
Model Checking Norms and Sanctions in Institutions�

Francesco Viganò1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{francesco.vigano,marco.colombetti}@lu.unisi.ch
2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy

marco.colombetti@polimi.it

Abstract. In this paper we enrich FIEVeL (a modelling language for institutions
amenable to model checking) with new constructs to describe norms and sanc-
tions. Moreover, we present a specification language to reason about the effective-
ness of norms and sanctions in shaping agent interactions. Finally we show that
when properties of artificial institutions reflect certain interpretations of norms of
human institutions, it is not always possible to satisfy them. As a consequence,
regimentation of norms is not always a viable solution.

1 Introduction

Rules defined by artificial institutions and enforced by their software implementations,
named electronic institutions [5], have been put forward as means to regulate open mul-
tiagent systems. Institutions define two kinds of rules [17]: norms (also named regula-
tive rules [17]), which regulate existing activities, and constitutive rules, which create
the very possibility of certain institutional actions.

Artificial institutions are often designed to reflect constitutive and regulative rules
defined by human institutions in artificial systems [10,9,7], and model checking can
play an important role to evaluate the compliance of artificial institutions with rules of
human institutions and to compare design alternatives arising from different interpreta-
tions of such rules.

In general, when we map human rules only onto constitutive rules of artificial insti-
tutions, we obtain systems where violations cannot occur (they are regimented [10,9]).
Instead, when we introduce regulative rules into artificial institutions, we obtain sys-
tems where violations may occur due, for instance, to the agents’ autonomy. As a
consequence, when we analyze results obtained by a model checker, it is important
to consider how rules of human institutions have been mapped onto rules of artificial
institutions: if a norm of a human institution has been mapped onto a set of constitutive
rules of an artificial institution and a property that reflects it does not hold, then the ar-
tificial institution is incorrect. Instead, when a norm n has been mapped onto regulative
rules of the artificial institution, we have to analyze whether: (i) norms of the artificial
institution are correct, that is, a property reflecting expected effects of norm n holds
over paths compliant with norms, and (ii) sanctions applied when norms are violated
enforce desirable effects of norm n over all other possible evolutions.

� Supported by the Swiss National Science Foundation project 200020-109525, “Artificial Insti-
tutions: specification and verification of open distributed interaction frameworks.”

J.S. Sichman et al. (Eds.): COIN 2007 Workshops, LNAI 4870, pp. 316–329, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Checking Norms and Sanctions in Institutions 317

The main contributions of this paper are threefold: first, we extend FIEVeL [19], a
modelling language for institutions amenable to model checking, with new constructs
to describe norms and sanctions, exemplifying how norms can be defined and enforced
with our language; second, we present a flexible specification language which provides
temporal operators that select paths compliant with certain sets of norms, showing that
existing proposals (e.g. [12,16,1]) can be reduced to particular patterns of specification
of our language; finally, we contribute to the ongoing debate about regimentation and
enforcement of norms [10,9,6,8], showing that when human institutions impose a spe-
cific interpretation of norms, it may be the case that properties that reflect them cannot
be satisfied by artificial institutions under the assumption that agents are autonomous.
As a consequence, regimentation of norms is not always a viable solution.

The remainder of this paper is structured as follows: Section 2 introduces the OMS-
FOTL logic which is used to define the semantics of FIEVeL and to state properties of
institutions in Section 3, where we provide an overview of our framework by resuming
results discussed in our previous works. Section 4 presents how norms can be described
with FIEVeL, while Section 5 introduces a language to define properties which consider
only evolutions of institutions that comply with certain sets of norms. Section 6 explains
how to formalize sanction mechanisms with FIEVeL and finally Section 7 provides a
comparison of our approach with related works and presents some conclusions.

2 Ordered Many-Sorted First-Order Temporal Logic

An ordered many-sorted first-order temporal logic (OMSFOTL) is a many-sorted first-
order logic [13] enriched with temporal operators and hierarchies of sorts. The signature
of an OMSFOTL logic consists of a finite nonempty set of sort symbols Σ, a hierarchy
of sorts ≤Σ (where σ1 ≤Σ σ2 means that sort σ1 is a subsort of sort σ2), finite sets of
constants (C), function symbols (F), and predicate symbols (P), and a denumerable set
of variables (V). Moreover, an OMSFOTL signature defines function ξ which assigns
a sort to every variable and every constant, and a signature (i.e. a sequence of sorts) to
every function and predicate symbol. Given sorts Σ, the set Tσ of terms of sorts σ is the
smallest set such that:

– v ∈ Tσ if v ∈ V and ξ(v) ≤Σ σ;
– c ∈ Tσ if c ∈ C and ξ(c) ≤Σ σ;
– f(t1, ..., tn) ∈ Tσ if f ∈ F, ξ(ti) ≤Σ [ξ(f)]i for 1 ≤ i ≤ n and [ξ(f)]0 ≤Σ σ

where [ξ(q)]i refers to the i-th sort of the signature of a predicate or function symbol
q. The set T of terms is the union of the sets Tσ for all σ ∈ Σ and the set A of atomic
formulae is the smallest set such that:

– (t1 = t2) ∈ A if there exists sort σ such that ξ(t1) ≤Σ σ and ξ(t2) ≤Σ σ;
– p(t1, ..., tn) ∈ A if p ∈ P and ξ(ti) ≤Σ [ξ(p)]i for 1 ≤ i ≤ n.

