
J.S. Sichman et al. (Eds.): COIN 2007 Workshops, LNAI 4870, pp. 232–244, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Implementing Norms That Govern Non-dialogical Actions

Viviane Torres da Silva*

Departamento de Sistemas Informáticos y Computación – UCM, Spain, Madrid
viviane@fdi.ucm.es

Abstract. The governance of open multi-agent systems is particular important
since those systems are composed of heterogeneous, autonomous and independ-
ently designed agents. Such governance is usually provided by the establishment
of norms that regulate the actions of agents. Although there are several ap-
proaches that formally describe norms, there are still few of them that propose
their implementation. In this paper we propose the implementation of norms that
govern non-dialogical actions by extending one of the approaches that regulate
dialogical ones. Non-dialogical actions are not related to the interactions between
agents but to tasks executed by agents that characterize, for instance, the access to
resources, their commitment to play roles or their movement into environments
and organizations.

Keywords: Norm, governance of multi-agent system, non-dialogical action,
implementation of norm.

1 Introduction

The governance of open multi-agent systems (MAS) copes with the heterogeneity,
autonomy and diversity of interests among agents that can work towards similar or
different ends [9] by establishing norms. The set of system norms defines actions that
agents are prohibited, permitted or obligated to do [1] and [12].

Several works have been proposed in order to define the theoretical aspects of
norms [3] and [5], to formally define those norms [2] and [4], and to implement them
[7], [8], [9], [10] and [13]. In this paper we focus on the implementation of norms.
Our goal is to present an approach where dialogical and non-dialogical norms can be
described and regulated. Non-dialogical actions are not related to the interactions
between agents but to tasks executed by agents that characterize, for instance, the
access to resources, their commitment to play roles or their movement in environ-
ments and organizations. From the set of analyzed proposals for implementing norms,
few approaches considers non-dialogical actions [9], [10] and [13]. Although, the
authors present some issues on the verification and enforcement of norms, they do no
demonstrate how such issues should be implemented. Other approaches such as [7]
and [8] deal with e-Institutions and, thus, consider illocutions as the only action per-
formed in such systems.

* Research supported by the Juan de la Cierva programa, Comunidad de Madrid S-0505/

TIC-407 and MEC-SP TIC2003-01000.

 Implementing Norms That Govern Non-dialogical Actions 233

Our approach extends the work presented in [8] with the notion of non-dialogical ac-
tions proposed in [13]. A normative language is presented in [8] to describe illocutions
(dialogical actions) that might be dependent on temporal constraints or the occurrence
of events. We have extended the normative language in order to be possible to specify
non-dialogical norms that state obligations, permissions or prohibitions over the execu-
tion of actions of agents’ plans (as proposed in [13]) and of object methods. Similar to
the approach presented in [8], we have also used Jess1 to implement the governance
mechanism that regulates the behavior of agents. The mechanism activates norms and
fires violations (Jess rules) according to the executed (dialogical or non-dialogical)
actions (Jess facts).

Although both the normative language and the implementation rules can be used
by agents and by the governance mechanism, the approach focuses on the implemen-
tation of norms from the system perspective [13], i.e., both agents and the governance
mechanism will use the language and the rules to find out: What are the activated and
deactivated norms? What are the fulfilled and the violated norms? What are the ap-
plied sanctions?

The paper is organized as follows. Section 2 describes the example we are using to
illustrate our approach. Section 3 intends to clearly present the difference between dia-
logical and non-dialogical actions. Section 4 points out the main concepts of the extended
normative language and Section 5 describes the implementation of the governance
engine in Jess. Section 6 concludes our work and presents some future work.�

2 Applied Example

In order to exemplify our approach, we have defined a set of six norms that govern a
simplified version of a soccer game. The soccer game is composed of agents playing one
of the three available roles: referee, coach and player (kicker or goalkeeper). The respon-
sibilities of a referee in a soccer game are: to start the game, stop it, check the players’
equipments and punish the players. The available punishments are: to show a yellow
card, send off a player, and declare a penalty. The possible actions of a player during a
game are: kick the ball and handle the ball. The coach role is limited to substitute players.
Besides those actions, all agents are able to move and, therefore, enter and leave the
game field. The six norms that regulate our simple soccer game are the following:

Norm 1: The referee must check the players’ equipments before starting the game.
Norm 2: A coach cannot substitute more than three players in the same game.
Norm 3: Players cannot leave the game field during the game.
Norm 4: The referee must send off a player after (s)he has done a second caution in
the same match. In this simplified version of the soccer game, there is only one situa-
tion that characterizes a caution; a player leaving the game field before the referee has
stopped it. At the first caution, the agent receives a yellow card.
Norm 5: Kickers cannot handle the ball.
Norm 6: The referee must declare a penalty if kicker handles the ball.

