
1

Exact, Heuristic and Meta-heuristic
Algorithms for Solving Shop Scheduling
Problems

G.I. Zobolas1, C.D. Tarantilis2, and G. Ioannou3

1 Athens University of Economics and Business, Department of Management
Science & Technology Management Science Laboratory Evelpidon 47A &
Leukados 33, 11369, Athens, Greece gzobolas@aueb.gr

2 Athens University of Economics and Business, Department of Management
Science & Technology Management Science Laboratory Evelpidon 47A &
Leukados 33, 11369, Athens, Greece tarantil@aueb.gr

3 Athens University of Economics and Business, Department of Management
Science & Technology Management Science Laboratory Evelpidon 47A &
Leukados 33, 11369, Athens, Greece ioannou@aueb.gr

Summary. This chapter sets out to present a very important class of production
scheduling problems and the main methods employed to solve them. More specifi-
cally, after a brief description of single and parallel machines scheduling problems,
which constitute the basis of production scheduling research, the main shop schedul-
ing problems are presented (flow shop, job shop, open shop, group shop and mixed
shop) followed by an analysis of their computational complexity. Thereafter, the
most important exact, heuristic and meta-heuristic methods are presented and clas-
sified. Finally, a thorough review for each shop scheduling problem is conducted
where the most important methods proposed in the literature, specifically for each
problem, are presented.

Key words: Production Scheduling, Single and Parallel Machines Schedul-
ing, Shop Scheduling, Flow Shop, Job Shop, Open Shop, Group Shop, Mixed
Shop, Meta-heuristics.

1.1 Introduction

The production process of manufacturing enterprises has always been a key
factor for overall business success. Production scheduling problems are faced
by thousands of companies worldwide that are engaged in the production of
tangible goods. Thus, it is not without reason that efficiently and effectively
solving production scheduling problems has attracted the interest of many
practitioners and researchers from both fields of production management and

G.I. Zobolas et al.: Exact, Heuristic and Meta-heuristic Algorithms for Solving Shop Scheduling

Problems, Studies in Computational Intelligence (SCI) 128, 1–40 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



2 Zobolas, Tarantilis and Ioannou

combinatorial optimization. This interest is further amplified by the similarity
of production scheduling problems with problems arising in other scientific
areas (e.g. packet scheduling in telecommunication networks, PCB design,
routing, timetabling etc) [97] and, therefore, the applicability of the developed
methods in these areas as well. It should be also mentioned that due to the
complex nature of scheduling problems, many new computational methods
for their solution have emerged which can also be applied to a wide range of
combinatorial optimization problems.

Due to the virtually unlimited number of different production environ-
ments, many variations of production scheduling problems exist. However,
academic research and solution methodology development have focused mainly
on a limited number of classical problems which, most of the times, cannot
be directly applied to complex manufacturing structures. Thus, the develop-
ment of flexible solution methodologies, which can be modified and applied
to several different cases, is of critical importance for production management
practice.

Production scheduling problems have detained thousands of researchers
worldwide during the 20th century. Initially, research focused on simplified and
generic problems with limited applicability in real cases [78]. Most such prob-
lems dealt with optimizing a single objective in one-machine environments and
featured many simplified assumptions. Since then, a wide variety of schedul-
ing problems (and their variants) has been identified and an even wider range
of solution methodologies has been proposed. At the very beginning, research
focused on exact methods, i.e. methods that guaranteed the optimum solution
of a given problem. Due to the lack of computational resources and the need to
solve large scale scheduling problems, it was soon realized that exact methods
were impractical and thus research focused on problem specific heuristics. On
the other hand, the need for more robust solution methodologies led to the
development and application of the first meta-heuristic methods (the term
meta-heuristic was proposed by Glover in 1986 [57]) whose performance is
continuously improving. Contemporary methodologies usually combine sev-
eral heuristic and meta-heuristic algorithms (hybrid algorithms) in an effort
to overcome the inherent limitations of single meta-heuristic components.

This chapter focuses on the most important shop production scheduling
problems and the solution methodologies employed to solve them. The remain-
der is organized as follows: Section 1.2 is devoted to the presentation of the
most classical production scheduling problems focusing on shop scheduling.
Section 1.3 describes the main categories of solution methodologies emphasiz-
ing the latest meta-heuristic algorithms. Section 1.4 addresses the Flow Shop
Scheduling Problem (FSSP) and relative research on solution methodologies.
Similarly, Section 1.5 considers the Job Shop Scheduling Problem (JSSP) and
finally, Section 1.6 covers the Open Shop Scheduling Problem (OSSP).



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 3

1.2 Production Scheduling Problems and their
Classification

Although production scheduling problems have overlapping characteristics,
they can be classified based on several facets [30]. Among them, the most
widely used are the job arrival process, the inventory policy, various shop and
job attributes and shop configuration.

Based on the job arrival process, production scheduling problems can be
either static if all jobs arrive at the same time or dynamic if jobs arrive
intermittently. Based on the inventory policy, a problem might be open if
all products are made-to-order or closed if all products are made-to-stock.
Hybrids of open and closed systems are very frequently observed in real cases.
Production scheduling problems can also be classified as deterministic if
job processing times and machine availability is known a priori or, conversely,
probabilistic. Among other job attributes based on which such problems can
be classified is whether the production environment is single or multi stage.
In a single stage environment, each job goes through one machine, whereas in
multi stage environments, each job consists of several operations that might be
processed in different machines. Finally, the number of jobs and machines and
the flow pattern of jobs among machines also constitute a major classification
facet.

It should be mentioned that during the last decades, academic research
has focused mainly on static, deterministic, multi stage shop scheduling prob-
lems. Therefore, this chapter also focuses on these problems and their solution
methodologies.

1.2.1 Single Machine Scheduling Problem

The simplest production environment is the one machine or single machine
environment where all operations go through the same resource. The single
machine scheduling problem was the first to be addressed academically and
its characteristics and findings have been applied to more complex problems.
They are also very useful for studying more complex serial structures where
one machine is the bottleneck of the whole process and thus, generating a
good schedule for the bottleneck machine is essential for the overall schedule
performance. Generally, researchers focus on a specific performance measure
and they try to develop methods to schedule operations in order to opti-
mize the specific performance criterion. Finding the optimum solution with
respect to the specific performance measure is not always feasible (see Section
1.2.4 about computational complexity). Analytically presenting all findings
on single machine scheduling is out of the scope of this chapter and therefore
research findings are summarized in Table 1.1 [144].

The Flowtime of a job is calculated as its completion time minus the
release time, in other words it is the total time the job remains in the system.
In case all jobs are not equally important, weights can be introduced so as the



4 Zobolas, Tarantilis and Ioannou

Table 1.1: Single machine scheduling.

Performance Measure Optimum solution

Min Flowtime Shortest processing time dispatching rule
Min weighted flowtime Weighted shortest processing time

dispatching rule
Min Total Lateness Shortest processing time dispatching rule
Min Max Tardiness Earliest due date dispatching rule
Min number of tardy jobs Hodgson’s algorithm
Min Tardiness Heuristically optimized
Min weighted number of tardy jobs Heuristically optimized

scheduler can pay special attention to ‘important’ jobs (weighted Flowtime
criterion). The Lateness of a job is calculated as its completion time minus
its due date. If this value is positive then the Lateness is also called Tardiness
while if this value is negative, Lateness is also denoted as Earliness. If there
are specific due dates for all jobs, a very important performance measure
is the ‘number of tardy jobs’ optimized by a special procedure proposed by
Hodgson [144]. Also, see Table 1.2 for a list of the most widely used priority
dispatching rules.

A very important variant of the single machine problem is the single
machine scheduling problem with sequence dependent setups. This problem
is equivalent to the notorious travelling salesman problem (TSP) which is
NP-Hard. Small instances of these problems can be solved efficiently but
in general, both problems are considered computationally intractable and
medium-large instances can only be approximated with heuristic or meta-
heuristic methodologies.

1.2.2 Parallel Machine Scheduling Problem

Most of the times, real life scheduling problems consider multiple machines.
Multiple machines may occur in parallel or in series or both. In parallel ma-
chine scheduling we consider that each job can be processed on any of the
machines and processing times are independent to the machine (identical ma-
chines). The scheduling decisions involved are: a) which machine processes
each job, b) in what order [144]. Similarly to the single machine case, some
problems can be solved optimally while others are approximated. The mini-
mum flowtime problem can be solved with the shortest processing time list
dispatching rule (job with the shortest processing time assigned to the least
loaded machine). On the other hand, large instances of makespan minimiza-
tion problem cannot be solved with exact algorithms in practical computa-
tional times. Further details on parallel machine scheduling are also beyond
of the scope of this chapter.



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 5

1.2.3 Major Shop Scheduling Problems

As the single and parallel machine problems rarely represent actual production
environments, academic research soon focused on more complex problems with
multiple jobs and resources to be considered. Based on the flow pattern of jobs
towards the resources, one can distinguish among several types of shops. The
most studied problems in the literature are the flow shop scheduling problem
(FSSP), the job shop scheduling problem (JSSP) and the open shop scheduling
problem (OSSP), which are analyzed in the following subsections. Apart from
these main three shop scheduling problem cases, the mixed shop (MSSP) and
group shop (GSSP) scheduling problems have recently been proposed but
have attracted much less academic interest and their solution methodologies
are usually variants of the meta-heuristic methods proposed for the three main
problems.

Flow Shop Scheduling Problem

The general flow shop scheduling problem (FSSP) consists of a set of N jobs
(1, 2, . . . , n) to be processed on a set of M machines (1, 2, . . . ,m). In the
FSSP, all jobs are processed sequentially on multiple machines in the same
order. Additionally, each job can be processed on one and only machine at
a time and each machine can process only one job at a time respectively.
Additionally, all operations are assumed non-preemptable and setup times are
included in the processing times and are independent to sequencing decisions.
The scheduling problem lies in finding a sequence of jobs that optimizes a
specific performance criterion (usually makespan, number of tardy jobs, total
tardiness or total flowtime). According to Conway’s [33] notation the FSSP
with makespan criterion can be shown by n/m/F/Cmax and according to
Graham et al [65], it can be shown by F//Cmax.

Many variants of the general FSSP exist, like the zero-buffer flow shops or
flow shop with blocking, the no-wait flow shops and the hybrid flow shops [74].
In the zero-buffer flow shop, a job i having been processed on machine j cannot
advance to machine j + 1 if this machine is still processing the predecessor
of job i. In this case, job i must remain at machine j, also delaying job i’s
successor to be processed on machine j. Generally, in the flow shop with
blocking, there is no intermediate buffer and, therefore, a job cannot proceed
to the next machine until this machine is free. In a no-wait flow shop, once a
job is started on the first machine it has to be continuously processed through
completion at the last machine without interruptions. If this is not possible,
the start of a job on a given machine must be delayed so that the completion
of the operation coincides the starting of the operation on the next machine.
Finally, in the hybrid flow shop, there are K serial workstations and there are
one or more identical parallel machines at each workstation.

Although the variants of the FSSP have extensive industrial applications,
academic research has focused mainly on a reduced version of the general



6 Zobolas, Tarantilis and Ioannou

FSSP, the permutation flow shop scheduling problem (PFSP) with the added
assumption that jobs must be processed in the same sequence by each of
the M machines. Due to the extensive academic research on the PSFP, the
problem will be analyzed in the rest of this chapter.

