
4

A Dynamical Ant Colony Optimization
with Heuristics for Scheduling Jobs on a Single
Machine with a Common Due Date

Zne-Jung Lee1, Shih-Wei Lin1, and Kuo-Ching Ying2

1 Department of Information Management, Huafan University, No. 1, Huafan Rd.
Shihding Township, Taipei County, 22301, Taiwan johnlee@hfu.edu.tw

2 Department of Industrial Engineering and Management Information, Huafan
University, No. 1, Huafan Rd., Shihding Township, Taipei County, 22301,
Taiwan.

Summary. The problem of scheduling jobs on a single machine with a common
due date is one of NP-complete problems. It is to minimize the total earliness and
tardiness penalties. This chapter introduces a Dynamical Ant Colony Optimization
(DACO) with heuristics for scheduling jobs on a single machine with a common
due date. In the proposed algorithm, the parameter of heuristic information is dy-
namically adjusted. Furthermore, additional heuristics are embedded into DACO as
local search to escape from local optima. Compared with other existing approaches
in the literature, the proposed algorithm is very useful for scheduling jobs on a single
machine with a common due date.

Key words: Scheduling, Single Machine, Dynamical Ant Colony Optimiza-
tion, Heuristics.

4.1 Introduction

The scheduling problem with a common due date, known as NP-complete
problem, has been investigated extensively [1–18]. This type of problem has
become an attraction research with the advent of just-in-time (JIT) concept
that an early or a tardy job completion is highly discouraged. To meet the
JIT requirement, there is only one job can be completed exactly on the due
date when scheduling jobs on a single machine with a common due date. All
other jobs have to be completed either before or after the common due date.
An early job completion results in an earliness penalty. On the other hand, a
tardy job completion incurs a tardiness penalty. The objective of scheduling
problem with a common due date is to find an optimal schedule that minimizes
the sum of earliness and tardiness costs for all jobs.

Z-J. Lee et al.: A Dynamical Ant Colony Optimization with Heuristics for Scheduling Jobs on

a Single Machine with a Common Due Date, Studies in Computational Intelligence (SCI) 128,

91–103 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

92 Lee, Lin and Ying

In the literature, many exact and heuristics algorithms have been proposed
to solve the problem of scheduling jobs on a single machine with a common
due date [1, 4, 11–13, 33]. Biskup and Feldmann [1] proposed a mixed integer
programming model for this problem, and also designed a problem generator
to solve 280 instances using two heuristics for identifying the upper bounds on
the optimal function value. A comprehensive survey, applying polynomial or
pseudo-polynomial time solvable algorithms on special cases, for the common
due date assignment and scheduling problems can be found in [4]. In [11],
Liaw proposed a branch-and-bound algorithm to find optimal solutions for
problems that jobs have distinct due dates. Mondal and Sen [12] developed a
dynamic programming for solving this problem. In [13], a sequential exchange
approach is proposed for minimizing earliness-tardiness penalties of single-
machine scheduling with a common due date. Due to the complexity of this
problem, it is difficult for above approaches to obtain the optimal solution
when the problem size is large [14,15].

Recently, meta-heuristic approaches such as Simulated Annealing (SA),
Genetic Algorithms (GAs) and Tabu Search (TS) have been proposed to find
the near optimal solutions for the problem of scheduling jobs on a single ma-
chine with a common due date [6, 7, 9] and [16–18]. Feldmann and Biskup [5]
applied five meta-heuristic approaches to obtain near-optimal solutions by
solving 140 benchmarks. In [7], James developed the TS algorithm for solving
the problem of scheduling jobs for general earliness and tardiness penalties
with a common due date. Hino et al. [9] proposed a TS-based heuristic and
a GA to minimize the sum of earliness and tardiness penalties of the jobs
with 280 problems with up to 1000 jobs. Mittenthal et al. [16] proposed a hy-
brid algorithm, greedy approach and simulated annealing, for the V-shaped
sequence of solution spaces. Lee and Kim [17] developed a parallel genetic
algorithm for solving the problem of scheduling jobs for general earliness and
tardiness penalties with a common due date. These approaches schedule their
solutions with the first job starting at time zero, and may not find the opti-
mal solutions. Liu and Wu [18] proposed a GA for the optimal common due
date assignment and optimal policy in parallel machine earliness/tardiness
scheduling problems. Pan et al. [33] also presented a discrete Particle Swarm
Optimization algorithm for minimizing total earliness and tardiness penalties
with a common due data on a single-machine. Even though these approaches
could find the best solution in those test problems, the search performances
seem not good enough. In this chapter, we propose a Dynamical Ant Colony
Optimization (DACO) with heuristics for scheduling jobs on a single machine
with a common due date.

