
Embedding Landmarks and Scenes in a Computational
Model of Institutions

Owen Cliffe, Marina De Vos, and Julian Padget

Department of Computer Science
University of Bath, BATH BA2 7AY, UK
{occ,mdv,jap}@cs.bath.ac.uk

Abstract. Over the last decade, institutions have demonstrated that they are a
powerful mechanism to make agent interactions more effective, structured, coor-
dinated and efficient. Different authors have tackled the problem of designing and
verifying institutions from different angles. In this paper we propose a formalism
that is capable of unifying and extending some of these approaches, as well as
providing the necessary tools to assist in the design and verification processes.
We demonstrate our approach with a non-trivial case-study.

1 Introduction

The concept of landmarks appears in [27] where they are used to identify a set of se-
mantic properties relating to the state of a conversation, and which may furthermore be
organized into sequences or patterns, while transition between landmarks is made by an
appropriate sequence of one or more speech acts. A more detailed discussion follows in
[21], where they are presented as propositions that are true in the state represented by
the landmark (sic). The value of landmarks, and more specifically, their partial ordering
into landmark patterns, is how they permit the identification of phases in a conversation
protocol corresponding to the achievement of goals (and subgoals). Additionally, they
form an integral part of realizing joint intention theory [11] as participants in a conversa-
tion interact with one another, via speech acts, to follow a common protocol and satisfy
common goals. The utility of landmarks, from the electronic institution designer’s per-
spective is their potential role in building a bridge [13, 1] between the rigidity of the
protocols that feature in bottom-up design and the (relative) flexibility of norms that
characterize top-down design.

The formal model put forward in [9] and its corresponding operationalization
through Answer Set Programming (ASP) [5] aims to support the top-down design of
electronic institutions through the provision of a domain-specific action language [26],
called InstAL, tailored to the specification of institutions. Tools have been developed
to translate InstAL into the SMODELS [23] syntax for processing by the answer set
solver and furthermore the soundness and completeness of the institutional programs
with respect to the formal model have been proven [8]. In this paper we explore the
consequences of the correspondence between landmarks, as described in the literature,
and the institutional states of our (executable) model, argue that the stronger logical
framework of our formalism is advantageous and demonstrate the expressiveness of the
InstAL language through a non-trivial case-study.

J.S. Sichman et al. (Eds.): COIN 2007 Workshops, LNAI 4870, pp. 41–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 O. Cliffe, M. De Vos, and J. Padget

2 The Institutional Framework

In this section we provide a brief description of our framework, starting with the formal
model and following with the semantics. We then turn our attention to ASP as the
underlying computational mechanism and the mapping from action language to ASP.

The Formal Model: Our model of an institution is a quintuple, I := 〈E , F , C, G, Δ〉,
comprising three disjoint sets:

– events E , which can be either institutional (generated within the institution) or ex-
ogenous (caused by events outside of the scope of the institution). In particular,
we define a subset of the exogenous events as creation events, E+, which contain
events which account for the creation of an institution and a subset of the institu-
tional events as dissolution events, E×.

– fluents F , being the four distinguished sets of fluents — powers W , permissions
P , obligations O, domain-specific fluents D — that constitute the state of the insti-
tution and hence the basis for reasoning about the institution.

– and an initial state Δ comprising the initial set of fluents in the institution

and two relations C and G over X × E , where X = 2(F∪¬F) and φ ∈ X represents a
set of conditions which must be met in a given state in order for either relation to have
an effect.

– C defines under which circumstances fluents are initiated and terminated.
– G implements the count-as operation and defines under which conditions in the

institutional state the occurence of a given event will result in the generation of one
or more new events.

Semantics: The semantics of this framework are defined by traces of exogenous events.
Each trace induces a sequence of institutional states, called a model. Starting from the
initial state, the first exogenous event will, using the G, generate a set of events. Each of
these events will possibly affect the next state by means of the C relation. The combined
effect results in the next state of the model. This process continues until all exogenous
events in the trace have taken place.

ASP: In answer set programming ([5]) a logic program is used to describe the require-
ments that must be fulfilled by the solutions of a certain problem. The answer sets of
the program, usually defined through (a variant/extension of) the stable model seman-
tics [17], then correspond to the solutions of the problem. The programs consist of a set
clauses with negation-as-failure in the body. Assumptions are verified by eliminating
negation from the program using the Gelfond-Lifschitz reduction and to check if this
new positive program sustains the assumptions made. Tools for obtaining answers sets
are called answer set solvers. For our system we use the SMODELS [23] solver.

The Mapping: The mapping of each actual institution I into an answer set program
consists of two parts: (i) Pbase which is identical for each institution and handles the
occurrence of observed events, the semantics of obligations and rules to maintain the
commonsense inertia of fluents , and (ii) P ∗

I which is specific to the institution being

Embedding Landmarks and Scenes in a Computational Model of Institutions 43

modelled and represents the translation of it rules (norms and action semantics). To-
gether they form the answer set program PI . In order to be able to use this program to
reason about the institution, it is then combined with two other ASP programs: a trace
program, containing a contraint on the length of traces of events being considered, and
a query program expressing some constraint over the answer sets that shall be generated
— the property or properties of the model that we wish to investigate.