1 Jess is a rule-based system. http://www.jessrules.com/

234 V.T. da Silva

3 Dialogical and Non-dialogical Actions

Non-dialogical actions are the ones not related to interactions between agents. Not all
actions executed by agents in MAS provide support for sending and receiving mes-
sages between them [13]. There are actions that modify the environment (for exam-
ple, updating the state of a resource) that do not characterize a message being sent to
or received from another agent. In the soccer game example, the actions of kicking
the ball or handling it are non-dialogical actions. In addition, actions that modify the
position of an agent in an environment do not characterize a dialogical action either.
The actions of entering or leaving the game field are not dialogical ones.

Some actions can be defined as a dialogical or a non-dialogical one, depending on
how the problem is modeled. In the soccer game, to start a game and to stop it was
considered dialogical actions. Agents receive a message informing about the state of
the game. The dialogical actions of the soccer game example are: to start the game,
stop it, punish player, declare penalty and show the yellow card. The non-dialogical
ones are: enter in the game field, leave it, handle the ball, kick the ball, substitute a
player and check the player’s equipment.

4 Describing Norms

Since our intention is to contribute to the work presented in [7], we extend the BNF
normative language to represent non-dialogical actions and to describe conditions and
time situations that are defined by those non-dialogical actions. In addition, the speci-
fication of dialogical actions already presented in the previous normative language
was extended in order to be possible to describe messages attributes stated in the
FIPA ACL language2.

4.1 Specifying Non-dialogical Actions

The original BNF description of the normative language defines norms as the compo-
sition of a deontic concept (characterizing obligation, prohibition or permission) and
an action followed by a temporal situation and an if condition, when pertinent. In such
definition, actions are limited to utterance of illocutions.

In our proposed extension, the action concept was generalized to also describe non-
dialogical ones. Dialogical and non-dialogical actions are complementary, as illustrated
by the grammar that specifies that these are the only two possible actions’ kinds. Non-
dialogical actions state the entities whose behavior is being restricted and the actions that
are being regulated. Due to the way the entity concept was defined, a non-dialogical
norm, i.e., a norm that regulates non-dialogical actions, can be applied to all agents in the
system, to a group of agents, to agents playing a given role or even to a unique agent.

<norm> ::= <deontic_concept> '(' <action> ')'
 | <deontic_concept> '(' <action><temporal_situation> ')'
 | <deontic_concept> '(' <action> IF <if_condition> ')'
 | <deontic_concept> '(' <action> <temporal_situation> IF <if_condition> ')'
<deontic_concept> ::= OBLIGED | FORBIDDEN | PEMITTED

2 http://www.fipa.org/repository/aclspecs.html

 Implementing Norms That Govern Non-dialogical Actions 235

<action>::= <non_dialogical_action> | <dialogical_action>
<non_dialogical_action> ::= <entity> 'EXECUTE' <exec>
<entity>::= <agent>':'<role> | <role> | <agent> | <group> | 'ALL'

In this paper we are limiting non-dialogical actions to the execution of an ob-
ject/class method or to the execution of the action of an agent plan [13]. Non-
dialogical norms that regulate the access to resources specify the entities that have
restricted access to execute the methods of the resource. Non-dialogical norms that
regulate (non-dialogical) actions not related to the access to resources describe entities
that have restricted access to the execution of an action of a plan.

<exec> ::= <objectORclass>'.'<method>'('<parameters>')''('<contract>')'
 | <plan>':'<action>'('<parameters>')''('<contract>')'
 |...!the parameters and the contract can be omitted

In [13], the authors affirm that non-dialogical actions can be described as abstract
actions that are not in the set of actions defined by the agents or in the set of methods
of the classes. Agents must translate the actions and methods to be executed into more
abstract ones. With the aim to help agents in such transformation, we propose the use
of contracts. A contract is used to formally describe the behavior of the ac-
tions/methods while specifying its invariants, pre and post-conditions [11]. We do not
impose any language to be used to describe the terms of a contracts3.