The rest of this chapter is organized as follows. Section 4.2 describes
the problem formulation. Section 4.3 introduces the basic ACO concepts. In
Section 4.4, the structure of the proposed algorithm is discussed in detail. Sec-
tion 4.5 reports the use of the proposed algorithm for test instances, and the
effectiveness of the proposed algorithm is also illustrated. Concluding remarks
are presented in Section 4.6.

4 ACO with Heuristics for Scheduling on a Single Machine 93

4.2 Problem Formulation

The problem of scheduling jobs on a single machine with common due dates
is to minimize the total earliness and tardiness penalties. There are n jobs
available at time zero, each of which requires exactly one operation to be
scheduled on a single machine with the common due date d. There is no
preemption of jobs, and all jobs are sequence independent. For each job i, the
processing time Pi, the penalty per unit time of earliness αi, and the penalty
per unit time of tardiness βi are deterministic and known for i = 1, . . ., n. Let
Ci represent the completion time of job i. The earliness EAi and tardiness
TAi can be obtained by max{d−Ci, 0} and max{Ci −d, 0}, respectively. The
penalty αi∗EAi is incurred when job i is completed EAi time units earlier than
d, whereas the penalty βi∗TAi is incurred when it is completed TAi time units
later than d. The minimization of earliness and tardiness penalties of single-
machine scheduling problems with a common due date can be formulated as
follows [19–22].

STi + Pi + EAi − TAi = d, i = 1, . . . , n (4.1)
STi + Pi − STj − γ(1 − xij) ≤ 0, i = 1, . . . , n− 1; j = i+ 1, . . . , n (4.2)

STj + Pj − STi − γxij ≤ 0, i = 1, . . . , n− 1; j = i+ 1, . . . , n (4.3)
STi, EAi, TAi ≥ 0, i = 1, . . . , n (4.4)

where xij ∈ {0, 1}; xij=1 if job i precedes job j and xij=0, otherwise. n is
the number of jobs, γ denotes a sufficiently large number and ST i denotes
the starting time of job i. Eq. 4.1 indicates each job is early or tardy. Eq. 4.2
represents that the starting time plus processing time of job i is earlier than
or equal to the starting time of job j if job i precedes job j. Eq. 4.3 represents
that the starting time plus processing time of job j is far ahead of the starting
time of job j if job i lags job j. Eq. 4.4 ensures that the starting time, tardiness
and earliness of jobs must be exceeding or equal to zero. Then, the objective
function (F) for scheduling jobs on a single machine with a common due date
is presented as follows.

F (S) =
n∑

i=1

(αi ∗ EAi + βi ∗ TAi), (4.5)

where S is the feasible schedule of the jobs. To efficiently obtain a better value
for Eq. 4.5, three well-known theorems for scheduling jobs on a single machine
with common due dates are shown below [13].

Theorem 4.1 For scheduling jobs on a single machine with common due
dates, there is an optimal schedule in which either the first job starts at time
zero or one job is completed at the common due date d.

Proof. The proof is shown in [10].

94 Lee, Lin and Ying

Theorem 4.2 An optimal schedule exists if there is no idle time between any
consecutive jobs for scheduling jobs on a single machine with common due
dates.

Proof. The proof is presented in [20].

