations (1.6) and (1.7), is illustrated in figure 1.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.4 Vectors of the stator and 
rotor currents of DFIM in grid 
voltage (uN) orientated coordinates 

In generator systems like wind power plants with the stator connected 
directly to the grid, the real axis of the grid voltage vector uN can be 
chosen as the d axis (see fig. 1.4). Such systems often use doubly-fed 
induction machines (DFIM) as generators because of several economic 
advantages. In Cartesian coordinates orientated to the grid voltage vector, 
the following relations for the DFIM are obtained. 
• The doubly-fed induction machine: 

3sin ;
2

s m rq m
G p sq rd

s s

L i Lm z i
L

= =
i

  (1.9) 



In equation (1.9), the following symbols are used: 
        Generator torque
, Stator flux

Vector of stator current
, Direct and quadrature components of rotor current

, Mutual and stator inductance
with ( : stator leakage inductance)
Angle betwee

G

sq s

s

rd rq

m s

s m s s

m

i i

L L
L L L L= +

i

n vectors of grid voltage and stator current

 

Because the stator flux s is determined by the grid voltage and can be 
viewed as constant, the rotor current component ird plays the role of a 
control variable for the generator torque mG and therefore for the active 
power P respectively. This fact is illustrated by the second equation in 
(1.9). The first of both equations (1.9) means that the power factor cos  or 
the reactive power Q can be controlled by the control variable irq. 

1.2 Basic structures with field-orientated control 

DC machines by their nature allow for a completely decoupled and 
independent control of the flux-forming field current and the torque-
forming armature current. Because of this complete separation, very 
simple and computing time saving control algorithms were developed, 
which gave the dc machine preferred use especially in high-performance 
drive systems within the early years of the computerized feedback control. 
In contrast to this, the 3-phase AC machine represents a mathematically 
complicated construct with its multi-phase winding and voltage system, 
which made it difficult to maintain this important decoupling quality. 
Thus, the aim of the field orientation can be defined to re-establish the 
decoupling of the flux and torque forming components of the stator current 
vector. The field-orientated control scheme is then based on impression the 
decoupled current components using closed-loop control. 

Based on the theoretical statements, briefly outlined in chapter 1.1, the 
classical structure (see fig. 1.5) of a 3-phase AC drive system with field-
orientated control shall now be looked at in some more detail. If block 8 
remains outside our scope at first, the structure, similar as for the case of a 
system with DC motor, contains in the outer loop two controllers: one for 
the flux (block 1) and one for the speed (block 9). The inner loop is formed 
of two separate current controllers (blocks 2) with PI behaviour for the 
field-forming component isd (comparable with the field current of the DC 

6      Principles of vector orientation and vector orientated control structures
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motor) and the torque-forming component isq (comparable with the 
armature current of the DC motor).  Using the rotor flux rd and the speed 

, the decoupling network (DN: block 3) calculates the stator voltage 
components usd and usq from the output quantities yd and yq of the current 
controllers RI. If the field angle ϑs between the axis d or the rotor flux axis 
and the stator-fixed reference axis (e.g. the axis of the winding u or the 
axis ) is known, the components usd, usq can be transformed, using block 
4, from the field coordinates dq into the stator-fixed coordinates αβ. After 
transformation and processing the well known vector modulation (VM: 
block 5), the stator voltage is finally applied on the motor terminals with 
respect to amplitude and phase. The flux model (FM: block 8) helps to 
estimate the values of the rotor flux rd and the field angle ϑs from the 

vector of the stator current is and from the speed , and will be subject of 
chapter 4.4. 
 

 
Fig. 1.5 Classical structure of field-orientated control for 3-phase AC drives using 
IM and voltage source inverter (VSI) with two separate PI current controllers for d 
and q axes 

If the two components isd, isq were completely independent of each 
other, and therefore completely decoupled, the concept would work 
perfectly with two separate PI current controllers. But the decoupling 
network DN represents in this structure only an algebraic relation, which 
performes just the calculation of the voltage components usd, usq from the 
current-like controller output quantities yd, yq. The DN with this stationary 



approach does not show the wished-for decoupling behavior in the control 
technical sense. This classical structure therefore worked with good results 
in steady-state, but with less good results in dynamic operation. This 
becomes particularly clear if the drive is operated in the field weakening 
range with strong mutual influence between the axes d and q. 

 

 
Fig. 1.6 Modern structures with field-orientated control for three-phase AC drives 
using IM and VSI with current control loop in field coordinates (top) and in 
stator-fixed coordinates (bottom) 

In contrast to this simple control approach, the 3-phase AC machine, as 
highlighted above, represents a mathematically complicated structure. The 
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actual internal dq current components are dynamically coupled with each 
other. From the control point of view, the control object „3-phase AC 
machine“ is an object with multi-inputs and multi-outputs (MIMO 
process), which can only be mastered by a vectorial MIMO feedback 
controller (see fig. 1.6). Such a control structure generally comprises of 
decoupling controllers next to main controllers, which provide the actual 
decoupling. 

Figure 1.6 shows the more modern structures of the field-orientated 
controlled 3-phase AC drive systems with a vectorial multi-variable 
current controller RI. The difference between the two approaches only 
consists in the location of the coordinate transformation before or after the 
current controller. In the field-synchronous coordinate system, the 
controller has to process uniform reference and actual values, whereas in 
the stator-fixed coordinate system the reference and actual values are 
sinusoidal. 

The set point *
rd  for the rotor flux or for the magnetization state of 

the IM for both approaches is provided depending on the speed. In the 
reality the magnetization state determines the utilization of the machine 
and the inverter. Thus, several possibilities for optimization (torque or loss 
optimal) arise from an adequate specification of the set point *

rd . Further 
functionality like parameter settings for the functional blocks or tracking 
of the parameters depending on machine states are not represented 
explicitly in fig. 1.5 and 1.6. 

 
Fig. 1.7 Modern structure with field-orientated control for three-phase AC drives 
using PMSM and VSI with current control loop in field coordinates 



PMSM drive systems with field-orientated control are widely used in 
practical applications (fig. 1.7). Because of the constant pole flux, the 
torque in equation (1.5) is directly proportional to the current component 
isq. Thus, the stator current does not serve the flux build-up, as in the case 
of the IM, but only the torque formation and contains only the component 
isq. The current vector is located vertically to the vector of the pole flux 
(fig. 1.8 on the left). 
 

 
Fig. 1.8  Stator current vector is of the PMSM in the basic speed range (left) and in 
the field-weakening area (right) 

Using a similar control structure as in the case of the IM, the direct 
component isd has the value zero (fig. 1.8 on the left). A superimposed flux 
controller is not necessary. But a different situation will arise, if the 
synchronous drive shall be operated in the field-weakening area as well 
(fig. 1.8 on the right). To achieve this, a negative current will be fed into 
the d axis depending on the speed (fig. 1.7, block 8). This is primarily 
possible because the modern magnets are nearly impossible to be 
demagnetized thanks to state-of-the-art materials. Like for the IM, 
possibilities for the optimal utilization of the PMSM and the inverter 
similarly arise by appropriate specification of isd. The flux angle ϑs will be 
obtained either by the direct measuring – e.g. with a resolver – or by the 
integration of the measured speed incorporating exact knowledge of the 
rotor initial position. 
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1.3 Basic structures of grid voltage orientated control 

One of the main control objectives stated above was the decoupled 
control of active and reactive current components. This suggests to choose 
the stator voltage oriented reference frame for the further control design. 
Let us consider some of the consequences of this choice for other variables 
of interest. 

The stator of the machine is connected to the constant-voltage constant-
frequency grid system. Since the stator frequency is always identical to the 
grid frequency, the voltage drop across the stator resistance can be 
neglected compared to the voltage drop across the mutual and leakage 
inductances Lm and L s. Starting point is the stator voltage equation 

ors s
s s s s s s s

d dR j
dt dt

= +u i u u   (1.10) 

with the stator and rotor flux linkages 
s s s r m

r s m r r

L L
L L

= +
= +

i i
i i

      (1.11) 

Since the stator flux is kept constant by the constant grid voltage (equ. 
(1.10)) the component ird in equation (1.9) may be considered as torque 
producing current. 

In the grid voltage orientated reference frame the fundamental power 
factor, or displacement factor cos  respectively, with  being the phase 
angle between voltage vector us and current vector is, is defined according 
to figure 1.4 as follows: 

2 2
cos sd sd

s sd sq

i i

i i
= =

+i
     (1.12) 

However, it must be considered that according to equation (1.11) for 
near-constant stator flux any change in ir immediately causes a change in is 
and consequently in cos . To show this in more detail the stator flux in 
equation (1.11) can be rewritten in the grid voltage oriented system to: 

/

/

/ /

0
with

s
sd sd rd

m
s s m

s
sq sq rq s

m

L i i
L

L
L i i
L

= +
=

= +
  (1.13) 

For 1s mL L  equation (1.13) may be simplified to:  

for DFIM generators 



/ /

0sd rd

sq rq s sq

i i

i i

+

+ =
     (1.14) 

The phasor diagram in figure 1.4 illustrates the context of (1.14). With 
the torque producing current ird determined by the torque controller 
according to (1.13) the stator current isd is pre-determined as well. To 
compensate the influence on cos  according to equation (1.12) an 
appropriate modification of isq is necessary. The relation between the stator 
phase angle  and isq is defined by: 

2 2
sin sq sq

s sd sq

i i

i i
= =

+i
     (1.15) 

Equation (1.15) expresses a quasi-linear relation between sin  and isq, 

for small phase angles directly between  and isq because of sin    in 

this area. This implies to implement a sin  control rather than the cos  
control considered initially. Due to the fixed relation between isq and irq 
expressed in the second equation of (1.14) the rotor current component irq 
is supposed to serve as sin - or cos -producing current component. 

Another advantage of the sin  control is the simple distinction of inductive 

and capacitive reactive power by the sign of sin . 
The DFIM control system consists of two parts: Generator-side control 

and grid-side control. The generator-side control is responsible for the 
adjustment of the generator reference values: regenerative torque mG and 
power factor cos . For these values suitable control variables must be 
found. It was worked out in the previous section, that in the grid voltage 
reference system the rotor current component ird may be considered as 
torque producing quantity, refer to equation (1.9). Therefore, if the 
generator-side control is working with a current controller to inject the 
desired current into the rotor winding, the reference value for ird may be 
determined by an outer torque control loop. 

With this context in mind the generator-side control structure may be 
assembled now like depicted in figure 1.9. Assuming a fast and accurate 
rotor current vector control this control structure enables a very good 
decoupling between torque and power factor in both steady state and 
dynamic operation. With a fast inner current control loop, torque and 

12      Principles of vector orientation and vector orientated control structures



Basic structures of grid voltage orientated control for DFIM generators      13 

However, in practical implementation measurement noise and current 
harmonics might cause instability due to the strong correlation of the 
signals in both control loops. Feedback smoothing low-pass filters are 
necessary to avoid such effects (fig. 1.9). These feedback filters then form 
the actual process model and the control dynamics has to be slowed down. 
 

 
Fig. 1.9  Modern structure with grid voltage orientated control for generator 
systems using DFIM and VSI with current control loop in grid voltage coordinates 

The DFIM is often used in wind power plants thanks to the 
fundamentally smaller power demand for the power electronic components 
compared to systems with IM or SM. The demand for improved short-
circuit capabilities (ride-through of the wind turbine during grid faults) 
seems to be invincible for DFIM, because the stator of the generator is 
directly connected to the grid. Practical solutions require additional power 
electronics equipment and interrupt the normal system function. Thanks to 
the power electronic control equipment between the stator and the grid, 
this problem does not exist for IM or SM systems. 

Figure 1.10 presents a nonlinear control structure, which results from 
the idea of the exact linearization and contains a direct decoupling between 

power factor might be impressed almost delay-free; the controlled systems 
for both values have proportional behaviour. 



concept consists of the improvement of the system performance at grid 
faults, which allows to maintain system operation up to higher fault levels. 

 

Fig. 1.10 Complete structure of wind power plant with grid voltage orientated 
control using a nonlinear control loop in grid voltage coordinates 

GCB: Grid circuit breaker 
RVC: Reference value calculation 
RVE: Real value estimation 
PLL:  Phase-locked loop 
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The figure 2.1a shows the principle circuit of an inverter fed 3-phase 
AC motor with three phase windings u, v and w. The three phase voltages 
are applied by three pairs of semiconductor switches vu+/vu-, vv+/vv- and 
vw+/vw- with amplitude, frequency and phase angle defined by 
microcontroller calculated pulse patterns. The inverter is fed by the DC 
link voltage UDC. In our example, a transistor inverter is used, which is 
today realized preferably with IGBTs. 

 

 
Fig. 2.1a Principle circuit of a VSI inverter-fed 3-phase AC motor 

Figure 2.1b shows the spacial assignment of the stator-fixed αβ 
coordinate system, which is discussed in the chapter 1, to the three 
windings u, v and w. The logical position of the three windings is defined 
as: 

0, if the winding is connected to the negative potential, or as 
1, if the winding is connected to the positive potential 

of the DC link voltage. Because of the three windings eight possible 
logical states and accordingly eight standard voltage vectors u0, u1 ... u7 
are obtained, of which the two vectors u0 - all windings are on the negative 
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potential - and u7 - all windings are on the positive potential - are the so 
called zero vectors. 

 

 
Fig. 2.1b The standard voltage vectors u0, u1 ... u7 formed by the three transistor 
pairs (Q1 ... Q4: quadrants, S1 ... S6: sectors) 

The spacial positions of the standard voltage vectors in stator-fixed αβ 
coordinates in relation to the three windings u, v and w are illustrated in 
figure 2.1b as well. The vectors divide the vector space into six sectors S1 
... S6 and respectively into four quadrants Q1 ... Q4. The table 2.1 shows the 
logical switching states of the three transistor pairs. 

Table 2.1 The standard voltage vectors and the logic states 

 u0 u1 u2 u3 u4 u5 u6 u7 
u 0 1 1 0 0 0 1 1 
v 0 0 1 1 1 0 0 1 
w 0 0 0 0 1 1 1 1 

2.1 Principle of vector modulation 

The following example will show how an arbitrary stator voltage vector 
can be produced from the eight standard vectors. 
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Fig. 2.2 Realization of an arbitrary voltage vector from two boundary vectors 

Let us assume that the vector to be realized, us is located in the sector 
S1, the area between the standard vectors u1 and u2 (fig. 2.2). us can be 
obtained from the vectorial addition of the two boundary vectors ur and ul 
in the directions of u1 and u2, respectively. In figure 2.2 mean: 

Subscript r, l: boundary vector on the right, left 
Supposed the complete pulse period *

pT  is available for the realization 
of a vector with the maximum modulus (amplitude), which corresponds to 
the value 2UDC/3 of a standard vector, the following relation is valid: 

1 6max
2
3s DCU= = = =u u u          (2.1) 

From this, following consequences result: 
1. us is obtained from the addition of r l+u u  
2. ur and ul are realized by the logical states of the vectors u1 and u2 within 

the time span: 
* *

max max

; lr
r p l p

s s
T T T T= =

uu
u u

          (2.2) 

u1 and u2 are given by the pulse pattern in table 2.1. Only the switching 
times Tr, Tl must be calculated. From equation (2.2) the following 
conclusion can be drawn: 

To be able to determine Tr and Tl, the amplitudes of ur and ul 
must be known. 

It is prerequisite that the stator voltage vector us must be provided by the 
current controller with respect to modulus and phase. The calculation of 
the switching times Tr, Tl will be discussed in detail in section 2.2. For 
now, two questions remain open: 
1. What happens in the rest of the pulse period ( )*

p r lT T T+ ? 



2. In which sequence the vectors u1 and u2, and respectively ur and ul are 
realized? 

In the rest of the pulse period ( )*
p r lT T T+  one of the two zero vectors 

u0 or u7 will be issued to finally fulfil the following equation. 
0 7

*

1 2 0 7* * *

(or )

( )
(or )

s r l

p r llr

p p p

T T TTT
T T T

= + +

+
= + +

u u u u u

u u u u
     (2.3) 

The resulting question is, in which sequence the now three vectors - two 
boundary vectors and one zero vector - must be issued. Table 2.2 shows 
the necessary switching states in the sector S1. 

Table 2.2 The switching states in the sector S1 

 u0 u1 u2 u7 
u 0 1 1 1 
v 0 0 1 1 
w 0 0 0 1 

 
It can be recognized that with respect to transistor switching losses the 

most favourable sequence is to switch every transistor pair only once 
within a pulse period. 

If the last switching state was u0, this would be the sequence 
u0  u1  u2  u7 

but if the last switching state was u7, this would be 
u7  u2  u1  u0 

 

 
Fig. 2.3 Pulse pattern of voltage vectors in sector S1 

20      Inverter control with space vector modulation 



Principle of vector modulation      21 

With this strategy the switching losses of the inverter become minimal. 
Different strategies will arise if other criteria come into play (refer to 
sections 2.5.1, 2.5.3). If the switching states of two pulse periods 
succeeding one another are plotted exemplarily a well-known picture from 
the pulse width modulation technique arises (fig. 2.3). 

Figure 2.3 clarifies that the time period *
pT  for the realization of a 

voltage vector is only one half of the real pulse period Tp. Actually, in the 
real pulse period Tp two vectors are realized. These two vectors may be the 
same or different, depending only on the concrete implementation of the 
modulation. 

Until now the process of the voltage vector realization was explained for 
the sector S1 independent of the vector position within the sector. With the 
other sectors S2 - S6 the procedure will be much alike: splitting the voltage 
vector into its boundary components which are orientated in the directions 
of the two neighbouring standard vectors, every vector of any arbitrary 
position can be developed within the whole vector space. This statement is 
valid considering the restrictions which will be discussed in section 2.3. 
The following pictures give a summary of switching pattern samples in the 
remaining sectors S2 ... S6 of the vector space. 

 

 



 
Fig. 2.4 Pulse pattern of the voltage vectors in the sectors S2 ... S6 

From the fact, that: 
1. the current controller delivers the reference value of a new voltage 

vector us to the modulation after every sampling period T, and 
2. every (modulation and) pulse period Tp contains the realization of two 

voltage vectors, 
the relation between the pulse frequency fp = 1/Tp and the sampling 

frequency 1/T is obtained. The theoretical statement from figure 2.3 is that 
two sampling periods T correspond to one pulse period Tp. However this 
relationship is rarely used in practice. In principle it holds 
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that the new voltage vector us provided by the current controller is 
realized within at least one or several pulse periods Tp. 

Thereby it is possible to find a suitable ratio of pulse frequency to 
sampling frequency, which makes a sufficiently high pulse frequency 
possible at simultaneously sufficiently big sampling period (necessary 
because of a restricted computing power of the microcontroller). In most 
systems fp is normally chosen in the range 2,5...20kHz. The figure 2.5 
illustrates the influence of different pulse frequencies on the shape of 
voltages and currents. 

 

 
Fig. 2.5 Pulse frequency fp and the influence on the stator voltage as well as the 
stator current. 1: Pulsed phase-to-phase voltage; 2: Fundamental wave of the 
voltage; 3: Current 

2.2 Calculation and output of the switching times 

After the principle of the space vector modulation has been introduced, 
the realization of that principle shall be discussed now. Eventually the 
inverter must be informed on „how“ and respectively „how long“ it shall 
switch its transistor pairs, after the voltage vector to be realized is given 
with respect to modulus and phase angle. 



Thanks to the information about phase angle and position (quadrant, 
sector) of the voltage vector the question „how“ can be answered 
immediately. From the former section the switching samples for all sectors 
as well as their optimal output sequences with respect to the switching 
losses are already arranged. 

The question „how long“ is subject of this section. From equations (2.2), 
(2.3) it becomes obvious, that the calculation of the switching times Tr, Tl 
depends only on the information about the moduli of the two boundary 
vectors ur, ul. The vector us (fig. 2.6) is predefined by: 
1. Either the DC components usd, usq in dq coordinates. From these, the 

total phase angle is obtained from the addition of the current angular 
position ϑs of the coordinate system (refer to fig. 1.2) and the phase 
angle of us within the coordinate system. 

arctan sq
u s

sd

u
u

= +              (2.4) 

2. Or the sinusoidal components usα, usβ in αβ coordinates. This 
representation does not contain explicitly the information about the 
phase angle, but includes it implicitly in the components. 

 

 
Fig. 2.6 Possibilities for the specification of the voltage vector us 

Therefore two strategies for calculation of the boundary components 
exist. 
1. Strategy 1: At first, the phase angle ϑu is found by use of the equation 

(2.4), and after that the angle γ according to figure 2.6 is calculated, 
where γ represents the angle ϑu reduced to sector 1. Then the 
calculation of the boundary components can be performed by use of the 
following formulae, which is valid for the whole vector space: 
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( ) ( )02 2sin 60 ; sin
3 3r s l s= =u u u u      (2.5) 

With: 
2 2

s sd squ u= +u               (2.6) 

2. Strategy 2: After the coordinate transformation, the stator-fixed 
components usα, usβ are obtained from usd, usq. For the single sectors, ur 
and ul can be calculated using the formulae in table 2.3. 

Table 2.3 Moduli of the boundary components ur, ul dependent on the positions of 
the voltage vectors 

 ru  lu  

S1 Q1 
1
3s su u  2

3 su  

Q1 
1
3s su u+  1

3s su u+  
S2 

Q2 
1
3s su u+  1

3s su u+  

S3 Q2 
2
3 su  1

3s su u  

S4 Q3 
1
3s su u  2

3 su  

Q3 
1
3s su u+  1

3s su u+  
S5 

Q4 
1
3s su u+  1

3s su u+  

S6 Q4 
2
3 su  1

3s su u  

 
The proposed strategies for the calculation of the switching times Tr, Tl 

are equivalent. The output of the switching times itself depends on the 
hardware configuration of the used microcontroller. The respective 
procedures will be explained in detail in the section 2.4. 

The application of the 2nd strategy seems to be more complicated in the 
first place because of the many formulae in table 2.3. But at closer look 
it will become obvious that essentially only three terms exist. 

1 1 2
3 3 3

; ;s s s s su u u u u= + = =a b c     (2.7) 

With the help of the following considerations the phase angle of us can 
be easily calculated. 
1. By the signs of usα , usβ one finds out in which of the four quadrants the 

voltage vector is located. 



2. Because the moduli of ur and ul are always positive, and because the 
term b changes its sign at every sector transition, b can be tested on its 
sign to determine to which sector of the thus found quadrant the voltage 
vector belongs. 

2.3 Restrictions of the procedure 

For practical application to inverter control, the vector modulation 
algorithm (VM) has certain restrictions and special properties which 
implicitly must be taken into account for implementation of the algorithm 
as well as for hardware design. 

2.3.1 Actually utilizable vector space 

The geometry of figure 2.2 may lead to the misleading assumption that 
arbitrary vectors can be realized in the entire vector space which is limited 
by the outer circle in fig. 2.7b, i.e. every vector us with 2 3s DCUu  
would be practicable. The following consideration disproves this 
assumption: It is known that the vectorial addition of ur and ul is not 
identical with the scalar addition of the switching times Tr and Tl. To 
simplify the explanation, the constant half pulse period which, according 
to fig. 2.3, is available for the realization of a vector is replaced by 

2 2p pT T= . After some rearrangements of equation (2.2) by use of (2.5) 
the following formula is obtained. 

( )0
23 cos 30s

r l p
DC

T T T T
U

= + =
u

       (2.8) 

In case of voltage vector limitation, that is 2 3s DCU=u , it follows 
from (2.8): 

( )0 0 0
max 2

2 cos 30 with 0 60
3pT T=    (2.9) 

The diagram in figure 2.7a shows the fictitious characteristic of TΣmax 
with excess of the half pulse period Tp/2. By limitation of TΣ to Tp/2 the 
actual feasible area is enclosed by the hexagon in fig. 2.7b. 

In some cases in the practice - e.g. for reduction of harmonics in the 
output voltage - the hexagon area is not used completely. Only the area of 
the inner, the hexagon touching circle will be used. The usable maximum 
voltage is then: 
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max
1
3s DCU=u               (2.10) 

Thus the area between the hexagon and the inner circle remains unused. 
Utilization of this remaining area is possible if the voltage modulus is 
limited by means of a time limitation from TΣ to Tp/2. To achieve this, the 
zero vector time is dispensed with, and only one transistor pair is involved 
in the modulation in each sector (refer to fig. 2.14d, right). A direct 
modulus limitation will be discussed later in connection with the current 
controller design. 

 
Fig. 2.7 Temporal (a) and spacial (b) representation of the utilizable area for the 
voltage vector us 

An important characteristic for the application of the VM is the voltage 
resolution Δu, which for the case of limitation to the inner circle or at use 
of equation (2.10) can be calculated as follows: 

[ ]2 V
3 DC

p

tu U
T

=              (2.11) 

At deeper analysis, restricted on the hexagon only, it turns out that the 
zero vector times become very small or even zero if the voltage vector 
approaches its maximum amplitude. This is equivalent to an (immediate) 
switch on or off of the concerned transistor pair after it has been switched 
off or on. For this reason the voltage vector moduli have to be limited to 
make sure the zero vector times T0 and T7 never fall below the switching 
times of the transistors. For IGBT´s the switching times are approx. 
<1...4μs, so that this contraction of the voltage vector for usual switching 
frequencies of 1...5kHz can be considered insignificant. However, the 
situation becomes more critical for higher switching frequencies or if 
slow-switching semiconductors, such as thyristors, are used. 



The values either of Tr or of Tl become very small in the boundary zone 
between the sectors or near one of the standard vectors u1 ... u6. For some 
commonly used digital signal processing structures (refer to the application 
example with TMS 320C20/C25 in section 2.4) the PWM synchronization 
is directly coupled to the interrupt evaluation of the timer counters for Tr 
and Tl. For these structures the values of Tr and Tl must never fall below 
the interrupt reaction times causing another limitation of the utilizable 
area. The arising forbidden zones are shown in figure 2.8. 

 
Fig. 2.8 Forbidden zones in the vector space 

2.3.2 Synchronization between modulation and signal 
processing 

According to theory (refer to fig. 2.3) the modulated voltage in the 
context of control or digital signal processing looks like in figure 2.9 for 
the samplings periods (k-1), (k) and (k+1). The voltage output sequence in 
period (k) 

( ) ( ) ( ) ( ) ( ) ( )7 7 0 0/r r l l l l r rT T T T T Tu u u u u u  
leads to the following time relation: 

( ) ( )0 0k k 1
2 2synch p

T T
T T= +  
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For a dynamic process with us(k-1) ≠ us(k) is also T0(k-1)/2 ≠ T0(k)/2. 
That means, that Tsynch would be not constant (fig. 2.9b), making the use of 
up/down counters – like usually done in PWM units – impossible. 
Therefore, a different sequence shall be used for voltage output: 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0
0 7 7 0/

2 2r r l l l l r r
T TT T T T Tu u u u u u u  

Figure 2.9b shows this alternative sequence. It is obvious from the 
figure that this sequence is absolutely stable and therefore the use of 
up/down counters is supported. This means also a strict synchronization 
between control and pulse periods which must be considered already in the 
design phase of the signal processing hardware. 
 

 
Fig. 2.9 For ensuring synchronization between modulation and control: the 
theoretical sequence (a) must be modified (b) 

2.3.3 Consequences of the protection 

So far, the semiconductors had been regarded as ideal switches with un-
delayed turn-on and turn-off characteristics. However, the IGBT’s 
physically reach their safe switched-on or switched-off state only after a 
certain turn-on or turn-off period ton, toff. To avoid inverter short circuit, the 
switch-on edge of the control signal must be delayed for a time tD which is 
greater than the turn-off time toff. This time is called protection time or 
blanking time (fig. 2.10). In practice tD is chosen so that toff will be nearly 
70 ... 80% of tD. 

time and its compensation 



 
Fig. 2.10 Origin of the protection time tD and its influence on the output voltage 

Figure 2.10b shows in turn: 1. The reference voltage uv
*  for the phase v. 

2. The actual IGBT control signals v+ and v_, modified by the protection 
time tD. 3. The actual voltage uv of phase v. 4. The voltage errors Δuv. The 
influence of tD on the trajectory of the stator voltage vector us as well as on 
the fundamental wave of the phase voltage are illustrated in figures 
2.10c,d. 
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The voltage error Δuv, caused by tD and shown in figure 2.10d, can be 
calculated as follows: 

*

2 for 0
3

2 for 0
3

D
DC sv

p
v v v

D
DC sv

p

t U i
T

u u u
t U i
T

>

= =
<

      (2.12) 

The voltage error depends on the sign of the phase current and may be 
effectively compensated with respect to the voltage mean average value. 
This compensation can be realized either in hardware or in software. 
Software compensation is more widely used today. Preferably, the 
compensation is done without using the actual current feedbacks which 
could be critical because of the pulsed current as well as the measuring 
noise at zero crossings. This is possible if the current controller works 
without delay. In chapter 5 it will be shown that this condition is largely 
fulfilled for the control algorithms to be introduced there. 

In this case the reference value can be used to capture the sign instead of 
the actual value. The reference values * * *,  and su sv swi i i  of the phase currents 

can be calculated from * *,sd sqi i  by use of a coordinate transformation. With 
that the error components in αβ-coordinates are obtained as follows: 

( ) ( ) ( )

( ) ( )

* * *

* *

1 1 2
2 2 3

2 3
3 2

D
s su sv sw DC

p

D
s sv sw DC

p

tu sign i sign i sign i U
T

tu sign i sign i U
T

= + +

= +
 (2.13) 

The error components according to (2.13) are added to the stator-fixed 
voltage components usα, usβ before they are forwarded to the modulation. 

2.4 Realization examples 

The realization of the space vector modulation requires a suitable 
periphery, which has to be added to the processor hardware when normal 
microprocessors (μP) or digital signal processors (DSP) are used. 
However, a number of microprocessors with this periphery on chip, so 
called micro controllers (μC) are available on the market today, allowing 
implementation of advanced modulation algorithms without additional 
hardware. 



 
Fig. 2.11 Flow chart for the computing of the switching times according to the 
space vector modulation 
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Microcontrollers, which are utilizable for 3-phase AC machine systems 
due to their internal PWM units as well as other on-chip periphery units, 
are e.g. 
1. SAB 80C166, SAB C167 (Siemens, Infineon): The time resolution Δt of 

C166 is 400 ns, of C167 50 ns. The upper and the lower transistor of a 
phase leg are not controllable separately using the C167-PWM unit1, 
which would be necessary for an efficient, software based generation of 
the protection time. A 32 bit single chip microcontroller of the TC116x 
series can be used very advantageously today for a high-quality drive. 

2. TMS 320C240/F240 (Texas Instruments): Δt = 50ns. The μC supports 
the direct generation of the protection time tD, and the transistors of a 
pair are controllable independently. Also, chips of the family TMS 320 
F281x are used very widely today. 

In many systems a double processor configuration is used due to the 
strong price collapse of the processors in the last years. For such 
applications, the digital signal processors from Texas Instruments TMS 
320C25 (16 Bit, fixed-point arithmetic) or TMS 320C32 (32 Bit, floating-
point arithmetic) can be recommended particularly. 

The application of the modulation algorithm, described in sections 2.1 
and 2.2, shall be illustrated now in detail on 4 examples, orientated 
essentially on the Siemens microcontrollers SAB 80C166, SAB C167 and 
the Texas Instruments DSP TMS 320C20/C25. The calculation of the 
switching times is carried out according to the 2nd strategy of section 2.2, 
i.e. by means of the αβ voltage components. 

In principle, the concrete formulae for the computing of the switching 
times in all sectors shall be worked out first using table 2.3. These 
formulae will then be used on-line. The computing and output will be 
independent of the hardware following the flow chart in the figure 2.11. 
The flow chart clarifies the steps to determine the space vector area in 
which the voltage vector to be realized is located. After that, the 
computing, dependent on the respective hardware, will follow. 

2.4.1 Modulation with microcontroller SAB 80C166 

The microcontroller SAB 80C166 is a special high-performance 
microprocessor with an extensive periphery on the chip. Particularly the 
Capture/Compare register unit supports the space vector modulation for 

                                                      
1 This is possible, however, if the modulation is not realized with PWM units 

but with CAPCOM registers 



following example. 

 

Fig. 2.12a Hardware configuration for the space vector modulation using the     
microcontroller SAB 80C166 in double register compare mode 
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In double register compare mode the 16 CapCom registers CC0-CC15 
are configured in two register banks and assigned in pairs to one of the two 
timers T0 or T1 respectively. E.g. the three pairs CC0/CC8, CC1/CC9 and 
CC2/CC10 with the inputs/outputs CC0IO/P2.0, CC1IO/P2.1 and 
CC2IO/P2.2, which are configured as outputs here, shall be used. The 
simplified hardware structure to control the inverter is shown in the figure 
2.12a. The assignment of the register pairs to the inverter phase legs is 
represented in the figure 2.12b. 

 

 
Fig. 2.12b Assignment of the register pairs to the switching times of the inverter 
legs 

The modulation works in a fixed time frame with the pulse period Tp, 
which represents at the same time the reload value Treload for the timer T0. 
This stable time frame supports the synchronization between the hardware 
hierarchies as well as between digital control, modulation and current 
measurement, which shall be discussed later. Thus, the reload register 
T0REL must be loaded with Tp only once at processor initialization. In the 
current sampling period (k) the turn-on/turn-off times Tu_on, Tu_off, Tv_on, 
Tv_off, Tw_on and Tw_off of the inverter legs will be calculated and stored 
intermediately in a RAM table. An interrupt signal T0IR is triggered at 
overflow of the timer T0 which causes the transfer of the reload value from 
the register T0REL into timer T0. The interrupt signal T0IR at the same 
time activates an interrupt service routine to load the new switching times 
from the RAM table into the register pair for the following sampling 
period. In the next sampling period (k+1) and while the timer T0 is 
counting up, the compare matches between: 



T0 and CC0, CC1 and CC2 as well as 
T0 and CC8, CC9 and CC10 

cause the switchover of the phases u, v and w to 
the positive or respectively 
the negative potential 

of the DC link voltage UDC. The voltage components usα and usβ are 
normalized to the maximum value 2UDC/3 in the following calculations, so 
that an extra index is neglected following the definition of the times 
introduced in figure 2.12b, and using equations (2.1), (2.2), (2.7) and table 
2.3 the following formulae are obtained for the different sectors: 
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3. Sector 3: 
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4. Sector 4: 
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5. Sector 5: 
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6. Sector 6: 
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Using these equations provides an easily comprehensible realization of 

the space vector modulation following the control flow of the structogram 
of fig. 2.11. The afore mentioned limitation to the maximum voltage 
vector should be already carried out in the current controller because of the 
necessary feedback correction discussed later. The normalization of the 
voltage components to 2UDC/3 permits the calculation of the switching 
times independent of the motor nominal voltage. 

2.4.2 Modulation with digital signal processor TMS 320C20/C25 

Unlike the Siemens microcontroller the digital signal processor is not 
equipped with the intelligent Capture/Compare register unit, but provides a 
superior computing power instead. In principle, there are two possibilities 
for the realization of the space vector modulation. 
1. Using additional hardware: The processor is extended by a latch-

counter-unit providing the process interface to the inverter (refer to fig. 
2.13a). 

2. Without additional hardware: The internal processor timer is used to 
generate the pulse pattern. 

Since the 2nd variant causes certain disadvantages, such as an inaccurate 
voltage realization, particularly at the sector boundaries as well as in the 
area of small stator voltage (important for the low speed region), the 1st 
variant (following the realization with microcontroller) is discussed first. 



The figure 2.13a illustrates the hardware configuration. The figure 2.13b 
shows, representative of the complete vector space, the definition and 
respectively the assignment of the turn-on / turn-off times to the inverter 
legs. 

 

 
Fig. 2.13a Hardware configuration using DSP with external down-counter 

According to the definition the switching times of the sampling period 
(k) can be calculated and stored in a RAM table. In the next period (k+1) 
they are output half-pulse wise. Computing and output of the switching 
times are processed in a time frame with the fixed period Tp/2, which is 
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provided by either the internal timer of the signal processor or possibly 
also by the master-processor in the case of a multi-processor system. At 
the synchronization instants the switching times for the actual half pulse 
are automatically transferred from the latches to the down-counters, giving 
way to write the switching times for the next half pulse from the RAM 
table into the latch. Thus, output of the switching times independent of the 
interrupt reaction time is achieved, which results in a very precise voltage 
realization particularly in the area of small voltage values. After having 
been loaded with the switching times the counter starts to count 
backwards. Once the counter reading is zero, a zero detector will generate 
turn-on / turn-off pulses to control the inverter. 

 

 
Fig. 2.13b Definition of the turn-on and turn-off times in the version DSP with 
additional hardware 

According to the definition in the figure 2.13b, equation (2.2) and table 
2.3 the switching times can be calculated as follows. 
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2. Sector 2: 
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3. Sector 3: 
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4. Sector 4: 
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5. Sector 5: 
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6. Sector 6: 
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The shown variant with additional hardware fulfils highest requirements 
regarding the precision of the voltage realization. The additional hardware 
costs are faced by a time resolution, which is practically limited only by 
the word length of the three counters and their clock frequency. 

With regard to a very exact and dynamic feedback control this solution 
has to be preferred to the one with microcontroller if one considers that the 
controller has a maximum time resolution of only 400 ns (with hardware 
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expansion also 200 ns possible). This time resolution permits a voltage 
resolution of only 7 bits at a pulse frequency of 10 kHz (approx. 4 V/time 
increment) and a resolution of 8 bits at 5 kHz (approx. 2 V/time 
increment). This is a rather coarse resolution. In contrast to this, a time 
resolution of 50 ns corresponding to a voltage resolution of 10 bits 
(approx. 0.5 V/time increment) can easily be achieved, which requires just 
the use of counters with 10 bit word length and 10 MHz clock frequency. 
Another drawback of the microcontroller solution is due to the fact that the 
CAP/COM registers of the SAB 80C166 cannot be switched 
simultaneously because they are subject to a skew of 50 ns from register to 
register. This necessitates a hardware-based compensation to attain a high 
precision of the voltage realization. Such a compensation is particularly 
important at the sector boundaries as well as in the area of small voltages 
or small speeds. 

For the DSP solution, the version without additional hardware offers 
itself as an alternative possibility. The switching times are generated using 
the only internal timer. The figure 2.14a shows the used hardware. The 
figure 2.14b shows the time frame, in which the switching time calculation 
as well as their output are processed. As familiar, the switching times are 
calculated and stored into a RAM table already in the period (k) for the 
following period (k+1). The difference, compared with the two previous 
solutions, consists in the switching times not being output to the inverter 
separately for every phase in the form of Ton and Toff, but in original form 
as Tr, Tl or T0,7 together with the needed switching state. The respective 
switching state is sent as a 3 bit data block to a buffer latch ahead of the 
inverter which holds it for the complete period. 

From figure 2.14b it becomes evident, that two information are relevant 
about the modulation: the switching time and the switching state. These 
information are determined using table 2.3 and the flow chart in the figure 
2.11, depending on the sector the voltage vector is located in. The hold 
time of the switching state was fetched from the RAM table and loaded 
into the period register PRD before. The timer counts backwards and when 
reaching zero activates the automatic loading of the new time constant 
from the PRD into its own counter register. At the same time, it triggers an 
interrupt request Tint, which activates an interrupt routine for handing over 
the following switching state (pulse pattern) into the latch as well as 
reloading the PRD. 



 
Fig. 2.14a Hardware configuration using DSP with its internal timer TIM 

To output the switching states the following simple algorithm can be 
used. If again the figure 2.14b for the sector S1 is viewed as an example the 
following assignment table can be composed. 

 
Switching times Tr Tl T7 Tl Tr T0 
Switching states 100 110 111 110 100 000 
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The phases u, v and w are assigned to the data bits D0, D1 and D2. If the 
switching states of the above table are now written in reversed order 

000 / 001 / 011 / 111 / 011 / 001, 
a so-called control word (CW) results with CW=17D9h as a 

hexadecimal number. The control words for all six sectors can be 
summarized like in table 2.4. 

Table 2.4 Control words of all sectors 

Sectors S1 S2 S3 S4 S5 S6 
Control words 17D9h 27DAh 2DF2h 4DF4h 4BECh 1BE9h 
 

 
Fig. 2.14b Modulation time frame of the solution without additional hardware 

The control word, corresponding to the determined sector is loaded by 
the interrupt routine from the memory into the accumulator, submitted to 
the latch, shifted three times to the right (to remove the switching state), 
and then stored back into the RAM. Every time after the control word has 
arrived in the accumulator, a zero test is carried out. The value zero 
indicates a new control word for the next sampling period. The described 
handling of the control words is illustrated again by the flow chart in figure 
2.14c. 

Some disadvantages of this method shall be mentioned now. The figure 
2.14a is redrawn for two extreme cases: 

1. the areas of small voltages at the sector boundaries, and 
2. the area of voltage limitation (refer to fig. 2.14d). 

 



 
Fig. 2.14c Flow chart of the 
interrupt routine to output 
switching times and 
switching states 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Changing the switching states by means of an interrupt routine reacting 
to Tint implies that the interval between two changes must be longer than 
the interrupt reaction time and respectively the run time of the interrupt 
routine itself. The figure 2.14d (refer to fig. 2.6) shows for sector S1 that: 

1. near the sector boundaries one of the two times Tr or Tl, and 
2. in case of small voltages both times Tr and Tl 
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may fall below the reaction time of the interrupt routine. In the 1st case 
the boundary vector with the smaller switching time must be suppressed, 
and the second one will be realized for the whole period instead. This, of 
course, causes an inaccuracy of the voltage realization. In the 2nd case 
the voltage amplitude in the vicinity of zero is limited on the lower end, 
which has a negative effect on the speed control at small speeds. 

 

 
Fig. 2.14d Switching times at sector boundaries, in the area of small voltage (left) 
or of voltage at upper limits (right) 

At large voltage amplitudes or during transients (magnetization, field-
weakening, speed-up, speed reversal) the zero times T0 and T7 can become 
very small, and also fall below the reaction time of the interrupt routine 
(fig. 2.14d right). This means a limitation of the voltage amplitude on its 
upper end. 

2.4.3 Modulation with double processor configuration 

In this section a double processor system is introduced combining 
harmonically the strength of the digital signal processor TMS 320C25 – 
with respect to computing power – with the strength of the microcontroller 
SAB C167 – with respect to peripheries. 

In this configuration the DSP is responsible for the processing of 
the near-motor control functions, and the μC has to process the tasks of the 
superposed control loops. The DSP allows to calculate the extensive real 
time algorithms, part of which is also the space vector modulation within a 
small sampling time of 100...200 μs. In every sampling period the DSP 
stores the newly calculated switching times into its own RAM, they are 
read from the μC memory driver using HOLD/HOLDA signals and 
submitted to the μC-internal PWM units. That means, with respect to the 
modulation the μC is only responsible for the output of the switching times 
and for the control of the transistor legs. 



 
Fig. 2.15a Overview of the double processor configuration DSP - μC 

The microcontroller SAB C167 contains, different to the earlier SAB 
80C166, four timers PT0...PT3. In the symmetrical modulation mode these 
timers work as up/down counters. After every forward and the following 
backward counting process, when the counter content has reached 
the value zero, the timer/counter automatically receives the new 
maximum counter content from one of the four period registers PP0...PP3 
for the new counting period. For the modulation only three registers of 
each category are needed (fig. 2.15b). It can be easily recognized that the 
three registers PP0, PP1 and PP2 have to get the same value 
simultaneously to realize the same counting or modulation periods. 
Furthermore it can be easily recognized that these three registers have to 
be initialized only once with the value Tp=1/fp because of the constant 
pulse frequency fp. 

In comparison with the SAB 80C166 the registers PT0, PT1, PT2 play 
the role of T0, and the registers PP0, PP1, PP2 the role of T0REL (refer to 
fig. 2.12a). The registers PW0, PW1 and PW2 generate the pulse widths. 
The assignment of the registers to the transistor legs is shown in the figure 
2.15b. 
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Fig. 2.15b Simplified structure of the modulation registers of the SAB C167 

 
Fig. 2.15c Definition of the switching times for the structure in the figure 2.15b 



While PT0, PT1 and PT2, which are represented as PWM timers in 
figure 2.15c, are counting forwards and backwards, their values are 
permanently compared with the contents of the corresponding pulse width 
registers PW0, PW1 and PW2. Respective compare-match events cause 
the output ports POUT0, POUT1, POUT2 to toggle and in due course the 
switchover of the corresponding inverter legs. 

The figure 2.15c shows that the pulse width registers PW0, PW1 and 
PW2 have to be reloaded with new switching times, for turn-on and turn-
off, only once per modulation period. The switching times can be 
calculated according to the definition in figure 2.15c as follows. 
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3. Sector 3: 
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6. Sector 6: 
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To complete the chapter of the realization examples the figure 2.16 
shows the switching time plots, produced by the structure in figure 2.15b, 
at great voltages. This may be easily recognized by the fact that the 
switching times also show values near zero. 
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Fig. 2.16 The phase voltage usu with the corresponding switching time Tu (top), 
and the switching times Tu, Tv, Tw (bottom) 

2.5 Special modulation procedures 

2.5.1 Modulation with two legs 

Starting point for this section is figure 2.9, which represents the standard 
modulation in a stable time frame. The standard modulation realizes the 
same voltage vector, which is determined by the lengths of its boundary 
vector times Tr, Tl, twice per pulse period. For the purpose of comparison it 
is represented again for the sector S1 in figure 2.17a. 

We will try now to combine the zero times T0, T7 such that their sum is 
output either equally distributed at the ends (fig. 2.17b) or concentrated in 
the center (fig. 2.17c) of the pulse period. The times Tr, Tl or the voltage 
vector to be realized remain unchanged. With respect to the mean average 
value the two new sequences realize the same vector as in figure 2.17a. 

It is obvious in the newly arisen sequences, that only two inverter legs 
are actually switched over. If this method, which will be called modulation 
with two legs from now on, is used consistently for the whole vector space, 
then the switching losses automatically go down to approx. 2/3 of the 
original value. 



From the figures 2.17b,c it becomes obvious that either the phase with 
the smallest pulse width (for S1: phase w) or the phase with the smallest 
pause time (for S1: phase u) would be clamped to negative potential (the 
lower transistor of a phase leg is conducting) or to positive potential (the 
upper transistor is conducting). The formulae for the calculation of the 
switching times depend on the hardware and can be derived according to 
the definition from section 2.4. 

 

 
Fig. 2.17 Modulation with two legs for sector S1 

With the help of the firing pulse patterns in figures 2.4a...e, the suitable 
clamping phases or transistor legs can be found for all sectors and are 
summarized in the table in figure 2.18. For each sector two phases are 
available alternatively. 

To obtain the same switching losses for all transistors, the upper 
transistor of one leg (corresponding phase on +) and then the lower 
transistor of the next leg (corresponding phase on −) are alternately 
switched on permanently for an angular range of 600. To switch-over the 
clamping to the next phase, 

1. either the sector boundaries (figure 2.18b), 
2. or the middle points of the sectors (figure 2.18c) 

can be used. For all variants every transistor of the inverter conducts 
only for 600 per rotation of the voltage vector. With regard to the switching 
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time calculation, which already requires a sector selection (refer to table 
2.3), the version shown in figure 2.18b, seems to be more suitable for the 
practical implementation compared to the one in figure 2.18c. 

 

 
Fig. 2.18 Possibilities of modulation with two legs: Possible phases for clamping 
per sector (a), and ways to switchover the clamped phases (b, c) 

The advantage of the lower switching losses, however, is faced by 
considerably higher current harmonics, about twice the ripple amplitude 
has to be expected compared to the standard PWM algorithm. 

2.5.2 Synchronous modulation 

For the modulation algorithms discussed so far, it was always assumed 
that the pulse period Tp or the pulse frequency fp = 1/Tp is kept constant. 
However, since the fundamental frequency or the stator frequency fs of the 
driven motor depends on the speed as well as on the load and is therefore 



variable, the relationship fp/fs is not constant. In this case one speaks of 
asynchronous modulation. The pulse period and the fundamental voltage 
period are not in any fixed relation. 

This asynchronous characteristic causes subharmonics and losses as 
well as torque oscillations, which do not play an important role, as long as 
the relationship fp/fs is sufficiently large. The negative influence of the 
asynchronous characteristic may become a significant problem for high-
speed drives (centrifuges, vacuum pumps etc.) in the speed range of 
30000...60000 rpm. This problem can be avoided by keeping fp and fs in a 
fixed relationship. 

1 1

p

s

p
p s

f
N const

f

T const
f N f

= =

= = =
            (2.32) 

N is the number of the pulse periods per fundamental wave and may 
assume – because of the three-phase symmetry of the machines – only 
values, which fit the following relationship. 

9 6 0,1, 2, 3, ...
9,15, 21, 27, ...

N n n
N

= + =
=

         (2.33) 

In principle the modulation is processed in the same way as for the 
asynchronous algorithm, only, that the length of the pulse period Tp – 
depending on the working frequency fs – must be recalculated 
permanently. It has to be taken into account for the practical 
implementation, that the value of the period register cannot be changed 
during the current pulse period, although the new value is already available 
after the recalculation is finished. This requires a double buffering of the 
period register. However, not every microcontroller will have the ability 
of double buffering. Regarding this feature the SAB C167 is very 
recommendable because the registers PP0, PP1, PP2 and PP3 are doubly 
buffered1 by the so-called „shadow register“. 

The following problems must be taken into account for the application 
of the method: 

1. Switching over of the pulse number N is carried out depending on the 
working (fundamental) frequency, and a hysteresis – to prevent 
continuous to- and from-switching – must be installed. 

                                                      
1) Note: This ability is a further development of the SAB C167 in newer 

versions. The SAB C167 in the first version does not have double buffering for 
period registers. 
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2. Switching over of the pulse number N as well as switching over 
between asynchronous and synchronous modulation must – to reduce 
transient effects – take place at the sector boundaries where one of 
the phase voltages usu, usv and usw reaches its peak value. At the sector 
boundaries the current harmonics pass through their zero crossings. 

2.5.3 Stochastic modulation 

In this chapter we shall take a closer look at the switching frequency 
harmonics produced by the modulation and discuss certain ways to take 
influence on their appearance. Typical spectra of inverter voltage and 
current for the standard modulation with fixed pulse width are shown in 
figure 2.19. Their shape depends on the modulation ratio max| |sm u= u  
and in case of the current on the load characteristic. 
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Fig. 2.19 Voltage (top) and current (bottom) spectra for standard modulation with 
m = 0.4 and pulse frequency = 1.0 kHz; current fundamental is truncated! 

The spectra show pronounced maxima at the pulse frequency and its 
multiples with the overall maximum at the 2nd harmonic. Because of the 
low-pass characteristic of the load (R – L) harmonics beyond the 4th are 
suppressed in the current. Depending on the application and performance 
requirements, both positive and negative effects arise from this kind of 
spectrum: 



• Below the switching frequency and its sidebands appear only low 
harmonic amplitudes and consequently their effect on ripple control 
frequencies in grid applications (active front-end converters) is 
negligible. 