<contract> ::= <pre>';'<post>';'<inv> |... !pre, post and inv can be omitted
<pre> ::= <expression> | <expression> <opl> <pre> ...
<opl> ::='AND' | 'OR' | 'XOR' | 'NOR'|... !pre, post and inv are similarly defined

Such extensions make possible to describe, for instance, norms that regulate the exe-
cution of an action while describing the parameters required for its execution and the
contract that defines it. The extensions enable, for example, the definition of norm 2.
Such norm states that a coach cannot substitute more than three players in the same
game. The coach cannot execute an action that substitutes players if the number of sub-
stitutions is already 3.

FORBIDDEN (coach EXECUTE managingTeam:SubstitutePlayer (outPlayer,inPlayer,team)
 (team.coach = coach; team.substitutions = team.substitutions@pre+1 AND
 team.playersInField->excludes(outPlayer)AND
 team.playersInField->includes(inPlayer);)
 IF team.substitutions >= 3)

The action governed by norm 1 is also a non-dialogical action and states that the
referee must check the players’ equipment before starting the game. The action of
checking the equipment is a non-dialogical action since the referee needs not to inter-
act with the player but with its equipment. On the other hand, the action of starting a
game is a dialogical action modeled as a message from the referee to everybody in the
game (as will be presented in Section 4.4).

OBLIGED (referee EXECUTE managingGame:checkEquipment (players)
 BEFORE (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;]))))

3 In this paper we are using OCL (http://www.omg.org/technology/documents/formal/ocl.htm)

236 V.T. da Silva

4.2 Extending the Temporal Situations

The temporal situation concept specified in the normative language is used to de-
scribe the period of valid (or active) norms. Norms can be activated or deactivated
due to the execution of an (dialogical or non-dialogical) action, to the change in the
state of an object or an agent, to the occurrence of a deadline, and to the combination
of such possibilities. In the previous normative languages the authors only consider
the execution of dialogical actions and the occurrence of a deadline as temporal situa-
tions. The normative language was extended to contemplate the activation and deacti-
vation of norms due to the execution of non-dialogical actions, to the change in the
state of an object or an agent (without specifying the action that was responsible for
that) and to the combination of the above mentioned factors (as specified in the situa-
tion concept).

<temporal_situation> ::= BEFORE <situation> | AFTER <situation>
| BETWEEN '(' <situation> ',' <situation> ')'

The extensions enable, for example, the definition of norm 3 that states that players
cannot leave the game between its initial and its interruption, as shown below.

FORBIDDEN (player EXECUTE moving:LeaveField ()

 (agent.position@pre=inField; agent.position<>inField;)
 BETWEEN (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;])),
 UTTER(game; si; INFORM(;referee;;[;gameStopped;;;;;;]))))

Another norm that makes use of temporal situation is norm 4. It states that the refe-
ree must send off a player after (s)he receives a second caution in the same match. If
player leaves the field of play and (s)he has already been shown a yellow card, the
referee must send him(her) off. Note that such norm 4 is conditioned to the execution
of an action governed by norm 3 and, thus, the after condition is exactly norm 3.

OBLIGED (UTTER(game;si;CAUTION(;referee;;kicker[;sentOff;;soccerGame;;;;]))
 AFTER (player EXECUTE moving:LeaveField()
 (agent.position@pre=inField;agent.position<>inField;)
 BETWEEN (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;])),
 UTTER(game; si; INFORM(;referee;;[;gameStopped;;;;;;]))))
 IF player.yellowCard = true)

4.3 Extending the IF Condition

The if condition defined in the original normative language is used to introduce condi-
tions over variables, agents' observable attributes or executed dialogical actions.
Therefore, by using such language it is not possible to describe nom 6 since it is con-
ditioned to the execution of a non-dialogical action. Our proposed extension makes
possible to specify a condition related to an executed non-dialogical action or to a
fired norm.

<if_condition> ::= <cond_expression> | NOT '(' <cond_expression> ')'
<cond_expression> ::= <condition> | NOT <condition>
 | <condition> ',' <if_condition> | NOT <condition> ',' <if_condition>
<condition> ::= <action> | <deontic_concept> '(' <action> ')' |...