The set of formulae is defined according to the following grammar:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | ∃ϕ | Xϕ | ϕUϕ | Eϕ

where α is an atomic formula.

318 F. Viganò and M. Colombetti

The semantics of OMSFOTL is given with respect to a Kripke structure M , a path
π (i.e., a sequence of states π = s0, s1, s2, . . . of M), and an interpretation function I
which, given a state s and an atomic formula α ∈ A, returns a value in {0, 1}. In the
sequel we use πk to denote the k-th state of path π and πk for the suffix of π starting at
state πk. A formula ϕ is true in a model M over a path π in M (M, π |= ϕ) when:

M, π |= α iff I(α, π0) = 1;
M, π |= ¬ϕ iff M, π � ϕ;
M, π |= ϕ ∧ ψ iff M, π |= ϕ and M, π |= ψ;
M, π |= ∃xϕ iff there exists a constant c of sort ξ(x) such that M, π |= ϕc, where ϕc

is obtained from ϕ by replacing all unbounded occurrences of variable
x with constant c;

M, π |= Xϕ iff M, π1 |= ϕ;
M, π |=ϕUψ iff exists an i≥0 such that M, πi |=ψ and for all 0≤j<i M, πj |=ϕ;
M, π |= Eϕ iff there exists a path π′ such that π′

0 = π0 and M, π′ |= ϕ

assuming, for the sake of presentation, that for each state s of M : (i) for each constant c
of sort σ there exists an individual i such that I(c, s) = i, and (ii) that for each individual
i there exists a constant c such that I(c, s) = i. Expressions true, false, (ϕ ∨ ψ), (ψ →
ϕ), (ϕ ↔ ψ), and ∀xϕ are defined in terms of ¬, ∧, and ∃ in the conventional manner,
and temporal operators F, G, and the path quantifier A are introduced as abbreviations
as usual [3] to state that eventually ϕ holds (Fϕ ≡ trueUϕ), ϕ is satisfied by all states
of a path (Gϕ ≡ ¬F¬ϕ), and that all paths satisfy ϕ (Aϕ ≡ ¬E¬ϕ).

In [20] we have shown that if we assume that each sort σ is associated to a finite
domain Dσ, then OMSFOTL is as expressive as CTL∗ [4,3] and its models can be en-
coded with a finite number of atomic propositions. Despite it, we adopt OMSFOTL for
two main reasons: (i), it represents an abbreviated form for long and complex formulae
and (ii), institutions describe rules that typically are independent of the cardinality of
domains and which can be naturally expressed by allowing quantification over sorts.

3 Modelling, Specifying, and Verifying Institutions

In [19] we proposed a metamodel of institutions based on the notion of an agent status
function, which can be interpreted as a position involving a (possibly empty) set of in-
stitutionalized powers [11], obligations, prohibitions, etc. To formalize status functions
and related concepts, we map them onto sorts, functions, and predicates of an OMS-
FOTL signature and define a set of axioms to capture their interrelations and temporal
evolution. For instance, common aspects of status functions are represented by intro-
ducing sort σsf , which also defines the function subject denoting the agent (σaid) the
status function has been assigned to. Sort σsf also induces the two predicates assigned
and modified, which respectively represent if a status function is currently assigned (or
revoked) and if it has been modified by the occurrence of an institutional event. Finally,
the metamodel defines a set of axioms based on such symbols, for instance requiring
that if a status function is not affected, then its subject does not change:

AG∀f(¬Xmodified(f) → ∃a(subject(f) = a ∧ Xsubject(f) = a)) (A.1)

Model Checking Norms and Sanctions in Institutions 319

1 basic-sorts:
2 σresources;
3 σreqState = {answ,notAnsw};
4 base-events:
5 message giveResource(rec:σaid,res:σresources);
6 ...
7 institution resourceManagement {
8 status-function member() {...}
9 status-function requested(reqRes:σresources,ag:σaid,
10 sta:σreqState){...}
11 status-function holder(resource:σresources){
12 key resource;
13 powers give ← (∃ r:σrequested (assigned(r)∧ag(r)=rec∧
14 reqRes(r)=resource(f)∧sta(r)=answ)∧res=resource(f));
15 }
16 ...
17 institutional-events:
18 institutional-action give(rec:σaid,res:σresources)
19 pre ∃ x:σmember(assigned(x)∧subject(x)=rec
20 ∧¬subject(x)=actor);
21 eff r:σrequested revoke (reqRes(r)=res),
22 k:σholder assign (subject(k)=rec,resource(k)=res);
23 ...
24 conventions
25 exch-Msg(giveResource) [true]=c=> give
26 [rec=c=>rec res=c=>res]
27 ...
28 }