• The maximum harmonic current amplitudes are concentrated around 
two specific frequencies (1st and 2nd order), which facilitates filtering. 

• Especially for grid applications, the maxima at 1st and 2nd switching 
frequency harmonic may exceed the limits specified in the applicable 
grid codes, which requires additional filtering for their suppression. 

• The pronounced single-frequency harmonics produce noise which may 
be unwanted and experienced as disturbing in many environments. 
To overcome the mentioned negative effects, it would in the first place 

be necessary to get rid of the pronounced 1st and 2nd harmonics and to 
obtain a more uniformly distributed spectrum. A straightforward solution 
could be to elude to control strategies with variable pulse period, such as 
bang-bang control, predictive control or direct torque/flux control. This is 
however outside the scope of this book, since we want to rely on the 
current control procedures to be discussed in the later chapters. So the 
question is how we can achieve a distributed spectrum while keeping a 
constant pulse period at the same time. 

To derive respective procedures, it is first necessary to take a closer look 
on how the harmonic frequencies originate. Figure 2.20 shall help to do 
this. In both phase voltage and inverter control signals two repeating 
patterns may be identified: 

1. The first pattern is formed by the ever repeating sequence of zero and 
active vectors … 0-R-L-7-7-L-R-0 … which appears with switching 
frequency and multiples of it. 

2. The second one is formed by regular blocks of the active vectors R 
and L which are interrupted by zero vectors 0/7 with symmetric 
distribution within one period. This pattern is responsible for the 
especially strong 2nd harmonic in the spectrum and its multiples. 

To shape a distributed spectrum, the regularity of these patterns has to 
be overcome, we have to “break the symmetries”. Two methods shall be 
discussed to achieve this task. 

The first approach, “sequence randomizing”, breaks the first symmetry 
pattern by randomly changing the start vector of the pulse period between 
0 and 7. This implies to add an additional simultaneous switchover of all 
three phase legs at the beginning of the pulse period. The start vector for 
each period is determined by a pseudo-random binary sequence (PRBS) 
which can easily be generated in a microcontroller. The resulting pulse 
patterns and spectra are shown in figures 2.21 and 2.22. 
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Fig. 2.20 Switching pattern of phase voltage (top, center) and phase control 
signals u/v/w (bottom) for standard modulation 

 
Fig. 2.21 Switching pattern of phase voltage (top) and phase control signals u/v/w 
(bottom) for modulation with sequence randomizing 
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Fig. 2.22 Voltage (top) and current (bottom) spectra for modulation with 
sequence randomizing 

The described change of the vector sequence occurs in the example 
between first and second pulse period in fig. 2.21. The peak value of the 
first harmonic is clearly reduced but, since nothing is changed on the zero 
vector lengths, the second symmetry pattern and therefore the second 
harmonic remain largely unaffected. 

The 2nd harmonic is addressed with a different approach, which we will 
call “zero vector randomizing”. The symmetrical distribution of u0 and u7  
inside one period in the standard modulation scheme is dropped in favor of 
a randomly chosen ratio between both vectors, while keeping their 
symmetry with regard to the center of the pulse period. The latter is an 
important condition to maintain the coincidence between sampling instant 
of the phase current and the current fundamental (refer to chapter 4.1). 
With an uniformly distributed random number r(k) where 0 ( ) 1r k  and 
the original zero vector time T00, the resulting zero vector times can be 
calculated from: 

0 00

7 00

( )
(1 ( ))

T r k T
T r k T

=
=

              (2.34) 

As it turns out in the practical implementation, the results become more 
impressive when the extremes of the r(k) interval {0; 1} are stronger 
emphasized, i.e. r(k) is calculated by: 
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1

1

( ) ( ( ) 0.5) 0.5

2,3,...,8
0 ( ) 1
0 ( ) 1an uniformly distributed random number

r

r

r k k r k

k
r k
r k

= +

=
   (2.35) 

It must be mentioned, that the effectiveness of zero vector randomizing 
of course depends on the modulation ratio max/sm u= u , since m 
determines the available space for the zero vector variation. Near the 
maximum voltage vector the effect will be minimal. 

It must also be noted, that the total harmonic current, and therefore the 
total harmonic distortion (THD) value cannot essentially be changed by 
modifying the modulation scheme. Thus, reducing harmonics in one area 
of the spectrum inevitably will shift them to and increase them in another 
area. 

Figures 2.23 and 2.24 again show resulting sample pulse patterns and 
spectra, both figures for combined sequence randomizing and zero vector 
randomizing and at the same operating point as in the figures above. 

 

 
Fig. 2.23 Switching pattern of phase voltage (top) and phase control signals u/v/w 
(bottom) for modulation with combined sequence randomizing and zero vector 
randomizing 



 
Fig. 2.24 Voltage (top) and current (bottom) spectra for modulation with 
combined sequence randomizing and zero vector randomizing 

2.6 References 

Choi JW, Yong SI, Sul SK (1994) Inverter output voltage synthesis using novel 
dead time compensation. Proc. IEEE Applied Power and Electronics Conf., 
pp. 100-106 

Kiel E (1994) Anwendungsspezifische Schaltkreise in der Drehstrom-
Antriebstechnik. Dissertation, TU Carolo-Wilhemina zu Braunschweig 

Lipp A (1989) Beitrag zur Erarbeitung und Untersuchung von online Algorithmen 
für die digitale Ansteuerung von Pulsspannungswechselrichtern zur 
Drehzahlstellung von Drehstromasynchronmaschinen. Dissertation, TU 
Ilmenau 

Mohan N, Undeland TM, Robbins WP (1995) Power electronics: Converters, 
Applications, and Design. 2nd Edition, John Wiley & Sons, Inc. 

Pollmann A (1984) Ein Beitrag zur digitalen Pulsbreitenmodulation bei 
pulswechselrichtergespeisten Asynchronmaschinen. Dissertation, TU Carolo-
Willhelmina zu Braunschweig 

Quang NP (1991) Schnelle Drehmomenteinprägung in Drehstromstellantrieben. 
Dissertation, TU Dresden 

Quang NP, Wirfs R (1995) Mehrgrößenregler löst PI-Regler ab: Ein 
Umrichterkonzept für Drehstromantriebe. Elektronik, H.7, S. 106-110 

58      Inverter control with space vector modulation 



References      59 

Rashid MH (2001) Power Electronics Handbook. Academic Press 
Schröder D (1998) Elektrische Antriebe: Leistungselektronische Schaltungen. 

Springer Verlag, Berlin Heidelberg Paris London New York Tokyo 
Siemens AG (1990) Microcomputer Components SAB 80C166 / 83C166. User’s 

Manual 
Siemens AG (2003) C167CR Derivatives 16-Bit Single-Chip Microcontrollers. 

User’Manual, V3.2 
Siemens AG (2005) TC116x Series 32-Bit Single-Chip Microcontrollers. 

User’Manual, V1.2 
Texas Instruments (1990) Digital Signal Processing Products TMS 320C2×. 

User’s Guide 
Texas Instruments (2004) TMS 320F2812 Digital Signal Processors. Data Manual 
Yen-Shin L (1999) Sensorless Vector-Controlled IM Drives using Random 

Switching Technique, Proc. EPE ’99 Lausanne 
 
 



3.1 General issues of state space representation 

The mathematical modelling of the physical relations in 3-phase 
machines generally leads to differential equations of higher order and to 
state models with mutual coupling of the state variables respectively. For 
such systems the state space representation provides a very clear notation 
and a suitable starting point for the design of controllers, process models or 
observers. 

Consistently, the equations to be derived in the following chapters will 
be predominantly based on the state space representation, making it 
sensible to introduce this chapter with some basic ideas. There the main 
focus will be on some important topics of the modelling of 3-phase 
machines such as time variance of the parameters and nonlinearity of 
the system equations, and their consequences for the discretization of the 
state equations. 

3.1.1 Continuous state space representation 

A time-continuous dynamic system can generally be represented in the 
following form: 

( ) ( ) ( )( ) ( )
( ) ( ) ( )( )

0 0, ; R ; R ;

, ; R

n m

p

t t t t

t t t

•
= =

=

x f x u x u x x

y h x u y
   (3.1) 

In equation (3.1) f and h are general analytical vector functions of the 
state vector x and the input vector u. The equation (3.1) describes a system 
of differential equations of first order, in which the system order n is equal 
to the number of contained independent energy storages. The system has n 
state, m input and p output quantities. 

 

3 Machine models as a prerequisite to design 
the controllers and observers 



 
Fig. 3.1 Block circuit diagram of a system in state space representation 

In many cases, a system description will not be required in the general 
form of equation (3.1), or for analysis and controller design a model must 
be found, which represents an adequately exact approximation of the 
physical conditions and is more accessible to the further processing. The 
usual way to achieve this is the linearization of (3.1) along a (quasi-
stationary) trajectory (X(t), U(t)) or around a stationary operating point 
(X0, U0). After TAYLOR series expansion and truncation after the linear 
term, the following system is obtained: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

, ,

,

t t t t t t t

t t t t

•
= +

=
x u

x

x f X U x f X U u

y h X U x
     (3.2) 

Depending on the choice of the trajectory (X(t), U(t)), the operating 
point (X0, U0) or the degree of the linearization respectively the following 
special cases can be distinguished. 

1. Linear system with time-variant parameters 
The linearization is performed along the trajectory of a slowly variable 

quantity. Nonlinear combinations of state quantities are interpreted as 
products of a state quantity and a time variable parameter. Such a 
representation proffers itself primarily if products of state quantities with 
appropriately big differences of their eigendynamics appear. The equation 
system takes on the following form: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 0; ;t t t t t t t t

t t t

•
= + =

=

x A x B u x x

y C x
     (3.3) 

In (3.3) A is the system matrix, B the input matrix and C the output 
matrix. Because no direct feed-through of the input to the output vector y 
exists in electrical drive control systems (no step-change capability), we 
will abstain from explicitly including this dependency in the following. 

2. Bilinear system 
If the transfer matrices are constant in time, and if a nonlinearity only 

exists regarding the control input, and not regarding the state vector, we 
speak of a bilinear system. 
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x A x N x B u x x

y C x
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The multiplicative couplings between input and state quantities are 
summarized in the matrices Ni. 

3. Linear system with constant parameters 
The class of the linear time-invariant systems finally represents the most 

simple case. The system equations are: 

( ) ( ) ( ) ( ) ( )
( ) ( )

0 0; 0t t t t

t t

•
= + = =

=

x A x B u x x x

y C x
      (3.5) 

3.1.2 Discontinuous state space representation 

Control algorithms and models are processed in micro computers, and 
therefore in discrete time. The computer receives the system output 
quantity y(t) at definite equidistant points of time – e.g. after sampling and 
A/D conversion or U/f conversion and integration – as discrete quantity 
y(k). The calculated control variables are realized discontinuously as 
voltages by a PWM inverter. The complete control system represents a 
sampling system (fig. 3.2). 

Because of the sampling operation of the computer, as a rule, a discrete 
design of the control system will be preferred. This is motivated firstly, 
because special phenomena caused by the sampling can specifically be 
considered in the design. Secondly, the application of special design 
methods particularly adopted to sampling operation, such as the dead beat 
design, will be possible. It is prerequisite that an equivalent time-discrete 
description can be found for the continuous system, which exactly reflects 
the dynamic behaviour of the continuous system at the sampling instants. 

Unfortunately, for time-variant or nonlinear systems it will only in some 
rare cases be possible to find such an equivalent time-discrete system 
representation. The reasons will become clear at the derivation of the 
discontinuous state equations in later sections. Therefore, to design a 
discontinuous control system we can principally choose between the 
following two alternatives: 

1. Controller design for the continuous system and then discrete 
implementation (quasi-continuous design). 

2. Derivation of an approximated time-discrete process model and then 
discrete controller design. 



 
Fig. 3.2 Overview of a sampling system 

In many cases it will not be required to take into account all or single 
nonlinearities of the system because certain approximations for the time-
variant parameters and nonlinearities are possible and acceptable 
depending on the concrete application. In addition, because also in the 
linear case the discretization of the process model raises some important 
problems, the second way will be discussed in more detail in the 
following. The description of the continuous system shall be idealized as 
far as possible, to enable its discretization like for the linear time-invariant 
case. 

For this purpose it is assumed that the time-variant and state dependent 
parameters in equation (3.3) are constant within a sampling period, 
therefore the sampling period has to be chosen sufficiently small. Thus 
equation (3.3) can be regarded piecewise linear and time-invariant for 
each sampling period, and the discretization of the continuous model is 
possible in a conventional way like for linear time-invariant systems. The 
discretization starts from the system equation (3.5) with the sampling 
period T presumed constant. 

The discrete-time state model arises from the solution of the continuous 
state equation, yielding for the time-variant system (3.3) with continuous 
matrices A(t) and B(t): 

( ) ( ) ( ) ( ) ( )
0

0 0 0 0, , , , ,
t

t

t t t t t d t t= +0x x B uϕ Φ Φ   (3.6) 

The matrix (t, t0) describes the transition of the system from the state 

x(t0)=x0 to the state x(t) on the trajectory , and is therefore called the 

fundamental matrix or transition matrix. The matrix  fulfils the following 
matrix differential equation with the system matrix A(t): 
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( ) ( ) ( ) ( )0 0 0, , ; ,= =d t t dt t t t t tA IΦ Φ Φ       (3.7) 
For a constant system matrix A the fundamental matrix from equation 

(3.7) can be calculated analytically and represented as a matrix exponential 
function: 

( ) ( )0
0, e t tt t = AΦ               (3.8) 

For the derivation of the discrete state equation the transient response 
between two sampling instants is of interest. That means equation (3.6) 
must be integrated over a sampling period T. With (3.8) and t0 = 0 the 
following result is obtained: 

( )( ) ( ) ( ) ( )
0

1 e e
T

TTk T kT kT d+ = + +AAx x Bu    (3.9) 

To comply with (3.8) and (3.9), for the discretization of a time-variant 
system, the system matrix A must be presumed constant over one sampling 
period, as already indicated above. The transition matrix ((k+1)T, kT) 

becomes the discrete system matrix (k) and has to be recalculated online 
for every sampling period. Thus a time-variant discrete system is obtained. 
If one assumes further that the input vector u(t) is sampled by a zero-order 
hold function and therefore is also constant over one sampling period, u(t) 
may be extracted from the integral, and the complete system of state 
equations can be rewritten into the following matrix form: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

01 ; 0 ; 0k k k k k k

k k k

+ = + =

=

x x H u x x

y C x

Φ
  (3.10) 

The system matrix (k) is defined by: 

( ) ( )e kT Tk = AΦ                (3.11) 
Because the input matrix B is constant, B can also be written outside the 

integral in (3.9). After substitution of the integration variable , the 
discrete input matrix H can be written as follows: 

( ) ( )
0 0

e
T T

kT
Td k d== =AH B BΦ        (3.12) 

With regular A, (3.12) can be solved  further to: 

( ) ( )1 e kT TkT= AH A I B           (3.13) 

The output matrix C is identical to the continuous system. The system 
matrix (k) is the decisive component of the discretization procedure. It 



determines the dynamics and stability of the discrete system. For its 
evaluation different methods are known, characterized by more or less 
calculation effort and higher or lower degree of approximation. Some of 
them, which are suitable for real time applications, shall be discussed in 
the following in more detail. 

 
1. Series expansion 

With this method, (3.11) is expanded directly into a power series. 
( ) ( )2

0
e ...

2 !
T T T

T
=

= = + + + =A A A
I AΦ      (3.14) 

After truncating the series expansion after the linear term, we obtain the 
solution for the Euler or RK1 procedure. This quite simple and easily 
comprehensible solution already suffices for many electrical drive 
applications at usual sampling times in the range 0.1 ... 1ms with respect to 
stability and precision. Because of possible numerical stability problems of 
the Euler procedure a more exact analysis is, however, appropriate. 

The stability range of the Euler procedure in the continuous state plane 
is a circle with the radius 1/T and center at -1/T on the real axis. Therefore 
all eigenvalues i of the continuous system must hold to the following 
inequality: 

1 1
i T T
+ <                 (3.15) 

Particularly for complex frequency dependent eigenvalues of the system 
matrix A an exact check of this stability condition is required. 
Discretization-induced instabilities may be avoided by: 
• Increasing the order of the series expansion of (3.14). 
• Eluding to an integration method of higher order, e.g. RK4, which 

however, probably will be less feasible for real time applications. 
• Avoiding complex eigenvalues of the system matrix A or its partial 

matrices. 
For the latter variant the discretization of the state equations has to be 

first carried out in a coordinate system in which no frequency dependent 
eigenvalues of A or partial matrices Aii appear. After that the discrete state 
equations are transformed into the final coordinate system (refer to 
example in the section 12.2). This procedure already yields decisive 
improvements for the Euler method. The use of suitable coordinate 
systems for the discretization can at the same time help to avoid errors, 
which result from the necessarily idealizing assumption of constant 
parameters of the system matrix A within a sampling period. 
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A similar approach would consist in transforming the input quantities of 
the partial system of interest into the respective natural coordinate system 
(without frequency dependent eigenvalues for the Aii). In these coordinates 
all required calculations (model, controller and observer) would be 
processed, and then the output quantities would be transformed back into 
the original reference system. 

 
2. Equivalent function 

The matrix function ( ) e T= AF A  is recreated by an equivalent 
polynomial function R(A) with: 

( )
1

0
e

n
i T

i
i

r
=

= = AR A A             (3.16) 

In this function, n is the order of the continuous system. This 
substitution is based on the Cayley Hamilton theorem, which states that 
every square matrix satisfies its own characteristic equation. As a 
consequence, it can be derived that every (n×n) matrix function of order 
p n , therefore also p  like in (3.14), may be represented by a 

function of not more than (n-1)th order. The equivalent function (3.16) 
corresponds exactly to this statement. 

With known factors ri the system matrix  can be calculated from 
(3.16) whereby completely avoiding discretization errors, as in the case of 
truncated series expansion. For the calculation of the factors ri the already 
mentioned property of (3.16) is used, that it is satisfied not only by the 
matrix A but also by the eigenvalues j. This leads to the following linear 
system of equations: 
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i
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= =          (3.17) 

which holds at first for single eigenvalues. For p-fold eigenvalues (p>1) 
equation (3.17) is differentiated (p-1) times with respect to λj: 
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     (3.18) 

A second possibility for the calculation of ri is offered by the Sylvester-
Lagrange equivalent polynomial method. A minimal polynomial M(λ) is 



defined, which is equal to the characteristic polynomial for the case of 
exclusively single eigenvalues of A: 

( ) ( )
1

n

i
i

M
=

= =I A           (3.19) 

In the case of multiple eigenvalues, M(λ) contains only the eigenvalues 
different from each other with number m<n. Furthermore the following 
auxiliary functions are defined. 
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With these, the substitute function ( ) ( )R == AR A  
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 is finally calculated, from which the factors ri are obtained by 
organizing after powers of . In the case of multiple eigenvalues, n is to be 
replaced by m in equations (3.19) to (3.22). 

The previous explanations for the state space representation shall 
promote the understanding of the procedure for the later controller and 
observer design. The example in the section 12.2 (appendices) shall clarify 
the theoretical explanations. 

As opposed to linear systems, no representation of an equivalent time-
discrete system can be given for general nonlinear and time-variant 
systems. The bilinear systems (3.4) are an exception up to a certain point. 
The system 
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    (3.23) 

can be integrated over T like an ordinary linear system under the 
prerequisite of the constancy of the control vector u during a sampling 
period. For the system matrices of the equivalent discrete system the 
following results are obtained: 

( )
( )

( )
( )

1 1

0

e ; e

m m
i i i i

i i
Tu k T u k

k k d= =
+ +

= =
A N A N

H BΦ   (3.24) 

However, this derivation also will have practical meaning only in 
special cases. 
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3.2 Induction machine with squirrel-cage rotor (IM) 

As indicated in the previous section, the 3-phase AC machine can be 
described by a complicated system of higher order differential equations. 
To derive a machine or a system model, which allows a convenient 
handling from the control point of view, a series of simplifying 
assumptions must be met regarding the reproduction accuracy of 
constructive and electrical details (refer to chapter 6). 

The reference axis for the field angle is the axis of the phase winding u 
and therefore the α axis of the stator-fixed coordinate system. The 
coordinate transformations (vector rotations for voltage output and current 
measurement) are assumed as well-known methods. The same applies to 
the inverter control by means of space vector modulation. These transfer 
blocks are regarded as error-free with respect to phase and amplitude, and 
will be considered negligible for the benefit of a clear control structure 
representation. 

In this book, the three-phase machines will be represented using their 
state space models. In the classical, computer-based control structures the 
controller designs almost always were based on continuous state models. 
This approach does not suffice any more today. Therefore, in the first step 
the continuous state space models of the 3-phase AC machines shall be 
worked out in this section. Then the equivalent discrete state models will 
be derived to support the design of the discrete controllers. 

The electrical quantities are represented as vectors with real 
components. As a reminder the important indices to be used shall be listed 
here. 

 
a) Superscript: 
 f field synchronous (or field orientated, rotor 

flux / pole flux orientated) quantities 
 s stator-fixed quantities 
 r rotor-fixed (or rotor orientated) quantities 
b) Subscript: 

s stator quantities 1st letter: 
r rotor quantities 
d, q field synchronous components 2nd letter: 
α, β stator-fixed components 

c) Letters in bold: vectors, matrices 
 



3.2.1 Continuous state space models of the IM in stator-fixed 
and field-synchronous coordinate systems 

Starting-point for all derivations are the stator and rotor voltage 
equations in their natural and easily comprehensible winding systems: The 
stator-fixed coordinate system, and the rotor-fixed coordinate system. 
• Stator voltage in the stator winding system: 

s
s s s
s s s

dR
dt

= +u i               (3.25) 

Rs: Stator resistance; s
s : Stator flux vector 

• Rotor voltage in the short-circuited rotor winding system: 

= + =
r

r r r
r r r

dR
dt

u i 0              (3.26) 

Rr: Rotor resistance; r
r : Rotor flux vector, 0: Zero vector 

• Stator and rotor flux: 

withs s s m r s m s

r m s r r r m r

L L L L L
L L L L L

= + = +
= + = +

i i
i i

      (3.27) 

Lm: Mutual inductance; Ls, Lr: Stator and rotor inductances 
Lσs, Lσr: Leakage inductances on the side of the stator and rotor 

Due to the mechanically symmetrical construction the inductances are 
equal in all Cartesian coordinate systems. Therefore the superscripts are 
dropped in equation (3.27). The mechanical equations also are part of the 
machine description. 
• Torque equation: 

( ) ( )3 3
2 2

= × = ×M p s s p r rm z zi i 1       (3.28) 

{ } { }* *3 3Im Im
2 2M p s s p s sm z z= =i i 2      (3.29) 

• Equation of motion: 

M W
p

J dm m
z dt

= +              (3.30) 

mM, mW: Motor and load torque, zp: Number of pole pair 
J: Torque of inertia, ω: Mechanical angular velocity 

                                                      
1 × cross product of vectors 
2 Im{ } Imaginary part of the term in brackets; * conjugated complex value 
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Now a coordinate system is introduced which rotates with angular 
frequency ωk, as shown in section 1.1, and all quantities are transformed 
from the winding-coupled systems into the rotating one: 

 
1. Stator voltage equation 

After applying the transformation rules the following results are 
obtained: 

, , ,k k k k k
s k

j j j j js k s k s k ks s
s s s s s s k s

d de e e e j e
dt dt

= = = = +u u i i  

Inserting the transformed quantities into equation (3.25), the equation 
(3.31) of the stator voltage in the new rotating system is obtained: 

k
k k ks
s s s k s

dR j
dt

= + +u i            (3.31) 

However, the voltage equation is not to be represented in an arbitrary 
system, but for special practically relevant cases: in the stator-fixed or in 
the field synchronous (field-orientated) systems. These representations are 
obtained by setting: 
• :k s=  Here ωs is the angular velocity of the stator-side space vectors 

or the rotating rotor flux vector. 
f

f f fs
s s s s s

dR j
dt

= + +u i           (3.32) 

This coordinate system is chosen to lock the real or the d-axis of the 
system to the rotor flux (refer to section 1.2). Thus the cross component of 
the rotor flux becomes equal to zero. The axes of the system are denoted 
by dq coordinates. 
• 0 :k =  This means, that the system is fixed in space, whereat the real 

axis or the α-axis of the coordinate system coincides with the axis of the 
phase winding u. 

s
s s s
s s s

dR
dt

= +u i               (3.33) 

The axes of this stator-fixed coordinate system are denoted as αβ-
coordinates. For the case k =  (mechanical angular velocity or 
respectively motor speed) a rotor-orientated equation of the stator voltage 
can also be derived. However, since there is hardly any advantage to be 
obtained from this representation we will not follow it further. 

 
2. Rotor voltage equation 

The transformation rules are applied in similar way to the stator voltage 
equation. 



, ,k k k k
r k

j j j jr k r k kr r
r r r r k r

d de e e j e
dt dt

= = = +i i  

After inserting the transformed quantities into equation (3.26) the 
following result is obtained: 

k
k kr

r r k r
dR j

dt
= + +0 i            (3.34) 

The equation (3.34) can also be written for the field-orientated and 
stator-fixed coordinate systems. 
• :k s r= =  This coordinate system is rotating ahead of the rotor 

with angular velocity ωr and coincides with the field synchronous 
coordinate system. Inserting ωr into equation (3.34) yields: 

f
f fr

r r r r
dR j

dt
= + +0 i            (3.35) 

Equation (3.35) represents the rotor voltage in dq-coordinates. 
• :k =  Assuming the rotor to rotate with the mechanical angular 

velocity ω, this coordinate system turns with the same angular velocity 
in the opposite direction. Therefore, the coordinate system is fixed to the 
stator and can be chosen to coincide with the αβ-coordinates mentioned 
above. 

s
s sr

r r r
dR j

dt
= +0 i             (3.36) 

The equation (3.36) represents the rotor voltage equation in the stator-
fixed, αβ-coordinates. 

So far the transformation of all voltage equations from their original 
winding systems into the required dq- or αβ-coordinates is complete. With 
the equations (3.32), (3.33), (3.35) and (3.36) the starting point to derive 
the continuous state space models of the IM is reached. 

 
3. Continuous state space model of the IM in the stator-fixed coordinate 

system (αβ-coordinates) 
The equations (3.33) and (3.36) are combined into the following 

equation system: 
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= +

= + =

= +

= +

s
s s s
s s s

s
s s sr
r r r r

s s s
s s s m r
s s s
r m s r r

dR
dt

dR j
dt

L L

L L

u i

u i 0

i i

i i

         (3.37) 

Not all electrical quantities in the system (3.37) are actually of interest. 
These are e.g. the not measurable rotor current s

ri , or, depending on the 

viewpoint of the observer, also the stator flux s
s . Therefore these 

quantities shall be eliminated from the equation system. From the two flux 
equations it follows: 

( ) ( )1 ;s s s s s s sm
r r m s s s s r m s

r r

LL L L
L L

= = +i i i i  

Now s
ri  and s

s  are substituted into the voltage equations (3.37) to 
yield: 

1

s s
s s s m r
s s s s

r
s

s sm r
s r

r r

d L dR L
dt L dt

L dj
T T dt

= + +

= + +

iu i

0 i
        (3.38) 

With: ( )21 m s rL L L=    Total leakage factor 
;s s s r r rT L R T L R= =  Stator, rotor time constants 

After separating the real and imaginary components from (3.38) we 
finally obtain: 

/ /

/ /

/
/ /

/
/ /

1 1 1 1 1

1 1 1 1 1

1 1

1 1

= + + + +

= + + +

=

= +

s
s r r s

s r r s

s
s r r s

s r r s

r
s r r

r r

r
s r r

r r

di i u
dt T T T L

di
i u

dt T T T L

d i
dt T T

d
i

dt T T

 (3.39) 



With:  / / /and ;= = =s s
r r m r r m r r mL L L  

To get the complete model of the IM the αβ-components of flux and 
current have to be inserted into the torque equation. The vector s

ri  is 
extracted from the last equation of the system (3.37) and substituted into 
equation (3.28). 

( )
2

/ /3
2

m
M p r s r s

r

Lm z i i
L

=          (3.40) 

The equations (3.39), (3.40) can now be summarized to a complete 
continuous model of the IM. The figure 3.3 illustrates the block structure 
of this model. 

 
 
Fig. 3.3 Model of the IM with squirrel-cage rotor in stator-fixed coordinate 
system 

The α- and β-components of stator voltage, stator current and rotor flux 
may be comprised in the following vectors with real components. 

/ /, , , ; ,= =sT sT
s s r r s s si i u ux u  

Superscript index T: Transposed vector 
With the newly defined state vector x the continuous state space model 

of the IM with squirrel-cage rotor is finally obtained from the equations 
(3.39). 

s
s s s s

s
d
dt

= +x A x B u              (3.41) 

As, Bs:  System and input matrix 
xs:   State vector in stator-fixed coordinate system 

s
su :  Input vector in stator-fixed coordinate system 
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The equations (3.42) show in detail the matrices As and Bs with the 
machine parameters. 

1 1 1 10
1 0

1 1 1 10 10;
1 10 0 0

0 01 10

s r r

s

s ss r r
s

r r

r r

T T T
L

T T T
L

T T

T T

+

+
= =A B

 (3.42) 
The equation (3.41) introduces a time-variant state system with the rotor 

speed ω as a measurable time-variant parameter in the system matrix As. 
This continuous state model of the IM (figure 3.4) forms the basis for the 
design of discrete controllers in the stator-fixed coordinate system in 
which the components of the state vector xs appear as sinusoidal quantities. 

 

 
Fig. 3.4 Continuous state model of the IM in stator-fixed -coordinates 

4. Continuous state space model of the IM in the field synchronous or 
field-orientated coordinate system (dq-coordinates): 

The equations (3.32), (3.35) are summarized in the following system. 
f

f f fs
s s s s s

f
f fr

r r r r

f f f
s s s m r
f f f
r m s r r

dR j
dt

dR j
dt

L L

L L

= + +

= + +

= +

= +

u i

0 i

i i

i i

          (3.43) 

As in the case of the stator-fixed coordinate system the not measurable 
rotor current as well as the stator flux are eliminated. 



( )

( )

/ /

/ /

/
/ /

/
/ /

1 1 1 1 1

1 1 1 1 1

1 1

1 1

sd
sd s sq rd rq sd

s r r s

sq
s sd sq rd rq sq

s r r s
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sd rd s rq

r r

rq
sq s rd rq

r r

di i i u
dt T T T L

di
i i u

dt T T T L

d i
dt T T

d
i

dt T T

= + + + + +

= + + +

= +

=

  

(3.44) 
Here are: / /; ;rd rd m rq rq m s rL L= = =  

 
Fig. 3.5 Model of the IM with squirrel-cage rotor in field synchronous 
coordinate system 

After extraction of f
ri  from equation (3.27), substituting into (3.28) or 

(3.29) and setting rq to zero due to fixing of the rotor flux vector to the 
real axis of the coordinate system, the equation (3.45) for the torque is 
arrived at: 

( )
2

/ /3 3 1
2 2

m
M p rd sq p s rd sq

r

Lm z i z L i
L

= =      (3.45) 

The equations (3.44) and (3.45) together form the complete, continuous 
model of the IM like shown in figure 3.5. The equation system (3.44) can 
be condensed into the following state space model: 

f
f f f f f

s s
d
dt

= + +x A x B u N x          (3.46) 

with the state vector xf, the input vector f
su : 
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/ /, , , ; ,= =f T f T
sd sq rd rq s sd sqi i u ux u  

the system matrix Af, the input matrix Bf and the nonlinear coupling 
matrix N: 

1 1 1 10

1 1 1 10

1 10

1 10

1 0
0 1 0 0

1 1 0 0 00 ;
0 0 0 1

0 0 0 0 1 0
0 0

+

+
=

= =

s r r

f s r r

r r

r r

s

f

s

T T T

T T T

T T

T T

L

L

A

B N

  (3.47) 

The state equation (3.46) with the matrices (3.47) obviously points to a 
bilinear characteristic (refer to section 3.1.1, equation (3.4)). Here the 
field synchronous components usd, usq of the stator voltage and the angular 
velocity ωs of the stator circuit represent the input quantities. The 
mechanical angular velocity ω in the system matrix Af is regarded as a 
measurable variable system parameter. The only formal difference 
between the two continuous state models (3.41) and (3.46) is the nonlinear 
term with the matrix N. The other matrices of both models are identical. 
The figure 3.6 illustrates the derived state model. 

 

 
Fig. 3.6 Continuous state model of the IM in field synchronous dq-coordinates 



So far the basic prerequisites for the further work are completed. 
However, for the controller design the continuous models are not 
particularly suitable. The microcomputer works discretely and processes 
only the motor quantities measured at discrete instants. A discrete model 
of the motor corresponding to this reality is therefore necessary for the 
controller design. The development of the discrete models is subject of the 
following section. It is useful to derive the models in the field synchronous 
as well as in the stator-fixed coordinate system because in practice control 
methods are developed in both coordinate systems. 

3.2.2 Discrete state space models of the IM 

Depending on the choice of the control coordinate system, the starting 
point for the derivation of a discrete state model for the IM is given by one 
of the two continuous state models (3.41) or (3.46). 

In principle the discretization of the continuous model is relatively 
simple for linear and time-invariant systems. This presumption is fulfilled 
to a large degree if the IM model in the stator-fixed coordinate system is 
used and one assumes that the electrical transient processes settle 
essentially faster than the mechanical ones. Thus the system matrix As or 
the stator-fixed system (3.41) can be considered as virtually time-invariant 
within one sampling period of the current control. The mechanical angular 
velocity ω of the rotor can be regarded as a slowly variable parameter and 
is measured by a resolver or an incremental encoder. 

This condition however is no longer fulfilled if the system is processed 
in the field synchronous coordinate system. The system model (3.46) 
indicates a bilinear characteristic additionally, the stator frequency 
ωs consisting of the mechanical speed ω and the load ωr leads to a time-
variant system, further complicating the derivation of the required model. 
But under the prerequisite that the input quantities usd, usq and ωs are 
constant within one sampling period T the discretization of this bilinear 
and time-variant system becomes feasible. The result is a time-variant 
however linear system which allows the application of a similar design 
methodology as for linear systems, like in stator-fixed coordinates. The 
demanded prerequisite is largely fulfilled for modern drive systems with 
sampling periods below 500μs. The pulsed stator voltage is processed as 
mean average over one period, and therefore also regarded constant in T. 

 
1. Discrete state model in the stator-fixed coordinate system 

After integrating the equation (3.41) (refer to equations (3.10) to (3.14)) 
the following equivalent discrete state model of the IM is obtained. 
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( ) ( ) ( )1+ = +s s s s s
sk k kx x H uΦ          (3.48) 

( )
( )

( )
1

1

0 1
e ; e

! !

+

= =
= = = =

s s
k T

s T s s s s s

kT

T TdA AA H B A BΦ  

 (3.49) 
The input vector s

su (k) is given by the microcontroller and therefore has 
step-shaped components. The transition matrix Φs and the input matrix Hs 
depend on the sampling period T and the mechanical angular velocity ω. 
The two matrices can be derived from the matrix exponential function 
e TA , which may be developed into a series expansion like in (3.49). But 
for the practical application a further simplification would be very helpful 
and wished for. Here the consideration may help that the discrete model to 
be developed is not intended for mathematical simulation of the IM, but to 
serve the design of the discrete controller. For this purpose the series 
expansion may be truncated at an early stage if the inaccuracy hereby 
produced is compensated by appropriate control means, e.g. by an implicit 
integral part in the control algorithms. 

The practical experience shows that an approximation of first order for 
Φs and Hs suffices completely for small sampling times (under 500μs). An 
approximation of higher order would increase the needed computation 
power unnecessarily. A special issue is the investigation of the stability of 
such discrete systems. It shall only be mentioned at this place that the 
stability very strongly depends on the sampling time T. The smaller the 
sampling time T, the larger becomes the stability area and thus also the 
utilizable speed range. Therefore a compromise must be found between 
decreasing the sampling time and increasing the stability area as well as 
the speed range, and the acceptable computation power or the computing 
time. The following formulae (3.50) show the approximation of first order 
for transition and input matrix. 

The representation of the discrete state models with partial matrices 
(figure 3.7) gives a good insight into the inner physical structure of the IM. 

 
 



11 12

21 22

1 1 1 11 0

1 1 1 10 1

0 1

0 1

0

0

0 0
0 0

+

+
= =

=

s r r

s s
s s r r

s s

r r

r r

s

s

s

T T T
T T T

T TT
T T T

T T T
T T

T TT
T T

T
L

T
L

H

Φ Φ
Φ

Φ Φ

1

2
=

s

s

H

H

 

 (3.50) 
The equation (3.48) can be written in detail as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )

/
11 12 1

/ /
21 22

1

1

s s s s s s s
s s r s

s s s s s
r s r

k k k k

k k k

+ = + +

+ = +

i i H u

i

Φ Φ

Φ Φ
    (3.51) 

 

 
Fig. 3.7 Block structure of the state model of the IM in stator-fixed coordinates 
represented with partial matrices 
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With the separation of the complete model (3.48) into two submodels 
(3.51) a favourable starting point arises for the practical controller design. 
The first equation of (3.51) represents the current process model of the IM. 
The system has two input vectors: The stator voltage s

su (k) and the slowly 

variable rotor flux s
r
/ (k) (figure 3.8a). 

In the chapter 5 it will be worked out, that the slowly variable rotor flux 
can be understood as a disturbance variable and therefore can be 
eliminated separately by a disturbance feed-forward compensation. The 
rotor flux is not measurable, it must be estimated. For this purpose the 
second equation of (3.51) may be used and is for this reason designated as 
i-ω flux model (figure 3.8b). From the measured currents and speed the 
rotor flux can be calculated using this model. 

The special issue of the flux estimation has been treated in some detail 
in earlier works. Besides this simple flux model, different flux observers 
have been proposed for flux estimation (refer to section 4.4). The rotor 
flux estimates are used: 
• to calculate the slip frequency ωr or the field angle ϑs for the field 

orientation, and 
• as actual flux values for the flux controller. 

 
Fig. 3.8 Structure of the current process model (a) and the i-ω flux model (b) of 
the IM in stator-fixed coordinates 



The structures in figure 3.8 have been derived by splitting-up the 
structure in the figure 3.7 with 2

s =H 0 . 
 

2. Discrete state model in the field synchronous coordinate system 
The derivation of a discrete state model or the discretization of the 

continuous bilinear state model (3.46) is carried out under the prerequisite 
that the input components usd, usq and ωs are constant within a sampling 
period T. It was already indicated in the introduction of this section that 
this demand can be looked-at as largely fulfilled for modern three-phase 
AC drives with PWM inverters due to their high sampling and pulse 
frequencies. 

After iterative integration of the equation (3.46) the following 
equivalent discrete state model of the IM is obtained. 

( ) ( ) ( )1+ = +f f f f f
sk k kx x H uΦ         (3.52) 
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The discrete model (3.52) is a time-variant, however linear model, 
unlike the continuous one. The elements of the transition matrix Φf(k) and 
the input matrix Hf(k) are calculated on-line. Like for the discrete state 
model in the stator-fixed system, useable formulae are obtained by first-
order approximation of the series expansions of the exponential functions 
in  (3.53). 
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   (3.54) 
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After rewriting the discrete state model (3.52) in the form with partial 
matrices: 

( ) ( ) ( ) ( )
( ) ( ) ( )

/
11 12 1

/ /
21 22

1

1

f f ff f f f
s s r s

f ff f f
r s r

k k k k

k k k

+ = + +

+ = +

i i H u

i

Φ Φ

Φ Φ
   (3.55) 

and considering, that 2
fH  is a zero matrix, the current process model of 

the IM and the i-ω flux model for the field synchronous coordinate system 
are obtained like in equations (3.55) and in figure 3.10. The formal 
similarity of the two discrete state models of the IM, which is recognizable 
from the equations and from the pictures, can surely be noticed in the 
stator-fixed as well as in the field synchronous coordinate system. This 
formal similarity permits a generalization of both cases and their later 
summarizing into a common controller design. 

 

 
Fig. 3.9 Block structure of the state model of the IM in field synchronous 
coordinates represented with partial matrices 

A decisive difference between the two models can be found in the 
appearance of ωs in the transition matrix Φf, expressing the coupling 
between the two current components isd and isq. This coupling, as already 
mentioned in chapter 1, cannot be removed effectively, e.g. by using a 
decoupling network like indicated in the classical control structure in 



figure 1.4. This becomes particularly evident if the system is operated 
constantly with strong field weakening. 

The discrete state model (3.52) of the IM in the dq-coordinate system 
was derived by discretization of the continuous model (3.46), which in turn 
was obtained by transformation from the original αβ-coordinate system 
into the dq-coordinate system, i.e. the transformation took place before the 
discretization. 

Another order also may be chosen alternatively: Discretization before 
transformation; i.e. the discrete dq-model results from the coordinate 
transformation of the discrete αβ-model (3.48) (refer to sections 3.1.2 and 
12.2). This way complex eigenvalues of the system matrix or instabilities 
caused by discretization can be avoided. In the result a discrete state model 
is obtained, which provides a larger stable working range for the 
controller. The parameters of the transition matrix Φ will contain sin/cos 
functions of ωsT (e.g. ωsT → sin(ωsT)). Especially for high-speed drives 
this procedure may yield significant advantages. 

 

 
Fig. 3.10  Structure of the current process model (a) and of the  i-ω flux model (b) 
of the IM in field synchronous coordinates 
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3.3 Permanent magnet excited synchronous machine 
(PMSM) 

Unlike the IM the PMSM has a permanent and constant rotor flux (also 
pole flux) with a certain preferred axis. With a simultaneous use of a 
position sensor (resolver, incremental encoder with zero pulse) the pole 
position can always be clearly identified, and field orientation (also pole 
flux orientation) is always ensured. For this reason the system design in the 
stator-fixed coordinate system will be abstained from, and the field 
synchronous coordinate system will be immediately chosen for the 
treatment of the machine. 

3.3.1 Continuous state space model of the PMSM in the field 
synchronous coordinate system 

The equation (3.25) is the general stator voltage equation of three-phase 
AC machines, and valid also for the PMSM. A coordinate system rotating 
with ω or ωs is conceivable whose axes are the d and q axis. For the 
PMSM ω and ωs are identical which means, that the coordinate system 
rotates not only field synchronously, but is also fixed to the rotor. If the 
coordinate system is chosen to match the real d-axis with the preferred axis 
of the pole flux, this coordinate system represents the desired field or pole 
flux orientation. If the equation (3.25) of the PMSM (in a similar way as in 
the case of the IM) is transformed from the three winding system of the 
stator into the field synchronous system, we obtain: 

f
f f fs
s s s s s

dR j
dt

= + +u i           (3.56) 

For the flux the following equation holds: 
f f f
s s s pL= +i               (3.57) 

Here f
p  is the vector of the pole flux. Because the real axis of the 

coordinate system is directly orientated to the preferred axis of the pole 
flux, the quadrature component of f

p  is zero. Therefore the pole flux 
vector has only the real direct component p . From that follows: 

with 0f
p pd pq p pqj= + = =         (3.58) 

In addition it has to be taken into account that due to the construction 
dependent pole gaps on the rotor surface, the stator inductance assumes 
different values Lsd, Lsq in the real and quadrature axis, respectively. For 



PMSM with cylindrical (non-salient) rotor both inductances are nearly 
identical and therefore usually equalized in classical control structures. 
The difference is not pronounced unlike in the case of salient-pole 
machines and to amounts approx. 3...12%. To obtain an effective 
decoupling between the current components isd and isq, this difference 
should be and will be taken into account in the following. Application to 
the stator flux equations thus yields: 

sd sd sd p

sq sq sq

L i

L i

= +

=
             (3.59) 

Substituting equations (3.57), (3.59) into the equation (3.56) then yields: 
sd

sd s sd sd s sq sq

sq
sq s sq sq s sd sd s p

diu R i L L i
dt

di
u R i L L i

dt

= +

= + + +
      (3.60) 

From the general torque equation (3.28) or (3.29) of three-phase AC 
machines we obtain: 

( )3
2M p sd sq sq sdm z i i=            (3.61) 

After inserting (3.59) into (3.61) the following torque equation results: 

( )3
2M p p sq sd sq sd sqm z i i i L L= +         (3.62) 

The torque of the PMSM consists of two parts: the main and the 
reaction torque. With pole flux orientated control of the PMSM the stator 
current usually will be controlled to obtain a right angle between stator 
current and pole flux (isd = 0) and therefore not to contribute to 
magnetization, but only to torque production. Therefore a similar equation 
as (3.45) for the IM can be obtained: 

3
2M p p sqm z i=               (3.63) 

Now equation (3.60) will be rewritten as follows: 
1 1

1 1

sqsd
sd s sq sd

sd sd sd

sq psd
s sd sq sq s

sq sq sq sq

Ldi i i u
dt T L L

di L i i u
dt L T L L

= + +

= +
    (3.64) 

The PMSM is completely described by equations (3.62) and (3.64) in 
field synchronous coordinates (figure 3.11). The equations (3.62), (3.64) 
are summarized to the following state space model. 

86      Machine models as a prerequisite to design the controllers and observers 



Permanent magnet excited synchronous machine (PMSM)    87 

f
f ff f fs

s s SM s s p sSM SM
d
dt

= + + +i A i B u N i S     (3.65) 

1 10 0 0 0
1; ; ;

1 10 0 0

sq

sd sd sdf f
SMSM SM

sd
sq

sq sq sq

L
T L L

L L
T L L

= = = =A B N S  

 (3.66) 
Sys tem  m atr ix;                          Dis tu r ban ce vector

Inp u t m atr ix;                           Tim e con s tan t of  axis
Non linear cou p ling m atr ix;     Tim e con s tan t

f
S M
f

S M sd sd s

S M sq sq s

T L R d
T L R

= =

= = =
= = =

A S

B
N of  axisq

 

The figure 3.12 illustrates the model (3.65) of the PMSM. 

 
 
Fig. 3.11 Model of the PMSM in field synchronous or pole flux orientated 
coordinate system 

 
Fig. 3.12  Continuous state model of the PMSM in field synchronous coordinates 



The bilinear characteristic of the model is recognizable like in the case 
of the IM by the matrix NSM. The disturbance, acting on the system through 
the pole flux p, does not depend on the stator current but is constant 
unlike for the IM. The constant excitation shows some advantages for the 
further treatment: 
• The system model is a model of 2nd order (isd, isq) – the IM has a model 

of 4th order (isd, isq, rd, rq or isα, isβ, rα, rβ) – and immediately yields 
the current control process model. For the IM the system of 4th order 
must be split into partial models to obtain the current process model and 
the flux model. 

• The constant flux p may be regarded as a system parameter. 

• The constant disturbance p is documented by the machine 
manufacturer and can, similarly as for the IM, later be separately 
compensated by a disturbance feed-forward. 

3.3.2 Discrete state model of the PMSM 

To show clearly that the pole flux p represents only a constant 

disturbance variable, p was introduced into the system by a separate term 
through the disturbance vector in equation (3.65) and in figure 3.12. 
However, a discretization of the model is hardly possible in this form. To 
advance the situation, p will be viewed as a constant system parameter. 
The equation (3.65) must be rewritten as follows: 

*
f

f ff f fs
s SM s sSM SM

d
dt

= + +i A i B v N i         (3.67) 

with: 
*, , ; ,f ff T

sd sq s pSM SMu u= =v B B S        (3.68) 

With (3.67) the formal, complete identity with (3.46) has been achieved, 
allowing to treat the PMSM in the same way as the IM to derive its 
discrete state space description. 

Also in this case the state space description (3.67) is characterized by a 
bilinear characteristic because of the multiplicative combination between 
the state vector is and the element ωs of the input vector vf. Under the same 
assumption regarding the input quantities as in the case of the IM, and 
after an iterative integration of (3.67) the following equivalent, discrete 
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state model of the permanent magnet excited synchronous machine is 
obtained. 

( ) ( ) ( )*1 f ff f f
s sSM SMk k k+ = +i i H vΦ         (3.69) 

There are: 
( ) ( )

( )
( )

( )

0
1

1* * *

1

e
!

e
!

f
SM sSM

f
SM sSM

k Tf f
SM sSM SM

k T
kf f f f

SM sSM SM SM SM
kT

Tk

Td k

+

=
+

+

=

= = +

= = +

A N

A N

A N

H B A N B

Φ

(3.70) 
The approximation of first order for the transition matrix f

SM  and the 

input matrix *f
SMH  arise from the series expansion (3.70): 

*

0 01
;

01

sq
s

sdsd sdf f
SM SM

psd
s

sq sqsq sq

L TT T LT L
TL TTT

L LL T

= =HΦ  (3.71) 

The discrete state model (3.69) simultaneously represents the expected 
current control system of the PMSM. The input matrix *f

SMH  can be split 
up as follows: 

*
0 0

,  with ;
0

sdf f f
sSM SM SM

sq
sq

T
L

T
T

L
L

= = =H H h H h   (3.72) 

The figure 3.13 shows the discrete state model or the current process 
model of the PMSM arrived at so far. The splitting of *f

SMH  in equation 
(3.72) into two partial matrices is necessary, because: 

1. Identical structures of the current process model are obtained in both 
cases. This commonality later allows the summarized treatment of the 
current control problem for both machine types and spares a repeated 
representation of similar designs. 

2. It is necessary to later invert the input matrix for the compensation of 
the disturbance quantity p. This would not be possible if *f

SMH  keeps 
the form of a 3×2 matrix. 

With that the final equation of the discrete state model or the current 
process model of the PMSM is obtained as: 



( ) ( ) ( )1 f ff f f
s s s pSM SMk k k+ = + +i i H u hΦ       (3.73) 

 
Fig. 3.13  Discrete state model and current process model of the PMSM 

3.4 Doubly-fed induction machine (DFIM) 

3.4.1 Continuous state space model of the DFIM in the grid 
synchronous coordinate system 

Starting-point for the derivation of the state space model of the DFIM 
are the voltage equations for stator and rotor winding respectively: 
• Stator voltage in the stator winding system: 

s
s s s
s s s

dR
dt

= +u i               (3.74) 

• Rotor voltage in the rotor winding system: 
r

r r r
r r r

dR
dt

= +u i               (3.75) 

• Stator and rotor flux: 

withs s s m r s m s

r m s r r r m r

L L L L L
L L L L L

= + = +
= + = +

i i
i i

      (3.76) 

All symbols in the formulae (3.74), (3.75) and (3.76) have the same 
meaning as in the section 3.2.1. 
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After transforming equations (3.74) and (3.75) to a reference frame 
rotating with the stator frequency s the following equation is obtained: 

s
s s s s s

r
r r r r r

dR j
dt

dR j
dt

= + +

= + +

u i

u i
           (3.77) 

Eliminating of stator current is and rotor flux r from equation (3.77) 
gives: 

/

/
/

1 1 1 1 1

1 1

1 1 1

r
r r r s

r s s

r s
r m

s
r s s s

s s m

d j j
dt T T T

L L

d j
dt T T L

= + + +

+

= + +

i i i

u u

i u

  (3.78) 

with: /
s s mL=  

After separating both equations into real and imaginary components, we 
obtain the complete electrical equation system of the DFIM. 