Norm 6 defines that the referee must declare a penalty if a kicker handles the ball.
The non-dialogical action of handling the ball is the if condition of norm 6 and can be
described as follows.

 Implementing Norms That Govern Non-dialogical Actions 237

OBLIGED (UTTER(game; si; PENALTY(;referee;kickerTeam;[;penalty;;soccerGame;;;;]))
 IF kicker EXECUTE play:handleBall)

4.4 Extending Dialogical Actions

In [8], the authors represent the execution of dialogical actions by the identification of
the action (not carried out yet) of submitting an illocution. In their point of view, an
illocution is an information that carries a message to be sent by an agent playing a
role to another agent playing another role. The illocution concept was extended to be
possible to omit the agents that send and receive the messages. Not always will be
possible to specify the agents that will send and receive the messages while describing
the norms. Sometimes only the roles that those agents will be playing can be identi-
fied. Moreover, the roles of the sender and receiver can also be omitted. It may be the
case that no matter the one is sending a message or no mater the one is receiving it,
the norm must be obeyed.

<dialogical_action> ::= 'UTTER(' <scene> ';' <state> ';' <illocution> ')'
| 'UTTERED(' <scene> ';' <state> ';' <illocution> ')'
<illocution> ::= <perf>'('<sender>';'<role>';'<receiver> ';'<role>'['<msg>'])'
|...!it is possible to omit the senders, receivers and also their roles

Since a message can be sent to several agents, the receiver concept was also ex-
tended to make possible to describe the group of agents that will be the receiver of the
message. Note that it is only possible to describe in the grammar norms that specified
messages to be send and not messages to be received. In addition, it is the agent that is
receiving the message the one responsible for relating the message being received to a
message that should have been sent, in the case of obligations for instance.

<sender> ::= <agent>
<receiver> ::= <agent> | <group>

By using the extensions provided above for illocution, it is possible to model

norms 1 (Section 4.1), 4 (Section 4.2) and 6 (Section 4.3) that omit the agent identifi-
cation that is playing the referee role. In such cases, it is not important to identify the
agent but only the role that the agent is playing. Norm 1 also omits the receiver and its
role to characterize that the message is being broadcasted. Norm 4 identifies the role
of the receiver but does not identify the agent playing the role since the message to be
send does not depend on the agent. Moreover, norm 6 does not identify the receiver
agent but the receiver team that will be punished.

4.5 Specifying Messages

The message concept has not been specified in the previous version of the normative
language. We propose to specify such concept since it may be necessary to provide
some characteristics of the messages while describing the norms. The message con-
cept was extended according to the parameters defined by an ACL message. While
describing norms 4 and 6 we have used the extended message concept to point out the
ontology being used to support the interpretation of the content expression.

<msg> ::= <conversation_id>';'<contents>';'<language_encoding>';
'<ontology_protocol>';'<reply_by>';'<reply_to>';'<reply_with>';'<in_reply_to>
 |...!it is possible to omit any parameter.

238 V.T. da Silva

5 Implementing Norms

Once we have seen how norms can be described, we need to demonstrate how they
are implemented. Similar to the approach presented in [8], we have also used Jess to
implement the governance mechanism. Jess is a rule-based system that maintains a
collection of facts in its knowledge base. Jess was chosen due two main reasons: (i) it
provides interfaces to programs in Java and (ii) it is possible to dynamically change
the set of rules defined in Jess from the execution of Java programs. MAS imple-
mented in Java can make use of the knowledge base and the declarative rules pro-
vided by Jess. Such MAS can also update the set of rules during the execution.

The use of Jess makes possible to describe facts and rules that are fired according
to the stated facts. In our approach, facts are agents’ observable attributes, (dialogical
and non-dialogical) actions executed by the agents, the norms activated by the rules,
and the information about norm violations. The rules are fired according to the exe-
cuted actions or observable attributes and can activate norms or assert violations.

5.1 The Use of Jess

In Jess, facts are described based on templates that specify the structure of the facts.
We have defined a template to define agents’ observable attributes and three tem-
plates to describe actions: one for describing dialogical actions and two for describing
the two different kinds of non-dialogical actions contemplated in the paper (method
calling and execution of the action of an agent plan). Besides, we have also described
nine templates for describing each of the three norm kinds (obliged, permitted and
forbidden) associated with the three different actions (message, method calling and
plan execution). In addition, one template was defined for being used to describe
norm violations. Such template points out the norm that was violated and the facts
that have violated the norm. The two examples below illustrate templates to describe
an obligation norm to execute the action of a plan and a violation.

