

Lecture Notes in Artificial Intelligence 4870
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Jaime Simão Sichman Julian Padget
Sascha Ossowski Pablo Noriega (Eds.)

Coordination, Organizations,
Institutions, and Norms
in Agent Systems III

COIN 2007 International Workshops
COIN@AAMAS 2007, Honolulu, HI, USA, May 14, 2007
COIN@MALLOW 2007, Durham, UK, September 3-4, 2007
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Jaime Simão Sichman
Escola Politécnica da Universidade de São Paulo (USP)
Lab. de Técnicas Inteligentes (LTI)
Av. Prof. Luciano Gualberto, tv. 3, 158, 05508-970 São Paulo, SP, Brazil
E-mail: jaime.sichman@poli.usp.br

Julian Padget
University of Bath
Department of Computer Science
Bath BA2 7AY, UK
E-mail: jap@cs.bath.ac.uk

Sascha Ossowski
Universidad Rey Juan Carlos
Grupo de Inteligencia Artificial
Campus de Móstoles, Calle Tulipán s/n, 28933 Móstoles, Spain
E-mail: sascha.ossowski@urjc.es

Pablo Noriega
Institut d’Investigació en Intel.ligència Artificial (IIIA)
Consejo Superior de Investigaciones Científicas (CSIC)
Campus UAB, Bellaterra, 08193 Barcelona, Spain
E-mail: pablo@iiia.csic.es

Library of Congress Control Number: 2008923934

CR Subject Classification (1998): I.2.11, I.2, D.2, F.3, D.1, C.2.4, D.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-79002-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-79002-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12251803 06/3180 5 4 3 2 1 0

Preface

In recent years, social and organizational aspects of agency have become ma-
jor research topics in MAS. Current applications of MAS in Web services, grid
computing and ubiquitous computing highlight the need for using these aspects
in order to ensure social order within such environments. Openness, hetero-
geneity, and scalability of MAS, in turn, put new demands on traditional MAS
interaction models and bring forward the need to investigate the environment
wherein agents interact, more specifically to design different ways of constrain-
ing or regulating agents’ interactions. Consequently, the view of coordination
and control has been expanding to entertain not only an agent-centric perspec-
tive but societal and organization-centric views as well. The overall problem
of analyzing the social, legal, economic and technological dimensions of agent
organizations and the co-evolution of agent interactions pose theoretically de-
manding and interdisciplinary research questions at different levels of abstrac-
tion. The MAS research community has addressed these issues from different
perspectives that have gradually become more cohesive around the four con-
cepts that give title to this workshop series: coordination, organization, insti-
tutions and norms.

The COIN@AAMAS 2007 and COIN@MALLOW 2007 events belong to a
workshop series that started in 2005, and since then has continued with two edi-
tions per year. The main goal of these workshops is to bring together researchers
from different communities working in theoretical and/or practical aspects of
coordination, organization, institutions and norms, and to to facilitate a more
systematic discussion of these themes that have until lately been considered from
different perspectives.

In 2007, the COIN workshops were hosted by AAMAS 2007 (May 14, Hon-
olulu, USA) and by MALLOW 2007 (September 3–4, Durham, UK). The
papers contained in this volume are the revised versions of a selection of the
papers presented in these workshops. In COIN@AAMAS 2007, 9 papers were
presented at the workshop out of 15 submissions, while from 23 submissions to
COIN@MALLOW 2007, 15 were accepted for presentation.

We want to express our gratitude to the Program Committee members and
additional reviewers of both events, to the participants of the workshops and
most particularly to the authors for their original contributions and further re-
visions for this volume. We also want to thank the organizers of the 6th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2007) and of the MALLOW 2007 event for hosting and supporting the
organization of the COIN workshops. Finally, we would also like to acknowledge

VI Preface

the encouragement and support from Springer, in the person of Alfred Hofmann,
for the publication of the COIN workshops since the first edition.

December 2007 COIN@AAMAS 2007: Sascha Ossowski
Jaime Simão Sichman

COIN@MALLOW 2007: Pablo Noriega
Julian Padget

Organization

Organizing Committees

COIN@AAMAS 2007
Sascha Ossowski Universidad Rey Juan Carlos (Spain)
Jaime Simão Sichman University of São Paulo (Brazil)

COIN@MALLOW 2007
Pablo Noriega Intitut d’Investigació en Intelligència

Artificial (Spain)
Julian Padget University of Bath (UK)

COIN Steering Committee (2005-2007)

Andrea Omicini University of Bologna (Italy)
Guido Boella University of Turin (Italy)
Jaime Simão Sichman University of São Paulo (Brazil)
Julian Padget University of Bath (UK)
Olivier Boissier ENS Mines Saint-Etienne (France)
Pablo Noriega Intitut d’Investigació en Intelligència

Artificial (Spain)
Sascha Ossowski Universidad Rey Juan Carlos (Spain)
Victor Lesser University of Massachusetts (USA)
Virginia Dignum Utrecht University (The Netherlands)

Program Committees

COIN@AAMAS 2007
Alessandro Provetti Università degli Studi di Messina (Italy)
Andrea Omicini University of Bologna (Italy)
Anja Oskamp Free University Amsterdam

(The Netherlands)
Carl Hewitt MIT (USA)
Catherine Tessier ONERA (France)
Christian Lemâıtre Universidad Autónoma Metropolitana

(Mexico)
Danny Weyns Katholieke Universiteit Leuven (Belgium)
Eric Matson Wright State University (USA)
Eugénio Oliveira Universidade do Porto (Portugal)

VIII Organization

Fabiola López y López Benemérita Universidad Autónoma
de Puebla (Mexico)

Frank Dignum Utrecht University (The Netherlands)
Gabriela Lindemann Humboldt University Berlin (Germany)
Guido Boella University of Turin (Italy)
Holger Billhardt University Rey Juan Carlos, Madrid (Spain)
Jaime Simão Sichman University of São Paulo (Brazil)

(Co-chair)
Javier Vázquez-Salceda Universitat Politècnica de Catalunya (Spain)
Jomi Fred Hübner FURB Blumenau (Brazil)
Juan A. Rodŕıguez-Aguilar Intitut d’Investigació en Intelligència

Artificial (Spain)
Julian Padget University of Bath (UK)
Leendert van der Torre University of Luxembourg (Luxembourg)
Liz Sonenberg University of Melbourne (Australia)
Mario Verdicchio Politecnico di Milano (Italy)
Michael Luck University of Southampton (UK)
Nicoletta Fornara Università della Svizzera Italiana

(Switzerland)
Olivier Boissier ENS Mines Saint-Etienne (France)
Olivier Gutknecht LPL (France)
Pablo Noriega Intitut d’Investigació en Intelligència

Artificial (Spain)
Pinar Yolum Bogazici University (Turkey)
Sascha Ossowski Universidad Rey Juan Carlos (Spain)

(Co-chair)
Stephen Cranefield University of Otago (New Zealand)
Ulises Cortés Universitat Politècnica de Catalunya (Spain)
Vicent Botti Universitat Politècnica de Valencia (Spain)
Victor Lesser University of Massachusetts-Amherst (USA)
Virginia Dignum University of Utrecht (The Netherlands)
Wamberto Vasconcelos University of Aberdeen (UK)
Yves Demazeau Leibniz Institute (France)

COIN@MALLOW 2007
Andrea Omicini University of Bologna (Italy)
Carl Hewitt MIT (USA)
Carles Sierra Intitut d’Investigació en Intelligència

Artificial (Spain)
Christian Lemâıtre Universidad Autónoma Metropolitana

(Mexico)
Cristiano Castelfranchi Istituto di Scienze e Tecnologie della

Cognizione (Italy)
Eric Matson Wright State University (USA)
Eugénio Oliveira Universidade do Porto (Portugal)

Organization IX

Fabiola López y López Benemérita Universidad Autónoma
de Puebla (Mexico)

Gabriela Lindemann Humboldt University Berlin (Germany)
Guido Boella University of Turin (Italy)
Jaime Simão Sichman University of São Paulo (Brazil)
Javier Vázquez-Salceda Universitat Politècnica de Catalunya (Spain)
Juan A. Rodŕıguez-Aguilar Intitut d’Investigació en Intelligència

Artificial (Spain)
Julian Padget University of Bath (UK)

(Co-chair)
Marc Esteva University of Technology Sydney (Australia)
Marek Sergot Imperial College (UK)
Marina de Vos University of Bath (UK)
Mario Verdicchio Politecnico di Milano (Italy)
Michael Luck University of Southampton (UK)
Nicoletta Fornara Università della Svizzera Italiana

(Switzerland)
Olivier Boissier ENS Mines Saint-Etienne (France)
Pablo Noriega Intitut d’Investigació en Intelligència

Artificial (Spain) (Co-chair)
Sascha Ossowski Universidad Rey Juan Carlos (Spain)
Stephen Cranefield University of Otago (New Zealand)
Tim Norman University of Aberdeen (UK)
Victor Lesser University of Massachusetts-Amherst (USA)
Virginia Dignum University of Utrecht (The Netherlands)
Wamberto Vasconcelos University of Aberdeen (UK)

Additional Reviewers

Andrés Garćıa-Camino
Arianna Tocchio
Dimitri Melaye
Grégory Bonnet
Guillaume Piolle

Henrique Lopes Cardoso
Holger Billhardt
Jelle Herbrandy
Luca Tummolini
Maite López-Sánchez

Table of Contents

Coordination

Towards a Framework for Agent Coordination and Reorganization,
AgentCoRe . 1

Mattijs Ghijsen, Wouter Jansweijer, and Bob Wielinga

Ignoring, Forcing and Expecting Simultaneous Events in Electronic
Institutions . 15

Andrés Garćıa-Camino

A Contract Model for Electronic Institutions . 27
Henrique Lopes Cardoso and Eugénio Oliveira

Embedding Landmarks and Scenes in a Computational Model of
Institutions . 41

Owen Cliffe, Marina De Vos, and Julian Padget

Coordination and Sociability for Intelligent Virtual Agents 58
Francisco Grimaldo, Miguel Lozano, and Fernando Barber

The Examination of an Information-Based Approach to Trust 71
Maaike Harbers, Rineke Verbrugge, Carles Sierra, and
John Debenham

A Dynamic Coordination Mechanism Using Adjustable Autonomy 83
Bob van der Vecht, Frank Dignum, John-Jules Ch. Meyer, and
Martijn Neef

Organizations and Institutions

Towards a Formalisation of Dynamic Electronic Institutions 97
Eduard Muntaner-Perich and Josep Llúıs de la Rosa Esteva

Large-Scale Organizational Computing Requires Unstratified Reflection
and Strong Paraconsistency . 110

Carl Hewitt

Using Case-Based Reasoning in Autonomic Electronic Institutions 125
Eva Bou, Maite López-Sánchez, and Juan Antonio Rodŕıguez-Aguilar

Semantical Concepts for a Formal Structural Dynamics of Situated
Multiagent Systems . 139

Antônio Carlos da Rocha Costa and Graçaliz Pereira Dimuro

XII Table of Contents

Dynamic Composition of Electronic Institutions for Teamwork 155
Mario Gómez and Enric Plaza

Organisational Artifacts and Agents for Open Multi-Agent
Organisations: “Giving the Power Back to the Agents” 171

Rosine Kitio, Olivier Boissier, Jomi Fred Hübner, and
Alessandro Ricci

Knowledge Sharing Between Agents in a Transitioning Organization 187
Eric Matson and Raj Bhatnagar

Norms

Role Model Based Mechanism for Norm Emergence in Artificial Agent
Societies . 203

Bastin Tony Roy Savarimuthu, Stephen Cranefield,
Maryam Purvis, and Martin Purvis

Using Testimonies to Enforce the Behavior of Agents 218
Fernanda Duran, Viviane Torres da Silva, and Carlos J.P. de Lucena

Implementing Norms That Govern Non-dialogical Actions 232
Viviane Torres da Silva

A Normative Multi-Agent Systems Approach to the Use of Conviviality
for Digital Cities . 245

Patrice Caire

On the Multimodal Logic of Normative Systems . 261
Pilar Dellunde

A Distributed Architecture for Norm Management in Multi-Agent
Systems . 275

Andrés Garćıa-Camino, Juan Antonio Rodŕıguez-Aguilar, and
Wamberto Vasconcelos

A Coherence Based Framework for Institutional Agents 287
Sindhu Joseph, Carles Sierra, and Marco Schorlemmer

Distributed Norm Enforcement Via Ostracism . 301
Adrian Perreau de Pinninck, Carles Sierra, and Marco Schorlemmer

Model Checking Norms and Sanctions in Institutions 316
Francesco Viganò and Marco Colombetti

Author Index . 331

Towards a Framework for Agent Coordination

and Reorganization, AgentCoRe�

Mattijs Ghijsen, Wouter Jansweijer, and Bob Wielinga

Human Computer Studies Laboratory, Institute of Informatics,
University of Amsterdam

{mattijs,jansw,wielinga}@science.uva.nl

Abstract. Research in the area of Multi-Agent System (MAS) organi-
zation has shown that the ability for a MAS to adapt its organizational
structure can be beneficial when coping with dynamics and uncertainty
in the MASs environment. Different types of reorganization exist, such
as changing relations and interaction patterns between agents, changing
agent roles and changing the coordination style in the MAS. In this pa-
per we propose a framework for agent Coordination and Reorganization
(AgentCoRe) that incorporates each of these aspects of reorganization.
We describe both declarative and procedural knowledge an agent uses
to decompose and assign tasks, and to reorganize. The RoboCupRes-
cue simulation environment is used to demonstrate how AgentCoRe is
used to build a MAS that is capable of reorganizing itself by changing
relations, interaction patterns and agent roles.

1 Introduction

The quality of organizational design of a MAS has a large influence on its perfor-
mance. However, this is not the only factor that determines MAS performance.
It is the combination of the organizational design together with the nature of
the task performed by the MAS and the characteristics of the environment in
which the MAS is embedded that determines the performance of a MAS [1]. A
MAS that operates in a dynamic environment can mitigate or reduce negative
effects of dynamics in this environment by changing its organization [2].

Existing research on the design of adaptive MAS organizations [3], [4] and [5],
focuses on the organizational design while the issue of the design of agents in
such dynamic organizations remains largely untouched. In this paper we address
this issue by presenting AgentCoRe, a framework that enables agents to make
decisions in dynamic multi-agent organizations. AgentCoRe provides a set of
decision making modules that enables agents to make decisions about dynamic
selection of coordination mechanisms, task decomposition, task assignment and
adaptation of the MAS organizational structure. The description of the reasoning

� The research reported in this paper is part of the Interactive Collaborative Informa-
tion Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs,
grant BSIK03024.

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 1–14, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M. Ghijsen, W. Jansweijer, and B. Wielinga

processes as well as the input and output of those processes is at the knowledge
level [6] to ensure a generic, domain independent design.

Although the focus of the framework is on providing capabilities for reorganiz-
ing, we have also included capabilities for coordinating work in the organization.
This is because we view structuring and restructuring an agent organization
as an essential part of a coordination mechanism. As shown in the research by
Mintzberg, the structure of human organizations and the type of coordination
mechanism used by its managers are closely related [7]. We emphasize that the
goal of the AgentCoRe framework is not to improve existing work on coordi-
nation but rather to extend capabilities of agents by integrating capabilities for
coordinating and reorganizing into a single framework.

Before we describe the AgentCoRe framework we discuss theory and related
work on MAS reorganization. After a description of AgentCoRe, we will show
how AgentCoRe is used to design and implement agents in the RoboCupRescue
simulator [8]. We end with discussion, conclusions and directions for future work.

2 Theory and Related Work

In this paper we use definitions based on [9] and [10]. A task is defined as an
activity performed by one or more agents to achieve a certain effect or goal in
the environment. A task can be decomposed into subtasks and, in the case a task
cannot be decomposed any further, it is called a primitive task. We define a role
as a set of tasks that an agent is committed to perform when it is enacting that
role. Capabilities are defined as a set of roles the agent is capable of enacting.

We define a MAS organization as a group of distributed agents, pursuing
a common goal. The design of a MAS organization consists of relationships
and interactions between the agents [11], agent roles [10] and coordination style
[12]. Thus we define reorganization of a MAS as changing one or more of these
organizational aspects. We assume that reorganization is triggered by the agents
of the MAS, and not by a system designer or “human in the loop” as in [13].

A generic definition of coordination is given by [14] who define coordination as
managing dependencies between activities. Research in the area of coordination
in MAS has resulted in frameworks such as GPGP/TÆMS [15] and COM-MTDP
[16] and both have been used in research on reorganization.

Nair et al. [17] extend [16] and change the composition of teams of agents
to perform a rescue task in a highly dynamic environment where tasks can
(de)escalate in size and new tasks are formed. Horling and Lesser change the
relations and interaction patterns between agents in TÆMS structures but do
not allow for role changes [18]. Their work is recently being extended by Kamboj
and Decker [19] who use agent cloning [20] to allow for role changes in the
organization. Martin and Barber present dynamic adaptation of coordination
mechanisms as a mechanism for dealing with a dynamic environment [21].

The approaches described above all involve different aspects of reorganization;
changing relations and interactions, changing agent roles and changing coordi-
nation style. In the next section we present the AgentCoRe framework which

Towards a Framework for Agent Coordination and Reorganization 3

gives a knowledge level description of a framework for coordination and reorga-
nization. We extend existing work by incorporating all aspects of reorganization
described above into a single framework. By giving a knowledge level descrip-
tion, we refrain from computational details and focus on the required knowledge
and reasoning for combined coordination and reorganization.

3 The AgentCoRe Framework

The AgentCore framework consists of 4 decision making modules that can be
used independently from each other. An overview of these modules and their
input and output is shown in figure 1. The oval shapes depict the decision making
modules, the rectangles depict the input and output of these processes.

The first module enables the agents to dynamically select the coordination
mechanism that is being used. Being able to change to another coordination
mechanism is an important aspect of organizational adaptation and it is an
effective mechanism for a MAS to adapt to changes in the environment [22], [21]
and [23]. Selection of the coordination mechanism is based on the current state
of the environment and strategy rules which prescribe the use of a coordination
strategy in a certain situation. A task-decomposition strategy, an assignment
strategy and a reorganization strategy together form a coordination mechanism.
Each of these strategies is used as input for the decision making modules in
figure 1.

select coordination
mechanism

task structure

coordination mechanism

world models

world models

create/update
task structure task structure

world models

assign subtasks

reorganization strategy

assignment structure

assignment structure

assignment structurereorganize

strategy library

strategy rules

decomposition
strategy

global task

strategyassignment

organization structure

task structure

Fig. 1. AgentCoRe Modules

4 M. Ghijsen, W. Jansweijer, and B. Wielinga

The next module of the framework takes care of creating and updating the
task structure. Based on sensory input – which can be observations by the agent
and messages from other agents – the agent will decompose the global task into
subtasks. The structure of decomposed tasks is called a task structure which is
a simplified version of the goal trees in the TÆMS framework [15]. A domain
specific decomposition strategy describes how the global task decomposes into
subtasks.

Relations and interaction patterns between agents and agent roles in the MAS
are described in the organization structure. In the task assignment module, sub-
tasks of the task structure are connected to the agents in the organization struc-
ture. The task structure combined with the organization structure by means of
assignments is called the assignment structure. Which agents are assigned to
which tasks is determined by the assignment strategy that is used.

When assignment is completed, the agent can reorganize the assignment struc-
ture (which contains the task structure as well as the organization structure).
A reorganization strategy describes when and how reorganization takes place.
These changes can be changes in team composition [17], agent relations [18] or
agent roles [24].

3.1 Declarative Ingredients

The basic declarative components of the framework (see figure 2) are task, agent
and assignment. A task has a set of subtasks and a description of the goal that
is to be achieved by performing the task. Furthermore each task has a priority.
Using the task concept, task structures can be created that show how tasks are
decomposed into subtasks.

An agent has a set of roles the agent is currently enacting (in section 2 a role
is defined as a set of tasks) and a set of capabilities which is the set of all roles the
agent is capable of enacting. Furthermore, agent has relations with other agents.
These relations describe which other agents the agent knows, communicates with,
is boss of and which agent is its boss. Using the agent concept an organization
structure can be created where agents have relations with each other, have roles
and capabilities.

An assignment is a reified relation between task and agent. It has a times-
tamp that indicates when the assignment is created, a report frequency that
defines when status reports on the progress of the task should be sent, and a

task assignment

agentId : num
roles : [[Task]]
capabilities : [[Task]]

communicates−with : [agentId]

knows−agents : [agentId]

subordinates : [agentId]
boss : agentId

agent

subtasks : [Task]
taskId : num

goal : world−state
priority : num report−frequency : num

report−content : String

taskId : num
agentId : num
created : timestamp

Fig. 2. Basic AgentCoRe declarative concepts

Towards a Framework for Agent Coordination and Reorganization 5

specification of the content of the reports. The assignment concept connects
task structures and organization structures to form assignment structures.

The decomposition, assignment and reorganization strategies are mostly do-
main specific procedural descriptions of how a specific task should be decom-
posed or what types of roles should be assigned when reorganizing. Examples of
these strategies are given in section 4 of this paper.

3.2 AgentCoRe Modules

A knowledge level description of the internal structure of the decision making
modules shown in figure 1 is given by using the CommonKADS notation of in-
ference structures [25]. Rectangles depict dynamic information, ovals represent
elementary reasoning processes and arrows indicate input-output dependencies.
Two thick horizontal lines depict static information used as input for the reason-
ing processes. For clarity purposes we depict the starting point of the inference
structure by a thick squared rectangle.

strategy world model

comparestrategy library

select

parameters
select

parameters
selectstrategy rules

parameters

parameters

replace optimal
strategy

current strategy

Fig. 3. Strategy selection inference structure

Figure 3 shows the inference structure of strategy selection in which the cur-
rent coordination strategy is compared to other available strategies in the strat-
egy library. To obtain the most optimal strategy, parameters are used which
represent selection criteria of a coordination strategy (e.g. “required time”, “re-
quired resources” or “required capabilities”). Strategy rules define in which situ-
ation a coordination strategy is optimal by indicating which parameters should
be used to compare the strategies. Examples of strategy rules are; “always use
the cheapest strategy” and “use the cheapest strategy but when lives are at
stake, use the fastest strategy”. In the first case, the parameter that indicates
cost will be selected. In the second case, the parameters for cost and required
time will be selected. The value of a parameter is determined by the current
state of the world.

Figure 4 shows the inference structure for task decomposition. First, one of
the tasks is selected from the task structure and based on the current model

6 M. Ghijsen, W. Jansweijer, and B. Wielinga

decomposition
strategy

update

task status

taskselect

world model

status = not−done

decompose

validate

subtasks

status = done

task structure

Fig. 4. Task decomposition inference structure

of the world, it is determined whether the task is still valid; is the goal still a
valid goal or has a report been received that the task is finished. In the case the
task is not valid, the task structure is updated immediately. Otherwise, the task
is decomposed as prescribed by the decomposition strategy. The task and the
generated subtasks are then used to update the task structure. This continues
until each task in the task structure has been validated and decomposed.

In figure 5 the task assignment inference structure (based on the assignment
inference structure in [25]) is shown. The assignment strategy determines se-
lection of a set of tasks and a set of agents based on the current assignment
structure. Grouping of tasks and agents can be used if multiple agents are as-
signed to a single task, or one agent is assigned to a group of tasks, or a group of
agents is assigned to a group of tasks. If and how grouping is done, depends on
the assignment strategy. If no grouping takes place the assign inference will use
the task and agent sets that have been selected. The assign inference couples the
sets or groups of tasks to the agents which results in a set of new assignments.
This continues until all agents are assigned or no tasks are left to perform.

assignment
structure

select
agentset

agent set group agent group

taskset
select

task set

assign

assignment set

strategy
assignment

group

task group

update

Fig. 5. Task assignment inference structure

Towards a Framework for Agent Coordination and Reorganization 7

trigger test

apply

update

assignment
structure

reorganization
strategy

select
trigger

select
change rules change rules

trigger status

structure

world model

partial assignment

Fig. 6. Reorganize inference structure

In the reorganize inference structure in figure 6, a reorganization strategy gives
a set of available triggers. Triggers are rules that initiate change in organization.
Some examples of triggers are detecting an unbalanced workload over the agents,
sudden changes in priority of one of the unassigned subtasks while all available
agents are already allocated to other tasks, or an event in the environment that
requires two teams to work together. Triggers are tested on the assignment struc-
ture and if they fire, a set of matching change rules is selected and applied to the
assignment structure. Possible change rules are to assign agents to different roles
and creating and/or removing relations between agents, but also taking an agent
away from the task it is currently performing and assigning it to a task with a
higher priority. Applying change rules results in a partial new assignment struc-
ture which is used to update the current assignment structure. Trigger selection
continues until all triggers have been tested on the assignment structure.

4 A MAS Implementation Using AgentCoRe

In this section we demonstrate how the AgentCoRe modules can be used in an
agents design and how the input and output of the modules are defined. As an
example we use the “standardization of skills1 extended with reorganization”
approach which is one of the mechanisms for coordination and reorganization
used in [26].

The environment in which the MAS is embedded is the RobuCupRescue Simu-
lation System (RCRSS) [8]. In this environment, agents are deployed that jointly
perform a rescue operation. When the simulation starts, buildings collapse, civil-
ians get injured and buried under the debris, buildings catch fire and fires spread
to neighboring buildings. Debris of the collapsed buildings falls on the roads

1 The name of this decomposition strategy is based on “coordination by standard-
ization of skills” described by Mintzberg [7]. Coordination by standardization of
skills can be characterized by assignment of large and complex tasks to the operator
agents.

8 M. Ghijsen, W. Jansweijer, and B. Wielinga

causing roads to be blocked. For this rescue operation, three main tasks can be
distinguished and for each of these tasks a type of agent with appropriate capabil-
ities is available. Fires are extinguished by fire brigade teams, blocked roads are
cleared by police agents and injured civilians are rescued by ambulance teams.

4.1 Organizational Design

Before we show the design of the agents, we first discuss how the agents are
organized. The organization of the MAS in [26] consists of 9 Ambulance agents
and one AmbulanceManageragent. The organizational structure shown in figure 7
is the initial organizational view of the AmbulanceManageragent. The initial view
of the Ambulance agents contains only themselves and the AmbulanceManager
agent. The lines between objects depict authority relations, communicates-with
relations and knows-agent relations. The tasks for this MAS are the following:

– SearchAndRescueAll is the main task of searching the complete map and
rescuing all injured civilians. This task has no additional attributes.

– SearchAndRescueSector, is the same task as the main task but is restricted
to a single sector on the map (the map is divided into 9 sectors). The addi-
tional attribute for this task is a sectorId.

– CoordinateWork is the task of coordinating (by means of the AgentCoRe
framework) another task. The additional attribute for this task is a taskId
of the task that is to be coordinated.

Based on these tasks, we define the following roles in the MAS organization:

– AmbulanceRole: [SearchAndRescueSector]
– GlobalManagerRole: [CoordinateWork]
– LocalManagerRole: [CoordinateWork, SearchAndRescueSector]

The AmbulanceManager always performs the GlobalManagerRole. Intially all
Ambulance agents will perform the AmbulanceRole however these agents can
also perform the LocalManagerRole when ordered by their direct superior. An
agent with the LocalManagerRole is able to assign tasks and order role changes
to its direct subordinates.

capabilities : [GlobalManagerRole]

agentId : a01
subordinates : [a02,a03, ... a10]
boss : −
role : GlobalManagerRole

AmbulanceManager

...
role : AmbulanceRole
capabilities : [AmbulanceRole,

agentId : a02

boss : a01
subordinates : []

LocalManagerRole]

role : AmbulanceRole
capabilities : [AmbulanceRole,

agentId : a03

boss : a01
subordinates : []

LocalManagerRole]

role : AmbulanceRole
capabilities : [AmbulanceRole,

agentId : a10

boss : a01
subordinates : []

Ambulance

LocalManagerRole]

Ambulance Ambulance

Fig. 7. Initial organizational structure as viewed by the AmbulanceManager agent

Towards a Framework for Agent Coordination and Reorganization 9

4.2 Agent Design

The global design of an agent is shown in figure 8. The agent first processes its
input (sensory input and messages from other agents) and updates its knowl-
edge base. This knowledge base consists of a model of the RCRSS environment

input
process

AgentCoRe
datastructure

RCRSS model

knowledge base

task structure
create/update

assign subtasks

reorganize

operational planner

process
output

sense/hear

act/tell

Fig. 8. Agent Design

taskId: 02
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s01

SearchAndRescueInSector

SearchAndRescueAll

subtasks: [02,03,04,05,06,07,08,09,10]
goal: search−and−rescue−all

taskId: 01

priority: 1

taskId: 10
subtasks: []
goal: search−and−rescue−sector

sectorId: s09
priority: 1

SearchAndRescueInSectorSearchAndRescueInSector

taskId: 03
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s02

...

Fig. 9. Task structure in the knowledge base of the AmbulanceManager

SearchAndRescueInSector

taskId: 03
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s02

SearchAndRescueInSector

taskId: 31
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s02a

SearchAndRescueInSector

taskId: 31
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s02b

SearchAndRescueInSector

taskId: 31
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s02c

Fig. 10. Task structure in the knowledge base of an Ambulance agent with a
LocalManagerRole

10 M. Ghijsen, W. Jansweijer, and B. Wielinga

and the AgentCoRe related knowledge shown as input and output in figure 1.
Knowledge from the knowledge base is used by and adapted by the remaining
processes which is depicted by the dotted-arrows. In the next two steps, tasks
are decomposed and assigned. Based on the resulting assignment structure, the
reorganize module decides whether the organization needs to be changed. When
the AgentCoRe related decisions have been made, the agent starts to plan its
operational actions (e.g. which building to search or which civilian to rescue).
The final step is to send the necessary messages to other agents and to perform
the planned actions. Note that this design does not contain the select coordi-
nation mechanism module. In [26] we have shown that different coordination
mechanisms perform differently under different environmental conditions but
the dynamic selection of coordination mechanisms remains future work. In the
remainder of this section we describe the domain specific strategies that are used
as input of the AgentCoRe decisions making modules.

taskId: 02
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s01

SearchAndRescueInSector

SearchAndRescueAll

subtasks: [02,03,04,05,06,07,08,09,10]
goal: search−and−rescue−all

taskId: 01

priority: 1

taskId: 10
subtasks: []
goal: search−and−rescue−sector

sectorId: s09
priority: 1

SearchAndRescueInSector

capabilities : [GlobalManagerRole]

agentId : a01
subordinates : [a02,a03, ... a10]
boss : −
role : GlobalManagerRole

AmbulanceManager

...
role : AmbulanceRole
capabilities : [AmbulanceRole,

agentId : a02

boss : a01
subordinates : []

LocalManagerRole]

role : AmbulanceRole
capabilities : [AmbulanceRole,

agentId : a03

boss : a01
subordinates : []

LocalManagerRole]

role : AmbulanceRole
capabilities : [AmbulanceRole,

agentId : a10

boss : a01
subordinates : []

Ambulance

LocalManagerRole]

Ambulance Ambulance

assignment

report−frequency : 5

taskId : 02
agentId : a02
created : 1

report−content :
<buildings−searched,
civilians−found,
civilians−rescued>

SearchAndRescueInSector

taskId: 03
subtasks: []
goal:
priority: 1

search−and−rescue−sector

sectorId: s02

...

assignment

report−frequency : 5

taskId : 03
agentId : a03
created : 1

report−content :
<buildings−searched,
civilians−found,
civilians−rescued>

assignment

report−frequency : 5

taskId : 10
agentId : a10
created : 1

report−content :
<buildings−searched,
civilians−found,
civilians−rescued>

Fig. 11. Assignment structure in the knowledge base of the AmbulanceManager agent

Towards a Framework for Agent Coordination and Reorganization 11

The task decomposition strategy decomposes the SearchAndRescueAll into
9 SearchAndRescueSector tasks which results in a task structure as in figure 9.
This task structure resides in the knowledge base of the AmbulanceManager
agent. When an Ambulance agent is performing the AmbulanceRole there is no
task to decompose and the agent does not make any decisions. Also for the
other two modules, assign subtasks and reorganize, the agent does not make any
decisions. However when an Ambulance agent performs the LocalManagerRole,
the agent decomposes the SearchAndRescueSector into a number of smaller
SearchAndRescueSector tasks and assigns these smaller tasks to its direct sub-
ordinates and to itself. This results in a task structure as shown in figure 10.

For the assignment process we have implemented a strategy that selects tasks
from the assignment structure that have not yet been assigned to an agent. From
that subset, the tasks with the highest priority are selected. The strategy also
selects the agents from the assignment structure that are not assigned to a task.
The strategy does not include grouping of agents or tasks. This results in an
assignment structure as shown in figure 11.

A reorganization strategy has been implemented with one trigger and a set
of change rules that are used when the trigger fires. The trigger fires if two
conditions both hold; (1) there is at least one agent that has not been assigned
to a task and (2) there is at least one task that is still being executed. The change
rules specify that the Ambulance agent that is already working on that task has
to switch from the AmbulanceRole to the LocalManagerRole (role change) and

capabilities : [GlobalManagerRole]

agentId : a01
subordinates : [a03]
boss : −
role : GlobalManagerRole

AmbulanceManager

role : LocalManagerRole
capabilities : [AmbulanceRole,

agentId : a03

boss : a01
subordinates : [a02,a05,a08]

LocalManagerRole]

Ambulance

role : AmbulanceRole
capabilities : [AmbulanceRole,

boss : a03
subordinates : []

LocalManagerRole]

Ambulance

agentId : a02

role : AmbulanceRole
capabilities : [AmbulanceRole,

boss : a03
subordinates : []

LocalManagerRole]

Ambulance

agentId : a05

role : AmbulanceRole
capabilities : [AmbulanceRole,

boss : a03
subordinates : []

LocalManagerRole]

Ambulance

agentId : a08

Fig. 12. Organizational structure in the knowledge base of Ambulance agent a03 with
a LocalManagerRole

12 M. Ghijsen, W. Jansweijer, and B. Wielinga

that the other agent will become a subordinate agent of the agent with the
LocalManagerRole (structural change). The rationale behind this is that the
first agent assigned to a task has acquired the most information on that task and
is therefore most suited to coordinate work on this task when other agents are
assigned to the same task. For the agent with the LocalManagerRole this results
in an organizational structure as shown in figure 12. Each agents organizational
structure will only contain its direct superior and its direct subordinates. An
agent that is a subordinate of an agent with a LocalManagerRole can no longer
“see” the superior agent of that agent with the LocalManagerRole.

5 Discussion and Conclusions

In the previous section we have described an implementation of a MAS in the
RoboCupRescue environment using the AgentCoRe framework. By using a re-
organization strategy, the MAS is capable of adapting agent relations and agent
roles. The example in this paper shows only how one of the three coordina-
tion mechanisms in [26] was implemented. However, the other two coordination
mechanisms in [26] have also been implemented using the AgentCoRe decision
making modules.

The design of the AgentCoRe framework enables an agent to use strategies for
task-decomposition, task-allocation and reorganization. By using these strate-
gies as input in the inference structures we have been able to distinguish domain
dependent strategies from the domain independent reasoning for task decompo-
sition, task assignment and reorganization. By providing the agent with these
strategies, the agent will be able to cope with dynamics in the environment
[26]. However, it may be the case that the environment or the nature of its task
changes in such a way that these strategies – that are designed to enable the
agent to cope with these dynamics – are not effective anymore. In this case the
agent has the possibility to change its coordination strategy by selecting differ-
ent strategies for task decomposition, task assignment and reorganization, that
are better suited to cope with the current situation.

6 Future Work

As mentioned, the current MAS implementation does not have the capability
of adjusting its coordination strategy. We have already shown that AgentCoRe
can be used to implement multiple coordination strategies and in future work
we will implement strategy rules that allow the agent in a MAS to change its
coordination strategy. Future work will also focus on other domains that are
more dynamic in nature. Furthermore we will study the applicability of the
AgentCoRe framework in these domains to get a better understanding for which
types of problem domains AgentCoRe is suited or not.

As also recognized by Dignum et al. [27], different reasons for reorganization
exist. Our future research will continue to focus on the questions of when a

Towards a Framework for Agent Coordination and Reorganization 13

MAS should reorganize and if such a situation occurs, how the MAS should re-
organize. The first question involves identifying appropriate triggers for strategy
selection and reorganization. The second question involves the identification of
appropriate change-operators on a MAS organization and determine how these
change-operators should be used by the agents in a MAS to achieve a more
optimal organization structure.

References

1. So, Y., Durfee, E.: Designing organizations for computational agents. In:
Prietula, M., Carley, K., Gasser, L. (eds.) Simulating Organizations, pp. 47–64.
AAAI Press/MIT Press, Menlo Park (1998)

2. Carley, K.: Computational and mathematical organization theory: Perspectives and
directions. Journal of Computational and Mathematical Organizational Theory
(1995)

3. Cernuzzi, L., Zambonelli, F.: Dealing with adaptive multi-agent organizations in
the gaia methodology. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS,
vol. 3950, pp. 109–123. Springer, Heidelberg (2006)

4. Bernon, C., Gleizes, M., Peyruqueou, S.: Adelfe: A methodology for adaptive
multi-agent systems engineering (Revised Papers). In: Petta, P., Tolksdorf, R.,
Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, Springer, Heidelberg
(2003)

5. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A middleware for developing
organised multi-agent systems. In: Boissier, O., Padget, J.A., Dignum, V., Linde-
mann, G., Matson, E.T., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.)
AAMAS Workshops. LNCS, vol. 3913, pp. 64–78. Springer, Heidelberg (2006)

6. Newell, A.: The Knowledge Level. Artificial Intelligence 18(1), 87–127 (1982)

7. Mintzberg, H.: Structures in fives: Designing effective organizations. Prentice Hall,
Englewood Cliffs (1993)

8. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., Shi-
mada, S.: Robocup-rescue: Search and rescue for large scale disasters as a domain
for multi-agent research. In: Proceedings of IEEE Conference on Man, Systems,
and Cybernetics(SMC-1999) (1999)

9. Uschold, M., King, M., Moralee, S., Zorgios, Y.: The enterprise ontology. The
Knowledge Engineering Review (1998)

10. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Organisational abstractions for
the analysis and design of multi-agent systems. In: 1st International Workshop on
Agent-Oriented Software Engineering at ICSE 2000 (2000)

11. Carley, K., Gasser, L.: Computational organization theory. In: Weiss, G. (ed.)
Multi-Agent Systems, A Modern Approach to Distributed Artificial Intelligence,
pp. 299–330. MIT Press, Cambridge (1999)

12. Jennings, N.: Coordination techniques for distributed artificial intelligence. In:
O’Hare, G., Jennings, N. (eds.) Foundations of Distributed Artificial Intelligence,
pp. 187–210. Wiley, Chichester (1996)

13. Tambe, M., Pynadath, D.V., Chauvat, N.: Building dynamic agent organizations
in cyberspace. IEEE Internet Computing 4(2), 65–73 (2000)

14. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26(1) (March 1994)

14 M. Ghijsen, W. Jansweijer, and B. Wielinga

15. Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B., Neiman, D.,
Podorozhny, R., Prasad, M.N., Raja, A., Vincent, R., Xuan, P., Zhang, X.Q.: Evo-
lution of the GPGP/TAEMS domain-independent coordination framework. Au-
tonomous Agents and Multi-Agent Systems 9, 87–143 (2004)

16. Pynadath, D.V., Tambe, M.: Multiagent teamwork: Analyzing key teamwork theo-
ries and models. In: First Autonomous Agents and Multiagent Systems Conference
(AAMAS) (2002)

17. Nair, R., Tambe, M., Marsella, S.: Team formation for reformation. In: Proceedings
of the AAAI Spring Symposium on Intelligent Distributed and Embedded Systems
(2002)

18. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organization struc-
tures. In: Proceedings of the 5th International Conference on Autonomous Agents,
June 2001, pp. 529–536. ACM Press, New York (2001)

19. Kamboj, S., Decker, K.: Organizational self-design in semi-dynamic environ-
ments. In: 2007 IJCAI workshop on Agent Organizations: Models and Simulations
(AOMS@IJCAI 2007) (2007)

20. Shehory, O., Sycara, K., Chalasani, P., Jha, S.: Agent cloning: An approach to
agent mobility and resource allocation. In: IEEE Communications

21. Martin, C., Barber, K.S.: Adaptive decision-making frameworks for dynamic multi-
agent organizational change. Autonomous Agents and Multi-Agent Systems 13(3),
391–428 (2006)

22. Excelente-Toledo, C.B., Jennings, N.R.: The dynamic selection of coordination
mechanisms. Autonomous Agents and Multi-Agent Systems 9(1–2), 55–85 (2004)

23. Rosenfeld, A., Kaminka, G.A., Kraus, S., Shehory, O.: A study of mechanisms for
improving robotic group performance. Artificial Intelligence (in press)

24. Kamboj, S., Decker, K.: Organizational self-design in semi-dynamic environments.
In: Proceedings of the Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2007), pp. 1220–1227 (May 2007)

25. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van
de Velde, W., Wielinga, B.: Knowledge Engineering and Management: The Com-
monKADS Methodology. MIT Press, Cambridge (2000)

26. Ghijsen, M., Jansweijer, W., Wielinga, B.: The effect of task and environment
factors on M.A.S. coordination and reorganization. In: Proceedings of the Sixth
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
short paper (to appear, 2007)

27. Dignum, V., Dignum, F., Sonenberg, L.: Towards dynamic reorganization of agent
societies. In: Proceedings of CEAS: Workshop on Coordination in Emergent Agent
Societies at ECAI 2004, pp. 22–27 (September 2004)

Ignoring, Forcing and Expecting Simultaneous

Events in Electronic Institutions

Andrés Garćıa-Camino

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council

Campus UAB, 08193 Bellaterra, Spain
andres@iiia.csic.es

Abstract. Norms constitute a powerful coordination mechanism among
heterogeneous agents. We propose means to specify open environments
regulated using the notions of ignoring, forcing, expecting and sanction-
ing events and prevention of unwanted states. These notions make ex-
plicit and clear the stance of institutions about forbidden and obligatory
behaviour. Our rule-based language calculates the effects of concurrent
events generated by agents given a set of norms based on the deontic no-
tions previously mentioned. Our formalism has been conceived as basis
for an implementation of Electronic Institutions.

1 Introduction

Ideally, open multi-agent systems (MAS) involve heterogeneous and autonomous
agents whose concurrent interactions ought to conform to some shared conven-
tions. The challenge is how to express and enforce such conditions so that truly
autonomous agents can adscribe to them. One way of addressing this issue is to
look at MAS as environments regulated by some sort of normative framework.

There are many examples of languages for regulating agent behaviour (for
example, [1,2,3,4,5]). However, very few of them regulate concurrent events tak-
ing into account the rest of events that occur at an instant of time. The few that
exist (e.g. [3]) are not conceived to deal with open MAS.

Furthermore, in the literature we find that almost all these languages are
based on deontic logic [6] that establishes which actions are permitted, forbidden
or obligatory. However, it does not establish which is the semantics of these
modalities with respect to a computational system. For instance, when an action
is claimed to be forbidden, does it means that it is prevented to happen, or that
the agents that bring it about must be sanctioned or that the effects of that
action are just ignored?

Instead, we propose a language, called I, and one implementation of it that
uses the notions of ignoring, forcing, and expecting events along with the notion
of preventing a state, in the computation of the effects of concurrent agent be-
haviour in a regulated open MAS. The main contribution of I is the management
of sets of events that occur simultaneously and the distinction between norms
that can be violated or not. For instance, an obligation that may be violated

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 15–26, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

16 A. Garćıa-Camino

to perform a set of simultaneous events is represented as the expectation of the
attempts to perform them. However, the enforcement of an obligation that may
not be violated to perform a set of events is carried out by the system by taking
these events as performed even they are not. We denote such enforcement as
forcing events.

The paper is structured as follows. Section 2 introduces I, a rule language
for electronic institutions. A basic example illustrating the expressiveness of I is
shown in section 3. In section 4, we introduce the formulae that we use for mod-
elling electronic institutions. An example of a bank institution is presented in
section 5. In section 6 we contrast our approach with a sample of other contem-
porary work. Finally, we draw conclusions and outline future work in section 7.

2 I: A Rule Language for Electronic Institutions

In this section we introduce a rule language for the regulation and management of
concurrent events generated by a population of agents. Our rule-based language
allows us to represent norms and changes in an elegant way.

The building blocks of our language are first-order terms and implicitly, uni-
versally quantified atomic formulae without free variables. We shall make use
of numbers and arithmetic functions to build terms; arithmetic functions may
appear infix, following their usual conventions1. We also employ arithmetic re-
lations (e.g., =, �=, and so on) as predicate symbols, and these will appear in
their usual infix notation with their usual meaning.

ECA-Rule ::= on events if conditions do actions
if-Rule ::= if conditions do actions

ignore-Rule ::= ignore events if conditions
prevent-Rule ::= prevent conditions if conditions

force-Rule ::= force events on events if conditions do actions
events ::= list of events | ∅

list of events ::= atomic formula, list of events | atomic formula
conditions ::= conditions ∧ conditions | ¬(conditions) | atomic formula

actions ::= action • actions | action
action ::= ⊕atomic formula | � atomic formula

Fig. 1. Grammar for I

One goal of the I language is to specify which are the effects of concurrent
events and this is achieved with Event-Condition-Action (ECA) rules. Intuitively,
an ECA-rule means that whenever the events occur and the conditions hold then
the actions are applied. These actions consist in the addition and removal of

1 We adopt Prolog’s convention using strings starting with a capital letter to represent
variables and strings starting with a small letter to represent constants.

Ignoring, Forcing and Expecting Simultaneous Events 17

atomic formulae from the state of affairs. ECA-rules are checked in parallel and
they are executed only once without chaining.

If-rules are similar to rules in standard production systems, if the conditions
hold then the actions are applied. They are implemented with a forward chaining
mechanism: they are executed sequentially until no new formula is added or
removed.

Ignore-rules are used for ignoring events when the conditions hold in order to
avoid unwanted behaviour. Similarly, prevent-rules are used for preventing some
conditions to hold in the situations given. In order to prevent unwanted states,
events causing such unwanted states are ignored. Force-rules generate events and
execute actions as consequence of other events and conditions.

Sanctions over unwanted events can be carried out with ECA-rules. For in-
stance, we can decrease the credit of one agent by 10 if she generates certain
event.

We add an additional kind of rules, expectation-rules, that generate and re-
move expectations of events. If the expectation fails to be fulfilled then some
sanctioning or corrective actions are performed.

expectation-Rule ::= expected event on events if conditions

fulfilled-if conditions′ violated-if conditions′′

sanction-do actions

Each expectation rule can be translated into three ECA-rules:

on events if conditions do ⊕exp(event) (1)
if exp(event) ∧ conditions′ do �exp(event) (2)

if exp(event) ∧ conditions′′ do �exp(event) • actions (3)

Rules 1 and 2 respectively adds and removes an expectation whenever the
events have occurred and the conditions hold. Rule 3 cancels the unfulfilled
expectation and sanctions an agent for the unfulfilled expectation by executing
the given actions whenever some conditions hold.

2.1 Semantics

Instead of basing the I language in the standard deontic notions, two types
of prohibitions and two types of obligations are included. In our language,
ECA-rules determine what is possible to perform, i.e. they establish the effects
(including sanctions) in the institution after performing certain (possibly con-
current) events. ECA-rules might be seen as conditional count-as rules: the given
events count as the execution of the actions in the ECA-rule if the conditions
hold and the event is not explicitly prohibited. As for the notion of permission,
all the events are permitted if not explicitly prohibited. The notion of an event
being prohibited may be expressed depending on whether that event has to be
ignored or not. If not otherwise expressed, events are not ignored. Likewise, the
notion of a state being prohibited may be specified depending on whether that

18 A. Garćıa-Camino

state has to be prevented or not. By default, states are not prevented. Obli-
gations are differentiated in two types: expectations, which an agent may not
fulfill, and forced (or obligatory) events, which the system takes as institutional
events even they are not really performed by the agents.

Each set of ECA-rules generates a labelled transition system 〈S, E, R〉 where
each state S is a set of atomic formulae, E is a set of events, and R is a S×2E×S
relationship indicating that whenever a set of events occur in the former state,
then there is a transition to the subsequent state.

Ignore-rules avoid to execute any transition that contains in its labelling
all the events that appear in each ignore-rule. For instance, having a rule
ignore α1 if true would avoid to execute the transitions labelled as {α1},
{α1, α2} and {α1, α2, α3}. However, having a rule ignore α1, α2 if true would
avoid to execute {α1, α2} and {α1, α2, α3} but not {α1}.

Prevent-rules ignore all the actions in an ECA-rule if it brings the given
formulae about. For example, suppose that we have

prevent q1 if true

along with ECA-rules 4, 5 and 6. After the occurrence of events α1 and α2 and
since q1 is an effect of event α2, all the actions in ECA-rule 5 would be ignored
obtaining a new state where p and r hold but neither q1 nor q2.

on α1 if true do ⊕p (4)
on α2 if true do ⊕q1 • ⊕q2 (5)

on α1, α2 if true do ⊕r (6)

Force-rules generate events during the execution of the transition system.
However, the effects of such events are still specified by ECA-rules and subject
to prevent and ignore-rules.

2.2 Operational Semantics

In the definitions below we rely on the concept of substitution, that is, the set of
values for variables in a computation [7,8]:

We now define the semantics of the conditions, that is, when a condition holds:

Definition 1. Relation sl(Δ, C, σ) holds between state Δ, a condition C in an
if clause and a substitution σ depending on the format of the condition:

1. sl(Δ, C∧C′, σ) holds iff sl(Δ, C, σ′) and sl(Δ, C′·σ′, σ′′) hold and σ = σ′∪σ′′.
2. sl(Δ, ¬C, σ) holds iff sl(Δ, C, σ) does not hold.
3. sl(Δ, seteq(L, L2), σ) holds iff L ⊆ L2, L2 ⊆ L and |L| = |L2|.
4. sl(Δ, true, σ) always holds.
5. sl(Δ, α, σ) holds iff α · σ ∈ Δ.

Case 1 depicts the semantics of atomic formulae and how their individual sub-
stitutions are combined to provide the semantics for a conjunction. Case 2 intro-
duces the negation by failure. Case 3 compares if two lists have the same elements

Ignoring, Forcing and Expecting Simultaneous Events 19

possibly in different order. Case 4 gives semantics to the keyword “true”. Case 5
holds when an atomic formulae α is part of the state of affairs.

We now define the semantics of the actions of rules:

Definition 2. Relation sr(Δ, A, Δ′) mapping a state Δ, the action section of a
rule and a new state Δ′ is defined as:

1. sr(Δ, (A • As), Δ′) holds iff both sr(Δ, A, Δ1) and sr(Δ1, As, Δ′) hold.
2. sr(Δ, ⊕α, Δ′) holds iff

(a) α �∈ Δ and Δ′ = Δ ∪ {α} or;
(b) Δ′ = Δ.

3. sr(Δ, �α, Δ′) holds iff
(a) α ∈ Δ and Δ′ = Δ \ {α} or;
(b) Δ′ = Δ.

Case 1 decomposes a conjunction and builds the new state by merging the partial
states of each update. Cases 2 and 3 cater respectively for the insertion and
removal of atomic formulae α.

We now define relation checkprv that checks if there is no prevent-rule that
has been violated, i.e., not all the conditions hold in the state of affairs Δ′. It
checks whether Δ′ contain all the conditions of each prevent-rule or not, if Δ
also contain the given conditions.

Definition 3. Relation checkprv(Δ, Δ′, P rvRules) mapping Δ, state before ap-
plying updates, Δ′, state after applying updates, and a sequence PrvRules of
prevent-rules holds iff an empty set is the largest set of conditions C such that
prevent-rule p = prevent C if C′, p ∈ PrvRules, sl(Δ, C′) and sl(Δ′, C) hold.

Definition 4. Relation fire(Δ, PrvRules, if C do A, Δ′) mapping a state Δ,
a sequence PrvRules of prevent-rules, an if-rule and a new state Δ′ holds iff
assert(fired(C)), sr(Δ, A, Δ′) and checkprv(Δ, Δ′, P rvRules) hold.

Relation can fire checks whether the conditions of a given if-rule hold and the
rule after applying substitution σ has not been already fired.

Definition 5. Relation can fire(Δ, if C do A, σ) mapping a state Δ an if-rule
and a substitution σ holds iff sl(Δ, C, σ) holds and fired(C · σ) does not hold.

Relation resolve determines the rule that will be fired by selecting the first rule
in the list.

Definition 6. Relation resolve(RuleList, SelectedRule) mapping a list of
if-rules and a selected if-rule holds iff

1. RuleList = ∅ and SelectedRule = ∅; or
2. RuleList = 〈r1, . . . , rn〉 and SelectedRule = r1.

Relation select rule determines the rule that will be fired by selecting all the
rules that can fire and resolving the conflict with relation resolve.

20 A. Garćıa-Camino

Definition 7. Relation select rule(Δ, IfRulesList, SelectedRule) mapping a
state of affairs Δ a list of if-rules and a selected if-rule holds iff Rs is the largest
set of rules R ∈ IfRulesList such that can fire(Δ, R, σ); resolve(Rs, SR) hold
and SelectedRule = SR · σ.

Relation sif determines the new state of affairs after applying a set of if-rules to
a initial state of affairs taking into account a set of prevent-rules.

Definition 8. Relation sif (Δ, IfRules, PrvRules, Δ′) mapping a state of af-
fairs Δ, a list of if-rules, a list of prevent-rules and a new state of affairs holds iff

1. select rule(Δ, IfRules, R) hold, R �= ∅, fire(Δ, PrvRules, R, Δ′′) and
sif (Δ′′, IfRules, PrvRules, Δ′) hold; or

2. select rule(Δ, IfRules, R) hold, R = ∅; or
3. sif (Δ, IfRules, PrvRules, Δ′) hold.

Relation ignored determines a set of events that occurred have to be ignored
taking into account a list of ignore-rules.

Definition 9. Relation ignored(Δ, Ξ, E, IgnRules) mapping a state of affairs
Δ, a list Ξ of events that occurred, a list of events in a ECA-rule and a list of
ignore-rules holds iff i = ignore E′ if C, i ∈ IgnRules, E′ ⊆ Ξ, E intersects
with E′ and sl(Δ, C) holds.

Relation s′r applies sr first and then sif in order to activate the forward chaining.

Definition 10. Relation s′r(Δ, IfRules, PrvRules, ActionList, Δ′) mapping a
state of affairs Δ, a list of if-rules, a list of prevent-rules, a list of actions and
a new state of affairs holds iff

1. ActionList = ∅ and Δ′ = Δ; or
2. ActionList = 〈a1, . . . , an〉, sr(Δ, a1, Δ

′′), checkprv(Δ, Δ′′, P rvRules),
sif (Δ′′, IfRules, PrvRules, Δ′′′) and s′r(Δ

′′′, IfRules, PrvRules, 〈a2, . . . ,
an〉, Δ′) hold; or

3. s′r(Δ, IfRules, PrvRules, 〈a2, . . . , an〉, Δ′).

Relation son calculates the new state of affairs Δ′ from an initial state Δ and a
set Ξ of events that occurred applying a list of ECA-rules, if-rules, ignore-rules
and prevent-rules.

Definition 11. Relation son(Δ, Ξ, ECARules, IfRules, IgnRules, PrvRules,
Δ′) mapping a state of affairs Δ, a list Ξ of events that occurred, a list of
ECA-rules, a list of if-rules, a list of ignore-rules, a list of prevent-rules, and
a new state of affairs holds iff As is the largest set of actions A′ = A · σ
in a ECA-rule r = on E if C do A such that R ∈ ECARules, E · σ′ ⊆ Ξ,
sl(Δ, C, σ′′) hold, ignored(Δ, Ξ, E, IgnRules) does not hold and σ = σ′ ∪ σ′′;
and s′r(Δ, IfRules, PrvRules, As, Δ′) hold.

Relation sf calculates the new state of affairs Δ′ and the new set Ξ ′ of occurred
events from an initial state Δ and a set Ξ of events that occurred applying a
list of if-rules, ignore-rules, prevent-rules and force-rules.

Ignoring, Forcing and Expecting Simultaneous Events 21

Definition 12. Relation sf(Δ, Ξ, IfRules, IgnRules, PrvRules, FrcRules,
Ξ ′, Δ′) mapping a state of affairs Δ, a list Ξ of events that occurred, a list
of if-rules, a list of ignore-rules, a list of prevent-rules, a list of force-rules, a
new list of events that occured and a new state of affairs holds iff EAs is the
largest set of tuples 〈FE ·σ, A·σ〉 of forced events and actions in a force rule fr =
force FE on E if C do A such that fr ∈ FrcRules, E · σ′ ⊆ Ξ, sl(Δ, C, σ′′)
holds,ignored(Δ, Ξ, E, IgnRules) does not hold and σ = σ′∪σ′′; Es is the largest
set of forced events Ev such that 〈Ev, A〉 ∈ EAs; Ξ ′ = Ξ ∪Es; As is the largest
set of actions A such that 〈Ev, A〉 ∈ EAs; and s′r(Δ, IfRules, PrvRules, As, Δ′)
holds.

Relation s∗ calculates the new state of affairs Δ′ from an initial state Δ and a
set Ξ of events that occurred applying a list of ECA-rules, if-rules, ignore-rules,
prevent-rules and force-rules.

Definition 13. Relation s∗(Δ, Ξ, ECARules, IfRules, IgnRules, PrvRules,
FrcRules, Δ′) mapping a state of affairs Δ, a list Ξ of events that occurred,
a list of ECA-rules, a list of if-rules, a list of ignore-rules, a list of prevent-rules,
a list of force-rules and a new state of affairs holds iff Cs is the largest set of
conditions C such that retract(fired(C)) holds; assert(fired(false)), sif (Δ,
IfRules, PrvRules, Δ′′), sf(Δ′′, Ξ, IfRules, IgnRules, PrvRules, FrcRules,
Ξ ′, Δ′′′) and son(Δ′′′, Ξ ′, ECARules, IfRules, IgnRules, PrvRules,Δ′) hold.

3 Example of Concurrency: Soup Bowl Lifting

In this section we present an example on how to use the I language in order
to specify a variation of a problem about concurrent action: the Soup Bowl
Lifting problem [9]. Picture a situation where a soup bowl has to be lifted by
two (physical) agents; one lifting from the right-hand side and the other one
from the left-hand side. If both sides are not lifted simultaneously then the soup
spills.

The order in which the rules are declared is important since they are executed
in the order they are declared. We do not obtain the same effect with rules 7, 8
and 9 (finally spilled does not hold after lifted from both sides simultaneously)
than with rules 9, 7 and 8 (finally spilled holds even after lifted from both sides
simultaneously).

on pushLeft if true do ⊕spilled (7)
on pushRight if true do ⊕spilled (8)

on pushLeft, pushRight if true do �spilled • �onTable (9)

Rules 7 and 8 specify that the soup is spilled whenever the bowl is lifted either
from the right-hand side or the left-hand side. However, rule 9 removes the spill
effect whenever both events are done simultaneously. However, with rules 9, 7
and 8, we do not obtain the desired result since the spilled formula may be
added after executing the rule that removes spilled formula.

22 A. Garćıa-Camino

To prevent the bowl from spilling, we may add the next rule to rules 7–9:

prevent spilled if true (10)

However, adding the following rules instead would also prevent the bowl to
be lifted since ignoring one event will prevent all the combined events to be
considered.

ignore pushLeft if true (11)
ignore pushRight if true (12)

Contrarily, if we add rule 13 to rules 7-9, we prevent the bowl to be lifted
from both sides simultaneously but not to be only lifted from one side since we
are only ignoring the events if they occur together.

ignore pushLeft, pushRight if true (13)

This basic example give us a sample of the expressiveness of I. In the next
section, we introduce electronic institutions and the meaning of the formulae
needed for representing them in I.

4 Electronic Institutions

Our work extends electronic institutions (EIs) [10]2, providing them with a
normative layer specified in terms of ignore, prevent and force rules. There are
two major features in EIs: the states and illocutions (i.e., messages) uttered (i.e.,
sent) by those agents taking part in the EI. The states are connected via edges
labelled with the illocutions that ought to be sent at that particular point in the
EI. Another important feature in EIs are the agents’ roles : these are labels that
allow agents with the same role to be treated collectively thus helping engineers
abstract away from individuals. We define below the class of illocutions we aim
at – these are a special kind of term:

Definition 14. Illocutions I are terms ill(p, ag, r , ag ′, r ′, τ) where p is a perfor-
mative (e.g. inform or request); ag , ag ′ are agent identifiers; r, r′ are role labels;
and τ is a term with the actual content of the message.

We shall refer to illocutions that may have uninstantiated (free) variables as
illocution schemes, denoted by Ī.

An institutional state is a state of affairs that stores all utterances during
the execution of a MAS, also keeping a record of the state of the environment,
all observable attributes of agents and all the expectations associated with the
agents.

We differentiate three kinds of events, with the following intuitive meanings:

1. I – an agent uttered illocution I.
2. newtick(t) – a new tick of the clock occurred at time t.
3. the rest of events expressed as an atomic formula.

2 EI scenes are basically covered with ECA rules.

Ignoring, Forcing and Expecting Simultaneous Events 23

We shall use event 2 above to obtain the time with which illocutions and
expectations are time-stamped.

We differentiate two kinds of atomic formulae in our institutional states Δ,
with the following intuitive meanings:

1. inst(event, t) – event was accepted as an institutional event at time t.
2. exp(event, t) – event is expected to occur since time t.

We allow agents to declare whatever they want to bring about (via events).
However, the unwanted events may be discarded and/or may cause sanctions,
depending on the deontic notions we want or need to implement via our rules.
The inst formulae are thus confirmations of events. We shall use formula 2 above
to represent expectations of agents within EIs.

5 Applied Example: Bank

In this section we introduce an example of banking institution where agents are
allowed to do certain operations with money. The operations in our bank are
depositing, withdrawing and transferring. In our example we have two types of
accounts called a and b owned by two different agents. In order to perform an
operation in one of these accounts both agents have to simultaneously make the
proper request.

Type a accounts have the limitation that no withdrawing, transferring from
and debiting is allowed having a negative credit. If it is the case and there is
enough money in a type b account of the same agent then necessary credit is
automatically transferred to the account with negative credit and a fee is debited.

Type b accounts have the following limitations:
1. They cannot be in red. All the transactions that would finish in negative

credit are rejected.
2. Withdrawing from or depositing to these accounts is not allowed.

Rule 14 specify the effects of opening an account of type T to agents A1 and
A2 with an amount M of credit if another account of the same type with the
same owners is not already opened.

on newtick(T ime), open account(Id, A1, A2, T, M)
if ¬account(Id, A1, A2, T,) ∧ ¬account(Id, A2, A1, T,)
do ⊕account(Id, A1, A2, T, M)•

⊕inst(open account(Id, A1, A2, T, M), T ime)

(14)

Rule 15 specify the effect of withdrawing a given quantity Mq of money from
a given account due to the simultaneous request of both owners of the account.
The rules in the action section calculate the new credit for the account and
modifies its value by removing the old credit and adding the new one. Likewise,
a rule for the effects of depositing may also be specified.

on newtick(T ime), withdraw(A1, Id, Mq), withdraw(A2, Id, Mq)
if account(Id, A1, A2, T, M)
do M2 = M − Mq • �account(Id, A1, A2, T, M)•

⊕account(Id, A1, A2, T, M2) • ⊕inst(withdraw(A1, A2, Id, Mq), T ime)

(15)

24 A. Garćıa-Camino

Rule 16 specifies the effect of transferring from one account (of an agent and
of a certain type) to another account possibly as payment of a certain concept
C: the source account is reduced and the destination account is increased by the
stated amount.

on newtick(T ime), transfer(A1, Ids, Idd, C, M), transfer(A2, Ids, Idd, C, M)
if account(Ids, A1, A2, Ts, Ms) ∧ account(Idd, A3, A4, Td, Md)
do M2s = Ms − M • �account(Ids, A1, A2, Ts, Ms) •

⊕account(Ids, A1, A2, Ts, M2s) • M2d = Md + M • (16)
�account(Idd, A3, A4, Td, Md) • ⊕account(Idd, A3, A4, Td, M2d) •
⊕inst(transfer(A1, A2, Ids, Idd, C, M), T ime)

To avoid concurrent actions affecting the same account, we use rule 17. In
this case, only the first action is taken into account and the rest of concurrent
actions are ignored.

prevent account(I, A1, A2, T, M) ∧ account(I, A1, A2, T, M2) if M �= M2 (17)

In our example, accounts of type a have the restriction that agents are not
allowed to withdraw or transfer from a accounts with negative credit. This is
achieved with rules like:

ignore withdraw(A, Id,) if account(Id, A, , a, M) ∧ M < 0 (18)
ignore transfer(A, Ids, , ,) if account(Ids, A, , a, M) ∧ M < 0 (19)

Accounts of type b also have some restrictions. First, they cannot go into
negative numbers. This is achieved with the following rule:

prevent account(Id, A1, A2, b, M) if M < 0

Second, agents are not allowed to withdraw from accounts of type b. This is
achieved by rule 20.

ignore withdraw(, Id,) if account(Id, , , b,) (20)

Furthermore, if an account of type a goes into the negatives then the necessary
amount to avoid this situation is transferred from an account of type b. Rule 21
forces this type of events. Notice that a similar rule but with the order of the
owners of the accounts reversed is also necessary since the owners may not appear
in the same order.

force transfer(A, Idb, Ida, a negative, C), transfer(A2, Idb, Ida, a negative, C)
if account(Ida, A, A2, a, C2) ∧ C2 < 0 ∧ C = −C2

(21)

6 Related Work

In the model of Electronic Institutions of [10], agent interaction is brought about
by uttering illocutions and it is decomposed in a set of scenes where only one illo-
cution is accepted as legal simultaneously. As for norms, agents may be expected

Ignoring, Forcing and Expecting Simultaneous Events 25

to utter certain illocutions under given conditions. However, there is no notion
of prevention of a state or force of events. Furthermore, only events that are
not part of the protocol are ignored, not allowing to write further conditions in
which an illocution is ignored.

The work presented in this paper is the result of the evolution of our previ-
ous work on norm languages for electronic institutions [1]. In that work, we pre-
sented a rule language that does not use forward chaining to calculate the effects
of events and to explicitly manage normative positions (i.e. permissions, prohi-
bitions and obligations). For the present work, we use those rules in the form of
event-condition-action rules. Then, we added standard condition-action rules that
use forward chaining. Furthermore, we changed our standard deontic notions that
only regulated one illocution into more institutional-centred notions as ignoring,
forcing or expecting concurrent events or preventing an institutional state.

nC+ [3] is a language for representing and reasoning about action domains
that include some normative notions. Its semantics is based on labelled transi-
tion systems. The language allows to make queries about the transition system
generated from an action description allowing to pre-dict, post-dict, or plan.
In the normative aspect, nC+ only labels states and actions as green or red
without including our notion of prevention that ignores actions that lead to
an unwanted state. We can obtain this labeling by adding green to the ini-
tial state and rules of the form “on events if conditions do �green • ⊕red” or
“if condition do �green • ⊕red”. Instead of using ignore-rules, nC+ may label
events as non-executable obtaining no solution when this kind of events occur.
Since we want to maintain the state of the multi-agent system, we would need
to ignore all the actions that occurred in that moment even the ones that does
not lead to an unwanted state.

The implementation of nC+ loads the full transition system in order to resolve
the queries. When dealing with fluents with large numeric values, the implemen-
tation suffers from a state explosion increasing the load and resolution time. As
mentioned above, we are aiming at monitoring and maintaining the state of the
enactment of open regulated multi-agent systems. To use the implementation of
nC+ in this setting, we would have to add the new agents to the action descrip-
tion file and reload it again. However, the long time that elapses to complete
this operation makes unviable the use of the implementation for our purposes
and motivated this work.

7 Conclusions and Future Work

In this paper we have introduced a formalism for the management and regu-
lation of concurrent events generated by agents in open MAS. Ours is a rule
language in which concurrent events may have a combined effect and may be
ignored, forced, expected or sanctioned. The semantics of our formalism relies
on transition systems conferring it a well-studied semantics.

We have explored our proposal in this paper by specifying an example of concur-
rency: soup bowl lifting problem and an example of bank as Electronic Institution.

26 A. Garćıa-Camino

Although our language is not as expressive as the language of [3] since we can-
not post-dict or plan about an action description, our language is not a language
for checking properties of a transition system but for specifying its behaviour.

As a proof of concept, an interpreter of I were implemented in Prolog. As
future work, we would like to embed this interpreter in a real MAS and include
the distributed management of normative positions introduced in [11].

Acknowledgements. This work was partially funded by the Spanish Education
and Science Ministry as part of the projects TIN2006-15662-C02-01 and 2006-5-
0I-099 and it was partially done during a stay of the author in Imperial College
London. The author wants to thank Marek Sergot for his advise and hospitality.
He also thanks Juan-Antonio Rodŕıguez-Aguilar and Pablo Noriega for their
comments and reviews. Garćıa-Camino enjoys an I3P grant from the Spanish
National Research Council (CSIC).

References

1. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Norm
Oriented Programming of Electronic Institutions. In: Proceedings of 5th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2006) (2006)

2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing
in Norm-Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P.,
Yolum, P. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, Springer, Heidelberg (2005)

3. Sergot, M., Craven, R.: The deontic component of nC+. In: Goble, L., Meyer,
J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–237. Springer, Hei-
delberg (2006)

4. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Sartor, G., Torroni, P.: Mapping
deontic operators to abductive expectations. In: Proceedings of 1st International
Symposium on Normative Multiagent Systems (NorMAS 2005), AISB 2005, Hert-
fordshire, Hatfield, UK (2005)

5. Minsky, N.: Law Governed Interaction (LGI): A Distributed Coordination and
Control Mechanism (An Introduction, and a Reference Manual). Technical report,
Rutgers University (2005)

6. von Wright, G.H.: Norm and Action: A Logical Inquiry. Routledge and Kegan Paul,
London (1963)

7. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, Englewood Cliffs
(1997)

8. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer,
New York (1990)

9. Gelfond, M., Lifschitz, V., Rabinov, A.: What are the limitations of the Situation
Calculus? In: Essays in Honor of Woody Bledsoe, pp. 167–179 (1991)

10. Esteva, M.: Electronic Institutions: from specification to development. PhD thesis,
Universitat Politecnica de Catalunya, Number 19 in IIIA Monograph Series (2003)

11. Gaertner, D., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A., Vascon-
celos, W.: Distributed Norm Management in Regulated Multi-agent Systems. In:
Proceedings of 6th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2007) (2007)

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 27–40, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Contract Model for Electronic Institutions

Henrique Lopes Cardoso and Eugénio Oliveira

LIACC – NIAD&R, Faculdade de Engenharia, Universidade do Porto
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

{hlc,eco}@fe.up.pt

Abstract. Electronic institutions are software frameworks integrating normative
environments where agents interact to create mutual commitments. Contracts
are formalizations of business commitments among a group of agents, and
comprise a set of applicable norms. An electronic institution acts as a trusted
third-party that monitors contract compliance, by integrating in its normative
environment the contractual norms, which are applicable to the set of contrac-
tual partners. In this paper we present and explore a contract model that facili-
tates contract establishment by taking advantage of an institutional normative
background. Furthermore, the model is flexible enough to enable the expansion
of the underlying normative framework, making it applicable to a wide range of
contracting situations.

1 Introduction

Research on norms and multi-agent systems has grown the Electronic Institution (EI)
concept as the basis for the development of appropriate normative environments.
Such environments are created to establish some kind of social order [4] that allows
successful interactions among heterogeneous and autonomous entities.

As with any recent discipline, however, differences exist between the conceptual
views of the “institutional environment”. Some authors [1] advocate in favor of a
restrictive “rules of the game” approach, where the EI fixes what agents are permitted
and forbidden to do and under what circumstances. In this case norms are a set of
interaction conventions that agents are willing to conform to. Other researchers [2]
take a different standpoint, considering the institution as an external entity that as-
cribes institutional powers and normative positions, while admitting norm violations
by prescribing appropriate sanctions. Others still [9] focus on the creation of institu-
tional reality from speech acts, regarding an agent communication language as a set of
conventions to act on a fragment of that reality.

A common element in each of these approaches is the norm, which enables us to
control the environment, making it more stable and predictable. Arguably, one of the
main distinguishing factors among researchers using norms in institutions is the level
of control one has over agents’ autonomy.

Our own view of electronic institutions (as initiated in [14] and developed in [13])
has got two main features that motivate the present paper. Firstly, the institution in-
cludes a set of services that are meant to assist (not only regulate) agent interaction
and the creation of new normative relationships. This means we do not take the

28 H. Lopes Cardoso and E. Oliveira

environment as static from a normative point of view (as seems to be the case in [1]).
New commitments may be established among agents, through contract negotiation (as
also noted by [3]); the resulting contracts comprise a set of applicable norms. Addi-
tionally, part of the aforementioned assistance is achieved by enriching the institu-
tional environment with a supportive normative framework. This will allow contracts
to be underspecified, relying on default norms that compose the institution’s norma-
tive environment where the contract will be supervised.

In this paper we present and explore the definition of a contract model that takes
advantage of an institutional normative framework. The model is flexible enough to
encompass contracts of varying degrees of complexity. A contract is established with
support of the normative background and relying on a model of institutional reality.

The paper is organized as follows. Section 2 briefly describes the institutional envi-
ronment supporting the contract model. Section 3 addresses the contract model itself,
including its motivation and detailing its constituent parts. The model tries to take
advantage of the underlying environment while at the same time enabling the expan-
sion of the normative framework. Section 4 explains contract handling within our
electronic institution framework, focusing on the representation of contracts in a
computational way. A sample contract is provided for illustration purposes. Finally,
section 5 concludes by highlighting the main features of our approach.

2 Institutional Environment

The notion of multi-agent systems assumes the existence of a common environment,
where agent interactions take place. Recently more attention is being given to the
environment as a first-class entity [17]. In the case of electronic institutions, they
provide an environment whose main task is to support governed interaction by main-
taining the normative state of the system, embracing the norms applicable to each of
the interacting agents.

In order to accomplish such task, in our approach [13] the EI is responsible for re-
cording events that concern institutional reality. This reality is partially constructed
by attributing institutional semantics to agent interactions.

As mentioned before, we seek to have an EI environment with a supportive norma-
tive framework. For this, norms are organized in a hierarchical structure, allowing for
norm inheritance as “default rules” [5].

2.1 Elements of Institutional Reality

The institutional environment embraces a set of events composing a reality based on
which the normative state of the system is maintained. Norm compliance is monitored
consistently with those events, which can be grouped according to their source:

− Agent-originated events: in our approach, norm compliance detection is based on
the assumption that it is in the best interest of agents to publicize their abidance to
commitments. They do so by provoking the achievement of corresponding institu-
tional facts (as described in [13]), which represent an institutional recognition of
action execution.

− Environment events: norms prescribe obligations when certain situations arise. In
order to monitor norm compliance, the institutional environment applies a set of

 A Contract Model for Electronic Institutions 29

rules that obtain certain elements of institutional reality, including the fulfillment
and violation of obligations. While fulfillment acknowledgement is based on insti-
tutional facts, violations are detected by keeping track of time, using appropriate
time ticks. Both norms and rules may use institutional facts as input. Rules also al-
low obtaining new institutional facts from older ones.

These events are the elements of institutional reality summarized in Table 1.

Table 1. Elements of institutional reality

Element Structure
institutional fact ifact(<IFact>, <Timestamp>)

obligation obligation(<Agent>, <IFact>, <Deadline>)
fulfillment fulfilled(<Agent>, <IFact>, <Timestamp>)
violation violated(<Agent>, <IFact>, <Timestamp>)

time time(<Timestamp>)

Because of the normative framework’s organization (as explained in the next sec-
tion), elements of institutional reality are contextualized, that is, they report to a certain
context defined inside the institutional background.

Our norm definition is equivalent to the notion of conditional obligation with dead-
line found in [8]. In particular, an Ifact (an atomic formula based on a predefined ontol-
ogy) as included in an obligation comprises a state of affairs that should be brought
about, the absence of which is the envisaged agent’s responsibility; intuitively, only an
achievement of such state of affairs before the deadline fulfills the obligation. The
Deadline indicates a temporal reference at which an unfulfilled obligation will be con-
sidered as violated. Fulfilled or violated obligations will no longer be in effect. Monitor-
ing rules capture these semantics, by defining causal links (as described in [7]) between
achievements and fulfillments, and between deadlines and violations.

There is a separation of concerns in norm definition and norm monitoring. The lat-
ter is seen as a context-independent activity. Also, the detection of norm (or, strictly
speaking, obligation) fulfillment or violation is distinguished from repair measures,
which may again be context-dependent (e.g. through contrary-to-duty obligations).
This approach differs from [16], where norms include specific violation conditions,
detection and repair measures.

2.2 Normative Framework

Our view of the EI concept [13] considers the institution as an environment enforcing
a set of institutional norms, but also allowing agents to create mutual commitments by
voluntarily adhering to a set of norms that make those commitments explicit. The EI
will act as a trusted third-party that receives contracts to be monitored and enforced.

Furthermore, with the intent of facilitating contract formation, we approach the
normative framework using a hierarchical approach, enabling the adoption of contract
law concepts such as the notion of “default rules” [5]. These enable contracts to be
underspecified, relying instead on an established normative background. The group-
ing of predefined norms through appropriate contexts also mimics the real-world
organization of legislations applicable to specific activities. These norms will be im-
posed when the activity they regulate is adhered to by agents.

30 H. Lopes Cardoso and E. Oliveira

Our approach consists of organizing norms through contexts. Each contractual rela-
tionship is translated into a new context specifying a set of norms while inheriting
others from the context within which it is raised. The top-level context is the EI itself.

A context definition includes the information presented in Table 2. The super-
context (which may often be the EI itself) indicates where the current context may
inherit norms from, while the context type dictates what kinds of norms are applicable
(those that govern this type of relationship).

Table 2. Context definition information

Component Description
super-context the context within which this context was created

type the type of context
id the context identifier

when the starting date of the underlying contract
who the participants of the underlying contract

The components described in the table are meant to provide structure to our norma-
tive framework. It is the normative environment’s responsibility to use this structured
context representation in order to find applicable norms in each situation.

The specificity of norms will require further information regarding the contract to
which they apply. For this, we consider the explicit separate definition of contextual-
information, which will be dependent on the type of context at hand. For instance, in a
simple purchase contract, the delivery and payment obligations will need information
about who are the vendor and customer, what item is being sold and for what price.

3 Contract Model

This section will provide a description of our proposed contract model. We will start
by providing the main assumptions that guided the approach, and proceed with the
details of each contract piece. The figures illustrating contract sections were obtained
using Altova® XMLSpy®.

3.1 Guidelines

When devising our contract model, we considered the main principles that should
guide this definition. On one hand, as stated before we wanted a model that could take
advantage of an established normative environment; therefore, each contract should
be obtainable with little effort, and with as few information as possible. On the other
hand, we also wanted to make the contract model as expansible as possible, allowing
for the inclusion of non-predefined information and norms, while still keeping it proc-
essable by the EI environment. This requirement will allow us to apply the EI plat-
form to different business domains.

The contract model should therefore allow us to:

− Include information necessary for context creation, and additionally any contract-
type-dependent information to be used by institutionally defined norms.

 A Contract Model for Electronic Institutions 31

− Add contract-specific details that are meant to override default institutional norms,
e.g. by defining contract-specific norms.

− Expand the predicted contract scenarios by enriching the environment’s rules for
institutional fact generation.

The next sections describe how each of these purposes is handled.

3.2 Contract Header

Although, in general, a contract may include rules and norms, in the extreme case a
contract that is to be monitored by the EI may be composed only of its header. Every-
thing else (including the applicable norms) may be inherited from the EI. This mini-
malist case is illustrated in Figure 1, where dotted lines indicate optional components
that we will refer to later. The rounded rectangle with ellipses is a compositor indicat-
ing a sequence of components.

Fig. 1. Generic contract

The contract header (Figure 2) includes mandatory information that is needed for
context definition, namely: the contract id, the creation date (when), and the partici-
pants’ identification (who). The type of contract is optional; if not defined, a generic
context type will be assumed. The super-context is also optional; if omitted, the gen-
eral EI context is assumed.

Depending on the contract type, some foundational information may need to be
provided (e.g. role definitions and goods specification). This information can be in-
cluded in a frame-based approach: each peace of contractual-info (Figure 3) has a
name and a set of slots (name/value pairs).

Finally, each contract may indicate the state-of-affairs according to which the con-
tract shall be terminated. The structure of ending-situation is analogous to the situa-
tion component of a norm definition (as described in the following section).

Fig. 2. Contract header

32 H. Lopes Cardoso and E. Oliveira

Fig. 3. Contract-type-dependent contractual-info

3.3 Adding Contract-Specific Norms

One way of escaping the default institutional normative setting is by defining norms
that are to be applied to a particular contract instance. This is irrelevant of the contract
having or not a type as indicated in its heading. A contract of a certain type will in-
herit institutional norms that are applicable to that type of contract as long as no other
contract-specific norms override them. A contract with no type at all will need its
norms to be defined in the contract instance.

In our conceptualization, a norm prescribes obligation(s) when a certain state-of-
affairs is verified (Figure 4). A name is given for norm identification purposes.

Fig. 4. Contractual norm

Fig. 5. Situation assessment

 A Contract Model for Electronic Institutions 33

The situation may be described by institutional reality elements (except obliga-
tions) and access contractual-info. Figure 5 includes a choice compositor for situation
elements, which may be combined by the logical connectives and, or, and not.

The situation elements ifact, fulfilled and violated match the corresponding institu-
tional reality elements (see Figure 6 and Table 1), as does time.

Fig. 6. Situation elements from institutional reality

The inclusion of institutional reality elements and contractual-info inside norms is
allowed to use variables for each element’s value, such that they can be referred to in
other norm components as bounded variables (namely in the prescription part). For
that, each element that can hold a variable has an attribute for indicating if the content
is a variable name or a value (this approach is adapted from JessML [10]). In order to
exploit the institutional ontology, the fact element has a frame-like structure similar to
that of contractual-info. Variables may be used to match slot values inside both of
these elements. Restrictions may be imposed through relational conditions that can
combine expressions using variables.

The prescription of norms includes obligations (Figure 7), which have a similar
structure to the corresponding institutional reality element. The deadline can be ob-
tained with a numeric expression involving time variables bound in the situation part.

When including norms in a contract-specific way, the normative environment will
consider as applicable the most specific norms, that is, those with a narrower scope.

Fig. 7. Obligation prescription

34 H. Lopes Cardoso and E. Oliveira

This allows a contract to override predefined norms from a super-context (if speci-
fied). The same approach is taken when defining a contract-specific ending situation
(in the contract header), which may also be predefined for certain context types.

3.4 Expanding the Creation of Institutional Facts

Following a “counts-as” approach (defining “constitutive rules” [15] or “empower-
ments” [12]), we attribute institutional semantics to agent illocutions. That is, institu-
tional facts, which are part of institutional reality, are created from these illocutions.
This process takes place at an institutional context.

In order to assure the applicability of our environment to different contracting
situations, we also included the possibility of iterating through institutional facts (al-
though this is also the case in [15], we take a slightly different perspective [13]). That
is, certain contractual situations may consider that certain institutional facts (as recog-
nized by the EI) are sufficient to infer a new institutional fact. The rules that allow
these inferences to take place are context-dependent and may be specified in a con-
tract-instance basis (see Figure 8). A rule name is given for identification purposes.

We consider the iterative generation of institutional facts as context-dependent be-
cause it allows contract fulfillment to be adjusted by matters of trust between contrac-
tual partners or due to business specificities. Thus, it may be the case that only in
specific contractual relationships some institutional fact(s) count as another one.

This approach also enhances the expansibility of the system, not restricting norm
definition to the institutional fact ontology defined in the preexistent fact-generating
rules. It may be the case that a contract defines new institutional facts through these
rules and also incorporates norms that make use of them.

Fig. 8. Rule definition for institutional facts

4 Contract Handling in the Electronic Institution

The contract model described in the previous section comprises an XML schema from
which contracts are drafted in the contract negotiation phase. The EI provides a nego-
tiation mediation service for this purpose. After this, the negotiation mediator hands
over the contract to a notary service, who collects signatures from the involved
agents. After this process is completed, the notary requests the EI to include the con-
tract in its normative environment. The contractual norms will then be part of the
normative state of the system, and the normative environment will be responsible for
maintaining this state by monitoring the compliance of the involved agents. Figure 9
illustrates this process.

 A Contract Model for Electronic Institutions 35

Fig. 9. Contract handling

The figure admittedly underestimates the need for contract validation, which we
assume to be implicitly done by the notary and/or the EI. We find this step to be espe-
cially relevant when using predefined contract types, which may require the inclusion
of foundational information.

As to the contractual norms themselves, in non-electronic practice parties are af-
forded a considerable degree of freedom in forming contractual relations [6]. Along
with this line, our original aim is not to impose predefined regulations on agents, but
instead to help them in building contractual relationships by providing a normative
background. We therefore do not address for now the issue of predefined norms that
are not to be overridden.

4.1 From XML to a Computational Contract Representation

In order to achieve a computational normative environment, a declarative language
was chosen for norm representation and processing. Furthermore, in order to facilitate
communication with the rest of the agents, the EI includes an agent personifying the
normative environment itself. This agent includes an instance of a Jess rule-engine
[10], which is responsible for maintaining the normative state of the system and to
apply a set of procedures concerning the system’s operation.

<contract …>
<header>

 <id>x</id>
 <when>…</when>
 <who>…</who>
 <super>…</super>
 <type>…</type>
 …

</header>
<rules>…</rules>
<norms>…</norms>

</contract>

(defmodule x)
(context

(super-context …)
 (id x) (when …) (who …))

(…
(context x) …)

(deftemplate x::…
 …)
(defrule x::…
 …)
…

XML Contract Jess constructs

Fig. 10. From XML to Jess

36 H. Lopes Cardoso and E. Oliveira

Hence, in order to allow its processing by the normative environment, the XML
contract undergoes a process of transformation into appropriate Jess constructs. (see
Figure 10). The Jess language includes a set of frame-like constructs.

The generated Jess code will be added to the Jess engine, and comprises informa-
tion regarding the contract creation (which includes a Jess module definition and a
context construct), optional contextual-info (and associated Jess template definitions),
and applicable rules and norms (defined as Jess rules).

A rule-based approach to norm representation and monitoring is also pursued in
[11]. However, those authors seem to implement in a backward-chaining logic pro-
gram the semantics of a forward-chaining production system. We follow a more intui-
tive approach by employing a forward-chaining shell.

4.2 Example

In this section we sketch a simple example of a minimalist contract that illustrates our
approach. Figure 11 shows, on the left side, a portion of an XML-contract based on
the presented schema. The contract, established by two agents, is a supply-agreement;
agent smith will supply resource wheel for a unit price of 10.00. The right side of
Figure 11 shows the resulting Jess code that is generated when adding the contract to
the normative environment.

Fig. 11. Sample contract

Taking advantage of the established normative framework, the contract does not
specify any norms of its own. It will inherit whatever norms are defined at the norma-
tive environment regarding supply-agreements. Figure 12 shows such an applicable
norm, together with definitions that make up the normative structure. The upper defi-
nitions define the notions of context and contextual-info; the middle definitions define
supply-agreement and supply-info, which were used in the right side of Figure 11. The
lower part of Figure 12 shows a norm applicable to all supply-agreements. Briefly,

 A Contract Model for Electronic Institutions 37

Fig. 12. A predefined norm

that norm states that a request for the furnishing of the promised resource implies an
obligation of the supplier to deliver that resource and an obligation of the requester to
pay for it.

For lack of space, the example shows only one edge of the spectrum of ways in
which the normative environment can be exploited. Contracts can be established that
make a partial use of the predefined normative structure, by defining their own spe-
cific norms, while still being processable (in terms of monitoring and enforcement
activities) by the normative environment. The next section describes the process of
norm applicability.

4.3 Norm Monitoring and Inheritance

The module definition and the structured context representation (using super-context
relations), are the cornerstones for enabling norm inheritance. Norms are defined
inside the module representing the contract’s context (in the right side of Figure 10,
that is what the “x::” after defrule stands for, where x is the module/context name).
When applying rules, the Jess engine looks at a focus stack containing modules where
to search rules for firing. When no rules are ready to fire in the module at the top of
the stack, that module is popped and the next one becomes the focus module.

Exploiting this mechanism, we implemented rules that manage the focus stack and
thereby enable the application of the most specific norms in the first place. The event
that triggers these rules is the occurrence of a new institutional reality element (IRE),
which as explained before pertains to a certain context. Together with the Jess rule
engine, our context management rules somewhat implement the algorithm depicted in
the flowchart of Figure 13.

38 H. Lopes Cardoso and E. Oliveira

focus on IRE’s context (module)

apply rules (current module)

IRE was
processed?

in MAIN
module?

focus on super-context

new IRE

yes yes

no no

Fig. 13. Processing an institutional reality element

The Jess engine will therefore be guided to look for a module where there is an ap-
plicable rule taking the IRE as input. It will start at the IRE’s module, and go up one
level until the top (main) module is reached or the IRE is processed.

This initial exploitation of Jess’s features enabled us to start building a proof-of-
concept regarding our approach to norm inheritance in a hierarchical normative struc-
ture. Further refinements will allow us to configure the system concerning monitoring
responsiveness and the integration of social extensions like reputation mechanisms.

5 Conclusions

The EI concept has been approached from different perspectives. Considering the
increasing importance of multi-agent system environments [17], the EI can be seen as
an interaction-mediation infrastructure maintaining the normative state of the system.

One of the most important principles of our approach is the assumption of a non-
static normative environment; this means that we depart from a more conservative
view of norms seen as a set of preexistent interaction conventions that agents are
willing to comply with (as in the adscription approach of [1]). We pursue an EI that
provides a supportive normative framework whose main purpose is to facilitate the
establishment of further commitments among a group of contracting agents.

The possibility of having an underlying normative framework, from which norms
may be inherited, is a distinguishing feature of our approach, as is the “loose cou-
pling” between norms and contrary-to-duties. Also, the institution includes norm
monitoring policies that span all created contracts. This is in contrast with other ap-
proaches, namely [16], where these policies and repair measures are spread among the
norms themselves.

The hierarchical organization of norms takes inspiration in the real-world. The
most useful case for “default rules” [5] is in defining contrary-to-duty situations,
which typically should be not likely to occur. For this reason, such situations are not
dealt with in each contractual agreement, and parties usually recur to law systems that
include default procedures [6].

In this paper we presented our approach towards the definition of a contract model
that can exploit such an environment. The model was devised taking into account two

 A Contract Model for Electronic Institutions 39

aims: it should be easy to compose a new contract, by taking advantage of an institu-
tional normative background; and it should be possible to improve on the EI’s envi-
ronment in order to make it applicable to different business domains.

We are confident that we have met both these goals. In our model, a minimalist
contract may be limited to header information including the contract participants and
contractual-info describing foundational information. On the other hand, a complex
unnoticed contractual relationship may be defined using our contract model, by ex-
ploiting the whole structure including contract-specific norms and institutional fact
generating rules. The next steps of this work include exploring the developed contract
model through different contracting scenarios.

Acknowledgments. This project is supported by FCT (Fundação para a Ciência e a
Tecnologia) under Project POSC/EIA/57672/2004. Henrique Lopes Cardoso enjoys
the FCT grant SFRH/BD/29773/2006.

References

[1] Arcos, J.L., Esteva, M., Noriega, P., Rodríguez-Aguilar, J.A., Sierra, C.: Environment
engineering for multiagent systems. Engineering Applications of Artificial Intelli-
gence 18, 191–204 (2005)

[2] Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies. In:
Castelfranchi, C., Johnson, W.L. (eds.) International Joint Conference on Autonomous
Agents and Multi-Agent Systems. Association for Computing Machinery, New York
10036-5701, United States, Bologna, Italy, pp. 1053–1062 (2002)

[3] Boella, G., van der Torre, L.: Contracts as Legal Institutions in Organizations of Autono-
mous Agents. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) Third Inter-
national Joint Conference on Autonomous Agents & Multi Agent Systems, pp. 948–955.
ACM Press, New York (2004)

[4] Castelfranchi, C.: Engineering Social Order. In: Omicini, A., Tolksdorf, R., Zambonelli, F.
(eds.) ESAW 2000. LNCS (LNAI), vol. 1972, pp. 1–18. Springer, Heidelberg (2000)

[5] Craswell, R.: Contract Law: General Theories. In: Bouckaert, B., De Geest, G. (eds.) En-
cyclopedia of Law and Economics, pp. 1–24. Edward Elgar, Cheltenham (2000)

[6] Daskalopulu, A., Maibaum, T.: Towards Electronic Contract Performance. In: 12th Inter-
national Conference and Workshop on Database and Expert Systems Applications, pp.
771–777. IEEE Computer Society Press, Los Alamitos (2001)

[7] Dignum, F., Broersen, J., Dignum, V., Meyer, J.-J.: Meeting the deadline: Why, when
and how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS
2004. LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)

[8] Dignum, V., Meyer, J.-J.C., Dignum, F., Weigand, H.: Formal Specification of Interac-
tion in Agent Societies. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A.,
Gordon-Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699, pp. 37–52. Springer,
Heidelberg (2003)

[9] Fornara, N., Viganò, F., Colombetti, M.: Agent Communication and Institutional Reality.
In: van Eijk, R.M., Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI),
vol. 3396, pp. 1–17. Springer, Heidelberg (2005)

[10] Friedman-Hill, E.: Jess in Action, Manning Publications Co. (2003)

40 H. Lopes Cardoso and E. Oliveira

[11] García-Camino, A., Rodríguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Norm-Oriented
Programming of Electronic Institutions: A Rule-Based Approach. In: Noriega, P.,
Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.)
COIN 2006. LNCS (LNAI), vol. 4386, pp. 177–193. Springer, Heidelberg (2007)

[12] Jones, A., Sergot, M.: A Formal Characterisation of Institutionalised Power. Logic Jour-
nal of the IGPL 4, 427–443 (1996)

[13] Lopes Cardoso, H., Oliveira, E.: Electronic Institutions for B2B: Dynamic Normative
Environments, Artificial Intelligence and Law (in press)

[14] Lopes Cardoso, H., Oliveira, E.: Virtual Enterprise Normative Framework within Elec-
tronic Institutions. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004.
LNCS (LNAI), vol. 3451, pp. 14–32. Springer, Heidelberg (2005)

[15] Searle, J.R.: The Construction of Social Reality. Free Press, New York (1995)
[16] Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing norms in multiagent

systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004.
LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

[17] Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent
systems. Journal of Autonomous Agents and Multi-Agent Systems 14, 5–30 (2007)

Embedding Landmarks and Scenes in a Computational
Model of Institutions

Owen Cliffe, Marina De Vos, and Julian Padget

Department of Computer Science
University of Bath, BATH BA2 7AY, UK
{occ,mdv,jap}@cs.bath.ac.uk

Abstract. Over the last decade, institutions have demonstrated that they are a
powerful mechanism to make agent interactions more effective, structured, coor-
dinated and efficient. Different authors have tackled the problem of designing and
verifying institutions from different angles. In this paper we propose a formalism
that is capable of unifying and extending some of these approaches, as well as
providing the necessary tools to assist in the design and verification processes.
We demonstrate our approach with a non-trivial case-study.

1 Introduction

The concept of landmarks appears in [27] where they are used to identify a set of se-
mantic properties relating to the state of a conversation, and which may furthermore be
organized into sequences or patterns, while transition between landmarks is made by an
appropriate sequence of one or more speech acts. A more detailed discussion follows in
[21], where they are presented as propositions that are true in the state represented by
the landmark (sic). The value of landmarks, and more specifically, their partial ordering
into landmark patterns, is how they permit the identification of phases in a conversation
protocol corresponding to the achievement of goals (and subgoals). Additionally, they
form an integral part of realizing joint intention theory [11] as participants in a conversa-
tion interact with one another, via speech acts, to follow a common protocol and satisfy
common goals. The utility of landmarks, from the electronic institution designer’s per-
spective is their potential role in building a bridge [13, 1] between the rigidity of the
protocols that feature in bottom-up design and the (relative) flexibility of norms that
characterize top-down design.