/ /

/ /

/
/

1 1 1 1 1

1 1

1 1 1 1 1

1 1

1 1

rd
rd r rq sd sq

r s s

rd sd
r m

rq
r rd rq sq sd

r s s

rq sq
r m

sd
rd sd

s s

di i i
dt T T T

u u
L L

di
i i

dt T T T

u u
L L

d i
dt T T

= + + +

+

= + + +

+

= + /

/
/ /

1

1 1 1

s sq sd
m

sq
rq s sd sq sq

s s m

u
L

d
i u

dt T T L

+

= +

  (3.79) 

The main control objectives stated above is always the decoupled 
control of active and reactive current components. This suggests to choose 



the stator voltage – and respectively grid voltage – orientated reference 
frame for the further control design. 

The realization of the grid voltage orientation requires the accurate and 
robust acquisition of the phase angle of the grid voltage fundamental wave, 
considering strong distortions due to converter mains pollution or 
background grid harmonics. Usually this is accomplished by means of a 
phase locked loop (PLL). 

Summarizing the equation system (3.79) yields the following state space 
model for the DFIM in the grid voltage orientated reference frame: 

s s r r
d
dt

= + +x A x B u B u             (3.80) 

with: 
• State vector / /, , ,T

rd rq sd sqi i=x  

• Stator voltage vector ,T
s sd squ u=u  as input vector on stator side 

• Rotor voltage vector ,T
r rd rqu u=u  as input vector on rotor side 

The system matrix A, the rotor input matrix Br and the stator input 
matrix Bs may be written as follows: 

1 1 1 1 1

1 1 1 1 1

1 10

1 10

1 0

10
;

1 0

10

r
r s s

r
r s s

s
s s

s
s s

m

m
s r

m

m

T T T

T T T

T T

T T

L

L

L

L

+

+
=

= =

A

B B

1 0

10

0 0
0 0

r

r

L

L

   
 (3.81) 
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Fig. 3.14  Continuous state space 
model of the DFIM with stator flux 
and rotor current as state variables: (a) 
Common representation; (b) Split in 
partial matrices 

 
The state space model of the DFIM is shown in figure 3.14a. The 

matrices of (3.81) may be split into partial matrices as follows, refer also to 
figure 3.14b. 

11 12 1 1

21 22 2
; ;s r

s r
s

= = =
A A B B

A B BA A B 0       (3.82) 

The state space model in partial matrices according to figure 3.14b 
shows that the rotor voltage ur does not influence the stator flux s 
directly, but only in an indirect way through the rotor current ir. The stator 
flux is determined mainly by the stator voltage. The influence of us to ir is 
like a constant disturbance, and therefore may be compensated by simple 
feedforward compensation. 

3.4.2 Discrete state model of the DFIM 

Like in sections 3.2.2 and 3.3.2 the time discrete state model of the 
DFIM may be obtained by iterative integration of (3.80), yielding the 
following matrix equation system as base model for the controller design: 



( 1) ( ) ( ) ( )s s r rk k k k+ = + +x x H u H u        (3.83) 

Transition matrix , stator input matrix Hs and rotor input matrix Hr are 
given by: 

11 12

21 22

1 1 1 11

1 1 1 11

0 1

0 1

r
r s s

r
r s s

s
s s

s
s s

T TT T
T T T

T TT T
T T T

T T T
T T

T TT
T T

+

+
= =

1 1

2

1 0
0

10
0;

0
0 0
0 00

m

r

s rm
s r

s r

m

m

T
L T

LT
L T

LT
L

T
L

= = = =
H H

H HH 0
     (3.84) 

The discrete state space model is shown in partial matrix form in figure 
3.15a. Figure 3.15b shows the rotor current system, being the starting-
point for the rotor current controller design. Due to the stiff mains system 
stator voltage us and stator flux s can be recognized as almost constant 
disturbances. 

The figure 3.15a was produced by splitting of the equation (3.83) as 
follows: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

'
11 12 1 1

' '
21 22 2

1

1
r r s s s r r

s r s s s

k k k k k

k k k k

+ = + + +

+ = + +

i i H u H u

i H u
 (3.85) 
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Fig. 3.15 Discrete state model of 
the DFIM: (a) in grid voltage 
orientated reference frame; (b) 
rotor current process model 

3.5 Generalized current process model for the two 
machine types IM and PMSM 

In evaluation of the equations (3.51), (3.55) and (3.73) as well as the 
figures 3.8, 3.10 and 3.13 the formal identity of the two machine types IM 
and PMSM regarding system structure and system order becomes clearly 
visible. Therefore it can be regarded theoretically proven, that with respect 
to hardware and software an identical concept for the stator current 
impression may be applied in the stator-fixed as well as in the field 
synchronous coordinate system. In this section a uniform description for 



all system elements will be derived to support a parallel treatment of both 
current process models under investigation. The following symbols are 
defined: 
• : Transition matrices 11 11 or  or f fs

SM  

• H: Input matrices 1 1 or  or f fs
SMH H H  

• h: Disturbance matrices or vector 12 12or  or fs h , which represent the 
intervention of the flux dependent disturbance quantity. 
h is a 2×2 matrix in the case of the IM and only a simple vector in the 

case of the PMSM. The input vector us and the state vector is will be 
written without the subscripts „s“ (for stator-fixed) or „f“ (for field 
synchronous coordinate system). This index can be attached later in the 
concrete choice of the coordinate system to be used. For the rotor and pole 
flux the symbol  is used instead of s

r  or f
r  or p. With these 

arrangements the following common equation results for the current 
process models: 

( ) ( ) ( ) ( )1s s sk k k k+ = + +i i Hu h        (3.86) 
and in the z domain: 

( ) ( ) ( ) ( )s s sz z z z z= + +i i Hu h         (3.87) 
with the characteristic equation: 

[ ]det 0 with   unity matrixz = =I I        (3.88) 
The figure 3.16 shows the current process models for the following 

three cases in the overview: 
1. IM in the stator-fixed, 
2. IM in the field synchronous and 
3. PMSM in the field synchronous coordinate system. 
The equation (3.87) as well as the characteristic equation (3.88) are 

given in the z domain which is advisable for the treatment of discrete 
systems. 

Here the similarity between the model in the figure 3.16 and the current 
process model of the DFIM in equation (3.85), shown in the figure 3.15b, 
can also be easily recognized. Because the three models represent linear 
and time-variant processes, linear current controllers using: 
• output feedback or 
• state feedback 

can be designed. The method to derive these three linear and time-
variant process models can be called the linearization within the sampling 
period. This is possible because the models have been derived under the 
conditions that: 
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• the stator-side angular velocity s in the case of the IM or PMSM, and 
• the rotor-side angular velocity r in the case of the DFIM are constant 

within one sampling period. 
 

 
Fig. 3.16  General current process model of IM and PMSM 

3.6 Nonlinear properties of the machine models and the 
way to nonlinear controllers 

Electrical 3-phase AC machines exhibit different nonlinearities because 
of the mechanical construction of their magnetic paths with slots and air-
gaps. But only two types of nonlinearities are relevant for the controller 
design: 
• The nonlinear structure of the process models: This nonlinearity is 

caused by products between states variables like current components 
and input variables s (in cases IM and PMSM), r (in the case DFIM). 
This structural nonlinearity can only be mastered completely by 
nonlinear controllers designed – for example – using methods like exact 
linearization or backstepping based concepts. 

• The nonlinear parameters: Some parameters like the mutual inductance 
depends on the rotor flux which is a state variable. The problem with 
parametric nonlinearities can be solved by identification and adaptation 
methods. 
Because the backstepping based design still is not a mature method for 

using in the practice, the section 3.6 only deals with the idea of the exact 
linearization which can be used to master the structural nonlinearities of 
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the process models of the IM, DFIM and PMSM, and to design nonlinear 
controllers for improving the control performance in difficult operation 
situations. 

3.6.1 Idea of the exact linearization 

For the understanding, at first the idea of the relative difference order of 
a linear system without dead time – the SISO process – shall be explained. 
If the linear SISO process is represented by the following transfer function: 

( ) ( )
( )

0 1

0 1
;

p
p

q
q

b b s b sy s
G s p q

u s a a s a s

+ + +
= = <

+ + +
     (3.89) 

then the pole surplus r with: 
1r q p=                (3.90) 

can be called the relative difference order of the process model 
described by equation (3.89). If the linear process model is a MISO system 
with m inputs and only one output, i.e. a system with m transfer functions 
in a form similar to equation (3.89), then the integer number r: 

min with 1ii
r r i m=            (3.91) 

means the relative difference order of the MISO system, in which ri is 
the pole surplus of the ith transfer function. If the definition according to 
the formula (3.91) is applied to a linear process with m inputs and m 
outputs, the following vector r of the relative difference orders is obtained: 

[ ]1 2, , , mr r r=r               (3.92) 
with m natural numbers rj (j = 1, 2, ... , m), and rj the relative difference 

order of the jth output. Because the process described by the model (3.89) 
can be represented in the state space, the relative difference order r and 
respectively the vector r of relative difference orders can also be calculated 
using state space models. 

Some classes of nonlinear systems with m inputs and m outputs, the so 
called nonlinear MIMO systems, can be described by the following 
equations: 

( ) ( )

( )

d
dt

= +

=

x f x H x u

y g x
             (3.93) 

with: 
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( )
( )

( )
( ) ( ) ( ) ( )( )

1 1 1

1 2

; ;

, , ,
n m m

m

x u g

x u g
= = =

=

x
x u g x

x

H x h x h x h x

       (3.94) 

Similarly to the linear systems, for the system in the equation (3.93) a 
vector of relative difference orders like (3.92) can also be derived. 

The basic idea of the exact linearization can be summarized as follows: 
If the nonlinear MIMO system in the form (3.93) contains a vector of 
relative difference orders like equation (3.92), which fulfills the following 
condition: 

1 2 mr r r r n= + + + =             (3.95) 
then the system (3.93) can be transformed using the coordinate 

transformation: 

( )

( )

( )

( )

( )

( )

( )

( )

( )

1
1

1
11

11
11

1

1m
m

r
r f

mn m

rm
mfr

gm

m L gz

z gm

L gm

= = = =

xx

x x

z m x
xx

xx

      (3.96) 

into the following linear MIMO system: 
d
dt

= +

=

z Az Bw

y Cz
              (3.97) 

The original input u is then controlled by the coordinate transformation 
law: 

( ) ( )1= +u a x L x w              (3.98) 
The vector a(x) and the matrix L-1(x) in (3.98) look as follows: 

( )
( ) ( )

( ) ( )
( ) ( )

( )

( )

1 1 1
1

1

1 1
1 1 1

1

1 1

;= =
m

m m m
m

r r r
h hf f f

r r r
h m h m mf f f

L L g L L g L g

L L g L L g L g

x x x

L x a x L x

x x x

     (3.99) 
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Formula (3.99) also requires the ability, with respect to the coordinate 
transformation or to the exact linearization, to invert the matrix L(x). In 
equations (3.96) and (3.99), the term 

( ) ( ) ( )f
g

L g =
x

x f x
x

             (3.100) 

notifies the Lie derivation of the function g(x) along the trajectory f(x). 
The details of the complicated general expressions for the matrices A, B 
and C are abandoned here. The figure 3.17 illustrates the explained facts 
so far. 

 

 
Fig. 3.17  Transformation of a nonlinear system into a linear substitute system 

Here it must be highlighted that the coordinate transformation requires 
exact knowledge of the complete state vector x, which can not always be 
assumed for 3-phase AC machines. 

3.6.2 Nonlinearities of the IM model 

The nonlinearity of the IM is clearly represented by the equation (3.46). 
The two first equations of the system (3.44), which represent the current 
process model, will be separated and extended by the field angle s. 

/

/

1 1 1 1

1 1 1 1

= + + + +

= + +

=

sd
sd s sq rd sd

s r r s

sq
s sd sq rd sq

s r s

s
s

di i i u
dt T T T L

di
i i u

dt T T L
d
dt

 (3.101) 

For better understanding temporary parameters and variables are 
introduced: 
• Parameters:            ( )1 ; 1 ; 1 ;= = = = +s s ra L b T c T d b c  
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• State variables:        1 2 3; ;= = =sd sq sx i x i x  

• Input variables:        1 2 3; ;= = =sd sq su u u u u  

• Output variables:     1 2 3; ;= = =sd sq sy i y i y  
Now the current process model looks as follows: 

/1
1 2 3 1

/2
1 3 2

3
3

= + + +

= +

=

rd

sq r rd

dx d x x u au c
dt

dx x u d x au cT
dt
dx u
dt

       (3.102) 

or: 

/1
1 2

/
2 2 1 2 1 3

3

1 1

2 2

3 3

0
0

0 0 0 1

1 0 0
0 1 0
0 0 1

•

•

•

+

= + + +

=

rd

r rd

x d x c a x
x d x cT u a u x u

x

y x
y x
y x

  (3.103) 

The system (3.103) can now be transferred to the general form with the 
equation (3.93). 

( )
1 1 2 2 3 3( )

•
= + + +
=

u u ux f x h h h
y g x

         (3.104) 

with: 
/

1 2
/

2 1 1 3 1

1 1 1 2 2 2 3 3 3

0
( ) ; 0 ; ;

0 0 0 1

( ) ; ( ) ; ( )

rd

r rd

d x c a x
d x cT a x

y g x y g x y g x

+

= = = =

= = = = = =

f x h h h

x x x

 (3.105) 

The equation (3.104) represents the new process model and will be used 
later to design the nonlinear current control loop using exact linearization. 
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3.6.3 Nonlinearities of the DFIM model 

Similar to the case IM, the nonlinearity of the DFIM is represented by 
the following equation separated from the equation (3.79) and extended by 
the rotor angle r. 

/ /

/ /

1 1 1 1 1

1 1

1 1 1 1 1

1 1

rd
rd r rq sd sq

r s s

rd sd
r m

rq
r rd rq sq sd

r s s

rq sq
r m

r
r

di i i
dt T T T

u u
L L

di
i i

dt T T T

u u
L L

d
dt

= + + +

+

= + + +

+

=

 (3.106) 

After substituting the newly defined temporary parameters: 

      1 1 1 1 1 1; ; ; ;
r s r m s

a b c d e
T T L L T

= + = = = =  

in the partial model of the rotor current in the equation (3.106), the 
following model is obtained: 

/ /

/ /

rd
rd r rq sd sq rd sd

rq
r rd rq sd sq rq sq

r
r

di ai i e b cu du
dt

di
i ai b e cu du

dt
d
dt

= + + +

= + + + +

=

   (3.107) 

New vectors will now be defined as follows: 
• Vector of state variables: 

      [ ]1 2 3 1 2 3; ; ;T
rd rq rx x x x i x i x= = = =x  

• Vector of input variables: 

      
[ ] / /

1 2 3 1

/ /
2 3

;

;

= = +

= + + + =

T
sd sq rd sd

sd sq rq sq r

u u u u e b cu du

u b e cu du u

u
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• Vector of output variables: 
      [ ]1 2 3 1 2 3; ; ;T

rd rq ry y y y i y i y= = = =y  
Finally, the following nonlinear DFIM model in the detailed: 

1
1 2

2 2 1 2 1 3

3

1 1

2 2

3 3

1 0
 = 0 1

0 0 0 1

1 0 0
0 1 0
0 0 1

x
ax x

x ax u u x u

x

y x
y x
y x

•

•

•

+ + +

=

      (3.108) 

or in the generalized form is obtained: 

( ) ( ) ( ) ( )
( )

1 1 2 2 3 3u u u
•

= + + +

=

x f x h x h x h x

y g x
      (3.109) 

with: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

2 1 2 3 1

1 1 2 2 3 3

1 0
; 0 ; 1 ;

0 0 0 1
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The equations (3.108) and respectively (3.109) are starting points for 
the later design of the nonlinear controller for DFIM systems. 

3.6.4 Nonlinearities of the PMSM model 

The model (3.64) of the PMSM will now be extended by the field angle 
s, similarly to the IM in equation (3.101). 
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With newly introduced variables and temporary parameters: 
• state variables:    1 2 3; ;= = =sd sq sx i x i x  

• input variables:    1 2 3; ;= = =sd sq su u u u u  

• output variables:    1 2 3; ;= = =sd sq sy i y i y  
• temporary parameters:  1 ; 1 ; 1 ; 1 ;sd sq sd sqa L b L c T a T= = = =  

the equation (3.111) can be transferred to: 
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or to the following generalized form: 

( ) ( ) ( ) ( )
( )
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with: 
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The equations (3.113) and (3.114) can be used to design nonlinear 
controllers for systems using 3-phase AC machines of type PMSM. 
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4 Problems of actual-value measurement 

This chapter aims to explain principles of the actual-value measurement, 
to highlight its problems and to answer some related questions of the field 
orientation. 

The current measurement technique influences decisively the controller 
design and thus also the dynamic characteristic of the inner current control 
loop, which in turn is the prerequisite for the superimposed speed control. 
So the actual-value measurement is an important interface of every drive 
control system which must be taken into account very carefully for the 
controller design. 

Similarly, for the design of the speed control loop the speed measuring 
is an important issue to consider. Either an incremental encoder or a 
resolver can be used to measure the speed. Also the alternative possibility 
of sensorless capture of the speed will be discussed, and possible ways to 
solve this problem will be shown. 

The second problem of this chapter is the field orientation, which is very 
closely connected to the speed measurement. Field orientation means 
namely, 

1. that the field angle s and respectively the location of the field 
coordinate system (dq- coordinates) must be calculated, and 

2. that the un-measurable rotor flux, which will be used for calculating 
the rotor frequency or the slip and therefore also the field angle s, 
has to be estimated. The estimated value of the rotor flux can be used 
as actual value in the flux control loop, which is – for example – of 
decisive importance for field-weakening operation. 

The estimation of the rotor flux, which can be realized either by flux 
models or by flux observers, and the calculation of the field angle require 
actual values of current and speed. 

and vector orientation 
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4.1 Acquisition of the current 

The measurement of the currents can be performed as shown in the 
figure 1.3. Depending on the coordinate system the inner current control 
loop is realized in – field synchronous or stator-fixed – actual values is , is  
or isd, isq are obtained after the transformation of the measured phase 
currents isu and isv.  What could not be indicated in this figure are: 

1. The technical realization of the measurement and 
2. the fact, that for the current control only the instantaneous value of 

the fundamental wave is relevant. 
From the technical view, two possibilities to measure the currents exist: 
1. The most advanced technique is the measurement of instantaneous 

values using A/D converters (ADC: Analog to Digital Converter) and 
2. The integrating measurement using V/f converters (VFC: Voltage to 

Frequency Converter). 
 
a) Measurement of instantaneous values using an ADC 
This method is frequently applied because of the simplicity of its 

technical realization and the possibility of a high resolution. The inherent 
current harmonics have to be suppressed, for example by an additional 
filter. This however, would result in an additional delay of the measured 
values. This delay is unwanted, and therefore has to be avoided if possible, 
to maintain the dynamics of the current control loop, particularly for the 
new current controller designs in chapter 5. 

The time instant of the current measuring plays a decisive role for the 
exact acquisition of the fundamental wave and for the elimination of the 
pulse frequent harmonics. To achieve this, the measuring instant must be 
exactly placed in the middle of the zero vector times T0 or T7 (using the 
modulation algorithm in the chapter 2). The figure 4.1 explains the facts. 

This measuring strategy has the advantage that the otherwise necessary 
filter becomes superfluous and the delay connected to it disappears. The 
obvious disadvantage is, particularly under transient conditions, that the 
time instant of the measurement sampling will shift (start-up, reversing, 
field weakening etc.), because the values of the zero vector time T0 or T7 
are not constant, but depend on the operating state of the motor. The 
measurement sampling instants, illustrated in the figure 4.1, correspond to 
the output sequence of us using the time pattern in the figure 2.9a. 
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Fig. 4.1 The current measurement sampling instants (M) using an A/D converter 

The mentioned disadvantage of the shifting sampling instant disappears 
if the output sequence of the time pattern in figure 2.9b is used. The 
sampling instant will be exactly in the middle of T7 and consequently, the 
pulse and the control sampling frequency will exactly coincide (figure 
2.9b). 

 

 
Fig. 4.2 A strict synchronization between pulse period and measurement sampling 
with sampling in the center of zero vector times 

With the tendency toward higher pulse frequencies, the pulse frequency 
can, however, be a multiple of the sampling frequency. The measurement 
sampling must always be located either in the center of the last zero vector 



110      Problems of actual-value measurement and vector orientation 

time T7 or at the starting points of the sampling periods of the control 
system. The outlined principle for the realization of the current 
measurement clarifies the demand for a strict synchronization between 
pulse periods and measurement sampling which must already be thought 
through at the hardware design stage. The figure 4.2 presents an example 
with 10kHz pulse frequency and 5kHz sampling frequency. 

 
b) The integrating measurement using a VFC 
This category also includes the method of analog integration with 

subsequent A/D conversion. The measured signal is converted into a pulse 
sequence with a frequency which is directly proportional to its amplitude. 
This pulse sequence is applied to an up/down counter whose counting 
direction is switched over according to the sign of the measured signal. 
The impulses are counted over one sampling period. Because of the 
integrating behavior there is no need for special measures to suppress pulse 
frequent harmonics. However, the result of the integration does not 
represent the instantaneous values of the fundamental, which are needed 
by the control system. They may be back-propagated using an 
interpolation filter, for example of second order as in equation 4.1. 

_ _ _
1,83 1,16 1 0,33 2s s ss k k k ki i i i   (4.1) 

 : 0, 1, 2, ... ,  ;  : Integrated value  

The interpolation filter may be fed with either the phase currents isu, isv 
directly or the current components in dq or  coordinates. That means, 
the back-propagation of the instantaneous values of the fundamental 
happens before or after processing equations (1.6) and (1.7). The results 
would show, depending on the sensor resolution largely corresponding 
feedbacks and actual motor currents, with the restriction that sampling-
frequent oscillations cannot be followed. Since only actually measured 
mean average values of the currents are available, this fact requires special 
measures for the design of the current controller. Chapter 5 will more 
deeply deal with these issues. 

4.2 Acquisition of the speed 

The speed is commonly measured either with a resolver or with an 
incremental encoder. Because of the pulse counting when using an 
incremental encoder and the averaging of the speed, over several sampling 
periods by differentiating the position angle with resolver, the 
measurement has an integrating characteristic and does not show the 

k si
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instantaneous value of the speed. Similar to the above discussed back-
propagation for the current feedback, an interpolation of the measured 
values might be used to reconstruct the speed instantaneous values (here 
with filter of first order). 

1,5 0,5 1k k k     (4.2) 
  = Integrated actual feedback value  

a) Measurement of speed using an incremental encoder (IE) 
As is well known, the IE delivers two by 900 phase-shifted signals A 

and B (fig. 4.3) in the form of square pulses, where the impulse number 
per revolution is given by the construction of the encoder device. The 
additional channel zero provides once per revolution a zero reference 
impulse, which is normally congruent with the edges of one of the 
channels A or B. By measuring of the impulse frequency fM the speed n 
can be determined. 

60 M

IE

fn rpm
z

      (4.3) 

   Frequency [in Hz] of the impulse sequence
   Number of impulses per revolution

M

IE

f
z

 

 

 
Fig. 4.3 Use of an incremental encoder (IE) to measure the speed 

By evaluation of the phase relationship between the signals A and B the 
direction of rotation can be found. For a given IE and thus defined fM, the 
maximal measurable speed nmax can be calculated by equation (4.3). Or 
conversely, with predefined motor and maximal speed nmax, the maximal 
necessary fM can also be calculated by (4.3). 

If the rotor position is described by , and the sampling period of the 
speed control by Tn, then the frequency measurement transforms into a 
counting of the impulses A or B within Tn following the equation: 
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1

n

k k
n

T
      (4.4) 

k = 0, 1, 2, ... ,  = Sampling time instants  
The impulse counting alone does not suffice for a precise measurement 

at very low-speeds, and here has to be amended by a time measurement 
where the time for the passing of a certain angular sector is measured with 
the help of an additional higher-frequent impulse sequence (fig. 4.3). From 
the equation (4.4) the speed can be obtained as follows: 

0360 1 rev with 
1 IE IE

n
t k t k z z

   (4.5) 

The measurement resolution can be found by generalization of the 
equations (4.4), (4.5). Equation (4.4) can be rewritten as follows: 

160 in minIE
IE n

n n
z T

     (4.6) 

 Number of impulses counted during IE nn T  
The resolution of the speed measurement, using pure impulse counting, 

can be obtained after derivation of equation (4.6). 
60 60 or IE

IE IE n IE n

dn n n
dn z T z T

    (4.7) 

With, for example, 
1            (Only 1 impulse is counted during )
1024      (IE produces 1024 pulses per revolution)
1        (Sampling period)

IE n

IE

n

n T
z
T ms

 

a resolution of n 58,6 min-1 is obtained. With the help of impulse 
quadruplication this result can be improved essentially. The equation (4.5) 
for period measurement can be rewritten as follows: 

160 1 in min
IE

n
z

     (4.8) 

0 in [s] measured time for the passed angle sector 360 IEz  
The first derivation of equation (4.8) delivers: 

2 2
60 60 or 

IE IE

dn n
d z z

   (4.9) 

Using a 20 MHz impulse sequence (time resolution  = 50 nsec) and a 
10-bit counter (maximal measurable time  = 210 50 ns = 51,2 μs) a 
resolution of n  1,1176 rpm can be obtained for very low-speeds. 
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Another possibility to reach a high-resolution result for low-speeds is to 
use an IE with approximately sinusoidal output signals A and B (fig. 4.4). 

 

 
Fig. 4.4 Use of an incremental encoder with sinusoidal output signals for speed 
measuring 

After zero-crossing detection the signals can be processed exactly as in 
the case of an usual IE. With two additional A/D converters and high-
frequency sampling within a signal period, the speed is obtained from: 

arctand d Bn
dt dt A

     (4.10) 

 
b) Measurement of speed using a resolver 
The construction of a resolver is shown in the figure 4.5a. The resolver 

consists of two parts. The mobile part (the rotor) is fixed to the motor shaft 
and contains the primary excitation winding, fed by a rotating transformer 
with an excitation signal of approx. 2...10 kHz. The static part (the stator) 
contains two secondary (sine, cosine) windings, which are mechanically 
displaced at 90 deg against each other. 

In principle two methods for processing the resolver signals exist. The 
first one is called angle comparison (fig. 4.6a) and is implemented in 
integrated circuits like AD2S82 or AD2S901). The angle comparison is 
carried out with the help of a multiplier (RM: Ratio Multiplier) at 
the input, which calculates an angle error. After the multiplier (fig. 4.5), 
the following results are obtained at the outputs of sine/cosine channels: 

0 0sin sin cos and sin cos sinc M c Mt u t t u t      (4.11) 

                                                      
1) from the firm Analog Devices 
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Substracting the signals of the equation (4.11) from each other yields the 
error signal: 

0

0

sin sin cos cos sin

sin sin
c M M

c M

t u t

t u t
  (4.12) 

 
Fig. 4.5 Principle mechanical (a) and schematic (b) construction of the resolver 
with its output signals (c). tc: transmission coefficient; u0: amplitude of excitation 
signal 

According to equation (4.12) the error  disappears if the difference 
M  becomes zero. To achieve this, the error signal is fed via a phase 

sensitive detector (PSD) to an integrator or a PI controller whose output 
controls a voltage-controlled oscillator (VCO). A up/down counter (UDC) 
counts the impulses coming from the output of the VCO, in which the 
counting direction of the UDC depends on the sign of the error signal. This 
way the phase error will be eliminated with the help of an integrator or a PI 
controller. The dynamics of the measurement depends on the dynamics of 
the control loop which poses a considerable disadvantage for the complete 
system. 

The measuring dynamics can be increased significantly if the envelope 
of the resolver signals (see figure 4.5c) can be captured directly, i.e. 
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always at the peak value of the curve. With the help of two A/D converters 
(fig. 4.6b) this can be realized easily provided a strict synchronization 
between the measurement sampling, control and modulation, is observed 
and taken care of already in the hardware design. Furthermore it has to be 
considered that the resolver signals are susceptive to noise and distortions 
through the transmission paths between motor and electronics which may 
result into loss of the original synchronization and a signal correction 
(usually by software) becomes necessary. 

 

 
Fig. 4.6 Methods for evaluation of resolver signals: Angle comparison (a) and 
signal sampling with two A/D converters (b) 

From the relation: 

arctan    with   sin ; cosx x y
y

 

the total differential of  can be derived easily: 
d d dy x x y       (4.13) 

and: 
y x x y       (4.14) 

With 2 ADCzx y , in which zADC is the resolution of the A/D 
converter, the corresponding resolution of the measured angle can be 
assessed. 

Considering that the derivatives dx/dt und dy/dt can assume values 
independent of zADC at the actual time, and from the relationship for the 
speed n: 
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-160 60 d min
2 2 dp p

n
z z t

    (4.15) 

the total differential for n can be derived after some conversions: 
d d dn n x x y y       (4.16) 

From (4.16) results: 
n n x x y y      (4.17) 

With the equation (4.17) also the speed resolution, depending on the 
operating point, can be assessed using x y zADC2 . 

Because the resolver provides the absolute position information, it can 
be used advantageously in synchronous drives. In addition, the resolver is 
robust against external influences like high temperatures or magnetic 
interference fields. With respect to the measuring precision the resolver, 
however, cannot achieve the high resolution of the IE with analog or 
sinusoidal output signals. 

4.3 Possibilities for sensor-less acquisition of the speed 

The idea to save the speed sensor, and to reduce not only the costs but 
also to increase the reliability, because mechanical parts and the sensitive 
galvanic connection between sensor and actuator are omitted, was the 
motivation for numerous research in the last two decades. In principle the 
developed methods can be divided into three groups: 

1. Stator flux orientated methods like Direct Torque Control (DTC), 
Natural Field Orientation (NFO). 

2. Rotor flux orientated methods, following the principle of a Kalman 
Filter (KF) or a Model Reference Adaptive System (MRAS). 

3. Methods which use machine specific effects (unbalance, slots on 
stator and rotor side etc.). 

With respect to the theoretical approaches, the solutions to this problem 
are very different and partly based on special effects so that not all of them 
can be discussed in the context of this chapter. Because of the many 
advantages compared to the stator flux orientation, this chapter exclusively 
deals with the rotor or pole flux orientated drive systems which are very 
widespread in practice. Consistently only examples of rotor flux orientated 
methods will be discussed because the methods to be selected, must be 
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suited for integration into the overall control system. The methods based 
on the use of machine specific effects can also be used very well in 
systems controlled with field orientation. 

In the area of higher frequencies the speed sensor-less operation works 
without problems for all methods in the case of an asynchronous drive. 
The critical area is the area around standstill. The results published in the 
last decade have led to the conclusion that zero stator frequency in the case 
of the IM represents a virtually not observable point and therefore cannot 
be controlled correctly with conventional methods like DTC, NFO, KF, 
and MRAS. At set points near zero speed and under influence of a strong 
load, the rotor can always drift away without the system reacting to it. 
Thereat the rotor flux vector rotation stops. This is primarily based on the 
fact, that the magnetization of the slowly rotating rotor of the IM can be 
easily changed by the (almost) still standing rotor flux vector. Only if the 
mechanical frequency of motion reaches a certain limit (approximately the 
slip frequency) and thus the magnetic reversal is no longer possible, the 
speed can be calculated correctly again. A clean reversal across the speed 
zero is always possible, though. Use of the above mentioned methods, 
including the already commercialized DTC, always implies theoretically 
unsolidated detours. 

In the case of a PMSM drive, the standstill is less critical because the 
pole flux is built up permanently. Therefore a magnetic reversal process 
can not take place, and the moving pole delivers information for the 
estimation already at low-speeds. Two problems must be solved here: 
 The initial position of the pole flux must be identified: For the case of an 

asymmetric rotor build-up (e.g. salient pole machines or full pole 
machines with only few magnets on the rotor surface), many useable 
approaches can be found in the literature. The question is still relatively 
open for machines with exclusive full pole quality (i.e. the magnets 
are assembled in a larger number, and thus divided up finer) on the rotor 
surface thanks to the high energy density and the improved construction. 

 The development of a method for the speed sensor-less control of the 
drive. The variety of the useable methods is similar as in the case of the 
IM. 
The methods based on the use of the machine specific effects are best 

suitable both for IM and for PMSM. The unbalances in the mechanical 
construction and the slots on stator and rotor side are mirrored in the 
harmonics of the stator currents independent of their fundamental 
frequency. 

In this chapter only two application examples are presented for 
the speed sensor-less control of the IM and PMSM. For the IM the control 
system has the principle structure of figure 4.7. It can still be recognized 
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that the structure of figure 4.7 also applies to the case of the PMSM drive 
if the flux controller is dropped and the corresponding algorithm is 
implemented in the context of the "speed adaptive observer". 
 

 

Fig. 4.7 General structure of speed sensor-less and rotor flux orientated control of 
an IM drive in dq coordinates 

4.3.1 Example for the speed sensor-less control of an IM drive 

As is well known, the IM can be completely described by the state 
model (3.41) (cf. section 3.2) electrically. If we start from the assumption 
that the machine parameters are time-invariant, then only  in the equation 
(3.41) depends on the speed and must be updated on-line with a measured 
or estimated speed. The estimated quantities are denoted with an index „ “ 
in the following. 

With the model (3.41) a Luenberger observer can be used to reconstruct 
the state vector (fig. 4.8a). 

d
dt

ss s
x A x Bu K i i     (4.18) 

= Correction matrixK  

A
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For the case of measured speed numerous approaches to design K (e.g. 
with the help of pole assignment) have been presented. The observer (4.18) 
then delivers only estimates for the not measurable rotor flux. If the speed, 
regarded as a system parameter in this model, shall be estimated together 
with the state quantities, the structure must be extended like shown in 
figure 4.8b. 

Using the definition of the state error e: 
e x x        (4.19) 

the following error state equation is obtained after subtracting (3.41) and 
(4.18): 

d
dt
e A KC e A x      (4.20) 

with: 
10 J

A A A
0 J

    (4.21) 

0 1
; Parameter error

1 0
J  

The state estimation techniques using a speed adaptation like in figure 
4.8b, are part of the category of methods with model reference adaptive 
systems (MRAS) in which the motor (the process) plays the role of the 
reference model. 

Because of the nonlinear (process) behavior the stability aspect must be 
included at the design of such systems from the beginning (cf. [Isermann 
1988], chapter 22.3). The stability proof can be carried out either using 
Popov’s method of hyper stability (e.g. [Tajima 1993]) or the direct 
method of Ljapunov (e.g. [Kubota 1993 and 1994]). The latter will be used 
in the following. 

The Ljapunov function V for the error equation (4.20) is chosen to 
contain both the state error e and the parameter error . 

2
TV e e       (4.22) 

 =  Positive constant  
The first derivation of V yields: 

/ / 1 12 2

TT

s sr r

dV
dt

di i
dt

e A KC A KC e
 (4.23) 
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Fig. 4.8 General structure of the rotor flux observer using (a) measured and (b) 
estimated speed 

There ;s s s ss si i i i i i  are components of the state error 
vector e. The right side of the equation  (4.23) contains 3 terms. In order 
for the system to remain stable, the following conditions must be fulfilled. 

1. K must be chosen to ensure the negative definiteness of the first 
term. 

2. The estimation algorithm must be designed so that the second and 
third terms compensate each other, i.e. the sum of the two terms is 
zero. 

In the references [Kubota 1993 and 1994], a frequency dependent 
correction matrix K in the following form is suggested. 
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1 2 3 4

2 1 4 3

k k k k
k k k k

K      (4.24) 

1 2 3 4
11 1 1 1 1; 1 ; ;

1 1r s r s

kk k kk k k k k
T T T T

(4.25) 
The idea behind is to fix the poles of the observer (using the constant 

k>0) proportionally to those of the motor so that the observer (exact like 
the process or the motor) remains stable. It was found experimentally that 
k must be chosen in the range of 1 ... 1.5. With this choice the method was 
tested successfully on different motors, even when only parameterized 
from name plate data. 
 

 
Fig. 4.9 Block circuit diagram of the speed adaptive observer for the calculation 

of the mechanical angular speed  and the rotor flux 
/
rd  
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In order to fulfil the above second condition concerning the stability, the 
estimated angular speed  must fulfill the following equation: 

/ /1
s sr r

d i i
dt

    (4.26) 

Considered that the speed can change fast, equation (4.26) can be 
augmented to the following PI algorithm to calculate . 

/ /
   with   s sP I r rK e K e dt e i i  (4.27) 

, :     Gain factorsP IK K  
For the implementation of the described method the speed error must 

be transformed into dq coordinates first: 
/

  with  sq sq sqsqrde i i i i     (4.28) 
For a step-by-step design we assume first the value k = 1 (i.e. flux model 

without correction). That means, the speed adaptive observer contains the 
calculation of the current and flux model according to the equation (3.55) 
(cf. figure 4.7: the hatched area) as well as the PI algorithm (4.27). The 
angular speed s on the stator side or the stator frequency arises from the 
following equation: 

/
sq

s
r rd

i k

T k
      (4.29) 

The hatched area in figure 4.7 is represented in detail in figure 4.9. The 
processing of the current control loop is divided into 4 steps (see fig. 4.10, 
left half), with the estimation algorithm of  (see fig. 4.9) integrated into 
the second step, detailed in the right half of the figure 4.10. 
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Fig. 4.10 Program flowchart for the implementation of the algorithm from figure 
4.9 

The speed reversal with field weakening in figure 4.11 illustrates the 
functionality of the presented method which may be implemented in 
practical systems easily. 
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Fig. 4.11 Speed reversal of a sensor-less controlled IM drive: 3000 min-1 with 
field weakening 

The dimensioning of the PI compensation controller (cf. fig. 4.9) is 
important for the calculation of the speed . By integrating  the 
mechanical angle  is calculated, which forms together with the load 
angle the transformation angle s  for the voltage vector output and 
feedback transformation. I.e. the dynamics of the estimation of  shows up 
directly in the innermost loop - the current control loop (cf. figure 4.12). 
To consider the estimation dynamics in the current controller design, the 
transfer function Ge(s) is needed. 

The transfer function Ge(s) can be derived under the conditions, that: 
 the speed in small-signal response only effects the q-axis (cf. 2nd 

equation from (3.44)), and 

 
//

sdrd sdrd i i  can be assumed for the d-axis. 

 
Fig. 4.12 To the necessity of the transfer function Ge(s) 
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Using (3.44) the following equations are obtained in the Laplace 
domain: 

/

/

1 1 1 1 1Motor:  

1 1 1 1 1Model: 

sq s sd sq rd sq
s r s

s sd sqsq sqrd
s r s

s i i i u
T T L

si i i u
T T L

 

 (4.30) 
With 

/ /; ; ;sq sq
ssq sqisq sq s

r rd r rd

i ie i i i e
T T

 

from the subtraction of the two equations in (4.30) and after some 
remodelling we obtain: 

/
  with  ;

1
isq e s r rd e

e e
e s r

e s V T T TT V
e s sT T T

 (4.31) 

KP, KI should be chosen to essentially compensate the delay from (4.31) 
for the closed control loop. 

4.3.2  Example for the speed sensor-less control of a PMSM 
drive 

As already mentioned at the beginning of chapter 4.3, two questions 
must be solved for the speed sensor-less and field orientated operation of 
a PMSM drive: the identification of the initial position of the rotor or of 
the pole flux and the integration of a method for the speed sensor-less 
control. 

The most known publications about the identification of the initial 
position deal with the case of salient pole machines, where the difference 
between the direct and the quadrature stator inductance – measured in the 
d- and q-axis – is relatively large. This makes a relatively simple off-line 
identification of the rotor position possible either by an indirect 
measurement of the inductances or by an evaluation of the currents caused 
by scanning of the total rotor surface with identical voltage transients. 
Thanks to new magnet materials with a very high energy density and 
improved construction techniques the magnets of modern machines are 
finer distributed and fastened on the rotor surface. However, this 
improvement with respect to the drive quality aggravates the chance to 
identify the pole flux position. An interesting approach to solve these 
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difficulties with moderate processor power has been presented by 
[Brunotte 1997]. 

The PMSM is different from the IM physically only by the way of the 
magnetization: In the IM or m r

/i  must be built up, whereas the pole flux 
is permanently available in the PMSM. Therefore it can be assumed, that 
the Ljapunov stability approach which led to the error model (4.28) for the 
IM can be used here as well with the speed error signal: 

  with  p
sq sq sqsq

sd
e i i i i

L
    (4.32) 

As in the case of the asynchronous drive the current error in the q-axis is 
used as an input signal for the  - PI - estimation controller. Because of the 
preferred axis of the rotor flux, an error signal for the position angle which 
helps to eliminate the position error from the beginning must be found. 
The following considerations help to find a solution. From (3.64) the 
following equations can be obtained: 

1 1Motor:  

1 1Model:  

sq
sd sd s sq sd

sd sd sd

sq
ssd sd sq sd

sd sd sd

L
s i i s i u

T L L
L

s i i s i u
T L L

  (4.33) 

After the subtraction of the two above equations and some rewriting the 
following linear relation arises, under the assumption that the  - transients 
have died out and the load is constant: 

1
sq sqisd

sd

sT ie s
e s sT

      (4.34) 

The fault model (4.34) means, that the current error in the d- axis can be 
used as a correction signal for the rotor position. A compensation 
controller with I behavior, whose output quantity is added to the flux 
angle, will suffice for this purpose. The figure 4.13 shows the speed 
reversal of a PMSM drive controlled using this method. 
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Fig. 4.13 Speed reversal of a speed sensor-less and field-orientated controlled 
PMSM drive: Currents and speed (top), rotor or flux angle (bottom) 

4.4 Field orientation and its problems 

After the essential features of the field-orientated control and important 
control structures were introduced in chapter 1, some questions of the 
realization shall be discussed in more detail now. For asynchronous drives 
the calculation of the rotor flux, which is not measurable without 
additional costs, is decisive for a successful realization and satisfying 
control performance. Different models to solve this task will be compared 
in this chapter. Because control and PWM voltage generation work 
discontinuously, but the machine, of course, represents a continuous 
system, a number of issues arise in the context of the interaction of both 
components. These issues, if disregarded, can have a negative influence on 
the control accuracy and stability. In the last part of this chapter finally 
some concrete discretization effects and respective countermeasures will 
be worked out. 
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4.4.1 Principle and rotor flux estimation for IM drives 
To begin with, some basics of the field orientated control shall be 

summarized again for the better complete understanding of the matter. As 
known, the basic idea of the field orientated control is to develop a control 
structure for the IM similar to that for the DC machine. That means in 
detail: 

1. The process models of torque and flux must be decoupled from each 
other. 

2. At constant flux the torque equation should have a linear 
characteristic (linear relation between torque and torque-producing 
quantity). 

3. In steady-state, all control variables should be DC quantities. 
4. Torque and slip should be proportional. With this proportionality a 

breakdown-torque caused by the control is avoided, and the 
maximum torque is expressively determined by the available current 
or the available voltage. 

The requirement 3 is fulfilled by using a reference coordinate system 
which rotates synchronously with the stator frequency s. The point 2 can 
be fulfilled, if one axis of the coordinate system is chosen to coincide with 
the current or the flux vector. It can be shown that under all conceivable 
variants only the orientation to the vector of the rotor flux (e.g. r rd , 

0rq ) fulfils the remaining requirements and at the same time ensures a 
dynamically exact decoupling between torque and flux. Stator, rotor 
voltage and torque equations of the IM (cf. chapter 3 and 6) if splitted into 
their vector components, then may be rewritten as follows: 

d d(1 )
d d

sd md
sd s sd s s s sq s

i iu R i L L i L
t t

  (4.35) 

d
(1 )

d
sq

sq s sq s s s sd s s md
i

u R i L L i L i
t

  (4.36) 

d0
d

md
md r sd

ii T i
t

     (4.37) 

0 r r md sqT i i       (4.38) 
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with: /
md rd m rdi L  

In the context of current impression the very simple signal flowchart in 
figure 4.14 arises. According to (4.37) and (4.39) the current component isd 
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works as a control quantity for the rotor flux, and isq controls the torque at 
constant rotor flux. 

 

 
Fig. 4.14 Signal flowchart of the IM in field-orientated coordinates with current 
impression 

Different variants for the implementation of the principle of the rotor 
flux or field orientation into a control system are conceivable and known. 
Besides the proposed method using impression of the current vector, all 
remaining methods differ from each other by their ways to find the 
modulus and the phase angle of the not directly measurable rotor flux. The 
exact knowledge of the flux phase angle in stator coordinates 

0arctan dr
s s

r
t     (4.40) 

is required for the exact transformation of all measured quantities into 
field coordinates. Using this angle the current vector in field coordinates is 
obtained to: 

e sjf s
s si i        (4.41) 

In the simplest case the needed quantities can be calculated with the 
help of (4.38) from the reference values (set points) of flux and torque 
(field orientated feed-forward control [Schönfeld 1987] or indirect field 
orientation [Vas 1994]). A field orientated (feedback) control or a direct 
orientation uses a direct measuring of, or an estimation model fed by 
measured motor quantities, for the flux calculation and therefore has the 
essential advantage that the current motor state can be captured 
substantially more exact and independent of the quality of the inner current 
control loop (e.g. at insufficient voltage reserve). Because a direct flux 
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measuring using Hall sensors or additional coils requires additional 
incursion in the motor, practically realized systems usually work according 
to the model method. Typical structures were already introduced and 
explained in chapter 1. 

An analysis of the general voltage equations ( k = angular speed of the 
reference coordinate system) 

d d
1

d d
s m

s s s s k s s s k mR L j L L j
t t
i iu i i i  (4.42) 

d0 1
d

m
k r m r sj T T

t
ii i    (4.43) 

shows various possibilities for the calculation or estimation of the rotor 
flux vector. The different approaches can be distinguished by the used 
coordinate system and the measured quantities. With regard to the 
coordinate system characteristically the components of the flux vector are 
first calculated in stator coordinates, and in the second step modulus and 
phase angle are derived in field orientated coordinates. Essentially, the 
following models may be derived (cf. [Verghese 1988], [Zägelein 1984]). 
Model quantities are indicated with ^. 

 
1. us - is - Model in stator coordinates 

dd
d (1 ) 1 d

m s s s s

s

R
t L t

u i ii     (4.44) 

The model immediately results from the suitable rearrangement of the 
stator voltage equation. From equation (4.44) it can be noticed that because 
of the open integration any mechanism for the elimination of state 
errors, caused by wrong initial values or disturbances, is missing. At low 
rotational speeds considerable precision problems are to expect because of 
the significant influence of the stator resistance. 

From the rotor voltage equation the following 
 
2. is -  - Model in stator coordinates 

d
d
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i im
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r
st T

j
T

1 1
    (4.45) 

This model can immediately be derived from the rotor voltage equation. 
In contrast to (4.44) it can be shown that the state error decays with the 
rotor time constant [Verghese 1988]. The algorithm contains an integration 
of sinusoidal input quantities with the corresponding problems at discrete 
realization, though. This difficulty can be avoided by combination of both 
models to the following 
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3. is - us -  - Model in stator coordinates 
The derivation of the flux in (4.42) is eliminated after substituting 

(4.43): 
d( (1 ) )
d

1(1 )

s
s s r s s

m
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R R L
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L j
T

iu i
i    (4.46) 

In equation (4.46) no integration is needed anymore, but three measured 
quantities are to be fed to the model. 

The combination of the first two models to observers (exactly: observer 
of reduced order) allows additionally to influence the system dynamics and 
with dedicated design also the improvement of the parameter sensitivity 
[Zägelein 1984]. 

From the rotor voltage equation in field coordinates the following 
straightforward 

 
4. is -  - Model in field coordinates 
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is obtained. Because the currents here are available only after the 
coordinate transformation, they also were indicated as model quantities. 
For this model the comparatively low realization effort can particularly be 
noticed. Special problems in certain speed ranges do not exist. However, 
all models derived from the rotor equation have the common property that 
the precision of the phase angle s strongly depends on the temperature-
dependent rotor time constant. 

 
5. "Natural Field Orientation" [NFO, Jönsson 1991, 1995] 
Stator frequency and flux phase angle may also be calculated directly 

from the stator equations. In the NFO approach the calculation is divided 
between stator and field coordinate system. In stator coordinates the EMF 
voltage is calculated from equation (4.42): 

d d(1 )
d d

s m
s s s s sR L L

t t
i ie u i    (4.49) 

After transformation into field coordinates the stator frequency can be 
derived from the quadrature component: 

.
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(1 )
q

s
s md

e
L i

      (4.50) 

In the original method the flux is controlled in open loop, i.e. the 
reference value is used for imd. However, it is also possible to include a 
flux control loop for the flux magnitude (4.47) additionally. Neither rotor 
quantities nor the speed are needed to calculate the phase angle, at least for 
feed-forward controlled or constant flux. In this respect a close relationship 
to the us - is - model in stator coordinates exists. The voltage integration is 
transferred to an integration of the stator frequency. Similar precision 
problems at small rotational speeds may be supposed. 

So far, the method does not yet contain any speed model. Such an 
extension is described in [Jönsson 1995], although within a stator flux 
related control loop. 

Finally the possibility of an 
 
6. us -  - Model 
shall yet be mentioned. To its derivation the currents are eliminated in 

the voltage and flux equations by mutual substitution, and the stator flux is 
kept as an auxiliary variable. 

In all described models, the rotor magnetizing current im was used as an 
equivalent for the rotor flux magnitude in the first place. The actual rotor 
flux magnitude would have to be calculated from rd m mdL ii  and 

2 2
mr r

sd md sq
r r r

LL Li i i
L L L

i    (4.51) 

Because of the proved positive properties over the whole relevant range 
of stator frequencies, and because of the simple feasibility, the is -  - 
model (4.47), (4.48) in field coordinates is often preferred in the practice. 
Additionally to that, the current measurements are anyway available and 
high-quality speed controlled drives are equipped with speed measuring 
facilities. 