InstAL : Our primary objective in this work is to be able to specify the behaviour
of an institution in terms of its norms, and then to be able to test properties of the
model of the institution thus defined. Consequently, we need a machine-processable
representation. The engine for the verification is an answer set solver, so one approach
would be to require the specification to be written in the input syntax for such a system,
such as SMODELS, as outlined in [9]. However, while it may be useful for the designer to
examine the code given to the answer set solver occasionally, it also necessarily contains
low level support details that are less relevant to the task of institutional design. For this
reason and because of the event-oriented nature of the specification, a domain-specific
event language seems an appropriate medium, hence InstAL .

We define the language InstAL in order to simplify the process of specifying institu-
tions. Individual institution specifications and multi-institution specifications are writ-
ten as single InstAL programs in a human-readable text format. These files can then be
translated automatically into answer set programs that directly represent the semantics
of the institutions specified in the original descriptions.

The language supports a simple set-based type system and syntax for the declara-
tion of fluents, events, and institutions (bearing in mind the model also supports multi-
institutional models as discussed in [10]). Normative fluents are pre-defined for power,
permission and obligation. The designer may also specify static properties of an insti-
tution, that are initiated when the institution is created and never change. This provides
a straightforward way to associate roles with institutions. Rather than give a formal
syntax specification, for which there is not room here, we put forward and extended ex-
ample in section 4 to illustrate the language features in a use-case. A detailed discussion
of the InstAL language can be found in [10, 8].

An InstAL reasoning problem consists of the following:

1. One or more InstAL institution descriptions each of which describes a single insti-
tution or a multi-institution.

2. A domain definition that grounds aspects of the descriptions. This provides the
domains for types and any static properties referenced in the institution and multi-
institution definitions.

3. A trace program which defines the set traces of exogenous events to investigate.
4. A query program which describes the desired property to validate with the InstAL

reasoning tool.

The reasoning process can be summarised as follows:

1. The InstAL to ASP translator takes one or more single or multi-institution descrip-
tions (in the InstAL syntax described below), and domain definition files (described

44 O. Cliffe, M. De Vos, and J. Padget

below) as input. Using these files, the translator generates a set of answer set pro-
grams which describe the semantics of the input institutions.

2. The translated institution programs along with a trace program and query program
are then grounded by the LPARSE program (part of the SMODELS toolkit).

3. This grounded program description is then given as input to the SMODELS answer
set solver. This produces zero or more answer sets. Each answer set corresponds
to a possible model of the input institution for a given trace described by the trace
program that matches the given query.

4. These answer sets may then be visualised and interpreted by the designer.

3 Landmarks and Scenes

As already discussed in the introduction, the essence of a landmark is a condition on a
state in order for an action in some protocol to have effect. The relative sophistication
of a landmark specification can be affected by the logic that is used to define the con-
dition, but in many respects this is a technicality. For example [27] use first order logic
augmented with modal operators for propositional attitudes and event sequences, [21]
use dynamic propositional logic with modal operators from the previous work, while
[13] (p.126) has atoms, implying the conjunction of positive values, within a Kripke
model and [1] uses linear-time temporal logic. More important is the actual purpose of
landmarks, as [21] states:

Besides contributing to formal analyses of protocol families, the landmark-
based representation facilitates techniques similar to partial order planning [22]
for dynamically choosing the most appropriate action to use next in a conversa-
tion, allows compact handling of protocol exceptions, and in some cases, even
allows short circuiting a protocol by opportunistically skipping some interme-
diate landmarks.

This highlights the relationship between agent actions and conventional AI planning
and leads to the observation of the correspondence between landmarks and scenes (also
mentioned in [13]). By scenes, we refer to the components of performative structure
identified by Noriega [24] that are essentially sub-protocols of the larger institution or
viewed bottom-up, an institution may be seen as the composition of numerous proto-
cols that help agents achieve various sub-goals. What it is important to observe about
Noriega’s (and later in [25]) definition of the performative structure is how various con-
ditions are imposed on the transitions from one scene to another, typically constraining
the number and role of the agents that may move. A scene essentially encapsulates a
self-contained protocol whose purpose is to achieve some sub-goal of the institution
contributing to the objective of using the institution in the first place.

From this perspective, we can now turn to the relationship between our formalism
and both landmarks and scenes, having established that both concepts serve to identify
some (final) state in which a condition (capturing some institutional sub-goal) has been
satisfied. Returning to the relations that drive our formalism (see section 2), the event
generation function serves to create institutional facts, while the consequence relation
focuses attention on the initiation and termination of fluents. The function is expressed

Embedding Landmarks and Scenes in a Computational Model of Institutions 45

as C : X × E → 2F × 2F . Where the first set in the range of the function describes
which fluents are initiated by the given event and the second set represents those fluents
terminated by the event. We use the notation C↑(φ, e) to denote the fluents that are
initiated by the event e in a state matching φ and the notation C↓(φ, e) to denote those
terminated by event e in a state matching φ.