The formal model put forward in [9] and its corresponding operationalization
through Answer Set Programming (ASP) [5] aims to support the top-down design of
electronic institutions through the provision of a domain-specific action language [26],
called InstAL, tailored to the specification of institutions. Tools have been developed
to translate InstAL into the SMODELS [23] syntax for processing by the answer set
solver and furthermore the soundness and completeness of the institutional programs
with respect to the formal model have been proven [8]. In this paper we explore the
consequences of the correspondence between landmarks, as described in the literature,
and the institutional states of our (executable) model, argue that the stronger logical
framework of our formalism is advantageous and demonstrate the expressiveness of the
InstAL language through a non-trivial case-study.

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 41–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 O. Cliffe, M. De Vos, and J. Padget

2 The Institutional Framework

In this section we provide a brief description of our framework, starting with the formal
model and following with the semantics. We then turn our attention to ASP as the
underlying computational mechanism and the mapping from action language to ASP.

The Formal Model: Our model of an institution is a quintuple, I := 〈E , F , C, G, Δ〉,
comprising three disjoint sets:

– events E , which can be either institutional (generated within the institution) or ex-
ogenous (caused by events outside of the scope of the institution). In particular,
we define a subset of the exogenous events as creation events, E+, which contain
events which account for the creation of an institution and a subset of the institu-
tional events as dissolution events, E×.

– fluents F , being the four distinguished sets of fluents — powers W , permissions
P , obligations O, domain-specific fluents D — that constitute the state of the insti-
tution and hence the basis for reasoning about the institution.

– and an initial state Δ comprising the initial set of fluents in the institution

and two relations C and G over X × E , where X = 2(F∪¬F) and φ ∈ X represents a
set of conditions which must be met in a given state in order for either relation to have
an effect.

– C defines under which circumstances fluents are initiated and terminated.
– G implements the count-as operation and defines under which conditions in the

institutional state the occurence of a given event will result in the generation of one
or more new events.

Semantics: The semantics of this framework are defined by traces of exogenous events.
Each trace induces a sequence of institutional states, called a model. Starting from the
initial state, the first exogenous event will, using the G, generate a set of events. Each of
these events will possibly affect the next state by means of the C relation. The combined
effect results in the next state of the model. This process continues until all exogenous
events in the trace have taken place.

ASP: In answer set programming ([5]) a logic program is used to describe the require-
ments that must be fulfilled by the solutions of a certain problem. The answer sets of
the program, usually defined through (a variant/extension of) the stable model seman-
tics [17], then correspond to the solutions of the problem. The programs consist of a set
clauses with negation-as-failure in the body. Assumptions are verified by eliminating
negation from the program using the Gelfond-Lifschitz reduction and to check if this
new positive program sustains the assumptions made. Tools for obtaining answers sets
are called answer set solvers. For our system we use the SMODELS [23] solver.

The Mapping: The mapping of each actual institution I into an answer set program
consists of two parts: (i) Pbase which is identical for each institution and handles the
occurrence of observed events, the semantics of obligations and rules to maintain the
commonsense inertia of fluents , and (ii) P ∗

I which is specific to the institution being

Embedding Landmarks and Scenes in a Computational Model of Institutions 43

modelled and represents the translation of it rules (norms and action semantics). To-
gether they form the answer set program PI . In order to be able to use this program to
reason about the institution, it is then combined with two other ASP programs: a trace
program, containing a contraint on the length of traces of events being considered, and
a query program expressing some constraint over the answer sets that shall be generated
— the property or properties of the model that we wish to investigate.

InstAL : Our primary objective in this work is to be able to specify the behaviour
of an institution in terms of its norms, and then to be able to test properties of the
model of the institution thus defined. Consequently, we need a machine-processable
representation. The engine for the verification is an answer set solver, so one approach
would be to require the specification to be written in the input syntax for such a system,
such as SMODELS, as outlined in [9]. However, while it may be useful for the designer to
examine the code given to the answer set solver occasionally, it also necessarily contains
low level support details that are less relevant to the task of institutional design. For this
reason and because of the event-oriented nature of the specification, a domain-specific
event language seems an appropriate medium, hence InstAL .

We define the language InstAL in order to simplify the process of specifying institu-
tions. Individual institution specifications and multi-institution specifications are writ-
ten as single InstAL programs in a human-readable text format. These files can then be
translated automatically into answer set programs that directly represent the semantics
of the institutions specified in the original descriptions.

The language supports a simple set-based type system and syntax for the declara-
tion of fluents, events, and institutions (bearing in mind the model also supports multi-
institutional models as discussed in [10]). Normative fluents are pre-defined for power,
permission and obligation. The designer may also specify static properties of an insti-
tution, that are initiated when the institution is created and never change. This provides
a straightforward way to associate roles with institutions. Rather than give a formal
syntax specification, for which there is not room here, we put forward and extended ex-
ample in section 4 to illustrate the language features in a use-case. A detailed discussion
of the InstAL language can be found in [10, 8].

An InstAL reasoning problem consists of the following:

1. One or more InstAL institution descriptions each of which describes a single insti-
tution or a multi-institution.

2. A domain definition that grounds aspects of the descriptions. This provides the
domains for types and any static properties referenced in the institution and multi-
institution definitions.

3. A trace program which defines the set traces of exogenous events to investigate.
4. A query program which describes the desired property to validate with the InstAL

reasoning tool.

The reasoning process can be summarised as follows:

1. The InstAL to ASP translator takes one or more single or multi-institution descrip-
tions (in the InstAL syntax described below), and domain definition files (described

44 O. Cliffe, M. De Vos, and J. Padget

below) as input. Using these files, the translator generates a set of answer set pro-
grams which describe the semantics of the input institutions.

2. The translated institution programs along with a trace program and query program
are then grounded by the LPARSE program (part of the SMODELS toolkit).

3. This grounded program description is then given as input to the SMODELS answer
set solver. This produces zero or more answer sets. Each answer set corresponds
to a possible model of the input institution for a given trace described by the trace
program that matches the given query.

4. These answer sets may then be visualised and interpreted by the designer.

3 Landmarks and Scenes

As already discussed in the introduction, the essence of a landmark is a condition on a
state in order for an action in some protocol to have effect. The relative sophistication
of a landmark specification can be affected by the logic that is used to define the con-
dition, but in many respects this is a technicality. For example [27] use first order logic
augmented with modal operators for propositional attitudes and event sequences, [21]
use dynamic propositional logic with modal operators from the previous work, while
[13] (p.126) has atoms, implying the conjunction of positive values, within a Kripke
model and [1] uses linear-time temporal logic. More important is the actual purpose of
landmarks, as [21] states:

Besides contributing to formal analyses of protocol families, the landmark-
based representation facilitates techniques similar to partial order planning [22]
for dynamically choosing the most appropriate action to use next in a conversa-
tion, allows compact handling of protocol exceptions, and in some cases, even
allows short circuiting a protocol by opportunistically skipping some interme-
diate landmarks.

This highlights the relationship between agent actions and conventional AI planning
and leads to the observation of the correspondence between landmarks and scenes (also
mentioned in [13]). By scenes, we refer to the components of performative structure
identified by Noriega [24] that are essentially sub-protocols of the larger institution or
viewed bottom-up, an institution may be seen as the composition of numerous proto-
cols that help agents achieve various sub-goals. What it is important to observe about
Noriega’s (and later in [25]) definition of the performative structure is how various con-
ditions are imposed on the transitions from one scene to another, typically constraining
the number and role of the agents that may move. A scene essentially encapsulates a
self-contained protocol whose purpose is to achieve some sub-goal of the institution
contributing to the objective of using the institution in the first place.

From this perspective, we can now turn to the relationship between our formalism
and both landmarks and scenes, having established that both concepts serve to identify
some (final) state in which a condition (capturing some institutional sub-goal) has been
satisfied. Returning to the relations that drive our formalism (see section 2), the event
generation function serves to create institutional facts, while the consequence relation
focuses attention on the initiation and termination of fluents. The function is expressed

Embedding Landmarks and Scenes in a Computational Model of Institutions 45

as C : X × E → 2F × 2F . Where the first set in the range of the function describes
which fluents are initiated by the given event and the second set represents those fluents
terminated by the event. We use the notation C↑(φ, e) to denote the fluents that are
initiated by the event e in a state matching φ and the notation C↓(φ, e) to denote those
terminated by event e in a state matching φ.

From the description of event generation and the consequence relation, it can be seen
that fluents are initiated and terminated in respect of an event and some conditions on
the state of the institution. This corresponds exactly with the notion of landmark, in that
an event takes the institution into a new state but this is predicated on the current state
— that is, a condition. Thus landmarks arise naturally from our formalization and fur-
thermore, the condition language would appear to be richer than in some earlier work
because the condition may contain both positive and negative information, including
the use of negation as failure and hence non-monotonic reasoning, since these are ba-
sic properties of answer set semantics. Our conclusion therefore is that our formalism
provides landmarks for free and, thanks to ASP semantics, enriches the landmark de-
scription language over earlier examples.

In the literature cited above, landmarks appear to be restricted to speech acts, that
is messages from participating agents. Our model goes further, as we also consider
exogenous events that do not originate from participating agents or from institutional
events. This makes our approach a convenient tool for reasoning with scenes, where the
transition between the various scenes does not necessarily depend on agents’ actions.
Instead the transition markers could be linked to exogenous events which are taken
into account when the institution reaches a certain state. At this point the consequence
relation could be used to set the powers and permissions (and so the behaviour) of the
participating agents. The Dutch auction protocol detailed in the next section uses this
technique to distinguish between the various phases/scenes of the protocol.

4 The Dutch Auction Protocol

Informal Description of Dutch Auction: In this protocol a single agent is assigned to
the role of auctioneer, and one or more agents play the role of bidders. The purpose of
the protocol as a whole is either to determine a winning bidder and a valuation for a
particular item on sale, or to establish that no bidders wish to purchase the item. The
protocol is summarised as follows:

1. Round starts: The auctioneer selects a starting price for the item and informs each
of the bidders present of this price. The auctioneer then waits for a given period of
time for bidders to respond.

2. Upon receipt of the starting price, each bidder has the choice as to whether to send
a message indicating their desire to bid on the item at that price, or to send no
message indicating that they do not wish to bid on the item.

3. At the end of the prescribed period of time, if the auctioneer has received a sin-
gle bid from a given agent, then the auctioneer is obliged to inform each of the
participating agents that this agent has won the auction.

4. If no bids are received at the end of the prescribed period of time, the auctioneer
must inform each of the participants that the item has not been sold.

46 O. Cliffe, M. De Vos, and J. Padget

5. If more than one bid was received then the auctioneer must inform each agent that
a conflict has occurred.

6. In the case where the item is sold the protocol is finished.
7. In the case that no bids are received then the auctioneer may either start a new round

of bidding at a lower price, or withdraw the item from sale.
8. In the case where a conflict occurs then the auctioneer must re-open the bidding at

a higher price and start the round again in order to resolve the conflict.

We focus on the protocol for the round itself (items 1-6). In our description below
we omit from the messages a definition of the item in question and the starting price.
While the inclusion of these aspects in the protocol is possible, their inclusion does not
change the structure of the protocol round so we leave them out for simplicity.

In the following paragraphs we go through the InstAL code step by step. The full
listing can be found in Figures 1 and 2. Each line of InstAL code is labelled with
DAR-FigureNr-LineNr for ease of reference.

The first lines indicate the name of the institution (DAR-1-1) and the types of agents,
Bidder (DAR-1-2) and Auctioneer (DAR-1-3) that may participate in the institution.
These types are used as placeholders in the InstAL rules for the agents participating in
a particular instance of the institution, then when instantiated all rules are grounded
appropriately. The institution is created by one creation event createdar as specified
by rule DAR-1-4.

Based on the protocol description above, the following agent messages are defined
(DAR-1-8 – DAR-1-12): the auctioneer announces a price to a given bidder
(annprice), the bidder bids on the current item (annbid), the auctioneer announces
a conflict to a given bidder (annconf) and the auctioneer announces that the item is
sold (annsold) or not sold (annunsold) respectively. Each exogenous action has a
corresponding institutional event (DAR-1-16 – DAR-1-20 which accounts for a valid
execution of the physical action performed. In all cases the two events are linked by an
unconditional generates statement in the description (DAR-2-29, DAR-2-32, DAR-2-37,
DAR-2-38, DAR-2-39).

In addition to the agent actions we also include a number of time-outs indicating
the three external events (which are independent of agents’ actions) that affect the pro-
tocol. For each time-out we define a corresponding institutional event suffixed by dl

indicating a deadline in the protocol:

priceto, pricedl: A time-out indicating the deadline by which the auctioneer must
have announced the initial price of the item on sale to all bidders. (DAR-1-5 and
DAR-1-13).

bidto, biddl: A time-out indicating the expiration of the waiting period for the auc-
tioneer to receive bids for the item (DAR-1-6 and DAR-1-14).

desto, desdl: A time-out indicating the deadline by which the auctioneer must have
announced the decision about the auction to all bidders (DAR-1-7 and DAR-1-15).

We assume that the time-outs will occur in the order specified (that is, due to their
durations it is impossible for this to be otherwise). We use the corresponding institution
events in the protocol description and constrain the order in which they are empowered
in the institution to ensure that while the exogenous events may occur in any order,

Embedding Landmarks and Scenes in a Computational Model of Institutions 47

institution dutch; (DAR-1-1)

type Bidder; (DAR-1-2)

type Auct; (DAR-1-3)

create event createdar; (DAR-1-4)

exogenous event priceto; (DAR-1-5)

exogenous event bidto; (DAR-1-6)

exogenous event desto; (DAR-1-7)

exogenous event annprice(Auct,Bidder); (DAR-1-8)

exogenous event annbid(Bidder,Auct); (DAR-1-9)

exogenous event annconf(Auct,Bidder); (DAR-1-10)

exogenous event annsold(Auct,Bidder); (DAR-1-11)

exogenous event annunsold(Auct,Bidder); (DAR-1-12)

inst event pricedl; (DAR-1-13)

inst event biddl; (DAR-1-14)

inst event desdl; (DAR-1-15)

inst event price(Auct,Bidder); (DAR-1-16)

inst event bid(Bidder,Auct); (DAR-1-17)

inst event conf(Auct,Bidder); (DAR-1-18)

inst event sold(Auct,Bidder); (DAR-1-19)

inst event unsold(Auct,Bidder); (DAR-1-20)

dest event badgov; (DAR-1-21)

dest event finished; (DAR-1-22)

inst event alerted(Bidder); (DAR-1-23)

fluent onlybidder(Bidder); (DAR-1-24)

fluent havebid; (DAR-1-25)

fluent conflict; (DAR-1-26)

initially pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)),

perm(badgov),pow(badgov),

perm(pricedl),pow(pricedl),

perm(priceto),

perm(biddl),

perm(bidto),

perm(desto); (DAR-1-27)

Fig. 1. InstAL for the Dutch Auction Round Institution Part 1

the institution event may only occur once in each iteration and in the order specified
(DAR-2-52 to DAR-2-59).

We define a single additional institution event alerted(Bidder) (DAR-1-23) that
represents the event of a bidder being validly notified of the result of the auction. We
additionally specify a dissolution event finished (DAR-1-22) that indicates the end of
the protocol.

48 O. Cliffe, M. De Vos, and J. Padget

initially obl(price(A,B),pricedl,badgov); (DAR-2-28)

annprice(A,B) generates price(A,B); (DAR-2-29)

price(A,B) terminates pow(price(A,B)); (DAR-2-30)

price(A,B) initiates pow(bid(B,A)),perm(bid(B,A)),perm(annbid(B,A)); (DAR-2-31)

annbid(A,B) generates bid(A,B); (DAR-2-32)

bid(B,A) terminates pow(bid(B,A)),perm(bid(B,A)),perm(annbid(B,A)); (DAR-2-33)

bid(B,A) initiates havebid,onlybidder(B) if not havebid; (DAR-2-34)

bid(B,A) terminates onlybidder() if havebid; (DAR-2-35)

bid(B,A) initiates conflict if havebid; (DAR-2-36)

annsold(A,B) generates sold(A,B); (DAR-2-37)

annunsold(A,B) generates unsold(A,B); (DAR-2-38)

annconf(A,B) generates conf(A,B); (DAR-2-39)

biddl terminates pow(bid(B,A)); (DAR-2-40)

biddl initiates pow(sold(A,B)),pow(unsold(A,B)),

pow(conf(A,B)), pow(alerted(B)),perm(alerted(B)); (DAR-2-41)

biddl initiates perm(annunsold(A,B)),perm(unsold(A,B)),

obl(unsold(A,B),desdl,badgov) if not havebid; (DAR-2-42)

biddl initiates perm(annsold(A,B)),perm(sold(A,B)),

obl(sold(A,B), desdl, badgov) if havebid, not conflict; (DAR-2-43)

biddl initiates perm(annconf(A,B)),perm(conf(A,B)),

obl(conf(A,B), desdl, badgov) if havebid, conflict; (DAR-2-44)

unsold(A,B) generates alerted(B); (DAR-2-45)

sold(A,B) generates alerted(B); (DAR-2-46)

conf(A,B) generates alerted(B); (DAR-2-47)

alerted(B) terminates pow(unsold(A,B)), perm(unsold(A,B)),

pow(sold(A,B)), pow(conf(A,B)), pow(alerted(B)),

perm(sold(A,B)), perm(conf(A,B)), perm(alerted(B)),

perm(annconf(A,B)),perm(annsold(A,B)),perm(annunsold(A,B)); (DAR-2-48)

desdl generates finished if not conflict; (DAR-2-49)

desdl terminates havebid,conflict,perm(annconf(A,B)); (DAR-2-50)

desdl initiates pow(price(A,B)), perm(price(A,B)),

perm(annprice(A,B)), perm(pricedl),pow(pricedl),

obl(price(A,B),pricedl,badgov) if conflict; (DAR-2-51)

priceto generates pricedl; (DAR-2-52)

pricedl terminates pow(pricedl); (DAR-2-53)

pricedl initiates pow(biddl); (DAR-2-54)

bidto generates biddl; (DAR-2-55)

biddl terminates pow(biddl); (DAR-2-56)

biddl initiates pow(desdl); (DAR-2-57)

desto generates desdl; (DAR-2-58)

desdl terminates pow(desdl); (DAR-2-59)

Fig. 2. InstAL for the Dutch Auction Round Institution Part 2

For the sake of simplicity, we do not focus in detail on the effects of the auction-
eer violating the protocol. Instead we define a dissolution institutional event badgov
(DAR-1-21) that accounts for aany instances in which the auctioneer has violated the
protocol. Once an auctioneer has violated the protocol, we choose to treat the remain-
der of the protocol as invalid and dissolve the institution.

Embedding Landmarks and Scenes in a Computational Model of Institutions 49

Once the institution has been created, the auctioneer will receive power and
permission to announce prices. We also provide empowerment and permission for the
dissolution event badgov. Furthermore all deadlines are permitted but only pricing is
empowered. This is specified by DAR-1-27.

The rules of the institution are driven by the occurrence of the time-outs described
above and hence may be broken down in to three phases as follows:

1. In the first phase of the protocol the auctioneer must issue price statements to each
of the bidders. We represent this in the protocol by defining an initial obligation on
the auctioneer to issue a price to each bidder before the price deadline (DAR-2-28).
Once this has taken place, the auctioneer is no longer permitted to issue a price
(DAR-2-30).

Once a price has been sent to the bidder, the bidder is empowered and permitted
to bid in the round (note that we permit both the action of validly bidding itself,
bid(B,A), as well as the action of sending the message which may count as bid-
ding, annbid(B,A) (DAR-2-31).

2. In the second phase of the protocol, bidders may choose to submit bids. These
must be sent before the bid time-out event. In order to account for the final phase
of the protocol, we must capture the cases when one bid, no bids or multiple
bids (a conflict) occur. In addition, in a given round, we must also take into ac-
count that bids may be received asynchronously from different agents over a period
of time. In order to capture which outcome of the protocol has occurred we use
three domain fluents (DAR-1-24 – DAR-1-26) to record the state of the bidding:
onlybidder(Bidder), havebid, conflict.

The first of these fluents denotes the case where a single bid has been received
and no others (and records the bidder which made this bid), the second fluent
records cases where one or more bids have been received and the third records
cases where more than one bid has been received.

These fluents are determined in the second phase of the protocol using
DAR-2-34, DAR-2-35 and DAR-2-36. The first rule accounts for the first bid that
is received, and is only triggered if no previous bids have been made. The second
rule accounts for any further bids and terminates the onlybidder fluent when a
second bid is received. The final rule records a conflict if a bid is received and a
previous bid has occurred.

Once a bid has been submitted we do not wish to permit an agent to submit
further bids, or for those further bids to be valid. In order to account for this we
have line DAR-2-33.

3. In the third and final phase of the protocol the auctioneer must notify the bid-
ding agents of the outcome of the auction. This phase is brought about by the
occurrence of the biddl event which denotes the close of bidding. In order to
account for this, we terminate each agents’ capacity to bid further in the auction
(DAR-2-40) and correspondingly initiate the auctioneer’s power to bring about a
resolution to the auction (DAR-2-41). To do so, we create an obligation upon the
auctioneer to issue the right kind of response (sold, unsold, conflict) de-
pending on outcome of the previous phase (havebid,conflict) before the next
deadline (desdl) is announced. This is encoded by DAR-2-42 – DAR-2-43. For

50 O. Cliffe, M. De Vos, and J. Padget

each outcome, the auctioneer is obliged and permitted to issue the appropriate re-
sponse to every bidding agent before the decision deadline. If an auctioneer fails
to issue the correct outcome to any agent before the final deadline then a violation
will occur. The protocol follows these notifications using DAR-2-45 – DAR-2-46.

Once an agent has been notified we wish to prohibit the auctioneer from noti-
fying that agent again. We do this by introducing a rule which terminates the auc-
tioneer’s power and permission to issue more than one notification to any one agent
(DAR-2-48).

Finally, when the deadline expires (the exogenous event desto triggers desdl)
and either the protocol ends or the bidders have created a conflict. In the former
case, DAR-2-49 ensures dissolution of the institution. In the conflict case, the auc-
tioneer must re-open the bidding using a new round. We represent this by adding
two lines. The first terminates the intermediate fluents which were used to repre-
sent the outcome of the protocol (havebid and conflict). This is established by
DAR-2-50.

The second (DAR-2-51), initiates the obligation for the auctioneer to re-open the
round by issuing a price to the bidders and all associated powers and permissions.

Verification: Once we have the InstAL description of our institution, we can obtain an
ASP program as described in Section 2. This program may then be combined with a
trace program and query, allowing us to query properties and determine possible out-
comes of this protocol.

The simplest type of verification procedure is to execute the program with no query.
In this case all possible traces of the protocol will be provided as answer sets of the
translated program.

Each answer set represents all possible sequences of states which may occur in the
model and these may in turn be used to visualise all reachable states of the protocol (for
a given number of agents). In order to execute the protocol we need to ground it with
an auctioneer a and a bidder b. We could execute the translated program as is, how-
ever the answer sets of the program would include all traces of the protocol, including
those containing actions which have no effect. Transitions of this kind may be of inter-
est in some cases (we may be interested in the occurrence of associated violations for
instance) however in this case we choose to omit them in order to reduce the number
of answer sets to analyse. This can be achieved by specifying a query program which
limits answer sets only to those containing traces in which a change of state occurs. For
the technical details on this query program, see [8].

Solving the translated program with the associated query program yields a total of
60 answer sets corresponding to each possible trace where an effect occurs in each
transition. By extracting the states from the answer set we may generate a graphical
representation of the transition system which the protocol creates.

In order to include all possible states of the protocol we must select a large enough
upper bound for the length of traces such that all possible states are reached. In general
the selection of this upper bound depends on the program and query in question and it
should be noted that the answer sets of the program represent only those solutions to
the query which can be found in the given trace length.

Embedding Landmarks and Scenes in a Computational Model of Institutions 51

live(dutch_auction_round)

desto
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annunsold(a,b)
[notified(b)]
[unsold(a,b)]

desto
[badgov]
[desdl]
[finished]

live(dutch_auction_round)
obl(unsold(a,b),desdl,badgov)

annsold(a,b)
[notified(b)]
[sold(a,b)]
[viol(annsold(a,b))]
[viol(sold(a,b))]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

live(dutch_auction_round)
obl(price(a,b),pricedl,badgov)

createdar

havebid
live(dutch_auction_round)

onlybidder(b)

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

bidto
[biddl]

priceto
[badgov]
[pricedl]

live(dutch_auction_round)

annprice(a,b)
[price(a,b)]

havebid
live(dutch_auction_round)

onlybidder(b)

annbid(b,a)
[bid(b,a)]

live(dutch_auction_round)

priceto
[pricedl]

havebid
live(dutch_auction_round)

onlybidder(b)

desto
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

priceto
[pricedl]

havebid
live(dutch_auction_round)
obl(sold(a,b),desdl,badgov)

onlybidder(b)

desto
[badgov]
[desdl]
[finished]

desto
[badgov]
[desdl]
[finished]

annsold(a,b)
[notified(b)]
[sold(a,b)]

annconf(a,b)
[conf(a,b)]
[notified(b)]
[viol(annconf(a,b))]
[viol(conf(a,b))]

annunsold(a,b)
[notified(b)]
[unsold(a,b)]
[viol(annunsold(a,b))]
[viol(unsold(a,b))]

bidto
[biddl]

annbid(b,a)
[bid(b,a)]

Fig. 3. States of the auction round for a single bidder

In the case of the auction protocol examined here we had to establish this upper
bound by the somewhat unsatisfactory process of iterating the solver process and deter-
mining the number states until no more states were found. For the example above, with
only two agents, the longest traces which yield new states are of length 7, resulting in
33 answer sets.

Figure 3 illustrates all possible states for a single round of the protocol with one bid-
der (for a larger number of bidders, the state space will be considerably larger, growing
exponentially with their number). Note that as there is only one bidder participating in
the protocol conflicts cannot occur. For the sake of clarity we omit fluents relating to
powers and permissions from the figure.

Further Verification: In the above protocol we stated that when there was a conflict in
the bidding for the protocol (that is, when two or more bidders issue valid bids) that the
bidding should re-open. In order to ensure that this new round continues as before we
must ensure that the institutional state at the beginning of a re-opened round is the same
as the institutional state when the original round opened.

52 O. Cliffe, M. De Vos, and J. Padget

This property may be specified as a query program in our framework, as we now
describe. In this case we are only interested in traces where a conflict has occurred. We
specify this by adding the following constraints to the query program:

hadconflict ← holdsat(conflict, I), instant(I).
⊥ ← not hadconflict.

The first rule states that if there is any state where the conflict fluent occurs, then the
literal hadconflict should be included in the answer set. The second rule states that
we should not include any answer sets where the literal hadconflict is not included.

We are also only interested in traces where the protocol is re-started and bidding is
re-opened. We add this constraint in a similar way, using two rules as follows:

restarted ← occurred(desdl, I),
holdsat(conflict, I), instant(I).

⊥ ← not restarted.

The first of these rules state that if the desdl event has occurred at any time we include
the literal restarted in our answer set and the second rule states that we should only
include answer sets where this literal is included.

In order to determine the fluents (if any) which differ between a state following the
creation of the institution and a state following a protocol re-start, we mark these fluents
using the literals startstate(F) indicating that fluent F is true in the start state of this
trace, and restartstate(F) indicating that the fluent F was true in a state following a
protocol re-start.

Literals of the form startstate(F) are defined using the following rule:

startstate(F) ← holdsat(F, I1),
occurred(createdar, I0),
next(I0, I1), ifluent(F).

Which states that F is a fluent in the start state, if F holds at time instant I1 and cre-
ation event createdar occurred at instant I0 and that instant I1 immediately follows
instant I0.

We similarly define the fluents that hold in the re-start state with the rule:

restartstate(F) ← holdsat(F, I1), occurred(desdl, I0),
holdsat(conflict, I0), next(I0, I1), ifluent(F).

which states that F holds in the restart state, if it held in the state I1 which immediately
followed the occurrence of the decision deadline desdl when a conflict held in that
state.

We then define the following rules which indicate the differences between the start
state and the re-start state:

missing(F) ← startstate(F), notrestartstate(F), ifluent(F).
added(F) ← restartstate(F), notstartstate(F), ifluent(F).

These rules indicate that a fluent is present in the start state, but missing from the restart
state (indicated by missing(F)), or missing in the start state, but present in the restart
state (indicated by added(F)) respectively.

Embedding Landmarks and Scenes in a Computational Model of Institutions 53

BiddingPricing pricedl biddl desdlConcluding

Scene 3Scene 2Scene 1

Fig. 4. Landmarks in the Dutch Auction round

Finally we define the query constraint, in this case we are only interested in traces
where a difference occurs between the start state and the restart state. We add these
constraints using following rules:

invalid ← missing(F), ifluent(F).
invalid ← added(F), ifluent(F).

⊥ ← not invalid.

The first two rules state that if a fluent F is either missing or added, then the literal
invalid is true. The third rule constrains answer sets of the program to only those
containing the literal invalid.

These rules, when combined with the translated program of the institution allow us
to determine which fluents have changed between the start state and end state of the
protocol.

Given the translated program and the query program described above, we obtain no
answer sets for the protocol as defined, indicating that it is indeed the case that there are
no fluents which differ in the state following a protocol restart and the state following
the creation of the institution. This result is consistent with the original description of
the protocol and will permit subsequent rounds following a conflict to continue in the
same way as the original round. The same query holds true for auctions including three
or four bidders.

The Scene Perspective: Although the InstAL language does not explicitly allow for
the definition of scenes (i.e. no special constructs are available), it is straightforward
to achieve this with the available language constructs. The auction protocol discussed
above, can be seen as composed of three scenes each marked by the occurrence of a
deadline (except for the start of the protocol). Figure 4 provides the scene transition
diagram. Each of these deadlines is the result of an exogenous event generated by the
environment (e.g. DAR-2-52). The occurrence of such a deadline, changes the empow-
erment and permissions of the agents involved in the protocol (e.g. DAR-2-50). Rules
are provided to assure the correct transition through the scenes (e.g. DAR-2-53).

5 Discussion

In this article we have demonstrated that the formal system described in [9] can easily
deal with non-trivial institutions. Furthermore, we have shown that our characterisation
can deal directly with landmarks and scenes, thus linking it more clearly with earlier
work on institutional specification.

Much recent and contemporary work on modelling norms and violations has chosen
temporal logics as a starting point, as we now discuss.

54 O. Cliffe, M. De Vos, and J. Padget

Colombetti et al in [16, 12, 29] outline an abstract model for agent institutions based
on social commitments, where institutions comprise a set of registration rules that cap-
ture agents’ entry into and exit from institutions, a set of interaction rules that govern
commitment creation and satisfaction, a set of authorisations that describe agents’ ca-
pabilities and an internal ontology that describes a model for the interpretation of terms
relevant to the institution. Their approach builds on the CTL± extension of CTL[7],
which includes past tense modalities for reasoning about actions which have already
occurred. Dignum in [14] also uses an extension of CTL to describe her language for
representing contracts in the building of agent organisations.

The Event Calculus (EC) [19, 20] is a declarative logic that reinterprets the Situa-
tion Calculus to capture when and how states change in response to external events.
EC has been used to model both the behaviour of commitments [31] among agents in
order to build interaction protocols, corresponding to the regulatory aspects of the work
described above, as well as more general social models such as those described in [18].
From a technical point of view, our approach essentially has a kind of duality com-
pared to EC, in that the basis for the model is events rather than states. In itself, this
offers no technical advantage although we believe that being able to express violations
in terms of events rather than states better captures their nature. More significant are the
consequences of the grounding in ASP:

– For the most part the state and event models are equivalent with respect to properties
such as induction and abduction, but non-monotonicity is inherent in ASP and so
resort to the tricky process of circumscription is avoided.

– Likewise, reasoning about defaults requires no special treatment in ASP.
– The consequence rules of our specification have equivalents in EC, but the event

generation rules do not.
– The state of a fluent is determined by its truth-value in the ASP interpretation,

whereas EC (typically) has to encode this explicitly using two predicates.
– Inertia in EC is axiomatic, whereas in our approach it follows from the applica-

tion of the TR operator—although there is a strong syntactic similarity (perhaps
compounded by using the same terminology!) the philosophy is different.

– ASP allows a wider variety of queries than is typically provided in EC implemen-
tations but space constraints do not allow the full illustration of this aspect here.

Artikis et al. in [2, 3, 4, 18] describe a system for the specification of normative so-
cial systems in terms of power, empowerment and obligation. This is formalized using
both the event calculus [19] and a subset of the action language C+ [15]. The notions
of power and empowerment are equivalent in both systems, but additionally we intro-
duces violation as events and our modelling of obligations differs in that (i) they are
deadline-sensitive, and (ii) can raise a violation if they are not met in time. Violations
greatly improve the capacity to model institutions, but it should be remembered that
institutional modelling was (apparently) not Artikis’s goal. Likewise, although the in-
terpretation of C+ using the CCalc tool gives rise to similar reasoning capabilities (with
similar complexity) to ASP, we believe our approach, including violations, provides a
more intuitive and natural way of expressing social constraints involving temporal as-
pects. A further advantage is in the formulation of queries, where ASP makes it possible

Embedding Landmarks and Scenes in a Computational Model of Institutions 55

to encode queries similar to those found in (bounded) temporal logic model checking,
whereas, as noted above, queries on action languages are constrained by the action lan-
guage implementation. The other notable difference is once again our focus on events
rather than states.

Viganò and Colombetti [30] focus on two key elements: a language for the defini-
tion and the verification of social aspects of MAS in respect of normative systems and
electronic institutions, building on Colombetti’s work on ontological decomposition of
institutions and on Searle’s model of constructed social reality. The basis for the work
is the concept of status functions that capture institutional facts (including roles, such
as buyer and refinement of roles, such as auction winner) and deontic positions (sic).
Status functions are only reified when needed to verify the legitimacy of an action and
as such constitute institutional objects, rather than observables, in contrast to the event-
based approach described here. The authors use model checking to verify offline.

Apart from ASP, a number of other techniques could be applied to the problem of
reasoning about institution specifications. One of these techniques, which has had con-
siderable attention in field of multi-agent systems is symbolic model checking. Sym-
bolic temporal logic model checking is a technique for verifying finite state systems
with a large number of states. The technique was first described in [7]. While model
checking may be applied to much larger state spaces than those which can be studied
using ASP, model-checkers are limited to queries that can be expressed in temporal
logic used by the underlying model checker: in the case of CTL [6] for instance, they
are limited to formulae that are quantified over all future paths — making some queries
impossible to specify.

References

[1] Aldewereld, H.: Autonomy vs. Conformity: an Institutional Perspective on Norms and Pro-
tocols. PhD thesis, Utrecht (2007)

[2] Artikis, A.: Executable Specification of Open Norm-Governed Computational Systems.
PhD thesis, Department of Electrical & Electronic Engineering, Imperial College London
(September 2003)

[3] Artikis, A., Sergot, M., Pitt, J.: An executable specification of an argumentation protocol.
In: Proceedings of conference on artificial intelligence and law (icail), pp. 1–11. ACM
Press, New York (2003)

[4] Artikis, A., Sergot, M., Pitt, J.: Specifying electronic societies with the Causal Calculator.
In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, Springer,
Heidelberg (2003)

[5] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, Cambridge (2003)

[6] Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic model
checker. International Journal on Software Tools for Technology Transfer 2(4), 410–425
(2000)

[7] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Programming Lan-
guages and Systems 8(2), 244–263 (1981)

[8] Cliffe, O.: Specifying and Analysing Institutions in Multi-Agent Systems Using Answer
Set Programming. PhD thesis, Dept. Computer Science, University of Bath (June 2007)

56 O. Cliffe, M. De Vos, and J. Padget

[9] Cliffe, O., De Vos, M., Padget, J.A.: Answer set programming for representing and reason-
ing about virtual institutions. In: Inoue, K., Satoh, K., Toni, F. (eds.) CLIMA 2006. LNCS
(LNAI), vol. 4371, pp. 60–79. Springer, Heidelberg (2007)

[10] Cliffe, O., De Vos, M., Padget, J.A.: Specifying and reasoning about multiple institutions.
In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N.,
Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 63–81. Springer, Heidelberg
(2007)

[11] Cohen, P.R., Levesque, H.: Intention is choice with commitment. Artificial Intelligence 42,
213–261 (1990)

[12] Colombetti, M., Verdicchio, M.: An analysis of agent speech acts as institutional actions.
In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS
(LNAI), vol. 2636, pp. 1157–1164. Springer, Heidelberg (2003)

[13] Dignum, V.: A Model for Organizational Interaction. PhD thesis, Utrecht (2004)
[14] Dignum, V., Meyer, J.-J., Dignum, F., Weigand, H.: Formal Specification of Interaction in

Agent Societies. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A., Gordon-
Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699, pp. 37–52. Springer, Heidel-
berg (2003)

[15] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theo-
ries. Artificial Intelligence 153, 49–104 (2004)

[16] Fornara, N., Colombetti, M.: Operational specification of a commitment-based agent com-
munication language. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and
AAMAS 2002. LNCS (LNAI), vol. 2636, pp. 536–542. Springer, Heidelberg (2003)

[17] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of
fifth logic programming symposium, pp. 1070–1080. MIT Press, Cambridge (1988)

[18] Kamara, L., Artikis, A., Neville, B., Pitt, J.: Simulating computational societies. In: Petta,
P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 53–67.
Springer, Heidelberg (2003)

[19] Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95
(1986)

[20] Kowalski, R.A., Sadri, F.: Reconciling the event calculus with the situation calculus.
Journal of Logic Programming 31(1–3), 39–58 (1997)

[21] Kumar, S., Huber, M.J., Cohen, P.R., McGee, D.R.: Toward a formalism for conversation
protocols using joint intention theory. Computational Intelligence 18(2), 174–228 (2002)

[22] Minton, S., Bresina, J., Drummond, M.: Total order and partial order planning: A compar-
ative analysis. Journal of Artificial Intelligence Research 2, 227–262 (1994)

[23] Niemelä, I., Simons, P.: Smodels: An implementation of the stable model and well-founded
semantics for normal LP. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 420–429. Springer, Heidelberg (1997)

[24] Noriega, P.: Agent mediated auctions: The Fishmarket Metaphor. PhD thesis, Universitat
Autonoma de Barcelona (1997)

[25] Rodrı́guez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonoma de Barcelona (2001)

[26] Sergot, M. (C+)++: An Action Language For Representing Norms and Institutions.
Technical report, Imperial College, London (August 2004)

[27] Smith, I., Cohen, P., Bradshaw, J., Greaves, M., Holmback, H.: Designing conversation
policies using joint intention theory. In: Proceedings of International Conference on Multi
Agent Systems, pp. 269–276 (1998), doi:10.1109/ICMAS.1998.699064

[28] Vázquez-Salceda, J., Noriega, P. (eds.): Coordination, Organizations, Institutions, and
Norms in Agent Systems II. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O.,
Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, Springer,
Heidelberg (2007)

Embedding Landmarks and Scenes in a Computational Model of Institutions 57

[29] Verdicchio, M., Colombetti, M.: A logical model of social commitment for agent commu-
nication. In: AAMAS 2003: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems, pp. 528–535. ACM Press, New York (2003)

[30] Viganò, F., Colombetti, M.: Specification and verification of institutions through status
functions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, Springer, Heidel-
berg (2007)

[31] Yolum, P., Singh, M.P.: Flexible protocol specification and execution: applying event calcu-
lus planning using commitments. In: AAMAS 2002: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pp. 527–534. ACM Press,
New York (2002)

Coordination and Sociability for Intelligent

Virtual Agents

Francisco Grimaldo, Miguel Lozano, and Fernando Barber

Computer Science Department, University of Valencia,
Dr. Moliner 50, (Burjassot) Valencia, Spain

{francisco.grimaldo,miguel.lozano,fernando.barber}@uv.es

Abstract. This paper presents a multi-agent framework designed to
simulate synthetic humans that properly balance task oriented and so-
cial behaviors. The work presented in this paper focuses on the social
library integrated in BDI agents to provide socially acceptable decisions.
We propose the use of ontologies to define the social relations within
an artificial society and the use of a market based mechanism to reach
sociability by means of task exchanges. The social model balances ratio-
nality, to control the global coordination of the group, and sociability,
to simulate relations (e.g. friendliness) and reciprocity among agents.
The multi-agent framework has been tested successfully in dynamic en-
vironments while simulating a virtual bar, where groups of waiters and
customers can interact and finally display complex social behaviors (e.g.
task passing, reciprocity, planned meetings).

1 Introduction

Multi-agent systems are sometimes referred to as societies of agents and provide
an elegant and formal framework to animate synthetic humans. When designing
such agents, the main concern has normally been with the decision-making mech-
anism, as it is the responsible for the actions that will be finally animated. Virtual
actors normally operate in dynamic resource bounded contexts; thus, multi-agent
simulations require group coordination, as self-interested agents easily come into
conflicts due to the competition for the use of shared resources (i.e. objects in a
virtual environment). These obstructions produce low quality animations where
characters do not act realistically. Moreover, virtual humans represent roles in
the scenario (e.g. a virtual guide, a waiter, a customer, etc.) and the social net-
work formed by the relations among the members of the society should also be
considered when animating their behaviors.

This paper presents a multi-agent simulation framework to produce good qual-
ity animations where the behavior of socially intelligent agents better imitates
that of real humans. We aim at incorporating human style social reasoning in
virtual characters. Therefore, we have developed a market based social model
[1] which coordinates the activities of groups of virtual characters and incorpo-
rates social actions in the agent decision-making. Our approach is inspired in
reciprocal task exchanges between agents [2] and uses ontologies to define the

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 58–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Coordination and Sociability for Intelligent Virtual Agents 59

social relations within an artificial society. According with the main parame-
ter of the model, that is sociability, the agents can balance their task-oriented
behaviors (e.g. a virtual waiter should serve customers) and their social skills
(e.g. negotiate with other waiters to gain access to a resource, assume external
actions/favors, or simple chats).

The structure of the paper is as follows: in section 2 we describe briefly some
previous literature on the field. In section 3 we present the multi-agent simulation
framework and the main components of the social model. Section 4 describes an
illustrative example modeled to test our framework. Lastly, section 5 summarizes
the first results extracted and analyzes them.

2 Related Work

Many interactive games and virtual communities put human users together with
synthetic characters. In this context, some research has been done on the be-
lievability issues of virtual actors, usually centred on the interactions either be-
tween a human user and a single character [3] or among the synthetic characters
themselves [4]. These interactive scenarios often present tasks to the partici-
pants that must be solved collaboratively [5]. Therefore, behavioral animation
has broadly been tackled from the field of coordinated multi-agent systems (e.g.
Generalized Partial Global Planning (GPGP) [6], the TAEMS framework [7]
or the RETSINA system [8]). Moreover, task coordination has been applied to
HSP-based (Heuristic Search Planning) virtual humans in [9] and [10] to adapt
better to the dynamism of shared environments.

Social reasoning has also been extensively studied in multi-agent systems in
order to incorporate social actions to cognitive agents [11]. As a result of these
works, agent interaction models have evolved to social networks that try to
imitate the social structures found in reality [12]. Social dependence networks in
[13] allow agents to cooperate or to perform social exchanges attending to their
dependence relations (i.e. social dependence and social power). Trust networks
in [14] are used to define better delegation strategies by means of a contract net
protocol and fuzzy cognitive representations of the other agents as well as of the
dynamic environment. In preference networks, such as the one presented in this
paper, agents express their preferences using utility functions and their attitude
towards another agent is represented by the differential utilitarian importance
they place on that agent’s utility.

Semantic information can be of great value to the agents inhabiting a virtual
world. As demonstrated in [15], the use of semantics associated to objects can en-
hance the interaction of virtual humans in complex environments. Environment-
based approaches are also emerging to provide semantic interoperability among
intelligent agents through the use of coordination artifacts [16]. Furthermore, on-
tologies are very useful to model the social relations between the agents involved
in graphical and interactive simulations [17]. In MOISE+ [18], ontological con-
cepts join roles with plans in a coherent organizational specification. Another ex-
ample can be found in [19] where a functional ontology for reputation is proposed.

60 F. Grimaldo, M. Lozano, and F. Barber

Although the results obtained by the previous approaches show realistic simu-
lations for many task-oriented behaviors, synthetic characters should also display
pure social behaviors (e.g. interchanging information with their partners or group-
ing and chatting with their friends). MAS-SOC [20] aims at creating a platform for
multi-agent based social simulations with BDI agents, which is also our purpose. In
this context, work is ongoing in order to incorporate social-reasoning mechanisms
based on exchange values [21]. The multi-agent framework presented here is ori-
ented to simulate socially intelligent agents able to balance their rationality and
sociability, a key point to finally display high quality behavioral animations.

3 Multi-agent Simulation Framework

The multi-agent simulation framework presented in figure 1 has been developed
over Jason [22], which allows the definition of BDI agents using an extended
version of AgentSpeak(L). The animation system (virtual characters, motion ta-
bles, etc) is located at the 3D engine, which can run separately. The environment
is handled by the Semantic Layer, which acts as an interface between the agent
and the world. It is in charge of perceiving the state of the world and executing
the actions requested by the agents, while ensuring the consistency of the World
Model. Ontologies define the world knowledge base using two levels of represen-
tation: the SVE Core Ontology is a unique base ontology suitable for all virtual
environments and it is extended by different Domain Specific Ontologies in order
to model application-specific knowledge.1

Fig. 1. Multi-agent simulation framework

The agent decision-making is defined in the Agent Specification File. This file
contains the initial beliefs as well as the set of plans that make up the agent’s
finite state machine. The Task library contains the set of plans that sequence
1 See [15] for details on ontologies and their use to enhance agent-object interaction.

Coordination and Sociability for Intelligent Virtual Agents 61

the actions needed to animate a task. For instance, a virtual waiter serving a
coffee will go to the coffee machine to get the coffee and will give it to the
customer afterwards. Here, modularity is guaranteed since the Task library can
be changed depending on the environment and the roles being simulated. As
stated above, only rational behaviors are not enough to simulate agent societies.
Therefore, we have extended the ontologies to define the possible social relations
among the agents of a society and we have included a Social library to manage
different types of situations. This library is based on an auction model and uses
social welfare concepts to avoid conflicts and allow the agents to behave in a
coordinated way. The Social library also incorporates a reciprocity mechanism
to promote egalitarian social interactions. Finally, the Conversational library
contains the set of plans that handle the animation of the interactions between
characters (e.g. ask someone a favor, planned meetings, chats between friends...).

3.1 Social Ontology

The set of possible social relations among the agents within an artificial society
can be ontologically represented in the form of interrelations between classes of
agents. Figure 2 shows the extensions made to the object ontology previously
presented in [15] in order to hold agent relations. We distinguish two basic lev-
els of social relations: the level of individuals (i.e. agentSocialRelations) and the
institutional level (i.e. groupSocialRelations). When one agent is related with an-
other single agent, an agentSocialRelation will link them. Different application
domains can need specific relations; thus, Domain Specific Ontologies are used
to inherit particular relations from the core ontology. For instance, the property
workFriend is used by the waiters in the virtual bar presented in section 4 to
model the characteristic of being a friend of a workmate. Other examples of
individual relations are family relations such as to be parent of or to be mar-
ried with another agent. In this case, there is not only semantic but also struc-
tural difference, since parent is a unidirectional relation whereas marriedWith is
bidirectional.

On the other hand, groupSocialRelations can be used to represent an agent
belonging to a group. The social network created by this type of relation can be
explored to get the rest of the agents of the same group, thus modeling a one-
to-many relation. The Group class is an abstraction of any kind of aggregation.
Therefore, we can model from physical groups such as the players of a football
team to more sophisticated mental aggregations such as individuals of a certain
social class or people of the same religious ideology. Although not considered
in this paper, many-to-many relations between groups could also be created
using this ontological approach. The dynamics of how these relations are created,
modified and terminated falls out of the scope of this paper. Thus, at the moment
relations are set off-line and do not change during the simulation.

3.2 Social Library

The simulation of worlds inhabited by interactive virtual actors normally involves
facing a set of problems related to the use of shared limited resources and the

62 F. Grimaldo, M. Lozano, and F. Barber

Fig. 2. Social Ontology

need to animate pure social behaviors. Both types of problems are managed by
the Social library by using a Multi-agent Resource Allocation approach [1]. This
library allows any agent to auction tasks in order to reallocate them so that
the global social welfare can be increased. Tasks are exchanged between agents
using a first-price sealed-bid (FPSB) auction model where the agents express
their preferences using performance and social utility functions.

The performance utility function U i
perf (〈i ← t〉) of a bidder agent i reflects

the efficiency achieved when the task t is allocated to the agent i (〈i ← t〉).
There can be many reasons for an agent to be more efficient: it may perform the
task faster than others because of his know-how or it may be using a resource
that allows several tasks to be performed simultaneously (e.g. a coffee machine
in a virtual bar can be used by a waiter to make more than one coffee at the
same time). The utility function has to favor the performance of the agents, but
high performances can also be unrealistic for the animation of artificial human
societies. For example, if all agents work as much as they can, they will display
unethical or robotic behaviors. Furthermore, agents should also show pure social
behaviors to animate the normal relations between the members of a society.

Whereas the performance utility function modelled the interest of an agent to
exchange a task from an efficiency point of view, we introduce two additional so-
cial utilities to represent the social interest in exchanging a task. The aim of social
utilities is to promote task allocations that lead the agents to perform social inter-
actions with other agents (e.g. planned meetings with their friends). Therefore,

Coordination and Sociability for Intelligent Virtual Agents 63

these functions take into account the social relations established between the
agents and defined in the ontology to compute the value that expresses their
social preferences. Negotiation of long sequences of actions is not very inter-
esting for interactive characters, as plans are likely to be thwarted due to the
dynamism of the environment and to other unpredictable events. Thus, we define
the following social utility functions:

– Internal social utility (U i
int(〈i ← t, j ← tnext〉)): is the utility that a bidder

agent i assigns to a situation where i commits to do the auctioned task t so
that the auctioneer agent j can execute his next task tnext.

– External social utility (U i
ext(〈j ← t〉)): is the utility that a bidder agent i

assigns to a situation where the auctioneer agent j executes the auctioned
task t while i continues with his current action.

The winner determination problem has two possible candidates coming from
performance and sociability. In equation 1 the welfare of a society is related to
performance, hence, the winner of an auction will be the agent that bid the
maximum performance utility. On the other hand, equation 2 defines the social
winner based on the maximum social utility received to pass the task to a bidder
(see U∗

int(t) in equation 3) and the maximum social utility given by all bidders to
the situation where the task is not exchanged but performed by the auctioneer j
(see U∗

ext(t) in equation 4). To balance task exchange, social utilities are weighted
with a reciprocity matrix (see equations 3 and 4). We define the reciprocity factor
wij for two agents i and j, as the ratio between the number of favors (i.e.tasks)
that j has made to i (see equation 5).

winnerperf (t) =
{

kεAgents|U i
perf(t) = max

iεAgents
{U i

perf(〈i ← t〉)} (1)

winnersoc(t) =
{

j U∗
ext(t) >= U∗

int(t)
i U∗

ext(t) < U∗
int(t) ∧ U i

int(t) = U∗
int(t)

(2)

U∗
int(t) = max

iεAgents
{U i

int(〈i ← t, j ← tnext〉) ∗ wij} (3)

U∗
ext(t) = max

iεAgents
{U i

ext(〈j ← t〉) ∗ wji} (4)

wij =
Favoursji

Favoursij
(5)

At this point, agents can decide whether to adopt this kind of social alloca-
tions or to be only rational as explained previously. They choose between them
in accordance with their Sociability factor, which is the probability to select
the social winner instead of the rational winner. Sociability can be adjusted
in the range [0,1] to model intermediate behaviors between efficiency and total
reciprocity. This can provide great flexibility when animating characters, since
Sociability can be dynamically changed thus producing different behaviors de-
pending on the world state.

64 F. Grimaldo, M. Lozano, and F. Barber

4 Application Example

In order to test the presented social multi-agent framework, we have created
a virtual university bar where waiters take orders placed by customers (see
figure 3a). The typical locations in a bar (e.g. a juice machine) behave like
resources that have an associated time of use to supply their products (e.g. 2
minutes to make an orange juice) and they can only be occupied by one agent
at a time. Agents can be socially linked using the concepts defined in the Social
Ontology. According to them, all waiters are related through a groupSocialRe-
lation to Waiters, a group representing their role (see figure 3b). Moreover,
they can be individually related with other waiters through workFriend. This
relation semantically means that the agents are friends at work and, in this ap-
plication, it has been modeled as bidirectional but not transitive. For example, in
figure 3b, Albert is friend of Dough and John but these later ones are not friends
of each other. Moreover, we have also specified three possible groups of cus-
tomers: teachers, undergraduates and graduates. The social network specified by
them is used to promote social meetings among customers in the university bar.

Fig. 3. (a) Virtual university bar environment, (b) Social relations between agents

The waiters are governed by the finite state machine2 shown in figure 4a, where
orders are served basically in two steps: first, using the corresponding resource
(e.g. the grill to produce a sandwich) and second, giving the product to the
customer. Tasks are always auctioned before their execution in order to find good
social allocations. Equations 6 and 7 define the utility values returned by the
performance utility function for these tasks. This function aims at maximizing
2 Specified by means of plans in Jason’s extended version of AgentSpeak(L).

Coordination and Sociability for Intelligent Virtual Agents 65

the number of tasks being performed at the same time and represents the waiters’
willingness to serve orders as fast as possible. Social behaviors defined for a waiter
are oriented to animate chats among his friends at work. Therefore, waiters
implement the internal and external social utility functions detailed in equations
8 and 9, where Near computes the distance between the agents while they are
executing a pair of tasks. These functions evaluate social interest as the chance
to meet a workFriend in the near future, thus performing a planned meeting.

U i
perf (〈i ← ’Use’〉)=

⎧⎨
⎩

1 if [(i = Auctioneer) ∧ IsFree(Resource)]∨
[IsUsing(i, Resource) ∧ not(IsComplete(Resource))]

0 Otherwise
(6)

U i
perf (〈i ← ’Give’〉)=

⎧⎨
⎩

1 if [(i = Auctioneer) ∧ nextAction = NULL]∨
[currentTask = ’Give’ ∧ not(handsBusy < 2)]

0 Otherwise
(7)

U i
int(〈i ← t, j ← tnext〉)=

⎧⎨
⎩

1 if IsWorkFriend(i, j) ∧ Near(t, tnext)∧
ExecT ime(tnext) > RemainT ime(currentTask)

0 Otherwise
(8)

U i
ext(〈j ← t〉) =

{
1 if IsWorkFriend(i, j) ∧ Near(currentTask, t)
0 Otherwise (9)

On the other hand, customers place orders and consume them when served.
At the moment, we are not interested in improving customer performance but
in animating interactions between the members of a social group (i.e. teachers,

Fig. 4. (a)Waiter specification, (b) Customer specification

66 F. Grimaldo, M. Lozano, and F. Barber

undergraduates and graduates). The finite state machine in figure 4b governs
the actuation of customers that use auctions to solve the problem of where to
sit. Depending on his or her sociability factor, a customer can randomly choose
a chair or start an auction to decide where to sit and consume. This auction
is received by all customers in the bar, which use the external social utility
function defined in equation 10 to promote social meetings. This function uses
the groupSocialRelations to determine if two individuals belong to the same
group. We define the performance and the internal social utility functions as 0
since task passing is not possible in this case (i.e. no-one can sit instead of another
customer). Finally, when a social meeting emerges, both waiters and customers
use the plans in the Conversational Library to sequence the speech-acts needed
to animate commitments, greetings or simple conversations.

U i
ext(〈j ← ’Sit’〉)=

{
1 if IsSameGroup(i, j) ∧ IsConsuming(i, auctionedTable)
0 Otherwise

(10)

5 Results

To illustrate the effects of the social techniques previously defined we have sim-
ulated the virtual university bar example with up to 10 waiters serving 100
customers, both with different sociability factors. We estimate the social wel-
fare of our society using two metrics explained along this section: Throughput
and Animation. Throughput is an indicator in the range [0, 1] that estimates
how close a simulation is to the ideal situation in which the workload can be
distributed among the agents and no collisions arise. Thus, equation 11 defines
Throughput as the ratio between this ideal simulation time (T ∗

sim) and the real
simulation time (Tsim), where Ntasks and Nagents are the number of tasks and
agents respectively and Ttask is the mean time to execute a task.

Throughput=
T ∗

sim

Tsim
=

Ntasks ∗ Ttask/Nagents

Tsim
(11)

Figure 5a shows the Throughput obtained by different types of waiters versus
self-interested agents (i.e. agents with no social mechanisms included). In this
first social configuration, all waiters are friends and customers are automatically
assigned a group (teacher, undergraduate or graduate) when they come into
the scenario. Self-interested agents collide as they compete for the use of the
shared resources and these collisions produce high waiting times as the num-
ber of agents grows. We can enhance this low performance with elitist agents
(Sociability = 0) which coordinately exchange tasks with others that can carry
them out in parallel, thus reducing the waiting times for resources. Nevertheless,
they produce unrealistic outcomes since they are continuously working if they
have the chance, leaving aside their social relationships (in our example, chats
between friends). The Sociability factor can be used to balance rationality and
sociability. Therefore, the Throughput for the sort of animations we are pursuing

Coordination and Sociability for Intelligent Virtual Agents 67

should be placed somewhere in between elitist and fully reciprocal social agents
(Sociability = 1). On the other hand, figure 5b demonstrates that the higher
the Sociability factor is, the larger the number of social meetings that will be
performed by the customers when they sit at a table.

Fig. 5. (a) Waiter Throughput, (b) Customer social meetings

Throughput is an estimator for the behavioral performance but, despite being
a basic requirement when simulating groups of virtual characters, it is not the
only criterion to evaluate when we try to create high quality simulations. There-
fore, we have defined another estimator that takes into account the amount of
time that the designer of the simulation wants to be spent in social interactions.
According to this, we define the following simulation estimator:

Animation =
T ∗

sim + Tsocial

Tsim
, (12)

where Tsocial represents the time devoted to chatting and to animating social
agreements among friends. In our virtual bar we have chosen Tsocial as the 35%
of T ∗

sim. Figure 6 shows the animation values for 10 reciprocal social waiters
with 4 degrees of friendship: all friends, 75% of the agents are friends, half of the
agents are friends and only 25% of the agents are friends. As we have already
mentioned, low values of Sociability produce low quality simulations since the
values obtained for the animation function are greater than the reference value
(Animation = 1). On the other hand, high values of Sociability also lead to low
quality simulations, especially when the degree of friendship is high. In these
cases, the number of social conversations being animated is too high to be re-
alistic and animation is far from the reference value. The animation function
can be used to extract the adequate range of values for the Sociability factor,
depending on the situation being simulated. For example, in our virtual bar we
consider as good quality animations those which fall inside ±10% of the refer-
ence value (see shaded zone in figure 6). Hence, when all the waiters are friends,
good animations emerge when Sociability ∈ [0.1, 0.3].

68 F. Grimaldo, M. Lozano, and F. Barber

Fig. 6. Animation results obtained for waiters

Table 1. Time distribution for 10 waiters in the bar (time values are in seconds)

Sociability = 0 Sociability = 1
Agent Twait Tuse Tgive Balance Twait Tuse Tgive Balance

1 0 32 19 -6 16 69 34 -2
2 3 4 26 -3 18 58 24 -2
3 14 52 1 28 41 45 16 0
4 3 16 28 -3 48 60 27 3
5 0 7 30 -16 34 58 12 -1
6 3 37 17 -1 48 64 14 -2
7 0 67 4 21 18 48 24 1
8 0 45 17 1 33 45 24 4
9 7 5 23 -11 46 36 21 0
10 1 6 41 -10 27 56 20 -1

Finally, table 1 compares the amount of time devoted to executing each type of
task in executions with 10 elitist waiters (Sociability = 0) and 10 fully reciprocal
social waiters (Sociability = 1). The irregular values in the columns Tuse and
Tgive on the left side of the table demonstrate how some agents have specialized in
certain tasks. For instance, agents 2, 5, 9 and 10 spend most of their time giving
products to the customers while agents 3 and 7 are mainly devoted to using
the resources of the bar (e.g. the coffee machine, etc). Although specialization
is a desirable outcome in many multi-agent systems, egalitarian human societies
need also to balance the workload assigned to each agent. On the right side of the
table, fully reciprocal social waiters achieve equilibrium between the time they
are giving products and the time they are using the resources of the environment
(see columns Tuse and Tgive). Furthermore, the reciprocity factor balances the
number of favors exchanged among the agents (compare Balance columns). A
collateral effect of this equilibrium is the increase in the waiting times, since
social agents will sometimes prefer to meet his friends in a resource than to
reallocate the task (compare columns Twait).

Coordination and Sociability for Intelligent Virtual Agents 69

6 Conclusions and Future Work

The animation of groups of intelligent characters is a current research topic with
a great number of behavioral problems to be tackled. We aim at incorporat-
ing human style social reasoning in character animation. Therefore, this paper
presents a technique to properly balance social with task-oriented plans in order
to produce realistic social animations. We propose the use of ontologies to define
the social relations within an artificial society and the use of a market based
mechanism to reach sociability by means of task exchanges. The multi-agent an-
imation framework presented allows for the definition of different types of social
agents: from elitist agents (that only use their interactions to increase the global
performance of the group) to fully reciprocal agents. These latter agents extend
the theory of social welfare with a reciprocity model that allows the agents to
control the emergence of social interactions among the members of a society.

Work is ongoing to provide the agents with mechanisms to self-regulate their
Sociability factor depending on their social relations and on their previous in-
tervention. Thus, agents will be able to dynamically adjust to the situation in
order to stay within the boundaries of good quality animations at all times.

Acknowledgements

This work has been jointly supported by the Spanish MEC and European Com-
mission FEDER funds under grants Consolider Ingenio-2010 CSD2006-00046
and TIN2006-15516-C04-04.

References

1. Hogg, L.M., Jennings, N.: Socially intelligent reasoning for autonomous agents.
IEEE Transactions on System Man and Cybernetics 31(5), 381–393 (2001)

2. Piaget, J.: Sociological studies. Routledge (1995)
3. Bickmore, T., Cassell, J.: Relational agents: A model and implementation of build-

ing user trust. In: Proc. of CHI 2001: Conference on Human Factors in Computing
Systems, ACM, New York (2001)

4. Tomlinson, B., Blumberg, B.: Social synthetic characters. In: Proc. of Computer
Graphics. vol. 26 (2002)

5. Prada, R., Paiva, A.: Believable groups of synthetic characters. In: Proc. of AAMAS
2005: Autonomous Agents and Multi-Agent Systems, pp. 37–43. ACM, New York
(2005)

6. Decker, K.S., Lesser, V.R.: Designing a family of coordination algorithms. In: Read-
ings in Agents (1997)

7. Decker, K.: Environment Centered Analysis and design of Coordination Mecha-
nisms. PhD thesis, University of Massachusetts, Amherst (May 1995)

8. Giampapa, J.A., Sycara, K.: Team-oriented agent coordination in the RETSINA
multi-agent system. Tech. report CMU-RI-TR-02-34, Robotics Institute-Carnegie
Mellon University (2002)

9. Ciger, J.: Collaboration with agents in VR environments. PhD thesis, École Poly-
technique Fédérale de Lausanne (2005)

70 F. Grimaldo, M. Lozano, and F. Barber

10. Grimaldo, F., Lozano, M., Barber, F., Orduña, J.: Integrating social skills in task-
oriented 3D IVA. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D.,
Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, Springer, Heidelberg
(2005)

11. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London
(1995)

12. Hexmoor, H.: From inter-agents to groups. In: Proc. of ISAI 2001: International
Symposium on Artificial Intelligence (2001)

13. Sichman, J., Demazeau, Y.: On social reasoning in multi-agent systems. Revista
Ibero-Americana de Inteligencia Artificial 13, 68–84 (2001)

14. Falcone, R., Pezzulo, G., Castelfranchi, C., Calvi, G.: Why a cognitive trustier
performs better: Simulating trust-based contract nets. In: Proc. of AAMAS 2004:
Autonomous Agents and Multi-Agent Systems, pp. 1392–1393. ACM Press, New
York (2004)

15. Grimaldo, F., Barber, F., Lozano, M.: An ontology-based approach for IVE+VA.
In: Proc. of IVEVA 2006: Intelligent Virtual Environments and Virtual Agents
(2006)

16. Viroli, M., Ricci, A., Omicini, A.: Operating instructions for intelligent agent co-
ordination. The Knowledge Engineering Review 21, 49–69 (2006)

17. Kao, E.C.C., H-M., C.P., Chien, Y.H., Soo, V.W.: Using ontology to establish social
context and support social reasoning. In: Panayiotopoulos, T., Gratch, J., Aylett,
R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661,
Springer, Heidelberg (2005)

18. Giménez-Lugo, G., Sichman, J., Hübner, J.: Addressing the social components of
knowledge to foster communitary exchanges. International Journal on Web Based
Communities 1(2), 176–194 (2005)

19. Casare, S., Sichman, J.: Towards a functional ontology of reputation. In: Proc. of
AAMAS 2005: Autonomous Agents and Multi-Agent Systems, ACM, New York
(2005)

20. Bordini, R.H., da Rocha, A.C., Hübner, J.F., Moreira, A.F., Okuyama, F.Y.,
Vieira, R.: MAS-SOC: A social simulation platform based on agent-oriented pro-
gramming. Journal of Artificial Societies and Social Simulation 8(3) (2005)

21. Ribeiro, M., da Rocha, A.C., Bordini, R.H.: A system of exchange values to support
social interactions in artificial societies. In: Proc. of AAMAS 2003: Autonomous
Agents and Multi-agent Systems, ACM Press, New York (2003)

22. Bordini, R.H., Hübner, J.F.: Jason (March 2007), Available at
http://jason.sourceforge.net/

http://jason.sourceforge.net/

The Examination of an Information-Based
Approach to Trust

Maaike Harbers1, Rineke Verbrugge2, Carles Sierra3, and John Debenham4

1 Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089,
3508 TB Utrecht, The Netherlands

maaike@cs.uu.nl
2 Institute of Artificial Intelligence, University of Groningen, Grote Kruisstraat 2/1,

9712 TS Groningen, The Netherlands
rineke@ai.rug.nl

3 IIIA-CSIC, Campus UAB, 08193 Cerdanyola, Catalonia, Spain
sierra@iiia.csic.es

4 Faculty of Information Technology, University of Technology, Sydney, P.O. Box 123,
Broadway, NSW 2007, Australia
debenham@it.uts.edu.au

Abstract. This article presents the results of experiments performed with agents
based on an operalization of an information-theoretic model for trust. Experi-
ments have been performed with the ART test-bed, a test domain for trust and
reputation aiming to provide transparent and recognizable standards. An agent
architecture based on information theory is described in the paper. According to
a set of experimental results, information theory is shown to be appropriate for
the modelling of trust in multi-agent systems.

1 Introduction

In negotiation, one tries to obtain a profitable outcome. But what is a profitable out-
come: to pay little money for many goods of high quality? Although this seems to be
a good deal, it might not always provide the most profitable outcome in the long run.
If negotiation partners meet again in the future, it could be more rational to focus on
the relationship with the other agents, to make them trust you and to build up a good
reputation.

In computer science and especially in distributed artificial intelligence, many models
of trust and reputation have been developed over the last years. This relatively young
field of research is still rapidly growing and gaining popularity. The aim of trust and
reputation models in multi-agent systems is to support decision making in uncertain sit-
uations. A computational model derives trust or reputation values from the agent’s past
interactions with its environment and possible extra information. These values influ-
ence the agent’s decision-making process, in order to facilitate dealing with uncertain
information.

Big differences can be found among current models of trust and reputation, which
indicates the broadness of the research area. Several articles providing an overview of
the field conclude that the research activity is not very coherent and needs to be more

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 71–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

72 M. Harbers et al.

unified [1,2,3,4]. In order to achieve that, test-beds and frameworks to evaluate and
compare the models are needed.

Most present models of trust and reputation make use of game-theoretical con-
cepts [1,5]. The trust and reputation values in these models are the result of utility
functions and numerical aggregation of past interactions. Some other approaches use a
cognitive model of reference, in which trust and reputation are made up of underlying
beliefs. Castelfranchi and Falcone [6] developed such a cognitive model of trust, based
on beliefs about competence, dependence, disposition, willingness and persistence of
others. Most existing models of trust and reputation do not differentiate between trust
and reputation, and if they do, the relation between trust and reputation is often not
explicit [1,3]. The ReGreT system [7] is one of the few models of trust and reputation
that does combine the two concepts. Applications of computational trust and reputation
systems are mainly found in electronic markets. Several research reports have found
that seller reputation has significant influences on on-line auction prices, especially for
high-valued items [3]. An example is eBay, an online market place with a community
of over 50 million registered users [2].

Sierra and Debenham [8] introduced an approach using information theory for the
modeling of trust, which has been further developed in [9], [10]. The present article
presents an examination of Sierra and Debenham’s information-based approach to trust.
Experiments have been performed with the ART test-bed [4], a test domain for trust
and reputation. Section 2 introduces the trust model, section 3 describes the ART test-
bed, and section 4 describes how the model has been translated into an agent able to
participate in the ART test-bed. The remainder of the article gives an overview of the
experiments (section 5) and the results (section 6), followed by a discussion (section 7).
The article ends with conclusions and recommendations for further research (section 8).

2 The Information-Based Model of Trust

In Sierra and Debenham’s information-based model, trust is defined as the measure of
how uncertain the outcome of a contract is [8]. All possible outcomes are modelled and
a probability is ascribed to each of them. More formally, agent α can negotiate with
agent β and together they aim to strike a deal δ. In the expression δ = (a,b), a repre-
sents agent α’s commitments and b represents β’s commitments in deal δ. All agents
have two languages, language C for communication and language L for internal rep-
resentation. The language for communication consists of five illocutionary acts (Offer,
Accept, Reject, Withdraw, Inform), which are actions that can succeed or fail. With an
agent’s internal language L, many different worlds can be constructed. A possible world
represents, for example, a specific deal for a specific price with a specific agent.

To be able to make grounded decisions in a negotiation under conditions of un-
certainty, the information-theoretic method denotes a probability distribution over all
possible worlds. If an agent would not have any beliefs or knowledge, it would ascribe
to all worlds the same probability to be the actual world. Often however, agents do have
knowledge and beliefs which put constraints on the probability distribution. The agent’s
knowledge set K restricts all worlds to all possible worlds: that is, worlds that are
consistent with its knowledge. Formally, a world v corresponds to a valuation function

The Examination of an Information-Based Approach to Trust 73

on the positive ground literals in the language, and is an element of the set of all possible
worlds V . Worlds inconsistent with the agent’s knowledge are not considered.

An agent’s set of beliefs B determines its opinion on the probability of possible
worlds: according to its beliefs some worlds are more probable to be the actual world
than others. In a probability distribution over all possible worlds, W , a probability pi

expresses the degree of belief an agent attaches to a world vi to be the actual world. From
a probability distribution over all possible worlds, the probability of a certain sentence
or expression in language L can be derived. For example the probability P(executed |
accepted) of whether a deal, once accepted, is going to be executed can be calculated.
This derived sentence probability is considered with respect to a particular probability
distribution over all possible worlds. The probability of a sentence σ is calculated by
taking the sum of the probabilities of the possible worlds in which the sentence is true.
For every possible sentence σ that can be constructed in language L the following holds:
P{W |K}(σ) ≡ Σn{pn : σ is true in vn}. An agent has attached given sentence probabilities
to every possible statement ϕ in its set of beliefs B.

A probability distribution over all possible worlds is consistent with the agent’s be-
liefs if for all statements in the set of beliefs, the probabilities attached to the sentences
are the same as the derived sentence probability. Expressed in a formula, for all beliefs ϕ
in B the following holds: B(ϕ) = P{W |K}(ϕ). Thus, the agent’s beliefs impose linear con-
straints on the probability distribution. To find the best probability distribution consis-
tent with the knowledge and beliefs of the agent, maximum entropy inference (see [11])
uses the probability distribution that is maximally non-committal with respect to miss-
ing information. This distribution has maximum entropy and is consistent with the
knowledge and beliefs. It is used for further processing when a decision has to be made.

When the agent obtains new beliefs, the probability distribution has to be updated.
This happens according to the principle of minimum relative entropy. Given a prior
probability distribution q = (qi)n

i=1 and a set of constraints, the principle of minimum
relative entropy chooses the posterior probability distribution p = (pi)n

i=1 that has the
least relative entropy with respect to q, and that satisfies the constraints. In general,
the relative entropy between probability distribution p and q is calculated as follows:
DRL(p ‖ q) = Σn

i=1 pi log2
pi
qi

. The principle of minimum relative entropy is a general-
ization of the principle of maximum entropy. If the prior distribution q is uniform, the
relative entropy of p with respect to q differs from the maximum entropy H(p) only
by a constant. So the principle of maximum entropy is equivalent to the principle of
minimum relative entropy with a uniform prior distribution (see also [8]).

While an agent is interacting with other agents, it obtains new information. Sierra and
Debenham [8] mention the following types of information from which the probability
distribution can be updated:

– Updating from decay and experience. This type of updating takes place when the
agent derives information from its direct experiences with other agents. It is taken
into account that negotiating people or agents may forget about the behavior of a
past negotiation partner.

– Updating from preferences. This updating is based on past utterances of a partner.
If agent α prefers a deal with property Q1 to a deal with Q2, he will be more likely
to accept deals with property Q1 than with Q2.

74 M. Harbers et al.

– Updating from social information. Social relationships, social roles and positions
held by agents influence the probability of accepting a deal.

Once the probability distribution is constructed and up to date, it can be used to
derive trust values. From an actual probability distribution, the trust of agent α in agent
β at the current time, with respect to deal δ or in general, can be calculated. The trust
calculation of α in β is based on the idea that the more the actual executions of a contract
go in the direction of the agent α’s preferences, the higher its level of trust. The relative
entropy between the probability distribution of acceptance and the distribution of the
observation of actual contract execution models this idea. For T (α,β,b), the trust of
agent α in agent β with respect to the fulfillment of contract (a,b), the following holds:

T (α,β,b) = 1 − ∑
b′∈B(b)+

Pt(b′) log
Pt(b′)

Pt(b′|b)

Here, B(b)+ is the set of contract executions that agent α prefers to b. T (α,β), the
trust of α in β in general, is the average over all possible situations. After making obser-
vations, updating the probability distribution and calculating the trust, the probability
of the actual outcomes for a specific contract can be derived from the trust value and an
agent can decide about the acceptance of a deal.

3 The ART Test-Bed

Participants in the ART test-bed [4] act as appraisers who can be hired by clients to
deliver appraisals about paintings, each for a fixed client fee. Initially, a fixed number
of clients is evenly distributed among appraisers. When a session proceeds, apprais-
ers whose final appraisals were most accurate are rewarded with a larger share of the
client base. Each painting in the test-bed has a fixed value, unknown to the participating
agents. All agents have varying levels of expertise in different artistic eras (e.g. classi-
cal, impressionist, post-modern), which are only known to the agents themselves and
which will not change during a game. To produce more accurate appraisals, appraisers
may sell and buy opinions from each other. If an appraiser accepts an opinion request, it
has to decide about how much time it wants to invest in creating an opinion. The more
time (thus money) it spends in studying a painting, the more accurate the opinion.

However, agents might (on purpose) provide bad opinions or not provide promised
opinions at all. Then without spending time on creating an opinion, the seller receives
payment. So to prevent paying money for a useless opinion, the test-bed agents have to
learn which agents to trust. To facilitate this process, agents can buy information about
other agents’ reputations from each other. Here again agents do not always tell the truth
or provide valuable information.

Appraisers produce final appraisals by using their own opinion and the opinions re-
ceived from other appraisers. An agent’s final appraisal is calculated by the simulation,
to ensure that appraisers do not strategize for selecting opinions after receiving all pur-
chased opinions. The final appraisal p∗ is calculated as a weighted average of received
opinions: p∗ = ∑i(wi·pi)

∑i wi
. In the formula, pi is the opinion p received from provider i and

wi is the appraiser’s weight for provider i: the better α trusts an agent i, the higher the

The Examination of an Information-Based Approach to Trust 75

weight wi attached to that agent and the more importance will be given to its opinion.
Agent α determines its final appraisal by using all the opinions it received plus its own
opinion. The true painting value t and the calculated final appraisal p∗ are revealed by
the simulation to the agent. The agent can use this information to revise its trust models
of other participants.

4 An Information-Based Test-Bed Agent

The implemented test-bed agent ascribes probabilities to the accuracy of the opinions
other agents provide. The agent maintains a probability distribution for each era of ex-
pertise with respect to each agent. The different possible worlds in a probability distri-
bution represent the possible grades of the opinions an agent might provide in a specific
era. An opinion of high grade means that the appraised value of a painting is close to the
real value of the painting. A low grade means that the agent provides very bad opinions
in the corresponding era or that the agent does not provide opinions at all. The quality
of an opinion actually is a continuous variable, but to fit the model all possible opinions
are grouped into ten levels of quality. The act of promising but not sending an opinion
is classified in the lowest quality level.

The probability distributions are updated during the course of a session each time the
agent receives new information, which can be of three types:

– Updating from direct experiences;
– Updating from reputation information;
– Updating from the evaporation of beliefs (forgetting).

Updating from reputation information corresponds to Updating from social information
in Sierra and Debenham’s model [8]. The other two types of updating are derived from
Updating from decay and experience in the model.

Updating from direct experiences takes place when the agent receives the true val-
ues of paintings. The value of a constraint is obtained by taking the relative error of
an opinion: the real value of a painting and an agent’s estimated value of a painting
are compared to each other. Updating from reputation information takes place when
the agent receives witness information. The value of a constraint is derived by taking
the average of the reputation values in all messages received at a specific time from
trusted agents about a specific agent and era. Updating from forgetting is performed
each time when a probability distribution is updated either from direct experiences or
from reputation information.

Direct experiences and reputation information are translated into the same type of
constraints. Such a constraint is for example: agent α will provide opinions with a qual-
ity of at least 7 in era e with a certainty of 0.6. This constraint is put to the probability
distribution of agent α and era e. After updating from this constraint, the probabilities
of the worlds 7, 8, 9 and 10 should together be 0.6. Constraints are always of the type
opinions of at least quality x.

The value of a constraint (the quality grade) derived from a direct experience is ob-
tained by comparing the real value of a painting to an agent’s estimated value according

76 M. Harbers et al.

to the equation: constraintValue = 10 · (1− |appraisedValue−trueValue|
trueValue). The outcome repre-

sents the quality of the opinion and a new constraint can be added to the set of beliefs.
If a value lower than one is found, a constraint with the value of one is added to the set
of beliefs. Reputation information is translated into a constraint by taking the average
of the reputation values in all messages received at a specific time from trusted agents
about a specific agent and era multiplied by ten: constraintValue = 10 ·Σr∈reps

r
n1

, where
r is a reputation value, reps is the set of useful reputation values and n1 is the size of reps.

With a set of constraints and the principle of maximum entropy, an actual probability
distribution can be calculated. Therefore one general constraint is derived from all the
stored constraints for calculating the probability distribution. The general constraint is a
weighted average of all the constraints stored so far, calculated according to the follow-
ing equation: generalconstraintValue = 1

n2
· Σc∈C

1
(c(tobtained)−tcurrent)+1 · c(value), where

constraint c is an element of the set C of stored constraints and n2 the total amount
of constraints. Each constraint c consists of the time it was obtained c(tobtained) and a
quality grade c(value), calculated with one of the formulas constraintValue above. The
outcome is rounded to get an integer value.

The constraints are weighted with a factor of one divided by their age plus one
(to avoid fractions with a zero in the denominator). Forgetting is modelled by giv-
ing younger constraints more influence on the probability distribution than older con-
straints. In this calculation, constraints obtained from reputation information are
weighted with a factor which determines their importance in relation to constraints
obtained from direct information. A ratio of 0.3:1, respectively, was taken because rep-
utation info is assumed to have less influence than info from direct experiences. With the
principle of maximum entropy, a new and updated probability distribution can be found.

Finally, when all information available has been processed and the probability dis-
tributions are up to date, trust values can be derived from the probability distributions.
There are two types of trust, the trust of a particular agent in a specific era and the
trust of a particular agent in general. The trust value of an agent in a specific era is
calculated from the probability distribution of the corresponding agent and era. In an
ideal probability distribution, the probability of getting opinions of the highest qual-
ity is very high and the probability of getting opinions with qualities lower than that
is very low. Now trust can be calculated by taking one minus the relative entropy be-
tween the ideal and the actual probability distribution, as follows: trust(agent,era) =
1−Σn3

i=1(Pactual(i) · log Pactual(i)
Pideal(i)

), where n3 is the number of probabilities. The trust of an
agent in general is calculated by taking the average of the trust values of that agent in all
the eras. At each moment of the game, the agent can consult its model to determine the
trust value of an agent in general or the trust value of an agent with respect to a specific
era. These trust values guide the behavior of the agent.

At the beginning of a new session the agent trusts all agents, so the probability dis-
tributions are initialized with all derived trust values (for each agent in each era) at 1.0.
During the game the model is updated with new constraints and trust values change.
The general behavior of the information-based agent is honest and cooperative towards
the agents it trusts. The agent buys relevant opinions and reputation messages from
all agents it trusts (with trust value 0.5 or higher). The agent only accepts and invests
in requests from trusted agents, and if the agent accepts a request it provides the best

The Examination of an Information-Based Approach to Trust 77

possible requested information. If the agent does not trust a requesting agent, it informs
the other agent by sending a decline message. If a trusted agent requests for reputation
information, the agent provides the trust value its model attaches to the subject agent.
If the agent trusts an agent requesting for opinions, it always highly invests in ordering
opinions from the simulator for that agent. Finally, the agent uses the model for gener-
ating weights for calculating the final opinions. It weights each agent (including itself)
according to the trust in that agent in that era.

5 Set-Up of the Experiments

To test the influences of the use of different types of information, four variations of an
information-based agent have been made. The suffixes in the names of the agents indi-
cate the information types they use for updating: de corresponds to direct experiences,
rep to reputation information and time to forgetting.

– Agent Info-de only updates from direct experiences;
– Agent Info-de-time updates from direct experiences and from forgetting;
– Agent Info-rep-time updates from reputation information and forgetting;
– Agent Info-de-rep-time updates from all three types of information.

The performances of these agents in the ART test-bed are in the first place measured
by their ability to make accurate appraisals, which is indicated by their client shares
after the last game round. Besides, information about the agents’ bank account balances
will be presented. The use of each of the information types is expected to increase the
average appraisal accuracy of an information-based test-bed agent. Moreover, the use
of the combination of all three information types is expected to deliver the best results.
In order to verify the correctness of these expectations, three test conditions have been
designed and four extra agents have been implemented.

The first condition tests an agent’s ability to distinguish between a cooperating and
a non-cooperating agent. In this first part of the experiment, the agents Info-de, Info-
de-time and Info-de-rep-time each participated in a game together with the test-agents
Cheat and Naive. The test-agent Cheat never makes reputation or opinion requests it-
self, but when it receives requests it always promises to provide the requested reputation
information or opinions. As its name suggests, the agent cheats on the other agents and
it never sends any promised information. Its final appraisals are just based on its own
expertise. The agent Naive bases its behavior on the idea that all agents it encounters
are trustworthy and Naive keeps on trusting others during the whole course of a game.
This agent always requests every other agent for reputation information and opinions,
it accepts all requests from other agents and it highly invests in creating the requested
opinions. Its final appraisals are based on its own expertise and on the (promised but
sometimes not received) opinions of all other agents.

For the second condition, a third test-agent was developed to investigate other
agents’ ability to adapt to new situations. This agent Changing shows the same be-
havior as Naive during the first ten rounds of a game. Then it suddenly changes its
strategy and from the eleventh game round till the end of the game it behaves exactly
the same as the agent Cheat. The performances of the agents Info-de and Info-de-time
in reaction to Changing have been examined.

78 M. Harbers et al.

The third condition was designed to examine the updating from reputation infor-
mation. This type of updating is only of use if there are agents in the game that provide
reputation information, so a reputation information providing agent Providing has been
implemented. The only difference with Info-de-time is that the Providing agent always
accepts reputation requests and provides the wished reputation information, whereas the
agent Info-de-time only provides reputation to agents it trusts. The agents Info-de-time,
Info-rep-time and Info-de-rep-time each participated in a game with Providing, Cheat
and Naive.

6 Results

In the first experiment, each of the agents Info-de, Info-de-time and Info-de-rep-time
participated in a test-bed game together with the agents Cheat and Naive. The graph-
ics in Figure 1 show an example of a session with the agents Info-de-time, Cheat and
Naive. Left the development of the agents’ bank account balance during the whole
game is shown. All agents have increasing balances, but Info-de-time ends the game
with the most and Naive with the least money. The right part of the figure shows the
average appraisal errors of the agents in each round. The appraisals of Naive are obvi-
ously less accurate than those of the other two agents. This can be explained by Naive’s
behavior to keep on trusting the cheating agent during the whole game. Info-de-time
provides its least accurate appraisals the first game round; there it still has to learn that
it cannot trust the agent Cheat. After that, its appraisals are the most accurate: the er-
rors are close to the zero line and show the least deviation. This can be explained by
Info-de-time using the expertise of two agents (itself and Naive), whereas Cheat only
uses its own expertise.

Table 1 shows the averages of 30 sessions for the three information-based agents in
condition one. In the tables, Client refers to the final number of clients of an agent at

Fig. 1. Bank account balances and average appraisal errors of agents Info-de-time (black), Cheat
(light grey) and Naive (dark grey) in the first test conditions

Table 1. Averages for three information-based agents in conditions of type one

Cheat Naive Agent
Bank Client Bank Client Bank Client

info-de 45957 24.5 14361 8.8 40700 26.4
info-de-time 47975 25.9 13552 8.8 40262 25.0
info-de-rep-time 46097 24.7 14073 8.2 41461 26.7

The Examination of an Information-Based Approach to Trust 79

Table 2. Averages for the agent Changing

Changing Agent
Bank Client Bank Client

info-de 44189 33.4 25817 6.6
info-de-time 36211 21.2 33864 18.8

Table 3. Averages for three information-based agents in the third set of conditions

Cheat Naive Providing Agent
Bank Client Bank Client Bank Client Bank Client

info-de-time 43252 23.1 12986 10.6 34889 23.3 34245 22.7
info-rep-time 45337 22.3 15363 12.7 35337 23.5 28713 21.1
info-de-rep-time 41076 21.3 14089 10.8 34988 23.4 35099 24.5

the end of a session and Bank means its final bank account balance. The first row shows
the average final bank account balance and average final number of clients of respec-
tively, Cheat, Naive and Info-de, for the sessions in which the three of them participated
together in the game. The second row displays the results of the sessions with Cheat,
Naive and Info-de-time. Applying Student T-test (two-tailed, homoscedastic distribu-
tion) showed that with a significance level of 5% one can only conclude that Info-de-
rep-time gathers a significantly bigger client share than Info-de-time. The differences in
bank account balances between the different agents are not significant.

In the second condition Info-de and Info-de-time participate in a game with the agent
Changing, which starts to cheat from the tenth round of the game. In contrast to Info-de,
the agent Info-de-time does take forgetting into account. As time goes by, information
gathered in the past becomes less and less important. The difference is clear: after a
first big decrease in appraisal accuracy when the agent Changing starts cheating, Info-
de-time learns from Changing’s new behavior and adjusts its trust values. Its past beliefs
about a seemingly trustworthy agent Changing do not overrule the new information it
gathers and it ends with higher scores. The averages of all the sessions with the agent
Changing are presented in Table 2. Both client share and bank account balance of the
two information-based agents are significantly different on a 5% level of significance
according to the Student T-test. The results of the third condition, testing the update
from reputation information, are shown in Table 3. A Student T-test demonstrates that
all differences in client shares between the three tested agents are significant.

7 Discussion

It was expected that the experiments would show that each of the three types of updating
would contribute to appraisal accuracy. Condition one shows that, except for Info-de-
time, all agents updating from direct experiences provide more accurate appraisals than
Cheat and Naive, which do not update from past experiences. The third condition of the
experiment is even more convincing regarding the usefulness of information from expe-
riences. Two information-based agents, one with and one without updating from direct

80 M. Harbers et al.

experiences, were tested in the same condition. The agent that updated from direct ex-
periences had a significantly larger final client share and therefore must have produced
more accurate appraisals. Thus, the expectation that updating from direct experiences
improves the appraisal accuracy is supported by the experimental results.

For evaluating updating from forgetting, the first two test conditions can be exam-
ined. Here two information-based agents updating from direct experiences, one of them
also updating from forgetting, were tested in the same condition. In the condition with
the agents Cheat and Naive, the agent Info-de scored better than Info-de-time, but the
difference is not significant. In the condition with the agent Changing, the agent Info-
de-time updating from forgetting, has a significant larger client share than Info-de. This
supports the expectation that updating from forgetting would contribute to more accu-
rate appraisals.

The last type of information, updating from reputation information, has been exam-
ined in the third condition. The participating agents are the information-based agent to
be evaluated, combined with the three test-agents Cheat, Naive, and Providing which
provides reputation information. The agent Providing performs very well, so the rep-
utation information it provides is supposed to be useful. Agent Info-rep-time does not
update from any of its own experiences, so its performance only depends on updating
from reputation information. Info-rep-time ended with much larger client shares than
Naive, so it seems to use Providing’s reputation information profitably. This observa-
tion supports the expectation that the use of reputation information would increase the
average appraisal accuracy of an information-based test-bed agent. Of course this con-
clusion only holds when there is at least one agent in the game that is able and willing
to provide useful reputation information.

The results show that all three types of updating contribute to appraisal accuracy, but
do they also work well in combination? Updating from forgetting can be used in combi-
nation with the other two types of updating without hindering them. However, updating
from information from direct experiences and from reputation information cannot be
added to each other. When more reputation information is used, less information from
direct experiences can be used and vice versa. The results show that in both condition
one and three, the use of all available types of information yields the most accurate
appraisals.

However, in the first condition Naive is the only agent providing reputation informa-
tion and it assumes that each agent is trustworthy, so it always provides reputations with
the value 1. So the good performance of the agent using reputation information in this
condition cannot be due to its updating from reputation information. In the third condi-
tion however, useful reputation information is provided and the agent Info-de-rep-time
seems to make good use of it. So the results support the expectation that all three types
of updating contribute to providing more accurate appraisals, and the information-based
agent using all three types of updating provides the most accurate appraisals.

The experiments performed are not exhaustive and when interpreting the results,
some remarks should be kept in mind. First, an agent’s performance depends a lot on the
other participants in a test-bed game. For example, an agent with a very sophisticated
model for dealing with reputation information only profits when other agents are pre-
pared to provide reputation information. A cooperative agent functions very well with

The Examination of an Information-Based Approach to Trust 81

other cooperative participants, but it might perform very badly with non-cooperative
participants. In the experiments, four test-agents were used, Naive, Cheat, Changing
and Providing, which show quite simple and obvious behavior. The use of more com-
plex test-agents would provide more information. Moreover, conditions with larger
numbers of participants would create new situations and might yield extra information.

A second consideration is the choice of the ART test-bed. A general problem of all
test-beds is validity: does the system test what it is supposed to test? Especially when
complicated concepts are involved, it is difficult to prove that a test-bed just examines
the performance of a model on that particular concept. The aim of the ART test-bed
is to compare and evaluate trust- and reputation-modeling algorithms [4]. But what do
the developers exactly understand by trust and reputation? The ART test-bed is quite
complicated and allows so many variables that it is sometimes difficult to explain why
something happened.

A final remark about the experiments is that in the translation of the trust model to
a test-bed agent some adjustments and adaptations had to be made. Not every part of
the model can be used in the ART test-bed. Sierra and Debenham’s model [8] allows
updating from preferences and different power relations between agents; these facets
cannot be tested by the ART test-bed. On the other hand, the trust model lacks theory
for some topics needed in the ART test-bed. The updating from reputation was not very
elaborated in the model [8] and had to be extended. Besides, the information-based trust
model does not provide a negotiation strategy: it is a system to maintain values of trust.
The strategy used might have influenced the test results.

8 Conclusion and Further Research

The goal of this article is to examine Sierra and Debenham’s information-based model
for trust [8]. Therefore, an agent based on the model has been implemented and several
experiments in the ART test-bed have been performed. The experiments showed that the
information-based agent learned about its opponents during a game session and could
distinguish between cooperating and non-cooperating agents. They also demonstrated
that the three examined types of updating (from direct experiences, from reputation
information and from the evaporation of beliefs as time goes by), all improved the agent.
So in general expectations have been met: the results are promising and the information-
based approach seems to be appropriate for the modeling of trust.

The diversity and the amount of the experiments could be extended. The information-
based agent could be tested in more conditions with different test agents and with larger
amounts of participating agents. It would also be interesting to pay more attention to
the agent’s strategy. Besides, the implementation of the agent could be improved. Some
aspects of the trust model could be translated more literally to the implementation of
the information-based agent. Even another test-bed could be used, as the ART test-bed
is not able to evaluate all aspects of the theory. All these suggestions would deliver new
information about the model and would justify making stronger statements about it.

As to Sierra and Debenham’s trust model itself [8,9], its core seems to be robust
and clear: they use a clear definition of trust and probability distributions are updated
from a set of beliefs with the principle of minimum relative entropy. The experiments

82 M. Harbers et al.

support the model. To further improve it, more work could be done on other concepts
related to trust. For example, now it provides some initial ideas about how to deal with
reputation and other types of social information. But social aspects are becoming more
and more central in the field of multi-agent systems lately, so a contemporary model of
trust should give a complete account of it. So, it can be said conclusively that the core
of the model seems to be a good approach, but for a fully developed approach to trust
and reputation more work should be done. This should not be a problem, because the
model is flexible and provides ample space for extensions.

Acknowledgements. Carles Sierra’s research is partially supported by the Open-
Knowledge STREP project, sponsored by the European Commission under contract
number FP6-027253, and partially by the Spanish project “Agreement Technologies”
(CONSOLIDER CSD2007-0022, INGENIO 2010).

References

1. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial Intel-
ligence Review 24, 33–60 (2005)

2. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for online service
provision. Decision Support Systems 43, 618–644 (2007)

3. Mui, L., Mohtashemi, M., Halberstadt, A.: Notions of reputation in multi-agents systems:
A review. In: AAMAS 2002: Proceedings of the First International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 280–287. ACM Press, New York (2002)

4. Fullam, K., Klos, T., Muller, G., Sabater, J., Topol, Z., Barber, K.S., Rosenschein, J.: A speci-
fication of the agent reputation and trust (ART) testbed: Experimentation and competition for
trust in agent societies. In: F.D. et al. (ed.) Fifth International Conference on Autonomous
Agents and Multiagent systems (AAMAS 2005), Utrecht, The Netherlands, pp. 512–518
(2005)

5. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multiagent systems. Knowledge Engi-
neering Review 19, 1–25 (2004)

6. Castelfranchi, C., Falcone, R.: Principles of trust for MAS: Cognitive anatomy, social im-
portance, and quantification. In: Demazeau, Y. (ed.) Proceedings of the Third International
Conference of Multi-agent Systems (ICMAS 1998), pp. 72–79 (1998)

7. Sabater, J., Sierra, C.: REGRET: reputation in gregarious societies. In: AGENTS 2001: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pp. 194–195. ACM
Press, New York (2001)

8. Sierra, C., Debenham, J.: An information-based model for trust. In: F.D. et al. (ed.) Fifth
International Conference on Autonomous Agents and Multiagent systems (AAMAS 2005),
Utrecht, The Netherlands, pp. 497–504 (2005)

9. Sierra, C., Debenham, J.: Trust and honour in information-based agency. In: Stone, P., Weiss,
G. (eds.) Proceedings Fifth International Conference on Autonomous Agents and Multi
Agent Systems (AAMAS 2006), Hakodate, Japan, pp. 1225–1232. ACM Press, New York
(2006)

10. Sierra, C., Debenham, J.: Information-based agency. In: Proceedings of Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India (2007)

11. MacKay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University
Press, Cambridge (2003)

A Dynamic Coordination Mechanism Using

Adjustable Autonomy

Bob van der Vecht1,2, Frank Dignum2, John-Jules Ch. Meyer2,
and Martijn Neef1

1 TNO Defence, Safety and Security, The Hague
{bob.vandervecht,martijn.neef}@tno.nl

2 Department of Information and Computing Sciences, Universiteit Utrecht, Utrecht
{dignum,jj}@cs.uu.nl

Abstract. Agents in an organization need to coordinate their actions
in order to reach the organizational goals. This research describes the
relation between types of coordination and the autonomy of actors. In
an experimental setting we show that there is not one best way to coor-
dinate in all situations. The dynamics and complexity of, for example,
crisis situations require a crisis management organization to work with
dynamic types of coordination. In order to reach dynamic coordination
we provide the actors with adjustable autonomy. Actors should be able
to make decisions at different levels of autonomy and reason about the
required level. We propose a way to implement this in a multi-agent sys-
tem. The agent is provided with reasoning rules with which it can control
the external influences on its decision-making.