(deftemplate OBLIGED-non-dialogical-action-plan
 (slot entity)(slot role)(slot plan) (slot action) (slot attribs (type String))
 (slot contract-pre (type String)) (slot contract-post (type String))
 (slot contract-inv (type String)) (slot beliefUpdated (type String))
 (slot condition (type String)))

(deftemplate VIOLATION (slot norm-violated) (multislot action-done))

Rules are composed of two parts. The left-hand side of the rule describes patterns
of facts that need to be inserted in the knowledge base in order to fire the rule. The
right-hand side defines facts that will be upload to the knowledge base if the rule is
fired. In our approach, these facts will be norms or norms’ violations. Examples of
rules are presented in Sections 5.3, 5.4, 5.5 and 5.6.

5.2 Some Guidelines

For each application norm, there is (usually) a need for describing three rules in Jess.
The first rule is used to state the norm by conditioning it to the facts that activate the
norm. If the facts are inserted into the knowledge base, the rule is fired and the norm
is activated. The second rule deactivates the norm retracting it from the knowledge

 Implementing Norms That Govern Non-dialogical Actions 239

base. The period during which some norms are active are limited and conditioned to
the addition of some facts in the knowledge base. The third and final rule points out
the violations. Prohibitions are violated if facts are inserted into the knowledge base
during while they are forbidden and permissions are violated if the facts are inserted
into the knowledge outside the period during which they are permitted. The violations
of obligations occur if facts are not inserted into the knowledge base in the corre-
sponding period. The following Sections will demonstrate how to implement those
rules according to the temporal situations and if conditions mentioned in Section 4.

5.3 Simple Obligations, Permissions and Prohibitions

Norms that describe obligations, permissions or prohibitions over the execution of
actions without defining any temporal situation or if condition are always active. Such
norms are never deactivated no matter what happens.

Although it is possible to describe obligations and permissions over the execution
of a norm without stating any condition, it is not possible to state violations. For each
obligation or permission that is not associated with any temporal situation or if condi-
tion, only one rule that states the norm must be described. The obligations character-
ize that the actions must be executed but do not state when the executions must be
checked. Permissions characterize that such actions can always be executed, and,
therefore, such norms are never violated by the permitted agents. When permissions
are applied to sub-sets of agents, we assume that prohibitions are stated to the ones
not permitted to execute the actions. Prohibitions can do be checked and violations
can be fired in case the actions are executed. Therefore, for each norm that describes
prohibition for the execution of an action, two rules need to be defined: (i) to assert
the prohibition; and (ii) to assert the violations if the forbidden facts are added to the
knowledge base.

In order to exemplify the use of Jess we describe the implementation of norm 5.
Rule (i) asserts the prohibition that is not conditioned to any fact. Rule (ii) asserts the
violation if a kicker handles the ball.

;(rule i)
(defrule forbidden:KickerHandleBall
=> (assert (FORBIDDEN-non-dialogical-action-plan (entity kicker)(plan play)
 (action handleBall))))

;(rule ii)
(defrule violation:KickerHandleBall
?fact <-(non-dialogical-action-plan (entity kicker)(plan play)(action handleBall))
?forbidden <- (FORBIDDEN-non-dialogical-action-plan (entity kicker)(plan play)

 (action handleBall))
=> (assert (VIOLATION (norm-violated (fact-id ?forbidden))
 (action-done (fact-id ?fact)))))

5.4 Norms Regulating Actions Executed Before the Occurrence of a Fact

Obligations for executing an action X before the occurrence of a fact W are verified
testing if X has been executed before W occurs. For governing such norms three rules
are defined: rule (i) asserts the obligation for execute X; rule (ii) retracts the obliga-
tion if X has been executed and W occurs; and rule (iii) asserts a violation if W occurs
but X has not been executed (what can be verified by the existence of the obligation).

240 V.T. da Silva

Permissions for executing an action X before the occurrence of W are verified test-
ing if X is executed after W. In such case, the execution of X is not permitted. These
norms are governed by three rules: rule (i) asserts the permission for execute X; rule
(ii) retracts the permission if W occurs; and rule (iii) asserts a violation if W occurs
and X is executed.