Fig. 1. Fragments of the Resource Management institution

An institution evolves because events (σev) occur or agents perform actions (σact

≤Σ σev). Each event-type e induces a sort σe and three predicates, happense, prece,
and effe, which express when an event of type e happens and what conditions must
be satisfied before and after its occurrence. In contrast with base-level events (e.g.,
exchange-message events), the occurrence of an institutional event (σie) requires that
another event conventionally associated to it occurs and that, in the case of institutional
actions, the actor must be empowered to perform it:

AG∀x((precia(x) ∧ ∃f(subject(f) = x1 ∧ empoweredia(f, x) ∧ assigned(f)

∧
∨

a∈σact

X(conva−ia(x) ∧ happensa(x′))) ↔ Xhappensia(x))

(A.2)

where: x is a set of variables determined by predicate happensia; the first variable of
x refers to the actor of action ia; predicate empoweredia states when status functions
are empowered to perform institutional action ia; predicate conva−ia represents the
existence of a convention among action a and institutional action ia; and x′ reflects
how arguments of ia are mapped over arguments of action a.

320 F. Viganò and M. Colombetti

To model institutions in terms of the concepts described by our metamodel, in [19]
we introduced FIEVeL, a modelling language for institutions, whose syntax is exempli-
fied in Figure 1 and whose semantics is given by providing a translation of its constructs
into a set of symbols and formulae of an OMSFOTL logic. According to Figure 1, in the
Resource Management institution a member can request a holder to give the control
of one of its resources. When an agent accepts to satisfy the request, it is empowered
to give a resource to the agent that has requested it, which becomes its new holder.
More precisely, line 2 of Figure 1 induces sort σresources, which represents a set of re-
sources, while lines 8-10 introduce status functions member (σmember) and requested
(σrequested), which represent respectively the status that an agent should have to request
the control over a resource and the status acquired after having successfully performed
a request to an holder. Resources are hold by agents through status function holder
(declared at line 11 of Figure 1), which defines sort σholder ≤Σ σsf and function
resource of signature ξ(resource) = 〈σresources, σholder〉. According to lines 13 and
14, an holder is empowered to give a resource res when an agent has requested it and
the holder has already acknowledged to transfer the control over the requested resource
as required by the following axiom:

AG∀s∀actor∀rec∀res(empoweredgive(s, actor, rec, res) ↔ ∃f(f = s∧
(∃r(assigned(r) ∧ ag(r) = rec ∧ reqRes(r) = resource(f)∧

sta(r) = answ) ∧ res = resource(f)))) (A.3)

where ξ(actor) = ξ(rec) = σaid, ξ(res) = σresources, ξ(s) = σsf , ξ(f) = σholder ,
and ξ(r) = σrequested .

According to FIEVeL semantics, lines 18-22 define institutional action give such
that: (i) it can be performed only if the receiver is a member and if it is not the actor,
and (ii) it revokes status function requested to the receiver and assigns status holder to
it. More precisely, institutional action give induces predicates happensgive, precgive,
and effgive (ξ(happenseff) = 〈σaid, σaid, σresources〉) such that predicates precgive

and effgive satisfy the following axioms:

AG∀actor∀rec∀res(precgive(actor, rec, res) ↔ (∃x(assigned(x)∧
subject(x) = rec ∧ ¬subject(x) = actor))) (A.4)

AG∀actor∀rec∀res(effgive(actor, rec, res) ↔ X(∀r(reqRes(r) = res →
(¬assigned(r) ∧ modified(r))) ∧ ∀k(resource(k) = res →

(assigned(k) ∧ modified(k) ∧ subject(k) = rec))) (A.5)

where ξ(actor) = ξ(rec) = σaid, ξ(res) = σresources, ξ(x) = σmember , ξ(r) =
σrequested , and ξ(k) = σholder .

Finally, lines 25 and 26 define a convention such that the exchange of a message
of type giveResource counts-as the performance of action give when the sender is
empowered and preconditions of action give are satisfied. As a consequence, axiom
(A.2) is instantiated as follows:

Model Checking Norms and Sanctions in Institutions 321

AG∀actor∀rec∀res((precgive(actor, rec, res) ∧ ∃f(subject(f) = actor∧
assigned(f) ∧ empoweredgive(f, actor, rec, res)∧

X(happensgiveResource(actor, rec, res)∧convgiveResource−give(actor, rec, res)))↔
Xhappensgive(actor, rec, res))