1 Introduction

The motivation of this research lies in coordination challenges for crisis man-
agement organizations. Crisis situations in general are complex and share en-
vironmental features; there is no complete information, the evolvement of the
situation is unpredictable and quick response is required. A crisis management
organization should control the crisis as fast as possible, and therefore, it should
be able to cope with such situations. For an adequate, quick response the orga-
nization needs high control. At the same time the organization needs to be able
to adapt to unexpected events and therefore it needs to be dynamic and robust.

In this paper we describe different ways of coordination, and show that there
is not one best way to coordinate in all situations. When modelling the decision-
making process of the actors we see that there is always a trade-off between local
autonomy and global control. In this paper we describe levels of autonomy in
decision-making of actors, and we propose a way to implement adjustable auton-
omy in artificial actors in order to achieve a dynamic coordination mechanism.

In Sect. 2 we argue why we need dynamic coordination mechanisms in multi-
agent systems. We describe the relation between types of coordination and the au-
tonomy of actors.Using an experiment we point out the strong and the weak points

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 83–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

84 B. van der Vecht et al.

of different coordination types. In Sect. 3 we define agent autonomy and we intro-
duce adjustable autonomyas a concept that allows dynamically switching between
coordination types. Section 4 proposes a way to implement adjustable autonomy
in agents. We extend the experiment with an implementation of adjustable auton-
omy. After that, Sect. 5 discusses our results and describes future research.

2 Why Dynamic Coordination?

In this section we argue why dynamic coordination mechanisms are relevant to
achieve coordinated behavior in multi-agent systems. We discuss different types
of coordination and their relation with the autonomy of the actors. Using an
experiment we point out the weak and strong points of the coordination types
and show that a static coordination mechanism is not optimal in all situations.

2.1 Autonomy and Coordination

All organizations designed for a certain purpose require coordinated behavior
of the participants. There are several approaches to reach coordination, ranging
from emergent coordination to explicit coordination by strict protocols. At the
same time the actors in an organization are seen as autonomous entities that
make their own decisions. In this paragraph we investigate the relation between
autonomy of actors and coordination of behavior.

Autonomy is one of the key features of agents. It is often being used in the defini-
tion of agents [1]. In Jennings’ use of the term, agent autonomy means that agents
have control over both their internal state and over their behavior. The agent de-
termines its beliefs and it decides by itself upon its actions. Multi-agent systems
consist of multiple autonomous actors that interact to reach a certain goal. We will
first take a closer look at coordination mechanisms for multi-agent systems.

One approach to reach coordinated group behavior is emergent coordination.
Autonomous actors perform their tasks independently and the interaction be-
tween many of them leads to coordinated behavior. This approach is often used
for agent-based social simulations. One characteristic of emergent coordination
is that the actors have no awareness of the goals of the organization they are
part of. The actors make their own local decisions and are fully autonomous.
Although the actors have no organizational awareness, the designer of such a
system has. The coordination principles are specified implicitly within the local
reasoning of all actors. The organization is relatively flexible within the single
task for which it has been designed. However, in the extreme case, the agents are
fully autonomous, and there is no point of control that can force the organization
to change its behavior if unexpected situations occur that cannot be solved by
the local reasoning rules of the actors.

Where the fully emergent approach is one extreme type of coordination, the
other extreme is fully controlled coordination. This is the case in a hierarchical
organization, where there is a single point of control that determines the tasks
all the others have to perform. The actors are autonomous in performing their

A Dynamic Coordination Mechanism Using Adjustable Autonomy 85

task, but they do not make their own decisions. Therefore, the actors do not
meet the autonomy definition as used in [1].

A characteristic of such a centralistic approach is that the task division is
made from a global perspective. Therefore an organization can adapt quickly to
changes in the environment by sending out new orders to all actors. However,
such an organization is sensitive to incomplete information. Wrong information
at the global level can lead to wrong decisions. Furthermore, the organization
is highly dependent on the decision maker at the top of the hierarchy and it
misses the flexibility at the local level. Fully controlled coordination can be a
good solution if there is always complete information about the situation. Task
specifications and interaction protocols can be defined for all possible cases.

In between the two extreme types there are several ways to achieve coor-
dination. For example, the designer can allow the agents to communicate and
exchange information. Or he can divide the organizational task in roles, and de-
fine the interaction in protocols. Several methodologies for multi-agent systems
design, e.g. Opera [2], use this approach. Drawback here is that the specified
coordination framework are static. There is no flexibility within the predefined
roles and interactions.

2.2 Experiment

We have set up an experimental environment in which we can test the character-
istics of coordination principles. A simple coordination task is performed by an
organization, and different scenarios contain situational features that can reveal
the strong and the weak points of each coordination mechanism.

Organizational Description. The basic setting is a Firefighter organization.
The organization operates in a world where fires appear that need to be extin-
guished as fast as possible. In the organization we define two roles; coordinator
and firefighter. The coordinator makes a global plan and tells the firefighters
which fire they should extinguish. Therefore the coordinator has a global view
of the whole world. The firefighters perform the actual tasks in the world; they
move to a fire location and extinguish the fires. They have only local views.

There is a hierarchical relation between the two roles, the coordinator is su-
perior of the firefighters and can send orders to the firefighters, which fire they
have to extinguish. We want to show different forms of coordination within this
organization. In our imlementation we achieve this by changing the autonomy
level of the decision-making process of the firefighters. We have created different
types of firefighters; obedient agents that follow the orders of their superior (no
decision-making autonomy) and disobedient agents that ignore their superior
and make their decisions only based on local observations. Now we can describe
the coordination types:

– Emergent coordination: Disobedient firefighters, choices are made based on
local information

– Explicit coordination: Obedient firefighters, choices are made based on global
information

86 B. van der Vecht et al.

The performance of the organization should be measurable. In our experiment we
can measure the time it takes to extinguish the fires for each of the coordination
types. The best organizational performance has the lowest score.

Scenarios. We will describe the scenarios in more detail. The organization in
our experiment has one coordinator and four firefighters. The start position of the
firefighters in the world is equally distributed. We have one standard scenario,
scenario A, in order to test whether both coordination types perform equally
well. In this scenario four fires are distributed equally over the world. The start
situation of scenario A is shown in Fig. 1.

Fig. 1. Screenshot of the experimental environment: begin situation of scenario A

Two other scenarios have been created that make this situation more complex.
They contain the features that also return in real world situations. Scenario B is a
setting where the fires are distributed equally over the world, but the coordinator
has no global view, he can only see half of the world at once. As result there
is no complete information at the global level. The third scenario, Scenario C,
reflects a situation where the fires are not distributed equally, such that some
firefighters do not observe any fires, whereas others observe several fires.

Results. The results of the experiment are shown in Table 1. The score is calcu-
lated by thenumber of time steps it takes until all fires have been extinguished.
It is measured per scenario and coordination type. Scenario A shows no signif-
icant difference in the performance of both organizations. This is our standard
scenario that shows that both coordination mechanisms work. In scenario B the
firefighters reach a better performance based on their local information than the

A Dynamic Coordination Mechanism Using Adjustable Autonomy 87

Table 1. Results of our Experiment; time (s) until all fires are extinguished per scenario
and coordination type

Explicit Coordination: Emergent coordination:
No Autonomy Full Autonomy

Scenario A:
Standard scenario 38.7 36.8

Scenario B:
No complete global information 66.6 36.8

Scenario C:
No equal distribution of fires 69.8 93.8

coordinator based on its information. The coordinator has no complete knowl-
edge, and therefore he might miss important information for his planning task.
In scenario C the fires were not equally distributed. The global information of
the coordinator was more useful than the local information of the firefighters,
because the coordinator’s commands sent the firefighters to the fires. In the
emergent organization not all firefighters could see the fires, which made them
inactive.

The difference between the two organizations was that the decisions were
made at a different level of the organization and based on different information.
Both perform well in specific situations, none of them proved to be sufficient for
all situations. We can conclude that in a scenario with a dynamic environment
in which the agents experience these situations successively, both coordination
types perform badly because of the weak points that are pointed out in the previ-
ous scenarios. In that case the best organization would be one that dynamically
switches between the coordination mechanisms.

2.3 Dynamic Coordination

From our experiment, we can conclude that a dynamic coordination mechanism
can outperform the presented organizations in a dynamic environment. In each
coordination mechanism mentioned in Sect. 2.1 the autonomy of the actors with
respect to the organization is fixed. We want to achieve dynamic coordination
by allowing the agents to make local decisions about their autonomy level. We
want them to act following organizational rules, but also allow them to decide
not to follow the rules in specific situations. We believe that organizations in
complex environments can benefit from agents that show adjustable autonomy.
In the next paragraph we define adjustable autonomy in more detail and propose
a way to achieve this in artificial agents.

3 Adjustable Autonomy

In this section we explain the concept of adjustable autonomy. Recall the auton-
omy requirement for agents as it is used by [1]. It states that agents should have

88 B. van der Vecht et al.

control over their internal state and their behavior. We have argued that this
conflicts with the extreme form of explicit coordination. The agents just follow
orders and they do not determine their own actions.

We will take a closer look at agent decision-making. We believe that the
decision-making process can take place at different levels of autonomy. An au-
tonomous agent should be able to select its style of decision-making. This process
is what we call adjustable autonomy. In this section we define levels of auton-
omy in agent decision-making and we propose a way to implement adjustable
autonomy in agents.

3.1 Autonomy Levels in Agent Decision-Making

The difference between the two agent types in the experiment, obedient and
disobedient, was the knowledge they used for their own decision-making. With
autonomous decision-making the agent makes its own decisions based on its own
observations, disregarding information and orders from other agents. The other
extreme is that agents perform only commands that are given, and do not choose
their actions based on their own knowledge.

The degree of autonomy of decision making can be defined as the degree
of intervention by other agents on the decision making process of one agent
[3]. Using this definition, the disobedient agent from our experiment makes its
decisions autonomously, whereas the obedient agent had no autonomy at all
concerning the decision making. An agent that switches between different levels
of autonomy of its decision-making shows adjustable autonomy. We propose a
reasoning model in which different levels of autonomy can be implemented.

3.2 Controlling Autonomy

An agent’s level of autonomy is determined by the influence of other agents
on the decision-making process. Adjustable autonomy implies that the level of
autonomy in the decision-making process can be adjusted. Therefore, an agent
should control external influences that it experiences. The agent should choose
which knowledge it uses for its decision-making. Figure 2 shows the reasoning
process of an agent schematically. The module for event-processing precedes the
actual decision making and it determines the level of autonomy of the decision-
making process.

Fig. 2. The adjustable autonomy module within the reasoning process

A Dynamic Coordination Mechanism Using Adjustable Autonomy 89

In the reasoning model the agent is provided with a module that gives the
agent control over external influences. These external influences are the agent’s
own observations and messages that it gets from other agents. The agent can
make an explicit choice about the knowledge that it will use for its decision-
making process.

3.3 Related Work on Adjustable Autonomy

The topics agent autonomy and adjustable autonomy have been subject of many
studies. However, there is no common definition of autonomy. As a result, the
approaches taken to describe its features are quite distinct. We discuss the con-
cept of autonomy and the way it is used in related work. And we investigate
what adjustability is in the different perspectives that are taken. We will relate
the other views on autonomy with our own view.

Castelfranchi and Falcone, [4] [5], have investigated autonomy in the context
of (social) relations between agents. Considering a hierarchical relation, the ab-
straction level of decision-making of the delegate determines the agent’s level of
autonomy with respect to the master. Levels of autonomy they distinguish are
executive autonomy (agent is not allowed to decide anything but the execution
of delegated task), planning autonomy (agent is allowed to plan (partially), the
delegated task is not fully specified) and goal autonomy (agent is allowed to find
its own goals). Verhagen, [6], has added norm autonomy as an extra level, where
the agent is allowed to formulate its own organizational norms.

Adjustable autonomy is the process of switching between the abstraction lev-
els of decision making. The autonomy levels as presented above concern goals,
actions, plans and norms. We believe that also beliefs should be part of the auton-
omy definition, since beliefs are another concept used in the reasoning process. If
an agent does not control its own beliefs, it can hardly be called autonomous. In
our definition the autonomy level is gradually related to the influence an agent
allows on its decision-making process. We propose reasoning rules to control ex-
ternal influences that capture explicit knowledge for reasoning about autonomy.

Schurr et al. [7] and Tambe et al. [8] use the term adjustable autonomy for the
process in which a decision maker transfers the control of the decision-making
process to another agent (or human). The researchers do not give a definition of
autonomy, but it is related to decision-making control with respect to a certain
goal. A coordination mechanism that runs independent of the agent’s decision-
making, handles the transfer-of-control (t-o-c) process. A t-o-c strategy consists
of a list of decision makers and the constraints for transferring the control. An
agent’s position in the list of decision-makers determines an agent’s level of au-
tonomy with respect to the goal. They do not use autonomy as a gradual property
of the decision-making process of the agent itself. Their reasoning mechanism for
adjustable autonomy can only be used when there are more agents that have the
capability to making the decision. The mechanism should make sure the optimal
decision maker is selected.

In contrast, our approach focuses on the decision-making process of a single
agent. The agent should select the optimal input (beliefs, goals, plans) for its

90 B. van der Vecht et al.

own reasoning process. Those resources determine the autonomy level of a rea-
soning process. We look at adjustable autonomy as a process within an agent’s
reasoning, whereas they view it as a separate mechanism.

Barber and Martin, [9], look at the decision-making process of a group of
agents. An agent’s level of autonomy with respect to a task is measured as its
share in the group decision-making process. In their context adjustable autonomy
concerns different decision-making strategies for a group of agents. They present
an Adaptive Decision-Making Framework, in which agents propose strategies to
the group, and therewith change their own autonomy level. This way, adjustable
autonomy becomes a group process, because other agents can accept or reject
proposed decision-making strategies.

The focus of Barber and Martin is on the decision-making process of a group
of agents. In contrast, our focus is on the decision-making of a single agent.
In our work, adjustment of the autonomy is a local process within the agent’s
reasoning process. Furthermore Barber and Martin do not specify how an agent
can determine the right decision-making strategies. In the experiments they con-
ducted they provided the agents with knowledge about the best strategy for each
situation. We want the agents to reason about what the best strategy is, based
on local observations.

Dastani et al., [10], argue that the deliberation cycle of an agent determines
autonomy of an agent as well. Autonomy levels can be viewed at as an agent’s
commitment to its own decisions. For example, one deliberation cycle makes
that an agent commits to a goal until it has been fulfilled, whereas another cycle
makes an agent to reconsider its goals every time it receives new information.
They propose a meta-language to describe the deliberation cycle of an agent. The
functions used in the deliberation cycle as well as their actual implementation are
relevant for agent autonomy. Levels of autonomy can be constructed changing
the deliberation cycle.

In their approach, levels of autonomy are determined by the deliberation
cycle, and therefore by the way decisions are made. Our approach focuses on the
sources that are used for decision-making and on the process of how an agent
determines its autonomy level. The two approaches can exists next to each other
and complement each other.

As we see in this discussion of related work there is not a single definition of
agent autonomy and adjustable autonomy. Sometimes autonomy and adjustable
autonomy is viewed in the context of group decision-making, whereas others look
at single agent decision-making. Furthermore different aspects of agent decision-
making are taken into account, such as decision-making control or abstraction
levels of decision-making. Our approach is to give the agent control over the
external influences it experiences.

4 Agent Reasoning Model

Here we present a reasoning model for agents that enables the agent to control
its autonomy level. The level of autonomy depends on the influence of other

A Dynamic Coordination Mechanism Using Adjustable Autonomy 91

agents on the reasoning process. In the reasoning-process we distinguish a phase
for event-processing and a phase for decision-making, as shown in Fig. 2. The
event-processing phase gives the agent control over its autonomy. The decision
phase focuses on the decision on action. We describe the implementation of the
two phases, starting with the latter one.

4.1 Decision Making

In the decide-phase the agent will decide upon the next action. A popular ap-
proach for goal-directed reasoning is to use of Beliefs, Desires and Intentions
(BDI), introduced by Rao and Georgeff [11]. Several BDI reasoning-models have
been proposed. For example, 3APL [12], [13] provides the designer with a for-
malized programming language which is designed for BDI-agent programming.
A 3APL agent uses reasoning rules to create plans to reach a certain goal. Such
reasoning rules have the following form:

<HEAD> <- <GUARD> | <BODY>

The head of a rule should match the goals of an agent. The guard should match
the beliefs of the agent. The body of the agent contains sets of actions. If head
and body match, the agent can commit to the plan in the body and start to
execute it.

The firefighters in our experiment have been implemented using 3APL. They
have a goal to fight fires and they have reasoning rules to make a plan in order
to reach their goal. Figure 3 shows the source code of the decision phase. If a
firefighter agent has a certain fire selected, it is going to extinguish that fire.
Depending on the distance to this fire, they will perform either the action GoTo
or Extinguish. If no fire is selected, the agent will wait.

Fig. 3. Source code of 3APL plan to fight fires

Each decision of the agent takes depends on its beliefs. The beliefs that are
used in this plan are: selectedFire and distance. These beliefs are determined be-
fore the plan reasoning starts. Therefore we describe the event-processing phase,
which prepares the actual decicion-making phase.

92 B. van der Vecht et al.

4.2 Event Processing

In the event-processing phase the agent prepares the decision-making phase.
External influences are processed here. External influence can be an agent’s
observations or messages from other agents. We have chosen to implement the
orient phase using 3APL rules as well. This gives us the opportunity to reason
with semantic knowledge. The main process consists of three functions: handle
observations, handle messages, and prepare decision-making.

The autonomy level of the decide phase is determined by those functions. Will
the agent follow the commands from the coordinator, or will it create own goals?
Does the agent adopt information from the coordinator, or does it use its own
observations? We show how we can implement reasoning rules that provide the
agent with choices. We will take the firefighters from our experiment as example.

Handle Observations. Reasoning rules can be added to make the agent choose
to handle observations differently. We gave one rule to our firefighters, which
states that is believes all its own observations:

handleObservations() <- TRUE | Observations2Beliefs()

Our firefighters use only this rule for observation processing. It is possible too
add more rules that distinguish between different situations. To use the rule, the
guard of the rule has to match with the beliefs of the agent. Adding rules with
a specified guard, the agent handles its observations differently if that guard is
true.

Handle Messages. Agents can receive messages from other agents. An agent
can be programmed to handle messages in different ways by adding the same
types of rules. If an agent functions in an organization, it needs to know how
to deal with relations towards other agents. We have implemented the following
rule for a hierarchical relation. When the agent gets a request from another agent
who is his superior, he interprets the content as a command.

handleMessages() <- message(SENDER, request, CONTENT)
AND superior(CONTENT) | AcceptCommand(SENDER, CONTENT)

The firefighters believe that the coordinator is their superior. They will process
the requests of the coordinator as commands. In a similar manner other rules
that can be defined. For example, an agent can have a rule to ignore all messages
when it feels it is in danger.

handleMessages() <- danger() | ignoreMessages()

If an agent has both rules for message handling it is dependent on the agent
whether it processes messages or not. Does the agent perceive danger or not?
By adding such a rule, local beliefs of the agent can change the way it handles
external influences, and therefore it can influence the autonomy level of the
agents’ decision-making.

A Dynamic Coordination Mechanism Using Adjustable Autonomy 93

Prepare Decision-Making. Finally, in the function prepare decision-making
rules are specified that determine the autonomy level of the agent. The reasoning
rules in the decide-phase use certain beliefs. Here we specify per goal what kind
of belief processing should take place. Recall from Fig. 3 that the beliefs that are
used for the goal to fight fires are selectedFire and distance. We have specified
the following rules:

prepareDecisionMaking() <- goal(fightfires) AND
command(FIRE) | SelectFire(FIRE); CalculateDistance(FIRE)

prepareDecisionMaking() <- goal(fightfires) AND noCommand()
AND seeFire(FIRE) | SelectFire(FIRE); GetDistance(FIRE)

These two rules specify how the beliefs for the decision-making process are de-
termined dependent on the situations. The SelectFire and CalculateDistance
statements are capabilities of the agent that construct the selectedFire and the
distance belief respectively. The variable given to those functions has a different
origin in both cases. If the agent has a command, he will follow the command.
If there is no command, but the agent sees a fire, it will use this observation for
further reasoning.

5 Extending the Experiment

We have extended the experiment of Sect. 2. We have constructed a third or-
ganization with firefighters that show adjustable autonomy. They are at certain
moments disobedient to the commands of the coordinator and at other moments
they follow the orders, depending on their local beliefs. So, the organization can
switch between explicit coordination and emergent coordination. We have im-
plemented reasoning rules for event processing, we have used the same rules as
presented in the Sect. 4.2. The rules ensure that the agents follow the commands,
but if there are no commands they will pursue their goal using local observations.

5.1 Results

We have run all three scenarios as well with our dynamic coordination mech-
anism. Table 2 shows the results next to the static coordination mechanisms.

Table 2. Results of our Experiment, including adjustable autonomy

Explicit Coordination: Emergent coordination: Dynamic Coordination:
No Autonomy Full Autonomy Adjustable Autonomy

Scenario A 38.7 36.8 37.0

Scenario B 66.6 36.8 37.1

Scenario C 69.8 93.8 70.2

94 B. van der Vecht et al.

We can see that the organization with agents that use adjustable autonomy per-
forms well in all scenarios compared to the other two organizations. The agents in
the organization adapt the coordination mechanism based on the environmental
features.

From the experiment we can conclude that dynamic coordination is powerful
in agent organizations. The organization using dynamic coordination performs as
good as the best of the other organizations. Furthermore the organization using
adjustable autonomy will perform well in dynamic scenarios, since it continuously
adapt its coordination mechanism.

The way we achieve a dynamic coordination mechanism, is by letting the
agents adjust their autonomy level. The agents have reasoning rules to control
external influences in the reasoning process. The agents decide locally on their
autonomy level.

5.2 Discussion

We provide the agents with reasoning rules to control external influences. This
gives the agents additional, task-unspecific knowledge that it can use in its rea-
soning process. It allows the agent to use its beliefs and its goals to reason about
its openness towards other agents. The reasoning rules make use of criteria based
on introspection, social knowledge, or coordination requirements.

Using introspection, the agent assesses its own mental state. Castelfranchi, [4],
argues the importance of introspection in the reasoning process. For example,
relevance of information can be determined by introspection. Certain informa-
tion can be more or less relevant depending on an agent’s goals. Therefore an
agent may observe the world differently depending on its goals.

An agent may have a reasoning rule that makes the agent react differently
to external input when it feels danger than when it feels at ease. To make such
adaptive behavior possible, the agent also needs to have the capability to deter-
mine when it is in danger.

Social and organizational knowledge are other examples of criteria that can
be used to control external influences. The importance of explicitly modelling
organizational awareness for coordination is argued by Oomes [14]. For example,
knowledge about the sender of a message is useful when deciding what to do
with the content. If we assume that an organization is implemented following a
methodology as Opera [2], organizational concepts are available in the beliefbase.
By using them in reasoning rules for influence control, we add the social knowl-
edge to the reasoning process of the agents. The use of trust between agents can
be modelled in the same way.

The third example of knowledge that can be used for autonomy adjustment
is knowledge about coordination requirements. Given that an agent acts in a
coordination mechanism, it can encounter environmental changes that influence
the coordination. For example, if an agent follows orders from a superior and the
communication fails at a certain moment, it can choose to increase its autonomy
in order to fulfill the goals.

A Dynamic Coordination Mechanism Using Adjustable Autonomy 95

We will conduct more experiments to develop general heuristics that an agent
can use to control external influences. Using those heuristics in the reasoning
rules for event processing, we want to combine single-agent decision-making and
multi-agent interaction to develop dynamic coordination mechanisms.

6 Conclusion

There are several ways to achieve coordination within an agent organization. The
approaches range from emergent coordination, where the actors are autonomous
and the coordination is implicitly implemented, to explicit coordination, such as
a hierarchical organization where the actors have no decision autonomy but just
follow the orders from their superiors. We have shown that there is not one best
way to coordinate in all situations. Complex and dynamic situations therefore
require a dynamic coordination mechanism.

We have implemented a dynamic coordination mechanism by providing the
actors with adjustable autonomy. An agent’s level of autonomy depends on the
influence of others on the reasoning process. The actors have reasoning rules
that control the external influences they experience. This way we have shown
some situations in which the actor can change its autonomy level based on local
knowledge. The agent uses the knowledge about event processing in its reasoning
process in addition to the task specific domain knowledge.

Further research should lead to more understanding about relevant knowlegde
for event processing. We want to develop general heuristics with which the agent
can determine its level of autonomy by controlling external influences.

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2),
277–296 (2000)

2. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in
Logic. Utrecht University, PhD Thesis (2004)

3. Barber, K.S., Martin, C.E.: Dynamic adaptive autonomy in multi-agent systems:
Representation and justification. International Journal of Pattern Recognition and
Artificial Intelligence 15(3), 405–433 (2001)

4. Castelfranchi, C.: Guarantees for autonomy in cognitive agent architecture. Intel-
ligent Agents (890), 56–70 (1995)

5. Falcone, R., Castelfranchi, C.: The human in the loop of a delegated agent: the
theory of adjustable social autonomy. IEEE Transactions on Systems, Man, and
Cybernetics, Part A 31(5), 406–418 (2001)

6. Verhagen, H.: Norm Autonomous Agents. Stockholm University, PhD Thesis
(2000)

7. Schurr, N., Marecki, J., Lewis, J., Tambe, M., Scerri, P.: The defacto system:
Training tool for incident commanders. In: AAAI, pp. 1555–1562 (2005)

8. Tambe, M., Scerri, P., Pynadath, D.: Adjustable autonomy for the realworld.
Journal of Artificial Intelligence Research (17), 171–228 (2002)

96 B. van der Vecht et al.

9. Martin, C.E., Barber, K.S.: Adaptive decision-making frameworks for dynamic
multi-agent organizational change. Autonomous Agents and Multi-Agent Sys-
tems 13(3), 391–428 (2006)

10. Dastani, M., Dignum, F., Meyer, J.J.C.: Autonomy and agent deliberation. In:
Nickles, M., Rovatsos, M., Weiß, G. (eds.) AUTONOMY 2003. LNCS (LNAI),
vol. 2969, pp. 114–127. Springer, Heidelberg (2004)

11. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings
of the First International Conference on Multiagent Systems, San Francisco, pp.
312–319 (1995)

12. Dastani, M., van Riemsdijk, B., Dignum, F., Meyer, J.J.: A programming
language for cognitive agents: Goal directed 3apl. In: Dastani, M., Dix, J.,
El Fallah-Seghrouchni, A. (eds.) PROMAS 2003. LNCS (LNAI), vol. 3067, pp.
111–130. Springer, Heidelberg (2004)

13. Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.C.: Agent programming
in 3apl. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

14. Oomes, A.H.J.: Organization awareness in crisis management. In: Proceedings of
the International Workshop on Information Systems on Crisis Response and Man-
agement (ISCRAM) (2004)

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 97–109, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Formalisation of
Dynamic Electronic Institutions

Eduard Muntaner-Perich and Josep Lluís de la Rosa Esteva

Agents Research Lab, Edifici PIV, Campus de Montilivi, 17071,
Universitat de Girona, Catalonia, Spain

{emuntane,peplluis}@eia.udg.edu

Abstract. This paper presents a formalisation of our Dynamic Electronic Insti-
tutions model. In our opinion Dynamic Electronic Institutions arise from the
convergence of two research areas: electronic institutions and coalition forma-
tion. We believe that these kinds of institutions are potentially important in
open-agent system applications because they are well suited to many applica-
tion domains in which autonomous agents have to collaborate and engage them-
selves in temporary alliances that require some regulatory measures. This paper
presents a brief summary of our previous work on dynamic institutions, intro-
duces the formalisation of our model, explains the process of turning a coalition
into a dynamic institution (foundation process), and describes our current and
future work.

Keywords: Open Agent Systems, Electronic Institutions, Coalition Formation.

1 Introduction

From a social point of view, it is easy to observe that the interactions between people
are often guided by institutions that help and provide us with structures for daily life
tasks. Institutions structure incentives in human exchange (political, social, or eco-
nomic). Somehow we could say that institutions represent the rules of the game in a
society or, more formally, are the human-devised constraints that shape human inter-
action [1].

The idea to use organizational metaphors to model systems was earlier proposed
[2, 3]. These approaches suggest structuring the agent society with roles and relation-
ships between agents. But the study of electronic institutions is a relatively recent
field (the first approach was [4]). The main idea is simple, and it could be summarized
by imagining groups of intelligent, autonomous and heterogeneous agents, which play
different roles, and which interact with each other under a set of norms, with the pur-
pose of satisfying individual goals and/or common goals. As a first impression, it
could seem that these norms are a negative factor which adds constraints to the sys-
tem, but in fact they reduce the complexity of the system, making the agents’ behav-
iour more predictable. Actually, this is completely true only assuming that agents
follow the rules that are created by such norms, and in Open Agent Systems, this is
not an assumption to be taken lightly.

98 E. Muntaner-Perich and J.L. de la Rosa Esteva

Research in Distributed Artificial Intelligence (DAI) has focused on the individual
behaviour of agents. But this agent-centred perspective is not useful in complex sys-
tems like open agent systems, where their components (agents) are not known a priori,
can change over time, and can be heterogeneous and exhibit very different behav-
iours. In these kinds of systems, this vision that is focused on the agent can cause the
emergent behaviour of the global system to be chaotic and unexpected. In critical
applications this can be a significant problem, and it is evident that it is necessary to
introduce regulatory measures which determine what things the agents can do, and
what they cannot. It is here where the institutions acquire importance [5].

In Noriega’s thesis [4], an abstraction of the notion of institution is introduced for
the first time. He is also the first to use the term agent-mediated electronic institution,
which he describes as: computational environments which allow heterogeneous
agents to successfully interact among them, by imposing appropriate restrictions on
their behaviours. Continuing and extending the ideas of Noriega’s thesis, there is
Rodríguez-Aguilar [5] who emphasizes the need for a formal framework which al-
lows to work with general electronic institutions.

From these first approaches to this area, to the actual lines of research, there have
been different European research groups working on similar subjects, each one with
its particular perspective and approach to the problem. At the moment, many efforts
are dedicated to this research area. The proof of this is that in 2003, five PhD theses
intimately related to this subject were presented. The theses are: [6, 7, 8, 9, 10].

These different approaches to electronic institutions have demonstrated how organ-
isational approaches are useful in open agent systems, but in our opinion, in some
application domains that require short to medium-term associations of agents regu-
lated by norms, classical electronic institutions still have several problems and limita-
tions. We have summarized these problems in the following list:

• All the approaches to electronic institutions are based on medium to long-term
associations and dependencies between agents. This characteristic is useful in
some application domains but it is a significant problem in other domains,
where changes in tasks, in information and in resources make temporary asso-
ciations (regulated by norms) necessary.

• Electronic institutions require a design phase (performed by humans). It is
necessary to automate this design phase in order to allow the emergence of
electronic institutions (without human intervention) in open agent systems.

• Agents can join and leave institutions, but how do these entrances and exits af-
fect the institutions’ norms and objectives? Could these norms and objectives
change over time?

• When an institution has fulfilled all its objectives, how can it dissolve itself?

In our opinion, these problems and limitations can be studied and possibly solved
with a coalition formation approach to electronic institutions, in order to develop
dynamic electronic institutions. This is the main objective of our research.

There is little previous work on dynamic electronic institutions: this idea has just
recently been introduced as a challenge for agent-based computing. It first appeared
when the term dynamic electronic institution appeared in a roadmap for agent tech-
nology [11].

 Towards a Formalisation of Dynamic Electronic Institutions 99

Our recent work in this area has involved the development of our dynamic elec-
tronic institutions model [12], and some exploratory work in two application domains:
Operations Other Than War simulation [13], and Digital Business Ecosystems [14].

This paper is organized as follows. In section 2 we explain the notion of Dynamic
Electronic Institutions and their lifecycle. Next, section 3 illustrates the formalisation
of each phase in our model, and our CBR approach to the foundation phase. Before
concluding, we discuss some related work in section 4. Finally, section 5 concludes
with discussion and future research.

2 Dynamic Electronic Institutions: The Model

We argue that Dynamic Electronic Institutions (DEIs from now on) can be described
as follows: emergent associations of intelligent, autonomous and heterogeneous
agents, which play different roles, and which are able to adopt a set of regulatory
components (norms, missions, coordination protocols, etc) in order to interact with
each other, with the aim of satisfying individual goals and/or common goals. These
formations are dynamic in the sense that they can be automatically formed, reformed
and dissolved, in order to constitute temporary electronic institutions on the fly.

There are several application domains that require short-term agent organisations
or alliances, in which DEIs could be applied. Some of them are: Digital Business
Ecosystems (we have addressed this topic in [14]), B2B Electronic Commerce, Mo-
bile Ad-Hoc Networks, simulation of Operations Other Than War [13], etc.

In our opinion DEIs should have a lifecycle made up of by three phases: Forma-
tion, Foundation and Fulfilment (We call this lifecycle “3F cycle” [12], see Figure 1):

1. Formation phase: This is the coalition formation phase. In this stage the objec-
tive is for automatic association between agents with the same (or similar) goals
to emerge. Other notions such as trust between agents should also be considered
as important factors in the coalition formation phase. A coalition formation
mechanism (protocol and strategies) is necessary to allow agents to form coali-
tions. We are not currently studying coalition formation mechanisms, because
we have focused our research on the foundation phase, but in our opinion there
are two approaches which introduce some interesting ideas and could be suitable
for being used in the formation phase of DEIs: Q-Negotiation (ForEV frame-
work) [15] and the CONOISE project [16].

2. Foundation phase: The process of turning the coalition into a temporary elec-
tronic institution. This phase is the real challenge, because the process of turn-
ing the coalition into a temporary electronic institution is not a trivial problem.
It requires the agents to adopt a set of components that regulate their interac-
tions. This must be an automated process, without any human intervention, so
agents must be able to reason and negotiate at a high level.

3. Fulfilment phase: This is the dissolution phase. When the institution has ful-
filled all its objectives, the association should be broken up. This phase occurs
because the association is no longer needed, or because the institution is no
longer making a profit. This subject has hardly been explored by current re-
search efforts, and most of the support functionalities need to be developed.

100 E. Muntaner-Perich and J.L. de la Rosa Esteva

Fig. 1. DEI construction phases (3F cycle)

One of these three phases has been poorly studied in the past: the foundation phase,
we are focusing our work on this phase.

3 Formalising the Model

This section presents a formalisation of our model of DEIs. Each phase of the model
is formalised, but we are principally focusing our efforts on the foundation phase. In
the following subsections we use a basic set theory notation. The term symbol refers
to a user-defined string (similar to a variable name), and the term expression is an
algebraic expression (possibly referencing constants, symbols and function calls).

3.1 The Formation Phase

This is the coalition formation phase. As we have said before, we are not currently
focusing our research on this phase, but we need to analyze some concepts in order to
be able to formalise the foundation phase.

We consider a population P of autonomous and heterogeneous agents (1), consist-
ing of a variable number N of individuals. In this context, a coalition is a subgroup C
of agents of P (2). Agents form a coalition because they need to work together to
achieve tasks in an environment. Their reason is because mutual profit can be gained
from sharing resources and redistributing tasks.

P = { a1, a2, ... aN } (1)

C ⊆ P (2)

At its simplest the problem can be defined as in [17]: “Given a population P of agents
and a list of tasks or goals T, select subgroups of agents S1, S2, S3… of P to address each
of the tasks in T”. In the general case, this problem is computationally intractable

 Towards a Formalisation of Dynamic Electronic Institutions 101

(NP-Hard). This is very easy to understand: given N agents and k tasks, there are k(2N-1)
different possible coalitions. The number of coalition configurations (different partitions
of the set of agents in coalitions) is of the order O(N(N/2)) [18]. Therefore, it is clear that
an exhaustive search of the coalition configuration space is not feasible when the number
of agents is large. Recent works in distributed artificial intelligence have resulted in dis-
tributed algorithms with computational tractability [17].

Fig. 2. The Foundation Phase

3.2 The Foundation Phase

We define foundation as the process of turning a coalition into a temporary electronic
institution (see Figure 2). This phase is a real challenge, and requires the agents to
automatically adopt a set of institutional elements that regulate their interactions.

Our perspective on this problem is that to construct an institution from zero without
human intervention may be too difficult, so we argue that an approach based on using
knowledge from previous cases (like Case Based Reasoning, CBR) could be interesting
and useful for solving this issue. Presently, we are directing our efforts in this direction.

Therefore, in our system, a stored case (institution case) refers to a problem situa-
tion and contains a description of a problem, and its solution (the institutional ele-
ments to be adopted), and a new case (coalition case) contains the description of the
problem to be solved. Case-based reasoning is a cycle, and there are four phases in the
process: Retrieve, Reuse, Revise and Retain.

With a CBR approach to the foundation process, when a coalition has been formed
and needs to turn itself into an institution, agents should consult their case database in
order to find the stored institution’s specification that adapts best to the present situa-
tion, and should then make the pertinent reforms to the selected specification in order
to obtain an institution that works correctly.

The first step in this process is to build a coalition case CC from the coalition C that
has been formed. We consider the coalition case as a tuple of different elements (4).

C = { a1, a2, ... ai } (3)

CC = < Ty, Tk, Ob, n, div, tr > (4)

The components of the coalition case are the elements that need to be taken into
account when we search the institution that adapts best to the present coalition. These
components are:

102 E. Muntaner-Perich and J.L. de la Rosa Esteva

• Ty (types): this component is the set of types of the agents in the coalition. Each
type is a symbol.

Ty =∪ i { type(ai) } (5)

• Tk (tasks): this component is the set of tasks of the agents in the coalition. Each
task is a symbol.

Tk = ∪ i { tasks(ai) } (6)

• Ob (objectives): this component is a set of objectives. These are not the objectives
of the coalition (coalition has no objectives; each agent has its own objectives).
These are a subgroup of the objectives of all the agents. More specifically, Ob is
the set of shared objectives, extracted from the intersection of the different sets of
objectives. We believe that shared objectives are an important element to take into
account when we are searching the institution that best adapts to the present coali-
tion. Each objective is an expression.

Ob = ∩ i { objectives(ai) } (7)

• n (number of agents): this component is the number of agents in the coalition.

n = |C| (8)

• div (diversity measure): this component is the diversity within the coalition with
respect to the objectives of the agents. The ideal would be to have a working
metric of behavioural diversity, but this general metric is yet to be found [19]. In
our model, diversity is measured only with respect to the objectives of the
agents, and by using an adaptation of Shannon’s entropy function:

Nt = total number of objectives: ∑i | objectives(ai)|

K = number of different types:

na = number of objectives of type a
Pa = na / Nt

div =
)),(min(log

)(log*

2

2

KNt

k
a PaPa∑−

(9)

• tr (internal trust): this component is the mean trust value. We calculate it as a dou-
ble summation: the first one is the sum of all the trust values for an agent with re-
spect to the other agents in the coalition; and the second is the sum of the mean
trust of all the agents. Existing models of coalition formation do not generally
consider trust, but we believe that trust is an important element. In our model, trust
between two agents represents the agent’s estimation (based on its previous ex-
perience) of how likely the other agent is to fulfill its cooperative commitments.

tr =
n

n
i n

n
j aatrust ji

∑
∑

= ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ =
0

0),(

(10)

 | ∪ i { type(ai) } |

 Towards a Formalisation of Dynamic Electronic Institutions 103

In our opinion, trust and diversity are important elements to be taken into account, be-
cause they capture valuable information of the coalition. We believe that if we are trying
to turn a coalition into a temporary institution, diversity and trust among agents should be
taken into account to find the institution’s specification that adapts best to the present
situation. Of course this is a conjecture that needs to be proved. Having this in mind, one
of our current efforts aims at developing a framework for DEIs that will help to test it.

When we have the coalition case (CC), the next step is to start the CBR process.
We need a previous-institutions base, which contains the knowledge of the system. In
our model this institutions base is called K (11). Each case of this base is an institution
case, IC (12), which contains a CC and the institutional elements (IE), that is, the
elements that have to be adopted to turn the coalition into a dynamic institution (13).

To initialise the system, an initial set of institution cases must be introduced into
the case base. Therefore, in the first CBR iterations the coalitions can reuse previous
institution cases. This set is important, and should capture some general and typical
associations among agents in the specific application domain. This process has to be
performed by humans, before starting up the system, and then the rest of the processes
should be automatic.

K = { IC1, IC2, ..., ICn } (11)

IC = < CC, IE > (12)

IE = < M, N, F, pr, ont > (13)

The institutional elements IE (13) are:

• M (Missions): sets of specific objectives for each agent, where each objective
is an expression.

• N (Norms): these are the norms to be adopted by the coalition. These can be
obligations (obl), permissions (per), or prohibitions (pro). Table 1 shows the
internal structure of these norms.

Table 1. Structure of each norm of N, with examples

Norm
Id

Condition
(expression)

Bearer
 (agent type)

Type
(obl, per, pro)

Mission
or Task

Deadline

N1 Null Employee Obl M3 <end
N2 (a1>10) ∧ (b2<5) Employer Obl M1 <end

• F (Fulfilment Requirements): this component refers to future requirements for
the fulfilment phase. It includes:

o FC (Fulfilment Conditions): these are the conditions that allow the
execution of the fulfilment process. Each condition is an expression.

o FN (Fulfilment Norms): these are the norms (obligations, permis-
sions and prohibitions) that have to be followed during the fulfilment
phase. FN and N have the same internal structure.

• pr (Protocol): this is the protocol to be adopted by the coalition. It will steer
the communication processes within the dynamic institution.

• ont (Ontology): an ontology to be adopted by all agents in the coalition (of
course if an agent already has the ontology there is not need to adopt it).

104 E. Muntaner-Perich and J.L. de la Rosa Esteva

The CBR process compares the present coalition case (CC) with the coalition case
included in each institution case (IC). This process requires some similarity rules.
Each component of the CC has a specific similarity measure, and there is global simi-
larity that corresponds to a weighted sum of partial similarities (14).

Sim = (w1*SimTy + w2*SimTk + w3*SimO + w4*SimN + w5*SimDiv + w6*SimTr) (14)

The weights used in the similarity function depend on the specific implementation,
and the application domain. They are performance parameters that need to be empiri-
cally adjusted.

When the institution case (IC) that best adapts to the coalition case (CC) is found,
an adjustment of the institutional elements (IE) is required in order to allow the agents
of the new coalition to re-use them. This is not a simple process; in fact it can become
very complicated, and it depends partially on the specific implementation of the
model. The following are some general guidelines:

• The ontology ont can be directly adopted by the coalition. We assume that all
the agents in the system are using the same ACL (Agent Communication Lan-
guage) and are able to work with ontologies.

• The protocol pr could require a more sophisticated adoption process. If the pro-
tocol to be adopted refers to types of agents that do not exist in the new coali-
tion, we need to modify the protocol. There are different possible ways to do it,
but we believe that a simple solution could be to maintain a similarity table
within K, which informs about the similarity between the different types of
agents. This way we can replace one type of agent in the protocol with the type
of agent that better fits the context requirements.

• The modification of norms N is also a hard task. If the bearer of the norm refers to
a type of agent that does not exist in the coalition we basically have two options:
to eliminate this norm, or to find the type of agent in the coalition that is more
similar to the bearer (the same process that has been proposed for the protocol
modification could be used). The modification of norms can also consider an in-
ternal modification of the norm, more specifically of its conditions and missions.
This kind of modification implies more sophisticated adaptation processes. We
can consider the need for more similarity tables (for missions, constants and global
variables), or another option could be to consider a genetic algorithm for the esti-
mation of these parameters.

• The modification and adoption of the missions M and the fulfilment require-
ments FR imply similar changes like those described above for N.

Foundation starts by building a coalition case CC. The next step is the CBR proc-
ess that can be expressed as a function (15) that, from a coalition case CC and the
institutions base K, produces the adapted institutional elements IE. We need another
process that adds these IE to the coalition and finally produces the DEI. Therefore, we
can conceive the global foundation process as a function that, from a coalition C and
K, produces the DEI (16).

CBR: (CC, K) → IE (15)

foundation: (C, K) → DEI (16)

 Towards a Formalisation of Dynamic Electronic Institutions 105

With this formalisation of the foundation phase we also can consider a re-foundation
process, which facilitates reconfiguring the dynamic institution when member changes
or environment changes occur. Currently, reorganisation within a multi-agent system is
a topic that is being actively discussed. Section 4 cites some related work.

Figure 3 shows a diagram of the foundation process.

Fig. 3. The Foundation phase

3.3 The Fulfilment Phase

This is the dissolution phase. When the fulfilment conditions FC are achieved, the
association should be broken up. This phase occurs because the association is no
longer needed, or because the institution is no longer making a profit. Within this
phase the agents should distribute the profits obtained (following the fulfilment norms
FN) and store relevant information for future DEIs (a new institution case IC).

This subject has hardly been explored by current research efforts, and most of the
support functionalities need to be developed. We believe that there are two important
steps in this phase: the construction of the new institution case IC and the update of
the institutions base K. The result of this process is an updated institutions base K’,
that includes the new institution case (17).

fulfilment: (DEI, K) → K’ (17)

3.4 Properties of the Formalised Model

Taking into account the above presented formalisation, we argue that DEIs are:

• Dynamic: DEIs are dynamic in the sense that they can be automatically formed,
reformed and dissolved, in order to constitute regulated associations of agents
on the fly.

106 E. Muntaner-Perich and J.L. de la Rosa Esteva

• Automatic: DEIs don’t require a design phase performed by humans, although
an initial set of institution cases (IC) must be introduced into the case base be-
fore starting up the system, as it has been said before.

• Temporary: DEIs are conceived as short to medium-term associations. They ac-
quire the fulfilment requirements during the foundation phase.

• Adaptive: CBR provides adaptive solutions by systematic comparison between
current coalition and the stored institutions.

4 Related Work

There is little previous work on DEIs. Currently there is a work in progress [20, 21]
that is focused on the extension of electronic institutions with autonomic capabilities
to allow them to yield a dynamical answer to changing circumstances, through the
adaptation of their norms. The authors present a learning model in two steps: a genetic
algorithm to learn the best parameters for a population of agents (simulation), and a
self-adaptation model based on CBR (run-time). It is a very interesting approach that
could complement our work.

In [22] the authors presented a framework (ORCAS) for developing multi-agent
systems that maximizes the reuse of agent capabilities across multiple application
domains, and supports the configuration of agent teams. The agent infrastructure that
they present is developed according to the electronic institutions formalism. Recently
they presented another work on dynamic institutions for teamwork [23] where a case-
based learning mechanism to form new agent teams by reusing previous team-designs
for new problems is presented.

Recently, there is an increasing interest on organisational self-design. In [24], the
authors affirm that “we must move from an agent-centric view of coordination and
control to an organisation-centric one. However, in order to be able to adapt and
evolve, this latter will need to coexist with dynamic and (partially) emergent organisa-
tion, based on the former”. However, although there are many practical applications
being developed, there is need for formal theories to describe dynamic organisational
structures.

In [25], a general view of the reorganisation problem, within a multi-agent system,
is presented. The authors present a reorganisation model where agents have autonomy
to change their organisations. Their approach is based on the MOISE+, which is an
organisational model for multi-agent systems based on notions like roles, groups, and
missions.

An interesting approach to organisational design is proposed in [26], where the au-
thors present a distributed algorithm that uses an underlying organisation to guide
coalition formation.

Our approach is closely related to the concept of Contractual Agent Societies [27],
a metaphor for building open information systems where agents configure themselves
automatically through a set of dynamically negotiated social contracts. In [14] we
have studied the adoption of institutional components through an electronic contract.

In this article we have not examined Virtual Organisations [15, 16, 28]. This con-
cept is closely related to electronic institutions and coalition formation. In fact, in our
opinion, VOs could be described in terms of DEIs, although their architectures and

 Towards a Formalisation of Dynamic Electronic Institutions 107

implementations are usually directed to a specific application domain: B2B electronic
commerce. We believe that in someway VOs could be considered as a sub-group of
DEIs which are more general. In one study [15] the authors work towards the devel-
opment of an agent-based electronic institution providing a virtual normative envi-
ronment that assists and regulates the creation and operation of VOs. Their work
confirms our idea, because they prove that VOs can be conceived as DEIs. An inter-
esting approach to VOs is proposed in [28], where authors try to formalise VOs and
contracts based on commitments.

Finally, there is an approach that studies the dynamic selection of coordination
mechanisms among autonomous agents [29]. The authors presented a framework that
enables autonomous agents to dynamically select the mechanism they employ in order
to coordinate their inter-related activities.

5 Conclusions and Future Work

In this article, we have presented a brief summary of our previous work on DEIs (the
general model and the CBR approach) and we have introduced a formalisation of our
DEIs model. This formalisation provides us with a preliminary theoretical framework
for working with institutions that are dynamic, automatic, temporary, and adaptive.

In our previous works we presented an exploratory work [13] that was focused on
the simulation of Operations Other Than War (OOTW) using a first version of our
DEIs model. Our first experiments were very simple, but the preliminary results were
encouraging. They used a centralized CBR approach on the OOTW domain, and
showed that the foundation phase is feasible, and that the DEI lifecycle can be fully
implemented.

Currently, we are centring our efforts on the implementation of a framework for
DEIs. It will follow our general model and the formalisation presented in this paper.
We are using Repast to implement it, and we would like to use it in another applica-
tion domain: digital business ecosystems (DBEs). We have recently presented a work
in this direction [14].

We are using a CBR approach in the foundation phase, but we do not rule out al-
ternative approaches like meta-institutions or genetic algorithms. A Meta-Institution
could provide general modules (norms, ontologies, protocols, etc.), which have to be
instantiated in order to build specific DEIs.

At this moment, we are involved in the ONE Project (Open Negotiation Environ-
ment [30]), which tries to enrich digital business ecosystems with an open, decentral-
ised negotiation environment. As we have said before, we would like to use our DEIs
model to enable these digital business ecosystems.

Acknowledgments. This research was partially funded by EU project Nº 34744 ONE:
Open Negotiation Environment, FP6-2005-IST-5, ICT-for Networked Businesses.

References

1. North, D.C.: Economics and Cognitive Science. Economic History 9612002, Economics
Working Paper Archive at WUSTL (Washington University in St. Louis) (1996)

108 E. Muntaner-Perich and J.L. de la Rosa Esteva

2. Pattison, H.E., Corkill, D.D., Lesser, V.R.: Distributed Artificial Intelligence, chapter In-
stantiating Descriptions of Organizational Structures, pp. 59–96. Pitman Publ. (1987)

3. Werner, E.: Distributed Artificial Intelligence, chapter Cooperating Agents: A Unified
Theory of Communication and Social Structure, pp. 3–36. Pitman Publ. (1987)

4. Noriega, P.: Agent Mediated Auctions. The Fishmarket Metaphor. Ph.D. Thesis, Artificial
Intelligence Research Institute (IIIA), Universitat Autònoma de Barcelona (1997)

5. Rodríguez-Aguilar, J.A.: On the design and construction of Agent-mediated Electronic In-
stitutions. Ph.D. thesis, Artificial Intelligence Research Institute (IIIA), Universitat
Autònoma de Barcelona (2001)

6. Esteva, M.: Electronic Institutions: From specification to development. PhD thesis, Artifi-
cial Intelligence Research Institute (IIIA), Universitat Politècnica de Catalunya (2003)

7. Dignum, V.: A model for organizational interaction. Based on Agents, Founded in Logic.
Ph.D. Thesis. Dutch Research School for Information and Knowledge Systems, Utrecht
University (2003)

8. Fornara, N.: Interaction and communication among autonomous agents in multiagent sys-
tems, Ph.D. Thesis, Università della Svizzera italiana, Facoltà di Scienze della Comuni-
cazione (2003)

9. López y López, F.: Social power and norms. Impact on Agent Behaviour. Ph.D. Thesis,
University of Southampton, Department of Electronics and Computer Science (2003)

10. Vázquez-Salceda, J.: The role of Norms and Electronic Institutions in Multi-Agent Sys-
tems applied to complex domains. The HARMONIA framework. PhD thesis, Universitat
Politècnica de Catalunya, Dept. Llenguatges i Sistemes Informàtics. Artificial Intelligence
Dissertation Award, ECCAI (2003)

11. Luck, M., McBurney, P., Preist, C.: Agent Technology: Enabling Next generation Com-
puting. A Roadmap for Agent Based Computing. AgentLink II (2003)

12. Muntaner-Perich, E., de la Rosa, J.Ll.: Towards Dynamic Electronic Institutions: from
agent coalitions to agent institutions. In: Hinchey, M.G., Rago, P., Rash, J.L., Rouff, C.A.,
Sterritt, R., Truszkowski, W. (eds.) WRAC 2005. LNCS (LNAI), vol. 3825, pp. 109–121.
Springer, Heidelberg (2006)

13. Muntaner-Perich, E., de la Rosa, J.Ll., Carrillo, C., Delfín, S., Moreno, A.: Dynamic Elec-
tronic Institutions for Humanitarian Aid Simulation, Publ. in Frontiers in AI and Applica-
tions - AI Research & Development, vol. 146, pp. 239–246. IOS Press, Amsterdam (2006)

14. Muntaner-Perich, E., de la Rosa, J.Ll.: Using Dynamic Electronic Institutions to Enable
Digital Business Ecosystems. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier,
O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp.
259–273. Springer, Heidelberg (2007)

15. Rocha, A.P., Lopes Cardoso, H., Oliveira, E.: Contributions to an Electronic Institution
supporting Virtual Enterprises’ life cycle. In: Putnik e M.M. Cunha, G. (ed.), Virtual En-
terprise Integration: Technological and Organizational Perspectives, Idea Group Inc., pp.
229–246 (in press, 2005)

16. Dang, V.D.: Coalition Formation and Operation in Virtual Organisations, PhD Thesis.
School of Electronics and Computer Science, University of Southampton (2004)

17. Klusch, M., Gerber, A.: Dynamic coalition formation among rational agents. IEEE Intelli-
gent Systems 17(3), 42–47 (2002)

18. Shehory, O.: Coalition Formation: Towards Feasible Solutions. In: Mařík, V., Müller, J.P.,
Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 4–6. Springer, Hei-
delberg (2003)

 Towards a Formalisation of Dynamic Electronic Institutions 109

19. Lybäck, D.: Transient diversity in multi-agent systems. Master’s thesis, Department of
Computer and Systems Sciences, Stockholm University and the Royal Institute of Tech-
nology (1999)

20. Bou, E., López-Sánchez, M., Rodriguez-Aguilar, J.A.: Norm adaptation of autonomic elec-
tronic institutions with multiple goals. International Transactions on Systems Science and
Applications 1(3), 227–238 (2006)

21. Bou, E., López-Sánchez, M., Rodriguez-Aguilar, J.A.: Self-adaptation in Autonomic Elec-
tronic Institutions through Case-Based Reasoning. In: Proceedings of the MA4CS satellite
Workshop: Multi-Agents for modelling Complex Systems, Dresden, Germany (October 4,
2007)

22. Gómez, M., Plaza, E.: ORCAS: Open, Reusable and Configurable Multi-Agent Systems.
In: Proc. 3rd Int. Joint Conference in Autonomous Agents and Multiagent Systems (2004)

23. Gómez, M., Plaza, E.: Dynamic Institutions for Teamwork. In: Sichman, J.S., Padget, J.,
Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS(LNAI), vol. 4870, pp. 155–170.
Springer, Heidelberg (2008)

24. Sichman, J.S., Dignum, V., Castelfranchi, C.: Agents´ organizations: A concise overview.
Journal of the Brazilian Computer Society 11(1), 3–8 (2005)

25. Hübner, J.F., Sichman, J.S., Boissier, O.: Using the MOISE
+ for a Cooperative Framework

of MAS Reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI),
vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

26. Horling, B., Lesser, V.: A Survey of Multi-Agent Organizational Paradigms. The Knowl-
edge Engineering Review 19(4), 281–316 (2005)

27. Dellarocas, C.: Contractual Agent Societies: Negotiated shared context and social control
in open multi-agent systems. In: Proc. WS on Norms and Institutions in Multi-Agent Sys-
tems, Autonomous Agents-2000, Barcelona (2000)

28. Udupi, Y.B., Singh, M.P.: Contract Enactment in Virtual Organizations: A Commitment-
Based Approach. In: Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI), Boston, pp. 722–727. AAAI Press, Menlo Park (2006)

29. Excelente-Toledo, C.B., Jennings, N.R.: The dynamic selection of coordination mecha-
nisms. Autonomous Agents and Multi-Agent Systems 9(1-2), 55–85 (2004)

30. ONE Project.: EU project Nº 34744, ONE: Open Negotiation Environment (2007), http://
one-project.eu

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 110–124, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Large-Scale Organizational Computing Requires
Unstratified Reflection and Strong Paraconsistency

Carl Hewitt

MIT EECS (Emeritus)
carlhewitt@alum.mit.edu

Abstract. Organizational Computing is a computational model for using the
principles, practices, and methods of human organizations. Organizations of
Restricted Generality (ORGs) have been proposed as a foundation for Organiza-
tional Computing. ORGs are the natural extension of Web Services, which are
rapidly becoming the overwhelming standard for distributed computing and ap-
plication interoperability in Organizational Computing. The thesis of this paper
is that large-scale Organizational Computing requires reflection and strong
paraconsistency for organizational practices, policies, and norms.

Strong paraconsistency is required because the practices, policies, and norms
of large-scale Organizational Computing are pervasively inconsistent. By the
standard rules of logic, anything and everything can be inferred from an incon-
sistency, e.g., “The moon is made of green cheese.” The purpose of strongly
paraconsistent logic is to develop principles of reasoning so that irrelevances
cannot be inferred from the fact of inconsistency while preserving all natural in-
ferences that do not explode in the face of inconsistency.

Reflection is required in order that the practices, policies, and norms can mutu-
ally refer to each other and make inferences. Reflection and strong paraconsis-
tency are important properties of Direct Logic [Hewitt 2007] for large software
systems. Gödel first formalized and proved that it is not possible to decide all
mathematical questions by inference in his 1st incompleteness theorem. However,
the incompleteness theorem (as generalized by Rosser) relies on the assumption of
consistency! This paper proves a generalization of the Gödel/Rosser incomplete-
ness theorem: theories of Direct Logic are incomplete. However, there is a fur-
ther consequence. Although the semi-classical mathematical fragment of Direct
Logic is evidently consistent, since the Gödelian paradoxical proposition is self-
provable, every theory in Direct Logic has an inconsistency!

Keywords: Co-ordination, Concurrency, Direct Logic, Inconsistency, Institutions,
Mental Agents, Norms, Organizational Computing, ORGs (Organizations of Re-
stricted Generality), Norms, Paraconsistency, Policies, Practices, Reflection.

1 Introduction

Organizational Computing is the metaphor of using an organizational model for com-
putation; i.e., computers using the principles, methods and practices of human organi-
zations. Organizations of Restricted Generality (ORGs) have been proposed as a
foundation for Organizational Computing [Hewitt and Inman 1991]. ORGs are the

 Large-Scale Organizational Computing Requires Unstratified Reflection 111

natural extension of Web Services, which are rapidly becoming the overwhelming
standard for distributed computing and application interoperability in Organizational
Computing. Microsoft, IBM, Oracle, SAP, and just about every Fortune 500 com-
pany are betting on Web Services.

The plan of this paper is as follows:

1. Introduce Organizational Computing and ORGs (Organizations of Restricted
Generality) and describe the principles and practices by which they operate.

2. Develop the thesis that inconsistency is the norm for large-scale Organiza-
tional Computing.

3. Explain the limitations of classical logical reasoning for inconsistent information.
4. Introduce a system of Direct Logic1 that provides inference capabilities needed

for large-scale Organizational Computing.

2 Organizational Computing

Organizational Computing is a computational model for using principles, practices,
and methods of human organizations. Organizations of Restricted Generality (ORGs)
have been proposed as a foundation for Organizational Computing. In general

• ORGs mirror the structure of large-scale human organizations.
• ORGs are a natural extension of Web Services, which are the standard for

distributed computing and software application interoperability in large-scale
Organizational Computing.

• ORGs are structured by Organizational Commitment [Jennings 1993;
Noriega 1997; Singh and Huhns 2005], which is a special case of Physical
Commitment [Hewitt 2006b] that is defined to be information pledged.

• In many cases, humans will take part in the operation of an ORG. For exam-
ple, in a credit card ORG, a particular credit decision may be reviewed by a
human before being decided.

3 Inconsistency Is the Norm in Large-Scale Organizational
Computing

The development of Organizational Computing and the extreme dependence of our
society on these systems have introduced new phenomena. These systems have perva-
sive inconsistencies among and within the following:

1 Direct Logic is called “direct” due to considerations such as the following:

• Direct Logic does not incorporate general indirect proof in a theory T. Instead it only al-

lows “direct” forms of indirect proof, e.g., (Ψ├
T
 ¬Ψ) → (├

T
 ¬Ψ). See discussion below.

• In Direct Logic, paraconsistent theories speak directly about their own provability re-
lation rather than having to resort to indirect statements in a meta-theory.

• Inference of Φ from Ψ in a theory T (Ψ├
T
 Φ) is “direct” in the sense that it does not

automatically incorporate the contrapositive i.e., it does not automatically incorporate

(¬Φ ├
T
 ¬Ψ). See discussion below.

112 C. Hewitt

• Norms that express how systems can be used and tested in practice.
• Policies that express over-arching justification for systems and their technologies.
• Practices that express implementations of systems.

Different parties (management, engineering, marketing, sales, etc.) are responsible
for constructing, evolving, justifying and maintaining documentation, use cases, and
code for large, human-interaction, Organizational Computing systems. In specific
cases any one consideration can trump the others. Sometimes debates over inconsis-
tencies among the parts can become quite heated, e.g., among engineering, marketing,
and sales. In large Organizational Computing systems, policies, practices, and
norms all co-evolve to eliminate old inconsistencies and produce systems with new
inconsistencies. However, no one knows what they are or where they are located!

Furthermore there is no evident way to divide up the code, documentation, and use
cases into meaningful, consistent microtheories for human-computer interaction.
Organizations such as Microsoft, the US government, and IBM have tens of thou-
sands of employees pouring over hundreds of millions of lines of documentation,
code, and use cases attempting to cope with their Organizational Computing Systems.
In the course of time almost all of this code will interoperate using Web Services. A
large Organizational Computing system is never done [Rosenberg 2007].

Adapting a metaphor that Karl Popper [1962] used for science, the bold structure
of a large Organizational Computing system rises, as it were, above a swamp. It is
like a building erected on piles. The piles are driven down from above into the
swamp, but not down to any natural or given base; and when we cease our attempts to
drive our piles into a deeper layer, it is not because we have reached bedrock. We
simply pause when we are satisfied that they are firm enough to carry the structure, at
least for the time being. Or perhaps we do something else more pressing. Under some
piles there is no rock. Also some rock does not hold.

The thinking in almost all scientific and engineering work has been that models
(also called theories or microtheories) should be internally consistent, although they
could be inconsistent with each other.

Paraconsistency Has Been Around for a While. So What’s New?
Within mathematics paraconsistent2 logic was developed to deal with inconsistent
theories. The idea of paraconsistent logic is to be able to make inferences from incon-
sistent information without being able to derive all propositions, property called “sim-
ple paraconsistency” in this paper in contrast to “strong paraconsistency” which is
discussed below.

The most extreme form of simple paraconsistent mathematics is dialetheism [Priest
and Routley 1989] which maintains that there are true inconsistencies in mathematics
itself e.g., the Liar Paradox. However, mathematicians (starting with Euclid) have
worked very hard to make their theories consistent and inconsistencies have not been
an issue for most working mathematicians. As a result:

2 Name coined by Francisco Miró Quesada in 1976 [Priest 2002, pg. 288].

 Large-Scale Organizational Computing Requires Unstratified Reflection 113

• Since inconsistency was not an issue, mathematical logic focused on the issue
of truth and a model theory of truth was developed [Dedekind 1888,
Löwenheim 1915, Skolem 1920, Gödel 1930, Tarski and Vaught 1957, Hodges
2006]. More recently there has been work on the development of an unstratified
logic of truth [Leitgeb 2007, Feferman 2007a].3

• Simple Paraconsistent logic somewhat languished for lack of subject matter.
The lack of subject matter resulted in simple paraconsistent proof theories
that were for the most part so awkward as to be unused for mathematical
practice.4

Consequently mainstream logicians and mathematicians have tended to shy away
from simple paraconsistency.

One of the achievements of Direct Logic™ is the development of an unstrati-
fied reflective strongly paraconsistent inference system with mathematical in-
duction that does minimal damage to traditional natural deductive logical
reasoning.

• Previous simple paraconsistent logics have not been satisfactory for the pur-
poses of Software Engineering because of their many seemingly arbitrary vari-
ants and their idiosyncratic inference rules and notation. For example (according
to Priest [2006]), most simple paraconsistent and relevance logics rule out Dis-
junctive Syllogism ((Φ∨Ψ), ¬Φ ├ Ψ).5 However, Disjunctive Syllogism seems
entirely natural for use in Software Engineering!

• The basic idea of Strong Paraconsistency is that no nontrivial inferences should
be possible from the mere fact of an inconsistency.

By the principle of simple paraconsistency, in the empty theory ⊥ (which has
no axioms), there is a proposition Ψ such that P, ¬ P ⊬⊥ Ψ6.

However, for the purposes of reasoning about large software systems, a
stronger principle is needed. The principle of strong paraconsistency is stronger
than simple paraconsistency in that it requires P, ¬ P, Q ⊬⊥ ¬ Q because the
inconsistency between P and ¬ P is not relevant to Q.

3 Of course, truth is out the window as a semantic foundation for the inconsistent theories of

large software systems!
4 However, R-Mingle (Dunn, Meyer, Routley, etc.) is a paraconsistent logic that may be more

promising. The author is collaborating with Mike Dunn to investigate the relationship of
R-Mingle to the propositional fragment of Direct Logic (i.e. the fragment of Direct Logic re-
stricted to negation, implication, conjunction, and disjunction).

5 Indeed according to Routley [1979] “The abandonment of disjunctive syllogism is indeed the
characteristic feature of the relevant logic solution to the implicational paradoxes.”

6 Using the notation ├
T
 to mean “infers in the theory T.” Note that the theories of Direct Logic

are “open” in the sense of open-ended schematic axiomatic systems [Feferman 2007b]. The
language of a theory can include any vocabulary in which its axioms may be applied, i.e., it is
not restricted to a specific vocabulary fixed in advance (or at any other time). Indeed a theory
can receive new information at any time [Hewitt 1991, Cellucci 1992].

114 C. Hewitt

Of course, the following trivial inference is possible event with strong para-
consistency: P, ¬ P ├⊥ (Q ├⊥ ¬ P) and so forth.

4 Direct Logic

Direct Logic7 is a powerful inference system for large-scale Organizational Comput-
ing with the following goals [Hewitt 2006a 2007a]:8

• Provide a strongly paraconsistent unstratified reflective mathematical founda-
tion for inference and reflection in large-scale Organizational Computing. Un-
stratified inference and reflection means that Direct Logic is its own metatheory.

• Formalize a notion of “direct” inference for strongly paraconsistent theories.
• Support all “natural” deductive inference in strongly paraconsistent theories with the

exception of general Proof by Contradiction and Disjunction Introduction.9
• Provide increased safety in reasoning about large-scale Organizational Comput-

ing using strongly paraconsistent theories.

Multiple ORGs can make use of Direct Logic in a distributed decentralized fash-
ion using a network of multiple strongly paraconsistent theories. There is no require-
ment for an ORG to maintain a unified coherent mental state (as in Mental Agents
[Hewitt 2007b]).

Direct Logic is Based on Conviction Rather Than Truth
Indirect inference has played an important role in science (emphasized by Karl Pop-
per [1962]) as formulated in his principle of refutation which in its most stark form is
as follows:

If ├
T ¬ Ob for some observation Ob, then it can be concluded that T is re-

futed (in a theory called Popper), i.e., ├Popper ¬T.

Partly in reaction to Popper, Lakatos [1967, §2]) calls the view below Euclidean
(although there is, of course, no claim concerning Euclid’s own orientation):

“Classical epistemology has for two thousand years modeled its ideal of a
theory, whether scientific or mathematical, on its conception of Euclidean ge-
ometry. The ideal theory is a deductive system with an indubitable truth-
injection at the top (a finite conjunction of axioms)—so that truth, flowing down
from the top through the safe truth-preserving channels of valid inferences, in-
undates the whole system.”

Since truth is out the window for inconsistent theories, we have the following
reformulation:

Inference in a theory T (├
T

) carries conviction from antecedents to conse-
quents in chains of inference.

7 Direct Logic is distinct from the Direct Predicate Calculus [Ketonen and Weyhrauch 1984].
8 How these goals are realized is described in the appendix to this paper.
9 In this respect, Direct Logic differs from Quasi-Classical Logic [Besnard and Hunter 1995]

for applications in information systems, which does include Disjunction Introduction.

 Large-Scale Organizational Computing Requires Unstratified Reflection 115

Implication in Direct Logic
Lakatos characterizes his own view as quasi-empirical:

“Whether a deductive system is Euclidean or quasi-empirical is decided by
the pattern of truth value flow in the system. The system is Euclidean if the
characteristic flow is the transmission of truth from the set of axioms ‘down-
wards’ to the rest of the system—logic here is an organon of proof; it is
quasi-empirical if the characteristic flow is retransmission of falsity from the
false basic statements ‘upwards’ towards the ‘hypothesis’—logic here is an or-
ganon of criticism.”

Consequently: Ψ → Φ ├
T
 (Ψ├

T
 Φ) ∧ (¬Φ ├

T
 ¬Ψ). Thus we have the

following principle:

Implication in a theory T (→

) carries conviction both ways10 between antece-

dents and consequents in chains of implication.

Thus, in Direct Logic, implication (→

), rather than inference (├

T
), supports

Lakatos quasi-empiricism

The Boolean operators ¬, ∨ and ∧ form the usual Boolean algebra11 (with double
negation elimination, associativity, commutativity, distributivity, idempotence, and
De Morgan’s laws)12 as well as the usual equivalences related to implication. How-
ever, Direct Logic also includes the non-Boolean ├

T
 with the following holding:

├
T
 (Ψ ∨

¬Ψ)

(Ψ ∨ Φ) ├
T
 (¬Ψ├

T
 Φ) ∧ (¬Φ├

T
 Ψ)

(Ψ ∨ Φ), (Ψ├
T

Θ), (Φ├
T

Θ) ├
T

 Θ

Direct Logic Uses Strong Paraconsistency to Facilitate Theory Development
Strongly paraconsistent theories can be easier to develop than classical theories be-
cause perfect absence of inconsistency is not required. In case of inconsistency, there
will be some propositions that can be both proved and disproved, i.e., there will be
arguments both for and against the propositions.

A classic case of inconsistency occurs in the novel Catch-22 [Heller 1995] which
states that a person “would be crazy to fly more missions and sane if he didn't, but if
he was sane he had to fly them. If he flew them he was crazy and didn't have to; but if

10 Called “both ways” because both (Ψ├

T Φ) and (¬Φ├
T
 ¬Ψ) can be inferred from Ψ→ Φ.

11 But without a greatest and least element since there is no TRUE and FALSE.
12 See the appendix for details.

Direct Logic defines implication → for a theory T in terms of negation and disjunction

 in the usual way as follows: Ψ → Φ ≅ ¬ (Ψ ∧ ¬Φ).
 ()

116 C. Hewitt

he didn't want to he was sane and had to. Yossarian was moved very deeply by the
absolute simplicity of this clause of Catch-22 and let out a respectful whistle. ‘That's
some catch, that Catch-22,’ he observed.”
 So in the spirit of Catch-22, consider the follow axiomization of the above:13

1. Able[p, Fly], ¬Fly[p] ├Catch-22 Sane[p] axiom

2. Sane[p] ├Catch-22 Obligated[p, Fly] axiom

3. Sane[p], Obligated[p, Fly] ├Catch-22 Fly[p] axiom
4. Able[Yossarian, Fly] axiom

5. ¬Fly[Yossarian] ├Catch-22 Fly[Yossarian] from 1 through 4
6. Fly[Yossarian] from 5 via proof by contradiction

7. Fly[p] ├Catch-22 Crazy[p] axiom

8. Crazy[p] ├Catch-22 ¬Obligated[p, Fly] axiom

9. Sane[p], ¬Obligated[p, Fly] ├Catch-22 ¬Fly[p] axiom
10. Sane[Yossarian] axiom
11. ¬Fly[Yossarian] from 6 through 10

Thus there is an inconsistency in the above theory Catch-22 in that:

6. ├Catch-22 Fly[Yossarian]

11. ├Catch-22 ¬ Fly[Yossarian]

Various objections can be made against the above axiomization of the theory

Catch-22.14 However, Catch-22 illustrates several important points:

• Even a very simple microtheory can engender inconsistency
• Strong paraconsistency facilitates theory development because a single in-

consistency is not disastrous.
• Direct Logic supports fine grained reasoning because inference does not

necessarily carry conviction in the contrapositive direction. For example, the

general principle “A person who flies is crazy.” (i.e., Fly[p] ├Catch-22 Crazy[p])
does not support the interference of ¬Fly[Yossarian] from ¬Crazy[Yossarian].
E.g., it might be the case that Fly[Yossarian] even though it infers
Crazy[Yossarian] contradicting ¬Crazy[Yossarian].

• Even though the theory Catch-22 is inconsistent, it is not meaningless.

Reification in Organizational Computing
Every proposition Ψ has reification that is given by ⎡Ψ⎤∈Sentences⊆XML. Simi-
larly every s∈Sentences has an anti-reification that is the proposition given by ⎣s⎦.
The following holds:

13 The axiomatization makes use of higher order capabilities. For example a predicate like

Able can take arguments Yossarian and the predicate Fly to form the proposition
Able[Yossarian, Fly].

14 Both Crazy[Yossarian] and Sane[Yossarian] can be inferred from the axiomatization, but
this per se is not inconsistent.

 Large-Scale Organizational Computing Requires Unstratified Reflection 117

Reification and anti-reification are needed for large Organizational Computing
systems so that practices, policies, and norms can mutually speak about what has
been said and its meaning.
 The practices, policies, and norms are becoming increasingly mutually reflective in
that they refer to and make use of each other. For example,

• Practices can be inferred by specialization of policies and can be dynamically
checked against policies. Also practices can be dynamically searched for and
invoked on the basis of policies.

• Policies can be checked against each other and against practices using model
checking.

• Norms can be generated by inference from policies and proposed by generaliza-
tion from practices.

Disadvantages of Stratified Reflection
To avoid inconsistencies in mathematics (e.g., Liar Paradox, Russell’s Paradox,
Curry’s Paradox, etc.), some restrictions are needed around self-reference. The ques-
tion is how to do it [Feferman 1984a, Restall 2006].

The approach which is currently standard in mathematics is the Tarskian frame-
work of stratifying theories into a hierarchy of metatheories in which the semantics of
each theory is formalized in its metatheory [Tarski and Vaught 1957].

According to Feferman [1984a]:

“…natural language abounds with directly or indirectly self-referential yet ap-
parently harmless expressions—all of which are excluded from the Tarskian
framework.”

Large Organizational Computing systems likewise abound with directly or indi-
rectly self-referential statements in reasoning about their use cases, documentation,
and code that are excluded by the Tarskian framework. Consequently the Tarskian
framework is not very suitable for Organizational Computing.

Logical Reflection Principle for Organizational Computing
The Logical Reflection Principle for Direct Logic is that if Ψ is Admissible for T,

then ├
T
 (⎣ ⎡Ψ⎤ ⎦ ←→ Ψ)).

Of course, the above criterion begs the questions of which sentences are Admissi-
ble in T ! A proposed answer is provided by the following:

Criterion of Admissibility15: Ψ is Admissible for T if and only if

(¬Ψ)├
T
 (├

T
 ¬Ψ)

15 Note that there is an asymmetry in the definition of Admissibility with respect to negation.

In general it does not follow that ¬Ψ is admissible for T just because Ψ is admissible for T.
The asymmetry in Admissibility is analogous to the asymmetry in the Criterion of
Refutability [Popper 1962]. For example the sentence “There are no black swans.” is
readily refuted by the observation of a black swan. However, the negation is not so readily
refuted.

118 C. Hewitt

I.e., the Criterion of Admissibility is that a proposition is Admissible for a theory T if
and only if its negation infers in T that its negation is provable in T.

The motivation for Admissibility builds on the denotational semantics of the Actor
model of computation which were first developed in [Clinger 1981]. Subsequently
[Hewitt 2006b] developed the TimedDiagrams model with the Representation Theo-
rem which states:

Work to be Done
There is much work to be done to further develop Direct Logic:

• The consistency of the semi-classical fragment of Direct Logic needs to be
proved relative to the consistency of classical mathematics.

• Strong paraconsistency needs to be formally defined and proved.
• The decidability of the Variable-free Fragment16 of Direct Logic needs to be set-

tled. As remarked above, the Boolean Fragment is very close to R-Mingle
(which is decidable).

• Tooling for Direct Logic needs to be developed to support large software systems.

5 Conclusion

This paper describes Organizational Computing and ORGs (Organizations of Re-
stricted Generality) and some principles and practices by which they operate. It
develops the thesis that inconsistency is the norm for large-scale Organizational
Computing. The limitations of classical logical reasoning for inconsistent informa-
tion are explained. A powerful inference system called Direct Logic is introduced
that provides inference capabilities needed for large-scale Organizational Comput-
ing including unstratified reflection and strong paraconsistency.

16 Including the non-Boolean ├ T.

 infers that there is a counter

The denotation of an Actor system represents all the possible
behaviors of as

where is an approximation function that takes a set of approximate

behaviors to their next stage and is the initial behavior of .

In this context, is Admissible for means that

example to in so that in the denotational theory S induced by the
system :

DenoteS S
S

DenoteS = ⊔iω ProgressionS
i(⊥S)

ProgressionS

⊥S S

S

S
DenoteS




() ├
S
├

S
)(

 Large-Scale Organizational Computing Requires Unstratified Reflection 119

Acknowledgments

Sol Feferman, Mike Genesereth, David Israel, Bill Jarrold, Ben Kuipers, Pat Langley,
Vladimir Lifschitz, Frank McCabe, John McCarthy, Fanya S. Montalvo, Peter Neumann,
Ray Perrault, Mark Stickel, Richard Waldinger, and others provided valuable feed-
back at seminars at Stanford, SRI, and UT Austin to an earlier version of
the material in this paper. For the AAAI Spring Symposium’06, Ed Feigenbaum,
Mehmet Göker, David Lavery, Doug Lenat, Dan Shapiro, and others provided valu-
able feedback. At MIT Henry Lieberman, Ted Selker, Gerry Sussman and the mem-
bers of Common Sense Research Group made valuable comments. Reviewers for
AAMAS ’06 and ‘07, KR’06, COIN@AAMAS’06 and IJCAR’06 made suggestions
for improvement.
 In the logic community, Mike Dunn, Sol Feferman, Mike Genesereth, Tim Hinrichs,
Mike Kassoff, John McCarthy, Chris Mortensen, Graham Priest, Dana Scott, Richard
Weyhrauch and Ed Zalta provided valuable feedback. Dana Scott made helpful sugges-
tions on reflection and incompleteness. Richard Waldinger provided extensive sugges-
tions that resulted in better focusing a previous version of this paper and increasing its
readability. Sol Feferman reminded me of the connection between Admissibility and
Π1. Discussion with Pat Hayes and Bob Kowalski provided insight into the early history
of Prolog.
 Communications from John McCarthy and Marvin Minsky suggested making
common sense a focus. Mike Dunn collaborated on looking at the relationship of the
Boolean Fragment of Direct Logic to R-Mingle. Greg Restall pointed out that Direct
Logic differs from Relevance Logic. Gerry Allwein and Jeremy Forth made detailed
comments and suggestions for improvement. Bob Kowalski and Erik Sandewall pro-
vided helpful pointers and discussion of the relationship with their work. Discussions
with Ian Mason and Tim Hinrichs helped me develop Löb’s theorem. Fanya S.
Montalvo provided valuable comments. At CMU, Wilfried Sieg introduced me to his
very interesting work with Clinton Field on automating the search for proofs of the
Gödel incompleteness theorems. Also at CMU, I had productive discussions with
Jeremy Avigad, Randy Bryant, John Reynolds, Katia Sycara, and Jeannette Wing. At
my MIT seminar and afterwards, Marvin Minsky, Ted Selker, Gerry Sussman, and
Pete Szolovits made helpful comments. Les Gasser, Mike Huhns, Victor Lesser,
Pablo Noriega, Sascha Ossowski, Jaime Sichman, Munindar Singh, etc. provided
valuable suggestions at AAMAS’07.

Jeremy Forth, Tim Hinrichs, Fanya S. Montalvo, and Richard Waldinger pro-
vided helpful comments and suggestions on the logically necessary inconsistencies
in theories of Direct Logic. Rineke Verbrugge provided valuable comments and
suggestions at MALLOW’07. Mike Genesereth and Gordon Plotkin kindly hosted
my lectures at Stanford and Edinburgh, respectively, on “The Logical Necessity of
Inconsistency”.

120 C. Hewitt

References

Agha, G., Mason, I., Smith, S., Talcott, C.: A foundation for Actor computation. Journal of
Functional Programming (1997)

Besnard, P., Hunter, A.: Quasi-classical Logic: Non-trivializable classical reasoning from in-
consistent information. Symbolic and Quantitative Approaches to Reasoning and Uncer-
tainty (1995)

Bowker, G., Star, S.L., Turner, W., Gasser, L. (eds.): Social Science Research, Technical Sys-
tems and Cooperative Work. Lawrence Earlbaum (1997)

Carnap, R.: Logische Syntax der Sprache (The Logical Syntax of Language Open Court Pub-
lishing 2003) (1934)

Cellucci, C.: “Gödel’s Incompleteness Theorem and the Philosophy of Open Systems” Kurt
Gödel: Actes du Colloque, Neuchâtel 13-14 juin 1991, Travaux de logique N. 7, Centre de
Recherches Sémiologiques, Université de Neuchâtel. (1992),
http://w3.uniroma1.it/cellucci/documents/Goedel.pdf

Dahl, O.-J., Nygaard, K.: Class and subclass declarations. IFIP TC2 (May 1967)
Feferman, S.: Toward Useful Type-Free Theories, I. In: Martin, R. (ed.) Recent Essays on

Truth and the Liar Paradox, Claraendon Press (1984a)
Feferman, S.: Kurt Gödel: Conviction and Caution. Philosophia Naturalis 21 (1984b)
Feferman, S.: Axioms for determinateness and truth (2007a),

http://math.stanford.edu/~feferman/papers.html
Feferman, S.: Gödel, Nagel, minds and machines (October 25, 2007), (2007b),

http://math.stanford.edu/~feferman/papers/godelnagel.pdf
Gödel, K.: On formally undecidable propositions of Principia Mathematica translated by

Bernard Meltzer. Basic Books (1962). Monatshefte für Mathematik und Physik, vol. 38, pp.
173–198 (1931)

Hewitt, C., Bishop, P., Steiger, R.: A Universal Modular Actor Formalism for Artificial Intelli-
gence. IJCAI (1973)

Hewitt, C., Inman, J.: DAI Betwixt and Between: From ‘Intelligent Agents’ to Open Systems
Science. IEEE Transactions on Systems, Man, and Cybernetics (November/December
1991)

Hewitt, C.: The repeated demise of logic programming and why it will be reincarnated. What
Went Wrong and Why (2006a). Technical Report SS-06-08 (March 2006)

Hewitt, C.: What is Commitment? Physical, Organizational, and Social. In: Noriega, P.,
Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.)
COIN 2006. LNCS (LNAI), vol. 4386, pp. 293–307. Springer, Heidelberg (2007)

Hewitt, C.: Organizational Computing Requires Unstratified Paraconsistency and Reflection.
COIN@AAMAS, 2007 (2007a)

Hewitt, C.: The Downfall of Mental Agents in the Implementation of Large Software Systems.
AAAI Magazine issue on What went wrong and why, 2007 (2007b)

Hewitt, C.: Common sense for concurrency and strong paraconsistency using unstratified infer-
ence and reflection. Submitted for publication to AI Journal special issue on Common
Sense, 2007 (2007c)

Jennings, N.: Commitments and conventions: The foundation of coordination in multi-agent
systems. Knowledge Engineering Review 3 (1993)

Ketonen, J., Weyhrauch, R.: A decidable fragment of Predicate Calculus. Theoretical Computer
Science (1984)

 Large-Scale Organizational Computing Requires Unstratified Reflection 121

Kornfeld, B., Hewitt, C.: The Scientific Community Metaphor. IEEE Transactions on Systems,
Man, and Cybernetics (January 1981)

Lakatos, I. (1967). A renaissance of empiricism in the recent philosophy of mathematics?
Mathematics, Science and Epistemology (1978)

Leitgeb, H.: What theories of truth should be like (but cannot be). Philosophy Compass 2(2)
Löb, M.: Solution of a problem of Leon Henkin. Journal of Symbolic Logic 20 (1955)
McGee, V.: In Praise of the Free Lunch: Why Disquotationalists Should Embrace Composi-

tional Semantics. Self-Reference. CSLI Publications (2006)
Noriega, P.: Agent Mediated Auctions: The Fishmarket Metaphor. Ph.D., Barcelona (1997)
Priest, G.: 60% Proof: Lakatos, Proof, and Paraconsistency (2006),

http://garnet.acns.fsu.edu/~tan02/OPC%20Week%20Three/Priest.pdf
Priest, G., Tanaka, K.: Paraconsistent Logic. The Stanford Encyclopedia of Philosophy. Winter

(2004)
Restall, G.: Curry’s Revenge: the costs of non-classical solutions to the paradoxes of self-

reference (to appear in The Revenge of the Liar, Beall, J.C (Ed.) Oxford University Press,
2007) (July 12, 2006)

Rosenberg, S.: Dreaming in code. Crown Publishing (2007)
Rosser, J.B.: Extensions of Some Theorems of Gödel and Church. Journal of Symbolic. Logic

1(3) (1936)
Routley, R.: Dialectical Logic, Semantics and Metamathematics. Erkenntnis 14 (1979)
Shankar, N.: Metamathematics, Machines, and Gödel’s Proof. Cambridge University Press,

Cambridge (1994)
Shapiro, S.: Lakatos and logic Comments on Graham Priest’s ‘60% proof: Lakatos, proof, and

paraconsistency’. (Preprint, 2006),
http://garnet.acns.fsu.edu/~tan02/OPC%20Week%20Three/Commentary%20on%20Priest.
pdf#search=%22paraconsistency%202006%20filetype%3Apdf%22

Sieg, W., Field, C.: Automated search for Gödel proofs. Annals of Pure and Applied Logic (2005)
Singh, M., Huhns, M.: Service-Oriented Computing: Semantics, Processes, Agents. John Wiley

& Sons, Chichester (2005)
Tarski, A.: The semantic conception of truth and the foundations of semantics. Philosophy and

Phenomenological Research 4 (Reprinted in Readings in Philosophical Analysis, Appleton-
1944) (1944)

Tarski, A., Vaught, R.: Arithmetical extensions of relational systems. Compositio Mathematica
13 (1957)

Wooldridge, M.: Reasoning about Rational Agents. MIT Press (2000)

Appendix: Principles of Direct Logic

This appendix discusses foundational principles of Direct Logic focusing on inference
in a theory T (├

T
) where T is a paraconsistent reflective theory for large software

systems. Direct Logic also supports classical mathematical inference (├). By conven-
tion all paraconsistent theories inherit from mathematics, i.e.,├ ((├ Ψ) → ├

T
 Ψ).

 All of the principles below concerning ├
T
 apply equally well to the overreaching

classical inference relationship for the classical fragment of Direct Logic (├).

Direct Principles
Direct principles that connect propositions together by direct reasoning are as
follows:

122 C. Hewitt

Reiteration: ├ (Ψ├
T
 Ψ) a proposition infers itself

Exchange: ├ (Ψ,Φ├
T

Φ,Ψ) the order in which propositions are
 written does not matter

Residuation:├ ((Ψ,Φ├
T

Θ) ←→ (Ψ├
T
 (Φ├

T
Θ))) hypotheses may be freely

 introduced and discharged

Monotonicity: ├ ((Ψ├
T

Φ) → (Ψ, Θ ├
T
 Φ)) an inference remains if new

 information is added

Dropping: ├ ((Ψ├
T

Φ,Θ) → (Ψ├
T
 Φ)) an inference remains correct if

 extra conclusions are dropped

Combination Principles
The following combination principles concern combining different inferences
together:

Independent Inference:

 ├ ((├
T

Ψ) ∧ (├
T

Φ)) → (├
T

Ψ,Θ)) inferences can be combined

Transitivity: ├ (((Ψ├
T

Φ) ∧ (Φ├
T

Θ)) → (Ψ├
T

Θ)) inference is transitive

Theory Principles
The paraconsistent theory principles are as follows:

Faithfulness: ├ ((├
T
├

T
Ψ) → (├

T
Ψ))

Adequacy: ├ ((├
T

Ψ) → (├
T
├

T
Ψ))

Detachment: ├ ((├
T

Ψ, (Ψ├
T

Φ)) → ├
T

Φ)

Soundness:├ ((Ψ├
T

Φ) → ((├
T

Ψ) → ├
T

Φ))

Indirect Inference
Direct Logic supports direct versions of indirect inference for paraconsistent theories
as follows:

• Simple Direct Indirect Inference:
├ ((Ψ├

T ¬Ψ) → ├
T ¬Ψ) which states that a proposition can be disproved by

showing that the proposition infers its own negation.
• Right Meta Direct Indirect Inference:
├ ((Ψ├

T
 (├

T ¬Ψ)) → ├
T ¬Ψ) which states that a proposition can be dis-

proved by showing that the proposition infers a proof of its own negation.
• Left Meta Direct Indirect Inference:
├ (((├

T Ψ)├
T ¬Ψ) → ¬├

T Ψ) which states that provability of a proposition
can be disproved by showing that its provability infers its own negation.

• Both Meta Direct Indirect Inference:
├ (((├

T Ψ)├
 T

 (├
T ¬Ψ)) → ¬├

T Ψ) which states that provability of a propo-
sition can be disproved by showing that its provability infers provability of its
negation.

 Large-Scale Organizational Computing Requires Unstratified Reflection 123

 Direct Indirect Proof can sometimes do inferences that are traditionally done using
Full Indirect Inference. For example the proof of the incompleteness of paraconsistent
theories in this paper makes use of Direct Indirect Inference.

Nontriviality

Direct Logic supports the following nontriviality17 principles for theories:

• Direct Nontriviality:

├ ((¬ Ψ) ├
T ¬ ├

T
Ψ) which states that the negation of a proposition

infers that the proposition cannot be proved
• Meta Nontriviality:

├ ((├
T
 ¬ Ψ) → ¬ ├

T
Ψ) which states that if the negation of a proposition

can be proved, then the proposition cannot be proved.

Fixed Point Theorem
Theorem [a λ-calculus version of Carnap 1934 pg 91 after Gödel 1931]18:
Let f∈(Sentences→Sentences)

├ (⎣Fix(f)⎦ ←→ ⎣f (Fix(f))⎦)
 where Fix(f) ≡ Θ(Θ) which exists because f always converges
 where Θ ≡ λ(g) f(λ(x) (g(g))(x))

Proof. See [Hewitt 2007c].

Incompleteness and Inconsistency
Theorem: A paraconsistent theory is incomplete,
Define

Paradox
T
 ≡ ⎣Fix(Diagonalize)⎦ where Diagonalize ≡ λ(s) ⎡¬├

T ⎣s⎦ ⎤
It is sufficient to prove the following:

1. ├T ¬├T Paradox
T

2. ├
T ¬├T ¬ Paradox

T

3. ├
T Paradox

T

Proof. See [Hewitt 2007c].

Theorem: Theories of Direct Logic are inconsistent19

It is sufficient to show that T proves both ├
T Paradox

T
 and its negation, i.e.,

1. ├
T ├T Paradox

T

2. ├T ¬ ├
T
Paradox

T

Proof. See [Hewitt 2007c].

17 By definition a theory T is nontrivial if and only if there is a formula Ψ such that ¬ ├ T Ψ.
18 Credited in Kurt Gödel, Collected Works vol. I, p. 363, ftn. 23.
19 cf. [Routley 1979], [Priest and Tanaka 2004], etc.

124 C. Hewitt

 But all is not lost because the following can be said about this logically necessary
inconsistency:20

• Because T is strongly paraconsistent, that T is inconsistent about ├
T Paradox

T

(by itself) should not affect other reasoning. Also the subject matter of

├
T Paradox

T
 is not of general interest in software engineering and should not

affect reasoning about current large software systems. So do software engi-

neers need to care that T is inconsistent about ├
T Paradox

T
 as opposed to all the

other inconsistencies of T which they care about more?21

• The logically necessary inconsistency concerning ├
T Paradox

T
 is a nice illustra-

tion of how inconsistencies often arise in large software systems: “there can be
good arguments (proofs) on both sides for contradictory conclusions”.

A big advantage of paraconsistent logic is that it makes fewer mistakes than classical
logic when dealing with inconsistent theories. Since software engineers have to deal
with theories chock full of inconsistencies, paraconsistency should be attractive. How-
ever, to make it relevant we need to provide them with tools that are cost effective.

Provable Meta Self Inferences in Theories of Direct Logic

Provable Meta Self Inferred propositions for T are those Ψ such that

 ├
T
 ((├

T
Ψ) ├

T Ψ)

Theorem:22 If Ψ is Admissible and Provably Meta Self Inferred for T, then ├
T
Ψ

Proof. See [Hewitt 2007c].

20 At first, TRUTH may seem like a desirable property for sentences in theories for large soft-

ware systems. However, because a paraconsistent reflective theory T is necessarily inconsis-

tent about ├
T Paradox

T
, it is impossible to consistently assign truth values to sentences of T.

In particular it is impossible to consistently assign a truth value to the proposition

├
T
 Paradox

T
. If the proposition is assigned the value TRUE, then (by the rules for truth val-

ues) it must also be assigned FALSE and vice versa. It is not obvious what (if anything) is
wrong or how to fix it.
 Of course this is contrary to the traditional view of Tarski. E.g.,

I believe everybody agrees that one of the reasons which may compel us to reject an
empirical theory is the proof of its inconsistency: a theory becomes untenable if we suc-
ceeded in deriving from it two contradictory sentences It seems to me that the real
reason of our attitude is...: We know (if only intuitively) that an inconsistent theory must
contain false sentences. [Tarski 1944]
 On the other hand, Frege [1915] suggested that, in a logically perfect language, the
word ‘true’ would not appear! According to McGee [2006], he argued that “when we say
that it is true that seawater is salty, we don’t add anything to what we say when we say
simply that seawater is salty, so the notion of truth, in spite of being the central notion of
[classical] logic, is a singularly ineffectual notion. It is surprising that we would have oc-
casion to use such an impotent notion, nevermind that we would regard it as valuable and
important.”

21 Of course, there are other inconsistent sentences of the same ilk, cf., Rosser [1936].
22 After Löb [1955].

Using Case-Based Reasoning in Autonomic

Electronic Institutions

Eva Bou1, Maite López-Sánchez2, and Juan Antonio Rodŕıguez-Aguilar1

1 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council, Campus UAB 08193 Bellaterra, Spain

{ebm,jar}@iiia.csic.es
2 WAI, Volume Visualization and Artificial Intelligence, MAiA Dept.,

Universitat de Barcelona
maite@maia.ub.es

Abstract. Electronic institutions (EIs) define the rules of the game in
agent societies by fixing what agents are permitted and forbidden to
do and under what circumstances. Autonomic Electronic Institutions
(AEIs) adapt their regulations to comply with their goals despite cop-
ing with varying populations of self-interested external agents. This pa-
per presents a self-adaptation model based on Case-Based Reasoning
(CBR) that allows an AEI to yield a dynamical answer to changing
circumstances.