Consideration of the magnetic saturation is required for high dynamics 
requirements at operation with variable rotor flux. Corresponding control 
approaches will be discussed in detail in chapter 6.2. A relatively simple 
and often satisfactorily used model shall be presented here. For the rotor 
voltage equation in the arbitrary orientated (rotation frequency  
coordinate system the following equation can be obtained: 
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Split into components, the following equations are arrived at 
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Fig. 4.15   is -  - flux model in field orientated coordinates with saturation of 
main inductances 

Now the is -  - flux model in discrete representation can be rewritten in 
the following form: 

'
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1) more about the differential main inductance '

mL i  in chapter 6.2.3 
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The flux model in this form is represented in figure 4.15. Because of the 
temperature dependence of the rotor resistance, an on-line tracking of this 
parameter is additionally required for high-quality drives. The chapter 7 
will deal with this problem in greater detail. 

4.4.2 Calculation of current set points 
Field and torque producing components of the stator current can only be 

controlled independent of each other as long as the maximum current 
magnitude is not reached. At this point a suitable strategy for the vectorial 
current limitation becomes necessary. 

The function of the field orientated control relies on the precision or 
constancy (in the basic speed range) of the impressed rotor flux. Therefore 
it seems reasonable to give the flux producing component the priority, if 
the maximum realizable current magnitude is exceeded. A limitation of the 
maximal reference value isd to imax/2 at the same time allows an adequate 
control reserve for torque impression. Figure 4.16a illustrates the outlined 
vector limitation strategy. 

If applying a flux control strategy which uses the set point of isq for 
calculating the rotor flux set point (cf. chapter 8) an arithmetic loop would 
arise. This can be avoided by a two-step limitation of *

sqi  in the speed 
controller. Figure 4.16b shows the details. 
 

 
Fig. 4.16 Limitation strategy for calculating the current set points 
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4.4.3 Problems of the sampling operation of the control system 
The problems already discussed in chapter 3.1 for the discretization of 

the continuous state equations, require a renewed critical assessment at the 
application within the field orientated control. The system of state 
equations of the asynchronous machine is the starting point for the design 
of current controller and flux model, both in field orientated coordinates. 
In chapter 3.1.2 it was worked out, that for the derivation of an equivalent 
discrete process model from the continuous state equations the following 
idealizing prerequisites or approximations must be met: 

1. Constancy of the time variant and state-dependent process parameters 
(frequencies, machine parameters) within a sampling period. 

2. Constancy of the input quantities within a sampling period (sampling 
over zero order hold). 

These prerequisites naturally are not fulfilled in the real system, and in 
the result consequences for precision, control accuracy and stability of a 
control system, designed on the basis of the mentioned simplifications, 
have to be expected. Some of these consequences and possible 
countermeasures shall be examined here. Hereby, we will concentrate on 
the following main emphases: 

1. Validity of the simplifying assumptions for time-variant parameters 
and input quantities of the continuous system. 

2. Choice of the discretization method. 
3. Choice of the sampling time. 
Thereby the issue (3) must be regarded in closed relation to (1) and (2). 
 
a)  Time-variant system parameters 
The problem definition can be inverted in a pragmatic way with regard 

to the time-variant parameters of the system matrix: In order to obtain an 
equivalent time-discrete system, the boundary conditions of the 
discretization must be chosen to allow for the system matrix to be 
considered approximately time-invariant over one sampling period. This 
primarily has consequences for the selection of the sampling time T which 
must be chosen adequately small. Time-variant parameters of the system 
matrix are the speed or mechanical angular velocity , the stator angular 
velocity s and variable (e.g. saturation dependent) machine parameters. 

With regard to speed, the prerequisite of approximate time-invariance 
within a sampling period is fulfilled for usual sampling times of 0.1 ... 
1ms. Rotor and stator frequency can change with the dynamics of the 
impressed torque producing current. The technologically existing 
limitation of the current allows only a restricted maximum slip and 
therefore a limited frequency change, though. In the end the assessment of 
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this point will, however, have to be reserved for the detailed investigation 
of the concrete application, where stability and performance characteristics 
have to be investigated. The same is valid for time-variant motor 
parameters to be taken into account. For the incorporation of the main flux 
saturation it is advantageous that this quantity also can be seen as 
depending on a slowly varying state variable (rotor flux). 

The input variable of the system is the stator voltage vector us(t). The 
reference value of us(t) is constant over one sampling period, but for the 
actual motor voltage this is, however, not the case. For a machine model in 
stator coordinates the stator voltage is piece-wise constant due to the pulse 
width modulation, and for a machine model in field coordinates it is piece-
wise sinusoidal because of the continuously changing phase angle. Thus 
the used approximation of zero order will cause errors in every case. A 
workaround could be the consideration of the actual voltage curve or an 
approximation of higher order for the calculation of the integral in the 
output equation (3.9): 

( )

0

(( 1) ) e ( ) e ( )d
T

T Tk T kT kTA Ax x Bu   (4.57) 

(cf. chapter 3.1.2). If the zero-order approximation is retained, it has to 
be made sure that the mean average value of the model input quantity 
actually matches the effective mean average value at the machine 
terminals over a sampling period. 

 

 
Fig. 4.17 References and actual values of usd (bottom) and usq (top) in field 
orientated coordinates: with (left) and without (right) compensation 

For a model in field orientated coordinates this can be achieved by a 
feed-forward compensation of the transformation angle s. The equation 
(4.56) can be amended as follows 

1( ) ( ) ( )s s sck k k k T      (4.58) 
with the new transformation angle s1. The factor kc = 1.5 takes 

additionally into account the dead time of one sampling period between 
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calculation and output of the control variable. The figure 4.17 shows 
reference and actual values of the stator voltage in field orientated 
coordinates with and without the feed-forward compensation of the 
transformation angle. The pulse width modulation was not simulated in 
this case. 

 
b) Discretization method 
Discretization method and the used approximations decide essentially 

the stability of the discrete model. This holds particularly when the 
continuous system matrix contains complex or frequency dependent 
eigenvalues. To get an opinion about the dimension of the influences and 
model errors to be expected and also of the differences of the several 
discretization methods, a series of simulations was carried out whose 
results are represented in figure 4.18. All parameters of the continuous 
model are regarded as time-invariant. The state controller with field 
orientation, described in chapter 5.4, the flux model (4.55), (4.56), (4.58) 
and a sampling time of T = 0.5ms form the basis of the system under 
investigation. Because an unstable behavior of the system is recognizable 
by increasing oscillations, the low-pass filtered norm of the current 
difference vector of two successive sampling periods was chosen as a 
performance criterion: 
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k k
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sT
i i

     (4.59) 

The criterion was recorded during a speed start-up at maximum 
acceleration. The following methods were simulated (cf. chapter 3.1.2 and 
the corresponding example in chapter 12.2): 

1. Series expansion of the time-discrete system matrix  with truncation 
after the linear term (Euler discretization) (field coordinates). 

2. Series expansion of  with truncation after the quadratic term (field 
coordinates). 

3. Euler discretization in stator coordinates and then transformation into 
field coordinates. 

4. Discretization using substitute function in stator coordinates and 
subsequent transformation into field coordinates. 

5. Discretization using substitute function in field coordinates. 
6. Current controller in stator coordinates with integration part and 

voltage limitation in field coordinates, discretization using substitute 
function. 

For methods 1 - 5 the complete current controller was realized in field 
coordinates. It shall be emphasized that the simulation did not intend to 
give any statements about control accuracy, current wave form and the 
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like, but exclusively aims at the investigation of the control system 
stability. 

The results show significant differences between the methods. It strikes 
specifically that a stable operation up to the maximal theoretically 
possible frequency following the Shannon theorem can be achieved, if the 
method 5 is used. The method 1 allows a stable operation to just below a 
stator frequency of 300Hz. This corresponds to the theoretical 
stability limit of the Euler method with the condition 1 1i T T  for 
the eigenvalues i of the continuous system matrix (cf. chapter 3.1). Since 
the chosen sampling time rather lies in the upper range of the usually 
realized values, it is also confirmed that the bigger part of applications – in 
terms of the implemented control structures – can already be covered with 
Euler discretization in field orientated coordinates. 

 

 
Fig. 4.18 Stability of discretization methods 

c) Choice of the sampling time 
The choice of the sampling time is one of the most complex problems 

for the design of a digital control system. To an important part it is a 
question of the required and available computer power and therefore the 
hardware costs, in which an optimum is given, because on one hand a 
minimization of sampling time requires a higher computer power, but on 
the other hand increasing the sampling time causes the same effect because 
of the required more sophisticated discretization algorithms. 

From the control point of view, stability considerations play a decisive 
role for the discretization of the continuous model. With regard to the 
reproducibility of the continuous signals, the absolute lower limit of the 
sampling frequency is defined by the Shannon theorem. However, for the 
motor control the opposite case is significant as well: The production of a 
continuous signal (voltage, current) from a sequence of discrete control 



References      139 

signals (signal reconstruction). For the reconstruction of the continuous 
signal f(t), using a simple D/A converter (zero order hold), the following 
maximum amplitude error is obtained, provided steady differentiability of 
f(t) (cf. [Aström 1984]): 

,max
d ( )max ( 1) ( ) max

dA
k t

f te f k f k T
t

  (4.60) 

For a sinusoidal signal ( ) sin sf t a t  the error results to 

,maxA se a T . As is easily to comprehend, the maximum amplitude error 
is reduced for a continuous signal with assumed linear characteristic 
between two sampling instants and reconstruction by the mean average 
value, to half of the value for simple sampling at the sampling instants. 

Further approaches for the choice of the sampling time can be obtained 
from the demanded transient response of the closed control system. For a 
quasi-continuous design, a value of (0.25 0.5) rT t  is recommended in 
[Aström 1984] from the control response time. The relation between 
sampling and response time is given for the dead-beat design by the 
system structure. For a small response time the sampling time has to be 
chosen as small as possible, which however, on other hand, increases the 
control gain as well as the amplitude of the control variable, and increases 
the sensitivity to high-frequency disturbances. 

The use of fast pulse-width-modulated inverters with constant switching 
frequency as control equipment yields another influencing factor: Because 
of the necessary synchronicity between current control and voltage output, 
the PWM frequency will be chosen as an integer multiple of the sampling 
frequency of the current control, which yields values in the range of about 
0.1 ... 1ms. 
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5 Dynamic current feedback control for fast 
torque impression in drive systems 

The current control loop plays a decisive role in a 3-phase drive system 
operated with field orientation. The design of the superimposed 
mechanical systems (speed and position control) wishes for an inner 
current control loop with ideal behaviour: With undelayed impression 
of the stator current. The assumption that the ideal current control can be 
modeled by a dead time simplifies fundamentally the control design for 
often weekly damped oscillating mechanical systems. 

Besides the dead time behaviour, which could be achieved by a design 
aimed at dead-beat response, the current controller also should ensure an 
ideal decoupling between the field and torque forming components isd and 
isq, because the two components are strongly coupled with each other in 
the field synchronous coordinate system. This problem was not solved 
convincingly with the classic concept (fig. 1.4). From the view of the 
modern control engineering the current process model of IM or PMSM 
represents a multivariable process – a MIMO1 process – which can be 
mastered only by a multivariable controller. The multivariable controller 
contains besides controllers in the main (direct) path also cross (decoupling) 
controllers, so that the difficulties of the decoupling are solved automatically 
with the controller design. 

An important task of the controller design consists in considering a 
number of implementation dependent issues in controller approach and 
feedback. With conventional PI controllers such issues are usually 
neglected. 
• The delay of the control variable output of typically one sampling 

period: The stator voltage calculated by the current controller can only 
have an effect in the next sampling period. 

• The technique of the actual-value measurement: After all, different 
possibilities like instant value measuring (by ADC) or integrating 
measuring (by VFC, resolver and incremental encoder) are considered. 

                                                      
1 MIMO: Multi-Input – Multi-Output 
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Like all control equipment, the inverter can realize only a limited 
control variable because of the fixed DC-link voltage. To avoid possible 
oscillations and wind-up effects caused by the implicit integrating part 
after entering or leaving output limitation (at start-up, speed reversals, 
magnetization, field weakening), the controller must have the ability to 
take the limitation of control variables into account effectively. 

After discussing the discrete system models in the former chapters, new 
controllers will now be introduced with uniform and easily comprehensible 
design and which fulfill all mentioned requirements. But before the 
controller design is discussed a survey about the existing current control 
methods shall be given. 

5.1 Survey about existing current control methods 

The interested reader will find an overview in abbreviated form also in 
[Quang 1990]. Altogether, the known methods can generally be divided 
into two groups: nonlinear and linear current controllers. 

 

 
Fig. 5.1 Stator current control with three separate hysteresis (bang-bang) 
controllers 

a) Nonlinear current control 
Controllers of this group can show two- or three-point behaviour. A 

special method is the intelligent predictive control which reacts to the 
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stator current vector leaving a predefined tolerance circle with a pre-
calculated optimal firing pulse and therefore has also two-point behaviour. 
The most simple version of a current controller with two-point behaviour 
is to use three separate on-off controllers, refer to [Peak 1982], [Pfaff 
1983], [Hofmann 1984], [Brod 1985], [Le-Huy 1986], [Malesani 1987] 
and [Kazmierkowski 1988]. The principle is shown in the figure 5.1. 
 

 
Fig. 5.2 On-off controller for phase currents in vector representation: Components 
of vector of current error (a), tolerance range of one phase (b) and tolerance 
hexagon of all three phases (c) 

The sinusoidal set points of the phase currents are obtained by 
coordinate transformation from the field synchronous set points. 
Depending on the sign of the current errors, the corresponding phase is 
switched to „+“ or „–“ potential of the DC-link voltage at exceeding of the 
permitted error. This control variant stands out by the simplicity of its 
technical realization and by its convincing dynamic properties, but the 
following backdrops also have to be mentioned: 
• The pulse frequency varies with changing fundamental frequency and 

load which is particularly unwanted. 
• With isolated motor star point the current error can reach the double of 

the tolerance band. 
• The control quality directly depends on analogous comparators which 

are sensitive to offset and drift and could therefore lead to a slight pre-
magnetization of motor or transformer. 
The figure 5.2a shows the reference vector of the stator current s

*i , the 
actual vector si  and the error vector si . The phase current differences 
are obtained by the projection of the error vector to the axes of the 
corresponding phase windings. Upon the actual current vector leaving the 
tolerance hexagon the comparators will become active. 
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Fig. 5.3 Block structure of the drive system with inner current control loop using 
two-point controllers in field synchronous coordinates 

The figure 5.3 shows the realization of the control with two-point 
behaviour in field synchronous coordinates (cf. [Pfaff 1983], [Nabae 
1985], [Rodriguez 1987] and [Kazmierkowski 1988]). The current error is 
calculated in field synchronous coordinates. The field angle provides the 
necessary address to find, depending on the control errors, the fitting pre-
defined pulse patterns. The figure 5.4 explains this. 

 

 
Fig. 5.4 Definition of the switching hysteresis in two-point current controllers in 
field synchronous coordinates 
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The actual error vector si  and the position of the coordinate system 
are shown in figure 5.4a. Following the definition in figure 5.4b the 
controller behaviour can be summarized as follows: 

, , , ,

, , , ,

if , then 1 and

if , then 0
d q d q xd xq d q

d q d q xd xq d q

u U

u U

> = =

= =
 

The values 1 and 0 are the logical values which are assigned to the 
voltages ,d qU± . Index “x” can assume one of the values 0...7 and 
represents the standard voltage vector to be selected. The projection of 

s s s= *i i i  to the axes dq like in the figure 5.4a yields: 
 ,  thus  1
 ,  thus  1

d d xd

q q xq

u
u

> =
> =

 

Accordingly, a pulse pattern or a voltage vector has to be chosen whose 
d and q components minimize these control errors. In the example of 
figure 5.4 the choice u2 follows immediately. The assignment 

logical values and position of field synchronous coordinate system 
→ firing pulse 

was determined off-line beforehand and then stored in table form in 
EPROM. [Rodriguez 1987] shows concrete examples. 

To control the stator currents, also controllers with three-point 
behaviour may be used. In [Kazmierkowski 1988] details about this 
approach can be found which is illustrated in the figure 5.5. In this method 
the control errors εα and εβ of the stator current are obtained by projection 
of the error vector to the αβ axes of the stator-fixed coordinate system. 
The way to choose the required pulse pattern is similar as in the figure 5.3. 

 

 
Fig. 5.5 Three-point current controller in stator-fixed coordinate system 
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Fig. 5.6 Three-point current controller in field synchronous coordinate system 

[Kazmierkowski 1988] further introduced a structure with three-point 
controllers in the field synchronous coordinate system as shown in the 
figure 5.6. In principle this variant works exactly like the one in figure 5.3. 
The only difference between both versions consists in aiming at a higher 
precision by a finer division of the overall vector space (figure 5.7) into 24 
sectors, combined with three-point behaviour. The EPROM table 
containing the pulse patterns accordingly gets more extensive. In contrast, 
Rodriguez keeps the six original sectors (figure 5.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7 Division of the 
vector space into 24 
sectors 
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The most intelligent version in the family of the nonlinear current 
controllers is the predictive control (more in [Holtz 1983, 1985]). This 
control reacts (figure 5.8) on the actual current vector leaving the 
tolerance-circle by a predictive calculation of the following, optimized 
voltage vector. Therefore, it also shows two-point behaviour. The method 
can be used in field synchronous as well as in stator-fixed coordinates. The 
principle block structure is shown in the figure 5.9. 

 
 
 
 
 
 
 
 

Fig. 5.8 Tolerance-circle of the predictive 
current controller 

 
Fig. 5.9 Block structure of the predictive current control 

If the actual vector is overlaps the tolerance-circle at the time t0, the 
predictive controller must, using the information provided by the observer, 
• calculate all possible trajectories of the current vector (figure 5.10a) for 

each of the seven possible standard voltage vectors, and 
• following a certain criterion determine the optimal voltage vector for the 

chosen current trajectory. 
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Fig. 5.10 Possible current trajectories on output of all possible standard voltage 
vectors (a) and simplified equivalent circuit of the IM (b) 

The trajectories can be calculated as follows: 

( ) ( ) ( )

( ) ( ) ( )

0

0

0 0

0 0

s
s s t t

s
s s t t

dt t t t
dt
dt t t t
dt

=

=

= +

= +

*
* * ii i

ii i
    (5.1) 

In the equation (5.1) the currents ( ) ( )0 0 and s st t*i i  are known. The 

numerical derivation of  produces s sd dt* *i i , and for calculation of sd dti  
the following equation is used: 

( ) ( ) ( )0s gs

s

k t td k
dt L

=u ui
    (5.2) 

with: 

The formula (5.2) follows from the figure 5.10b in which the stator 
resistance is neglected. The induced e.m.f. is calculated by a machine 
model in the observer. Depending on the chosen trajectory (k = 0, 1, ... , 7) 
the following error vector: 

( ) ( ) ( ), ,s s st k t t k= *i i i      (5.3) 
can be calculated. For a detailed derivation the interested reader is 

referred to the mentioned literature. Here only the final equation (5.4), 
which shows the different error trajectories (figure 5.10c) in dependency 
on the chosen voltage vectors, is given. 

0 0

             = 0, 1, ... , 7
       = one of the seven possible standard voltage vectors

 = the induced e.m.f. at instant 
           = leakage inductance on the stator side

s

g

s

k
k

t t t
L

u

u



Survey about existing current control methods      151 

( ) ( ) ( ) ( )22 2
0 1 0 2 0,s st k t t a t t a t t= = + +i i   (5.4) 

The error trajectories have the form of a parabola. From the figures 
5.10a and 5.10c it can be seen, that the firing pulses corresponding to the 
voltage vectors 4 5 and u u  would increase the error, while all others would 
decrease it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.10c Possible 
current trajectories at 
instant t0 

But naturally only one of the five vectors u0,1,2,3,6 can be used. The 
choice is made according to one of the following criteria: 
1. For slow change of current (stationary operation): In this case the actual 

vector has to be kept within the tolerance circle as long as possible. In 
addition, the number of necessary switchovers of the semiconductor 
switches should be as small as possible. Therefore the following 
criterion is appropriate: 

( )
( )

max
t k

n k
=       (5.5) 

2. For fast change of current (dynamic operation): This case produces 
very fast changes of the set point vector s

*i , and it requires that the 
actual vector is follows the set point vector exactly and as fast as 
possible. us(k) will then be chosen according to the following criterion: 

( ) mint k =       (5.6) 
For the example in figure 5.10c, using the first criterion would result in 

choosing vectors u1 or u3, whereas the second criterion yields vector u6. 
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The predictive control is predominantly used in high power drives, 
where the assumption of a negligible stator resistance is fulfilled widely 
and where a very large rotor time constant allows the choice of a relatively 
large sampling period, what is necessary because of the extensive required 
calculations. 

The disadvantage of all nonlinear current control methods consists in the 
bad current impression in the area of inverter over-modulation, resulting in 
a certain orientation error and corresponding torque deviation. 

 
b) Linear current control 
Relevant references for this method are [Mayer 1988], [Meshkat 1984], 

[Rowan 1987] and [Seifert 1986]. The first classical version of linear 
current controllers was the application of three or two separate PI-
controllers to independently control the phase currents (see fig. 5.11). The 
sinusoidal output signals of the PI controllers would be forwarded to pulse 
width modulators (PWM) and compared with a sawtooth-shaped pulse 
sequence. The firing pulses are the immediate result of this comparison. 

 

 
Fig. 5.11 Phase current PI controllers with pulse width modulation 

The pulse width modulation was for long time the most widely used 
control method for inverters. Like all methods in stator-fixed coordinates, 
the control method shown in the figure 5.11 has the tracking error as a 
main disadvantage, because the PI controllers permanently have to work in 
dynamic operation due to the sinusoidal current set points. It was shown by 
[Rowan 1987] that an abrupt reduction of the PWM gain arises if the 
inverter control goes close to the maximum voltage amplitude (transition 
mode). This effect of the control variable limitation could not be taken into 
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account effectively with this control method. An essential improvement 
could be obtained by transforming the control algorithm into the field 
synchronous coordinate system (figure 1.4) in which the variables to be 
controlled represent DC quantities in stationary operation. 

This control version is very widely applied and possesses the following 
advantages: 

1. The precision is considerably higher because the controller does not 
have to work in dynamic operation, particularly the current phase 
error can be controlled to zero. 

2. The response near the transition mode is improved. 
3. The decoupling of the current components is improved, and therefore 

a higher accuracy of the field orientation is obtained. 
This method however still has a number of disadvantages which shall be 

mentioned here to motivate the development of improved algorithms in the 
following chapters. 

1. The response time (or the dynamics) of the control strongly depends 
on the stator leakage time constant. Therefore, a nearly undelayed 
current or torque impression as ideally required by the speed control 
loop is hardly achievable. 

2. The current components isd and isq are strongly coupled to each other 
in field synchronous coordinates. Can an adequate decoupling be 
ensured? 

3. Can the transfer characteristic of the current measuring technique 
actually used (measurement of instantaneous values, integrating 
measurement) be taken into account with this control concept 
effectively to guarantee a wide application range? 

4. Can the one-step delay of the control variable us, calculated by PI 
controllers, effectively be integrated into the control equations? 

5. How does the controller react to the control variable limitation, and 
can switching-off of the integral part (anti-reset wind up) be regarded 
as a sufficient method in the PI controllers? 

These questions will be answered in context with new designs of the 
current controller in this chapter. However, it has already to be highlighted 
that this variant represented a considerable progress to formerly applied 
methods. 

A last method shall be mentioned yet, being a mixture between a linear 
and nonlinear regulation. This is the method introduced in [Enjeti 1988] 
and [Zhang 1988] with current modulus and current phase control (fig. 
5.12a). The current modulus and current phase control loops are designed 
separately and have in principle linear characteristics. The decoupling of 
the two quantities, however, is of nonlinear nature. The references and the 
actual values are rectified and then compared with each other. The current 
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deviation is supplied to a PI controller. The phase angles are determined 
and compared with each other by phase detectors. The phase deviation has 
the form of a time interval during which a counter counts. The output of 
the A/D converter, following the PI modulus controller, and the output of 
the phase counter then build the address word for the corresponding 
switching pattern stored in a 64 Kbytes EPROM table. 

 
Fig. 5.12 Structure of the concept using current modulus and current phase control 
(a): the modulus control loop (b) and the phase or frequency control loop (c) 

This control concept is mainly used in current source inverters with the 
control system designed according to the signal diagrams shown in figure 
5.12b,c (see [Enjeti 1988]). 

 
c) Closing remark to the overview 
This chapter tried to give a summary of the known current control 

methods. Where possible, the functional principle was outlined. In 
connection with this, reference sources are included so that the possibility 
for background investigation is always ensured. 



Because of the wide variety of the known methods deviations to the 
originals are conceivable. The aim of this summary was not to deliver a 
complete analysis about all methods, but rather to give a stimulus for own 
study. 

5.2 Environmental conditions, closed loop transfer 
function and control approach 

The consideration of all environmental conditions is one of the most 
important tasks of the controller design. Before the controller approach 
itself is developed these conditions shall be discussed here. In addition, the 
final closed loop behaviour to be achieved shall also be outlined. 

 
a) Environmental conditions 
The first condition to be considered is the applied technique for 

capturing the actual-values of current and speed. Basically, two main 
techniques exist: The measurement of instantaneous values using A/D 
converters, and the integrating measurement using V/f converters for the 
current and incremental encoder or resolver for the speed. The difficulties 
connected to this were discussed extensively in the chapter 4, but how they 
influence the controller design will be subject of this chapter 5. 

The second environmental condition is the one-step delayed output of 
the control variable us of the current controller. This delay must be taken 
into account in the controller approach. 

The rotor flux of the IM is, in comparison to other electrical quantities, a 
slowly changing variable. The pole flux of the PMSM is constant. 
Therefore the fluxes can be looked at as disturbance variables and shall be 
accounted for in the controller approach separately. 

 
c) Closed loop response 
The closed loop response is the intended transfer behaviour of the 

controlled system. In the case of the stator current controller, it is 
characterized by the following properties: 

1. The step rise time, characterizing the control dynamics, and 
2. the decoupling between the components in steady-state and dynamic 

operation. 
The ideal dynamic behaviour can be achieved by the so-called dead beat 

response which means that the actual value will match the reference value 
after one sampling period, or, if the one-step delay of the control output is 
taken into account, after two sampling periods. Considering that for some 
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systems working with very short sampling times (e.g. T = 100μs) this rise 
time of 2×100μs would be too small from the viewpoint of the required 
energy to drive the current, a rise time of 3×100μs or 4×100μs (meaning 
after three or four periods) could be more useful in these cases. The 
dynamics does not become worse because a rise time of 300μs or 400μs 
(still much smaller then 1ms) can only be wished for with conventional PI 
controllers. To be able to express the demanded behaviour in general terms 
we start from a closed loop response with n sampling periods (figure 5.13) 
for the SISO process. 

 
 
 
 
 

Fig. 5.13 Set point 
signal and its response 
of a SISO process 
controlled with dead-
beat behaviour 

The discrete control by means of micro computer allows for an exact 
tracking of the actual value so that it can reach the set point after n 
sampling periods exactly and without overshots. Such a controller is 
conceived, as well known, for finite adjustment time (FAT response). 
Considering the one-step delay of the control variable the FAT will then be 
exact (n+1) periods. Therefore, the approach for the output signal can be 
written in the z domain as follows (figure 5.13): 
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With z < 1 it can be obtained: 
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+
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If a step change of the set point 

( ) 1
1

1
s z

z
=       (5.9) 

is considered as characteristical excitation signal the general transfer 
function is obtained as: 
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ni z z z z s z
n

+

=
= +    (5.10) 

for the controlled SISO process with FAT response (figure 5.13). 
The closed loop response of the vectorial stator current control is obtained 
from equation (5.10) to: 

( ) ( ) ( ) ( )1 1

1

11
n

n
s sz z z z z

n
+

=
= + *i i   (5.11) 

The closed loop response (5.11) means, 
1. that the dynamic as well as the static decoupling between the current 

components isd and isq will be guaranteed, because the transfer matrix 
is the unity matrix or a diagonal matrix respectively, and 

2. that the FAT response with FAT = (n+1) sampling periods will result 
for the decoupled current components. 

It will be shown later that a FAT response with a higher step number is 
always connected with a complete change of the controller structure or 
with an increased computing time. It is therefore impractical to increase 
the number of steps exaggeratedly. The investigation has shown that a 
FAT response with FAT = 2, 3 or 4 periods, referring to the computation 
effort which must be handled during a very short sampling period (e.g. 
100...200μs), would be realistic and practicable. Therefore, only controller 
designs for these three cases are offered later on. The reference transfer 
functions or the closed loop response are obtained as follows for: 

 
1. n=1: FAT = n+1 = 2 (dead beat behaviour) 

( ) ( )2
s sz z z= *i i       (5.12) 

2. n=2: FAT = n+1 = 3 

( ) ( ) ( )2 31
2s sz z z z= + *i i      (5.13) 

3. n=3: FAT = n+1 = 4 

( ) ( ) ( )2 3 41
3s sz z z z z= + + *i i     (5.14) 

c)  Controller approach 
It was tried in the subchapter 3.5 to agree on a common representation 

for the current control processes for IM and PMSM, resulting in the 
general process models (3.86) or (3.87) and the block structure in the 
figure 3.16. The equations represent the control process both in the field 
synchronous and in the stator fixed coordinate system. They are repeated 
here in favor of a better overview. 
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( ) ( ) ( ) ( )1s s sk k k k+ = + +i i Hu h    (5.15) 
In z domain: 

( ) ( ) ( ) ( )s s sz z z z z= + +i i Hu h     (5.16) 
Using these equations the controller design shall be carried out first in 

general and then applied for concrete cases. Under the assumption that y is 
the actual controller output quantity the following general controller 
approach arises. 

( ) ( ) ( )
( ) ( ) ( )

1

1

1   or

1 1

s

s

k k k

k k k

=

+ = +

u H y h

u H y h
    (5.17) 

The term y(k-1) takes into account by the time shift (k-1), that in the 
current calculation the value of the controller output quantity y calculated 
in the period before is used. With that the one-step delayed output of the 
control variable is included in the approach. The 2nd term with ( )kh  
compensates the flux dependent part. After inserting equation (5.17) into 
the equation (5.15) this immediately becomes recognizable, and the 
compensated general current process model (5.18) arises for the IM as well 
as the PMSM: 

( ) ( ) ( )1 1s sk k k+ = +i i y     (5.18) 
In the z domain the following equation holds: 

[ ] ( ) ( )1
sz z z z=I i y      (5.19) 

The figure 5.14 illustrates the compensated current process model which 
serves as a starting point subsequently for all controller designs. In the 
following the methodical procedure will always be to address the general 
design first. After that the design will be specified to the concrete case: IM 
or PMSM, in field synchronous or in stator fixed coordinates. For this 
purpose the designs are always represented both in the form of equations 
and by circuit diagrams so that programming will be made easier. 

 

 
Fig. 5.14 General compensated current process model of the IM and PMSM 
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5.3 Design of a current vector controller with dead-beat 
behaviour 

The designs in this chapter were introduced repeatedly in different 
papers [Quang 1991, 1993 and 1996]. 

5.3.1 Design of a current vector controller with dead-beat 
behaviour with instantaneous value measurement of the 
current actual-values 

The figure 5.15 shows the principle block structure of the current vector 
controller with instantaneous value measurement for the example of the 
measuring strategy in figure 4.1. The controller equation is for this case: 

( ) ( ) ( )s sz z z= *
Iy R i i      (5.20) 

( ) = Refer ence or  set poin t vector  of the cu r r en ts z*i  
After substituting equation (5.20) into the equation (5.19) the following 

transfer function of the current controlled IM or PMSM can be obtained: 

( ) ( )
11 1

s sz z z z z= + *
I Ii I R R i    (5.21) 

The approach (5.12) is valid for the closed loop response and 
respectively for the reference transfer function. The equation (5.12) will be 
identical with (5.21), if the following equation holds for RI: 

1

21
z
z

=I
IR       (5.22) 

The transfer function (5.12) illustrates by the diagonal matrix whose 
elements are z-2 a both statically and dynamically good decoupling 
between the current components. The controller RI (5.22) in figure 5.15 
shows that a decoupling network in the classical presentation (figure 1.4) 
can be abandoned. 

 
Fig. 5.15 Block structure of the current vector controller for IM or PMSM 
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With the current control error: 
( ) ( ) ( )w s sz z z= *x i i      (5.23) 

it will be obtained: 
( ) ( )wz z= Iy R x       (5.24) 

In the time domain the following controller equation results from 
equation (5.22): 

( ) ( ) ( ) ( )1 2w wk k k k= +y x x y    (5.25) 
After inserting equation (5.25) into the equation (5.17) the control 

variable and respectively the stator voltage, which must be applied on the 
motor by the vector modulation, is obtained. 

( ) ( ) ( ) ( ) ( )11 1 2 1s w wk k k k k+ = + +u H x x y h  (5.26) 

With the equation (5.26) the design is complete. Two notes, however, 
are still necessary here. 

1. The estimated rotor flux ( )1k +  (by equations 3.51, 3.55; in detail 
cf. subchapter 4.4) is used to compensate its disturbance effect. It is 
constant in the constant flux area and perhaps can be neglected in the 
practical implementation. The implicit I part in the controller is able 
to compensate for the missing flux compensation. However, the 
slowly variable flux in the field weakening area is exposed to 
permanent changes. It is therefore more advantageous to include the 
compensation into the equation (5.26). 

2. The voltage or the control variable us will be calculated by processing 
the equation (5.26) always one sampling period ahead. With that the 
delay of the control variable us by one sampling period is taken into 
account. 

 
a) Use of the controller for the IM in field synchronous coordinates 
To be able to use the design (5.22) and respectively the equation (5.26), 

the following matrix elements must be replaced corresponding to the 
models derived in chapter 3: 

11 1 12by ,  by  and  by f f fH H h  
From equation (3.54) it will be obtained: 

11 12
11

12 11

1 11

1 11

s
s rf

s
s r

T T
T T

TT
T T

+
= =

+
 (5.27) 
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13 14
12

14 13

1 1

1 1
rf

r

T T
T

TT
T

= =    (5.28) 

11
1

11

0
0

0 0

sf

s

T
Lh

h T
L

= =H     (5.29) 

If the matrix elements from (5.27), (5.28) and (5.29) are used in the 
equation (5.26) now, the following controller equations will be obtained 
considering that the cross component rq  of the rotor flux is zero because 
of an exact field orientation: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
11 11 12

/
13

1
11 12 11

/
14

1 1 1

2 1

1 1 1

2 1

sd wd wd wq

d rd

sq wq wd wq

q rd

u k h x k x k x k

y k k

u k h x k x k x k

y k k

+ =

+ +

+ = +

+ + +

 (5.30) 

Because of the necessary storage of the temporary variable y through 
several sampling periods a direct programming of the equation (5.30) is 
impractical. The following sequence is more advantageous: 

1. Calculation of the vector y(k) using (5.25): 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

11 12

12 11

1 1 2

1 1 2
d wd wd wq d

q wq wd wq q

y k x k x k x k y k

y k x k x k x k y k

= +

= + +
 

 (5.31) 
2. Then calculation of the stator voltage using (5.17): 

( ) ( ) ( )

( ) ( ) ( )

1 /
11 13

1 /
11 14

1 1

1 1

sd d rd

sq q rd

u k h y k k

u k h y k k

+ = +

+ = + +
   (5.32) 

Now the equations (5.31) and (5.32) can be used for programming 
provided that the axis-related deviations xwd, xwq, and the accumulated 
quantity y still must be corrected at stator voltage limitation to avoid 
instabilities. The subchapter 5.5 will deal with the problem of the control 
variable limitation later in detail. 
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b) Use of the controller for the IM in stator-fixed coordinates 
, H and h are replaced by 11 1 12,  and s s sH  from the equation (3.50): 

11
11

11

1 11 0
0

0 1 10 1

s rs

s r

T
T T

T
T T

+
= =

+
 (5.33) 

13 14
12

14 13

1 1

1 1
rs

r

T T
T

TT
T

= =    (5.34) 

11
1

11

0
0

0 0

ss

s

T
Lh

h T
L

= =H     (5.35) 

If the matrix elements of (5.33), (5.34) and (5.35) are inserted into the 
equation (5.26), then the following voltage components in αβ coordinates 
will be obtained. 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1
11 11

/ /
13 14

1
11 11

/ /
14 13

1 1 2

1 1

1 1 2

1 1

s w w

r r

s w w

r r

u k h x k x k y k

k k

u k h x k x k y k

k k

+ = +

+ +

+ = +

+ + +

 (5.36) 

The next steps are again useful to support programming: 
 
1. Calculation of the vector y(k) according to (5.25): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

11

11

1 2

1 2
w w

w w

y k x k x k y k

y k x k x k y k

= +

= +
  (5.37) 

2. Then the calculation of the voltage using (5.17): 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 / /
11 13 14

1 / /
11 14 13

1 1 1

1 1 1

s r r

s r r

u k h y k k k

u k h y k k k

+ = + +

+ = + + +
 (5.38) 
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c) Use of the controller for the PMSM in field synchronous coordinates 
Instead of , H and h, the matrices ,  and f f

SM SMH h  from equations 
(3.71) and (3.72) are used for the PMSM: 

11 12

21 22

1

1

sq
s

sd sdf
SM

sd
s

sq sq

LT T
T L

L TT
L T

= =    (5.39) 

11

22 2

0 0
0 0

;
0 0

sdf
sSM

sq
sq

T
Lh

T
Th hL

L

= = = =H h   (5.40) 

After replacing the matrix elements of (5.39), (5.40), the dq components 
of the stator voltage result to: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
11 11 12

1
22 21 22 2

1 1 1 2

1 1 1 2

sd wd wd wq d

sq wq wd wq q p

u k h x k x k x k y k

u k h x k x k x k y k h

+ = +

+ = +
 

(5.41) 
and the following programming equations will be obtained: 
 
1. y(k) is calculated by using (5.25): 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

11 12

21 22

1 1 2

1 1 2
d wd wd wq d

q wq wd wq q

y k x k x k x k y k

y k x k x k x k y k

= +

= +
(5.42) 

2. then the voltage calculation using (5.17) follows: 
( ) ( )
( ) ( )

1
11

1
22 2

1

1
sd d

sq q p

u k h y k

u k h y k h

+ =

+ =
    (5.43) 

5.3.2 Design of a current vector controller with dead-beat 
behaviour for integrating measurement of the current 
actual-values 

In principle the process equations (5.18) and (5.19) are only valid for 
processes with instantaneous value measurement of the current values. In 
case of an integrating measurement (cf. subchapter 4.1) the measuring 
equipment is modeled by using the averaging function: 
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( ) ( ) ( )1 1
2

M
s s sk k k= +i i i      (5.44) 

r aised  ind ex M: aver age valu e  

and the result ( )M
s ki  is available for the control as actual value of the 

stator current. The final process equation in case of integrating 
measurement results from (5.44) by using (5.18): 

( ) ( ) ( ) ( )11 1 2
2

M M
s sk k k k+ = + +i i y y   (5.45) 

and in the z domain: 

[ ] ( ) ( )1 21
2

M
sz z z z z= +I i y     (5.46) 

 

 
Fig. 5.16 Block structure of the current vector controller for IM or PMSM with 
integrating measurement 

The controller equation starts from: 
( ) ( ) ( )M

s sz z z= *
Iy R i i      (5.47) 

After eliminating y(z) in (5.46) and (5.47) we obtain the transfer 
function: 

( ) ( ) ( ) ( )
1

1 2 1 21 1
2 2

M
s sz z z z z z z= + + + *

I Ii I R R i  (5.48) 

The approach for the closed loop response and respectively the 
reference transfer function is: 

( ) ( ) ( )2 31
2

M
s sz z z z= + *i i      (5.49) 
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This is equivalent to a dead beat response. The equations (5.48) and 
(5.49) are identical, if the following controller is chosen: 

( )
1

2 311
2

z

z z
=

+
I

IR      (5.50) 

The equation (5.50) looks as follows in the time domain: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 2 3
2w w

M
w s s

k k k k k

k k k

= + +

= *

y x x y y

x i i
 (5.51) 

The derivation of the equations for the controller application in figure 
5.16 can similarly be carried out – for the cases IM or PMSM, in field 
synchronous or stator fixed coordinates – like in the subchapter 5.3.1. For 
the problem of the control variable limitation it is again referred to the 
subchapter 5.5. 

5.3.3 Design of a current vector controller with finite 
adjustment time 

The controllers introduced in this chapter are derived like in chapter 
5.3.1 from the common theoretical approach (5.11) for the closed loop 
response. 

It was shown repeatedly in the literature references mentioned at the 
beginning of the subchapter 5.3 that the fastest dynamics can be achieved 
by a dead beat design. This approach provides a virtually undelayed torque 
impression which is particularly advantageous for the conception of 
superimposed control loops for mechanical systems (speed, position). Step 
response times of under 1 ms were reached. The application of fast 
microprocessors (digital signal processors, high performance 
microcontrollers) and the tendency toward higher pulse frequencies (10-
kHz and more) however result in yet faster sampling of the current control 
(T = 100...200 μs). If the current control was prepared for dead beat 
behaviour, the inverter could not produce the voltage over time areas 
necessary to drive the required current step amplitudes (at dynamic 
processes like magnetization, start up or speed reversal) within the very 
short demanded rise times of 2×100μs ... 2×200μs = 200...400μs. This is 
extremely critical for inverters with small control reserve (low DC link 
voltage). It becomes critical as well if the drive is operated at the voltage 
limit and dynamic processes (e.g. speed reversal out of the field weakening 
range) take place simultaneously. Preferably, at these small sampling times 
and with fast processors like DSP's the current control is not adjusted to 
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dead beat response any more, but to FAT behaviour with more than 2 steps 
response time. As indicated in the section 5.2 it would be realistic to 
realize the FAT behaviour with 3 or 4 sampling steps. 

For instantaneous value measuring of the stator currents the transfer 
function (5.21) results for the current-controlled IM in dq coordinates. The 
reference transfer functions for the recommended step number are given in 
(5.13) and (5.14). The equation (5.21) is identical with either (5.13) or 
(5.14), if for: 

 
1. n=2 (FAT = n+1 = 3) the following controller: 

( )
( )

1 1

2 3

11
12 1
2

z z

z z

+
=

+
I

I
R , and    (5.52) 

2. n=3 (FAT = n+1 = 4) the following controller: 

( )
( )

1 2 1

2 3 4

11
13 1
3

z z z

z z z

+ +
=

+ +
I

I
R     (5.53) 

is valid. The controller designs (5.52) and (5.53) can be used – 
regarding the available processing capacity – almost without problems by 
application of digital signal processors with a sampling period of 100 μs, 
including necessary functions like the vector modulation, the coordinate 
transformation, the flux model or flux observer and the feedback value 
processing. The outlined design was carried out assuming an instantaneous 
value measurement of the stator current. 

The current driving voltage over time area is – in comparison with the 
dead beat design – the same, but distributed over several steps. With that 
the control voltage us rarely goes into the limitation. This property is seen 
as an important advantage, especially for inverters with small control 
reserve (low DC voltage). This also takes effect particularly if the inverter 
is operated at the limits of the control reserve (e.g. in the field weakening 
area or at full load). The system stability is fundamentally improved while 
entering into and recovering from limitation. 
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5.4 Design of a current state space controller with dead 
beat behaviour 

The main advantage of the current vector regulators introduced in the 
chapters 5.3.1 and 5.3.3 is primarily the practically proven ruggedness 
when applied to machines whose data are known only inaccurately or 
calculated only from the name plate. This chapter on the other hand 
introduces a design in the state space which can produce superior qualities 
with respect to smooth running and dynamical or decoupling behaviour at 
higher stator frequencies if exact machine data are available. This allows 
the particularly advantageous use of the new controller, called the current 
state controller from now on (figure 5.17), in precision drives. 
 

 
Fig. 5.17 Block structure of the current state controller with pre-filter matrix V 
and feedback matrix K 

The design starts out as usual from the general approach (5.17) and from 
the compensated process model (5.18) or (5.19). The controller equation 
can be written in the z domain as: 

( ) ( ) ( )s sz z z= *y V i K i      (5.54) 
The equation of the closed loop system is obtained after inserting the 

equation (5.54) into (5.19): 

( ) ( ) ( )1 1
s sz z z z z= *I K i V i     (5.55) 

Using equation (5.55), the state controller can be designed now, and 
it has to be noticed that 

1. the feedback matrix K changes the pole positions of the closed loop 
system, and is therefore decisive for dynamics and stability. With 
that, different design strategies, such as the design 
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• on dead beat behaviour or 
• on well damped characteristic, can be derived, and 

2. the pre-filter matrix V serves the adjustment of the demanded 
working point, and therefore is responsible for the stationary transfer 
characteristic. 

This means with respect to the decoupling between the torque and flux 
forming current components that K determines the dynamic and V the 
static decoupling properties. 

5.4.1 Feedback matrix K 

By using (5.55) the characteristic equation of the closed loop system is: 

( )1det 0z z =I K      (5.56) 

The polynomial on the left side of (5.56) has the following general 
form: 

( )1

0
det i

i
i

z z a z
=

=I K     (5.57) 

The system has two poles. To achieve dead beat behaviour, both poles 
must be located (see e.g. Föllinger [1982]) in the coordinate origin. This 
means that 

20  for  2 ; 1ia i a= =  
Following the Cayley-Hamilton theorem (cf. Föllinger [1982], Isermann 

[1987]) the matrix 1( )z K  fulfils its own characteristic equation. 
From that, we obtain: 

21 1  or  z z= =K 0 K 0    (5.58) 

and then: 
z=K        (5.59) 

Two remarks shall follow to interpret this result: 
1. The equation (5.59) contains a z operator, which means that a 

prediction (one sampling period in advance) of the actual-value of the 
stator current is necessary. 

2. The dead beat behaviour would cause large control amplitudes (as 
explained in the subchapter 5.3.3) at set point steps, and from this, 
strong control movements for stochastically disturbed control 
variables. Therefore the design (5.59) could have an unfavourable 
effect for inverters with small control reserve (low DC link voltage). 
A FAT behaviour according to the subchapter 5.3.3 would be sensible 
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and useful. The application of this reference transfer function in the 
state space, however, is not possible. A behaviour prepared for a good 
damping is, on the other hand, practicable. The poles then should not 
be assigned directly in the coordinate origin but in its near vicinity. 

( ) ( )21
1 1det   with  0z z z z z=I K   (5.60) 

From (5.60) it will be obtained: 
[ ]1z z=K I       (5.61) 

For practical realization it suffices to determine the satisfactory behaviour 
by varying z1 experimentally without having to exaggerate the theory here 
further. 

5.4.2 Pre-filter matrix V 

A stationary exact transfer characteristic and good decoupling between 
the two current components can be expected if the following is valid: 

( ) ( ) ( )1   für  s s sk k k k+ = = *i i i  
or: 

( ) ( )  für  1s sz z z= *i i  
It follows from (5.55): 

[ ]=V I K       (5.62) 
After using the matrix K like (5.59) or (5.61) it will be obtained: 
1. For the dead beat behaviour: 

=V I        (5.63) 
2. For the design with good damping: 

( )11 z=V I       (5.64) 
With K and V calculated by equations (5.59) and (5.63) or (5.61) and 

(5.64) we obtain from (5.55) the following transfer function of the 
controlled process: 

1. For the dead beat behaviour: 
( ) ( )2

s sz z z= *i i       (5.65) 
2. For the design with good damping: 

( ) ( )1

1

1
1s s

zz z
z z

= *i i       (5.66) 

The two state space designs point to a good dynamic decoupling judging 
from their diagonal transfer matrices. In contrast to the current vector 
controller (cf. subchapter 5.3) however, a stationary error has always to be 
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expected because of the missing integral term. This stationary error, partly 
caused by the first order approximation of the discrete state models and 
partly caused by parameter deviations, shall be eliminated by introducing 
an additional integral term. Because the current components are 
dynamically and statically decoupled by the controller design with K and 
V, the elimination of the stationary error or deviation can be realized 
separately for every single current component. Therefore the control 
structure is extended by two additional integral controllers (figure 5.18). 
 

 
Fig. 5.18 Current state space control with two additional integral controllers 

The equation of the additional integral controller RI will be: 

( ) ( ) ( )
( ) ( ) ( )

11   or

1

I s

I s

z z V z

k V k k

=

= +

I

I I

y i

y i y
   (5.67) 

The controller output variables yI have the task to eliminate the 
stationary errors Δis of the stator current. yI and Δis also fulfill the process 
equations (5.18) and (5.19): 

[ ] ( ) ( )
( ) ( ) ( )

1   or

1 1
s

s s

z z z z

k k k

=

+ = +
I

I

I i y

i i y
   (5.68) 

Since an effective decoupling between the current components is 
already ensured by the basic structure of the current state space control, the 
equations (5.67) and (5.68) can be re-written in component notation as 
follows: 

    Controller gain
   Stationary current error

     Output variable of the integral controller

I

s

V

I

i
y



Design of a current state space controller with dead beat behaviour      171 

( ) ( )

( ) ( )

,
, ,1

2

, ,1
11

Controller
1

Process
1

Id q
Id q sd q

sd q Id q

V
: y z i z

z
z: i z y z

z

=

=

1  (5.69) 

The equation (5.69) is substituted into the closed loop transfer function 
to calculate the gain factors VId,q which are usually chosen identical. 
Because these factors correspond to the ratio T/TI, (TI is in comparison 
with the sampling time T a very big integration time), it suffices in the 
practice to choose for these factors after the normalizing (about 
normalizing: subchapter 12.1) a value of approx. 0.05 … 0.25. 

An even better choice would be to feed the integral controller with the 
current feedback not directly but through a model of the closed loop 
control system. This would prevent the controller from being invoked at 
every set point change. 

The reader's attention was already drawn to the z operator in equations 
(5.59), (5.61). The z operator requires a prediction of the stator current. 
With the actually realized stator voltage, the estimated rotor flux and the 
measured stator current this prediction can be simply carried out according 
to the equation (3.74). 

( ) ( ) ( ) ( )1+ = + +s s sk k k ki i Hu h    (5.70) 
The equation (5.70) has to be adapted to the usage of IM or PMSM and 

in which coordinate system the motor will be controlled. The complete 
structure of the current state space control is represented in the figure 5.19. 
 

 
Fig. 5.19 Detailed block structure of the current state space controller for the IM 
and PMSM 
                                                      

1 Caution: Instead of  Φ11, Φ22 is used for q axis in the case PMSM 
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5.5 Treatment of the limitation of control variables 

Generally, the control variable or the stator voltage is limited by the DC 
link voltage. At uncertain time, e.g. because of a dynamic transient, the 
current controller requires excessive amplitudes of the control variable 
which, however, cannot be provided by the inverter. So the control 
variable hits its maximum consuming all available control reserve. After 
the current has reached its reference the control variable still stays on its 
maximum until the integral part has decayed. In this process, oscillations 
or vibrations of the controlled variable around limitation may develop. 