Prohibitions for executing an action X before the occurrence of an action W are
verified testing if X is executed and W has not occurred. Such norms are also gov-
erned by three rules: rule (i) asserts the prohibition; rule (ii) retracts the prohibition if
W occurs; and rule (iii) asserts a violation if X is executed and W has not occurred
(what can be verified by the existence of the prohibition). We assume that W can
occur many times but obligations should be fulfilled before the first time it occurs and
permissions and prohibitions are only active before its first occurrence.

Norm 1 is a good example to illustrate the implementation of norms that govern the
actions that must be executed before another one. Since the norm defines that a refe-
ree is obliged to check the equipment of the players before starting the game, three
rules was defined to govern such norm. Rule (i) states the obligation. Rule (ii) retracts
the obligation if the referee has checked the player equipment when the game starts.
Rule (iii) asserts a violation if the game has been started and the obligation still holds
informing that the referee has not checked the equipment. The obligation governs a
non-dialogical action that must be executed after a dialogical action.

;(rule i)
(defrule obliged:CheckEquipment
 =>(assert (OBLIGED-non-dialogical-action-plan (entity referee)(plan managingGame)
 (action checkEquipment)(attribs players)
 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))))

;(rule ii)
(defrule retract:CheckEquipment
(non-dialogical-action-plan (entity referee)(plan managingGame)
 (action checkEquipment)(attribs players))
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStart"))
?obliged <- (OBLIGED-non-dialogical-action-plan (ntity referee)
 (plan managingGame)(action checkEquipment)(attribs players)
 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))
=> (retract ?obliged))

;(rule iii)
(defrule violation:CheckEquipment
?fact <- (dialogical-action (scene game)(state si)(performative inform)
 (sRole referee)(message "gameStart"))
?obliged <- (OBLIGED-non-dialogical-action-plan (ntity referee)
 (plan managingGame)(action checkEquipment)(attribs players)
 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))
=> (assert (VIOLATION (norm-violated (fact-id ?obliged))
 (action-done (fact-id ?fact)))))

5.5 Norms Regulating Actions Executed After the Occurrence of a Fact

Obligations for executing an action X after the occurrence of Y (or if Y occurs) can-
not be governed since it is not possible to affirm that the execution of X will never
occur after the execution of Y. It is not possible to state a rule that fires a violation for
such norm since the action X can be executed anytime after Y has occurred. In order
to govern such norms it is necessary to state any temporal situation limiting the time

 Implementing Norms That Govern Non-dialogical Actions 241

for the execution of X after Y has occurred. The temporal concept between should be
used instead of after or if for governing such obligations. Norms 4 and 6 are examples
of norms that should be implemented by using between, as depicted in Section 5.6.

Permissions for executing X after the occurrence of Y can be governed by two
rules: rule (i) asserts the permission if Y occurs; and rule (ii) asserts a violation if X is
executed but Y has not occurred yet (i.e., there is no permission for execute X).

The governance of prohibitions for executing X after the occurrence of Y is the
opposite to the governance of the related permission. Such governance is also charac-
terized by two rules: rule (i) asserts the prohibition if Y occurs; and rule (ii) asserts a
violation if X is executed after Y has occurred or if Y is true.

In order to exemplify a norm that use the if condition we refer to norm 2. This
norm defines that the coach cannot execute an action that substitutes players if the
number of substitutions is equal or greater than 3. The prohibition governs a non-
dialogical action that is condition to the state of an object.

;(rule i)
(defrule forbidden:PlayerSubstitution
(attribute-value (objectORagent team)(attribute substitutions)(value 3))
=> (assert (FORBIDDEN-non-dialogical-action-plan (role coach)(plan managingTeam)
 (action substitutePlayer)(attribs outPlayer,inPlayer,team)
 (contract-pre "team.coach=coach")
 (contract-post "team.substitutions=team.substitutions@pre+1 AND
 team.playersInField->excludes(outPlayer) AND
 team.playersInField->includes(inPlayer)"))))