1 Introduction

The growing complexity of advanced information systems in the recent years,
characterized by being distributed, open and dynamical, has given rise to inter-
est in the development of systems capable of self-management. Such systems are
known as self-* systems [1], where the * sign indicates a variety of properties:
self-organization, self-configuration, self-diagnosis, self-repair, etc. A particular
approximation to the construction of self-* systems is represented by the vision
of autonomic computing [2], which constitutes an approximation to computing
systems with a minimal human interference. Some of the many characteristics
of an autonomic system are: it must configure and reconfigure itself automati-
cally under changing (and unpredictable) conditions; it must aim at optimizing
its inner workings, monitoring its components and adjusting its processing in
order to achieve its goals; it must be able to diagnose the causes of its eventual
malfunctions and repair itself; and it must act in accordance to and operate into
a heterogeneous and open environment.

Electronic Institutions (EIs) [3] have been proved to be valuable to regulate
open agent systems. EIs define the rules of the game by fixing what agents are
permitted and forbidden to do and under what circumstances. We have defined
Autonomic Electronic Institutions (AEIs) as an EI with autonomic capabilities
that allows it to adapt its regulations to comply with institutional goals despite
varying agent’s behaviours [4]. Thus, an AEI has to self-configure its regula-
tions to accomplish its institutional goals. In previous work [4] we have learned

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 125–138, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

those regulations that best accomplished the institutional goals for a collection
of simulated agent populations. This paper extends that work with a Case-Based
Reasoning (CBR) approach that allows an AEI to self-configure its regulations
for any agent population. Since our hypothesis is that populations that behave
similarly can be regulated in a similar manner, the CBR approach helps us iden-
tify populations that behave similarly and subsequently retrieve the “control”
parameters for an AEI to regulate it.

The paper is organized as follows. In section 2 we describe the notion of
autonomic electronic institutions. Section 3 details the learning model that we
propose and how an AEI uses CBR. Section 4 describes the case study employed
as a scenario wherein we have tested our model. Section 5 provides some em-
pirical results. Finally, section 6 summarizes some conclusions and related work
and outlines paths to future research.

2 Autonomic Electronic Institutions

In general, an EI [3] involves different groups of agents playing different roles
within scenes in a performative structure. Each scene is composed of a coordi-
nation protocol along with the specification of the roles that can take part in
the scene.

According to [3] an EI is solely composed of: a dialogic framework (DF) es-
tablishing the common language and ontology to be employed by participating
agents; a performative structure (PS) defining its activities along with their rela-
tionships; and a set of norms (N) defining the consequences of agents’ actions. We
have extended the notion of EI to support self-configuration, in the sense of reg-
ulation adaptation. In this manner in [4] we incorporate notions of institutional
goals and regulation configuration to define an autonomic electronic institution
(AEI) as a tuple: 〈PS, N, DF, G, Pi, Pe, Pa, V, δ, γ〉. Next, we only provide an
intuitive idea about the elements of an AEI (further details can be found in [4]).

We assume that the main objective of an AEI is to accomplish its institutional
goals (G). For this purpose, an AEI will adapt. We assume that the institution
can observe the environment where agents interact (Pe), the institutional state
of the agents participating in the institution (Pa), and its own state (Pi) to assess
whether its goals are accomplished or not. Since an AEI has no access whatsoever
to the inner state of any participating agent, only the institutional (social) state
of an agent (Pa) can change. Therefore, each agent (ai) can be fully characterized
by his institutional state Pai = 〈ai1 , . . . , aim〉 where aij ∈ IR, 1 ≤ j ≤ m is an
observable value of agent ai. Taking the traffic as an example of an AEI, the
speed of a car could be an example of an observable value of an agent; the
number of lanes could be an example of an observable value of the environment;
and the number of polices the institution uses to control the cars could be an
example of an observable value of the state of the institution.

Formally, we define the goals of an AEI as a finite set of constraints G =
{c1, ..., cp} where each ci is defined as an expression gi(V) � [mi, Mi] where
mi, Mi ∈ IR, � stands for either ∈ or �∈. Additionally, gi is a function over

Using Case-Based Reasoning in Autonomic Electronic Institutions 127

the reference values V = 〈v1, . . . , vq〉, where each vj results from applying a
function hj upon the agents’ properties, the environmental properties and/or
the institutional properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q. In this manner,
each goal is a constraint upon the reference values where each pair mi and
Mi defines an interval associated to the constraint. Continuing with the traffic
example, an example of an institutional goal could be to minimize the number
of accidents. Thus, the institution achieves its goals if all gi(V) values satisfy
their corresponding constraints of belonging (at least to a certain degree) to their
associated intervals. This is measured by means of a satisfaction function that
computes the goal satisfaction degree (see [4] for further details).

The AEI definition includes the mechanisms to support the adaptation with
the normative transition function (δ), and with the PS transition function (γ).
An AEI employs norms to constrain agents’ behaviors and to assess the conse-
quences of their actions within the scope of the institution. We focus on norms
describing prohibitions parametrically. So that each norm Ni ∈ N , i = 1, . . . , n,
has a set of parameters 〈pN

i,1, . . . , p
N
i,mi

〉 ∈ IRmi . In fact, this parameters cor-
respond to the variables in the norm transition function that will allow the
institution to adapt. Continuing with the same traffic example, an example of a
norm could be to stop always before to enter in an intersection and it norm can
be parametrized by an associated fine applied if a car does not fulfill it. Notice
that our AEI can not learn new norms, it only can adapt its norms by changing
their parameters. On the other hand, adapting a PS involves the definition of a
set of parameters whose values will be changed by the PS transition function. We
define each scene in the performative structure, Si ∈ PS, i = 1, . . . , t, as having
a set of parameters 〈pR

i,1, ..., p
R
i,qi

〉 ∈ INqi where pR
i,j stands for the number of

agents playing role rj in scene Si. Thus, changing the values of these parameters
means changing the performative structure.

The AEI definition includes the mechanisms to support the adaptation with
the normative transition function (δ), and with the PS transition function (γ).
We propose to use learning methods to learnt the normative transition function
(δ), and the PS transition function (γ). Next section details the learning model
used to adapt the AEI by changing those parameters.

3 Learning Model

Our aim is that at run-time an AEI could adapt its regulations to any population.
We propose to learn the norm transition function (δ) and the PS transition
function (γ) in two different steps in an overall learning process. In previous work
[4] we have approached the first learning step, which corresponds to learn the
best parameters for a set of predefined populations. In this work we focus on the
second learning step: how to adapt the parameters to any population. As shown
in Figure 1, in an initial step our AEI learns by simulation the best parameters
for a collection of different agent populations. For each population of agents (A),
the algorithm explores the space of parameter values (I1, .., Ik) in search for the
ones that lead the AEI to best accomplish its goals (G) for this population of

128 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

Fig. 1. Learning Model in two steps

agents. Afterwards, we propose to use a Case-Based Reasoning (CBR) approach
as a second step because it allows the AEI to solve situations that have been
learned previously. We assume that agent populations that behave in similar way
caused similar situations that may require similar solutions. Thus, at a second
step an AEI identifies, in run-time, those situations for which its goals are not
accomplished and uses CBR to retrieve a solution (regulation parameters) from
the most similar situation in the knowledge base.

3.1 Applying CBR

Case Based Reasoning (CBR) [5] is based on learning from experience. The idea
is to search in the experience (memory) of the system for similar situations,
called cases, and using the corresponding solution to solve the current problem.
In general, a new problem in a CBR system is solved by retrieving similar cases,
reusing the case solution, revising the reused solution, and retaining the new ex-
perience. In this work we focus our attention in the first step of the CBR cycle,
namely the retrieve process. Nevertheless, before addressing it, it is necessary to
choose a representation for cases.

Case Definition. The representation of cases is central to any CBR system.
Cases must be represented based on the knowledge of the problem domain in
order to choose the main features that better describe the case and thus that
better help the processes involved in the CBR cycle. As to AEIs, we differentiate
the following main features to be considered to represent cases:

– AEI parameters’ values. They represent the parameters’ values of some
institution, namely the norm parameters’ values and the performative struc-
ture parameters’ values that an AEI uses for regulating agents.

– Runtime behaviour. They represent the global behaviour of the institution
at runtime for some agent population when the institution uses the AEI
parameters’ values.

– Best AEI parameters’ values. They represent the learned parameters’
values of the institution for the previous agent population. In other words:

Using Case-Based Reasoning in Autonomic Electronic Institutions 129

the solution. Thus, they correspond to the parameters that the institution
must apply in order to accomplish its institutional goals given both previous
AEI parameters’ values and runtime behaviour.

More precisely, regarding AEIs, we propose the definition of a case as a tuple
(Np,PSp,V,pop,Np∗,PSp∗), where:

– (Np,PSp) stands for the AEI parameters’ values:
• Np stands for the current norm parameters’ values;
• PSp stands for the current performative structure parameters’ values;

– (V,pop) stands for the runtime behaviour:
• V stands for the current set of reference values;
• pop stands for statistic data that characterises the behaviour of the

agents’ population at runtime1;
– (Np∗,PSp∗) stands for the best AEI parameters’ values:

• Np∗: represents the best values for the norm parameters given the current
norm parameters values (Np) and the runtime behaviour (V,pop); and

• PSp∗: represents the best values for the performative structure param-
eters given the current performative structure parameters values (PSp)
and the runtime behaviour (V,pop).

Thus, a case represents how an AEI (using Np as norm values and PSp as perfor-
mative structure values) regulating a population of agents (showing the runtime
behaviour described by pop and V) should change its regulations (to the Np∗

and the PSp∗ values). Notice that each case is an entry of the normative transi-
tion function (δ) and the PS transition function (γ). That is, the set of all cases
approximate both transition functions.

Similarity Function. In order to compare two cases we must define an appro-
priate similarity function based on our representation of cases. We use aggregated
distance function to compute the degree of similarity between a new case Ci and
a case Cj in the case base:

S(Ci, Cj) = w1 · s AEI(Ci, Cj) + w2 · s V (Ci, Cj) + w3 · s pop(Ci, Cj) (1)

where s AEI corresponds to the distance of the AEI parameters’ values (Np,
PSp), s V and s pop correspond to the distance of the runtime behaviour
(V,pop), and w1, w2, w3 ≤ 0 are weighting factors such that w1+w2+w3 = 1. The
s AEI, s V and s pop distance functions are computed as the distance average of
their attributes. To assess the distance between the values of an attribute we use:

sim(attri, attrj) =
|attri − attrj |

max(attr) − min(attr)
(2)

where min(attr) and max(attr) correspond to the limits of the interval of values
of the attribute considered in the domain.

1 Notice that this data corresponds to reference values.

130 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

The Retrieval Process. In order to retrieve the most similar case to the
problem case Ci without comparing all cases in the case base, we propose to
perform this process in two steps:

1. Compare the AEI parameters’ values, (Np,PSp), of the problem case Ci with
the collection of all the AEI parameters’ values in the case base using s AEI
and select the set of AEI parameters’ values that best match.

2. Access the set of examples in the case base with these AEI parameters’
values. Afterwards, we compare case Ci with these examples and select the
case that best matches it based on distance function S.2

We use the first step with the idea that the most similar case must have similar
AEI values because the runtime behaviour depends a lot of the AEI parameters’
values. In fact, this is our hypothesis since we want to change the AEI param-
eters’ values to change in some way the population behaviour and thus modify
the runtime behaviour in order to achieve the institutional goals. The first step
makes easy and fast the access to the most similar cases because we concentrate
on only comparing the cases with similar AEI parameters’ values. Thus, we do
not need to compare all the cases of the case base. Moreover, we only need to
compute once the distance function s AEI for all cases with the same values of
AEI parameters’ values.

4 Case Study: Traffic Control

In order to test our model, we have considered and implemented the Traffic
Regulation Authority as an Autonomic Electronic Institution, and cars moving
along the road network as external agents interacting inside a traffic scene. Get-
ting into more detail, we focus on a two-road junction where no traffic signals are
considered. Therefore, cars must only coordinate by following the traffic norms
imposed by the AEI. Our case study considers the performative structure to be
a single traffic scene with two agent roles: one institutional role played by police
agents; and one external role played by car agents.

We assume institutional agents to be in charge of detecting norm violations
so that we will refer to them as police agents. The performative structure is
parametrized by the number of agents playing the police role. Each police agent
is able to detect only a portion of the total number of norm violations that
car agents actually do. Norms within this normative environment are related to
actions performed by cars. We consider two priority norms: the ‘right hand-side
priority norm’, that prevents a car reaching the junction to move forward or
to turn left whenever there is another car on its right; and the ‘front priority
norm’, that applies when two cars reaching the junction are located on opposite
lines, and one of them intends to turn left. Additionally, norms are parametrized
by the associated penalties that are imposed to those cars refusing or failing
2 Notice that we use a distance function as similarity function where low values imply

high similarity.

Using Case-Based Reasoning in Autonomic Electronic Institutions 131

to follow them. Cars do have a limited amount of points so that norm offenses
cause points reduction. The institution forbids external agents to drive without
points in their accounts.

In this work we focus on homogeneous populations where all agents in the
population share the same behaviour. We propose to model each population
based on three parameters (henceforth referred to as agent norm compliance
parameters): 〈fulfill prob, high punishment, inc prob〉; where fulfill prob ∈
[0, 1] stands for the probability of complying with norms that is initially as-
signed to each agent; high punishment ∈ IN stands for the fine threshold that
causes an agent to consider a fine to be high enough to reconsider the norm
compliance; and inc prob ∈ [0, 1] stands for the probability increment that is
added to fulfill prob when the fine norm is greater than the fine threshold
(high punishment). Car agents decide whether to comply with a norm based on
their norm compliance parameters along with the percentage (between 0 and 1)
of police agents that the traffic authority has deployed on the traffic environ-
ment. To summarise, agents decide whether they keep on moving –regardless
of violating norms– or they stop –in order to comply with norms– based on a
probability that is computed as:

prob =
{

police · fulfill prob fine ≤ high punishment
police · (fulfill prob + inc prob) fine > high punishment

(3)

The institution can observe the external agents’ institutional properties (Pa)
along time. Considering our road junction case study, we identity different ref-
erence values, V = 〈col, off, crash, block, expel, police〉 where col indicates
total number of collisions for the last tw ticks (0 ≤ tw ≤ tnow), off indicates the
total number of offenses accumulated by all agents for the last tw ticks, crash
counts the number of cars involved in accidents for the last tw ticks, block de-
scribes how many cars have been blocked by other cars for the last tw ticks, expel
indicates the number of cars that have been expelled out of the environment due
to running out of points for the last tw ticks, and finally, police indicates the
percentage of police agents that the institution deploys in order to control the
traffic environment.

The institution tries to accomplish its institutional goals by specifying the
penalties of both priority norms and by specifying how many police agents should
be deployed in the traffic scene. In this work we focus on four institutional goals:
(i) minimize the number of collisions; (ii) minimize the number of offenses; (iii)
minimize the number of expelled cars; (iv) and minimize the percentage of police
agents to deploy to control the traffic environment. Notice, though, that these
offences do not refer to offences detected by police agents but to the real offences
that have been actually carried out by car agents.

5 Empirical Evaluation

As a proof of concept of our proposal in section 3, we extend the experimental
setting for the traffic case study employed in [4]. The environment is modeled as

132 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

a 2-lane road junction and populated with 10 homogeneous cars (endowed with
40 points each). Cars correspond to external agents without learning skills. They
just move based on their random trajectories and the probability of complying
with a norm (based on the function defined in (3)). During each discrete simu-
lation, the institution replaces those cars running out of points by new cars, so
that the cars’ population is kept constant.

The four institutional goals, related to the col, off , expel and police reference
values, are combined in a weighted addition, with weights 0.4, 0.4, 0.1 and 0.1
respectively. Thus, the first two goals are considered to be more important. The
goal satisfaction is measured by combining the degree of satisfaction of these
four institutional goals.

Table 1. Agent populations employed to generate the case base

Populations Pop. 1 Pop. 2 Pop. 3 Pop. 4 Pop. 5 Pop. 6 Pop. 7

fulfill prob 0.5 0.5 0.5 0.5 0.5 0.5 0.5

high punishment 0 3 5 8 10 12 14

inc prob 0.4 0.4 0.4 0.4 0.4 0.4 0.4

fine∗
right 2 5 8 11 13 14 15

fine∗
front 1 4 6 9 12 13 15

police∗ 1 1 1 1 1 1 1

As mentioned in section 3, (during training period) an AEI generates an initial
base of cases from simulations of a set of prototypical populations. Following the
tuple case definition introduced in section 3.1, (Np, PSp, V, pop, Np∗, PSp∗), we
define a case Ci in this scenario as follows:

– Np = (fineright, finefront) are the values of both norms’ parameters;
– PSp = (police) is the value of the performative structure parameter;
– V = (col, crash, off , block, expel) are the reference values;
– pop = (mean off , median off , mean frequency off , median frequen-

cy off) contains the mean number of offenses, the median number of of-
fenses, the mean of the frequency of offenses, and the median of the frequency
of offenses carried out by agents for the last tw ticks (0 ≤ tw ≤ tnow);

– Np∗ = (fine∗right, fine∗front) are the best values for both norms’ parameters;
– PSp∗ = (police∗) is the best value for the parameter of the performative

structure.

Table 1 shows the seven populations we have considered to generate the case
base. They are characterized by their norm compliance parameters, being
fulfill prob = 0.5 and inc prob = 0.4 for all of them, whereas high punishment
varies from 0 to 14. The fine∗right, fine∗front and police∗ values in Table 1 are
taken to be the best AEI parameters’ values (Np∗, PSp∗).

Using Case-Based Reasoning in Autonomic Electronic Institutions 133

5.1 Similarity Function

We use the aggregated distance function defined in (1) to compute the degree of
similarity between two cases. We have set the weights as follows: w1 = 0.1,
w2 = 0.5, and w3 = 0.4. Regarding the attributes of the AEI parameters’
values, the finefront and fineright values are in the interval [0, 15], and the
police values are in the interval [0, 1]. However, the attributes of the runtime
behaviour have not known limited values. We have established limits based
on the values of the initial generated cases. Thus, we have established that
the col values are in the interval [0, 300], crash ∈ [0, 400], off ∈ [0, 500],
block ∈ [0, 200], expel ∈ [0, 900], mean off ∈ [0, 30], median off ∈ [0, 30],
mean frequency off ∈ [0, 2], and median frequency off ∈ [0, 2]. Since the
values of these attributes can be out of the proposed interval, we force distance
to be 1 when |attri − attrj | > max(attr) − min(attr).

First of all, we have tested whether the distance function and the weights
selected are suitable for the traffic domain. For this purpose, we have generated
a little case base of only seven cases by simulating each population in Table 1. In
order to create this case base, all seven populations have been run with the same
AEI parameters: fineright = 12, finefront = 6 and police = 1. Afterwards, in
order to test the distance function, we have created seven new cases simulating
another time each population in Table 1 using the very same AEI parameters’
values and have compared each one with the seven cases in the case base. Notice
that two simulations of the same population using the very same AEI parameters’
values do not create the very same case, because the runtime behaviour in both
simulations may be similar but not exactly the same.

Figure 2 shows the results of testing similarities for the seven new cases with
the seven ones in the base case. These seven new cases could be grouped by the
population behaviour regarding the norm compliance. Since population of first
three cases have an high punishment lower than both norms’ fines, cars fulfill
both norms (with probability 0.9). However, populations with high punishment
8 and 10 fulfill the right norm with probability 0.9 and the front norm with

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population (by high_punishment)

S
im

ila
rit

y

Similarity function using an AEI=(12,6,1)

Population hp=0
Population hp=3
Population hp=5

(a) Three populations ful-
fill two norms with proba-
bility 0.9.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population (by high_punishment)

S
im

ila
rit

y

Similarity function using an AEI=(12,6,1)

Population hp=8
Population hp=10

(b) Two populations fulfill
the right norm with prob-
ability 0.9 and the front
norm with probability 0.5.

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population (by high_punishment)

S
im

ila
rit

y

Similarity function using an AEI=(12,6,1)

Population hp=12
Population hp=14

(c) Two populations fulfill
two norms with probability
0.5.

Fig. 2. Distance between populations when the AEI uses the same parameters values
(fineright = 12, finefront = 6 and police = 1)

134 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

probability 0.5. Whereas, populations with high punishment 12 and 14 fulfill
both norms with probability 0.5. Figure 2 shows three charts corresponding to
cases grouping by this behaviour. Thus, chart 2(a) shows the distance for the
three first cases whose cars fulfill both norms with probability 0.9. We can see
how these three cases are similar when compared with the seven cases in the
case base, and also that the distance among them is less than with respect
to other cases. Chart 2(b) shows the distance for cases using populations with
high punishment 8 and 10 whose cars fulfill the right norm with probability
0.9 and the front norm with probability 0.5. Chart 2(c) shows distance for cases
using populations with high punishment 12 and 14 whose cars fulfill both norms
with probability 0.5. In the three charts we can see how distances are similar
among cases created with populations that have similar behaviour. This figure
also shows that if two different populations regulated by the very same norms
behave in very similar manner, an AEI cannot differentiate them. This effect is
because the AEI can only observe the external behaviour of populations. In any
case, these results allow us to conclude that the proposed distance function is
suitable. Next step is to test at run-time the proposed CBR approach.

5.2 Case Base

With the aim that at run-time the AEI could adapt its regulations to any popu-
lation, we create a case base using populations in Table 1 and the corresponding
best AEI parameters’ values. In order to create the case base we have con-
sidered as AEI parameters’ values fineright ∈ {0, 3, 6, 9, 12, 15}, finefront ∈
{0, 3, 6, 9, 12, 15}, and police ∈ {0.8, 0.9, 1}. Overall we have considered 108 dif-
ferent AEI parameters’ values, as the result of combining fineright, finefront,
and police values. To create cases for our case base, we have simulated each
population in Table 1 with all 108 AEI parameters’ values, so we have generated
a total of 756 cases for the seven agent populations. To create each case, we have
simulated the traffic model during 2000 ticks. Once finished the simulation, we
generate a case by saving the AEI parameters’ values (Np, PSp) used in this
simulation, the runtime behaviour for the 2000 ticks (V, pop), and the best AEI
parameters’ values (Np∗, PSp∗) corresponding to the population used in this
simulation.

5.3 Retrieving

We have designed an experiment to test the retrieval process and therefore our
approach. That is, we want to test if at run-time the AEI is able to self-configure
its parameters for different agent populations by using the proposed CBR ap-
proach. Since we are testing our approach and we are not interested in efficiency
issues, we employ the traffic simulator to recreate a run-time execution. We
launch simulations of 2000 ticks during 20 times, namely steps (overall 40000
ticks). At each step, once the simulation finishes, we check the goal satisfaction
degree and change the AEI parameters’ values using the CBR approach when
required. Although this allows us to change the population of agents at any step

Using Case-Based Reasoning in Autonomic Electronic Institutions 135

we have run the experiments using the same population in 20 simulations. For
all experiments, the AEI starts with (0,0,0.8) parameters, that correspond to no
fine for both norms and a deployment of 80% of police agents. Thus, we expect
that the AEI starts with a low goal satisfaction degree (caused by the parameters
it is using) and it will be able to retrieve a similar case with whose parameters
that do increase the goal satisfaction degree.

At each step, we launch a simulation with a certain population of agents and
when the simulation finishes, the AEI decides, based on the goal satisfaction, if
it has to retrieve a case or not. If the goal satisfaction is greater than a thresh-
old the AEI continues with the same parameters for a new simulation in the
next step. Otherwise (when the goal satisfaction is lower than the threshold) we
launch the CBR engine to retrieve a case of the case base (see section 5.2) in
order to adapt the AEI parameters, namely to adapt the institution, its regula-
tion. The threshold is computed as a desired goal satisfaction value G∗ minus an
epsilon value ε. In our experiments, we have set ε = 0.03 and G∗ = 0.65, which
corresponds to the minimum of the best goal satisfaction degrees for our popu-
lations. The problem case is generated from the AEI parameters’ values used in
the last simulation and the runtime behaviour in the last 2000 ticks. The CBR
system retrieves the most similar case and uses the best AEI parameters’ values
of the retrieved case for next simulation. Thus, the goal satisfaction degree can
be computed again to check if it is necessary to define a new problem case.

We have used fifteen different populations to test our approach. Each popula-
tion is characterized by their norm compliance parameters, being fulfill prob =
0.5 and inc prob = 0.4 for all of them, whereas high punishment varies from 0
to 14. Notice that seven of them are the ones used for generating cases3 (when
high punishment ∈ {0, 3, 5, 8, 10, 12, 14}) whereas the AEI has no prior cases
about of the other eight populations (when high punishment ∈ {1, 2, 4, 6, 7,
9, 11, 13}). Figure 3 shows the results for fifteen populations, where each chart
shows five populations. Each population is run three times. Thus, overall we
have performed 45 experiments. For each experiment, the figure shows the goal
satisfaction every 2000 ticks during 20 steps. On chart 3(a) we can see that at
initial step the goal satisfaction is low (around 0.2) and how the AEI quickly
rises it up and maintains it constant during the rest of steps (between 0.6 and
0.7). On chart 3(a) we can see how the goal satisfaction degree starts at 0.2 and
quickly rises up to 0.6 − 0.7 with the initial case retrievals. This effect repeats
on charts 3(b) and 3(c) on figure 3. That is, the AEI is able to adapt quickly
its parameters in all experiments. However, we observe that for some popula-
tions (when high punishment is 6, 10 and 12) the goal satisfaction does not
remain constant. In particular, the goal satisfaction for one of the populations
with high punishment = 6 goes down three times (steps 8, 10 and 11) to values
close to 0.2. These oscillations happen because given a population regulated by
the very same AEI parameters’ values there is a variability on the behaviour
in different simulations, that causes a variability in goal satisfaction. Thus, it

3 Notice that use the same population does not mean use the same case because the
runtime behaviour may be similar in both cases but not exactly the same.

136 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time by steps (each step=2000−tick−long)

G
oa

l s
at

is
fa

ct
io

n

Retrieving experiments with population hp=[0 1 2 3 4]

hp=0
hp=1
hp=2
hp=3
hp=4

(a)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time by steps (each step=2000−tick−long)

G
oa

l s
at

is
fa

ct
io

n

Retrieving experiments with population hp=[5 6 7 8 9]

hp=5
hp=6
hp=7
hp=8
hp=9

(b)

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time by steps (each step=2000−tick−long)

G
oa

l s
at

is
fa

ct
io

n

Retrieving experiments with population hp=[10 11 12 13 14]

hp=10
hp=11
hp=12
hp=13
hp=14

(c)

Fig. 3. Goal satisfaction for fifteen populations. (a) Populations with high punishment
∈ {0, 1, 2, 3, 4}; (b) Populations with high punishment ∈ {5, 6, 7, 8, 9}; and (c) Popu-
lations with high punishment ∈ {10, 11, 12, 13, 14}.

sometimes occurs that because of this variability the goal satisfaction drops be-
low the threshold and causes to restart the retrieval process. After this, the AEI
stabilizes quickly again the goal satisfaction degree.

In order to estimate the error caused by these oscillations we have computed
the percentage of simulations with a goal satisfaction greather than the thresh-
old (0.62). At first step all experiments have a goal satisfaction less than the
threshold. At second step a 52% of experiments (23 of 45) have a goal satisfac-
tion greather than it. The percentage goes up to 89% (40 of 45) at third step
and to 95% to the fourth. That is, in our experiments, the AEI needs four simu-
lations to adapt itself in a correct manner to a 95% of new cases. At the rest of
simulations (from simulation 5 to simulation 20) the average of the percentage of
experiments with a goal satisfaction greather than the threshold is around 98%.
That is, there is an error arround the 2% caused by the oscillations. In any case,
we can conclude that the AEI is able to adapt to the populations, that is with
the initial cases retrievals the AEI is able to adapt its parameters to accomplish
its goals for each population.

6 Discussion and Future Work

Within the area of Multi-Agent Systems, adaptation has been usually envisioned
as an agent capability where agents learn how to reorganise themselves. Along
this direction, in [6] Gasser and Ishida present a general distributed problem-
solving model which can reorganize its architecture; and Horling et al. [7] propose
an approach where the members adapt their own organizational structures at
runtime. The fact that adaptation is carried out by the agents composing the
MAS is the most significant difference with the approach presented in this pa-
per. On the other hand, it has been long stated [8] that agents working in a
common society need norms to avoid and solve conflicts, make agreements, re-
duce complexity, or to achieve a social order. Most research in this area consider
norm configuration at design time [9] instead of at run-time as proposed in this
paper. Regarding the traffic domain, MAS has been previously applied to it.
For example, Camurri et al. [10] propose two field-based mechanisms to control

Using Case-Based Reasoning in Autonomic Electronic Institutions 137

cars and traffic-lights in order to manage to avoid deadlocks and congestion.
Additionally, Case-Based Reasoning has been applied before in multi-agent sys-
tems where agents use different CBR approaches to individual learning and to
cooperative learning for distributed systems [11,12].

This paper presents a Case-Base Reasoning approach as an extension of previ-
ous work which allows an AEI to self-configure its regulations. We have presented
the initial step towards a Case-Based Reasoning system, centering our work on
the retrieval and usage processes. We have propposed a case description and
the distance function to be used by a generic AEI. We have tested the retrieval
process of our approach in the traffic AEI case study, where the AEI learns two
traffic norms and the number of institutional agents in order to adapt the norms
and the performative structure to dynamical changes of agent populations.

Preliminary results in this paper are promising but they show some oscillations
of the goal satisfaction degrees for some populations. Although, the computed
error is low (around 2%), currently we are tuning the function used to compute
the goal satisfaction and the threshold value in order to reduce the error and
do it less sensitive to the variability. Once solved this, we plan to continue our
experiments on the retrieval process by changing the populations between simu-
lations. We also plan to continue on finishing the learning by focusing our work
in the other CBR processes. As future work, and since this basically represents a
centralized scenario, we plan to develop a more complex traffic network, allowing
us to propose a decentralized approach where different areas (i.e., junctions) are
regulated by a distributed institution.

Acknowledgments. This work was partially funded by the Spanish Education
and Science Ministry as part of the IEA (TIN2006-15662-C02-01) and the 2006-
5-0I-099 projects. The first author enjoys an FPI grant (BES-2004-4335) from
the Spanish Education and Science Ministry.

References

1. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agentlink Roadmap (2005),
Agentlink.org

2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

3. Esteva, M.: Electronic Institutions: From specification to development. IIIA, Ph.D.
Monography 19 (2003)

4. Bou, E., López-Sánchez, M., Rodŕıguez-Aguilar, J.A.: Towards self-configuration
in autonomic electronic institutions. In: Noriega, P., Vázquez-Salceda, J., Boella,
G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS
(LNAI), vol. 4386, pp. 220–235. Springer, Heidelberg (2007)

5. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Commun 7(1), 39–59 (1994)

6. Gasser, L., Ishida, T.: A dynamic organizational architecture for adaptive problem
solving. In: Proc. of AAAI-91, Anaheim, CA, pp. 185–190 (1991)

7. Horling, B., Benyo, B., Lesser, V.: Using Self-Diagnosis to Adapt Organizational
Structures. In: Proceedings of the 5th International Conference on Autonomous
Agents, pp. 529–536 (2001)

Agentlink.org

138 E. Bou, M. López-Sánchez, and J.A. Rodŕıguez-Aguilar

8. Conte, R., Falcone, R., Sartor, G.: Agents and norms: How to fill the gap? Artificial
Intelligence and Law (7), 1–15 (1999)

9. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Min-
imality and simplicity. Artificial Intelligence 119(1-2), 61–101 (2000)

10. Camurri, M., Mamei, M., Zambonelli, F.: Urban traffic control with co-fields. In:
Proc. of E4MAS Workshop at AAMAS, vol. 2006, pp. 11–25 (2006)

11. Plaza, E., Ontañón, S.: Cooperative multiagent learning. In: Alonso, E., Kudenko,
D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS 2002. LNCS (LNAI), vol. 2636,
pp. 1–17. Springer, Heidelberg (2003)

12. Ros, R., Veloso, M.: Executing Multi-Robot Cases through a Single Coordinator.
In: Proc. of Autonomous Agents and Multiagent Systems, pp. 1264–1266 (2007)

Semantical Concepts for a Formal Structural Dynamics
of Situated Multiagent Systems

Antônio Carlos da Rocha Costa and Graçaliz Pereira Dimuro

Escola de Informática – PPGINF, Universidade Católica de Pelotas
96.010-000 Pelotas, RS, Brazil

{rocha,liz}@atlas.ucpel.tche.br

Abstract. This paper introduces semantical concepts to support a formal struc-
tural dynamics of situated multiagent systems. Multiagent systems are seen from
the perspective of the Population-Organization model, a minimal semantical
model where the performance of organizational roles by agents, and the real-
ization of organizational links by social exchanges between agents, are the key
mechanisms for the implementation of an organization structure by a population
structure. The structural dynamics of a multiagent system may then be modelled
as a set of transformations on the system’s overall population-organization struc-
ture. We illustrate the proposed approach to structural dynamics by introducing
a small set of operational rules for an exchange value-based dynamics of organi-
zational links. The paper sets the stage for further work on structural dynamics
where other structural elements, besides organizational links, may be taken into
account.

1 Introduction

PopOrg, a minimal population-organization based model, was introduced in [1] in order
to support the study of the structural dynamics of multiagent systems (MAS). Both
time-invariant and time-variant versions of the model were introduced, but no specific
mechanism was presented to account for any possible structural dynamism.

In this paper, we improve the above mentioned work by refining that model with
the notion that social interactions are exchanges performed between agents. Also, we
present an exchange value-based mechanism able to account for some aspects of the
structural dynamics of multiagent systems. As an illustration of the possibilities allowed
by the model, we combine the two ideas to define a simple set of operational rules for
an elementary exchange value-based dynamics of organizational links.

The work sets the stage for further studies on the structural dynamics of multiagent
systems by establishing the basis of a mechanism where further aspects of the structural
dynamics of such systems may be considered, besides the dynamics of links.

We remark that the paper is based on a distinction between the notions of intensional
and extensional descriptions of systems: intensional descriptions deal with subjective
aspects pertaining to the internal functioning of the agents that operate in a system
(like norms, values, etc.), while extensional descriptions deal with objective aspects
pertaining to the external functioning of those agents (like actions performed, objects
exchanged, etc.).

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 139–154, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

140 A.C.d.R. Costa and G.P. Dimuro

The main concerns of the paper are, thus, an extensional description of the structural
dynamics of multiagent systems organizations, and a possible way to articulate such
extensional dynamics with the intensional aspect of the exchange values involved in the
interactions between the agents that participate in the organizations.

On the other hand, we note that the process model that underlies the structural dy-
namics of the population-organizational model [1] is similar to the general signal-based
denotational model that underlies some declarative languages devised to specify real-
time reactive systems [2]. This encourages the view that the PopOrg model may suitably
be construed as an adequate model for multiagent systems situated in environments pre-
senting real-time constraints.

In fact, it is only natural to expect that it is precisely in the case of situated multiagent
systems that the issues of structural dynamics arise crucially (both because of the pres-
sures for the adaptation of the system to the variations in the environment and because
of the values that agents may assign to the concrete resources made available to them
by the environment – see Sect. 5, on related works).

The paper is organized as follows. In Sec. 2, we revisit the PopOrg model, refining
its notion of interaction through a general notion of social exchange. In Sec. 3, we
summarize the particular exchange values approach to social interactions [3] that we
adopt, reviewing its notion of exchange value and its model of social exchange.

Section 4 illustrates the general purpose of the paper by joining the revisited PopOrg
model with the adopted system of social exchanges, allowing for a simple mechanism
able to support a preliminary model of exchange value-based dynamics of organiza-
tional links.

Section 5 summarizes related work. Section 6 brings the Conclusion and explores
further aspects of the proposal.

A technical remark: we use the following coordinate-wise notation, when dealing
with vectors (n-tuples) of sets (assuming expr0 ⇔ expr1 ∧ . . . ∧ exprn):

(X1, . . . , Xn) ⊆ (Y1, . . . , Yn) ≡def Xi ⊆ Yi, i = 1, . . . n. (1)⋃
{(X1, . . . , Xn) | expr0} ≡def (∪{X1 | expr1}, . . . , ∪{Xn | exprn}) (2)

2 The Population-Organization Model

The Population-Organization model of multiagent systems, introduced in [1], empha-
sizes the modelling of systems composed of a small group of agents, adopting an inter-
actionist point of view [3,4].

In such model, the organizational structure of a system is implemented by the sys-
tem’s population of agents through two main mechanisms: the assignment of organiza-
tional roles to agents, and the realization of organizational links between roles by the
social exchanges that are established between the agents that perform those roles.

Of course, in such model, the central components of the structural dynamics of the
systems are the operations of creation and deletion of elements like organizational roles,
organizational links and exchange processes, as well as the agents entering and leaving
the system.

Semantical Concepts for a Formal Structural Dynamics of Situated MAS 141

2.1 The Time-Invariant Population-Organization Model

The time-invariant Population-Organization model, PopOrg = (Pop, Org, imp), is
construed as a pair of structures, the population structure Pop and the organization
structure Org, together with an implementation relation imp.

The Time-Invariant Population Structure. The population of a multiagent system
consists of the set of agents that inhabit it. The population structure of a multiagent
system is its population set together with the set of all behaviors that the agents are able
to perform, and the set of all exchange processes that they can establish between them
(for simplicity, we consider only pairwise exchanges).

Let T be a discrete sequence of time instants. A time-invariant population structure
is a tuple

Pop = (Ag, Act, Bh, Ep, bc, ec) (3)

where:

– Ag is a finite non-empty set of agents, called the population of the system;
– Act is the finite set of all actions (communication actions and actions on concrete

objects of the environment) that may be performed by the agents of the system;
– Bh ⊆ [T → ℘(Act)] is the set containing all possible agent behaviors, modeled

as functions that specify, for each time t ∈ T , a set of actions X ∈ ℘(Act) that
an agent may perform at that time, each behavior determining a sequence of sets of
actions available for the agents to perform in the system;

– Ep ⊆ [T → ℘(Act)×℘(Act)] is the set containing all possible exchange processes
that two agents may perform in the system, each process given by a function that
specifies, for each t ∈ T , a pair of set of actions (X1, X2) ∈ ℘(Act) × ℘(Act),
determining a sequence of exchanges available for any two agents to perform, by
executing together or interleaving appropriately their corresponding actions;

– bc : Ag → ℘(Bh) is the behavioral capability function, such that for each agent
a ∈ Ag, the set of all behaviors that a is able to perform in the system is bc(a);

– ec : Ag × Ag → ℘(Ep) is the exchange capability function, such that for each
pair of agents a1, a2 ∈ Ag, the set of all exchange processes that a1 and a2 may
perform between them is ec(a1, a2);

– ∀a1, a2 ∈ Ag ∀e ∈ ec(a1, a2) ∀t ∈ T :

Prj1(e(t)) ⊆
⋃

{b(t) | b ∈ bc(a1)} ∧ Prj2(e(t)) ⊆
⋃

{b(t) | b ∈ bc(a2)},

where Prj1, P rj2 are projection functions, so that the agents’ exchange capabili-
ties are constrained by their joint behavioral capabilities.

Given t ∈ T and a ∈ Ag, we note that bc(a)(t) = {act | act ∈ b(t), b ∈ bc(a)} is
the set of all possible actions that agent a may perform at time t, given its behavioral
capability bc(a). We also note that, in general, the exchange capability ec(a1, a2) of
a pair of agents a1, a2 ∈ Ag should be deducible from their respective behavioral
capabilities bc(a1) and bc(a2), and from any kind of restriction that may limit their
set of possible exchanges (e.g., social norms, inherited habits, etc.), but since we are

142 A.C.d.R. Costa and G.P. Dimuro

presenting an extensional model where such intensional, subjective restrictions take no
part, it is sensible to include ec explicitly in the description of the population structure.

By the same token, the behavioral capability bc(a) of an agent a ∈ Ag should be
deducible from any internal description of a where its set of behaviors is constructively
defined, but since we are taking an external (observational) point of view of the agents,
we include bc explicitly in the model.

The Time-Invariant Organization Structure. The time-invariant organization struc-
ture of a time-invariant population structure Pop = (Ag, Act, Bh, Ep, bc, ec) is a
structure

Org = (Ro, Li, lc) (4)

where:

– Ro ⊆ ℘(Bh) is the set of roles existing in the organization, a role being given by a
set of behaviors that an agent playing the role may have to perform;

– Li ⊆ Ro × Ro × Ep is the set of links that exist in the organization between pairs
of roles, each link specifying an exchange process that the agents performing the
linked roles may have to perform;

– lc : Ro × Ro → ℘(Li) is the link capability of the pairs of roles, that is, the set of
links that the pairs of roles may establish between them;

– ∀l ∈ Li ∃r1, r2 ∈ Ro : l ∈ lc(r1, r2), that is, every link has to be in the link
capability of the two roles that it links.

Clearly, the PopOrg model adopts a relational, interactionist approach to organiza-
tions [3,4].

The Time-Invariant Implementation Relation. Population and organization struc-
tures are formally defined in a quite independent way. A population structure induces
no more than a loose restriction on the set of organization structures that may be im-
posed on it: the behavioral capability function bc constrains the set of possible roles
that an agent may have in any possible organization and, indirectly, the set of possible
exchange processes in which it may participate, thus, also the set of possible organiza-
tional links that it may have with any other agent in a system.

The fact that a given organization structure is operating over a population structure,
influencing the set of possible exchanges that the agents may have between them, is
represented by an implementation relation imp ⊆ (Ro × Ag) ∪ (Li × Ep), where

– Ro × Ag is the set of all possible role supports, i.e., the set of all possible ways of
assigning roles to agents, and if (r, a) ∈ imp, then the social role r is supported by
agent a, so that a is said to play role r (possibly in a shared, non-exclusive way) in
the given organization;

– Li × Ep is the set of all possible link supports, i.e., the set of all possible ways of
supporting links, so that if (l, e) ∈ imp, link l is said to be supported (in a possibly
shared, non-exclusive way) by the exchange process e, and so indirectly supported
by the agents that participate in e and that play the roles linked by l.

We note that an organization implementation relation imp does not need to be one-
to-one: many roles may be assigned to the same agent, many agents may support a

Semantical Concepts for a Formal Structural Dynamics of Situated MAS 143

given role, many links may be supported by a given exchange process, many exchange
processes may support a given link. Moreover, this relation may be partial: some roles
may be assigned to no agent, some agents may be have no roles assigned to them, some
links may be unsupported, some exchange processes may be supporting no link at all.

The agents that have at least one role assigned to them are said to constitute the
support of the organization in the population. Agents that do not belong to an organi-
zation’s support may interfere with the functioning of that organization by influencing
the behaviors of the supporting agents.

This flexibility is important when defining the structural dynamics of MAS, because
it allows for the definition of “improper” structural states, i.e., structural states where
the system’s organization is not properly implemented by the sytem’s population, which
is relevant for the end goal of dealing with the concept of organizational integrity [1].

A proper implementation relation is an implementation relation that respects or-
ganizational roles and organizational links by correctly translating them in terms of
agents, behaviors and exchange processes. Given an implementation relation imp ⊆
(Ro × Ag) ∪ (Li × Ep), a social role r ∈ Ro is said to be properly implemented by a
subset A ⊆ Ag of agents whenever the following conditions hold:

(i) ∀a ∈ A : (r, a) ∈ imp, i.e., all agents in A participate in the implementation of r;
(ii) ∀t ∈ T :

⋃
{b(t) | b ∈ r} ⊆

⋃
{b′(t) | b′ ∈ bc(a), a ∈ A}, i.e., the set of

behaviors required by r may be performed by the agents of A (in a possibly shared,
non-exclusive way).

A link l = (r1, r2, e) ∈ Li is properly implemented by a subset E ⊆ ec(a1, a2)
of the exchange processes determined by the exchange capability of two agents a1, a2,
whenever the following conditions hold:

(i) ∀e′ ∈ E : (l, e′) ∈ imp, i.e., every exchange process in E helps to support the
link;

(ii) r1 e r2 are properly implemented by the agents a1 and a2, respectively; and
(iii) ∀t ∈ T : e(t) ⊆

⋃
{e′(t) | e′ ∈ E}, i.e., the exchange process required by l may

be performed by the ones of E (in a possibly shared, non-exclusive way).

A time-invariant population-organization structure PopOrg = (Pop, Org, imp) is
properly implemented if and only imp is a proper implementation relation.

2.2 The Time-Variant Population-Organization Model

Time-Variant Population Structures. Time-variant structures change as time goes by.
There are three main kinds of possible changes in the momentary population structure
Pop = (Ag, Act, Bh, Ep, bc, ec) of a multiagent system: (p1) a change in the behav-
ioral capability bc(a) of an agent a ∈ Ag; (p2) a change in the exchange capability
ec(a1, a2) of a pair of agents (a1, a2) ∈ Ag × Ag; (p3) a change in the population Ag.

Changes of the kind (p1) may be due either to internal changes in the agent or to
changes in the set of passive objects (e.g., tools) with which the agent operates. Changes
of the kind (p2) may be due either to changes in the behavioral capability of one of the
agents, to changes in the exchange medium (e.g., communication channel) used by the

144 A.C.d.R. Costa and G.P. Dimuro

agents, or to changes in some social norm that regulates the exchanges. Changes of the
kind (p3) are due to agents entering or leaving the system.

Let T be the time structure, Ag and Act be universes of agents and actions, respec-
tively, and Bh and Ep universes of behaviors and exchange processes defined over Ag
and Act, in a way similar to that in Sect. 2.1(3). A time-variant population structure is
a structure POP = (AG, ACT, BH, EP, Bc, Ec) where, for all t ∈ T :

– AGt ∈ ℘(Ag) is the system’s population, at time t;
– ACT t ∈ ℘(Act) is the set of possible agent actions, at time t;
– BHt ∈ ℘(Bh) is the set of possible agent behaviors, at time t;
– EP t ∈ ℘(Ep) is the set of possible exchange processes between agents, at time t;
– Bct : AGt → ℘(BHt) is the behavioral capability function of agents, at time t;
– Ect : AGt × AGt → ℘(EP t) is the exchange capability function, at time t.

The state at time t of a time-variant population structure, denoted by POP t =
(AGt, ACT t, BHt, EP t, Bct, Ect), fixes the population of the system, the set of pos-
sible behaviors of each agent and the set of possible exchange processes between each
pair of agents, but not the behaviors and exchange processes themselves, which at each
time will be chosen from among those possibilities according to the particular internal
states of the agents, and the particular states of the (social and physical) environment.
Note, however, that the intensional, subjective reasons for such choices are not modelled
in the extensional PopOrg model.

Time-Variant Organization Structures. There are five main kinds of possible
changes in a momentary organization structure Org = (Ro, Li, lc): (o1) a change in a
role r ∈ Ro; (o2) a change in a link l ∈ Li; (o3) a change in the set of roles Ro; (o4) a
change in the set of links Li; (o5) a change in the link capability lc of the pairs of roles.

A change of kind (o1) may be due, e.g., to a change in the behavior of a certain
number of agents performing the role. A change of the kind (o2) may be due, e.g., to a
change in an exchange process that supports the link. Changes of the kind (o3) are either
the appearance or the disappearance of roles in the system. Changes of the kind (o4)
are either the appearance or to the disappearance of organizational links in the system.
A change of kind (o5) may be due, e.g., to a redistribution of the set of links between
organization roles.

All such changes may be due to the so-called “reorganization operations” of mul-
tiagent systems (see Sec. 5, on related works). The reasons for such operations are
essentially of an intensional nature and, thus, are not explicitly represented in the exten-
sional PopOrg model (but their realizations as behavioral processes, and their possible
extensional effects, may be explicitly modelled).

We note that Sect. 4 of this paper is mainly concerned with changes of kind (o4), that
is, changes in the set of links of an organization structure.

Let T be the time structure, and Ro ⊆ ℘(Bh) and Li ⊆ Ro × Ro × Ep be the
universes of roles and links, respectively. The time-variant organization structure of a
time-variant population structure POP = (AG, ACT, BH, EP, Bc, Ec) is a structure
ORG = (RO, LI, Lc), where for all t ∈ T :

Semantical Concepts for a Formal Structural Dynamics of Situated MAS 145

– ROt ∈ ℘(Ro) and LIt ∈ ℘(Li) are, respectively, the set of possible roles and the
set of possible links at time t;

– Lct : ROt × ROt → ℘(LIt) is the link capability function at time t.

For each t ∈ T , the organization state ORGt = (ROt, LIt, Lct) fixes the sets of
possible roles ROt, links LIt and link capability function Lct that the system may
have at that time. Note that a time-invariant organization structure may be modelled as
a constant time-variant organization structure.

Time-Variant Implementation Relations. As a consequence of any change (p1)-(p3)
or (o1)-(o5), the implementation relation imp may be changed either (r1) in the way
it relates roles and agents or (r2) in the way it relates links and exchange processes.
Besides being changed in its mapping, imp may be changed also in its properness.

Let POP = (AG, ACT, BH, EP, Bc, Ec) be a time-variant population structure
and ORG = (RO, LI, Lc) its time-variant organization structure. A time-variant im-
plementation relation for ORG over POP is a time-indexed set of implementation
relations IMP , with IMP t ⊆ (ROt ×AGt)∪(LIt ×EP t). A time-variant population-
organization structure is a structure POPORG = (POP ,ORG, IMP), where

– POP = (AG, ACT, BH, EP, Bc, Ec), ORG = (RO, LI, Lc) and IMP are,
respectively, a time-variant population structure, a time-variant organization struc-
ture, and a time-variant implementation relation, as defined above;

– at each t ∈ T , the state of POPORG is given by POPORGt = (POP t,ORGt,
IMP t), where POP t = (AGt, ACT t, BHt, EP t, BCt, ECt) and ORGt =
(ROt, LIt, Lct) are such that IMP t ⊆ (ROt × AGt) ∪ (LIt × EP t).

We note that this definition does not guarantee that the relation IMP is proper at each
time. That is, we assume that time-variant population-organization structures may pass
through structural states where the population improperly implements the organization.

Multiagent Systems with Structural Dynamics. The structural dynamics of a mul-
tiagent system [1] is the dynamics that deals with the way the structure of the system
varies in time, thus, it is the dynamics of the system’s population and organization.

Let PopOrg = (Pop,Org, imp) be the universe of all possible time-invariant
population-organization structures, with Pop = (Ag,Act,Bh,Ep,bc, ec), Org =
(Ro,Li, lc) and imp ⊆ (Ro × Ag) ∪ (Li × Ep) being the universes of all pos-
sible time-invariant population structures, organization structures and implementation
relations, respectively.

A multiagent system with dynamic structure is a structure MAS = (PopOrg, D)
where, for each t ∈ T , Dt ⊆ PopOrg × PopOrg is the system’s overall structural
dynamics, such that for any structural state PopOrg ∈ PopOrg, at time t ∈ T , there
is a set of possible next structural states, denoted by Dt(PopOrg) ⊆ PopOrg.

Given a particular initial population-organization structure PopOrg t0 , the evolution
of the system is given by a time-variant population-organization structure POPORG ,
where it holds that POPORGt+1 ∈ Dt(POPORGt), for any t ∈ T .

The choice of the particular next structural state POPORGt+1 that will be assumed
by the MAS at time t + 1 is made, at time t ∈ T , on the basis of various intensional,

146 A.C.d.R. Costa and G.P. Dimuro

subjective factors extant in the system, like, e.g., preferences of agents, social norms,
political powers, etc.

In particular cases, it may happen that the system’s overall structural dynamics may
be separated into three coordinated sub-structural dynamics Dt = Dt

P × Dt
O × Dt

I :
the population dynamics Dt

P ⊆ Pop × Pop, the organizational dynamics Dt
O ⊆

Org × Org, and the implementation dynamics Dt
I ⊆ imp × imp.

In such special cases, the coordination between the system’s overall dynamics and
the three sub-structural dynamics may be given compositionally by:

(Pop′, Org′, imp′) ∈ Dt((Pop, Org, imp)) ⇔
Pop′ ∈ Dt

P(Pop) ∧ Org′ ∈ Dt
O(Org) ∧ imp′ ∈ Dt

I (imp).

3 Systems of Exchange Values

In this section, we introduce one of the possible intensional, subjective factor that may
influence the evolution of the dynamical structure of a multiagent system, namely, the
system of exchange values with which the agents may assess the quality of the ex-
changes they are having in the system. We adopt here one particular model of system
of exchange values [3], which we have used in previous works (e.g., [5]).

This exchange value-based approach to social interactions (cf. also [4]) considers
that every social interaction is an exchange of services between the agents involved in
it. Exchange values are, then, the values with which agents evaluate the social exchanges
they have with each other.

A service is any action or behavior that an agent may perform, which influences
positively (respect., negatively) the behavior of another agent, favoring (respect., disfa-
voring) the effort of the latter to achieve a goal. The evaluation of a service involves not
only affective and emotional reactions, but also comparisons to social standards. Typ-
ical evaluations are expressed using qualitative values such as: good, very good, bad,
very bad, etc. So, they are of a neatly subjective, qualitative, intensional character.

With those evaluations, a qualitative economy of exchange values arises in the social
system. Such qualitative economy requires various rules for its regulation. Most of those
rules are either of a moral or of a juridical character [3].

Exchange behaviors between two agents α and β can be defined as sequences of
exchange steps performed between them. Two kinds of exchange steps are identified [3],
called Iαβ and IIαβ . Steps of the kind Iαβ are steps in which agent α takes the initiative
to perform a service for agent β, with qualitative cost (investment) rIαβ . Subsequently,
β receives the service, and gets a benefice (satisfaction) of qualitative value sIβα.

If β was to pay back α a return service immediately, he would probably try to “cal-
ibrate” his service so that it would have cost r equal to sIβα, so that α would get a
return benefice with value s equal to rIαβ , in order for the exchange to be fair (if the
two agents were prone to be fair in their exchanges). The definition of exchange steps
assumes, however, that the return service will not be performed immediately, so that a
kind of bookkeeping is necessary, in order for the involved values not to be forgotten.

Semantical Concepts for a Formal Structural Dynamics of Situated MAS 147

That is the purpose of the two other values involved in the exchange step: tIβα is the
debt that β assumes with α for having received the service and not having paid it back
yet; , vIαβ is the credit that α gets on β for having performed the service and not having
being paid yet. A fair exchange step ([3] calls it an equilibrated exchange step) is one
where all the involved values are qualitatively equal: rIαβ ≈ sIβα ≈ tβα ≈ vIαβ .

To take account of differences between qualitative exchange values, such values are
assumed to be comparable with respect to their relative qualitative magnitudes. That is,
if EV is the set of qualitative exchange values, it is assumed that values in EV can be
compared by an order relation �, so that (EV, �) is a (partially) ordered set. Thus, e.g.,
if it happened that sIβα � rIαβ , then agent α made an investment, during his service,
that was greater than the benefice that agent β got from it.

An exchange step of kind IIαβ is performed in a different way. In it, agent α charges
agent β for a credit with qualitative value vIIαβ , which he has on β. Subsequently, β
acknowledges a debt with value tIIβα with α, and performs a return service with value
rIIβα. In consequence, α gets a return satisfaction with value sIIαβ . Fairness for IIαβ

steps is defined similarly as for Iαβ steps.
It is assumed that exchange values can be qualitatively added and subtracted from

each other, so that balances of temporal sequences of exchange steps can be calculated.
Besides the above mentioned conditions, one further condition is required in order that
a sequence of exchange steps be fair:

∑
vIIαβ ≈

∑
vIαβ , that is, α should charge a

sum of credits which is exactly the total credit he has on β, no more, no less.
In summary, [3] introduces a qualitative algebra with which one can model and an-

alyze social exchanges between agents, determining in a qualitative way the degree of
fairness of those exchanges. Note that such algebra operates on 8-tuples of the form

(rIαβ
, sIβα

, tIβα
, vIαβ

, vIIαβ
, tIIβα

, rIIβα
, sIIαβ

). (5)

4 Exchange Value-Based Dynamics of Social Links

This section illustrates one of the possible uses of our extensional model for the struc-
tural dynamics of organizations of MAS by showing how it can support the intensional
rules of an elementary exchange value-based dynamics of organizational links.

4.1 An Elementary Exchange Value-Based Dynamics of Social Links

Other things being equal, the fact that a sequence of exchange steps between two agents
is fair, or not, may be a determinant factor in the attitude of those agents toward the
possibility of the continuation of the interaction. That is, given enough chances, self-
interested agents will tend to establish continued exchanges only with agents from
whom they may establish exchanges that are at least fair, if not beneficial, for them [4].

Particular personality traits and various social factors (power, prestige, etc.), how-
ever, may interfere with self-interests and lead the agents to seek social exchanges
that happen to be far from equilibrium ([5] illustrates this in the context of multiagent
systems).

To simplify the issues, we assume that a MAS of self-interested agents adheres to
the following rationales concerning the dynamics of organizational links:

148 A.C.d.R. Costa and G.P. Dimuro

– exchange value-based rationale for the creation of an organizational link: a new or-
ganizational link in the MAS is created as soon as an exchange process is positively
assessed by the agents playing the roles that will be linked by the link (the exchange
process is said to be officially incorporated as a link into the organization);

– exchange value-based rationale for the destruction of an organizational link: a link
stops to exist in the multiagent system as soon as the balance of exchange values
involved in the exchange processes that implement the link stops to be beneficial to
any of the agents performing the roles linked by link (the exchange process is said
to be officially excluded from the organization of the multiagent system).

We leave open for the agents to apply subjective criteria to determine if any of the
conditions mentioned in the above rationales “really” occurred or not. If the social or-
ganization has a central control, able to discover at each moment which are the links
that the agents would like to establish next between them, then it is up to that central
control to determine if enough has been observed in order to create or destroy a link in
the organization. If the agents are autonomous, then it is up to them to determine that.

If the agents are autonomous, they may disagree on which links should be created or
destroyed. In this case, the dynamics of links is open to argumentation and negotiation
between them. Thus, for organizations based on autonomous agents, no general method
can be given for the determination of how the dynamics of links should evolve. Such
dynamics is tightly coupled to the personality traits and social biases that the agents
may show with respect to the evaluation of their exchanges.

On the other hand, for organizations where the definitions of the roles prescribe not
only the behaviors that the agents playing such roles must have, but also the criteria with
which they should evaluate the interactions in which they get involved, it is possible to
derive the dynamics of links from the evaluation rules embedded in the roles.

The former case characterizes organizations where the dynamics of links can only
be established (at best) a posteriori, i.e., after knowing which agent is playing which
role in the organization. The latter case characterizes more manageable organizations,
where the dynamics of links can be established by an a priori analysis of the roles.

4.2 The Rules of the Elementary Exchange Value-Based Dynamics of Links

We introduce, now, a minimal set of intensional rules for the exchange value-based
dynamics of organizational links in multiagent systems, formalizing the rationales for
self-interested agents exposed above.

For simplicity, we consider the case where the organization structure is time-variant,
the population structure is time-invariant, each role is implemented by just one single
agent, and each link implemented by just one single exchange process.

Let Pop = (Ag, Act, Beh, Ep, bc, ec) be a time-invariant population structure,
ORG = (EP, RO, LI) be a time-variant organization structure implemented by Pop,
and let IMP be the time-variant implementation relation. They constitute a time-variant
population-organization structure PopORG = (Pop,ORG, IMP), which is assumed
here to vary just in the set of organizational links, and in their implementations.

There may happen two kinds of changes in the set of links LIt, at the time t+1 ∈ T :
(1) either a new link l is created, so that LIt+1 = LIt ∪ {l}; or (2) a link l is removed
from LIt, so that LIt+1 = LIt − {l}.

Semantical Concepts for a Formal Structural Dynamics of Situated MAS 149

The problem we face here is that of the formalization of the conditions under which,
at a moment t + 1, a link l is added to (or removed from) the set of links LIt.

Let EV = (EV, �) be the scale of exchange values used by agents a1, a2 ∈ Ag to
evaluate their exchanges, and BEV = EV 8 be the set of 8-tuples of exchange values
that represent balances of exchange values, defined in Sect. 3(5). Let bal : Ag × Ag ×
Ep × T → BEV be so that bal(a1, a2, e, t) is the balance of exchange values that
agents a1 and a2 have accumulated, at time t, along the exchanges that they performed
through the exchange process e ∈ Ep.

We assume that each of the agents a1, a2 ∈ Ag is able to perform an analysis of every
possible balance bal(a1, a2, e, t) of exchange values that may arise between them, and
judge if that balance is beneficial, fair, or harmful for himself. That is, we assume that
there exists a (subjective) judgement function jdgt(a, bal(a1, a2, e, t)) ∈ {+1, 0, −1},
which we may write as a |=t bal(a1, a2, e, t) ≈ v, for v ∈ {+1, 0, −1} and a ∈
{a1, a2}.

Then, the dynamics of organizational links in the Population-Organization model
of multiagent systems with self-interested agents is determined by a set of operational
rules containing at least the rules introduced below.

Let [τ, τ ′], [τ, τ ′) ⊆ T respectively be a closed and a right end-open interval of time,
with τ < τ ′. Let a1, a2 ∈ Ag be agents respectively playing roles r1, r2 ∈ Ro during
the interval [τ, τ ′], that is, (r1, a1), (r2, a2) ∈ IMP t, for all t ∈ [τ, τ ′].

Consider a link l ∈ Li between roles r1, r2 ∈ Ro such that l
∈ LI t, for t ∈ [τ, τ ′),
and an exchange process e ∈ Ep that may possibly support l during the interval [τ, τ ′].
Let IMP t and LI t be fixed, for all t ∈ [τ, τ ′). Assume also that l ∈ Lct(r1, r2), for all
t ∈ [τ, τ ′].

Let jdgt(a, bal(a1, a2, e, [τ, τ ′])) denote the judgement, at t ∈ T , of the balance of
values accumulated in the interval [τ, τ ′] ⊆ T , and let jdgt(a, bal(a1, a2, e, [τ, τ ′])) �
0 mean jdgt(a, bal(a1, a2, e, [τ, τ ′])) ≈ 0 ∨ jdgt(a, bal(a1, a2, e, [τ, τ ′])) ≈ +1.

In this context, the following rule, controlling the introduction of l in LIτ ′
, is com-

patible with an exchange value-based account of the link dynamics of the considered
system:

a1 |=τ ′
bal(a1, a2, e, [τ, τ ′]) � 0 a2 |=τ ′

bal(a1, a2, e, [τ, τ ′]) � 0
LI τ ′

= LI τ ∪ {l} ∧ IMPτ ′
= IMP τ ∪ {(l, e)}

LI intro(l)

Analogously, consider an exchange process e ∈ Ep that supported a link l ∈ LIt

between roles r1, r2 ∈ ROt during the interval [τ, τ ′), and that IMP t and LI t are fixed,
for all t ∈ [τ, τ ′). Assume that l ∈ Lct(r1, r2), for all t ∈ [τ, τ ′]. In this context, for a ∈
{a1, a2}, the following rule, controlling the elimination of l from LIτ , is compatible
with an exchange value-based account of the link dynamics of the considered system:

a |=τ ′
bal(a1, a2, e, [τ, τ ′]) ≈ −1

LI τ ′
= LI τ − {l} ∧ IMPτ ′

= IMP τ − {(l, e)}
LI elim(l,a)

Note, on the other hand, that the two rules should to be subject to the proviso that
the interval [τ, τ ′] is large enough to allow the agents to make sound judgements, the
notion of “large enough” depending on intensional factors outside de PopOrg model.

150 A.C.d.R. Costa and G.P. Dimuro

As an aside, we claim that {LI intro(l),LI elim(l,a)} is the minimal set of rules upon
which should lie any exchange value-based dynamics of organizational links, in the
PopOrg model, when self-interested agents are considered. Of course, more realistic
examples of link dynamics would require additional rules to take care of more com-
plex situations, e.g., rules to deal with links implemented by two or more exchange
processes.

On the other hand, issues such as the protection of the organization against mali-
cious agents (e.g., agents that provoke the elimination of links by providing a negative
evaluation to every exchange), are issues that concern intensional norms related to the
security of the organization, which should be reflected in the extensional rules describ-
ing the dynamics of the organization, but which should not be dealt with initially at this
extensional level.

5 Related Works

The investigation of the organizational dynamics of agent systems goes back to at
least [6], where the dynamics concerned the coordination of agents in distributed prob-
lem solving systems.

The clear distinction between an organization structure and a population structure in
MAS seems to have been first introduced in the PopOrg model [1], and subsequently
adopted in some MAS organization models (e.g., [7]).

The main reason for the need of a structural dynamism in a MAS organization, and
the corresponding changes in the organizational structure, have traditionally been con-
sidered to be the demands of the environment and the requirements of adaptability that
they imply (e.g., [8]).

However, the PopOrg model was defined so that internal reasons for the dynamism
of the organizational structures could also be considered in a suitable way, for instance,
in the exchange value-based way proposed in the paper. The issue of the internal forces
that may motivate a dynamics of organizational structure has also been addressed in [9].

The option for the set-theoretic language to model the dynamics of organizational
structures, including the option for the signal-based notion of behaviors and interac-
tions, adopted in the PopOrg model, contrasts with the more usual option for logic-
based languages (e.g., [10]), and is justified by the goal of a direct formalization of the
concrete features that constitute the PopOrg model, as a particular minimal organiza-
tional model.

Also, the option for the set-theoretic formalism is related to the choice of placing the
extensional aspects of the organizational dynamics in the center of the PopOrg model,
leaving the intensional (rule-based, subjective) aspects, including those expressed by the
organizational rules introduced in [7], to a second layer – where they are introduced in
specialized refinements of the model, as the need arises in particular applications.

For instance, we did not place at the core of the PopOrg model any of the various
available methods for reorganization, such as role reallocation (e.g., [11,9]), task and
resources reallocation (e.g. [12,13]), modifications in the hierarchical relationships be-
tween roles (e.g., [14]), composition and decomposition of groups of agents (e.g. [6]),
reallocation of obligations (e.g. [15]), etc.

Semantical Concepts for a Formal Structural Dynamics of Situated MAS 151

Full algorithms for the reorganization of MAS (as the ones studied in, e.g.,
[16,17,18]) where also left out of the PopOrg model. By the same token, we did not
introduce in the minimal model the various ways in which organizational roles may be
related to each other, in connection to issues such as power, prestige, control, etc. (as
analyzed, e.g., in [19]).

The inclusion of such various structural relationships and reorganization mechanisms
leads to organizational models that are not minimal in the sense the PopOrg model is,
giving instead larger organizational models, as the ones proposed in, e.g., [20] and [21]
(see [22] for a survey of the most important of such larger models).

In other words, we aimed at keeping PopOrg a minimal, extensional model, where
every intensional aspect should be considered through complementary external rules
operating on the basis of the combination of extensional and intensional features, as the
dynamical rules illustrated in the present paper.

This is why, given that the analysis of organizations from the deontic point of view[23]
places itself in the intensional perspective, concerning the expression of regulations (es-
sentially constraints) about the structure and functioning of a multiagent system, norms
and deontic notions also do not belong intrinsically to the PopOrg model: they should
be added through complementary rules. For example, in [24], rules were introduced to
support an exchange value-based operational notion of morality for MAS organizations.

Concerning the system of exchange values, we have been using it to analyze so-
cial interactions in MAS from the point of view of the equilibrium of the interactions
(e.g., [5,25,26,27]). The same system has been used for other analytical and modelling
purposes, e.g., in [28,29,30].

Finally, we notice that the work on the denotational and operational semantics of
real-time and reactive systems [2] defined models for such systems which are formally
keen to most models of multiagent systems. The similarity comes not from chance,
for the agent-based systems were originally developed as models of reactive real-time
systems [31].

One readily recognizes, for instance, that reactive programs in state-based specifi-
cation languages for reactive systems [2] are similar in spirit to the so called procedu-
ral knowledge representation that was originally used to specify the behavior of BDI
agents [31]: both are means for representing “reactive plans”.

Since a signal [2] is essentially a temporal sequence of values of a certain type, sig-
nals are similar to the temporal sequences used in the PopOrg model. The similarity is
not weakened by our using organizational objects as values of the temporal sequences,
while the declarative languages designed for the specification of reactive real-time sys-
tems use simple data values in signals.

Such differences and similarities only stress the need to develop the study of multi-
agent systems in the perspective of a situated approach, where the system is placed to
operate in connection to a real environment.

6 Conclusion

We have presented a temporal extensional model to support a formal dynamics of multi-
agent systems, by revisiting the PopOrg model and refining it with the notion that social

152 A.C.d.R. Costa and G.P. Dimuro

interactions are exchanges. We strived to clearly separate the extensional, structural as-
pects of the problem, from the intentional, subjective ones. The former deal with the set
of possible ways the structure of a multiagent system evolves in time, while the latter
deal with the possible subjective causes of the particularities of such evolution.

To illustrate the way the intensional and the extensional aspects of the structural dy-
namics of a multiagent system may be combined, we made use of an exchange value-
based mechanism for the modeling of the subjective assessment of social exchanges,
allowing the agents to decide on the start, continuation and termination of an organiza-
tional link, thus showing that an intensional mechanism may operate as a causal element
in the extensional structural dynamics of the system.

The two components that one would like to add to the PopOrg model in the near
future, to allow for the tackling of two essential aspects of MAS, are: first, a mechanism
for constituting organizational groups of agents within a system; and, second, the notion
of an external environment, the latter being the essential component for construing a
MAS as a situated one.

Also, various aspects of the link dynamics as it stands in the present paper should be
analyzed further, like the issue of the dynamics of organizational links implemented by
multiple exchange processes, each such exchange process being evaluated in a different
way by the agents involved in them. Or else, the impact on the whole model of the issue
of periodicity in organizational interactions, that is, the restriction of organizational
interactions to those that are periodic, as in the vast majority of the interactions that
happen in human organizations.

Thus, it seems to us that the work we presented here produced the core elements
for an adequate consideration of the structural dynamics of multiagent systems. They
seem to be specially useful not only when we model the systems situated in real en-
vironments, whose structural and functional variations press the systems to keep their
structures continuously adapted to the demands of those environments, but also when
we model systems that themselves, through their agents, find reasons to change their
organizational structures.

Acknowledgements. We thank the referees for their very valuable comments, some
of which will be incorporated in future works. This work was partially supported by
CNPq, CAPES and FAPERGS.

References

1. Demazeau, Y., Costa, A.C.R.: Populations and organizations in open multi-agent systems.
In: 1st National Symposium on Parallel and Distributed AI, PDAI 1996. Hyderabad, India
(1996)

2. Benveniste, A., Berry, G.: The synchronous approach to reactive and real-time systems. Pro-
ceedings of the IEEE 79, 1270–1282 (1991)

3. Piaget, J.: Sociological Studies. Routlege, London (1995)
4. Homans, G.: Social Behavior – Its Elementary Forms. Brace & World, New York (1961)
5. Dimuro, G.P., Costa, A.C.R., Gonçalves, L.V., Hübner, A.: Centralized regulation of social

exchanges between personality-based agents. In: Noriega, P., Vázquez-Salceda, J., Boella,
G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI),
vol. 4386, pp. 338–355. Springer, Heidelberg (2007)

Semantical Concepts for a Formal Structural Dynamics of Situated MAS 153

6. Corkill, D., Lesser, V.: The use of meta-level control for coordination in a distributed problem
solving network. In: Bundy, A. (ed.) IJCAI 1983. Proceedings of the 8th International Joint
Conference on Artificial Intelligence, William Kaufmann, Karlsruhe, vol. 2, pp. 748–756
(1983)

7. Zambonelli, F., Jennings, N., Wooldridge, M.: Organisational rules as an abstraction for the
analysis and design of multi-agent systems. International Journal of Software Engineering
and Knowledge Engineering (3), 303–328 (2001)

8. Gasser, L.: Perspectives on organizations in multi-agent systems. In: Advanced Course on
Artificial Intelligence ACAI-01 at ECAI 2001, Prague, Czech Technical University (2001)

9. DeLoach, S., Matson, E.: An organizational model for designing adaptive multiagent sys-
tems. In: AAAI 2004 Workshop on Agent Organizations: Theory and Practice, San Jose
(2004)

10. Dignum, V., Dignum, F.: A logic for agent organizations. In: FAMAS@Agents 2007,
Durham September 3-7 (2007)

11. Baciu, A., Nagy, A.: Coordination and reorganization in multi-agent systems, i. Sudia Univ.
Babes-Bolyai – Informatica (2) (2003) 53–60

12. Fatima, S.S., Siva, G.U., Tolety, P.: Trace – an adaptive organizational policy for multi agent
systems. In: Proceedings of Fourth International Conference on MultiAgent Systems, pp.
383–384 (2000)

13. So, Y., Durfee, E.: An organizational self-design model for organizational change. In: AAAI
1993 Workshop on AI and Theories of Groups and Organizations: Conceptual and Empirical
Research, Washington, D.C, pp. 8–15 (1993)

14. Zheng-guang, W., Xiao-hui, L., Qin-ping, Z.: Adaptive mechanisms of organizational struc-
tures in multi-agent systems. In: Shi, Z.-Z., Sadananda, R. (eds.) PRIMA 2006. LNCS
(LNAI), vol. 4088, pp. 471–477. Springer, Heidelberg (2006)

15. McCallum, M., Vasconcelos, W.W., Norman, T.J.: Verification and analysis of organisational
change. In: Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson, E., Ossowski, S.,
Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP 2005. LNCS (LNAI),
vol. 3913, pp. 46–61. Springer, Heidelberg (2006)

16. Kashyap, S.: Reorganization in Multiagent Organizations. PhD thesis, Kansas State Univer-
sity (2006)

17. Zhong, C.: An Investigationi of Reorganization Algorithms. PhD thesis, Kansas State Uni-
versity (2002)

18. Picard, G., Mellouli, S., Gleizes, M.P.: Techniques for multi-agent system reorganization. In:
Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963, pp.
142–152. Springer, Heidelberg (2006)

19. Grossi, D., Dignum, F., Dastani, M.: Foundations of organizational structures in multiagent
systems. In: Fourth International Conference on Autonomous Agents and Multiagent Sys-
tems, Utrecht, pp. 690–697. ACM Press, New York (2005)

20. Hübner, J.F., Sichman, J.S., Boissier, O.: MOISE+: Towards a structural, functional, and
deontic model for mas organization. In: Castelfranchi, C., Johnson, W.L. (eds.) Proceedings
of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems,
AAMAS 2002, pp. 501–502. ACM Press, New York (2002)

21. Ghijsen, M., Jansweijer, W., Wielinga, B.: Towards a framework for agent coordination and
reorganization, Agentcore. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.)
COIN 2007. LNCS (LNAI), vol. 4870, pp. 1–14. Springer, Heidelberg (2008)

22. Coutinho, L.R., Sichman, J.S., Boissier, O.: Modeling dimensions for multi-agent systems
organizations. In: Proceedings of the 1st International Workshop on Agent Organizations:
Models and Simulations, AOMS 2007, Hyderabad (2007)

154 A.C.d.R. Costa and G.P. Dimuro

23. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent systems. In
Boella, G., van der Torre, L., Verhagen, H., eds.: Normative Multi-agent Systems. Number
07122 in Dagstuhl Seminar Proceedings, IBFI (2007)

24. Costa, A.C.R., Dimuro, G.P.: A basis for an exchange value-based operational notion of
morality for multiagent systems. In: Neves, J., Santos, M.F., Machado, J.M. (eds.) EPIA
2007. LNCS (LNAI), vol. 4874, pp. 580–592. Springer, Heidelberg (2007)

25. Dimuro, G.P., Costa, A.R.C., Palazzo, L.A.M.: Systems of exchange values as tools for multi-
agent organizations. Journal of the Brazilian Computer Society 11(1), 31–50 (2005) (Special
Issue on Agents’ Organizations)

26. Dimuro, G.P., Costa, A.R.C.: Exchange values and self-regulation of exchanges in multi-
agent systems: the provisory, centralized model. In: Brueckner, S.A., Di Marzo Serugendo,
G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 75–89.
Springer, Heidelberg (2006)

27. Dimuro, G.P., Costa, A.R.C.: Interval-based Markov Decision Processes for regulating
interactions between two agents in multi-agent systems. In: Dongarra, J., Madsen, K.,
Wásniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 102–111. Springer, Heidelberg
(2006)

28. Rodrigues, M.R., Luck, M.: Analysing partner selection through exchange values. In:
Sichman, J.S., Antunes, L. (eds.) MABS 2005. LNCS (LNAI), vol. 3891, pp. 24–40.
Springer, Heidelberg (2006)

29. Rodrigues, M.R., Luck, M.: Cooperative interactions: an exchange values model. In: Noriega,
P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.)
COIN 2006. LNCS (LNAI), vol. 4386, pp. 356–371. Springer, Heidelberg (2007)

30. Grimaldo, F., Lozano, M., Barber, F.: Coordination and sociability for intelligent virtual
agents. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS
(LNAI), vol. 4870, pp. 58–70. Springer, Heidelberg (2008)

31. Georgeff, M., Lansky, A.: Procedural knowledge. Proc. of the IEEE 74, 1383–1398 (1986)

Dynamic Composition of Electronic Institutions

for Teamwork

Mario Gómez1 and Enric Plaza2

1 Department of Computing Science, University of Aberdeen
mgomez@csd.abdn.ac.uk

2 Artificial Intelligence Research Institute, Spanish National Research Council
enric@iiia.csic.es

Abstract. We present a framework for teamwork based on a require-
ment’s driven dynamic composition approach to electronic institutions,
which builds on an existing formalism for agent-mediated electronic in-
stitutions. In the presented framework, agent teams are designed and
deployed on-the-fly so as to met the requirements of the problem at
hand. The result is a new form of electronic institution that is created
dynamically out of existing components to provide ad-hoc communica-
tion and coordination support for teamwork. This approach combines a
requirements driven configuration of a team in terms of the structure,
competencies and knowledge required (team design) to fulfill problem
requirements; and a dynamic negotiation of the communication and co-
ordination components to use for every team role (team formation).

1 Introduction

Cooperative problem solving (CPS) is a form of social interaction in which a
group of agents work together to achieve a common goal. Several models have
been proposed to account for this form of interaction from different perspectives:
distributed artificial intelligence, economics, philosophy, organization science and
social sciences. From the artificial intelligence perspective there are two main ap-
proaches to cooperation: a micro-level –agent-centered– view, which is focused on
the internal architecture or the decision-making model of individual agents, and
a macro-level –social– view, which is focused on the societal and organizational
aspects of cooperation.

Some of the most challenging issues faced by the MAS community are related
to the creation of open MAS [17]. Closed systems are typically designed by one
team for one homogeneous environment, while in open MAS the participants (both
human and software agents) are unknown beforehand, may change over time and
may be developed by different parties. Therefore, those infrastructures that adopt
a social view on cooperation seem more appropriate that those adopting a micro-
level view, for the former do not enforce a particular agent architecture.

Some aspects of complex system development become more difficult by adopt-
ing an agent-centered approach: since agents are autonomous, the patterns and
the effects of their interactions are uncertain, and it is extremely difficult to

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 155–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

156 M. Gómez and E. Plaza

predict the behavior of the overall system based on its constituent components,
because of the strong possibility of emergent behavior [16]. These problems can
be circumvented by restraining interactions and imposing preset organizational
structures, which are characteristic of the social view.

The Agent-Mediated Electronic Institutions (EI) approach was proposed
[19,23,8] to address the issues stated above (openness and predictability) by in-
troducing a social control mechanism. However, a main issue arises when trying
to use preset organizational structures to operationalize CPS: the need for dif-
ferent team structures to deal with different types of problem. The EI approach
was originally intended to model static organizations of agents; therefore, at
first glance it seems inadequate to use such an approach for dealing with flexible
teamwork. In this paper we introduce a proposal that uses the EI formalism
in a novel way: on-the-fly institutions created out of existing components that
capture the communication and coordination aspects of teamwork. These insti-
tutions are created on demand, according to the requirements of each problem
being solved, and are able to reconfigure themselves to deal with changes in the
environment.

The paper is structured as follows: Section 2 reviews related work, Section 3
puts our institutional model of teamwork in context by introducing the frame-
work this model is part of, Section 4 describes our proposal to model teamwork
based on the EI formalism, and finally, Section 5 summarizes our contributions.

2 Related Work

The notion of Agent Mediated Electronic Institutions (EI) was first proposed in
[19] taking fish-auctions as an inspiring metaphor. Since then, it has become a
main research topic of several projects, which have further refined and formal-
ized it, as for example in [23,8]. An Electronic Institution (EI) refers to a sort
of “virtual place” that is designed to support and facilitate certain goals to the
human and software agents concurring to that place by establishing explicit con-
ventions. Since these goals are achieved by means of the interaction of agents, an
EI provides the social mediation layer required by agents to achieve a successful
interaction: interaction protocols, shared ontologies, communication languages
and social behavior rules. Formalization of electronic institutions [11] under-
pins the use of structured design techniques and formal analysis, and facilitates
development, composition and reuse.

Other early frameworks based on social and organization notions are:

– The Civil Agent Societies [5]: a framework for developing agent organizations
which follows the metaphor of civil human societies based on social contracts,
and is oriented towards marketplaces and B2B e-commerce. This framework
uses the Contract Net interaction protocol, social norms, notary services and
exception handling services.

– The organization of sociality presented in [21]: it is based on a conception
of cognition, both at the individual and the collective level, examined in
relation to contemporary organization theory.

Dynamic Composition of Electronic Institutions for Teamwork 157

– The organizational model presented in [6]: this model describes rules of be-
havior for individual agents using concepts from organization theory such as
roles and norms.

Other models and frameworks can be found in the proceedings and post-
proceedings of the COIN International Workshop Series on Coordination, Or-
ganizations, Institutions, and Norms [1,20]. The framework we propose here is
based on the EI approach, and more specifically, we adopt the formalism de-
scribed in [10,9] as a starting point to our own work. The main contribution of
our proposal is the notion of dynamic institutions created on-the-fly by select-
ing and combining reusable institutional components on-demand, so as to meet
stated problem requirements.

The are some related works around the ideas of dynamic organization and
coordination:

– In [12] a decision making framework is proposed that enables agents to dy-
namically select the coordination mechanism that is most appropriate to
their circumstances.

– In [26] the authors address some of the aspects that must be considered in
order to incorporate norms in agents, and propose a set of strategies to be
used by agents in norm-based systems and analyze.

– In [7] the authors discuss reorganization issues in agent societies: they present
a classification of reorganization situations, based on the focus of the reorga-
nization, the authority to modify the organization, and how reorganization
decisions are taken. This work proposes requirements for agents to allow for
the automatic adaptation to a reorganized system.

– The analysis of reorganization requirements has yielded a model for ad-
justable autonomy [24] as a way to achieve dynamic coordination. This
research describes the relation between types of coordination and the au-
tonomy of actors.

– The concept of adjustable autonomy is also explored in [4], in the context
of mixed human-agent teams. This work proposes a policy-based capability
for adjustable autonomy based on the multiple dimensions of the problem.

A commonality of the former works, which differentiates them from our own
work, is the focus on individual agents: mechanisms for autonomous agents to
select coordination mechanisms and adapt to the changing environment, while
our focus in on the organization itself: how to select the best organization for
accomplishing some specific goals.

Also relevant to our own approach is the work presented in [3,2]. This work
takes the notions of self-organization and self-configuration from Autonomic
Computing, and applies them to Agent Mediated Electronic Institutions, which
brings about the notion of Autonomic Electronic Institutions (AEI). In particu-
lar, the authors are exploring the the use of Genetic Algorithms and Case Based
Reasoning to modify some aspects of an electronic institution to better fulfill its
goals as the environment changes. However, our approaches are quite different:
one the one hand, the AEI approach addresses the adaptation of norms specified

158 M. Gómez and E. Plaza

in a parametric way, by learning the parameters that bring about a better global
behavior; on the other hand, we address the structure and configuration of the
institution itself, in terms of its organizational structure and allowed communi-
cation protocols; more specifically, our approach is to configure and reconfigure a
new institution by selecting and composing reusable components so as to satisfy
stated problem requirements.

Another line of research that is related to our own line is described in [18]. In
that paper, the authors use a notion of dynamic electronic institution (DEI) as
a temporary organization of agents that is constituted, dissolved and reformed
on-the-fly, and is able to adapt its norms dynamically, dynamically in relation
to its present members (agents). There are several differences between former
proposal and our own one: one the one hand, their approach is driven by the
goals of the agents willing to form a coalition and deciding to adopt a common
set of norms, while in our approach there exists a previous meta-institution
that helps agents form new institutions for solving specific problems, by reusing
existing components; on the other hand, the central element of their proposal
is the adoption of norms, while our approach gives more importance to the
communication and coordination aspects of teamwork, that we use as building
blocks of the institution.

Nest section introduces the ORCAS framework, a multi-layered framework for
cooperative MAS that embraces the institutional model discussed in this paper.

3 The ORCAS Framework

In this paper we present an institutional approach to CPS that is part of the
ORCAS framework for developing and deploying cooperative MAS [13]. The
main contributions of this framework are:

– An Agent Capability Description Language (ACDL) that supports all the
activities required to cooperate in open environments, from the discovery
and invocation of capabilities, to their composition and coordination.

– A model of CPS that is driven by the specification of requirements for every
particular instance of a problem to be solved.

– An agent platform for developing and deploying cooperative MAS in open
environments.

Figure 1 depicts the main elements of the ORCAS ACDL. A capability is
able to accomplish some task, and may require specific domain knowledge fulfill-
ing some properties or assumptions. These properties assumed for the domain
knowledge are specified as domain models. There are two types of capability:
skill and task-decomposer. Skills are primitive, non decomposable capabilities,
while task-decomposers decompose a problem (a task) into more elementary
problems (subtasks), so as to solve complex problems that primitive capabilities
cannot accomplish alone. Any capability presents a knowledge-level description
that specifies what the capability does from a functional view: input, output,
preconditions, and postconditions. This functional description can be used by

Dynamic Composition of Electronic Institutions for Teamwork 159

Fig. 1. Overview of the ORCAS ACDL

middle agents to discover and compose capabilities. However, in order to invoke
a capability and interact with its provider, a requester agent must use an inter-
action protocol that is supported by the capability of interest. In ORCAS the
information required to invoke a capability is referred to as the communication of
a capability. Finally, the information required to coordinate multiple agents that
are cooperating to solve a problem together is specified by the operational de-
scription of a task decomposer, which describes the control flow among subtasks
(sequencing, parallelism, choices, etc.) in terms of agent roles.

The ORCAS platform provides all the infrastructure required by agents to
successfully cooperate according to the ORCAS model of CPS. This model of
the CPs process is sketched in Figure 2. The problem specification process pro-
duces a specification of problem requirements to be met by a team, including a
description of the application domain (a collection of domain models) and the
problem data to be used during teamwork. The team design process uses the
problem requirements to build a task-configuration, which is a knowledge-level
specification of: (1) the tasks to solve, (2) the capabilities to apply, and (3) the
domain knowledge required by a team of agents in order to solve a given prob-
lem according to its specific requirements. The resulting task-configuration is
used during team formation to allocate tasks and subtasks to agents, and to
instruct agents on how to play their assigned team-roles: capabilities and knowl-
edge to apply, as well as communication and coordination requirements. Finally,
teamwork is the execution stage where team members try to solve the prob-
lem together by following the instructions received during team formation, thus
complying with the specific requirements of the problem at hand.

Note that the ORCAS model for CPS should not be understood as a fixed
sequence of steps, instead, we have implemented strategies that interleave
team design and team formation with teamwork. These strategies enable the

160 M. Gómez and E. Plaza

Problem

Specification
Team Design

Team

Formation
Teamwork

MAS Configuration

Problem
requirements

Task
Configuration

Team

Reconfiguration

Problem Data

Fig. 2. The ORCAS model for the cooperative problem solving process

reconfiguration of agent teams dynamically so as to react to agent failure and
other changes in the environment.

It should be remarked that, within the ORCAS framework, the EIs formalism is
used in two ways: on the one hand, we use concepts adapted from the EI formalism
described in [10,8] for specifying some elements of the ORCAS ACDL (the com-
munication and the operational description), formalism; on the other hand, the
ORCAS agent platform is itself an EI that provides mediation services for both
providers and requesters of problem solving capabilities to successfully cooperate
(this platform is actually ameta-instutionwhere team-specific institutions are con-
stituted). Fromnowon, to avoid confusionwewill sometimes refer to this formalism
as ISLANDER, which is the name of a software tool to edit and verify institutions
according to the formalism described in the EI formalism adopted here.

The knowledge-level description of a capability and the mechanisms used in
ORCAS to discover and compose capabilities (which are part of the team de-
sign process) have been described elsewhere [14]. The ORCAS agent platform is
described in [15]. In this paper we focus on those aspects of the ORCAS ACDL
that are based on ISLANDER, namely the communication and the operational
description, and how are these elements used to represent the interaction and
coordination requirements of teamwork. These are the subjects of the following
section.

4 Dynamic Institutions for Hierarchical Teamwork

The ORCAS ACDL specifies the communication and operational description of
capabilities using elements from the ISLANDER formalism in a novel way, so it
seems appropriate to briefly review the main concepts of this formalism before
describing their use in ORCAS:

1. Agent roles: Agents are the players in an EI, interacting by the exchange of
speech acts, whereas roles are standardized patterns of behavior required by
agents playing part in given functional relationships.

Dynamic Composition of Electronic Institutions for Teamwork 161

2. Dialogic framework: Determines the valid illocutions that can be exchanged
among agents, including the vocabulary (ontology) and the agent communi-
cation language.

3. Scenes: A scene defines an interaction protocol among a set of agent roles,
using the illocutions allowed by a given dialogic framework.

4. Performative structure: A network of connected scenes that captures the
relationships among scenes; a performative structure constrains the paths
agents can traverse to move from one scene to another, depending on the
roles they are playing.

In ORCAS the specification of capabilities at the knowledge level enables
the automated discovery and composition of capabilities, without taking into
account neither the communication aspects required to invoke a capability, nor
the operational aspects required to coordinate the behavior of several agents.
These features are specified respectively in the communication and operational
description of a capability:

Communication: Specifies one or several interaction protocols that can be
used to interact with an agent to invoke a given capability and get back the
result of applying it. This feature is specified using the notion of scene from
ISLANDER.

Operational Description: Specifies the control flow among the subtasks in-
troduced by a task-decomposer, using a restricted version of the performative
structure concept from ISLANDER.

A team in ORCAS is designed to solve a problem represented by a knowledge-
level structure referred to as a task-configuration (the reader is referred to [14] for
a more detailed description). Figure 3 shows an example of a task-configuration
for a task called Information-Search. This task is decomposed into four tasks by
the Meta-search task-decomposer: Elaborate-query, Customize-query, Retrieve
and Aggregate, which is further decomposed by the Aggregation capability into
two subtasks: Elaborate-items and Aggregate-items. The example includes some
skills requiring domain knowledge: the Query-expansion-with-thesaurus requires
a thesaurus (e.g. MeSH, a medical thesaurus), and the Retrieval and Query-
customization skills require a description of information sources.

Any ORCAS team follows the hierarchical structure of a task-configuration,
with one team-role per task. Each team role represents a position to be played
in the team organization, and includes the following elements: a team-role iden-
tifier1, the identifier of a task to be solved, the identifier of a capability to apply,
the domain knowledge to be used by the selected capability (if needed), and
optionally, if the capability is a task decomposer, the information required to
delegate subtasks to other team-members, which includes, for each subtask: the
identifier of a subordinated team-role, the team members assigned to that team

1 The same task may appear multiple times in the same task-configuration, so a unique
team-role identifier is required.

162 M. Gómez and E. Plaza

Fig. 3. Task-configuration example

Fig. 4. Team roles

role2, a collection of reserve agents to use in case that some of the selected team
members fail, and a communication protocol that is compatible with the selected
capability and shared by both the agent assigned to the parent task, and the
agent or agents assigned to the subtask.

Figure 4 depicts a partial example of a team based on the task-configuration
showed in Figure 3. Essentially, a team is hierarchical organization of team-roles.
In particular, we see 4 team roles –TR1, TR5, TR6 and TR7– corresponding to
tasks Information-Search, Aggregate, Elaborate-Items, and Aggregate-Items. A

2 Usually, a task (and the corresponding team role) only needs a team member to be
achieved, but some tasks may have to be performed multiple times in parallel, thus
they can be served by a number of agents working simultaneously.

Dynamic Composition of Electronic Institutions for Teamwork 163

team is organized around subordination relations that are established in accor-
dance to the top-down task-decomposition. These relations are specified in terms
of two generic roles: the coordinator, which has to be adopted by an agent ap-
plying a task-decomposition; and operator, which has to be played by the agents
selected to solve some subtask.

A team-role specifies the requirements for agents to play a specific position
within a team, which includes: a task to be solved, a capability to be applied, and,
if the capability is a task-decomposer, then the team-role can include informa-
tion about team members selected for solving each subtask, the communication
elements required to delegate each subtask to the selected agent, and optionally
a group of agents to keep in reserve.

A Team-Role is a tuple π = 〈R, I, T, C, M, Com, S, AS , AR〉 where R is
a unique team-role identifier, I is a unique team identifier, T is a task, C is a
capability, M is a set of domain-models, Com is a specification of communication
requirements, AS is a set of selected agents, AR is a set of reserve agents, and S
is a subteam, specified as a set of team-components.

A subteam is specified as a set of team-components, where each team-
component holds information about a team-role associated to one subtask. More
formally, a Team-Component is defined as a tuple ξ = 〈R, T, AS, AR,
Com〉 where R is a unique team-role identifier, T is a task AS is a set of selected
agents, AR is a set of reserve agents, Com is a specification of communication
requirements.

A team-component is defined for each subtask introduced by a task-
decomposer. The team-role identifier (R) determines the precise position of the
team-component in the team hierarchy. There is a set of agents selected (AS)
to carry out the team-role, and there is a set of agents to keep in reserve (AR)
for the case that some of the selected agents fail during the Teamwork process.
Finally, a team-component includes a specification of the communication (Com)
required to interact with the agent playing the team-component’s team-role (R).

Figure 4 shown an example of a team-role that has to apply a task-decomposer,
TR5. The agent selected to play TR5 has to apply the Aggregation task-
decomposer, which introduces two subtasks: Elaborate-Items and Aggregate-
Items. These subtasks are associated to subordinated team roles TR6 and TR7.
The information required by TR5 to cooperate with the agents playing TR6 and
TR7 is specified as team-components TC1 and TC2. For example, team com-
ponent TC1 is associated to TR6, that is allocated to agent AG2, with agent
AG4 in reserve, and the communication between TR5 and TR6 has to use a
Request-Inform protocol.

We define a team as a structure made of interrelated team-roles and team-
components, based on a subordination relation S among team-roles: a team-role
is subordinated to another, denoted by S(π, π′), if the first team-role is bound
to a team-component contained in the subteam of the second team-role.

S(π, π′) ⇔ ∃ξi ∈ πS | ξi
R = π′ where π, π′ ∈ Π are team-roles, πS ⊆ Ξ is the

subteam of π (a set of team-components), ξi ∈ Ξ is the i-th element of πS , and
ξi
R ∈ Π is the team-role associated to ξi.

164 M. Gómez and E. Plaza

Noting S
∗ the closure of S we can now define a team as follows:

A Team is defined as a function of a particular a task-configuration
Team(Conf(K))={π∈Π |S∗(π0, π)∧(head(K)=π0

T)}; where π0 ∈ Π is the team
leader’s team-role, which is not subordinated to any other team-role, Conf(K)
is a task-configuration, head(K) is the root task of the task-configuration (K),
and π0

T is the task allocated to the team leader π0.
A team is a collection of interrelated team-roles, starting from the team-leader

π, that is assigned to the root task of a task-configuration. This team model
provides an abstract view of the competence required by a group of agents to
solve a particular problem. Teams are instantiated during the Team Formation
process by selecting a set of agents to play each team-role, and a set of agents
to keep in reserve.

Next subsections address, respectively, the specification of the communication
and operational description of a capability in ORCAS.

4.1 Communication

Agent capabilities should be specified independently of other agents in order to
maximize their reuse and facilitate their specification by third party agent devel-
opers. In the general case, agent developers do not know a priori the tasks that
could be achieved by a particular capability, neither the domains they could be
applied to. As a consequence, the team roles an agent could play using a capabil-
ity are not known in advance, thus the scenes used to specify the communication
requirements of an agent over certain capability cannot be specified in terms of
specific team-roles, but in terms of abstract, generic problem solving roles. Since
ORCAS teams are designed in terms of a hierarchical decomposition of tasks
into subtasks, teamwork is organized as a hierarchy of team-roles.