From the description of event generation and the consequence relation, it can be seen
that fluents are initiated and terminated in respect of an event and some conditions on
the state of the institution. This corresponds exactly with the notion of landmark, in that
an event takes the institution into a new state but this is predicated on the current state
— that is, a condition. Thus landmarks arise naturally from our formalization and fur-
thermore, the condition language would appear to be richer than in some earlier work
because the condition may contain both positive and negative information, including
the use of negation as failure and hence non-monotonic reasoning, since these are ba-
sic properties of answer set semantics. Our conclusion therefore is that our formalism
provides landmarks for free and, thanks to ASP semantics, enriches the landmark de-
scription language over earlier examples.

In the literature cited above, landmarks appear to be restricted to speech acts, that
is messages from participating agents. Our model goes further, as we also consider
exogenous events that do not originate from participating agents or from institutional
events. This makes our approach a convenient tool for reasoning with scenes, where the
transition between the various scenes does not necessarily depend on agents’ actions.
Instead the transition markers could be linked to exogenous events which are taken
into account when the institution reaches a certain state. At this point the consequence
relation could be used to set the powers and permissions (and so the behaviour) of the
participating agents. The Dutch auction protocol detailed in the next section uses this
technique to distinguish between the various phases/scenes of the protocol.

4 The Dutch Auction Protocol

Informal Description of Dutch Auction: In this protocol a single agent is assigned to
the role of auctioneer, and one or more agents play the role of bidders. The purpose of
the protocol as a whole is either to determine a winning bidder and a valuation for a
particular item on sale, or to establish that no bidders wish to purchase the item. The
protocol is summarised as follows:

1. Round starts: The auctioneer selects a starting price for the item and informs each
of the bidders present of this price. The auctioneer then waits for a given period of
time for bidders to respond.

2. Upon receipt of the starting price, each bidder has the choice as to whether to send
a message indicating their desire to bid on the item at that price, or to send no
message indicating that they do not wish to bid on the item.

3. At the end of the prescribed period of time, if the auctioneer has received a sin-
gle bid from a given agent, then the auctioneer is obliged to inform each of the
participating agents that this agent has won the auction.

4. If no bids are received at the end of the prescribed period of time, the auctioneer
must inform each of the participants that the item has not been sold.

46 O. Cliffe, M. De Vos, and J. Padget

5. If more than one bid was received then the auctioneer must inform each agent that
a conflict has occurred.

6. In the case where the item is sold the protocol is finished.
7. In the case that no bids are received then the auctioneer may either start a new round

of bidding at a lower price, or withdraw the item from sale.
8. In the case where a conflict occurs then the auctioneer must re-open the bidding at

a higher price and start the round again in order to resolve the conflict.

We focus on the protocol for the round itself (items 1-6). In our description below
we omit from the messages a definition of the item in question and the starting price.
While the inclusion of these aspects in the protocol is possible, their inclusion does not
change the structure of the protocol round so we leave them out for simplicity.

In the following paragraphs we go through the InstAL code step by step. The full
listing can be found in Figures 1 and 2. Each line of InstAL code is labelled with
DAR-FigureNr-LineNr for ease of reference.

The first lines indicate the name of the institution (DAR-1-1) and the types of agents,
Bidder (DAR-1-2) and Auctioneer (DAR-1-3) that may participate in the institution.
These types are used as placeholders in the InstAL rules for the agents participating in
a particular instance of the institution, then when instantiated all rules are grounded
appropriately. The institution is created by one creation event createdar as specified
by rule DAR-1-4.

Based on the protocol description above, the following agent messages are defined
(DAR-1-8 – DAR-1-12): the auctioneer announces a price to a given bidder
(annprice), the bidder bids on the current item (annbid), the auctioneer announces
a conflict to a given bidder (annconf) and the auctioneer announces that the item is
sold (annsold) or not sold (annunsold) respectively. Each exogenous action has a
corresponding institutional event (DAR-1-16 – DAR-1-20 which accounts for a valid
execution of the physical action performed. In all cases the two events are linked by an
unconditional generates statement in the description (DAR-2-29, DAR-2-32, DAR-2-37,
DAR-2-38, DAR-2-39).

In addition to the agent actions we also include a number of time-outs indicating
the three external events (which are independent of agents’ actions) that affect the pro-
tocol. For each time-out we define a corresponding institutional event suffixed by dl

indicating a deadline in the protocol:

priceto, pricedl: A time-out indicating the deadline by which the auctioneer must
have announced the initial price of the item on sale to all bidders. (DAR-1-5 and
DAR-1-13).

bidto, biddl: A time-out indicating the expiration of the waiting period for the auc-
tioneer to receive bids for the item (DAR-1-6 and DAR-1-14).

desto, desdl: A time-out indicating the deadline by which the auctioneer must have
announced the decision about the auction to all bidders (DAR-1-7 and DAR-1-15).

