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Summary. We address the Identical Parallel Machine Scheduling Problem, one of
the most important basic problems in scheduling theory, and some generalizations
of it arising from real world situations. We survey the current state of the art for the
most performing meta-heuristic algorithms for this class of problems, with special
emphasis on recent results obtained through Scatter Search. We present insights in
the development of this heuristic technique, and discuss the combinatorial difficulties
of the problems through the analysis of extensive computational results.
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2.1 Introduction

Given a set of n jobs j, each having an associated processing time pj (j =
1, . . . , n), and a set of m parallel identical machines i (i = 1, . . . ,m), each of
which can process at most one job at a time, the Identical Parallel Machine
Scheduling Problem calls for the assignment of each job to exactly one machine,
so as to minimize the maximum completion time of a job (makespan). We
assume, as is usual, that 1 < m < n, and that the processing times are positive
integers. The problem is denoted as P||Cmax in the three-field classification by
Graham, Lawler, Lenstra and Rinnooy Kan [23], and is NP-hard in the strong
sense. It is one of the most intensively studied problems in combinatorial
optimization, since it has considerable theoretical interest and arises as a sub-
problem in many real world applications.

The problem is related to another famous combinatorial optimization prob-
lem. In the Bin Packing problem (BPP) we are given n items, each having an
associated size pj (j = 1, . . . , n), and an unlimited number of identical bins
of capacity c: we want to assign each item to one bin, without exceeding its
capacity, so that the number of bins used is minimized. Hence BPP can be
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seen as a “dual” of P||Cmax in which the objective is to minimize the number
of machines needed not to exceed a prefixed makespan c.

In this survey we review recent Scatter Search algorithms for P||Cmax and
two generalizations of it that arise from real world situations. In the next
section we describe the three considered problems. In Section 2.3 we discuss
a general framework for applying Scatter Search to identical parallel ma-
chine scheduling problems, focusing on the most effective components of this
meta-heuristic technique, and detail its use for these problems. The inherent
combinatorial difficulty of the problems and the performance of the Scatter
Search algorithms is analyzed in Section 2.4 through the results of extensive
computational experiments.

2.2 The problems

We first introduce the basic P||Cmax problem, and then derive its two gener-
alizations.

2.2.1 Identical Parallel Machine Scheduling Problem

The problem P||Cmax can be formally stated as an Integer Linear Program-
ming model by introducing a binary variable xij , taking value one if and only
if job j is assigned to machine i (j = 1, . . . , n; i = 1, . . . ,m):

min z (2.1)

s.t.
n∑

j=1

pjxij ≤ z (i = 1, . . . ,m), (2.2)

m∑
i=1

xij = 1 (j = 1, . . . , n), (2.3)

xij ∈ {0, 1} (i = 1, . . . ,m; j = 1, . . . , n), (2.4)

where z is the optimum makespan value.
Although this model can be strengthened by means of valid inequalities

(as shown in Mokotoff [30]), its computational behavior is unsatisfactory from
a practical point of view, due to the high number of variables that take a
fractional value in the solution of its linear programming relaxation.

Exact algorithms with better computational behavior were obtained from
implicit enumeration techniques. Dell’Amico and Martello [11] proposed com-
binatorial lower bounds, dominance criteria and a depth-first branch-and-
bound algorithm based on the following enumeration scheme. The jobs are
sorted so that

p1 ≥ p2 ≥ · · · ≥ pn, (2.5)
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and are assigned to machines by increasing index. Let z̃ denote the incumbent
solution value, and ci (i = 1, . . . ,m) the sum of the processing times currently
assigned to machine i. At level j of the branch-decision tree, at most m nodes
are generated by assigning job j to those machines i such that ci + pj < z̃
(but for each subset of machines having identical ci value, only the one with
minimum index is considered). Computational experiments (see Dell’Amico
and Martello [11,13]) showed a good practical behavior, definitely better than
the one of the algorithm in [30].

Further improvements were obtained by Dell’Amico, Iori, Martello and
Monaci [10] through an algorithm that exploits the dual relationship with the
BPP. Given lower and upper bound L and U (L < U) on the optimal solution
value, the algorithm performs a binary search which, at each iteration, checks
wether there exists a solution with makespan at most c = �(L + U)/2	 (and
updates L or U correspondingly). The core problem is the decision version of
a BPP, which is formulated as a set covering problem and solved through LP
relaxation, column generation and branch-and-price.

Computational evidence shows however that all exact algorithms fail when
addressing large-size instances, hence the problem has received a large atten-
tion from the heuristic point of view. Among the recent relevant contributions
we cite the heuristic algorithm based on a simple exchange neighborhood by
França, Gendreau, Laporte and Müller [16], the multiple exchanges neigh-
borhoods studied by Frangioni, Necciari and Scutellà [17], the Tabu Search
approach by Alvim and Ribeiro [1], the multi-start local search method by
Haouari, Gharbi and Jemmali [24] and finally the Scatter Search algorithm by
Dell’Amico, Iori, Martello and Monaci [10] which is discussed in Section 2.3.1.

2.2.2 Cardinality Constrained Parallel Machine Scheduling
Problem

A well-studied generalization of the P||Cmax arises when the number of jobs
that can be assigned to each machine cannot exceed a given integer k. This
can be modeled by adding to the previous model the constraint:

n∑
j=1

xij ≤ k (i = 1, . . . ,m). (2.6)

The model defined by (2.1)–(2.4) and (2.6) describes what is known in the
literature as the Cardinality Constrained Parallel Machine Scheduling Prob-
lem, denoted as P|# ≤ k|Cmax. Problem P||Cmax is thus the special case of
P|# ≤ k|Cmax arising when k = n−m+ 1 (as there always exists an optimal
solution in which each machine processes at least one job).

