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Summary. This chapter proposes a natural stigmergic computational technique
Bee Colony for process scheduling and optimization problems developed by mim-
icking social insects’ behavior. The case study considered in the chapter is a milk
production center, where process scheduling, supply chain network etc. are crucial,
as slight deviation in scheduling may lead to perish out the item causing finan-
cial loss of the plant. The process scheduling of such plants extensively deals with
multi-objective conflicting criteria, hence the concept of Pareto Dominance has been
introduced in the form of Pareto Bee Colony Optimization. Some facts about social
insects namely bees are presented with an emphasis on how they could interact and
self organized for solving real world problems. Finally, a performance simulation and
comparison has been accomplished envisaging other similar bio-inspired algorithms.
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11.1 Introduction and Background

Supply networks are organizations of partially autonomous production and
distribution centers through which goods are processed and delivered to
customers. Optimizing the activities of a supply network to improve pro-
duction throughput and timeliness of the delivery requires dealing with a
number of large-scale, interrelated assignments, scheduling and routing prob-
lems. The optimization is especially challenging for a supply network that
delivers rapidly perishable goods, such as raw materials used for manufactur-
ing foods and beverages. The perishable goods are only used within a period
of restricted time limit, so it is expected that their production and delivery
are made only on stipulated demand and even their routing through proper
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channel also becomes an issue. Naturally the problem of such type requires
multi optimization with large number of constraints at different stages. The
specialty of such optimization is not only about their costs but also flexibility
and robustness of the solution could also be considered. It is observed that any
small deviation over local activity may inject a cascaded delay while deploying
the common resources. Therefore, referring the aspect of perishable material
for food industry, this may turn into substantially significant financial loss
and even degrading the brand value of the company, and all the conventional
predefined optimal solutions could become impractical due to various other
constraints. Professionals find it as trade off between the minimizing the costs
of operations and providing shock absorption over these disruptions.

There are certain commercial tools (like CPLEX) available to address these
issues. A considerable number of works that demonstrate the approach of sup-
ply network logistics issues, but comparatively less versions of multi optimiza-
tion scheduling based on meta-heuristics have been established. We propose
a novel hybrid meta-heuristics optimally in a supply network for perishable
material concerned with food industry. The genesis of the search strategy is
based on evolutionary computation method, mainly to exploit its efficient ex-
ploration/exploitation capability in the large search space of the main decision
variables characterizing our scheduling problem. The solution integrates the
followings:

• A detailed mathematical model of the logistic problem that unambiguously
specifies the free decision variables.

• A set of fast heuristics organized in a hierarchical structure that is able to
construct a fully feasible solution starting from an initial assignment of a
subset of decision variables.

• A multi-objective bee colony based rough set algorithm that searches for
the set of best tradeoff solutions considering both the costs and the ro-
bustness of the corresponding schedules.

The proposed solution is presented in the context of reducing the risk and
uncertainty in optimization. The optimization algorithm returns a set of solu-
tions with different cost and risk tradeoffs, allowing the analyst to adapt the
planning depending on the attitude to risk. The subsequent section presents
an overview of supply chain modelling through diversified methodologies es-
pecially envisaging adaptive and intelligent techniques.

Background

The globalization, dynamics, and frequent variations of customer demands on
today’s markets increase the needs of companies to form supply chains (SCs)
and cooperative business partnerships that enable them to survive on today’s
competitive market [6, 7]. SCs are networks of autonomous business entities
that collectively procure, manufacture, and distribute certain products. The



11 Modelling Process and Supply Chain Scheduling 279

objective of a SC is to respond efficiently to customer demands and at the same
time, it must minimize the cost of all participating business entities. To achieve
this objective the supply chain management (SCM) system must coordinate
and optimize the procurement, production, and distribution of goods. In real-
ity, however, SCs are often operating in dynamic and non-homogenous cultural
environments. Therefore, current SCM systems need to adopt adaptive learn-
ing features and reasoning of theory of evidence to reflect the changes in the
dynamic cultural environment. In practical research, there are couples of sup-
ply chain works primarily concerned with adaptive reasoning and seems to be
hybrid intelligent. For example, Several systems were developed to model the
SCs complexity using a GA, for examples Truong and Azadivar [8] have inte-
grated GAs, mixed integer programming methods, and simulation techniques
into a hybrid optimization model, while other researchers use GAs and Pareto
Optimal techniques [9]. Furthermore, Al-Mutawah, Lee, and Cheung have de-
veloped a Distributed Multi-objective Genetic Algorithm (DMOGA) to solve
the SC optimization problem in [10]. One common limitation of DMOGA and
other typical genetic based implementation of multi-objective optimization is
the inheritance process of GA, which restricts the parents to transfer experi-
ences only to their offspring, ignoring the influence of other external sources.
In real world, particularly in a distributed environment, SC applications data
are collected from heterogeneous sources, implying the need to co-opt other
sources of influence as well.

11.2 Related Works on Meta-heuristics

As it has been discussed in previous sections, the supply chain is a complex
network of facilities and organizations with interconnected activities but dif-
ferent and conflicting objectives. Many companies are interested in analyzing
their supply chain as an entire and unique system to be able to improve their
business. However, in most cases the task of designing, analyzing and manag-
ing the supply chain has been done based on experience and intuition; very
few analytical models and design tools have been used in the process. This im-
plies that finding the best supply chain strategies for a particular firm, group
of firms or sector poses significant challenges to the industry and academia.
The optimization literature focuses on algorithms for computing solutions to
constrained optimization problems.