We assume that the time-outs will occur in the order specified (that is, due to their
durations it is impossible for this to be otherwise). We use the corresponding institution
events in the protocol description and constrain the order in which they are empowered
in the institution to ensure that while the exogenous events may occur in any order,

Embedding Landmarks and Scenes in a Computational Model of Institutions 47

institution dutch; (DAR-1-1)

type Bidder; (DAR-1-2)

type Auct; (DAR-1-3)

create event createdar; (DAR-1-4)

exogenous event priceto; (DAR-1-5)

exogenous event bidto; (DAR-1-6)

exogenous event desto; (DAR-1-7)

exogenous event annprice(Auct,Bidder); (DAR-1-8)

exogenous event annbid(Bidder,Auct); (DAR-1-9)

exogenous event annconf(Auct,Bidder); (DAR-1-10)

exogenous event annsold(Auct,Bidder); (DAR-1-11)

exogenous event annunsold(Auct,Bidder); (DAR-1-12)

inst event pricedl; (DAR-1-13)

inst event biddl; (DAR-1-14)

inst event desdl; (DAR-1-15)

inst event price(Auct,Bidder); (DAR-1-16)

inst event bid(Bidder,Auct); (DAR-1-17)

inst event conf(Auct,Bidder); (DAR-1-18)

inst event sold(Auct,Bidder); (DAR-1-19)

inst event unsold(Auct,Bidder); (DAR-1-20)

dest event badgov; (DAR-1-21)

dest event finished; (DAR-1-22)

inst event alerted(Bidder); (DAR-1-23)

fluent onlybidder(Bidder); (DAR-1-24)

fluent havebid; (DAR-1-25)

fluent conflict; (DAR-1-26)

initially pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)),

perm(badgov),pow(badgov),

perm(pricedl),pow(pricedl),

perm(priceto),

perm(biddl),

perm(bidto),

perm(desto); (DAR-1-27)

Fig. 1. InstAL for the Dutch Auction Round Institution Part 1

the institution event may only occur once in each iteration and in the order specified
(DAR-2-52 to DAR-2-59).

We define a single additional institution event alerted(Bidder) (DAR-1-23) that
represents the event of a bidder being validly notified of the result of the auction. We
additionally specify a dissolution event finished (DAR-1-22) that indicates the end of
the protocol.

48 O. Cliffe, M. De Vos, and J. Padget

initially obl(price(A,B),pricedl,badgov); (DAR-2-28)

annprice(A,B) generates price(A,B); (DAR-2-29)

price(A,B) terminates pow(price(A,B)); (DAR-2-30)

price(A,B) initiates pow(bid(B,A)),perm(bid(B,A)),perm(annbid(B,A)); (DAR-2-31)

annbid(A,B) generates bid(A,B); (DAR-2-32)

bid(B,A) terminates pow(bid(B,A)),perm(bid(B,A)),perm(annbid(B,A)); (DAR-2-33)

bid(B,A) initiates havebid,onlybidder(B) if not havebid; (DAR-2-34)

bid(B,A) terminates onlybidder() if havebid; (DAR-2-35)

bid(B,A) initiates conflict if havebid; (DAR-2-36)

annsold(A,B) generates sold(A,B); (DAR-2-37)

annunsold(A,B) generates unsold(A,B); (DAR-2-38)

annconf(A,B) generates conf(A,B); (DAR-2-39)

biddl terminates pow(bid(B,A)); (DAR-2-40)

biddl initiates pow(sold(A,B)),pow(unsold(A,B)),

pow(conf(A,B)), pow(alerted(B)),perm(alerted(B)); (DAR-2-41)

biddl initiates perm(annunsold(A,B)),perm(unsold(A,B)),

obl(unsold(A,B),desdl,badgov) if not havebid; (DAR-2-42)

biddl initiates perm(annsold(A,B)),perm(sold(A,B)),

obl(sold(A,B), desdl, badgov) if havebid, not conflict; (DAR-2-43)

biddl initiates perm(annconf(A,B)),perm(conf(A,B)),

obl(conf(A,B), desdl, badgov) if havebid, conflict; (DAR-2-44)

unsold(A,B) generates alerted(B); (DAR-2-45)

sold(A,B) generates alerted(B); (DAR-2-46)

conf(A,B) generates alerted(B); (DAR-2-47)

alerted(B) terminates pow(unsold(A,B)), perm(unsold(A,B)),

pow(sold(A,B)), pow(conf(A,B)), pow(alerted(B)),

perm(sold(A,B)), perm(conf(A,B)), perm(alerted(B)),

perm(annconf(A,B)),perm(annsold(A,B)),perm(annunsold(A,B)); (DAR-2-48)

desdl generates finished if not conflict; (DAR-2-49)

desdl terminates havebid,conflict,perm(annconf(A,B)); (DAR-2-50)

desdl initiates pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)), perm(pricedl),pow(pricedl),

obl(price(A,B),pricedl,badgov) if conflict; (DAR-2-51)

priceto generates pricedl; (DAR-2-52)

pricedl terminates pow(pricedl); (DAR-2-53)

pricedl initiates pow(biddl); (DAR-2-54)

bidto generates biddl; (DAR-2-55)

biddl terminates pow(biddl); (DAR-2-56)

biddl initiates pow(desdl); (DAR-2-57)

desto generates desdl; (DAR-2-58)

desdl terminates pow(desdl); (DAR-2-59)

Fig. 2. InstAL for the Dutch Auction Round Institution Part 2

For the sake of simplicity, we do not focus in detail on the effects of the auction-
eer violating the protocol. Instead we define a dissolution institutional event badgov
(DAR-1-21) that accounts for aany instances in which the auctioneer has violated the
protocol. Once an auctioneer has violated the protocol, we choose to treat the remain-
der of the protocol as invalid and dissolve the institution.

