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Abstract. We introduce Multimodal Logics of Normative Systems as
a contribution to the development of a general logical framework for
reasoning about normative systems over logics for Multi-Agent Systems.
Given a multimodal logic L, for every modality �i and normative system
η, we expand the language adding a new modality �

η
i with the intended

meaning of �
η
i φ being “φ is obligatory in the context of the normative

system η over the logic L”. In this expanded language we define the
Multimodal Logic of Normative Systems over L, for any given set of nor-
mative systems N , and we give a sound and complete axiomatisation for
this logic, proving transfer and model checking results. The special case
when L and N are axiomatised by sets of Sahlqvist or shallow modal
formulas is studied.

Keywords: Fusions of Logics, Multimodal Logics, Normative Systems,
Multi-Agent Systems, Model Theory, Sahlqvist Formulas.

1 Introduction

Recent research on the logical foundations of Multi-Agent Systems (MAS) has
centered its attention in the study of normative systems. The notion of electronic
institution is a natural extension of human institutions by permitting not only
humans but also autonomous agents to interact with one another. Institutions
are used to regulate interactions where participants establish commitments and
to facilitate that these commitments are upheld, the institutional conventions
are devised so that those commitments can be established and fulfilled (see [1] for
a general reference of the role of electronic institutions to regulate agents inter-
actions in MAS). Over the past decade, normative systems have been promoted
for the coordination of MAS and the engineering of societies of self-interested
autonomous software agents. In this context there is an increasing need to find
a general logical framework for the study of normative systems over the logics
for MAS.

Given a set of states S and a binary accessibility relation R on S, a normative
system η on the structure (S, R) could be understood as a set of constraints
η ⊆ R on the transitions between states, the intended meaning of (x, y) ∈ η
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being “the transition from state x to state y is not legal according to normative
system η”. Several formalisms have been introduced for reasoning about nor-
mative systems over specific logics. Two examples are worth noting: Normative
ATL (NATL), proposed in [2] and Temporal Logic of Normative Systems (NTL)
in [3]. NATL is an extension to the Alternating-Time Temporal Logic and con-
tains cooperation modalities of the form << η : C >> φ with the intended
interpretation that “C has the ability to achieve φ within the context of the nor-
mative system η”. NTL is a conservative generalization of the Branching-Time
Temporal Logic CTL. In NTL, the path quantifiers A (“on all paths...”) and
E (“on some path...”) are replaced by the indexed deontic operators Oη (“it
is obligatory in the context of the normative system η that..”) and Pη (“it is
permissible in the context of the normative system η that...”).

The Multimodal Logic of Normative Systems introduced in this article is a
contribution to define a general logical framework for reasoning about normative
systems over logics for MAS. For this purpose we generalize to arbitrary logics
the approaches taken in [2] and [3]. At the moment, we are far from obtaining a
unique formalism which addresses all the features of MAS at the same time, but
the emerging field of combining logics is a very active area and has proved to be
successful in obtaining formalisms which combine good properties of the existing
logics. In our approach, we regard the Logic of Normative Systems over a given
logic L, as being the fusion of logics obtained from L and a set of normative
systems over L. This model-theoretical construction will help us to understand
better which properties are preserved under combinations of logics over which
we have imposed some restrictions and to apply known transfer results (for a
general account on the combination of logics, we refer to [4] and [5], and as a
general reference on multimodal logic, to [6]). There are some advantages of us-
ing these logics for reasoning about MAS: it is possible to compare whether a
normative system is more restrictive than the other, check if a certain property
holds in a model of a logic once a normative system has restricted its accessibil-
ity relation, model the dynamics of normative systems in institutional settings,
define a hierarchy of normative systems (and, by extension, a classification of
the institutions) or present a logical-based reasoning model for the agents to
negotiate over norms.