Meta-heuristics have many desirable features to be an excellent method
to solve very complex SCM problems: in general they are simple, easy to
implement, robust and have been proven highly effective to solve hard prob-
lems. Several other aspects are worth to mention. The first one is the meta-
heuristicsc modular nature that leads to short development times and updates,
given a clear advantage over other techniques for industrial applications. This
modular aspect is especially important given the current times of implement-
ing a Decision Support System (DSS) in a firm and the rapid changes that
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occurs in the area of SCM. The next important aspect is the amount of data
involved in any optimization model for an integrated supply chain problem,
which can be overwhelming. The complexity of the models for the SCM and
the incapacity of solving in real time some of them by the traditional tech-
niques, force the use of the obvious technique to reduce this complex issue
by data aggregation [11]. However this approach can hide important aspects
that impact the decisions. Other reports published presented a complex vehi-
cle routing model to the distribution in the food and beverages industries [12].

A literature search in food science and technology databases reveals that
optimization using response surface modelling (RSM) has been, and contin-
ues to be, the most common approach. RSM techniques were introduced in
the 1950s associated with design of experiments methods [1,2]. Although the
usefulness of RSM in certain conditions must be recognized, this approach has
a number of important drawbacks due to the empirical, local and stationary
nature of the simple algebraic models used. In contrast, a number of power-
ful model-based optimization methods have been developed during the last
decades, which use more rigorous, time-dependent models. Primarily, at the
core is the problem domain from which instances were drawn. The problem
domain consist twenty four distinct instance classes on the basis of twelve
distinct problem specifications. Except for the 100-job single machine total
weighted tardiness instance class, for each instance class, a new benchmark
set of 125 instances was created. Furthermore, solutions were obtained for all
3000 instances and recorded to serve as reference for future research. In order
to find these solutions, new solution representations were developed for the
problems with a parallel machine environment. Moreover, well known speed
up techniques for the single machine total weighted tardiness problem were
adapted to the constraints posed by objective functions that ignore weights
or impose a unit penalty on each late job. Finally, the speed up techniques
was adapted to work in machine environments with more than one machine
in parallel [3].

Mixed planning and scheduling problem was discussed in length and it has
been shown how to extend a conventional scheduler by some planning capabil-
ities during the investigation on complex process models [4]. Balanced theory
and practice of planning and scheduling in supply chains also have become
prominent area of implementation [5]. The project first gives an overview
of the various planning and scheduling models that have been studied in
the literature, including lot sizing models and machine scheduling models.
It subsequently categorizes the various industrial sectors in which planning
and scheduling in the supply chains are important; these industries include
continuous manufacturing as well as discrete manufacturing followed by the
description how planning and scheduling models can be used in the design
and the development of decision support systems for planning and scheduling
in supply chains and discuss in detail the implementation of such a system at
the Carlsberg A/S beer-brewer in Denmark.
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The trend of research and implementation found to be more practical
when natural heuristics has been incepted in scheduling the activities. Many
project tasks and manufacturing processes consist of interdependent time-
related activities that can be represented as networks. Deciding which of these
sub-processes should receive extra resources to speed up the whole network
(i.e. where activity crashing should be applied) usually involves the pursuit of
multiple objectives amid a lack of a priori preference information. A common
decision support approach lies in first determining efficient combinations of
activity crashing measures and then pursuing an interactive exploration of
this space.

11.3 Motivation and Importance Behind the Model

Most of the raw material of food and beverages are perishable due to their
complex preservation approach and thus conventional Just in Time (JIT)
methodology doesn’t hold good as it seldom fails in uncertainty and ambiguity.
The distribution network of finished frozen food products also requires utmost
prompt delivery over a broader geographical coverage preventing them from
damage in terms of food value and nutrition. The vehicle used for dispatching
have limited capacity, and so large demands require several vehicle loads to
transport all the products at proper places in time. These activities have to
be properly synchronized, because the unloading at the customer site must
be continuous in order to prevent compromising the food value properties
of the product. Each production centers of food processing aims to increase
resource utilization decrease costs and ensure the timeliness of the deliveries.
Hence, those centers pursue multiple, contradictory goals. At present, many
companies tend either to rely on skilled operators that work out production
plans based on their experience, or to plan production operations on very
short time horizons, sacrificing the optimization on longer horizon to achieve
a reduced risk of delayed delivery.

The plethora of different type ambiguous problems of supply network en-
visages the present working project deploying certain novel components of
evolutionary computations. The aim is to present a smarter and easily under-
stood model, which could assist the logistics managers of food industry for
scheduling their supply network in an optimized direction both on and off the
production (including distribution).

Concept of Hybrid Meta Heuristics for the Proposed Model

We consider the problem of scheduling of events in the form of Directed Acyclic
Graph (DAG). Each node in the graph represents an executable task. Each
directed edge represents a precedence constraint (or simply dependence) be-
tween two tasks; the sink node cannot start execution until the source node
has finished and the transmission of the required amount of data from the
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source node to the sink node has been completed. We assume that the DAG
has always a single entry node (i.e. a node with no parents) and a single exit
node (i.e. a node with no children). The target environment consists of a set of
heterogeneous events, which are fully connected; a data transfer cost is given
for each pair of events (like controlling the procurement of more perishable
raw materials, enabling the dispatch of food product and beverage over the
distribution network, etc). A task can execute on any available events; the
execution cost of each task on each event is also given. The task scheduling
problem is to allocate tasks for execution onto events in such a way that prece-
dence constraints are respected and the overall execution time is minimized.
It is assumed that only one task can execute on an event at a time and once
a task has started execution it cannot be preempted.