Embedding Landmarks and Scenes in a Computational Model of Institutions 49

Once the institution has been created, the auctioneer will receive power and
permission to announce prices. We also provide empowerment and permission for the
dissolution event badgov. Furthermore all deadlines are permitted but only pricing is
empowered. This is specified by DAR-1-27.

The rules of the institution are driven by the occurrence of the time-outs described
above and hence may be broken down in to three phases as follows:

1. In the first phase of the protocol the auctioneer must issue price statements to each
of the bidders. We represent this in the protocol by defining an initial obligation on
the auctioneer to issue a price to each bidder before the price deadline (DAR-2-28).
Once this has taken place, the auctioneer is no longer permitted to issue a price
(DAR-2-30).

Once a price has been sent to the bidder, the bidder is empowered and permitted
to bid in the round (note that we permit both the action of validly bidding itself,
bid(B,A), as well as the action of sending the message which may count as bid-
ding, annbid(B,A) (DAR-2-31).

2. In the second phase of the protocol, bidders may choose to submit bids. These
must be sent before the bid time-out event. In order to account for the final phase
of the protocol, we must capture the cases when one bid, no bids or multiple
bids (a conflict) occur. In addition, in a given round, we must also take into ac-
count that bids may be received asynchronously from different agents over a period
of time. In order to capture which outcome of the protocol has occurred we use
three domain fluents (DAR-1-24 – DAR-1-26) to record the state of the bidding:
onlybidder(Bidder), havebid, conflict.

The first of these fluents denotes the case where a single bid has been received
and no others (and records the bidder which made this bid), the second fluent
records cases where one or more bids have been received and the third records
cases where more than one bid has been received.

These fluents are determined in the second phase of the protocol using
DAR-2-34, DAR-2-35 and DAR-2-36. The first rule accounts for the first bid that
is received, and is only triggered if no previous bids have been made. The second
rule accounts for any further bids and terminates the onlybidder fluent when a
second bid is received. The final rule records a conflict if a bid is received and a
previous bid has occurred.

Once a bid has been submitted we do not wish to permit an agent to submit
further bids, or for those further bids to be valid. In order to account for this we
have line DAR-2-33.

3. In the third and final phase of the protocol the auctioneer must notify the bid-
ding agents of the outcome of the auction. This phase is brought about by the
occurrence of the biddl event which denotes the close of bidding. In order to
account for this, we terminate each agents’ capacity to bid further in the auction
(DAR-2-40) and correspondingly initiate the auctioneer’s power to bring about a
resolution to the auction (DAR-2-41). To do so, we create an obligation upon the
auctioneer to issue the right kind of response (sold, unsold, conflict) de-
pending on outcome of the previous phase (havebid,conflict) before the next
deadline (desdl) is announced. This is encoded by DAR-2-42 – DAR-2-43. For

50 O. Cliffe, M. De Vos, and J. Padget

each outcome, the auctioneer is obliged and permitted to issue the appropriate re-
sponse to every bidding agent before the decision deadline. If an auctioneer fails
to issue the correct outcome to any agent before the final deadline then a violation
will occur. The protocol follows these notifications using DAR-2-45 – DAR-2-46.

Once an agent has been notified we wish to prohibit the auctioneer from noti-
fying that agent again. We do this by introducing a rule which terminates the auc-
tioneer’s power and permission to issue more than one notification to any one agent
(DAR-2-48).

Finally, when the deadline expires (the exogenous event desto triggers desdl)
and either the protocol ends or the bidders have created a conflict. In the former
case, DAR-2-49 ensures dissolution of the institution. In the conflict case, the auc-
tioneer must re-open the bidding using a new round. We represent this by adding
two lines. The first terminates the intermediate fluents which were used to repre-
sent the outcome of the protocol (havebid and conflict). This is established by
DAR-2-50.

The second (DAR-2-51), initiates the obligation for the auctioneer to re-open the
round by issuing a price to the bidders and all associated powers and permissions.

Verification: Once we have the InstAL description of our institution, we can obtain an
ASP program as described in Section 2. This program may then be combined with a
trace program and query, allowing us to query properties and determine possible out-
comes of this protocol.

The simplest type of verification procedure is to execute the program with no query.
In this case all possible traces of the protocol will be provided as answer sets of the
translated program.

Each answer set represents all possible sequences of states which may occur in the
model and these may in turn be used to visualise all reachable states of the protocol (for
a given number of agents). In order to execute the protocol we need to ground it with
an auctioneer a and a bidder b. We could execute the translated program as is, how-
ever the answer sets of the program would include all traces of the protocol, including
those containing actions which have no effect. Transitions of this kind may be of inter-
est in some cases (we may be interested in the occurrence of associated violations for
instance) however in this case we choose to omit them in order to reduce the number
of answer sets to analyse. This can be achieved by specifying a query program which
limits answer sets only to those containing traces in which a change of state occurs. For
the technical details on this query program, see [8].

Solving the translated program with the associated query program yields a total of
60 answer sets corresponding to each possible trace where an effect occurs in each
transition. By extracting the states from the answer set we may generate a graphical
representation of the transition system which the protocol creates.