This paper is structured as follows. In Section 2 we present an example in
order to motivate the introduction of the general framework. In Section 3 we
give a sound and complete axiomatisation for the Multimodal Logic of Normative
Systems, proving transfer results and we address a complexity issue for model
checking. In Section 4 we restrict our attention to logics with normative systems
that define elementary classes of modal frames. We have called them Elementary
Normative Systems (ENS) and we prove completeness and canonicity results for
them. Elementary classes include a wide range of formalisms used in describing
MAS, modelling different aspects of agenthood, some temporal logics, logics of
knowledge and belief, logics of communication, etc. Finally, in Section 5 we come
back to our first example in Section 2, showing how our framework can be applied
to multiprocess temporal structures, Section 6 is devoted to future work.
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2 Multiprocess Temporal Frames and Normative Systems

In a multi-agent institutional environment, in order to allow agents to success-
fully interact with other agents, they share the dialogic framework. The expres-
sions of the communication language in a dialogic framework are constructed as
formulas of the type ι(αi : ρi, αj : ρj , φ, τ), where ι is an illocutionary particle,
αi and αj are agent terms, ρi and ρj are role terms and τ is a time term. An
scene is specified by a graph where the nodes of the graph represent the different
states of the conversation and the arcs connecting the nodes are labelled with
illocution schemes.

Several formalisms for modelling interscene exchanges between agents have
been introduced using multimodal logics. For instance, in [7] the authors provide
an alternating offers protocol to specify commitments that agents make to each
other when engaging in persuasive negotiations using rewards. Specifically, the
protocol details, how commitments arise or get retracted as a result of agents
promising rewards or making offers. The protocol also standardises what an
agent is allowed to say or what it can expect to receive from its opponent. The
multimodal logic presented in [7] introduces modalities �φ for expressions φ of
the communication language.

More formally, given a finite set of propositional atomic formulas, we could
define the set of formulas of such a multimodal communication language in the
following way:

φ ::= p |� |⊥ | ¬α | α ∧ α | �φ1α | . . . | �φk
α

where p is an atomic propositional formula, α is a propositional formula and
φ1, . . . , φk are formulas of the communication language.

The standard Kripke semantics of these logics can be given by means of mul-
tiprocess temporal frames. We say that Ξ = (S, Rφ0 , . . . , Rφk

) is a multiprocess
temporal frame if and only if S is a set of states and for every i ≤ k, Rφi is a
binary relation on S such that R =

⋃
i≤k Rφi is a serial relation (that is, for

every s ∈ S there is t ∈ S such that (s, t) ∈ R). A multiprocess temporal model
is a Kripke model with a multiprocess temporal frame.

Let M be a multiprocess temporal model and w ∈ M , the satisfiability relation
for the modalities �φi is defined as usual:

M, w |= �φiα iff for all w′ ∈ M such that wRφiw
′

M, w′ |= α

Some examples of the protocols introduced in [7] can be formalised by formulas
of the following form: �φ1 . . .�φl

⊥. For instance, with the formula

�Offer(i,x)�Offer(i,y)⊥

with x �= y, we can express that it is not allowed to agent i to do two differ-
ent offers one immediately after the other. Let us see now how formulas like
�φ1 . . . �φl

⊥ can be understood as sets of constraints on the transitions between
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states. Given a multiprocess temporal frame Ξ = (S, Rφ0 , . . . , Rφk
), consider the

following set of finite sequences of elements of S:

ΔΞ = {(a0, . . . , am) : ∀j < m, ∃i ≤ k such that ajRφiaj+1}

Then, a normative system η on the frame Ξ could be defined as a subset of ΔΞ .
Intuitively speaking, a sequence (a0, . . . , am) ∈ η if and only if this sequence
of transitions is not legal according to normative system η. In our previous
example, given a frame, the formula �Offer(i,x)�Offer(i,y)⊥, can be regarded as
the following normative system (that is, the following set of finite sequences of
the frame):

{
(a0, a1, a2) : such that a0ROffer(i,x)a1 and a1ROffer(i,x)a2

}

Thus, any model satisfying the protocol introduced by �Offer(i,x)�Offer(i,y)⊥
can not include such sequences.