Theorem 4.3 For the optimal schedule, V-shaped property exists around the
common due date. This means that jobs completed before or on common due
date d are scheduled in non-increasing order of the ratios pi/αi and jobs start-
ing on or after d are scheduled in non-decreasing order of the ratios pi/βi in
an optimal schedule.

Proof. The proof can be made by a job interchange argument [1], or can be
followed from Smith’s ratio rule [23].

By Theorem 4.1, the generated schedule follows that the starting time of
the first job at time zero, or the completion time of a job coincides with the
common due date [9, 13, 18]. By Theorem 4.2, the completion time for job
j is calculated by adding the completion time of the previous job and the
processing time of current job i when the schedule is generated [1, 9, 13, 18].
By Theorem 4.3, jobs can be classified into the subsets SEA and STA, in which
starting before or on/after the common due date [1,9,13,18,23]. It should be
noted that above properties must be embedded into the proposed algorithm
for obtaining the global solution and speeding up search performance.

In this chapter, the dynamical architecture of DACO is first derived to
obtain feasible solutions. Furthermore, heuristics are used to ameliorate its
performance and escape from local optima.

4.3 Overview of Ant Colony Optimization

The proposed algorithm is based on Ant Colony Optimization (ACO). In
this section, the basic concept of ACO is introduced. ACO is also a class of
meta-heuristic optimization algorithms inspired by the foraging behavior of
real ants, and has been successively applied in many fields [24–32]. Real ants
can explore and exploit pheromone information, which have been left on the
traversed paths. The ACO algorithm is shown as follows [24]:

Procedure: ACO algorithm
ScheduleActivities

ConstructAntsSolutions
UpdatePheromones
DaemonActions

end ScheduleActivities
end procedure

4 ACO with Heuristics for Scheduling on a Single Machine 95

ConstructAntsSolutions decides a colony of ants that cooperatively
and interactively visit next states by choosing from feasible neighbor nodes.
They move by applying a stochastic local ant-decision policy that consists
of pheromone trails and heuristic information. In this way, ants can con-
struct solutions and find near-optimal solutions for the optimization problems.
UpdatePheromones consists of pheromone evaporation and new pheromone
deposition by which the pheromone trails are modified. Pheromone evapo-
ration is a process of decreasing the intensity of pheromone trails. On the
contrary, the trail’s value can be increased as ants deposit pheromone on the
traversed trails. Pheromone evaporation is a useful form of forgetting that ants
can forage the promising area of the search space, and then can avoid trapping
into local optima. The deposit of new pheromone can increase the probability
that future ants will be directed to use a good solution again. DaemonActions
is used to implement centralized actions such as local optimization procedure
or the collection of global information that decides whether to deposit ad-
ditional pheromone or not. DaemonActions cannot be performed by a single
ant and are optional for ACO. The three above described procedures are man-
aged by ScheduleActivities. ScheduleActivities construct but does not
specify how these three procedures are scheduled and synchronized. In this
chapter, we design a Dynamic ACO to specify the interaction between these
three procedures for scheduling jobs on a single machine with common due
dates.

4.4 The Proposed Algorithm

The ACO has shown its ability to find good solutions for NP-complete op-
timization problems. The problem of scheduling jobs on a single machine
against the common due date with respect to earliness and tardiness penal-
ties is also known as an optimization problem. It is promising that DACO is
applied to solve this problem. In DACO, ants successively choose feasible jobs
into subsequence to construct feasible solutions until all jobs are scheduled.
For constructing solution, each ant decides that the l-th ant positioned on job
r successively selects the next job einto subsequence at iterationt with the
ant-decision policy governed by

e =

⎧⎪⎨⎪⎩
arg{ max

u=allowedl(t)
[τru(t) η�

ru]}, when q ≤ q0

E, otherwise;
(4.6)

where τru(t) is the pheromone trail, ηru is the problem-specific heuristic in-
formation, and � is a parameter representing the importance of heuristic
information, q is a random number uniformly distributed in [0,1], q0 is a pre-
specified parameter (0≤ q0 ≤1), and allowed l(t) is the set of feasible nodes