In order to include all possible states of the protocol we must select a large enough
upper bound for the length of traces such that all possible states are reached. In general
the selection of this upper bound depends on the program and query in question and it
should be noted that the answer sets of the program represent only those solutions to
the query which can be found in the given trace length.

Embedding Landmarks and Scenes in a Computational Model of Institutions 51

live(dutch_auction_round)

desto
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annunsold(a,b)
[notified(b)]
[unsold(a,b)]

desto
[badgov]
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annsold(a,b)
[notified(b)]
[sold(a,b)]
[viol(annsold(a,b))]
[viol(sold(a,b))]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

live(dutch_auction_round)
obl(price(a,b),pricedl,badgov)

createdar

havebid
live(dutch_auction_round)

onlybidder(b)

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

bidto
[biddl]

priceto
[badgov]
[pricedl]

live(dutch_auction_round)

annprice(a,b)
[price(a,b)]

havebid
live(dutch_auction_round)

onlybidder(b)

annbid(b,a)
[bid(b,a)]

live(dutch_auction_round)

priceto
[pricedl]

havebid
live(dutch_auction_round)

onlybidder(b)

desto
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

priceto
[pricedl]

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

desto
[badgov]
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

annsold(a,b)
[notified(b)]
[sold(a,b)]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

annunsold(a,b)
[notified(b)]
[unsold(a,b)]
[viol(annunsold(a,b))]
[viol(unsold(a,b))]

bidto
[biddl]

annbid(b,a)
[bid(b,a)]

Fig. 3. States of the auction round for a single bidder

In the case of the auction protocol examined here we had to establish this upper
bound by the somewhat unsatisfactory process of iterating the solver process and deter-
mining the number states until no more states were found. For the example above, with
only two agents, the longest traces which yield new states are of length 7, resulting in
33 answer sets.

Figure 3 illustrates all possible states for a single round of the protocol with one bid-
der (for a larger number of bidders, the state space will be considerably larger, growing
exponentially with their number). Note that as there is only one bidder participating in
the protocol conflicts cannot occur. For the sake of clarity we omit fluents relating to
powers and permissions from the figure.

Further Verification: In the above protocol we stated that when there was a conflict in
the bidding for the protocol (that is, when two or more bidders issue valid bids) that the
bidding should re-open. In order to ensure that this new round continues as before we
must ensure that the institutional state at the beginning of a re-opened round is the same
as the institutional state when the original round opened.

52 O. Cliffe, M. De Vos, and J. Padget

This property may be specified as a query program in our framework, as we now
describe. In this case we are only interested in traces where a conflict has occurred. We
specify this by adding the following constraints to the query program:

hadconflict ← holdsat(conflict, I), instant(I).
⊥ ← not hadconflict.

The first rule states that if there is any state where the conflict fluent occurs, then the
literal hadconflict should be included in the answer set. The second rule states that
we should not include any answer sets where the literal hadconflict is not included.

We are also only interested in traces where the protocol is re-started and bidding is
re-opened. We add this constraint in a similar way, using two rules as follows:

restarted ← occurred(desdl, I),
holdsat(conflict, I), instant(I).

⊥ ← not restarted.

The first of these rules state that if the desdl event has occurred at any time we include
the literal restarted in our answer set and the second rule states that we should only
include answer sets where this literal is included.

In order to determine the fluents (if any) which differ between a state following the
creation of the institution and a state following a protocol re-start, we mark these fluents
using the literals startstate(F) indicating that fluent F is true in the start state of this
trace, and restartstate(F) indicating that the fluent F was true in a state following a
protocol re-start.

Literals of the form startstate(F) are defined using the following rule:

startstate(F) ← holdsat(F, I1),
occurred(createdar, I0),
next(I0, I1), ifluent(F).

Which states that F is a fluent in the start state, if F holds at time instant I1 and cre-
ation event createdar occurred at instant I0 and that instant I1 immediately follows
instant I0.

We similarly define the fluents that hold in the re-start state with the rule:

restartstate(F) ← holdsat(F, I1), occurred(desdl, I0),
holdsat(conflict, I0), next(I0, I1), ifluent(F).

which states that F holds in the restart state, if it held in the state I1 which immediately
followed the occurrence of the decision deadline desdl when a conflict held in that
state.

We then define the following rules which indicate the differences between the start
state and the re-start state:

missing(F) ← startstate(F), notrestartstate(F), ifluent(F).
added(F) ← restartstate(F), notstartstate(F), ifluent(F).

These rules indicate that a fluent is present in the start state, but missing from the restart
state (indicated by missing(F)), or missing in the start state, but present in the restart
state (indicated by added(F)) respectively.

Embedding Landmarks and Scenes in a Computational Model of Institutions 53

BiddingPricing pricedl biddl desdlConcluding

Scene 3Scene 2Scene 1

Fig. 4. Landmarks in the Dutch Auction round

Finally we define the query constraint, in this case we are only interested in traces
where a difference occurs between the start state and the restart state. We add these
constraints using following rules:

invalid ← missing(F), ifluent(F).
invalid ← added(F), ifluent(F).

⊥ ← not invalid.