Job Shop Scheduling Problem

The general job shop scheduling problem (JSSP) consists of a set of N jobs
(1, 2, . . . , n) to be processed on a finite set of M machines (1, 2, . . . ,m). In
the general JSSP, each job must be processed on every machine and consists
of a series of mi operations which have to be scheduled in a predetermined
order, different for each job. These precedence constraints differentiate the
JSSP from FSSP. Similarly to the FSSP, each job can be processed on one
and only machine at a time and each machine can process only one job at a
time respectively. Additionally, all operations are assumed non-preemptable
and setup times are included in the processing times and are independent
to sequencing decisions. The scheduling problem lies in finding a sequence of
jobs for each machine that optimizes a specific performance criterion (usu-
ally the total makespan) while, at the same time, ensuring the observance of
all problem constraints. According to Conway’s [33] notation the JSSP with
makespan criterion can be shown by n/m/J/Cmax and according to Graham
et al [65], it can be shown by J//Cmax.

At first, a solution to a job shop scheduling problem was represented with
the use of Gantt charts. Although the Gantt chart is an excellent monitoring
tool that displays operation processing throughout the time horizon, its lim-
itations concerning the problem representation itself led to the development
of other representation methods. Among them, the one that prevailed is the
disjunctive graph representation proposed by Roy and Sussmann [138]. How-
ever, it should be mentioned that Gantt charts are still widely used in user
interfaces to represent a solution. Fig. 1.1 displays a disjunctive graph for a
4x3 job-shop problem.

In the node-weighted disjunctive graph of Fig. 1.1, a vertex corresponds to
each operation. The set of nodes (N) represents operations to be processed on
the set of machinesM . The fictitious initial node S is called the source and the
final fictitious node F the sink respectively. Each operation’s processing time
tOkl

is represented by the positive weight of each node j (thus tS = tF = 0).
Okl denotes that the specific operation belongs to job k and is processed on
machine l. Let A be the set of directed conjunctive arcs (shown by complete
lines) representing each job’s precedence constraints, such that (Okl,Okm) ∈ A
indicates that operation Okl is an immediate predecessor of operation Okm

within the subset job’s k operations. Capacity constraints are represented by
the set E of uni-directed orientable edges (shown by dotted lines - one colour
for each machine) where each member of E is linked with a pair of disjunctive
arcs sharing a common machine. Thus, two operations Okl and Oil to be
processed by the same machine l cannot be executed simultaneously.



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 7

Fig. 1.1: The disjunctive graph representation for a 4x3 job shop problem.

Open Shop Scheduling Problem

A special type of the JSSP is the open shop scheduling problem (OSSP).
In the OSSP there is no predefined sequence of operations among jobs and,
therefore, the OSSP has a considerably larger solution space than a JSSP with
similar dimensions (nxm). Probably, the best example of open shop is a car
repair shop where the operation/repair sequence is not strictly defined. Just
like the FSSP and JSSP, the OSSP consists of a set of N jobs (1, 2, . . . , n)
to be processed on a finite set of M machines (1, 2, . . . ,m). In the general
OSSP, each job must be processed on every machine and consists of a series
of mi operations which have to be scheduled in any order. Similarly to the
general FSSP and JSSP, each job can be processed on one and only machine
at a time and each machine can process only one job at a time respectively.
Additionally, all operations are assumed non-preemptable and setup times are
included in the processing times and are independent to sequencing decisions.
The scheduling problem lies in finding a sequence of jobs for each machine
that optimizes a specific performance criterion (usually the total makespan)
while, at the same time, ensuring the observance of all problem constraints.
According to Conway’s [33] notation, the JSSP with makespan criterion can
be shown by n/m/O/Cmax and according to Graham et al [65], it can be
shown by O//Cmax.

Mixed Shop and Group Shop Scheduling Problems

In 1985, the mixed shop scheduling problem (MSSP) was introduced by
Masuda et al [108] and some years later, in 1997, the group shop scheduling



8 Zobolas, Tarantilis and Ioannou

problem (GSSP) was proposed in the context of a mathematical compe-
tition [80]. In the MSSP, the machine routes of jobs can either be fixed
or unrestricted [103]. The problem can also be regarded as a mix of the
three aforementioned main shop scheduling problems. Similarly, the GSSP
shares many characteristics of the three main shop scheduling problems.
More specifically, let O be a set of operations that is partitioned into sub-
sets J = {J1, ., Jn}, and subsets M = {M1, .,Mm}, where n is the number of
jobs,m is the number of machines. Let Ji be the set of operations which belong
to job i and Mk the set of operations which have to be processed on machine
k. Each job’s i operations belong to g groups G = {G1, ..., Gg}. Within each
group, operations are not restricted while, on the other hand, operations that
belong to different groups must satisfy some precedence relationship between
the groups imposed by the problem. In the special case where each operation
constitutes a group, the GSSP is equivalent to the JSSP. Correspondingly, if
for all jobs, all operations of jobs i belong to the same group, the GSSP is
equivalent to the OSSP.

Considering that the mixed shop and group shop scheduling are special
cases of the three main shop scheduling problems and that the meta-heuristic
solution methodologies used to solve them share many characteristics and in
essence are simple variations of the ones proposed for the main shop scheduling
problems, the MSSP and GSSP are not further analyzed in this chapter.

1.2.4 Computational Complexity of Shop Scheduling Problems

All shop scheduling problems belong to the NP class [95]. Although some spe-
cial cases of these problems might be solved by specific algorithms in polyno-
mial time, in the general case, they are computationally intractable when the
number of machines is greater than three, which means that they can only
be solved with deterministic algorithms with exponential behaviour. More
specifically, the time required to solve shop scheduling problems increases ex-
ponentially with the size of the input [85]. In the following subsections, the
computational complexity of the three major shop scheduling problems is an-
alyzed.

Complexity of the FSSP

Small instances of flow shops can be solved optimally. For example, the
minimum makespan model for two machines can be solved with Johnson’s
algorithm [86] which also solves special cases with three machines. More specif-
ically, Johnson’s algorithm may be applied to a flow shop scheduling problem
when the middle machine (machine 2) is dominated by the other two (a ma-
chine l dominates a machine k if for each job i the processing time of job i on
machine l is greater than or equal to the processing time of job i on machine
k). However, many researchers [63,96] have proved that the n-job m-machine
flow shop sequencing problems belong to the class of NP-Hard problems, and



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 9

therefore, computational time for obtaining an optimal solution increases ex-
ponentially with increasing problem size. As a result, academic research has
focused on the development of heuristic and meta-heuristic methods.

For an n-job, m-machine general flow shop scheduling instance, the maxi-
mum number of possible solutions is (n!)m. Thus, even for a relatively small in-
stance, the number of possible solutions is considerably large (e.g., for a 10x10
instance the maximum number of possible solutions is (10!)10 = 3.96 × 1065.
Concerning the PFSP, a reduced version of the general flow shop, the max-
imum number of possible solutions is considerably smaller, i.e. n!. However,
Garey et al [55] proved that the F3/prmu/Cmax is also strongly NP-Hard
(F3 indicates the three-machine case and prmu denotes the permutation flow
shop variant).

Complexity of the JSSP

The reason for the computational intractability of the JSSP is the fact that
many different and conflicting factors must be taken into account. Such factors
are due date requirements, cost restrictions, production levels, machine capac-
ity, alternative production processes, order characteristics, resource character-
istics and availability etc. However, it is the combinatorial nature of the job
shop problem which determines its computational complexity [30]. Most job
shop scheduling problems belong to the NP class [33]. Lenstra and Rinnooy
Kan [95] proved that the general JSSP is NP-Hard for shops when the num-
ber of machines is greater than three. The only efficiently solvable cases of the
JSSP are [17]:

• The number of jobs is equal to two [22].
• The two-machine JSSP where each job consists of at most two operations

[83].
• The two-machine JSSP with unit processing times [72].
• The two-machine JSSP with a fixed number of jobs (repetitious processing

of jobs on the machines). This case was solved by Brucker [23].

For an n-job, m-machine job shop scheduling instance, the complexity is
equal to the FSSP case ((n!)m possible solutions).

Complexity of the OSSP

Various polynomial algorithms have been proposed for some cases of OSSP.
For the two-machine problem, a polynomial time algorithm has been proposed
by Gonzalez and Sahni [62] while Adiri and Aizikowitz [4] presented a linear
time algorithm for the three-machine OSSP, provided that one machine dom-
inates one of the other two. Although these problems with special structures
are polynomially solvable, Gonzalez and Sahni [62] proved that in the gen-
eral case and if the number of machines is greater than three, the OSSP is



10 Zobolas, Tarantilis and Ioannou

NP-Complete. For an n-job, m-machine open shop scheduling instance, the
maximum number of possible solutions is (nm)!. Thus, even for a relatively
small instance, the number of possible solutions is considerably large (e.g.,
even for a small 10x10 instance the maximum number of possible solutions
is 100! = 9.33 × 10157). As a result, research on OSSP solution methodology
focused on heuristic and meta-heuristic methodologies.

1.2.5 Optimization of Production Scheduling Problems

Shop scheduling problems are typical representatives of the Combinatorial
Optimization class of problems where solutions are encoded with discrete
variables. Generally, combinatorial optimization problems are optimization
problems where the set of feasible solutions is or can be reduced to a discrete
one, and the goal is to find the best possible solution. According to Blum and
Roli [19], a combinatorial optimization problem P = (S, f) can be defined as:

- A set of variables X = {x1, . . . , xn}.
- Variable domains D1, . . . , Dn.
- Constraints among variables.
- An objective function f to be minimized/maximized where f : D1 ∗ . . . ∗

Dn→ �+.

In a combinatorial optimization problem, the set of all possible and feasible
assignments is:

S = {s = {(x1, u1), . . . , (xn, un)}} | ui ∈ Di, s. (1.1)

S is called a search or solution space and consists of every possible solu-
tion to the specific problem. In order to find an optimum solution, the solution
space has to be explored effectively and efficiently. This optimum solution min-
imizes or maximizes (depending on the problem) the objective function while
satisfying all constraints of the specific problem. The optimum solution is also
called global optimum.

Apart from the solution space, the coding space represents the set of pos-
sible assignments of a problem’s variables after being encoded so that a spe-
cific method can be used. For example, Cheng et al [32] have conducted an
extensive review of possible encoding methods when using evolutionary algo-
rithms in JSSP. Among the representations mentioned, the operation-based
one encodes each possible solution with a vector that corresponds to the op-
eration sequence. In this scheme, the coding space consists of all possible
operation permutations. On the other hand, the solution space of JSSP con-
sists of detailed operation schedules for each machine and may also include
non feasible schedules, i.e. schedules that do not satisfy all constraints of the
problem. Other possible representations for such problems are the job-based,
the preference-list based, the priority rule-based, the completion time-based,
the machine-based and the random keys. In the job-based, the solution to a



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 11

given problem is given by a simple job permutation. More specifically, fol-
lowing this representation, the operations that belong to the first job of the
sequence are scheduled in the earliest possible position and so on, so forth. The
preference-list based representation is a priority rule permutation and at each
position, the operation that complies with the given priority rule is scheduled.
The completion time-based representation is based on a vector of completion
times for all operations while the machine-based representation generates m
vectors with job permutations where m is the number of machines. Finally,
the random keys representation is mainly used with continuous optimization
methods where an operation permutation is extracted from a series of real
values with a heuristic procedure (usually, the position with the lowest real
value is scheduled first and so on, so forth).

Ideally, a representation of a problem should link a single encoded solution
(coding space) to a single feasible solution (solution space) and additionally,
all possible and feasible solutions should be able to be encoded (full coverage
of the solution space). However, in some cases, various encoding schemes not
only direct to infeasible solutions but to illegal ones as well, i.e. solutions
outside the solution space. Therefore, each problem’s representation should
be carefully chosen and always in conjunction with the solution methodology
to be developed.