96 Lee, Lin and Ying

currently not assigned by ant l at time t. In Eq. 4.6, q0 is the probability of ex-
ploiting the learned knowledge when q ≤ q0. It indicates that ants will directly
select next jobs by the product of learned pheromone trails and heuristic in-
formation. While q > q0, it performs a biased exploration for the next job, and
E is an index of node selected from allowed l(t) according to the probability
distribution given by:

P l
re(t) =

⎧⎪⎪⎨⎪⎪⎩
τre(t)η�

re∑
u∈allowedl(t)

τru(t)η�
ru
, if e ∈ allowedl(t)

0, otherwise;

(4.7)

For ηru, it is decided according to whether the next job positions in the
SEA or STA subset of the V-shaped. According to Theorem 4.3, ηru is set to
ηru = pr

αr
+ pu

αu
if the next job is positioned in SEA subset, otherwise ηru is

set to ηru = (pr

βr
+ pu

βu
)−1.

In DACO, the entropy information for estimating the variation of the
pheromone trails is derived to adjust the parameter of heuristic information
(�). Each trail represents as a discrete random variable and the entropy (H)
of the pheromone trails (Y) at the t-th iteration is defined as:

H(Y) = −
r∑

l=1

p(yl) log p(yl) (4.8)

where r represents the total number of pheromone trails. It is easy to show that
the probability of initial pheromone trails is the same, Ht has the maximum
value (log r) [3]. Thereafter, the ratio value of H ′, H ′ = Ht/ log r, is used to
dynamically adjust the value of heuristic information (�) according to the
rule given by

� =

⎧⎪⎪⎨⎪⎪⎩
4, Γ < H ′ ≤ 1
3, Π < H ′ ≤ Γ
2, Ω < H ′ ≤ Π
1, 0 < H ′ ≤ Ω

(4.9)

where the values of Γ, Π, and Ω could be predefined constants. The value of
� is set as the highest value in Eq. 4.9, because it guides the ant to increase
the diversity search in the initial iteration. After constructing solutions, the
amount of the pheromone trails will be more and more non-uniform, and the
entropy will decrease gradually. Thus, a lower value of � is used in Eq. 4.9.

In finding feasible solutions, ants perform online step-by-step pheromone
updates as:

τij(t+ 1) = (1 − ϕ)τij(t) + ϕτ0, (4.10)

where 0 < ϕ ≤ 1 is a constant, τ0=(m ∗
n∑

i=1

pi)−1 is the initial value of

pheromone trails and m is the number of ants. After all ants have constructed

4 ACO with Heuristics for Scheduling on a Single Machine 97

complete solutions, the global update is performed. Global update gives only
the best solution to contribute to the pheromone trail update. The pheromone
trail update rule is performed as:

τij(t+ 1) = (1 − ρ)τij(t) + ρτij(t), (4.11)

where 0 < ρ ≤ 1 is a parameter governing the pheromone decay process,
∆τij(t) = 1/F best, and F best is the objective function of the best solution
obtained from the beginning of the search process.

After obtaining the best solution, additional heuristics are performed to es-
cape form local optima and could also find the global optima. In the proposed
algorithm, the idea of additional heuristics is to greedily swap jobs between
the subsets of SEA and STA for the best solution. There are 4 phases in the
heuristics of the proposed algorithm. Firstly, the jobs in SEA are successively
selected from the first job to swap with all jobs in STA that could obtain
better objective function than that of best solution. In phase 1, the i-th job
in SEA and j−th job in STA are swapped when this swapping causes the ob-
jective function improvement. Additively, the best solution is replaced by the
swapped solution and the global update of Eq. 4.11 is performed. On the con-
trary, the best solution is not changed if this swapping of the i-th job in SEA