The first two rules state that if a fluent F is either missing or added, then the literal
invalid is true. The third rule constrains answer sets of the program to only those
containing the literal invalid.

These rules, when combined with the translated program of the institution allow us
to determine which fluents have changed between the start state and end state of the
protocol.

Given the translated program and the query program described above, we obtain no
answer sets for the protocol as defined, indicating that it is indeed the case that there are
no fluents which differ in the state following a protocol restart and the state following
the creation of the institution. This result is consistent with the original description of
the protocol and will permit subsequent rounds following a conflict to continue in the
same way as the original round. The same query holds true for auctions including three
or four bidders.

The Scene Perspective: Although the InstAL language does not explicitly allow for
the definition of scenes (i.e. no special constructs are available), it is straightforward
to achieve this with the available language constructs. The auction protocol discussed
above, can be seen as composed of three scenes each marked by the occurrence of a
deadline (except for the start of the protocol). Figure 4 provides the scene transition
diagram. Each of these deadlines is the result of an exogenous event generated by the
environment (e.g. DAR-2-52). The occurrence of such a deadline, changes the empow-
erment and permissions of the agents involved in the protocol (e.g. DAR-2-50). Rules
are provided to assure the correct transition through the scenes (e.g. DAR-2-53).

5 Discussion

In this article we have demonstrated that the formal system described in [9] can easily
deal with non-trivial institutions. Furthermore, we have shown that our characterisation
can deal directly with landmarks and scenes, thus linking it more clearly with earlier
work on institutional specification.

Much recent and contemporary work on modelling norms and violations has chosen
temporal logics as a starting point, as we now discuss.

54 O. Cliffe, M. De Vos, and J. Padget

Colombetti et al in [16, 12, 29] outline an abstract model for agent institutions based
on social commitments, where institutions comprise a set of registration rules that cap-
ture agents’ entry into and exit from institutions, a set of interaction rules that govern
commitment creation and satisfaction, a set of authorisations that describe agents’ ca-
pabilities and an internal ontology that describes a model for the interpretation of terms
relevant to the institution. Their approach builds on the CTL± extension of CTL[7],
which includes past tense modalities for reasoning about actions which have already
occurred. Dignum in [14] also uses an extension of CTL to describe her language for
representing contracts in the building of agent organisations.

The Event Calculus (EC) [19, 20] is a declarative logic that reinterprets the Situa-
tion Calculus to capture when and how states change in response to external events.
EC has been used to model both the behaviour of commitments [31] among agents in
order to build interaction protocols, corresponding to the regulatory aspects of the work
described above, as well as more general social models such as those described in [18].
From a technical point of view, our approach essentially has a kind of duality com-
pared to EC, in that the basis for the model is events rather than states. In itself, this
offers no technical advantage although we believe that being able to express violations
in terms of events rather than states better captures their nature. More significant are the
consequences of the grounding in ASP:

– For the most part the state and event models are equivalent with respect to properties
such as induction and abduction, but non-monotonicity is inherent in ASP and so
resort to the tricky process of circumscription is avoided.

– Likewise, reasoning about defaults requires no special treatment in ASP.
– The consequence rules of our specification have equivalents in EC, but the event

generation rules do not.
– The state of a fluent is determined by its truth-value in the ASP interpretation,

whereas EC (typically) has to encode this explicitly using two predicates.
– Inertia in EC is axiomatic, whereas in our approach it follows from the applica-

tion of the TR operator—although there is a strong syntactic similarity (perhaps
compounded by using the same terminology!) the philosophy is different.

– ASP allows a wider variety of queries than is typically provided in EC implemen-
tations but space constraints do not allow the full illustration of this aspect here.

Artikis et al. in [2, 3, 4, 18] describe a system for the specification of normative so-
cial systems in terms of power, empowerment and obligation. This is formalized using
both the event calculus [19] and a subset of the action language C+ [15]. The notions
of power and empowerment are equivalent in both systems, but additionally we intro-
duces violation as events and our modelling of obligations differs in that (i) they are
deadline-sensitive, and (ii) can raise a violation if they are not met in time. Violations
greatly improve the capacity to model institutions, but it should be remembered that
institutional modelling was (apparently) not Artikis’s goal. Likewise, although the in-
terpretation of C+ using the CCalc tool gives rise to similar reasoning capabilities (with
similar complexity) to ASP, we believe our approach, including violations, provides a
more intuitive and natural way of expressing social constraints involving temporal as-
pects. A further advantage is in the formulation of queries, where ASP makes it possible

Embedding Landmarks and Scenes in a Computational Model of Institutions 55

to encode queries similar to those found in (bounded) temporal logic model checking,
whereas, as noted above, queries on action languages are constrained by the action lan-
guage implementation. The other notable difference is once again our focus on events
rather than states.

Viganò and Colombetti [30] focus on two key elements: a language for the defini-
tion and the verification of social aspects of MAS in respect of normative systems and
electronic institutions, building on Colombetti’s work on ontological decomposition of
institutions and on Searle’s model of constructed social reality. The basis for the work
is the concept of status functions that capture institutional facts (including roles, such
as buyer and refinement of roles, such as auction winner) and deontic positions (sic).
Status functions are only reified when needed to verify the legitimacy of an action and
as such constitute institutional objects, rather than observables, in contrast to the event-
based approach described here. The authors use model checking to verify offline.