The described process is known and understandable. It is also known 
that these difficulties can be normally solved by switching off the integral 
part (anti-reset windup) once the control variable goes into the limitation. 
Regarding the new current controllers this strategy could be applied for the 
additional integral parts of the current state space controller because these 
parts do obviously exist separately. What would, however, happen with the 
current vector controllers? The integral part is here not recognizable as part 
of the design in its own right. Furthermore, being a rather empirical 
method, turning-off the integrating part does not fit into a fully consistent 
design and leaves a number of open questions as to the optimal instants to 
disable and re-enable integration. A better and consistent solution can be 
provided by reverse-correction of the control deviation (cf. Schönfeld 
[1985]) which is elaborated on further in this chapter. 

 

 
Fig. 5.20 Limitation of control variable: (a) Voltage vector us with arbitrary phase 
angle ϑu and (b) the maximum modulation ratio 

maxsu of inverter 
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Instead of measuring the stator voltage to detect when entering 
limitation, the stator voltage can be limited intentionally to the maximum 
modulation ratio. 

From the chapter 2 is known, that the maximum usable stator voltage 
lies within a hexagon (fig. 5.20) and furthermore, that only the limitation 
of the amplitude of the voltage vector is of importance. However, the 
stator voltage actually exists in components, usd and usq or usα und usβ. That 
means: 

The voltage limitation must be split into components as well. 
Suitable methods for this have to be worked out for the chosen 
coordinate system. 

The voltage limitation itself is completed with its splitting into 
components. But as mentioned above: 

A reverse correction strategy, which prevents the vibrations or 
oscillations caused by the implicitly existing integral part, must be 
worked out. 

The figure 5.20a has pointed to the possibilities of setting the limitation 
boundaries on the inner circle touched by the hexagon or on the outer 
hexagon. The limitation most simply works with the circle, but a loss of 
control reserve (the area between hexagon and circle) would be the result. 
The phase angle ϑu of the stator voltage then is: 

arctan sq
u su

sd

u
u

= +      (5.71) 

With the help of (5.71) and fig. 5.20b the maximum amplitude of the 
voltage vector or the maximum modulation ratio (at normalization with 
2UDC/3) depending on the phase angle can be found as: 

max
3 1

2 sin
3

=
+

su 1     (5.72) 

The limitation on the outer hexagon according to (5.72) yields the best 
actuator utilization with respect to deliverable control voltage, however, 
causes an additional third harmonic in the current. This is unwanted in the 
stationary operation where the field and torque forming components 
represent DC quantities. It is therefore recommended for high-quality 
servo drives to limit on the inner circle. The maximum modulation 
ratio then is: 
                                                      

1 After normalizing with 2UDC/3 the voltage is formulated as modulation ratio 
here; the angle γ is defined in fig. 5.20b. 
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max
3

2
=su       (5.73) 

In principle the limitation can be implemented on one of the three 
following levels (fig. 5.21). 

1. Level of dq components: This is the mostly applied, most effective 
variant for the limitation. The decoupling between the dq axes or 
between torque formation and magnetization can be ensured largely 
with a correct splitting strategy (cf. chapter 5.5.1). 

2. Level of αβ components: The application of this variant is only 
possible if the torque impression is implemented using a current 
controller in the stator-fixed coordinate system. Unfortunately, the 
decoupling between torque formation and magnetization cannot be 
ensured any more. 

3. Level of switching times: This variant is rarely used. The decoupling 
is not ensured any more. For low-quality drives, where 
microprocessor power (for splitting and reverse correction) is missing 
and/or slow semiconductor components are used, the use of this 
variant could be interesting. 

The following chapters only deal with the limitation at the level of the 
dq coordinate system. 

 

 
Fig. 5.21 Possible levels for the realization of the control variable limitation 

5.5.1 Splitting strategy at voltage limitation 

Geometrically the voltage limitation is equivalent to shortening the 
voltage amplitude. For non-reactive loads, i.e. current and voltage have the 
same sign, the current gets smaller at reduced voltage. For reactive, 
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inductive/capacitive or mixed (ohmic-inductive, ohmic-capacitive) loads – 
i.e. current and voltage can have different signs – a voltage shortening 
would be able to cause the current to increase and duly cause the system to 
become instable. It is known that usd and isd as well as usq and isq very often 
have different signs which indicate the operating state (motor, generator) 
of the system. 

These introductory words make already clear that a splitting 
strategy, which ensures the system stability, must be able to 
recognize priorities for the coordinate axes depending on the 
operating state and then perform the limit splitting according to 
the geometric possibilities. 

 
a) Geometric possibilities for limitation 
From geometrical point of view and depending on whether the outer 

hexagon or the inner circle is chosen as the limitation curve, one of the 
three following possibilities (cf. figure 5.22) can be used for the splitting: 

1. usd is cut down, usq will be kept or has priority: 

( ) 2 2
max  ;  sdr sd sq sqr squ sign u u u u= =su    (5.74) 

2. usd and usq are truncated in the same proportion (called: the phase 
correct limitation): 

2 2
max max

2 2 2 2 ;  sdr sd sqr sq
sd sq sd sq

u u u u
u u u u

= =
+ +

s su u
  (5.75) 

3. usq is cut down, usd will be kept or has priority: 

( ) 2 2
max ;  sdr sd sqr sq sdu u u sign u u= = su    (5.76) 

 
 
 
 
 

Fig. 5.22 Geometric 
possibilities for 
limitation splitting: (1) 
only d component, or (2) 
d and q component in the 
same proportion, or (3) 
only q component will 
be truncated 
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The figure 5.22 clarifies that with the inner circle as limitation curve the 
value of the maximum modulation ratio maxsu  is always given according 

to (5.73). Unlike this, maxsu  using the outer hexagon can adopt different 
values (cf. fig. 5.22) for the same reference voltage vector, whose complex 
calculation cannot be handled by every microprocessor and therefore is 
rarely used. For this reason the limitation on the hexagon will not be 
further followed here. 

The equations (5.74) and (5.76) point to the possible case in which even 
the component with priority can exceed the value of maxsu . In this case 
the component with priority must also be shortened. 

 
b) Splitting strategy by [Quang 1994] 
The strategy starts out from an analysis of the possible operating states 

of the electrical machine. 
 
Asynchronous drive using IM 
In stationary operation the following system of equations is valid for the 

stator voltage: 
sd s sd s s sq

sq s sq s s sd

u R i L i

u R i L i

=

= +
     (5.77) 

The operating states which lead to the voltage limitation are always 
connected to higher frequencies so that resistive voltage drops are 
negligible in the equation (5.77). Therefore they can be reduced to: 

sd s s sq

sq s s sd

u L i

u L i
      (5.78) 

The equation (5.78) obviously points to a static coupling between d and 
q axes and implies that in the area of higher frequencies (where limitations 
often take place) the components usd and usq usually have to provide the 
greater part for overcoming this coupling than for keeping its own current 
component. The following facts can be stated in evaluation of equation 
(5.78): 
• The field forming current isd always has positive sign in stationary 

operation. (Remark: The field forming current isd could accept negative 
sign only for feedback-controlled flux for a short time). 

• The product mM×ωs or isq×ωs is always positive in motor operation. I.e. 
isq and ωs always have the same sign. This means, that: 

 usd < 0, or usd and isd have different signs, and 
 usq and isq have the same sign. 
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• The product mM×ωs or isq×ωs is always negative in generator operation. 
I.e. isq and ωs always have different signs. This means, that: 

 usd > 0, or usd and isd have the same sign, and 
 usq and isq have different signs. 

The above short analysis says, that: 
• In motor operation the component usd and 
• in generator operation the component usq 

will get priority. If the priority component already exceeds the value 
|us|max, so approx. 95% of |us|max shall be assigned to this component. 

 
Synchronous drive using PMSM 
The following relation will be arrived at for the synchronous drive in 

stationary operation similar to the case of the asynchronous drive: 
sd s sd s sq sq

p
sq s sq s sd sd

sd

u R i L i

u R i L i
L

=

= + +
    (5.79) 

or 
sd s sq sq

p
sq s sd sd

sd

u L i

u L i
L

+
     (5.80) 

In the two above equations, the term ( )sd p sdi L+ , in which the 

current isd assumes the value zero in the basic operation range and negative 
values only in the field weakening range, represents the substitute 
magnetization current with always positive values. The equation (5.80) can 
be interpreted now similarly to (5.78) of the IM so that the following 
conclusions can be drawn: 
• The product mM×ωs or isq×ωs is always positive in motor operation. isd is 

either zero or negative. This means, that: 
 usd < 0, or usd and isd have the same sign, and 
 usq and isq have the same sign. 

• The product mM×ωs or isq×ωs is always negative in generator operation. 
isd is either zero or negative. This means, that: 

 usd > 0, or usd and isd have different signs, and 
 usq and isq have different signs. 

The analysis has shown the clear difference between the IM and the 
PMSM: While in the motor operation with the IM the component usd shall 
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get the priority obviously, the priority must be assigned to none of the axis 
voltages in the case PMSM. 

The generator operation with PMSM seems to be more problematic than 
with IM because both couples usd , isd and usq , isq have different signs. Also 
this case can be realized exactly as for the IM: I.e. priority for usq. 
Amplification of |isd| for a short time after shortening |usd| only weakens the 
permanent magnetization which in turn would increase the control reserve, 
and the limitation would disappear. With these considerations a simple 
algorithm outlined in figure 5.23 can be worked out for both types of 
machines. 
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Fig. 5.23 Algorithm for voltage limitation by [Quang 1994] (index r: actually 
realized) 

c) Splitting strategy by [Dittrich 1998] 
The basic idea of this strategy is ensure decoupling between rotor flux 

and torque in large-signal behaviour. To achieve this, an intervention in 
form of a limitation should as much as possible only effect the voltage 
component, which has caused the maximum voltage vector to exceed its 
limit, and leave the other component uninfluenced. This concept presumes 
that such a separation of causes is actually possible and that the voltage 
vector can be reduced to its maximum value by reduction of one 
component only. The context is generally more complex and requires a 
detailed analysis, in particular, if the controlled system must be operated 
for longer time at the limit of the control variable. 

For splitting the voltage limitation after [Dittrich 1998] two questions 
must be answered: 



Treatment of the limitation of control variables      179 

1. Which component obtains the priority, i.e. which component must 
remain as unchanged as possible? 

2. Which value does the other component get? 
The algorithm which is found and realized eventually answers these 

questions as follows: 
 
Priority decision 
Stability considerations are decisive. If current and voltage have 

different signs in one axis, a limitation of the voltage leads to a temporarily 
unstable and uncontrollable behavior. If current and voltage signs are 
different in one axis, this axis must get the priority. If the signs are 
different in both axes, the axis with the larger current amplitude gets the 
priority, or the phase correct limitation (using equation (5.75)) is applied. 
Equal or different signs in the q axis are equivalent to motor or generator 
operation. 

 
Voltage in the non-priority axis 
Two cases have to be distinguished. If the priority component is smaller 

than the maximum voltage, i.e. the limitation was caused by the non-
priority component essentially, the non-priority component results simply 
from the geometric difference between the maximum voltage and the 
priority component. In the other case, the non-priority component is 
assigned the share from the cross-coupling of the current components to 
support the stationary decoupling of the current components also at control 
variable limitation. 

 
>

m axs su u  

( ) ( ) ( ) ( ) ( ){ }= <* * 1,5sd sd s sq sd ms ign u sign i s ign s ign i i i  

Yes No 
>

m ax
?sd su u  >

m ax
?sq su u  

Yes No Yes No 

( )
=

=
2 2
m ax

:

: .

         

sqr s s sd

sdr sd

s sqr

u L i

u s ign u

uu

 
( )=

2 2
m ax

: .

         

sqr sq

s sd

u s ign u

uu

 

( )
=

=

2 2
m ax

:

: .

         

sdr s s sq

sqr sq

s sdr

u L i

u s ign u

uu

 
( )=

2 2
m ax

: .

         

sdr sd

s sq

u s ign u

uu

 

Fig. 5.24 Algorithm for voltage limitation by [Dittrich 1998] 

The figure 5.24 shows the described algorithm in the overview. A 
similar approach was attended in [Wiesing 1994]. 
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5.5.2 Correction strategy at voltage limitation 

The basic idea of the reverse correction is a correction of the control 
error xw to prevent the windup-integration of the integral part which 
implicitly exists in the control algorithm. 

 
Fig. 5.25 Complete structure of the current vector controller with dead-beat-
behaviour 

To derive – the design in the chapter 5.3.1 serves as an example – the 
formula for the reverse correction, the equation (5.17) is re-written as 
follows: 

( ) ( ) ( )1 1sk k k= + + +y Hu h     (5.81) 
Assuming a largely constant rotor flux the following result will be 

obtained after substituting the equation (5.81) into (5.25): 
( ) ( ) ( ) ( )1 2 2s w w sk k k k= +Hu x x Hu   (5.82) 

Assumed that the voltage goes into the limitation in time instant (k), i.e. 
instead of the voltage us(k) to be realized only usr(k)  was realized, (5.82) 
turns into the equation (5.83). 

( ) ( ) ( ) ( )1 2 2sr wc w sk k k k= +Hu x x Hu   (5.83) 
 =  Con tr ol er r or s  cor r ected

  =  Voltage actually r ealized  after  lim ita tion
w c

sr

x
u

 

The subtraction of the equations (5.82) and (5.83) produces for the 
corrected deviation: 

( ) ( ) ( ) ( )1 1wc w s srk k k k=x x H u u    (5.84) 
Also the accumulated values y according to the equation (5.25) have to 

be corrected according to the equation (5.17) with the correct voltage 
values: 
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( ) ( ) ( )1 1k srk k k= + + +y Hu h     (5.85) 
The formulae for the reverse correction for the designs with FAT 

behavior or for the additional integral controllers of the state space design 
can also be derived similarly. The figure 5.25 exemplarily illustrates 
the design with dead beat behaviour. 

The implementation of the complete control algorithm in figure 5.25 is 
outlined by the program flowchart in figure 5.26. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.26 Program flowchart 
of the current vector 
controller with dead beat 
behaviour 
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6 Equivalent circuits and methods to determine 
the system parameters 

For the clear specification of the electromagnetic processes in 3-phase 
AC machines and as a starting point for control design, equivalent circuits 
which are based on the representation of the physical quantities as complex 
space vectors in a stator-fixed coordinate system will be a very useful tool. 
The underlying mathematics is strongly related to the complex calculations 
known from the AC technology. To abstract the physical operation of the 
machines, inductances and resistances are represented as concentrated 
components, and symmetrical conditions are assumed with regard to the 3-
phase windings. 

For the satisfactory function of a controller designed using equivalent 
circuits the parameters of the equivalent circuits must be known with 
sufficient accuracy. From modern drives it will be expected that they fulfill 
the projected quality parameters without special tuning to be carried out by 
the customer, and keep the parameters durably. Because frequency 
converters, particularly in small and medium power ranges, are offered in 
principle as separate units without motors, parameter pre-setting or 
measuring the used motor by means of classical methods (no-load or short 
circuit test) are not practicable. Therefore the second part of this chapter 
deals with possibilities of the automated computation of the electrical 
motor parameters. 

A first starting-point and also a base for start values of a more exact 
estimation will be provided by the name plate or by the rated data of the 
motor. For a more exact parameter setting off-line identification methods 
which provide estimated values of motor parameters during a test run in 
standstill are discussed. 
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6.1 Equivalent circuits with constant parameters 

6.1.1 Equivalent circuits of the IM 

6.1.1.1 T equivalent circuit 

The general voltage and flux-linkage equations in the stator-fixed 
coordinate system (cf. chapter 3) 

s s s sR
•

= +u i               (6.1) 

r r r r r
r r r r rR j

•
= +u i            (6.2) 

s s s m rL L= +i i              (6.3) 
r r r r r
r r r m sL L= +i i              (6.4) 

describe a transformer with an additional secondary (rotor-sided) 
voltage source as represented in figure 6.1. In this case the superscript r 
means that the so labelled parameters and quantities are related to the rotor 
side, and therefore correspond to the values measured at rotor terminals 
physically. Quantities without such index are related to the stator side. 

 

 
Fig. 6.1 Transformer-equivalent circuit of the induction machine 

The actual transformer symbol in the equivalent circuit marks an ideal 
transformer with the transfer ratio tr. This contains the turn ratio and 
winding factors, and can be expressed by the relationship between the no-
load nominal voltages. 

rN
r

sN

Ut
U

=                 (6.5) 
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Because the induction machine is fed normally from either the stator 
side or the rotor side, it is usual and useful to relate all electrical quantities 
to either the stator side or the rotor side. Subsequently, on principle, the 
stator side reference shall be used. For the transformation of the 
rotor quantities to the stator side the following relations are obtained by 
using the transfer ratio tr defined above: 
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                (6.7) 

For the current through the main inductance Lm (the magnetizing 
current iμ) can be written: 

s r= +i i i                (6.8) 
The reference to the stator side is primarily relevant for the treatment of 

the squirrel-cage IM ( 0r =u ) which shall be also the object of the further 
derivations. Because of the interchangeability of both approaches this does 
not represent any essential restriction of the generality. 

If the flux-linkage in (6.1), (6.2) is replaced by (6.3), (6.4), the equations 
of the stator and rotor voltage can be changed into the form: 

dd
d d

s
s s s s mR L L

t t
= + +

iiu i          (6.9) 

dd0
d d

r
r r r m rR L L j

t t
= + +

iii        (6.10) 

The mesh equations (6.9) und (6.10) describe the so called T equivalent 
circuit shown in the figure 6.2a. After the transition into the Laplace 
domain the following voltage equations will be obtained for the stationary 
operation ( ss j ): 

( )s s s s s s mR j L L= + +u i i i          (6.11) 
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( )0 r
r s r r m

R j L L
s

= + +i i i          (6.12) 

with the slip  ( )s ss =  , represented in the figure 6.2b. 
 

 
Fig. 6.2 T equivalent circuit of the induction machine: (a) non-stationary, (b) 
stationary 

With Rs, Lm, Lsσ , Lrσ and Rr the T equivalent circuit contains five 
parameters. The stator impedance, determinable by measuring stator 
quantities, contains on the other hand powers of the stator frequency from 
zero to three and is defined by four parameters (cf. the chapter 6.4.3). 
Therefore the T equivalent circuit is over-determined and not completely 
identifiable by measuring the stator quantities. For this reason Lrσ = Lsσ = 
Lσ is often assumed. However, for many tasks it is advisable to change to 
an equivalent circuit with a reduced parameter number. 

The two following representations achieve this by transformation of the 
leakage inductances into the stator or rotor mesh and by introduction of a 
total leakage inductance. At the same time this implies a redefinition of the 
cross or magnetizing current and of the main inductance with the 
consequence for these quantities losing their physical equivalent. As long 
as all parameters can be assumed constant and linear, this fact is of minor 
importance, though. Both new equivalent circuits are derived under the 
premise that in the case of the squirrel-cage IM no transformation of the 
stator quantities, measurable at the terminals, takes place. 

6.1.1.2 Inverse Γ equivalent circuit 

A modified equivalent circuit with the total leakage inductance in the 
stator mesh can be obtained by the introduction of a new cross current im: 

r r
m s r

m m

L
L L

= = +i i i             (6.13) 

After some transformations to eliminate the current iμ in equations (6.9), 
(6.10), and after the introduction of the leakage factor: 
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σ = −1
2L

L L
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s r

              (6.14) 

new voltage equations 
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which can be represented by the so called inverse-Γ-equivalent circuit 
(figure 6.3) are obtained. The newly introduced cross current im is 
according to (6.13) identical with the rotor ampere-turns. This explains 
why this equivalent circuit is particularly suitable for the treatment of rotor 
flux orientated control methods. For stationary operation a representation 
(figure 6.3b) which is equivalent to the figure 6.2b is here possible as well. 

 

 
Fig. 6.3 Inverse-Γ-equivalent circuit for the induction machine: (a) non-
stationary, (b) stationary 

6.1.1.3 Γ equivalent circuit 

To transform the leakage inductance into the rotor side a new cross 
current: 

s m
ms s r

s s

L
L L

= = +i i i             (6.17) 

is introduced analogously to the inverse Γ equivalent circuit. After 
substitution of iμ the equations of the Γ equivalent circuit represented in 
the non-stationary and stationary form in figure 6.4 will be obtained: 
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Also at this place equation (6.14) is valid for the leakage factor σ. The 
rotor quantities appear, analog to the inverse Γ equivalent circuit, in 
transformed form. 

As recognizable in the figure, the stator inductance now becomes the 
cross or magnetization inductance, and the stator flux linkage assumes the 
role of the main flux linkage. Therefore the Γ equivalent circuit is 
particularly suitable for the treatment of stator flux orientated control 
methods. 

 

 
Fig. 6.4 Γ equivalent circuit of the induction machine: (a) non-stationary, (b) 
stationary 

6.1.2 Equivalent circuits of the PMSM 
Due to the permanent magnet excited pole flux the relations here are 

very simple. To derive a common equivalent circuit for both longitudinal 
and traverse axes it will usually be accepted that the same inductance is 
valid for both. The following equation holds for the stator voltage: 

d
d

s
s s s s pR L j

t
= + +iu i           (6.20) 

With (6.20) the equivalent circuit represented in the figure 6.5 is 
obtained. 

 

 
Fig. 6.5 Equivalent circuit of the PMSM 
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6.2 Modelling of the nonlinearities of the IM 

For many control tasks the assumption of constant and state independent 
machine parameters represents a too rough approximation which leads to 
considerable deviations between model and reality at the examination of 
non-stationary operations. Therefore, the embedding of nonlinearities 
which are significant for different operating states into machine models 
and equivalent circuits shall be discussed in the following sections. 
Following the physical conditions, magnetic saturation, current 
displacement and iron losses are discussed in separate approaches and 
models. Symmetrical conditions and sinusoidal winding distribution are 
still presupposed. 

In mathematical sense nonlinear relations are indicated by the fact that 
the superposition principle is not valid. Therefore an isolated treatment of 
the nonlinearities is, strictly speaking, not permitted. With respect to an 
engineer-like analysis however, it is fundamentally important to find easily 
comprehensible and utilizable approaches also for nonlinear relations. In 
the case of the 3-phase AC machines it is advantageous that the most 
important nonlinearities are describable as state dependent parameters. 
Since different parameters are affected, or the variable parameters depend 
on different state variables, a separate treatment is justified additionally. 

6.2.1 Iron losses 
Losses in the iron appear in the form of eddy-current losses and 

hysteresis losses. Because the rotor frequency remains small compared 
with the stator frequency unless at very small speeds, the rotor iron losses 
generally can be neglected compared to the stator side ones. The hysteresis 
losses are produced by the flux reversal energy consumed due to the 
sinusoidal with time varying iron magnetization. They are therefore 
proportional to the area of the hysteresis loop (~ 2| | ) and to the number 
of flux reversals per time unit (~ωs) [Lunze 1978], [Philippow 1980]. The 
eddy-current losses are proportional to the square of the voltage 
(~ 2( | |)s ) induced in the iron and the effective electrical conductivity 
of the iron core lamellae. They significantly increase in converter fed 
motors because of the harmonic components in current and voltage. 

Modeling is made difficult because the effects of eddy-currents and 
hysteresis and from sinusoidal magnetization are overlapping in a not 
exactly determinable way, and generally different magnetic conditions 
occur in yoke and teeth. The hysteresis losses depend on the effective 
permeability and therefore on the instantaneous flux amplitude. They 
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disappear as soon as the area of the magnetic saturation is left (the upper 
field weakening area). 

The following, strongly idealized model following [Murata 1990] takes 
into account hysteresis and eddy-current parts by respectively constant 
factors khy and kw. Through consideration of the slip frequency ωr even 
operating states in which the slip frequency will have a significant 
magnitude compared to the stator frequency ωs are included: 

( ) ( ) 22 2
,

3
2v fe hy s r w s rp k k= + + +     (6.21) 

with: 
mL= i                (6.22) 

After separating the stator frequency and the slip ( )s ss = , and 
with the general equation for the iron losses 

( )2

,
3
2

s
v fe

fe
p

R
=             (6.23) 

an iron loss resistance Rfe as concentrated component describing the 
iron losses can be introduced: 

( ) ( )2

1

1 1
fe

hy
w

s

R k
k s s

=
+ + +

         (6.24) 

Because better usability in some circumstances the iron loss 
conductance Gfe = 1/Rfe is also used. A measured Rfe characteristics is 
represented exemplarily in the figure 6.6. The curves are the result of no-
load measurements at an inverter-fed and external driven motor so that the 
influence of the friction losses is eliminated. 

The iron loss power is dominated by the hysteresis losses rising nearly 
linearly in the basic speed range. With field weakening setting in, at first a 
strong drop can be observed because of the flux reduction. The eddy-
current losses dominate in the upper field-weakening area. In addition, the 
inverter dependent eddy-current losses decrease strongly at the maximum 
voltage (= less high-frequency voltage harmonics) so that different factors 
kw are used in constant flux area and constant voltage range. The 
corresponding diagrams calculated by least-square approximation and the 
model approach (6.24) are drawn in the figure 6.6 (dotted lines). It turns 
out that this simple approach with the above-mentioned modification 
describes the actual behavior quite well. 
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Fig. 6.6 Iron losses and iron loss resistance 

Further analysis of the Rfe-diagram in the figure 6.6 suggests, however, 
the possibility of using a yet more simplified model which only contains a 
linear relation between loss resistance and stator frequency: 

s
fe feN

sN
R R=              (6.25) 

For this model only one parameter, the loss resistance at nominal 
frequency, must be determined by measurement. 

 
Fig. 6.7 Extended inverse Γ equivalent circuit with iron losses 

A comfortable inclusion in the equation system of the IM will be 
obtained, if (as shown in the figure 6.7) the iron loss resistance in the 
inverse Γ equivalent circuit can be represented by a parallel resistance in 
the stator circuit [Schäfer 1989]. The necessary supplementation of the 
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equation system is immediately recognisable from the figure 6.7. The 
actual input voltage of the machine will now be formed by the inner 
voltage ui which drives the inner current ii. Following equations (6.15) and 
(6.16) the modified system is obtained to: 

d d(1 )
d d

i m
i s sL L

t t
= +i iu          (6.26) 

d0 (1 )
d

m
r m r ij T T

t
= + ii i          (6.27) 

i s s sR=u u i               (6.28) 

i
i s

feR
= ui i               (6.29) 

6.2.2 Current and field displacement 
With regard to current and field displacement effects it must be 

distinguished between effects caused by the fundamental of the current on 
one hand and by inverter dependent current harmonics on the other hand. 
The principle physical mechanism is the same in both cases. The current 
displacement leads to a frequency dependent increase of the resistance 
values, and the field displacement to a reduction of the leakage 
inductances. As a consequence the current harmonics produce higher 
losses. Because the harmonic spectrum of fast switching inverters with 
sine modulation is orders of magnitude above the fundamental wave, its 
significance for control related parameters remains small. The 
consequences of the fundamental dependent current displacement, 
however, must be investigated for the modeling of the machine. 

In stator windings of induction machines, fundamental wave dependent 
current displacement effects can usually be neglected since they are 
intentionally suppressed by a number of constructive measures. An 
exception would merely be the big machines with accordingly large 
winding diameters at high frequencies. For the bars of the rotor squirrel-
cage such a neglection is not possible from the outset because of the large 
bar heights and diameters, except for rotors with intentionally current 
displacement free construction. In the normal (stationary) operation current 
displacement effects do not play a considerable role, however, because of 
the low rotor frequency (slip). This turns different in special non-stationary 
operation modes with high slip frequencies, where the current 
displacement is used with purpose to increase the resistance, or if the input 
quantities are controlled differently to the normal operation. In a field-
orientated control system however, also at start-up extreme slip values will 
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not appear due to the current being controlled with defined amplitude and 
slip. 

 
Fig. 6.8 Extended equivalent circuit with current displacement in rotor 

A consideration of the resistance changes in the machine model is 
possible by an additional resistance Rsv being inserted in series to the rotor 
resistance in the rotor circuit (figure 6.8). The size of this resistance is a 
generally very unhandy function of material constants, construction data 
and the rotor frequency. The following equation can be learned from [Vogt 
1986] for a rectangular deep-bar rotor with the height hl: 

sinh 2 sin 2
cosh 2 cos2

r sv
r

r

R Rk
R
+ += =        (6.30) 

There β is a normalized height of the conductor and is calculated by: 
1

02l rh=              (6.31) 

μ0  Absolute permeability 
κ  Conductivity of rotor bars 

Because the height of rotor bars is often designed over-critically (rotor 
with current displacement), hl assumes values of up to about 70 mm. 
Following [Vogt 1986] this corresponds to a machine with a rated power 
of about 2 MW. Therefore it is not possible to come up with a uniform 
approximation for kr for the complete interesting parameter range of β. 
The following variants for approximation approaches can be derived: 

For β  > 2 there will be sinhβ  >> sinβ, coshβ  >> cosβ and sinhβ   
coshβ, and therefore holds: 

rk                 (6.32) 
For β  2, kr can be obtained by series expansion of the transcendental 

function with a maximum relative fault of 0.036 to: 



196      Equivalent circuits and methods to determine the system parameters 

4

4

21
15
21
45

rk
+

+
              (6.33) 

A next approximation is possible for β  1 by partial division of (6.33): 
441

45rk +               (6.34) 

Besides the increase of the electrical resistance by current displacement, 
fast changes of the flux will cause a field displacement recognized by the 
reduction of the leakage inductance. Also here, noticeable effects appear 
only in rotors with current displacement because of the larger conductor 
height. A reduction factor k can be given in analogy to (6.30). Following 
[Vogt 1986] this factor can be written for square deep-bar rotors with the 
fictitious series inductance L  to: 

3(sinh 2 sin 2 )
2 (cosh 2 cos 2 )

v
x

L Lk
L

= =       (6.35) 

As above the following approximations can be derived. 
• For β > 2: 

3
2xk                 (6.36) 

• For 1 2< : 

4

4

21
105

21
45

xk
+

+
             (6.37) 

• For β ≤ 1 : 

481
315xk               (6.38) 

The equations (6.30) and (6.35) are represented in figure 6.9. For the 
better classification the normalized bar height β is additionally referred to 
the rotor frequency at different absolute bar heights. The computation was 
made for copper bars because these also have greater values β due to their 
greater conductivity compared with aluminum at the same frequency. 
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Fig. 6.9 Electrical resistance increase (___) and leakage inductance reduction 
(.....) due to current displacement in the rotor, parameter: bar height and rotor 
frequency 

For very big machines in the megawatt range β already reaches great 
values at rotor frequencies below 10 Hz, and kr and kx also become 
significant. Such machines have a small nominal slip of typical below one 
hertz, and will be less overloaded in dynamic operation, though. In low 
power drive systems, only three to four times the nominal slip will be 
applied in dynamic operation using field-orientated control. Thus β will 
not exceed values of 1.5 through the whole power range, and for motors in 
the medium and low power range there are values of β = 1 to be expected 
at maximum. Because the rotor leakage inductance only shares about one 
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half of the total leakage inductance, a special consideration of the 
inductance reduction can be abandoned in the model for field-orientated 
control. A consideration of the electrical resistance increase in the model 
for the field-orientated control is required only for machines above some 
hundred kilowatts rating. 

The existence of the flux weakening and resistance increase must be 
taken into account though at the estimation of parameter variations or for 
example to define suitable excitation signals for the parameter 
identification especially at higher frequencies (cf. section 6.4). 

The structure of the equations (6.30) and (6.35) is essentially correct 
also for usual bar cross-sections which differ from the rectangle form, 
though with other coefficients. Approximately the same relations hold for 
square bars with d = hl and for rods (diameter d). For wedge bars the value 
kr increases in the extreme case (ratio of the trapezium front sides of 1:10) 
at β = 2 by 50%. kx assumes more favourable values [Vogt 1986]. Thus 
the above statements remain also valid for these bar forms. 

6.2.3 Magnetic saturation 
At first the magnetic saturation has the consequence that the value of the 

inductances is a nonlinear function of the amplitude of the actual flux 
linkage. In addition, a general analysis of the saturated induction machine 
must take into account that the spatial distribution of the saturation 
depends on the current direction of the accompanying flux vector. This has 
the consequence that in the right-angled coordinate system the inductances 
assigned to the coordinate axes assume different values in the dynamic 
case, and mutual couplings appear [Vas 1990]. These depend on the sine 
of the angle between the main flux vector and the reference axis (real axis) 
of the used coordinate system. 

The main field saturation has essential significance for the dynamic 
behavior of the machine, primarily in the field weakening and at great 
torques. Its correct or reasonable approximated consideration shall be 
examined in the following. At first the leakage inductances are considered 
as constant. 

For a representation as generally as possible the machine equations are 
represented in the following in a right-angled coordinate system circulating 
with the angular velocity ωk. The main flux linkage 

mL= i                (6.39) 
is introduced into the general voltage equations of the induction 

machine (cf. section 3.2). With (6.39) the following voltage equations will 
be obtained: 



Modelling of the nonlinearities of the IM      199 

dd )
d d

s
s s s s k s s mR L j L L

t t
= + +iu i i i+ +(    (6.40) 
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d d
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s
r r s r

k r r s

R L
t t

j L L

= +

+

i i
u i i

i i

+
(

- (
     (6.41) 

The equations (6.40) and (6.41) are here still represented in an arbitrary 
orientated coordinate system and contain no restrictions regarding their 
validity at main field saturation. Following [Vas 1990] the next equation 
holds for the derivative of the main flux: 

d d
d d

x xy

xy y

M M

M Mt t
=

i
           (6.42) 

with: ' 2 2cos sinx m mM L L= +  
' 2 2sin cosy m mM L L= +  

'( )sin cosxy m mM L L=  

Thereby (| |)mL i  is the static and ' d| | d(| |)= | |
d| | d| |

m
m m

LL L= +i i
i i

 the 

differential main inductance, μ is the angle between the magnetizing 
current vector iμ and the real axis of the coordinate system. For the non-

saturated machine '
m mL L=  and 

d d
d dmL

t t
=

i
 hold. 

For the controller realization and also for a simulation of the saturated 
machine the correct representation of the flux derivation following (6.42) 
is quite unhandy. For the controller design primarily the rotor equation is 
important because the estimation equation of the rotor flux, required for 
field-orientated control, is derived from it. Therefore it would be desirable 
to maintain the rotor flux oriented description. 

A first simplification (without validity restriction or loss of precision) 
arises with representation of (6.40) and (6.41) in a coordinate system 
related to the main flux. If the axis of the main flux vector and the real axis 
(x-axis) are identical, it will be 0= , and the next equation can be 
obtained for the flux derivative: 

'd d(| |) 0
d d0 (| |)

m

m

L
t tL

=
ii

i
        (6.43) 

In addition, there are | | and 0x y= = . 
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Since obviously the flux derivative is the most problematic part of the 
mathematical model, it seems reasonable to look for a form of presentation 
which gets along without its explicit calculation. In addition, no derivative 
of a state variable must be connected with the main inductance. Such a 
model was developed in [Levi 1994]. The rotor current is replaced by the 
flux linkage in the rotor voltage equation: 

( )r ( )r
r k r r

r

Rj
L

•
= + +u      (6.44) 

The mutual flux can be calculated from: 
( )r r sL= i i            (6.45) 

with:  
(| |)mL

=i  

It shall be remarked that this model also does not contain any 
restrictions regarding the saturation and is neutrally formulated with 
respect to coordinates. The calculation of a differential inductance is not 
required. As opposed to (6.41), the equation (6.45) contains with 

( (| |))mf L=  an algebraic loop which can cause oscillations and 
limit cycles depending on the sampling period or on the integration steps 
in the realization. 

A third model can be obtained after trying to introduce the saturation 
into the rotor equation immediately without further substitutions. This 
means, though, that the saturation is coupled to the rotor flux instead to the 
main flux, what does not correspond to the physical conditions correctly. 
The error can, however, be acceptable for many applications because the 
leakage flux on the rotor side will always remain small compared to the 
main flux. In any case this variant has the advantage to provide the 
simplest and clearest model. A possibility for its derivation immediately 
arises from the equivalent circuit in figure 6.3a. After substitution of the 
rotor current and division by the leakage factor (1 ) , which shall be 
assumed as saturation invariant, the following equation for the rotor mesh 
can be obtained after transition into the coordinate system circulating with 
ωk: 

( )d( )( )
d
s m

r r m s k s m
LR j L

t
= + +iu i i i     (6.46) 

After dissolving the derivative, the rotor equation can finally be written 
in a detailed notation: 
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In the same way the stator voltage equation can be obtained for an 
assumed constant leakage inductance: 
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  (6.48) 

The modified system matrix of the continuous state-space representation 
finally can be derived from (6.47) and (6.48). It reads in complex notation 
with the abbreviations ( )s m mL L L= +i  and ( )' '

s m mL L L= +i : 

( )

( )' ' '

1 1
k r s

s

sr r
k

s s s

j R j L
T L

LR R j
L L L

=A       (6.49) 

with:  
( )1

s

s r

LT
R R

=
+

 

At first the model (6.47) yields the rotor-side magnetizing current im. 
The rotor flux linkage can be calculated from r m mL= i . For this 
calculation the main inductance has to be used depending on the 
magnetizing current iμ. With (6.8) and (6.4) its amplitude can be derived in 
the rotor flux orientated coordinate system (im = imd, imq = 0): 

2 2
mr r

sd md sq
r r r

LL Li i i
L L L

= + +i       (6.50) 

For the stationary case the following result arises: 
2

2 r
md sq

r

Li i
L

= +i            (6.51) 

The knowledge of the magnetization characteristic, either in the form  

μ = f(iμ) or its inverse form iμ = g( μ), is required for all saturation 
dependent models. Thereby the use of a closed representation is advisable, 
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because this can more simply be implemented in the model and 
simultaneously allows the calculation of the differential inductance 
without difficulties from the measurement of the stationary characteristic. 
In the literature different approaches can be found, which are based on 
exponential or power functions and differ from each other in the number of 
contained parameters. Polynomial approaches are also used. Exponential 
and power functions have the advantage to provide good models even at 
strong saturation. Two power functions, which are built on each other, 
shall be examined and compared in the following. They are based on a 
approach introduced by [de Jong 1980] and further developed by [Klaes 
1992]. 

The main inductance is understood as a parallel circuit of a constant air-
gap inductance L0 (it corresponds to the main inductance in the linear 
range) and a saturation dependent part which is a power function of the 
obtained main flux or magnetizing current: 

1

0

1( ) ;
1m s

sat

i
L

i
L L

= =
+

          (6.52) 

With measured values 0 1 2 2(0), (1), ( )m m mL L L L L L= = =  the 
remaining parameters are obtained as follows: 

2 0

1 0
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L L
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L s

L L

= =        (6.53) 

An extended approach takes into account, that the main inductance 
converges towards a fixed final value and not towards zero for large flux 
amplitudes, as it would result from the estimation function (6.52). This is 
considered by the addition of a limit inductance L∞ into (6.52): 
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1m s

sat

L L

L L L

= +
+

         (6.54) 

For the calculation of the coefficients however, no explicit solution can 
be derived. With the additional measurement 3 3( )mL L=  the saturation 
parameter s arises from the iterative solution of the following equation: 

1
2 3 1 0 2 1 0 3

31

2 3 1 0 2

( )( ) ( )( )
0

( )( )

s

s L L L L L L L L

L L L L

+
=  (6.55) 
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For the remaining parameters the next equations hold: 

1
3 1 0 1 0 3

3
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1 0 0 3

3
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L L L L L L
L

L L L L

+
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       (6.56) 

2 32 3

1 1 1 1
s s

satL L L L L
=        (6.57) 

The estimates are represented together with the characteristic for the 
differential main inductance for an 11kW motor in figure 6.10. The 
differential main inductance can be calculated for the three-parameter 
approach from: 

' d ( )( ) ( ) 1
d

s m
m m

sat

LL L s
i L

= =       (6.58) 

and for the four-parameter approach from: 
2

' ( ( ) )( ) ( ) s m
m m

sat

L LL L s
L

=        (6.59) 

 

 

Fig. 6.10 Saturation calculation functions ( ) ( ) ( )', ,m m mL i L i L  for 11kW 

motor. (----): three-parameter model; (–––): four-parameter model 

The measurements of the static inductance are visibly better 
approximated by the four-parameter approach. Apart from the area of 
extreme saturation, which practically plays not a role, this also applies to 
the differential inductance. It must be taken into account that the 
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"measured values" of the differential inductance only were won by linear 
approximation from the static measurements, though. 

The saturation of the leakage paths is the reason that the leakage 
inductances generally are functions of the current flowing through them. A 
general relation like for the main inductance however, can not be derived 
because it depends strongly on constructive influences according to the 
composition of the leakage field (slot leakage, tooth head leakage, winding 
head leakage, helical leakage). At the same time it is possible that almost 
no current dependency of the leakage inductance can be found for many 
motors in the complete current range. For this reason, a separate 
consideration in the model is abandoned. If required, a feed-forward 
adaptation ( )sL f= i  must be implemented. 

6.2.4 Transient parameters 
When discussing the current displacement effects it already became 

obvious that inductances and resistances of the induction machine 
generally have to be considered frequency dependent. Equivalent circuits 
can be developed with concentrated parameters which, however, have to 
be specified according to the operating point of interest and to the 
operation frequency. In an inverter-fed drive the highest frequencies 
practically appearing are determined by the switching slopes of the 
inverter. These have an effect on the effective leakage inductance of 
the motor which determines together with the voltage amplitude the 
current rise time. The effective leakage inductance is to be expected 
considerably smaller than the stationary leakage inductance σLs and will 
be called in the following as the transient leakage inductance σLs

' . At the 
same time it is the only parameter which must especially be defined in the 
practical controller design for transient operations. 

6.3 Parameter estimation from name plate data 

Lacking detailed and often not obtainable motor data sheets, the name 
plate of the motor represents the first and only information source for 
conclusions on the electrical parameters. For standard drives without high 
dynamic demands on the motor usage, usually it fully suffices to calculate 
the motor parameters from the name plate data. However, deviations from 
50% to 100% depending on the parameter in question have to be taken into 
account, because: 
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• the manufacturer's information may be partly unreliable, and the actual 
motor parameters are subject to spreads, 

• the name plate data refer to a certain working point (the nominal 
working point), 

• not all parameters of the equivalent circuit can be directly set into a 
physical relation to the usual name plate data. 
The procedure becomes impossible at the use of special machines with 

values differing from standard machines considerably. Understandably, the 
calculation of the inductance saturation characteristic has to be excluded. 

The usual name plate data are: 
• Nominal power PN [kW] 
• (Line-to-line) nominal voltage UN [V] 
• Nominal current IN [A] 
• Nominal frequency fN [Hz] 
• Nominal speed nN [rpm] 
• (Nominal) power factor cosϕ  

Because the last information is not available in many cases, calculation 
equations are derived in the following without and with cosϕ . In the 
case PMSM, the following data are usually given by the name plate: 
• (Line-to-line) nominal voltage UN [V / 1000 rpm] 
• Nominal current IN [A] 
• Nominal frequency fN [Hz] 
• Maximum speed nmax [rpm] 
• Nominal torque mN [Nm] 

6.3.1 Calculation for IM with power factor cosϕ 
The method starts out from the equation of the IM in the stationary 

operation (cf. [Quang 1996]). 

( )1 r
s s s s s s s s

m

s s s s s g

R j L j L
L

R j L

= + +

= + +

u i i

i i e
     (6.60) 

The parameters are approximately calculated for the nominal working 
point in the following steps: 

1. Calculation of the field-forming current component isd: 
(1) Nominal power of the motor:  

(2) Amplitude of the nominal current: 

(3) Impedance of one phase:    

3 cosN Phase PhaseP U I  

2 2
2N sdN sqNNI I I I

N Phase PhaseZ U I  
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(4) Approximate rotor resistance:  

(5) Nominal power of the motor:  

(6) From (4), (5) is obtained:    

(7) Inserting (1) into (6):     

(8) Inserting (7) into (2):      

The following approximate formula can be derived from (8): 
2 1 cossdN NI I            (6.61) 

 
Fig. 6.11 Vector diagram of the IM in the stationary operation 

In the step (5) the losses in the stator resistance were neglected without 
great loss of precision for the calculation of the power PN. 
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2. Calculation of the torque-forming current component isq 
222sqN sdNNI I I             (6.62) 

3. Calculation of ωr 

2
60
p N

rN N
z n

f=            (6.63) 

4. Calculation of the rotor time constant Tr 
sqN

r
sdNrN

IT
I

=               (6.64) 

5. Calculation of the leakage reactance s sX L=  
The voltage drop over the stator resistance is neglected, which is 

justified for the nominal working point, compared to the voltage drop over 
the leakage inductance in the vector diagram in the figure 6.11. The 
simplified vector diagram of the figure 6.12 can be obtained then. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6.12 Simplified vector diagram 
for calculation of Xσ 

 
Using the figure 6.12 the following calculation steps can be used: 

(1) Amplitude of the nominal phase voltage: 

(2) Relations between α, sdNI  and sqNI : 

(3) Relation between α, γ and ϕ:    

(4) Calculation of sinγ:      

2
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N
N

U
U  

sin ;cossqN sdN

N N

I I
I I

 

090  

0sin sin 90

sin sin cos cos
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(5) Inserting (2) into (4):      =s in s in cossqN sdN

N N

I I
I I

 

(6) From fig. 6.12 it will be obtained:  s in N

sqN

UX
I

 

(7) Inserting (5) into (6):      s in cos sdN N

sqN N

I UX
I I

 

With these results the formula for the calculation of Xσ is obtained: 

sin cos
3

sdN N

sqN N

UIX
II

        (6.65) 

6. Calculation of the main reactance Xh: 
The main reactance ( )1h s s s sX L L=  is the reactance of the 

EMF eg. In the case isq = 0, i.e. no-load, the calculation equation is 
approximately obtained from the figure 6.12: 

2
3

N N
h

sdN sdN

UUX X X
I I

=         (6.66) 

7. Calculation of the stator resistance Rs: 
(1) It is assumed approximately:    s rR R  

(2) Calculation of the EMF amplitude:  
( )

= ˆ ˆˆ
2

r
h sdN sqN

rN N

RX I I
fge  

The definite formula then looks as follows: 

2
sdNrN

s r h
sqNN

IR R X
f I

          (6.67) 

8. Calculation of the total leakage factor σ: 

h

X
X

                (6.68) 

9. Calculation of the stator-side time constant Ts: 

2
= s h

s
s N s

L XT
R f R

            (6.69) 

The given calculation with using cosϕ was tested successfully in the 
practice and is not subject to any restriction regarding motor power. 

6.3.2 Calculation for IM without power factor cosϕ 

Reference model is the inverse Γ equivalent circuit of the IM. All 
formulae are valid for motors with a nominal power of greater than 0.7kW. 
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The total leakage reactance determines fundamentally the short circuit 
behaviour of the motor or the current amplitude at nominal frequency at 
turn-on to the stiff grid. For standard motors the turn-on current 
maximum is 4 to 7 times the nominal current. Empirical values show that 
the most correct values for the leakage inductance σLs will be obtained, 
if the 5 to 6-fold nominal current is used: 

5.5 3
N

s
N N

UL
I

            (6.70) 

For the transient leakage inductance a value of about 0.8σLs can be 
started with. 

The stator reactance is responsible for the current consumption of the 
no-load machine. This depends for comparable power ratings strongly on 
the magnetic utilization of the machine, thus on the nominal working point 
regarding the magnetic saturation, and therefore it can be subject to 
considerable variations for different manufacturers. Without using the 
power factor we can start out from the approximate rule that the nominal 
no-load current I0 is about half of the nominal current at small power (until 
7.5kW) and tends above this power towards to a good third of the nominal 
current. The following formula represents this empirical value: 
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+NI AI               (6.71) 
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              (6.72) 

No physical relations can be given for the calculation of the stator 
resistance from the nominal data. We are here completely dependent on 
empirical values with the unavoidable uncertainties. The following 
formula provides usable results: 
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             (6.73) 

The rotor resistance provides the physically best access. The stationary 
slip equation in field-orientated coordinates 

= sq
r

sd r

I
I T

                  

can be re-written for the nominal working point and I Isd ≈ 0  and 
solved to Rr: 
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          (6.74) 

The stator inductance and the no-load current can be taken from 
equations (6.71) and (6.72). 

6.3.3 Parameter estimation from name plate of PMSM 
Starting point for this is the stator voltage equation (cf. [Quang 1996]) 

in the stationary operation. 
= + +

= + +
s s s s s s s p

s s s s s g

R j L j

R j L

u i i

i i e
         (6.75) 

At the nominal working point and in stationary operation the stator 
current is only contains the torque-forming component. This fact is 
represented by the stationary vector diagram in the figure 6.13. 

 
 
 
 
 
 
 
 
 
 

Fig. 6.13 Simplified vector 
diagram of the PMSM in 
stationary operation 

1. Calculation of pole flux ψp: 
(1) Calculation of torque-forming current:    ˆ ˆ 2sqN N NI I I= =  

(2) Nominal torque using equation (3.63):    3 ˆ
2N p p sqNm z I=  

(3) Inserting (1) into (2) it will be obtained:   2
3 2

N
p

p N

m
z I

=  

2. Calculation of stator inductance Ls: The voltage drop over Rs is 
neglected. The next steps follow from figure 6.13: 
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(1) Amplitude of nominal voltage:      ˆ 2
3
N

N N
UU n=  

(2) Amplitude of EMF:         ˆ 2g N pf=e  

(3) After substituting p the stator inductance Ls is given to: 
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e

             (6.76) 

6.4 Automatic parameter estimation for IM in standstill 

6.4.1 Pre-considerations 
For the complete description of the IM four parameters are required 

with a constant parameter model. If the inverse Γ equivalent circuit (cf. fig. 
6.3) is chosen as the reference model, the four parameters are then the 
stator resistance Rs, the rotor resistance Rr, the total leakage inductance 
σLs and the stator inductance Ls. The constant parameter model in its 
precision does not suffice for the synthesis of advanced algorithms, 
however. At least the inclusion of the saturation characteristics of the 
inductances is required. Because of the different saturation functions for 
main and leakage paths a division of the model inductance parameters into 
leakage inductance σLs or Lσ and main inductance Lm can be made. 

For a current controlled drive the slip is limited also in non-stationary 
states to values which not yet necessitate a consideration of the current 
displacement in the rotor for the modelling. Harmonic caused current 
displacement effects also shall be neglected for the modelling in 
accordance with the presumptions made (inverter-fed operation at high 
switching frequency). An exception for the consideration of frequency 
dependencies is the leakage inductance. Depending on the excitation 
frequency it has to be distinguished between different inductance values. 
This means in particular that a transient leakage inductance σLs

' for the 
current controller design and a stationary (fundamental wave) leakage 
inductance σLs for the stator-frequent operation have to be estimated. 