and j−th job in STA does not cause the any objective function improvement.
Phase 1 continues until all jobs of the best solution in SEA have been exam-
ined. In phase 2, the jobs in STA are successively selected from the first job to
swap with the jobs in SEA that could obtain better objective function than
that of best solution. This phase continues until all jobs of the best solution
in STA have been examined, and the swapping process is similar to phase 1 if
a better objective function is obtained. In phase 3, a randomly selected i−th
job in SEA may be moved to STA if this move leads to the improvement of
objective function. In phase 4, a randomly selected j−th job in STA may be
moved to SEA if this move leads to the improvement of objective. Additively,
the best solution is also replaced by the new best solution if it is found in
phase 3 and 4. It is noted that all jobs in subsets of SEA and STA must follow
the V-shaped property of Theorem 4.3.

4.5 Simulation Results

In simulation, we need to identify a set of parameters. The simulations with
various values are performed, and the results are all similar. Experiments were
conducted on PCs with PIV 3GHz processor. In the following simulations, we
keep the following values as default: ρ= 0.5, ψ = 0.1, q0 = 0.8, Γ = 0.8,
Π = 0.6, Ω = 0.3, and the number of ants m = 20. It is noted that the
parameters of the proposed algorithm are set to the same values of ACO
except for � = 2 in ACO. For fair comparisons, these compared approaches
are performed to see which approach can find the best solution after a fixed

98 Lee, Lin and Ying

period of running without improving objective function [13]. To verify the
effectiveness of the proposed algorithm, the problem sets are taken from [1,13].
The numbers of jobs n are set to 50, 100, 200, 500 and 1000, and four restrictive
factors h = 0.2, 0.4, 0.6, and 0.8 are used to determine the common due
date defined as d = �h∑

Pi	. For each combination of n and h, ten problems
represented the k−th instance of a combination are used for testing. Tables 4.1
to 4.5 tabulate all simulation results for the proposed algorithm.

Table 4.1: Simulation results of n=50 for the proposed algorithm.

n=50 h=0.2 h=0.4 h=0.6 h=0.8

k=1 40,697 23,792 17,969 17,934

k=2 30,613 17,907 14,050 14,040

k=3 34,425 20,500 16,497 16,497

k=4 27,755 16,657 14,080 14,080

k=5 32,307 18,007 14,605 14,605

k=6 34,969 20,385 14,251 14,066

k=7 43,134 23,038 17,616 17,616

k=8 43,839 24,888 21,329 21,329

k=9 34,228 19,984 14,202 13,942

k=10 32,958 19,167 14,366 14,363

Table 4.2: Simulation results of n=100 for the proposed algorithm.

n=100 h=0.2 h=0.4 h=0.6 h=0.8

k=1 145,516 85,884 72,017 72,017

k=2 124,916 72,982 59,230 59,230

k=3 129,800 79,598 68,537 68,537

k=4 129,584 79,405 68,759 68,759

k=5 124,351 71,275 55,286 55,103

k=6 139,188 77,778 62,398 62,398

k=7 135,026 78,244 62,197 62,197

k=8 160,147 94,365 80,708 80,708

k=9 116,522 69,457 58,727 58,727

k=10 118,911 71,850 61,361 61,361

To show the superiority of the proposed algorithm, the percentage im-
provement of the obtained values (FOB) for the proposed algorithm and var-
ious approaches were compared with regard to the benchmarks, provided by
Biskup and Feldman (FBF), which can be calculated as follows [1, 13]:

Improvement rate (IR) =
FBF − FOB

FBF
∗ 100% (4.12)

4 ACO with Heuristics for Scheduling on a Single Machine 99

Table 4.3: Simulation results of n=200 for the proposed algorithm.

n =200 h=0.2 h=0.4 h=0.6 h=0.8

k=1 498,653 295,684 254,259 254,259

k=2 541,180 319,199 266,002 266,002

k=3 488,665 293,886 254,476 254,476

k=4 586,257 353,034 297,109 297,109

k=5 513,217 304,662 260,278 260,278

k=6 478,019 279,920 235,702 235,702

k=7 454,757 275,017 246,307 246,307

k=8 494,276 279,172 225,215 225,215

k=9 529,275 310,400 254,637 254,637

k=10 538,332 323,077 268,353 268,353

Table 4.4: Simulation results of n=500 for the proposed algorithm.