The heuristic consists of three phases: (a) Ranking; (b) Group creation;
and (c) Scheduling independent tasks within each group. For each of the stages
the proposal is combining two different techniques concerned to tackle both
optimization and uncertainty in the execution of the events. We incorporate
Bee colony optimization (BCO) and rough set approach for this mode.

In the first phase, a weight is assigned to each node and edge of the graph;
this is based on averaging all possible values for the cost of each node (or edge,
respectively) on each events (or combination of events, respectively). Using
this weight, upward ranking is computed and a rank value is assigned to each
node. The rank value, of a node ri is recursively defined as follows:

ri = wi+max(cij+rj), (11.1)

where ∀j ∈ si and wi is the weight of node i, Si is the set of immediate
successors of node i and cij is the weight of the edge connecting nodes i
and j.

In the second phase, nodes are sorted in descending order of their rank
value; using this order, they are considered for assignment to groups as follows.
The first node (i.e. the node with the highest rank value) is added to a group
numbered 0. Successive nodes, always in descending order of their rank value,
are placed in the same group as long as they are independent with all the nodes
already assigned to the group (i.e. there is no dependence between them in
the DAG). If dependence is found, then the node with the smallest rank value
(i.e. the sink of the dependence) is made the member of a new group; the
new group’s number is the current group’s number increased by one. Again,
subsequent tasks, in terms of their rank value, will be added to this group as
long as they are not dependent to any other node which is a member of this
group; if they are, a new group will be created and so on. The outcome from
this process is a set of ordered groups, each of which consists of a number of
independent tasks, and has a predetermined priority (based on the original
ranking of the nodes; a smaller group number indicates higher priority).

The third phase of heuristics comprises of a schedule of the DAG can be
obtained by considering each group in ascending order of its number, and
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using any heuristic for scheduling the independent tasks within each group.
It is noted that the input of the latter heuristic will be a set of (independent)
tasks; a set of machines; the array giving the execution cost of each node on
any machine; and, another array giving the earliest time that each task may
start execution on each event.

11.4 Bee Colony Optimization

Various unsocial insect colonies such as ants, wasps, termites and bees exhibit
remarkable problem solving behavior. Although a single insect is quite lim-
ited in its ability, complex behavior is exhibited at the level of the colony that
emerges from the interactions of the individual insects [13]. This phenomenon
is called Self-Organization. The foraging behavior of honey bees has been ex-
tensively studied and is a useful example of self-organization. Computational
biology and modelling of these self organized properties mediated in solving
plenty of complex optimization and scheduling problems.

Mathematical Model of Foraging for Honey Bees

Foraging is an interesting property to observe for honey bees and it is com-
plex process involving large number of individuals collecting food from many
different sources. Differential equation models have shown how quite simple
communication mechanisms can produce complex and functional group level
foraging patterns. Here, we concentrate our focus on the mathematical aspects
of foraging including waggle dance of bees during the foraging. For example,
although individual honey bee foragers follow only a small number of the
waggle dances advertising flower patches, the colony can nonetheless focus its
foraging effort on the most profitable patches. Similarly, certain ants deploy
their foragers preferentially on the shorter of two paths, despite few if any in-
dividual insects directly comparing the paths [15,16]. The potential benefit of
the existing mathematical models are to understand how population change
through time. The number of bees foraging for a particular food source can be
represented as single variable that changes its value as the insects are recruited
to and abandon the source. These recruitment and abandonment rates can be
written as functions of the number of insects foraging at a source, waiting at
the nest, or scouting for new sources. There are many impressive literatures
available on the different aspects of differential equation based modelling of
insects encompassing the foraging [17–26].

In the mathematical model, several behavioral states could be contem-
plated. Colonies have access to n number of food sources. Each state has an
associated variable, indexed by source (by default). Hence, the different sates
in the dynamic model would like to be:

• Waiting (denoted as W ): Waiting at the nest and available to start
foraging.
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• Searching (denoted as S): Searching for food sources.
• Exploiting (Ei): Exploiting food source i. Workers in this state do not

directly recruit nest mates, although they may leave signals, such as
pheromone trails, that increase the likelihood of other foragers finding
the source.

• Recruiting (Ri): Attempting to recruit nest mates to food source i.
• Following (Fi): Attempting to follow recruiters to food source i.

In order to model and deploy the differential equation in these behavioral
states of bees, we would like to establish a series of mathematical anomalies
stated as follows:

• A waiting worker W can become an exploiting forager at source i Ei

through three different routes, iff she might be activated to search (through
function a), and then discover the food source (through di). Or, she might
be led toward the food source through direct contact or communication
(hi) with another worker, arriving (si) only if the communication is suc-
cessful. Finally, she might reach a food source by following an indirect
signal, such as a pheromone trail (through ji).

• The function ji represents indirect recruitment, where successful foragers
influence their environment in a manner that increases the chance of nest
mates finding the food.

• The function f i represents direct recruitment, where successful foragers ei-
ther physically lead nest mates to the food source or directly communicate,
in the nest, the location of the source [27].

• The population of workers in the nest, W , increases as searchers are de-
activated (b), exploiters retire from foraging (gi), and followers get lost
and return to the nest (vi). Conversely, the population decreases as nest
workers are activated to search (a), as they are led by indirect recruit-
ment signals to become exploiters (ji), and as they begin to follow direct
recruitment to various food sources (hi).