(A.6)

where ξ(actor) = ξ(rec) = σaid, ξ(res) = σresources, and ξ(f) = σsf .
In our framework, also properties are specified in terms of OMSFOTL formulae such

that temporal operators (X, G, F, and U) are always preceded by a path quantifier (E
or A). One of the main advantages of our approach resides in the fact that any symbol
introduced by our metamodel or by an institution can appear in a property. Furthermore,
to increase the flexibility of the language, occurrences of events are referenced with a
generic predicate happens and we write “x : σ” to say that variable x is of sort σ.
For instance, the following property requires that whenever an agent receives a positive
answer to its requests, it will eventually become the holder:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res)
→ AF∃h : σholder(subject(h) = rec ∧ resource(h) = res)) (P.1)

Analogously, we can also check if whenever a holder accepts to give a resource, it
will eventually do so:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res)
→ AFhappens(give, act, rec, res)) (P.2)

In [20] we presented a symbolic model checker specifically developed to verify
FIEVeL institutions. Given an institution and a set of properties, our tool proceeds as
follows: (i) it converts the institution into a set Φ of OMSFOTL formulae by considering
the semantics of FIEVeL constructs and axioms determined by our metamodel (see ax-
ioms (A.3), (A.4), and (A.5)); (ii) formulae Φ are translated into propositional logic and
subsequently converted into a formula in conjunctive normal form (CNF); (iii) given
the set of assignments satisfying the CNF (whose disjunction constitutes the transition
relation of a Kripke structure) and a formula ϕ0, representing a set of initial states, a
symbolic representation of an institution is built and is exploited to verify properties by
applying standard symbolic algorithms [3]. According to our model checker, properties
(P.1) and (P.2) do not hold: since constitutive rules reported in Figure 1 define possible
actions that agents can carry out, but do not ensure that empowered agents will neces-
sarily perform them, it may be the case that agents accept to give their resources but do
not perform action give.

4 Norms

To define the semantics of norms, our metamodel assumes the existence of sort σo,
whose individuals reify norms of institutions. Sort σo is used to express prohibitions
and obligations characterized by certain deadlines (not necessarily a time expression),

322 F. Viganò and M. Colombetti

and we consider that a state of affairs is permitted if it is reached without violating
any norm. In particular, for the sake of conciseness, in this paper we focus only on
norms which are considered fulfilled or violated only once after a given status func-
tion is imposed on an agent and certain conditions are met. Given sort σstate, which
introduces constants unfired, activated, and inactive, sort σo is characterized by
function state (ξ(state) = 〈σstate, σo〉), which keeps trace of the temporal evolu-
tion of a norm, a set of timers (e.g., function activation which counts how many
time events have occurred since a norm has been activated), and by a set of predicates
(start, fulfillment, and violation of signature ξ(violation) = 〈σsf , σo〉). Agents
are subject to norms when certain status functions are imposed on them: to model the
interdependency among norms and status functions, we introduce function ofStatus
(ξ(ofStatus) = 〈σsf , σo〉) which denotes the status function an obligation is asso-
ciated to. When a status function is not assigned, then its norms are considered to be
inactive and cannot be violated: we represent this fact by the following axiom, which
states that norms of a revoked status function are always inactive:

AG∀o∀f((ofStatus(o) = f ∧ ¬assigned(f)) → state(o) = inactive) (A.7)

where ξ(o) = σo and ξ(f) = σsf . Similarly, Axiom (A.8) requires that when a status
function is imposed on an agent, then the state of a norm is set to unfired if predicate
start is not satisfied, otherwise it is set to activated:

AG∀o∀f((ofStatus(o) = f ∧ X(assigned(f) ∧ modified(f))) → ((¬start(o, f)
∧Xstate(o) = unfired) ∨ (start(o, f) ∧ Xstate(o) = activated)))

(A.8)

Axioms (A.7) and (A.8), as well as other axioms omitted here for the sake of brevity,
describe the temporal evolution of functions state and activation, which in com-
bination with predicates fulfillment and violation, determine when an obligation
should be considered to be infringed. In particular, given predicate violated of sig-
nature ξ(violated) = 〈σo〉, a norm is violated if and only if it was activated, the
associated status function is not modified, violation holds while fulfillment is false:

AG∀o∀f(ofStatus(o) = f → (Xviolated(o) ↔ (state(o) = active∧
(violation(o) ∧ ¬fulfillment(o) ∧ ¬Xmodified(f))))) (A.9)

Norms are described in FIEVeL according to the following syntax:

norm ::= symbol start fulfillment violation ;
start ::= "start" "<->" expression ";" ;
fulfillment ::= "fulfillment" "<->" expression ";" ;
violation ::= "violation" "<->" expression ";" ;

where expression is an OMSFOTL formula which does not contains U, E, G,
or nested occurrences of X. Moreover, given that a norm is described within a status
function σs, free occurrences of a variable f of sort σs may appear in any formula
used to describe a norm’s condition. A norm symbol induces sort σsymbol ≤Σ σo and

Model Checking Norms and Sanctions in Institutions 323

defines under what conditions predicates fulfillment, violation, and start hold when
are evaluated over an obligation of sort σsymbol, as exemplified by the following axiom
schema:

AG∀o∀f(fulfillment(o, f) ↔ (ofStatus(o) = f ∧ expression)) (A.10)

where ξ(o) = σsymbol and ξ(f) = σs. Combining instances of Axiom Schema (A.10)
(and similarly for predicates violation and start) with Axiom(A.9), it is possible to
automatically classify states with respect to each norm defined by an institution. In
contrast with other approaches (e.g., [16] and [1]), in our framework designers can
describe norms at a high-level in terms of institutional concepts, ignoring the actual
number of states and transitions admitted by an institution. For instance, the following
norm, named h1 and associated to the holder status function, states that once a holder
accepts to give the control of a resource, then it ought to do so before a certain time
interval elapses:

h1 start<->X ∃ ag:σaid ∃ rec:σaid ∃ res:σresources (subject(f)=ag ∧
resource(f)=res ∧ happens(accept,ag,rec,res));

fulfillment<->∃ ag:σaid ∃ rec:σaid ∃ res:σresources (subject(f)=ag
∧ res=resource(f) ∧ X happens(give,ag,rec,res));

violation<->(activation(o)=1 ∧ X happens(time));

Without proper sanction mechanisms, the introduction of norms typically does not
change the set of properties satisfied by an institution, given that autonomous agents
may not comply with such norms [5,2,9,18,7]: as a consequence certain properties may
not hold in an institution even if its rules are correctly stated. For instance, properties
(P.1) and (P.2) do not hold in the new model of the Resource Management institution ob-
tained by adding norm h1, despite this correctly requires that a holder gives a resource
after it has positively answered to an agent. This is due to the fact that norms regulate
existing activities, describing what evolutions of an institution should be considered as
legal, but do not change the temporal evolution admitted by an institution.

5 Normed Temporal Operators

To analyze whether an institution may lead a system into certain states when its norms
are respected, we can exploit predicate violated and the fact that in our framework
norms are reified as norm individuals. Therefore, it is possible to quantify over sort
σo (and its subsorts induced by each norm), investigating how norms condition the
evolution of an institution. In particular, in this paper we define operators that allow
designers to reason about what properties are satisfied by an institution when a set of
norm individuals are not violated. More precisely, given a set of norms which constitute
the extension of formula ϕo (an open formula in which variable o of sort σo occurs free),
normed temporal operators are defined as follows:

– EGϕoϕ =def EG(∀o : σo(ϕo → ¬violated(o)) ∧ ϕ);
– EXϕoϕ =def EX(∀o : σo(ϕo → ¬violated(o)) ∧ ϕ);
– EψUϕoϕ =def E(∀o : σo(ϕo → ¬violated(o)) ∧ ψ)U(∀o : σo(ϕo →

¬violated(o)) ∧ ϕ);

324 F. Viganò and M. Colombetti

Since the satisfaction of CTL temporal operators (with the exception of EX) refers
to the initial state π0 of a path π [4,3], then also their normed counterparts refer to state
π0. As a consequence, if state π0 violates norms ϕo, then the normed operators EGϕo

and EUϕo are trivially falsified. This may occur when the system is inconsistent or
because normed temporal operators are nested and external operators do not ensure
compliance with norms considered by internal operators. While in the former case we
would conclude that our system is irrational, in the latter case we may get counter-
intuitive results. To avoid this, we can prefix internal operators with EXϕo , ensuring
that the initial state is not considered and only paths compliant with norms of internal
operators are taken into account. Despite this problem may be avoided by different def-
initions of normed temporal operators, we consider more relevant the fact that normed
and unnormed operators are evaluated over the same set of states and are expressed in
terms of the standard semantics of CTL [4,3]. In doing so, if formula ϕo refers to an
empty set of obligations, then normed temporal operators are equivalent to their tempo-
ral counterpart (e.g., EGfalseϕ ≡ EGϕ), and EGϕo , EXϕo , and EUϕo constitute an
adequate set of operators, since we have the following equivalences:

– EFϕoϕ ≡ EtrueUϕoϕ;
– AGϕoϕ ≡ ¬EFϕo¬ϕ ∧ EGϕotrue;
– AXϕoϕ ≡ ¬EXϕo¬ϕ ∧ EXϕotrue;
– AψUϕoϕ ≡ ¬(E¬ϕUϕo(¬ϕ ∧ ¬ψ)) ∧ ¬EGϕo¬ϕ ∧ EFϕoϕ;
– AFϕoϕ ≡ ¬EGϕo¬ϕ ∧ EFϕoϕ;

It is worth observing that by definition, the consistency of norms represents a neces-
sary condition for the satisfaction of normed temporal operators universally quantified
over paths, otherwise they would be trivially satisfied by an inconsistent normative sys-
tem. In contrast with other specification languages characterized by a normative flavor
(e.g. [14,16,1]), which assume that the normative system is consistent (i.e., there ex-
ists a legal outward transition for every state) either by assuming axiom D [14] or as
an explicit hypothesis on the transition system [16,1], in our approach the absence of
contradictory norms represents a desirable property that a rational institution ought to
satisfy and that can be verified by our model checker. To exemplify the use of normed
temporal operators, we modify Property (P.2) such that if holders respect all norms of
the institution and they perform action accept, then they will give their resources:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res) →
AF∃h:σholder∃f :σsf (subject(h)=subject(f)∧ofStatus(o)=f)happens(give, act, rec, res))