n=500 h=0.2 h=0.4 h=0.6 h=0.8

k=1 2,954,852 1,787,698 1,579,031 1,579,031

k=2 3,365,830 1,994,788 1,712,195 1,712,195

k=3 3,102,561 1,864,365 1,641,438 1,641,438

k=4 3,221,011 1,887,284 1,640,783 1,640,783

k=5 3,114,759 1,806,978 1,468,231 1,468,231

k=6 2,792,231 1,610,015 1,411,830 1,411,830

k=7 3,172,398 1,902,617 1,634,330 1,634,330

k=8 3,122,267 1,819,185 1,540,377 1,540,377

k=9 3,364,310 1,973,635 1,680,187 1,680,187

k=10 3,120,383 1,837,336 1,519,181 1,519,181

Table 4.5: Simulation results of n=1000 for the proposed algorithm.

n=1000 h=0.2 h=0.4 h=0.6 h=0.8

k=1 14,054,929 8,110,906 6,410,875 6,410,875

k=2 12,295,998 7,271,371 6,110,091 6,110,091

k=3 11,967,290 6,986,816 5,983,303 5,983,303

k=4 11,796,599 7,024,050 6,085,846 6,085,849

k=5 12,449,588 7,364,810 6,341,477 6,341,477

k=6 11,644,121 6,927,585 6,078,373 6,078,375

k=7 13,277,006 7,861,297 6,574,297 6,574,297

k=8 12,274,736 7,222,137 6,067,312 6,067,312

k=9 11,757,063 7,058,786 6,185,321 6,185,321

k=10 12,427,441 7,275,945 6,145,737 6,145,737

100 Lee, Lin and Ying

The averaged improvement rate of the proposed algorithm and various
approaches over the benchmarks are shown in Table 4.6. In Table 4.6, each
cell represents the averaged value of ten instances (k = 1, 2, . . . , 10), and the
best results in the literature are reported in bold. It shows that the proposed
algorithm has the best performance among these compared approaches except
for n=200 and h=0.4. We noted that the proposed algorithm is also superior
to ACO as shown in Table 4.6.

Table 4.6: The averaged improvement rate of the proposed algorithm and various
approaches.

n h Meta-
heuristics
[6]

TS
[9]

GA
[9]

HTG
[9]

HGT
[9]

SEA
[13]

DPSO
[33]