The consideration of the iron losses is not avoidable (cf. chapter 7 and 
8) for some special tasks. Their identification is practically only possible 
with the no-load test in a classical way, however, and shall not be 
discussed more in-depth. 
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Furthermore, from practical considerations for a useful incorporation of 
the off-line adaptation into the technological regime of an inverter-fed 
drive some conditions, which fundamentally narrow down the choice of 
possible methods, have to be formulated: 

1. If possible, no demands or prerequisites on the part of the 
identification algorithms should be made to technological conditions 
of the drive. This is the case if the identification runs at standstill 
and does not need a speed feedback. 

2. The safety of the methods and their transferability onto different 
drive configurations increase if algorithms which run in the closed 
current control loop are used. 

 
Fig. 6.14 Principle structure of the off-line parameter identification 

Regardless that the frequency dependencies are not considered in the 
model except for the exception mentioned above, the choice of the 
identification methods has to take into account that such dependencies 
exist. Thus the test signal frequencies used by the identification should, on 
one hand, be located in the same range as the frequencies at which the 
models are operated later. On the other hand the test frequencies have to be 
selected for current displacement effects not invalidating the identified 
parameters. For this reason methods with predefined appropriately 
selected excitation frequencies will be preferred for the concrete 
identification methods in the following sections. The parameter estimation 
is essentially accomplished by evaluation of the frequency responses of 
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current and voltage. The identification shall be implemented without 
voltage measuring sensors, and the voltage has to be estimated from the 
control signals of the inverter. 

For the decoupled identification of the parameters, a further criterion for 
the choice of the excitation frequencies results from the consideration, if 
possible, not to influence the identification of one parameter by inaccurate 
other parameters. This suggests to optimize the excitation frequencies by 
evaluation of sensitivity functions. 

The test signals for the parameter identification are produced by 
frequency inverters. These have a non-linear current-voltage characteristic 
because of the effects of blanking time, switching delays and voltage drops 
over the semiconductor switch primarily at small voltages. Just in this 
voltage area the parameter estimation takes place because of ω = 0. 
Therefore, the current-voltage characteristic of the inverter must be 
considered in the model, and also identified for a generally usable 
identification algorithm. Because of the abandonment of voltage 
measuring sensors this measure is also imperative for an adequately exact 
voltage feedback. 

The corresponding principle structure of the off-line parameter 
identification is shown in the figure 6.14. 

6.4.2 Current-voltage characteristics of the inverter, stator 
resistance and transient leakage inductance 

As indicated already, a great importance for the precision of the 
parameter identification for inverter feeding and abandonment of special 
measuring sensors relies on the voltage capturing. Blanking times and non-
linear current-dependent inverter voltage drops have to be considered as 
error sources which have an effect in particular at small voltages and 
around current zero crossings. The suppression of their effects on the 
parameter identification is taken care of in two ways: Firstly by an 
appropriate choice of the excitation signals, and secondly by embedding 
the inverter characteristics into the motor model. 

Suitable excitation signals are discussed in the context of the individual 
identification methods specifically. The stator voltage equation is amended 
by an additional current-dependent term to consider the inverter voltage 
drops uz(is) in the motor model and looks in the stationary case with ω = ωs 
= 0 as follows: 

( ) ( )= +s s z s s su i u i R i             (6.77) 
At first the measurement of the complete characteristic us(is) is carried 

out point wise by impression of DC currents. It has qualitatively the 
appearance of the dotted curve in figure 6.15. Because of a possible 



214      Equivalent circuits and methods to determine the system parameters 

unbalance of the motor an averaging of the measurements from single tests 
of the three phases is advisable. Assuming that the voltage increase at high 
currents is only determined by the linear portions of the voltage drop, the 
stator resistance can be calculated from the ascent of the current-voltage 
curve at high current: 

1 2

1 2
= s s

s
s s

u uR
i i

              (6.78) 

The then known linear term is now eliminated from (6.77), and the non-
linear characteristic remains. For the non-linear inverter voltage drop uz(is) 
different approaches with constant and/or exponential sections have been 
proposed in the literature (cf. [Baumann 1997], [Rasmussen 1995], [Ruff 
1994]). To avoid the on-line evaluation of exponential functions, a 
piecewise-linear approximation also can be carried out. A characteristic 
which also is represented qualitatively in figure 6.15 (solid line) is 
obtained. 

 

 
Fig. 6.15 Inverter current-voltage characteristic 

The actual compensation is made by a sign and phase correct addition to 
the voltage reference values, similarly like described in section 2.3.3 for 
the protection time compensation. With ( )zu z suu u i= , ( )zv z svu u i=  and 

( )zw z swu u i=  the following voltage components are obtained in stator-
fixed coordinates: 
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( )
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u u u u

u u u
          (6.79) 

To measure the transient leakage inductance a short voltage impulse is 
applied to the stator winding, and the current gradient is measured. Since 
the time needed for this test pulse is very short, and the process is barely 
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noticeable, this measurement can be carried out also outside a special 
identification run. The leakage inductance arises from: 

' = s
s

s

u tL
i

               (6.80) 

For an appropriate width of the voltage pulse and measurement over the 
complete current slope a good average inductance value will be obtained. 

6.4.3 Identification of inductances and rotor resistance with 
frequency response methods 

6.4.3.1 Basics and application for the identification of rotor 
resistance and leakage inductance 

By impressing a sinusoidal current into the stator all desired motor 
parameters can theoretically be identified by measuring the waveforms of 
currents and voltages and subsequent frequency response analysis. 
However, before applying this method some preceding considerations are 
necessary which follow up the preliminary remarks and determine the 
most suitable environment. 

The demand for an identification at standstill, and therefore the demand 
that no torque must be developed, can be fulfilled by a single-phase 
excitation. 

The estimation of the stator impedance requires an exact acquisition of 
the current and voltage fundamental waves. The compensation of the 
inverter nonlinearities is decisive for the quality of the identification 
results because of the low voltage amplitudes at standstill (cf. section 
6.4.2). Furthermore [Bünte 1995] worked out, that the remaining error 
only has an effect on the real part of the measured impedance, if the 
impressed current is sinusoidal. The latter is achieved if the identification 
is performed in the closed current control loop. Furthermore the current 
should, if possible, be free of zero crossings because the largest deviations 
from the sinusoidal form arise in the zero crossings. 

A zero crossing free current can be produced by overlaying the sinus 
reference with a direct current component. This component is reasonably 
chosen close to the nominal magnetization. This corresponds to a direct 
current pre-magnetization, and a main field excitation alternating 
permanently around the working point is produced by the single-phase 
sinusoidal excitation. Therefore the derivation of the transfer function has 
to start out from equations of the saturated machine (6.40), (6.41) and 
(6.43). Because of ω = 0 these equations are simplified to a great deal. In 
addition, the excitation only takes place in the α axis so that the dimension 
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of the equation system is reduced to one. Under these prerequisites the 
following transfer function between stator voltage and stator current can be 
derived by elimination of iμ ( s = Laplace operator): 
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In the steady-state operating condition ( s ej , ωe ... excitation 
frequency) the equation (6.81) can be written as a complex impedance: 
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 (6.83) 
Under special conditions for the excitation frequency the formula (6.83) 

could further be simplified. For example, with ( )2 1>>e rT  it can be 
written: 

Z R R j Ls s r e s≈ + − +(1 )σ ω σ         (6.84) 
This equation would be very comfortable for the calculation of the rotor 

resistance and leakage inductance. The excitation frequency should be 
within the range of at least 25 Hz, though. Here the current 
displacement effects in the rotor already have a considerable magnitude 
and markedly distort the estimated value of the rotor resistance. Under 
certain assumptions these effects could be taken into account by an 
additional approach. The safe way, if more than the leakage inductance 
shall be identified, consists, however, in the evaluation of the complete 
equation (6.81). 

For the estimation of the four parameters of (6.81) current and voltage 
values have to be captured after achieving the steady-state operating 
condition over at least one period of the fundamental wave at two 
excitation frequencies ωe1 and ωe2. Harmonics are conveniently 
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suppressed by discrete Fourier transformation of the measurement values. 
Two complex resistance values are the result: 
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The coefficients of (6.81) can be calculated as follows: 
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Solving to the actual machine parameters is elementary. The obtained 
value for the differential main inductance Lm

', however, is not immediately 
usable because only a small area of the hysteresis curve is passed through 
at every direct current working point and the gradient at this point does not 
or only at strong saturation coincide with the gradient of the actual 
magnetization characteristic. To identify the main inductance the 
frequency response method has to be adapted specifically (cf. section 
6.4.3.3). The value for b0 contains apart from the stator resistance the 
uncompensated inverter-caused voltage errors, and is therefore not 
representative as an estimate. 

For the determination of the current dependency of the leakage 
inductance (saturation characteristic) a separate series of measurements is 
required because the magnitude of the current must be varied without pre-
magnetization. Because of the zero crossing errors the received values 
differ a little from the leakage inductances found with DC offset. Because 
no general function for σLs can be given due to the different leakage 
saturation behavior, a linear approximation between the test points or a 
polynomial approximation may be used. 

6.4.3.2 Optimization of the excitation frequencies by sensitivity 
functions 

Depending on the excitation frequency, changes of a motor parameter 
effect the frequency-dependent complex impedance Zs in the equation 
(6.83) with different strength. This behavior can mathematically be 
described by the sensitivity function E(p) of the complex impedance Zs 
regarding a parameter p. For the separate investigation on the influence on 
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real and imaginary part of Zs, the sensitivity function is calculated one by 
one for real and imaginary part respectively: 
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After some transformations the following equations result: 
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For reasons which will be discussed in the next section, the sensitivity 
function of the real part regarding Lm is not of interest. For one example 
the sensitivity functions are represented in figure 6.16. The typical 
qualitative characteristic can be transferred and generalized to other motor 
power ratings. 

Values between 2 and 12 Hz prove to be suitable excitation frequencies 
for the identification of rotor resistance and leakage inductance. The 
frequencies are still low enough to neglect current displacement effects, on 
the other side however, adequately high to achieve a decoupling of the 
main inductance. Optimal values to estimate the main inductance are in the 
area from 0.1 to 0.4Hz. 
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An exact pre-computation of optimal excitation frequencies with the 
help of the sensitivity functions, however, is not possible because these in 
turn contain the parameters to be identified. But an iterative optimization 
of the excitation frequencies within several identification runs is 
possible, thereat no more than 2 - 3 iteration steps are generally required. 

 

 
Fig. 6.16 Sensitivity functions of a 3kW motor 

6.4.3.3 Peculiarities at estimation of main inductance and 
magnetization characteristic 

Also the main inductance can be identified by single-phase sinusoidal 
excitation like leakage inductance and rotor resistance. The hysteresis 
problem mentioned in the previous section can be solved by working 
without direct current offset. Because of the necessary lower excitation 
frequencies, zero crossing errors have a less strong effect. Because 
the voltage measuring errors primarily distort the real part of the measured 
impedance, only the imaginary part of (6.83) is used for evaluation. 
Because the imaginary part is mainly determined by the phase shift 
between current and voltage, this phase shift must be measured with 
sufficient accuracy which in turn sets a lower limit of approximately 0.1 
Hz for the excitation frequency. At this time Rr and Lσ are assumed as 
known parameters. 

Solving the equation (6.83) yields for the main inductance: 
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Because the stator current is divided between inductance branch and 
rotor, the exact magnetization current has to be calculated: 
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         (6.97) 

Different operating points on the magnetization characteristic are 
adjusted by different current amplitudes. It has to be taken into account 
that the identified main inductance is not identical with the effective main 
inductance at three-phase excitation. The reason is that the magnetizing 
current has constant amplitude at three-phase excitation, but changes 
sinusoidally at single-phase excitation. The amplitudes coincide for the 
two cases. The voltage at single-phase excitation is distorted due to 
saturation. The amplitude of its fundamental wave evaluated for the 
frequency response does therefore not represent the instantaneous 
maximum value of the magnetic field strength correctly. The described 
relations are qualitatively represented in the figure 6.17. 

 
 
 
 
 
 
 

Fig. 6.17 Single-phase and three-phase 
main inductance 

In [Klaes 1992] the difference between single-phase and three-phase 
inductance is compensated by a constant factor established heuristically 
which subsequently compresses the scale of the magnetizing current or 
flux axis. An interesting systematic solution was described in [Bünte 
1995]. It assumes that single-phase and three-phase inductance curves 
Lm1( I ) and Lm3(iμ) can be described by polynomials of the n-th degree in 
the following form: 
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The single-phase main inductance Lm1 is calculated for a sinusoidal 
magnetizing current ( ) sin= ei t I t  from the continuous Fourier 
coefficients of the fundamental of the magnetizing current, and the voltage 
drop over the main inductance uμ from: 
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Furthermore the following equation applies for the voltage over the 
main inductance: 
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After substituting, processing of integrals and comparison of 
coefficients the result is: 
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For the above mentioned second method of the adjustment of the 
characteristic by coordinate axis compression, power-dependent 
compression factors: 

3 1    mit   = = k
k k ki c i c b           (6.102) 

with values of ck = 0.85 ... 0.88 for a polynomial degree n = 3 can be 
derived. Thus this method also should provide a useable characteristic 
transformation. The polynomial approximation is obtained from the single 
measurements by applying least squares approximation (cf. section 12.3). 

6.4.4 Identification of the stator inductance with direct 

The basic concept of this method is derived from the fact that at 
impression of a direct current into the stator windings a part of the 
applied voltage is consumed by the stator resistance, the other part is used 
to build the stator flux. From the stator voltage equation: 

d
d

= + s
s s su R i

t
             (6.103) 

and after integration for the stationary state it follows: 
d d= +s s s s su t R i t L i            (6.104) 

Because the leakage inductance and the stator resistance are known 
from the previous measurement, the main inductance can be calculated 
from that theoretically without difficulty. Offset errors, stationary errors of 
the voltage measurement or an incorrectly estimated stator resistance can 
be eliminated, if the integral term on the right side of (6.104) is replaced 

current excitation 
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by the stator voltage in the steady state condition ( t→ ∞ ). In time-
discrete notation the computation equation of Ls with the sampling period 
T, the time step k and the total integration time NT is: 
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         (6.105) 

For the determination of the complete magnetization characteristic the 
identification is realized at different current levels. Because different 
single tests, particularly at small currents, partly show a considerable 
scattering of measurements, an averaging of the values from several tests 
is recommendable. The measurement should be carried out in all three 
windings to eliminate machine unbalances. 

The figure 6.18 shows finally some measurement results. The values for 
the stator inductance Ls from alternating current and direct current methods 
delivered by the identification are plotted together with the results of the 
no-load test. The consequences of voltage measuring errors are most 
distinctive particularly at small currents and simultaneously small voltage 
amplitudes. A very good correspondence to the no-load characteristic is 
shown in the area of high saturation. Altogether, the precision of both 
methods can be considered as sufficient for the purposes of the self-tuning. 

 

 
Fig. 6.18 Ls identification for a 5kW motor: no-load test (+), direct current 
method (o), alternating current method (×), solid line: four-parameter model from 
no-load measurements (regressed by polynomial of 3rd order) 
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7 On-line adaptation of the rotor time constant 
for IM drives 

A typical problem of the field-orientated control consists of the system 
having to evaluate the actual value of the rotor flux without flux sensors 
through a model from the measurable terminal quantities of the motor and 
the speed (cf. section 4.4). The often used current-speed model contains 
the rotor time constant of the motor as an essential parameter whose exact 
knowledge influences decisively the quality of the control. This fact and 
the working point dependence of this parameter motivate the introduction 
of special measures to primarily compensate the temperature dependence 
of the rotor resistance. To achieve this, two approaches are in principle 
conceivable: Either the rotor flux model can be completed by an on-line 
adaptation method which corrects the rotor resistance permanently, or the 
rotor flux is estimated by an observer which is insensitive against 
variations of the rotor resistance. The first approach is subject of this 
chapter. 

In the first section the range and effects of temperature-dependent 
changes of the rotor resistance on other characteristic quantities are 
examined. A summary of published compensation methods follows. 
Thereafter adaptation methods with a parametric error model are 
discussed in greater detail. Such on-line adaptation methods use error 
models for the tracking of the parameters which in turn contain at least 
another two machine parameters. Their precision therefore also influences 
the quality of the field  orientation. Thus these dependencies form a further 
main emphasis in the discussion besides adaptation dynamics and 
problems of the adaptation in the non-stationary operation. 

7.1 Motivation 

When using the is-ω flux model in field coordinates (cf. section 4.4) the 
amplitude and phase angle of the rotor flux linkage (model quantities 
indicated with ^) are: 
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Thus the rotor time constant Tr is obviously the decisive parameter for 
both dynamics and precision. Assuming an exact initial setting and the 
possibility of an exact modelling of the rotor inductance, the rotor 
resistance Rr remains as not predictably variable parameter. Considering 
the temperature coefficient and the possible change of the rotor 
temperature it can be shown that a resistance variation of about 50% has to 
be expected during operation. This undoubtedly causes a loss of quality in 
the system behaviour. The size of it and its tolerability or non-tolerability 
shall be examined in the following. The following criteria will be 
analyzed: 
• Stationary torque and flux deviation (or difference). 
• Linearity between torque and torque-producing quantity (the torque-

forming current component). 
• Dynamics of torque impression. 

A faulty rotor time constant generates according to (7.2) a flux phase 
error and thus a phase difference between model current and motor current 
in the consequence: 

,= =sj
s s ss sei i            (7.3) 

After solving into components, the equation (7.3) can be written as 
follows: 

cos sin

cos sin

=

= +

s ssd sqsd

s ssq sdsq

i i i

i i i
          (7.4) 

Because the speed is measured and the slip has to adjust to the existing 
load after dissipation of all transient processes, the slip values in the model 
and motor are identical in stationary operation, and therewith the next 
equation is valid according to (7.2): 

=sq sq

rsdsd r

i i
i T i T

              (7.5) 

Using (7.4) and (7.5) the phase error s  can be calculated as follows: 
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Fig. 7.1 Torque errors caused by inaccurate rotor resistance: a) without main 
field saturation; b) with main field saturation (____ sq sdi i= , ------ 2sq sdi i= , ....... 

3sq sdi i= ) 

With the help of the stationary torque equation: 
23

2
m
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relations can now be derived for the stationary torque and flux 
amplitude deviation. After some intermediate steps the following formulae 
will be obtained: 
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After inserting (7.4) and (7.6) into the torque equation (7.7), the torque 
characteristic ( )sqMm i  will be obtained assuming constant sdi : 
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The equation (7.8) is graphically represented with and without the 
consideration of the main field saturation in the figure 7.1 with the data of 
an 11kW standard motor. Without saturation the equation (7.8) does not 
contain any further machine parameters apart from the rotor time constant 
deviation and therefore describes a generally valid relation. With the 
consideration of the saturation there is also m mL L  for a wrong rotor 

time constant in the model because of i i . As shown in the figure, the 
saturation will have a weakening influence on the torque error at larger 
load. The reason is that the fraction in equation (7.8) and the terms before 
it describe contrary trends of the torque deviation. One of them 
predominates depending on the load, also an approximated compensation 
is possible, as in figure 7.1b for 2sq sdi i= . 

 

 
Fig. 7.2 a) Flux amplitude errors, b) Flux phase errors: by Rr deviation (with 
magnetic saturation); ____ sq sdi i= ; ------ 2sq sdi i= ; ....... 3sq sdi i=  

The size of the torque deviation is approximately half as large as the 
model resistance error at nominal operation and therefore actually 
remarkable. Whether a too small or too big model resistance represents the 
more critical case can be recognized in connection with the flux deviation. 
The corresponding characteristics using (7.9) and (7.6) are shown in figure 
7.2. 

For a speed controlled drive the motor torque to be produced will 
correspond to the load torque in any case. If the rotor flux is weakened by 
a wrong orientation, a higher current must be applied to achieve the 
demanded torque which can possibly exceed (at full load) the maximum 
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inverter current and then leads to premature breakdown or the drive not 
reaching its rated speed. According to figure 7.2a this is the case for a too 
big model resistance. With a too small model resistance, a flux increase 
will follow which at corresponding speed causes a premature approaching 
the voltage limit. It is possible that the reference speed can not be reached 
at nominal torque, and the error of the rotor time constant leads to a 
reduction of the available power. Because the drives are usually designed 
with a current reserve on the inverter side, but the voltage of the DC link 
cannot be increased beyond a certain limit, the second case (small model 
resistance) has to be classified as the more critical one. 

 

 
Fig. 7.3 M isqm ( )  characteristic: __ Rr rR= , --- 0 66Rr rR= . , .... 1 33Rr rR= .  

The depicted area of the Tr deviation is approximately within the 
temperature-dependent limits which can be practically expected, if with 
regard to the initial settings of Tr the following two cases are considered: 
On one hand an initial setting on the cold machine, in which case an 
increase of the rotor resistance by 50% has to be taken into account during 
operation; and on the other hand an initial setting on the medium-warm 
machine with an operation dependent resistance change of ±

For the pictures 7.1 and 7.2 three different load cases were analyzed in 
which the largest load approximately corresponds to the rated torque. 

For a speed-controlled drive without high dynamic and precision 
demands the appearing flux and torque errors are probably tolerable. A 

 25%. 
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superimposed speed control will compensate stationary torque errors. With 
adjustment on the warm machine an unintentional flux increase and power 
reduction will be avoided. However, depending on technical conditions 
and demands on the drive quality and on the intended optimization goals 
the expected errors could become too large and therefore no more 
acceptable. Such cases can be: 
• The current reserve of the inverter is so small (or there is no overrating 

at all) that a flux weakening caused by wrong orientation really leads to 
a prematurely reaching of the current limit. 

• An exact control of the state variables at variable rotor flux and in the 
field weakening becomes impossible. 

• Drives which require an exact torque impression cannot be designed 
without additional measures. This becomes clear also by the stationary 
characteristic sqMm i( )  in figure 7.3. 

• The recommended operation to avoid power reduction with a reduced 
flux automatically leads to an increase of the slip, and thus to a worse 
efficiency. 
 

 
Fig. 7.4 Dynamic torque impression at faulty adjustment of Tr 

The figure 7.4 shows the influence of a wrongly adjusted rotor time 
constant on the dynamic torque impression in the constant flux area. 
Because the rotor flux remains constant in the first instance after the 
reference step, the actual torque responds non-delayed in the first place as 
in the case of correctly adjusted parameters. The following settling process 
is determined by the transient of the rotor flux and is finished if the rotor 
flux also has reached its new stationary state. 
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Thus the consequences of a wrong adjustment are less serious in the 
dynamic case in the basic speed range. Altogether, the stationary torque 
and flux errors represent the more serious effects and ask for the search of 
compensation measures in high quality and highly utilized drives. 

A high-dynamic torque impression is not conceivable in the field 
weakening or at low voltage reserve without an exact machine model, 
though. These issues will be discussed in chapter 8 more thoroughly. 

7.2 Classification of adaptation methods 

Because of the significance of an online adaptation of the rotor time 
constant outlined in the previous section these problems are a standard 
topic of the pertinent technical literature with a mass of papers since the 
first publications about FOC. An overview is found in [Krishnan 1991] for 
example. 

 

 
Fig. 7.5 Systematization of the methods for online adaptation of the rotor time 
constant 

Because of the variety of different methods, only a certain group, 
namely the model methods with different kinds of error signals, shall be 
dealt with in detail subsequently. At first, a general survey will be worked 
out comprising a systematization and summaries of characteristic features 
to give to the reader a broader insight and the possibility to analyze the 
subject more deeply with the help of secondary literature. The figure 7.5 
only shows a rough classification. In this picture only adaptation methods 
which work without physical changes on the motor (additional windings or 
the like) are included. 
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a) Methods using additional signal injection 
The classic method in this group was published in [Gabriel 1982]. It 

uses the property of the rotor flux process to low-pass filter high-frequency 
disturbances in the flux forming current and therefore to keep the torque 
un-effected from such signals. But this is only valid in the case of exact 
field orientation, if the flux forming current does not directly contribute to 
torque production. If consequences of a high-frequency pseudo-noise 
signal injected on the flux forming current are provable in the torque (by 
correlation calculation), the field orientation is not exact and the noticed 
error can be used for the correction of the rotor time constant. A similar 
approach is used in [Nomura 1987]. A higher-frequency sine-wave signal, 
however, is fed into the d axis instead of the noise signal. 

In the method described in [Chai 1992] with spectrum analysis the 
supplementary signal is added to the reference value of the rotor flux. At 
the same time, flux and torque forming current components are controlled 
in such way that no disturbance of the torque takes place. The suitable 
choice of the harmonic frequencies to be evaluated in relation to the 
stationary stator frequency enables an on-line emulation of the classical 
short circuit and no-load tests using simple algebraic equations for the 
parameter calculation following digital Fourier transformation of the 
measurement values. The method was used for the online adaptation of 
resistances and leakage inductances. Because of the harmonics produced 
additionally by the saturation, an estimation of the main inductance is not 
possible. 

The method [Sng 1995] which was especially developed for extremely 
low speeds works similarly. A MRAS estimator for the rotor time constant 
is combined with an on-line estimation for resistances and leakage 
inductances which is excited by a high-frequency sine-wave signal. 

A method which uses harmonics produced by the inverter as excitation 
was finally published in [Gorter 1994]. These harmonics are in the range 
of 300....600Hz. The rotor resistance, the leakage and main inductances are 
online-identified using the RLS method. The required linear machine 
model was derived by transition into rotor coordinates and use of a stator 
current - stator flux model. 

 
b) Methods using models 
The methods of this group work according to the model reference 

principle. A physical quantity of the motor is calculated by two different 
and independent models, and an error signal is derived from the output 
signals of both models. This error signal works as a driving quantity of an 
adjusting controller which corrects on-line the rotor resistance, rotor time 
constant or other parameters as well. Of course, the designed error signal 
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must depend on the parameter to be estimated in a way which supports an 
unambiguous tracking. Input quantities of the models are measured 
terminal quantities of the machine, whereby a sub-model can immediately 
be identical with a measured quantity. In different ways stability 
considerations can be included, for example through an observer approach 
or by exploiting the theory of model reference adaptive systems (MRAS). 

The methods described in the literature differ from each other primarily 
by the choice of the physical quantity used for the calculation of the model 
error. Furthermore it can be distinguished between the linear and quadratic 
error signals. Linear error signals are formed from stator current 
components [Pfaff 1989], [Reitz 1988] (in this publication all parameters 
are adapted by an adaptation law designed according to the Gauß-Newton 
method), stator voltage [Dittrich 1994], [Rowan 1991], motor EMF 
[Ka mierkowski] or rotor flux [Ganji 1995]. Also the method described in 
[Fetz 1991], which works with a field-orientated open-loop current control 
and an adaptation signal derived from the output signal of a current by-
pass controller implicitly uses the stator voltage components as reference 
values. Estimated and measured stator current trajectories are compared in 
[Holtz 1991] to calculate all machine parameters and rotor current 
components by using a gradient method. 

Quadratic error signals can be derived from the amplitude [Rowan 
1991] or the phase angle [Schumacher 1983] of the stator voltage or the 
motor EMF, from the air gap power [Dolal 1987], the active and/or 
reactive power [Dittrich 1994], [Koyama 1986], [Summer 1991], [Summer 
1993], from the electrical torque [Lorenz 1990], [Rowan 1991], the 
magnitude of the stator flux [Krishnan 1986] or from especially designed 
signals [Vucosavi  1993], [Weidauer 1991]. 

 
c) Non-linear observers 
These estimators also could be assigned to the methods with additional 

signal injection as far as extended Kalman filters (EKF) are used for the 
parameter estimation, because here the harmonics produced by the pulse-
width modulated voltage are partly used as excitation signal [Zai 1987]. 
For the classification carried out at this place the observer approach shall 
play, however, the decisive role. 

Compared with simple model methods, an observer approach offers the 
possibility of predicting the dynamic behaviour of the adaptive system in 
certain limits, and of targeted adapting the feedback matrix. Furthermore, 
certain properties like the robustness of the system, can be influenced by 
the suitable choice of the feedback matrix. The parameter adaptation is a 
by-product to the actual task of the observer, the flux estimation. 
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When state observers are used for parameter estimation at the same 
time, non-linear or extended observers [Zeitz 1979] arise. A complete 
observer for the electrical quantities of the induction machine with 
inclusion of one parameter would have the order of five. Because the 
currents usually are being measured, the order of a reduced observer (flux 
and one parameter) is cut down to three, and the realization expenditure is 
substantially more favourable. The observer error essentially corresponds 
to the stator voltage component error model mentioned above. Observers 
of reduced order with parameter adaptation are described in [Dittrich 
1998], [Nilsen 1989], [Schrödl 1989]. 

As opposed to Luenberger observers, Kalman Filters (KF) or Extended 
Kalman Filters (EKF) take into account stochastic uncertainties of the 
system and measuring errors for a combined state and parameter 
estimation. As already mentioned they can also work with stochastic input 
signals. The realization effort is, however, considerable. Although the 
asynchronous machine represents a deterministic system, a number of 
papers have been published on the application of EKF [Atkinson 1991], 
[Loron 1993], [Pena 1993]. [Du 1993] is to mention as an interesting 
contribution on the topic of applying extended observers or EKF’s. 

 
d) Evaluation of special signals and machine states 
All methods which work without injection of an additional signal and 

can not be assigned to other groups shall be assigned here. So [Vogt 1985] 
evaluates the speed oscillations caused by torque vibrations from an 
inaccurately adjusted rotor time constant. The method described in [Hung 
1991] calculates the rotor flux and a correction signal for the rotor time 
constant from the third voltage harmonic caused by the magnetic 
saturation, and therefore independent of rotor parameters, this under the 
assumptions of an exact voltage measurement, operating the motor in the 
saturation and star-connection of the windings. 

An essential weakness of the methods with additional signals is 
certainly the influence on the normal operation which can really have a 
disturbing effect, even if the torque remains undisturbed as indicated in 
[Chai 1992]. The adaptation can be carried out only in the stationary 
operation; a general proof of stability is barely possible. Furthermore great 
care is required to ensure that only answers to the excitation signals are 
actually evaluated and no harmonics and disturbances caused by other 
influences (saturation, mechanical oscillation). On the other side, an 
identification of the rotor parameters is also possible in no-load operation 
[Chai 1992] with appropriate design of the excitation signal. 

This is fundamentally impossible for methods without additional signal. 
Furthermore it cannot be assumed that the signals appearing in the normal 
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operation have an adequate information content suitable to carry out a 
multi-parameter identification (what is not intended in the context of this 
chapter, though). Error models for the identification of the rotor time 
constant always contain other machine parameters which decisively 
influence the precision of the adaptation. On the other hand an adaptation 
is conceivable and theoretically also possible in the dynamic operation. 
The system behaviour including stability can be designed and assessed in 
an uniform approach, at least with certain limitations (e.g. partial 
linearization). 

7.3 Adaptation of the rotor resistance with model 
methods 

In this section some approaches from the group of the model methods 
shall be discussed in more detail, whereat for design and stability analysis 
principles of the nonlinear observer theory will be applied. Linear and 
quadratic fault models (reactive power) are included. The online 
adaptation is focused on the compensation of temperature variations and 
therefore on the rotor resistance. The state variable dependent main 
inductance is adjusted in feed-forward mode. If the adaptation is 
implemented primarily for the optimization of the stationary operation, an 
immediate tracking of the rotor time constant as a whole is also 
conceivable and sufficient. 

The observer is designed from a linearized process model based on a 
local approach of the system at small state errors. This approach is justified 
because a state observer is designed for the purpose to keep deviations 
minimal between observer and system state variables. Prerequisite is that 
the initial values of the observer states are chosen accordingly, i.e. close to 
the actual system states. 

All fault models contain besides the rotor resistance at least two further 
machine parameters whose precision fundamentally influences the 
adaptation error and with that the precision and stability of the adjustment. 
For this reason corresponding sensitivity studies will occupy a relatively 
wide room in the following considerations. 

In principle it is possible to implement the online adaptation like the 
flux model in arbitrary coordinate systems. But because the flux model 
was already established in the rotor flux orientated coordinate system, and 
thus the rotor flux is immediately available in this system, the adaptation 
methods are also designed in field-orientated coordinates. 
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7.3.1 Observer approach and system dynamics 
As already indicated, the adaptation algorithm shall be designed using 

the theory of non-linear observers. This approach has the substantial 
advantage that the adaptation dynamics and stability can be examined in a 
uniform design procedure. The design is carried out for a linearized system 
in quasi-stationary operation. The essential design prerequisites are: 
• The observer is designed exclusively for the rotor resistance, therefore 

being the only state quantity. 
• For the analysis of the observer dynamics the steady-state condition 

with regard to the rotor flux vector is assumed: 
, , consts sm sdm sd si i i i= = = =       (7.11) 

It has to be made sure for the functionality of this approach that the rotor 
resistance observer is assigned a sufficiently slow dynamics ensuring a 
dynamic decoupling to the remaining system. For the compensation of 
thermal resistance changes such a dynamics is completely sufficient. 

With these prerequisites, for the system state and output equations can 
be written (for clarity the current time step k is written as an index in the 
following equations): 
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Here y is the output vector, and u is the input vector of the system. 
The output equation represents the equation of the later error model. 
Therefore the distinction between input and output quantities has not to be 
understood in the strictly literal meaning. Both vectors are assumed multi-
dimensional in the general case. 

The observer for this system is formulated as extended Luenberger 
observer [Brodmann 1994], [Zeitz 1979]. It consists of a model of the 
system and a linear, but state variable and time dependent feedback of the 
output error (difference between model output and system output vector) 
to the observer state: 
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The equation (7.13) corresponds to a general adaptation approach with 
the adaptation fault 

( ),( , )r kk k kkR= k u y yT          (7.14) 

in the structure of the figure 7.6. For the following design procedure two 
tasks remain: 
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• Specification of a fault model – subject of section 7.3.2. 
• Design of the observer dynamics by determination of the weighting or 

feedback vector k. 
 

 
Fig. 7.6 Rotor resistance observer 

The dynamic analysis is carried out using the difference equation of the 
observer error: 

( ), 1 , 1 , ,, 1 ( , )r k r k r k r kr k k kkR R R R R+ + += = k u y yT  (7.15) 

If suitable starting values which already are close to the system state are 
chosen for the observer state, being the rotor resistance, the design can be 
performed by a local analysis following the linearization around the model 
state. Then the equation (7.15) can be written as follows: 
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From this a relation for the linearized output error can be derived by 
comparison with (7.13): 
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The actual design of the fault dynamics is carried out with help of the 
characteristic equation of the linearized fault system. This is in the z 
domain: 
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or with (7.17): 
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From this the coefficients of the feedback vector k can be calculated 
using the corresponding terms for the special error models. The most 
important design goals consist of achieving a time-invariant and system 
signal independent fault dynamics and of obtaining a stable transient 
response by specification of a constant eigenvalue z1. In addition, to satisfy 
the demand for adequately slow adaptation dynamics (dynamic decoupling 
to the remaining system) z1 should fulfil the equation: 

1
10 1
2 r

Tz
T

<              (7.20) 

For all simulation and test examples given subsequently the value of the 
upper limit was used respectively. 

Because the observer is designed in field-orientated coordinates, the 
coordinate transformation is an integral component of the model. 
Therewith actual input quantities are currents and voltages in stator-fixed 
coordinates. If the observer equations are formulated and designed 
nevertheless in field-orientated coordinates, it has to be taken into account 
that the transformation angle ϑs or the phase error s  is a function of the 
state error rR . All currents and voltages in field coordinates depend 
implicitly on rR . Therefore the equation for the linearized output error has 
to be extended to the complete error difference: 
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Here s  is given by (7.6) for the interesting stationary case. For the 
relation between the phase error and the rotor resistance, it follows then in 
linearized form: 
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Using 



Adaptation of the rotor resistance with model methods      239 

e sjf s
s s=i i                (7.23) 

the next equation will be obtained for the derivative of the stator vector 
in field coordinates with respect to the phase angle: 
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Analogously the following equation is valid for the stator voltage: 
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7.3.2 Fault models 
The stator voltage equations provide the first approach for the derivation 

of the output equation and in due course for the observer fault. In addition, 
the active and reactive power balance were chosen as an example for 
quadratic fault models. The reason for this special choice consists in the 
fact that characteristic model parameter constellations, which allow 
representative statements also for other methods, are produced in the 
context of these methods. These relations will be more exactly examined 
in the next section. At first the fault models shall be assembled, and the 
associated feedback coefficients shall be derived. The magnetic saturation 
remains so far unconsidered, and linear magnetic conditions or a constant 
rotor flux are assumed. If the saturation of the main inductance shall be 
taken into account for the adaptation in the field weakening area or for 
rotor flux transients, the corresponding relations from section 6.2.3 have to 
be used for the derivation of model equations. 

7.3.2.1 Stator voltage models 

In this case the system output equations can be derived immediately 
from the time-discrete stator voltage equation of the IM in field-orientated 
coordinates. To avoid the flux derivation it is started from the state 
equation with Euler discretization (cf. chapter 3): 
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Models which use voltage equations in d or q axis or as a combination 
of both components are practicable. 
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a) Stator voltage model in d axis 
The output equation of the system is obtained by using the real 

component of (7.26): 
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and the output error follows to: 
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To obtain the adaptation gain the linearized output error has to be 
calculated using (7.17) and (7.19). The calculation is carried out according 
to the assumption for the steady-state condition indicated by (7.11). The 
explicit indication of the current time step is omitted subsequently. Using 
(7.21), (7.24) and (7.25) it follows from (7.27): 

( )1
1 sq s sq s s sd s s m

s

h u R i L i L i= + + =   (7.29) 

Finally, the stationary linearized output error is found using (7.22): 
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After substituting this expression into (7.19) the adaptation gain can 
now be calculated with the predefined eigenvalue z1: 
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           (7.31) 

b) Stator voltage model in q axis 
Analog to the d axis model the output equation immediately results from 

the imaginary component of (7.26), 
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with the output error: 

( ), , , 1 ,

, ,

1
1

s
sq k sq k sq k sq kq sq

sd k m ks s s s

Ly y u R i i i
T

L i L i

+= + +

+ +
 (7.33) 

For the stationary linearized output error we obtain in the same way 
with: 
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the following equation: 
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Accordingly the adaptation gain can be calculated as follows: 
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c) Voltage vector fault model 
So far several approaches have already been suggested in the literature 

to combine both error components [Rowan 1991], [Schumacher 1983]. 
Thereat the amplitude or phase angle of the error vector was calculated. 
Furthermore it is conceivable to simply add both weighted error 
components derived above. However, this way shall not be followed here, 
because in spite of more information flowing into the adaptation the 
possibility to use the additional degree of freedom for dedicated 
weightings of the error components will be given away. The combination 
of the error components shall be aimed to define the dynamics with one 
weighting factor and to balance the contributions of both error components 
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to the total error with a second factor. The addition of both components 
has to ensure that the sign of the total error (= adjustment direction of the 
rotor resistance) is only determined by the direction of the resistance 
deviation or the phase error, and not distorted by the combination of the 
error components. The following approach is chosen: 

1 1

1

1 1

( ) ( )sign
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sqdq d d q qd q

sqd d dq qd q

d q

k y y k y y i
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k k

=

=

> >
   (7.37) 

The adaptation dynamics is determined by kd1, and the error weighting 
by 1 1dq q dk k k= . By inserting (7.30) and (7.35) the linearized output 
error is obtained to: 

( )1 1 2 2
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r rm sqs d qdq
m sq
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+

   (7.38) 

At positive mi  the bracket term is always positive, and thus the above-
mentioned condition is fulfilled. The adaptation gain can be calculated as 
follows: 
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The derivation of a suitable value for kdq is subject of section 7.3.3. 

7.3.2.2 Power balance models 

The first step at examination of an error model is to find out whether it 
is suitable for the rotor resistance adaptation at all. This is the case if the 
error signal proceeds steadily and there is an unambiguous connection 
between the variation of the rotor resistance and the sign of the model 
error. Particularly for error models of higher order these prerequisites are 
not obvious. With the method used here to analyze the adaptation problem 
with the help of the nonlinear state observer the corresponding proof can 
be adduced very comfortably. 

Unlike to the previous models, for the power balance methods the 
system output vector is derived from the components of the complex 
power. Starting point is the equation of the complex power: 
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*3
2 s s=s u i                (7.40) 

Neglecting the factor 3/2 it follows in vector notation: 
sd sd sq sq

sd sq sq sd

u i u ip
q u i u i

+
= =

+
s           (7.41) 

The output or model equations are obtained after inserting the voltage 
equations into (7.41). To simplify the representation they are written in the 
following in time-continuous form. As in the case of the stator voltage 
methods the dynamic analysis is carried out for steady-state condition 
regarding the rotor flux linkage and the stator current (disd/dt = disq/dt = 0). 

 
a) Reactive power method 
Following the described procedure the system output equation is: 
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With: 
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the following expression is obtained for the stationary linearized error: 
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The adaptation gain then will be: 
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b) Active power method 
The output equation arises as described: 
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For the stationary linearized output error and for the adaptation gain it 
can be derived in the same way as above: 
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It shall be noted that obviously the active power method cannot produce 
any observer fault in the area isq ≈ im, and therefore its usefulness is 
limited substantially. Thus further consideration is abandoned. 

7.3.3  Parameter sensitivity  

All error models contain machine model parameters which practically 
always show a certain deviation compared to the actual motor parameters. 
This means, however, that at use of such a faulty model the rotor resistance 
too cannot be estimated exactly. The knowledge of the relations between 
model parameter errors and a wrong adjustment of the rotor time constant 
resulting from these errors is therefore of essential importance for the 
choice and assessment of an adaptation method. Such an analysis shall be 
carried out now for the error models introduced in the previous section. 

The vector of the error model parameters is referenced by p , and the 
vector of the machine parameters by p . At first the adaptation is looked at 
in stationary operation. Stability of the overall system assumed, the 
adaptation algorithm will regulate the adaptation error to zero in every 
case: 

lim ( , , ) 0s s
t

u i =p             (7.50) 

For a speed and rotor flux controlled system, the system state and the 
model state are unambiguously determined by the motor torque mM (= load 
torque) and by the set point *im  (= im ) of the rotor flux linkage. The 

current component isq  of the model is adjusted by the speed controller 
according to the required torque. The connection between system and 
model currents is given by (7.4). A statement about the model parameter 
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dependent adjustment error of the rotor resistance can be obtained if an 
analytical connection: 

( , , )r mMR f m i= p              (7.51) 
can be derived. Unfortunately, this is not possible in explicit form, 

though, so that a simulation study or an iterative calculation must be 
undertaken. A possible approach for the iterative solution consists in 
computing the resistance error rR  for a given p  for which the adaptation 
error ε becomes zero. This way the searched dependencies (7.51) can be 
determined point-wise. 

In the first step the model current component sqi  shall be determined in 

dependence of mM and sdi . For this purpose (7.4) and (7.6) are inserted 
into the torque equation (7.7). After some rewriting the following 
expression arises: 

2 22 2 2 23
2

r rm
sq m m sq sq mM p

r r r

LT Tm i i z i i i i
T L T

+ = +    (7.52) 

which can be solved to sqi  iteratively. After that the motor currents can 
be calculated by (7.4), and after inserting the result into the stator voltage 
equation the motor voltages will be obtained. With that the model voltages 
are finally found out also by (7.4) making all required quantities for the 
calculation of the model error complete. Unstable areas of the overall 
system are indicated by the fact that no solution ε = 0  for a given 
parameter mistuning exists. In a dynamic system simulation this case can 
be recognized by the fact that no stable stationary operating point will be 
reached. 

The results of the sensitivity calculations for the error models introduced 
above are summarized in figure 7.7. They were obtained by using the data 
of an 11kW standard motor. The voltage vector error method still remains 
excluded in this figure because the second weighting factor to be 
determined shall specifically used for the robustness improvement. 
Although the validity of the results remains limited to the used motor, 
characteristic trends can be recognized, which result from the structure of 
the fault models and which also are transferable to other motors. 

In the calculations the model parameters sR , mL  and sL  were varied, 
and the motor parameters were held constant. For the discrimination of the 
parameter influences only one parameter was changed at one time. 
Therefore it is practically definitely possible that divergent results arise by 
the overlapping of parameter errors. A parameter variation range of 
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(1.6Hz and nominal speed) and two loads (nominal torque and half 
nominal torque). If a curve is not drawn over the full area, the overall 
control system reaches a stable operating point only in the marked area. 

 

 
Fig. 7.7 (a) d axis voltage model, (b) q axis voltage model, (c) reactive power 
model: ___ /s sR R , ---- /m mL L , ..... /s sL L , top: ω=10s-1, bottom: ω=300s-1, left: 
m=73 Nm, right: m=36 Nm 

At first all parameter mistunings have an effect on the adjusted rotor 
time constant which thus represents a characteristic quantity representing 
the parameter errors. From this it can be concluded to flux amplitude and 
phase errors corresponding to section 7.1. 

As a trend common to all measurements, it can be noticed that the 
sensitivity to the stator resistance drastically decreases at higher 
frequencies while the sensitivity to leakage and main inductance is only 

-50%...+50% was examined for two characteristic rotational frequencies 
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weakly or not frequency-dependent. This connection can be proved also 
arithmetically [Dittrich 1994]. In the models where the leakage inductance 
appears as a parameter (d axis voltage model and reactive power model) 
the influence of the leakage inductance is strongly load-dependent and a 
tendency towards a restriction of the stability area exists at increasing 
frequency and too small model values. 

Among the examined methods the reactive power model proves to be 
the one with the most favorable robustness qualities despite the stability 
problems at leakage inductance errors. These can be avoided if the leakage 
inductance of the model is prevented from becoming smaller than the 
leakage inductance of the motor. The complete independence on the stator 
resistance must be highlighted as particularly positive. 

At a more exact comparison of the results for the voltage models two 
facts can be noticed: The stator resistance sensitivity curves show a 
contrary trend, and at higher frequencies the main inductance or the 
leakage inductance determine the sensitivity characteristic, with their plots 
stretching from the third to the first quadrant. 

From that it can be concluded, that it is possible to compensate the 
sensitivity to Rs almost completely if a combination of both fault models 
according to the voltage vector fault model established in the previous 
section is used. Only a certain balance of the sensitivity to the inductances 
will be reached, though, thereat the primary objective consists in extending 
the stability area. For the complete compensation of the Rs sensitivity the 
factor kdq in (7.37) should be chosen to: 

sd
dq

sq

ik
i

=                (7.53) 

The factor kdq must approach this value at low stator frequencies. For 
weak load the weighting must be shifted to ( )ddy y  because of the more 
favourable σLs characteristics of the d-axis model, and at rising load and 
frequency a balanced weighting of both components should be obtained. 
One possibility to achieve this characteristic is provided by the following 
approach for the weighting factor kdq: 
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The factor kR has the effect that kdq will be shifted in the direction (7.53) 
at low stator frequencies because kL also is small at low frequencies. At 
rising load and frequency a balanced weighting of both fault components is 
reached by kL. 

 

 
Fig. 7.8 Voltage vector fault model: ___ /s sR R , ---- /m mL L , ..... /s sL L ;  top: 
ω = 10s-1, bottom: ω = 300 s-1, left: m = 73 Nm, right: m = 36 Nm 

The obtained results are represented in the figure 7.8. The stator 
resistance sensitivity is reduced drastically compared to the individual 
methods, and the stability area extended significantly. The balance 
between leakage and main inductance sensitivity can be described as 
optimal in the upper frequency area. Also compared with the reactive 
power method, a reduction of the leakage inductance sensitivity at high 
frequency and strong load and of the main inductance sensitivity at weak 
load is established. 
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Altogether it is recognizable, that the influence of stator resistance 
inaccuracies can be suppressed almost completely. Despite compensation 
measures, the model errors of the inductances should not become greater 
than 10%, though. 

7.3.4  Influence of the iron losses 

The iron losses are a parameter which generally falls into the category 
"neglected or negligible quantity" at modeling for control design. This is 
generally justified because the iron loss resistance lying virtually parallel 
to the rotor resistance (cf. section 6.2.1) is about 1000 times greater than 
the rotor resistance, and the consequences of the neglection still remain 
acceptable for the normal operation of the field-orientated control. With 
inverter feeding and accordingly higher eddy current losses however, 
significant amplitude and phase errors of the rotor flux are already 
provable [Levi 1994]. Furthermore, for some operating states and control 
goals the perspective renders fundamentally different. One of these cases is 
the adaptation of the rotor time constant. 

At first this can clearly be explained from the stationary equivalent 
circuit. The iron loss resistance is located quasi-parallel to the slip-
dependent resistance Rr/s (section 6.2.1). Thus not Rr but the parallel 
connection of both resistances is estimated in reality. Particularly at small 
slip values near the no-load operation Rfe reaches the range of Rr/s and 
influences the estimation result significantly. 

In order to approach the problem quantitatively the equation system 
introduced in section 6.2.1 is now pursued further. After some 
transformations the following stator and rotor voltage equations in the 
Laplace domain will be obtained assuming Rs<<Rfe (Gfe ... iron loss 
conductance): 

( ) ( )
( )

(1 )
1

s s s s s s m s
s
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R L s j L s j
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+ + + +
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+ +
i i i
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( )0 1 r r m s fe ss j T G= + + +i i i        (7.56) 
The rotor voltage equation can be solved into real and imaginary 

components: 
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The disorientating influence of the iron losses on the field orientation is 
owed primarily by the Gfe term in the slip equation. The Rfe model error 
produces an additional phase error, which also exists at no-load conditions 
and overlaps the phase errors produced by a rotor resistance model fault. 
Because all error models eventually derive their output error from the rotor 
flux phase error, the rotor resistance estimator may yield completely wrong 
results. 

 
Fig. 7.9 Measured Rr estimation faults caused by iron losses  

Some stationary measurements shall give a picture about the 
quantitative estimation error to be expected at different loads and stator 
frequencies. The results are shown in figure 7.9. For the Rr estimation 
the voltage vector error method is used. The ratio between torque and flux 
forming current components isq/isd serves as an equivalent for the motor 
load. It can clearly be recognized that the misadjustment is most critical at 
the upper limit of the constant flux area (greatest hysteresis losses). It 
diminishes considerably in the field weakening area, and also with 
increasing load. Altogether, it turns out that in stationary operation the 
estimation error can be safely kept below 4% if the adaptation is only 
allowed at current ratios of isq/isd > 1,5. 

The conditions are more unfavorable in dynamic operation. The reason 
is that after starting a transient the error due to the rotor time constant 
difference is built-up delayedly, but the iron loss dependent error already 
exists in the no-load state. Therefore a restriction of the adaptation to 
appropriately great values of isq proves ineffective. Only the inclusion of 
the iron losses in the system equations according to the model in section 
6.2.1 would make the additional error disappear completely. 
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7.3.5  Adaptation in the stationary and dynamic operation 

At first the adaptation algorithms were developed for the stationary 
operation of the drive regarding current and rotor flux, and the parameter 
sensitivity examinations were also carried-out for this operation mode. 
Therefore it is interesting to examine, whether the methods can work 
stably also in dynamic operation and are able to adapt the rotor resistance. 
The discussion of the influence of the iron losses has already shown that 
different properties have to be expected in dynamic operation with regard 
to parameter sensitivity. 