When defining an scene in an electronic institution we could be interested in
comparing different protocols in order to show which of them satisfy some desired
properties. In order to do so we could extend our multimodal language with
additional modalities �

η
φi

, one for each normative system we want to consider.
Next section is devoted to the study of the logical properties of these languages
and later on, we will come back to our example applying this general framework.

3 Multimodal Logics of Normative Systems

We introduce first some notation and basic facts about multimodal languages.
A finite modal similarity type τ = 〈F, ρ〉 consists of a finite set F of modal
operators and a map ρ : F → ω assigning to each f ∈ F a finite arity ρ(f) ∈ ω.
Finite propositional modal languages of type τ are defined in the usual way by
using finitely many propositional variables, the operators in F and the boolean
connectives ∧, ∨, ¬, →, ↔, �, ⊥. For monadic modalities we use the usual nota-
tion �f .

A modal finitary structural consequence relation � of similarity type τ is a
relation between sets of formulas and formulas of the finite propositional modal
language of type τ satisfying:

– φ ∈ Γ ⇒ Γ � φ
– If Γ ⊆ Δ and Γ � φ, then Δ � φ
– If Γ � Δ and Δ � φ, then Γ � φ
– Γ � φ ⇒ sΓ � sφ, for all substitutions s
– If Γ � φ, then there exist a finite subset Γ0 of Γ with Γ0 � φ
– � φ, for every classical tautology φ
– p, p → q � q
– For every f ∈ F ,

p0 ↔ q0, . . . , pρ(f) ↔ qρ(f) � f(p0, . . . , pρ(f)) ↔ f(q0, . . . , qρ(f))
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For a general account on consequence relations we refer to [8] say that a subset
Λ of modal formulas is a classical modal logic of similarity type τ iff there exists
a modal finitary structural consequence relation � of similarity type τ such that
Λ = Λ(�), where Λ(�) = {φ : ∅ � φ}. It is said that that Λ is consistent if ⊥ /∈ Λ.

Given a type τ = 〈F, ρ〉, a Kripke frame of type τ is an structure (S, Rf )f∈F ,
where S is nonempty and for every f ∈ F , Rf is a binary relation on S.

Definition 1. A normative system over a Kripke frame (S, Rf )f∈F is a subset
of the following set of finite sequences of S:

{(a0, . . . , am) : ∀j < m, ∃f ∈ F such that ajRfaj+1}

Observe that Definition 1 extends to the multimodal setting the definition of
normative system introduced in Section 2 of [3]. Examples of classical modal
logics with semantics based on Kripke frames are Propositional Dynamic Logic
(PDL), Alternating-Time Temporal Logic (ATL) and Computational Tree Logic
(CTL), but CTL*, the Full Computational Tree Logic is not a classical modal
logic because it is not closed under uniform substitution.

Now we introduce in the language a new finite set of symbols N to denote
normative systems. Given a finite propositional modal language of type τ =
〈F, ρ〉, for every normative system η ∈ N , let τη be the type whose modalities are
{fη : f ∈ F} and τN =

⋃
η∈N τη. For every set of formulas Γ , let us denote by Γ η

the set of formulas of type τη obtained from Γ by substituting every occurrence
of the modality f by fη. The monadic operators �f are defined in the usual way
as abbreviations �fφ ≡ ¬�f¬φ and we have also the corresponding �

η
f .

Given a classical modal logic L with semantics based on Kripke frames, we
define the Multimodal Logic of Normative Systems over L, denoted by LN , as
being the smallest classical modal logic in the expanded language τN which
contains L and Lη, for every η ∈ N .

Theorem 2. Let L be a consistent classical modal logic axiomatised by a set Γ
of formulas. Then,

1. Γ N = Γ ∪
⋃

{Γ η : η ∈ N} is an axiomatisation of LN .
2. LN is a conservative extension of L.
3. If L is a decidable logic, then LN is decidable.