ACO Our algo-
rithm

50 0.2 5.65 5.70 5.68 5.70 5.70 5.58 5.68 5.70 5.70

0.4 4.64 4.66 4.60 4.66 4.66 4.42 4.66 4.66 4.66

0.6 0 0.32 0.31 0.27 0.31 0.31 0.34 0.33 0.34

0.8 0 0.24 0.19 0.23 0.23 0.24 0.24 0.24 0.24

100 0.2 6.18 6.19 6.17 6.19 6.19 6.12 6.19 6.19 6.19

0.4 4.94 4.93 4.91 4.93 4.93 4.85 4.94 4.92 4.94

0.6 0 0.01 0.12 -0.08 -0.04 0.14 0.15 0.15 0.15

0.8 0 0.15 0.12 0.08 0.11 0.17 0.18 0.17 0.18

200 0.2 5.73 5.76 5.74 5.76 5.76 5.75 5.78 5.76 5.78

0.4 3.79 3.74 3.75 3.75 3.75 3.72 3.74 3.75 3.75

0.6 0 0.01 0.13 -0.37 -0.07 0.15 0.15 0.15 0.15

0.8 0 0.04 0.14 -0.26 -0.07 0.15 0.15 0.15 0.15

500 0.2 6.40 6.41 6.41 6.41 6.41 6.42 6.42 6.42 6.43

0.4 3.52 3.57 3.58 3.58 3.58 3.56 3.56 3.57 3.58

0.6 0 -0.25 0.11 -0.73 -0.15 0.11 0.11 0.11 0.11

0.8 0 -0.21 0.11 -0.73 -0.13 0.11 0.11 0.11 0.11

1000 0.2 6.72 6.73 6.75 6.74 6.74 6.77 6.76 6.76 6.77

0.4 4.30 4.39 4.40 4.39 4.39 4.39 4.38 4.38 4.40

0.6 0 -1.01 0.05 -1.28 -0.42 0.05 0.06 0.06 0.06

0.8 0 -1.13 0.05 -1.28 -0.40 0.05 0.06 0.06 0.06

4.6 Conclusions

In this chapter, we propose a Dynamical Ant Colony Optimization with heuris-
tics for scheduling jobs on a single machine with a common due date. In the
proposed algorithm, the entropy information is used to estimate the varia-
tion of the pheromone trails and then to dynamically adjust the parameter

4 ACO with Heuristics for Scheduling on a Single Machine 101

of heuristic information. Furthermore, heuristics are embedded into the pro-
posed algorithm to ameliorate its search performance. We use the benchmarks,
provided by Biskup and Feldman, to test the performance of the proposed al-
gorithm. From simulation results, it indicates that the proposed algorithm
outperforms original ACO and other approaches.

References

1. Biskup, D. and Feldmann, M. (2001) Benchmarks for scheduling on a single
machine against restrictive and unrestrictive common due dates, Computers
and Operations Research: 28(8) 787-801.

2. Garey, M. and Johnson, D. (1979). Computers and Intractability: A Guide to
the Theory of NP Completeness, W. H. Freeman and Company, San Francisco,
California.

3. Bose, R. (2002) Information theory, coding, and cryptography, McGraw Hill.
4. Gordon, V., Proth, J.-M. and Chu, C. (2002) A survey of the state-of-art of

common due date assignment and scheduling research, European Journal of
Operational Research: 139(1) 1-25.

5. Gupta, J. N. D., Lauff, V. and Wernerm F. (2004) Two-machine flow shop
problems with nonregular criteria, Journal of Mathematical Modelling and
Algorithms: 3 123-151.

6. Feldmann, M. and Biskup D. (2003) Single-machine scheduling for minimizing
earliness and tardiness penalties by meta-heuristic approaches, Computers and
Industrial Engineering: 44(2) 307-323.

7. James, R. J. W. (1997) Using tabu search to solve the common due date
early/tardy machine scheduling problem, Computers and Operations Research:
24(3) 199-208.

8. Hall, N. G., Kubiak, W. and Sethi, S. P. (1991) Earliness-tardiness scheduling
problem, II: deviation of completion times about a restrictive common due
date, Operations Research: 39(5) 847-856.

9. Hino, C. M., Ronconi, D. P., and Mendes, A. B. (2005) Minimizing earliness
and tardiness penalties in a single-machine problem with a common due date,
European Journal of Operational Research: 160(1) 190-201.

10. Hoogeveen, J. A. and Velde Van De S. L. (1991) Scheduling around a small
common due date, European Journal and Operational Research: 55(2) 237-242.

11. Liaw, C.-F. (1999) A Branch-and-Bound Algorithm for the Single Machine
Earliness and Tardiness Scheduling Problem, Computers and Operations Re-
search: 26 679-693.

12. Mondal, S. A. and Sen, A. K. (2001) Single machine weighted earliness–
tardiness penalty problem with a common due date, Computers and Oper-
ations Research: 28 649-669.

13. Lin, S.-W., Chou, S.-Y., and Ying, K.-C. (2007) A sequential exchange ap-
proach for minimizing earliness-tardiness penalties of single-machine schedul-
ing with a common due date, European Journal of Operational Search: 177
1294-1301.