(P.3)

We can also rewrite property (P.1) to investigate whether norm h1 is capable of directing
the behavior of holders in such a way that when an agent has requested a good and has
received a positive answer, it will eventually become the holder of the good:

AG∀act : σaid∀rec : σaid∀res : σresources((happens(accept, act, rec, res)

→ AF∃w:h1(w=o)∃h : holder(subject(h) = rec ∧ resource(h) = res))) (P.4)

To conclude this section we compare the expressiveness and the flexibility of our
approach to the specification languages proposed in [1] and [12]. In [1] the authors

Model Checking Norms and Sanctions in Institutions 325

proposed Normative Temporal Logic (NTL), a language similar to CTL with the ex-
ception that operators A and E are replaced by Oη and Pη , which intuitively can be read
as “for all paths compliant with the normative system η” and “there exists a path com-
pliant with the normative system η”. Given the semantics provided in [1] and assuming
that η represents a set of norms, NTL operators are equivalent to normed temporal op-
erators characterized by a formula ϕη representing all individuals of sorts belonging to
η. For instance, formula O�ηϕ of NTL corresponds to AXϕηAGϕηϕ, where ϕη is
defined as follows: ϕη ≡

∧
σn∈η ∃k : σn(k = o).

In [12] Lomuscio and Sergot presented a modal operator Oaϕ which expresses the
fact that ϕ holds over reachable states where agent a complies with its protocol. As-
suming that a is an agent, Oaϕ is equivalent to AX∃f(ofStatus(o)=f∧subject(f)=a)ϕ.
While NTL does not provide any construct to reason about agents, in [12] it is possible
to investigate only the compliance of agents with the whole set of norms (described as a
protocol): instead, normed temporal operators allow us to reason about subsets of norms
and agents, and to express complex interdependencies among them as exemplified by
Property (P.3).

6 Sanction Mechanisms

To guarantee that those agents that follow norms are not damaged by those who do not,
institutions should provide rules that describe what kind of sanctions are applied when
agents violate norms. According to [17], the imposition of status functions constitutes
a necessary condition for the application of sanctions, since “with that new status come
the appropriate punishment” [17, pag. 50]. Such status functions not only may provide
new powers and new obligations (prohibitions), but may also revoke or change existing
powers or norms: for instance, the exclusion of an agent from an interaction ruled by an
institution (e.g., an auction) means that powers and norms defined by such institution
have been revoked. Analogously, officials can apply sanctions only if they have the
necessary powers, and certain obligations (prohibitions) may further regulate how such
powers ought to be exerted. Therefore, given that sanctions modify the powers and
norms of agents, we propose to model sanction mechanisms as rules that impose or
revoke status functions when a norm is violated.

In our framework sanction mechanisms are defined according to the following gram-
mar:

sanction ::= "sanction" symbol "pre" expression ";" "eff" post
("," post)* ";" ;

precondition ::= expression;
post ::= (selection "-X->")? effects
selection ::= var ("," var)* "(" expression ")"
effects ::= var ("assign"|"revoke") "(" term "=" term

("," term"=" term)* ")";

where expression is an OMSFOTL formula which does not contain temporal oper-
ators or path quantifiers, and post is constituted by (i) an (optional) selection expres-
sion and (ii) an expression describing what statuses are assigned or revoked when the
sanction mechanism is activated. As we will see, effects must hold when a violation

326 F. Viganò and M. Colombetti

is detected, while the selection expression is evaluated in the previous state. For this
reason, we separate the selection expression from the effects through symbol -X->.

For instance, the following sanction mechanism describes that when a norm h1 is
violated, then the resource is assigned to the agent that has requested the good and
powers and obligations associated to status function requested are revoked:

sanction h1
pre true;
eff r2:σrequested revoke (reqRes(r2)=resource(f)),

r1:σrequested res:σresources a:σaid(res=resource(f)∧reqRes(r1)=res
∧ a=requester(r1)) -X->
r2:σholder assign(resource(r2)=res,subject(r2)=a)

Before continuing with our presentation, it is worth remarking that in our approach
sanction mechanisms reflect what powers, obligations, and prohibitions are assigned to
agents when violations are observed, which does not necessarily means that sanctions
(like fines) are automatically enforced by the system. Despite designers may decide to
enforce norms through automatic reactions of the system, FIEVeL allows to model sce-
narios where sanction mechanisms confer powers to certain agents to punish violations:
for instance, when an agent violates a norm, an officer may be empowered to impose a
fine and obliged to do so before a certain time instant.