1.3 Solution Methodologies for Shop Scheduling
Problems

Combinatorial optimization problems can be solved/optimized using two dif-
ferent approaches that are presented in the rest of this Section. The first
approach is by using complete or exact algorithms. The second approach is
applied to more complex or larger problems, leads to near-optimum solutions
and is characterized by the use of approximate algorithms. The second ap-
proach can be further divided to heuristic and meta-heuristic methods. The
scope of this chapter is to present the latest meta-heuristic trends on solv-
ing shop scheduling problems and thus, the analysis focuses on meta-heuristic
methods.

1.3.1 Exact Algorithms

Exact or complete algorithms are guaranteed to find for every finite size
instance of a combinatorial optimization problem an optimal solution in
bounded time. However, for the typical combinatorial optimization problems,
like the shop scheduling problems which are usually NP-Hard, no algorithms
exist to solve these problems in polynomial time. Therefore exact algorithms
need exponential computation time in most cases which leads to impractical
computational burden for real large scale applications. The family of exact



12 Zobolas, Tarantilis and Ioannou

methods is considerably large but the most common exact/complete meth-
ods for scheduling problems are branch and bound algorithms, mixed integer
programming and decomposition methods.

1.3.2 Heuristic Algorithms

As seen, the use of complete/exact methods to solve complex combinatorial
optimization problems often leads to impractical computational times. This
phenomenon has led the vast majority of researchers on such problems to
approximation methods. In approximation methods, the guarantee of find-
ing optimal solutions is sacrificed in order to get near-optimum solutions in
reasonable and practical computational times. The basic form of approxima-
tion algorithms is called ‘heuristics’, a name derived from the Greek verb
‘ευ�ισκειν’ which means ‘to find’. The usual classification of heuristic meth-
ods is constructive and local search methods [19].

Constructive

Starting from scratch, constructive algorithms generate solutions by gradually
adding parts of the solution to the initially empty partial solution. In typical
shop scheduling problems for example, these parts are usually operations. Con-
structive heuristics are generally the fastest approximate algorithms although
some special implementations may induce high computational load. Their ad-
vantage in computational time requirements is counterbalanced by generally
inferior quality solutions when compared to local search techniques. Among
the most widely used constructive heuristics for shop scheduling problems
are the various ‘Dispatching Rules’. Table 1.2 summarizes the most common
dispatching rules for shop scheduling problems [17].

Dispatching (or Priority) Rules are the most common heuristics for shop
scheduling problems due to their easy implementation and low requirements
in computational power. Although they perform very well in certain cases, no
rule exists that can be applied to all shop problems and perform satisfacto-
rily. Even worse, there is no way to estimate the performance of a dispatching
rule for a specific instance a priori. It should be mentioned that some prior-
ity rules generate the optimum solution in certain simple problems (e.g. the
minimization of flowtime in single-machine scheduling where the SPT priority
rule generates the global optimum solution).

Local Search

According to [19], a neighborhood of a solution s may be defined as a function
N : S → 2S where each s is assigned a set of neighboring solutions N(s) ⊆ S.
N(s) represents all neighboring solutions of s. For every defined neighborhood
of solutions, the solution or solutions of highest quality (i.e. the best objective



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 13

Table 1.2: Dispatching rules.

Rule Description

SOT An operation with the shortest processing time on the machine considered
LOT An operation with longest processing time on the machine considered
LRPT An operation with longest remaining job processing times
SRPT An operation with shortest remaining job processing times
LORPT An operation with highest sum of tail and operation processing time
RandomThe operation for the considered machine is randomly chosen
FCFS The first operation in the queue of jobs waiting for the same machine
SPT A job with smallest total processing time
LPT A job with longest total processing time
LOS An operation with longest subsequent operation processing time
SNRO An operation with smallest number of subsequent operations
LNRO An operation with largest number of subsequent operations

function value) are called locally optimum solutions within the defined neigh-
borhood. In the case where there is only one solution with the best objective
function value, this local optimum is called strict locally optimum solution.

Local search algorithms start from an initial solution (most of the times
generated by a constructive heuristic or randomly) and iteratively try to re-
place part or the whole solution with a better one in an appropriately defined
set of neighboring solutions. In order to replace parts of an initial solution,
local search methods perform a series of moves leading to the formation of
new solutions in the same neighborhood. The most common moves are the
2−Opt, the 1−1 exchange and the 1−0 exchangemoves. The 2−Optmove re-
verses a set of tasks of random length in a machine while the 1− 1 Exchange
move swaps two tasks from the same machine. Finally, the 1 − 0 Exchange
move transfers a task from its position in one machine to another position
in the same machine [161]. Of course, the number of possible moves and the
corresponding neighborhoods are virtually unlimited.

The main drawback of basic local search methods is that they get easily
trapped in local optima as they are myopic in nature. More specifically, local
search with appropriate moves can be very effective in exploring a neighbor-
hood of an initial solution but no mechanism exists that can lead to other
distant neighborhoods of the solution space where the global optimum may
exist. To remedy this weakness, new modern local search methods (explorative
local search) have been developed with embedded meta-strategies to guide the
search process. Such methods are presented in Section 1.3.3.

1.3.3 Meta-heuristic Algorithms

During the last decades, a new family of approximate algorithms has emerged
and has dominated the combinatorial optimization problem solution research.



14 Zobolas, Tarantilis and Ioannou

This new type of algorithm basically combines heuristic methods in higher
level frameworks. The aim of the new methodology is to efficiently and effec-
tively explore the search space driven by logical moves and knowledge of the
effect of a move [19] facilitating the escape from locally optimum solutions.
These methods are nowadays called meta-heuristics, a term that was first
introduced by Glover [57]. Meta-heuristic methods have an advantage over
simpler heuristics in terms of solution robustness; however they are usually
more difficult to implement and tune as they need special information about
the problem to be solved to obtain good results. Due to the computational
complexity of combinatorial optimization problems, the moderate results ac-
quired by heuristic methods and the time limitations for application of exact
algorithms, the application of meta-heuristic methods to solve such problems
is a well established field of research.

Definition

There are many definitions of meta-heuristic algorithms and methods. Per-
haps, the most thorough definition was given by Stützle in 1999 and is cited
in [19] (p. 270):

“Meta-heuristics are typically high-level strategies which guide an
underlying, more problem specific heuristic, to increase their perfor-
mance. The main goal is to avoid disadvantages of iterative improve-
ment and, in particular, multiple descent by allowing the local search
to escape from local optima. This is achieved by either allowing wors-
ening moves or generating new starting solutions for the local search
in a more intelligent way than just providing random initial solutions.
Many of the methods can be interpreted as introducing bias such that
high quality solutions are produced quickly. This bias can be of various
forms and can be cast as descent bias (based on the objective function),
memory bias (based on previously made decisions) or experience bias
(based on prior performance). Many of the meta-heuristic approaches
rely on probabilistic decisions made during the search. But, the main
difference to pure random search is that in meta-heuristic algorithms
randomness is not used blindly but in an intelligent, biased form.”

Based on the above definition, it could be said that meta-heuristics are an
intelligent way to explore the solution space. Exact algorithms are too slow
for even small to medium search spaces and simple heuristics blindly or my-
opically program the next move based on rules that cannot be characterized
robust and logically defined. Based on recent findings, the best performing
methods for optimizing shop scheduling problem are those encompassing hy-
brid systems such as local search techniques embedded within metastrategies
that overcome local optimality by accepting non improving moves and, thus,
inferior solutions. Although allowing non-improving moves seems contradict-
ing at first, such strategies help meta-heuristic algorithms to escape local



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 15

optimality as the new inferior solutions might be in the neighborhood of the
global optimum and therefore, a simple local search may thereafter lead to
the global optimum solution.

Concerning the search direction strategy, the diversification and intensi-
fication strategies can be defined [19]. When a meta-heuristic method uses
the diversification strategy, the main aim is the effective exploration of all
possible neighborhoods of the solutions space. On the other hand, the inten-
sification strategy focuses on the use of the gathered search knowledge and
the exploration of a narrower solution subspace.

Classification of Meta-heuristic Methods

Several meta-heuristic algorithm classification schemes exist based on various
properties of these methods. Among them, the most meaningful and the most
widely used is based on the quantity of solutions these algorithms deal with.
More specifically, meta-heuristic algorithms can be divided in population-
based and single point search. Population based meta-heuristic methods com-
bine a number of solutions in an effort to generate new solutions that share
good merits of the old ones and are expected to have better fitness. Such
methods are iterative procedures that gradually replace solutions with better
found ones. On the other hand, single point search methods improve upon a
specific solution by exploring its neighborhood with a set of moves.

Another important and widely used classification scheme is based on the
memory used during the search process. Concerning memory usage, it has
nowadays become implicit in modern meta-heuristic methods. Memory usage
constitutes a main characteristic of effective meta-heuristic methods and is the
indication of the intelligence employed during the search process. Memory us-
age may be further divided in short-term and long-term. Short-term memory
keeps track of recent moves and helps avoiding cycling around specific solu-
tions. On the other hand, in the long-term memory, information is gradually
stored and employed at specifically defined stages of the algorithm, depending
on the implementation. Memory-less algorithms are nowadays rarely employed
for complex combinatorial optimization problems.

Meta-heuristic Algorithms used for Shop Scheduling Problems

Almost all meta-heuristic algorithms proposed in the literature have been em-
ployed to solve shop scheduling problems. For a thorough description of these
methods, the reader may refer to Blum and Roli’s work [19]. Epigrammat-
ically, the most popular meta-heuristic methods for solving shop scheduling
problems are:

• Evolutionary Computation algorithms that fall mainly into three main
categories: Genetic Algorithms [77], Evolutionary Strategies [133] and Evo-
lutionary Programming [49]. One of the newest algorithms of this category



16 Zobolas, Tarantilis and Ioannou

is the Differential Evolution Algorithm (DEA) introduced by Storn and
Price [146].

• Particle Swarm Optimization (PSO) [42].
• Ant Colony Optimization (ACO) introduced by Dorigo [40].
• Scatter Search and Path Relinking proposed by Glover et al [60].
• Neural Networks (NN) that constitute an advanced artificial intelligence

technology that mimics the brain’s learning and decision making process
[51,52].

• Basic Local Search where a neighborhood of a solution is explored with
a set of moves and the local optimum is returned.

• Explorative Local Search mainly represented by the Greedy Random-
ized Adaptive Search Procedure (GRASP) proposed by Feo and Resende
[45], Variable Neighborhood Search (VNS) proposed by Hansen and Mlade-
nović [70] and Iterated Local Search (ILS) proposed by Stützle [149].

• Simulated Annealing (SA) proposed by Kirkpatrick et al [87].
• Tabu Search (TS) proposed by Glover [59].
• Threshold Accepting proposed by Dueck and Scheuer [41].

Hybrid Methods

The development and application of hybrid meta-heuristic algorithms is in-
creasingly attracting academic interest. Hybrid meta-heuristic algorithms
combine different concepts or components from various meta-heuristics [19]
and towards this end, they attempt to merge the strengths and eliminate the
weaknesses of different meta-heuristic concepts. Therefore, the effectiveness
of the solution space search may be further enhanced and new opportunities
emerge which may lead to even more powerful and flexible search methods.
Talbi [158] has proposed a taxonomy for hybrid meta-heuristics. Generally, we
can distinguish three main forms of hybridization [19]. The first form is called
component exchange among meta-heuristic methods and its most typical rep-
resentative is the hybridization of population-based methods with local search
methods. The second form is called cooperative search and typically involves
the exchange of information between two or more different meta-heuristic al-
gorithms. The information exchange level can vary from implementation to
implementation as well as during the same implementation. The third form is
called integrating meta-heuristic algorithms and systematic methods and has
produced very promising results in real-world cases. Among the successful
implementations of this form is the combination of meta-heuristic algorithms
and constraint programming [128].