Some team-roles are bound to a task-decomposer, thus the agents playing
those team-roles are responsible of delegating subtasks to other agents, receiving
the results, and performing intermediate data processing between subtasks. In
such an scenario, we establish an abstract communication model with two basic
roles: coordinator, which is adopted by an agent willing to decompose a task into
subtasks, and operator, which is adopted by the agent having to perform a task
on demand, using the data provided by another agent that acts as coordinator
of a top-level task

Figure 4 depicts some team roles, including the subordination relations that
are established between roles, and the generic roles to be assigned when commu-
nicating between an agent applying a task-decomposer, and the agents playing
the subordinated team-roles. For example, the agent playing TR5 will have to
adopt the coordinator role to communicate with the agents playing TR6 and
TR7, which will adopt the operator role. Each of these communications will
follow the protocol decided during the Team Formation and specified in a team-
component object.

Figure 5 shows a scene depicting the communication requirements of an agent
over a capability by using a typical request-inform protocol in terms of our two
generic roles: Coordinator and Operator. Symbol ? denotes a new bind for a

Dynamic Composition of Electronic Institutions for Teamwork 165

w1 w2 w3

w4 w5

+coordinator
+operator

w0

-coordinator
-operator

-coordinator
-operator

-coordinator
-operator

1 2 3

4 5

Fig. 5. Example of a communication scene

variable, while ! denotes an already bound variable. States with double border
line enable agents to either join (+) or leave (-) the scene at that point, according
to the role they play. In the example, there is an initial state in w0, where agents
enter the scene, and three final states w3, w4 and w5, where agents leave.

We adopt the formal definition of a scene in ISLANDER, so for the reader
interested in the technical details, we refer to the papers describing that for-
malism, as for example [8]. Next section introduces our approach to specify the
operational description of a task-decomposer.

4.2 Operational Description

The operational description of a task decomposer is used to specify the coordi-
nation among agents in terms of the role-flow policy and the control flow among
subtasks. Figure 6 depicts some of the control flow constructions allowed by a
performative structure: (a) tasks performed consecutively, in sequence; (b) choice
between alternative courses of action; (c) tasks performed in parallel; and (d)
tasks that can be executed multiple times.

In ORCAS the operational description of a task-decomposer is based on per-
formative structures, with some distinctive features: as in the EIs formalism,

Fig. 6. Control flow among subtasks used in operational descriptions

166 M. Gómez and E. Plaza

Fig. 7. Example of an operational description

each ORCAS scene within a performative structure must be instantiated by a
communication protocol (except the Start and End scenes). However, in ORCAS
the scenes within a performative structure are not instantiated beforehand; that
is to say, they are not bound to a specific communication protocol. Instead, the
scenes of an operational description are instantiated during team formation, us-
ing as a source the set of communication protocols shared by the agents having
to interact.

After instantiation, each scene in an operational description corresponds to
the communication required to solve a subtask, which implies an agent act-
ing as coordinator invoking the capability provided by another agent acting as
operator (or several operators in the case of multiple-instantiated tasks). The
coordinator and the operators must use the same communication protocol in
order to successfully communicate. Consequently, the instantiation of the scenes
in an operational description is done using only those communication protocols
shared by the agents involved in a scene. To note that team members are selected
during team formation, and thus the set of shared communication protocols is
not known until the team members are decided.

Figure 7 shows an example of an operational description for a task-decomposer
called Aggregation. This task-decomposer introduces two subtasks: Elaborate-
items (EI) and Aggregate-items (AI). Thus, the operational description has two
main scenes, one for each subtask, and three role variables: x is a coordinator
role, to be played by the agent applying the task-decomposer; y and z are both
operator roles; y participates in EI, and z participates AI. Notice that the coor-
dinator (x) is the same in both scenes; it enters EI first and moves to AI only
after EI ends.

We adopt the formal definition of a performative structure in ISLANDER, so
for the reader interested in the technical details, we refer to the papers describing
that formalism, as for example [8].

Since each task-decomposer has an operational description, and the ORCAS
organization of a team follows the hierarchical decomposition of tasks into

Dynamic Composition of Electronic Institutions for Teamwork 167

Fig. 8. Teamwork as a nested structure of operational descriptions

subtasks that results of applying task-decomposers, we can model the operational
description of a complete team as nested structure of operational descriptions.

Figure 8 depicts the operational description of a team. The top team-role,
TR1, is associated to task Information Search, and is bound to a task-decomposer
that introduces three subtasks: Customize Query, Retrieve and Aggregate. There-
fore, the agent playing TR1 will follow an operational description that contains
three scenes, one for every subtask. In addition, the last of these subtasks is
bound to another task-decomposer, Aggregation, which in turn introduces a new
operational description. The new operational description is nested to the team
leader’s operational description, and has two scenes, one for Elaborate-Items and
another for Aggregate-Items.

Teamwork follows the control flow and the communication scenes established
by the nested structure of operational descriptions associated to task-
decomposers (already instantiated during team formation). Each scene within
an operational description refers to a communication protocol to be played by
two agents, one applying a task-decomposer and playing the coordinator role,
and one assigned to the corresponding subtask playing the operator role. When
an agent playing an operator role has to apply itself a task-decomposer, it will
follow the associated operational description playing itself the coordinator role.
The execution of an operational description does not finish until all the nested
operational descriptions are executed.

Each time a new team is formed according to a task-configuration, a new
structure of nested operational descriptions is composed and their scenes instan-
tiated. We regard this structure as a dynamic institution, since it is configured
on-the-fly, out of the communication protocols and the operational descriptions
supported by the selected team members.

168 M. Gómez and E. Plaza

5 Conclusions

In this paper, we have presented a novel approach to teamwork specification
using concepts adapted from the EI formalism. In this approach the communi-
cation and coordination aspects required for teamwork are reusable components
that are used by agents to specify their problem solving capabilities. By doing
so, middle agents such as brokers and matchmakers can reason about the com-
munication and coordination aspects of individual agents to dynamically create
an EI that is adapted to the particular requirements of every problem to be
solved.

While EIs are supposed to be static structures characterized by a predefined
network of scenes (a performative structure), we conceive teamwork as a dynamic
institution that is build on-the-fly out of existing components: operational de-
scriptions and communication protocols. The operational description of a task-
decomposer describes the control flow among subtasks using a specific kind of
performative structure in which the communication scenes are not instantiated
beforehand. The instantiation of these scenes is done at runtime by selecting
communication protocols that are shared by the agents involved in every scene.
The result is a hierarchical model of teamwork that is specified as a nested per-
formative structure instantiated and composed on-the-demand, according to the
requirements of each problem to be solved by a team of agents. This model sup-
ports also the reconfiguration of an institution at runtime, which allows teams
to reorganize dynamically to better cope with changes in environments.

By adapting the EI formalism for teamwork, we aim at bringing in some of the
benefits of the social-approach in general, and the benefits of the EI approach
in particular: promoting openness by avoiding the imposition of a specific agent
architecture and favoring reuse; increasing the degree of control over the global
system behavior, thus making a MAS more predictable and fostering trustiness;
and enabling formal verification tools and automated sofware-generation tech-
niques (e.g. generation of agent-skeletons [25]).

Acknowledgements

This research was sponsored by the Spanish Council for Scientific Research under
the MID-CBR (TIN 2006-15140-C03-01) project.

References

1. Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson, E., Ossowski, S.,
Sichman, J.S., Vázquez-Salceda, J. (eds.): ANIREM 2005 and OOOP 2005. LNCS
(LNAI), vol. 3913. Springer, Heidelberg (2006)

2. Bou, E., López-Sánchez, M., Rodŕıguez-Aguilar, J.A.: Adaptation of autonomic
electronic institutions through norms and institutional agents. In: O’Hare, G.M.P.,
Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457,
pp. 300–319. Springer, Heidelberg (2007)

Dynamic Composition of Electronic Institutions for Teamwork 169

3. Bou, E., López-Sánchez, M., Rodŕıguez-Aguilar, J.A.: Towards self-configuration
in autonomic electronic institutions. In: Noriega, P., Vázquez-Salceda, J., Boella,
G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS
(LNAI), vol. 4386, pp. 229–244. Springer, Heidelberg (2007)

4. Bradshaw, J.M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J.,
Bunch, L., Chambers, N., Galescu, L., Jeffers, R., Suri, N., Taysom, W., Uszok, A.:
Kaa: Policy-based explorations of a richer model for adjustable autonomy. In: AA-
MAS 2005: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pp. 214–221. ACM Press, New York (2005)

5. Dellarocas, C.: Contractual Agent Societies: Negotiated shared connote and social
control in open multi-agent systems. In: Proceedings of the Workshop on Norms
and Institutions in Multi-Agent Systems, ICMAS 2002 (2000)

6. Dignum, V., Meyer, J.-J., Weigand, H., Dignum, F.: An organization-oriented
model for agent societies. In: Proceedings of International Workshop on Regulated
Agent-Based Social Systems: Theories and Applications (2002)

7. Dignum, V., Sonenberg, L., Dignum, F.: Towards dynamic reorganization of agent
societies. In: Proceedings of CEAS: Workshop on Coordination in Emergent Agent
Societies at ECAI 2004 (2004)

8. Esteva, M.: Electronic Institutions: From Specification to Development. Spanish
National Research Council. IIIA Monographies, vol. 14 (2003)

9. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor.
In: Proceedings 1th International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 1045–1052 (2002)

10. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and
norms. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS, vol. 2333, pp.
348–366. Springer, Heidelberg (2002)

11. Esteva, M., Rodriguez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal spec-
ifications of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink
2000. LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

12. Excelente-toledo, C.B., Jennings, N.R.: The dynamic selection of coordination
mechanisms. Autonomous Agents and Multi-Agent Systems 9(1–2), 55–85 (2004)

13. Gómez, M.: Open, Reusable and Configurable Multi-Agent Systems: A Knowledge-
Modelling Approach. Spanish National Research Council. IIIA Monographs CSIC,
vol. 23 (2004)

14. Gómez, M., Plaza, E.: Extending matchmaking to maximize capability reuse. Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and
Multi Agent Systems 1, 144–151 (2004)

15. Gómez, M., Plaza, E.: The ORCAS e-Institution: A Platform to Develop Open,
Reusable and Configurable Multi-Agent Systems. International Journal on Intelli-
gent Control and Systems. Special Issue on Distributed Intelligent Systems 12(2),
130–141 (2007)

16. Jennings, N.R.: On-agent-based software engineering. Artificial Intelligence 117,
227–296 (2000)

17. Klein, M.: The challenge: Enabling robust open multi-agent systems (2000)
18. Muntaner-Perich, E., de la Rosa, J.: Towards dynamic electronic institutions: From

agent coalitions to agent institutions. In: Hinchey, M.G., Rago, P., Rash, J.L.,
Rouff, C.A., Sterritt, R., Truszkowski, W. (eds.) WRAC 2005. LNCS (LNAI),
vol. 3825, pp. 109–121. Springer, Heidelberg (2006)

19. Noriega, P.: Agent-Mediated Auctions: The Fish-Market Metaphor. PhD thesis,
Universitat Autònoma de Barcelona (1997)

170 M. Gómez and E. Plaza

20. Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara,
N., Matson, E. (eds.): COIN 2006. LNCS (LNAI), vol. 4386. Springer, Heidelberg
(2007)

21. Panzarasa, P., Jennings, N.R.: The organisation of sociality: A manifesto for a new
science of multiagent systems. In: Proceedings of the Tenth European Workshop
on Multi-Agent Systems (2001)

22. Plaza, E.: Cooperative reuse for compositional cases in multi-agent systems. In:
Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 382–
396. Springer, Heidelberg (2005)

23. Rodŕıguez-Aguilar, J.A.: On the Design and Construction of Agent-mediated Elec-
tronic Institutions. IIIA Monographs, CSIC. vol. 14 (2001)

24. van der Vecht, B., Dignum, F., Meyer, J.-J.C., Neef, M.: A dynamic coordination
mechanism using adjustable autonomy. In: Sichman, J.S., Padget, J., Ossowski, S.,
Noriega, P. (eds.) COIN 2007. LNCS(LNAI), vol. 4870, pp. 83–96. Springer, Hei-
delberg (2008)

25. Vasconcelos, W.W., Sabater, J., Sierra, C., Querol, J.: Skeleton-based agent devel-
opment for electronic institutions. In: Proceedings UKMAS (2001)

26. y López, F.L., Luck, M., d’Inverno, M.: Constraining autonomy through norms.
In: AAMAS 2002: Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pp. 674–681. ACM Press, New York
(2002)

Organisational Artifacts and Agents
for Open Multi-Agent Organisations:

“Giving the Power Back to the Agents”

Rosine Kitio1, Olivier Boissier1,�, Jomi Fred Hübner1,2,��, and Alessandro Ricci3

1 SMA/G2I/ENSM.SE, 158 Cours Fauriel
42023 Saint-Etienne Cedex, France

{kitio,boissier,hubner}@emse.fr
2 GIA/DSC/FURB, Braz Wanka, 238

89035-160, Blumenau, Brazil
jomi@inf.furb.br

3 DEIS, ALMA MATER STUDIORUM Università di Bologna
47023 Cesena (FC), Italy
a.ricci@unibo.it

Abstract. The social and organisational aspects of agency have become
nowadays a major focus of interest in the MAS community, and a good
amount of theoretical work is available, in terms of formal models and theories.
However, the conception and engineering of proper organisational infrastructures
embodying such models and theories is still an open issue, in particular when
open MAS are considered. Accordingly, in this paper we discuss a model for
an organisational infrastructure called ORA4MAS that aims at addressing these
issues. By being based on the A&A (Agents and Artifacts) meta-model, the
key and novel aspect introduced with ORA4MAS is that organisations and the
organisation infrastructure itself are conceived in terms of agents and artifacts,
as first-class abstractions giving body to the MAS from design to runtime.

Keywords: Multi-agent Systems, MAS organisations, Open systems.

1 Introduction

Nowadays, current applications of IT show the interweaving of both human and tech-
nological communities in which software entities act on behalf of users and cooperate
with infohabitants, taking into account issues like trust, security, flexibility, adaptation
and openness [12,24]. As shown in [16], current applications have led to an increase in
number of agents, in the duration and repetitiveness of their activities, with a decision
and action perimeter still enlarging. Moreover the number of agents’ designers is also
increasing, leading to a huge palette of heterogeneity in these systems. Most designers
have doubts about how to put these concepts in practice, i.e., how to program them,

� Partially supported by USP-COFECUB.
�� Supported by ANR Project ForTrust.

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 171–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 R. Kitio et al.

while both addressing the openness and scalability issues and keeping agent’s auton-
omy and decentralisation which are essential features of MAS. The complex system
engineering’s approach needed to build such applications highlights and stresses re-
quirements on openness in terms of ability to take into account several kinds of changes
and to adapt the system configuration while it keeps running.

Since it is a huge and complex work to develop systems with this kind of openness,
in this paper we propose an organisational infrastructure referred as ORA4MAS which
is meant to provide a conceptual and architectural step towards the simplification of
this problem. Our proposal is based on the A&A approach [23] where instead of a lot
of different components and concepts (e.g., agents, services, proxies, objects, ...), only
two types of entities are involved: agents and artifacts. Roughly, while agents model
the decisions of the system, the artifacts model its functions. We especially demonstrate
this approach showing how the organisational aspect of the MAS can be conceived
and designed by only organisational agents and organisational artifacts. This is in
analogy with human organisation and organisation infrastructures, that are populated
by humans (as participants and part of the organisation machinery), and by rich sets of
artifacts and tools that humans use to support their activities inside the organisation and
the organisation itself, encapsulating essential infrastructure services.

In the first part of the paper (Sec. 2), we will have a look at the different approaches
that have been developed in the field of multi-agent organisation, stressing what lim-
itations we consider. This is complemented by a look at what has been done in the
other dimensions of an MAS, i.e., environment and interaction. Then, we present the
basic concepts underlying ORA4MAS infrastructure (Sec. 3), and we briefly describe
the shapes of the organisational artifacts devised in ORA4MAS reifying the MOISE+

organisational model (Sec. 4). Finally, we provide concluding remarks and perspectives
for the work in (Sec. 5).

2 Background

The recent developments in MAS domain, belonging to what we call Organisation Ori-
ented Programming (OOP) [2], have provided many proposals of organisation-oriented
middleware. In the different approaches related to OOP, we distinguish two important
components: a declarative Organisation Modelling Language (OML) and an Organi-
sation Implementation Architecture (OIA). The OML specifies the organisation(s) of
an MAS. It is used to collect and express specific constraints and cooperation patterns
imposed on the agents by the designer (or the agents), resulting in an explicit represen-
tation that we call Organisation Specification (OS). A collective entity, called Organi-
sation Entity (OE), instantiates this OS by assigning agents to roles. The OIA will then
help these agents to properly “play” their roles as they are specified in the OS.

The OIA normally considers both an agent centered and a system centered point
of view.1 In the former, the focus lies on how to develop different agent reasoning
mechanisms to interpret and reason on the OS and OE applied to the agents [3,4]. In
the latter, the main concern is how to develop an infrastructure, that we call Organi-
sation Infrastructure (OI), that ensures the satisfaction of the organisational constraints

1 Let’s notice that in [28] these points of view are called agent and institutional perspectives.

Organisational Artifacts and Agents for Open Multi-Agent Organisations 173

(e.g., agents playing the right roles, following the specified norms). This second point
of view is important in heterogeneous and open systems where the agents that enter into
the system may have unknown architectures. Of course, to develop the overall MAS,
the former point of view is necessary since the agents probably need to have access to
an organisational representation that enable them to reason about it.

The implementation of OI normally follows a common trend in multiagent platforms.
These platforms, e.g. JADE [1], have demonstrated the requirement and utility of the
notion of “infrastructure” for MAS development [10]. Not only have they supported the
implementation of the agents, but are being noticed as a provider of fundamental global
generic services going further of only directory facilitator, agent management system or
agent communications by also addressing coordination [19]. Therefore, agents related
to the application domain operate on top of a middleware layer.

As shown in [2], many implementations of OI follow the general layered architecture
depicted in Fig. 1: (i) domain (or application) agents, responsible to achieve organisa-
tional goals, use an organisational proxy component to interact with the organisation,
(ii) the organisational middleware, responsible to bind all agents in a coherent OS and
OE and provides some services for them, and (iii) communication infrastructure for
connecting all components in a distributed and heterogeneous applications. This layered
structure results in an engineering approach where the MAS development is considered
to be addressed by three kinds of designers: domain or application designers (for the
agents and the specification of the OS using the OML), MAS or OI designers (for the
organisational infrastructure and OE management), and communication designers.

From the study of the different works considering the OI, we can identify a set of
specialised services and proxies (e.g., angels [5], governors [7], managers [14]). In or-
der to stress their ability to manage organisational concepts and to develop dedicated
reasoning/processing abilities on the organisation, let’s call them organisational ser-
vices (OrgServices). One important point to notice is that all the access to the OI by the
agents is mediated by these organisational proxies.

This brief general introduction of OI designs allow us to point out some drawbacks:

1. In some proposals, like S-MOISE+ [14], OrgServices are implemented as agents.
The problem is that, conceptually, services are not in the same abstraction level as
agents.

2. In the proposals where OrgServices are not agents, whenever an application de-
signer needs to customise some decisions of the system in the organisational di-
mension (e.g., a sanction system, a reorganisation strategy, the assignment of roles
to agents), s/he has to develop/change an OrgService. It can be quite confusing to
deal with both OrgServices and agents concepts while developing a system. It will
be better to always use the same abstraction level when modelling and implement-
ing the decision aspect of the application.

3. The designer (and the agents) also have to deal with two kinds of environments: a
virtual organisational environment (where the agents adopt roles, send messages)
and the real environment (where the agents act). An unified view of the environment
simplifies the concept of agent interaction.

4. In the general architecture of Fig. 1, the organisation middleware has too much
power. Most of the organisational “decisions” are performed at this layer. It is more

174 R. Kitio et al.

Fig. 1. Common Organisation Infrastructure for open MAS

suitable if the agents make decisions and not the OrgServices. For example, if some
agent wants to perform some action or send a message that its organisation does
not allow, it can not do it since the middleware (and its organisational proxy) will
detect this violation tentative and decide on the sanction to apply. The middleware
is thus performing two functions: detection and decision/judgement. In some cases
agents operating on the application layer should get their control power back in
the sense that they should play some of the roles of the OrgServices. As another
example, reorganisation requires that agents should be able to manage and access
the creation of new organisations.

The problems of existing approaches of organisations are consequence of some prop-
erties of the OrgServices design: (i) the enforcement of organisational functions and
constraints and (ii) the inclusion of reasoning and decision aspects that can be managed
by agents and thus should be in the agent layer.

It’s worth noting that the issues stated here do not concern solely the implementation
level, but also the conceptual and theoretical level: what is the nature of OrgServices in
MAS where only agents are considered as first-class entities?

3 An Organisational Infrastructures Based on Agents and
Artifacts

The proposal presented in this paper draws its inspiration from human organisation
infrastructures. Human organisation and organisation infrastructures, that are populated
by humans (as participants and part of the organisation machinery), and by rich sets
of artifacts and tools that humans use to support their activities inside the organisation
and the organisation itself, encapsulating essential infrastructure services. According

Organisational Artifacts and Agents for Open Multi-Agent Organisations 175

to psycho-sociological theories and studies such as Activity Theory and Distributed
Cognition [17]—recently adopted in computer science fields such as CSCW, HCI and
MAS [27,25,22]—the notion of artifact (and tool, taken here as a synonym) plays a key
role for the overall sustainability of an organisation and the effectiveness and efficiency
of activities taking place inside the organisation.

In particular, some of these artifacts—that we call here organisational artifacts—
appear to be vital for supporting the coordination of organisation processes and man-
agement: for instance by making more effective the communication among the mem-
bers of an organisation (e.g. the telephone, instant-messaging services, chat-rooms),
by providing information useful for orienting the activities of organisation participants
(e.g., signs inside a building), by coordinating participants (e.g., queue systems at the
post-office), by controlling access to resources and enforcing norms (e.g., the badge
used by members in a computer science department to access certains rooms or use
some other artifacts, such as copiers). Human societies and organisations continuously
improve their experience in designing artifacts more and more effective to support both
organisation participation—helping members to cope with the complexity of social ac-
tivities and work—and organisation management—helping managers to monitor and
control the organisation behaviour as a whole.

In the remainder of the section, first we recall the basic ideas provided by the A&A
meta-model [23], and then describe how such concepts are exploited to shape the
ORA4MAS infrastructure.

3.1 The Notion of Artifacts in MAS

The notion of MAS environment, as remarked by recent literatures, has gained a key
role in the recent past, becoming a mediating entity, functioning as enabler but possibly
also as a manager and constrainer of agent actions, perceptions, and interactions (see
[29] for comprehensive surveys). According to such a perspective, the environment is
not a merely passive source of agent perceptions and target of agent actions—which is,
actually, the dominant perspective in agency and in MAS—, but a first-class abstrac-
tion that can be suitably designed to encapsulate some fundamental functionalities and
services, supporting MAS dimensions such as coordination and organisation, besides
agent mobility, communications, security, etc.

Among the various approaches, the A&A in particular introduces a notion of work-
ing environment, representing such a part of the MAS explicitly designed on the one
hand by MAS engineers to provide various kinds of functionality—including MAS co-
ordination, organisation—and perceived as first-class entity on the other hand by agents
of the MAS [23,20]. A&A working environment are made of artifacts, representing
function-oriented dynamic entities and tools that agents can create and use to perform
their individual and social activities. Among the several sort of artifacts, coordination
artifacts have been introduced as an important class of artifacts organisations [21],
as artifacts mediating agent interactions and encapsulating some kind of coordinating
functionality— whiteboards, event services, shared task schedulers are examples. Ar-
tifacts can be considered as a complimentary abstraction to agent populating an MAS:
while agents are goal-oriented pro-active entities, artifacts are a general abstraction to
model function-oriented passive entities, designed by MAS designers to encapsulate

176 R. Kitio et al.

Fig. 2. (Left) abstract representation of workspaces, populated by agents—represented by
circles—and artifacts—represented by squares. (Right) A representation of the main parts and
properties of an artifact, with the usage interface, the observable properties and the manual.

some kind of functionality, by representing (or wrapping existing) resources or instru-
ments mediating agent activities. Passive here means that—differently from the agent
case—they do not encapsulate any thread of control.

Fig. 2 shows an abstract representation of an artifact as defined in the A&A meta-
model, exhibiting analogous parts and properties of artifacts as found in human society.
The artifact function—and related artifact behaviour—is partitioned in a set of opera-
tions, which agents can trigger by acting on artifact usage interface. The usage interface
provides all the controls that make it possible for an agent to interact with an artifact,
that is to use and observe it. Agents can use an artifact by triggering the execution of
operations through the usage interface and by perceiving observable events generated
by the artifact itself, as a result of operation execution and evolution of its state. Be-
sides the controls for triggering the execution of operation, an artifact can have some
observable properties, i.e., properties whose value is made observable to agents, with-
out necessarily executing operations on it. The interaction between agents and artifacts
strictly mimics the way in which humans use their artifacts: let’s consider a coffee ma-
chine, for a simple but effective analogy. The set of buttons of the coffee machines
represents the usage interface, while the displays that are typically used to show the
state of the machine represent artifact observable properties. The signals emitted by the
coffee machine during its usage represent observable events generated by the artifact.

Analogously to the human case, in A&A each artifact type can be equipped by the ar-
tifact programmer with a manual composed essentially by the function description—as
the formal description of the purpose intended by the designer—, the usage interface de-
scription—as the formal description of artifact usage interface and observable states—,
and finally the operating instructions—as the formal description of how to properly use
the artifact so as to exploit its functionalities. Such a manual is meant to be essential
for creating open systems with intelligent agents that dynamically discover and select
which kind of artifacts could be useful for their work, and then can use them effectively
even if they have not been pre-programmed by MAS programmers for the purpose.

Organisational Artifacts and Agents for Open Multi-Agent Organisations 177

3.2 ORA4MAS Infrastructure

The basic idea in ORA4MAS is to engineer the organisational infrastructure—and the
organisations living upon it—in terms of agents and artifacts, following the basic A&A
metamodel. Here we use the terms organisational agents and organisational artifacts
to identify those agents and artifacts of the MAS which are part of the organisational
infrastructure, and that are responsible of activities and encapsulate functionalities con-
cerning the management and enactment of the organisation. In particular, organisational
agents —analogously to managers and administrators in human organisation— are re-
sponsible of management activities inside the organisation, concerning observing, mon-
itoring, and reasoning about organisation dynamics, etc. Such activities take place by
creating and managing organisational artifacts that are then used by member agents of
the organisation. Organisational artifacts are those artifacts that agents of an organisa-
tion may want or have to use in order to participate in organisation activities and access
to organisation resources, encapsulating organisation rules and functionalities, such as
enabling and mediating (ruling) agent interaction, tracing and ruling resource access,
and so on.

Even from this abstract characterisation, it is possible to identify some general prop-
erties that are of some importance to face the drawbacks listed at the end of Section 2.

Abstraction & encapsulation. By using agents and artifacts to reify both the organisation
and the organisation infrastructure—from design to runtime—, we raise the level of
abstraction with respect to approaches in which organisation mechanisms are hidden at
the implementation level. Such mechanisms become parts of the agent world, suitably
encapsulated in proper entities that agents then can inspect, reason and manipulate, by
adopting a uniform approach.

Agent autonomy. Agents are still autonomous with respect to decision of using or not
a specific artifact—including the organisational artifacts—and keeps its autonomy—in
terms of control of its actions—while using organisational artifacts. Agents however can
depend on the functionalities provided (encapsulated) by artifacts, which can concern,
for instance, some kind of mediation with respect to the other agents co-using the same
organisational artifact. Then, by enforcing some kind of mediation policy an artifact can
be both an enabler and a constrainer of agent interactions. However, such a constraining
function can take place without compromising the autonomy of the agents regarding
their decisions.

Distributed management. Distributing the management of the organisation into different
organisational artifacts installs a distributed coordination (meaning here more particu-
larly synchronisation) of the different functions related to the management of the or-
ganisation. Completing this distribution of the coordination, the reasoning and decision
processes which are encapsulated in the organisational agents may be also distributed
among the different agents. Thanks to their respective autonomy, all the reasoning re-
lated to the management of the organisation (monitoring, reorganisation, control) may
be decentralized into different loci of decision with a loosely coupled set of agents.

Openness. Organisational artifacts can be created and added dynamically according
to the need. They have a proper semantics description of both the functionalities and

178 R. Kitio et al.

operating instructions, so conceptually agents can discover at runtime how to use them
in the best way. Related to openness, the approach promotes heterogeneity of agent
(societies): artifacts can be used by heterogeneous kinds of agents, with different kinds
of reasoning capabilities. Extending the idea to multiple organisations, we can have the
same agents playing different roles in different organisations, and then interacting with
organisational artifacts belonging to different organisations.

“Power back to agents”. The decisions that were embedded in the OrgServices in the
OI go back to the agents’ layer in organisational agents. In ORA4MAS artifacts encap-
sulate the coordination and synchronisation which were implemented in OrgServices.
Control and judgement procedures are separated from these aspects and are embedded
in organisational agents. Organisational agents can then use organisational artifacts to
help them in deciding and eventually applying sanctions to other agents.

After sketching the basic concepts underlying the ORA4MAS approach, in next sec-
tion we finally describe how a full-fledged organisational model can be abstractly im-
plemented on top of agents and artifacts.

4 Shaping ORA4MAS Artifacts Upon MOISE+

Fig. 3. Structure

MOISE+ (Model of Organisation for multI-agent Sys-
tEms) [13] is an OML that explicitly decomposes the
organisation into structural, functional, and deontic di-
mensions. The structural dimension defines the roles,
groups, and links of the organisation. The definition of
roles states that when an agent decides to play some
role in a group, it is accepting some behavioural con-
straints related to this role. The functional dimension
describes how the global collective goals should be
achieved, i.e., how these goals are decomposed (in
global plans), grouped in coherent sets (by missions)
to be distributed to the agents. The decomposition
of global goals results in a goal-tree, called scheme,
where the leafs-goals can by achieved individually by the agents. The deontic dimen-
sion is added in order to binds the structural dimension with the functional one by the
specification of the roles’ permissions and obligations for missions. Instead of being re-
lated to the agents’ behaviour space (what they can do), the deontic dimension is related
to the agents’ autonomy (what they should do).

As an illustrative and simple example of an organisation specified using MOISE+,
we consider a set of agents that wants to write a paper and therefore has an organisa-
tional specification to help them to collaborate. The structure of this organisation has
only one group (wpgroup) with two roles (editor and writer) that are sub-role of the
role author. The cardinalities and links of this group are specified, using the MOISE+

notation, in Fig. 3: the group can have from one to five writers and exactly one ed-
itor; the editor has authority on writers and every author (and by inheritance every writer

Organisational Artifacts and Agents for Open Multi-Agent Organisations 179

and editor) has a communication link to all other authors. In this example, the editor
and the author roles are not compatible, to be compatible a compatibility relation must
be explicitly added in the specification.

Fig. 4. Functioning

role deontic relation mission cardinality

editor permission mMan 1..1
writer obligation mCol 1..5
writer obligation mBib 1..1

Fig. 5. Deontic relations

To coordinate the achieve-
ment of the goal of writing a
paper, a scheme is defined in
the functional specification of
the organisation (Fig. 4). In this
scheme, an agent initially de-
fines a draft version of the pa-
per (identified by the goal fdv in
the scheme of Fig. 4) that has
the following sub-goals: write
a title, an abstract, the intro-
duction, and the section names.
Other agents then “fill” the pa-
per’s sections to get a submis-
sion version of the paper (iden-
tified by the goal sv). The goals
of this scheme are distributed in
three missions: mMan (general
managing of the process), mCol
(collaborate in the paper writing
the content), and mBib (get the
references for the paper). A mis-
sion defines all goals an agent
commits to when participating in the execution of a scheme, for example, commit to the
mission mMan is indeed a commitment to achieve six goals of the scheme. The deontic
relation from roles to missions is specified in Fig. 5. For example, any agent playing the
role editor is permitted to commit to the mission mMan. The structural, functional, and
deontic specifications briefly described here form an Organisational Specification (OS)
where, for example, some agents can “instantiate” an Organisational Entity (OE).

Organisational Agents and Artifacts Based on MOISE+. We exploit here the
MOISE+ model to identify and shape a basic set of organisational artifacts (kind) and
agents that constitute the basic infrastructure building blocks of ORA4MAS, being a
sort of “reification” of the structural specification (SS), functional specification (FS),
and deontic specification (DS) (Fig. 6). This basic set accounts for: an OrgBoard arti-
fact —used to keep track of the structure of organisation in the overall; a GroupBoard
artifact —used to manage the life-cycle of a specific group; a SchemeBoard type —
used to support and manage the execution of a social scheme. Here we consider just a
core set, skipping most details that would make heavy the overall understanding of the
approach: the interested reader is forwarded on this technical report [15] to get further
details.

In the following we briefly describe the basic characteristics of these kinds of artifact.
In the description, the operations (commands) enlisted in artifact usage interface are

180 R. Kitio et al.

R

R

A M

M

M,S

G,S

G

S,SB

S

G,GB

Fig. 6. Basic kinds of artifacts in ORA4MAS, with their usage interface, including operations
and observable properties

abstractly described by a name with input parameters, followed (optionally) by a set
of the observable events possibly generated by the operation execution (only events
significant for artifact specific functionalities are considered, skipping those generated
by default by the artifact). Observable properties are represented just by a name, which
corresponds to the name of the property.

A simple abstract model for the OrgBoard artifact is depicted in Fig. 6 (left). The
usage interface is composed by operations to:

– Register / de-register a new group: registerGroup(G,GB), removeGroup(G)—where
G is an identifier for a group and GB is the identifier of the related group board
artifact;

– Register / de-register a new scheme: registerScheme(S,SB), removeScheme(S)
where S is the identifier for a schema and SB is the identifier of the scheme board.

Among the observable properties: list of current groups; list of current schemes; and the
organisation specification (including SS, FS, DS).Generally speaking, the observable
properties of the artifact make it possible —for agents observing an OrgBoard—to mon-
itor and be aware of which are the schemes and groups created. Also, this artifact can
be inspected to know which are the SS, FS, DS currently adopted in the organisation.

The GroupBoard artifact type (see Fig. 6, center) is instantiated upon a specific SS,
and provides functionalities to manage a group in terms of set of available roles and
agents participation, according to the specific structure and strategy specified in the SS.
The usage interface accounts for the following operations:

– Adopt a new role: adoptRole(R):{role adoption ok,role adoption failed}, where R is
the identifier for a role;

– Give up a role: giveUpRole(R):{role giveup ok,role giveup failed};

Organisational Artifacts and Agents for Open Multi-Agent Organisations 181

– Sending a message to a specific agent or all the agents part of the group:
sendMsg(A,M), sendMsg(M), where A is the identifier for the receiver agent, m is
the message content.

Among the observable properties, we have only the role assignments. By observing a
GroupBoard artifact, an agent can thus monitor and be aware of the role-agent assign-
ments inside the group.

The GroupBoard interprets the structural specification and maintains a consistent
state of the group so that some important organisational constraints are not violated
— the remaining constraints are enforced by organisational agents. For instance, when
some agent asks for a role adoption in the group, the GroupBoard ensures that: (1) the
role belongs to its group specification; (2) the number of players is lesser or equals than
the maximum number of players defined in the group’s compositional specification; (3)
each role ρi that the agent already plays is specified as compatible with the new role.

The SchemeBoard artifact type (see Fig. 6, right) is instantiated upon a specific FS
and DS, and provides functionalities to manage the execution of a social scheme, co-
ordinating the commitments to missions and the achievement of goals. It is essentially
a coordination artifact, automating the management of the dependencies between the
missions and the goals as described by the social scheme, and embedding such part of
the deontic specification concerning permissions and obligations for agents to commit
to missions. The usage interface provides commands to:

– Commit to a mission: commitMission(M):{commit ok, commit failed}, where M is
the identifier for a mission;

– Set mission state: setMissionState(M,S), where M is the identifier for a mission and
S can be either completed or failed;

– Set goal state: setGoalState(G,S), where G is the identifier for a goal and S can be
either satisfied or impossible.

Fig. 7. Agent & Artifact

Among the observable properties, we have: the
scheme dynamic state, that includes all the goals of the
scheme and their state; the list of the current missions
committed. By observing a SchemeBoard artifact, an
agent can monitor then the overall dynamics concern-
ing the scheme execution, and the be aware of which
missions are assigned to which agents, which goals are
achieved and which can be pursued.

Organisational Agents. The organisational agents
are essentially managers responsible to create and
manage the organisational artifacts described previ-
ously (Fig. 7). Such activities typically include observing artifacts dynamics and possi-
bly intervening, by changing / adapting artifacts or interacting directly with agents, so
as to improve the overall (or specific) organisation processes or taking some kinds of
decisions when detecting violations. As an example, one or multiple scheme managers
agents can be introduced, responsible of monitoring the dynamics of the execution of a
scheme by observing a specific SchemeBoard instance. The SchemeBoard artifact and

182 R. Kitio et al.

Fig. 8. Example of the construction and use of artifacts

scheme manager agents are designed so as that the artifact allows for violation of the
deontic rules concerning the commitment of missions by agents playing some specific
roles, and then the decision about what action to take—after detecting the violation—
can be in charge of the manager agent.

The Writing Paper Example. We consider that four agents (Tom, Eva, Joe, and Bob)
want to write a paper together using the proposed architecture described above. Among
these agents, Tom is also an organisational agent and thus it may create the OrgBoard
for the system. The creation of the OrgBoard is based on an organisational specification
where the roles, groups, schemes, etc. are defined as presented in the Sec. 4. The follow-
ing steps show how this system evolves until their goal of writing a paper is achieved
(depicted in Fig. 8):

1. Tom creates the GroupBoard based on the specification of Fig. 3. Tom then register
this new group in the OrgBoard using the registerGroup operation of the OrgBoard
artifact. To succeed in this registering, the new group should satisfy all constraints
defined in the OS (the group cardinality, for instance).

2. The new GroupBoard artifact is then perceived by all agents. While Tom decides to
adopt the role editor, Eva, Bob, and Joe decide to adopt the role writer in this group.

Organisational Artifacts and Agents for Open Multi-Agent Organisations 183

To adopt the role, they use the adoptRole operation of the GroupBoard. Again, this
operation may fail in case the agents do not fit in the requirements for the role
(cardinality of the role in the group, compatibility of roles, etc.). The reasons for
this role adoption is not covered here, but, for example, they may decide to become
a writer because Tom has invited them to enter into the group.

3. Tom creates the SchemeBoard to start the process of writing the paper and then reg-
isters it in the OrgBoard using the registerScheme operation. This artifact interprets
the specification of Fig. 4.

4. Once the scheme is created some obligations are activated and perceived by the
agents in the SchemeBoard. For instance, the agent Bob, that is playing the role
writer, is obligated to commit to the missions mCol and mBib (cf. Fig. 5) and thus
he decided to commit to both. Since the mission mBib has a cardinality constraint
that set the maximum number of commitments to one, the other agents are not
obligated to this mission anymore. They commit thus only to the mission mCol.
Tom, that plays editor, commits to mMan. We are assuming here that the agents
are obedient and always commit to their obligations and pursue their organisational
goals.

5. Having their missions, the agents can pursue the goals of the scheme. Initially only
the goals wp, fds, and wtitle can be pursued. These goals belongs to the mMan
mission, so only Tom has something to do, the others will wait him to achieve
these goals. To know which goal can be pursued and to set them as achieved, the
agents perceive the SchemeBoard and act on it using the setGoalState operation.
The SchemeBoard works therefore like a coordinating artifact.

In this example, the SchemeBoard simply shows the obligations for each agent and
which goals they should pursue. As an artifact, it is maintaining the current state of
the scheme execution. However, since it is not an agent, in case some agent does not
commit to a mission it should do or does not achieve some goal, the SchemeBoard
does nothing. An organisational manager agent, like Tom, must perceive this artifact
and decide what to do when some violation occurs.

Towards a Concrete Architecture. ORA4MAS concrete architecture is realised
on top of CARTAGO infrastructure, embedding algorithms used in S-MOISE+.
CARTAGO (Common ARtifact Infrastructure for AGent Open environment) is an
MAS infrastructure based on the A&A meta-model, providing the capability to define
new artifacts types, suitable API for agents to work with artifacts and workspaces,
and a runtime supporting the existence and dynamic management of working en-
vironments. CARTAGO is meant to be integrated with existing cognitive MAS
architectures and models / languages / platforms, so as to extend them to cre-
ate and work with artifact-based environments. A first example of integration with
the Jason agent programming platform is briefly described in [23]. CARTAGO is
available as open-source projects freely downloadable from the project web sites
(http://www.alice.unibo.it/cartago). The engineering of the first proto-
type of the ORA4MAS infrastructure upon CARTAGO is still a work in progress.

184 R. Kitio et al.

5 Conclusion and Perspectives

In this paper, we have followed the A&A approach to give back the power to agents
in an organisational approach. From this perspective, we have defined on the one hand
the organisational artifacts which encapsulate the functional aspects of an organisation
and organisation management, and on the other hand the organisational agents, which
encapsulated the decision and reasoning side of the management of organisations.

Although we already have some initial results of the ORA4MAS project, as those
presented in this paper, we had concretely evaluated the proposal for only one OML
(the MOISE+). The first future work of the project will therefore be an evaluation of its
application for different OMLs such as ISLANDER [6], OMNI [5], MOISEInst [11], or
AGR [8]. Following this broadest application we can then better compare our approach
with related works (e.g. [9]) and even others such as those managing the organisation
with communication acts (e.g. RICA-J [26]) or exploiting the environment to coordinate
and constrain the agents’ behaviour [30].

Other extensions aim at taking benefit of the uniform concepts used to implement the
environment and the organisation abstractions through the concept of artifacts. Such an
homogeneous conceptual point of view will certainly help us to bind both concepts to-
gether in order to situate organisations in environment or to install the access to the en-
vironment into organisational models (in the same direction as proposed in [18]). Other
points of investigation are (1) the study of the reorganisation process of an MAS using
the ORA4MAS approach, (2) the impact of the reorganisation on the organisational
artifacts, and (3) the definition of a meta-organisation for the ORA4MAS, so that we
have special roles for organisational agents that give them access to the organisational
artifacts.

References

1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley, Chichester (2007)

2. Boissier, O., Hübner, J.F., Sichman, J.S.: Organization oriented programming from closed to
open organizations. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW
2006. LNCS (LNAI), vol. 4457, pp. 86–105. Springer, Heidelberg (2007)

3. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., der van Torre, L.: The BOID architec-
ture: conflicts between beliefs, obligations, intentions and desires. In: Müller, J.P., Andre, E.,
Sen, S., Frasson, C. (eds.) Proceedings of the Fifth International Conference on Autonomous
Agents, Montreal, Canada, pp. 9–16. ACM Press, New York (2001)

4. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberate normative agents: Prin-
ciples and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, Springer,
Heidelberg (2000)

5. Dignum, V., Vazquez-Salceda, J., Dignum, F.: OMNI: Introducing social structure, norms
and ontologies into agent organizations. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 181–198. Springer,
Berlin (2005)

6. Esteva, M., Rodriguez-Aguiar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal speci-
fication of electronic institutions. In: Dignum, F., Sierra, C. (eds.) Proceedings of the Agent-
mediated Electronic Commerce. LNCS (LNAI), vol. 1191, pp. 126–147. Springer, Berlin
(2001)

Organisational Artifacts and Agents for Open Multi-Agent Organisations 185

7. Esteva, M., Rodrı́guez-Aguilar, J.A., Rosell, B., AMELI, J.L.: An agent-based middleware
for electronic institutions. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.)
Proceedings of the Third International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2004), pp. 236–243. ACM Press, New York (2004)

8. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in multi-
agents systems. In: Demazeau, Y. (ed.) Proceedings of the 3rd International Conference on
Multi-Agent Systems (ICMAS 1998), pp. 128–135. IEEE Press, Los Alamitos (1998)

9. Garcı́a-Camino, A., Rodrı́guez-Aguilar, J., Vasconcelos, W.W.: A distributed architecture
for norm management in multi-agent systems. In: Sichman, J.S., et al. (eds.) COIN 2007
Workshops. LNCS (LNAI), vol. 4870, pp. 171–186. Springer, Heidelberg (2008)

10. Gasser, L.: Mas infrastructure: Definitions, needs and prospects. In: Revised Papers from the
International Workshop on Infrastructure for Multi-Agent Systems, London, UK, pp. 1–11.
Springer, Heidelberg (2001)

11. Gâteau, B., Boissier, O., Khadraoui, D., Dubois, E.: Moiseinst: An organizational model for
specifying rights and duties of autonomous agents. In: Third European Workshop on Multi-
Agent Systems (EUMAS 2005), Brussels, Belgium, December 7–8, pp. 484–485 (2005)

12. IST Advisory Group: Ambient intelligence: From vision to reality. Technical report, IST
(2003),
ftp://ftp.cordis.europa.eu/pub/ist/docs/
istag-ist2003 consolidated report.pdf

13. Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deon-
tic specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L.
(eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Berlin (2002)

14. Hübner, J.F., Sichman, J.S., Boissier, O.: S-MOISE+: A middleware for developing organ-
ised multi-agent systems. In: Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson,
E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP 2005.
LNCS (LNAI), vol. 3913, pp. 64–78. Springer, Heidelberg (2006)

15. Kitio, R.: Organizational artifacts and agents for open multi-agent systems, Master Thesis
report (June, 2007), http://www.emse.fr/∼boissier/kitio

16. Luck, M., et al.: Agent Technology: Computing as Interaction (A Roadmap for Agent Based
Computing). AgentLink (2005)

17. Nardi, B.A.: Context and Consciousness: Activity Theory and Human-Computer Interaction.
MIT Press, Cambridge (1996)

18. Okuyama, F.Y., Bordini, R.H., da Rocha Costa, A.C.: Spatially distributed normative objects.
In: G. Boella, O. Boissier, E. Matson, J. Vázquez-Salceda (eds.) Proceedings of the Work-
shop on Coordination, Organization, Institutions and Norms in Agent Systems (COIN), held
with ECAI 2006, Riva del Garda, Italy (August 28, 2006)

19. Omicini, A., Ossowski, S., Ricci, A.: Coordination infrastructures in the engineering of mul-
tiagent systems. In: Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.) Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 11, pp.
273–296. Kluwer Academic Publishers, Dordrecht (2004)

20. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: Toward a theory of artefacts for MAS. Elec-
tronic Notes in Theoretical Computer Sciences 150(3), 21–36 (2006)

21. Omicini, A., et al.: Coordination artifacts: Environment-based coordination for intelligent
agents. In: AAMAS 2004, vol. 1, pp. 286–293. ACM, New York (2004)

22. Ricci, A., Omicini, A., Denti, E.: Activity Theory as a framework for MAS coordination.
In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp.
96–110. Springer, Heidelberg (2003)

ftp://ftp.cordis.europa.eu/pub/ist/docs/istag-ist2003_consolidated_report.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/istag-ist2003_consolidated_report.pdf
http://www.emse.fr/~boissier/kitio

186 R. Kitio et al.

23. Ricci, A., Viroli, M., Omicini, A.: A general purpose programming model & technology for
developing working environments in MAS. In: Dastani, M., et al. (eds.) 5th International
Workshop “Programming Multi-Agent Systems” (PROMAS 2007), AAMAS 2007, Hon-
olulu, Hawaii, USA, pp. 54–69 (May 15, 2007)

24. Sairamesh, J., Lee, A., Anania, L.: Introduction. Commun. ACM 47(2), 28–31 (2004)
25. Schmidt, K., Simone, C.: Coordination mechanisms: Towards a conceptual foundation of

CSCW systems design. International Journal of Computer Supported Cooperative Work
(CSCW) 5(2–3), 155–200 (1996)

26. Serrano, J.M., Ossowski, S.: A compositional framework for the specification of interaction
protocols in multi-agent organizations. In: Proceedings of the Third European Workshop on
Multi-Agent Systems (EUMAS), Brussels, Belgium, pp. 375–386 (December 7–8, 2005)

27. Susi, T., Ziemke, T.: Social cognition, artefacts, and stigmergy: A comparative analysis
of theoretical frameworks for the understanding of artefact-mediated collaborative activity.
Cognitive Systems Research 2(4), 273–290 (2001)

28. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Norms in multiagent systems: Some im-
plementation guidelines. In: Proceedings of the Second European Workshop on Multi-Agent
Systems (EUMAS 2004) (2004)

29. Weyns, D., Van Dyke Parunak, H.: Journal of Autonomous Agents and Multi-Agent Sys-
tems. Special Issue: Environment for Multi-Agent Systems, vol. 14(1). Springer, Netherlands
(2007)

30. Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.): E4MAS 2005. LNCS (LNAI), vol. 3830,
pp. 1–17. Springer, Heidelberg (2006)

Knowledge Sharing Between Agents in a

Transitioning Organization

Eric Matson1,2 and Raj Bhatnagar1

1 Department of Computer Science and Engineering, Wright State University,
Dayton, OH, USA

2 Department of Computer Science, University of Cincinnati,
Cincinnati OH, USA

eric.matson@wright.edu

Abstract. People that interact within a cooperative organization must
constantly exchange information on the details of the organization as
well as the goals the organization exists to meet. Agent organizations
must share knowledge if they are to cooperatively act in the solution of
some set of defined goals. The manner in which they share and when they
share information varies. In this paper, we present the process to share
organization information during the process of transition from one orga-
nization state to the next. Some organization models choose to vary the
information known between two agents, in relation to the organization.
A key element of organization success is that all members operate with
the same information so as not to cause divergence in action or purpose.

1 Introduction

Organizations exist in every facet of human existence. People join organizations for
reasons such as fulfillment, position or learning. When a person joins an organiza-
tion, they must learn, or at least be aware, of the others involved in the organiza-
tion. They must understand the overall structure to fully comprehend their place
within the organization.As an example, humanorganizations commonlyuse charts
to describe where each person fits into the structure. These organization charts ex-
hibit the relationships between positions and people. When a new person joins an
organization they are shown where they fit as part of the orientation to the orga-
nization. As the organization transitions through changes, the knowledge required
for continued understanding of place and position must be updated.

To learn about the organization, the person must exchange organization spe-
cific information with others. When they first join, others in the organization
transfer information to them to facilitate their organizational learning. The or-
ganizational learning is not necessarily classical learning, but instead a process
to share or transfer knowledge. Each agent is previously aware of the knowledge
structure and process required to interact with other agents in the organization.

Modeling agent organizations using the inspiration of human organizations, as
is commonly done, the designer must create the formalities and implementation
to allow the transfer of information between agents. We look at interaction as a
basic exchange of information between two agents, but can be extended to any

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 187–202, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 E. Matson and R. Bhatnagar

number of agents belonging to an organization. The goal of the exchange is to
maintain a state of perfect information between all agents. Perfect organization
dictates that all agents must have identical organizational knowledge. The trick is
that during transition, initial organization or reorganization, the information will
change for at least one agent. That agent then has to insure that all other agents
must receive the same knowledge changes. Differences in knowledge between
agents will cause potential divergence in goals or roles played by the organization.
The effect of bad information, in an agent organization, is much the same as if
it were a human organization.

Our logic-based approach to this problem stems from some fundamental work,
such as work by Su et al. [13]. Deitterich expressed the need to establish a
useful level to approach knowledge, both for storing and learning or exchange [4].
Gordon and Subramanian augmented the approach to knowledge, by establishing
the need for finer grain tuning of logic [8]. Baader provides a more general
approach to the need for knowledge representation [2]. The basis of these works
establishes the fit of logical representations for organization knowledge storage.
In this work, the logical representation of organization will mirror the structural
representation of organization.

In terms of knowledge sharing, Dignum and Dignum [5] indicate the shift
from sharing to collaboration. That is key for this effort, although the basis of
our model restricts the knowledge exchanged to a very specific set, lending to
the strategy shown by Soller and Busetta [14] to develop a shared understanding
between agents. While not strictly a default set of rules, as described by Rybinski
and Ryzko [12], our logical structures are standardized, to simplify the body of
knowledge exchanged.

An assumption, for this research, is agents are cooperatively participating
in an organization where common goals are paramount. Individual agent goals
and motivations are not above the needs of the organization. The difference
is our approach reflects separating the constitution of the organization from a
strictly structural concept. Organizations are normally perceived as structural,
with objects and relationships. Our approach considers an organization as a
mental image of a structural entity. This approach allows better scalability and
computation of new states.

In this paper, we describe and demonstrate the organization knowledge ex-
change between agents belonging to the same organization. In section 2, we
describe model elements and processes for sharing of knowledge between orga-
nization agents. In section 3, the implementation of this system is described.
Results of the implementation are described in section 4. Section 5 explains
opportunities for further work.

2 Organization Knowledge Sharing

In this section, we describe the basic structure required to model organizational
information to facilitate exchange of information. The foundation of exchange
is an organization model [9,3]. The agent structure is shown first followed by

Knowledge Sharing Between Agents in a Transitioning Organization 189

Fig. 1. Knowledge Cores of an Agent

the structural, state and transitional elements of our organization model. Once
an organization model is described we extend the model to include processes of
exchange. Finally, the model and processes are integrated to show the overall
formalities of knowledge transfer between agents.

2.1 Agent Core Composition

Before looking at the specific elements of organization, we must first show the
overall structure of an agent. An agent is comprised of several knowledge cores, as
shown in Fig. 1. An agent has three knowledge cores which are the organization
core, communications core and task core. Each core represents the knowledge
held by an agent in an area. For example, the communications core represents
all knowledge required to communicate with all other agents to which the agent
has access. The task core represents it knowledge of each of the capabilities pos-
sessed by the agent. An agent may have numerous task cores. While all three
cores compose an agents knowledge, the organization core is the one of most
interest in this research, and will be the focus of the discussion. This core repre-
sents all of the knowledge of the organization in which an agent participates. In
simple terms, it is its own internal organization chart defining all objects, struc-
tural relationships and state relationships of the organization. As the structures
contained within the core are discrete, all agents work with an even base in which
to share organization knowledge.

2.2 Organization Model Elements

Our organizational model (O) has a structural model, a state model and a tran-
sition function [9], described as:

O = (Ostructure, Ostate, Otransition) (1)

190 E. Matson and R. Bhatnagar

Before approaching the details of information exchange, we must examine the
structural and state elements of our model. The object and relationship elements
are represented as the stored knowledge to be exchanged.

Structure. The structure is defined by:

Ostructure =< G, R, L, C, ach, req, sub, con > (2)

where ach is achieves, rel is related, req is requires, sub is subgoal and con is
conjunctive, respectively. G describes the set of goals, R is the set of roles,
L is the set of laws or rules required, and C is the set of capabilities. The
organization structure also contains a set of relations. The achieves relation,
achieves : R, G → [0..1], states the relative ability of a role to satisfy a given
goal. Roles require capabilities to satisfy a set of goals and this is captured by
the requires : R, C → Boolean. The organization may contain subgoal relation-
ships subgoal : G, G → Boolean. The conjunctive relationship between goals is
conjunctive : G → Boolean.

State. The state is defined by:

Ostate =< A, possesses, capable, assigned > (3)

where an A defines a set of agents available to participate in the organization.
There are several relationships in the state element of the organization. An agent
capable of playing a certain role possesses the necessary capabilities described
by the possesses relation, possesses : A, C → [0..1]. An agent is capable of
playing a role in the organization as described by the capable relation, capable :
A, R → [0..1]. The assigned relation, assigned : A, R, G → [0..1], is used to
match the best agent, role, goal combination that maximizes the capability of
the organization.

Transition. Transition is the main topic of knowledge exchange as transition
requires that knowledge be exchanged by all agents participating in the orga-
nization. There are two specific transition processes, initial organization and
reorganization. From organization state0 to state1 is initial organization. All
other transitions are reorganization. Transition is expressed by:

Otransition = (O, Φ, δ, sn, Soptimal, Spossible, Sfinal) (4)

Where O is the organization over which the transition will occur, Φ is the set
of properties that can trigger a transition of the organization, δ is the transition
function, sn is the set of relative states of the organization, Soptimal is the set
of optimal states that result from transition and Spossible are states that are
possible to reach, from the current state. Sfinal is a set of organization states
where all goals are satisfied, or the lst goal is satisfied, or it is determined that
not all goals can be satisfied. Even though the outcomes are different, each final
state draws a conclusion to the organization’s set of transitions. Because an

Knowledge Sharing Between Agents in a Transitioning Organization 191

organization can only exist as a single entity or instance, the current state sn is
always a unique value [10].

The basic transition is defined as a product of the O, Φ and S resulting in a
set of reachable organization states:

δ : O × Φ × S ⇒ S (5)

So, the transition function is of the form:

δ(O, φ, sn) ⇒ S′ (6)

Where transition function δ takes the organization O, a specific transition prop-
erty φ, and a state of the organization sn and can transition to a set of new
states S′ where Soptimal ⊆ Spossible , Soptimal ⊆ S′ and Sfinal ⊆ Spossible.

Transition Properties. Transition properties Φ represent stimuli that can
change the organization. They are represented in a logical format which capture
the generic nature of what they can define. In general terms, an organization
will need a set of properties Φ, for example, capabilities or agents, which can be
the stimulus of transition. An individual property φ ∈ Φ is eligible to act as a
reorganization trigger. Some examples of φ include a change in the real value of
a capability, the loss of overall capability or agent function, loss of an agent, the
reentry of an agent, or the addition of a new agent.

Each domain problem, represented by knowledge in a task core, may create a
number of task specific transition properties. We will first show general, abstract
properties and then discuss specific properties. These general properties can be
instantiated to fit specific examples. Some general transition properties are:

1. Loss of an agent participating in the organization
2. An agent loses capability required to play some role
3. A new agent becomes available
4. Capability of an agent increases
5. Capability of an agent decreases
6. A goal is removed
7. A goal is added
8. A goal is relaxed (changed)
9. Change in goals to roles achieves relationship

10. Change in role to capability requires relationship

Changes in organization structure and participants will drive transition activ-
ities. Transition properties can be triggered internally or externally. The general
transition properties can be split into properties that are external and those that
are internal.

Transition Predicates. A transition predicate is a formalization of a transi-
tion property. The formalization of transition predicates enables the exchange
of information. Transition predicates can also be expressed as Φ = {φ1 . . . φn}.
In general, Φ can be expressed as a set of standard, abstract predicates,

192 E. Matson and R. Bhatnagar

Φ = {φlose, φadd, φchange}, where φlose is the abstract property dealing with loss,
such as losing an agent from the organization or an agent losing capability to
play a role. The add property φadd describes the action when an agent becomes
available for invitation to the organization. The change property φchange can
either be an increase or decrease and further specializes the change predicate,
φchange = {φdecrease, φincrease} [11].

Definition: Primitive Predicates can be used to formalize single properties.
The primitive predicates exhibit polymorphic behavior as each can be applied
to different organization elements to capture different properties. If there is
a loss of an agent participating in the organization, it can be formalized as
the predicate φloseagent(a). An agent a losing some capability can be captured
as φlosecapability(c, a).

Definition: Complex Predicates are the combination of primitive predicates.
Some predicates will encompass others, but in some cases two properties can
be successfully combined to form a single property of transition. The complex
predicates will be logically constructed using primitive predicates and the com-
mon and (∧) and or (∨) binary relations. Examples of complex predicates are
shown in table 1.

Table 1. Complex Predicates

Predicate Description
φaddagent(a) ∧ φaddagent(b) Add new agents a and b
φaddgoal(g) ∧ φaddgoal(h) ∧ φaddsubgoal(g, h) Add goals g, h and a subgoal relation
φaddrole(r) ∧ φloserole(s) Add role r and delete role s

In the case that an agent exits an organization, it can be reasoned that all
capability of that agent will also exit. Combining the two previous predicates
of losing an agent and losing a capability by an agent are redundant, in respect
to the capability predicate φloseagent(a) ∧ φlosecapability(c, a), as long as the
capabilities are not possessed by another agent or required by a role. Deleting a
object will involve deleting any relationships which are dependent on the object.

In another situation, an organization may lose two agents simultaneously. If
agents a and b both leave, we can capture that by φloseagent(a)∧φloseagent(b),
where one primitive predicate does not contain the other. Complex predicates
are unlimited in their scope. They may be used to create a set of relationships
and objects greater than the size of the existing organization.

As there are primitive and complex predicates, predicates can be further de-
fined as either object or relationship predicates. Object predicates represent ob-
jects of the organization such as goals, roles, capabilities or agents. Relationship
predicates represent the link between two objects such as achieves, possesses or
requires.

Definition: Object Predicates are defined as predicates where the property repre-
sents an object of the organization, such as an agent being added or a goal being

Knowledge Sharing Between Agents in a Transitioning Organization 193

Table 2. Object Predicates

φ Object Predicate Description

add agent φaddagent(a) Add a new agent a
goal φaddgoal(g) Add a new goal g
role φaddrole(r) Add a new role r
capability φaddcapability(c) Add a new capability c

lose agent φloseagent(a) Delete an existing agent a
goal φlosegoal(g) Delete an existing goal g
role φloserole(r) Delete an existing role r
capability φlosecapability(c) Delete an existing capability c

change agent φincreasecapability(c, a) Increase capability of an agent
agent φdecreasecapability(c, a) Decrease capability of an agent
goal φchangegoal(g) A goal is changed

deleted. An example of an object predicate is a goal addition, φaddgoal(g). This
is a single predicate only involving an organization object. Examples of object
predicates are shown in table 2.

Definition: Relationship Predicates are defined as properties where a relation-
ship between two objects is added, lost or altered. Relationship predicates can
be primitive, as long as the objects in which they bind already exist in the orga-
nization. Object predicates may be complex as the object must collaborate with
a relationship to connect to the organization. Object and relationship predicates
will typically be combined in complex predicates. Relationship predicates such

Table 3. Relationship Predicates

φ Relationship Predicate Description
add achieves φaddachieves(r, g) Add a new achieves relationship between

goal g and role r
requires φaddrequires(r, c) Add a new requires relationship between

role r and capability c
possesses φaddpossesses(a, c) Add a new possesses relationship between

agent a and capability c

lose achieves φloseachieves(r, g) Delete the achieves relationship between
goal g and role r

requires φloserequires(r, c) Delete the requires relationship between
role r and capability c

possesses φlosepossesses(a, c) Delete the possesses relationship between
agent a and capability c

change achieves φchangeachieves(r, g) Change the achieves relationship between
goal g and role r

requires φchangerequires(r, c) Change the requires relationship between
role r and capability c

possesses φchangepossesses(a, c) Change the possesses relationship between
agent a and capability c

194 E. Matson and R. Bhatnagar

as when gi is a subgoal of gj is ∃gi,gj φaddsubgoal(gi, gj) where the relationship
can only exist if both gi and gj exist prior. Another relationship predicate g
is achieved by r if ∃g,rφaddachieves(g, r) where the relationship can only exist
if both g and r exist prior. Examples of relationship predicates are shown in
table 3.

2.3 Exchange Processes

A model is not necessarily sufficient to completely explain the exchange of knowl-
edge. The process must also show how the agents interact to share the informa-
tion. This definition only describes the basic mechanics of the exchange. It must
be further explored to answer questions on what basis is information exchanged.
Will the information be shared with anyone who asks? Will the information be
shared with all agents? Will it be shared with agents who do not specifically
ask for it? These questions not only pose a set of philosophical queries, but also
pose some practical problems in exchange. Automatically sending data to an
agent that does not need it, as it already possesses the information, is wasteful
in terms of resources.

Our approach to knowledge exchange is similar to the mind-body problem of
Descartes. In the mind-body problem, the mind is differentiated from the matter
of the body. The knowledge of an organization, which resides in the individual
mind of each agent, within the organization is different than the physical man-
ifestation of the organization. Each agent carries an image of the organization
with all objects and relationships. The key is for all agents to have the same
image of the organization, in other words, perfect information.

The basic premise is that when each transition occurs, all agents need to be
updated with the current organization knowledge. When a human organization
requires change, a decision is made and the change is then communicated by the
decision maker to those affected. As with human organizations, a single agent
will receive the change, φ, and propagate the change to each of the other agents
in the organization.

There exists a risk of a transition property not correctly propagating from
the sending agent to the receiving agent. If this occurs, the receiving agent will
not compute a new organization and will be different than those agents who
successfully received the message. If for some reason, such as an agent being
lost, another agent will sense the agent loss and update the others. It can also
be said that each of the others can self update in the event of a loss, but questions
whether each is required to recompute. A key goal is to minimize the amount of
information transferred for each organization transition.

Integration. Each agent optimally has the same organization knowledge. This
supports the premise that all agents operate on full information. Fig. 2 shows
an organization of 4 agents {agent1, agent2, agent3, agent4}. Agent1 receives
a transition property from either an internal or external force. Agent1 then
propagates the predicate to agent2, agent3 and agent4. The organization core
represents the part of the mind of the agent concerned with where it fits in the

Knowledge Sharing Between Agents in a Transitioning Organization 195

Fig. 2. Knowledge Transfer

organization. The agents themselves represent the physical manifestation, or the
body.

3 Validation

To validate this model, the complete organization model is implemented into an
executable system. The implemented system is then used to simulate a number
of organizations and changes to the organizations. In this section, we briefly
describe the implementation, the design of transition and exchange of knowledge
and finally provide a working example of the system.

3.1 Implementation

The organization formalisms and knowledge exchange processes have been im-
plemented to complete this work. The implementation is a combination of Java
used as the main development platform with JESS utilized to implement the
knowledge bases. JESS has a natural relationship with Java as described by
Friedman-Hill [6] and utilizes the Rete algorithm of Forgy et al. [7] and Al-
bert [1] shows the computational fit for this algorithm applied to this technical
problem.

In this section, the implementation of the structural and state elements as
logical constructs in JESS are discussed. Each object and relationship are ex-
pressed as logical predicates. This logical expression represents the mind of the
organization. Each predicate is sent to each agent in the body and then each
agent recomputes a new organization image within their own structure. Thus
the mind of each agent in the body recomputes its own like image of the organi-
zation after each change. All JESS logical functions are constructed with rules

196 E. Matson and R. Bhatnagar

and facts, based on templates. The organization object is then embedded inside
a Java shell for integration with the body of the organization.

Structure and State. Each predicate of the organization model’s structure
and state can be directly represented by a template in JESS. For example, the
structural templates are:

(deftemplate goal (slot goal))
(deftemplate role (slot role))
(deftemplate capability (slot capability))
(deftemplate achieves (slot role) (slot goal) (slot score))
(deftemplate requires (slot role) (slot capability))
(deftemplate subgoal (slot goal) (slot goal))
(deftemplate conjunctive (slot goal))

The state templates are:

(deftemplate agent (slot agent))
(deftemplate possesses (slot agent) (slot capability) (slot score))
(deftemplate capable (slot agent) (slot role) (slot goal) (slot score))

Each JESS deftemplate represents an object or relationship within the model.
The objects and relationships are then used to form properties and construct
predicates. The predicates are then formed into JESS facts and added to the
fact base of the organization core. For example, the property to add is a goal g.
A predicate φadd(g) is constructed which then translates into a JESS fact, based
on the goal deftemplate, (assert(goal g)).

Transition and Exchange. Each agent is a complete independent entity com-
municating via unique TCP/IP sockets embedded within the agent’s communica-
tions core. All knowledge is exchanged using Java via socket networking between
agents. This technology is employed specifically for TCP loss reduction and er-
ror handling abilities in propagating packets, which at a higher level enables
knowledge exchange. Each agent is represented by a unique IP address. This
configuration assumes a TCP/IP network, which is the case in this implemen-
tation. The communications core can also be configured using other protocols.
The ability to guarantee arrival of message propagation is dependent upon the
protocol utilized.

There are three specific change categories which can effect the exchange pro-
cess. The first is change to a structural element of the organization. Examples of
structural change are to add or lose a goal. The second is the change in a state
element. An example of state change is an agent gaining or losing capability,
thereby requiring a computation of the organization. The third option is the loss
or gain of an agent. Each of these changes will be described using the transition
predicates and exchange of JESS constructs.

Structural Change. If a goal is added or lost, the agent first notified must send
a message to all others to retain the state of perfect information. If a transition

Knowledge Sharing Between Agents in a Transitioning Organization 197

predicate φadd(g) is received by agent a, then a muat propagate a message to
all other agents to add the new goal, as a fact. For each organization knowledge
core a new fact is added.

State Change. If there is a state change such as the capability of agent a increases
φincrease(c, a), then that agent will propagate the new fact to all other agents.

Agent Change. When there is no change to the collection of agents, within
the organization, it is straightforward to propagate the new information to all
agents. When an agent is gained or lost, the matter of communication takes on
a new level of complexity. When an agent is lost, one or more of the agents
remaining must recognize the loss. One of the agents must define a predicate
φlose(a), create the update and send to all agents. If an agent is gained to the
organization, φadd(a), the new fact that an agent has been added is sent to all
agents by one of the agents, already in the organization.

3.2 Organization Example

The model and properties are illustrated using a small but realistic scenario of
the formation of a a software engineering organization. The example will show
all required steps to instantiate an initial organization. Then, it will add to that
initial organization using transition properties. The transition properties will be
exchanged by all agents as they are added to the organization.

Initial Organization. To begin any valid, non-trivial organization instance,
we must add some initial objects and relationships. For this example, which
illustrates the formation of a simple software engineering venture, we begin by
adding 6 objects and 6 relationships. Once the objects are added, then we can
compute the initial organization taking us from state0 → state1. Fig. 3 shows
the example organization map of the initial organization. Table 4 contains each

Fig. 3. Initial Organization

198 E. Matson and R. Bhatnagar

Table 4. Initial Organization

Predicate JESS Statement

φaddagent(1) (assert(agent 1))
φaddgoal(software system) (assert(goal software system))

φaddrole(planner) (assert(role planner))

φaddgoal(planning) (assert(goal planning))

φaddsubgoal(software system, planning (assert(subgoal(software system,planning))

φaddachieves(planner, planning) (assert(achieves(planner,planning)))

φaddcapability(Budgeting) (assert(capability Budgeting))

φaddcapability(P lanning) (assert(capability Planning))

φaddrequires(P lanner,Budgeting) (assert(requires(Planner, Budgeting)))

φaddrequires(P lanner,P lanning) (assert(requires(Planner, Planning)))

φaddpossesses(1, P lanning) (assert(possesses(1, Planning)))

φaddpossesses(1,Budgeting) (assert(possesses(1, Budgeting)))

Table 5. Reorganizations

state φ JESS Statement astart arec

1 φaddagent(2) ∧ φaddagent(3) (assert(agent 2))(assert(agent 3)) 1 2,3

2 φaddagent(4) (assert((agent 4)) 1 4

3 φaddgoal(Reqmnts) (assert (goal requirements)) 1 2,3,4

4 φaddsubgoal(Software System, Reqmnts) (assert (subgoal(Software System,Reqmnts))) 1 2,3,4

5 φaddgoal(Analysis) ∧ φaddgoal(Design) (assert(goal Analysis))(assert(goal Design)) 2 1,3,4

6 φaddgoal(Build) ∧ φaddgoal(Test) (assert(goal Build))(assert(goal Test)) 2 1,3,4

7 φaddgoal(Implement) (assert(goal Implement)) 2 1,3,4

8 φlosegoal(Implement) (retract(goal Implement)) 2 1,3,4

9 φaddRole(SE) ∧ φaddachieves(Design, SE) (assert(role SE))(assert(achieves(Design,SE))) 3 1,2,4

9 φaddcapability(Develop) (assert(capability Develop)) 3 1,2,4

10 φaddrequires(SE, Develop) (assert(requires(SE,Develop))) 4 1,2,3

11 φaddpossesses(3, Develop) (assert(possesses(3,Develop))) 4 1,2,3

of the primitives predicates required to assemble the initial organization with
6 object and 6 relationships. The second column of Table 4 shows JESS fact
statements used to build a logical representation of the organization. When the
initial organization algorithm is executed, the relationships between all facts are
instantiated in the organization core.

Reorganizations. This section shows how the initial organization propagates
through a series of transitions by consuming a set of organizations properties
to ultimately arrive at the end organization state. Table 5 show each transition
by a single line in the table. Each line includes the starting state, the property
(φ), the JESS fact statement, the agent initiating the property and the agents
receiving the property to update their own organization cores. The transition
from state1 → state2 adds agents 2 and 3 to the organization, by a property
from agent 1. The next transition adds the 4th agent to the organization. In the
two transitions, agent 1, with the capability to plan and budget adds the other
agents.

Knowledge Sharing Between Agents in a Transitioning Organization 199

Agent 2 then sends properties to add goals of Analysis and Design and sub-
sequently Build and Test. Agent 2 then sends another goal, Implement, to add,
then retracts that goal. Agent 3 then sends a complex property to add the SE
role and achieves relationship between the Design goal and SE role. Agent 3
then propagates the property to add a Develop capability. Agent 4 then adds
a requires relationship between the SE role and the Develop capability and
then adds a possesses relationship between agent 3 and the Develop capability.
Fig. 3 shows the organization map after the set of transitions, from Table 5, have
completed.

4 Results

We must first distinguish between results split by the two transition processes,
initial organization and reorganization. The result indicates the initial organi-
zation is computationally more intense and is based on the number of objects
and relationships. Since it will only be computed once in each organization’s life,
its effect is discounted. Reorganization is much smaller, due to the incremental
nature of only having to recompute around new objects and relationships of the
φ predicate. If φ is quite large, it may alter the computational intensity. For
example, if the number of objects and relationships in φ is equal or greater than
the existing organization, reorganization may be computationally large.

Fig. 4. Results

The computation of a transitioning organization differs from an initial orga-
nization to a reorganization. In a strictly structural context, initial organization
and reorganization do not differ a great deal. In our mind body approach the
difference is significant. For a small organization size of 10 goals, 10 roles, 10
agents and complete relationship set, the time for initial organization is 0.03219
seconds. The time for a reorganization based on one new object and all relation-
ships is 0.01754 seconds. Fig. 4 shows the time to compute a transition against
the size of the organization, in elements. The initial organization used in this
analysis has 10 organization objects, such as roles, agents or goals, and 15 rela-
tionships between those objects. The total number of objects, on the lower end,

200 E. Matson and R. Bhatnagar

is 25. The data shows the time to compute the transition going from 25 objects
to 100, which is beyond a trivial organization. The transition process is based
on computing an optimal organization configuration. The key is that the time
to recompute is not significantly different for the larger organization. This is due
to the incremental nature of the computation process. This indicates use of this
method, is at least initially, scalable.

If we compare this timing to another result by Zhong it shows the difference.
In Zhong’s research[15], based on a similar model, using only the constructive
version of the structural model algorithm to transition, the results of a structural
computation yields two interesting points. First, the structural model transition
algorithms grows at a fast rate as the number of organization objects grow. Sec-
ondly, the ability to scale to large organizations will be significantly hindered by a
strictly structural approach. This indicates as the size of the organization grows,
the difference between our approach and a more structural-based approach will
grow, in terms of time to compute.

Fig. 5 shows the simulation of an initial organization with 4 objects and 4
relationships, then increasing by 4 objects and 4 relationships until it has a size
of 1000 total components. The growth curve of the simulation shows that the
linear nature of growth in the ability to incorporate new properties, simple or
complex. Computing locally reduces the time, eventhough the organization is
non-trivial in size

Fig. 5. Reorganization: Complex Predicates - 1000 maximum

Instantiating an organization and its transition processes in terms of a mind-
body approach has advantages over a strictly structural computational approach.
While there are also a few disadvantages, these are overcome by the positives.

Computation minimization is the best result of this approach. While larger,
more complex organizations must be tested, the early results show promise. The
computation is performed locally and in parallel, which allows the transition
process to be completed more rapidly. The intent is for each agent to work with

Knowledge Sharing Between Agents in a Transitioning Organization 201

perfect information and each agent will have the same organization image, with-
out transferring the entire structure each transition cycle. The rate of message
growth is small. Even with a large change, all computation is local. This will al-
low a near linear growth rate during organization augmentation. This will reduce
temporal computation problems in transition processes.

There are a few negative side effects of this approach. Perfect information
requires that information is transferred from agent to agent without interrup-
tion or error. If there is a transfer loss, the synchronization of the organization
image maps will suffer. Recovering from loss, during exchange, is key for the
design. There must be synchronization allowing each agent to recompute simul-
taneously with all others. If there are lag times, it can create temporal problems
in transition.

5 Further Work

The initial algorithm will be extended to a complete distributed model and
a hybrid model, which allows an integration of command mode and complete
distributed behavior. Larger organizations will be theoretically analyzed and
empirically analyzed to determine performance over large, distributed agent or-
ganizations and societies. The scalability question will be further developed to
see if there is a breaking point of the design.

References

1. Albert, L.: Average Case Complexity Analysis of Rete Pattern-match algorithm
and Average Size of Join in Databases. Rapports de Reserche, No. 1010. Institut
National de Reserche en Informatique and Automatique, Rocquencourt, France
(April 1989)

2. Baader, F.: Logic-based Knowledge Representation. In: Veloso, M.M., Wooldridge,
M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 13–41.
Springer, Heidelberg (1999)

3. DeLoach, S., Matson, E.: An Organizational Model for Designing Adaptive Mul-
tiagent Systems. In: Agent Organizations: Theory and Practice at the National
Conference on Artificial Intelligence (AAAI 2004), San Jose, CA (July 25–29, 2004)

4. Dietterich, T.: Learning at the Knowledge Level. In: Machine Learning, vol. 1, pp.
287–316. Kluwer Academic Publishers, Boston (1986)

5. Dignum, V., Dignum, F.: The Knowledge Market: Agent-Mediated Knowledge
Sharing. In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS
(LNAI), vol. 2691, Springer, Heidelberg (2003)

6. Friedman-Hill, E.: JESS in Action: Rule Based Systems in Java. Manning Publi-
cations, Inc., Grennwich Connecticut, USA (2003)

7. Forgy, C., Newell, A., Gupta, A.: High-Speed Implementation of Rule-Based Sys-
tems. ACM Transactions on Computer Systems 7(2), 119–146 (1989)

8. Gordon, D., Subramanian, D.: A MultiStrategy Learning Scheme for Agent Knowl-
edge Acquisition. Informatica 17, 4 (1993)

202 E. Matson and R. Bhatnagar

9. Matson, E., DeLoach, S.: Organizational Model for Cooperative and Sustaining
Robotic Ecologies. In: Proceedings of Robosphere 2002 Workshop, NASA Ames
Research Center, Moffett Field, California (November 14–15, 2002)

10. Matson, E., DeLoach, S.: Formal Transition in Agent Organizations. In: IEEE
International Conference on Knowledge Intensive Multiagent Systems (KIMAS
2005), Waltham, MA (April 18–21, 2005)

11. Matson, E., Bhatnagar, R.: Properties of Capability Based Agent Organization
Transition. In: 2006 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT-2006), Hong Kong (December 18–22, 2006)

12. Rybinski, H., Ryzko, D.: Knowledge Sharing in Default Reasoning-Based Multi-
agent Systems. In: IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, 2003, pp. 576–579 (October 13–16, 2003)

13. Su, K., Luo, X., Wang, H., Zhang, C., Zhang, S., Chen, Q.: A Logical Framework
for Knowledge Sharing in Multi-agent Systems. In: Wang, J. (ed.) COCOON 2001.
LNCS, vol. 2108, Springer, Heidelberg (2001)

14. Soller, A., Busetta, P.: An Intelligent Agent Architecture for Facilitating Knowl-
edge Sharing Communication. In: Proceedings of Workshop on Humans and Multi-
Agent Systems, International Conference on Autonomous Agents and Multi-Agent
Systems, Melbourne, pp. 94–100 (2003)

15. Zhong, C., DeLoach., S.A.: An Investigation of Reorganization Algorithms. In:
Proceedings of the International Conference on Artificial Intelligence (IC-AI 2006),
Las Vegas, Nevada, CSREA Press (June 2006)

Role Model Based Mechanism for Norm

Emergence in Artificial Agent Societies

Bastin Tony Roy Savarimuthu, Stephen Cranefield,
Maryam Purvis, and Martin Purvis

Department of Information Science, University of Otago, Dunedin, P.O. Box 56,
Dunedin, New Zealand

{tonyr,scranefield,tehrany,mpurvis}@infoscience.otago.ac.nz

Abstract. In this paper we propose a mechanism for norm emergence
based on role models. The mechanism uses the concept of normative
advice whereby the role models provide advice to the follower agents.
Our mechanism is built using two layers of networks, the social link
layer and the leadership layer. The social link network represents how
agents are connected to each other. The leadership network represents
the network that is formed based on the role played by each agent on
the social link network. The two kinds of roles are leaders and followers.
We present our findings on how norms emerge on the leadership network
when the topology of the social link network changes. The three kinds of
social link networks that we have experimented with are fully connected
networks, random networks and scale-free networks.

1 Introduction

Norms are a widely observed mechanism for enforcing discipline and prescribing
uniform behaviour in human societies. Norms specify the way the members of
a society should behave and help societies to improve co-operation and collab-
oration among their members [1]. Some examples of norms in modern societies
include the exchange of gifts at Christmas, tipping in restaurants and dinner
table etiquette.

Norms have been so much a part of different cultures, it is not surprising
that it is an active area of research in a variety of fields including Sociology,
Economics, Biology and Computer Science. However, norms have been of interest
to multi-agent researchers only for a decade now. Norms are of interest to the
MAS researchers as software agents tend to deviate from these norms due to
their autonomy. So, the study of norms has become crucial to MAS researchers
as they can build robust multi-agent systems that comply to norms and also
systems that evolve and adapt norms dynamically.

Our objective in this paper is to propose a mechanism based on role models
for norm emergence using the concept of oblique norm transmission in artifi-
cial agent societies. We will demonstrate that our mechanism results in norm

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 203–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

204 B.T.R. Savarimuthu et al.

emergence (100% norm convergence)1 by using it on top of three kinds of network
topologies.

2 Background

In this section we describe different types of norms and the treatment of norms
in multi-agent systems. We also describe the work related to norm emergence
and different kinds of network topologies.

2.1 Types of Norms

Due to multi-disciplinary interest in norms, several definitions for norms exist.
Habermas [3], a renowned sociologist, identified norm regulated actions as one
of the four action patterns in human behaviour. A norm to him means fulfilling
a generalized expectation of behaviour, which is a widely accepted definition for
social norms. Researchers have divided norms into different categories. Tuomela
[4] has categorized norms into the following categories.

– r-norms (rule norms)
– s-norms (social norms)
– m-norms (moral norms)
– p-norms (prudential norms)

Rule norms are imposed by an authority based on an agreement between the
members (e.g. one has to pay taxes). Social norms apply to large groups such
as a whole society (e.g. one should not litter). Moral norms appeal to one’s
conscience (e.g. one should not steal or accept bribe). Prudential norms are
based on rationality (e.g one ought to maximize one’s expected utility). When
members of a society violate the societal norms, they may be punished.

Many social scientists have studied why norms are adhered to. Some of the
reasons for norm adherence include:

– fear of authority or power
– rational appeal of the norms
– emotions such as shame, guilt and embarrassment that arise because of non-

adherence.
– willingness to follow the crowd

Elster [5] categorizes norms into consumption norms (e.g. manners of dress),
behaviour norms (e.g. the norm against cannibalism), norms of reciprocity (e.g.
gift-giving norms), norms of cooperation (e.g. voting and tax compliance) etc.
1 Researchers have different notions of the success of norm emergence. For example,

Kittock [2] considers a norm to have emerged if the convergence on a norm is 90%. In
our case we have 100% convergence as our target for norm emergence. It could very
well be 80% too. A norm is considered to exist when it is more prevalent than any of
the competing norms. In theory, the convergence value could be any positive number
as long as its observed frequency is greater than that of the competing norms.

Role Model Based Mechanism for Norm Emergence 205

2.2 Normative Multi-agent Systems

Research on norms in multi-agent systems is fairly recent [6,7,8]. Norms in multi-
agent systems are treated as constraints on behaviour, goals to be achieved or
as obligations [9]. There are two main research branches in normative multi-
agent systems. The first branch focuses on normative system architectures, norm
representations and norm adherence and the associated punitive or incentive
measures. The second branch of research is related to emergence of norms.

Lopez et al. [10] have designed an architecture for normative BDI agents
and Boella et al. [11] have proposed a distributed architecture for normative
agents. Some researchers are working on using deontic logic to define and rep-
resent norms [12, 11]. Several researchers have worked on mechanisms for norm
compliance and enforcement [13, 14, 15]. A recent development is the research
on emotion based mechanism for norm enforcement [16, 17]. Conte and Castel-
franchi [18] have worked on an integrated view of norms, from the perspectives
of Sociology and Economics. Their views are similar to that of Elster [5].

2.3 Related Work on Emergence of Norms

The second branch of research on norms focuses on two main issues. The first
issue is on norm propagation within a particular society. According to Boyd and
Richerson [19], there are three ways by which a social norm can be propagated
from one member of the society to another. They are

– Vertical transmission (from parents to offspring)
– Oblique transmission (from a leader of a society to the followers)
– Horizontal transmission (from peer to peer interactions)

Norm propagation is achieved by spreading and internalization of norms
[7,20]. Boman and Verhagen [7,21,20] have used the concept of normative advice
(advice from the leader of a society) as one of the mechanisms for spreading and
internalizing norms in an agent society. The concept of normative advice in their
context is based on an assumption that the norm has been accepted by the top
level enforcer, the Normative Advisor, and the norm does not change. But, this
context cannot be assumed for scenarios where norms are being formed (when
the norms undergo changes).

So, the second issue that has received less attention is the emergence of norms.
However, there is abundant literature in the area of sociology on why norms
are accepted in agent societies and how they might be passed on. Karl-Dieter
Opp [22] has proposed a theory of norm emergence from a sociology perspective.
Epstein [23] has proposed a model of emergence based on the argument that the
norms reduce individual computations.

The treatment of norms has been mostly in the context of an agent society
where the agents interact with all the other agents in the society [21, 23, 24].
Few researchers have considered the actual topologies of the social network for
norm emergence [25, 26]. We consider that social networks are of importance
to the emergence of norms as they provide the topology and the infrastructure

206 B.T.R. Savarimuthu et al.

on which the norms can be exchanged. We are inspired by previous works on
the spreading of ideas (opinion dynamics [27]) and diseases [28] over different
network topologies.

Social networks are important for norm emergence because in the real world,
people are not related to each other by chance. They are related to each other
through the social groups that they are in, such as the work group, church
group, ethnic group and the hobby group. Information tends to percolate among
the members of the group through interactions. Also, people seek advice from
a close group of friends and hence information gets transmitted between the
members of the social network. Therefore, it is important to test our mechanism
for norm emergence on top of social networks, a topic which is receiving attention
among multi-agent researchers recently [26]. Network topologies have also been
explored by multi-agent system researchers in other contexts such as reputation
management [29, 30].

2.4 Social Network Topologies

In this section we describe three network topologies that we have considered for
experimenting with norm emergence.

Fully Connected Network: In the fully connected network topology, each
agent in the society is connected to all the agents in a given society (shown
in Figure 1(a)). Many multi-agent researchers have done experiments with this
topology. Most of their experiments involve interactions with all the agents in
the society [7, 21].

Fig. 1. A fully connected network and a random network

Role Model Based Mechanism for Norm Emergence 207

Random Network: Erdös and Renyi have studied the properties of ran-
dom graphs and have demonstrated a mechanism for generating random net-
works [31]. An undirected graph G(n,p) has n vertices in which the edges are
connected to each other with a probability p. The graph shown in Figure 1 (b)
is a random graph with 20 vertices and the probability that an edge is present
between two vertices is 0.2. It should be noted that the random network becomes
fully connected network when p=1.

Scale-Free Network: Nodes in a scale-free network are not connected to each
other randomly. Scale-free networks have a few well connected nodes called hubs
and a large number of nodes connected only to a few nodes. This kind of network
is called scale-free because the ratio of well connected nodes to the number of
nodes in the rest of the network remains constant as the network changes in size.
Figure 2 is an example of an Albert-Barabasi scale-free network where the size
of the network is 50.

Albert and Barabasi [32] have demonstrated a mechanism for generating a
scale-free topology based on their observations of large real-world networks such
as the Internet, social networks and protein-protein interaction networks [33].
They have proposed a mechanism for generating scale-free networks based on

Fig. 2. An Albert-Barabasi scale-free network with 50 nodes

208 B.T.R. Savarimuthu et al.

the preferential attachment of nodes. At a given time step, the probability (p)
of creating an edge between an existing vertex (v) and the newly added vertex
is given by the following formula:

p = (degree(v)) / (|E| + |V|)

where (|E| and |V| respectively are the number of edges and vertices currently
in the network (counting neither the new vertex nor the other edges that are
being attached to it).

One may observe that the network shown in Figure 2 has a few well con-
nected nodes, which are called hubs, e.g. vertices V7, and V1. A large number
of nodes are connected to very few nodes. Scale-free networks exhibit a power
law behaviour [32] where the probability of the existence of a node with k links
(P(k)) is directly proportional to k−α for some α.

Some Characteristics of Networks: Researchers have studied several char-
acteristics of networks such as diameter (D), average path length (APL), degree
distribution (k) and clustering coefficient (C). For our experiments we have used
three of these characteristics whose definitions are given below.

– Degree distribution (k): The degree of a node in an undirected graph is the
number of incoming and outgoing links connected to particular node.

– Average Path Length (APL): The average path length between two nodes is
the average length of all possible paths between two nodes.

– Diameter (D): The diameter of a graph is the longest path between any two
nodes.

3 Role Model Agent Mechanism

In this section we describe a mechanism that facilitates norm emergence in an
agent society. We have experimented with agents that play the Ultimatum game.
The context of interaction between the agents is the knowledge of the rules of the
game. This game has been chosen because it is claimed to be sociologists’ counter
argument2 to the economists’ view on rationality [5]. In this context, when agents
interact with each other, their individual norms might change. Their norms
may tend to emerge in such a way that it might be beneficial to the societies
involved.
2 Sociologists consider that the norms are always used for the overall benefit of the

society. Economists on the other hand state that the norms exist because they cater
for the self-interest of every member of the society and each member is thought to
be rational [34]. When Ultimatum game was played in different societies, researchers
have observed that the norm of fairness evolved. As the players in this game choose
fairness over self-interest, Sociologists’ argue that, this game is the counter argument
to economists’ view on rationality.

Role Model Based Mechanism for Norm Emergence 209

3.1 The Ultimatum Game

The Ultimatum game [35] is an experimental economics game in which two
parties interact anonymously with each other. The game is played for a fixed
sum of money (say x dollars). The first player proposes how to share the money
with the second player. Say, the first player proposes y dollars to the second
player. If the second player rejects this division, neither gets anything. If the
second accepts, the first gets x-y dollars and the second gets y dollars.

3.2 Description of the Multi-agent Environment

An agent society is made up of a fixed number of agents. They are connected to
each other using one of the social network topologies (fully connected, random
or scale-free).

Norms in the Agent Society. Each agent in a society has an internal norm.
Each agent also has a norm to represent its maximum and minimum proposal
and acceptance values when playing the ultimatum game. This norm is called
as the personal norm (P norm). A sample P norm for an agent is given below
where min and max are the minimum and maximum values when the game is
played for a sum of 100 dollars.

– Proposal norm (min=1, max=30)
– Acceptance norm (min=1, max=100)

The representations given above indicate that the proposal norm of an agent
ranges from 1 to 30 and the acceptance norm of the agent ranges from 1 to 100.

The proposal norm initialized using a uniform distribution within a range of
1 to 100, is internal to the agent. It is not known to any other agent. The agents
in a society are initialized with an acceptance norm that indicates that any
agent which proposes within the range specified by the norm will be accepted.
The agents are only aware of their acceptance norms and are not aware of the
acceptance norms of the other agents. In order to observe how proposal norms
emerge, we assign a fixed value for acceptance norm to all the agents in the
society. The acceptance norm of a society is given below.

– Acceptance norm (min=45, max = 55)

3.3 The Norm Emergence Mechanism

The role models are agents who the societal members may wish to follow. The
inspiration is derived from human society where one might want to use successful
people as a guide. Any agent in the society can become a role model agent if
some other agent asks for its advice. The role model agent represents a role
model or an advisor who provides normative advise to those who ask for help.
In our mechanism, each agent will have atmost one leader.

210 B.T.R. Savarimuthu et al.

An agent will choose its role model depending upon the performance of its
neighbours. We assume that agents that are connected know each other’s per-
formances. This is based on the assumption that people who are successful in
the neighbourhood are easily recognizable. We argue that their success can be
attributed to their norms.

Autonomy is an important concept associated with accepting or rejecting
request to become a leader. When an agent is created, it has an autonomy value
between 0 and 1. Depending upon the autonomy value, an agent can either accept
or reject a request from another agent. If the autonomy value of an agent is .4,
it will reject the request from another agent 4 out of 10 times. Once rejected,
an agent will contact the next best performing agent amongst its neighbours.
Autonomy of an agent is also related to accepting or rejecting the advice provided
by the leader agent.

Assume that agent A and B are acquaintances (are connected to each other
in a network). If agent A’s successful proposal average is 60% and agent B’s
successful proposal average is 80%, then agent A will send a request to agent B
asking for its advice. If agent B accepts this request, B becomes the role model
of agent A and sends its P norm to agent A. The agent is autonomous to choose
or ignore the advice depending upon its autonomy. When agent A decides to
follow the advice provided by agent B, it modifies its P norm by moving closer
to the P norm of agent B.

Fig. 3. Two layers of networks used in role model agent mechanism

Role Model Based Mechanism for Norm Emergence 211

Figure 3 depicts the two layers of networks that are used in our mechanism.
The circles represent agents. The solid lines represent the social link network
also known as an acquaintance network.

In our mechanism, an agent plays a fixed number of Ultimatum games with
each of its neighbours (agents that are linked to it). In total, highly connected
agents play more games than the poorly connected agents. Highly connected
agents benefit from playing more games because they retain their competitive
advantage of obtaining a wide range of information or norms from the agents that
they are connected to, while the poorly connected agents rely on the information
from one or two agents that they are connected to. A highly connected agent
is more likely to know about the best norm earlier than the poorly connected
agent.

After one iteration, every agent looks for the best performing player in its
neighbourhood. After finding the best performing player, the agent sends a re-
quest to the player requesting the agent to be its role model or leader. If the
requested agent decides to become the role model, it sends its P norm (normative
advice) to the requester (follower agent). The follower agent modifies its norm
by moving closer to the role model agent’s norm. If an agent does not find a role
model agent, it does not change its norm in that iteration.

The dotted line with an arrow (directed line) represents the leadership network
that emerges at the end of interactions. In Figure 3, A1 is the leader of A2, A3,
A4 and A5. Arrows from these four agents point to A1. This new kind of network
that emerges on top of the acquaintance network is called a leadership network.

4 Experiments and Results

In this section we present the experiments that we undertook to demonstrate
that our mechanism leads to complete norm emergence when tested on top of
different kinds of network topologies.

4.1 Norm Emergence on Top of Random and Scale-Free Networks

The role model agent based mechanism for norm propagation was evaluated
using Erdös-Renyi (ER) random network and Albert-Barabasi (AB) scale-free
network.

At first we studied the effects of changing the average degree of connectivity
(<k>) on norm emergence, while maintaining a constant population size (N).
The average degree of connectivity represents how connected the agents in the
society are. A higher value of <k> represents a well connected network. We
varied the degree of connectivity (<k> = 5, 10, 20, 100, 200) for the ER and AB
networks with N=200 . It can be observed from Figure 4 that as <k> increased
the rate of convergence increased in ER networks. When <k> is 10, 100% norm
emergence was observed in the 6th iteration while it only took 3 iterations for
convergence when the value of <k> is 200. Note that when <k> equals N, the
network is fully connected, hence the convergence is faster. Similar results were
also observed for AB networks (not shown here).

212 B.T.R. Savarimuthu et al.

Fig. 4. Norm convergence in ER networks when average degree of connectivity is varied

The comparison of ER and AB networks for the same values of N and <k>
is shown in Figure 5. It can be observed that there is no significant difference
in the rate of convergence in ER and AB networks. Our experimental results
on norm convergence are in agreement with the statistical analysis carried out
by Albert and Barabasi on the two kinds of networks [36]. They have observed
that the diameter (D) and average path lengths (APL) of both the networks are
similar for fixed values of N and <k>. The diameters of ER and AB networks,
when N and <k> are fixed are directly proportional to log(N). As the diameters
of both the networks are the same, the rate of norm convergence are similar.