Considering these dynamic conditions, we can write series of equations [14]:

dw/dt = b+
n∑

i=1

gi +
n∑

i=1

vi − a−
n∑

i=1

ji −
n∑

i=1

hi (11.2)

where b is deactivated searchers as population of workers w increases in the
nest, gi denotes exploiters retire from foraging, vi denotes return to the nest,
a denotes activated workers, ji is the recruitment signal and hi denotes the
direct recruitment of different food source.

The exhaustive mathematical treatment even prescribe to estimate the
optimal investment in workers by colonies that use this foraging mechanism.
A productivity function can be defined as to show how foraging efficiency
depends on the maximum number of ants foraging at a food source at stable
equilibrium [28]. These collective decision making of bees assist to model more
complex situation very similar to group of robots taking a decisions in a group.
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11.5 Multi-Objective Optimization and Standard Bee
Colony Optimization Algorithm

Most real world optimization problems are naturally posed as multi-objective
optimization problems. However, due to the complexities involved in solv-
ing optimization problem and due to lack of suitable and efficient solution
techniques, they have been transformed and solved as single objective opti-
mization problem. Moreover, because of the presence of conflicting multiple
objectives, a multi objective optimization problem results n a number of opti-
mal solutions, known as Pareto optimal solutions [29]. In standard practice of
using bee’s natural properties in computation it has been observed there may
be substantial number of instances where selection of best and nearly best
solution against very close processes comprising of conflicts or constraints as-
sociated with it. This leads to the solution of Pareto type and in this proposal,
we introduce the concept of PBCO (Pareto Bee Colony Optimization) in the
context of scheduling of several processes very similar to the case of Milk
Production Center presented here. Primarily, the standard bee colony and its
property have been considered and subsequently their affinity to the process
scheduling is discussed.

Algorithm 11.1: Basic Bee Colony Optimization Algorithm-High Level
Description.

Step 1 : I n i t i a l i z a t i o n . Determine the number o f Bees and
the number o f i t e r a t i o n s I . S e l e c t the s e t o f
Stages ST = { st1 , st2 , . . . , stm } .
Find any Fea s i b l e s o l u t i o n x o f the problem .
This s o l u t i o n i s the i n i t i a l Best So lu t i on .

Step 2 : Forward Pass : Allow Bees to f l y from the hive
and to choose B p a r t i a l s o l u t i o n s from the s e t
o f p a r t i a l s o l u t i o n Sj at s tage S t j .

Step 3 : Backward Pass : Send a l l bees back to the h ive .
Allow bees to exchange in fo rmat ion about qua l i t y
o f the p a r t i a l s o l u t i o n created ( without
r e c r u i t i n g nest mates ) or dance .

Step 4 : Update Best So lu t i on and return to the nest with
increment ing the counter .

A general scheduling problem can be formalized as follows [30]. We con-
sider a finite set of operations O, partitioned into m subsets 〈M1, . . . ,M2〉 =:
M(

⋃
M i = O) and into n subsets 〈J1, ......, Jn〉 =: J(

⋃
Jk = 0). Together
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with a partial order p ⊆ O×O such that p∩ J i × Jj for i 
= j and a function
p : O → N . A feasible solution is a refined partial order p∗ ⊇ p for which the
restrictions p ∗ IM i ×M i and p ∗ Jk × Jk are total, ∀i, k. Most importantly,
the cost of a feasible solution is defined by Cmax(p/ast) := max{∑ p(o)|C
is a chain in (O, p∗)}. The effort is to minimize Cmax. Here M i is the set of
operations that have to be processed on machine i. Jk is the set of operations
belong to job k (analogues to core task and sub tasks of the Milk production
center mentioned in the case study). All the processes or operations must be
performed sequentially and this constraint has been expressed in p∗.

Considering theses assumptions as the benchmark of the case study of the
milk production center where the processes are sequential and time bound
otherwise the milk core need to be perished out, the model is likely to con-
centrate on the optimal execution of process scheduling maintaining their
intermediate time and other constraints during the makespan. The makespan
of the scheduling has been modelled through proposed Pareto Bee Colony Op-
timization (PBCO), envisaging their natural property like waggle dance and
foraging.

11.5.1 Waggle Dance –Computational Interpretations

A forager f i on return to the hive from nectar exploration will attempt with
probability p to perform waggle dance on the dance floor with duration D =
diA, where di changes with profitability rating while A denotes waggle dance
scaling factor. Further, it will also attempt with probability ri to observe
and follow a randomly selected dance. The probability ri is dynamic and
also changes with profitability rating. If a forager chooses to follow a selected
dance, it will use the “path” taken by the forager performing the dance to
guide its direction for flower patches. We term the path as “preferred path”.
The path for a forager is a series of landmarks from a source (hive) to a
destination (nectar).