Most hybrid methods for shop scheduling methods belong to the first form
of hybridization where various components and solution characteristics are
shared among two or more heuristic and meta-heuristic methodologies. The
power of hybrid meta-heuristic methods is indicated by the fact that, as we will
see in the following sections of this chapter, current state-of-the-art methods
for shop scheduling problems are all hybrid meta-heuristic algorithms.



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 17

Adaptive Memory Programming - The Unified View

Judging from the brief review of meta-heuristic algorithms in the previous
section, it is obvious that the family of meta-heuristic methods is large and
keeps growing as new forms and hybrids are still presented. Taillard et al [157]
however mentioned that meta-heuristic methods at their present form share
many common characteristics and could be unified under the term adaptive
memory programming (AMP), firstly proposed by Glover [58]. More specif-
ically, Taillard et al [157] mentioned that most meta-heuristic components
follow a generalized procedure: at first, they memorize parts, whole solutions
or characteristics of solutions during the search process. In a second stage,
this stored information is used to generate new solutions and at the third
stage, this new solution’s neighborhood is explored by means of a local search
method.

Thus, whether a meta-heuristic is a simple population-based genetic al-
gorithm or a sophisticated hybrid incorporating various meta-heuristic com-
ponents, the essence is that it usually follows the same three-step procedure.
Therefore, under the unified view of adaptive memory programming, the vari-
ous meta-heuristic methodologies might not be very different from each other
after all. On the other hand, some methods (like simulated annealing and
threshold accepting) cannot be generalized under the AMP scheme as their
basic versions are virtually memory-less. However, their core methodology can
be used in the improvement stage of the AMP framework (step three of AMP).

1.4 The Flow Shop Scheduling Problem

The flow shop scheduling problem is, as mentioned, NP-Hard. Due to the com-
plexity of the problem, exact algorithms developed for the general FSSP failed
to achieve high quality solutions for problems of increased size in reasonable
time and thus academic research focused on heuristic and meta-heuristic meth-
ods. Regarding solution methodologies, Johnson [86] proposed an O(nlogn)
complexity algorithm which optimally solves the F2//Cmax problem. Under
the special circumstance where the middle machine is dominated by the other
two, Johnson’s algorithm may solve to optimality the F3//Cmax problem.
Among exact methods proposed for the general FSSP, we can distinguish
among dynamic programming [75], branch and bound [37, 81, 90, 104] elimi-
nation rules [6] and, of course, complete enumeration which is the most time
consuming exact method. Considering that these methods may be applied
in small instances of FSSP, it is beyond the scope of this chapter to further
analyze them.

1.4.1 Heuristics for the FSSP

A large number of heuristics has been proposed for the FSSP. The most im-
portant constructive ones are the Palmer [126], CDS [26], RA [38], Gupta [68],



18 Zobolas, Tarantilis and Ioannou

NEH [118] and HFC [88]. Palmer [126] and Gupta [68] construction heuris-
tics are based on the utilization of a criterion to generate the sequence of
jobs. This criterion is a slope index that is calculated for each job based on
the processing times and their pattern in terms of machine sequence. The
CDS [26] algorithm on the other hand, generates m− 1 artificial two-machine
schedules (where m is the number of machines) and solves them with John-
son’s rule. The best m−1 solution is then chosen as the best sequence for the
m-machine problem. According to the RA heuristic [38], a virtual two ma-
chine problem is defined (just like the CDS heuristic) but instead of directly
applying Johnson’s algorithm over the processing times, weighting schemes
for each machine are calculated before.

The NEH heuristic [118] is much more complex than the aforementioned
heuristics. Initially, jobs are arranged in a descending order of their total
processing time. Then, based on this mentioned order, an increasingly larger
partial sequence is generated at each step by introducing one job from the
unscheduled order into the partial sequence (until all jobs are scheduled). At
each step, a new job is scheduled in all possible positions (k+1 positions where
k is the size of last step’s partial sequence) and after choosing the best place
for this job, regarding the obtained makespan, this new partial sequence is
fixed for the remaining procedure. The HFC heuristic [88] can only be applied
to FSSP and not the reduced version of it, the PFSP. It is a two-stage method
where Johnson’s rule is used extensively in the first stage, while in the second
stage, improvement of the initial schedule is performed by allowing job passing
between machines (non permutation schedules).

In addition to the aforementioned constructive heuristics, a few improve-
ment heuristics have been proposed by Dannenbring [38], Ho and Chang [76]
and Suliman [150]. Contrary to constructive heuristics, improvement heuris-
tics start from an already built schedule and try to improve it by some
given procedure. Dannenbring [38] proposed two simple improvement heuris-
tics based on the constructive heuristic RA proposed by the same author for
initial solution generation: Rapid Access with Close Order Search (RACS)
and Rapid Access with Extensive Search (RAES). RACS works by swapping
every adjacent pair of jobs in a sequence. The best schedule among the n− 1
generated is then given as a result. In RAES heuristic, RACS is repeatedly
applied while improvements are found. Both RACS and RAES heuristics start
from a schedule generated with the RA constructive heuristic.

Ho and Chang [76] developed a method that aims at the minimization of
the elapsed times between the end of the processing of a job in a machine
and the beginning of the processing of the same job in the following machine
in the sequence. The authors refer to this time as ‘gap’ which is calculated
for every possible pair of jobs and machines. Starting from the CDS heuristic
solution, a series of calculations is conducted and then, the heuristic swaps jobs
based on the corresponding gap value. Suliman [150] developed a two-phase
improvement heuristic for the FSSP. In the first phase, similarly to Ho and
Chang’s improvement heuristic, a schedule is generated with the CDS heuristic



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 19

method. In the second phase, the schedule generated is improved with a job
pair exchange mechanism. In an effort to reduce the computational load of
an exhaustive job pair exchange, the number of possible moves is reduced by
introducing a directionality constraint. More specifically, if a better schedule
is acquired by moving a specific job forward, then this job is not allowed to
move backward in the job sequence string.

Although FSSP heuristics perform very fast in most cases, they gener-
ally fail to produce high quality solutions. Even the NEH heuristic, which is
considered the most powerful construction heuristic [154], fails to reach so-
lutions even 5-7% worse than the optimum in some difficult instances due
to Taillard [155]. Therefore, it is not without reason that most of the acad-
emic effort has been put towards the development of meta-heuristic and most
recently, powerful hybrid meta-heuristic methods.

1.4.2 Meta-heuristics for the FSSP

A very large number of meta-heuristic algorithms, hybrid or not, have been
proposed for the FSSP and PSFP. The application list for the FSSP includes
most known meta-heuristic algorithms including evolutionary algorithms, par-
ticle swarm optimization, ant colony optimization, scatter search, neural net-
works, simulated annealing, tabu search and many forms of explorative local
search. Most of these methods use simpler heuristic algorithms to generate an
initial population of solutions.

Concerning the implementation of Genetic Algorithms (GA) in FSSP
and PFSP, some early noteworthy research was performed by Reeves [134].
In his implementation, the offsprings generated at each step of the algorithm
do not replace their parents but solutions with a fitness value below average.
Among the innovations presented in this paper, Reeves used an equivalent to
the One Point Order Crossover operator, called C1. Moreover the algorithm
uses an adaptive mutation rate where the position of one job is simply changed
by the shift mutation operator. A common feature of many meta-heuristic
methods for the FSSP that is also found in this implementation is the use
of the NEH heuristic to seed the initial population with a good sequence
among randomly generated ones. Finally, another innovative feature of Reeves’
implementation is that during selection, parent one is selected using a fitness
rank distribution while parent two is chosen using a uniform distribution.
During the same year, Chen et al [31] presented their own GA for the PFSP.
Their implementation was basically a simple genetic algorithm with some
added features and enhancements. More specifically, in this implementation
the initial population is generated with the CDS and RA heuristics and also
from simple job exchanges of some individuals. The crossover operator used is
the Partially Mapped Crossover (PMX) and it is noteworthy that no mutation
is applied.

Murata et al [115] presented their own version of GA for the PSFP
where the two-point crossover operator and a shift mutation along with an



20 Zobolas, Tarantilis and Ioannou

elitist strategy to obtain good solutions are used. Based on initial results,
the algorithm failed to achieve results competitive to other meta-heuristic
methodologies and therefore, the authors developed two hybrid versions; ge-
netic simulated annealing and genetic local search. As their name implies,
in these algorithms an improvement is conducted before the selection and
crossover phases by means of a simulated annealing and local search algo-
rithms respectively. These two hybrid algorithms performed better than the
non-hybrid genetic algorithm and the simple implementations of tabu search,
simulated annealing and local search. Reeves and Yamada [135] presented an-
other hybrid genetic algorithm. The innovation in this algorithm was the use
of a Multi-Step Crossover Fusion (MSXF) operator which combined crossover
with a local search procedure. This operator uses one parent as a reference
to conduct a biased local search to the other. The calculation of new up-
per bounds for some Taillard’s [155] benchmark instances is indicative of the
algorithm’s high performance.

Another genetic algorithm was presented by Ponnambalam et al [130].
Their algorithm features the Generalised Position Crossover (GPX), shift
mutation and a randomized initial solution. A hybrid implementation based
on genetic algorithms and simulated annealing was presented by Wang and
Zheng [167]. The powerful NEH heuristic is also used for population initial-
ization and multi-crossover operators are used for solution recombination.
However, the mutation operator is replaced by a simulated annealing com-
ponent. Finally, one of the most recent genetic algorithms for the PFSP and
a hybrid version of it were proposed by Ruiz et al [140]. Ruiz et al used a
modified NEH heuristic to generate a diversified initial population, proposed
four new crossover operators, used shift mutation and implemented special-
ized restart techniques for population renewal. Finally, they hybridized their
genetic algorithm with a local search scheme.

Similarly to the Genetic Algorithm, the Differential Evolution Algo-
rithm (DEA) has also been proposed, in a hybrid form, to solve the PFSP.
More specifically, Tasgetiren et al [162] have proposed a DEA coupled with
local search to optimize the PFSP. The authors borrowed the random key
representation by Bean [14] to convert the real variables to discrete ones and
used a repairing technique so a basic local search could be applied to the re-
sulting solutions. Another attempt to apply the DEA to PSFP for minimizing
makespan, total flowtime and tardiness has been conducted by Onwubolu and
Davendra [124]. The authors compared the proposed method with the classic
genetic algorithm and concluded that DEA demonstrates competitive perfor-
mance and very easy implementation for the specific problem. Considering
that the DEA in its canonical form operates with real variables, the authors
proposed a transformation scheme to convert real-coded solutions to discrete
ones and vice versa.

Particle Swarm Optimization (PSO) has only recent and thus limited
number of applications. The two major papers in this field have been pre-
sented by Lian et al [98] and Tasgetiren et al [163]. Lian et al [98] proposed a



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 21

conversion technique to apply the PSO algorithm in discrete problems like
the FSSP and compared the PSO with a traditional GA. The authors con-
cluded that the PSO performed better than the traditional GA. Similarly,
Tasgetiren et al [163] proposed a hybrid PSO algorithm for the PFSP with
both makespan and total flowtime minimization criteria. More specifically,
they hybridized the basic PSO algorithm with an explorative local search
technique, the Variable Neighborhood Search (VNS). They also proposed a
scheme to allow the PSO to operate in the discrete variable environment of
PFSP. This heuristic scheme is named Shortest Position Value (SPV) and it
is borrowed from the random key representation of Bean [14]. Computational
tests conducted by the author revealed the strength of the proposed method
for both performance criteria and in both Taillard and Watson benchmark
instances.