Proof. Since we have introduced a finite set of disjoint similarity types

{τη : η ∈ N}

we can define the fusion
⊕

< Lη : η ∈ N > of disjoint copies of the logic L.
Observe that, so defined, LN =

⊕
< Lη : η ∈ N > and Γ N is an axiomatisation

of LN . Then, by an early result of Thomason [9], LN is a conservative extension
of L. Finally we can apply Theorem 6.11 of [10], to obtain the corresponding
transfer result.

In [11] a weak notion of normality is introduced to prove some additional transfer
results for the fusion of logics. Let us assume that our classical modal logics
satisfy the two conditions of Definition 2.5 of [11]:
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1. For every f ∈ F , the semantics of f(p0, . . . , pρ(f)) is a monadic first-order
formula.

2. For each Rf , there is a derived connective �f such that the formula �fp
expresses ∀x(yRfx → Px) and is closed under the necessitation rule: If
φ ∈ Λ, then �fφ ∈ Λ.

This second condition corresponds to the notion of normality, but it is weaker
than the usual normality requirement. Observe that the operators U and S (until
and since) of Temporal Logic are only normal in the first position and not in
the second. However, they satisfy conditions 1. and 2., the binary ordering <
can be associated with U and the binary ordering > can be associated with S,
thus condition 1. is satisfied. The monadic modalities H and G are derivable
connectives, that satisfy the requirement of condition 2.

Following the lines of the proof of Theorem 2, by using Theorems 3.6 and 3.10
of [11], we can obtain the following transfer theorem:

Theorem 3. Let L be a consistent classical modal logic axiomatised by a set
Γ of formulas and such that satisfies conditions 1. and 2. above. Then, If L is
complete and sound over the class of frames C, then LN is also complete and
sound over the class of frames

⊕
< Cη : η ∈ N >.

As an application of Theorems 2 and 3 we obtain that the Multimodal Logic of
Normative Systems over the logics CTL and PDL, has a sound and complete
axiomatisation, is decidable and has the Finite Model Property, because CTL
and PDL are decidable and complete over the class of finite frames.

We end this section by introducing a model checking result. Given a frame
Ξ = (S, Rf )f∈F , we say that a subset of S is connected if for every s, t ∈ S,

(s, t) ∈ (
⋃ {

(Rf ∪ R−1
f : f ∈ F

}
)∗, where for any relation R, R∗ denotes the

transitive closure of R. We say that the frame Ξ is connected if its domain S
is a connected set. Observe that, for every classical modal logic L that satisfies
conditions 1. and 2. stated above and it is complete with respect to a class of
connected frames, by Theorem 3, the Multimodal Logic of Normative Systems
over L is also complete with respect to a class of connected frames.

Theorem 4. Let L be a classical modal logic in a finite similarity type τ = 〈F, ρ〉
and let (S, Rη

f )f∈F,η∈N be a finite model of the Multimodal Logic of Normative
Systems over L such that the restriction of the model (S, Rη

f )f∈F,η∈N to the
similarity type τη is connected. Then, the complexity of model checking a formula
φ of type τN is

O(
∑

η∈N mη + n · k) +
∑

η∈N ((O(k) + O(n)) · CL(mη, n, k))

where mη =
∑

f∈F

∣
∣
∣R

η
f

∣
∣
∣, n= |S|, k is the length of the formula φ and CL(mη, n, k)

is the complexity of model checking for logic L as a function of mη, n and k.

Proof. By Theorem 2, LN is a conservative extension of L and for every η ∈ N
the restriction of the model (S, Rη

f )f∈F,η∈N to the similarity type τη is a model
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of L and is connected by assumption. This fact allows us to generalize the result
on temporal logics of Theorem 5.2 of [12]. We can express the complexity of a
combined model checker for LN in terms of a model checker for L.

For example, in the case of the Multimodal Logic of Normative Systems over
CTL, the overall cost of the model checker for this logic is linear in the size of
the model and in the length of the formula.