Sanction mechanisms do not induce any new sort: instead, each of them introduces
two predicates, presani and effsani , which respectively represent a condition that must
be satisfied before a violated obligation activates the i-th sanction mechanism, and its
effects. Predicates presani (and analogously predicates effsani) are determined by the
obligation sort that must be sanctioned (σsymbol) and the status function that defines it
(σs). Furthermore, predicate presani must satisfy the following axiom schema:

AG∀o∀f(presani(o, f) ↔ preconditioni) (A.11)

where ξ(o) = σsymbol and ξ(f) = σs. Similarly, each sanction mechanism instantiates
the following axiom schema which defines what status functions are imposed or revoked
when a sanction mechanism is activated:

AG∀o∀f(effsani(o, f) ↔ (
Ki∧

k=0

∀ski(expressionki
→ X∃tki

([¬]assigned(tki) ∧
Nki∧

l=1

termki,l,1 = termki,l,2)))) (A.12)

where variables ski is a set of variables defined by the k-th effect expression of the
i-th sanction mechanism and tki represents status functions that will be assigned or
revoked. Finally, the following axiom schema states that the i-th sanction mechanism
brings about its effects when it is activated by the violation of an obligation and its
preconditions are met:

AG∀o∀f((ofStatus(o) = f ∧ presani(o, f) ∧ Xviolated(o)) → effsani(o, f))
(A.13)

Model Checking Norms and Sanctions in Institutions 327

Axiom Schema (A.13) suggests that, as institutional events, also sanction mechanisms
concur to the definition of predicate modified, which ensures that a status is not as-
signed (revoked) when no institutional event or sanction mechanism affects it (see
Section 3). Moreover, Axiom Schema (A.13) describes the main difference among insti-
tutional events and sanction mechanisms: while the former happen because other events
occur and certain conditions are satisfied (see Axiom (A.2)), the latter are fired only by
violations. To some extend, we can interpret Axiom Schema (A.13) as defining a single
convention for the activation of any sanction mechanism.

Properties (P.1) and (P.2) can be regarded as two different interpretations of the hu-
man norm “when agents accept to give a resource, then requesters ought to become
the new holders”, where the latter property explicitly refers to the actor and the action
that ought to be performed. Norm h1 introduced in Section 4 reflects such rule and the
introduction of a sanction mechanism for norm h1 changes the set of constitutive rules
in such a way that Property (P.1) is satisfied by the Resource Management institution.
Observing Figure 1, we can notice that the violation of norm h1 forces the effects of
action give, but not the performance of the action itself: therefore, we can expect that
Property (P.2) still does not hold, which is confirmed by our model checker. As it has
been formulated and unless we introduce a convention such that accept counts as give
(which may be incompatible with the rules of a human institution), we think that it is
impossible to devise a mechanism to satisfy Property (P.2), since it would mean that we
are capable of forcing an autonomous agent to act.

7 Discussion and Conclusions

In this paper we have extended FIEVeL with new constructs to model normative as-
pects of institutions and we have introduced a flexible specification language to define
properties regarding paths that are compliant with norms. We have also exemplified
how an institution can be developed by using our approach, verifying that it satisfies
certain requirements and modifying its constitutive and regulative rules to comply with
them. We have also shown that when properties stem from norms of human institutions
that artificial institutions should reflect, it is not always possible to satisfy them, at least
under certain interpretations of the human institutions.

In [9] Grossi et al. presented an overview of the role of norms and sanctions in insti-
tutions. According to [9] it seems that every norm can be either regimented or enforced,
while we think that the viability of such mechanisms depends on the meaning attributed
by designers to norms. As we have seen, certain interpretations may exclude the possi-
bility of regimenting them and, generally speaking, regimentation of norms regarding
institutional aspects can be achieved only by converting regulative rules into consti-
tutive rules. More precisely, prohibitions can be regimented by revoking powers [6,7]
while obligations can be enforced by changing the interpretation of certain terms. For
instance, norm “all yes/not questions should be answered” can be trivially regimented
by assuming that silence counts as a positive (negative) answer. Instead, assuming that
only a message sent by an agent counts as a communicative act (like in [7]) it is impos-
sible to regiment such norm.

328 F. Viganò and M. Colombetti

In [6] sanctions are considered only as rules which create new obligations (commit-
ments) and powers, while in this paper we have claimed that sanctions may also delete
obligations and powers by revoking status functions. Moreover, the approach discussed
in [6] is based on an intuitive semantics, which does not allow the development of a
framework to verify properties guaranteed by institutions. Analogously, the correctness
of protocols modelled in terms of institutional concepts by Artikis et al. [2,15] is only
guaranteed by systematic executions. Despite the terminologies used in this paper and
in [2] are quite similar, in [2] physical actions can be performed only by agents playing
a specific role, suggesting that such actions are actually institutional. Furthermore, the
formalism used in [2,15] does not provide any abstraction to describe that every insti-
tutional action must be empowered in order to be successfully executed. Instead, the
authors have to specify this fact for every single action and for every role.