The Ant Colony Optimization (ACO) algorithm has also been used for
solving the FSSP/PFSP. One of the first attempts to apply ACO to PFSP was
done by Stützle [147] and some years later by Ying and Liao [177]. Ying and
Liao’s computational experiments on Taillard benchmark instances revealed
that the ACO approach is a very effective meta-heuristic for the PFSP. Among
other presented implementations, T’kindt et al [152] proposed a version of
ACO to solve the two-machine flow shop with two criteria. More recently,
Rajendran and Ziegler [132] proposed two versions of ACO to solve the PFSP
with the minimum makespan and minimum total flowtime objectives. The first
algorithm presented is an extension of Stützle’s [147] ideas of the ant colony
algorithm (MMAS algorithm) by including the summation rule suggested by
Merkle and Middendorf [112] and a local search technique.

Nowicki and Smutnicki [121] presented a Scatter Search and Path Re-
linking version (algorithm MSSA) for the PFSP and have conducted exten-
sive research on the properties on the problem’s solutions space. The strength
of their implementation is attested by some new upper bounds found in Tail-
lard’s benchmark instances for minimizing the total makespan. More specif-
ically, the authors have used their TSAB algorithm and extended it using a
modified scatter search algorithm (MSSA). Finally, one of the most important
characteristics of their algorithm is that its good properties remain scalable
with increasing instance size.

There are quite a few works about Neural Networks (NN) applied to
FSSP, although most of them are hybrid implementations with other meta-
heuristics. One of the first works in this field was conducted by Lee and
Shaw [94]. The authors developed a hybrid neural network-genetic algorithm
for the FSSP showing good performance. A few years later, Solimanpur et al
[145] developed a hybrid tabu search-neural network approach called EXFS.
In their implementation, the NEH heuristic is initially used to construct a
solution. Thereafter, tabu search is used to improve the solution and special
neurons are employed to penalize some moves. A more recent implementation
was developed by El-bouri et al [44] for the PFSP. More specifically, they
used solved instances of PFSP instances to train some neurons. Afterwards,



22 Zobolas, Tarantilis and Ioannou

the neurons were employed to guide a local search procedure to the most
promising job assignments.

Concerning Basic Local Search and Explorative Local Search meth-
ods, there are very few implementations where such methods are used alone
(i.e. not as a part of a hybrid algorithm). It should be mentioned though that,
when hybridized, such methods greatly improved the performance of other
methods, especially of evolutionary methods. One of the few implementations
was the iterated local search (ILS) procedure proposed by Stützle [148] which
was later recoded by Ruiz and Maroto [139]. The latter proved that ILS per-
formed very satisfactorily in the PFSP.

Simulated Annealing (SA) was one of the first meta-heuristic meth-
ods proposed [87] and therefore it is not without reason that a very large
number of SA algorithms have been proposed for the FSSP/PFSP. One of
the first works in this area has been conducted by Osman and Potts [125].
The authors proposed a simple SA algorithm using a shift neighborhood and
a random neighborhood search. Ogbu and Smith [123] proposed an SA algo-
rithm for the PFSP which involved an initialization with the Palmer [126] and
Dannenbring’s [38] RA heuristics. In a later work by the same authors [122],
their initial approach was compared to that of Osman and Potts [125] where
Ogbu and Smith’s [122] algorithm was found slightly more efficient. Gangad-
haran and Rajendran [54] also applied the SA method to solve the FSSP.
Two SA algorithms comparable in performance with Osman and Potts’s [125]
approach were developed by Ishibuchi et al [82].

Zegordi et al [179] developed a hybrid simulated annealing algorithm called
SAMDJ with the incorporation of problem domain knowledge in the basic SA
scheme. More specifically, they used a specially formulated table with sev-
eral rules concerning the biased movement of jobs towards specific positions
or directions in the sequence. It was empirically proven that this table fa-
cilitated the annealing process and lessened the SA control parameters. Per-
formance wise, SAMDJ proved to be slightly inferior in terms of solution
quality compared to Osman and Potts’s [125] SA algorithm but considerably
faster. Murata et al [115], as already mentioned in the genetic algorithm sec-
tion, developed a hybrid genetic-simulated annealing algorithm for the PFSP
which, according to their experiments, outperformed the single meta-heuristic
components when used individually. The same procedure was followed by Moc-
cellin and dos Santos [114] who presented a hybrid tabu search - simulated
annealing heuristic. The hybrid algorithm was then compared to simple tabu
search and simple simulated annealing algorithms, showing the superiority of
the hybrid approach. Wodecki and Božejko [170] proposed an SA algorithm
that was run in a parallel computing environment. The algorithm was tested
against the classic NEH heuristic and superior results were recorded. Finally,
Hasija and Rajendran [71] proposed an algorithm based on simulated anneal-
ing for the PFSP with total tardiness of jobs criterion and two new solution
perturbation schemes. The authors concluded that their algorithm performed
better than existing tabu search and simulated annealing techniques.



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 23

Tabu Search (TS) has also been extensively used to solve the FSSP/PFSP
in single or hybrid forms. One of the first attempts towards this direction was
conducted by Widmer and Hertz [169] who presented the ‘SPIRIT’ method, a
two-stage heuristic. In the first stage, an initial solution is calculated with an
insertion method in direct relation to the Open Travelling Salesman Problem
(OTSP). In the second stage, a standard TS meta-heuristic with exchange
neighborhood is used to improve the initial solution. Taillard [154] also pre-
sented a similar procedure to that of Widmer and Hertz [169]. In Taillard’s
implementation, an improved version of the classic NEH heuristic is used to
obtain good initial schedules which are then improved by a tabu search proce-
dure. After having tested various types of neighborhoods, the one-job change
of position proved to be superior for the specific implementation.

Another meta-heuristic algorithm based on Widmer and Hertz’s [169]
SPIRIT heuristic is the TS method of Moccellin et al [113]. Their implementa-
tion resembles Widmer and Hertz’s procedure with the main difference being
the calculation of the initial solution. One of the most important works in this
field was conducted by Nowicki and Smutnicki [120]. The authors proposed
a TS meta-heuristic where only reduced parts of the possible neighborhoods
are evaluated along with a fast method for obtaining the makespan after per-
forming moves. Although this method is only suitable for the minimization
of makespan criterion (and not the also widely used total flowtime of jobs)
it quickly became the benchmark for other methods due to its high perfor-
mance in terms of solution quality and computational speed. This fact is also
demonstrated by the new best upper bounds found in Taillard’s benchmark
instances. The innovation in Nowicki and Smutnicki’s work is that instead
of moving single jobs during the search procedure, whole blocks of jobs are
moved.

A few years later, Ben-Daya and Al-Fawzan [15] implemented a TS algo-
rithm with extra intensification and diversification schemes that enabled bet-
ter moves in the TS process. The algorithm proposed provides similar results
to the TS algorithm of Taillard [154], indicating a successful implementation.
Finally, as already mentioned in the SA section, a successful hybrid TS-SA
method was proposed by Moccellin and dos Santos [114]. More specifically,
a classic TS was hybridized with an SA procedure and the hybrid algorithm
outperformed the single meta-heuristic components. One of the most recent
implementations for the PFSP with tabu search was proposed by Soliman-
pur et al [145]. The authors developed a hybrid tabu search - neural network
approach and they implemented block properties like Taillard [154]. Finally,
Grabowski and Wodecki [64] proposed a fast TS approach.

Threshold Accepting has also been used to solve PFSP by Gupta
et al [69]. More specifically, the authors developed and compared various lo-
cal search schemes for the two-machine PFSP with two criteria: the main
criterion being the optimization of makespan and a secondary criterion being
either the total flow time, total weighted flow time, or total weighted tardi-
ness. Among the methods tested are simulated annealing, genetic algorithms,



24 Zobolas, Tarantilis and Ioannou

threshold accepting, tabu search, and multi-level search algorithms. The au-
thors conclude that the multi-level search heuristics were most appropriate for
the flow time related secondary objective, while simulated annealing proved
to be superior best for the due date related objective. The authors also con-
cluded that the genetic algorithm performed poorly if not coupled with some
other local search methods.

1.5 The Job Shop Scheduling Problem

The history of the job shop scheduling problem, starting more than 40 years
ago, is closely linked to the history of the most known benchmark instance
introduced by Fisher and Thompson [46]. This particular 10-job, 10-machine
instance (also known as MT10 or FT10) detained researchers for over 25 years
and signaled a continuous competition among researchers for the most pow-
erful solution procedure. The JSSP solution history is characterized by circles
concerning researchers’ preferences. More specifically, at first, researchers pro-
posed some exact methods followed by an era of heuristic methodologies de-
velopment. Thereafter, researchers focused again on exact methods and JSSP
complexity until the new era of sophisticated heuristic and meta-heuristic
algorithms began.

Branch and bound algorithms are the most efficient exact methods for
JSSP and they explore specific knowledge about the critical path of the prob-
lem. The main principle behind them is the enumeration of all possible feasible
solutions of the problem so that properties or attributes not shared by any
optimal solution are detected as early as possible. A branch of the enumera-
tion tree defines a subset of the feasible solutions where each element of the
subset satisfies this branch. For each subset, the objective value of its best
solution is estimated by a lower bound. In case this lower bound is greater
than the best known upper bound the subset can be dropped from further
consideration. The best known upper bound can be a heuristic solution of the
original problem [17]. Although branch and bound algorithms guarantee the
optimal solving of the problem, they tend to be very slow in combinatorial
optimization problems and rather impractical to use. Their main drawback is
the lack of strong lower bounds in order to cut branches of the tree as early as
possible and reduce the computational time required. Researchers are focused
on finding ways to improve lower bounds.

One of the earliest works in the field of exact methods was performed by
Brooks and White [21] and Greenberg [66]. These methods were based on
Manne’s [106] integer programming formulation. Other papers in this field
are presented by Balas [7], Florian et al [48] and Fisher [47]. A very effi-
cient method was proposed by McMahon and Florian [111] which turned out
to be the best performing exact method for several years. The authors com-
bined the bounds for the single-machine scheduling problem with the objective
function and operation release dates in order to minimize maximum lateness



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 25

with the enumeration of active schedules. They were based on the fact that
among active schedules, the optimal ones existed. In more recent methods, the
neighborhood structure used in some recent local search implementations was
employed as a branching structure [12]. The optimum solution of the infamous
FT10 instance was first found by Lageweg in 1984 as reported by Lawler et
al [91] although no proof of optimality was given. In this work, multi-machine
lower bounds were used. Optimality of the found solution to FT10 (with an
optimum makespan of 930) was first proven by Carlier and Pinson [28]. The
latter were based on one-machine bounds and several simple inference rules
on operation subsets. Current research status concerning branch and bound
schemes is characterized by the very well performing methods of Applegate
and Cook [5] and Martin and Shmoys [107]. Moreover, the use of advanced
inference rules characterize the very well performing branch and bound meth-
ods of Baptiste et al [10, 11], Carlier and Pinson [29] and Brucker et al [25].
Finally, it should be mentioned that an emerging field of research concerning
branch and bound techniques is their coupling with meta-heuristic strategies
to form advanced hybrid algorithms.

1.5.1 Heuristics for the JSSP

Early works for the JSSP can be found as early as 1956 when Jackson [83]
generalized Johnson’s [86] rule for the FSSP and applied it to the two-machine
JSSP. Since then, a large number of heuristic methodologies have been pro-
posed. Perhaps the most frequently applied heuristics for JSSP are the vari-
ous dispatching rules, presented in Section 1.3.2. One of the most important
implementations of priority dispatching rules is Giffler and Thompson’s algo-
rithm [56] which can be generally considered as a common basis of all priority
rule based heuristics. Their algorithm is a constructive heuristic where at each
step, an unscheduled operation is chosen randomly from a conflict set of op-
erations that ‘compete’ for the same machine. This machine corresponds to
the machine that the operation with the lowest processing time among all
unscheduled operations is to be processed at.