Possible applications of this problem arise when m machines (e.g., cells of
a Flexible Manufacturing System, robots of an assembly line) have to perform
n different types of operation. In real world contexts, each machine can have a
limit k on the number of different types of operation it can perform, coming,
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e.g., from the capacity of the cell tool inventory or the number of robot feeders.
If it is imposed that all operations of type j (j = 1, . . . , n) have to be performed
by the same machine, and pj is the total time they require, then P|# ≤ k|Cmax

models the problem of performing all operations with minimum makespan. A
real world P|# ≤ k|Cmax case was presented by Hillier and Brandeau [25], who
studied a printed circuit board assembly process inspired by an application
at Hewlett-Packard. The dual of P|# ≤ k|Cmax is a generalization of BPP in
which a limit k is imposed to the number of items that can be packed into
each bin.

Lower and upper bounds for P|# ≤ k|Cmax were provided by Babel,
Kellerer and Kotov [2] and by Dell’Amico and Martello [12], who also pro-
posed a truncated branch-and-bound algorithm. Felinskas [15] developed ge-
netic algorithms and tested them on the real world case proposed by Hillier
and Brandeau [25]. The Scatter Search algorithm by Dell’Amico, Iori and
Martello [8] is reviewed in Section 2.3.2.

2.2.3 ki-Partitioning Problem

Another interesting generalization (of both P||Cmax and P|# ≤ k|Cmax) is the
ki-Partitioning Problem (ki-PP), introduced by Babel, Kellerer and Kotov [2].
In this case each machine i has a specific cardinality limit ki (i = 1, . . . ,m).
The problem is thus modeled by (2.1)–(2.4), and

n∑
j=1

xij ≤ ki (i = 1, . . . ,m). (2.7)

In the special case where ki = k for i = 1, . . . ,m the problem coincides with
P|# ≤ k|Cmax.

Possible applications of this problem arise again in Flexible Manufacturing
System, when the cells are not identical. The dual of ki-PP is a generalization
of BPP in which the bins are numbered by consecutive integers, the first m
bins have limits ki (i = 1, . . . ,m) on the number of items that can be packed
into them, and all other bins have this limit set to one.

Lower bounds, reduction methods, constructive heuristics and a partic-
ular lower bound computation based on column generation were developed
by Dell’Amico, Iori, Martello and Monaci [9]. The Scatter Search algorithm
proposed by the same authors is described in Section 2.3.3.

2.3 Scatter Search

Scatter Search originates from heuristics for integer programming developed
by Glover [18] in the Seventies. Several books and surveys on this methodology
can be found in the literature. The reader is referred to the recent survey by
Mart́ı, Laguna and Glover [28] and to the special issue of European Journal of
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Operational Research edited by Mart́ı [14]. Scatter Search can be defined as a
population based meta-heuristic that operates on a set of “good” solutions, the
reference set RS, and iteratively creates new solutions by combining subsets
of RS. These new solutions are possibly used to periodically update RS and
the final outcome is the best solution obtained during the search process.

Most implementations of Scatter Search algorithms are based on the tem-
plate formalized for the first time in Glover [19]. Candidate solutions for the
reference set are evaluated on the basis of two criteria: quality and diversity.
The quality of a solution s coincides or is strictly related to its value, denoted
in the following as z(s), while its diversity is a relative measure indicating how
much its structure differs from that of the solutions that are currently in the
reference set. Since the new solutions are created by combining solutions of
RS, diversity is a crucial tool for giving a Scatter Search algorithm the possi-
bility of continuously diversifying the search to efficiently explore the solution
space.

A concise formulation of the template is as follows:

1. generate a starting population P of good solutions;
2. create the initial reference set RS by selecting from P a number of solu-

tions on the basis of their quality and their diversity;
3. while a stopping criterion is not met do

3.1 generate a family of subsets of solutions from RS;
3.2 for each subset S of the family do

3.2.1 combine the solutions in S so as to obtain a set of new solutions;
3.2.2 improve each new solution;
3.2.3 add to RS the solutions that meet a quality or diversity criterion
end for

end while.

Five main issues have to be dealt with, when developing a Scatter Search
algorithm:

A. Starting population (Step 1.). The population should consist of high
quality solutions that differ consistently from one another. It can be con-
structed in a totally random way or using heuristics. It is generally con-
venient to apply an improvement algorithm to each such solution. For
the scheduling problems we are considering, Scatter Search appears to be
quite robust with respect to the initial population, provided that enough
CPU time is given to the overall algorithm.

B. Improvement (Steps 1. and 3.2.2). Local search and post optimization are
frequently used to improve the solutions quality. Similarly to what hap-
pens in the intensification phase of other meta-heuristic approaches, the
balance between computational effort and effectiveness may affect dramat-
ically (in positive or in negative) the behavior of the overall algorithm.

C. Reference set update (Steps 2. and 3.2.3). The reference set is typically
the union of a set Q of high quality solutions and a set D of solutions



46 Iori and Martello

highly different from those in Q and from one another. The reference
set is usually quite small, typically containing 20 to 30 solutions. Two
updating methods are common. A dynamic method updates RS as soon
as a solution meets the required quality or diversity criterion, while in a
static method updating only occurs when all generated subsets have been
handled.

D. Subset generation (Step 3.1). The method adopted to select a subset of
solutions to be combined together can have a relevant effect on the compu-
tational effort spent at each iteration of Step 3. Selecting a high number of
subsets generally produces, at Step 3.2.1, a high number of new candidate
solutions, hence a deep exploration of the current reference set.