The parameters D and APL of these networks decrease when the average
connectivity of the network increases. When the average connectivity increases,
it is easier for an agent to find a leader agent whose performance scores are high.
If the average connectivity is low, it would take an agent a few iterations before
its leader obtains the norm from a better performing agent. This explains why
norm convergence is slower when average connectivity <k> decreases (shown in
Figure 4).

Even though the norm emergence properties of both kinds of networks are
comparable, it can be argued that the scale-free network is better suited to
model norm propagation because in the real world, people are related to each
other through the social groups that they are in, such as the work group and
church group. Information percolates among the members of the group through
interactions. Also, people seek advice from a close group of friends and hence

Role Model Based Mechanism for Norm Emergence 213

Fig. 5. Comparison of norm convergence in random vs scale-free networks

information gets transmitted across social network. Other researchers have
demonstrated that scale-free networks are well suited to explain mechanisms
of disease propagation and dissemination of ideas [33]. Scale-free networks are
more robust than random networks when random nodes start to fail and this
phenomenon has been observed in real world networks [37].

Recently [38], it has also been observed that the diameter and average path
lengths of an AB network depends upon the value of m. m is a constant that
indicates the number of nodes to which a new node entering the network should
be connected to, using the preferential attachment scheme. When m=1, D and
APL are directly proportional to log(N) and for m>1, D is directly proportional
to log(N)/log(log(N)). In this light, Albert and Barabasi have suggested that
the scale-free networks should be more efficient in bringing nodes closer to each
other which will be suitable for propagation of ideas and norms.

4.2 Power Law Behaviour of the Leadership Network

We have also observed that the leadership network that emerges on top of the AB
network follows power law behaviour. It is interesting to note that the leadership
network that emerges on top of ER network follows power law behaviour when
the average degree of connectivity is small. For smaller probabilities (p=.05,
.1) we have observed that there are fewer leader agents with large number of
followers and a large number of leaders with a few followers. Figure 6 shows the

214 B.T.R. Savarimuthu et al.

Fig. 6. Power law behaviour of the leadership network

log-log plot of leaders with k followers in the x-axis and the number of leaders
with k followers (N(k)) divided by the number of leaders with exactly one follower
(N1) in the y-axis. The trendline shows the approximate power law behaviour
of the leadership network. The slope of the power law curve was found to be -
1.6. Our results are in agreement with that of Anghel et al. [39] who studied the
emergence of scale-free leadership structures using minority game. In their work,
an agent sends its game strategy to all the agents in its neighbourhood. There
is no explicit notion of leadership as each agent maintains an internal model of
who its leader is. In our work, each agent chooses its leader explicitly and the
leader sends the norms only to its followers. Also, the agents in our model have
the notion of autonomy which is more representative of a realistic society.

5 Discussion

Our work is different (see Section 2.3) from other researchers in this area as we
use the concepts of oblique transmission in the mechanism we have proposed.
Verhagen’s thesis [21] focuses on the spreading and internalizing of norms. This
assumes that a norm is agreed or chosen by a top level entity (say, a Normative
Advisor) and this group norm (G norm) does not change. The G norm is spread
to the agents through the normative advice using a top-down approach. Our work
differs from this work as we employ a bottom-up approach. In our approach the P

Role Model Based Mechanism for Norm Emergence 215

norm evolves continuously. In his work, the P norm changes to accommodate the
predetermined group norm. Another important distinction is the consideration
of network topologies in our work.

There are some similarities between these two works. Both works have used the
notion of leadership for the study of norm spreading and emergence respectively.
Both the works have not included sanctions as a part of their mechanisms.
Sanction based models have been used by researchers (e.g. [15]) to demonstrate
norm emergence. In the future we are planning to study how sanctions might
emerge as a part of norm emergence.

The experiments described in this paper are our initial efforts in the area of
norm emergence. The experiments are limited to a single agent society. We are
interested in experimenting with scenarios that involve two or more inter-linked
societies. We are also interested to experiment with scenarios in which different
norms may co-exist.

In the real world, we attach more weight to a particular person’s advice than
others. Similarly, the weights of the edges (links) should be considered when
the agent makes a decision on who to choose as a role model agent. We plan
to incorporate this idea in our future experiments. Also, addition or deletion of
links to a given topology have not been considered in the current mechanism.
This is analogous to people relocating and forming new links. We have planned
to experiment with our mechanism on top of dynamically changing networks.

6 Conclusions

We have explained our mechanism for norm emergence in artificial agent societies
that is based on the concept of role models. We have demonstrated the use of
oblique norm transmission for norm emergence. Our mechanism was tested on
top of three network topologies. We have shown through our experimental results
that complete norm emergence can be achieved using our proposed mechanism.
We have compared our work with the researchers in this area and also discussed
the future work.

References

1. Boella, G., Torre, L., Verhagen, H.: Introduction to normative multiagent systems.
Computational and Mathematical Organization Theory 12(2–3), 71–79 (2006)

2. Kittock, J.E.: The impact of locality and authority on emergent conventions: Ini-
tial observations. In: Proceedings of the twelfth national conference on Artificial
intelligence, American Association for Artificial Intelligence Menlo Park, CA, USA,
pp. 420–425 (1994)

3. Habermas, J.: The Theory of Communicative Action: Reason and the Rationaliza-
tion of Society, vol. 1. Beacon Press (1985)

4. Tuomela, R.: The Importance of Us: A Philosophical Study of Basic Social Notions.
Stanford Series in Philosophy, Stanford University Press (1995)

5. Elster, J.: Social norms and economic theory. The Journal of Economic Perspectives
3(4), 99–117 (1989)

216 B.T.R. Savarimuthu et al.

6. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-line
design. Artificial Intelligence 73(1-2), 231–252 (1995)

7. Boman, M.: Norms in artificial decision making. Artificial Intelligence and
Law 7(1), 17–35 (1999)

8. Conte, R., Falcone, R., Sartor, G.: Agents and norms: How to fill the gap? Artificial
Intelligence and Law 7(1), 1–15 (1999)

9. Castelfranchi, C., Conte, R.: Cognitive and social action. UCL Press, London
(1995)

10. López y López, F., Márquez, A.A.: An architecture for autonomous normative
agents. In: Fifth Mexican International Conference in Computer Science (ENC
2004), pp. 96–103. IEEE Computer Society Press, Los Alamitos (2004)

11. Boella, G., van der Torre, L.: An architecture of a normative system: Counts-
as conditionals, obligations and permissions. In: Proceedings of the fifth interna-
tional joint conference on autonomous agents and multiagent systems, AAMAS,
pp. 229–231. ACM Press, New York (2006)

12. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: Norm-
oriented programming of electronic institutions. In: Proceedings of the fifth inter-
national joint conference on autonomous agents and multiagent systems, AAMAS,
pp. 670–672. ACM Press, New York (2006)

13. López y López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms.
In: Proceedings of The First International Joint Conference on autonomous Agents
and Multi Agent Systems, AAMAS, pp. 674–681. ACM Press, New York (2002)

14. Aldewereld, H., Dignum, F., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar,
J.A., Sierra, C.: Operationalisation of norms for usage in electronic institutions.
In: Proceedings of The Fifth International Joint Conference on autonomous Agents
and Multi Agent Systems, AAMAS, pp. 223–225. ACM Press, New York (2006)

15. Axelrod, R.: An evolutionary approach to norms. The American Political Science
Review 80(4), 1095–1111 (1986)

16. Fix, J., von Scheve, C., Moldt, D.: Emotion-based norm enforcement and mainte-
nance in multi-agent systems: foundations and petri net modeling. In: Proceedings
of the fifth international joint conference on autonomous agents and multiagent
systems, AAMAS, pp. 105–107 (2006)

17. Pitt, J.: Digital blush: Towards shame and embarrassment in multi-agent informa-
tion trading applications. Cognition, Technology and Work 6(1), 23–36 (2004)

18. Conte, R., Castelfranchi, C.: From conventions to prescriptions - towards an inte-
grated view of norms. Artificial Intelligence and Law 7(4), 323–340 (1999)

19. Boyd, R., Richerson, P.J.: Culture and the evolutionary process. University of
Chicago Press, Chicago (1985)

20. Verhagen, H.: Simulation of the Learning of Norms. Social Science Computer Re-
view 19(3), 296–306 (2001)

21. Verhagen, H.: Norm Autonomous Agents. PhD thesis, Department of Computer
Science, Stockholm University (2000)

22. Opp, K.D.: How do norms emerge? An outline of a theory. Mind and Society 2(1),
101–128 (2001)

23. Epstein, J.M.: Learning to be thoughtless: Social norms and individual computa-
tion. Computational Economics 18(1), 9–24 (2001)

24. Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings
of Twentieth International Joint Conference on Artificial Intelligence (IJCAI),
Hyderabad, India, pp. 1507–1512. MIT Press, Cambridge (2006)

25. Nakamaru, M., Levin, S.A.: Spread of two linked social norms on complex interac-
tion networks. Journal of Theoretical Biology 230(1), 57–64 (2004)

Role Model Based Mechanism for Norm Emergence 217

26. Pujol, J.M.: Structure in Artificial Societies. PhD thesis, Llenguatges i Sistemes
Informátics, Universitat Politénica de Catalunya (2006)

27. Fortunato, S.: Damage spreading and opinion dynamics on scale free networks
(2004)

28. Cohen, R., Havlin, S., ben-Avraham, D.: Efficient immunization strategies for com-
puter networks and populations. Physical Review Letters 91, 247–901 (2003)

29. Pujol, J.M., Sangüesa, R., Delgado, J.: Extracting reputation in multi agent
systems by means of social network topology. In: Proceedings of the first inter-
national joint conference on autonomous agents and multiagent systems, AAMAS,
pp. 467–474. ACM Press, New York (2002)

30. Yu, B., Singh, M.P.: Searching social networks. In: Proceedings of the second inter-
national joint conference on autonomous agents and multiagent systems, AAMAS,
pp. 65–72. ACM Press, New York (2003)

31. Erdös, P., Renyi, A.: On random graphs - i. Publicationes Mathematicae Debre-
cen 6, 290 (1959)

32. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

33. Mitchell, M.: Complex systems: Network thinking. Artificial Intelligence 170(18),
1194–1212 (2006)

34. Gintis, H.: Solving the Puzzle of Prosociality. Rationality and Society 15(2),
155–187 (2003)

35. Slembeck, T.: Reputations and fairness in bargaining - experimental evidence from
a repeated ultimatum game with fixed opponents. Technical report, EconWPA
(1999), http://ideas.repec.org/p/wpa/wuwpex/9905002.html

36. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47–97 (2002)

37. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex net-
works. Nature 406(6794), 378–382 (2000)

38. Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combina-
torica 24(1), 5–34 (2004)

39. Anghel, M., Toroczkai, Z., Bassler, K.E., Korniss, G.: Competition-driven network
dynamics: Emergence of a scale-free leadership structure and collective efficiency.
Physical Review Letters 92(5), 587011–587014 (2004)

http://ideas.repec.org/p/wpa/wuwpex/9905002.html

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 218–231, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Using Testimonies to Enforce the Behavior of Agents

Fernanda Duran1, Viviane Torres da Silva2,*, and Carlos J.P. de Lucena1

1 Departamento de Informática – PUC, Rio de Janeiro, Brazil
{fduran,lucena}@inf.puc-rio.br

2 Departamento de Sistemas Informáticos y Computación – UCM, Madrid, Spain
viviane@fdi.ucm.es

Abstract. Governance copes with the heterogeneity, autonomy and diversity of
interests among different agents in multi-agent systems (MAS) by establishing
norms. Although norms can be used to regulate dialogical and non-dialogical
actions, the majority of governance systems only governs the interaction be-
tween agents. Some mechanisms that intend to regulate other agent actions con-
centrate on messages that are public to the governance system and on actions
that are visible by it. But in open MAS with heterogeneous and independently
designed agents, there will be private messages that can only be perceived by
senders and receivers and execution of actions that can only be noticed by the
agents that are executing them or by a group of agents that suffers from their
consequences. This paper presents a governance mechanism based on testimo-
nies provided by agents that witness facts that are violating norms. The mecha-
nism points out if agents really violated norms.

Keywords: Open multi-agent system, governance, norms and testimonies.

1 Introduction

Open multi-agent systems are societies in which autonomous, heterogeneous and
independently designed entities can work towards similar or different ends [13]. In
order to cope with the heterogeneity, autonomy and diversity of interests among the
different members, governance (or law enforcement) systems have been defined.
Governance systems enforce the behavior of agents by establishing a set of norms that
describe actions that agents are prohibited, permitted or obligated to do [3] and [18].
Such systems assume that norms can sometimes be violated by agents and that the
internal state of the agents is neither observable nor controllable.

Different enforcement systems have been proposed in the literature. The majority,
such as [14] and [7], focuses on regulating the interaction between agents. They usu-
ally provide governors [7] or law-governed interaction [14] mechanisms that mediate
the interaction between agents in order to regulate agent messages and make them
comply with the set of norms. Every message that an agent wants to send is analyzed
by the mechanism. If the message violates an application norm, the message is not

* Research supported by the Juan de la Cierva program, Comunidad de Madrid Program S-0505/

TIC-407 and by Spanish MEC Projects TIC2003-01000.

 Using Testimonies to Enforce the Behavior of Agents 219

sent to the receiver. The main disadvantages of such approaches are (i) they influence
the agents' privacy since those mechanisms interfere in every interaction between
agents and (ii) they do not govern non-dialogical actions since they only concern
about the compliance of messages with the system norm [21]. Non-dialogical actions
are related to tasks executed by agents that characterize, for instance, the access to
resources, their commitment to play roles or their movement in environments and
organizations.

Other approaches provide support for the enforcement of norms that regulate not
only the interactions between agents but also the access to resources [4] and the exe-
cution of agent’s actions [21]. TuCSoN [4] provides a coordination mechanism to
manage the interaction between agents and also an access control mechanism to han-
dle communication events, in other words, to control the access to resources. In TuC-
SoN agents interact through a multiplicity of independent coordination media, called
tuple centres. The access control mechanism controls agent access to resources by
making the tuple centres visible or invisible to them. Although in TuCSoN norms can
be described to govern the access to resources, the governance is restricted and only
applied to resources that are inserted in tuple centre environments.

In [21] the authors claim that the governance system enforces the observable be-
havior of agents in terms of public messages and visible actions. They introduce a
classification of norms and, according to such classification, they provide some im-
plementation guidelines to enforce them. The main drawback of this approach is that
it does not provide support for the enforcement of messages and actions that are not
directly accessed by the governance system. Such an approach assumes that the gov-
ernance system can enforce every norm since it can access all messages and actions
regulated by a norm. But in open MAS with heterogeneous and independently de-
signed agents, there will be private messages that can only be perceived by senders
and receivers and execution of actions that can only be noticed by the agents that are
executing them or by a group of agents that suffers from their consequences [1].

In this paper we propose a governance mechanism based on testimonies provided
by witnesses about facts or events that they know are related to norm violations.
Agents are inserted in an environment where they can perceive the changes occurred
in it. Since agents can observe these changes, they can provide testimonies about
actions or messages that are in violation of a norm. Note that the agents do not keep
monitoring the behavior of other agents in order to provide testimonies about their
violations. The agents testify if they perceive a fact or event that is violating a norm.

In our approach, private messages and also private actions can be enforced. Private
messages that violate norms can be testified by agents that are involved in the interac-
tions. Such agents can testify about messages they should have received or about
messages they should have not received. Private actions that are executed in the
scope of a group and are violating norms can be testified by any member of the group
that knows such norms and has seen the actions being executed or has perceived facts
or events that reflect the execution of such actions. The same can be said about ac-
tions that should have been executed but were not. Related facts or events cannot be
observed and, therefore, agents can testify stating that the actions (probably) were not
executed. In addition, private actions that are executed in the scope of one single
agent and that are violating norms can be testified by any agent that knows the norms
and that perceives facts or events that are related to the execution of such actions. The

220 F. Duran, V.T. da Silva, and C.J.P. de Lucena

same can be said about actions that an agent should have executed but has not. Other
agents that know the norms that regulate such actions can testify if they cannot ob-
serve the related facts or events.

The paper presents in Section 2 an overall view of the testimony-based governance
mechanism. Section 3 details the judgment process used by the mechanism while
Section 4 describes a case study where we apply our approach. Finally, section 5
concludes and describes some advantages and drawbacks of our proposal.

2 The Testimony-Based Governance Mechanism

The governance mechanism presented here is based on testimonies that agents pro-
vide attesting facts or events that may be norm violations. Since every agent knows
sets of norms, it can report to the governance mechanism their violation. In order to
interpret the norms, the agent must know the grammar (or ontology) used to describe
the norms [17].

2.1 Governance Mechanism Assumptions

The testimony-based governance mechanism is funded in the following assumptions.

Assumption I: Every agent should know every norm applied to itself. Such as in the
real world where everyone should know a code of behavior, we assume that every
agent should know all norms that can be applied to their messages or actions inde-
pendently of the system environment in which it is executing. When an agent enters in
the environment to play a role, the environment/system must be able to provide to the
agent all norms applied to this role. This is important because the mechanism assumes
that an agent acting in violation of a norm chooses to do so being aware of that. The
set of norms that regulates the application should by provided by an ontology.

Assumption II: Every agent should know every norm that influences its behavior and
should be able to observe violations of such norms. Agents should know the norms
that regulate the behavior of other agents when the violations of such norms influence
their own execution. Therefore, when entering in an environment, agents should not
only observe the norms applied to the roles they will play, but also the norms that,
when violated by other agents, influence their execution. The possible violation of
such norms motivates the agents to be aware of them.

Assumption III: Every agent can give testimonies about norm violations. Since an
agent knows norms that are applied to other agents, the agent should be able to state
that one of these norms is being violated. Every time an agent perceives the violation
of a norm, it must be able to give a testimony to the governance mechanism. The
proposed mechanism provides a component that can be used by agents to help them
analyzing their beliefs in order to find out well-known facts or events that may be
norms violations.

Assumption IV: Some violations might be ignored / not observed. The proposed
mechanism does not impose that an agent must give its testimony whenever it
notices a norm violation. Agents should be well motivated in order to provide their

 Using Testimonies to Enforce the Behavior of Agents 221

testimonies. Besides, the mechanism does not guarantee that all violations will be
observed by at least one agent. It may be the case that a violation occurs and no agent
testifies about it.

Assumption V: Agents can give false testimony. In an open system, agents are inde-
pendently implemented, i.e. the development is done without a centralized control and
the governance mechanism cannot assume that an agent was properly designed.
Therefore, there is no way to guarantee that all testimonies are related to actual viola-
tions. So, the governance mechanism should be able to check and assert the truthful-
ness of the testimonies.

Assumption VI: The mechanism can have a law-enforcement agent force. The
mechanism can introduce agents which have the sole purpose of giving testimonies.
The testimonies of those agents provided by the mechanism can always be considered
to be truthful and the judgment subsystem can directly state that a norm was violated
and a penalty should be assigned. Note that those agents must only testify if they are
sure about the culpability of the application agents and that they can only testify about
violations related to public messages and actions. They must be aware that an agent
may violate a norm due some major force or to another agent fault, for instance.

2.2 The Governance Mechanism Architecture

In order to decentralize the governance of large-scale multi-agent systems, we pro-
pose to use a hierarchy of organizations where agents are executing according to their
roles. Each system organization should state its own norms and implement the pro-
posed governance system to regulate them. The mechanism’s architecture proposes
three subsystems. The judgment subsystem is responsible for receiving the testimo-
nies and for providing a decision (or verdict) pointing out to the reputation and sanc-
tion subsystems if an agent has really violated a norm. The system may use different
strategies to judge the violation of the different norms specified by the application.
Such strategies might use the agents’ reputation afforded by the reputation system to
help providing the decision. It is well established that trust and reputation are impor-
tant in open systems and can be used by the agents for reasoning about the reliability
of other ones [16]. In [16] trust is defined as subjective probability with which agents
assess that other agents will perform a particular action. We adapt this definition to
our approach stating that reputation is defined as a subjective probability with which
agents assess that other agent will provide trustful testimonies. The reputation subsys-
tem [8] evaluates the reputation of agents according to the decisions provided by the
judgment subsystem about violated norms and false testimonies. Finally, the third
subsystem, the sanction subsystem, applies the sanctions specified in norms to the
witness agents or to the defendant agents, according to the judgment decision.

3 The Judgment Sub-system

The judgment sub-system has three main responsibilities: to receive testimonies, to
judge them and to provide the decision about the violation. Three different agent
types were defined to deal with these responsibilities: inspector, judge and broker

222 F. Duran, V.T. da Silva, and C.J.P. de Lucena

agents. The inspector agents are responsible for receiving the testimonies and sending
them to judge agents. The judge agents examine the testimonies and provide decisions
that are sent to broker agents. Broker agents are responsible for interacting with the
reputation and sanction sub-systems to make the decisions effective. While judging
the testimonies, judge agents may interact with brokers to get information about the
reputation of agents.

3.1 The Judgment Process

The judgment process is composed of eight steps where six are application independ-
ent ones. Although judgment strategies cannot be completely independent of the ap-
plication norms, it is possible to define some common steps to be followed by any
judgment strategy. In this section we present the eight steps that compose the judg-
ment process.

Step I: To check if the testimony has already been judged. Agents may send testimo-
nies about facts that have already been testified and judged. Because of that, the first
step of the judgment process checks if the testimony is related to one of the judgment
processes that had occurred before and had considered the defendant guilty. If so, the
testimony is discarded and the judgment process is canceled.

Step II: To verify who the witness is. According to assumption VI, the testimony
provided by some specific agents must be considered always truth. Therefore, the
second step of the judgment process verifies who the witness is. If it is the case of an
always truthful witness, the judgment process is finished and the verdict stating that
the agent must be penalized is provided.

Step III: To check if the norm applies to the defendant agent. According to assump-
tion V, agents can lie and end up accusing other agents of violating norms that are not
applied to them. In order to find out if a testimony is true, this step checks if the norm
applies to the defendant agent. If the norm does not apply, the judgment process is
finished and the verdict states that the defendant agent is absolved.

Step IV: To ask the defendant agent if it is guilty. If the norm applies to the agent, the
next step is to ask it if it has violated the norm it is accused of. As it happens in the
real world, if the agent confesses, the judgment process is finished and the verdict
states that the defendant agent is condemned. Otherwise, the judgment process con-
tinues. In cases where the defendant confesses the violation, the applied punishment
can be smaller than the one that would be applied if he hasn't confessed.

Step V: To judge the testimony according to the norm (application dependent step). If
the agent did not confess, it is necessary to carefully examine if the agent really vio-
lated the norm. In order to determine if the testimony is truth and, therefore, if the
defendant agent is guilty, it may be necessary to use different strategies for different
violated norms. For instance, on one hand, if the norm regulates the payment of an
item and the defendant is being accused of having not paid the witness, one possible
strategy is to ask the defendant if it has the receipt signed by the witness asserting that
it has received the payment. On the other hand, if the norm states that an agent should
have not updated a resource, the judgment system could use the simple strategy that
checks the resource log, in case it is provided. It is clear that such strategies are

 Using Testimonies to Enforce the Behavior of Agents 223

application dependent ones since they depend on the norm that is being enforced. It is
also possible to ask the defendant agent why it has not violated the norm. If the agent
says that it was not able to do so, the judgment agent will need to investigate if such
information is true. In this case, the agent should not be accused of violating the norm.

Step VI: To ask other agents about their depositions (application dependent step). If
the application strategy could not decide if the defendant agent is guilty or not, the
judgment system can still try another approach. Since there may be other agents that
can also testify about the violation of the norm or facts related to it, the judgment
system can explicitly ask them about their opinion about the violation. This step is an
application dependent step because depending on the kind of question the judgment
system makes to the agents, it may be necessary to interpret the answer according to
the application norm being checked. For instance, two different kinds of questions can
be asked to those agents: (i) Have you seen agent ai violating norm nj? (ii) What do
you know about fact fk? There are different interpretations for each of the questions
and such interpretations are application dependent.

Step VII: To come up with a consensus considering the depositions. After interpret-
ing the depositions, the judgment system must put them together to come up with a
verdict. In order to do so, our approach uses the agent reputations to help evaluating
the depositions. The consensus between the depositions is provided by using subjec-
tive logic [12], as detailed in Section 3.3. Such an approach evaluates the depositions
considering the reputations of the agents to come up with the probability of the defen-
dant agent being guilty of violating the norm.

Step VIII: To provide the decision. The judgment system can provide three decisions.
It can state that (i) the defendant agent is probably guilty, (ii) the defendant is proba-
bly not guilty (the witness has lied), or (iii) the culpability of the defendant is unde-
fined. In this case, the judge could not decide if the agent is guilty or not.

After producing the decision, it is necessary to send it to the reputation sub-system
so that it can modify the reputation of the accused agent, in case the judgment system
has decided that the defendant agent is guilty, or the reputation of the witness, in case
the judgment system has decided that it has lied. It is also important to inform the
decision to the sanction sub-system to (i) punish the agent for violating a norm and to
award the witness for providing the testimony or (ii) to punish the witness for provid-
ing an untruthful testimony.

3.2 Evaluating the Testimonies and Depositions

When there are not enough evidences to be used by the judge agent to come up with a
decision, it can still make use of agents’ depositions to finally provide a verdict, as
described in Step VI and VII. However, as stated before in assumption V, agents can
give false testimonies and also false depositions. Therefore, there is a need for an
approach that evaluates such testimonies and depositions considering the reliability of
the agents, i.e., considering their reputations. We propose the use of subjective logic
to provide a verdict stating the probability of an agent being guilty or not for violating
a norm. Such an approach is used in the application independent Step VII to ponder
the testimonies/depositions according to the agents’ reputations and to make a con-
sensus between them.

224 F. Duran, V.T. da Silva, and C.J.P. de Lucena

In [5] the authors sketched a model for e-marketplaces based on subjective logic
for setting contracts back on course whenever their fulfillment deviate from what
were established. Evidences from various sources are weighed in order to inform the
actions that are probably violating the contracts. Subjective logic is used to support
reasoning over those evidences, which involve levels of trust over parties, combining
recommendations and forming consensus.

In [2], to evaluate the trustworthiness of a given party, especially prior to any fre-
quent direct interaction, agents may rely on other agents (witnesses) who have inter-
acted with the party of interest. The testimonies given by those witnesses are based on
direct interactions and may hold a degree of uncertainty. To combine the testimonies
and create a single opinion (reputation) about an agent, the authors used the Demp-
ster-Shafer theory of evidence as the underlying computational framework.

3.2.1 Introducing Subjective Logic
Subjective Logic was proposed by Audun Jøsang based on the Dempster-Shafer the-
ory of evidence [12]. This approach addresses the problem of forming a measurable
belief about the truth or falsity on an atomic proposition, in the presence of uncer-
tainty. It translates our imperfect knowledge about reality into degrees of belief or
disbelief as well as uncertainty which fills the void in the absence of both belief and
disbelief [12]. This approach is described as a logic which operates on subjective
beliefs and uses the term opinion to denote the representation of a subjective belief.
The elements that compose the frame of discernment which is a set of all possible
situations are described as follows:

(i) The agent’s opinion is represented by a triple w(x) = <b(x), d(x), u(x)>;
(ii) b(x) measures belief, represented as a subjective probability of proposition x to

be true;
(iii) d(x) measures disbelief, represented as a subjective probability of proposition x

to be false;
(iv) u(x) measures uncertainty, represented as a subjective probability that a proposi-

tion x to be either true or false;
(v) b(x), d(x), u(x) ∈ [0..1] and b(x) + d(x) + u(x) = 1;

(vi) wA(x) represents the opinion that an agent A has about the proposition x to be
true or false.

Subjective Logic operates on opinions about binary propositions, i.e. opinions
about propositions that are assumed to be either true or false. The operators described
above are to be applied over such opinions.

Recommendation (Discounting): The discounting operator ⊗ combines agent A’s
opinion about agent B’s advice with agent B’s opinion about a proposition x ex-
pressed as an advice from agent B to agent A. That means if agent B gives an advice x
to agent A, and agent A has an opinion about agent B, the operator ⊗ can be used to
form agent A’s opinion about agent B’s advice x:

(i) wA(B) = <bA(b),dA(b),uA(b)> represents agent A’s opinion about agent B;
(ii) wB(x)=<bB(x),dB(x),uB(x)> represents agent B’s opinion about x;

(iii) wA:B(x)= wA(B) ⊗ wB(x) represents agent A’s opinion about agent B’s opinion
about the preposition x.

 Using Testimonies to Enforce the Behavior of Agents 225

(iv) wA:B(x)=<bA:B(x),dA:B(x),uA:B(x)> and is evaluated as follows:
a. bA:B(x) = bA(b) bB(x);
b. dA:B(x) = bA(b) dB(x);
c. uA:B(x) = dA(b) + uA(b) + bA(b) uB(x)

Consensus: The consensus of two possibly conflicting opinions is an opinion that
reflects both opinions in a fair and equal way, i.e. when two observers have beliefs
about the truth of x, the consensus operator ⊕ produces a consensus beliefs that com-
bines the two separate beliefs into one:

(i) wA(x) = <bA(x),dA(x),uA(x)> represents agent A’s opinion about x;
(ii) wB(x) = <bB(x),dB(x),uB(x)> represents agent B’s opinion about x;

(iii) k = uA(x) + uB(x) - uA(x)uB(x);
(iv) wA,B (x) = wA(B) ⊕ wB(x) represents the consensus between agent A’s opinion

about x and agent B’s opinion about x.
(v) wA,B(x)= <bA,B(x),dA,B(x),uA,B(x)> is calculated as follows for k≠0:

a. bA,B(x)=(bA(x)uB(x)+bB(x)uA(x))/k;
b. dA,B(x)=(dA(x)uB(x)+dB(x)uA(x))/k;
c. uA,B(x)=(uA(x) uB(x)) / k

3.2.2 Applying Subjective Logic in Our Approach
Our goal is to come up with a consensus between the different testimonies and depo-
sitions about the violation of a norm considering the reliability of the witnesses. In
order to do so, it is important to understand what a testimony/deposition is in the
context of subjective logic. The testimony or deposition given by agent A attesting
something about a proposition x can be seen as the A’s opinion about x, i.e., wA(x).

Second, it is necessary to state that the testimonies (or the opinions of the agents
about facts) will be evaluated by the judge agent according to its own opinion about
the agents, for instance, wJ(a) where A is one of the witnesses. Such an opinion is
directly influenced by the reputation of the agent.

After evaluating the judge’s opinions about the agents that have given their
testimonies and depositions, it is necessary to evaluate the judge’s opinions about
testimonies and depositions given by those agents. In order to do so the discounting
operator will be used. Finally, after having the judge’s opinions about all testimonies
and depositions, it is necessary to put them all together to form the judge point of
view about the violated norm. The consensus operator is therefore used.

Judge’s Opinions About the Agents:
The reputation provided by the reputation system reflects how much the judge be-
lieves in the agent, i.e. bJ(a), and not its whole opinion about such agent, i.e wJ(a).

Judge’s Opinions About Testimonies and Depositions Given by the Agents:
The judge’s opinion about a testimony/deposition given by an agent, i.e wJ:A(x), de-
pends on the judge’s opinion about the agent, wJ(a), and the agent’s opinion about fact
x that is related to the testimony/deposition, wA(x). In order to evaluate the judge’s
opinion we use the discounting operator presented in Section 3.2.1 as described in
equation (1):

wJ:A(x) = wJ(a) ⊗ wA(x) = < bJ:A(x), dJ:A(x), uJ:A(x)> (1)

226 F. Duran, V.T. da Silva, and C.J.P. de Lucena

Judge’s Point of View About the Violated Norm:
Given that there may exist more then one agent testifying about the same fact (propo-
sition x), all testimonies and depositions can be combined using the consensus opera-
tor to produce the judge’s own opinion about the proposition x. The consensus puts
together all testimonies and depositions while considering the reputation of the wit-
nesses. For instance, let’s suppose that A, B and C are agents that provided their tes-
timonies and depositions, the consensus is formed by using equation (2):

wJ:(A,B,C)(x) = (wJ(a) ⊗ wA(x)) ⊕ (wJ(b) ⊗ wB(x)) ⊕ (wJ(c) ⊗ wC(x)) (2)

3.2.3 Analyzing the Use of Subjective Logic
When there is not enough evidences about a fact stated in a testimony, the greatest
challenge about judging it is to set an opinion (verdict) based on facts observed by
agents and based on how trustful those agents are. Trust, in this work, represents a
degree of reliability of a statement made by an agent. Subjective Logic was used since
it is an approach that deals with binary propositions (i.e. true or false propositions)
that carry some degree of uncertainty or ignorance, represented, in this work, by the
confidence in an agent.

Judging a testimony requires collecting information from different sources, evalu-
ating how trustful the information is and combining the difference sources in a fair
and equal way. Subjective Logic offers two operators that can be used to accomplish
these tasks, the Recommendation and Consensus operators. The Recommendation
operator evaluates the information based on the confidence on the source of the in-
formation. The Consensus operator combines all the collected information to make a
single opinion (verdict) about the fact stated in the information.

The main advantage about using Subjective Logic is that it offers a formal repre-
sentation that allows a decision making based on the combination of many evidences
(consensus operator) evaluates how confident these evidences are (recommendation).
This work uses the agent’s reputation as a mean to evaluate the trustworthiness of an
agent’s statement, which are used as evidences.

The main disadvantage of this method of judgment is that, since its result is ex-
pressed in terms of probability, there may be cases where the defendant is convicted
while not being guilty in fact, and cases where the defendant is absolved while being,
in fact, guilty. Subjective Logic has been used in many works like confidence analysis
[9], authentication [11], legal reasoning [10], e-market places [5] and invasion detec-
tion systems [20].

4 A Case Study: Cargo Consolidation and Transportation

In order to validate our approach we present a case study based on the real-life cargo
consolidation and transportation domain. Cargo consolidation is the act of grouping
together small shipments of goods (often from different shippers) into a larger unique
unit that is sent to a single destination point (and often to different consignees). Such
practice makes possible to the enterprises that provide transportations to reduce the
rate of shipping. Importers and exporters that want to ship small cargos may look for
consolidator’s enterprises that provide cargo consolidation to ship their goods.

 Using Testimonies to Enforce the Behavior of Agents 227

An open multi-agent system approach is entirely adequate for developing applica-
tions on this domain because such applications mostly involve interactions between
different autonomous partners playing different roles in order to accomplish similar
objectives. Such applications are governed by several rules that are used to regulate
the behavior of the heterogeneous and independently designed entities that reinforce
the open characteristic of the systems. In this paper we will contemplate examples of
two different norms that are regulated by the proposed mechanism.

Norm I: The consolidator agent must not change its shipment schedule once it has
been presented.

Norm II: The consolidator agent must deliver the cargo at the destination on the date
established in the transportation agreement.

4.1 Norm I

In this section we present the judgment process that judge testimonies stating that
norm I was violated. We detail the two application dependent steps (Steps V and VI)
and also the application independent Step VII that makes a consensus between the
testimonies. Let’s suppose that a testimony was provided by one of the application
agents (an importer, for instance) stating that the agent consolidator has violated norm
I. After checking that the testimony is not about a fact that has already been judged
(Step I), that the witness is not a law-enforcement agent (Step II), that norm I really
applies to the defendant agent (Step III) and that the defendant did not confess that it
has violated the norm (Step IV), it is necessary to judge the testimony according to
the particular characteristics of norm I (application dependent Step V).

In order to judge testimonies stating violation of norm I, such testimonies must
inform shipment schedule firstly defined by the consolidator agent and the actual
shipment schedule. One possible application strategy to judge such testimonies is
described below. It supposes that there is a system’s resource that stores the shipment
schedules. The resource is analyzed with the aim to compare the information provided
in the testimony with the stored information. If the schedule provided by the resource
is equal to the first schedule available in the testimony, the schedule was not changed
and the testimony is discarded. If the schedule provided by the resource is different to
the actual schedule provided by the testimony, the testimony is also discarded because
the testimony describes a fact that cannot be confirmed. In both cases the witness is
providing a false testimony. The judgment process is finished and the defendant is
considered 100% innocent (Step VIII).

Nevertheless, if the schedule provided by the resource is equal to the actual sched-
ule provided by the testimony, the judgment process should continues in order to find
out if the schedule was really changed. Since the application does not have logs to
inform when resources are updated, the alternative to find out if the consolidator
agent has really changed the schedule is to ask other agents about their opinions (ap-
plication dependent Step VI). The information provided by the witness is confronted
with the information provided by other agents, in this case, with the opinion of two
others importers and two exporters about the violation of norm I.

The decision (Step VII) is established based on the information provided by the
testimony, the defendant statement and the importers’ and exporters’ depositions by
using subjective logic. Such testimonies and depositions are analyzed from the point

228 F. Duran, V.T. da Silva, and C.J.P. de Lucena

of view of the judge and, therefore, there is a need for evaluating how much the judge
believes in each agent. As stated before, the reputation of the agent (provided by the
reputation system) reflects how much the judge believes in the agent; bJ(a) = rep (a).

The judge’s beliefs are used to evaluate the judge’s opinion about the testimonies and
depositions provided by the agents. Such opinions (wJ:W(x), wJ:C(x), wJ:I1(x), wJ:I2(x),
wJ:E1(x) and wJ:E2(x)), evaluated by using equation (2), are depicted in Table 1. We are
supposing that the two importers and the two exporters, together with the witness, have
stated that the defendant is guilty (wA(x)).

The verdict, i.e the judge point of view about the violated norm, can be provided by
applying the consensus operator (equation (2)). In this example the verdict (equation
(3)) states that the probability of the consolidator agent has violated norm I is 84%.

wJ = wJ:W(x)⊕wJ:C(x)⊕wJ:I1(x)⊕wJ:I2(x)⊕wJ:E1(x) ⊕wJ:E2(x) = <0.84,0.06,0.1> (3)

Table 1. Judge’s opinion about the violation of norm I

 Statement wA(x) bJ(a) wJ(a)⊗wA(x)= wJ:A(x)
Witness Guilty <1,0,0> 0.54 wJ:W(x) = <0.54,0,0.46>

Consolidator Agent Innocent <0,1,0> 0.33 wJ:C(x) = <0,0.33,0.67>
Importer1 Guilty <1,0,0> 0.75 wJ:I1(x) = <0.75,0,0.25>
Importer2 Guilty <1,0,0> 0.53 wJ:I2(x) = <0.53,0,0.47>
Exporter1 Guilty <1,0,0> 0.57 wJ:E1(x) = <0.57,0,0.43>

Exporter2 Guilty <1,0,0> 0.66 wJ:E2(x) = <0.64,0,0.34>

4.2 Norm II

In this section we also focus on the two application dependent steps (Steps V and VI)
and on Step VII while illustrating the judgment process of norm II. As in Section 4.1,
we assume that the judge system could not provide a verdict before executing Step V.

In order to judge testimonies stating violations of norm II, such testimonies must
contain the transportation documents called House Bill of Landing (HBL) and Master
Bill of Landing (MBL). A bill of landing is a document issued by the carrier (the
consolidator agent, in this case) that describes the goods, the details of the intended
transportation, and the conditions of the transportation. The difference between HBL
and MBL is that the MBL describes several small cargos consolidated in a single
shipment and the HBL describes each small cargo.

Therefore, in step V, the judge must first ensure that the exporter has really deliv-
ered the cargo at the place designated by the consolidator on the appropriated date.
When this task is accomplished, the consolidator gives a copy of the HBL (related to
the cargo delivered by the exporter) to the exporter. The judge can, therefore, ask the
exporter about his copy of the HBL. If the exporter does not have this document, the
judgment process is finished, the witness’ testimony is considered false and the de-
fendant is considered 100% innocent (Step VIII). The consolidator agent has not de-
livered the cargo because the exporter has not delivered its cargo to the consolidator
agent.

On the other hand, if the exporter has its copy of the HBL the judge must execute
step VI, continuing the judgment process to come to a verdict. Since, the witness’

 Using Testimonies to Enforce the Behavior of Agents 229

cargo has been consolidated with others cargos, the judge may ask all other importers
mentioned in the MBL if their cargos have been delivered in the correct date and
place. After receiving the importers depositions, the judge needs to execute step VII,
where it puts together all statements while considering the reputations of consolidator
agent and all importers of the mentioned shipment. We are supposing that there were
three cargos consolidated in this shipment. Table 2 depicts the judge’s opinion about
the testimony and depositions provided by the witness, the consolidator agent and the
two importers (wJ:C(x), wJ:I1(x), wJ:I2(x) and wJ:I3(x)).

The verdict, i.e judge point of view about the violated norm, can be provided by
applying the consensus operator, as shown in equation (4). In this example the verdict
states that the probability of the consolidator agent has violated norm II is 76%.

wJ = wJ:W(x)⊕wJ:C(x)⊕wJ:I1(x) ⊕wJ:I2(x) = <0.76, 0.18,0.06> (4)

Table 2. Judge’s opinion about the violation of norm II

 Statement wA(x) bJ(a) wJ(a)⊗wA(x)= wJ:A(x)
Witness Innocent <0,1,0> 0.75 wJ:W(x) = <0,0.75,0.25>

Consolidator Agent Guilty <1,0,0> 0.23 wJ:C(x) = <0.23,0,0.77>

Importer1 Guilty <1,0,0> 0.47 wJ:I1(x) = <0.47,0,0.53>

Importer2 Guilty <1,0,0> 0.92 wJ:I2(x) = <0.92,0,0.08>

The approaches that governs only the interactions between agents, such as [14] [7],
could not govern norm I since this norm govern the access to a resource. As stated in
Section 1, there are approaches that govern the public messages and visible actions,
both in the system point of view. Such approaches could only be used to enforce norm
I and II if we consider (i) that the shipment schedules of a consolidator agent are pub-
lic resources and, therefore, every action done in such resource are visible actions
and (ii) that the deliveries done by the consolidator agent are public messages, that is
not usually the case. Moreover, note that both strategies presented in sections 4.1 and
4.2 are simple examples that can be used to judge the testimonies related to norms I
and II. Other more complex and completely different strategies could have been im-
plemented to judge the same testimonies.

5 Conclusion

In this paper we present a governance mechanism based on testimonies given by
agents that have perceived norm violations. Since a violation of a norm influences
(injures) the execution of an agent, perceiving it will be a natural consequence of the
regular execution of that agent. The mechanism judges the testimonies it receives
trying to differentiate true and false testimonies in order to provide a verdict. The
governance mechanism was implemented as a framework that supports, by now, the
judgment and reputation sub-systems (section 2.2). The main advantages of the pro-
posed mechanism are: (i) it does not interfere in the agents’ privacy; (ii) it can be used
to enforce norms associated not only with interactions but also with the execution of

230 F. Duran, V.T. da Silva, and C.J.P. de Lucena

different actions, such as the access to resources; and (iii) it does not assume that the
system can do all the work of finding out the violations and enforcing the norms.

Whereas we believe that the advantages of our proposed mechanism are really im-
portant, it has some potential weaknesses. First, it may be difficult to distinguish if a
testimony is true or false and, therefore, to provide a good verdict. We proposed to
solve this problem by using probability based on subjective logic while providing the
verdicts. Second, violations that go without testimonies will not be punished. This
could lead to an undesired system state. One way to overcome this issue is motivating
the agents to give their testimonies by using an agent rewards program, for instance.
Another important drawback is that the effort to implement an agent under the pro-
posed governance system may increase since it needs not only to perceive facts, but
also to associate them with possible norm violations. To minimize this impact, the
judgment subsystem provides a mechanism that can be used by the agents to associate
facts with norms violations. In order to improve our work we are in the way of adding
some argumentation aspects to the judgment process. This will improve the set of
evidences used for and against a verdict.

References

1. Aldewereld, H., Dignum, F., García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A., Si-
erra, C.: Operationalisation of Norms for Usage in Electronic Institutions. In: Proc. of the
Workshop on Coordination, Organization, Institutions and Norms in agent systems, pp.
223–225 (2006)

2. Yu, B., Singh, M.: Detecting Deception in Reputation Management. In: Proc. of the 2nd
International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS
2003), pp. 73–80 (2003)

3. Boella, G., van der Torre, L.: Regulative and Constitutive Norms in Normative Multi-
Agent Systems. In: Proceeding of KS, pp. 255–265. AAAI Press, Menlo Park (2004)

4. Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and Access Control in Open
Distributed Agent Systems: The TuCSoN Approach. In: Porto, A., Roman, G.-C. (eds.)
COORDINATION 2000. LNCS, vol. 1906, pp. 99–114. Springer, Heidelberg (2000)

5. Daskalopulu, A., Dimitrakos, T., Maibaum, T.: E-Contract Fulfilment and Agents’ Atti-
tudes. In: Proc. ERCIM WG E-Commerce Workshop on The Role of Trust in e-Business
(2001)

6. Esteva, M., Rodriguez-Aguilar, J.A., Rosell, B., Arcos, AMELI, J. L.: An Agent-based
Middleware for Electronic Institutions. In: Proc. of the 3rd Int. Joint Conf. on Autonomous
Agents and MAS, USA, pp. 236–243 (2004)

7. Esteva, M., de la Cruz, D., Sierra, C.: Islander: An Electronic Institutions Editor. In: Proc.
of Int. Conf. on Autonomous Agents and Multi-Agent Systems, pp. 1045–1052 (2002)

8. Guedes, J., Silva, V., Lucena, C.J.P.: A Reputation Model Based on Testimonies. In: Pro-
ceedings of Workshop on Agent-Oriented Information Systems at CAiSE, pp. 37–47
(2006)

9. Jøsang, A., Hayward, R., Pope, S.: Trust Network Analysis with Subjective Logic. In:
Australasian Computer Science Conference (2006)

10. Jøsang, A., Bondi, V.A.: Legal Reasoning with Subjective Logic. Artificial Reasoning and
Law 8(4), 289–315 (2000)

 Using Testimonies to Enforce the Behavior of Agents 231

11. Jøsang, A.: An Algebra for Assessing Trust in Certification Chains. In: Proceedings of the
Network and Distributed Systems Security Symposium (NDSS 1999). The Internet Soci-
ety (1999)

12. Jøsang, A.: An Algebra for Assessing Trust in Certification Chains. In: Proc. Network and
Distributed Systems Security Symposium (1999)

13. López, F.: Social Powers and Norms: Impact on Agent Behaviour. PhD thesis. University
of Southampton. UK (2003)

14. Minsky, N., Ungureanu, V.: Law-Governed Interaction: A Coordination & Control
Mechanism for Heterogeneous Distributed Systems. ACM TSEM 9(3), 273–305 (2000)

15. Paes, R.: Regulating the Interaction Between Agents in Open Systems – a Law Approach.
Master’s thesis, Pontificia Univeridade Catolica do Rio de Janeiro, PUC-Rio, Rio de
Janeiro, BR (2005)

16. Patel, J., Teacy, W., Jennings, et al.: Monitoring, Policing and Trust for Grid-Based Vir-
tual Organizations. In: Proc. of the UK e-Science All Hands Meeting 2005, UK, pp.
891–898 (2005)

17. Silva, V.: Implementing Norms that Govern Non-Dialogical Actions. In: Sichman, J.S., et al.
(eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870, pp. 218–231. Springer, Heidelberg
(2008)

18. Singh, M.: An Ontology for Commitments in Multiagent Systems: Toward a Unification
of Normative Concepts. In: Artificial Intelligence and Law, vol. 7(1), pp. 97–113.
Springer, Heidelberg (1999)

19. Stigler, S.M.: Thomas Bayes’ Bayesian Inference. Journal of the Royal Statistical Soci-
ety 145(A), 250–258 (1982)

20. Svensson, H., Jøsang, A.: Correlation of Intrusion Alarms with Subjective Logic. In: Pro-
ceedings of the sixth Nordic Workshop on Secure IT systems (NordSec 2001), Copenha-
gen, Denmark (2001)

21. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multiagent
Systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004.
LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 232–244, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Implementing Norms That Govern Non-dialogical Actions

Viviane Torres da Silva*

Departamento de Sistemas Informáticos y Computación – UCM, Spain, Madrid
viviane@fdi.ucm.es

Abstract. The governance of open multi-agent systems is particular important
since those systems are composed of heterogeneous, autonomous and independ-
ently designed agents. Such governance is usually provided by the establishment
of norms that regulate the actions of agents. Although there are several ap-
proaches that formally describe norms, there are still few of them that propose
their implementation. In this paper we propose the implementation of norms that
govern non-dialogical actions by extending one of the approaches that regulate
dialogical ones. Non-dialogical actions are not related to the interactions between
agents but to tasks executed by agents that characterize, for instance, the access to
resources, their commitment to play roles or their movement into environments
and organizations.

Keywords: Norm, governance of multi-agent system, non-dialogical action,
implementation of norm.

1 Introduction

The governance of open multi-agent systems (MAS) copes with the heterogeneity,
autonomy and diversity of interests among agents that can work towards similar or
different ends [9] by establishing norms. The set of system norms defines actions that
agents are prohibited, permitted or obligated to do [1] and [12].

Several works have been proposed in order to define the theoretical aspects of
norms [3] and [5], to formally define those norms [2] and [4], and to implement them
[7], [8], [9], [10] and [13]. In this paper we focus on the implementation of norms.
Our goal is to present an approach where dialogical and non-dialogical norms can be
described and regulated. Non-dialogical actions are not related to the interactions
between agents but to tasks executed by agents that characterize, for instance, the
access to resources, their commitment to play roles or their movement in environ-
ments and organizations. From the set of analyzed proposals for implementing norms,
few approaches considers non-dialogical actions [9], [10] and [13]. Although, the
authors present some issues on the verification and enforcement of norms, they do no
demonstrate how such issues should be implemented. Other approaches such as [7]
and [8] deal with e-Institutions and, thus, consider illocutions as the only action per-
formed in such systems.

* Research supported by the Juan de la Cierva programa, Comunidad de Madrid S-0505/

TIC-407 and MEC-SP TIC2003-01000.

 Implementing Norms That Govern Non-dialogical Actions 233

Our approach extends the work presented in [8] with the notion of non-dialogical ac-
tions proposed in [13]. A normative language is presented in [8] to describe illocutions
(dialogical actions) that might be dependent on temporal constraints or the occurrence
of events. We have extended the normative language in order to be possible to specify
non-dialogical norms that state obligations, permissions or prohibitions over the execu-
tion of actions of agents’ plans (as proposed in [13]) and of object methods. Similar to
the approach presented in [8], we have also used Jess1 to implement the governance
mechanism that regulates the behavior of agents. The mechanism activates norms and
fires violations (Jess rules) according to the executed (dialogical or non-dialogical)
actions (Jess facts).

Although both the normative language and the implementation rules can be used
by agents and by the governance mechanism, the approach focuses on the implemen-
tation of norms from the system perspective [13], i.e., both agents and the governance
mechanism will use the language and the rules to find out: What are the activated and
deactivated norms? What are the fulfilled and the violated norms? What are the ap-
plied sanctions?

The paper is organized as follows. Section 2 describes the example we are using to
illustrate our approach. Section 3 intends to clearly present the difference between dia-
logical and non-dialogical actions. Section 4 points out the main concepts of the extended
normative language and Section 5 describes the implementation of the governance
engine in Jess. Section 6 concludes our work and presents some future work.�

2 Applied Example

In order to exemplify our approach, we have defined a set of six norms that govern a
simplified version of a soccer game. The soccer game is composed of agents playing one
of the three available roles: referee, coach and player (kicker or goalkeeper). The respon-
sibilities of a referee in a soccer game are: to start the game, stop it, check the players’
equipments and punish the players. The available punishments are: to show a yellow
card, send off a player, and declare a penalty. The possible actions of a player during a
game are: kick the ball and handle the ball. The coach role is limited to substitute players.
Besides those actions, all agents are able to move and, therefore, enter and leave the
game field. The six norms that regulate our simple soccer game are the following:

Norm 1: The referee must check the players’ equipments before starting the game.
Norm 2: A coach cannot substitute more than three players in the same game.
Norm 3: Players cannot leave the game field during the game.
Norm 4: The referee must send off a player after (s)he has done a second caution in
the same match. In this simplified version of the soccer game, there is only one situa-
tion that characterizes a caution; a player leaving the game field before the referee has
stopped it. At the first caution, the agent receives a yellow card.
Norm 5: Kickers cannot handle the ball.
Norm 6: The referee must declare a penalty if kicker handles the ball.

1 Jess is a rule-based system. http://www.jessrules.com/

234 V.T. da Silva

3 Dialogical and Non-dialogical Actions

Non-dialogical actions are the ones not related to interactions between agents. Not all
actions executed by agents in MAS provide support for sending and receiving mes-
sages between them [13]. There are actions that modify the environment (for exam-
ple, updating the state of a resource) that do not characterize a message being sent to
or received from another agent. In the soccer game example, the actions of kicking
the ball or handling it are non-dialogical actions. In addition, actions that modify the
position of an agent in an environment do not characterize a dialogical action either.
The actions of entering or leaving the game field are not dialogical ones.

Some actions can be defined as a dialogical or a non-dialogical one, depending on
how the problem is modeled. In the soccer game, to start a game and to stop it was
considered dialogical actions. Agents receive a message informing about the state of
the game. The dialogical actions of the soccer game example are: to start the game,
stop it, punish player, declare penalty and show the yellow card. The non-dialogical
ones are: enter in the game field, leave it, handle the ball, kick the ball, substitute a
player and check the player’s equipment.

4 Describing Norms

Since our intention is to contribute to the work presented in [7], we extend the BNF
normative language to represent non-dialogical actions and to describe conditions and
time situations that are defined by those non-dialogical actions. In addition, the speci-
fication of dialogical actions already presented in the previous normative language
was extended in order to be possible to describe messages attributes stated in the
FIPA ACL language2.

4.1 Specifying Non-dialogical Actions

The original BNF description of the normative language defines norms as the compo-
sition of a deontic concept (characterizing obligation, prohibition or permission) and
an action followed by a temporal situation and an if condition, when pertinent. In such
definition, actions are limited to utterance of illocutions.

In our proposed extension, the action concept was generalized to also describe non-
dialogical ones. Dialogical and non-dialogical actions are complementary, as illustrated
by the grammar that specifies that these are the only two possible actions’ kinds. Non-
dialogical actions state the entities whose behavior is being restricted and the actions that
are being regulated. Due to the way the entity concept was defined, a non-dialogical
norm, i.e., a norm that regulates non-dialogical actions, can be applied to all agents in the
system, to a group of agents, to agents playing a given role or even to a unique agent.

<norm> ::= <deontic_concept> '(' <action> ')'
 | <deontic_concept> '(' <action><temporal_situation> ')'
 | <deontic_concept> '(' <action> IF <if_condition> ')'
 | <deontic_concept> '(' <action> <temporal_situation> IF <if_condition> ')'
<deontic_concept> ::= OBLIGED | FORBIDDEN | PEMITTED

2 http://www.fipa.org/repository/aclspecs.html

 Implementing Norms That Govern Non-dialogical Actions 235

<action>::= <non_dialogical_action> | <dialogical_action>
<non_dialogical_action> ::= <entity> 'EXECUTE' <exec>
<entity>::= <agent>':'<role> | <role> | <agent> | <group> | 'ALL'

In this paper we are limiting non-dialogical actions to the execution of an ob-
ject/class method or to the execution of the action of an agent plan [13]. Non-
dialogical norms that regulate the access to resources specify the entities that have
restricted access to execute the methods of the resource. Non-dialogical norms that
regulate (non-dialogical) actions not related to the access to resources describe entities
that have restricted access to the execution of an action of a plan.

<exec> ::= <objectORclass>'.'<method>'('<parameters>')''('<contract>')'
 | <plan>':'<action>'('<parameters>')''('<contract>')'
 |...!the parameters and the contract can be omitted

In [13], the authors affirm that non-dialogical actions can be described as abstract
actions that are not in the set of actions defined by the agents or in the set of methods
of the classes. Agents must translate the actions and methods to be executed into more
abstract ones. With the aim to help agents in such transformation, we propose the use
of contracts. A contract is used to formally describe the behavior of the ac-
tions/methods while specifying its invariants, pre and post-conditions [11]. We do not
impose any language to be used to describe the terms of a contracts3.

<contract> ::= <pre>';'<post>';'<inv> |... !pre, post and inv can be omitted
<pre> ::= <expression> | <expression> <opl> <pre> ...
<opl> ::='AND' | 'OR' | 'XOR' | 'NOR'|... !pre, post and inv are similarly defined

Such extensions make possible to describe, for instance, norms that regulate the exe-
cution of an action while describing the parameters required for its execution and the
contract that defines it. The extensions enable, for example, the definition of norm 2.
Such norm states that a coach cannot substitute more than three players in the same
game. The coach cannot execute an action that substitutes players if the number of sub-
stitutions is already 3.

FORBIDDEN (coach EXECUTE managingTeam:SubstitutePlayer (outPlayer,inPlayer,team)
 (team.coach = coach; team.substitutions = team.substitutions@pre+1 AND
 team.playersInField->excludes(outPlayer)AND
 team.playersInField->includes(inPlayer);)
 IF team.substitutions >= 3)

The action governed by norm 1 is also a non-dialogical action and states that the
referee must check the players’ equipment before starting the game. The action of
checking the equipment is a non-dialogical action since the referee needs not to inter-
act with the player but with its equipment. On the other hand, the action of starting a
game is a dialogical action modeled as a message from the referee to everybody in the
game (as will be presented in Section 4.4).

OBLIGED (referee EXECUTE managingGame:checkEquipment (players)
 BEFORE (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;]))))

3 In this paper we are using OCL (http://www.omg.org/technology/documents/formal/ocl.htm)

236 V.T. da Silva

4.2 Extending the Temporal Situations

The temporal situation concept specified in the normative language is used to de-
scribe the period of valid (or active) norms. Norms can be activated or deactivated
due to the execution of an (dialogical or non-dialogical) action, to the change in the
state of an object or an agent, to the occurrence of a deadline, and to the combination
of such possibilities. In the previous normative languages the authors only consider
the execution of dialogical actions and the occurrence of a deadline as temporal situa-
tions. The normative language was extended to contemplate the activation and deacti-
vation of norms due to the execution of non-dialogical actions, to the change in the
state of an object or an agent (without specifying the action that was responsible for
that) and to the combination of the above mentioned factors (as specified in the situa-
tion concept).

<temporal_situation> ::= BEFORE <situation> | AFTER <situation>
| BETWEEN '(' <situation> ',' <situation> ')'

The extensions enable, for example, the definition of norm 3 that states that players
cannot leave the game between its initial and its interruption, as shown below.

FORBIDDEN (player EXECUTE moving:LeaveField ()

 (agent.position@pre=inField; agent.position<>inField;)
 BETWEEN (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;])),
 UTTER(game; si; INFORM(;referee;;[;gameStopped;;;;;;]))))

Another norm that makes use of temporal situation is norm 4. It states that the refe-
ree must send off a player after (s)he receives a second caution in the same match. If
player leaves the field of play and (s)he has already been shown a yellow card, the
referee must send him(her) off. Note that such norm 4 is conditioned to the execution
of an action governed by norm 3 and, thus, the after condition is exactly norm 3.

OBLIGED (UTTER(game;si;CAUTION(;referee;;kicker[;sentOff;;soccerGame;;;;]))
 AFTER (player EXECUTE moving:LeaveField()
 (agent.position@pre=inField;agent.position<>inField;)
 BETWEEN (UTTER(game; si; INFORM(;referee;;[;gameStart;;;;;;])),
 UTTER(game; si; INFORM(;referee;;[;gameStopped;;;;;;]))))
 IF player.yellowCard = true)

4.3 Extending the IF Condition

The if condition defined in the original normative language is used to introduce condi-
tions over variables, agents' observable attributes or executed dialogical actions.
Therefore, by using such language it is not possible to describe nom 6 since it is con-
ditioned to the execution of a non-dialogical action. Our proposed extension makes
possible to specify a condition related to an executed non-dialogical action or to a
fired norm.

<if_condition> ::= <cond_expression> | NOT '(' <cond_expression> ')'
<cond_expression> ::= <condition> | NOT <condition>
 | <condition> ',' <if_condition> | NOT <condition> ',' <if_condition>
<condition> ::= <action> | <deontic_concept> '(' <action> ')' |...

Norm 6 defines that the referee must declare a penalty if a kicker handles the ball.
The non-dialogical action of handling the ball is the if condition of norm 6 and can be
described as follows.

 Implementing Norms That Govern Non-dialogical Actions 237

OBLIGED (UTTER(game; si; PENALTY(;referee;kickerTeam;[;penalty;;soccerGame;;;;]))
 IF kicker EXECUTE play:handleBall)

4.4 Extending Dialogical Actions

In [8], the authors represent the execution of dialogical actions by the identification of
the action (not carried out yet) of submitting an illocution. In their point of view, an
illocution is an information that carries a message to be sent by an agent playing a
role to another agent playing another role. The illocution concept was extended to be
possible to omit the agents that send and receive the messages. Not always will be
possible to specify the agents that will send and receive the messages while describing
the norms. Sometimes only the roles that those agents will be playing can be identi-
fied. Moreover, the roles of the sender and receiver can also be omitted. It may be the
case that no matter the one is sending a message or no mater the one is receiving it,
the norm must be obeyed.

<dialogical_action> ::= 'UTTER(' <scene> ';' <state> ';' <illocution> ')'
| 'UTTERED(' <scene> ';' <state> ';' <illocution> ')'
<illocution> ::= <perf>'('<sender>';'<role>';'<receiver> ';'<role>'['<msg>'])'
|...!it is possible to omit the senders, receivers and also their roles

Since a message can be sent to several agents, the receiver concept was also ex-
tended to make possible to describe the group of agents that will be the receiver of the
message. Note that it is only possible to describe in the grammar norms that specified
messages to be send and not messages to be received. In addition, it is the agent that is
receiving the message the one responsible for relating the message being received to a
message that should have been sent, in the case of obligations for instance.

<sender> ::= <agent>
<receiver> ::= <agent> | <group>

By using the extensions provided above for illocution, it is possible to model

norms 1 (Section 4.1), 4 (Section 4.2) and 6 (Section 4.3) that omit the agent identifi-
cation that is playing the referee role. In such cases, it is not important to identify the
agent but only the role that the agent is playing. Norm 1 also omits the receiver and its
role to characterize that the message is being broadcasted. Norm 4 identifies the role
of the receiver but does not identify the agent playing the role since the message to be
send does not depend on the agent. Moreover, norm 6 does not identify the receiver
agent but the receiver team that will be punished.

4.5 Specifying Messages

The message concept has not been specified in the previous version of the normative
language. We propose to specify such concept since it may be necessary to provide
some characteristics of the messages while describing the norms. The message con-
cept was extended according to the parameters defined by an ACL message. While
describing norms 4 and 6 we have used the extended message concept to point out the
ontology being used to support the interpretation of the content expression.

<msg> ::= <conversation_id>';'<contents>';'<language_encoding>';
'<ontology_protocol>';'<reply_by>';'<reply_to>';'<reply_with>';'<in_reply_to>
 |...!it is possible to omit any parameter.

238 V.T. da Silva

5 Implementing Norms

Once we have seen how norms can be described, we need to demonstrate how they
are implemented. Similar to the approach presented in [8], we have also used Jess to
implement the governance mechanism. Jess is a rule-based system that maintains a
collection of facts in its knowledge base. Jess was chosen due two main reasons: (i) it
provides interfaces to programs in Java and (ii) it is possible to dynamically change
the set of rules defined in Jess from the execution of Java programs. MAS imple-
mented in Java can make use of the knowledge base and the declarative rules pro-
vided by Jess. Such MAS can also update the set of rules during the execution.

The use of Jess makes possible to describe facts and rules that are fired according
to the stated facts. In our approach, facts are agents’ observable attributes, (dialogical
and non-dialogical) actions executed by the agents, the norms activated by the rules,
and the information about norm violations. The rules are fired according to the exe-
cuted actions or observable attributes and can activate norms or assert violations.

5.1 The Use of Jess

In Jess, facts are described based on templates that specify the structure of the facts.
We have defined a template to define agents’ observable attributes and three tem-
plates to describe actions: one for describing dialogical actions and two for describing
the two different kinds of non-dialogical actions contemplated in the paper (method
calling and execution of the action of an agent plan). Besides, we have also described
nine templates for describing each of the three norm kinds (obliged, permitted and
forbidden) associated with the three different actions (message, method calling and
plan execution). In addition, one template was defined for being used to describe
norm violations. Such template points out the norm that was violated and the facts
that have violated the norm. The two examples below illustrate templates to describe
an obligation norm to execute the action of a plan and a violation.

(deftemplate OBLIGED-non-dialogical-action-plan
 (slot entity)(slot role)(slot plan) (slot action) (slot attribs (type String))
 (slot contract-pre (type String)) (slot contract-post (type String))
 (slot contract-inv (type String)) (slot beliefUpdated (type String))
 (slot condition (type String)))

(deftemplate VIOLATION (slot norm-violated) (multislot action-done))

Rules are composed of two parts. The left-hand side of the rule describes patterns
of facts that need to be inserted in the knowledge base in order to fire the rule. The
right-hand side defines facts that will be upload to the knowledge base if the rule is
fired. In our approach, these facts will be norms or norms’ violations. Examples of
rules are presented in Sections 5.3, 5.4, 5.5 and 5.6.

5.2 Some Guidelines

For each application norm, there is (usually) a need for describing three rules in Jess.
The first rule is used to state the norm by conditioning it to the facts that activate the
norm. If the facts are inserted into the knowledge base, the rule is fired and the norm
is activated. The second rule deactivates the norm retracting it from the knowledge

 Implementing Norms That Govern Non-dialogical Actions 239

base. The period during which some norms are active are limited and conditioned to
the addition of some facts in the knowledge base. The third and final rule points out
the violations. Prohibitions are violated if facts are inserted into the knowledge base
during while they are forbidden and permissions are violated if the facts are inserted
into the knowledge outside the period during which they are permitted. The violations
of obligations occur if facts are not inserted into the knowledge base in the corre-
sponding period. The following Sections will demonstrate how to implement those
rules according to the temporal situations and if conditions mentioned in Section 4.

5.3 Simple Obligations, Permissions and Prohibitions

Norms that describe obligations, permissions or prohibitions over the execution of
actions without defining any temporal situation or if condition are always active. Such
norms are never deactivated no matter what happens.

Although it is possible to describe obligations and permissions over the execution
of a norm without stating any condition, it is not possible to state violations. For each
obligation or permission that is not associated with any temporal situation or if condi-
tion, only one rule that states the norm must be described. The obligations character-
ize that the actions must be executed but do not state when the executions must be
checked. Permissions characterize that such actions can always be executed, and,
therefore, such norms are never violated by the permitted agents. When permissions
are applied to sub-sets of agents, we assume that prohibitions are stated to the ones
not permitted to execute the actions. Prohibitions can do be checked and violations
can be fired in case the actions are executed. Therefore, for each norm that describes
prohibition for the execution of an action, two rules need to be defined: (i) to assert
the prohibition; and (ii) to assert the violations if the forbidden facts are added to the
knowledge base.

In order to exemplify the use of Jess we describe the implementation of norm 5.
Rule (i) asserts the prohibition that is not conditioned to any fact. Rule (ii) asserts the
violation if a kicker handles the ball.

;(rule i)
(defrule forbidden:KickerHandleBall
=> (assert (FORBIDDEN-non-dialogical-action-plan (entity kicker)(plan play)
 (action handleBall))))

;(rule ii)
(defrule violation:KickerHandleBall
?fact <-(non-dialogical-action-plan (entity kicker)(plan play)(action handleBall))
?forbidden <- (FORBIDDEN-non-dialogical-action-plan (entity kicker)(plan play)

 (action handleBall))
=> (assert (VIOLATION (norm-violated (fact-id ?forbidden))
 (action-done (fact-id ?fact)))))

5.4 Norms Regulating Actions Executed Before the Occurrence of a Fact

Obligations for executing an action X before the occurrence of a fact W are verified
testing if X has been executed before W occurs. For governing such norms three rules
are defined: rule (i) asserts the obligation for execute X; rule (ii) retracts the obliga-
tion if X has been executed and W occurs; and rule (iii) asserts a violation if W occurs
but X has not been executed (what can be verified by the existence of the obligation).

240 V.T. da Silva

Permissions for executing an action X before the occurrence of W are verified test-
ing if X is executed after W. In such case, the execution of X is not permitted. These
norms are governed by three rules: rule (i) asserts the permission for execute X; rule
(ii) retracts the permission if W occurs; and rule (iii) asserts a violation if W occurs
and X is executed.

Prohibitions for executing an action X before the occurrence of an action W are
verified testing if X is executed and W has not occurred. Such norms are also gov-
erned by three rules: rule (i) asserts the prohibition; rule (ii) retracts the prohibition if
W occurs; and rule (iii) asserts a violation if X is executed and W has not occurred
(what can be verified by the existence of the prohibition). We assume that W can
occur many times but obligations should be fulfilled before the first time it occurs and
permissions and prohibitions are only active before its first occurrence.

Norm 1 is a good example to illustrate the implementation of norms that govern the
actions that must be executed before another one. Since the norm defines that a refe-
ree is obliged to check the equipment of the players before starting the game, three
rules was defined to govern such norm. Rule (i) states the obligation. Rule (ii) retracts
the obligation if the referee has checked the player equipment when the game starts.
Rule (iii) asserts a violation if the game has been started and the obligation still holds
informing that the referee has not checked the equipment. The obligation governs a
non-dialogical action that must be executed after a dialogical action.

;(rule i)
(defrule obliged:CheckEquipment
 =>(assert (OBLIGED-non-dialogical-action-plan (entity referee)(plan managingGame)
 (action checkEquipment)(attribs players)
 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))))

;(rule ii)
(defrule retract:CheckEquipment
(non-dialogical-action-plan (entity referee)(plan managingGame)
 (action checkEquipment)(attribs players))
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStart"))
?obliged <- (OBLIGED-non-dialogical-action-plan (ntity referee)
 (plan managingGame)(action checkEquipment)(attribs players)
 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))
=> (retract ?obliged))

;(rule iii)
(defrule violation:CheckEquipment
?fact <- (dialogical-action (scene game)(state si)(performative inform)
 (sRole referee)(message "gameStart"))
?obliged <- (OBLIGED-non-dialogical-action-plan (ntity referee)
 (plan managingGame)(action checkEquipment)(attribs players)
 (condition "BEFORE UTTER(game; si;INFORM(;referee;; [;gameStart;;;;;;]))"))
=> (assert (VIOLATION (norm-violated (fact-id ?obliged))
 (action-done (fact-id ?fact)))))

5.5 Norms Regulating Actions Executed After the Occurrence of a Fact

Obligations for executing an action X after the occurrence of Y (or if Y occurs) can-
not be governed since it is not possible to affirm that the execution of X will never
occur after the execution of Y. It is not possible to state a rule that fires a violation for
such norm since the action X can be executed anytime after Y has occurred. In order
to govern such norms it is necessary to state any temporal situation limiting the time

 Implementing Norms That Govern Non-dialogical Actions 241

for the execution of X after Y has occurred. The temporal concept between should be
used instead of after or if for governing such obligations. Norms 4 and 6 are examples
of norms that should be implemented by using between, as depicted in Section 5.6.

Permissions for executing X after the occurrence of Y can be governed by two
rules: rule (i) asserts the permission if Y occurs; and rule (ii) asserts a violation if X is
executed but Y has not occurred yet (i.e., there is no permission for execute X).

The governance of prohibitions for executing X after the occurrence of Y is the
opposite to the governance of the related permission. Such governance is also charac-
terized by two rules: rule (i) asserts the prohibition if Y occurs; and rule (ii) asserts a
violation if X is executed after Y has occurred or if Y is true.

In order to exemplify a norm that use the if condition we refer to norm 2. This
norm defines that the coach cannot execute an action that substitutes players if the
number of substitutions is equal or greater than 3. The prohibition governs a non-
dialogical action that is condition to the state of an object.

;(rule i)
(defrule forbidden:PlayerSubstitution
(attribute-value (objectORagent team)(attribute substitutions)(value 3))
=> (assert (FORBIDDEN-non-dialogical-action-plan (role coach)(plan managingTeam)
 (action substitutePlayer)(attribs outPlayer,inPlayer,team)
 (contract-pre "team.coach=coach")
 (contract-post "team.substitutions=team.substitutions@pre+1 AND
 team.playersInField->excludes(outPlayer) AND
 team.playersInField->includes(inPlayer)"))))

;(rule ii)
(defrule violation:PlayerSubstitution
?fact1 <- (non-dialogical-action-plan (role coach)(plan managingTeam)
 (action substitutePlayer))
?fact2 <- (attribute-value (objectORagent team)(attribute substitutions))
?forbidden <-(FORBIDDEN-non-dialogical-action-plan (role coach)(plan managingTeam)
 (action substitutePlayer)(attribs outPlayer,inPlayer,team)
 (contract-pre "team.coach=coach")
 (contract-post "team.substitutions = team.substitutions@pre+1 AND

 team.playersInField->excludes(outPlayer) AND
 team.playersInField->includes(inPlayer)"))

=> (if (>= (fact-slot-value ?fact 2) 3) then
 (assert (VIOLATION (action-done ?fact1 ?fact2)
 (norm-violated ?forbidden)))))

5.6 Norms Regulating Actions Executed Between the Occurrence of Two Facts

A norm that states an obligation for executing an action X after the occurrence of Y
and before the execution of W is governed by three rules: rule (i) asserts the obliga-
tion for execute X if Y occurs; rule (ii) retracts the obligation if X is executed and if
W occurs; and rule (iii) asserts a violation if W occurs but X has not been executed.

The permission for executing X between the occurrence of Y and W is governed
by the following four rules: rule (i) asserts the permission for execute X if Y occurs;
rule (ii) retracts the permission if W occurs; rule (iii) asserts a violation if W occurs
and X is executed; and rule (iv) asserts a violation if X is executed but Y has not oc-
curred yet (i.e., if the permission for executing X has not been fired yet).

Prohibitions for executing X between the occurrence of Y and W are governed by
three rules: rule (i) asserts the prohibition if Y occurs; rule (ii) retracts the prohibition
if W occurs; and rule (iii) asserts a violation if X is executed, Y has occurred but W

242 V.T. da Silva

has not occurred, i.e., X is executed and the prohibitions is still activated. Note that
the rules that govern both prohibitions and permissions while using the temporal con-
cept between are the combination of the rules used to govern such norms using the
after and before temporal concepts.

The use of between can be exemplified by norm 3. It states that the player is for-
bidden to leave the field between the beginning and the end of the game. The norm
defines a prohibition to execute a non-dialogical action limited by the execution of
two dialogical actions. Rule (i) asserts the prohibition if the first dialogical action is
executed, rule (ii) retracts the prohibition if the second dialogical action is executed
and rule (iii) declares a violation if the non-dialogical action is executed during while
it is being prohibited.

;(rule i)
(defrule forbidden:LeaveField
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStart"))
 => (assert (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)
 (action leaveField)(contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))))

;(rule ii)
(defrule retract:LeaveField
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStop"))
?forbidden <- (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)
 (action leaveField)(contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))
 => (retract ?forbidden))

;(rule iii)
(defrule violation:LeaveField
(dialogical-action (scene game)(state si)(performative inform)(sRole referee)
 (message "gameStart"))
?forbidden <- (FORBIDDEN-non-dialogical-action-plan (role player)(plan moving)
 (action leaveField)(contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))
?fact <- (non-dialogical-action-plan (role player)(plan moving)(action leaveField)
 (contract-pre agent.position@pre=inField)
 (contract-post agent.position!=inField))
=> (assert (VIOLATION (norm-violated (fact-id ?forbidden))
 (action-done (fact-id ?fact)))))

Sections 5.3 and 5.5 point out that some obligations over the execution of a norm
that cannot be governed. Since obligations need not to be fulfilled immediately after
they were declared, it is necessary to inform the period during which the agents are
being obligated to execute the action in order to govern them. Norms 6 and 4 are very
good examples of such obligations. Norm 6, for instance, defines that the referee must
declare a penalty if a kicker handles the ball. However, this norm does not define how
much time the referee has to fulfill its obligation. Therefore, it is not possible to af-
firm that the obligation was not fulfilled since it can be at any time. In order to prop-
erly regulate such norm it is needed to provide a limit till when this obligation must
be fulfilled. Norms 6 was adapted to inform that the referee has 1 minute to declare
the penalty after the kicker has handled the ball.

OBLIGED (UTTER(game; si; PENALTY(;referee;kickerTeam;[;penalty;;soccerGame;;;;]))
 BETWEEN (kicker EXECUTE play:handleBall, 1 MINUTES OF kicker EXECUTE
 play:handleBall))

 Implementing Norms That Govern Non-dialogical Actions 243

6 Conclusion

This paper proposes the implementation of norms4 that govern dialogical and non-
dialogical actions by using Jess. The governance system proposed in [6] receives (not
always true) testimonies about executed actions that are related to norm violations.
After judging the testimonies and concluding that the actions really were executed,
such information is uploaded to the Jess knowledge-based. The set of Jess rules are,
then, checked and the related norms and violations are fired. The fired norm or viola-
tion is also facts accumulated in the Jess database. We have implemented in Jess at
least one norm taking into account the three deontic concepts, the proposed temporal
situations and if conditions presented in the paper by using the soccer game.

Note that the Jess system only receives one information about the execution of an
action at a time. Independently of the order of the execution of the actions, the first
information sent to Jess is the one that will be processed. If two actions are executed
at the same time, the first information to achieve the Jess system will be processed.

Although the current version does not contemplate sanctions and awards, it can be
easily extended in order to do so. The sanctions should be provided when the related
violations are fired. The awards should be supplied when the norms are retracted and
no violation of such norms has been fired. In addition, a (semi)automatic approach for
generating Jess rules according to the norms specified by the use of the normative
language could be developed.

An automatic approach for generating Jess rules from the norms specified by the
use of the normative language is being developed. Our intention is to use such trans-
former during design time to automatically generate the rules for the specified norms
and also during runtime. In case the agents are able to specify new norms according to
the normative language during runtime, they could use the proposed transformer to
automatically generate new rules and publish them in the Jess engine. We are also
investigating the possibility of modifying one of the already available rules. Such
transformation should be based on the guidelines provided in section 5.2 and also on
its specialization provided in the following sub-sections.

References

1. Boella, G., van der Torre, L.: Regulative and Constitutive Norms in Normative Multi-
Agent Systems. In: Proceeding of KS, pp. 255–265. AAAI Press, Menlo Park (2004)

2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in Norm-
Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.)
DALT 2004. LNCS (LNAI), vol. 3476, pp. 221–238. Springer, Heidelberg (2005)

3. Broersen, J., Dignum, F., Dignum, V., Meyer, J.: Designing a deontic logic of deadlines.
In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp. 43–56.
Springer, Heidelberg (2004)

4. Cranefield, S.: A Rule Language for Modelling and Monitoring Social Expectations in
Multi-Agent Systems. In: Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson,
E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP
2005. LNCS (LNAI), vol. 3913, pp. 246–258. Springer, Heidelberg (2006)

4 The full normative language described in the paper and the Jess program used to illustrate our

approach are available at http://maude.sip.ucm.es/~viviane/products.html

244 V.T. da Silva

5. Dignum, F., Broersen, J., Dignum, V., Meyer, J.: Meeting the deadline: Why, when and
how. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff, C.A. (eds.) FAABS 2004.
LNCS (LNAI), vol. 3228, pp. 30–40. Springer, Heidelberg (2004)

6. Duran, F., Silva, V., Lucena, C.: Using Testimonies to Enforce the Behavior of Agents. In:
Sichman, J.S., et al. (eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870, pp. 232–244.
Springer, Heidelberg (2008)

7. García-Camino, A., Rodríguez-A, J., Sierra, C., Vasconcelos, W.: Norm-Oriented Pro-
gramming of Electronic Institutions. In: Proceedings of AAMAS, pp. 670–672. ACM
Press, New York (2006)

8. García-Camino, A., Noriega, P., Rodríguez-Aguilar, J.A.: Implementing Norms in Elec-
tronic Institutions. In: Proceedings of AAMAS, pp. 667–673. ACM Press, New York
(2005)

9. López, F.: Social Power and Norms: Impact on agent behavior. PhD thesis, Univ. of
Southampton (2003)

10. López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms. In: Proceed-
ings of AAMAS, pp. 674–681. ACM Press, New York (2002)

11. Meyer, B.: Object-Oriented Software Construction Prentice Hall, 2nd edn (1997)
12. Singh, M.: An Ontology for Commitments in Multiagent Systems: Toward a Unification

of Normative Concepts. In: Artificial Intelligence and Law, vol. 7(1), pp. 97–113.
Springer, Heidelberg (1999)

13. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multiagent
Systems. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004.
LNCS (LNAI), vol. 3187, pp. 313–327. Springer, Heidelberg (2004)

A Normative Multi-Agent Systems Approach

to the Use of Conviviality for Digital Cities

Patrice Caire

University of Luxembourg, Computer Science Department
L-1359, Luxembourg, 6, Rue Richard Coudenhove-Kalergi, Luxembourg

Abstract. Conviviality is a mechanism to reinforce social cohesion and
a tool to reduce mis-coordination between individuals, groups and in-
stitutions in web communities, for example in digital cities. We use a
two-fold definition of conviviality as a condition for social interactions
and an instrument for the internal regulation of social systems. In this
paper we discuss the use of normative multi-agent systems to analyze the
use of conviviality for digital cities, by contrasting norms for conviviality
with legal and institutional norms in digital cities. We show the role of
the distinction among various kinds of norms, the explicit representation
of norms, the violability of norms and the dynamics of norms in the con-
text of conviviality for digital cities.

Keywords: Conviviality, multi-agent systems, normative systems, social
computing, digital cities.

1 Introduction

The role of norms for conviviality is a condition for social interactions and an
instrument for the internal regulation of social systems [1]. For example, in digital
cities “government regulations extend laws with specific guidance to corporate
and public actions” [2].

Conviviality is often reduced to be synonymous with user-friendliness as, for
example, in one of the four themes of the European Community Fifth Framework
Program titled “Societe de l’Information Convivial” (1998-2002) [3] and trans-
lated by “User-friendly Information Society”. Indeed, the popular definition of
a convivial place or group is one in which “individuals are welcome and feel at
ease” [4]. However, the scientific literature defines conviviality as a more com-
plex concept, with positive and negative aspects, tools and mechanisms to carry
through user interactions. A socio-cognitive concept, conviviality is concerned
with agent interactions, and frequently used in social sciences and applications
of multi-agent systems in which artificial and human agents interact, for exam-
ple, virtual communities, digital cities, social intelligence design and ambient
intelligence. Therefore, we propose to add conviviality to the number of social
concepts, such as trust, reputation, norms, organizations and institutions, al-
ready studied in multi-agent systems.

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 245–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

246 P. Caire

Moreover, similarly to a number of social concepts, such as trust, reputation,
conventions, norms, power, coalitions, organizations and institutions, we propose
that conviviality be studied in multi-agent systems.

In this paper we raise the following question: how can normative multi-agent
systems be used to model conviviality for digital cities? We approach this ques-
tion focusing on conviviality for digital cities, and by contrasting the use of nor-
mative multi-agent systems for conviviality with legal and institutional norms
in digital cities.

Our main question breaks down into the following research questions: What
are digital cities, what are normative multi-agent systems, what is conviviality
and finally, can normative multi-agent systems be applied to conviviality for
digital cities?

The layout of this paper follows these sub-questions. In section 2 we give a
brief overview on digital cities, in section 3 we explain norms in regards to the
legal and institutional aspects of digital cities, in section 4 we present a literature
survey on the notion of conviviality and in section 5 we examine the use of norms
for conviviality.

2 Digital Cities

Digital cities are web portals using physical cities as a metaphor for informa-
tion spaces. They present various combinations of political, economic and social
activities. The following examples show the diversity of the combinations:

– eCities, eAdministrations and eGovernments, such as eLuxembourg and eEu-
rope are the official portals of cities and countries used as tools to improve
local democracy and participation; they provide local social information in-
frastructures over the real city with public and administrative services to
citizens and visitors; the activities are predominantly political and to a lesser
extend, economic and social.

– eCommerce portals, such as MSN CitySearch and AOL Digital Cities of-
fer commercial services, shopping, entertainment and more generally, local
easy to find and search information; they provide practical resources for the
organization of every day life and the support of local economic activities;
the activities are predominantly economic and to a lesser extend social and
political.

– social virtual worlds such as Second Life and the Habbo Hotel, provide a
communication medium primarily to conduct social experiences through role
playing while, at the same time, attracting advertisers and businesses by
the size of their massive multi-player communities. “Experiment with new
forms of solving problems and coordinating social life” [5]. Activities are
predominantly social and to a lesser extend economic and political.

Observing that “Digital cities commonly provide both profit and non-profit
services and have a dilemma in balancing the two different types of services”,
Ishida [6] raises the question whether public digital cities can compete with

A Normative Multi-Agent Systems Approach to the Use of Conviviality 247

commercial ones. “Without profit services, digital cities become unattractive
and fail to become a portal to the city. Without nonprofit services, the city may
become too homogeneous like AOL digital cities as a result of pursuing economic
efficiency.”

2.1 Goals of Digital Cities

Commercial digital cities started as local portals run by private companies, such
as phone, web and airline companies, competing with each other. Nowadays,
global companies such as Yahoo! and AOL offer city guides with services: Shop-
ping, entertainment, local information and maps. Their business goals are geared
toward vertical markets and their revenues are generated by advertising. Their
general trend is to provide information, easy to find and search for, good main-
tenance of systems and frequent updates. They are effective in Asia, where they
complement government agencies, but limited in scope by their top-down con-
trolled and selected content, lack of two-way interaction with users and main
advertising purpose.

Public digital cities started in the US with American community networks,
inspired by a tradition of community-centered, grass-roots engagements empha-
sizing freedom of speech and activism. Their original goal was to create virtual
information spaces, such as the WELL, Whole Earth’Lectronic Link and Blacks-
burg Electronic Village. However today, American public digital cities align with
eGovernments and their main challenges are: the lack of synergy between commu-
nity networks, private companies and administrations as well as the competition
between profit and non-profit organizations.

In Europe, public digital cities evolved through the European Community
leadership. The main goals are to share ideas and technologies between all cities
in order to strengthen European partnerships, use information and communica-
tion technologies in order to resolve social, economic and regional development
issues and to improve the quality of social services. The main challenge, shown by
the relatively slow commercialization of services and information, is the difficulty
to integrate grass-roots communities and commercial points of view.

2.2 Organizations of Digital Cities

Commercial digital cities aggregate urban information; They are well main-
tained, use proprietary software and rely on search engines, ranking interest
links by sponsors, for business opportunities. Early on, commercial digital cities
recognized the importance of usability and have done well to make their services
usable by many.

Public digital cities seek to enforce the use of open systems. The lack of funds
and the complexity of their partnerships caused many downfalls (Digital Ams-
terdam). Public digital cities rely on high speed networks tightly coupled with
physical cities (Helsinki) and platforms for community networks (Bologna). They
have multilayer architectures: Information, interface and interaction layers (Dig-
ital Kyoto). In Asia, public digital cities, called city informatization, emerged as

248 P. Caire

government initiatives to develop countries through technological innovations.
There were attempts to integrate grass-roots activities and university driven
projects in 1999 with Digital Kyoto and Digital Shanghai but the greatest chal-
lenge still remains their top-down approach based on administration activity.

2.3 Discussion

Commercial and public digital cities were originally very different but tend now
to overlap. We summarize in table 1. Commercial digital cities depend on busi-
ness models and strategies to fight competition for market penetration, gain
new members and sustain existing members’ loyalty; for example, members are
less likely to go to a competitive site if they invest time and efforts to build
their avatars and communities of friends. Public digital cities depend on politi-
cal agendas to motivate progress for technological and social improvements; for
example, in 1994, a progressive political leadership brought about innovations
such as setting up online open spaces in Bologna Iperbole digital city, to allow
groups of citizens to publish information and engage in public debates with their
representatives; similarly, in 1996, the digital city for Issy-les-Moulineaux was
developed into a one-stop administration that included online live interaction of
citizens to town meetings.

In the US, for-profit businesses and non-profit organizations co-exist and com-
pete; in the EU, attempts are to coordinate administrations, companies and cit-
izens while in Asia governments pursue directed growth. The goals of European

Table 1. Digital cities: Commercial vs. public portals

Type Commercial Public
Goals For profit.

Vertical markets (shopping,
entertainment).
Generate revenues (advertis-
ing, memberships).

Not for profit.
Make government efficient,
accessible. Improve local
democracy.
Accelerate economic devel-
opment.

Technology Well maintained with fre-
quent updates.
Proprietary software and
multimedia. Search (ranked
results), easy-to-find local
information and maps,
top-down filtered content.

Use open source, distributed
systems and forums.
Rely on high speed networks
coupled with the real city
(parking payments, ambient
intelligence applications).

Organization Business strategy based on
fierce competition.
Existing models: Organiza-
tional, functional, economic,
games and artificial life.

Political agenda based on in-
cumbent majority and lead-
ership priorities.
Complex consortia between
administration, universities
and companies.

A Normative Multi-Agent Systems Approach to the Use of Conviviality 249

governments are to close geographic and social digital divides, with access to
information and services everywhere and for all, to accelerate economic devel-
opment, with business assistance, licenses and permits, and to make the govern-
ments of cities more efficient and accessible, for example with 24/7 only access
to municipal services and multilinguism.

Existing models for digital cities are organizational, functional, economic,
games or artificial life. Multi-agent systems are a promising methodology to
develop digital cities, because they can bridge the gap between eGovernment
concepts and system development. Moreover, the autonomy of users is central
in digital cities and can be modeled using the autonomy of agents. Finally, in-
teraction between artificial and human agents, and sometimes the distinction
between them is unclear as the use of intelligent agents in some cities, or the use
of avatars in second life.

The success factors for digital cities consist in achieving the participation
of institutions and communities, in balancing top-down direction needed for
technical infrastructure and bottom-up grass-roots initiatives necessary to insure
citizens’ cohesion and finally in finding equilibrium between economic and civic
motivations. Research in this field addressed such issues in the proceedings of
digital cities 2000 [7], 2002 [8] and 2005 [9] by focusing on concepts such as
eDemocracy, digital divide and conviviality.

3 Legal and Institutional Norms in Digital Cities

In their introduction to normative multi-agent systems, Boella et al. give the
following definition: “A normative multi-agent system is a multi-agent system
together with normative systems in which agents on the one hand can decide
whether to follow the explicitly represented norms, and on the other the norma-
tive systems specify how and in which extent the agents can modify the norms”
[10]. We first discuss the distinction among various kinds of norms, we then
discuss the implicit versus the explicite representation of norms, and finally the
violation of norms. We illustrate our discussion with examples from digital cities.

3.1 Different Kinds of Norms

Several kinds of norms are usually distinguished in normative systems. Within
the structure of normative multi-agent systems [11] distinguish “between regula-
tive norms that describe obligations, prohibitions and permissions, and
constitutive norms that regulate the creation of institutional facts as well as
the modification of the normative system itself”. A third kind of norms called
procedural norms, have long been considered a major component of political
systems, particularly democratic systems; Lawrence defines them as “rules gov-
erning the way in which political decisions are made; they are not concerned
with the content of any decision except one which alters decision-making proce-
dures” [12].

Constitutive norms combine several aspects, among which the intermediate
concept known as count as such as in “X counts as a presiding official in a

250 P. Caire

wedding ceremony”, “this bit of paper counts as a five euro bill” and “this piece of
land counts as somebodys private property” [13]. As per Searle, “the institutions
of marriage, money, and promising are like the institutions of baseball and chess
in that they are systems of such constitutive rules or conventions” [14]. In digital
cities, an example of constitutive norm is voting in the sense that going through
the procedure counts as a vote.

However, the role of constitutive rules “is not limited to the creation of an
activity and the construction of new abstract categories. Constitutive norms
specify both the behavior of a system and the evolution of the system” [11]. The
dynamics of normative systems is here emphasized as in norm revision, certain
actions count as adding new norms for instance amendments: “The normative
system must specify how the normative system itself can be changed by intro-
ducing new regulative norms and new institutional categories, and specify by
whom the changes can be done” [11]. In the US today, government agencies are
required to invite public comment on proposed rules [2]. Citizens are therefore
encouraged to propose their changes to regulations. This is done via the digital
city governement interface that allows revisions to be traced and searched.

Two other aspects of constitutive norms are organizational, how roles define
power and responsibilities, and structural, how hierarchies structure groups and
individuals: New norms are introduced by the agents playing a legislative role,
and ordinary agents create new obligations, prohibitions and permissions con-
cerning specific agents [11].

Regulative Norms, like obligations and permissions are often used to model
legal systems. However, “a large part of the legal code does not contain prohibi-
tions and permissions, but definitions for classifying the common sense world un-
der legal categories, like contract, money, property, marriage. Regulative norms
can refer to this legal classification of reality” [13]. A regulative norm expressed
as an obligation in the digital city of Luxembourg, is that citizens must use the
file format PDF rather than Postscript in order to access the administration
documents on the portal.

Regulative norms also express permission, rights and powers. For example,
computer systems access rights and voting rights: In order to be allowed to vote
in Luxembourg, an agent needs to prove it has been a resident for at least five
consecutive years or was born in Luxembourg.

Regulative norms are not categorical, but conditional, they specify all their
applicability conditions [11]. In the digital city of New York City, To renew
online a Driver’s License it is stipulated on New York digital city portal that you
cannot change your address during this transaction, you must have completed
form MV-619 (Eye Test Report) and read all the requirements before you begin
the transaction [15].

Procedural norms are instrumental for individuals working in a system: Ex-
amples in digital cities, are back office procedures and processes designed for
administrators to do their work. Lawrence distinguishes two kinds of procedural
norms: Objective procedural norms are rules that describe how decisions are

A Normative Multi-Agent Systems Approach to the Use of Conviviality 251

actually made in a political system and specify “who actually makes decisions,
who can try to influence decision makers, what political resources are legitimate
and how resources may be used”. Subjective procedural norms are “attitudes
about the way in which decisions should be made” [12].

3.2 Explicit vs. Implicit Representation of Norms

The first property of norms in the definition of normative multi-agent systems is
that norms are explicitly represented; explicite meaning formalized and verbal-
ized by some authorities, implicite meaning tacitely agreed upon, not specialized
nor codified. Often, norms are given as requirements to computer systems but
only implicitly represented. For example, you are filling out a census form and
one question is whether you own a pet, but no explanation is given concerning
the purpose of the information; assuming your answer is affirmative (you do own
a pet), the outcome could be that either you are required to pay a pet license
fee or the amount of the fee is directly deducted from your bank account. The
digital city of Paris presents an example of explicit norm representation with the
stipulation that, to create online library accounts you must be over 18 years old,
otherwise an authorization of your parents is required.

Implicit representations are opaque to users and prevent governments to fulfill
the democratic promise that transparency and explicit representations deliver.
The representations of norms have to become more explicit and personalized to
meet users’ expectations as their needs for explanation and understanding of
rules and regulations grows. Explicit representations of norms is also in the in-
terest of governments and can be addressed with the development of mechanisms
for knowledge representation and reasoning.

In digital cities, efforts are currently in-between implicit and explicit represen-
tations of norms by providing tools for text representation and retrieval, more
advanced ontologies, semantic links and search capabilities. In 2006 for example,
the US government added a branch to its business portal to help small businesses
comply with Federal regulations; a need that was not being met by any other
Federal government program [15].

3.3 Violations of Norms

The second property in the definition of normative multiagent systems, norms
can be violated, is also seen as a condition for the use of deontic logic in computer
science: “Importantly, the norms allow for the possibility that actual behavior
may at times deviate from the ideal, i.e. that violations of obligations, or of
agents rights, may occur” [16].

If norms cannot be violated then the norms are regimented. For example, if in
access control, a service can only be accessed with a certificate, then this norm
must be implemented in the system by ensuring that the service is only accessible
when the certificate is presented. Regimented norms correspond to preventative
control, as norm violations are prevented. When norm violations are possible,
control is detective as behavior must be monitored and norm violations must be

252 P. Caire

detected and sanctioned. “Social order requires social control, an incessant local
(micro) activity of its units, aimed at restoring the regularities prescribed by
norms. Thus, the agents attribute to the normative system, besides goals, also
the ability to autonomously enforce the conformity of the agents to the norms,
because a dynamic social order requires a continuous activity for ensuring that
the normative systems goals are achieved. To achieve the normative goal the
normative system forms the subgoals to consider as a violation the behavior not
conform to it and to sanction violations” [13].