4 Elementary Normative Systems

There are some advantages of using Multimodal Logics of Normative Systems
for reasoning about MAS: it is possible to compare whether a normative system
is more restrictive than the other, check if a certain property holds in a model
of a logic once a normative system has restricted its accessibility relation, model
the dynamics of normative systems in institutional settings, define a hierarchy
of normative systems (and, by extension, a classification of the institutions) or
present a logical-based reasoning model for the agents to negotiate over norms.
Up to this moment we have introduced an extensional definition of normative
system (see Definition 1), in this section we present our first attempt to classify
normative systems, we restrict our attention to normative systems defined by
certain sets of first-order formulas, but only over some class of normal multimodal
logics with standard Kripke semantics.

The choice of Sahlqvist formulas in this section is due, on the one hand, to the
fact that a wide range of formalisms for MAS can be axiomatised by a set of such
formulas (see next section). On the other hand, for the good logical properties
of these logics (canonicity, transfer results, etc.). In Section 3 we have presented
a general setting for dealing with any classical modal logic. Now, we focus only
on some particular kind of logics. We want to study the specific properties of
their normative systems that can be proved by using only the fact that these
logics are axiomatised by sets of Sahlqvist formulas.

Given a set of modal formulas Σ, the frame class defined by Σ is the class
of all frames on which each formula in Σ is valid. A frame class is modally
definable if there is a set of modal formulas that defines it, and it is said that the
frame class is elementary if it is defined by a first-order sentence of the frame
correspondence language (the first-order language with equality and one binary
relation symbol for each modality). An Elementary Normative System (ENS) is
a propositional modal formula that defines an elementary class of frames and a
normative system in any frame.

Throughout this and next section we assume that our modal languages have
standard Kripke semantics and their modal similarity types have only a finite set
of monadic modalities {�f : f ∈ F} and a finite set of propositional variables.
Given a classical modal logic L and a set of Elementary Normative Systems N
over L, for every η ∈ N we generalize the notion introduced in Section 3 by
defining the Multimodal Logic of Normative Systems over L and N , denoted by
LN , as being the smallest normal logic in the expanded language which contains
L, N and every Lη. We now present a sound and complete axiomatisation and
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prove some transfer results in the case that L is axiomatised by a set of Sahlqvist
formulas and N is a set of Sahlqvist formulas. We denote by L(η) the smallest
normal logic of similarity type τη which includes Lη ∪ {η}.

Definition 5 (Sahlqvist formulas). A modal formula is positive (negative)
if every occurrence of a proposition letter is under the scope of an even (odd)
number of negation signs. A Sahlqvist antecedent is a formula built up from �, ⊥,
boxed atoms of the form �i1 . . . �il

p, for ij ∈ I and negative formulas, using
conjunction, disjunction and diamonds. A Sahlqvist implication is a formula of
the form φ → ϕ, when φ is a Sahlqvist antecedent and ϕ is positive. A Sahlqvist
formula is a formula that is obtained from Sahlqvist implications by applying
boxes and conjunction, and by applying disjunctions between formulas that do
not share any propositional letters.

Observe that ⊥ and � are both Sahlqvist and ENS formulas. Intuitively speak-
ing, ⊥ is the trivial normative system. In ⊥ every transition is forbidden in every
state and in � every transition is legal. In the sequel we assume that for every
set N of ENS, � ∈ N .

Theorem 6. Let L be a classical normal modal logic axiomatised by a set Γ of
Sahlqvist formulas and N a set of ENS Sahlqvist formulas, then:

1. Γ N = Γ ∪ N ∪
⋃

{Γ η : η ∈ N} is an axiomatisation of LN .
2. LN is complete for the class of Kripke frames defined by Γ N .
3. LN is canonical.
4. If L and Lη are consistent, for every η ∈ N , and P is one of the following

properties:
– Compactness
– Interpolation Property
– Halldén-completeness
– Decidability
– Finite Model Property1

then LN has P iff L and L(η) have P, for every η ∈ N .