E. Solution combination (Step 3.2.1). For each subset of solutions, one or
more new candidate solutions are produced through combination. This
is frequently a crucial aspect of Scatter Search. Specifically tailoring the
combination method to the problem can considerably improve the con-
vergence to high quality solutions.

The initial generation method, the improvement algorithms and the solu-
tion combination method developed for the three problems we are considering
were specifically tailored to the problems, hence are discussed in the next sec-
tions. For the reference set update and for the subset generation instead,
although several approaches were attempted, it turned out that the most ef-
ficient choices were common to the three cases.

Concerning the reference set update (issue C. above), the dynamic method
was always used, with different values for |Q| and |D|.

The subset generation method (issue D. above) always followed the clas-
sical approach proposed by Mart́ı, Laguna and Glover [28], which consists
in generating: (i) all the two-solution subsets; (ii) the three-solution subsets
obtained by adding to each two-solution subset the solution of highest qual-
ity not already contained in it; (iii) the four-solution subsets obtained by the
three-solution subsets in the same way as for (ii); (iv) the |RS| − 4 subsets
containing the best s solutions, for s = 5, 6, . . . , |RS|.

In the next sections we detail the specific methods adopted, for issues A.,
B., and E. above, in the three considered problems.

2.3.1 Scatter Search for P||Cmax

In the scatter search algorithm proposed by Dell’Amico, Iori, Martello and
Monaci [10], a starting population of |P| = 40 solutions was generated
through a number of approximation algorithms (see Mokotoff [29], Brucker [3],
Leung [27] and Chen [5] for recent surveys on the huge literature on heuristics
for P||Cmax). The algorithms used were in particular the well-known Longest
Processing Time algorithm by Graham [21,22], algorithm Multi-Subset, a two-
phase approach by Dell’Amico and Martello [11] and other two-phase algo-
rithms proposed by Mokotoff, Jimeno and Gutiérrez [31].
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The improvement method adopted was a k − 	 swap procedure, used to
swap up to k jobs assigned to a machine with up to 	 jobs assigned to another
one, when this leads to decrease the makespan restricted to such two machines.
Extensive computational experiments showed that exchanging single jobs (k =
	 = 1) gives modest improvements to the solutions quality, exchanging single
jobs and pairs of jobs (k = 	 = 2) has the best balance between CPU time
and efficacy, while higher values of k and/or 	 produce limited improvements
at the expenses of a considerable running time increase.

The reference set RS was composed by the |Q| = 10 solutions with min-
imum makespan and by the |D| = 8 solutions with highest diversity. The
diversity of a solution was measured as follows. Given two jobs j and l (l > j)
and two solutions s 
∈ RS and t ∈ RS, let

δjl(s, t) =

⎧⎨⎩
1 if j and l are processed on the same machine in s

and on different machines in t, or vice versa;
0 otherwise,

(2.8)

and define the diversity of s with respect to RS as

d(s) = min
t∈RS

⎧⎨⎩
ñ−1∑
j=1

ñ∑
l=j+1

δjl(s, t)

⎫⎬⎭ , (2.9)

where ñ = min(n, 4m) is used to limit the evaluation to the largest (hence,
most critical) processing times. An accurate definition of the diversity can
help in avoiding useless computations. In this case, if RS contains a solution
s equivalent to s (i.e., that can be obtained from s by just permuting the
machines) equation (2.8) gives δij(s, s) = 0 for all i and j, so, in (2.9), d(s)
has its minimum (of value 0) for t = s and s is not added to RS.

From each subset S generated at Step 3.1, new solutions are generated
as follows. For each pair of jobs (j, l) (j, l ≤ ñ), let Sjl be the subset of S
containing those solutions in which j and l are processed on the same machine,
and define the sum of the inverse relative errors of such solutions:

ϕjl =
∑

s∈Sjl

L

z(s) − L
, (2.10)

where L denotes the best lower bound value available. (Observe that ϕjl tends
to be high when j and l are processed on the same machine in many good
solutions.) A pair (j, l) is then selected with probability proportional to ϕjl,
and assigned to the machine of lowest index i for which the current completion
time ci satisfies ci +pj +pl ≤ L. If no such machine exists, j and l are assigned
to the machine i with minimum ci. The process is iterated until a complete
solution s is obtained.
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2.3.2 Scatter Search for P|# ≤ k|Cmax

A scatter search algorithm for P|# ≤ k|Cmax was proposed by Dell’Amico,
Iori and Martello [8]. The starting population was obtained by generating
|P| = 80 totally random solutions. Attempts to initialize it through a heuris-
tic algorithm by Babel, Kellerer and Kotov [2] or through adaptations of the
Multi-Subset algorithm by Dell’Amico and Martello [11] gave limited improve-
ments.

The improvements were obtained through: (i) the k − 	 swap procedure
described in Section 2.3.1 with k = 	 = 1 (implying that only shifts of single
jobs from one machine to another, and one to one job exchanges between pairs
of machines were attempted); (ii) a re-optimizing procedure that iteratively
fixes the jobs assigned to one machine, and runs a heuristic to schedule the
remaining jobs onm−1 machines. Additional specially tailored heuristics were
also executed for special instances satisfying n = mk (known as k-partitioning,
see Babel, Kellerer and Kotov [2]), which are particularly difficult to solve in
practice.