;(rule ii)
(defrule violation:PlayerSubstitution
?fact1 <- (non-dialogical-action-plan (role coach)(plan managingTeam)
 (action substitutePlayer))
?fact2 <- (attribute-value (objectORagent team)(attribute substitutions))
?forbidden <-(FORBIDDEN-non-dialogical-action-plan (role coach)(plan managingTeam)
 (action substitutePlayer)(attribs outPlayer,inPlayer,team)
 (contract-pre "team.coach=coach")
 (contract-post "team.substitutions = team.substitutions@pre+1 AND

 team.playersInField->excludes(outPlayer) AND
 team.playersInField->includes(inPlayer)"))

=> (if (>= (fact-slot-value ?fact 2) 3) then
 (assert (VIOLATION (action-done ?fact1 ?fact2)
 (norm-violated ?forbidden)))))

5.6 Norms Regulating Actions Executed Between the Occurrence of Two Facts

A norm that states an obligation for executing an action X after the occurrence of Y
and before the execution of W is governed by three rules: rule (i) asserts the obliga-
tion for execute X if Y occurs; rule (ii) retracts the obligation if X is executed and if
W occurs; and rule (iii) asserts a violation if W occurs but X has not been executed.

The permission for executing X between the occurrence of Y and W is governed
by the following four rules: rule (i) asserts the permission for execute X if Y occurs;
rule (ii) retracts the permission if W occurs; rule (iii) asserts a violation if W occurs
and X is executed; and rule (iv) asserts a violation if X is executed but Y has not oc-
curred yet (i.e., if the permission for executing X has not been fired yet).

Prohibitions for executing X between the occurrence of Y and W are governed by
three rules: rule (i) asserts the prohibition if Y occurs; rule (ii) retracts the prohibition
if W occurs; and rule (iii) asserts a violation if X is executed, Y has occurred but W

242 V.T. da Silva

has not occurred, i.e., X is executed and the prohibitions is still activated. Note that
the rules that govern both prohibitions and permissions while using the temporal con-
cept between are the combination of the rules used to govern such norms using the
after and before temporal concepts.

The use of between can be exemplified by norm 3. It states that the player is for-
bidden to leave the field between the beginning and the end of the game. The norm
defines a prohibition to execute a non-dialogical action limited by the execution of
two dialogical actions. Rule (i) asserts the prohibition if the first dialogical action is
executed, rule (ii) retracts the prohibition if the second dialogical action is executed
and rule (iii) declares a violation if the non-dialogical action is executed during while
it is being prohibited.

;(rule i)
(defrule forbidden:LeaveField
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStart"))
 => (assert (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)
 (action leaveField)(contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))))

;(rule ii)
(defrule retract:LeaveField
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStop"))
?forbidden <- (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)
 (action leaveField)(contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))
 => (retract ?forbidden))

;(rule iii)
(defrule violation:LeaveField
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStart"))
?forbidden <- (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)
 (action leaveField)(contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))
?fact <- (non-dialogical-action-plan (role player)(plan moving)(action leaveField)
 (contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))
=> (assert (VIOLATION (norm-violated (fact-id ?forbidden))
 (action-done (fact-id ?fact)))))

Sections 5.3 and 5.5 point out that some obligations over the execution of a norm
that cannot be governed. Since obligations need not to be fulfilled immediately after
they were declared, it is necessary to inform the period during which the agents are
being obligated to execute the action in order to govern them. Norms 6 and 4 are very
good examples of such obligations. Norm 6, for instance, defines that the referee must
declare a penalty if a kicker handles the ball. However, this norm does not define how
much time the referee has to fulfill its obligation. Therefore, it is not possible to af-
firm that the obligation was not fulfilled since it can be at any time. In order to prop-
erly regulate such norm it is needed to provide a limit till when this obligation must
be fulfilled. Norms 6 was adapted to inform that the referee has 1 minute to declare
the penalty after the kicker has handled the ball.

OBLIGED (UTTER(game; si; PENALTY(;referee;kickerTeam;[;penalty;;soccerGame;;;;]))
 BETWEEN (kicker EXECUTE play:handleBall, 1 MINUTES OF kicker EXECUTE
 play:handleBall))

 Implementing Norms That Govern Non-dialogical Actions 243

6 Conclusion

This paper proposes the implementation of norms4 that govern dialogical and non-
dialogical actions by using Jess. The governance system proposed in [6] receives (not
always true) testimonies about executed actions that are related to norm violations.
After judging the testimonies and concluding that the actions really were executed,
such information is uploaded to the Jess knowledge-based. The set of Jess rules are,
then, checked and the related norms and violations are fired. The fired norm or viola-
tion is also facts accumulated in the Jess database. We have implemented in Jess at
least one norm taking into account the three deontic concepts, the proposed temporal
situations and if conditions presented in the paper by using the soccer game.