Proof. 1–3 follows directly from the Sahlqvist’s Theorem. The main basic idea
of the proof of 4 is to apply the Sahlqvist’s Theorem to show first that for every
η ∈ N , the smallest normal logic of similarity type τη which includes Γ η ∪{η} is
L(η), is a complete logic for the class of Kripke frames defined by Γ η ∪{η} and is
canonical (observe that this logic is axiomatised by a set of Sahlqvist formulas).
Now, since for every Elementary Normative System η ∈ N we have introduced
a disjoint modal similarity type τη, we can define the fusion of the logics

⊕
<

L(η) : η ∈ N >. It is enough to check that LN =
⊕

< L(η) : η ∈ N >
(remark that L� = L) and using transfer results for fusions of consistent logics
(see for instance [13] and [11]) we obtain that LN is a conservative extension
and that decidability, compactness, interpolation, Hállden-completeness and the
Finite Model Property are preserved.
1 For the transfer of the Finite Model Property it is required that there is a number

n such that each L(η) has a model of size at most n.
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We study now the relationships between normative systems. It is interesting to
see how the structure of the set of all the ENS over a logic L (we denote it by
N(L)) inherits its properties from the set of first-order counterparts. A natural
relationship could be defined between ENS, the relationship of being one less
restrictive than another. Let us denote it by �. Given η, η′, it is said that η � η′

iff the first-order formula φη′ → φη is valid (when for every η ∈ N , φη is the
translation of η). The relation � defines a partial order on N(L) and the pair
(N(L), �) forms a complete lattice with least upper bound ⊥ and greatest lower
bound � and the operations ∧ and ∨.

Now we present an extension of the Logic of Elementary Normative Systems
over a logic L with some inclusion axioms and we prove completeness and canon-
icity results. Given a set N of ENS, let IN+

be the following set of formulas:
{
�i1 . . . �il

p → �
η
i1

. . .�η
il
p : ij ∈ I, η ∈ N

}

and IN∗
the set:

{
�

η′

i1
. . . �η′

il
p → �

η
i1

. . .�η
il
p : ij ∈ I, η � η′, η, η′ ∈ N

}

Corollary 7. Let L be a normal modal logic axiomatised by a set Γ of Sahlqvist
formulas and N a set of ENS Sahlqvist formulas, then:

1. Γ N+
= Γ N ∪ IN+

is an axiomatisation of the smallest normal logic with
contains LN and the axioms IN+

, is complete for the class of the Kripke
frames defined by Γ N+

and is canonical. We denote this logic by LN+
.

2. Γ N∗
= Γ N ∪ IN∗ ∪ IN+

is an axiomatisation of the smallest normal logic
with contains LN and the axioms IN∗ ∪ IN+

, is complete for the class of
the Kripke frames defined by Γ N∗

and is canonical. We denote this logic by
LN∗

.
3. If LN is consistent, both LN+

and LN∗
are consistent.

Proof. Since for every ij ∈ I every η, η′ ∈ N , the formulas �i1 . . . �il
p →

�
η
i1

. . .�η
il
p and �

η′

i1
. . . �η′

il
p → �

η
i1

. . .�η
il
p are Sahlqvist, we can apply Theorem

6. In the case that LN is consistent, consistency is guaranteed by the restriction
to pairs η � η′ and for the fact that η and η′ are ENS.

Observe that for every frame (S, Rf , Rη
f )f∈F,η∈N of the logic LN∗

,

Rη
i1

◦ . . . ◦ Rη
il

⊆ Ri0 ◦ . . . ◦ Ril
,

and for η � η′, Rη
i1

◦ . . .◦Rη
il

⊆ Rη′

i1
◦ . . .◦Rη′

i1
, where ◦ is the composition relation.

We end this section introducing a new class of modal formulas defining el-
ementary classes of frames, the shallow formulas. For a recent account of the
model theory of elementary classes and shallow formulas we refer the reader
to [14].

Definition 8. A modal formula is shallow if every occurrence of a proposition
letter is in the scope of at most one modal operator.
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It is easy to see that every closed formula is shallow and that the class of Sahlqvist
and shallow formulas don’t coincide: �1(p ∨ q) → �2(p ∧ q) is an example of
shallow formula that is not Sahlqvist. Analogous results to Theorem 6 and
Corollary 7 hold for shallow formulas, and using the fact that every frame
class defined by a finite set of shallow formulas admits polynomial filtration, by
Theorem 2.6.8 of [14], if L is a normal modal logic axiomatised by a finite set
Γ of shallow formulas and N is a finite set of ENS shallow formulas, then the
frame class defined by Γ N has the Finite Model Property and has a satisfiability
problem that can be solved in NEXPTIME.