The reference set RS was composed by the |Q| = 8 solutions with min-
imum makespan and by the |D| = 7 solutions with highest diversity. The
evaluation of the diversity of a solution was implemented in a simpler way
with respect to P||Cmax. Let yj(s) be the machine job j is assigned to in
solution s. Then the diversity of s with respect to RS is

d(s) = min
t∈RS

∣∣∣ {
j ∈ {1, . . . , ñ} : yj(s) 
= yj(t)

}∣∣∣ (2.11)

with ñ = 2m. Using this definition, the reference set update is much faster
than using (2.9), but the risk exists of having equivalent solutions in RS.

The combination method was as follows. Given a subset S ⊆ RS generated
at Step 3.1, let S(i, j) ⊆ S be the set of solutions of S in which job j is assigned
to machine i, and define an m× n matrix F with

Fij =
∑

s∈S(i,j)

z(s)
z(s) − L

(2.12)

A job-machine pair (i, j) has thus an high Fij value if j is processed on i in
many high quality solutions. The meaning of Fij in (2.12) is similar to that of
ϕjl in (2.10). Three solutions are then created through the following random
process. For j = 1, . . . , n, job j is assigned to to machine i with probability
Fij/

∑m
h=1 Fhj . If this makes machine i to have k jobs assigned, Fil is set to

zero for l = 1, . . . , n in order to prevent the selection of i at the next iterations.
The solution of minimum makespan among the three new solutions is then
improved through the local search procedures mentioned above.
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2.3.3 Scatter Search for ki-PP

The scatter search algorithm by Dell’Amico, Iori, Martello and Monaci [9]
starts by randomly generating and improving an initial population of |P| =
100 solutions.

Concerning the improvement, the algorithms adopted for P|# ≤ k|Cmax

were generalized to the considered case of different ki values.
The reference set RS had |Q| = 10 solutions with lowest makespan, and

|D| = 8 solutions with high diversity.
The diversity of a solution s with respect to RS was computed as in (2.11).

In this case, the advantage of a quick reference set update was preserved
with a very limited risk (with respect to P|# ≤ k|Cmax) of having equivalent
solutions in RS, as in ki-PP the machines are not identical, due to the different
ki values. Also the combination method was very similar to the one adopted
for P|# ≤ k|Cmax, the only difference being in the number of random solutions
generated.

2.4 Computational Results

We give here a concise exposition of the computational results obtained by the
Scatter Search algorithms described in Section 2.3. In Section 2.4.1 we sum-
marize the main results presented in [8–10] on the three problems addressed,
comparing the Scatter Search algorithms with greedy heuristics, local search
and exact methods. In Section 2.4.2 we concentrate on P||Cmax, and com-
pare the Scatter Search algorithm with the most successful meta-heuristics
in the literature. In Section 2.4.3 we evaluate the behavior of the three Scat-
ter Search algorithms on the same set of P||Cmax instances (remind that the
two other problems are generalizations of P||Cmax). We conclude with Section
2.4.4, where we give some details on the parameters tuning.

2.4.1 Scatter Search vs simple heuristics and exact algorithms

We compare in this section the performance of the three Scatter Search al-
gorithms introduced in Section 2.3 with that of the most well-known greedy
heuristics for these three parallel machine scheduling problems, and with three
exact approaches consisting in executing, after the Scatter Search, an implicit
enumeration algorithm. The heuristics can be classified into three categories:
List Scheduling, Threshold and Mixed.

List Scheduling Heuristics initially sort the jobs according to a prespecified
criterion, and then assign them to the machines, one at a time, following a
given rule. For P||Cmax the most famous heuristic of this kind is the Longest
Processing Time (LPT) by Graham [21], which sorts the jobs according to
non-increasing processing time, and then iteratively assigns the next job to
the machine having the minimum current completion time. It is known from
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the probabilistic analysis by Coffman, Lueker and Rinnooy Kan [7] that, if
certain conditions on the processing times are satisfied, the solution produced
by LPT is asymptotically optimal. In [12] and [9], LPT was generalized to
P|# ≤ k|Cmax and ki-PP, respectively, by imbedding in it the cardinality
constraints.

Threshold Heuristics exploit the “duality” with BPP defined in Section
2.1. These algorithms consider a tentative value c for the optimum makespan,
and solve the corresponding BPP instance, with bin capacity c, using one or
more BPP heuristics. If not all items are assigned to them bins, the remaining
items are added through a greedy method. The process is possibly iterated
by adjusting the threshold value on the basis of the solution obtained in
the current attempt. Examples of threshold algorithms for P||Cmax are the
Multi-Subset (MS ) method by Dell’Amico and Martello [11], the Multi Fit
algorithm (MF ) by Coffman, Garey and Johnson [6], and the ε-dual method
by Hochbaum and Shmoys [26]. Algorithm MS was adapted to P|# ≤ k|Cmax

and ki-PP, respectively in [12] and [9].
Mixed Heuristics combine list scheduling and threshold techniques, by

switching from one to another during the construction process. Several mixed
heuristics were proposed by Mokotoff, Jimeno and Gutiérrez [31] for P||Cmax,
and generalized to ki-PP in [9].

In Tables 2.1–2.3 we compare the results given by the heuristics above and
by the Scatter Search. The last column of each table shows the improvement
that was obtained by executing an exact algorithm on the instances that had
not been solved to optimality by the Scatter Search. For each algorithm we
give the percentage of cases where the algorithm found the best solution with
respect to the other algorithms (%best), the percentage of cases where the
algorithm found the optimal solution (%opt) and the percentage gap between
the solution found by the algorithm and the best lower bound (%gap).