 

 
Fig. 7.10 rR  adaptation cycles with voltage vector error method 

At first the functionality of the adaptation shall, however, be illustrated 
by some examples during stationary operation. The oscillogram in the 
figure 7.10 shows a settling transient of the estimated rotor resistance after 
a load step. The initial error of the model rotor resistance is 30%. As 
already indicated in the previous section, the influences of the iron losses 
can be suppressed by switching-off the adaptation at insufficient torque. 
The detection of the stationary operation with adequate reliability is 
relatively easy by using a high pass filter for the torque forming current 
and the rotor flux. Together with the rotor resistance and the torque 
forming current the figure shows this adaptation release. 

As pointed out above, the proportion between torque and flux forming 
currents is shifted by the rotor flux phase error at wrong model rotor 
resistance. In the case without adaptation a slow drift of the torque 
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producing current in the model, caused by the warming-up of the machine, 
will be noticed at constant load until the thermal balance is reached. The 
effectiveness of the adaptation can thus be shown by the torque forming 
current keeping constant at constant load over long time. The oscillograms 
in the figure 7.11 show the corresponding plots during a warm-up process. 

 

 
Fig. 7.11 sqi  and rR  at constant load, sqi  [10 A/div], (0)r rR R  [0.03 Ω/div]: (a) 
without adaptation; (b) with adaptation 

Similarly to the iron losses the parameter sensitivity to other model 
parameters also becomes more critical in the dynamic operation, and the 
demand to increase the precision of the error model increases. Like in the 
stationary operation, the influence of the leakage inductance is particularly 
strong and therefore shall be treated here with priority. Primarily this is 
caused by the following reasons: 
• A dynamic speed change is connected to a short-time impression of a 

high torque forming current. The σLs sensitivity assumes its most 
critical values just at high torque. 

• Parameter errors in the error model have an immediate effect to the 
adaptation error. The model error of the rotor resistance, however, 
delayedly adds to the adaptation error through detuning of the phase 
angle s . Thus it is very probable at sufficiently short transients that the 
adaptation can only be activated (and detuned) by the model parameter 
errors. 
For an appropriately exact adjustment of the error model the derived 

methods are definitely able to adapt the rotor resistance also in dynamic 
operation without an additional steady-state load torque. The figure 7.12 
exemplarily shows such an adaptation process for the voltage vector error 
method recorded for longer time. The prerequisite is that the error 
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equations, as done in section 7.3.2, are programmed using the dynamic 
machine equations. 

 

 
Fig. 7.12 Adaptation cycle with voltage vector error model, 150 0 27Rr s =( ) .  

The result of a comparison of different methods with regard to the 
sensitivity to leakage inductance changes and iron losses in dynamic 
operation is represented in the figure 7.13. The adaptation was excited by 
speed transients between 200 and 700 rpm. The error of the model value of 
the leakage inductance was +5% for all tests. The initial error of the model 
rotor time constant is zero. 

The reference curve (curve 1) was taken with a simultaneous adaptation 
of rotor resistance and leakage inductance. The used method is not 
transferable to arbitrary operating states, though. It uses different 
properties of the model error contributions caused by the leakage 
inductance and the rotor resistance deviation in regenerative and motor 
operation. 

The adaptation to the motor warm-up is already visible in the second 
part of the plots. As far as possible, the tests were recorded until achieving 
a stationary state of the adaptation. 

Related to the final stationary value of curve 1 the following final 
deviations develop: 
• Curve 2: -1.6 % 
• Curve 3: -5.4 % 
• Curve 4: -45 % 
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Fig. 7.13 rR  detuning caused by model error of leakage inductance and iron 
losses: curves (1 – 3) with compensation of iron losses, (1) combined adaptation 
of rR  and sL , voltage vector error, (2) reactive power method, (3) voltage vector 
error, (4) like curve (3), without compensation of iron losses 

With that it is clear that an adaptation without consideration of the iron 
losses in dynamic operation must be considered impossible. The reactive 
power model proves to be the most suitable method for the dynamic 
operation here. The explanation can be found in that for this model the σLs 
part of the flux phase error s , representing the rotor resistance deviation, 
is weighted approximately twice stronger than in the linear error model of 
the voltage vector method. This can be shown by deriving an error 
expression including all parameter errors according to (7.38) or (7.44) 
[Dittrich 1998]. Thus its share on the total error is increased with the 
consequence of a better suppression of parameter errors of the model. 
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8 Optimal control of state variables and set 
points for IM drives 

8.1 Objective 

At the design of drives an energetically optimal operation represents an 
essential point of view. Losses increase the energy requirement and 
produce heat which must be dissipated by additional measures and 
constructive efforts. Modern power electronic devices achieve efficiencies 
of 98%, motors of medium and high-power ratings of over 95% at the 
nominal working point. A different picture arises in the partial load area 
where the efficiency can decline considerably. Besides optimization 
possibilities in the hardware sector and the use of loss-optimized pulse 
pattern for inverter control, also the "soft" control faction is challenged to 
come forth with approaches for an efficiency optimized operation. In order 
to keep the analytical and realization effort within reasonable limits, only 
stationary or quasi-stationary solutions are examined. 

Another question arises from the technically existing limitations of 
the hardware equipment with regard to currents and voltages. The control 
of the state variables should be designed for the drive or the motor to 
always being utilized as optimal as possible. 

The method of the field orientation provides the tools to realize a 
decoupled control of rotor flux and torque by impressing torque and flux 
forming current components. In a speed controlled system the set point of 
the torque forming current is provided by the speed controller, in a torque 
controlled system it is an independent control quantity. Thus the amplitude 
of the rotor flux or the ratio of both components, the slip frequency, 
remains as a degree of freedom for the optimization. 

As shown in the next sections, the exact knowledge of difficult 
measurable machine parameters is required for an effective optimization of 
the efficiency, or this optimization can only be implemented with 
reasonable effort by a dynamically slow control algorithm. For this reason 
a second optimization approach, the torque optimal control, becomes 
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interesting. The optimization goal consists here to control machine and 
inverter in the best possible way from the point of view of torque 
production at the given limitations, i.e. the demanded torque has to be 
generated by the minimal current, or the maximum torque has to be 
provided at limited current or limited voltage. Such an optimization 
strategy also will deliver a good efficiency because of the current 
dependency of the ohmic losses although this does not represent the 
optimization goal in the first place. 

8.2 Efficiency optimized control 

At first it is required to perform an analysis of the controllable losses. 
Losses in the motor appear in the form of stator and rotor copper losses, 
iron losses and additional losses. Additional losses are produced in the iron 
and copper by the non-sinusoidal field distribution, and they can be 
calculated with a factor of approximately 0.3 proportionally to the copper 
losses [Murata 1990]. A quantitative expression for the copper losses can 
be derived from the active power equation: 

{ } ( )* 3Re
2w s s sx sx sy syp u i u i= = +u i 1        (8.1) 

After replacing the voltages with the help of the stator voltage equation 
(cf. chapter 3 and 6) this equation can be re-written in field-orientated 
coordinates for stationary operation in the following form: 

( )( )2 23 1 (1 )
2w s sd s r sq s sd sqp R i R R i L i i= + + +    (8.2) 

The copper losses including one part for the additional losses added 
with the factor kz can be separated to: 

( ) ( ){ }2 23 1 1
2Cu z s sd s r sqp k R i R R i= + + +      (8.3) 

According to the section 6.2.1, the iron losses can be calculated 
approximately to: 

( )2
3
2

s
Fe

fe
p

R
=               (8.4) 

Using fe feN s sNR R  (cf. also section 6.2.1) and m sdL i  it 
can be finally written for the total losses: 

                                                      
1 xy can be either dq or αβ 
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( ) ( ) ( )
2

2 23 1 1 1
2

sN m
v z s s sd z s r sq

feN

Lp k R i k R R i
R

= + + + + +

 (8.5) 
Therefore the total losses can be split into an isd-dependent (flux 

dependent) and a torque (or isq-) dependent part, in which the partition is 
defined by the parameters of the machine, and the flux dependent part is a 
function of the stator frequency: 

( ) 2 2
1 2( ) ( )v s sd sq v sd v sqp a i bi p i p i= + = +       (8.6) 

With the side condition of a constant or given torque: 
~ constM sd sqm i i =  

the condition: 
1 2( ) ( )v sd v sqp i p i=               (8.7) 

follows for the minimal total losses, i.e. the flux dependent and the 
torque dependent loss components must have the same value. 

A clear representation of the relationship between both loss parts can be 
derived if it is referred to the slip frequency. The corresponding equations 
are obtained similarly as above: 

2
3 1(1 )(1 ) 1
2 (1 )

s s r
Cu z s sd sq r

r rm

R R Rp k L i i
R L

= + + +  (8.8) 

The factored out term is proportional to the torque and can be treated as 
a constant for the further calculation. For the iron losses the more exact 
two-parameter model from the section 6.2.1 is used now which leads to the 
following relation: 

( )3 (1 ) 2 2
2Fe s sd sq r hy w r w r

r
p L i i R k k R k= + + +  (8.9) 

The slip-dependent loss balance at two speeds with the nominal and half 
the nominal torque is represented corresponding to the equations (8.8) and 
(8.9) for an 11kW standard motor in the figure 8.1. Because of the main 
flux getting smaller by an increasing slip at the same torque, the iron losses 
behave inversely to the slip frequency. The copper losses drastically 
increase at small slip because of the magnetization current demand 
strongly increasing with higher saturation. They show a minimum and 
increase once more at the slip getting greater. The optimal point with 
respect to the total losses depends on the respective share of the iron 
losses. The operation at nominal speed represents the operating point with 
the greatest part of the iron losses in the total losses, because here the 
maximum stator frequency without field weakening is reached. 
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Fig. 8.1 Losses as a function of the rotor frequency: (a) m=0,5mN, n=500rpm, 
(b) m=mN, n=500rpm, (c) m=0,5mN, n=1500rpm, (d) m=mN, n=1500rpm 

The explanations so far open up different possibilities for the practical 
realization of an optimal control strategy with respect to efficiency, in 
which the optimization goal is predefined by equation (8.7). Two variants 
shall be discussed in more detail. 

 
a) Balancing of torque and flux dependent losses 
The equation (8.7) shows the way for a direct control of the balance 

between the two parts. The method is schematically represented in the 
figure 8.2 (cf. [Rasmussen 1997]). The flux dependent losses can be 
directly controlled by the rotor flux without influencing the torque 
dependent losses. According to the equations (8.3) and (8.4) model values 
of the two loss parts are calculated. The difference of both forms the input 
quantity (control difference) for an I or PI controller which adjusts the 
equality of both parts with the rotor flux set point as a control variable. 
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Fig. 8.2 Loss optimization by balancing of torque and flux dependent parts 

A comparatively fast dynamics is achieved for adjusting the optimum, 
an exact compensation requires, however, an exact knowledge of the 
model parameters, which is difficult and requires some effort particularly 
with regard to the iron losses. 

 
b) Loss compensation with search algorithm 
The active power is calculated by equation (8.1), and by means of a 

search algorithm the rotor flux is modified until the minimum of the active 
power and with that the minimum of the losses is reached. Different search 
strategies are applicable with fixed or variable step, cf. e.g. [Moreno 
1997]. A careful adjustment is required because of possible convergence 
problems. Such a method does not need any model parameters. Thus the 
power could also be measured at the input of the inverter, and the inverter 
losses could be included into the optimization. Caused by the searching 
method and the at first unknown "suitable" adjustment direction of the 
rotor flux, the method works slowly in this simple implementation, and is 
suitable exclusively for steady-state operation. 

8.3 Stationary torque optimal set point generation 

8.3.1 Basic speed range 
Initially it shall be noted, that the relations discussed in this section are 

not exclusively limited to the basic speed range. They are valid 
everywhere where no limitation of the stator voltage becomes effective, 
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thus also in the field weakening area at low load. The derivations start out, 
however, from the basic speed range initially because no voltage limitation 
occurs here in stationary operation also at the current limit. 

Under this presumption maximum torque at given stator current 
amplitude will be achieved if the operating point is always on the 
maximum of the slip-torque-characteristic (cf. figure 8.3). This maximum 
corresponds graphically to the breakdown torque of the known torque-
speed-characteristic. 

The torque equation is with consideration of the main field saturation in 
stationary operation (cf. chapter 3): 

2( )3
2 ( )

m
M p sd sq

m r

L i
m z i i

L i L
=

+
         (8.10) 

It is easily comprehensible from (8.10) that the maximum torque will 
be reached at a given stator current with isd = isq for constant inductances. 
Because of the magnetic saturation the calculation of the maximum point 
becomes, however, essentially more troublesome and requires the iterative 
solution of a nonlinear system of equations. Parts of this system are 
besides (8.10) the relation of the magnetization current amplitude (cf. 
section 6.2.3): 

2
2 r
sd sq

r

Li i i
L

= +             (8.11) 

the slip equation: 

( )
sqr

r
m r sd

iR
L i L i

=
+

            (8.12) 

and the boundary condition: 
2 2 2
s sd sqi i i= +                (8.13) 

The figure 8.3 shows the calculated characteristics for an 11kW 
standard motor. The characteristic which would be obtained with constant 
main inductance (at the nominal working point) is drawn for comparison 
as dashed line. 

As mentioned above, it would be the task of a torque optimal control to 
control the rotor flux in a way to keep the operating point always on the 
maximum of the torque-slip-characteristic depending on the demanded or 
available stator current. An online calculation of this point, however, 
practically has to be excluded because of the necessary iteration. Therefore 
it would be interesting to know, how the usual field-orientated operation 
with constant flux (nominal flux) fits into this analysis. The nominal value 
of the flux forming current would be calculated by: 
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3 ( )
N

sdN
sN s sdN

UI
L I

=            (8.14) 

Equation (8.14) contains an iteration which would have to be solved in 
the practical implementation, but in the initialization phase and not in real 
time. 

 

 
Fig. 8.3 Slip – torque – characteristic as function of the stator current amplitude: 
---- Lm = const;  ..... isd = isdN 

The corresponding curve is drawn as dotted line in figure 8.3 and shows, 
at least at higher currents, a surprisingly good approximation to the 
optimal value. Therefore the constant flux operation is obviously 
distinguished as a quasi torque optimal control strategy in the basic speed 
range at higher stator currents. This connection is understandable, because 
the motor is designed for the rated working point. 

This is further illustrated in the figure 8.4. In figure a) the necessary flux 
forming current to achieve the exact torque maximum and additionally the 
control characteristics for constant flux and for isd = isq are drawn. In the 
linear area the optimal characteristic coincides with the characteristic isd = 
isq as expected. For higher stator currents the optimal characteristic 
deviates from the constant flux characteristic with a tolerance of 
approximately ±20%. The figure 8.4b shows the actual effects of the 
deviations on the torque. Obviously they are negligible in this case. 
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Fig. 8.4 (a) isd control characteristic, and (b) maximum torque as function of 
stator current and flux control 

Under consideration of a minimal rotor flux which has to be kept to 
ensure a torque generation with an acceptable dynamics, the following 
simple control law can be used for the quasi torque optimal control: 

,min , ,min*
*

, ,min ,

,

   for   

     for  

      for  

m sq f m
rd

m sq f m sq f mN
m

mN sq f mN

i i i

i i i i i
L

i i i

<

= = <      (8.15) 

Here isq,f is the low-pass filtered current isq. Because of this filtering and 
the anyway existing delay in the forming of the rotor flux, a dynamic 
decoupling is given between flux control and isq control. It has to be taken 
into account, however, that a variable flux inevitably leads to a 
deterioration of the torque dynamics. If a high torque dynamics represents 
the central optimization goal, the constant flux operation has to be 
maintained over the complete basic speed range. The torque dynamics then 
only depends on the dynamics of the current impression. This is illustrated 
by the figure 8.5 with some transients for constant flux operation and the 
described flux control algorithm. In addition, it is obvious that an 
approximately optimal operation mode with respect to efficiency in this 
area is not conceivable any more with fast flux tracking in the dynamic 
operation. 
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Fig. 8.5 Speed dynamics in the basic speed range: (a) Load step change with 
constant flux, (b) Set point step with constant flux, (c) Load step with torque 
optimal controlled flux, (d) Set point step with torque optimal controlled flux 

8.3.2 Upper field weakening area 
Different to the basic speed range, the limitation of the stator voltage 

represents a decisive additional influencing variable for the flux control in 
the field weakening. Two areas must be distinguished: The first area, in 
which the voltage limitation is the only deciding limiting variable, and a 
transition zone, in which both current and voltage limitation determine the 
character of the control characteristics. At first, only the voltage limitation 
shall be taken into account as a boundary condition, and the currents shall 
be assumed to develop freely. 

Similar to the current-limited case, typical speed (slip) over torque 
characteristics can be calculated which contain the speed as a parameter. 
Because the calculations are only significant for the high field weakening 
area, the saturation can be neglected. 

From the stator voltage equations in the field-orientated coordinate 
system (cf. chapter 3 and 6) the following equations will be obtained for 
steady-state operation with respect to the stator currents: 

sd s sd s s squ R i L i=             (8.16) 
(1 )sq s sq s s sd s s mu R i L i L i= + +       (8.17) 

with:  rd
m

m
i

L
=  
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For constant rotor flux it follows from (8.17): 
sq s sq s s sdu R i L i= +             (8.18) 

The system boundary condition is here: 
2 2 2
max sd squ u u= +              (8.19) 

If the slip equation in field orientated coordinates (8.12) is inserted into 
(8.16) and (8.18) and the current components are eliminated, the following 
torque equation will be obtained: 

( ) ( )

2 2
max

2 2 2
3
2 1

m r r
M p

r s r r s s s s r r

L u Tm z
L R T T T T

=
+ +

 (8.20) 

 
Fig. 8.6 Slip-torque characteristics at limited stator voltage; parameter: stator 
frequency 

The equation (8.20) is represented in the figure 8.6 for the stator 
frequency as a parameter. This case corresponds to the natural behavior of 
the induction machine at frequency control. In contrast to the constant 
current case, differently high torque maxima, which are also characterized 
by differently high stator currents, appear for motor and regenerative 
operation. The slip frequency at the torque maximum or break-over 
point is calculated by (8.20): 

( )
( )

( )
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2
, 2

11 1  for 1
1

s s
r kipp s s

r rs s

T
T

T TT

+
= ± >>

+
 (8.21) 

For speed controlled operation with the speed as a parameter the 
characteristics represented in figure 8.7 apply. In regenerative operation an 
absolute maximum at ω s = 0  appears. This means that the greatest 
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regenerative braking torque can obviously be generated at a (negative) 
direct current feeding. The torque maximum itself, however, might be 
barely possible to be used, because it is connected to impractical high 
currents. 

 

 
Fig. 8.7 Slip-torque characteristics at limited stator voltage; parameter: speed 

Analog to the constant current operation, a torque optimal control law 
should adjust the currents for the maxima of the slip-torque characteristic. 
The solutions for the control characteristic will be obtained by an extreme 
value problem for the torque given by the equations (8.16), (8.18), (8.19) 
and the torque equation (8.10). 

Because the solutions are interesting only for high stator frequencies the 
stator resistance can be neglected. This simplification actually makes the 
equation system accessible for a closed solution. Furthermore it is 
presupposed that because of the field weakening the main inductance can 
be regarded as constant. 

At first, (8.16) and (8.18) have to be dissolved into components. With 
the mentioned simplification the following current equations are obtained 
(cf. equation (5.78)): 

sq
sd

s s

u
i

L
=                (8.22) 

sd
sq

s s

ui
L

=               (8.23) 

Strictly speaking, the two equations also contain on the right side the 
current components isd and isq implicitly through the slip frequency, and 
would have to be solved further to equations with the speed as parameter. 
This would however make a closed solution impossible, whence the more 
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transparent variant with the stator frequency as a parameter shall be kept. 
The arising error is tolerable because the share of the slip frequency in the 
stator frequency is small at high rotational speeds. An advantage of this 
consists of the fact that the same control characteristics are valid for both 
motor and regenerative operation because of the symmetrical position of 
the torque maxima with respect to the slip frequency (cf. figure 8.6). 

After inserting (8.22) and (8.23) into the torque equation the following 
Lagrange function for the extreme value calculation can be formulated by 
inclusion of (8.19): 

2 2 2
max( , , ) ( , ) ( )sd sq sd sq sd sqL u u m u u u u u= +    (8.24) 

From the partial derivatives with respect to usd and usq the following 
equation system is obtained: 

0 2sqsd
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After solving to the current components it yields the control 
characteristics: 
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, 2sd lim
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=              (8.27) 
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, 2sq lim

s s

ui
L

=              (8.28) 

The figure 8.8 shows these characteristics for an 11kW motor together 
with the characteristics calculated by means of search method without the 
above mentioned approximation. They are identical for both motor and 
regenerative operation. The maximum inverter current imax and the no-load 
current (the magnetizing current) i0 are also included in the plots. 

In order for the torque optimal control strategy to be effective, both 
current components must be able to develop freely. As shown in the 
diagrams, this depends fundamentally on the maximum inverter current, 
and for the sample drive this would be the case above approximately ωs = 
450 s-1. If the rotor flux is controlled below this frequency by the derived 
characteristic too, no torque optimal operation is achieved, because the 
inverter voltage cannot be utilized. 
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Fig. 8.8 Current limit characteristics for maximum torque at limited voltage: --- 
exact curve with searching method, __ approximate solutions (8.27) and (8.28) 

Thus it is also shown that the flux with high probability at the cut-in 
point of the torque optimal control characteristic may already be weakened 
and the operating point having been shifted to the linear part of the 
magnetization characteristic. Therefore the neglection of the saturation for 
the derivation of the characteristics is justified. 

8.3.3 Lower field weakening area 
The lower field weakening area shall be understood as the zone between 

the frequencies ωg1 and ωg2 (cf. figure 8.8). This area is indicated by the 
following characteristics: 
• Coming from lower frequencies, the stator voltage reaches its maximum 

value so that a flux reduction is needed to continue the frequency 
increase. 

• An operation using the torque optimal control characteristics is not 
possible or expedient, because the torque forming current isq 
corresponding to these characteristics is either not needed or cannot be 
produced. 
Without voltage limitation the drive would be controlled according to 

the rules of the basic speed range, hence with isd = isdN. Thus it seems 
reasonable to operate the control system as close as possible at this set 
point in the lower field weakening area, meaning to operate the drive with 
the maximum possible flux at the voltage limit. This rule is well known 
and general practice. 

For the implementation a voltage regulator is often used (figure 8.9). 
The actual stator voltage feedback can be calculated from the (unlimited) 
current controller output signal via low-pass filter to eliminate transient 
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parts. With that it is possible to keep the voltage always at the limiting 
level in stationary operation independent of motor parameters. This 
method has, however, also decisive disadvantages. It is attempted to 
control a very fast variable quantity (stator voltage) by a slowly variable 
quantity (rotor flux). This demands for an artificial delay of the voltage 
dynamics and makes it impossible to react to variable operating states 
(load, acceleration) with an adequately fast change of the flux set point. 
For this reason a feed-forward controlled flux set point calculation shall be 
derived in the following. 

 

 
Fig. 8.9 Flux set point calculation using voltage controller 

The stationary voltage equations (8.16) and (8.18) are again the starting 
point. The solution of the implicit relation current/stator frequency is 
refrained from because in this case a closed solution would require too far-
reaching approximations. Both equations are squared and added up. The 
stator voltage amplitude is equated to the maximum voltage, and the 
equation is solved to isd = im. One obtains: 
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(8.29) 
For ( )22

s s sR L<< , which should be fulfilled in the interesting 

frequency area ( -1300 ss > ), this relation can further be simplified. At 
the same time the current isq is replaced by its set point with regard to the 
practical implementation which enables a faster reaction to forthcoming isq 
changes: 
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A pure flux set point control in an open-loop has of course the 
disadvantage of the parameter dependency which here would have the 
effect, that the available stator voltage would not be utilized in stationary 
operation, or the flux set point would be adjusted too high. Therefore it is 
useful to combine both methods, voltage controller and flux feed-forward 
control, in a suitable way. In this combination, the voltage controller has 
the task of keeping the voltage at the operating limit during stationary 
operation, and the open-loop set point control takes care that changes of 
the isq set point can be answered quickly with the corresponding flux 
change. The voltage controller should control a quantity corresponding to 
its input signal. The maximum voltage umax in (8.30), which is regarded as 
variable now, would be such a suitable quantity. 

 

 
Fig. 8.10 Flux set point calculation using a combination of voltage (feedback) 
controller and set point control in open-loop 

The figure 8.10 shows the correspondingly modified structure. The set 
point *

,maxsu  corresponds to the maximum output voltage of the current 
controller. The control variable of the voltage controller is added to the 
maximum stator voltage max ( )DCu u 1) calculated from the DC link voltage. 
The sum of both forms the input quantity umax of the control equation. 

Because the control equation (8.30) was derived in exclusively algebraic 
way, the saturation does not influence the result. Operating point 
dependent parameters can be adapted on-line by an open-loop control. 
Remaining differences are stationarily compensated by the voltage 
controller. 

                                                      
1) uDC = DC link voltage 
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8.3.4 Common quasi-stationary control strategy 
In the previous sections the theory for torque optimal control strategies 

has been outlined for basic speed, upper and lower field weakening area or 
limitation of current and/or voltage. For the implementation in a control 
system there are still the following additional tasks to be addressed: 
• A common strategy which provides a continuous transition between the 

areas is to find. 
• The developed strategy must be usable in a control structure, such as 

described in the section 1.2. 
From the previous considerations the following conclusions can be 

summarized: 
• The rules developed for the basic motor speed range can be generalized 

for all operating states in which no voltage limitation appears. 
• The rules for the two field weakening areas show that the best utilization 

of the machine is always given at a maximum voltage output. 
• The current limit characteristics in the upper field weakening area show 

such a relationship, that the limit characteristic of the torque forming 
current isq,lim can be equated to the maximum value of the stator current 
with good approximation. 
Therewith the following rules can verbally be formulated: 

• Rule 1: The torque and flux forming current components are equated as 
long as either the flux forming current reaches its maximum value 
(nominal value) or the stator voltage goes into the limitation. 

• Rule 2: If the torque forming current amplitude exceeds the flux forming 
current, either the flux forming current remains on its nominal value or 
is controlled to keep the drive always on the voltage limit. 

• Rule 3: The stator current is limited to either its absolute maximum or 
the limit characteristic of the torque forming current in the upper field 
weakening area, depending on which of both quantities has the smaller 
value. 
With the nominal value of the rotor flux linkage imN and the maximum 

inverter current imax the rules can be summarized in equation form as 
follows: 
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The quantity * *
max( , , )m sq si u i  results from the equation (8.30). The rules 

or the control laws start out from the assumption that the set point *
sqi  

exists as an independent input quantity. They will appear somewhat more 
complicated and contain components to be calculated possibly in iteration 
if the torque is immediately provided as a set point. In the configuration 
with superimposed speed control looked at here, the adjustment of 
the torque is subjected to the speed-feedback control loop. 

 

 
Fig. 8.11 Current limit characteristics for the torque optimal operation and 
maximum voltage output 

The current limit characteristics are represented in expansion of figure 
8.8 in figure 8.11 corresponding to the proposed algorithm for the 
complete speed range. The differences are recognizable clearly in the 
transition zone: The cut-in point of the field weakening is shifted to the 
frequency ωg11, the maximum flux range is extended to substantially 
higher stator frequencies then defined by the torque optimal characteristic. 

With this control, the area of the utilizable torque-speed range 
represented in the figure 8.12 for the first quadrant finally results. This 
area is delimited by the available current in the basic speed range, at high 
rotational speeds by the ceiling speed of the motor, and as discussed in the 
upper field weakening area by the available voltage, in the lower field 
weakening area by the maximum current and maximum voltage. The 
transition point between the upper and lower field weakening areas in turn 
is given by the frequency ωg2. 
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Fig. 8.12 Utilizable torque-speed range 

The difference in the operating behaviour between torque optimal 
operation and conventional flux control can be shown best with the results 
of a practically realized control. For this purpose a speed reversal process 
is most suitable because quasi-stationary conditions (slowly variable 
currents and flux linkages) can be found here in wide areas. The 
comparison is made using a control characteristic of the form: 

,max*
0

3
0.9 sN mN

m
N m

U Li i
U L

=          (8.33) 

,max maxsi i=                (8.34) 
i.e. a flux characteristics, which is inversely proportional to the speed, 

and which adapts to changes of the DC link voltage and the main 
inductance. The plots of the most interesting quantities are shown in the 
figure 8.13. The differences in the reversal time are significant. An 
essential difference consists in the fact that although the stator voltage 
with torque optimal control under load permanently resides at its limit 
during field weakening, the current controller predominantly, works in the 
linear area. On the other hand the controllability of the system is 
temporarily lost with the simple flux control. It shall not remain 
unmentioned that similar results like those of the torque optimal control 
can be achieved also with a simple flux control in favorable parameter 
constellation and choice of the field weakening cut-in with respect to the 
reversal time. The temporary loss of the system controllability under loads 
is, however, hardly avoidable. 

Furthermore it has to be noticed that a dynamically correct flux model 
(with saturation, cf. sections 6.2.3 and 4.4.1) is strongly necessary for the 
successful realization of the flux control algorithms. 
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Fig. 8.13 Speed reversal processes +3100 rpm ↔ -3100 rpm: torque optimal 
control (left) and speed inverse flux control (right) 

8.3.5 Torque dynamics at voltage limitation 
As long as a sufficient voltage reserve is available, the torque dynamics 

is primarily a question of fast current impression. In the field weakening 
area this problem appears to be fundamentally more complex because of 
the missing voltage reserve. Regarding this the optimization goal consists 
here in reaching a rise time as short as possible also at the boundary 
condition of the limited voltage. 

One of the outstanding features of the FOC consists in the possible high-
dynamic impression of the torque because the torque rise time, constant 
rotor flux assumed, is identical with the rise time of the torque forming 
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current. Prerequisite for a fast current impression is an adequate voltage 
reserve, though, so that a really fast torque impression is only possible in 
the basic speed range. According to the above derived rules, no voltage 
reserve would be available in the field weakening area at all. It is therefore 
necessary before an intended stepping-up of the torque to produce this 
voltage reserve by a (dynamic) flux reduction. The whole process should 
take place at unchanged maximum stator voltage for an optimal utilization 
of the machine. 

After squaring and adding-up of (8.16) and (8.17) and neglection of Rs 
at the same time, the following equation is obtained: 

( ) ( )2 22 (1 )s s s sq s s sd s s mu L i L i L i= + +     (8.35) 

From this relation it is recognizable that a dynamic control reserve can, 
considering the slow variability of im, be created by reducing the 
component isd. The derivation of the control law must, however, start out 
from the dynamically correct voltage equations. In the first instant the 
rotor flux linkage is constant changes compared to the stator current only 
very slowly, and therefore has influence on the calculation as a parameter 
and not as a variable. Regarding the searched-for current set point isd

*  
quasi-stationary conditions can be assumed, and therefore the leakage time 
constant can be neglected. Furthermore it is assumed that the current 
transients are progressing approximately linearly and therefore the stator 
resistance is also negligible. The leakage inductance in the q axis must not 
be neglected however, because after the current *

sdi  to be calculated is 
reached, the decisive isq transient will unfold. Thus the initial equations 
are: 

sd s s squ L i=              (8.36) 

(1 )s
sq sq s s sd s s m

q

Lu i L i L i
T

= + +      (8.37) 

The parameter Tq is the time needed by the isq transient, and represents 
a free design parameter in certain limits (see below). Δisq is the difference 
between the actual and the set point value. Both equations are squared, 
added-up and solved to isd: 

( )
2 2

* max1 (1 ) sq
sd m sq

s q s s

i ui i i
T L

= +
Δ

   (8.38) 

The radix expression in (8.38) shall be abbreviated to im1. The equation 
(8.38) is then: 
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*
1

1 ( ) sq
sd m m m

s q

i
i i i i

T
= +          (8.39) 

In the stationary state the last term disappears, and *
sdi  is equal to im. 

Therewith im1 has also to be equal to im and can be understood as the 
stationary flux set point. The stationary set point for maximum voltage is 
provided normally by (8.30). Therefore also this value could be used 
instead of im1 in (8.39) resulting in a sliding transition between dynamic 
and stationary flux control. 

With respect to its structure, the equation (8.39) is comparable with an 
integral controller. The reciprocal leakage coefficient forms the controller 
gain, and the last term can be interpreted as an additional disturbance 
compensation. Nothing speaks against using this "controller" instead of the 
usual flux controller. Caution is just necessary for machines with very 
small leakage factor and great sampling period of the flux control because 
the controller gain then can accept inadmissible high values. In this case a 
PI flux controller may be used in stationary operation. 

The determination of Tq must be carried out empirically. The influence 
of this parameter becomes clear by the simulation examples shown in the 
figure 8.14. A set point step of the torque forming current and thus of the 
torque was applied from zero to maximum for an acceleration process at 
about the double nominal speed. The sampling period T of the current 
control is 0.5 ms. The sampling period of the flux set point generator, flux 
and speed control is 2 ms. The optimum for Tq is found to approximately 
Tq = 20T and valid for the complete field weakening area. Further 
reduction brings no benefit for the reduction of the rise time, just increases 
the overshooting of isq. 

At the beginning of the transient a temporary drop of the torque forming 
current (and therewith the torque) appears. This is understandable because 
at first the voltage required for the impression of isd can only be gained at 
the expense of the voltage in q direction. 

The rise times of the torque are in the area of 5....6 ms. It must not 
remain unmentioned that to obtain the shown transients besides the 
optimal set point generation a current controller is required which can 
impress the current components with the necessary dynamics and 
precision. The state-space dead-beat controller described in section 
5.4 fulfills these prerequisites. 
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Fig. 8.14 Torque impression at maximum voltage: Tq = ∞ (top), 20T (middle), 
10T (bottom), ω = 700s-1 

Satisfactory results at the practical implementation fundamentally 
depend on the precision of the model parameters. A dynamically correct 
rotor flux model is required as an essential component. The figure 8.15 
shows results from a sample drive. Because of the voltage maximum 
practically only one current component is actually controlled (in motor 
operation isd), all model inaccuracies and simplifications or unbalance and 
offset errors are mirrored in the second current component. The rise time 
of the torque forming current component confirms the values obtained by 
simulation. 
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Fig. 8.15 Torque impression at voltage maximum, ωs = 500 s-1 

It has to be remarked that the described method manages with relatively 
moderate computation power. As shown by the figure 8.15, the current 
control works with a sampling time of 0.4 ms; the flux set point 
calculation, the flux and speed control are realized with a sampling time of 
5 ms. 

8.4 Comparison of the optimization strategies 

Starting point of this chapter was the control of the state of the IM under 
the objective of energy optimal operation. The torque optimal control was 
introduced because of the advantages in the dynamic case and under the 
aspect of current and voltage limitation. In connection with this, it is 
interesting to compare the control methods with regard to the efficiency 
actually achieved. 

The achieved efficiency for the different control methods is represented 
for the sample drive (11kW motor) in the figure 8.16. The curves for 
efficiency optimal and torque optimal control are approximately identical 
at loads above the half rated torque, because the total losses are dominated 
by the copper losses. The control with constant rotor flux also reaches the 
efficiency of the other methods at high torque, because the slip gets close 
to the optimal value (cf. section 8.3.1). Significant differences arise at 
medium and low torques, though. Here obviously the decisive possibilities 
for improvements by using optimized methods are to be found. For the 
examined example, the efficiency optimal control achieves visible 
differences compared to torque optimal control only at high speeds and 
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small loads, because the share of the iron losses is here the biggest one. 
Also the values of the approximated torque optimal control described in 
the section 8.3.2 are only sparsely below those of the exact method. At 
higher loads a decrease of the efficiency can be found for all methods 
because of the increasing total current. This trend is more distinctive at 
smaller speeds, because the loss minimum shifts to lower slip values due to 
lower iron losses, and the main field saturation is reached earlier. 

 

 
Fig. 8.16 Load-dependent efficiency for different control methods: _____ 
efficiency optimal control; - - - - - torque optimal control, exact calculation; .......... 
constant rotor flux (= nominal flux); - - - - - (thin line) torque optimal control, 
approximated calculation 

This behaviour can also be comprehended from the figure 8.17 in which 
the control characteristics for rotor flux and magnetizing current depending 
on the torque and speed are represented for the efficiency optimal and 
torque optimal control. Also here it can be recognized, that distinctive 
differences in the control characteristics only appear at high speeds and 
according share of the iron losses. The characteristics for torque optimal 
control are as expected independent of the speed, and insignificantly 
different from the efficiency optimal control at small speeds. 

In the example, a rotor flux slightly higher than the nominal flux adjusts 
itself at high torques. The increase of motor voltage caused by this 
accompanying effect of the optimal control necessitates a voltage-
dependent limitation of the rotor flux. Thus the optimum operation would 
be no longer practicable near the nominal operating point. 
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Fig. 8.17 im and r at torque optimal and efficiency optimal control: ______ 
efficiency optimal control; ............ torque optimal control; (a) n = 500 min-1 (b) n 
= 1500 min-1 

In the field weakening area, the efficiency optimal operation will once 
more approach the torque optimal operation because of the strongly 
reduced iron losses. Thus noticeable efficiency improvements by an 
efficiency optimal control remain limited to the upper area of the basic 
speed range at low load. This statement is valid of course under the 
assumption that the ratio between copper and iron losses approximately 
corresponds to the one of the motor used for the calculations. 

The following can be summarized to compare the control methods with 
respect to the efficiency behaviour: 
• As opposed to constant flux operation the torque optimal control 

(optimization on minimal stator current at given torque) already delivers 
a considerable improvement particularly in the partial loads area. 

• Further possibilities for efficiency improvement using a loss-optimal 
control strategy confine to the upper basic speed range at partial loads, 
and account to some per cent for usual ratios of iron and copper losses. 
The absolute loss reduction is even lower because visible effects are 
only obtained in the low load area. 

• Further system boundary conditions like voltage and current limitation, 
which largely determine the optimization capabilities, come into play in 
the field weakening area. The iron losses decrease strongly with flux 
reduction. 

• An exact optimization requires in any case iterative on-line calculations, 
because of the magnetic saturation, and measuring of the iron loss 
characteristic for loss-optimal operation. At least for the torque optimal 
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operation, however, simple control laws can be derived, which avoid 
these two problems and match the results of the exact control very 
closely. 
Altogether, the torque optimal operation represents a very effective and 

recommendable control method also with respect to efficiency 
optimization. The efficiency optimal operation is generally 
recommendable if all optimization reserves have to be utilized (high motor 
power). It offers itself for stationary operation as an addition in form of 
an active power controller outlined in the section 8.2. 

8.5 Rotor flux feedback control 

The last section of this chapter deals with the rotor flux control in 
concentrated form because the calculated flux set points would be realized 
by a flux control loop according to the control structures discussed in 
chapter 1. Appropriately, the control is designed in the field-orientated 
coordinate system. 

 

 
Fig. 8.18 Flux control loop with inner current loop 

As described in the chapter 5, the inner-loop current control is optimized 
for finite adjustment times, and runs compared to the flux control with a 
considerably shorter sampling period of characteristically Ti/T >0.1. 
Therefore the current impression can be regarded undelayed with respect 
to the flux control, and the actual controlled process is given by the rotor 
voltage equation in field-orientated coordinates (cf. chapter 3 and 6): 

d0
d

m
m r sd

ii T i
t

= +             (8.40) 

It can be written in time-dicrete form: 

( 1) 1 ( ) ( )m m sd
r r

T Ti k i k i k
T T

+ = +        (8.41) 
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The current component isd forms the control variable. The control loop is 
represented in the figure 8.18. The flux controller is generally designed as 
a PI controller (digital magnitude optimum) and quasi-continuously 
optimized for transfer behaviour. If a PI controller is assumed with the 
equation: 

( )
1

1

1
R

1

d z
z V

z
=            (8.42) 

then the magnitude-optimal setting for the flux controller is: 

1 ;

3 1

r

r

T
T

T
T

V d e

e

        (8.43) 

  =  Sampling period of the flux controller;    =  Rotor time constantrT T  
The figure 8.19 shows a transient process with magnetization and 

the following motor start-up up to the field weakening area, and illustrates 
the transient response of the flux at magnitude optimum. 

 

 
Fig. 8.19 Transient response of the flux at magnitude-optimal setting for the flux 
controller 

A second approach for the flux controller, especially in connection with 
the optimization strategy discussed in this chapter, immediately arises 
from the control equation (8.39) for isd derived in the section 8.3.5 for 
the dynamically torque optimal current impression at the voltage limit. The 
equation is rewritten as follows: 
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* *1( ) ( ) ( ) ( )sd m m mi k i k i k i k= +         (8.44) 

The compensation term, dependent on the isq control error, was 
neglected because this term is only required for a fastest possible torque 
dynamics at the voltage limit. If the first term on the right side would not 
read im(k) but isd

*(k-1) (what is fulfilled in the stationary operation), the 
equation (8.44) would describe an I controller with the controller gain 

1/IV = . 
 

 
Fig. 8.20 Transient response of closed flux control loop with quasi-I controller 

As shown in the figure 8.20, the closed control loop has in small signal 
operation approximately the transfer behaviour of a first-order delay 
function, in which the rise time is predefined by the controller gain. The 
unusual feature of the design consists in the fact that because of 1 /IV =  
the dynamics does not have to be predefined by "external" optimization 
rules, but is determined by the "point of view of the torque impression". 
For a very small leakage factor the controller gain can become too big, 
though, and cause unstable behaviour together with the amplitude 
quantization, hence a limit of VI = 15...20 should be set. On the other hand, 
if the dynamics of the controller is to be adapted to certain needs, nothing 
would speak against a deviation from the implicit setting 1 /IV = . 
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9 Nonlinear control structures with direct 
decoupling for three-phase AC drive systems 

 
 

9.1 Existing problems at linear controlled drive systems 

It is clearly recognizable that the 3-phase drive system engineering has 
reached a relatively mature stage of development (cf. chapters 1-8). The 
principle of the field orientated control also has largely asserted to be the 
most used method in commercial systems. The spectrum of solved 
questions extends from the control and observer structures over the 
problems of parameter identification (on-line, off-line) and adaptation to 
the self-tuning and the self-commissioning. 

The most implemented structure (chapter 5 or [Quang 1999]) contains a 
2-dimensional current controller for decoupling between the magnetization 
and the generation of torque as well as for undelayed impression of torque. 
Because of the decoupling the flux and speed control loops could be 
designed rather liberally. In these structures the current controller and the 
flux observer are always based on motor models linearized within a 
sampling period (cf. section 3.2.2). 

The linearization is made under the assumption that the sampling time T 
is small enough for the stator frequency s to be regarded constant within 
T. Because of this assumption the frequency s is now a parameter in the 
system matrix, and the bilinear model becomes a linear time-variant 
system for which the known design methods of linear systems (cf. chapter 
5) can be used. 

Although the present concept was very successful, it is recognizable 
that: 
• because of the nonlinear process model (the input quantity s appears in 

the system matrix) in high-speed drives with synchronous modulation 
(cf. section 2.5.2) or in sensorless controlled systems (cf. section 4.3), or 
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• because of the nonlinear parameters (the main inductance is strongly 
dependent on the state variable im or r) with respect to the system 
stability in systems with parameter identification and adaptation, 
some problems often appear, particularly if the system must work at the 

voltage limit (i.e. in the nonlinear mode) and therewith the condition s = 
const is no longer fulfilled. If these problems remain unsolved, the drive 
quality will be affected considerably. In such cases at least a nonlinear 
design would be able to deliver better results. 

Within the last approx. 15 years different new ways to design nonlinear 
controllers were shown ([Isidori 1995], [Krstíc 1995], [Wey 2001]) or 
even experimented in motor control ([Ortega 1998], [Bodson 1998], 
[Khorrami 2003], [Dawson 2004]), but they were mostly theoretical 
works. The practical developments were completely missing. Recently, 
some more thorough investigations ([Cuong 2003], [Ha 2003], [Duc 
2004], [Nam 2004]) concerned with practical implementation of the 
methods had been forthcoming, particularly on the exact linearization 
method discussed in this book. 

9.2 Nonlinear control structure for drive systems with IM 

In the section 3.6.2 the nonlinear process model of the IM was already 
derived as a starting point to the controller design: 

( )
1 1 2 2 3 3( ) u u u

•
= + + +
=

x f x h h h
y g x

         (9.1) 
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 (9.2) 

• Parameters:            ( )1 ; 1 ; 1 ;s s ra L b T c T d b c= = = = +  

• State variables:        1 2 3; ;sd sq sx i x i x= = =  

• Input variables:        1 2 3; ;sd sq su u u u u= = =  

• Output variables:     1 2 3; ;sd sq sy i y i y= = =  
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9.2.1 Nonlinear controller design based on "exact linearization" 
Using the idea in the section 3.6.1 the design can be realized in the 

following steps: 
• Step 1: Calculation of the vector [ ]1 2, , , mr r r=r  of the relative 

difference orders. 
• Step 2: Calculation of the matrix L(x) using the formula (3.99) and 

check of its invertibility. 
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1 1
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1 1
1 1
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x x
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 (9.3) 

After that the fulfillment of the condition (3.95) is checked. 
• Step 3: Realization of the coordinate transformation using (3.96). 
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      (9.4) 

• Step 4:  Calculation of the state-feedback control law (3.98): 
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= + = +
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  (9.5) 

Using the represented steps or the formulae (9.3) - (9.5) the design for 
drive systems with IM can now be proceeded as follows: 
• Step 1: Calculation of the vector r. 

a) Case j = 1: 

[ ]
1

1
1 1

( )( ) 1 0 0 0 0
0

h

a
gL g a= = =xx h

x       (9.6)a 
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[ ]
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Therewith r1 = 1 follows from the equation (9.6). 
b) Case j = 2: 
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From the equation (9.7), r2 = 1 similarly follows. 
c) Case j = 3: 
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From the equation (9.8), r3 = 1 follows then. 
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It is easy to see that [ ] 2det ( ) 0a=L x , and therefore the matrix L(x) 
can be inverted. The necessary and sufficient conditions are summarized: 

[ ] 2
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             (9.10) 

The fulfilled condition (9.11) indicates that the system (9.1) can be 
linearized exactly, or that the coordinate transformation can now be made. 
• Step 3: Realization of the coordinate transformation. 

a) The state space x is transformed into a new state space z using (9.4). 
1
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b) The new state space model is calculated as follows. 
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The unknown terms in the equation (9.12) have to be calculated now. 
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• Step 2: Calculation of the matrix L. 
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[ ]

/
1

/ /2
2 2 2

( )( ) 0 1 0
0

rd

f r rd r rd

d x c
gL g f d x cT d x cT

+

= = = +xx
x

 

[ ]

/
1

/1
3 2

( )( ) 0 0 1 0
0

rd

f r rd

d x c
gL g f d x cT

+

= = =xx
x

 

The result of the coordinate transformation is then: 

/1
1 1 2 3 1

/1
2 2 1 3 2

3
3 3

rd

r rd

dz d x c au x u w
dt
dz d x cT au x u w
dt
dz u w
dt

= + + + =

= + =

= =

   (9.13) 

The following equation will be obtained from (9.13): 
/

11 2 1
/

2 2 1 2

3 3
( )( )

0
0

0 0 0 1

( ) ( )

rd

r rd

d x cw a x u
w d x cT a x u
w u

+

= = +

= +

L x up x

w

w p x L x u

   (9.14) 

• Step 4: The control law, thereat w represents the new input vector, can 
be calculated by equation (9.14). 

( )
( )

( ) ( ) ( )1 1 1( )= + = +
a x

u L x p x L x w a x L x w     (9.15) 

Using the matrix L in equation (9.9), L-1 is then obtained to: 

2
1

1

1 0
0 1
0 0 0

a x a
a x a=L            (9.16) 

The state-feedback control law or the coordinate transformation law 
(9.15) can be written in detailed form: 
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( )

/
11 2 1

/
2 2 1 2

3 3

/
1

/
2

1 0
0 1

0 0 0 0

1 1 1

1 1 1

0

rd

r rd

s s rd
s r r

s s rd
s r

d x a c au a x a w
u d x a cT a a x a w
u w

L x L
T T T

L x L
T T

= = + +

+

= + +

u

( )

( )1

2 1

1 2

3

0
0
0 0 1

s s

s s

L L x w
L L x w

w
+

wL x

a x

 

(9.17) 

9.2.2 Feedback control structure with direct decoupling for IM 
Using the state feedback or the coordinate transformation (9.17) the 

exact linearized IM model can be represented as in the figure 9.1. The new 
state model will now be the starting point for the controller design. 

 

 
Fig. 9.1 Substitute linear process model of the IM as starting point for controller 
design (cf. figure 3.17) 

It is not difficult for the new linear model to derive the input-output 
relation. After some transformations the following transfer function will be 
obtained: 



294      Nonlinear control structures for three-phase AC drive systems 

1

2

3

1 0 0 1 0 0
( ) 0 1 0 ( ) 0 1 0 ( )

0 0 10 0 1

r

r

r

s s
s s s s s

ss

= =y w w   (9.18) 

At more exact analysis of the equation (9.18) the following essential 
knowledge can be learned: 
• Besides the exact linearization achieved in the complete new state space 

z, the input-output decoupling relations are totally guaranteed. 
• The three transfer functions respectively contain only one element of 

integration. 
Based on both these new results it seems to be possible to replace the 

two-dimensional current controller (figure 1.6) by a coordinate 
transformation and two separate current controllers for both axes dq 
(figure 9.2). 

The direct decoupling concept in the figure 9.2 is dynamically effective 
for the complete state space. The two current controllers Risd and Risq need 
not have the PI characteristic, and can be designed with modern algorithms 
such as dead-beat control. A dynamical and nearly undelayed impression 
of the motor torque can be guaranteed without breaking any linearization 
condition. 

 
Fig. 9.2 The new control structure of the inner loop (impression of the stator 
current components) with direct decoupling designed using the method of exact 
linearization 
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9.3 Nonlinear control structure for drive systems 

The nonlinear process model of the PMSM was derived in the section 
3.6.4 as follows: 

( ) ( ) ( ) ( )
( )

1 1 2 2 3 3u u u
•

= + + +

=

x f x h x h x h x

y g x
      (9.19) 

1 2

2 1 2 3 1

1 1 1 2 2 2 3 3 3

0
( ) ; ( ) 0 ; ( ) ; ( )

0 0     0 1
( ) ; ( ) ; ( )

p

cx ax ba
dx b bx a b

y g x y g x y g x

= = = =

= = = = = =

f x h x h x h x

x x x

 (9.20) 

• Parameters:   1 ; 1 ; 1 ; 1sd sq sd sqa L b L c T d T= = = =  

• State variables:  1 2 3; ;= = =sd sq sx i x i x  

• Input variables:  1 2 3; ;= = =sd sq su u u u u  

• Output variables: 1 2 3; ;= = =sd sq sy i y i y  

9.3.1 Nonlinear controller design based on "exact linearization" 
The design is carried out similarly as in the case of the IM. 