14. Ibarraki T. and Katoh N. (1988) Resource Allocation Problems: The MIT
Press: Cambridge, Massachusetts.

102 Lee, Lin and Ying

15. Lee, Z.-J., Lee, C.-Y. (2005) A Hybrid Search Algorithm with Heuristics for
Resource Allocation Problem, Information sciences: 173 155-167.

16. Mittenthal, J., M. Raghavachari, and A. I. Rana. (1993) A hybrid simulated
annealing approach for single machine scheduling problems with non-regular
penalty functions, Computers and Operations Research: 20 103-111.

17. Lee, C. Y. and Kim, S. J. (1995) Parallel genetic algorithms for the earliness-
tardiness job scheduling problem with general penalty weights, Computers and
Industrial Engineering: 28(2) 231-243.

18. Liu, M. and Wu, M. (2006) Genetic algorithm for the optimal common due
date assignment and the optimal policy in parallel machine earliness/tardiness
scheduling problems, Robotics and Computer-Integrated Manufacturing: 22
279-287.

19. Jaynes, E. T. (1982) On the rationale of the maximum entropy methods. Pro-
ceedings of the IEEE: 70(9) 939-952.

20. Kahlbacher, H. G. (1993) Scheduling with monotonous earliness and tardiness
penalties, European Journal of Operational Research: 64(2) 258-277.

21. Raghavachari, M. (1988) Scheduling problems with non-regular penalty func-
tions: a review, Operations Research: 25 144-164.

22. Szwarc, W. (1989) Single-machine scheduling to minimize absolute deviation
of completion times from a common due date, Naval Research Logistics: 36
663-673.

23. Smith, W. E. (1956) Various optimizers for single-stage production, Naval Re-
search Logistics Quarterly: 3 59-66.

24. Dorigo M. and Stützle T. (2004). Ant Colony Optimization: The MIT Press.
25. Lee, C.-Y., Lee, Z.-J. and Su, S.-F. (2005) Ant Colonies With Cooperative

Process Applied To Resource Allocation Problem, Journal of the Chinese In-
stitute of Engineers: 28 879-885.

26. Lee, Z.-J., Lee, C.-Y. and Su, S.-F. (2002) An Immunity Based Ant Colony
Optimization Algorithm for Solving Weapon-Target Assignment Problem, Ap-
plied Soft Computing 2(1) 39-47.

27. Lee, Z.-J. and Lee, W.-L. (2003) A Hybrid Search Algorithm of Ant Colony
Optimization and Genetic Algorithm Applied to Weapon-Target Assignment
Problems, Lecture Notes in Computer Science 2690: 278-285.

28. Bauer, A. et al. (1999) An ant colony optimization approach for the single
machine total tardiness problem, Proceedings of the 1999 Congress on Evolu-
tionary Computation: 2 1445-1450.

29. Varela, G. N. and Sinclair, M. C. (1999) Ant colony optimization for virtual
wavelength path routing and wavelength allocation, Proceedings of the 1999
Congress on Evolutionary Computation: 3 1809-1816.

30. Dicaro, G. and Dorigo, M. (1998) Mobile agents for adaptive routing, Proceed-
ings of the Thirty-First Hawaii International Conference on System Sciences:
7 74-83.

31. Yu, I. K., Chou, C. S. and Song,Y. H. (1998) Application of the ant colony
search algorithm to short-term generation scheduling problem of thermal units,
Proceedings of the 1998 International Conference on Power System Technology:
1 552-556.

32. Nemes L. and Roska, T. (1995) A CNN model of oscillation and chaos in ant
colonies: a case study, IEEE Transactions on Circuits and Systems I, Funda-
mental Theory and Applications: 42 (10) 741-745.

4 ACO with Heuristics for Scheduling on a Single Machine 103

33. Pan Q.-K., Tasgetiren M. F. and Liang Y.-C. (2006) Minimizing total earliness
and tardiness penalties with a common due date on a single-machine using
a discrete particle swarm optimization algorithm, Lecture Notes in Computer
Science: 4150 460-467.