In Table 2.1 we compare the results obtained on P||Cmax instances by the
Scatter Search algorithm of Section 2.3.1 and by heuristics from the literature.
The table summarizes the results obtained on two classes of classical P||Cmax

benchmarks: uniform instances, proposed by França, Gendreau, Laporte and
Müller [16], and non-uniform instances, proposed by Frangioni, Necciari and
Scutellà [17]. For a given range [a, b], in the former class each processing time

Table 2.1: Overall performance of heuristics, Scatter Search, and Scatter Search
followed by branch-and-price on 780 P||Cmax instances.

List Mixed Threshold Scatter Scatter Search +
Scheduling Heuristics Heuristics Search Branch-and-Price

%best 21.9 30.9 79.1 97.7 100.0
%opt 21.9 30.9 79.1 97.7 100.0
%gap 0.54 0.36 0.05 0.01 0.00
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is uniformly randomly generated in [a, b], while in the latter class 98% of
the processing times are uniformly randomly generated in [0.9(b − a), b] and
the remaining ones in [a, 0.2(b − a)]. The considered values were, for both
classes, a = 1 and b ∈ {100, 1000, 10000}. The test instances were obtained by
considering all pairs (m,n), with m ∈ {5, 10, 25}, n ∈ {10, 50, 100, 500, 1000}
and m < n, and generating ten instances per pair, resulting in a total of 780
instances3).

The experiments were performed on a Pentium IV 3 GHz. The heuristics
usually needed less than one CPU second. The Scatter Search was allowed
a maximum time limit of 30 seconds for n ≤ 50, and of 120 seconds for
n > 50. The branch-and-price algorithm never exceeded one hour CPU time.
The table shows that the Scatter Search clearly outperforms all the classical
heuristics with respect to the percentages of best and optimal solutions and
to the percentage gap from the best lower bound. The last column shows that
the improvement obtained by executing the exact branch-and-price algorithm
(see [10]) after the Scatter Search is limited, but it allows to solve all instances
to optimality.

In Table 2.2 we compare heuristics for P|# ≤ k|Cmax with the Scat-
ter Search algorithm of Section 2.3.2. The experiments were performed on
a large set of fifteen classes of randomly generated instances (twelve proposed
by Dell’Amico and Martello [12], and three added by Dell’Amico, Iori and
Martello [8]). The first nine classes were obtained by generating the pj values
according to, respectively: (i) uniform distributions in [10, 1000], [200, 1000]
and [500, 1000] (Classes 1-3); (ii) exponential distributions with average value
µ = 25, 50, 100 (Classes 4-6); (iii) normal distributions with average value
µ = 100 and standard deviation σ = 33, 66, 100 (Classes 7-9). The other
six classes were generated as k−partitioning instances (with n = km): (iv)
in Classes 10-12 the pj values were uniformly distributed in [500, 10000],
[1000, 10000] and [1500, 10000]; (v) in the additional Classes 13-15 they were
generated as “perfect packing” instances (i.e., instances for which the optimal
solution value z satisfies z =

∑n
j=1 pj/m), with z = 1000, 5000, 10000. For

each class, different instances were created, involving up to 50 machines and
400 jobs, and having cardinality limit values up to 50. In total, 9420 instances
were generated.

The algorithms were run on a Pentium IV 2.4 GHz. For most of the in-
stances the complete execution of all the algorithms (including branch-and-
bound) needed few seconds in total, and it never exceeded 4 CPU minutes.
The Scatter Search was halted if during the last iteration no new solution
entered the reference set, or after a maximum of 10 iterations of Step 3. (see
the template of Section 2.3). In this case too the Scatter Search clearly out-
performs the classical heuristics in terms of percentage of best and optimal
solutions found and percentage gap. Running a branch-and-bound algorithm

3 http://www.inf.puc-rio.br/∼alvim/adriana/tese.html
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after the Scatter Search only leads to an improvement of 0.5% in %best, and
of 0.2% in %opt.

In Table 2.3 we finally compare the Scatter Search algorithm of Section
2.3.3 with classical heuristics for ki-PP. The algorithms were run on 81 classes
of test problems obtained by combining in all possible ways nine weight
classes for the generation of the pj values and nine cardinality classes for
the generation of the ki values. The weight classes were the first nine classes
adopted in [12] for P|# ≤ k|Cmax, and described above. The first six car-
dinality classes were characterized by a limited range of cardinality limits,
obtained by uniformly randomly generating the ki values so as to ensure
�n/m� − 1 ≤ ki ≤ �n/m� + 3 for i = 1, . . . ,m. The last three cardinality
classes were characterized by more sparse ki values, obtained through a par-
ticular generation procedure (see [9] for a more detailed description). The
algorithms were tested on instances with up to 400 jobs and 50 machines, for
a total of 25110 test problems.

The computational experiments were performed on a Pentium III 1.133
GHz. The Scatter Search was halted if either (i) no reference set update oc-
curred during the last iteration, or (ii) Step 3. was executed α times (with
α = 10 for n < 100, α = 5 for 100 ≤ n < 400 and α = 1 for n ≥ 400). The al-
gorithms usually needed no more than 10 CPU seconds in total, although this
limit could occasionally increase to 500 CPU seconds for particularly difficult
instances. The considerations seen for P|# ≤ k|Cmax apply to this case too.
The Scatter Search consistently improves the behavior of the classical heuris-
tics. Adding an exact approach (in this case, a column generation algorithm)
only leads to small improvements in the solution quality.

2.4.2 Comparison of meta-heuristic algorithms for P||Cmax

In this section we compare the performance of the Scatter Search algorithm for
P||Cmax (see Section 2.3.1) with that of other meta-heuristic algorithms. The
reason for restricting our attention to problem P||Cmax is that this is the only
problem, among the three considered here, for which a clear computational
comparison with other meta-heuristics from the literature is possible.