• Step 1: Calculation of the vector r. 
a) Case j = 1: 

( ) [ ]
1

1
1 1( ) 1 0 0 0 0

0
h

a
g

L g a= = =
x

x h
x

      (9.21)a 

( ) [ ]
2

1
1 2

0
( ) 1 0 0 0

0
h

g
L g b= = =

x
x h

x
       (9.21)b 

( ) [ ]
3

2
1 2

1 3 1( ) 1 0 0 0

1
h p

ax b
g axL g bx a b

b
= = =

x
x h

x
   (9.21)c 

From the equation (9.21) r1 = 1 follows. 
 
 

with PMSM 
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b) Case j = 2: 

( ) [ ]
1

2
2 1( ) 0 1 0 0 0

0
h

a
g

L g = = =
x

x h
x

       (9.22)a 

( ) [ ]
2

2
2 2

0
( ) 0 1 0 0

0
h

g
L g b b= = =

x
x h

x
     (9.22)b 

( ) [ ]
3

2
2

2 3 1

1

( ) 0 1 0

1

0

h p

p

ax b
g

L g bx a b

bx b
a

= =

=

x
x h

x     (9.22)c 

With the equation (9.22) r2 = 1 is obtained. 
c) Case j = 3: 

( ) [ ]
1

3
3 1( ) 0 0 1 0 0

0
h

a
g

L g = = =
x

x h
x       (9.23)a 

( ) [ ]
2

3
3 2

0
( ) 0 0 1 0

0
h

g
L g b= = =

x
x h

x       (9.23)b 

( ) [ ]
3

2
3

3 3 1( ) 0 0 1 1 0

1
h p

ax b
g

L g bx a b= = =
x

x h
x

 (9.23)c 

With the equation (9.23) r3 = 1 is obtained. 
• Step 2: Calculation of the matrix L. 

( )

( )

1 2 3

1 2 3

1 2 3

1 1 1 2

2 2 2 1

3 3 3

( ) ( ) ( ) 0
( ) ( ) ( ) 0

0 0 1( ) ( ) ( )

det 0

h h h

h h h p

h h h

L g L g L g a ax b
L g L g L g b bx a b

L g L g L g

ab

= =

=

x x x

L x x x x

x x x

L x
 (9.24) 
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a) The state space x is transformed into a new state space z using (9.4).  
After replacing r1 = r2 = r3 = 1 into (9.4), the same result like (9.11) is 

obtained: 
1
11 1 1
2

2 1 2 2
33 3 31

( ) ( )
( ) ( )

( )( )

mz g x
z m g x
z g xm

= = = =

x x
z x x

xx
        (9.25) 

b) The new state model is similar to (9.12). 

1 2 3

1 2 3

1 2 3

1 1

1 1 1 1 2 1 3

2 2

2 2 1 2 2 2 3

3 3

3 3 1 3 2 3 3
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( ) ( ) ( ) ( )
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f h h h

f h h h

f h h h
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dt dt

L g L g u L g u L g u
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dt dt

L g L g u L g u L g u

=

= + + +

=

= + + +

=

= + + +

x x
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x x x x

x x
x

x x x x

x x
x

x x x x

 (9.26) 

with: 

( ) [ ]
1

1
1 2 1( ) 1 0 0

    0
f

c x
g

L g f d x c x= = =
x

x
x  

( ) [ ]
1

2
2 2 2( ) 0 1 0

    0
f

c x
g

L g f d x d x= = =
x

x
x  

( ) [ ]
1

3
3 2( ) 0 0 1 0

     0
f

c x
g

L g f d x= = =
x

x
x  

After inserting of the above calculated terms into the equation (9.26), 
the result of the coordinate transformation is given as follows: 

• Step 3: Realization of the coordinate transformation. 
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1
1 1 2 3 1

2
2 2 1 3 2

3
3 3
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dz ac x au x u w
dt b
dz bd x bu x b u w
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= + + =

= =

    (9.27) 

From the equation (9.27) the new input vector w is derived as: 

1 1 12

2 2 1 2

3 3
( ) ( )

0
0

     0 0 0 1
p

w cx ua a x b
w dx b b x a b u
w u

= = +

p x uL x

w   (9.28) 

• Step 4: The control law or the transformation law results from the 
equation (9.28). 
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( )1
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30 0 1
p

w
w
w
wL x

  (9.29) 

9.3.2 Feedback control structure with direct decoupling for 
PMSM 

Similarly to the IM and using the state feedback or the coordinate 
transformation (9.29) the exact linearized PMSM model can be 
represented as in the figure 9.3. The difference between IM and PMSM 
consists here in the fact that a flux model is not needed any more, because 
the pole flux is permanently available. 
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Fig. 9.3 Substitute linear process model of the PMSM 

The new model in the figure 9.3 can be written in equation form as 
follows: 

1

2

3

1

2

2

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 0 0
0 1 0
0 0 1

w
d w
dt

w

z
z
z

= = +

= =

z z w

y z

      (9.30) 

Similarly to the case IM with the equation (9.18), the following transfer 
function for the PMSM is obtained: 

1

2

3

1 0 0 1 0 0
( ) 0 1 0 ( ) 0 1 0 ( )

0 0 10 0 1

r

r

r

s s
s s s s s

ss

= =y w w   (9.31) 

It can be seen easily that the same conclusions about the direct 
decoupling between the dq axes and the transfer functions of the decoupled 
input-output couples are valid also here. The summary then is that 
the control structure with direct decoupling in the figure 9.2 (of course 
without the flux model) can be used for the PMSM. 

The new control concept in the two cases IM and PMSM with direct 
decoupling has some features besides the mentioned advantages which 
should be mentioned here: 
• The transformation laws or the control laws (9.17) and (9.29) contain 

only static feedbacks, no time dependent components like integration 
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and differentiation so that this nonlinear concept is very well suitable for 
a digital implementation. 

• Because of parameter faults caused by an inaccurate parameter setting 
or by parameter changes during operation, stationary faults of the 
coordinate transformation always exist. This can be avoided by a 
dynamic concept using an additional parameter identification and 
adaptation or by additional integral parts in the transformation law. 
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10 Linear control structure for wind power plants 
with DFIM 

Due to the mechanical wear at the slip-rings wound rotor induction 
machines are only rarely used as motors today. Regardless, they gain 
increasing importance for generator applications in wind and water power 
plants. Their main advantage in this area is that the inverter in the rotor 
circuit can be designed to a smaller capacity with regard to the maximum 
generator output. Furthermore, the DFIM can be ran in a comparatively 
large slip range which allows for better utilization of the available wind 
energy. 

10.1 Construction of wind power plants with DFIM 

By means of a bidirectional converter in the rotor circuit the DFIM is 
able to work as a generator in both subsynchronous and oversynchronous 
operating areas. In both cases the stator is feeding energy into the mains. 
Figures 10.1b and 10.1c show the energy flow in both operating areas. The 
rotor: 
• takes energy from the mains in subsynchronous mode and 
• feeds energy back to the mains in oversynchronous mode. 

Independent of the mechanical speed (subsynchronous, 
oversynchronous) only the sign of the electrical torque determines if the 
DFIM is working in motor or in generator mode. According to figure 10.1a 
the generator mode is defined by a negative torque. The torque amplitude 
is equivalent to the delivered or received active power of the machine. 
During dynamic changes of torque or active power the adjusted power 
factor of the plant is required to stay uninfluenced and constant. 

The front-end converter controls the active power flow into the DC link 
by controlling the DC link voltage amplitude. The inverter on the rotor 
side (figures 1.9, 1.10) is responsible for the adjustment of the desired 
torque. The control strategy for the reactive current in both inverters is 
designed to establish the desired power factor of the overall plant. 
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Therefore the generator is capable to work as reactive power compensator 
or reactive power generator as well. 

 

 
Fig. 10.1 Operating areas of the DFIM and energy flow in generator: (a) 
Operating areas of the DFIM; (b) Energy flow in subsynchronous mode; (c) 
Energy flow in oversynchronous mode 

A number of works have been published in the recent years dealing with 
the problem of variable speed generators in wind or water power 
applications ([Suchaneck 1985], [E-Cathor 1987], [Dietrich 1990], [Pena 
1995], [Tnani 1995], [Stemmler 1995]). Some of them are investigating 
different configurations for the converter-generator system like 
synchronous generator [E-Cathor 1987], oversynchronous cascade 
converter with natural commutation [Dietrich 1990]. In [Suchaneck 1985] 
a DFIM generator system for the small power range is proposed using the 
rotor current components as actuating variables for active and reactive 
power. A decoupled control of torque and rotor excitation current is 
presented in [Pena 1995] using stator flux orientation. Special attention is 
given to optimum speed tracking of the wind turbine. In [Tnani 1995] a 
decoupled control of active and reactive power is developed using a 
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complete dynamic machine model for decoupling. A predictive load model 
is introduced to consider changing consumer conditions on the grid. 

The chapter 10 deals with the often and successfully practiced control 
concept with decoupling between the torque mG and the power factor cosϕ, 
and therewith between the active power P and reactive power Q [Quang 
1997]. The design of the system is shown in the figure 10.2. 

 

 
Fig. 10.2 Construction of the wind power plants using DFIM 

10.2 Grid voltage orientated controlled systems 

The equations (1.9) – (1.15) and the representations in the section 1.3 
have indicated the meaning of the grid voltage orientation in short form. 
The stator of the machine is connected to the constant-voltage constant-
frequency mains system. Since the stator frequency is always identical to 
the mains frequency, the voltage drop across the stator resistance can be 
neglected compared to the voltage drop across the main and leakage 
inductances Lm and Lσs. Therewith the equation (1.10) was obtained: 

ors s
s s s s s s s

d dR j
dt dt

= +u i u u     (10.1) 

Equations (10.1) say that the stator flux is always lagging the stator 
voltage by a phase angle of nearly 90 degree. Therefore the orientation of 
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the reference frame to the stator voltage approximately means orientation 
to the stator flux as well. 
• For stator flux orientation:  usd = 0, sq = 0 

• For grid voltage orientation: usq = 0, sd = 0 
The implementation of the grid voltage orientation requires the accurate 

and robust acquisition of the phase angle of the grid voltage fundamental 
wave, considering strong distortions due to converter mains pollution or 
other harmonic sources. Usually this is accomplished by means of a phase 
locked loop (PLL). 

10.2.1 Control variables for active and reactive power 

The torque of the DFIM is defined as: 

( ) ( )3 3
2 2G p s s p r rm z z= × = ×i i        (10.2) 

The equation (10.2) opens several ways for calculating the electrical 
torque mG. Because the DFIM is controlled from the rotor circuit, the 
design of the torque control requires a form of the torque equation which 
includes the rotor current. After introducing the rotor current into the first 
part of (10.2) the following formula will be obtained: 

( ) ( ) ( )/3 3 1
2 2

m
G p s r p r s r

s

Lm z z L
L

= × = ×i i    (10.3) 

Considering the grid voltage reference frame (reference coordinate 
system) with sd = 0, equation (10.3) can be simplified to: 

( ) /3 3 1
2 2

m
G p sq rd p r sq rd

s

Lm z i z L i
L

= =      (10.4) 

Because the stator flux is kept constant by the constant grid voltage 
(refer to (10.1)) the component ird may be considered as the torque forming 
current which also represents the active power P of the generator. 

The equation (10.4) needs the knowledge of the machine inductances 
for the torque calculation. The main inductance depends on the 
magnetization working point which is determined by the grid voltage 
amplitude. For the latter tolerances of at least +/-10% must be considered 
because the working point may be shifted into or out of the saturation 
range due to variations of the grid voltage amplitude. Therefore, using 
equation (1.16) for torque feedback calculation requires an accurate 
measuring and consideration of the Lm saturation characteristic, otherwise 
the requirements for the torque accuracy cannot be fulfilled. It would be 
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better to utilize a torque model which does not require the knowledge of 
any machine parameters, or at least not any working point dependent ones 
like the main inductance. For this, the left equation (10.2) offers itself. 
Substituting the stator flux linkage by the first equation of (3.77) and 
considering grid voltage orientation with 0sd dt =  it is obtained: 

23
2

sd sd s s
G p

s

u i R im z=             (10.5) 

For usual values of the stator resistance of large machines, (10.5) can be 
re-written with good approximation to: 

3
2

sd sd
G p

s

u im z=               (10.6) 

On the other hand it was already shown in the section 1.3 that thanks to 
the relations (1.12), (1.14) and (1.15) the current irq is regarded as a cosϕ 
forming component or as the decisive current for the reactive power Q. 

10.2.2 Dynamic rotor current control for decoupling of active 
and reactive power 

The control system of the DFIM consists of two parts: the generator-
side control and the grid-side control (front-end converter control), in 
which the generator-side control was already introduced in the figure 1.9.  

In section 3.4 the (continuous and discrete) state space models of the 
DFIM were introduced. Since the two rotor current components ird, irq play 
the role of P and Q control variables an inner control loop to impress the 
rotor current is needed.  

The process model of the rotor current is represented by the figure 3.15b 
and by the first of both equations (3.85): 

( ) ( ) ( ) ( ) ( )'
11 12 1 11r r s s s r rk k k k k+ = + + +i i H u H u   (10.7) 

After splitting (10.7) into its real and imaginary components, the 
following equations are obtained in the grid voltage orientated reference 
frame: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( )

/
11 12 14

11 11
/

12 11 13

11

1

1

rd rd rq sq

s sd r rd

rq rd rq sq

r rq

i k i k i k k

h u k h u k

i k i k i k k

h u k

+ = + +

+ +

+ = + +

+

   (10.8) 
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In (10.8) the stator flux and the stator voltage might be regarded as 
disturbances to be compensated by a feed-forward control. These values 
are nearly constant and therefore can be compensated exactly and fast 
enough by the implicit integral part of the controller, so that their feed-
forward compensation may be omitted. Regardless, the compensation shall 
be included in the following steps to achieve a more coherent design. 

The further design is identical to the description in the chapter 5. 
Introducing y(k) as output value of the vector controller Ri, the following 
approach for the feed-forward compensation network may be constructed: 

( ) ( ) ( ) ( )1 /
1 12 11 1 1r r s s sk k k k+ = + +u H y H u    (10.9) 

After inserting (10.9) into (10.7) the compensated process will be 
obtained: 

( ) ( ) ( )111 1r rk k k+ = +i i y  or ( ) ( ) ( )1
11r rz z z z z= +i i y   

 (10.10) 
The structure of the current controller is shown in the figure 10.3. The 

compensated process equation (10.10) contains a dead time of one 
sampling interval y(k-1) to account for the delay between the feedback 
acquisition and the voltage output (computing delay). y(k-1) fulfills the 
following equation in the z-domain: 

( ) ( ) ( )*
I r rz z z=y R i i             (10.11) 

Superscript „*“: reference value (set point) 
 

 
Fig. 10.3 Rotor current control structure using feed-forward compensation of 
stator voltage and stator flux 

After substituting (10.11) into (10.10) the following transfer function of 
the closed current loop will be obtained: 

( ) ( )
11 1 *

11r I I rz z z z z= +i I R R i        (10.12) 
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Similarly to the chapter 5 a vector controller with dead-beat behavior for 
(10.12) is given by: 

1
11

21I
z

z
= IR               (10.13) 

The dead-beat behavior results in fast dynamics and accuracy, the vector 
design ensures good decoupling between the components ird and irq. For a 
less fast (and thus less noise sensitive) behavior, designs with finite 
adjustment times (cf. section 5.3.3) or PI-type designs may be applicable 
as well. 

If the tracking errors are defined as: 
( ) ( ) ( ) ( ) ( ) ( )* *;wd rd rd wq rq rqx k i k i k x k i k i k= =     (10.14) 

the controller equations in the time-domain including the disturbance 
feed-forward compensation can be written as follows: 

1
11 11 12

/
14 11

1
11 12 11

/
13

( 1) ( ) ( 1) ( 1)

( 2)

( 1) ( ) ( 1) ( 1)

( 2)

rd r wd wd wq

d sq s sd

rq r wq wd wq

q sq

u k h x k x k x k

y k h u

u k h x k x k x k

y k

+ =

+

+ = +

+

 (10.15) 

The complete structure of the generator-side control was already shown 
in the figure 1.9. 

 
Fig. 10.4 Generator-side control structure using linear rotor current controller 
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10.2.3 Problems of the implementation 

The decoupling structure in the figure 10.4 consists of two essential 
functional blocks: 
• Calculation of the feedback (actual) values for torque and power factor 

using stator voltage, currents and speed (block FPT) and 
• Calculation of the current set points (block DNW). 

 
a) Block FPT: The following equations are realized: 

• Calculation of stator flux: 
/
sq sq rqi i+                (10.16) 

• Calculation of torque: 
3
2

sd sd
G p

s

u im z=               (10.17) 

• Calculation of stator current amplitude: 
2 2

s sd sqi i= +i                (10.18) 

• Calculation of sin : 

sin sq

s

i
=

i
                (10.19) 

The calculated torque and sin  values are serving as feedbacks for the 
torque and power factor control. Both controllers are of PI type. 

 
b) Block DNW: Using the torque and power factor controller outputs yM 

and y , the reference values for the inner-loop current control are 
calculated as follows: 
• Torque forming current component *

rdi : 

( )
*

/3 1
2

M
rd

p r sq

yi
z L

=             (10.20) 

• sin  forming current component *
rqi : 

* /
rq sq si y= i               (10.21) 

The effectiveness of the decoupling is shown in figure 10.5. The 
diagrams show step responses of the torque and the power factor at both 
oversynchronous and subsynchronous speed. For the subsynchronous case 
both low pass filtered and unfiltered values of the torque and power factor 
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are depicted. The control is optimized to the filtered values therefore the 
unfiltered values exhibit a stronger overshot. As already pointed out a 
nearly undelayed injection of the reference values is theoretically possible, 
however, measurement noise and current harmonics force to slow down 
the control dynamics. The adjusted rise time of the unfiltered torque of 
about 30 ms fulfills all practical requirements. During the torque transients 
(step size about half the nominal torque) almost no changes of cosϕ are 
visible, the same applies for the torque during cosϕ transients. 

 

 
Fig. 10.5 Torque and cos  step changes of a 620kW generator. (left) Torque 
reference -1000  -3000Nm; (right) cosϕ reference 1.0  0.825 

10.3 Front-end converter current control 

The front-end converter control is feeding the DC link from the grid 
during subsynchronous operation and feeds back energy to the supply 
during oversynchronous operation. This task is accomplished by means of 
a DC link voltage control, which is supposed to keep a constant bus 
voltage in all operation modes. Corresponding to the generator control the 
grid side contains a power factor control loop which compensates the line 
filter reactive-power demand and in connection with the generator-side 
realizes the reactive power reference for the overall plant. 

The output current of the mains converter iN can be split as usual into 
real and imaginary parts: 

N Nd Nqi j i= +i                (10.22) 
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In the grid voltage orientated reference frame, the real part acts as active 
power producing component and the imaginary part as reactive power 
producing component. Therefore, iNd is a good choice to be used as control 
variable for the DC link voltage. Appropriately, iNq forms the control 
variable for the power factor control on the grid side. Similarly to the 
generator control, the power factor is controlled indirectly via sin , being 

direct proportional to iNq, cf. equation (1.15). Both UDC and sin  
controllers are of PI-type. 

The commands iNd and iNq are realized by an inner-loop current control. 
Therefore the complete structure of the grid-side control can be given like 
in the figure 1.10. 

As it had turned out in the previous section, the current control plays a 
decisive role in the control concept and for its correct realization. 
Therefore it shall be described in some more detail in the following 
section. All current control loops are designed in the grid voltage 
orientated reference frame. 

10.3.1 Process model 

 
Fig. 10.6 Grid-side control plant: (a) Common grid-side scheme; (b) Equivalent 
circuit; (c) Equivalent circuit for process model derivation 
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The front-end converter is usually connected to the supply through the 
reactor LD, RC-filter and transformer (figure 10.6a). Considering the grid 
inductance LN and at the same time replacing the transformer by its leakage 
inductance L T and the grid by the voltage source eN gives the equivalent 
circuit in the figure 10.6b. The voltage drop over the transformer and the 
grid inductance is considerably smaller then the one over the RC-filter and 
therefore may be neglected. Taking into account the resistance RD of the 
inductor the equivalent circuit in figure 10.6c is finally obtained as the 
starting-point for the derivation of the current control process model (RD is 
not drawn here). 

In steady state condition the following filter equation is derived from 
figure 10.6c: 

1
N F F F

s F
R

j C
= +e i i             (10.23) 

In the grid voltage orientated reference frame and with: 
 ; 0N Nd Nq Nqe je e= + =e            (10.24)  

equation (10.23) can be written in component form as follows: 
1

with
10

Nd F Fd Fq
s F

F Fd Fq

F Fq Fd
s F

e R i i
C

i ji
R i i

C

=
= +

= +
i     (10.25) 

With equation (10.25) the filter currents iFd and iFq can be calculated for 
the stationary condition. In steady state, these currents and the grid voltage 
eN may be considered as constant and therefore act as constant 
disturbances for the control loop. They may be compensated by feed-
forward control or by an integral part in the controller. 

The grid current and voltage equations can be derived from the figure 
10.5c: 

N
N D N D N

N T F

dR L
dt

= + +

= +

iu i e

i i i
          (10.26) 

After transforming (10.26) into the grid voltage orientated reference 
frame and substituting the current iN from the first equation of (10.26) by 
the second equation the new voltage equation is obtained: 

T
N D T D s D T Nv

dR L j L
dt

= + + +iu i i e        (10.27) 

with: 
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0

Nv N s D F D F Nvd Nvq

F
D

j L R e je

dL
dt

= + + = +

=

e e i i

i       (10.28) 

From (10.27) the continuous process model in the state space can be 
written in component form: 

( )

( )

1 1

1 1

Td
Td s Tq Nd Nvd

D D

Tq
s Td Tq Nq Nvq

D D

di i i u e
dt T L

di
i i u e

dt T L

= + +

= +
      (10.29) 

The time discrete state space model is given immediately by: 
( 1) ( ) ( ) ( )T N T N N N Nvk k k k+ = +i i H u H e      (10.30) 

with: 

1 0
;

1 0

s
D D

N N

s
D D

T TT
T L

T TT
T L

= =H       (10.31) 

With the process model (10.30) the controller design can be carried out 
now. If only the inverter output current iN is measured, the filter current iF 
must be calculated by means of (10.25) and finally the grid (or 
transformer) current iT using (10.26). 

10.3.2 Controller design 
The design is similar to the rotor current controller. With the controller 

output yN(k), the following equation can be written for the feed-forward 
compensation network according to (10.30) considering the computation 
time delay: 

[ ]1( 1) ( ) ( 1)N N N N Nvk k k+ = + +u H y H e        (10.32) 
After substituting (10.32) into (10.31) the compensated process model is 

given: 
( 1) ( ) ( 1)T N T Nk k k+ = +i i y          (10.33) 

Two things have to be mentioned here: 
• The structure of the compensated process model is totally identical with 

the one of the rotor side (10.10). 
• Likewise, eN(k) acts as constant disturbance and therefore may be 

compensated automatically by an implicit integral part in the controller 
without any special compensation. 



Front-end converter current control      313 

For control with dead-beat response and a good decoupling between the 
current components the controller equation can be immediately written to: 

1

21
N

IN
z

z
= IR               (10.34) 

Neglecting the feed-forward compensation of the constant disturbances 
the equation of the controller is obtained in the time domain as: 

]

( 1) ( ) 1 ( 1) ( 1)

( 2)

( 1) ( ) ( 1) 1 ( 1)

( 2)

D
Nd Td Td s Tq

D

Nd

D
Nq Tq s Td Tq

D

Nq

L Tu k x k x k Tx k
T T

y k

L Tu k x k Tx k x k
T T

y k

+ =

+

+ = +

+

  

 (10.35) 
with: 

* *; ; ;T Td Tq Td Td Td Tq Tq Tq N Nd Nqx jx x i i x i i y jy= + = = = +x y  

 

 

Fig. 10.7 Complete grid-side control structure 

Because the control starts with immediately connected disturbance eN, 
the controller output yN and its past values must be pre-initialized to avoid 
undesirable transients: 

( 0) ( 0)N N Nvk k= = =y H e           (10.36) 



314      Linear control structure for wind power plants with DFIM 

The controller (10.34) - (10.35) works robust and reliable. However, if 
the reactor LD is dimensioned too small, the high-dynamic behavior can 
cause undesirable ripples in the transformer or grid current iT. In this case a 
controller design with finite adjustment time would lead to a current 
waveform with a better THD coefficient. The complete grid-side control 
structure is shown in the figure 10.7 (cf. [Quang 1997]). 
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11 Nonlinear control structure with direct 
decoupling for wind power plants with DFIM 

11.1 Existing problems at linear controlled 

An important criterion for the design of the control concept is to 
maintain the decoupling of active and reactive power in both steady state 
and dynamic mode. This requirement is fulfilled to a very high degree by 
using a rotor current controller (cf. chapter 10 or [Quang 1997]) to impress 
control variables (rotor current components) which immediately inject 
torque and power factor (cf. figure 10.4). This structure, in which the 
current controller is always based on DFIM models linearized within a 
sampling period, was successfully implemented in wind power plants. The 
linearization is made by the assumption that the sampling time T of the 
discretization is chosen small enough so that the rotor frequency r can be 
regarded as constant within T. Because of this assumption the frequency r 
is now a parameter in the system matrix of the discrete process model, and 
the bilinear continuous model becomes a linear time-variant system for 
which the well known design methods of linear systems can be used. 

Nowadays most grid suppliers request ride-through of the wind turbine 
during grid faults (short-circuits, ref. to [Dittrich 2003]). That means the 
wind power plant must be able to feed reactive power into the grid to 
support the retaining voltage level, and the rotor frequency r becomes 
very dynamic. In these cases, in which the linearization condition can not 
be fulfilled any more, a nonlinear design for the rotor current control loop 
would be able to deliver better results than the linear controller. Within the 
last few years a number of efforts had been made on this issue from 
both theoretical and practical [Chi 2005], [Quang 2005]. They succeeded – 
as in the case of the IM and PMSM – in a new control structure with direct 
decoupling between the dq axes using the method of the exact 
linearization. 

wind power plants 
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11.2 Nonlinear control structure for wind power plants 
with DFIM 

In the section 3.6.3 the nonlinear process model of the DFIM was 
already developed as the starting point for the controller design. 

( ) ( ) ( ) ( )
( )

1 1 2 2 3 3u u u
•

= + + +

=

x f x h x h x h x

y g x
      (11.1) 

with: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

2 1 2 3 1

1 1 2 2 3 3

1 0
; 0 ; 1 ;

0 0 0 1

; ;

ax x
ax x

g x g x g x

= = = =

= = =

f x h x h x h x

x x x

    (11.2) 

• Parameters: 
1 1 1 1 1 1; ; ; ;

r s r m s
a b c d e

T T L L T
= + = = = =  

• State variables: 
[ ]1 2 3 1 2 3; ; ;T

rd rq rx x x x i x i x= = = =x  
• Input variables: 

[ ] / /
1 2 3 1

/ /
2 3

;

;

T
sd sq rd sd

sd sq rq sq r

u u u u e b cu du

u b e cu du u

= = +

= + + + =

u
 

• Output variables: 
[ ]1 2 3 1 2 3; ; ;T

rd rq ry y y y i y i y= = = =y  

11.2.1 Nonlinear controller design based on "exact 
linearization" 

The design is made similarly as in the case of the IM. 
• Step 1: Calculation of the vector r. 

a) Case j = 1: 

( ) ( ) ( ) [ ]
1

1
1 1

1
1 0 0 0 1 0

0
h

g
L g = = =

x
x h x

x
      (11.3)a 
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( ) ( ) ( ) [ ]
2

1
1 2

0
1 0 0 1 0

0
h

g
L g = = =

x
x h x

x
       (11.3)b 

( ) ( ) ( ) [ ]
3

2
1

1 3 1 21 0 0 0
1

h

x
g

L g x x= = =
x

x h x
x

     (11.3)c 

From (11.3) it results r1 = 1. 
b) Case j = 2: 

( ) ( ) ( ) [ ]
1

2
2 1

1
0 1 0 0 0

0
h

g
L g = = =

x
x h x

x
       (11.4)a 

( ) ( ) ( ) [ ]
2

2
2 2

0
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0
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g
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x
x h x

x
     (11.4)b 

( ) ( ) ( ) [ ]
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x

x h x
x

    (11.4)c 

Therewith it follows r2 = 1. 
c) Case j = 3: 

( ) ( ) ( ) [ ]
1

3
3 1

1
0 0 1 0 0

0
h

g
L g = = =

x
x h x

x
       (11.5)a 

( ) ( ) ( ) [ ]
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3
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0
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       (11.5)b 

( ) ( ) ( ) [ ]
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x
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x h x
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     (11.5)c 

With the equation (11.5) r3 = 1 is obtained now. 
• Step 2: Calculation of the matrix L. 

( )
1 2 3

1 2 3

1 2 3

1 1 1 2

2 2 2 1

3 3 3

( ) ( ) ( ) 1 0
( ) ( ) ( ) 0 1

0 0 1( ) ( ) ( )

h h h

h h h

h h h

L g L g L g x
L g L g L g x

L g L g L g

= =

x x x

L x x x x

x x x
 (11.6) 



Therewith it is: ( )det 1 0=L x x  
• Step 3: Realization of the coordinate transformation. 

a) The state space x is transformed into a new state space z using the 
equation (9.4). After replacing r1 = r2 = r3 = 1 into (9.4), the same result 
like (9.11) for the case IM and (9.25) for the case PMSM will be obtained: 

1
11 1 1
2

2 1 2 2
33 3 31

( ) ( )
( ) ( )

( )( )

mz g x
z m g x
z g xm

= = = =

x x
z x x

xx
        (11.7) 

The equations (9.11), (9.25) and (11.7) show that the new state variables 
are identical to the old ones, and therefore the physically fundamental 
properties of the system "electrical machines IM, PMSM and DFIM" 
remain unchanged after the transformation of state coordinates. 

b) The new state model is the same as (9.12) and (9.26): 
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1 2 3

1 2 3

1 1
1 1 1 1 2 1 3

2 2
2 2 1 2 2 2 3
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( ) ( ) ( ) ( ) ( )
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with: 
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These terms have to be inserted into the equation (11.8), and the result 
of the transformation will be obtained to: 
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1
1 1 2 3 1

2
2 2 1 3 2

3
3 3

dz ax u x u w
dt
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dt

= + + =

= + =

= =

        (11.9) 

From the equation (11.9) the new input vector w is given as follows: 

1 1 2 1

2 2 1 2

3 3
( ) ( )

1 0
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w ax x u
w ax x u
w u

= = +

p x L x u

w       (11.10) 

• Step 4: The control law results from (11.10) as follows. 
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  (11.11) 

11.2.2 Feedback control structure with direct 

Similarly to the cases IM and PMSM and using the state feedback 
(11.11), the exactly linearized DFIM model is represented in the figure 
11.1. It can be easily recognized that also here – like for IM – only the 
submodel of the rotor current is linearized exactly. In the case IM it was 
the submodel of the stator current. Both equations (9.11) and (11.7) 
express this clearly. 

decoupling for DFIM 



 
Fig. 11.1 Substitute linear process model of the DFIM 

The new linear process model of the DFIM is identical to the model 
expressed by the equation (9.18) and the comments to (9.18). Using the 
coordinate transformation (11.11) or the structure in the figure 11.1, the 
new generator-side control scheme can be derived as in the figure 11.2. 

 
Fig. 11.2 Generator-side control scheme using exact linearization by state 
coordinate transformation and two separate axis controllers to impress current 
components 
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To verify the capabilities of the newly proposed nonlinear control 
scheme, a series of simulations (cf. [Quang 2005]) have been performed. 
Results are shown below in figure 11.3 for the case of step changes in the 
grid voltage of different amplitudes. This special test procedure has been 
chosen due to the following considerations: 
• Generator systems are required to stay operational during grid voltage 

faults (fault ride-through, FRT). The control system should be capable 
to maintain this operability as far as possible to avoid falling back to 
hardware protection circuitry to ensure FRT. 

• From the control point of view, a grid voltage step change poses a 
strong disturbance to the system where its qualities can clearly be 
revealed. 
In the simulations, the results for a linear control system according to 

figure 10.4 and the nonlinear scheme outlined above are compared for 3 
different voltage steps to 70%, 50% and 25% retained grid voltage. Both 
control schemes had been implemented into an otherwise identical 
converter-generator system of a 2500 kW wind power plant. Fore sole 
comparison of the control systems, hardware protection and FRT features 
had been excluded deliberately. 

 

 
Fig. 11.3a  Grid voltage drop to 70% retaining voltage, 2500 kW converter-
generator system: (left) linear control scheme, (right) nonlinear control scheme, 
(top) Speed [rpm], grid voltage [V], torque [10 Nm], (bottom) rotor current d 
(torque) [A], rotor current q (flux) [A] 

 



 
Fig. 11.3b  Grid voltage drop to 50% retaining voltage, quantities like figure 11.3a 

 
Fig. 11.3c  Grid voltage drop to 25% retaining voltage, quantities like figure 11.3a 

For the examination of the control behaviour two different time spans 
must be distinguished: Immediately after the voltage step, the system will 
lose its controllability due to limitation of the rotor voltage. The 
performance here depends on how effective the limited voltage is assigned 
to the respective d- and q-components. After the voltage limitation is 
overcome and the system controllability regained, the performance can be 
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judged from how fast the rotor currents are forced to follow their set points 
again. 

The results show that the new direct decoupling concept clearly 
outperforms the linear control in both aspects: 
• Smaller oscillation amplitudes of stator and rotor currents occur in the 

first milliseconds after the fault instant while the rotor current 
controllers work in limitation mode. This means practically, that the 
system may cope with more serious fault events without triggering 
hardware protection functions. 

• The system control functionality is regained very fast after the 
controllers return to linear operation, resulting in short recovery time 
from disturbances and continuation of defined control behaviour. 
These results of simulation were also confirmed by a practical 

laboratory implementation [Lan 2006]. It should be mentioned also, that 
the differences between linear and nonlinear control with respect to torque 
behaviour are considerably less pronounced. This had to be expected, since 
the nonlinear decoupling has been developed with respect to rotor current, 
where the performance difference is clearly visible. To extend the 
nonlinear approach also to flux and torque control will be a matter of 
further research. 
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12 Appendices 

12.1 Normalizing - the important step towards preparation 
for programming 

So far, the algorithms with their control variables and parameters are 
given in the originally derived physical form. An implementation or a 
programming in this form is mainly impossible. Before this practical 
implementation can start, all algorithms have to be normalized and scaled 
if necessary, e.g. for fixed point and partly also for floating point 
processors. The purpose of the normalization consists of transferring these 
variables and parameters into a unity-less form and thus to prepare them 
for programming. The scaling is primarily necessary to increase the 
numerical accuracy which is of great importance for the use of fixed point 
processors. 

This important step towards preparation for programming is 
demonstrated on two examples. 

 
a) Example 1: 
The first equation of (3.55), which can be written in detail as follows, 

serves as the first example: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

/
11 12 13 11

/
12 11 14 11

1   

1

sd sd sq rd sd

sq sd sq rd sq

i k i k i k k h u k

i k i k i k k h u k

+ = + + +

+ = + +
  

(12.1) 
From (12.1) the following can be noticed: 

• The variables like currents /, ,sd sq rdi i  and voltages ,sd squ u  have to be 
normalized. 

• From the parameters only Φ11, Φ13 are already unity-less. All others 
have to be normalized. 
For the normalization of the currents, the maximum inverter current Imax 

is often chosen. For the normalization of the voltage, the maximum value, 
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which is 2UDC1)/3, is chosen. The quantity UDC is itself variable and, with 
respect to the hardware, has to be normalized by Umax while measuring. 
The equation (12.1) is totally identical with the following: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )

/

11 12 13
max max max max

max
11

max max

/

12 11 14
max max max max

max
11

max max

1

2
23
3

1

2
3

sqsd sd rd

DC sd

DC

sq sqsd rd

sqDC

i ki k i k k
I I I I

U k u kUh
I U U

i k i ki k k
I I I I

uU kUh
I U

+
= + +

+

+
= +

+
( )

2
3 DC

k

U

   (12.2) 

In the equation (12.2) new symbols are introduced and replaced: 
/

, ,/
, ,

max max

max
11 11

max max

; ;
2 3

2; ;
3

sd sq sd sqN N Nrd
sd sq rd sd sq

DC

N N N DC
u DC u DC

i u
i u

I I U
U Uh k U k h U
I U

= = =

= = =
     (12.3) 

Superscripts N: normalized quantities 
The parameters Φ Φ12 14,  are frequency dependent. The value fmax is 

used for the normalization of the frequencies. Using (3.54) it can be 
written then: 

( )12 max 1
max

14 max
max

2

2 2

1 1 12 2

Ns
s s f s

N
f

fT f T f T k f
f

fT f T f T
f

k f

= = = =

= = =

=

  (12.4) 

In (12.4) the symbols mean: 

                                                      
1) UDC: DC link voltage of the inverter 
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1 max 2 max
max max

1; ; 2 ; 2N Ns
s f f

f ff f k f T k f T
f f

= = = =   

 (12.5) 
The equation (12.1) can now be rewritten in the normalized form, in 

which the constants ku, kf1 and kf2 as well as the constant parameters Φ11, 
Φ13 have to be calculated only at the beginning, i.e. at the initialization of 
the system. 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

/
11 12 13

11
/

12 11 14

11

1   

1

N N N N
sd sd sq rd

N N
sd

N N N N
sq sd sq rd

N N
sq

i k i k i k k

h u k

i k i k i k k

h u k

+ = + +

+

+ = +

+

   (12.6) 

The original equation (12.1) exists now in programmable form without 
loss of its physical meaning. The voltages represent the degree of 
modulation in this normalized form in which the variable DC link voltage 
UDC is considered by the parameter 11

Nh , which has to be updated on-line. 
To achieve the most possible numerical accuracy with fixed point or 

integer arithmetic, the normalized quantities (represented in hexadecimal 
form) are shifted to the left (multiplied with 2) as much as possible without 
producing overflow. For normalized currents, voltages and frequencies 
which accept only values smaller than one, the multiplication factor can be 
e.g. 215 for 16 bit fixed point processors. This process is commonly 
described as the scaling. The multiplication factor of 215 is the scaling 
factor which at the same time means the number of digits behind the 
comma. For parameters, which by their nature are already greater than one, 
the scaling has to be carried out in a way that on the one hand the 
maximum word length is used, but on the other hand overflow is avoided 
simultaneously. In principle, this problem does not exist any more with the 
use of floating point processors and only appears for conversions between 
data types again, e.g. between integer numbers and signed floating point 
numbers. 

 
b) Example 2: 
A further typical example is shown by normalizing and scaling of the 

quantities within the equation (12.6) for the calculation of the angular 
velocity ω. 
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( ) ( ) ( )
( ) ( )

1

2

k k k T

k f k T

+ = +

= +
          (12.7) 

If the values 2π and fmax are chosen as normalizing quantities for the 
angle and frequency, and it is considered that: 
• the frequency has to be signed (e.g. positive for right and negative for 

left rotation), and 
• the angle has to be unsigned (i.e. only forwards counting 0, π, 2π, 3π, 

4π...) 
then e.g. 215 is possible to be used as scaling factor for the frequency at 

16 bit word length, and 216 for the angle. From (12.7) it will be obtained: 
( ) ( ) ( )16 16 15

max
max

1
2 2 2 2

2 2
k k f f T

f
+

= +     (12.8)a 

or 

( ) ( ) ( )16 16 15
32 1 2 2N N N

fk k f k k+ = +      (12.8)b 

In the equation (12.8)b it means: 
• 162 N× the unsigned integer calculation quantity for the angle, 
• 152 Nf× the signed calculation quantity for the frequency 

12.2 Example for the model discretization 

A system of second order following (3.5) is given with: 
0 1 0

0 0 1
a b

a b
= = =A B C        (12.9) 

a) Method 1: Series expansion with truncation after the linear term 
(Euler). The use of (3.14) provides: 

1 0
;

1 0
aT T b

T
T aT b

+
= =

+
HΦ         (12.10) 

b) Method 2: Series expansion with truncation after the quadratic term. 
The use of (3.14) provides again: 

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

1 2 1

1 1 2

aT aT T T aT

T aT aT aT T

+ + +
=

+ + +
Φ   

 (12.11)a 

in the section 3.1.2 
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1 2 2
2 1 2

aT T
bT

T aT
+

=
+

H          (12.11)b 

c) Method 3: Euler discretization in a suitable coordinate system. 
The method is applicable if the system matrix A owns the symmetry 

properties of the special block diagonal structure (12.9) which is often the 
case at the modeling of three-phase machines. In this case, state and input 
quantities can be understood as complex variables. 

( ) ( ) ( ) ( )

x yx j x

t a j t b t
•

= +

= +

x

x x u
          (12.12) 

At first, the continuous system is viewed in a coordinate system which 
circulates with the frequency -ω with respect to the target coordinate 
system, i.e. j te=x x  (to the topic “transformation of coordinates” 
cf. chapter 1). Considering the product rule, the following is obtained for 
the time derivative: 

( ) ( ) ( )t a t b t
•

= +x x u           (12.13) 
The discretization using Euler method leads to the following discrete 

state equation: 
( ) ( ) ( ) ( )1 1k aT k bT k+ = + +x x u       (12.14) 

For the inverse transformation into the target coordinate system, the 
equation (12.14) has to be subjected to the counter-rotation, i.e. 

( ) ( ) ( ) ( ) ( ) ( )1, 1 1j k j kk k e k k e += + = +x x x x    (12.15) 
Thereat, the discrete transformation angle ϑ results by Euler 

discretization as follows: 
( ) ( )1k k T+ = +             (12.16) 

The state equation is now in the target coordinate system: 
( ) ( ) ( ) ( )1 1j Tk e aT k bT k+ = + +x x u      (12.17) 

or resolved with discrete transfer matrices: 

( ) cos sin cos sin
1 ;

sin cos sin cos
T T T T

aT bT
T T T T

= + =HΦ   

 (12.18) 
d) Method 4: Substitute function using the Sylvester-Lagrange substitute 

polynomials. 
The eigen values of the continuous system matrix A will be: 

1,2 a j= ±  
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It follows then for equations (3.19) to (3.22): 
( ) ( )( )

( ) ( )
( ) ( )

( )
2 1 1 2

1 2

1 1 2 2

1 1 2 2 2 1

1 2

1 2 1 2

,

,
T T T T

M

M M

m m

e e e eR

=

= =

= =

= +

      (12.19) 

Therewith the substitute function R(A) can be given as: 

( )
2 1 1 2

1 2

1 2 1 2

T T T Te e e e= = +R A I AΦ     (12.20) 

and finally the system matrix Φ: 
cos sin
sin cos

aT T T
e

T T
=Φ           (12.21) 

The input matrix H is calculated by direct integration of Φ according to 
(3.12): 

( ) ( )
( ) ( )2 2

cos sin sin cos

sin cos cos sin

aT aT

aT aT

e a T T a e a T Tb
a e a T T e a T T a

+ +
=

+ + +
H

 (12.22) 

12.3 Application of the method of the least squares 
regression 

The method of the least squares regression is often used for the 
optimization of control loops or the identification of the system 
parameters. The goal is normally to find an approximate function y(x) in 
the form of a polynomial of nth order 

( ) 2
0 1 2 ... n

ny x a a x a x a x= + + + +        (12.23) 
from a set of m experimental measurement pairs [yi, xi], (i = 1,2,3,...,m) 

and by the prerequisite, that the loss function (cf. [Rojiani 1996]): 

( ) 2

1

m

i i
i

S y y x
=

=             (12.24) 

is minimized. A typical application example is the off-line identification 
of the main inductance Ls (cf. section 6.4.4, figure 6.18) in dependence on 
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the magnetizing current iμ. As an approach for L(i)1) a polynomial of 4th 
order, thus n = 4, is very suitable. 

( ) 2 3 4
0 1 2 3 4L i a a i a i a i a i= + + + +        (12.25) 

The task is now to determine the coefficients a0, a1, a2, a3 and a4 from m 
pairs [Li, ii] with (i=1,2,3,...,m). To minimize the loss function, at first 
(12.25) has to be inserted into (12.24), and then the partial derivations 

0 1 2 3 4
; ; ; ;S S S S S

a a a a a
          (12.26) 

have to be set to zero. Thereby a system with (n+1)=5 linear equations 
results (cf. [Rojiani 1996]): 

2 3 4

1 1 1 1

2 3 4 5

1 1 1 1 1

2 3 4 5 6

1 1 1 1 1

3 4 5 6 7

1 1 1 1 1

4 5 6 7 8

1 1 1 1 1

m m m m

i i i i
i i i i

m m m m m

i i i i i
i i i i i
m m m m m

i i i i i
i i i i i
m m m m m

i i i i i
i i i i i
m m m m m

i i i i i
i i i i i

m i i i i

i i i i i

i i i i i

i i i i i

i i i i i

= = = =

= = = = =

= = = = =

= = = = =

= = = = =

1

0
1

1
2

2
1

3
3

4
1

4

1

m

i
i
m

i i
i
m

i i
i
m

i i
i
m

i i
i

L

i La
a

i La
a
a i L

i L

=

=

=

=

=

=  (12.27) 

The system (12.27) can be merged into the following form: 
[ ] [ ] [ ]5,5 * 5 5=A a b              (12.28) 

thereat [ ] [ ]5,5  and 5A b  are given by the measurement pairs, following 
(12.27). If C is used as programming language, then the calculation can be 
realized by the following program section as an example, where 

[ ] [ ]5,5  and 5A b  are summarized in a matrix [ ]5,6A  with [ ]5b  as the 6th 
column. In this example it is assumed, that „MeasNum“ is the number of 
the measurement pairs and „PolyOrder“ the order of the approached 
polynomial. Here it holds: 

MeasNum = 10; PolyOrder = 4 
During measuring the current is increased by 0,1×ImNominal step by 

step from 0,1×ImNominal to ImNominal (e.g. nominal magnetizing 

                                                      
1) For simplification Ls is replaced by L, and iμ by i 
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current). The 10 measured inductance values are saved in the field 
L[0]...L[9]. 

 

 
 
After calculation of [ ] [ ]5,5  and 5A b  the linear equation system (12.27) 

or (12.28) can be relatively simply solved by using the Gauss elimination 
method. The first step of the method is the forward elimination, which can 
be summarized (cf. [Sedgewick 1992]) as follows: 

The first variable in all equations, with exception of the first one, has to 
be eliminated by addition of suitable multiples of the first equation to each 
of the other equations. Then the second variable in all equations, with 
exception of the first two, has to be eliminated by addition of suitable 
multiples of the second equation to each of the equations from the third up 
to the last one (now named as the N-th). Then the third variable in all 
equations, with the exception of the first three, has to be eliminated etc. To 
eliminate the i-th variable in the j-th equation (for j between i+1 and N), 
the i-th equation must be multiplied with ji iia a  and subtracted from the 
j-th equation. 

The described procedure is too simple to be completely right: aii (now 
named as pivot element) can become zero, so that a division by zero could 
arise. This can be avoided because any arbitrary row (from the (i+1)-th to 
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the N-th) can be swapped with the i-th row, so that aii in the outer loop is 
different from zero. For swapping it is the best to use the row for which the 
value in the i-th column is the greatest with respect to the absolute amount. 
The reason is, that in the calculation considerable errors can arise if the 
pivot value, which is used to multiply a row by a factor, is very small. If aii 
is very small, ji iia a  can become very big. This process, called the partial 
pivoting, is realized in the example of the Ls identification by the following 
program section. 

 

 
 
After the step of the forward elimination is completed, the field below 

the diagonal of the modified matrix A[5][5] contains only zeros. The step 
of the backwards insertion can be executed now to calculate the 
coefficients a0, a1, a2, a3 and a4. 

 

 
 
With the calculated coefficients a0, a1, a2, a3 and a4, the magnetizing 

curve L(i) in form of a polynomial (cf. equation (12.25)) is now available. 
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12.4 Definition and calculation of Lie derivation 

An unexcited system (input vector u = 0) is defined (cf. [Wey 2001, 
appendix B], [Phuoc 2006, section 5.1.2]) as follows: 

( )d
dt

=x f x                (12.29) 

A scalar function v(x) is given. The derivation of this scalar function 
along the freely moving state trajectory (along the vector field ( ) nf x ) 
of the unexcited system (12.29): 

( ) ( )0
f
tt =x x               (12.30) 

can be given as follows: 

( ) 1
1

( ) ( , , )
n

f i n
ii

vL v f x x
x=

= xx         (12.31) 

with: 
( )

1 2
, , ,

n

v v v v
x x x

=
x

x
        (12.32) 

Using (12.32), the Lie derivation Lfv(x) can also be formulated as a 
scalar product (a scalar function): 

( ) ( ) ( )f f
vvL v L v= =

x
f x f x

x x
      (12.33) 

The function Lfv(x) returns the quantitative change of v(x) along the 
trajectory (12.30). The figure 12.1 illustrates this fact. 

 

 
Fig. 12.1 Derivation of the scalar function v(x) along the state trajectory x(t) 
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The dashed curves in the figure 12.1 represent the sets of points inside 
n  at which the function v(x) has the same values. The dashed curve with 

the point x contains the set of points which fulfills v(x) = k1, and the curve 
with xT the set of points fulfilling v(xT) = k2. In this case, the speed of the 
quantitative change of v(x) along x(t), from point x to the point xT, will be: 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

2 1
0 0 0

0

lim lim lim

lim

f
TT

f T T T
f
T

T

v vv vk kL v
T T T

v vv d
T dt

= = =

= = =

x xx x
x

x x x xx f x
x x x

 (12.34) 
The Lie derivation has the following properties: 

• The multiple Lie derivation of v(x), at first along the vector field f(x) 
and then along g(x), can be written as follows: 

( ) ( )
( )

( ) ( ) ( ) ( )f
g f g f

L v v
L L v L L v= = =

x x
x x g x f x g x

x x x
 (12.35) 

• Let w(x) be an additional scalar function, then the following relation is 
valid: 

( ) ( )

( ) ( )( ) ( ) ( )

( )

( )because

f

wf f

wf

L v

L v L v w

v v
L v w w

=

= =

x

x x

x x
x f f x x

x x
  (12.36) 

• Let k be an integer number, then the k-fold Lie derivation of v(x) along 
f(x) can be recursively calculated as follows: 

( )
( )

( ) ( ) ( )
1

0with
k
fk

f f

L v
L v L v v= =

x
x f x x x

x
   (12.37) 
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