11.5.2 Forage and Combining Rough Set

For foraging algorithm, a population of l foragers is defined in the colony. The
foragers move along branches from one node to another node in the disjunctive
graph and so construct paths representing solutions. A forager must visit
every node once and only once in the graph, starting from initial node (i.e.
source) and finishing at final node (i.e. sink), so as to construct a complete
solution. When a forager is at a specific node, it can only move to next node
that is defined in a list of presently allowed nodes, imposed by precedence
constraints of operations. It has been observed that after complete deployment
and performance benchmark of the proposed BCO uncertainty and ambiguity
part still exist. In order to the model more feasible and applicable, the concept
of rough set is sorted to use in conjunction with BCO.
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11.5.3 Process Scheduling and Optimization under Uncertainty

The scheduling problem has usually been seen as a function of known and
reliable information. Modelling approaches developed are mainly determinis-
tic, that is, they are based on nominal or estimated values for all the para-
meters, thus implicitly assuming that a predictive schedule will be executed
exactly as planned. However, this assumption is somehow utopian since most
plants operate in an unstable and dynamic environment, where unexpected
events continually occur. Scheduling problems involve data coming from dif-
ferent sources, and which varies rapidly over time as customer orders, resource
availabilities and/or processes undergo changes. Data may be ambiguous, out-
dated or inaccurately predicted before the problem is solved. Because of the
dynamic and uncertain conditions of a real process system, the schedule ex-
ecuted in the plant will probably differ from the predicted one. The effects
of the uncertainty may impact on the system’s efficiency, eventually leading
either to an infeasible situation, or to the generation of opportunities that
improve its performance. These situations may become even more significant
with the new trends towards managing the whole SC. As stated by Aytug
et al. [34], internet technology enables companies within a SC to share their
production schedules. In this environment, changes to the production schedule
at a downstream node of the SC can cause significant disruptions in upstream
operations. These variations can be amplified causing what is known as the
bullwhip effect [35]. The consideration of the uncertainty when modelling the
problem is essential for the development of reliable and effective decision-
support systems. Several methodologies are available in PSE (Process Systems
Engineering) for optimization under uncertainty. They are categorized, in line
with the method used to represent the uncertainty, represented as follows: (a)
Probabilistic data - based methods; (b) Stochastic optimization; (c) Fuzzy or
Rough Set data - based methods; and (d) Fuzzy Programming.

Blackhurst et al. [36] proposed a network-based methodology to model and
analyze the operation of a SC as an abstracted network, with uncertainty in
variables such as requirements, capacity, material delivery times, manufactur-
ing times, costs, due dates and priorities. The term stochastic optimization
is sometimes used referred to meta-heuristics because of the probabilistic na-
ture of these optimization methods. In general, and as differentiated by some
impressive research [37], stochastic optimization involves methods specially
developed to address problems with uncertain data, whereas meta-heuristics
use stochastic properties in their search.

Although the present model is not deploying stochastic optimization, but
broadly the uncertainty part of scheduling events is handled through Rough
set based rule metaphor. Hence, the core meta heuristics is being the Pareto
Bee colony, subsequently rough set assists to model the associated events with
the process and could rank them as well.
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11.5.4 Rough Set

Rough set theory is an extension of conventional set theory that supports
approximations in decision making. It possesses many features in common (to
a certain extent) with the Dempster-Shafer theory of evidence and fuzzy set
theory. The rough set itself is the approximation of a vague concept (set) by
a pair of precise concepts, called lower and upper approximations, which are
a classification of the domain of interest into disjoint categories. The lower
approximation is a description of the domain objects which are known with
certainty to belong to the subset of interest, whereas the upper approximation
is a description of the objects which possibly belong to the subset. For the
present problem, the features of individual events have been accumulated:

A feature xi is relevant if there exists some value of that feature and
a predictor output value or A feature xi is weakly relevant if it is not
strongly relevant, and there exists some from the set of the features
forming a pattern vi, for which there exist subset of features

followed by a ranking of such evaluated features and eventually the choice
of the first best m features. Thus ranking of features of all events related
to scheduling process of milk food processing industry both on and off the
production, including dispatch could be modelled by rough set theory. The
content of large-scale data sets containing numerical and categorical informa-
tion can not be easily interpreted unless the information is transformed into
a form that can be understood by human users. The rule extraction algo-
rithms are designed to identify patterns in such data sets and express them
as decision rules. The rule extraction concept is illustrated next.

Rule and Data Set

Consider the data set in Table 11.1 with five objects, four features F1-F4, and
the decision (outcome).

Table 11.1: Rule Snapshot of Rough Set.

RULE 1 IF (F2 = 0) THEN (D = Low); [2, 6.67%, 100%][3, 5]

RULE 2 IF (F1 = 0) AND (F4 = High) THEN (D = 0); [1, 33.33%, 100.00%][1]

RULE 3 IF (F4 = 0) THEN (D = Medium); [1, 100%, 100%][4]

RULE 4 IF (F1 = 1) THEN (D = High); [1, 100%, 100%][2]

The features denote process parameters (e.g., temperature, pressure, time)
and the decision is the component performance, high, medium, low. A rule
extraction algorithm transforms the data set of Table 11.1 into the decision
rules of Table 11.2. The two sets of numbers in square brackets behind each
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Table 11.2: Decision rules in Rough Set.

0 0 0 1 Low

0 0 1 3 Low

0 1 0 2 Low

0 1 1 0 Medium

1 1 0 2 High

rule describe its properties. The decision rules of Table 11.1 correspond to the
patterns indicated by shaded cells in the matrix in Table 11.2.

11.6 Case Study of Milk Food Product Processing
and Production

The raw chilled milk so received subjected to different processes like pas-
teurization heating and separation/standardization. The detailed process is
outlined as follows:

• Raw milk in 40 liters can is received through milk routes established all
over the milk shed.