According to our knowledge, the other most successful meta-heuristic al-
gorithms for P||Cmax are the Tabu Search approach by Alvim and Ribeiro [1]

Table 2.2: Overall performance of heuristics, Scatter Search and Scatter Search fol-
lowed by branch-and-bound on 9420 P|# ≤ k|Cmax instances.

List Threshold Scatter Scatter Search +
Scheduling Heuristics Search Branch-and-Bound

%best 20.2 32.5 99.5 100.0
%opt 20.1 32.5 82.2 82.4
%gap 1.65 6.40 0.05 0.05
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Table 2.3: Overall performance of heuristics, Scatter Search and Scatter Search fol-
lowed by column generation on 25110 ki-PP instances.

List Mixed Threshold Scatter Scatter Search +
Scheduling Heuristics Heuristics Search Column Generation

%best 4.1 8.3 62.6 99.1 100.0
%opt 4.1 8.2 61.2 88.9 89.7
%gap 3.17 1.12 28.5 0.01 0.01

and the multi-start local search method by Haouari, Gharbi and Jemmali [24].
The algorithm in [1] operates by iteratively defining a tentative threshold for
the optimum makespan and solving the associated bin packing problem (see
Section 2.1) through a specialized Tabu Search. The algorithm proposed in [24]
is based on iterated solutions of a subset-sum problem for assigning jobs to
one machine at a time. (Given a set S of n integers, the subset-sum problem
is to find a subset S′ ⊆ S such that the sum of the values in S′ is closest to,
without exceeding, a given integer c.)

Other interesting results in the meta-heuristic field are the simple exchange
neighborhood by França, Gendreau, Laporte and Müller [16], and the multiple
exchange neighborhoods studied by Frangioni, Necciari and Scutellà [17]. We
do not refer explicitly to these results, as the quality of the solutions they
provide is generally worse than that given by the meta-heuristics above.

In Tables 2.4 and 2.5 we compare the three meta-heuristics on the uniform
and non-uniform benchmark instances for P||Cmax described in Section 2.4.1.
The entries give: (i) the average percentage gap between the solution value
found and the best lower bound (%gap); (ii) the average CPU time spent
(sec); (iii) the total number of optimal solutions found (#opt). Each entry
refers to 50 instances for m = 5 (10 instances each for n = 10, 50, 100, 500,
1000) and to 40 instances for m > 5 (10 instances each for n = 50, 100, 500,
1000). We also give the average and total values over the 130 instances of each
range, and over the complete set of 390 instances.

The algorithm by Alvim and Ribeiro [1] was run on a Pentium II 400 MHz
with 256 MB RAM. The algorithm by Haouari, Gharbi and Jemmali [24] was
run on a Pentium IV 3.2 GHz with 1.5 GB RAM, and the %gap values were
evaluated with respect to a better lower bound than the one used for the two
other algorithms. The Scatter Search algorithm by Dell’Amico, Iori, Martello
and Monaci [10] was run on a Pentium IV 3 GHz with 512 MB RAM.

The two competitors are faster than the Scatter Search, especially for
uniform instances (although all CPU times are very reasonable), but the solu-
tions provided by the Scatter Search are clearly better: the number of optimal
solutions found is considerably higher and the percentage gap lower.
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2.4.3 Comparison among Scatter Search algorithms

Since both P|# ≤ k|Cmax and ki-PP are generalizations of P||Cmax, the three
Scatter Search algorithms we considered can all be executed on P||Cmax in-
stances. In order to evaluate the relative merits of the general structure of
these algorithms (which is quite similar for the three cases) and of the differ-
ent specializations adopted to handle the specific constraints, we performed
a new series of experiments by executing the Scatter Search algorithms for
P|# ≤ k|Cmax and ki-PP on the same instances used in Table 2.1 for the
evaluation of the P||Cmax Scatter Search. The results obtained are presented
in Tables 2.6 and 2.7, as average values on a total of 390 instances per table.
The information provided is the same as in the tables of the previous section.

The results for the P||Cmax Scatter Search were directly taken from [10].
The results for the two other Scatter Search algorithms were obtained by
running the corresponding codes on the same computer used in [10], namely a
Pentium IV 3 GHz, without varying the termination criteria adopted as best
choices for the particular problems addressed.

The tables highlight the relevance of the specializations induced in the
algorithms by the cardinality constraints. In Table 2.6 the Scatter Search for
P||Cmax clearly outperforms the ones for P|# ≤ k|Cmax and ki-PP in terms
of solution quality (19 not-optimal solutions versus, respectively, 30 and 29),
although it needs a larger CPU time. All the percentage gaps are very small.
In Table 2.7 the differences in the solution quality become more evident, since

Table 2.4: Meta-heuristic results on 390 P||Cmax uniform instances.