In [8] a rule language is introduced to model norms and to represent the effects of
concurrent events. The author proposed the notion of enforcing events, which means
that obligatory events are considered as if they were executed even when agents do not
perform them. In our opinion, events’ enforcement transforms regulative rules into con-
stitutive rules, by defining when time events count as obligatory events, and represents
an effective mechanism to describe automatic updates of institutions. In general, we be-
lieve that it is not possible to enforce all kinds of events, especially those (like actions)
that can only be performed by autonomous agents.

The constructs presented in Section 4 constitute a high-level description of norms,
and our tool automatically classifies transitions and states as compliant with each norm
of the system. In this respect, our approach is similar to the one presented in [18]. In-
stead, the input language of the model checker described in [16] requires designers to
explicitly list the set of states that each agent may reach, and to classify them as red (an
agent violates the protocol) or green. Although red states are such only because they vi-
olate a protocol [12,16], such classification is not inferred from the protocol but must be
manually provided independently from it: therefore designers may introduce discrep-
ancies among the protocol and the classification of states. Similarly, in [1] systems are
described with a low-level language which requires to associate a name to each transi-
tion, and norms can be defined only by listing under what conditions a set of transitions
is considered legal.

In the future we plan to define a translation of axioms stemming from our metamodel
and from FIEVeL models into Prolog, providing a single framework for the definition,
verification, and monitoring of institutions.

References

1. Ågotnes, T., van der Hoek, W., Rodrı́guez-Aguilar, J.A., Sierra, C., Wooldridge, M.: On the
logic of normative systems. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 1175–1180 (2007)

2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.J.: A Protocol for Resource Sharing in Norm-
Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT
2004. LNCS (LNAI), vol. 3476, pp. 221–238. Springer, Heidelberg (2005)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

Model Checking Norms and Sanctions in Institutions 329

4. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus
linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

5. Esteva, M., Rodrı́guez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the Formal Spec-
ification of Electronic Institutions. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000.
LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

6. Fornara, N., Colombetti, M.: Specifying and Enforcing Norms in Artificial Institutions. In:
Omicini, A., Dunin-Keplicz, B., Padget, J. (eds.) Proceedings of the 4th European Workshop
on Multi-Agent Systems (2006)

7. Fornara, N., Viganò, F., Colombetti, M.: Agent Communication and Artificial Institutions.
Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

8. Garcı́a-Camino, A.: Ignoring, Forcing and Expecting Concurrent Events in Electronic Insti-
tutions. In: Sichman, J.S., et al. (eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870, pp.
316–329. Springer, Heidelberg (2008)

9. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006, vol. 4386, pp. 110–124. Springer, Heidelberg
(2007)

10. Jones, A., Sergot, M.J.: On the characterization of law and computer systems: The normative
systems perspectives. In: Deontic Logic in Computer Science: Normative Systems Specifi-
cation, pp. 275–307 (1993)

11. Jones, A., Sergot, M.J.: A formal characterisation of institutionalised power. Journal of the
IGPL 4(3), 429–445 (1996)

12. Lomuscio, A., Sergot, M.: A formulation of violation, error recovery, and enforcement in the
bit transmission problem. Journal of Applied Logic 1(2), 93–116 (2002)

13. Manzano, M.: Introduction to many-sorted logic. In: Many-sorted logic and its applications,
pp. 3–86. John Wiley, Chichester (1993)

14. Meyer, J.-J., Wieringa, R.J.: Deontic Logic: A Concise Overview. In: Deontic Logic in Com-
puter Science: Normative Systems Specification, pp. 3–16. John Wiley, Chichester (1993)

15. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol for virtual
organizations. In: Proceedings of the 4th Conference on Autonomous agents and Multi-Agent
Systems, pp. 373–380 (2005)

16. Raimondi, F., Lomuscio, A.: Automatic Verification of Deontic Interpreted Systems by
Model Checking via OBDD’s. In: Proceedings of the 16th European Conference on Arti-
ficial Intelligence, pp. 53–57 (2004)

17. Searle, J.R.: The construction of social reality. Free Press, New York (1995)
18. Sergot, M.J., Craven, R.: The Deontic Component of Action Language nC+. In: Goble, L.,

Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–237. Springer, Heidel-
berg (2006)

19. Viganò, F., Colombetti, M.: Specification and Verification of Institutions through Status
Functions. In: Noriega, P., et al. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 125–141.
Springer, Heidelberg (2007)

20. Viganò, F., Colombetti, M.: Symbolic Model Checking of Institutions. In: Proceedings of the
9th International Conference on Electronic Commerce (ICEC 2007), pp. 35–44. ACM Press
(2007)

	Model Checking Norms and Sanctions in Institutions
	Introduction
	Ordered Many-Sorted First-Order Temporal Logic
	Modelling, Specifying, and Verifying Institutions
	Norms
	Normed Temporal Operators
	Sanction Mechanisms
	Discussion and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