5 Some Examples

Different formalisms have been introduced in the last twenty years in order to
model particular aspects of agenthood (temporal Logics, logics of knowledge
and belief, logics of communication, etc). We show in this section that several
logics proposed for describing Multi-Agents Systems are axiomatised by a set of
Sahlqvist or shallow formulas and therefore we could apply our results to the
study of their normative systems. Let us come back to our previous example of
Section 2, the multiprocess temporal frames. We have introduced first this basic
temporal logic of transition systems, not because it is specially interesting in
itself, but because it is the logic upon which other temporal logics are built and
because it is a clear and simple example of how our framework can work.

Remember that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal frame if and
only if S is a set of states, for every i ≤ k, Ri is a binary relation on S such that
R =

⋃
i≤k Ri is a serial relation (that is, for every s ∈ S there is t ∈ S such that

(s, t) ∈ R). It is easy to see that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal
frame if and only if the formula of the corresponding multimodal language

�0� ∨ . . . ∨ �k� (MPT)

is valid in Ξ. Let us denote by MPTL the smallest normal logic containing
axiom (MPT). For every nonempty tuple (i1, . . . , il) such that for every j ≤ l,
ij ≤ k, consider the formula �i1 . . . �il

⊥. Observe that every formula of this form
is shallow and ENS. We state now without proof a result on the consistency of
this kind of normative systems over MPTL that will allow us to use the logical
framework introduced in the previous section.

Proposition 9. Let N be a finite set of normative systems such that for every
η ∈ N , there is a finite set X of formulas of the form �i1 . . .�il

⊥ such that η is
the conjunction of all the formulas in X, ⊥ /∈ X and the following property holds:

If �i1 . . . �il
⊥ /∈ X, there is j ≤ k such that �i1 . . .�il

�j⊥ /∈ X.

Then, the logic MPTLN is consistent, complete, canonical, has the Finite Model
Property and has a satisfiability problem that can be solved in NEXPTIME.
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In general, a normal multimodal logic can be characterized by axioms that are
added to the system Km. The class of Basic Serial Multimodal Logics is char-
acterized by subsets of axioms of the following form, requiring that AD(i) holds
for every i,

– �ip → �ip AD(i)
– �ip → p AT(i)
– �ip → �jp AI(i)
– p → �i�jp AB(i,j)
– �ip → �j�kp A4(i,j,k)
– �ip → �j�kp A5(i,j,k)

An example of a Kripke frame of MPTL in which none of the previous ax-
ioms is valid is Ξ = ({0, 1, 2}, {(0, 1), (2, 0)}, {(1, 2)}). In particular, our exam-
ple shows that the Multimodal Serial Logic axiomatised by {AD(i) : i ≤ k}, is
a proper extension of MPTL. Observe that any logic in the class BSML is ax-
iomatised by a set of Sahlqvist formulas, therefore we could apply the framework
introduced before to compare elementary normative systems on these logics.

Another type of logic axiomatised by Sahlqvist formulas are many Multimodal
Epistemic Logics. Properties such as positive or negative introspection can be
expressed by �ip → �i�kp and ¬�ip → �i¬�ip respectively. And formulas like
�ip → �jp allow us to reason about multi-degree belief.

The Minimal Temporal Logic Kt is axiomatised by the axioms p → HFp and
p → GPp which are also Sahlqvist formulas. Some important axioms such as
linearity Ap → GHp ∧HGp, or density GGp → Gp, are Sahlqvist formulas, and
we can express the property that the time has a beginning with an ENS. By
adding the nexttime modality, X , we have an ENS which expresses that every
instant has at most one immediate successor.