Alvim and Ribeiro Haouari et al. Scatter Search

Range m %gap sec #opt %gap sec #opt %gap sec #opt

5 0.0000 0.00 50 0.0000 0.02 50 0.0000 0.00 50
[1, 102] 10 0.0000 0.00 40 0.0000 0.03 40 0.0000 0.00 40

25 0.0227 0.00 39 0.0453 0.04 38 0.0227 0.75 39

Average/Total 0.0070 0.00 129 0.0139 0.03 128 0.0070 0.23 129

5 0.0000 0.01 50 0.0000 0.08 50 0.0000 0.03 50
[1, 103] 10 0.0019 0.02 38 0.0000 0.09 40 0.0000 0.04 40

25 0.0322 0.02 37 0.0897 0.10 32 0.0311 5.86 38

Average/Total 0.0105 0.02 125 0.0276 0.09 122 0.0096 1.82 128

5 0.0408 0.04 48 0.0406 0.42 48 0.0334 0.05 49
[1, 104] 10 0.0026 0.08 30 0.0021 0.32 30 0.0004 4.64 36

25 0.0536 0.17 29 0.0257 0.19 28 0.0479 30.79 29

Average/Total 0.0330 0.09 107 0.0242 0.32 106 0.0277 10.92 114

Overall 0.0168 0.04 361 0.0219 0.15 356 0.0147 4.32 371



2 Scatter Search Algorithms for Identical Parallel Machine Scheduling 55

Table 2.5: Meta-heuristic results on 390 P||Cmax non-uniform instances.

Alvim and Ribeiro Haouari et al. Scatter Search

Range m %gap sec #opt %gap sec #opt %gap sec #opt
5 0.0000 0.01 50 0.0000 0.06 50 0.0000 0.04 50

[1, 102] 10 0.1981 0.13 32 0.0000 0.09 40 0.0000 0.04 40
25 0.0334 0.20 38 0.0000 0.14 40 0.0000 0.37 40

Average/Total 0.0712 0.11 120 0.0000 0.09 130 0.0000 0.14 130

5 0.0000 0.01 50 0.0000 0.15 50 0.0000 0.04 50
[1, 103] 10 0.0000 0.12 40 0.0000 0.19 40 0.0000 0.06 40

25 0.0335 0.41 38 0.0000 0.62 40 0.0000 0.29 40

Average/Total 0.0103 0.17 128 0.0000 0.31 130 0.0000 0.12 130

5 0.0000 0.01 50 0.0000 0.74 50 0.0000 0.05 50
[1, 104] 10 0.0001 0.16 38 0.0002 0.56 37 0.0000 0.05 40

25 0.0338 1.91 33 0.0007 4.11 30 0.0002 10.95 37

Average/Total 0.0104 0.64 121 0.0003 1.72 117 0.0001 3.40 127

Overall 0.0306 0.31 369 0.0001 0.71 377 0.0000 1.22 387

the Scatter Search for P||Cmax only misses 3 optimal solutions, against the
19 and 18 missed by the two other Scatter Search algorithms. The largest
average CPU times were required by the Scatter Search for ki-PP, while the
two other algorithms needed on average about one CPU second. The uniform
instances appear to be a more difficult test bed than the non-uniform ones,
showing a larger average gap and a smaller total number of optimal solutions.

On the other hand we can observe that the Scatter Search template
we adopted appears to be very robust. The Scatter Search algorithms for
P|# ≤ k|Cmax and ki-PP, when executed on P||Cmax instances, obtain very
good results, not too far from the best performance obtained, as it could be
expected, by the Scatter Search specifically tailored for this problem.

2.4.4 Parameters Tuning

We finally comment the parameters tuning within the Scatter Search frame-
work, by particularly focusing on the P||Cmax algorithm of Section 2.3.1, and
reviewing the tuning process with reference to the five main points outlined
in Section 2.3.

Starting Population. The size of the initial pool of solutions was set to
40, after having tried the values 30, 50, 60, 70 and 100. The algorithm is
very robust with respect to this parameter, i.e., all values produced results of
comparable quality.

Improvement. The algorithm is very sensitive to this parameter. Limiting
the k − 	 swap to k = 	 = 1 lead to a non satisfactory performance in which
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Table 2.6: Scatter Search algorithms on 390 P||Cmax uniform instances.

Scatter Search Scatter Search Scatter Search
for P||Cmax for P|# ≤ k|Cmax for ki-PP

Range m %gap sec #opt %gap sec #opt %gap sec #opt

5 0.0000 0.00 50 0.0000 0.00 50 0.0000 0.00 50
[1, 102] 10 0.0000 0.00 40 0.0000 0.00 40 0.0000 0.00 40

25 0.0227 0.75 39 0.0225 0.01 39 0.0225 0.02 39

Average/Total 0.0070 0.23 129 0.0069 0.00 129 0.0069 0.01 129

5 0.0000 0.03 50 0.0000 0.00 50 0.0000 0.00 50
[1, 103] 10 0.0000 0.04 40 0.0021 0.01 38 0.0021 0.23 38

25 0.0311 5.86 38 0.0320 0.05 38 0.0320 0.75 38

Average/Total 0.0096 1.82 128 0.0105 0.02 126 0.0105 0.30 126

5 0.0334 0.05 49 0.0330 0.01 46 0.0329 0.08 47
[1, 104] 10 0.0004 4.64 36 0.0138 0.05 30 0.0091 1.02 30

25 0.0479 30.79 29 0.0695 0.39 29 0.0658 5.95 29

Average/Total 0.0277 10.92 114 0.0383 0.14 105 0.0357 2.18 106

Overall 0.0147 4.32 371 0.0186 0.05 360 0.0177 0.83 361

only 734 optimum values out of 780 instances were found. Using k = 	 = 2
produced the final result (758 optima). Further enlarging the local search
with k = 	 = 3 very slightly decreased the percentage gap without finding
new optima, but required a consistently higher CPU time.

Reference Set Update. Updating the reference set as soon as a solution with
high quality or high diversity is found lead to better solutions than updating
it at the end of the iteration. Varying the sizes of the two subsets Q and D in
the ranges 8 ≤ |Q| ≤ 12 and 6 ≤ |D| ≤ 10 did not produce relevant variations.