• The milk is graded, weighed an sampled

Problem Statement

The milk production center (MPC) also to undergo different processes and
sub processes such as first regeneration, second regeneration, third regenera-
tion, heating, cooling, chilling, internal sub-processing for products, packaging,
storage and distribution. The parameters shown in Table 11.3 are crucial for
all critical processes and sub processes:

Table 11.3: Process Parameters in Milk Processing Centers.

Process Sub-Process Time-Temp-Pressure Remark

Milk reception Dispatch <15 mts Crucial
Pasteurization 1st Generation, 20 sec/ 75-85 o Very Crucial

2nd generation, Heating, C/25kg/cm2 Stem
Cooling and Chilling Pressure

Standardization Other Sub processes 5-6 degree Celsius Important
for Milk based products

There are at least 10 major processes identified without split up, which
need to be monitored and scheduled priori basis. The processes comprise of
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different process or makespan of sub processes and its time windows. The
conceptual flow diagram of the case study is shown in Fig. fig:MHS-09-1 and
its associated parameters are demonstrated in Table 11.3. Among all these
parameters certain are influential enough to implicate scheduling of processes,
etc.

The broad idea is to incorporate the proposed Pareto Bee Colony Opti-
mization in terms of process scheduling with multi-objectives and constraints.
Later on, a few uncertain and ambiguous parameters are separated in schedul-
ing process and rough set approach is coined to address this issue.

Fig. 11.1: Process Flow Diagram of MPC.

The Mathematical Model

Let us represent the given activity structure as an activity node based network
in a milk production center (MPC), whose nodes can be numbered as 1, . . . , n.
Arcs are used to indicate precedence relationship between nodes (activities).
The time required for activity i is denoted by d(i). For given values d(i), the
shortest project time δ is defined as the length of critical path. We assume
that a finite set M(i) of measures is to each node i. A measure xi ∈ M(i) is
any means that influences the duration of the process based activity connected
with node i. Each measures xi is realized by certain values:

• The modified duration d(i, xi) of activity i resulting as a consequence of
the measure xi. The proposed model is concerned in speeding ups the
processes and sub processes, so we assume d(i, xi) ≤ di.

• The cost associated by the process also have been accumulated.
• The model also comprises of target functions like:
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hf1(x) = ϕ1(δ(x)), (11.3)

where, is the shortest project time after reduction of the durations d(i) to the
values d(i, xi) to the values d(i, xi).

The core process in the milk production center (MPC) is quite exceptional
problem in the context of just in time scheduling approach.

Fig. 11.2: Directed Process Graph of Milk Processing Center.

The present model of milk processing comprising four major tasks or
processes and 8 sub processes (Fig. 11.2). The scenario is interpreted through
directed graph. Directed graph G, consisting of two sets of nodes, V1 and V2,
corresponding respectively to materials and tasks. Successor and predecessor
nodes to a node in V1 are always nodes in V2 and, vice-versa, successor and
predecessor nodes to a node in V2 are always nodes in V1. Hence the arcs in
the graph always connect nodes from Vi to Vj , where i 
= j. An arc (r, i) from
a node in r ∈ V1 to a node i ∈ V2 is introduced if task i requires material r
as an input. The label on arc (r, i) is ρi,r, the fraction of input to task i due
to material r. Similarly, an arc (i, r) from a node i ∈ V2 to a node r ∈ V1 is
included in the graph if task i produces material r. The label on arc (i, r) is
σi,r, the fraction of output from task i in the form of material r. Fig. 11.2
provides an example of such a network with 8 materials (numbered 1-8) and
4 tasks (labelled A-D).

11.6.1 The Proposed PBC Optimization Algorithm

The present problem of Milk Production and its sub process can be mapped
with the Pareto Bee colony’s characteristics. A forager fi on return to the
hive from nectar exploration will attempt with probability p to perform wag-
gle dance on the dance floor with duration D = di A, where di changes with
profitability rating, while A denotes waggle dance scaling factor. Further, it
will also attempt with a probability ri to observe and follow a randomly se-
lected dance. The probability ri is dynamic and also changes with profitability
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rating. If a forager chooses to follow a selected dance it will deploy the path
followed by the forager performing the dance to guide its direction for flower
patch. In this model we define it as Preferred Process Path (PPP). Hence, the
path for a forager is a series of landmarks from a source (hive) to a destination
(nectar).

The proposed model of PBCO also implicates a direct relation with the ob-
jective function to the profitability rating. Therefore P fi

= 1
ϕ1(δ(x)) , where Pfi

is the profitability rating for a forager. Theoretically, the average profitability
rating of Bee colony is

Pfcolony
= 1/n

∑
1/f1(x) = ϕ1(δ((x)),

where n is the number of waggle dance just in time, (refer to the process and
resources in directed process graph).

Moreover, 1/f1(x) = ϕ(δ(x)) is the value of objective function, which
should be maximum if a forage fi or fj performs waggle dance. The duration
of dance is proportional to the completion of process time, which in turn just
in time accomplished between all sub processes. In the process graph, forager
must visit each process node i exactly once and it will follow a state transition
rule to select best process path, so that no processes of milk production or
its sub-process are being delayed. The state transition rule followed by the
forager on the process span graph is according to the rule:

Pij =
[ρij(t)]α · [1/dij]β∑
[ρij(t)]α · [1/dij]β .