Note that the Jess system only receives one information about the execution of an
action at a time. Independently of the order of the execution of the actions, the first
information sent to Jess is the one that will be processed. If two actions are executed
at the same time, the first information to achieve the Jess system will be processed.

Although the current version does not contemplate sanctions and awards, it can be
easily extended in order to do so. The sanctions should be provided when the related
violations are fired. The awards should be supplied when the norms are retracted and
no violation of such norms has been fired. In addition, a (semi)automatic approach for
generating Jess rules according to the norms specified by the use of the normative
language could be developed.

An automatic approach for generating Jess rules from the norms specified by the
use of the normative language is being developed. Our intention is to use such trans-
former during design time to automatically generate the rules for the specified norms
and also during runtime. In case the agents are able to specify new norms according to
the normative language during runtime, they could use the proposed transformer to
automatically generate new rules and publish them in the Jess engine. We are also
investigating the possibility of modifying one of the already available rules. Such
transformation should be based on the guidelines provided in section 5.2 and also on
its specialization provided in the following sub-sections.

References

1. Boella, G., van der Torre, L.: Regulative and Constitutive Norms in Normative Multi-
Agent Systems. In: Proceeding of KS, pp. 255–265. AAAI Press, Menlo Park (2004)

2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in Norm-
Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.)
DALT 2004. LNCS (LNAI), vol. 3476, pp. 221–238. Springer, Heidelberg (2005)

3. Broersen, J., Dignum, F., Dignum, V., Meyer, J.: Designing a deontic logic of deadlines.
In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 43–56.
Springer, Heidelberg (2004)

4. Cranefield, S.: A Rule Language for Modelling and Monitoring Social Expectations in
Multi-Agent Systems. In: Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson,
E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP
2005. LNCS (LNAI), vol. 3913, pp. 246–258. Springer, Heidelberg (2006)

4 The full normative language described in the paper and the Jess program used to illustrate our

approach are available at http://maude.sip.ucm.es/~viviane/products.html

244 V.T. da Silva

5. Dignum, F., Broersen, J., Dignum, V., Meyer, J.: Meeting the deadline: Why, when and
how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004.
LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)

6. Duran, F., Silva, V., Lucena, C.: Using Testimonies to Enforce the Behavior of Agents. In:
Sichman, J.S., et al. (eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870, pp. 232–244.
Springer, Heidelberg (2008)

7. García-Camino, A., Rodríguez-A, J., Sierra, C., Vasconcelos, W.: Norm-Oriented Pro-
gramming of Electronic Institutions. In: Proceedings of AAMAS, pp. 670–672. ACM
Press, New York (2006)

8. García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A.: Implementing Norms in Elec-
tronic Institutions. In: Proceedings of AAMAS, pp. 667–673. ACM Press, New York
(2005)

9. López, F.: Social Power and Norms: Impact on agent behavior. PhD thesis, Univ. of
Southampton (2003)

10. López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms. In: Proceed-
ings of AAMAS, pp. 674–681. ACM Press, New York (2002)

11. Meyer, B.: Object-Oriented Software Construction Prentice Hall, 2nd edn (1997)
12. Singh, M.: An Ontology for Commitments in Multiagent Systems: Toward a Unification

of Normative Concepts. In: Artificial Intelligence and Law, vol. 7(1), pp. 97–113.
Springer, Heidelberg (1999)

13. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multiagent
Systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004.
LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

	Implementing Norms That Govern Non-dialogical Actions
	Introduction
	Applied Example
	Dialogical and Non-dialogical Actions
	Describing Norms
	Specifying Non-dialogical Actions
	Extending the Temporal Situations
	Extending the IF Condition
	Extending Dialogical Actions
	Specifying Messages

	Implementing Norms
	The Use of Jess
	Some Guidelines
	Simple Obligations, Permissions and Prohibitions
	Norms Regulating Actions Executed Before the Occurrence of a Fact
	Norms Regulating Actions Executed After the Occurrence of a Fact
	Norms Regulating Actions Executed Between the Occurrence of Two Facts

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