Apart from ASP, a number of other techniques could be applied to the problem of
reasoning about institution specifications. One of these techniques, which has had con-
siderable attention in field of multi-agent systems is symbolic model checking. Sym-
bolic temporal logic model checking is a technique for verifying finite state systems
with a large number of states. The technique was first described in [7]. While model
checking may be applied to much larger state spaces than those which can be studied
using ASP, model-checkers are limited to queries that can be expressed in temporal
logic used by the underlying model checker: in the case of CTL [6] for instance, they
are limited to formulae that are quantified over all future paths — making some queries
impossible to specify.

References

[1] Aldewereld, H.: Autonomy vs. Conformity: an Institutional Perspective on Norms and Pro-
tocols. PhD thesis, Utrecht (2007)

[2] Artikis, A.: Executable Specification of Open Norm-Governed Computational Systems.
PhD thesis, Department of Electrical & Electronic Engineering, Imperial College London
(September 2003)

[3] Artikis, A., Sergot, M., Pitt, J.: An executable specification of an argumentation protocol.
In: Proceedings of conference on artificial intelligence and law (icail), pp. 1–11. ACM
Press, New York (2003)

[4] Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal Calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, Springer,
Heidelberg (2003)

[5] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

[6] Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic model
checker. International Journal on Software Tools for Technology Transfer 2(4), 410–425
(2000)

[7] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Programming Lan-
guages and Systems 8(2), 244–263 (1981)

[8] Cliffe, O.: Specifying and Analysing Institutions in Multi-Agent Systems Using Answer
Set Programming. PhD thesis, Dept. Computer Science, University of Bath (June 2007)

56 O. Cliffe, M. De Vos, and J. Padget

[9] Cliffe, O., De Vos, M., Padget, J.A.: Answer set programming for representing and reason-
ing about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

[10] Cliffe, O., De Vos, M., Padget, J.A.: Specifying and reasoning about multiple institutions.
In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N.,
Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 63–81. Springer, Heidelberg
(2007)

[11] Cohen, P.R., Levesque, H.: Intention is choice with commitment. Artificial Intelligence 42,
213–261 (1990)

[12] Colombetti, M., Verdicchio, M.: An analysis of agent speech acts as institutional actions.
In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS
(LNAI), vol. 2636, pp. 1157–1164. Springer, Heidelberg (2003)

[13] Dignum, V.: A Model for Organizational Interaction. PhD thesis, Utrecht (2004)
[14] Dignum, V., Meyer, J.-J., Dignum, F., Weigand, H.: Formal Specification of Interaction in

Agent Societies. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A., Gordon-
Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699, pp. 37–52. Springer, Heidel-
berg (2003)

[15] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[16] Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and
AAMAS 2002. LNCS (LNAI), vol. 2636, pp. 536–542. Springer, Heidelberg (2003)

[17] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of
fifth logic programming symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

[18] Kamara, L., Artikis, A., Neville, B., Pitt, J.: Simulating computational societies. In: Petta,
P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 53–67.
Springer, Heidelberg (2003)

[19] Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95
(1986)

[20] Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus.
Journal of Logic Programming 31(1–3), 39–58 (1997)

[21] Kumar, S., Huber, M.J., Cohen, P.R., McGee, D.R.: Toward a formalism for conversation
protocols using joint intention theory. Computational Intelligence 18(2), 174–228 (2002)

[22] Minton, S., Bresina, J., Drummond, M.: Total order and partial order planning: A compar-
ative analysis. Journal of Artificial Intelligence Research 2, 227–262 (1994)

[23] Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

[24] Noriega, P.: Agent mediated auctions: The Fishmarket Metaphor. PhD thesis, Universitat
Autonoma de Barcelona (1997)

[25] Rodrı́guez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonoma de Barcelona (2001)

[26] Sergot, M. (C+)++: An Action Language For Representing Norms and Institutions.
Technical report, Imperial College, London (August 2004)

[27] Smith, I., Cohen, P., Bradshaw, J., Greaves, M., Holmback, H.: Designing conversation
policies using joint intention theory. In: Proceedings of International Conference on Multi
Agent Systems, pp. 269–276 (1998), doi:10.1109/ICMAS.1998.699064

[28] Vázquez-Salceda, J., Noriega, P. (eds.): Coordination, Organizations, Institutions, and
Norms in Agent Systems II. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O.,
Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, Springer,
Heidelberg (2007)

Embedding Landmarks and Scenes in a Computational Model of Institutions 57

[29] Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent commu-
nication. In: AAMAS 2003: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, pp. 528–535. ACM Press, New York (2003)

[30] Viganò, F., Colombetti, M.: Specification and verification of institutions through status
functions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, Springer, Heidel-
berg (2007)

[31] Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event calcu-
lus planning using commitments. In: AAMAS 2002: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pp. 527–534. ACM Press,
New York (2002)

	Embedding Landmarks and Scenes in a Computational Model of Institutions
	Introduction
	The Institutional Framework
	Landmarks and Scenes
	The Dutch Auction Protocol
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