In digital cities, disincentive is often the mechanism used to prevent users from
infringing the norms. For example, the digital city of Issy clearly stipulates that
malicious intruders into the digital city will be prosecuted. There are normative
multiagent systems in which norm violations are possible and can trigger new
obligations, the so-called contrary-to-duty obligations. With contrary-to-duty
obligations, there is not only a distinction between ideal and bad behavior, but
there is also a distinction between various degrees of sub-ideal behaviors.

3.4 Dynamics of Norms

In many electronic institutions, norms are fixed and cannot be changed within
the system, even though in many organizations there are roles defined within
the system. The questions are whether digital cities are a collection of elec-
tronic institutions, whether manipulations and changes are allowed within the
system. The US Regulations’ office may be contributing to bring answers to this
questions as it now provides on its site Regulations.gov a national forum for
users to comment on existing and pending federal rules, therefore encouraging a
more dynamic process for the modification and expliciteness of their rules and
regulations.

4 Conviviality

First, we note that the many definitions of conviviality remain vague and not
technical (table 2). We further note that the concept can be related to other non
technical socio-cognitive concepts, such as trust and power, that have aquired
more technical interpretation in multi-agent systems. We think current research
is useful to develop user-friendly multi-agent systems.

4.1 Conviviality in Social Sciences

First used in a scientific and philosophical context [20], in 1964, as synonymous
with empathy, conviviality allows individuals to identify with each other thereby
experiencing each other’s feelings, thoughts and attitudes. By extension, a com-
munity is convivial when it aims at sharing knowledge: Members trust each other,
share commitments and interests and make mutual efforts to build conviviality
and preserve it. A convivial learning experience is based on role swapping [21],
teacher role alternating with learner role, emphasizing the concept of reciprocity

A Normative Multi-Agent Systems Approach to the Use of Conviviality 253

Table 2. Definitions of conviviality

Etymological and Domain Specific Definitions
15th century “convivial”, from latin, convivere “to live together with, to eat
together with”. French Academy Dictionary [17]

Adj. Convivial: (of an atmosphere, society, relations or event) friendly and
lively, (of a person) cheerfully sociable. Oxford English Dictionary [18]

Technology: Quality pertaining to a software or hardware easy and pleasant
to use and understand even for a beginner. User friendly, Usability. By
extension also reliable and efficient. Grand Dictionnaire Terminologique [19]

Sociology: Set of positive relations between the people and the groups that
form a society, with an emphasis on community life and equality rather than
hierarchical functions. Grand Dictionnaire Terminologique [19]

as key component and creating concepts such as learning webs, skill exchange
networks and peer-matching communication, later expanded by Papert and the
Constructionists with concepts such as learning-by-making [22].

Conviviality is then described as a social form of human interaction, a way to
reinforce group cohesion through the recognition of common values. The shar-
ing of habits and customs, for example the sharing of certain types of food or
drinks, create and reinforce a community through a “positive feeling of togeth-
erness”; individuals become part of the community which in turn, reinforces the
community’s awareness of its identity. The physical experience of conviviality is
transformed into knowledge sharing experience: “To know is to understand in a
certain manner that can be shared by others who form with you a community
of understanding” [23].

Illich further develop the concept of conviviality with his notion of “individual
freedom realized in personal interdependence” [24]; Conviviality should then be
the foundation for a new society, one that gives its members the means, referred
to as tools, for achieving their personal goals: “A convivial society would be the
result of social arrangements that guarantee for each member the most ample
and free access to the tools of the community and limit this freedom only in
favor of another member’s equal freedom”. Conviviality is then seen by Put-
nam as an enhancement to social capital, a condition for the civil society where
communities are characterized by political equality, civic engagement, solidarity,
trust, tolerance and strong associative life [25], therefore tightly linking the per-
formance of political institutions to the character of civil life [26]. These ideas
are further developed by Lamizet who caracterizes conviviality as both “institu-
tional structures that facilitate social relations and technological processes that
are easy to control and pleasurable to use” [27]. An important use for convivial-
ity today is for digital cities as a mechanism to reinforce social cohesion and as
a tool to reduce mis-coordinations between individuals [28,1,29].

However, a negative side of conviviality emerges when it is instrumentalized,
one group being favored at the expense of another. Ashby argues that “truth
realities about minorities are built from the perspective of the majority via tem-
plate token instances in which conflict is highlighted and resolution is achieved

254 P. Caire

Table 3. Different aspects of conviviality

Positive aspects Grey aspects Negative aspects
(Enabler) (Ignorance) (Threat)
Share knowledge & skills Ignore cultural diversity Crush outsiders

Deal with conflict Hide conflict Fragmentation

Feeling of “togetherness” Promote homogenization Totalitarism

Equality Political correctness Reductionism

Trust Non-transparent system-
atic controls

Deception

through minority assimilation to majority norms [. . .] Conviviality is achieved
for the majority, but only through a process by which non-conviviality is rein-
forced for the minority” [30]. Taylor further add to this negative side the idea
that conviviality can be used to mask the power relationships and social struc-
tures that govern communities. Taylor asks the question “whether it is possible
for convivial institutions to exist, other than by simply creating another set of
power relationships and social orders that, during the moment of involvement,
appear to allow free rein to individual expression [. . .]. Community members
may experience a sense of conviviality which is deceptive and which disappears
as soon as the members return to the alienation of their fragmented lives” [31].
In table 3, we summarize the different aspects of conviviality.

4.2 Conviviality in Multi-Agent Systems

In multi-agent systems, “agents are capable of flexible (reactive, proactive, social)
behavior” [32], this capability is crucial for the use of conviviality since it allows
agents to cooperate, coordinate their actions and negotiate with each other.
Following are examples of multi-agent systems applications that use different
aspects of conviviality.

Embodied Conversational Agents (ECA) are autonomous agents with a
human-like appearance and communicative skills. They have shown their po-
tential to allow users to interact with the machine in a natural and intuitive
human way: the conversation. To be able to engage the user in a conversation
and to maintain it, the agents ought to have capabilities such as perceive and
generate verbal and nonverbal behaviors, show emotional states and maintain so-
cial relationship [33]. In Cassell’s Rea system, Embodied Conversational Agents
are “specifically conversational in their behaviors and specifically human like
in the way they use their bodies in conversation”, they are capable of making
content-oriented or propositional contributions to a conversation with human
users [34]. Conversational Agents must be endowed with conviviality, that is “be
rational and cooperative” [35] and the interaction with the agent is convivial
if the agent presents, jointly and at all times, one or all of the following char-
acteristics: Capacity for negotiation, contextual interpretation, flexibility of the
entry language, flexibility of interaction, production of co-operative reactions
and finally of adequate response forms. Conviviality is the essential and global

A Normative Multi-Agent Systems Approach to the Use of Conviviality 255

characteristic that emerges from the intelligence of the system, not from a set of
local characteristics that vary depending upon the application contexts and the
types of users. Consequently a list of criteria will by itself not suffice to express
conviviality, additional critical factors are the relations that bind the criteria
together and the way these relations are perceived by individuals. Building on
this work, Ochs et al. distinguish felt emotions from expressed emotions noting
that “a person may decide to express an emotion different from the one she
actually felt because she has to follow some socio-cultural norms” [36]. This is
particularly relevant to the study of conviviality in multi-agent systems where
agent communication distinguishes between private beliefs and goals and public
opinions and intentions.

In the Intelligent Tutoring System proposed by Gomes et al., “convivial so-
cial relationships are based on mutual acceptance through interaction”, on the
reciprocity of students helping each other [37]. Students communicate through
their agents: Each agent represents a student and has the function to pass in-
formation on the affective states of the student, this information can be inferred
by the agent or adjusted by the student. A utility function takes as input a stu-
dent’s social profile and computes the student’s affective states indicating if the
student needs help, if it is the case, the system recommends a tutor. Remaining
challenges are with defining utility function inputs to compute recommenda-
tions, presently a set of random values, and to automate inferences of students
requiring help. This exposes the need for further research in evaluation methods
and measures for concepts such as mood, sociability and conviviality. Further
looking into interpersonal factors, Heylen et al. propose emotionally intelligent
tutor agents that try to construct a model of the mental state of the student
while being aware of the effects of the tutoring acts to determine the appropriate
action sequences and the way to execute them [38].

Computational mechanisms for trust and reputation in artificial societies are
widely researched [39,40] greatly relevant to conviviality. Reputation is the “in-
dispensable condition for the social conviviality in human societies” state Casare
and Sichman [41]. In this system, every agents are aware of every other agents’
behavior and of their compliance, or not, to the rules of the group. A functional
ontology of reputation is defined whereby “roles are played by entities involved
in reputative processes such as reputation evaluation and reputation propaga-
tion.” Concepts of the legal world are used to model the social world, through
the extension of the concept of legal rule to social norm and the internalization
of social mechanisms in the agent’s mind, so far externalized in legal institutions.
Reputation acts as a communication tool, ensuring complete social transparency
throughout the system. However, the strict application of legal norms to repu-
tation may suffer from rigidity, and one can wonder about ethical issues, such
as privacy, raised by these types systems. Research addressing such issues are
for example, Erickson and Kellog’s socially translucent systems, characterized
by visibility, awareness and accountability [42], and ter Hofte et al. [43] studies
of place-based presence and trust evaluation.

256 P. Caire

5 Use of Norms for Conviviality

“Norms are cultural phenomena that prescribe and proscribe behavior in specific
circumstances” state Hechter and Opp [44]. They are considered to be respon-
sible for regulating social behavior: Interaction and exchange between strangers
could hardly be imagined without norms. The law relies on norms as well but,
as seen in section 3, legal norms differ form social norms. We summarized from
various sources and present some excerpts in table 4.

Table 4. Legal norms versus social norms

Type Legal Norms Social Norms
Kinds of norms Consitutive, regulative and

procedural.
Consitutive and regulative;
rarely procedural.

Norm representation Exactly specified in written
texts.

Unwritten, thus their con-
tent and rules are often im-
precise.

Norm violation Linked to distint sanctions,
enforced by specialized bu-
reaucracy.

Enforced informally, but
can be a matter of life and
death.

Norm modification Created by design, gen-
erally through deliberative
process.

Spontaneous, of uncertain
origine.

5.1 Norms for Conviviality

There is no common definition of social norms and no agreement on how to
measure them. A large body of research suggests that social norms regulate
such diverse phenomena as cooperation [45], collective action [46] and social
order [47]. Hechter and Opp [44] distinguish two types of definitions for social
norms:

1. Norms that entail a moral imperative, a sense of oughtness, of duty; a social
norm behavior that people believe must be performed without concern for
its consequence for the agent. For example, a man who was engaging in duels
was ready to die to save his honor. The sanction of an oughtness norm does
not depend on the dectection of the violation because violators internalize
this type of norm, therefore its violation entails some internal sanctioning:
the experience of guilt or shame.

2. Norms that generate social expectations without any moral obligations, ba-
sically behavioral regularity; a certain behavior is identified as a social norm
if deviating from that practice incurs a cost imposed on an agent. For exam-
ple, a person questioned by a police officer is expected to behave respectfully
otherwise he of she may be prosecuted.

In digital cities, a number of security issues like identity management, authen-
tication and authorisa- tion can prevent users to feel at ease. Some problems are

A Normative Multi-Agent Systems Approach to the Use of Conviviality 257

new, for example, in contrast to the physical world, malicious users can create
new agents repeatedly to lure beginners, insult them and take advantage of them.
These unconvivial behaviors show mechanisms that differenciate social norms
from conviviality norms. From personal powers to social dependence, sociality
presupposes a common world, hence interference: the action of one agent can
favor (positive interference) or compromise the goals of another agent (negative
interference) [47].

5.2 Representation of Conviviality

Conviviality facilitates and regulates agent interactions, and therefore contri-
butes to agent coordination. For example, digital cities can separate systems for
beginners and experienced users, since beginners are frightened by the complexi-
ties of the real system, whereas experienced users are bored by the simplifications
developed for beginners. However, since beginners and experienced users have
to participate to the digital city at the same time, this introduces various chal-
lenges: when civil servants working for the digital city are confronted with a user,
they have to adapt their behavior with respect to the experience of the user.

Dynamic aspects of conviviality , such as the emergence of conviviality, occur
from the sharing of properties or behaviors whereby each members perception
is that their personal needs are taken care of.

5.3 Violation of Conviviality

It is always possible to violate social norms and therefore conviviality. Ignoring
cultural and social diversity is violating conviviality as it creates conviviality for a
group at the expense of others. In digital cities, as in physical cities, being ignored
when asking advices to a city administrator represents a conviviality violation
as it breaks the bilateral form expected from these communication acts to only
allow for unilateral communication. Excluding, ostracizing, an agent that does
not comply to the norms of the city when interacting with other agents from the
city is a ditributed mechanism that enforce the norms as in [48].

Other violations would be to promote homogenization, fragmentation, totali-
tarism, reductionism, deception, to enforce exclusion and to crush outsiders.

6 Conclusion

In this paper we contrast norms for conviviality with legal and institutional
norms in digital cities. We consider the following issues. First, the kinds of norms
typically distinguished in legal systems can be distinguished for norms of con-
viviality too. Second, norms for conviviality are often implicit, and we believe it
is an important question when such norms should be made explicit. Third, the
issue of violation of conviviality and ways to deal with it is of central concern in
web communities like digital cities. Fourth, norms concerning conviviality should
be able to change over time. Fifth, norms for conviviality can come from a wide
variety of sources.

258 P. Caire

References

1. Caire, P.: Designing convivial digital cities. In Nijholt, A., O.S., Nishida, T. (eds.)
Proceedings of the 6th Workshop on Social Intelligence Design (SID 2007), pp.
25–40 (2007)

2. Lau, G.T., Law, K.H., Wiederhold, G.: Analyzing government regulations using
structural and domain information. IEEE Computer 38(12), 70–76 (2005)

3. Weyrich, C.: Orientations for workprogramme 2000 and beyond. Information soci-
ety technologies report, Information Society Technologies Advisory Group (1999)

4. Caire, P.: A critical discussion on the use of the notion of conviviality for digital
cities. In: Proceedings of Web Communities 2007, pp. 193–200 (2007)

5. Van den Besselaar, P., Melis, I., Beckers, D.: Digital cities: Organization, content,
and use. [7], pp. 18–32

6. Ishida, T.: Understanding digital cities. [7], pp. 7–17
7. Ishida, T., Isbister, K. (eds.): Digital Cities 1999. LNCS, vol. 1765. Springer, Hei-

delberg (2000)
8. Tanabe, M., van den Besselaar, P., Ishida, T. (eds.): Digital Cities 2001. LNCS,

vol. 2362. Springer, Heidelberg (2002)
9. van den Besselaar, P., Koizumi, S. (eds.): Digital Cities 2003. LNCS, vol. 3081.

Springer, Heidelberg (2005)
10. Boella, G., van der Torre, L., Verhagen, H.: Introduction to normative multiagent

systems. Computational & Mathematical Organization Theory 12, 71–79 (2006)
11. Boella, G., van der Torre, L.W.N.: Regulative and constitutive norms in normative

multiagent systems. In: Knowledge Representation, pp. 255–266 (2004)
12. Lawrence, D.G.: Procedural norms and tolerance: A reassessment. The American

Political Science Review (1976)
13. Boella, G., van der Torre, L.W.N.: Constitutive norms in the design of normative

multiagent systems. In: CLIMA VI, pp. 303–319 (2005)
14. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge

University Press, Cambridge (1970)
15. Caire, P.: Conviviality for digital cities: A normative multi-agent systems approach.

In: Dastani, M., de Jong, E. (eds.) Proceedings of The 19th Belgian-Dutch Con-
ference on Artificial Intelligence (BNAIC 2007), pp. 73–80 (2007)

16. Jones, A., Carmo, J.: Handbook of Philosophical Logic. In: Deontic logic and
contrary-to-duties, pp. 265–344. Kluwer Academic Publishers, Dordrecht (2002)

17. Dictionnaire de l’academie francaise. Neuvieme Edition, Version Informatisee
(2000)

18. Oxford english dictionary. Oxford University Press, Oxford (2007)
19. Le grand dictionnaire terminologique. Office Quebecois de la Langue Francaise

(2007)
20. Polanyi, M.: Personal Knowledge: Towards a Post-Critical Philosophy. University

Of Chicago Press, Chicago (1974)
21. Illich, I.: Deschooling Society. Marion Boyars Publishers, Ltd. (1971)
22. Papert, S., Harel, I.: 1. In: Constructionism, MIT Press, Cambridge (1991)
23. Schechter, M.: Conviviality, gender and love stories: Plato’s symposium and isak

dinesen’s (k. Blixen’s) babette’s feast. Trans, Internet journal for cultural sciences
1(15) (2004)

24. Illich, I.: Tools for Conviviality. Marion Boyars Publishers (1974)
25. Putnam, R.D.: Bowling alone: The collapse and revival of american community.

In: Computer Supported Cooperative Work, p. 357 (2000)

A Normative Multi-Agent Systems Approach to the Use of Conviviality 259

26. Putnam, R.D.: Diplomacy and domestic politics: The logic of two-level games.
International Organization 42(3), 427–460 (1988)

27. Lamizet, B.: Culture – commonness of the common? Trans, Internet journal for
cultural sciences 1(15) (2004)

28. Caire, P.: Conviviality for ambient intelligence. In: Olivier, P., Kray, C. (eds.)
Proceedings of Artificial Societies for Ambient Intelligence, Artificial Intelligence
and Simulation of Behaviour (AISB 2007), pp. 14–19 (2007)

29. Caire, P.: A normative multi-agent systems approach to the use of conviviality
for digital cities. In: Noriega, P., Padget, J. (eds.) Proceedings of The Interna-
tional Workshop on Coordination, Organization, Institutions and Norms in Agent
Systems (COIN), pp. 15–26.

30. Ashby, W.: Unmasking narrative: A semiotic perspective on the conviviality/non-
conviviality dichotomy in storytelling about the german other. Trans, Internet
journal for cultural sciences 1(15) (2004)

31. Taylor, M.: Oh no it isn’t: Audience participation and community identity. Trans,
Internet journal for cultural sciences 1(15) (2004)

32. Wooldridge, M.: An introduction to multi-agent systems. J. Artificial Societies and
Social Simulation 7(3), 16–23 (2004)

33. Pelachaud, C.: Multimodal expressive embodied conversational agents. In: ACM
Multimedia, pp. 683–689 (2005)

34. Cassell, J.: Embodied conversational interface agents. Commun. ACM 43(4), 70–78
(2000)

35. Sadek, M.D., Bretier, P., Panaget, E.: ARTIMIS: Natural dialogue meets rational
agency. In: International Joint Conferences on Artificial Intelligence, vol. 2, pp.
1030–1035 (1997)

36. Ochs, M., Niewiadomski, R., Pelachaud, C., Sadek, D.: Intelligent expressions of
emotions. In: Affective Computing and Intelligent Interaction, pp. 707–714 (2005)

37. Gomes, E.R., Boff, E., Vicari, R.M.: Social, affective and pedagogical agents for the
recommendation of student tutors. In: Proceedings of Intelligent Tutoring Systems
(2004)

38. Heylen, D., Nijholt, A., op den Akker, R., Vissers, M.: Intelligent expressions of
emotions. In: Affective Computing and Intelligent Interaction, pp. 707–714 (2005)

39. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

40. Boella, G., van der Torre, L.W.N.: Normative multiagent systems and trust dynam-
ics. In: Falcone, R., Barber, S., Sabater-Mir, J., Singh, M.P. (eds.) Trusting Agents
for Trusting Electronic Societies. LNCS (LNAI), vol. 3577, pp. 1–17. Springer,
Heidelberg (2005)

41. Casare, S., Sichman, J.: Towards a functional ontology of reputation. In: AA-
MAS 2005: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pp. 505–511. ACM Press, New York (2005)

42. Erickson, T., Kellogg, W.A.: Social translucence: an approach to designing systems
that support social processes. ACM Trans. Comput.-Hum. Interact. 7(1), 59–83
(2000)

43. ter Hofte, G.H., Mulder, I., Verwijs, C.: Close encounters of the virtual kind: A
study on place-based presence. AI Soc. 20(2), 151–168 (2006)

44. Hechter, M., Opp, K.D.: Social Norms. Russell Sage Foundation, Thousand Oaks
(2001)

45. Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press (1995)

260 P. Caire

46. Ros, R., Veloso, M.M., de Mántaras, R.L., Sierra, C., Arcos, J.L.: Beyond indi-
vidualism: Modeling team playing behavior in robot soccer through case-based
reasoning. In: AAAI, pp. 1671–1674. AAAI Press, Menlo Park (2007)

47. Castelfranchi, C.: The micro-macro constitution of power. Protosociology 18, 208–
269 (2003)

48. de Pinninck, A.P., Sierra, C., Schorlemmer, M.: Distributed Norm Enforcement
Via Ostracism. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN
2007. LNCS(LNAI), vol. 4870, pp. 301–315. Springer, Heidelberg (2008)

On the Multimodal Logic

of Normative Systems

Pilar Dellunde

Universitat Autònoma de Barcelona and
Artificial Intelligence Research Institute (IIIA-CSIC)

Campus UAB, 08193-Cerdanyola del Valles, Catalonia, Spain
pilar.dellunde@uab.cat

Abstract. We introduce Multimodal Logics of Normative Systems as
a contribution to the development of a general logical framework for
reasoning about normative systems over logics for Multi-Agent Systems.
Given a multimodal logic L, for every modality �i and normative system
η, we expand the language adding a new modality �

η
i with the intended

meaning of �
η
i φ being “φ is obligatory in the context of the normative

system η over the logic L”. In this expanded language we define the
Multimodal Logic of Normative Systems over L, for any given set of nor-
mative systems N , and we give a sound and complete axiomatisation for
this logic, proving transfer and model checking results. The special case
when L and N are axiomatised by sets of Sahlqvist or shallow modal
formulas is studied.

Keywords: Fusions of Logics, Multimodal Logics, Normative Systems,
Multi-Agent Systems, Model Theory, Sahlqvist Formulas.

1 Introduction

Recent research on the logical foundations of Multi-Agent Systems (MAS) has
centered its attention in the study of normative systems. The notion of electronic
institution is a natural extension of human institutions by permitting not only
humans but also autonomous agents to interact with one another. Institutions
are used to regulate interactions where participants establish commitments and
to facilitate that these commitments are upheld, the institutional conventions
are devised so that those commitments can be established and fulfilled (see [1] for
a general reference of the role of electronic institutions to regulate agents inter-
actions in MAS). Over the past decade, normative systems have been promoted
for the coordination of MAS and the engineering of societies of self-interested
autonomous software agents. In this context there is an increasing need to find
a general logical framework for the study of normative systems over the logics
for MAS.

Given a set of states S and a binary accessibility relation R on S, a normative
system η on the structure (S, R) could be understood as a set of constraints
η ⊆ R on the transitions between states, the intended meaning of (x, y) ∈ η

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 261–274, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

262 P. Dellunde

being “the transition from state x to state y is not legal according to normative
system η”. Several formalisms have been introduced for reasoning about nor-
mative systems over specific logics. Two examples are worth noting: Normative
ATL (NATL), proposed in [2] and Temporal Logic of Normative Systems (NTL)
in [3]. NATL is an extension to the Alternating-Time Temporal Logic and con-
tains cooperation modalities of the form << η : C >> φ with the intended
interpretation that “C has the ability to achieve φ within the context of the nor-
mative system η”. NTL is a conservative generalization of the Branching-Time
Temporal Logic CTL. In NTL, the path quantifiers A (“on all paths...”) and
E (“on some path...”) are replaced by the indexed deontic operators Oη (“it
is obligatory in the context of the normative system η that..”) and Pη (“it is
permissible in the context of the normative system η that...”).

The Multimodal Logic of Normative Systems introduced in this article is a
contribution to define a general logical framework for reasoning about normative
systems over logics for MAS. For this purpose we generalize to arbitrary logics
the approaches taken in [2] and [3]. At the moment, we are far from obtaining a
unique formalism which addresses all the features of MAS at the same time, but
the emerging field of combining logics is a very active area and has proved to be
successful in obtaining formalisms which combine good properties of the existing
logics. In our approach, we regard the Logic of Normative Systems over a given
logic L, as being the fusion of logics obtained from L and a set of normative
systems over L. This model-theoretical construction will help us to understand
better which properties are preserved under combinations of logics over which
we have imposed some restrictions and to apply known transfer results (for a
general account on the combination of logics, we refer to [4] and [5], and as a
general reference on multimodal logic, to [6]). There are some advantages of us-
ing these logics for reasoning about MAS: it is possible to compare whether a
normative system is more restrictive than the other, check if a certain property
holds in a model of a logic once a normative system has restricted its accessibil-
ity relation, model the dynamics of normative systems in institutional settings,
define a hierarchy of normative systems (and, by extension, a classification of
the institutions) or present a logical-based reasoning model for the agents to
negotiate over norms.

This paper is structured as follows. In Section 2 we present an example in
order to motivate the introduction of the general framework. In Section 3 we
give a sound and complete axiomatisation for the Multimodal Logic of Normative
Systems, proving transfer results and we address a complexity issue for model
checking. In Section 4 we restrict our attention to logics with normative systems
that define elementary classes of modal frames. We have called them Elementary
Normative Systems (ENS) and we prove completeness and canonicity results for
them. Elementary classes include a wide range of formalisms used in describing
MAS, modelling different aspects of agenthood, some temporal logics, logics of
knowledge and belief, logics of communication, etc. Finally, in Section 5 we come
back to our first example in Section 2, showing how our framework can be applied
to multiprocess temporal structures, Section 6 is devoted to future work.

On the Multimodal Logic of Normative Systems 263

2 Multiprocess Temporal Frames and Normative Systems

In a multi-agent institutional environment, in order to allow agents to success-
fully interact with other agents, they share the dialogic framework. The expres-
sions of the communication language in a dialogic framework are constructed as
formulas of the type ι(αi : ρi, αj : ρj , φ, τ), where ι is an illocutionary particle,
αi and αj are agent terms, ρi and ρj are role terms and τ is a time term. An
scene is specified by a graph where the nodes of the graph represent the different
states of the conversation and the arcs connecting the nodes are labelled with
illocution schemes.

Several formalisms for modelling interscene exchanges between agents have
been introduced using multimodal logics. For instance, in [7] the authors provide
an alternating offers protocol to specify commitments that agents make to each
other when engaging in persuasive negotiations using rewards. Specifically, the
protocol details, how commitments arise or get retracted as a result of agents
promising rewards or making offers. The protocol also standardises what an
agent is allowed to say or what it can expect to receive from its opponent. The
multimodal logic presented in [7] introduces modalities �φ for expressions φ of
the communication language.

More formally, given a finite set of propositional atomic formulas, we could
define the set of formulas of such a multimodal communication language in the
following way:

φ ::= p |� |⊥ | ¬α | α ∧ α | �φ1α | . . . | �φk
α

where p is an atomic propositional formula, α is a propositional formula and
φ1, . . . , φk are formulas of the communication language.

The standard Kripke semantics of these logics can be given by means of mul-
tiprocess temporal frames. We say that Ξ = (S, Rφ0 , . . . , Rφk

) is a multiprocess
temporal frame if and only if S is a set of states and for every i ≤ k, Rφi is a
binary relation on S such that R =

⋃
i≤k Rφi is a serial relation (that is, for

every s ∈ S there is t ∈ S such that (s, t) ∈ R). A multiprocess temporal model
is a Kripke model with a multiprocess temporal frame.

Let M be a multiprocess temporal model and w ∈ M , the satisfiability relation
for the modalities �φi is defined as usual:

M, w |= �φiα iff for all w′ ∈ M such that wRφi w
′

M, w′ |= α

Some examples of the protocols introduced in [7] can be formalised by formulas
of the following form: �φ1 . . .�φl

⊥. For instance, with the formula

�Offer(i,x)�Offer(i,y)⊥

with x �= y, we can express that it is not allowed to agent i to do two differ-
ent offers one immediately after the other. Let us see now how formulas like
�φ1 . . . �φl

⊥ can be understood as sets of constraints on the transitions between

264 P. Dellunde

states. Given a multiprocess temporal frame Ξ = (S, Rφ0 , . . . , Rφk
), consider the

following set of finite sequences of elements of S:

ΔΞ = {(a0, . . . , am) : ∀j < m, ∃i ≤ k such that ajRφiaj+1}

Then, a normative system η on the frame Ξ could be defined as a subset of ΔΞ .
Intuitively speaking, a sequence (a0, . . . , am) ∈ η if and only if this sequence
of transitions is not legal according to normative system η. In our previous
example, given a frame, the formula �Offer(i,x)�Offer(i,y)⊥, can be regarded as
the following normative system (that is, the following set of finite sequences of
the frame):

{
(a0, a1, a2) : such that a0ROffer(i,x)a1 and a1ROffer(i,x)a2

}
Thus, any model satisfying the protocol introduced by �Offer(i,x)�Offer(i,y)⊥
can not include such sequences.

When defining an scene in an electronic institution we could be interested in
comparing different protocols in order to show which of them satisfy some desired
properties. In order to do so we could extend our multimodal language with
additional modalities �

η
φi

, one for each normative system we want to consider.
Next section is devoted to the study of the logical properties of these languages
and later on, we will come back to our example applying this general framework.

3 Multimodal Logics of Normative Systems

We introduce first some notation and basic facts about multimodal languages.
A finite modal similarity type τ = 〈F, ρ〉 consists of a finite set F of modal
operators and a map ρ : F → ω assigning to each f ∈ F a finite arity ρ(f) ∈ ω.
Finite propositional modal languages of type τ are defined in the usual way by
using finitely many propositional variables, the operators in F and the boolean
connectives ∧, ∨, ¬, →, ↔, �, ⊥. For monadic modalities we use the usual nota-
tion �f .

A modal finitary structural consequence relation � of similarity type τ is a
relation between sets of formulas and formulas of the finite propositional modal
language of type τ satisfying:

– φ ∈ Γ ⇒ Γ � φ
– If Γ ⊆ Δ and Γ � φ, then Δ � φ
– If Γ � Δ and Δ � φ, then Γ � φ
– Γ � φ ⇒ sΓ � sφ, for all substitutions s
– If Γ � φ, then there exist a finite subset Γ0 of Γ with Γ0 � φ
– � φ, for every classical tautology φ
– p, p → q � q
– For every f ∈ F ,

p0 ↔ q0, . . . , pρ(f) ↔ qρ(f) � f(p0, . . . , pρ(f)) ↔ f(q0, . . . , qρ(f))

On the Multimodal Logic of Normative Systems 265

For a general account on consequence relations we refer to [8] say that a subset
Λ of modal formulas is a classical modal logic of similarity type τ iff there exists
a modal finitary structural consequence relation � of similarity type τ such that
Λ = Λ(�), where Λ(�) = {φ : ∅ � φ}. It is said that that Λ is consistent if ⊥ /∈ Λ.

Given a type τ = 〈F, ρ〉, a Kripke frame of type τ is an structure (S, Rf)f∈F ,
where S is nonempty and for every f ∈ F , Rf is a binary relation on S.

Definition 1. A normative system over a Kripke frame (S, Rf)f∈F is a subset
of the following set of finite sequences of S:

{(a0, . . . , am) : ∀j < m, ∃f ∈ F such that ajRfaj+1}

Observe that Definition 1 extends to the multimodal setting the definition of
normative system introduced in Section 2 of [3]. Examples of classical modal
logics with semantics based on Kripke frames are Propositional Dynamic Logic
(PDL), Alternating-Time Temporal Logic (ATL) and Computational Tree Logic
(CTL), but CTL*, the Full Computational Tree Logic is not a classical modal
logic because it is not closed under uniform substitution.

Now we introduce in the language a new finite set of symbols N to denote
normative systems. Given a finite propositional modal language of type τ =
〈F, ρ〉, for every normative system η ∈ N , let τη be the type whose modalities are
{fη : f ∈ F} and τN =

⋃
η∈N τη. For every set of formulas Γ , let us denote by Γ η

the set of formulas of type τη obtained from Γ by substituting every occurrence
of the modality f by fη. The monadic operators �f are defined in the usual way
as abbreviations �fφ ≡ ¬�f¬φ and we have also the corresponding �

η
f .

Given a classical modal logic L with semantics based on Kripke frames, we
define the Multimodal Logic of Normative Systems over L, denoted by LN , as
being the smallest classical modal logic in the expanded language τN which
contains L and Lη, for every η ∈ N .

Theorem 2. Let L be a consistent classical modal logic axiomatised by a set Γ
of formulas. Then,

1. Γ N = Γ ∪
⋃

{Γ η : η ∈ N} is an axiomatisation of LN .
2. LN is a conservative extension of L.
3. If L is a decidable logic, then LN is decidable.

Proof. Since we have introduced a finite set of disjoint similarity types

{τη : η ∈ N}

we can define the fusion
⊕

< Lη : η ∈ N > of disjoint copies of the logic L.
Observe that, so defined, LN =

⊕
< Lη : η ∈ N > and Γ N is an axiomatisation

of LN . Then, by an early result of Thomason [9], LN is a conservative extension
of L. Finally we can apply Theorem 6.11 of [10], to obtain the corresponding
transfer result.

In [11] a weak notion of normality is introduced to prove some additional transfer
results for the fusion of logics. Let us assume that our classical modal logics
satisfy the two conditions of Definition 2.5 of [11]:

266 P. Dellunde

1. For every f ∈ F , the semantics of f(p0, . . . , pρ(f)) is a monadic first-order
formula.

2. For each Rf , there is a derived connective �f such that the formula �fp
expresses ∀x(yRfx → Px) and is closed under the necessitation rule: If
φ ∈ Λ, then �fφ ∈ Λ.

This second condition corresponds to the notion of normality, but it is weaker
than the usual normality requirement. Observe that the operators U and S (until
and since) of Temporal Logic are only normal in the first position and not in
the second. However, they satisfy conditions 1. and 2., the binary ordering <
can be associated with U and the binary ordering > can be associated with S,
thus condition 1. is satisfied. The monadic modalities H and G are derivable
connectives, that satisfy the requirement of condition 2.

Following the lines of the proof of Theorem 2, by using Theorems 3.6 and 3.10
of [11], we can obtain the following transfer theorem:

Theorem 3. Let L be a consistent classical modal logic axiomatised by a set
Γ of formulas and such that satisfies conditions 1. and 2. above. Then, If L is
complete and sound over the class of frames C, then LN is also complete and
sound over the class of frames

⊕
< Cη : η ∈ N >.

As an application of Theorems 2 and 3 we obtain that the Multimodal Logic of
Normative Systems over the logics CTL and PDL, has a sound and complete
axiomatisation, is decidable and has the Finite Model Property, because CTL
and PDL are decidable and complete over the class of finite frames.

We end this section by introducing a model checking result. Given a frame
Ξ = (S, Rf)f∈F , we say that a subset of S is connected if for every s, t ∈ S,

(s, t) ∈ (
⋃ {

(Rf ∪ R−1
f : f ∈ F

}
)∗, where for any relation R, R∗ denotes the

transitive closure of R. We say that the frame Ξ is connected if its domain S
is a connected set. Observe that, for every classical modal logic L that satisfies
conditions 1. and 2. stated above and it is complete with respect to a class of
connected frames, by Theorem 3, the Multimodal Logic of Normative Systems
over L is also complete with respect to a class of connected frames.

Theorem 4. Let L be a classical modal logic in a finite similarity type τ = 〈F, ρ〉
and let (S, Rη

f)f∈F,η∈N be a finite model of the Multimodal Logic of Normative
Systems over L such that the restriction of the model (S, Rη

f)f∈F,η∈N to the
similarity type τη is connected. Then, the complexity of model checking a formula
φ of type τN is

O(
∑

η∈N mη + n · k) +
∑

η∈N ((O(k) + O(n)) · CL(mη, n, k))

where mη =
∑

f∈F

∣∣∣Rη
f

∣∣∣, n= |S|, k is the length of the formula φ and CL(mη, n, k)
is the complexity of model checking for logic L as a function of mη, n and k.

Proof. By Theorem 2, LN is a conservative extension of L and for every η ∈ N
the restriction of the model (S, Rη

f)f∈F,η∈N to the similarity type τη is a model

On the Multimodal Logic of Normative Systems 267

of L and is connected by assumption. This fact allows us to generalize the result
on temporal logics of Theorem 5.2 of [12]. We can express the complexity of a
combined model checker for LN in terms of a model checker for L.

For example, in the case of the Multimodal Logic of Normative Systems over
CTL, the overall cost of the model checker for this logic is linear in the size of
the model and in the length of the formula.

4 Elementary Normative Systems

There are some advantages of using Multimodal Logics of Normative Systems
for reasoning about MAS: it is possible to compare whether a normative system
is more restrictive than the other, check if a certain property holds in a model
of a logic once a normative system has restricted its accessibility relation, model
the dynamics of normative systems in institutional settings, define a hierarchy
of normative systems (and, by extension, a classification of the institutions) or
present a logical-based reasoning model for the agents to negotiate over norms.
Up to this moment we have introduced an extensional definition of normative
system (see Definition 1), in this section we present our first attempt to classify
normative systems, we restrict our attention to normative systems defined by
certain sets of first-order formulas, but only over some class of normal multimodal
logics with standard Kripke semantics.

The choice of Sahlqvist formulas in this section is due, on the one hand, to the
fact that a wide range of formalisms for MAS can be axiomatised by a set of such
formulas (see next section). On the other hand, for the good logical properties
of these logics (canonicity, transfer results, etc.). In Section 3 we have presented
a general setting for dealing with any classical modal logic. Now, we focus only
on some particular kind of logics. We want to study the specific properties of
their normative systems that can be proved by using only the fact that these
logics are axiomatised by sets of Sahlqvist formulas.

Given a set of modal formulas Σ, the frame class defined by Σ is the class
of all frames on which each formula in Σ is valid. A frame class is modally
definable if there is a set of modal formulas that defines it, and it is said that the
frame class is elementary if it is defined by a first-order sentence of the frame
correspondence language (the first-order language with equality and one binary
relation symbol for each modality). An Elementary Normative System (ENS) is
a propositional modal formula that defines an elementary class of frames and a
normative system in any frame.

Throughout this and next section we assume that our modal languages have
standard Kripke semantics and their modal similarity types have only a finite set
of monadic modalities {�f : f ∈ F} and a finite set of propositional variables.
Given a classical modal logic L and a set of Elementary Normative Systems N
over L, for every η ∈ N we generalize the notion introduced in Section 3 by
defining the Multimodal Logic of Normative Systems over L and N , denoted by
LN , as being the smallest normal logic in the expanded language which contains
L, N and every Lη. We now present a sound and complete axiomatisation and

268 P. Dellunde

prove some transfer results in the case that L is axiomatised by a set of Sahlqvist
formulas and N is a set of Sahlqvist formulas. We denote by L(η) the smallest
normal logic of similarity type τη which includes Lη ∪ {η}.

Definition 5 (Sahlqvist formulas). A modal formula is positive (negative)
if every occurrence of a proposition letter is under the scope of an even (odd)
number of negation signs. A Sahlqvist antecedent is a formula built up from �, ⊥,
boxed atoms of the form �i1 . . . �il

p, for ij ∈ I and negative formulas, using
conjunction, disjunction and diamonds. A Sahlqvist implication is a formula of
the form φ → ϕ, when φ is a Sahlqvist antecedent and ϕ is positive. A Sahlqvist
formula is a formula that is obtained from Sahlqvist implications by applying
boxes and conjunction, and by applying disjunctions between formulas that do
not share any propositional letters.

Observe that ⊥ and � are both Sahlqvist and ENS formulas. Intuitively speak-
ing, ⊥ is the trivial normative system. In ⊥ every transition is forbidden in every
state and in � every transition is legal. In the sequel we assume that for every
set N of ENS, � ∈ N .

Theorem 6. Let L be a classical normal modal logic axiomatised by a set Γ of
Sahlqvist formulas and N a set of ENS Sahlqvist formulas, then:

1. Γ N = Γ ∪ N ∪
⋃

{Γ η : η ∈ N} is an axiomatisation of LN .
2. LN is complete for the class of Kripke frames defined by Γ N .
3. LN is canonical.
4. If L and Lη are consistent, for every η ∈ N , and P is one of the following

properties:
– Compactness
– Interpolation Property
– Halldén-completeness
– Decidability
– Finite Model Property1

then LN has P iff L and L(η) have P, for every η ∈ N .

Proof. 1–3 follows directly from the Sahlqvist’s Theorem. The main basic idea
of the proof of 4 is to apply the Sahlqvist’s Theorem to show first that for every
η ∈ N , the smallest normal logic of similarity type τη which includes Γ η ∪{η} is
L(η), is a complete logic for the class of Kripke frames defined by Γ η ∪{η} and is
canonical (observe that this logic is axiomatised by a set of Sahlqvist formulas).
Now, since for every Elementary Normative System η ∈ N we have introduced
a disjoint modal similarity type τη, we can define the fusion of the logics

⊕
<

L(η) : η ∈ N >. It is enough to check that LN =
⊕

< L(η) : η ∈ N >
(remark that L� = L) and using transfer results for fusions of consistent logics
(see for instance [13] and [11]) we obtain that LN is a conservative extension
and that decidability, compactness, interpolation, Hállden-completeness and the
Finite Model Property are preserved.
1 For the transfer of the Finite Model Property it is required that there is a number

n such that each L(η) has a model of size at most n.

On the Multimodal Logic of Normative Systems 269

We study now the relationships between normative systems. It is interesting to
see how the structure of the set of all the ENS over a logic L (we denote it by
N(L)) inherits its properties from the set of first-order counterparts. A natural
relationship could be defined between ENS, the relationship of being one less
restrictive than another. Let us denote it by �. Given η, η′, it is said that η � η′

iff the first-order formula φη′ → φη is valid (when for every η ∈ N , φη is the
translation of η). The relation � defines a partial order on N(L) and the pair
(N(L), �) forms a complete lattice with least upper bound ⊥ and greatest lower
bound � and the operations ∧ and ∨.

Now we present an extension of the Logic of Elementary Normative Systems
over a logic L with some inclusion axioms and we prove completeness and canon-
icity results. Given a set N of ENS, let IN+

be the following set of formulas:
{
�i1 . . . �il

p → �
η
i1

. . .�η
il
p : ij ∈ I, η ∈ N

}

and IN∗
the set:{

�
η′

i1
. . . �η′

il
p → �

η
i1

. . .�η
il
p : ij ∈ I, η � η′, η, η′ ∈ N

}

Corollary 7. Let L be a normal modal logic axiomatised by a set Γ of Sahlqvist
formulas and N a set of ENS Sahlqvist formulas, then:

1. Γ N+
= Γ N ∪ IN+

is an axiomatisation of the smallest normal logic with
contains LN and the axioms IN+

, is complete for the class of the Kripke
frames defined by Γ N+

and is canonical. We denote this logic by LN+
.

2. Γ N∗
= Γ N ∪ IN∗ ∪ IN+

is an axiomatisation of the smallest normal logic
with contains LN and the axioms IN∗ ∪ IN+

, is complete for the class of
the Kripke frames defined by Γ N∗

and is canonical. We denote this logic by
LN∗

.
3. If LN is consistent, both LN+

and LN∗
are consistent.

Proof. Since for every ij ∈ I every η, η′ ∈ N , the formulas �i1 . . . �il
p →

�
η
i1

. . .�η
il
p and �

η′

i1
. . . �η′

il
p → �

η
i1

. . .�η
il
p are Sahlqvist, we can apply Theorem

6. In the case that LN is consistent, consistency is guaranteed by the restriction
to pairs η � η′ and for the fact that η and η′ are ENS.

Observe that for every frame (S, Rf , Rη
f)f∈F,η∈N of the logic LN∗

,

Rη
i1

◦ . . . ◦ Rη
il

⊆ Ri0 ◦ . . . ◦ Ril
,

and for η � η′, Rη
i1

◦ . . .◦Rη
il

⊆ Rη′

i1
◦ . . .◦Rη′

i1
, where ◦ is the composition relation.

We end this section introducing a new class of modal formulas defining el-
ementary classes of frames, the shallow formulas. For a recent account of the
model theory of elementary classes and shallow formulas we refer the reader
to [14].

Definition 8. A modal formula is shallow if every occurrence of a proposition
letter is in the scope of at most one modal operator.

270 P. Dellunde

It is easy to see that every closed formula is shallow and that the class of Sahlqvist
and shallow formulas don’t coincide: �1(p ∨ q) → �2(p ∧ q) is an example of
shallow formula that is not Sahlqvist. Analogous results to Theorem 6 and
Corollary 7 hold for shallow formulas, and using the fact that every frame
class defined by a finite set of shallow formulas admits polynomial filtration, by
Theorem 2.6.8 of [14], if L is a normal modal logic axiomatised by a finite set
Γ of shallow formulas and N is a finite set of ENS shallow formulas, then the
frame class defined by Γ N has the Finite Model Property and has a satisfiability
problem that can be solved in NEXPTIME.

5 Some Examples

Different formalisms have been introduced in the last twenty years in order to
model particular aspects of agenthood (temporal Logics, logics of knowledge
and belief, logics of communication, etc). We show in this section that several
logics proposed for describing Multi-Agents Systems are axiomatised by a set of
Sahlqvist or shallow formulas and therefore we could apply our results to the
study of their normative systems. Let us come back to our previous example of
Section 2, the multiprocess temporal frames. We have introduced first this basic
temporal logic of transition systems, not because it is specially interesting in
itself, but because it is the logic upon which other temporal logics are built and
because it is a clear and simple example of how our framework can work.

Remember that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal frame if and
only if S is a set of states, for every i ≤ k, Ri is a binary relation on S such that
R =

⋃
i≤k Ri is a serial relation (that is, for every s ∈ S there is t ∈ S such that

(s, t) ∈ R). It is easy to see that Ξ = (S, R0, . . . , Rk) is a multiprocess temporal
frame if and only if the formula of the corresponding multimodal language

�0� ∨ . . . ∨ �k� (MPT)

is valid in Ξ. Let us denote by MPTL the smallest normal logic containing
axiom (MPT). For every nonempty tuple (i1, . . . , il) such that for every j ≤ l,
ij ≤ k, consider the formula �i1 . . . �il

⊥. Observe that every formula of this form
is shallow and ENS. We state now without proof a result on the consistency of
this kind of normative systems over MPTL that will allow us to use the logical
framework introduced in the previous section.

Proposition 9. Let N be a finite set of normative systems such that for every
η ∈ N , there is a finite set X of formulas of the form �i1 . . .�il

⊥ such that η is
the conjunction of all the formulas in X, ⊥ /∈ X and the following property holds:

If �i1 . . . �il
⊥ /∈ X, there is j ≤ k such that �i1 . . .�il

�j⊥ /∈ X.

Then, the logic MPTLN is consistent, complete, canonical, has the Finite Model
Property and has a satisfiability problem that can be solved in NEXPTIME.

On the Multimodal Logic of Normative Systems 271

In general, a normal multimodal logic can be characterized by axioms that are
added to the system Km. The class of Basic Serial Multimodal Logics is char-
acterized by subsets of axioms of the following form, requiring that AD(i) holds
for every i,

– �ip → �ip AD(i)
– �ip → p AT(i)
– �ip → �jp AI(i)
– p → �i�jp AB(i,j)
– �ip → �j�kp A4(i,j,k)
– �ip → �j�kp A5(i,j,k)

An example of a Kripke frame of MPTL in which none of the previous ax-
ioms is valid is Ξ = ({0, 1, 2}, {(0, 1), (2, 0)}, {(1, 2)}). In particular, our exam-
ple shows that the Multimodal Serial Logic axiomatised by {AD(i) : i ≤ k}, is
a proper extension of MPTL. Observe that any logic in the class BSML is ax-
iomatised by a set of Sahlqvist formulas, therefore we could apply the framework
introduced before to compare elementary normative systems on these logics.

Another type of logic axiomatised by Sahlqvist formulas are many Multimodal
Epistemic Logics. Properties such as positive or negative introspection can be
expressed by �ip → �i�kp and ¬�ip → �i¬�ip respectively. And formulas like
�ip → �jp allow us to reason about multi-degree belief.

The Minimal Temporal Logic Kt is axiomatised by the axioms p → HFp and
p → GPp which are also Sahlqvist formulas. Some important axioms such as
linearity Ap → GHp ∧HGp, or density GGp → Gp, are Sahlqvist formulas, and
we can express the property that the time has a beginning with an ENS. By
adding the nexttime modality, X , we have an ENS which expresses that every
instant has at most one immediate successor.

6 Related and Future Work

Along this work, in Sections 4 and 5, we have dealt only with multimodal
languages with monadic modalities, but by using the results of Goranko and
Vakarelov in [15] on the extension of the class of Sahlqvist formulas in arbitrary
polyadic modal languages to the class of inductive formulas, it would be possible
to generalize our results to polyadic languages.

We will proceed to apply our results to different extended modal languages,
such as reversive languages with nominals (in [15], the elementary canonical
formulas in these languages are characterized) or Hybrid Logic (in [14], Hybrid
Sahlqvist formulas are proved to define elementary classes of frames). Future
work should go beyond Elementary Normative Systems and consider the study
of sets of normative systems expressed by other formal systems.

Several formalisms have been introduced for reasoning about normative sys-
tems over specific logics. Two examples are worth noting: Normative ATL
(NATL), proposed in [2] and Temporal Logic of Normative Systems (NTL) in
[3]. NATL is an extension to the Alternating-Time Temporal Logic and con-
tains cooperation modalities of the form << η : C >> φ with the intended

272 P. Dellunde

interpretation that “C has the ability to achieve φ within the context of the nor-
mative system η”. NTL is a conservative generalization of the Branching-Time
Temporal Logic CTL. In NTL, the path quantifiers A (“on all paths...”) and
E (“on some path...”) are replaced by the indexed deontic operators Oη (“it
is obligatory in the context of the normative system η that..”) and Pη (“it is
permissible in the context of the normative system η that...”). In our article we
have extended these approaches to deal with arbitrary multimodal logics with
standard Kripke semantics. Our definition of normative system is intensional,
but the languages introduced permit to work with extensional definitions like
the ones in [3] and [2].

Apart from these two articles, there are other previous works where we found
intuitions and formalisations that motivated the introduction of our framework.
Moses, Shoham, and Tennenholtz in [17]-[19] defined the notion of social laws for
multiagent systems. They set up a basic formal framework within which com-
putational questions about social laws could be formulated. These ideas were
developed by Fitoussi and Tennenholtz, considering simple social laws, social
laws that could not be any simpler without failing, see [20]. Moses and Tennen-
holtz developed in [16] a deontic epistemic logic for representing properties of
multiagent systems with normative structures. Their logic did contain notions of
socially reachable states of affairs, which essentially corresponds to our norma-
tive system operators. Lomuscio and Sergot introduced in [21] deontic interpreted
systems. The basic idea was to interpret the deontic accessibility relation as link-
ing states where the system is correctly functioning. They gave an axiomatization
of their logic, and also investigated the epistemic properties of their system.

6.1 Related Papers in This Volume

The paper by Viganò and Colombetti in [22] enrich the modelling language
FIEVel for institutions, with new constructs to describe norms and sanctions.
This is a similar approach to ours, since they introduce also model checking
results and their logic is an extension of Normative Temporal Logic. The article
also focusses on the study of properties of artificial institutions, showing that
when they reflect certain interpretations of norms of human institutions, it is
not always possible to satisfy them.

Cliffe, De Vos and Padget propose in [23] a formalism capable to specify and
reason about multiple interacting institutions. In the paper they explore the
consequences of the correspondence between landmarks and the institutional
states of their executable model. The essence of the landmark definition is a
condition on a state in order for an action in some protocol to have effect.

The paper by Garćıa-Camino, Rodŕıguez-Aguilar and Vasconcelos introduces
in [24] a distributed architecture and non-centralised computational model for
norms. This is an interesting contribution dealing with MAS normative conflicts
that may arise due to the dynamic nature of MAS. The notion of MAS, regulated
by protocols, is extended with an extra layer called normative structure. AMELI
is extended including a new type of agent, the normative managers. This artifact
allows the propagation of normative positions as a consequence of agents’ actions.

On the Multimodal Logic of Normative Systems 273

An innovative approach to the dynamics of normative systems is the formali-
sation of Thagard’s Coherence Theory in [25]. In their paper, Joseph, Sierra and
Schorlemmer introduce an agent model based on coherence theory, the reasoning
process of the intentional agent permits the agent to drop beliefs or to violate
norms in order to keep a maximal state of coherence.

Acknowledgements. The author wishes to express her thanks to Carles Sierra,
Pablo Noriega and the reviewers of this paper for their helpful comments. Re-
search partially supported by the Spanish projects “Agreement Technologies”
(CONSOLIDER CSD2007-0022, INGENIO 2010) and Project TIN2006-15662-
C02-01.

References

1. Noriega, P.: Fencing the Open Fields: Empirical Concerns on Electronic Institu-
tions. In: Boissier, O., Padget, J.A., Dignum, V., Lindemann, G., Matson, E.,
Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) ANIREM 2005 and OOOP
2005. LNCS (LNAI), vol. 3913, pp. 82–98. Springer, Heidelberg (2006)

2. van der Hoek, W., Wooldridge, M.: On obligations and normative ability: towards
a logical analysis of the social contract. Journal of Applied Logic 3, 396–420 (2005)

3. Ågotnes, T., van der Hoek, W., Rodŕıguez-Aguilar, J.A., Sierra, C., Wooldridge,
M.: On the Logic of Normative Systems. Twentieth International Joint Conference
on AI, IJCAI 2007, pp. 1175–1180. AAAI Press, Menlo Park (2007)

4. Gabbay, D.M.: Fibring Logics. Oxford Logic Guides, 38 (1999)
5. Kurucz, A.: Combining Modal Logics. In: Blackburn, P., van Benthem, J., Wolter,

F. (eds.) Handbook of Modal Logic, vol. 15, pp. 869–928. Elsevier, Amsterdam
(2007)

6. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic, vol. 15.
Elsevier, Amsterdam (2007)

7. Ramchurn, S.D., Sierra, C., Godo, L., Jennings, N.R.: Negotiating using rewards.
In: Proceedings of the Fifth international Joint Conference on Autonomous Agents
and Multiagent Systems. AAMAS 2006, Hakodate, Japan, May 08–12, 2006, pp.
400–407. ACM Press, New York (2006)

8. Gabbay, D.M.: What is a Logical System? Oxford University Press, Inc, Oxford
(1994)

9. Thomason, S.K.: Independent Propositional Modal Logics. Studia Logica 39, 143–
144 (1980)

10. Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word
problem that generalizes fusion decidability results in modal logics. Information
and Computation 204, 1413–1452 (2006)

11. Finger, M., Weiss, M.A.: The Unrestricted Combination of Temporal Logic Sys-
tems. Logic Journal of the IGPL 10, 165–189 (2002)

12. Franceschet, M., Montanari, A., de Rijke, M.: Model Checking for Combined Logics
with an Application to Mobile Systems. Automated Software Engineering 11, 289–
321 (2004)

13. Wolter, F.: Fusions of modal logics revisited. In: Kracht, M., de Rijke, M., Wansing,
H., Zakharyashev, M. (eds.) Advances in Modal Logic, CSLI, Stanford (1998)

274 P. Dellunde

14. Cate, B.D.T.: Model Theory for extended modal languages. Ph.D Thesis, Insti-
tute for Logic, Language and Computation, Universiteit van Amsterdam. ILLC
Dissertation, Series DS-2005-01 (2005)

15. Goranko, V., Vakarelov, D.: Elementary Canonical Formulae: extending Sahlqvist’s
Theorem. Annals of Pure and Applied Logic 141, 180–217 (2006)

16. Moses, Y., Tennenholtz, M.: Artificial social systems. Computers and AI 14, 533–
562 (1995)

17. Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial
agent societies. In: Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI 1992), San Diego, CA (1992)

18. Shoham, Y., Tennenholtz, M.: On social laws for artificial agent societies: Off-
line design. In: Agre, P.E., Rosenschein, S.J. (eds.) Computational Theories of
Interaction and Agency, pp. 597–618. MIT Press, Cambridge (1996)

19. Shoham, Y., Tennenholtz, M.: On the emergence of social conventions: Modelling,
analysis, and simulations. Artificial Intelligence 94(1–2), 139–166 (1997)

20. Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: Min-
imality and simplicity. Artificial Intelligence 119(1–2), 61–101 (2000)

21. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75(1), 63–92
(2003)

22. Viganò, F., Colombetti, M.: Model Checking Norms and Sanctions in Institutions.
In: Sichman, J.S., et al. (eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870,
pp. 261–274. Springer, Heidelberg (2008)

23. Cliffe, O., De Vos, M., Padget, J.: Embedding Landmarks and Scenes in a Computa-
tional Model of Institutions. In: Sichman, J.S., et al. (eds.) COIN 2007 Workshops.
LNCS (LNAI), vol. 4870, pp. 262–275. Springer, Heidelberg (2008)

24. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Vasconcelos, W.: A Distributed Ar-
chitecture for Norm Management in Multi-Agent Systems. In: Sichman, J.S.,
Padget, J., Ossowski, S., Noriega, P. (eds.) COIN 2007. LNCS(LNAI), vol. 4870,
pp. 275–286. Springer, Heidelberg (2008)

25. Joseph, S., Sierra, C., Schorlemmer, M.: A coherence based framework for institu-
tional agents. In: Sichman, J.S., Padget, J., Ossowski, S., Noriega, P. (eds.) COIN
2007. LNCS(LNAI), vol. 4870, pp. 287–300. Springer, Heidelberg (2008)

A Distributed Architecture for Norm

Management in Multi-Agent Systems

Andrés Garćıa-Camino1, Juan Antonio Rodŕıguez-Aguilar1,
and Wamberto Vasconcelos2

1 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Research Council, Campus UAB, 08193 Bellaterra, Spain

{andres,jar}@iiia.csic.es
2 Dept. of Computing Science, University of Aberdeen, Aberdeen AB24 3UE, UK

wvasconcelos@acm.org

Abstract. Norms, that is, obligations, prohibitions and permissions,
are useful abstractions to facilitate coordination in open, heterogeneous
multi-agent systems. We observe a lack of distributed architectures and
non-centralised computational models for norms. We propose a model,
viz., normative structures, to regulate the behaviour of autonomous
agents taking part in simultaneous and possibly related activities within
a multi-agent system. This artifact allows the propagation of normative
positions (that is, the obligations, prohibitions and permissions associ-
ated to individual agents) as a consequence of agents’ actions. Within
a normative structure, conflicts may arise – one same action can be
simultaneousely forbidden and obliged/permitted. This is due to the
concurrent and dynamic nature of agents’ interactions in a multi-agent
system. However, ensuring conflict freedom of normative structures at
design time is computationally intractable, and thus real-time conflict
resolution is required: our architecture support the distributed manage-
ment of normative positions, including conflict detection and resolution.

1 Introduction

An essential characteristic of open, heterogeneous multi-agent systems (MASs)
is that agents’ interactions are regulated to comply with the conventions of the
system. Norms, that is, obligations, prohibitions and permissions, can be used
to represent such conventions and hence as a means to regulate the observable
behaviour of agents [3,18]. There are many contributions on the subject of norms
from sociologists, philosophers and logicians (e.g., [1,2]). Recently, proposals for
computational realisations of normative models have been presented. Some of
them operate in a centralised manner (e.g. [3,4,5]) which creates bottlenecks
and single points-of-failure. Others (e.g. [6,7]), although distributed, aim at the
regulation of communication between agents without taking into account that
some of the normative positions (i.e., their permissions, prohibitions and obli-
gations) generated as a result of agent interaction may also affect other agents
not involved in the communication.

The class of MASs we envisage consists of multiple, simultaneous and
possibly related agent interactions, or activities. Each agent may simultaneously

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 275–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

276 A. Garćıa-Camino, J.A. Rodŕıguez-Aguilar, and W. Vasconcelos

participate in several activities, and may change from one activity to another. An
agent’s actions within one activity may have consequences – These are captured
as normative positions that define, influence or constrain the agent’s future be-
haviour. For instance, a buyer agent who ran out of credit may be forbidden from
making further offers, or a seller agent is obliged to deliver the goods after closing
a deal. Within a MAS normative conflicts may arise due to the dynamic nature
of the MAS and simultaneous agents’ actions. A normative conflict arises, for
instance, when an action is simultaneously prohibited and obliged. Such conflicts
ought to be identified and resolved. This analysis of conflicts can be carried out in
each activity. However, ensuring conflict-freedom on a network of agent conversa-
tions (or activities) at design time is computationally intractable as shown in [8].

We propose means to handle conflicting normative positions in open and
regulated MASs in a distributed manner. In realistic settings run-time conflict
detection and resolution is required. Hence, we require a tractable algorithm for
conflict resolution along the lines of the one presented in [8]. The only modifi-
cation required for that algorithm is that it should return a list of updates (or
normative commands), that is, the norms to be added and removed, instead of
the resulting set of norms obtained from the updates.

We need an architecture to incorporate the previously mentioned algorithm.
Among other features, we require our architecture to be distributed, regulated,
open, and heterogeneous. These features are included in other architectures such
as AMELI [6]. However, the propagation of normative positions to several agents
or to an agent not directly involved in the interaction and the resolution of
normative conflicts has not yet been addressed.

We thus propose an extension of the architecture presented in [6] fulfilling
these features. We extend AMELI by including a new type of agent, viz., the
normative managers, also adding interaction protocols with this new type of
agent, allowing for a novel conceptual differentiation of administrative (or “in-
ternal”) agents. Thus, the main contribution of the paper is a distributed archi-
tecture to regulate the behaviour of autonomous agents and manage normative
aspects of a MAS, including the propagation of normative positions to different
conversations and the resolution of normative conflicts.

This paper is organised as follows. In Section 2 we present a scenario to
illustrate and motivate our approach. Normative structures are introduced in
Section 3. Section 4 presents our distributed architecture and, in Section 5, we
comment on related work. Finally, we draw conclusions and report on future
work in Section 6.

2 Scenario

We make use of a contract scenario in which companies come together at an
online marketplace to negotiate and sign contracts in order to get certain tasks
done. The overall transaction procedure may be organised as five distributed
activities, represented as nodes in the diagram in Figure 1. The activities involve
different participants whose behaviour is coordinated through protocols.

A Distributed Architecture for Norm Management in Multi-Agent Systems 277

Exit
Registration

Payment

Work

Negotiation

Coordination Level

Fig. 1. Activity Structure of the Scenario

After registering at
the marketplace, clients
and suppliers get to-
gether in an activity
where they negotiate
the terms of their con-
tract, i.e. actions to be
performed, prices, dead-
lines and other details.
The client will then
participate in a payment
activity, verifying his credit-worthiness and instructing his bank to transfer
the correct amount of money. The supplier in the meantime will delegate to
specialised employees the actions to be performed in the work activity. Finally,
agents can leave the marketplace conforming to a predetermined exit protocol.
The marketplace accountant participates in most of the activities as a trusted
provider of auditing tools.

3 Normative Structure

We address a class of MASs in which interactions are carried out via illocu-
tionary speech acts [9] exchanged among participating agents, along the lines of
agent communication languages such as FIPA-ACL [10]. In these MASs, agents
interact according to protocols which are naturally distributed. We observe that
in some realistic scenarios, speech acts in a protocol may have an effect on other
protocols. Certain actions bring about changes in the normative positions of
agents – their “social burden”: what each agent is permitted, obliged and for-
bidden to do. We use the term normative command to refer to the addition or
removal of a normative position. Henceforth we shall refer to the application of
a normative command as the addition or removal of a given normative position.
Occurrences of normative positions in one protocol may also have consequences
for other protocols.

We propose to extend the notion of MAS, regulated by protocols, with an
extra layer called normative structure (NS). This layer consists of normative
scenes, which represent the normative state, i.e. the set of illocutions uttered
and normative positions, of the agents participating in a given activity, and
normative transitions, which specifies by means of a rule the conditions under
which some normative positions are to be generated or removed in the given
normative scenes. The formal definition of normative structure is presented in
[8], and here we informally discuss it.

Fig. 2 shows an example of how a normative structure relates with the coor-
dination level. A normative transition is specified between the negotiation and
payment activities denoting that there is a rule that may be activated with the
state of negotiation activity and that may modify the state of the payment ac-
tivity. In our example, the rule would be that whenever a client accepts an offer

278 A. Garćıa-Camino, J.A. Rodŕıguez-Aguilar, and W. Vasconcelos

of a supplier, an obligation on the former to pay the latter is created in the
payment activity. The rule connecting the payment and the work activity would
specify that whenever a client fulfils its payment obligation, an obligation on the
worker to complete the contracted task is generated in the work activity.

Payment

Work
Normative Level

Exit
Registration

Payment

Work

Negotiation

Coordination Level

nt

Negotiation

Fig. 2. Normative Structure and Coordination Level

We are concerned with
the propagation and
distribution of norma-
tive positions within a
network of distributed,
normative scenes as a
consequence of agents’
actions. In [8] the formal
semantics of NSs was
defined via a mapping
to Coloured Petri Nets.
Conflicts may arise after
the addition of new
formulae. Hence, if a new
norm does not generate
any conflict then it can
be directly added. If a
conflict arises, the algorithm presented in [11] is used to decide whether to
ignore the new normative position or to remove the conflicting ones.

4 Proposed Distributed Architecture

We propose an architecture to address the regulation of the behaviour of au-
tonomous agents and the management of the normative state(s) of the MASs,
including the propagation of normative positions and the resolution of normative
conflicts. We assume the existence of a set of agents that interact in order to
pursue their goals – we do not have control on these agents’ internal functioning,
nor can we anticipate it. We require the following features of our architecture:

Regulated. The main goal of our architecture is to restrict the effects of agent
behaviour in the specified conditions without hindering the autonomy of
external agents.

Open. Instead of reprogramming the MAS for each set of external agents, we
advocate persistent, longer-lasting MASs where agents can join and leave
them. However, agents’ movements may be restricted in certain circum-
stances.

Heterogeneous. We leave to each agent programmer the decision of which
agent architecture include in each external agent. We make no assumption
concerning how agents are implemented.

Mediatory. As we do not control external agents internal functioning, in order
to avoid undesired or unanticipated interactions, our architecture should
work as a “filter” of messages between agents.

A Distributed Architecture for Norm Management in Multi-Agent Systems 279

Distributed. To provide the means for implementing large regulated MAS,
we require our architecture to be distributed in a network and therefore
spreading and alleviating the workload and the message traffic.

Norm propagative. Although being distributed, agent interactions are not
isolated and agent behaviour may have effects, in the form of addition or
removal of normative positions, in later interactions possibly involving dif-
ferent agents.

Conflict Resolutive. Some conflicts may arise due to normative positions be-
ing generated as result of agent’s behaviour. Since ensuring a conflict-free
MAS at design time is computationally intractable, we require that reso-
lution of normative conflicts would be applied by the MAS. This approach
promotes consistency since there is a unique, valid normative state estab-
lished by the system instead of a lot of different state versions due to a
conflict resolution at agent’s level.

To accomplish these requirements, we extend AMELI, the architecture pre-
sented in [6]. That architecture is divided in three layers:

Autonomous agent layer. It is formed by the set of external agents taking
part in the MAS.

Social layer. An infrastructure that mediates and facilitates agents’ interac-
tions while enforcing MAS rules.

Communication layer. In charge of providing a reliable and orderly transport
service.

� ��

� ��

� �� �� �

� ��� ��A1 Ai An

G1 Gi Gn

SM1 SMm

NM1 NMp

Fig. 3. AMELI+architecture

External agents intending to
communicate with other exter-
nal agents need to redirect their
messages through the social
layer which is in charge of for-
warding the messages (attempts
of communication) to the com-
munication layer. In specified
conditions, erroneous or illicit
messages may be ignored by the
social layer in order to prevent
them from arriving at their ad-
dressees.

The social layer presented in
[6] is a multi-agent system it-
self and the agents belonging to
it are called internal agents. We
propose to extend this architecture by including a new type of agent , the norma-
tive manager (NM1 to NMp in fig. 3), and by adding protocols to accommodate
this kind of agent. We call AMELI+ the resulting architecture.

280 A. Garćıa-Camino, J.A. Rodŕıguez-Aguilar, and W. Vasconcelos

In AMELI+, internal (administrative) agents are of one of the following types:

Governor (G). Internal agent representing an external agent, that is, main-
taining and informing about its social state, deciding or forwarding whether
an attempt from its external agent is valid. One per external agent.

Scene Manager (SM). Internal agent maintaining the state of the activity1,
deciding whether an attempt to communicate is valid, notifying any changes
to normative managers and resolving conflicts.

Normative Manager (NM). This new type of internal agent receives norma-
tive commands and may fire one or more normative transition rules.

In principle, only one NM is needed if it manages all the normative transition
rules. However, in order to build large MAS and avoid bottlenecks, we propose
the distribution of rules into several NMs.

NMi

Fig. 4. Channels involved in the activation of a rule

To choose the granu-
larity of the normative
layer, i.e. to choose from
one single NM to one NM
per normative transition,
is an important design
decision that we leave for
the MAS designers. After
choosing the granularity,
the NMs are assigned to
handle a possibly unary
set of normative transi-
tions. Recall that each
normative transition in-
cludes a rule. The SMs
involved in the firing of the rules are given a reference to the NM that manages
the rule, i.e. its address or identifier depending on the communication layer. Ex-
ternal agents may join and leave activities, always following the conventions of
the activities. In these cases, its governor registers (or deregisters) with the SM
of that scene.

4.1 Social Layer Protocols

Fig. 4 shows the communication within the social layer – it only occurs along
the following types of channels:

Agent / Governor. This type of channel is used by the external agents send-
ing messages to their respective governors to request information or to re-
quest a message to be delivered to another external agent (following the
norms of the MAS). Governors use this type of channel to inform their
agents about new normative positions generated.

1 Hereafter, activities are also referred to as scenes following the nomenclature of
AMELI.

A Distributed Architecture for Norm Management in Multi-Agent Systems 281

Governor / Scene Manager. Governors use this type of channel to propa-
gate unresolved attempts to communicate or normative commands gener-
ated as a result of such attempts. SMs use this type of channel to inform
governors in their scenes about new normative commands generated as a
result of attempts to communicate or conflict resolution.

Scene Manager / Normative Manager. This type of channel is used by
SMs to propagate normative commands that NMs may need to receive and
the ones resulting from conflict resolution. NMs use this channel to send nor-
mative commands generated by the application of normative transition rules.

NMjNMi

SMs1 SMs2

GAnne GAnneGBill GBill

Anne AnneBill Bill

SMs3

Gpainter1 Gpaintern

painternpainter1

Fig. 5. Enactment of a normative transition rule

Fig. 5 shows an en-
actment of a MAS
in our architecture.
Agents send attempts
to governors (mes-
sages 1, 4 and 7)
who, after finding out
the normative com-
mands attempts gen-
erate, propagate the
new normative com-
mands to SMs1 and
SMs2 (messages 2, 5
and 8) who, in turn,
propagate them to the NM (messages 3, 6 and 9). As a normative transition
rule is fired in the NM, a normative command is sent to SMs3 (message 10).
After resolving any conflicts, SMs3 sends the new normative commands to all
the involved governors (messages 11 and 11′) who, in turn, send them to their
represented agents (messages 12 and 12′).

As the figure of the previous example shows, our architecture propagates at-
tempts to communicate (and their effects) from agents (shown on the bottom of
Fig 5) to the NMs (shown at the top of the figure). NMs receive events from sev-
eral SMs whose managed state may be arbitrarily large. Since NMs only need the
normative commands that may cause any of its rules to fire, NMs subscribe only
to the type of normative commands they are supposed to monitor. For instance, if
a rule needs to check whether there exists a prohibition to paint in a scene work1
and whether there exists the obligation of informing about the completion of the
painting job, then the NM will subscribe to all the normative commands adding or
removing prohibitions to paint in scene work1 as well as all normative commands
managing obligations to inform about the completion of the painting job.

In the following algorithms, Δ refers to essential information for the execution
of the MAS, i.e. a portion of the state of affairs of the MAS that each internal
agent is managing. As introduced above, depending on the type of the internal
agent, it manages a different portion of the state of affairs of the MAS, e.g. a
governor keeps the social state of the agent, and a scene manager keeps the state
of a given scene. These algorithms define the behaviour of internal agents and

282 A. Garćıa-Camino, J.A. Rodŕıguez-Aguilar, and W. Vasconcelos

algorithm G process att(agi, msg)
input agi, msg
output ∅
begin
01 new cmmds := get norm cmmds(msg, Δ)
02 foreach c ∈ new cmmds do
03 Δ := apply(c, Δ)
04 sm := scene manager(c)
05 send(c, agi)
06 send(c, sm)
07 endforeach
08 if new cmmds = ∅ then
09 sm := scene manager(msg)
10 send(msg, sm)
11 endif
end

(a) G response to an agent attempt

algorithm NM process cmmd(smi, msg)
input smi, msg
output ∅
begin
01 foreach cmmd ∈ msg do
02 Δ := apply(cmmd, Δ)
03 ncs := get RHS from fired rules(Δ)
04 foreach c ∈ ncs do
05 sm := scene manager(c)
06 send(c, sm)
07 endforeach
08 foreach
end

(b) NM response to a command

algorithm SM process att(gi, msg)
input gi, msg
output ∅
begin
01 new cmmds := get norm cmmds(msg, Δ)
02 foreach c ∈ new cmmds do
03 Δ := apply(c, Δ)
04 send(c, gi)
05 foreach 〈nm, ev〉 ∈ subscriptions do
06 if unify(c, ev, σ) then
07 send(c, nm)
08 endif
09 endforeach
10 endforeach
11 if new cmmds = ∅ then
12 s := scene(msg)
13 c := content(msg)
14 send(rejected(s, c), gi)
15 endif
end

(c) SM response to a forwarded attempt

algorithm SM process cmmd(nmi, msg)
input nmi, msg
output ∅
begin
01 Δ′ := apply(msg, Δ)
02 if inconsistent(Δ′) then
03 msg := resolve conflicts(Δ, msg)
04 endif
05 foreach cmmd ∈ msg do
06 Δ := apply(cmmd, Δ)
07 foreach 〈nm, ev〉 ∈ subscriptions do
08 if unify(c, ev, σ) then
09 send(c, nm)
10 endif
11 endforeach
12 foreach g ∈ governors(cmmd) do
13 send(cmmd, g)
14 endforeach
15 endforeach
end

(d) SM response to a command

Fig. 6. Internal Agents Algorithms

are applied whenever a message msg is sent by an agent (agi), a governor (gi),
a SM (smi) or a NM (nmi) respectively.

When an external agent sends to its governor an attempt to communicate
(messages 1, 4 and 7 in Fig. 5), the governor follows the algorithm of Fig. 6(a).
This algorithm checks whether the attempt to communicate generates normative
commands (line 1), i.e. it is accepted2. This check may vary depending on the
type of specification and implementation of the scenes: e.g. using Finite State
Machines (FSM), as in [6], or executing a set of rules, as in [4].

If the attempt generates normative commands (line 2), they are applied to the
portion of the state of affairs the governor is currently managing creating a new
partial state (line 3).Thesenormative commands are sent to the external agent (line
5) and to the scene manager (messages 2, 5 and 8 in Fig. 5) in charge of the scene
where the normative command should be applied (line 6). Otherwise, the attempt
is forwarded to the SM of the scene the attempt was generated in (line 10).

2 In our approach, an ignored attempt would not generate any normative command.

A Distributed Architecture for Norm Management in Multi-Agent Systems 283

If the governor accepts the attempt (after the check of line 1), it sends the
SM a notification.The SM then applies the normative command received and
forwards it to the NMs subscribed to that event (messages 3, 6 and 9 in Fig. 5).

However, if the governor does not take a decision, i.e. normative commands
are not generated, the governor sends the attempt to the SM who should decide
whether it is valid or not by following the algorithm of Fig. 6(c). This algorithm,
like the one in Fig. 6(a), checks whether the received attempt generates norma-
tive commands in the current scene state, i.e. the portion of the state of affairs
referring to that scene (line 1). If this is the case (line 2), they are applied to
the current state of the scene (line 3) and forwarded to the governor that sent
the attempt (line 4) and to the NMs subscribed to that normative commands
(line 7). Otherwise (line 11), a message informing that the attempt has been
rejected is sent to the governor mentioned (line 14).

In both cases, if the attempt is accepted then the normative manager is noti-
fied and it follows the algorithm of Fig. 6(b) in order to decide if it is necessary
to send new normative commands to other scene managers. This algorithm pro-
cesses each normative command received (line 1) by applying it to the state of
the NM (line 2) and checking which normative transition rules are fired and
obtaining the normative commands generated (line 3). Each of them are prop-
agated to the SM of the scene appearing in the normative command (line 6,
message 10 in Fig. 5).

If normative commands are generated, SMs receive them from the normative
manager in order to resolve possible conflicts and propagate them to the appro-
priate governors. In this case, the SMs execute the algorithm of Fig. 6(d). This
algorithm applies the normative command received on the scene state creating a
temporary state for conflict checking (line 1), then checks if the new normative
command would raise an inconsistency (line 2). If this is the case, it applies
the conflict resolution algorithm presented in [8], returning the set of norma-
tive commands needed to resolve the conflict (line 3). Each normative command
caused by the message sent by the NM or by conflict resolution, is applied to
the scene state (line 6) and it is sent to the subscribed NMs (lines 7-11) and
to the governors (messages 11 and 11’ in Fig. 5) of the agents appearing in the
normative command (lines 12-14).

NMs are notified about the resolution of possible conflicts in order to check if
the new normative commands fire normative transition rules. If NMs receive this
notification, they follow again the algorithm of Fig. 6(b) as explained above. When
governors are notified by a SM about new normative commands, they apply the
normative command received to the normative state of the agent and notify to its
agent about the new normative command (messages 12 and 12’ in Fig. 5).

In our approach, conflict resolution is applied at the SM level requiring all
normative commands generated by a NM to pass through a SM who resolves
conflicts and routes them. This feature is justified because SMs are the only
agents who have a full representation of a scene and know the agents are partici-
pating in it and which role they are enacting. For example, if a prohibition for all
painters to paint arrives at the work activity, a SM will forward this prohibition

284 A. Garćıa-Camino, J.A. Rodŕıguez-Aguilar, and W. Vasconcelos

to the governors of the agents participating in that activity with the painter role
and to the governors of all the new painters that join that activity while the
prohibition is active. An alternative approach is to apply conflict resolution at
the level of governor agents, curtailing some of the normative positions of its as-
sociated external agent. However, this type of conflict resolution is more limited
since a governor only maintains the normative state of an agent. For example,
a case that cannot be resolved with this approach is when all agents enacting a
role are simultaneously prohibited and obliged to do something, i.e. when more
than one agent is involved in the conflict.

Another approach would be if governors became the only managers of norma-
tive positions; in this case they would need to be aware of all normative positions
that may affect its agent in the future, i.e. they would have to maintain all the
normative positions affecting any of the roles that its agent may enact in every
existing scene. For instance, a governor of an agent that is not yet enacting a
painter role would also need to receive the normative positions that now applies
to that role even if the agent is not in that scene or is enacting that role yet. This
approach does not help with scalability since a large MAS with various scenes
may generate a very large quantity of normative positions affecting agents in the
future by the mere fact of their entering the MAS.

5 Related Work

The subject of norms has been studied widely in the literature (e.g., [2,12,13]),
and, more recently, much attention is being paid to more pragmatic and imple-
mentational aspects of norms, that is, how norms can be given a computational
interpretation and how norms can be factored in the design and execution of
MASs (e.g. [14,15,3,4,16]).

However, not much work has addressed the management of norms and rea-
soning about them in a distributed manner. Despite the fact that in [17,7] two
languages are presented for the distributed enforcement of norms in MAS, in
both works each agent has a local message interface that forwards legal mes-
sages according to a set of norms. Since these interfaces are local to each agent,
norms can only be expressed in terms of actions of that agent. This is a serious
disadvantage, e.g. when one needs to activate an obligation to one agent due to
a certain message of another agent.

In [18] the authors propose a multi-agent architecture for policy monitoring,
compliance checking and enforcement in virtual organisations (VOs). Their ap-
proach also uses a notion of hierarchical enforcement, i.e. the parent assimilates
summarised event streams from multiple agents and may initiate further action
on the subordinate agents. Depending on its policies, a parent can override the
functioning of its children by changing their policies. Instead of considering
any notion similar to our scene (multi-agent protocol where the number of
participants may vary) and assigning an agent exclusively dedicated to the
management of one scene, they assign another participant in the VO as parent
of a set of agents. Although the parent would receive only the events it needs to

A Distributed Architecture for Norm Management in Multi-Agent Systems 285

monitor, it may receive them from all the interactions their children are
engaging in. This can be a disadvantage when the number of interactions is
large converting the parents in bottlenecks. Although they mention that conflict
resolution may be accomplished with their architecture, they leave this feature to
the VO agent thus centralising the conflict resolution in each VO. This can also
be a disadvantage when the number of interactions is large since the VO agent
has to resolve all the possible conflicts. This would require either all the events
flowing through the VO agent or the VO agent monitoring the state of the whole
VO in order to detect and resolve conflicts. The main theoretical restriction in
their approach is that all the agents involved in a change in a policy must share
a common parent in the hierarchy of the VO. In an e-commerce example, when a
buyer accepts a deal an obligation to supply the purchased item should be added
to the seller. However, as they are different parties, their only common parent is
the VO agent converting the latter in a bottleneck in large e-commerce scenarios.

6 Conclusions and Future Work

We base the architecture presented in this paper in our proposal of normative
structure and conflict resolution of [8]. The notion of normative structure is
useful because it allows the separation of normative and procedural concerns.
We notice that the algorithm presented in that paper is also amenable to the
resolution of normative conflicts in a distributed manner.

The main contribution of this paper is an architecture for the management of
norms in a distributed manner. As a result of the partial enactment of protocols
in diverse scenes, normative positions generated in different scenes can be used
to regulate the behaviour of agents not directly involved in previous interac-
tions. Furthermore, conflict resolution is applied at a scene level meaning that
resolution criteria involving more than one agent are now possible.

We want to extend normative structures [8], as we use them in our archi-
tecture, along several directions: (1) to handle constraints as part of the norm
language, in particular constraints related with the notion of time; (2) to capture
in the conflict resolution algorithm different semantics relating the deontic no-
tions by supporting different axiomations (e.g., relative strength of prohibition
versus obligation, default deontic notions, deontic inconsistencies, etc.).

We also intend to use analysis techniques for Coloured Petri-Nets (CPNs) in
order to characterise classes of CPNs (e.g., acyclic, symmetric, etc.) correspond-
ing to families of Normative Structures that are susceptible to tractable off-line
conflict detection. The combination of these techniques along with our online
conflict resolution mechanisms is intended to endow MAS designers with the
ability to incorporate norms into their systems in a principled way.

Acknowledgements. This work was partially funded by the Spanish Education
and Science Ministry as part of the projects TIN2006-15662-C02-01 and 2006-5-
0I-099. Garćıa-Camino enjoys an I3P grant from the Spanish National Research
Council (CSIC).

286 A. Garćıa-Camino, J.A. Rodŕıguez-Aguilar, and W. Vasconcelos

References

1. Habermas, J.: The Theory of Communication Action, 1st edn. Reason and the
Rationalization of Society. Beacon Press (1984)

2. von Wright, G.H.: Norm and Action: A Logical Inquiry. Routledge and Kegan Paul,
London (1963)

3. Fornara, N., Viganò, F., Colombetti, M.: An Event Driven Approach to Norms in
Artificial Institutions. In: AAMAS 2005. Workshop: Agents, Norms and Institu-
tions for Regulated Multiagent Systems (ANI@REM). Utrecht (2005)

4. Garćıa-Camino, A., Rodŕıguez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Dis-
tributed Architecture for Norm-Aware Agent Societies. In: Baldoni, M., Endriss,
U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 89–
105. Springer, Heidelberg (2006)

5. Ricci, A., Viroli, M.: Coordination Artifacts: A Unifying Abstraction for Engineer-
ing Environment-Mediated Coordination in MAS. Informatica 29, 433–443 (2005)

6. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Procs of 3rd Int’l Conf on Au-
tonomous Agents and Multiagent Systems (AAMAS 2004), 236–243 (2004)

7. Minsky, N.: Law Governed Interaction (LGI): A Distributed Coordination and
Control Mechanism (An Introduction, and a Reference Manual). Technical report,
Rutgers University (2005)

8. Gaertner, D., Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A., Vascon-
celos, W.: Distributed Norm Management in Regulated Multi-agent Systems. In:
Procs of 6th Int’l Conf on Autonomous Agents and Multiagent Systems (AAMAS
2007), pp. 624–631, Hawai’i (2007)

9. Searle, J.: Speech Acts, An Essay in the Philosophy of Language. Cambridge Uni-
versity Press, Cambridge (1969)

10. Foundation for Intelligent Physical Agents (FIPA): FIPA-ACL: Message Structure
Specification (2002)

11. Kollingbaum, M.J., Vasconcelos, W.W., Garćıa-Camino, A., Norman, T.J.: Con-
flict resolution in norm-regulated environments via unification and constraints. In:
Baldoni, M., Son, T.C., van Riemsdijk, M.B., Winikoff, M. (eds.) DALT 2007.
LNCS, vol. 4897, pp. 158–174. Springer, Heidelberg (2008)

12. Shoham, Y., Tennenholtz, M.: On Social Laws for Artificial Agent Societies: Off-
line Design. Artificial Intelligence 73(1–2), 231–252 (1995)

13. Sergot, M.: A Computational Theory of Normative Positions. ACM Trans. Com-
put. Logic 2(4), 581–622 (2001)

14. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum,
p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, Springer, Heidelberg (2005)

15. Cranefield, S.: A Rule Language for Modelling and Monitoring Social Expectations
in Multi-Agent Systems. Technical Report 2005/01, University of Otago (2005)

16. Garćıa-Camino, A., Noriega, P., Rodŕıguez-Aguilar, J.A.: Implementing Norms in
Electronic Institutions. In: Procs of 4th Int’l Conf on Autonomous Agents and
Multiagent Systems (AAMAS 2005), Utrecht, pp. 667–673 (2005)

17. Esteva, M., Vasconcelos, W., Sierra, C., Rodŕıguez-Aguilar, J.A.: Norm consistency
in electronic institutions. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS
(LNAI), vol. 3171, pp. 494–505. Springer, Heidelberg (2004)

18. Udupi, Y.B., Singh, M.P.: Multiagent policy architecture for virtual bussiness orga-
nizations. In: Proceedings of the IEEE International Conference on Services Com-
puting (SCC) (2006)

A Coherence Based Framework for Institutional Agents

Sindhu Joseph, Carles Sierra, and Marco Schorlemmer

Artificial Intelligence Research Institute, IIIA Spanish National Research Council, CSIC
Bellaterra (Barcelona), Catalonia, Spain

{joseph,sierra,marco}@iiia.csic.es

Abstract. We introduce in this paper an agent model based on coherence theory.
We give a formalization of Thagard’s theory on coherence and use it to explain the
reasoning process of an intentional agent that permits the agent to drop beliefs or
to violate norms in order to keep a maximal state of coherence. The architecture
is illustrated in the paper and a discussion on the possible use of this approach in
the design of institutional agents is presented.

1 Introduction

Artificial institutions are multiagent system models inspired by human institutions [10]
and used to create technological extensions of human societies [12]. These devices are
designed to help agents cope with the uncertainty on the environment and in some
cases to increase their individual utility. They are important due to the bounded nature
of human and software rationality (global maximization of individual utility cannot be
guaranteed in a complex society). If two or more persons exchange goods with one
another, then the result for each one will depend in general not merely upon his own ac-
tions but on those of the others as well [8]. Therefore, to make these exchanges possible,
behavioral rules that govern the way in which individuals can cooperate and compete
are required [7]. Behavioral rules translate the social objectives into executable per-
missions, prohibitions, and obligations. These modalities are collectively called norms.
Thus, institutions are role based normative systems representing a collective intention1.
This is the case in general, but we do acknowledge the fact that institutions need not
always represent a collective intention. But such institutions almost always undergo
periodic revolutions as an attempt to reinforce collective intention.

Human institutions tend to adapt when the group conscience shifts or is in conflict
with the current institutional definition. It is thus important to know and be able to verify
at any point in time, that the institutional definition in coherence with its norms and
social objectives and the objectives of the individuals in the group. Thus an institution
to be sustainable almost always needs to continuously strive to achieve this coherent
state, here we call it equilibrium. We say an institution is in a state of equilibrium when
it has no incentive to change the institutional definition. When an incoherence or a
deviation from equilibrium is detected, it is also important to identify the candidates
that cause this incoherence to be able to bring the institution back into equilibrium.

1 Collective intention here refers to the explicit expression of the intention and do not refer to
the mental state.

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 287–300, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 S. Joseph, C. Sierra, and M. Schorlemmer

An autonomous agent is motivated to join an institution when it believes that the
individual goals of the agent can be satisfied within the institution. And that happens
in our opinion when the beliefs or goals of the agent are coherent with the institutional
objectives. For simplicity, here we assume that all institutional objectives are realized
through norms. Thus being incoherent with a norm is equivalent to being incoherent
with a corresponding institutional objective. An agent will hence need to continuously
re-evaluate the alignment of its beliefs and goals with that of the norms of the institution.
Thus, it is important for an agent to know whether there is an incoherence among the
beliefs and the norms, and how the decision is made on what needs to be changed
to bring the coherence back. This incoherence among other things drives the agent to
violate a norm, revise a belief or both. The individual state of equilibrium is achieved
when the coherence between individual beliefs and goals, those of the group and those
of the institution is maximized.

We use the theory of coherence and the theory of cognitive dissonance to ground our
framework. The theory of coherence [11] has been well studied in the field of cognitive
science and as a general theory to describe the world. Coherence theory is about how
different pieces fit together to make a whole. It assumes that there are various kinds of
associations between the pieces or the elements of a set. These are primarily positive
or negative where a positive association suggests that the two elements support each
other while a negative association indicates their mutual exclusion. Thagard views these
associations as constraints between elements and proposes a theory of coherence as
globally maximizing the satisfaction of these constraints. He proposes to partition the
set of elements into accepted or rejected so that the overall coherence is achieved, or
constraint satisfaction maximized. We use the theory to reason between the cognitions
of an agent and its external associations such as institutions or social relations.

The theory of dissonance [5] in social psychology is closely related to the theory
of coherence. Leon Festinger calls dissonance as the distressing mental state in which
people feel they “find themselves doing things that don’t fit with what they know, or
having opinions that do not fit with other opinions they hold.” The tension of disso-
nance motivates us to change either our behavior or our belief in an effort to avoid a
distressing feeling. The more important the issue and the greater the discrepancy be-
tween behavior and belief, the higher the magnitude of dissonance that we will feel.
We use the dissonance theory to motivate an action once the coherence theory identifies
elements causing a reduction in coherence.

In this paper we propose an institutional agent architecture based on the theory of
coherence. This architecture permits us to talk about the coherence of the individual
beliefs, desires and intentions2, coherence among these cognitions, and the coherence
among the cognitions and institutional norms or social commitments. In particular when
there is an incoherence between any of these elements, the agent often needs to choose
between a norm violation or a belief revision to maximize its internal coherence. That
is, the theory of incoherence helps us to model autonomous agents who can reason
about obeying or violating institutional norms. From the institutional point of view, the
same tools can be used to reason about an institution, coherence of an institution with
respect to the conscience of the group and how to evolve norms to stay in alignment

2 In the paper we discuss beliefs, the extension to desires and intentions is straight-forward.

A Coherence Based Framework for Institutional Agents 289

with the objectives. While coherence theory helps to find the maximally coherent state,
dissonance theory helps to decide how much of incoherence an agent or an institution
can tolerate and which of the actions to chose from to reduce incoherence.

In Sections 2 and 3 we introduce our coherence-based framework and the reasoning
of a coherence-maximizing agent. In Section 4 we illustrate with the help of an exam-
ple, how this framework can be used to reason about norm violations. We conclude with
related work in Section 5 and discussion and future work in Section 6. We use the exam-
ple of a car agent in a traffic control institution. Here we give an intuitive summary of
the example, for the reader to follow the coherence framework introduced in Section 2.
In Section 4, we detail the example further.

The car agent in our example has personal beliefs and intentions. Where-as the traffic
control institution has a set of objectives which it implements through a number of
norms. The car agent initially starts with the belief that the traffic control is efficient,
and is in a maximally coherent state with his beliefs, intentions and institutional norms.
But when the car agent reaches a crossing of two lanes and is made to stop at the signal,
where as the crossing lane has no cars waiting to go, it builds up a certain incoherence
with its other beliefs and intentions such as the intention to reach the destination in time
and the belief that the traffic control is efficient. As part of the constraint maximization,
the agent identifies that the adopted intention to obey the traffic norms should be rejected
to restore coherence. Further it finds that the dissonance is high enough to actually reject
this intention. After the rejection of the intention means a potential norm violation as it
no longer considers to obey the traffic norms.

2 Coherence Framework

In this section we introduce a number of definitions to build the coherence framework.
Our primary interest is to put the theory in relation to an institutional agent context and
to provide a formal representation and some computing tools. We do this for the belief
cognition of an agent and for the norms of an institution.

2.1 Coherence Graph

To determine the coherence of a set of elements, we need to explore their associations.
We shall use a graph to model these associations in order to compute coherence of
various partitions of a given set of elements, and to determine its maximally coherent
partition as well as to study other related aspects of coherency.

We shall define a coherence graph over an underlying logic. Given a set of propo-
sitional formulae PL, a logic over PL is a tuple K = 〈L, A, �〉, with language L ⊆
PL × [0, 1], i.e., a set of pairs formed by a proposition and a confidence value between
0 and 1, a set of axioms A ⊆ L, and a consequence relation � ⊆ 2L × L.

The nodes of a coherence graph are always elements of L. The consequence rela-
tion determines the relationship between these elements, and thus puts constraints on
the edges of a coherence graph. Furthermore, propositions that are assumed to be true
belong to the axioms A of the logic.

A coherence graph is therefore a set (∈ V) of nodes taken from L and a set E of
edges connecting them. The edges are associated with a number called the strength of

290 S. Joseph, C. Sierra, and M. Schorlemmer

the connection which gives an estimate of how coherent the two elements are3. The
strength value of an edge (ϕ, γ), noted σ(ϕ, γ), respects the strength values that it has
with other connected edges. It is important to note that a coherence graph is a fully con-
nected graph with a restriction that for every node ϕ4 ∈ L, σ(ϕ, ϕ) = 1 and if there
are two nodes ϕ and, ψ that are not related, then σ(ϕ, ψ) = 0. Further α is a projection
function defined from the set V to [0, 1] which projects the confidence degrees asso-
ciated with elements of L. The role of this function is to make the confidence degrees
explicit in the graph for ease of explanation.

Definition 1. Given a logic K = 〈L, A, �〉 over a propositional language PL, a coher-
ence graph 〈V, E, σ, α〉 over K is a graph for which

– V ⊆ L
– E = V × V
– σ : E → [−1, 1]
– α : V → [0, 1]

and which satisfies the following constraints:

– A ⊆ V
– ∀v ∈ V, σ(v, v) = 1
– σ(v, w) = σ(w, v)

We write G(K) for the set of all coherence graphs over K.

Given this general definition of a coherence graph, we can instantiate two specific fam-
ilies of coherence graphs namely the belief coherence graphs BG and the norm coher-
ence graphs NG, which are of interest to us. BG represents graphs where the nodes are
beliefs of an agent and the edges are association between beliefs. And NG represents
nodes which are the possible norms defined in an institution. In this paper, we do not
discuss the desire and the intention cognitions, but these can be defined similarly. And
when defining the norm logic, we only talk about permissions and obligations, whereas
norms may include prohibitions, too. Also for clarity we have kept the structure of the
norms simple, but we intend to include objectives and values associated with a norm.
The work by Atkinson and Bench-Capon [1] is indicative. We now define the belief and
the norm logic to express the nodes of these graphs and their interconnections.

In our representation, beliefs are propositional formulas ϕ which are closed under
negation and union with an associated confidence degree d. We may borrow the axioms
and the consequence relation � from an appropriate belief logic. Then for example we
have the following definition for the belief logic.