Apart from the priority dispatching rules, one of the most powerful heuris-
tics for the JSSP is the shifting bottleneck heuristic originally proposed by
Adams et al [3] and later improved by Balas et al [8]. The main concept of
this algorithm is the solution, for each machine, of a one-machine scheduling
problem to optimality, under the assumption that a lot of arc directions in the
optimal one-machine schedules coincide with the optimal job shop schedule.
The algorithm optimizes the schedule of the bottleneck machine first. The
bottleneck machine is defined as the machine whose one machine optimum
schedule has the longest makespan. The algorithm continues until all ma-
chines are scheduled. The power of this method is that although one-machine
schedules are also NP-Hard, algorithms exist to efficiently solve them [27].
However, the assumption that the lot of arc directions in the optimal one ma-
chine schedules coincide with the optimal job shop schedule is not true and



26 Zobolas, Tarantilis and Ioannou

thus this method does not lead to the global optimum solution. However, the
shifting bottleneck algorithm has proven to be a very effective heuristic with
many successful implementations in JSSP. This heuristic is also widely used
nowadays for efficient hybrid algorithm implementations.

1.5.2 Meta-heuristics for the JSSP

Similarly to the FSSP, a very large number of hybrid and non hybrid meta-
heuristic algorithms have been proposed for the JSSP. The application list
for the FSSP includes most known meta-heuristic algorithms including evo-
lutionary algorithms, particle swarm optimization, ant colony optimization,
scatter search, neural networks, simulated annealing, tabu search and many
forms of explorative local search. Most of these methods use simpler heuristic
algorithms to generate an initial population of solutions.

Concerning the implementation of Genetic Algorithms (GA) in JSSP,
many researchers have concluded that GAs are not suitable for fine-tuning
of solutions close to optimal ones. In other words, genetic algorithms fail to
intensify the search to the most promising regions of a neighborhood. This
is why successful implementations of genetic algorithms usually incorporate
a local search procedure for search intensification. A large number of early
genetic algorithm applications may be traced in the literature. Among, the
most well-known methods are those of Davis [39], Nakano and Yamada [117],
Yamada and Nakano [172], Tamaki and Nishikawa [159], Mattfeld et al [110],
Croce et al [34], Bierwirth et al [16] and Cheng et al [32]. Among more recent
works in this field, Zhou et al [184] proposed a hybrid genetic algorithm with a
neighborhood search procedure which also used a series of priority dispatching
rules in the genetic evolution process. A very successful implementation of
hybrid genetic algorithms can be found in the work of Wang and Zheng [166].
The authors also mention the drawback of genetic algorithm operators to
disrupt the search in areas close to local or global optima and thus, they
hybridized their GA with a simulated annealing algorithm which enhanced
the intensification operation of their hybrid method. Park et al [127] also
proposed a genetic algorithm and used Giffler and Thompson’s algorithm [56]
for the initial chromosomes generation. Murovec and S̆uhel [116] presented
a hybrid genetic-tabu search implementation with exceptional results in all
benchmarks tested. This is also indicated by the three new upper bounds found
for the ABZ9, YN1 and YN2 benchmark instances. Gonçalves et al [61] have
presented an efficient hybrid GA implementation. The authors utilized the
random keys representation [14] and hybridized their genetic algorithm with
a local search scheme. Finally, Zobolas et al [185] developed a three-component
hybrid algorithm where a Genetic Algorithm, a Differential Evolution and a
Variable Neighborhood Search procedure were employed.

The Particle Swarm Optimization (PSO) method applications in
JSSP are relatively very recent, indicating the great interest of the acad-
emic community in this optimization method. Although PSO can be generally



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 27

used with continuous variables and, therefore, is unsuitable for discrete vari-
ables, most researchers have presented special transformation methods or vari-
ations of the original PSO so that this method can be also applied to JSSP.
Lian et al [99] presented a similar PSO algorithm with the added feature of
converting a continuous domain to a discrete domain. Xia and Wu [171] hy-
bridized the PSO algorithm with a classic simulated algorithm and formed
their HPSO algorithm. Zhao and Zhang [181] also presented a hybrid particle
swarm - simulated annealing algorithm and compared the hybrid version with
the single algorithm implementations. Their hybrid method was found to be
more effective and more efficient than the single meta-heuristic components.
Finally, Sha and Hsu [143] also used a transformation routine but unlike most
researchers, utilized the preference list-based representation and hybridized
their PSO implementation with a tabu search procedure to improve the solu-
tions acquired.

The use of Ant Colony Optimization (ACO) algorithm in solving the
JSSP is rather limited. Just like the PSO algorithm, the implementations
found in literature are very recent. Huang and Liao [79] proposed a hybrid
ant colony - tabu search algorithm. The authors employed a novel decompo-
sition method inspired by the shifting bottleneck procedure and a mechanism
of occasional re-optimizations of partial schedules instead of using the more
conventional feasible solutions construction approach. Heinonen and Petters-
son [73] presented a hybrid ant colony - local search algorithm and focused
on the infamous FT10 benchmark instance so that the ACO performance can
be evaluated.

The application of Neural Networks (NN) to the JSSP can be charac-
terized quite extensive. However, the last few years there seems to be a de-
creasing interest towards neural network implementations for JSSP. Among
early works conducted in this field are the works of Foo and Takefuji [51–53],
Zhou et al [182, 183] and Dagli et al [35]. However, mediocre results have
been obtained and only the work of Sabuncuoglu and Gurgun [141] pro-
duced good results in benchmark tests. Jain and Meeran [84] also presented
a powerful neural network scheme for the JSSP. There are quite a few imple-
mentations of hybrid neural networks with genetic algorithms including the
algorithms of Dagli and Sittisathanchai [36], Lee and Dagli [93] and Yu and
Liang [178]. Among more recent neural network hybrid methods is the work of
Luh et al [105]. The authors combined recurrent neural network optimization
ideas with Lagrangian relaxation for constraint handling to solve the JSSP.
According to their tests, they managed to outperform most neural network im-
plementations presented up to that date. Yang and Wang [176] have presented
an adaptive neural network and heuristics hybrid approach for JSSP. More
specifically they implemented two heuristics that operate in the neural net-
work framework and are used to accelerate the solving process of the neural
network and guarantee its convergence and to obtain non-delay schedules
from the feasible solutions gained by the neural network. Finally, one of the
most recent works in the domain of neural networks for JSSP is the work of



28 Zobolas, Tarantilis and Ioannou

Fonseca and Navaresse [50] concerning job shop simulation. The proposed
scheme managed to satisfactorily estimate the manufacturing lead times for
orders simultaneously processed in a four-machine job shop. The authors com-
pared their findings with data generated from three well-known simulation
packages (Arena, SIMAN and ProModel) and found out that the manufactur-
ing lead times produced by their scheme turned out to be equally valid.

Concerning Basic Local Search and Explorative Local Search meth-
ods, similarly to the FSSP/PFSP, there are very few implementations where
such methods are used alone (i.e. not as a part of a hybrid algorithm). It
should be mentioned though that, when hybridized, such methods greatly im-
prove the performance of other methods, especially of evolutionary methods.
One of the few implementations was the Greedy Randomized Adaptive Search
Procedure (GRASP) of Resende [136] and the Guided Local Search - Shift-
ing Bottleneck hybrid of Balas and Vazacopoulos [9]. Both algorithms and
especially the one of Balas and Vazacopoulos, have demonstrated very good
performance in the JSSP.

Simulated Annealing, as mentioned in the FSSP section, is one of the
earliest proposed meta-heuristic [87]. The most known implementations of
simulated annealing have been proposed by Matsuo et al [109], Van Laarhoven
et al. [164,165], Aarts et al [1,2], Yamada et al. [175], Sadeh and Nakakuki [142]
and Yamada and Nakano [173, 174]. However, as Jain and Meeran [85] ob-
served, simulated annealing is unable to quickly achieve good solutions to
JSSP problems, perhaps because it is is a generic and memory-less technique.
As a result, academic research focused on hybrid versions of simulated an-
nealing some of which are already mentioned in the previous subsections of
meta-heuristics for the JSSP (e.g. the work of Wang and Zheng [166]). Zhang
et al [180] recently proposed a hybrid simulated annealing - tabu search ap-
proach whose main principle is using simulated annealing to find the elite
solutions inside big valleys so that tabu search can re-intensify search from
the promising solutions. The effectiveness of this method is demonstrated by
the 17 new upper bounds found in benchmark test instances. Finally, a very
recent work on a hybrid simulated annealing algorithm has been conducted by
El-Bouri et al [43]. More specifically, the authors developed a hybrid algorithm
that apart from simulated annealing, it consists of a tabu search and adaptive
memory programming framework. The proposed framework uses two distinct
memories modules: the first memory temporarily prevents further changes in
the configuration of a solution in an effort to maintain the presence of good
solution elements while the second memory aims at tracking good solutions
found during an iteration, so that the best ones can be used as the start-
ing point in a subsequent iteration. The authors compared their algorithm
with the traditional simulated annealing procedure and realized substantial
performance improvements.

Tabu Search (TS) is one of the most powerful meta-heuristics for the
JSSP. This is affirmed by the fact that most state-of-the-art algorithms for
the JSSP include some sort of tabu search functionality. The main strength



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 29

of tabu search is the use of memory that speeds up the solution space search
process. Early implementations of tabu search in JSSP have been conducted
by Taillard [153,156], Barnes and Chambers [13] and Sun et al [151]. One of the
most powerful implementations was proposed by Nowicki and Smutnicki [119].
The computational effectiveness of their TSAB method is demonstrated by the
fact that the notorious FT10 instance was solved in just 30 seconds using a PC
of that era. A later work conducted by Watson et al [168] is based on Nowicki
and Smutnicki’s TSAB algorithm and aims at developing an understanding of
why tabu search is so effective on JSSP. Later hybrid implementations include
Pezzella and Merelli’s [129] hybrid tabu search-shifting bottleneck procedure
where the shifting bottleneck heuristic is initially used to generate schedules
and then to refine solutions in subsequent iterations. Finally, as mentioned in
the simulated annealing for JSSP section, a very recent hybrid tabu search -
simulated annealing method was proposed by Zhang et al [180] which managed
to find new upper bounds for many benchmark instances.

Threshold Accepting algorithms have also been used for JSSP optimiza-
tion but their application is rather limited. One of the first implementations
was proposed by Aarts et al [1] in their computational study of local search
algorithms for JSSP. However, poor results in comparison to other local search
methods were recorded. A variant of the classic threshold accepting algorithm
was proposed by Tarantilis and Kiranoudis [161]. The variant used is named
‘List-Based Threshold Accepting method’ (LBTA) and the authors demon-
strated competitive results. A very important characteristic of this algorithm
is that tuning of only one parameter is needed (namely the list size), thus
making this implementation very easy to tune for a wide variety of problems.
Based on the LBTA method of Tarantilis and Kiranoudis [161], Lee et al [92]
proposed a new version and adopted the probabilistic steepest neighbor selec-
tion strategy to the original LBTA method to compromise between searching
time and neighborhood quality, a strategy aiming at speeding up the search
process.