The rating ρij of the directed edge between process nodes i and j is
given by:

ρij =
{

α
1 −mα/k −m

where α is the value assigned to the Preferred Process Path (PPP), α < 1.0;
k is the number of allowed nodes and m the number of preferred paths. The
parameters α and β are the probability of the best process path which is in
relation between preferred path versus heuristic distance. According to this
rule, edges that are found in the preferred path and that are shorter will have
a higher probability to be chosen for the solution. The heuristic distance is
the processing time of the operation associated with node j. When a forager
completes a full path, the edges it has travelled and the make-span (process
span) of the resulting solution will be kept for the waggle dance when it returns
to the hive.
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Algorithm 11.2: Pareto Bee Colony Optimization -High Level Description

Initialize solution set by the empty set determine the number of bees and
iterations
Select the set of processes stage PT = {pt1, pt2, ...ptm}
Initilaze bee pheromone matrix τk {Store best update solution}
Determine the weight say wk for each objective k for different processes at
random {Start Pareto}
repeat

for bees 1 to B do
Set i = 1
repeat

repeat
Set j = 1

until j = m
until i = i

end for
until termination criteria of each process is satisfied
Call ForwardPass ( ); {Allow bees to fly from the hive and to choose B
partial solutions from the set of partial solutions Sj at stage ptj}
for i = 1 to n do

select the next process node to traverse according to Pij=
[ρij(t)]α×[ 1

dij
]β∑

[[ρij(t)]α×[ 1
dij

]β ]

{Pj ∈ allowed process node} { where ρij is the rating of the edge between
node i and j} { dij denotes heuristic distance between node i and j } {Pij

prior probability to traverse from node i to j}
if the solution x is efficient solution achieved till ith iteration then

update the best solution
x := xi
Waggle Dance ( ) {profitability rating of Bee colony is

Pfcolony = 1/n
∑

/f1(x) = ϕ1(δ((x))

where n is the number of waggle dance through process span}
end if
j = 1

end for
for each objective k from the solution just found by B bees do

identify ( R − 1 )best solution xtk for object k. {τk is the bee pheromone
matrix for each solution construct x }

end for
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11.7 Implementation of PBCO as Multi Objective
Optimization

The proposed algorithm has been implemented in C++ on Window XP plat-
form (Pentium IV-2.4 GHz. processor, 256 MB RAM). The milk process-
ing is completely just in time approach as each sub processes are also time
bound and material is perishable. The time duration of waggle dance on the
process graph is again dependent on the polymorphic method comprising of
objective function, shortest process schedule time, and path trace iteration
of milk processing. A List type data structure is maintained for and checked
against the maximum number of iterations of honeybees across process graph.
Practically, the model keeps the traced path in a list, which comprises con-
secutive operations in pairs. The effective algorithm is involved in operation
scheduling and its uncertainty in supply chain process observed in a typical
m time bounded milk production unit. The foraging algorithm (waggle dance
and nectar exploration) has been incorporated considering bifocal approaches
identical with either process or machine centric.

For any process centric approach, a list of currently eligible processes that
can be scheduled is always maintained during scheduling process. In order to
be viable to process span (makespan), a process’s preceding sub-process (of
a job) must have been scheduled. Each process planned for Milk production
Center in the list is checked against the most recently scheduled sub-processes
(on the same machine or parallel processes like cleaning the container, etc.) to
identify if the “edge” between the two operations (the most recently scheduled
process and the process under consideration from the list) is found in the
preferred path. Higher rating ρij are assigned to the process with edge found
in the path. The scheduling is implemented through Pareto optimal solution,
as there are conflict objective among the processes. On the other hand for
machine centric approach, a discrete-event simulation and event list of events,
which are in sorted order of increasing time, is maintained during scheduling
process. At time t = 0, events relating to machine-ready status are inserted
into the list. Events in the list are removed and executed one by one according
to the event time. In case of tie for events having the same time, an event
will be randomly picked. For the machine that is associated with the selected
event, a list of currently eligible operations will be identified. Each operation
in the list is checked against the most recently scheduled operation on the
same machine to identify if the “edge” between the two operations is found
in the preferred path. Higher rating ρij will be assigned to the operation if
the edge is found in the path. Although machine centric approach is slightly
better than process centric, but the present case study has the variation of
processes depending on different milk by products, hence it adopts the process
centric approach to test the proposed PBCO algorithm.
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11.7.1 Experimental Evaluation

A commercial snippet of data set for a typical Milk Production Center of
Asian Country has been accumulated and referred in the case study. The
climatic condition is extremely sensitive for Milk and its associated products

The simulation of the data set through C++ coding results some interest-
ing process centric features (see Figs. 11.3 and 11.4. The Pareto distribution
of process, optimal time and makespan of processes are presented in the bi-
variate polynomial form.

Month Milk Pasteu Pasteurized Holding Chilling Milk Tanker Dispatch
procu rized time in temp Storage Milk Dis- time of Milk
rement milk seconds oC temp. -patch Time) Pasteurized Products

( mill. lit.) Temp.oC Ideal Val. Ideal Val. (in (in minutes milk (in processing
Ideal Val. <20 4-(-1) Celsius) Ideal Val. hrs) Ideal time,

75-78 Ideal < 15 Val. > 4.0 storage
Val.5-6 etc. Max.