Definition 2. Given the propositional language PL, we define the belief logic KB =
〈LB , AB, �B〉 where

3 This value is fuzzy and is determined by the type of relation between the edges. For an inco-
herence relation, tends toward −1, for coherence a positive value tending toward 1.

4 This should be understood as 〈ϕ, d〉, whenever it is understood from the context, we omit the
d part of the element for better readability.

A Coherence Based Framework for Institutional Agents 291

– the belief language LB is defined as follows:
• Given ϕ ∈ PL and d ∈ [0, 1], 〈Bϕ, d〉 ∈ LB

• Given 〈θ, d〉, 〈ψ, e〉 ∈ LB , 〈¬θ, f(d)〉 ∈ LB and 〈θ ∧ ψ, g(d, e)〉 ∈ LB where
f and g are functions for example as in [3]

– AB as axioms of an appropriate belief logic.
– �B is a consequence relation of an appropriate belief logic.

We need a number of additional constraints that we want the Belief coherence graphs to
satisfy. They are constraints on how the strength values have to be assigned. A constraint
that we impose on this number is that if two elements are related by a �, then the value
should be positive and if two elements contradicts then then there is a negative strength5.
And here we define α more concretely as the projection function over the belief degree.
Then we have

Given the belief logic KB , the set of all belief coherence Graphs is G(KB) satisfying
the additional constraints:

– Given ϕ, ψ ∈ V and Γ ⊆ V and Γ � ϕ
– ∀γ ∈ Γ, σ(ϕ, γ) > 0
– ∀γ ∈ Γ and ψ = ¬ϕ, σ(ψ, γ) < 0

– ∀〈Bϕ, d〉 ∈ V, α(〈Bϕ, d〉) = d

We can similarly derive the set of all norm coherence graphs G(KN) corresponding
to norms. In our definition, norms define obligations and permissions associated with
a role. We use deontic logic to represent the norms, with the difference that we use
modalities subscripted with roles. Thus Or and Pr represent deontic obligations and
deontic permissions associated with a role r ∈ R, the set of all roles. In this paper
we assume the confidence degrees associated with norms to be 1. Thus we have the
following definition for a norm logic KN .

Definition 3. Given the propositional language PL and the set of rolesR, we define the
Norm logic KN = 〈LN , AN , �N〉 where

– LN is defined as:
• Given ϕ ∈ PL and r ∈ R, then 〈Orϕ, 1〉, 〈Prϕ, 1〉 ∈ LN

• Given 〈ϕ, d〉 and 〈ψ, e〉 ∈ LN then 〈¬ϕ, f1(d)〉 and 〈ϕ ∧ ψ, g1(d, e)〉 ∈ LN

– AN following the standard axioms of deontic logic.
– �N using the standard deduction of deontic logic6

Given the norm logic KN the set of all norm coherence graphs is G(KN) satisfying the
additional constraints:

– Given ϕ, ψ ∈ L and Γ ⊆ L and Γ � ϕ
– ∀γ ∈ Γ, σ(ϕ, γ) > 0
– ∀γ ∈ Γ and ψ = ¬ϕ, σ(ψ, γ) < 0

– ∀〈ϕ, d〉 ∈ V, α(〈ϕ, d〉) = 1

5 This relates to Thagard’s deductive coherence, though in this paper, we limit our discussion to
the general coherence relation.

6 For an introduction to deontic logic, see [13] and in the context of institutions see [6].

292 S. Joseph, C. Sierra, and M. Schorlemmer

2.2 Calculating Coherence

We can now define the coherence value of a graph, the partition that maximizes coher-
ence and the coherence of an element with respect to the graph. These values will help
an agent to determine whether to keep a belief or drop it, whether to obey a norm or
violate it to increase coherence and which of the beliefs or norms need to be dropped to
maximize coherence. This will also help an institution decide whether to accept a pro-
posed norm change and to determine the gain in coherence when accepting or rejecting
a change.

We use the notion of coherence as maximizing constraint satisfaction as defined
by Thagard [11]. The intuition behind this idea is that there are various degrees of
coherence/incoherence relations between nodes of a coherence graph. And if there is a
strong negative association between two nodes, then the graph will be more coherent
if we decide to accept one of the nodes and reject the other. Similarly when there is
a strong positive association, coherence will be increased when either both the nodes
are accepted or both are rejected. Thus we can construct a partition of the set of nodes,
with one set of nodes in the partition being accepted and the other rejected in such a
way to maximize the coherence of the entire graph. Such accepted sets are denoted
by A and the rejected sets by R. The coherence value is calculated by considering
positive associations within nodes of A and within nodes of R and negative associations
between nodes of A and R. This criteria is called satisfaction of constraints. More
formally we have the following definition:

Definition 4. Given a coherence graph g ∈ G(K) and a partition (A, R) of V , we
define the set of satisfied associations C+ ⊆ E as

C+ =
{

∀(vi, vj)∈E

∣∣∣∣vj ∈ A ↔ vi ∈ A(or vj ∈ R ↔ vi ∈ R) when σ(vi, vj) ≥ 0
vj ∈ A ↔ vi ∈ R when σ(vi, vj) < 0

}

In all other cases the association is said to be unsatisfied.
To define coherence, we first define the total strength of a partition. The total strength

of a partition is the sum of the strengths of all the satisfied constraints multiplied by the
degrees (the α values) of the nodes connected by the edge. Then the coherence of a
graph is defined to be the maximum among the total strengths when calculated over all
its partitions. We have the following definitions:

Definition 5. Given a coherence graph g ∈ G(K), we define the total strength of a
partition {A, R} as

S(g, A, R) =
∑

(vi,vj)∈C+

| σ(vi, vj) | · α(vi) · α(vj) (1)

Definition 6. Given a coherence graph g = 〈V, E, σ, α〉 ∈ G(K) and given the total
strength S(g, A, R) for all partitions of V (denoted as P(V)), we define the coherence
of g as

C(g) = max{S(g, A, R) | A, R ∈ P(V)} (2)

A Coherence Based Framework for Institutional Agents 293

and we say that the partition with the maximal value divides the set of nodes into an
accepted set A and a rejected set R.

Given the coherence C(g) of a graph, the coherence of an element C(ϕ) is the ratio
of coherence when ϕ is in the accepted set with respect to ϕ not being in the accepted
set. That is if the acceptance of the element improves the overall coherence of the set
considered, than when it is rejected, then the element is said to be coherent with the set.
Then we have the definition:

Definition 7. Given a coherence graph g ∈ G(K), we define the coherence of an ele-
ment ϕ ∈ V as

C(ϕ) =
maxA,R∈P(V)

ϕ∈A
S(g, A, R)

maxA,R∈P(V)
ϕ �∈A

S(g, A, R)
(3)

Similar to the coherence definitions of a graph, we now define the dissonance of a graph.
We define dissonance as the measure of incoherence that exists in the graph. Deducing
from the theory of dissonance [5] an increase in dissonance increases in an agent the
need to take a coherence maximizing action. We use the dissonance as a criteria to chose
among the number of alternative actions an agent can perform such as belief revision,
norm violation or commitment modification for example. The dissonance of a graph is
computed as the difference between the total strength of the graph and the coherence of
the graph. Thus we have the following definition:

Definition 8. Given a coherence graph g ∈ G(K), we define the dissonance of g with
respect to a partition (A, R) as

D(G, A, R)7 =

{
∞ if C(G) = 0
C(G)−S(G,A,R)

C(G) otherwise
(4)

2.3 Graph Composition

For an agent that is part of an institution and has social relations, it not only needs to
maximize the internal coherence between its beliefs, but also needs to maximize the so-
cial coherence which is the coherence between the beliefs and the commitments made
in the context of his social relations. Similarly, an agent which belongs to an institution,
needs to maximize the institutional role coherence, that is the coherence between the
projection of the norms onto the role he plays in the institution and his beliefs. This leads
naturally the notion of graph composition, which will allow us to explore the coherence
or incoherence that might exist between nodes of one graph and those of the other.

The nodes of a composite graph are always the disjoint union of the nodes of the
individual graphs. The set of edges contains at least those edges that existed in the
individual graphs. In addition a composite graph may have new edges between nodes
of one graph to the nodes of the other graph.

7 When C(G)=0, S(G, A, R)=0 and hence the dissonance is maximum. D(G, A, R)=∞.

294 S. Joseph, C. Sierra, and M. Schorlemmer

Definition 9. Let K1 = 〈L1, A1, �1〉 and K2 = 〈L2, A2, �2〉 be logics over proposi-
tional language PL1 and PL2. Let g1 =〈V1, E1, σ1, α1〉∈G(K1) and g2 =〈V2, E2, σ2,
α2〉 ∈ G(K2). The set of composite graphs g1
g2 ⊂ G(K) is the set of those coherence
graphs 〈V, E, σ, α〉 ∈ G(K) over logic K = 〈L, A, �〉—where L is the disjoint union
of L1 and L2, A is the disjoint union of A1 and A2, and � is the smallest consequence
relation containing both �1 and �2

8— such that

– V = {L1/ϕ | ϕ ∈ V1} ∪ {L2/ϕ | ϕ ∈ V2}9

– E = V × V such that
– if(ϕ, ψ) ∈ E1 then (L1/ϕ, L1/ψ) ∈ E
– if(ϕ, ψ) ∈ E2 then (L2/ϕ, L2/ψ) ∈ E

– σ : E → [−1, 1] such that
– σ(L1/ϕ, L1/γ) = σ1(ϕ, γ)
– σ(L2/ϕ, L2/γ) = σ2(ϕ, γ)

These properties state that the nodes of the composite graph are the disjoint union of the
original graphs. When making the composition, the existing edges and strength values
are preserved.

3 A Coherence Maximizing Agent

In this section we describe some of the reasoning performed by a coherence maximizing
agent. Consider an agent a having a belief coherence graph b, intention coherence graph
i and role coherence graph nr. At any moment in time the agent aims at coherence
maximization. When the coherence cannot be further maximized, a does nothing, or
has no incentive to act. For an agent who has no social commitments, nor is part of any
institution, nor has any unfulfilled intentions, the accepted set A is the entire belief set,
as he is not likely to have an incoherence.

We consider an agent that is part of an institution, has social commitments and is in
the state of equilibrium. Below we show one of the possible algorithms that a coherence
agent a can go through when it encounters a new belief (either communicated to the
agent by others, by observation, or internally deduced).

Input: a new belief 〈Bϕ, d〉; a belief coherence graph g = 〈V, E, σ, α〉, a composition
graph gbin = g
 gi
 gnr with the corresponding coherence measures Cbin along with
Abin and Rbin, Sbin, Dbin, and a dissonance threshold DT .

1: Vb ← V ∪ {Bϕ}
2: αb(Bϕ) ← d
3: for Bψ ∈ V , Γ ⊆ V do
4: if Bψ, Γ � Bϕ or Bϕ, Γ � Bψ then
5: σb(Bψ, Bϕ) = 1
6: for Bγ ∈ Γ do

8 For the moment we assume that the properties that make �1 and �2 a consequence relation as
the same.

9 We write Li/ϕ for those elements of L that come form Li in the disjoint union, with i = 1, 2.

A Coherence Based Framework for Institutional Agents 295

7: σb(Bγ, Bϕ) = 1
8: end for
9: end if

10: if Bϕ, Bψ � ⊥ then
11: σb(Bϕ, Bψ) = −1
12: end if
13: end for
14: gbin ← gb
 gi
 gnr

15: S ← Sbin(gbin, Vbin, ∅) using eq(1)
16: C ← Cbin(gbin) using eq(2)
17: D ← Dbin(gbin, Vbin, ∅) using eq(4)
18: if D ≥ DT then
19: A ← Abin

20: R ← Rbin

21: end if

The lines from 1 to 13 updates the belief graph by adding nodes, edges and their
strength values. Here the algorithm does not fully determine the strength values but
specify certain constraints on how the strength values are determined. Here we assume
that a human user will provide them while respecting the constraints though we envision
many semi automatic methods worth exploring (see section 6). The line 14 updates
the composition graph considering the modified belief graph. The lines from 15 to 17
recalculate the strength, coherence and dissonance values of the new composite graph.
Lines 18 and 19 check whether the dissonance value exceeds the threshold and if it
does, the agent acts by removing the nodes causing the incoherence from the accepted
set. To keep the discussion simple in this algorithm, we have simply removed the nodes.
But in reality, the reaction to an incoherence can vary greatly. For instance a mildly
distressed agent may choose to ignore the incoherence, may be satisfied with lowering
the degree associated with a particular belief, may still choose to follow a norm. Where
as a heavily distressed agent may not only chose to violate a norm, but initiate a dialogue
to campaign for a norm change.

4 An Example

The main entities in our example are a car agent a having the role c in a traffic control
institution and the institution itself T . We take a very simplified version of the objectives
of T as

− minimizing the probability of collisions
− increasing the traffic handling capacity

To meet these objectives, the traffic control system has a signal at the crossing of the
lanes along with specific norms of use. The norms of the traffic control system for the
car agents belong to the set Nc.

The traffic is controlled using the norms given below and the corresponding norm
coherence graph is shown in Figure 1. Note that all the coherence graphs in this example

296 S. Joseph, C. Sierra, and M. Schorlemmer

Pc(GREEN GO),
1

Oc (RED STOP),
1

Oc(obey(traffic_rules)), 1

1

1 1

Fig. 1. Norm Coherence graph of the traffic control institution

have additional self loops which are not drawn for the sake of readability. But it is
included in the coherence calculations.

– Oc(RED → STOP), 1 → It is obligatory to STOP, when the signal is RED
– Pc(GREEN → GO), 1 → It is permitted to GO, when the signal is GREEN

Here we illustrate the model with one of the most simple cases, namely the crossing
between a major and a minor lane. The major lane has more traffic than minor lane. Due
to the fixed time control, and due to ignoring to assign priority to the lanes, the signal
durations are the same for both major and minor lanes. Thus there are situations when
there are no cars waiting to cross at the minor lane and there is a “RED” light at the
major lane. So the car agents at the major lane sometimes experience an incoherence
when trying to follow the traffic norms. We now show the evolution of the coherence of
an agent situated at the major lane with the help of the some figures.

A car agent a of role c at the major lane has the intention to reach destination X
at time T . He holds a number of beliefs which support this intention. A few relevant
beliefs of a for this intention are can reach destination X in time t and traffic control
is efficient and a generic belief that It is good to reduce pollution. The composite graph
b
 i is shown in Figure 2.

1

0.8
I1B3B2

B1

Fig. 2. b � i Coherence graph of the car agent

We use Equations 1, 2, 4 of Section 2 for calculating the various coherence values of
all the graphs of the example10.

The coherence of the graph is C(b
 i) = 5.296 with A = {B1, B2, B3, I1} and
D(b
 i) = 0. As a is part of the traffic control system, having a role c, the projection
of the norms nc to the beliefs graph of a with an additional intention to stop at RED
signal is as given in Figure 3. This additional intention is due to the fact that a intends
to follow the norms of the institution. Now the coherence of the composite graph is
C(b
 i
 nc) = 17.716 with A = {B1, B2, B3, I1, I2, N1, N2} and dissonance
D(b
 i
 nc) = 0, still staying 0.

When a encounters the “RED” signal, and observes the traffic, its belief graph gets
enriched with new information, and due to this addition of new beliefs, the strengths get

10 The strength values and the degrees on beliefs and intentions are given manually respecting
the constraints on the graph definition.

A Coherence Based Framework for Institutional Agents 297

1

10.8
0.8 0.2

1

0.8

0.8

Oc(obey
(traffic_rules)), 1

N1

I1
B3

B2
B1

RED Oc(STOP),
1

N2

I2

Fig. 3. Belief Coherence graph of the car agent with projected norms

1

10.8
0.8 0.2

1

0.8

0.8

Oc(obey
(traffic_rules)), 1

N1

I1

¬(B6

B5

B4

B3
B2

B1

RED Oc(STOP),
1

N2

I2

¬(
B7

Fig. 4. Modified coherence graph

R

1

10.8
0.8 0.2

1

0.8

0.8

Oc(obey
(traffic_rules)), 1

N1

I1

¬(B6

B5

B4

B3
B2

B1

RED Oc(STOP),
1

N2

I2

¬(
B7

Fig. 5. Maximizing coherence - A = b � i � n \ {I2}

modified. The new beliefs added to b are a is at the Major lane, The signal is “RED”
and that there are no cars on the minor lane. The modified coherence graph is shown
in Figure 4.

298 S. Joseph, C. Sierra, and M. Schorlemmer

Now when trying to maximize the coherence, a discovers that if it removes the in-
tention I2 → to stop at RED signal from the accepted set, he is able to maximize the
coherence as in Figure 5. The total strength is S(b
 i
nr, V, ∅) = 15.516, Coherence
of the graph is C(b
 i
 nr) = 23.716 with A = {B1, B2, B3, B4, B5, B6, B7, I1,
N1, N2} and dissonance D(b
 i
 nr) = 0.35. Here the agent has a high enough
dissonance11 to reject the intention I2(intention to obey the traffic norms. This example
though simple, illustrates how an agent can act based on coherence maximization.

5 Related Work

BDI theory is the most popular of the existing agent architectures. This architecture
concentrates on the deliberative nature of the agent. There are several add ons to BDI ar-
chitecture considering the recent developments in social and institutional agency, where
the traditional cognitive model seems inadequate. They primarily include the addition
of norms to the cognitive concepts of belief, desire, and intention. The BOID architec-
ture with the addition of obligation [2], and the work on deliberative normative agents
[4] are the most prominent among them. In the BOID architecture the main problem is
conflict resolution between and within the modules belief, desire, intention and obliga-
tion. Their focus is on architecture, while they do not specify any means to identify or
resolve conflicts arising from interactions of B, O, I and D. Further the modules are
flat structured where the associations between elements in the modules are not exposed
making it difficult to identify and analyze conflicts. The work by Castelfranchi in [4]
again concentrates on the architecture. Their main contribution is the emphasis on agent
autonomy. While most literature assume the strict adherence to the norms, they insist
that it is an agent’s decision whether to obey norms or not. As in the BOID architecture,
they do not provide any mechanism by which an agent can violate a norm or reason
about a norm violation. Another work by Lopez et al. [14] discusses how norm com-
pliance can be ensured while allowing autonomy, using rewards and sanctions. Such
mechanisms, while certainly complimenting our approach, only handle the issue at a
superficial level and do not give the power to an agent to understand what it means to
obey or violate a norm with respect to its cognitions.

On the other hand, the work of Pasquier et al. [9] is the first to our knowledge that
attempts to unify the theory of coherence with the BDI architecture. The authors pro-
pose the theory as a reasoning mechanism to initiate a dialogue. DIalogue is initiated
so that agent’s internal incoherence is reduced. At each step of this argumentation pro-
cess coherence is reevaluated. However there are a number of ways our approach differ
from theirs. First we treat the coherence framework from a more fundamental perspec-
tive by making coherence graphs corresponding to BDI modalities elementary. Thus we
now have a clear way of studying the interactions among and between the cognitions
whereas they have a very problem specific formulation of coherence. This also implies
we can derive the associations between elements (constraints) from the properties of
the underlying logic whereas they have no way of deriving these constraints. And at
a broader level, we try introduce agent autonomy which is lacking in the current BDI

11 Assuming a dissonance threshold DT = 0.20.

A Coherence Based Framework for Institutional Agents 299

models. Finally there is no work which gives a coherence framework to reason about
agents and institutions, individually and together.

And finally the collection of works by Thagard who proposed the coherence theory
as constraint satisfaction [11]. He has applied his theory to explain many of the natural
phenomena. But so far has not given a formal specification of coherence nor integration
into other theories.

6 Discussion and Future Work

In this paper, we have formally defined the basic coherence tools for building institu-
tional agents. We aim to further develop this theory in the following directions.

An important question we have left unanswered in the paper is given the beliefs or
norms how their corresponding coherence graphs can be created. Evaluating the asso-
ciation between two atomic beliefs looks more like a human task, yet we can use sim-
ilarity measures extracted from other repositories like ontologies, Wordnet or search
results. Whereas evaluating associations between complex beliefs, we can use the un-
derlying logic. Composing coherence graphs is another important aspect that we have
dealt only superficially. The composition is important as it is the coherence measures
of the graph compositions that normally identifies conflicts. We plan to explore these
ideas in more detail in our future work.

In this paper we also limit our framework to logical systems whereas coherence can
be applied to arbitrary graphs. In the future work we plan to make the coherence graphs
more general so that non-logical agents can use coherence measures.

In the present work, we have provided the basic reasoning tools for a norm aware
agent. We have shown when and how an autonomous agent could violate a norm. From
the institutional perspective, a series of norm violations should trigger further actions,
such as an analysis of why the norm is being violated. This could lead to a norm revision
leading to an institutional redefinition. Our future work involves further exploration into
questions related to norm violation from an institutional perspective.

We have simplified the representation of norms in the present work. In the future,
we plan to have a more expressive representation of norms which includes the state of
action when the norm is applicable, objectives behind the norm and the values promoted
by the norm, borrowing the ideas developed in [1].

And finally, a coherence maximization may not only lead to a norm violation, but
can also trigger a belief update, leading to the process of evolution of cognition. There
are no widely accepted theories on how a cognitive agent can be evolved. The proposed
theory helps to understand when a belief revision is profitable. In the future work, we
propose to further explore cognitive revision in an institutional agent.

Acknowledgments. This work is supported under the OpenKnowledge12 Specific
Targeted Research Project (STREP), which is funded by the European Commission
under contract number FP6-027253. Schorlemmer is supported by a Ramon y Cajal re-
search fellowship from Spain’s Ministry of Education and Science, which is partially

12 http://www.openk.org

300 S. Joseph, C. Sierra, and M. Schorlemmer

funded by the European Social Fund. Special acknowledgments to all the reviewers of
COIN@DURHAM07 for their detailed reviews and insightful comments.

References

[1] Atkinson, K.: What Should We Do?: Computational Representation of Persuasive Argu-
ment in Practical Reasoning. PhD thesis, University of Liverpool (2005)

[2] Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The BOID architecture:
Conflicts between beliefs, obligations, intentions and desires. In: AGENTS 2001 (2001)

[3] Casali, A., Godo, L., Sierra, C.: Graded BDI models for agent architectures. In: Leite, J.A.,
Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, Springer, Heidelberg (2005)

[4] Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative normative agents: Prin-
ciples and architecture. In: Jennings, N.R. (ed.) ATAL 1999. LNCS, vol. 1757, Springer,
Heidelberg (2000)

[5] Festinger, L.: A theory of cognitive dissonance. Stanford University Press (1957)
[6] Goble, L., Meyer, J.-J.C. (eds.): DEON 2006. LNCS (LNAI), vol. 4048. Springer, Heidel-

berg (2006)
[7] Lin, J.Y.: An economic theory of institutional change: Induced and imposed change. Cato

Journal 9(1) (1989)
[8] Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Science Edi-

tions, J. Wiley, Chichester (1964)
[9] Pasquier, P., Chaib-draa, B.: The cognitive coherence approach for agent communication

pragmatics. In: AAMAS 2003 (2003)
[10] Searle, J.R.: The Construction of Social Reality. Free Press (1997)
[11] Thagard, P.: Coherence in Thought and Action. MIT Press, Cambridge (2002)
[12] Vigan, F., Fornara, N., Colombetti, M.: An operational approach to norms in artificial insti-

tutions. In: AAMAS 2005 (2005)
[13] von Wright, G.H.: An Essay in Deontic Logic and the General Theory of Action: With a

Bibliography of Deontic and Imperative Logic. North-Holland Pub. Co, Amsterdam (1968)
[14] López y López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms. In:

AAMAS 2002 (2002)

Distributed Norm Enforcement Via Ostracism

Adrian Perreau de Pinninck, Carles Sierra, and Marco Schorlemmer

IIIA – Artificial Intelligence Research Institute
CSIC – Spanish National Research Council
Bellaterra (Barcelona), Catalonia, Spain
{adrianp,sierra,marco}@iiia.csic.es

Abstract. An agent normative society has to deal with two main con-
cerns: how to define norms and how to enforce them. Enforcement be-
comes a complex issue as agent societies become more decentralized and
open. We propose a new distributed mechanism to enforce norms by os-
tracizing agents that do not abide by them. Our simulations have shown
that, although complete ostracism is not always possible, the mechanism
substantially reduces the number of norm violations.

1 Introduction

In a normative Multi-Agent System (MAS) a set of norms are added to restrict
the set of available actions in order to improve the coordination between agents.
An autonomous agent has the choice whether or not to support a norm. It is
up to the agent to decide if it is convenient for it to abide by it. For a utility
maximizer agent if following a norm is profitable, it is in the agent’s own interest
to act as the norm establishes. But this is not always the case, as some norms
are profitable even when not all agents abide by them. For example, a norm that
dictates that owners must clean the common areas. Cleaning entails a cost, and a
clean area is a benefit to all. If an owner does not clean the common area (i.e., a
norm violator) thus not bearing its cost, but the others do, the area is still clean.

The aim of this paper is to introduce a new distributed mechanism that at-
tains norm compliance by ostracizing norm violating agents. Our scenario allows
agents to interact with each other. An agent can interact with the agents it is
linked to directly or indirectly through a path of links (i.e., agents can interact
with direct neighbors, with neighbors of neighbors, and with their neighbors and
so on...). An initiator agent will search for a path in the society to find a partner
agent with which to interact. All the agents in the path that are not the initiator
or the partner agent will be called mediator agents (i.e., agents mediating the
interaction).

We use a game-theoretic approach to interactions, which we model as a two-
player game with two possible strategies; cooperate and defect. The utility func-
tion will be that of a prisoner’s dilemma (see Figure 1).

The norm in this scenario is for all agents to cooperate, thus attaining the
maximum utility for the society. Nonetheless, agents can choose to ignore the
norm and defect (i.e., violate the norm) thus gaining more utility. In order to

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 301–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

302 A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer

PD Cooperate Defect

Cooperate 3,3 0,5

Defect 5,0 1,1

Fig. 1. Prisoner’s Dilemma Payoff Matrix

attain norm enforcement, some agents (we will call them enforcer agents) are
given the ability to stop interacting with violators, and to stop them from inter-
acting with the enforcer’s own neighbors. When enough agents use this ability
against a violator, it is ostracized. An agent is ostracized when it cannot interact
with anyone else in the society, in this case it is a consequence of defecting in
the interaction with many different agents.

The motivation behind using ostracism comes from the study of norm en-
forcement in primitive societies [11]. When a member of a community repeatedly
ignored its customs, it was forced to leave. No one in the community would inter-
act with the ostracized member from then on. Ostracism is achieved in human
societies through force and physical constraint. In order to achieve ostracism of
electronic entities, which interact through a network, we seek inspiration from
the network security area. The most commonly used component in this case is a
firewall, which blocks those communications which appear to be harmful. While
firewalls are usually set up by humans through complex rules, enforcer agents
will use gossip as a way to inform each other about malicious agents.

Fig. 2. Ostracizing a violator

The ostracism process can be seen in Figure 2. At first an undetected violator
in the network (the dark gray node) can interact with all the other agents (light
gray nodes are liable to interact with the violator). When the violator interacts,
and defects, it can be detected by enforcer agents which will block it (black
nodes are blocking agents, and white nodes are agents that the violator cannot
interact with). When all the violator’s neighbors block it, it is ostracized.

Distributed Norm Enforcement Via Ostracism 303

Gossip is essential to find out information about other agents in a distributed
environment. We will use gossip as part of the enforcement strategy to ostra-
cize agents. Information is gossiped only to agents mediating the interaction, to
minimize the amount or resources it takes. If agent agv violates the norm when
interacting with agent ag1, ag1 may spread this information to all mediator
agents so they may block agv in the future.

By running a set of simulations, we study under which conditions the mecha-
nism works, and give measures of its success (such as the violations received or
the utility gained). Our hypotheses are:

– H1 - Norm violations can be reduced by applying a local blocking rule.
– H2 - The society’s structure influences its enforcement capabilities.
– H3 - The choice of blocking strategy influences the number of violations

received.
– H4 - Enforcement makes norm-abiding a rational strategy.

Section 2 describes related work in the area of norm enforcement. Section 3
presents a detailed description of the scenario we employ in the simulations.
Section 4 describes the simulations and analyzes the resulting data. Finally,
section 5 presents future work.

2 Related Work

The problem of norm enforcement has been dealt with in human societies
through the study of law, philosophy, and the social sciences. Recently it is
being dealt with in computer science, where norms are studied as a coordination
mechanism for multi-agent systems. Axelrod [1] first dealt with the application
of norms from an evolutionary perspective. Enforcement is seen by Axelrod as
a sort of meta-norm to punish agents that do not punish violators. The norm
game is often modeled as an N-Player Iterated Prisoner’s Dilemma [1,8]. In
these cases the norm is to cooperate and ways are sought to ensure that agents
prefer cooperation. Other research studies norms that avoid aggression or theft
[4,7,12,15]. In these cases agents gain utility by either finding items or receiving
them as gifts. But these items can be stolen by other agents through aggression.
An agent that abides by the possession norms will not steal food possessed by
another agent, therefore avoiding aggression.

Two enforcement strategies have been studied to attain norm compliance: the
use of power to change the utilities through sanctions or rewards [2,3,8,14], and
the spread of normative reputation in order to avoid interaction with violators
[4,6,7,12,15]. Both strategies have the goal of making norm adopters better off
than norm violators. But this is not always accomplished [4,7], since all agents
benefit from the norm while only enforcers agents bear its cost.

Norm enforcement models in [2,6] show how violating the norm becomes an
irrational strategy when punishment is possible. But these models assume the fol-
lowing: (i) agents are able to monitor other agents’ activities; and (ii) agents have
the ability to influence the resulting utility of interactions. Assumption (i) can

304 A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer

be materialized by having a central agent mediate all interactions [2], or by hav-
ing agents recognize violators through direct interaction with them, or through
gossip with other agents [4]. The first solution does not scale, since the mediator
agent would be overwhelmed in a large system. The second scales because no
agent is the enforcement bottleneck, but it is less efficient since in a distributed
environment not all violations will be known to everyone. Assumption (ii) can be
carried out through third-party enforcement [2], or self-enforcement [6] in which
each agent carries out sanctions to agents it interacts with. Third party does not
scale since it can easily be overwhelmed in a large system. For self-enforcement,
all agents must have the ability to affect the outcome utility of interactions.

Axelrod [1] defines the “shadow of the future” as a mechanism to affect an
agent’s choice in iterated games. An agent is deterred from defecting when the
probability of interacting with the same agent in the future is high, and agents
will defect in future interactions with known violators. Nonetheless, this mech-
anism makes enforcers violate the norm as they also defect. Another method is
the threat of ostracism or physical constraint. By not interacting with violators,
an agent can interact with another agent and achieve a higher payoff. Younger
has studied [15] the possibility of avoiding interaction with norm-violators, but
does not prevent norm-violators from interacting with anyone else.

Kittock [9] was the first to study how the structure of a multi agent system
affected the emergence of a social norm. He studied regular graphs, hierarchies,
and trees. In [5] Delgado studied emergence in complex graphs such as scale-free
and small-world, and in [10] studied the relationship between a graph’s clustering
factor and emergence.

Using the scenario presented in this paper, agents can monitor other agents’
activities, and influence future interactions. The spread gossip, and sanctioning
norm-violators with ostracism via blockage are the techniques used to achieve
this influence. We have studied norm enforcement using these techniques in
societies with differing structures.

3 The Scenario

We model our multi-agent system as an undirected, irreflexive graph: MAS =
〈Ag, Rel〉, where Ag is the set of vertices and Rel the set of edges. Each vertex
models an agent and each edge between two vertices denotes that the agents are
linked to each other. We have chosen three kinds of graphs for their significance:
Tree, Random, and Small-World. We define a tree as a graph in which each node
has one parent and some number of children; one node, the root node, has no par-
ent, and the leave nodes have no children. Nodes are linked to their parents and
children. In a random graph any node can be linked to any other one with a given
probability. A small-world graph is created by starting with a regular graph1,
and adding enough random edges to make the average distance between any two
vertices significantly smaller [13]. A small-world graph is highly clustered (i.e., if
1 CN,r is a regular graph on N vertices such that vertex i is adjacent to vertices

(i + j) mod N and (i − j) mod N for 1 ≤ j ≤ r.

Distributed Norm Enforcement Via Ostracism 305

a node has two neighbors, the probability of them being linked is high), and there
are some links between distant parts of the graph that make the average dis-
tance between any two vertices small. A small-world network is small in the sense
that one can always find a short path connecting any two vertices. The graph
structures have been generated with a similar average number of links per node.

We use a game-theoretic approach by modeling interactions as a two-player
prisoner’s dilemma game. The norm is that agents ought to cooperate (i.e., an
agent disobeys the norm by defecting). In order for two agents to interact, there
must be a path in the graph between the two. One agent will search for a path
that leads to another agent with which to interact. We call the searching agent
initiator agent, the agent chosen to interact partner agent, and the remaining
agents in the path mediator agents. The partner finding process is explained
below, but first we need to formally describe some terms.

We define the set of neighbors of an agent ai as the set of agents it is linked
to directly in the graph: N(ai) = {aj ∈ Ag | (ai, aj) ∈ Rel}. Each agent also has
a set of agents it blocks (an agent cannot block itself): B(ai) ⊆ Ag \ {ai}. An
agent ai can query another agent aj for a list of its neighbors. We call the set
of agents that aj returns, reported neighbors: RN(ai, aj) ⊆ N(aj). The set of
reported neighbors depends on the blocking strategy of aj . The strategies used in
our simulations are explained below. A path is the route (without cycles) in the
graph structure through which interaction messages are delivered. We represent
a path as a finite (ordered) sequence of agents p = [a1, a2, . . . , an] such that for
all i with 1 ≤ i ≤ n−1 and n ≥ 2 we have that ai+1 ∈ N(ai), and for all i, j with
1 ≤ i, j ≤ n and i �= j we have that ai �= aj. The agent a1 of a path is the initiator
agent, agent an is the partner agent, the remaining ones are mediator agents.

In order to find a partner, the initiator agent ai creates a path p = [ai] with
itself as the only agent in it. A path with one agent is not valid, since an agent
cannot interact with itself. Therefore, the initiator agent will query the last
agent in the path (the first time it will be itself) to give it a list of its neighbors.
It will choose one of them randomly2 (aj) and add it to the end of the path
p = [ai, ..., aj]. At this point, if agent aj allows it, the initiator agent can choose
agent aj as the partner. Otherwise, it can query agent aj for its neighbors and
continue searching for a partner. In our scenario this choice is taken randomly:
with probability p = 0.3 aj becomes the partner, and with probability 1 − p it
becomes a mediator and ai asks it for its neighbors.

If the path’s last element is an agent an that refuses to interact with the
initiator agent, and an returns an empty list of agents when queried for its
neighbors, backtracking is applied. Agent an is removed and a different agent is
chosen from the list of an−1’s neighbors and added to the end of the list.

Once the partner is chosen, a prisoner’s dilemma game is played between the
initiator and the partner. The game results and the path are known by both
playing agents. Playing agents can choose to send the game results to all the
mediators in the path. This is what we call gossip, which formally speaking is
a tuple that contains the agents’ names and their strategy choices for the given

2 To avoid loops, an agent that is already part of the path cannot be chosen again.

306 A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer

game: Gossip = 〈agi, chi, agj, chj〉, where chi and chj are either cooperate or
defect.

During the whole process agents can execute any of the following actions:

– Return a list of neighboring agents when asked for its neighbors.
– Accept, or reject, an offer to interact.
– Choose a strategy to play in the PD game when interacting.
– Inform mediators of the outcome of the interaction.

The society of agents is composed of three types of agents, each one charac-
terized by a different strategy for the actions it can execute. A meek agent is a
norm-abiding agent that always cooperates. It will always return all its neighbors
to any agent that asks. A meek agent will always accept an offer to interact, it
will always cooperate in the PD game, and it will never gossip. A violator agent
follows the strategy of a meek agent, except that it always defects when playing
a game, therefore it is not a norm-abiding agent. Violator agents in our simula-
tions are very naive, they never model the other agents, or treat them differently
depending on their actions. In short, they cannot change the strategies. Future
work will look into more sophisticated norm-violators.

Finally, an enforcer agent has the ability to block violators, which is essential
in order to achieve their ostracism. An enforcer agent shares the same strategies
with meek agents with the following exceptions: It will add agents that have
defected against it to its set of blocked agents, and will gossip to all mediators
when defections happen. If an enforcer is informed of the results of a game it
was mediating, it will act as if it had played the game itself. An enforcer agent
will never choose an agent in its blocked set as a partner, and will not allow
an agent in its blocked set to choose it as a partner. Therefore, a violator agent
cannot interact with an enforcer who is blocking it. When an enforcer agent am

is asked to return a list of its neighbors by an agent ai who is not in its blocked
set, two different strategies are possible. The Uni-Directional Blockage (UDB)
strategy, where all its neighbors will be returned (RN(ai, am) = N(am)). Or the
Bi-Directional Blockage (BDB) strategy, where only those neighbors not in its
blocked set are returned (RN(ai, am) = N(am) \ B(am)). When the querying
agent is in the enforcer agent’s blocked set, it always returns an empty set.

The choice of enforcement strategy entails a trade off. Intuitively, one can
see that enforcer agents are better off with the UDB strategy, since they will
be able to use violator agents as mediators to reach other parts of the society.
Enforcers will not be tricked by a violator more than once, so they are sure not
to interact with them. Therefore, using violators as mediators benefits enforcers.
Meek agents, on the other hand, do not learn to avoid violators. They may
choose one unknowingly as their partner repeatedly. BDB is a better strategy for
meek agents, it reduces their chances of choosing violator agents. Furthermore, a
structure with a violator as a cut vertex, may be split into two different societies
when the BDB strategy is used, and the violator is ostracized. If the UDB
strategy is used, the society stays connected, since the ostracized violator can
still be used as a mediator.

Distributed Norm Enforcement Via Ostracism 307

In order to focus on the most relevant aspects in our simulations, we made
the following limiting assumptions:

– Agents cannot change their strategy (i.e., a violator is always a violator).
– Agents cannot lie when sending gossip.
– There are no corrupt enforcer agents.
– There is no noise (i.e., an agent knows its opponent’s chosen strategy).

These assumptions imply that modeling agents’ reputation is simple. Being in-
formed once about an agent’s strategy is enough, since information will never
be contradictory. Therefore, there is no place for forgiveness, and sanctions are
indefinite. Relaxation of these assumptions will be studied in future work.

4 Simulations

The simulations have been run using the scenario specified in Section 3. Each
simulation consists of a society of 100 agents. The society will go through 1000
rounds, in a round each agent tries to find a partner with which to interact. If
the agent finds a partner a prisoner’s dilemma with the utility function of Figure
1 is played.

The parameters that can be set in each simulation are:

– Percentage of Violators (V) - from 10% to 90% in 10% increments.
– Percentage of Enforcers (E) - from 0% to 100% in 10% increments3.
– Type of Graph (G) - either tree, small world, or random.
– Enforcement Type (ET) - Uni-Directional Blockage (UDB), or Bi-Directional

Blockage (BDB).

An exhaustive set of simulations have been run with all the possible values
for each parameter. Each simulation has been run 50 times in order to obtain
an accurate average value. The metrics that have been extracted are: the mean
violations received per agent, and the mean utility gained per agent. The metrics
have been calculated for the whole society and for each agent type. The data
gathered from the simulations supports our hypotheses.

(H1) Norm violations can be reduced by applying a local blocking
rule. The graph in Figure 3 shows that the higher the percentage of norm-
abiding agents that use a blocking rule, the lower the average number of norm
violations received by any agent in our system. There are five different lines in
the graph, each one stands for a different percentage of violating agents. In all
cases a higher enforcer to meek agent ratio (x-axes) leads to lower violations
received in average by any agent (y-axes). When the ratio of enforcers is high,
violators end up interacting with each other. Therefore, the y-axes measures the
violations received by “any” agent, the reduction in violations in Figure 3 is not
significant. The data referring to the violations received only by norm-abiding
3 The percentage of meek agents is computed through the following formula: M =

100% − V − E. Therefore, V + E cannot be more than 100%.

308 A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer

Fig. 3. Local blocking rule reduces violations to all agents

Fig. 4. Local blocking rule reduces violations to norm-abiding agents

agents shows a larger reduction (see Figure 4). Enforcer agents can perceive a
norm violation at most once per violator agent. But if we look at the violations
received by meek agents, we see that they experience an increment of violations

Distributed Norm Enforcement Via Ostracism 309

Fig. 5. Enforcement capabilities vary depending on structure (10% violators)

Fig. 6. Enforcement capabilities vary depending on structure (20% violators)

when the ratio of enforcers is high (see Figure 10). This means that enforcer
agents have blocked violator agents, which are forced to interact with the small
number of meek agents left unprotected. Since the meek are a small portion of

310 A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer

the norm supporters, this does not influence the total violations perceived by
norm supporters as a whole. Therefore, the higher the ratio of enforcer agents,
the lower the average of violations perceived by norm-abiding agents.

(H2) The society’s structure influences its enforcement capabilities. It
is also seen from the data that different organizational structures in the multi-
agent system influence norm enforcement. In Figure 5 and 6 we have extracted
the average norm violations (y-axes) for each of the different structures tested:
Random, Small World, and Tree. We have only shown the simulations where
violator agents account for 10% and 20% of the population, therefore at most
there will be 90% or 80% of enforcers, respectively. The x-axes contains the
different percentages of enforcer agents tested. It can be seen that both random
and small world networks have an almost identical graph line. On the other hand
the tree structure has shown to improve the enforcement capabilities. The main
difference between a tree and the other structures studied is that in a tree there
is only one path between any two agents. In random and small world graphs,
many paths can be usually found between any two agents.

(H3) The choice of blocking strategy influences the number of viola-
tions received. The data in Figure 7 supports this hypothesis. The x-axes shows
the enforcer to meek agent ratio. The y-axes contains a metric for the increment
in efficiency at protecting meek agents from violations. Efficiency is the difference
(calculated in percentage) in violations received by meek agents for each of the

Fig. 7. Enforcement strategy influences received violations

Distributed Norm Enforcement Via Ostracism 311

Fig. 8. Utility gained by norm-abiding agents

Fig. 9. Utility gained by norm-violating agents

two different enforcement strategies ΔE = ((VUDB/VBDB) − 1) × 100. ΔE cal-
culates the increase in violations received by agents when using uni-directional
blockage in respect to bi-directional blockage.

312 A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer

Fig. 10. Local blocking rule increases violations received by meek agents

Fig. 11. Local blocking rule increases utility gained by meek agents

Figure 7 shows that for random and small world networks the efficiency is
positively correlated with the enforcer to meek agent ratio. We can conclude
that Bi-Directional Blockage has a higher efficiency at protecting meek agents

Distributed Norm Enforcement Via Ostracism 313

from violator agents. This is not observed in the tree network. In this case
the efficiency stays along the 0% line with some deviations. We argue that in
networks organized as trees, the choice of enforcement strategy does not have
a significant influence in the outcome. The tree network is already good for
ostracizing offenders, and the blockage strategy does not improve it.

(H4) Enforcement makes norm-abiding a rational strategy. This hy-
pothesis is supported by the utility gained by agents. A strategy is rational if
it maximizes the agent’s utility. What has been tested is whether following the
norm maximizes the agent’s utility, and in which conditions. Figure 8 shows the
utility gained (y-axes) by norm supporting agents, its x-axes shows the enforcer
to meek agent ratio. Figure 9 instead shows the utility gained by norm violating
agents. In both figures each line represents the amount of violating agents in the
system. As the number of enforcers increases there is a tendency for norm sup-
porters to gain more utility, while the opposite tendency is observed for violator
agents. When the number of enforcer agents is low, the utility gained by violator
agents is much higher than the one gained by norm supporters. As the number of
enforcer agents grows the roles are reversed. The inflection point depends on the
amount of violator agents in the system. For simulations with 10% of violator
agents, supporting the norm becomes rational when the enforcer to meek ratio is
higher than 1.25. For simulations with 50% of violator agents, the ratio needs to
be higher than 0.7. The rest of simulations have inflection points between those
two values.

It is interesting to note that even though meek agents receive more violations
as the number of enforcer agents grows (see Figure 10), the utility gained by
them surprisingly increases (see Figure 11). This is due to the fact that meek
agents are still able to interact with other norm-abiding agents. Since violators
are being blocked the ratio of defection to cooperation is lowered and the utility
is increased.

5 Future Work

This paper is part of ongoing research on norm enforcement. Future work will
relax the set of assumptions about agents, by giving them the ability to change
their strategies in time, to lie, and to allow enforcer agents to violate the norm
(i.e., corrupt enforcers). The assumption of perfect information will be relaxed
by adding uncertainty and noise. For these cases elaborate gossip techniques and
reputation management will allow agents to enforce the norm. In future work the
agent’s reputation will be modeled not through gossip but through interaction
overhearing. Mediating agents could overhear the interactions instead of waiting
for interacting agents to report the outcome. More so, other conservative blocking
strategies can be studied; such as blocking off agents that mediate norm violators,
or blocking agents until they are shown to be norm-abiders.

Furthermore, the impact of other network parameters and dynamic networks
will be analyzed. New links between agents could be added dynamically and test

314 A. Perreau de Pinninck, C. Sierra, and M. Schorlemmer

how this affects norm enforcement. New enforcement techniques will be studied
to take advantage of dynamic networks.

Finally, other studies have shown that the efficiency of enforcement diminishes
when enforcement conveys a cost to the enforcing agent [1,8]. In future work there
will be cost associated to blockage. One way to associate cost to enforcers is by
removing their ability to stop agents from interacting with them. In this case,
enforcers can withhold information from known violators, but if asked will have
to interact with them and endure the norm violation.

Acknowledgments

This work is supported by the Generalitat de Catalunya under the grant 2005-
SGR-00093, and the FP6-027253 OpenKnowledge4 Project. A. Perreau de Pin-
ninck is supported by a CSIC predoctoral fellowship under the I3P program,
and M. Schorlemmer is supported by a Ramón y Cajal research fellowship from
Spain’s Ministry of Education and Science, both of which are partially funded
by the European Social Fund.

References

1. Axelrod, R.: An evolutionary approach to norms. The American Political Science
Review 80, 1095–1111 (1986)

2. Boella, G., van der Torre, L.: Enforceable social laws. In: AAMAS 2005: Pro-
ceedings of the Fourth International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 682–689 (2005)

3. Carpenter, J., Matthews, P., Ong’ong’a, O.: Why punish: Social reciprocity and the
enforcement of prosocial norms. Journal of Evolutionary Economics 14(4), 407–429
(2004)

4. Castelfranchi, C., Conte, R., Paoluccci, M.: Normative reputation and the costs of
compliance. Journal of Artificial Societies and Social Simulation 1(3) (1998)

5. Delgado, J.: Emergence of social conventions in complex networks. Artificial Intel-
ligence 141(1), 171–185 (2002)

6. Grizard, A., Vercouter, L., Stratulat, T., Muller, G.: A peer-to-peer normative
system to achieve social order. In: AAMAS 2006 Workshop on Coordination, Or-
ganization, Institutions and Norms in agent systems (COIN) (2006)

7. Hales, D.: Group reputation supports beneficent norms. Journal of Artificial Soci-
eties and Social Simulation 5(4) (2002)

8. Heckathorn, D.D.: Collective sanctions and compliance norms: A formal theory of
group-mediated social control. American Sociological Review 55(3), 366–384 (1990)

9. Kittock, J.E.: The impact of locality and authority on emergent conventions: Initial
observations. In: AAAI 1994. Proceedings of the Twelfth National Conference on
Artificial Intelligence, vol. 1, pp. 420–425. AAAI Press, Menlo Park (1994)

10. Pujol, J.M., Delgado, J., Sangüesa, R., Flache, A.: The role of clustering on the
emergence of efficient social conventions. In: IJCAI 2005: Proceedings of the Nine-
teenth International Joint Conference on Artificial Intelligence, pp. 965–970 (2005)

4 http://www.openk.org

Distributed Norm Enforcement Via Ostracism 315

11. Taylor, M.: Community, Anarchy & Liberty. Cambridge University Press, Cam-
bridge (1982)

12. Walker, A., Wooldridge, M.: Understanding the emergence of conventions in multi-
agent systems. In: Lesser, V. (ed.) Proceedings of the First International Conference
on Multi-Agent Systems, San Francisco, pp. 384–389. MIT Press, Cambridge (1995)

13. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Na-
ture (393), 440–442 (1998)

14. López y López, F., Luck, M., d’Inverno, M.: Constraining autonomy through norms.
In: AAMAS 2002: Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 674–681. ACM Press, New York
(2002)

15. Younger, S.: Reciprocity, sanctions, and the development of mutual obligation
in egalitarian societies. Journal of Artificial Societies and Social Simulation 8(2)
(2005)

Model Checking Norms and Sanctions in Institutions�

Francesco Viganò1 and Marco Colombetti1,2

1 Università della Svizzera italiana, via G. Buffi 13, 6900 Lugano, Switzerland
{francesco.vigano,marco.colombetti}@lu.unisi.ch
2 Politecnico di Milano, piazza Leonardo Da Vinci 32, Milano, Italy

marco.colombetti@polimi.it

Abstract. In this paper we enrich FIEVeL (a modelling language for institutions
amenable to model checking) with new constructs to describe norms and sanc-
tions. Moreover, we present a specification language to reason about the effective-
ness of norms and sanctions in shaping agent interactions. Finally we show that
when properties of artificial institutions reflect certain interpretations of norms of
human institutions, it is not always possible to satisfy them. As a consequence,
regimentation of norms is not always a viable solution.

1 Introduction

Rules defined by artificial institutions and enforced by their software implementations,
named electronic institutions [5], have been put forward as means to regulate open mul-
tiagent systems. Institutions define two kinds of rules [17]: norms (also named regula-
tive rules [17]), which regulate existing activities, and constitutive rules, which create
the very possibility of certain institutional actions.

Artificial institutions are often designed to reflect constitutive and regulative rules
defined by human institutions in artificial systems [10,9,7], and model checking can
play an important role to evaluate the compliance of artificial institutions with rules of
human institutions and to compare design alternatives arising from different interpreta-
tions of such rules.

In general, when we map human rules only onto constitutive rules of artificial insti-
tutions, we obtain systems where violations cannot occur (they are regimented [10,9]).
Instead, when we introduce regulative rules into artificial institutions, we obtain sys-
tems where violations may occur due, for instance, to the agents’ autonomy. As a
consequence, when we analyze results obtained by a model checker, it is important
to consider how rules of human institutions have been mapped onto rules of artificial
institutions: if a norm of a human institution has been mapped onto a set of constitutive
rules of an artificial institution and a property that reflects it does not hold, then the ar-
tificial institution is incorrect. Instead, when a norm n has been mapped onto regulative
rules of the artificial institution, we have to analyze whether: (i) norms of the artificial
institution are correct, that is, a property reflecting expected effects of norm n holds
over paths compliant with norms, and (ii) sanctions applied when norms are violated
enforce desirable effects of norm n over all other possible evolutions.

� Supported by the Swiss National Science Foundation project 200020-109525, “Artificial Insti-
tutions: specification and verification of open distributed interaction frameworks.”

J.S. Sichman et al. (Eds.): COIN 2007, LNAI 4870, pp. 316–329, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Checking Norms and Sanctions in Institutions 317

The main contributions of this paper are threefold: first, we extend FIEVeL [19], a
modelling language for institutions amenable to model checking, with new constructs
to describe norms and sanctions, exemplifying how norms can be defined and enforced
with our language; second, we present a flexible specification language which provides
temporal operators that select paths compliant with certain sets of norms, showing that
existing proposals (e.g. [12,16,1]) can be reduced to particular patterns of specification
of our language; finally, we contribute to the ongoing debate about regimentation and
enforcement of norms [10,9,6,8], showing that when human institutions impose a spe-
cific interpretation of norms, it may be the case that properties that reflect them cannot
be satisfied by artificial institutions under the assumption that agents are autonomous.
As a consequence, regimentation of norms is not always a viable solution.

The remainder of this paper is structured as follows: Section 2 introduces the OMS-
FOTL logic which is used to define the semantics of FIEVeL and to state properties of
institutions in Section 3, where we provide an overview of our framework by resuming
results discussed in our previous works. Section 4 presents how norms can be described
with FIEVeL, while Section 5 introduces a language to define properties which consider
only evolutions of institutions that comply with certain sets of norms. Section 6 explains
how to formalize sanction mechanisms with FIEVeL and finally Section 7 provides a
comparison of our approach with related works and presents some conclusions.

2 Ordered Many-Sorted First-Order Temporal Logic

An ordered many-sorted first-order temporal logic (OMSFOTL) is a many-sorted first-
order logic [13] enriched with temporal operators and hierarchies of sorts. The signature
of an OMSFOTL logic consists of a finite nonempty set of sort symbols Σ, a hierarchy
of sorts ≤Σ (where σ1 ≤Σ σ2 means that sort σ1 is a subsort of sort σ2), finite sets of
constants (C), function symbols (F), and predicate symbols (P), and a denumerable set
of variables (V). Moreover, an OMSFOTL signature defines function ξ which assigns
a sort to every variable and every constant, and a signature (i.e. a sequence of sorts) to
every function and predicate symbol. Given sorts Σ, the set Tσ of terms of sorts σ is the
smallest set such that:

– v ∈ Tσ if v ∈ V and ξ(v) ≤Σ σ;
– c ∈ Tσ if c ∈ C and ξ(c) ≤Σ σ;
– f(t1, ..., tn) ∈ Tσ if f ∈ F, ξ(ti) ≤Σ [ξ(f)]i for 1 ≤ i ≤ n and [ξ(f)]0 ≤Σ σ

where [ξ(q)]i refers to the i-th sort of the signature of a predicate or function symbol
q. The set T of terms is the union of the sets Tσ for all σ ∈ Σ and the set A of atomic
formulae is the smallest set such that:

– (t1 = t2) ∈ A if there exists sort σ such that ξ(t1) ≤Σ σ and ξ(t2) ≤Σ σ;
– p(t1, ..., tn) ∈ A if p ∈ P and ξ(ti) ≤Σ [ξ(p)]i for 1 ≤ i ≤ n.

The set of formulae is defined according to the following grammar:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | ∃ϕ | Xϕ | ϕUϕ | Eϕ

where α is an atomic formula.

318 F. Viganò and M. Colombetti

The semantics of OMSFOTL is given with respect to a Kripke structure M , a path
π (i.e., a sequence of states π = s0, s1, s2, . . . of M), and an interpretation function I
which, given a state s and an atomic formula α ∈ A, returns a value in {0, 1}. In the
sequel we use πk to denote the k-th state of path π and πk for the suffix of π starting at
state πk. A formula ϕ is true in a model M over a path π in M (M, π |= ϕ) when:

M, π |= α iff I(α, π0) = 1;
M, π |= ¬ϕ iff M, π � ϕ;
M, π |= ϕ ∧ ψ iff M, π |= ϕ and M, π |= ψ;
M, π |= ∃xϕ iff there exists a constant c of sort ξ(x) such that M, π |= ϕc, where ϕc

is obtained from ϕ by replacing all unbounded occurrences of variable
x with constant c;

M, π |= Xϕ iff M, π1 |= ϕ;
M, π |=ϕUψ iff exists an i≥0 such that M, πi |=ψ and for all 0≤j<i M, πj |=ϕ;
M, π |= Eϕ iff there exists a path π′ such that π′

0 = π0 and M, π′ |= ϕ

assuming, for the sake of presentation, that for each state s of M : (i) for each constant c
of sort σ there exists an individual i such that I(c, s) = i, and (ii) that for each individual
i there exists a constant c such that I(c, s) = i. Expressions true, false, (ϕ ∨ ψ), (ψ →
ϕ), (ϕ ↔ ψ), and ∀xϕ are defined in terms of ¬, ∧, and ∃ in the conventional manner,
and temporal operators F, G, and the path quantifier A are introduced as abbreviations
as usual [3] to state that eventually ϕ holds (Fϕ ≡ trueUϕ), ϕ is satisfied by all states
of a path (Gϕ ≡ ¬F¬ϕ), and that all paths satisfy ϕ (Aϕ ≡ ¬E¬ϕ).

In [20] we have shown that if we assume that each sort σ is associated to a finite
domain Dσ, then OMSFOTL is as expressive as CTL∗ [4,3] and its models can be en-
coded with a finite number of atomic propositions. Despite it, we adopt OMSFOTL for
two main reasons: (i), it represents an abbreviated form for long and complex formulae
and (ii), institutions describe rules that typically are independent of the cardinality of
domains and which can be naturally expressed by allowing quantification over sorts.

3 Modelling, Specifying, and Verifying Institutions

In [19] we proposed a metamodel of institutions based on the notion of an agent status
function, which can be interpreted as a position involving a (possibly empty) set of in-
stitutionalized powers [11], obligations, prohibitions, etc. To formalize status functions
and related concepts, we map them onto sorts, functions, and predicates of an OMS-
FOTL signature and define a set of axioms to capture their interrelations and temporal
evolution. For instance, common aspects of status functions are represented by intro-
ducing sort σsf , which also defines the function subject denoting the agent (σaid) the
status function has been assigned to. Sort σsf also induces the two predicates assigned
and modified, which respectively represent if a status function is currently assigned (or
revoked) and if it has been modified by the occurrence of an institutional event. Finally,
the metamodel defines a set of axioms based on such symbols, for instance requiring
that if a status function is not affected, then its subject does not change:

AG∀f(¬Xmodified(f) → ∃a(subject(f) = a ∧ Xsubject(f) = a)) (A.1)

Model Checking Norms and Sanctions in Institutions 319

1 basic-sorts:
2 σresources;
3 σreqState = {answ,notAnsw};
4 base-events:
5 message giveResource(rec:σaid,res:σresources);
6 ...
7 institution resourceManagement {
8 status-function member() {...}
9 status-function requested(reqRes:σresources,ag:σaid,
10 sta:σreqState){...}
11 status-function holder(resource:σresources){
12 key resource;
13 powers give ← (∃ r:σrequested (assigned(r)∧ag(r)=rec∧
14 reqRes(r)=resource(f)∧sta(r)=answ)∧res=resource(f));
15 }
16 ...
17 institutional-events:
18 institutional-action give(rec:σaid,res:σresources)
19 pre ∃ x:σmember(assigned(x)∧subject(x)=rec
20 ∧¬subject(x)=actor);
21 eff r:σrequested revoke (reqRes(r)=res),
22 k:σholder assign (subject(k)=rec,resource(k)=res);
23 ...
24 conventions
25 exch-Msg(giveResource) [true]=c=> give
26 [rec=c=>rec res=c=>res]
27 ...
28 }

Fig. 1. Fragments of the Resource Management institution

An institution evolves because events (σev) occur or agents perform actions (σact

≤Σ σev). Each event-type e induces a sort σe and three predicates, happense, prece,
and effe, which express when an event of type e happens and what conditions must
be satisfied before and after its occurrence. In contrast with base-level events (e.g.,
exchange-message events), the occurrence of an institutional event (σie) requires that
another event conventionally associated to it occurs and that, in the case of institutional
actions, the actor must be empowered to perform it:

AG∀x((precia(x) ∧ ∃f(subject(f) = x1 ∧ empoweredia(f, x) ∧ assigned(f)

∧
∨

a∈σact

X(conva−ia(x) ∧ happensa(x′))) ↔ Xhappensia(x))

(A.2)

where: x is a set of variables determined by predicate happensia; the first variable of
x refers to the actor of action ia; predicate empoweredia states when status functions
are empowered to perform institutional action ia; predicate conva−ia represents the
existence of a convention among action a and institutional action ia; and x′ reflects
how arguments of ia are mapped over arguments of action a.

320 F. Viganò and M. Colombetti

To model institutions in terms of the concepts described by our metamodel, in [19]
we introduced FIEVeL, a modelling language for institutions, whose syntax is exempli-
fied in Figure 1 and whose semantics is given by providing a translation of its constructs
into a set of symbols and formulae of an OMSFOTL logic. According to Figure 1, in the
Resource Management institution a member can request a holder to give the control
of one of its resources. When an agent accepts to satisfy the request, it is empowered
to give a resource to the agent that has requested it, which becomes its new holder.
More precisely, line 2 of Figure 1 induces sort σresources, which represents a set of re-
sources, while lines 8-10 introduce status functions member (σmember) and requested
(σrequested), which represent respectively the status that an agent should have to request
the control over a resource and the status acquired after having successfully performed
a request to an holder. Resources are hold by agents through status function holder
(declared at line 11 of Figure 1), which defines sort σholder ≤Σ σsf and function
resource of signature ξ(resource) = 〈σresources, σholder〉. According to lines 13 and
14, an holder is empowered to give a resource res when an agent has requested it and
the holder has already acknowledged to transfer the control over the requested resource
as required by the following axiom:

AG∀s∀actor∀rec∀res(empoweredgive(s, actor, rec, res) ↔ ∃f(f = s∧
(∃r(assigned(r) ∧ ag(r) = rec ∧ reqRes(r) = resource(f)∧

sta(r) = answ) ∧ res = resource(f)))) (A.3)

where ξ(actor) = ξ(rec) = σaid, ξ(res) = σresources, ξ(s) = σsf , ξ(f) = σholder ,
and ξ(r) = σrequested .

According to FIEVeL semantics, lines 18-22 define institutional action give such
that: (i) it can be performed only if the receiver is a member and if it is not the actor,
and (ii) it revokes status function requested to the receiver and assigns status holder to
it. More precisely, institutional action give induces predicates happensgive, precgive,
and effgive (ξ(happenseff) = 〈σaid, σaid, σresources〉) such that predicates precgive

and effgive satisfy the following axioms:

AG∀actor∀rec∀res(precgive(actor, rec, res) ↔ (∃x(assigned(x)∧
subject(x) = rec ∧ ¬subject(x) = actor))) (A.4)

AG∀actor∀rec∀res(effgive(actor, rec, res) ↔ X(∀r(reqRes(r) = res →
(¬assigned(r) ∧ modified(r))) ∧ ∀k(resource(k) = res →

(assigned(k) ∧ modified(k) ∧ subject(k) = rec))) (A.5)

where ξ(actor) = ξ(rec) = σaid, ξ(res) = σresources, ξ(x) = σmember , ξ(r) =
σrequested , and ξ(k) = σholder .

Finally, lines 25 and 26 define a convention such that the exchange of a message
of type giveResource counts-as the performance of action give when the sender is
empowered and preconditions of action give are satisfied. As a consequence, axiom
(A.2) is instantiated as follows:

Model Checking Norms and Sanctions in Institutions 321

AG∀actor∀rec∀res((precgive(actor, rec, res) ∧ ∃f(subject(f) = actor∧
assigned(f) ∧ empoweredgive(f, actor, rec, res)∧

X(happensgiveResource(actor, rec, res)∧convgiveResource−give(actor, rec, res)))↔
Xhappensgive(actor, rec, res))

(A.6)

where ξ(actor) = ξ(rec) = σaid, ξ(res) = σresources, and ξ(f) = σsf .
In our framework, also properties are specified in terms of OMSFOTL formulae such

that temporal operators (X, G, F, and U) are always preceded by a path quantifier (E
or A). One of the main advantages of our approach resides in the fact that any symbol
introduced by our metamodel or by an institution can appear in a property. Furthermore,
to increase the flexibility of the language, occurrences of events are referenced with a
generic predicate happens and we write “x : σ” to say that variable x is of sort σ.
For instance, the following property requires that whenever an agent receives a positive
answer to its requests, it will eventually become the holder:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res)
→ AF∃h : σholder(subject(h) = rec ∧ resource(h) = res)) (P.1)

Analogously, we can also check if whenever a holder accepts to give a resource, it
will eventually do so:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res)
→ AFhappens(give, act, rec, res)) (P.2)

In [20] we presented a symbolic model checker specifically developed to verify
FIEVeL institutions. Given an institution and a set of properties, our tool proceeds as
follows: (i) it converts the institution into a set Φ of OMSFOTL formulae by considering
the semantics of FIEVeL constructs and axioms determined by our metamodel (see ax-
ioms (A.3), (A.4), and (A.5)); (ii) formulae Φ are translated into propositional logic and
subsequently converted into a formula in conjunctive normal form (CNF); (iii) given
the set of assignments satisfying the CNF (whose disjunction constitutes the transition
relation of a Kripke structure) and a formula ϕ0, representing a set of initial states, a
symbolic representation of an institution is built and is exploited to verify properties by
applying standard symbolic algorithms [3]. According to our model checker, properties
(P.1) and (P.2) do not hold: since constitutive rules reported in Figure 1 define possible
actions that agents can carry out, but do not ensure that empowered agents will neces-
sarily perform them, it may be the case that agents accept to give their resources but do
not perform action give.

4 Norms

To define the semantics of norms, our metamodel assumes the existence of sort σo,
whose individuals reify norms of institutions. Sort σo is used to express prohibitions
and obligations characterized by certain deadlines (not necessarily a time expression),

322 F. Viganò and M. Colombetti

and we consider that a state of affairs is permitted if it is reached without violating
any norm. In particular, for the sake of conciseness, in this paper we focus only on
norms which are considered fulfilled or violated only once after a given status func-
tion is imposed on an agent and certain conditions are met. Given sort σstate, which
introduces constants unfired, activated, and inactive, sort σo is characterized by
function state (ξ(state) = 〈σstate, σo〉), which keeps trace of the temporal evolu-
tion of a norm, a set of timers (e.g., function activation which counts how many
time events have occurred since a norm has been activated), and by a set of predicates
(start, fulfillment, and violation of signature ξ(violation) = 〈σsf , σo〉). Agents
are subject to norms when certain status functions are imposed on them: to model the
interdependency among norms and status functions, we introduce function ofStatus
(ξ(ofStatus) = 〈σsf , σo〉) which denotes the status function an obligation is asso-
ciated to. When a status function is not assigned, then its norms are considered to be
inactive and cannot be violated: we represent this fact by the following axiom, which
states that norms of a revoked status function are always inactive:

AG∀o∀f((ofStatus(o) = f ∧ ¬assigned(f)) → state(o) = inactive) (A.7)

where ξ(o) = σo and ξ(f) = σsf . Similarly, Axiom (A.8) requires that when a status
function is imposed on an agent, then the state of a norm is set to unfired if predicate
start is not satisfied, otherwise it is set to activated:

AG∀o∀f((ofStatus(o) = f ∧ X(assigned(f) ∧ modified(f))) → ((¬start(o, f)
∧Xstate(o) = unfired) ∨ (start(o, f) ∧ Xstate(o) = activated)))

(A.8)

Axioms (A.7) and (A.8), as well as other axioms omitted here for the sake of brevity,
describe the temporal evolution of functions state and activation, which in com-
bination with predicates fulfillment and violation, determine when an obligation
should be considered to be infringed. In particular, given predicate violated of sig-
nature ξ(violated) = 〈σo〉, a norm is violated if and only if it was activated, the
associated status function is not modified, violation holds while fulfillment is false:

AG∀o∀f(ofStatus(o) = f → (Xviolated(o) ↔ (state(o) = active∧
(violation(o) ∧ ¬fulfillment(o) ∧ ¬Xmodified(f))))) (A.9)

Norms are described in FIEVeL according to the following syntax:

norm ::= symbol start fulfillment violation ;
start ::= "start" "<->" expression ";" ;
fulfillment ::= "fulfillment" "<->" expression ";" ;
violation ::= "violation" "<->" expression ";" ;

where expression is an OMSFOTL formula which does not contains U, E, G,
or nested occurrences of X. Moreover, given that a norm is described within a status
function σs, free occurrences of a variable f of sort σs may appear in any formula
used to describe a norm’s condition. A norm symbol induces sort σsymbol ≤Σ σo and

Model Checking Norms and Sanctions in Institutions 323

defines under what conditions predicates fulfillment, violation, and start hold when
are evaluated over an obligation of sort σsymbol, as exemplified by the following axiom
schema:

AG∀o∀f(fulfillment(o, f) ↔ (ofStatus(o) = f ∧ expression)) (A.10)

where ξ(o) = σsymbol and ξ(f) = σs. Combining instances of Axiom Schema (A.10)
(and similarly for predicates violation and start) with Axiom(A.9), it is possible to
automatically classify states with respect to each norm defined by an institution. In
contrast with other approaches (e.g., [16] and [1]), in our framework designers can
describe norms at a high-level in terms of institutional concepts, ignoring the actual
number of states and transitions admitted by an institution. For instance, the following
norm, named h1 and associated to the holder status function, states that once a holder
accepts to give the control of a resource, then it ought to do so before a certain time
interval elapses:

h1 start<->X ∃ ag:σaid ∃ rec:σaid ∃ res:σresources (subject(f)=ag ∧
resource(f)=res ∧ happens(accept,ag,rec,res));

fulfillment<->∃ ag:σaid ∃ rec:σaid ∃ res:σresources (subject(f)=ag
∧ res=resource(f) ∧ X happens(give,ag,rec,res));

violation<->(activation(o)=1 ∧ X happens(time));

Without proper sanction mechanisms, the introduction of norms typically does not
change the set of properties satisfied by an institution, given that autonomous agents
may not comply with such norms [5,2,9,18,7]: as a consequence certain properties may
not hold in an institution even if its rules are correctly stated. For instance, properties
(P.1) and (P.2) do not hold in the new model of the Resource Management institution ob-
tained by adding norm h1, despite this correctly requires that a holder gives a resource
after it has positively answered to an agent. This is due to the fact that norms regulate
existing activities, describing what evolutions of an institution should be considered as
legal, but do not change the temporal evolution admitted by an institution.

5 Normed Temporal Operators

To analyze whether an institution may lead a system into certain states when its norms
are respected, we can exploit predicate violated and the fact that in our framework
norms are reified as norm individuals. Therefore, it is possible to quantify over sort
σo (and its subsorts induced by each norm), investigating how norms condition the
evolution of an institution. In particular, in this paper we define operators that allow
designers to reason about what properties are satisfied by an institution when a set of
norm individuals are not violated. More precisely, given a set of norms which constitute
the extension of formula ϕo (an open formula in which variable o of sort σo occurs free),
normed temporal operators are defined as follows:

– EGϕoϕ =def EG(∀o : σo(ϕo → ¬violated(o)) ∧ ϕ);
– EXϕoϕ =def EX(∀o : σo(ϕo → ¬violated(o)) ∧ ϕ);
– EψUϕoϕ =def E(∀o : σo(ϕo → ¬violated(o)) ∧ ψ)U(∀o : σo(ϕo →

¬violated(o)) ∧ ϕ);

324 F. Viganò and M. Colombetti

Since the satisfaction of CTL temporal operators (with the exception of EX) refers
to the initial state π0 of a path π [4,3], then also their normed counterparts refer to state
π0. As a consequence, if state π0 violates norms ϕo, then the normed operators EGϕo

and EUϕo are trivially falsified. This may occur when the system is inconsistent or
because normed temporal operators are nested and external operators do not ensure
compliance with norms considered by internal operators. While in the former case we
would conclude that our system is irrational, in the latter case we may get counter-
intuitive results. To avoid this, we can prefix internal operators with EXϕo , ensuring
that the initial state is not considered and only paths compliant with norms of internal
operators are taken into account. Despite this problem may be avoided by different def-
initions of normed temporal operators, we consider more relevant the fact that normed
and unnormed operators are evaluated over the same set of states and are expressed in
terms of the standard semantics of CTL [4,3]. In doing so, if formula ϕo refers to an
empty set of obligations, then normed temporal operators are equivalent to their tempo-
ral counterpart (e.g., EGfalseϕ ≡ EGϕ), and EGϕo , EXϕo , and EUϕo constitute an
adequate set of operators, since we have the following equivalences:

– EFϕoϕ ≡ EtrueUϕoϕ;
– AGϕoϕ ≡ ¬EFϕo¬ϕ ∧ EGϕotrue;
– AXϕoϕ ≡ ¬EXϕo¬ϕ ∧ EXϕotrue;
– AψUϕoϕ ≡ ¬(E¬ϕUϕo(¬ϕ ∧ ¬ψ)) ∧ ¬EGϕo¬ϕ ∧ EFϕoϕ;
– AFϕoϕ ≡ ¬EGϕo¬ϕ ∧ EFϕoϕ;

It is worth observing that by definition, the consistency of norms represents a neces-
sary condition for the satisfaction of normed temporal operators universally quantified
over paths, otherwise they would be trivially satisfied by an inconsistent normative sys-
tem. In contrast with other specification languages characterized by a normative flavor
(e.g. [14,16,1]), which assume that the normative system is consistent (i.e., there ex-
ists a legal outward transition for every state) either by assuming axiom D [14] or as
an explicit hypothesis on the transition system [16,1], in our approach the absence of
contradictory norms represents a desirable property that a rational institution ought to
satisfy and that can be verified by our model checker. To exemplify the use of normed
temporal operators, we modify Property (P.2) such that if holders respect all norms of
the institution and they perform action accept, then they will give their resources:

AG∀act : σaid∀rec : σaid∀res : σresources(happens(accept, act, rec, res) →
AF∃h:σholder∃f :σsf (subject(h)=subject(f)∧ofStatus(o)=f)happens(give, act, rec, res))

(P.3)

We can also rewrite property (P.1) to investigate whether norm h1 is capable of directing
the behavior of holders in such a way that when an agent has requested a good and has
received a positive answer, it will eventually become the holder of the good:

AG∀act : σaid∀rec : σaid∀res : σresources((happens(accept, act, rec, res)

→ AF∃w:h1(w=o)∃h : holder(subject(h) = rec ∧ resource(h) = res))) (P.4)

To conclude this section we compare the expressiveness and the flexibility of our
approach to the specification languages proposed in [1] and [12]. In [1] the authors

Model Checking Norms and Sanctions in Institutions 325

proposed Normative Temporal Logic (NTL), a language similar to CTL with the ex-
ception that operators A and E are replaced by Oη and Pη , which intuitively can be read
as “for all paths compliant with the normative system η” and “there exists a path com-
pliant with the normative system η”. Given the semantics provided in [1] and assuming
that η represents a set of norms, NTL operators are equivalent to normed temporal op-
erators characterized by a formula ϕη representing all individuals of sorts belonging to
η. For instance, formula O�ηϕ of NTL corresponds to AXϕηAGϕηϕ, where ϕη is
defined as follows: ϕη ≡

∧
σn∈η ∃k : σn(k = o).

In [12] Lomuscio and Sergot presented a modal operator Oaϕ which expresses the
fact that ϕ holds over reachable states where agent a complies with its protocol. As-
suming that a is an agent, Oaϕ is equivalent to AX∃f(ofStatus(o)=f∧subject(f)=a)ϕ.
While NTL does not provide any construct to reason about agents, in [12] it is possible
to investigate only the compliance of agents with the whole set of norms (described as a
protocol): instead, normed temporal operators allow us to reason about subsets of norms
and agents, and to express complex interdependencies among them as exemplified by
Property (P.3).

6 Sanction Mechanisms

To guarantee that those agents that follow norms are not damaged by those who do not,
institutions should provide rules that describe what kind of sanctions are applied when
agents violate norms. According to [17], the imposition of status functions constitutes
a necessary condition for the application of sanctions, since “with that new status come
the appropriate punishment” [17, pag. 50]. Such status functions not only may provide
new powers and new obligations (prohibitions), but may also revoke or change existing
powers or norms: for instance, the exclusion of an agent from an interaction ruled by an
institution (e.g., an auction) means that powers and norms defined by such institution
have been revoked. Analogously, officials can apply sanctions only if they have the
necessary powers, and certain obligations (prohibitions) may further regulate how such
powers ought to be exerted. Therefore, given that sanctions modify the powers and
norms of agents, we propose to model sanction mechanisms as rules that impose or
revoke status functions when a norm is violated.

In our framework sanction mechanisms are defined according to the following gram-
mar:

sanction ::= "sanction" symbol "pre" expression ";" "eff" post
("," post)* ";" ;

precondition ::= expression;
post ::= (selection "-X->")? effects
selection ::= var ("," var)* "(" expression ")"
effects ::= var ("assign"|"revoke") "(" term "=" term

("," term"=" term)* ")";

where expression is an OMSFOTL formula which does not contain temporal oper-
ators or path quantifiers, and post is constituted by (i) an (optional) selection expres-
sion and (ii) an expression describing what statuses are assigned or revoked when the
sanction mechanism is activated. As we will see, effects must hold when a violation

326 F. Viganò and M. Colombetti

is detected, while the selection expression is evaluated in the previous state. For this
reason, we separate the selection expression from the effects through symbol -X->.

For instance, the following sanction mechanism describes that when a norm h1 is
violated, then the resource is assigned to the agent that has requested the good and
powers and obligations associated to status function requested are revoked:

sanction h1
pre true;
eff r2:σrequested revoke (reqRes(r2)=resource(f)),

r1:σrequested res:σresources a:σaid(res=resource(f)∧reqRes(r1)=res
∧ a=requester(r1)) -X->
r2:σholder assign(resource(r2)=res,subject(r2)=a)

Before continuing with our presentation, it is worth remarking that in our approach
sanction mechanisms reflect what powers, obligations, and prohibitions are assigned to
agents when violations are observed, which does not necessarily means that sanctions
(like fines) are automatically enforced by the system. Despite designers may decide to
enforce norms through automatic reactions of the system, FIEVeL allows to model sce-
narios where sanction mechanisms confer powers to certain agents to punish violations:
for instance, when an agent violates a norm, an officer may be empowered to impose a
fine and obliged to do so before a certain time instant.

Sanction mechanisms do not induce any new sort: instead, each of them introduces
two predicates, presani and effsani , which respectively represent a condition that must
be satisfied before a violated obligation activates the i-th sanction mechanism, and its
effects. Predicates presani (and analogously predicates effsani) are determined by the
obligation sort that must be sanctioned (σsymbol) and the status function that defines it
(σs). Furthermore, predicate presani must satisfy the following axiom schema:

AG∀o∀f(presani(o, f) ↔ preconditioni) (A.11)

where ξ(o) = σsymbol and ξ(f) = σs. Similarly, each sanction mechanism instantiates
the following axiom schema which defines what status functions are imposed or revoked
when a sanction mechanism is activated:

AG∀o∀f(effsani(o, f) ↔ (
Ki∧

k=0

∀ski(expressionki
→ X∃tki

([¬]assigned(tki) ∧
Nki∧
l=1

termki,l,1 = termki,l,2)))) (A.12)

where variables ski is a set of variables defined by the k-th effect expression of the
i-th sanction mechanism and tki represents status functions that will be assigned or
revoked. Finally, the following axiom schema states that the i-th sanction mechanism
brings about its effects when it is activated by the violation of an obligation and its
preconditions are met:

AG∀o∀f((ofStatus(o) = f ∧ presani(o, f) ∧ Xviolated(o)) → effsani(o, f))
(A.13)

Model Checking Norms and Sanctions in Institutions 327

Axiom Schema (A.13) suggests that, as institutional events, also sanction mechanisms
concur to the definition of predicate modified, which ensures that a status is not as-
signed (revoked) when no institutional event or sanction mechanism affects it (see
Section 3). Moreover, Axiom Schema (A.13) describes the main difference among insti-
tutional events and sanction mechanisms: while the former happen because other events
occur and certain conditions are satisfied (see Axiom (A.2)), the latter are fired only by
violations. To some extend, we can interpret Axiom Schema (A.13) as defining a single
convention for the activation of any sanction mechanism.

Properties (P.1) and (P.2) can be regarded as two different interpretations of the hu-
man norm “when agents accept to give a resource, then requesters ought to become
the new holders”, where the latter property explicitly refers to the actor and the action
that ought to be performed. Norm h1 introduced in Section 4 reflects such rule and the
introduction of a sanction mechanism for norm h1 changes the set of constitutive rules
in such a way that Property (P.1) is satisfied by the Resource Management institution.
Observing Figure 1, we can notice that the violation of norm h1 forces the effects of
action give, but not the performance of the action itself: therefore, we can expect that
Property (P.2) still does not hold, which is confirmed by our model checker. As it has
been formulated and unless we introduce a convention such that accept counts as give
(which may be incompatible with the rules of a human institution), we think that it is
impossible to devise a mechanism to satisfy Property (P.2), since it would mean that we
are capable of forcing an autonomous agent to act.

7 Discussion and Conclusions

In this paper we have extended FIEVeL with new constructs to model normative as-
pects of institutions and we have introduced a flexible specification language to define
properties regarding paths that are compliant with norms. We have also exemplified
how an institution can be developed by using our approach, verifying that it satisfies
certain requirements and modifying its constitutive and regulative rules to comply with
them. We have also shown that when properties stem from norms of human institutions
that artificial institutions should reflect, it is not always possible to satisfy them, at least
under certain interpretations of the human institutions.

In [9] Grossi et al. presented an overview of the role of norms and sanctions in insti-
tutions. According to [9] it seems that every norm can be either regimented or enforced,
while we think that the viability of such mechanisms depends on the meaning attributed
by designers to norms. As we have seen, certain interpretations may exclude the possi-
bility of regimenting them and, generally speaking, regimentation of norms regarding
institutional aspects can be achieved only by converting regulative rules into consti-
tutive rules. More precisely, prohibitions can be regimented by revoking powers [6,7]
while obligations can be enforced by changing the interpretation of certain terms. For
instance, norm “all yes/not questions should be answered” can be trivially regimented
by assuming that silence counts as a positive (negative) answer. Instead, assuming that
only a message sent by an agent counts as a communicative act (like in [7]) it is impos-
sible to regiment such norm.

328 F. Viganò and M. Colombetti

In [6] sanctions are considered only as rules which create new obligations (commit-
ments) and powers, while in this paper we have claimed that sanctions may also delete
obligations and powers by revoking status functions. Moreover, the approach discussed
in [6] is based on an intuitive semantics, which does not allow the development of a
framework to verify properties guaranteed by institutions. Analogously, the correctness
of protocols modelled in terms of institutional concepts by Artikis et al. [2,15] is only
guaranteed by systematic executions. Despite the terminologies used in this paper and
in [2] are quite similar, in [2] physical actions can be performed only by agents playing
a specific role, suggesting that such actions are actually institutional. Furthermore, the
formalism used in [2,15] does not provide any abstraction to describe that every insti-
tutional action must be empowered in order to be successfully executed. Instead, the
authors have to specify this fact for every single action and for every role.

In [8] a rule language is introduced to model norms and to represent the effects of
concurrent events. The author proposed the notion of enforcing events, which means
that obligatory events are considered as if they were executed even when agents do not
perform them. In our opinion, events’ enforcement transforms regulative rules into con-
stitutive rules, by defining when time events count as obligatory events, and represents
an effective mechanism to describe automatic updates of institutions. In general, we be-
lieve that it is not possible to enforce all kinds of events, especially those (like actions)
that can only be performed by autonomous agents.

The constructs presented in Section 4 constitute a high-level description of norms,
and our tool automatically classifies transitions and states as compliant with each norm
of the system. In this respect, our approach is similar to the one presented in [18]. In-
stead, the input language of the model checker described in [16] requires designers to
explicitly list the set of states that each agent may reach, and to classify them as red (an
agent violates the protocol) or green. Although red states are such only because they vi-
olate a protocol [12,16], such classification is not inferred from the protocol but must be
manually provided independently from it: therefore designers may introduce discrep-
ancies among the protocol and the classification of states. Similarly, in [1] systems are
described with a low-level language which requires to associate a name to each transi-
tion, and norms can be defined only by listing under what conditions a set of transitions
is considered legal.

In the future we plan to define a translation of axioms stemming from our metamodel
and from FIEVeL models into Prolog, providing a single framework for the definition,
verification, and monitoring of institutions.

References

1. Ågotnes, T., van der Hoek, W., Rodrı́guez-Aguilar, J.A., Sierra, C., Wooldridge, M.: On the
logic of normative systems. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 1175–1180 (2007)

2. Artikis, A., Kamara, L., Pitt, J., Sergot, M.J.: A Protocol for Resource Sharing in Norm-
Governed Ad Hoc Networks. In: Leite, J.A., Omicini, A., Torroni, P., Yolum, p. (eds.) DALT
2004. LNCS (LNAI), vol. 3476, pp. 221–238. Springer, Heidelberg (2005)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)

Model Checking Norms and Sanctions in Institutions 329

4. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus
linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

5. Esteva, M., Rodrı́guez-Aguilar, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the Formal Spec-
ification of Electronic Institutions. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000.
LNCS (LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

6. Fornara, N., Colombetti, M.: Specifying and Enforcing Norms in Artificial Institutions. In:
Omicini, A., Dunin-Keplicz, B., Padget, J. (eds.) Proceedings of the 4th European Workshop
on Multi-Agent Systems (2006)

7. Fornara, N., Viganò, F., Colombetti, M.: Agent Communication and Artificial Institutions.
Autonomous Agents and Multi-Agent Systems 14(2), 121–142 (2007)

8. Garcı́a-Camino, A.: Ignoring, Forcing and Expecting Concurrent Events in Electronic Insti-
tutions. In: Sichman, J.S., et al. (eds.) COIN 2007 Workshops. LNCS (LNAI), vol. 4870, pp.
316–329. Springer, Heidelberg (2008)

9. Grossi, D., Aldewereld, H., Dignum, F.: Ubi lex, ibi poena: Designing norm enforcement
in e-institutions. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V.,
Fornara, N., Matson, E. (eds.) COIN 2006, vol. 4386, pp. 110–124. Springer, Heidelberg
(2007)

10. Jones, A., Sergot, M.J.: On the characterization of law and computer systems: The normative
systems perspectives. In: Deontic Logic in Computer Science: Normative Systems Specifi-
cation, pp. 275–307 (1993)

11. Jones, A., Sergot, M.J.: A formal characterisation of institutionalised power. Journal of the
IGPL 4(3), 429–445 (1996)

12. Lomuscio, A., Sergot, M.: A formulation of violation, error recovery, and enforcement in the
bit transmission problem. Journal of Applied Logic 1(2), 93–116 (2002)

13. Manzano, M.: Introduction to many-sorted logic. In: Many-sorted logic and its applications,
pp. 3–86. John Wiley, Chichester (1993)

14. Meyer, J.-J., Wieringa, R.J.: Deontic Logic: A Concise Overview. In: Deontic Logic in Com-
puter Science: Normative Systems Specification, pp. 3–16. John Wiley, Chichester (1993)

15. Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Formalization of a voting protocol for virtual
organizations. In: Proceedings of the 4th Conference on Autonomous agents and Multi-Agent
Systems, pp. 373–380 (2005)

16. Raimondi, F., Lomuscio, A.: Automatic Verification of Deontic Interpreted Systems by
Model Checking via OBDD’s. In: Proceedings of the 16th European Conference on Arti-
ficial Intelligence, pp. 53–57 (2004)

17. Searle, J.R.: The construction of social reality. Free Press, New York (1995)
18. Sergot, M.J., Craven, R.: The Deontic Component of Action Language nC+. In: Goble, L.,

Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI), vol. 4048, pp. 222–237. Springer, Heidel-
berg (2006)

19. Viganò, F., Colombetti, M.: Specification and Verification of Institutions through Status
Functions. In: Noriega, P., et al. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 125–141.
Springer, Heidelberg (2007)

20. Viganò, F., Colombetti, M.: Symbolic Model Checking of Institutions. In: Proceedings of the
9th International Conference on Electronic Commerce (ICEC 2007), pp. 35–44. ACM Press
(2007)

Author Index

Barber, Fernando 58
Bhatnagar, Raj 187
Boissier, Olivier 171
Bou, Eva 125

Caire, Patrice 245
Cliffe, Owen 41
Colombetti, Marco 316
Costa, Antônio Carlos da Rocha 139
Cranefield, Stephen 203

de la Rosa Esteva, Josep Llúıs 97
De Vos, Marina 41
Debenham, John 71
Dellunde, Pilar 261
Dignum, Frank 83
Dimuro, Graçaliz Pereira 139
Duran, Fernanda 218

Garćıa-Camino, Andrés 15, 275
Ghijsen, Mattijs 1
Gómez, Mario 155
Grimaldo, Francisco 58

Harbers, Maaike 71
Hewitt, Carl 110
Hübner, Jomi Fred 171

Jansweijer, Wouter 1
Joseph, Sindhu 287

Kitio, Rosine 171

Lopes Cardoso, Henrique 27
López-Sánchez, Maite 125
Lozano, Miguel 58
Lucena, Carlos J.P. de 218

Matson, Eric 187
Meyer, John-Jules Ch. 83
Muntaner-Perich, Eduard 97

Neef, Martijn 83

Oliveira, Eugénio 27

Padget, Julian 41
Perreau de Pinninck, Adrian 301
Plaza, Enric 155
Purvis, Martin 203
Purvis, Maryam 203

Ricci, Alessandro 171
Rodŕıguez-Aguilar, Juan Antonio

125, 275

Savarimuthu, Bastin Tony Roy 203
Schorlemmer, Marco 287, 301
Sierra, Carles 71, 287, 301
Silva, Viviane Torres da 218, 232

van der Vecht, Bob 83
Vasconcelos, Wamberto 275
Verbrugge, Rineke 71
Viganò, Francesco 316

Wielinga, Bob 1

	Title Page
	Preface
	Organization
	Table of Contents
	Towards a Framework for Agent Coordination and Reorganization, AgentCoRe
	Introduction
	Theory and Related Work
	The AgentCoRe Framework
	Declarative Ingredients
	AgentCoRe Modules

	A MAS Implementation Using AgentCoRe
	Organizational Design
	Agent Design

	Discussion and Conclusions
	Future Work

	Ignoring, Forcing and Expecting Simultaneous Events in Electronic Institutions
	Introduction
	I: A Rule Language for Electronic Institutions
	Semantics
	Operational Semantics

	Example of Concurrency: Soup Bowl Lifting
	Electronic Institutions
	Applied Example: Bank
	Related Work
	Conclusions and Future Work

	A Contract Model for Electronic Institutions
	Introduction
	Institutional Environment
	Elements of Institutional Reality
	Normative Framework

	Contract Model
	Guidelines
	Contract Header
	Adding Contract-Specific Norms
	Expanding the Creation of Institutional Facts

	Contract Handling in the Electronic Institution
	From XML to a Computational Contract Representation
	Example
	Norm Monitoring and Inheritance

	Conclusions
	References

	Embedding Landmarks and Scenes in a Computational Model of Institutions
	Introduction
	The Institutional Framework
	Landmarks and Scenes
	The Dutch Auction Protocol
	Discussion

	Coordination and Sociability for Intelligent Virtual Agents
	Introduction
	Related Work
	Multi-agent Simulation Framework
	Social Ontology
	Social Library

	Application Example
	Results
	Conclusions and Future Work

	The Examination of an Information-Based Approach to Trust
	Introduction
	The Information-Based Model of Trust
	The ART Test-Bed
	An Information-Based Test-Bed Agent
	Set-Up of the Experiments
	Results
	Discussion
	Conclusion and Further Research

	A Dynamic Coordination Mechanism Using Adjustable Autonomy
	Introduction
	Why Dynamic Coordination?
	Autonomy and Coordination
	Experiment
	Dynamic Coordination

	Adjustable Autonomy
	Autonomy Levels in Agent Decision-Making
	Controlling Autonomy
	Related Work on Adjustable Autonomy

	Agent Reasoning Model
	Decision Making
	Event Processing

	Extending the Experiment
	Results
	Discussion

	Conclusion

	Towards a Formalisation of Dynamic Electronic Institutions
	Introduction
	Dynamic Electronic Institutions: The Model
	Formalising the Model
	The Formation Phase
	The Foundation Phase
	The Fulfilment Phase
	Properties of the Formalised Model

	Related Work
	Conclusions and Future Work
	References

	Large-Scale Organizational Computing Requires Unstratified Reflection and Strong Paraconsistency
	Introduction
	Organizational Computing
	Inconsistency Is the Norm in Large-Scale Organizational Computing
	Direct Logic
	Conclusion
	References

	Using Case-Based Reasoning in Autonomic Electronic Institutions
	Introduction
	Autonomic Electronic Institutions
	Learning Model
	Applying CBR

	Case Study: Traffic Control
	Empirical Evaluation
	Similarity Function
	Case Base
	Retrieving

	Discussion and Future Work

	Semantical Concepts for a Formal Structural Dynamics of Situated Multiagent Systems
	Introduction
	The Population-Organization Model
	The Time-Invariant Population-Organization Model
	The Time-Variant Population-Organization Model

	Systems of Exchange Values
	Exchange Value-Based Dynamics of Social Links
	An Elementary Exchange Value-Based Dynamics of Social Links
	The Rules of the Elementary Exchange Value-Based Dynamics of Links

	Related Works
	Conclusion

	Dynamic Composition of Electronic Institutions for Teamwork
	Introduction
	Related Work
	The ORCAS Framework
	Dynamic Institutions for Hierarchical Teamwork
	Communication
	Operational Description

	Conclusions

	Organisational Artifacts and Agents for Open Multi-Agent Organisations: “Giving the Power Back to the Agents”
	Introduction
	Background
	An Organisational Infrastructures Based on Agents and Artifacts
	The Notion of Artifacts in MAS
	ORA4MAS Infrastructure

	Shaping ORA4MAS Artifacts Upon Moise+
	Conclusion and Perspectives

	Knowledge Sharing Between Agents in a Transitioning Organization
	Introduction
	Organization Knowledge Sharing
	Agent Core Composition
	Organization Model Elements
	Exchange Processes

	Validation
	Implementation
	Organization Example

	Results
	Further Work

	Role Model Based Mechanism for Norm Emergence in Artificial Agent Societies
	Introduction
	Background
	Types of Norms
	Normative Multi-agent Systems
	Related Work on Emergence of Norms
	Social Network Topologies

	Role Model Agent Mechanism
	The Ultimatum Game
	Description of the Multi-agent Environment
	The Norm Emergence Mechanism

	Experiments and Results
	Norm Emergence on Top of Random and Scale-Free Networks
	Power Law Behaviour of the Leadership Network

	Discussion
	Conclusions

	Using Testimonies to Enforce the Behavior of Agents
	Introduction
	The Testimony-Based Governance Mechanism
	Governance Mechanism Assumptions
	The Governance Mechanism Architecture

	The Judgment Sub-system
	The Judgment Process
	Evaluating the Testimonies and Depositions

	A Case Study: Cargo Consolidation and Transportation
	Norm I
	Norm II

	Conclusion
	References

	Implementing Norms That Govern Non-dialogical Actions
	Introduction
	Applied Example
	Dialogical and Non-dialogical Actions
	Describing Norms
	Specifying Non-dialogical Actions
	Extending the Temporal Situations
	Extending the IF Condition
	Extending Dialogical Actions
	Specifying Messages

	Implementing Norms
	The Use of Jess
	Some Guidelines
	Simple Obligations, Permissions and Prohibitions
	Norms Regulating Actions Executed Before the Occurrence of a Fact
	Norms Regulating Actions Executed After the Occurrence of a Fact
	Norms Regulating Actions Executed Between the Occurrence of Two Facts

	Conclusion
	References

	A Normative Multi-Agent Systems Approach to the Use of Conviviality for Digital Cities
	Introduction
	Digital Cities
	Goals of Digital Cities
	Organizations of Digital Cities
	Discussion

	Legal and Institutional Norms in Digital Cities
	Different Kinds of Norms
	Explicit vs. Implicit Representation of Norms
	Violations of Norms
	Dynamics of Norms

	Conviviality
	Conviviality in Social Sciences
	Conviviality in Multi-Agent Systems

	Use of Norms for Conviviality
	Norms for Conviviality
	Representation of Conviviality
	Violation of Conviviality

	Conclusion

	On the Multimodal Logic of Normative Systems
	Introduction
	Multiprocess Temporal Frames and Normative Systems
	Multimodal Logics of Normative Systems
	Elementary Normative Systems
	Some Examples
	Related and Future Work
	Related Papers in This Volume

	A Distributed Architecture for Norm Management in Multi-Agent Systems
	Introduction
	Scenario
	Normative Structure
	Proposed Distributed Architecture
	Social Layer Protocols

	Related Work
	Conclusions and Future Work

	A Coherence Based Framework for Institutional Agents
	Introduction
	Coherence Framework
	Coherence Graph
	Calculating Coherence
	Graph Composition

	A Coherence Maximizing Agent
	An Example
	Related Work
	Discussion and Future Work

	Distributed Norm Enforcement Via Ostracism
	Introduction
	Related Work
	The Scenario
	Simulations
	Future Work

	Model Checking Norms and Sanctions in Institutions
	Introduction
	Ordered Many-Sorted First-Order Temporal Logic
	Modelling, Specifying, and Verifying Institutions
	Norms
	Normed Temporal Operators
	Sanction Mechanisms
	Discussion and Conclusions

	Author Index