1.6 The Open Shop Scheduling Problem

The open shop scheduling problem has attracted considerably less attention
from academic researchers than flow shop and job shop scheduling problems,
a fact outlined by the noticeably smaller number of papers in this field. Con-
cerning exact methods for the OSSP, a polynomial time algorithm has been
proposed by Gonzalez and Sahni [63] for the two-machine problem. Brucker
et al [24] developed a branch and bound algorithm for the general m-machine
problem based on the disjunctive graph representation of the problem. The
method was very efficient and some benchmark instances were solved to op-
timality for the first time. Adiri and Aizikowitz [4] presented a linear time
algorithm for the three-machine OSSP, provided that one machine dominates
one of the other two. Algorithms for arbitrary m-machine problems with one



30 Zobolas, Tarantilis and Ioannou

or two dominating machines are analyzed in Tanaev et al [160]. More re-
cently, Kyparissis and Koulamas [89] presented a polynomial time algorithm
for the two-machine OSSP with the objective of minimizing the total comple-
tion time subject to minimum makespan. They also extended their algorithm
to the three-machine OSSP.

1.6.1 Heuristics for the OSSP

Röck and Schmidt [137] introduced a machine aggregation algorithm for the
generalm-machine OSSP based on the fact that the two-machine cases is poly-
nomially solvable. Some more promising methods focus on ‘dense’ schedules
where no machine is idle unless there is no operation available to be processed
on that machine. Bräsel et al [20] developed some efficient constructive heuris-
tic algorithms based on a structure analysis of the feasible combinations of job
and machine orders. Guéret and Prins [67] presented list scheduling heuristics
with two priorities for each operation, and matching heuristics which are fol-
lowed by a local search improvement procedure. Finally, Liaw [100] introduced
an iterative improvement approach based on a decomposition technique.

1.6.2 Meta-heuristics for the OSSP

Although there are quite a few exact and heuristic methods for the OSSP,
the great difference between the OSSP and the JSSP/FSSP is observed in the
number of meta-heuristic methodologies proposed. Liaw [101] proposed a ro-
bust tabu search algorithm for the OSSP. In this work, Liaw also developed a
dispatching rule for initial solution generation. One year later, a hybrid genetic
algorithm - tabu search algorithm (HGA) for the OSSP was proposed by the
same author [102]. This work was based on the previous work of Liaw on tabu
search for the OSSP and the author managed to improve the results of the first
paper to the point that some benchmark instances were solved to optimality
for the first time. Liaw also compared the results acquired by HGA to those
obtained with list scheduling heuristic, insertion heuristic (IH), simulated an-
nealing and pure TS algorithms and HGA outperformed them all. The same
year, Prins [131] also proposed a genetic algorithm for the OSSP with slightly
worse results than Liaw’s implementation in Taillard’s benchmark instances,
except for some 20x20 problems. A more recent meta-heuristic implementation
for the OSSP was proposed by Blum [18]. More specifically, Blum proposed
a hybrid ant colony optimization with beam search algorithm which outper-
formed both genetic algorithm implementations of Liaw [102] and Prins [131],
rendering the beam-ACO method a state-of-the-art method for OSSP.

Conclusions

In this chapter, the main shop scheduling problems were presented along with
a review of exact, heuristic and meta-heuristic methodologies used to solve



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 31

them. Exact methods fail to solve large instances of these problems in reason-
able computational time while heuristic methods lack the robustness required,
although they induce much less computational effort. Thus, it is not without
reason that late research has mainly focused on meta-heuristic methods for
these hard combinatorial optimization problems.

Concerning current and future research on this field, there are mainly two
trends: the hybridization of single meta-heuristic components to form more
powerful search methods and the use of advanced computational equipment
(i.e. parallel processing). These two trends can be also unified. However, most
importantly, future research should also concentrate on the applicability of any
proposed method in real life scheduling problems. Considering the expansion
of Enterprise Resource Planning (ERP) systems and their applicability in
most production environments, the incorporation of advanced shop scheduling
problem solving methods in ERP systems is of great importance for both
academic research and industrial practice.

References

1. Aarts, E.H.L, Van Laarhooven, P.J.M., Lenstra, J.K., Ulder, N.L.J. (1994) A
computational study of local search algorithms for job-shop scheduling. ORSA
J Comput 6:118–125

2. Aarts, E.H.L., Van Laarhooven, P.J.M., Ulder, N.L.J. (1991) Local search
based algorithms for job-shop scheduling. Working Paper, Department of
Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

3. Adams, J., Balas, E., Zawack, D. (1988) The shifting bottleneck procedure for
the job-shop scheduling. Manage Sci 34:391–401

4. Adiri, I., Aizikowitz, N. (1989) Open shop scheduling problems with dominated
machines. Nav Res Logist Q 36:273–281

5. Applegate, D., Cook, W. (1991) A computational study of the job-shop schedul-
ing problem. ORSA J Comput 3:149–156

6. Baker, K.R. (1975) A comparative survey of flowshop algorithms. Oper Res
23:62–73

7. Balas, E. (1969) Machine sequencing via disjunctive graphs: An implicit enu-
meration algorithm. Oper Res17:941–957

8. Balas, E., Lenstra, J.K., Vazacopoulos, A. (1995) The one machine problem
with delayed precedence constraints and its use in job shop scheduling. Manage
Sci 41:94–109

9. Balas, E., Vazacopoulos, A. (1998) Guided local search with shifting bottleneck
for job-shop scheduling. Manage Sci 44:262–275

10. Baptise, P., Le Pape, C., Nuijten, W. (1995a). Constrained based optimization
and approximation for job-shop scheduling. In Proc. AAAI-SIGMAN Work-
shop on Intelligent Manufacturing Systems, 14th Int. Joint Conference on Ar-
tificial Intelligence, IJCAD, Montreal, Canada

11. Baptiste, P., Le Pape, C., Nuijten, W. (1995b) Incorporating efficient opera-
tions research algorithms in constraint-based scheduling. In Proc. 1st Joint
Workshop on Artificial Intelligence and Operations Research, Timberline
Lodge, OR



32 Zobolas, Tarantilis and Ioannou

12. Barker, J.R., McMahon, G.B. (1985) Scheduling the general job-shop. Manage
Sci 31:594–598

13. Barnes, J.W., Chambers, J.B. (1995) Solving the job shop scheduling problem
using tabu search. IIE Trans 27:257–263

14. Bean, J.C. (1994) Genetic algorithm and random keys for sequencing and op-
timization, ORSA J Comput 6:154–160

15. Ben-Daya, M., Al-Fawzan, M. (1998) A tabu search approach for the flow shop
scheduling problem. Eur J Oper Res 109:88–95

16. Bierwirth, C., Mattfeld, D.C., Kopfer, H. (1996) On permutation representa-
tions for scheduling problems. In: Voigt H M et al (Eds.), PPSN’IV Parallel
Problem Solving from Nature, Springer, Berlin 310–318

17. Blazewicz, J., Domschke, W., Pesch, E. (1996) The job-shop scheduling prob-
lem: Conventional and new solution techniques. Eur J Oper Res 93:1–33

18. Blum, C. (2005) Beam-ACO-hybridizing ant colony optimization with beam
search: an application to open shop scheduling. Comput Oper Res 32:
1565–1591

19. Blum, C., Roli, A. (2003) Meta-heuristics in Combinatorial Optimization:
Overview and Conceptual Comparison. ACM Comput Surv 35:268–308

20. Bräsel, H., Tautenhan, T., Werner, F. (1993) Constructive Heuristic Algo-
rithms for the Open Shop Problem. Computing 51:95–110

21. Brooks, G.H., White, C.R. (1965) An algorithm for finding optimal or near-
optimal solutions to the production scheduling problem. J Ind Eng 16:34–40

22. Brucker, P. (1988) A polynomial algorithm for the two machine job-shop
scheduling problem with a fixed number of jobs. OR Spektrum 16:5–7

23. Brucker, P. (1994) An efficient algorithm for the job-shop problem with two
jobs. Computing 40:353–359

24. Brucker, P., Hurink, J., Jurish, B., Wostmann, B. (1997) A branch and bound
algorithm for the open-shop problem, Discrete Appl Math 76: 43–59

25. Brucker, P., Jurisch, B., Sievers, B. (1994) A branch and bound algorithm for
the job-shop scheduling problem. Discrete Appl Math 49:107–127

26. Campbell, H.G., Dudek, R.A., Smith, M.L. (1970) A heuristic algorithm for
the n-job, m-machine problem. Manage Sci 16:B630–B637.

27. Carlier, J. (1982) The one-machine sequencing problem. Eur J Oper Res 11:
42–47

28. Carlier, J., Pinson, E. (1989) An algorithm for solving the job-shop problem.
Manage Sci 35:164–176

29. Carlier, J., Pinson, E. (1994) Adjustments of heads and tails for the job-shop
problem. Eur J Oper Res 78:146–161

30. Charalambous, O. (1991) Knowledge based job-shop scheduling. PhD thesis,
University of Manchester Institute of Science and Technology, Manchester

31. Chen, C.L., Vempati, V.S., Aljaber, N. (1995) An application of genetic algo-
rithms for flow shop problems. Eur J Oper Res 80:389–396

32. Cheng, R., Gen, M., Tsujimura, Y. (1996) A tutorial survey of job-shop
scheduling problems using genetic algorithms, part I: representation. Comput
Ind Eng 30:983–997

33. Conway, R.W., Maxwell, W.L., Miller, L.W. (1967) Theory of scheduling,
Addison-Wesley

34. Croce, F., Tadei, R., Volta, G. (1995) A genetic algorithm for the job shop
problem. Comp Oper Res 22: 15–24



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 33

35. Dagli, C.H., Lammers, S., Vellanki, M. (1991) Intelligent scheduling in manu-
facturing using neural networks. J Neural Networ Comput Tech Design Applic
2:4–10

36. Dagli, S.H., Sittisathanchai, S. (1995) Genetic neuro-scheduler: A new ap-
proach for job shop scheduling. Int J Prod Econ 41:135–145

37. Daniels, R.L., Mazzola, J.B. (1994) Flow shop scheduling with resource flexi-
bility. Oper Res 42:1174–1182

38. Dannenbring, D.G. (1977) An evaluation of flow shop sequencing heuristics.
Manage Sci 23:1174–1182

39. Davis, L. (1985) Job-shop scheduling with genetic algorithm. In: Grefenstette
J J (Ed.), Proceedings of the First International Conference on Genetic Al-
gorithms and their Applications. Lawrence Erlbaum, Pittsburg, PA, USA,
136–140

40. Dorigo, M. (1992) Optimization, Learning and Natural Algorithms (in Italian).
PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy

41. Dueck, G., Scheuer, T. (1990) Threshold accepting. A general purpose opti-
mization algorithm appearing superior to simulated annealing, J Comput Phys
90:161–175

42. Eberhart, R., Kennedy, J. (1995) A new optimizer using particle swarm theory,
in: Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, Nagoya, Japan, 39–43

43. El-Bouri, A., Azizi, N., Zolfaghari, S. (2007) A comparative study of a new
heuristic based on adaptive memory programming and simulated annealing:
The case of job shop scheduling. Eur J Oper Res 177:1894–1910

44. El-Bouri, A., Balakrishnan, Popplewell, N. (2005) A neural network to enhance
local search in the permutation flowshop. Comput Ind Eng 49:182–196

45. Feo, T.A., Resende, M.G.C. (1995) Greedy randomized adaptive search proce-
dures. J Global Optim 6:109–133

46. Fisher, H., Thompson, G.L. (1963) Probabilistic learning combinations of local
job-shop scheduling rules. In: Muth J F, Thompson G L (Eds.). Industrial
Scheduling, Prentice- Hall, Englewood Cliffs, NJ

47. Fisher, M.L. (1973) Optimal solution of scheduling problems using Lagrange
multipliers: Part I. Oper Res 21:1114–1127