Val. 8-1

DEC. 05 12.6 78 18 4 5 13 3 8
JAN. 06 14 75 20 5 6 12 4.5 9
FEB. 06 12.4 75 19.5 -1 5 13 4 11
MAR. 06 11.4 76 19 -1 5 15 5 8
APR. 06 9 78 19 -1 5 11 4 9
MAY. 06 7. 4 75 17 -1 5 13 4.2 10
JUNE. 06 6.1 77 20 -2 5 14 3.8 10
JULY. 06 5.7 76 20 0 6 12 4 9
AUG. 06 6.6 75 19 3 6 13 4.5 9
SEPT. 06 7.6 77 18 3 5 11 5 10
OCT. 06 9.2 78 17 1 6 12 3 12
NOV. 06 12.6 76 20 1 5 13 4.5 11
DEC. 06 13.8 77 20 4 6 13 4 10

Table 11.4: Dairy data Evaluated through PBCO (Courtesy Jaipur Dairy, Jaipur,
India).

The distribution of normal makespan of processes identified in MPC (Milk
Production Center) is shown in Fig. 11.3 (Colony Multi-Objective Process
Span –Cosine Series Bivariate Order 8) envisaging X, Y and Z axis span. Black
Dots are glimpses of bee colony which take care of process span considering
source and sink part of process. This denotes the complex multi objective
scheduling in the Milk production corresponding the various processes and
including time process and temperature. The approach of model is just in
time, where the trade off between distribution of bee agents and reinforcement
provided by Bee colony is shown by the black dots.

Another distribution map of time (Pareto Optimal Time Span) is shown
in Fig. 11.4, scaling and process overlap among the overlapped processes. The
peaks of the dots give predictive approach to notify the completion of process
in optimal time or either in just in time.

11.7.2 Process Betterment through PBCO - A Comparative
Study

To compare and evaluate the performance of the proposed bee colony algo-
rithm, we have included two other meta-heuristics in our experimental study.
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Fig. 11.3: Pareto Bee Colony Process Span, Multi-Objective and Optimal Time
Distribution.

Fig. 11.4: Pareto Bee Colony Process Span, Multi-Objective and Optimal Time
Distribution.

The first is an Ant Colony Optimization (ACO) algorithm [32]. The sec-
ond algorithm is a Tabu Search (TS) algorithm developed by Nowicki and
Smutnicki [33].

Within a multi-objective optimization approach, the solutions are com-
pared with respect to their relative “dominance” on both cost and availability
objectives. The solutions not dominated by any other are non-dominated so-
lutions. A set (archive) of Pareto-optimal, non-dominated solutions (solutions
which are not dominated by any other one) can be collected during the ACO
search. Similarly, in order to improve the efficiency of the exploration process,
one needs to keep track not only of local information (like the current value of
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Table 11.5: Parameters.

Parameters PBC ACO TS

Maximum Number of iterations 1500 1500 1000

Population Process Process No
Size No. (MPC ) No (MPC)

Weight of Pheromone Trail α 1.0 1.0

Weight of heuristic value β 2.0 2.0

Parameter for local updating and profit rat-
ing ρij

0.8

Scale Factor 100

Pheromone Evaporation Coefficient 0.1

Weight of the availability in the heuristic η 0.3 0.5

Weight of the cost in the heuristic η 0.3 0.5

Maximum Number of Elite Solution 25 25

Maximum Size of Tabu List 10

Table 11.6: Performance Comparison of four Meta-heuristics.

Betterment PBC BC AC TS Most Critical
Process in MPC of Process

Mean 10.05 11.2 11.45 6.62 Pasteurization
percent

Maximum 38 38.7 38.6 27.33 Holding and chilling

Most Close 16 15 11 22 For
Solution all
schedule processes
without
failure

the objective function) but also of some information related to the exploration
process. This systematic use of memory is an essential feature of TS method.

In order to establish comparison, the parameter settings for three algo-
rithms have been presented in Table 11.5.

Table 11.6 elaborates the brief comparison of the process span scheduling
in Milk Production Center with three major perspective of meta-heuristics
algorithms. Although results exhibit that TS is the smartest choice among
the four, it provides most likelihood results within smallest execution time.
Practically, TS has the advantage to solicit the best solution and it takes
care to the Tabu list, instead of constructing the solution from source to sink
applied to Bee and Ant Colony. The proposed Pareto Bee is slightly better
than standard Bee Colony, where as broadly different from ACO heuristics
in the context of process scheduling. The inclusion of rough set is a primary
back up for the associated events with the process and could rank them as
well under diversified condition.



298 Banerjee et al.

11.8 Conclusions and Future Work

A hybrid meta-heuristic approach based on a multi-objective Bee Colony al-
gorithm combined with constructive rough set heuristics is a valuable decision
support tool for planning operations in a supply network for rapidly perish-
able material for food processing industry. Provided a detailed mathematical
model of the supply network, our experimental investigation shows that such
a hybrid approach is able to provide an effective scheduling algorithm. This
work also provides a comparative platform on bio-inspired algorithms and
rough set (e.g. Bee Colony, Ant Colony and Tau Search) used for scheduling
in food and beverage processing industry. The involvement of multi-objective
process span through Pareto scheduling also is proposed in this chapter. Fur-
ther hybridization with other soft computing approach like fuzzy logic [31]
could be developed on honey bee algorithm. The more extension on rough
set in process scheduling is also expected. In this work, exact preferred path
of the process schedule span has not been evaluated; rather we incorporated
local search heuristics. This is because the processes and sub processes in the
case study of Milk production Center are somewhat static in nature. It has
been observed that among the all bio-inspired and stigmergic formulation of
algorithm, ant colony is the most prominent one, but there are different agent
based application areas where the agents work in a completely distributed
environment and thus maintaining the pheromone transition table becomes
slightly impractical. In those cases, Bee colony could be a better alternative.
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