Subset Generation Method. The final choice reported in [10] was to adopt
the method proposed by Glover, Laguna and Mart́ı [20] (see Section 2.3).
Considering a more limited number of subsets lead to slightly worse perfor-
mances.

Solution combination. For each subset, the policy of obtaining a single new
solution by combination proved to be better than that of generating more (2,
3 or 4) new solutions. The diversity function (2.9) outperformed (2.11), since
solutions in which the same groups of jobs are assigned to different machines
are not identified as identical by the latter function. Similar arguments hold
for the combination method, as the one adopted in [10] outperformed the one
in [8]. Other methods such as, e.g., using matrix ϕ (see (2.10)) to choose only
one job at a time, lead to slightly worse results. The solution combination
method turned out to be very important, since the Scatter Search algorithm
is particularly sensitive to this aspect.
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Table 2.7: Scatter Search algorithms on 390 P||Cmax non-uniform instances.

Scatter Search Scatter Search Scatter Search
for P||Cmax for P|# ≤ k|Cmax for ki-PP

Range m %gap sec #opt %gap sec #opt %gap sec #opt

5 0.0334 0.05 49 0.0330 0.01 46 0.0329 0.08 47
[1, 102] 10 0.0004 4.64 36 0.0138 0.05 30 0.0091 1.02 30

25 0.0479 30.79 29 0.0695 0.39 29 0.0658 5.95 29

Average/Total 0.0000 0.14 130 0.0000 1.02 130 0.0000 2.07 130

5 0.0000 0.04 50 0.0000 0.01 50 0.0000 0.18 50
[1, 103] 10 0.0000 0.04 40 0.0000 0.17 40 0.0000 1.69 40

25 0.0000 0.37 40 0.0000 3.14 40 0.0000 4.81 40

Average/Total 0.0000 0.12 130 0.0000 0.52 130 0.0000 2.21 130

5 0.0000 0.04 50 0.0000 0.02 50 0.0000 0.36 50
[1, 104] 10 0.0000 0.06 40 0.0000 0.26 40 0.0000 2.70 40

25 0.0000 0.29 40 0.0000 1.42 40 0.0000 4.03 40

Average/Total 0.0001 3.40 127 0.0006 1.43 111 0.0004 3.96 112

Overall 0.0000 1.22 387 0.0002 0.99 371 0.0001 2.75 372

2.5 Conclusions

We presented a survey on heuristic results for the well-known Identical Par-
allel Machine Scheduling Problem and for two generalizations of practical
relevance, known as the Cardinality Constrained Parallel Machine Schedul-
ing Problem and the ki-Partitioning Problem. The problems are particularly
challenging from the heuristic point of view, since they present very low per-
centage gaps between the lower bounds and the upper bounds found by the
classical heuristics from the literature. Hence the room for improvement is
quite limited.

We described three Scatter Search approaches for these problems, high-
lighting their common components and their differences. We evaluated the
behavior of these algorithms by summarizing the results of extensive compu-
tational experiments from the literature, and by presenting new results. The
Scatter Search algorithms consistently improve on the results found by the
classical heuristics. Using different exact methods leads to limited improve-
ments. A test of the three algorithms on the same set of instances shows that
the general approach is very robust.

A possible extensions could be to include Scatter Search in frameworks for
parallel machine computing, such as, e.g., the one proposed by Cahon, Melab
and Talbi [4].
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for minimum makespan machine scheduling problems. Journal of Combinatorial
Optimization, 8:195–220, 2004.

18. F. Glover. Heuristic for integer programming using surrogate constraints. De-
cision Sciences, 8:156–166, 1977.

19. F. Glover. A template for scatter search and path relinking. In J. K. Hao,
E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Lecture Notes in
Computer Science, volume 1363, pages 1–45. Springer-Verlag, 1998.

20. F. Glover, M. Laguna, and R. Mart́ı. Scatter search and path relinking: Founda-
tions and advanced designs. In G. C. Onwubolu and B. V. Babu, editors, New
Optimization Techniques in Engineering. Springer-Verlag, Heidelberg, 2004.

21. R.L. Graham. Bounds for certain multiprocessing anomalies. Bell System Tech-
nical Journal, 45:1563–1581, 1966.

22. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics, 17:416–429, 1969.

23. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimiza-
tion and approximation in deterministic sequencing and scheduling: a survey.
Annals of Discrete Mathematics, 5:287–326, 1979.

24. M. Haouari, A. Gharbi, and M. Jemmali. Tight bounds for the identical par-
allel machine scheduling problem. International Transactions in Operational
Research, 13:529–548, 2006.

25. M. S. Hillier and M. L. Brandeau. Optimal component assignment and
board grouping in printed circuit board manufacturing. Operations Research,
46(5):675–689, 1998.

26. D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: practical and theoretical results. Journal of ACM, 34:
144–162, 1987.

27. J.Y.T. Leung (ed.). Handbook of Scheduling: Algorithms, Models, and Perfor-
mance Analysis. CRC Press, Boca Raton, FL, 2004.

28. R. Mart́ı, M. Laguna, and F. Glover. Principles of scatter search. European
Journal of Operational Research, 169:359–372, 2006.

29. E. Mokotoff. Parallel machine scheduling problems: a survey. Asia-Pacific Jour-
nal of Operational Research, 18:193–242, 2001.

30. E. Mokotoff. An exact algorithm for the identical parallel machine scheduling
problem. European Journal of Operational Research, 152:758–769, 2004.

31. E. Mokotoff, J. J. Jimeno, and I. Gutiérrez. List scheduling algorithms to min-
imize the makespan on identical parallel machines. TOP, 9:243–269, 2001.