6 Related and Future Work

Along this work, in Sections 4 and 5, we have dealt only with multimodal
languages with monadic modalities, but by using the results of Goranko and
Vakarelov in [15] on the extension of the class of Sahlqvist formulas in arbitrary
polyadic modal languages to the class of inductive formulas, it would be possible
to generalize our results to polyadic languages.

We will proceed to apply our results to different extended modal languages,
such as reversive languages with nominals (in [15], the elementary canonical
formulas in these languages are characterized) or Hybrid Logic (in [14], Hybrid
Sahlqvist formulas are proved to define elementary classes of frames). Future
work should go beyond Elementary Normative Systems and consider the study
of sets of normative systems expressed by other formal systems.

Several formalisms have been introduced for reasoning about normative sys-
tems over specific logics. Two examples are worth noting: Normative ATL
(NATL), proposed in [2] and Temporal Logic of Normative Systems (NTL) in
[3]. NATL is an extension to the Alternating-Time Temporal Logic and con-
tains cooperation modalities of the form << η : C >> φ with the intended
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interpretation that “C has the ability to achieve φ within the context of the nor-
mative system η”. NTL is a conservative generalization of the Branching-Time
Temporal Logic CTL. In NTL, the path quantifiers A (“on all paths...”) and
E (“on some path...”) are replaced by the indexed deontic operators Oη (“it
is obligatory in the context of the normative system η that..”) and Pη (“it is
permissible in the context of the normative system η that...”). In our article we
have extended these approaches to deal with arbitrary multimodal logics with
standard Kripke semantics. Our definition of normative system is intensional,
but the languages introduced permit to work with extensional definitions like
the ones in [3] and [2].

Apart from these two articles, there are other previous works where we found
intuitions and formalisations that motivated the introduction of our framework.
Moses, Shoham, and Tennenholtz in [17]-[19] defined the notion of social laws for
multiagent systems. They set up a basic formal framework within which com-
putational questions about social laws could be formulated. These ideas were
developed by Fitoussi and Tennenholtz, considering simple social laws, social
laws that could not be any simpler without failing, see [20]. Moses and Tennen-
holtz developed in [16] a deontic epistemic logic for representing properties of
multiagent systems with normative structures. Their logic did contain notions of
socially reachable states of affairs, which essentially corresponds to our norma-
tive system operators. Lomuscio and Sergot introduced in [21] deontic interpreted
systems. The basic idea was to interpret the deontic accessibility relation as link-
ing states where the system is correctly functioning. They gave an axiomatization
of their logic, and also investigated the epistemic properties of their system.

6.1 Related Papers in This Volume

The paper by Viganò and Colombetti in [22] enrich the modelling language
FIEVel for institutions, with new constructs to describe norms and sanctions.
This is a similar approach to ours, since they introduce also model checking
results and their logic is an extension of Normative Temporal Logic. The article
also focusses on the study of properties of artificial institutions, showing that
when they reflect certain interpretations of norms of human institutions, it is
not always possible to satisfy them.

Cliffe, De Vos and Padget propose in [23] a formalism capable to specify and
reason about multiple interacting institutions. In the paper they explore the
consequences of the correspondence between landmarks and the institutional
states of their executable model. The essence of the landmark definition is a
condition on a state in order for an action in some protocol to have effect.

The paper by Garćıa-Camino, Rodŕıguez-Aguilar and Vasconcelos introduces
in [24] a distributed architecture and non-centralised computational model for
norms. This is an interesting contribution dealing with MAS normative conflicts
that may arise due to the dynamic nature of MAS. The notion of MAS, regulated
by protocols, is extended with an extra layer called normative structure. AMELI
is extended including a new type of agent, the normative managers. This artifact
allows the propagation of normative positions as a consequence of agents’ actions.
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An innovative approach to the dynamics of normative systems is the formali-
sation of Thagard’s Coherence Theory in [25]. In their paper, Joseph, Sierra and
Schorlemmer introduce an agent model based on coherence theory, the reasoning
process of the intentional agent permits the agent to drop beliefs or to violate
norms in order to keep a maximal state of coherence.
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