48. Florian, M., Trepant, P., McMahon, G. (1971) An implicit enumeration algo-
rithm for the machine sequencing problem. Manage Sci 17:B782–B792

49. Fogel, L.J. (1962) Toward inductive inference automata. In Proceedings of
the International Federation for Information Processing Congress. Munich,
395–399

50. Fonseca, D.J., Navaresse, D. (2002) Artificial neural networks for job shop
simulation. Adv Eng Inform 16:241–246

51. Foo, S.Y., Takefuji, Y. (1988a) Stochastic neural networks for solving job-
shop scheduling: Part 1. Problem representation. In: Kosko B (Ed.), IEEE
International Conference on Neural Networks, San Diego, CA, USA 275–282

52. Foo, S.Y., Takefuji, Y. (1988b) Stochastic neural networks for solving job-shop
scheduling: Part 2. Architecture and simulations. In: Kosko B (Ed.), IEEE
International Conference on Neural Networks, San Diego, CA, USA 283–290

53. Foo, S.Y., Takefuji, Y. (1988c) Integer linear programming neural networks
for job-shop scheduling. In: Kosko B (Ed.), IEEE International Conference on
Neural Networks, San Diego, CA, USA 341–348

54. Gangadharan, R., Rajendran, C. (1994) A simulated annealing heuristic for
scheduling in a flowshop with bicriteria. Comput Ind Eng 27:473–476



34 Zobolas, Tarantilis and Ioannou

55. Garey, M.R.D., Johnson, D.S., Sethi, R. (1976) The complexity of flowshop
and job shop scheduling. Math Oper Res 1:117–129

56. Giffler, B., Thompson, G.L. (1960) Algorithms for solving production schedul-
ing problems. Oper Res 8:487–503

57. Glover, F. (1986) Future paths for integer programming and links to artificial
intelligence, Comput Oper Res 13:533–549

58. Glover, F. (1997) Tabu search and adaptive memory programming - advances,
applications and challenges. In: Barr, Helgason Kennington (Eds.), Advances in
Meta-heuristics, Optimization and Stochastic Modelling Technologies, Kluwer
Academic Publishers, Boston, MA 1–75

59. Glover, F., Greenberg, H.J. (1989) New approaches for heuristic search: A
bilateral linkage with artificial intelligence. Eur J Oper Res 39:119–130

60. Glover, F., Laguna, M., Marti, R. (2000) Fundamentals of scatter search and
path relinking. Control 29:653–684

61. Gonçalves, J.F., Mendes, J.J.d.M., Resende, M.G.C. (2005) A hybrid genetic
algorithm for the job shop scheduling problem. Eur J Oper Res 167:77–95

62. Gonzalez, T., Sahni, S. (1976) Open shop scheduling to minimize finish time,
J Assoc Comput Mach 23:665–679

63. Gonzalez, T., Sahni, S. (1978) Flowshop and Jobshop Schedules: Complexity
and approximation, Oper Res 20:36–52

64. Grabowski, J., Wodecki, M. (2004) A very fast tabu search algorithm for the
permutation flow shop problem with makespan criterion. Comput Oper Res
31:1891–1909

65. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. (1979) Op-
timization and approximation in deterministic sequencing and scheduling: a
survey. Ann Discrete Math 5:287–326

66. Greenberg, H.H. (1968) A branch and bound solution to the general scheduling
problem. Oper Res 16:353–361

67. Guéret, C., Prins, C. (1998) Classical and new heuristics for the open-shop
problem: A computational evaluation. Eur J Oper Res 107:306–314

68. Gupta, J.N.D. (1971) A functional heuristic algorithm for the flow-shop
scheduling problem. Oper Res 22:39–47

69. Gupta, J., Hennig, K., Werner, F. (2002) Local search heuristics for two-stage
flow shop problems with secondary criterion. Comput Oper Res 29:123–149

70. Hansen, P., Mladenović, N. (2001) Variable neighborhood search: Principles
and Applications. Eur J Oper Res 130:449–467

71. Hasija, S., Rajendran, C. (2004) Scheduling in flowshops to minimize total
tardiness of jobs. Int J Prod Res 42:2289–2301

72. Hefetz, N., Adiri, I. (1982) An efficient optimal algorithm for the two-machine,
unit-time, jobshop, schedule-length, problem. Math Oper Res 7:354–360

73. Heinonen, J., Pettersson, F. (2007) Hybrid ant colony optimization and visi-
bility studies applied to a job-shop scheduling problem. Appl Math Comput
187:989–998

74. Hejazi, S.R., Saghafian, S. (2005) Flowshop-scheduling problems with
makespan criterion: a review. Int J Prod Res 43:2895–2929

75. Held, M., Karp, R.M. (1962) A Dynamic Programming Approach to Sequenc-
ing Problems. J Soc Ind and Appl Math 10:196–210

76. Ho, J.C., Chang, Y-L. (1991) A new heuristic for the n-job, m-machine flow-
shop problem. Eur J Oper Res 52:194–202



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 35

77. Holland, J.H. (1975) Adaption in natural and artificial systems. The University
of Michigan Press, Ann Harbor, MI

78. Hopp, W.J., Spearman, M.L. (1996) Factory Physics: Foundations of Manu-
facturing Management, Irwin

79. Huang, K-L., Liao, C-J. (2007) Ant colony optimization combined with taboo
search for the job shop scheduling problem. Comput Oper Res, in press

80. Hurkens C, http://www.win.tue.nl/whizzkids/1997, accessed April 2007
81. Ignall, E., Schrage, L. (1965) Application of the branch and bound technique

to some flow-shop scheduling problems. Oper Res 11:400–412
82. Ishibuchi, H., Misaki, S., Tanaka, H. (1995) Modified simulated annealing al-

gorithms for the flow shop sequencing problem. Eur J Oper Res 81:388–398
83. Jackson, J.R. (1956) An extension of Johnson’s result on job lot scheduling.

Int J Prod Res 36:1249–1272
84. Jain, A.S., Meeran, S. (1998) Job-shop scheduling using neural networks. Int

J Prod Res 36:1249–1272
85. Jain, A.S., Meeran, S. (1999) Deterministic job-shop scheduling: Past, present

and future. Eur J Oper Res 113:390–434
86. Johnson, S.M. (1954) Optimal two- and three-stage production schedules with

set-up times included. Nav Res Logist Q 1:61–68
87. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. (1983) Optimization by simulated

annealing. Science 4598:671–680
88. Koulamas C (1998) A new constructive heuristic for the flowshop scheduling

problem. Eur J Oper Res 105:66–71
89. Kyparisis, G.J., Koulamas, C. (2000) Open shop scheduling with makespan

and total completion time criteria. Comput Oper Res 27:15–27
90. Lageweg, B.J., Lenstra, J.K., Rinnooy Kan, A.H.G. (1978) A general bounding

scheme for the permutation flow-shop problem. Oper Res 26:53–67
91. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (1993) Se-

quencing and scheduling: algorithms and complexity. In: Graves S C, Rinnooy
Kan A H G, Zipkin P H (Eds.). Handbooks in Operations Research and Man-
agement Science, 4, Logistics of Production and Inventory, Elsevier, Amsterdam

92. Lee, D.S., Vassiliadis, V.S., Park, J.M. (2004) A novel threshold accepting
meta-heuristic for the job-shop scheduling problem. Comput Oper Res 31:
2199–2213

93. Lee, H.C., Dagli, C.H. (1997) A parallel genetic-neuro scheduler for job-shop
scheduling problems. Int J Prod Econ 51:115–122

94. Lee, I., Shaw, M.J. (2000) A neural-net approach to real-time flow-shop se-
quencing. Comput Ind Eng 38:125–147

95. Lenstra, J.K., Rinnooy Kan, A.H.G. (1979) Computational complexity of dis-
crete optimization problems. Ann Discrete Math 4:121–140

96. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P. (1977) Complexity of machine
scheduling problems. Ann Discrete Math 7:343–362

97. Leung, J.Y.-T. (2004) Handbook of scheduling, Chapman & Hall/CRC, Boca
Raton 78

98. Lian, Z., Gu, X., Jiao, B. (2006) A similar particle swarm optimization algo-
rithm for permutation flowshop scheduling to minimize makespan. Appl Math
and Computation 175:773–785

99. Lian, Z., Jiao, B., Gu, X. (2006) A similar particle swarm optimization al-
gorithm for job-shop scheduling to minimize makespan. Appl Math Comput
183:1008–1017



36 Zobolas, Tarantilis and Ioannou

100. Liaw, C.-F. (1998) An iterative improvement approach for the nonpreemptive
open shop scheduling problem. Eur J Oper Res 111:509–517

101. Liaw, C.-F. (1999) A tabu search algorithm for the open shop scheduling prob-
lem. Comput Oper Res, 26:109–126

102. Liaw, C.-F. (2000) A hybrid genetic algorithm for the open shop scheduling
problem. Eur J Oper Res 124:28–42

103. Liu, S.Q., Ong, H.L., Ng, K.M. (2005) A fast tabu search algorithm for the
group shop scheduling problem. Adv Eng Softw 36:533–539

104. Lomnicki, Z.A. (1965) A branch-and-bound algorithm for the exact solution of
the three-machine scheduling problem. Oper Res Q 16:89–100

105. Luh, P.B., Zhao, X., Wang, Y., Thakur, L.S. (2000) Lagrangian Relaxation
Neural Networks for Job Shop Scheduling. IEEE T Robotic Autom 16:78–88

106. Manne, A.S. (1960) On the job shop scheduling problem. Oper Res 8:219–223
107. Martin, P., Shmoys, D. (1995) A new approach to computing optimal schedules

for the job shop scheduling problem. Extended Abstract, Comell University,
Ithaca

108. Masuda, T., Ishii, H., Nishida, T. (1985) The mixed shop scheduling problem.
Discrete Appl Math, 11:175–86

109. Matsuo, H., Suh, C.J., Sullivan, R.S. (1988) A controlled search simulated
annealing method for the general job-shop scheduling problem. Working Paper,
03-04-88, Graduate School of Business, University of Texas at Austin, Austin,
Texas, USA

110. Mattfeld, D.C., Kopfer, H., Bierwirth, C. (1994) Control of parallel popula-
tion dynamics by social-like behaviour of GA-individuals. In: Proceedings of
the Third International Conference on Parallel Problem Solving from Nature
(PPSN3). Springer, Berlin 15–25

111. McMahon, G.B., Florian, M. (1975) On scheduling with ready times and due
dates to minimize maximum lateness. Oper Res 23:475–482

112. Merkle, D., Middendorf, M. (2000) An ant algorithm with a new pheromone
evaluation rule for total tardiness problems. In Proceedings of the EvoWork-
shops, Springer, Berlin, 287–296

113. Moccellin, J.a.V. (1995) A new heuristic method for the permutation flow shop
scheduling problem. J Oper Res Soc 46:883–886

114. Moccellin, J.a.V., dos Santos, M.O. (2000) An adaptive hybrid meta-heuristic
for permutation flowshop scheduling. Control Cybern 29:761–771

115. Murata, T., Ishibuchi, H., Tanaka, H. (1996) Genetic algorithms for flowshop
scheduling problems. Comput Ind Eng 30:1061–1071

116. Murovec, B., S̆uhel, P. (2004) A repairing technique for the local search of the
job-shop problem. Eur J Oper Res 153:220–238

117. Nakano, R., Yamada, T. (1991) Conventional genetic algorithm for job-shop
problems. In: Kenneth M K, Booker L B (Eds.), Proceedings of the Fourth
International Conference on Genetic Algorithms and their Applications, San
Diego, California, USA, 474–479

118. Nawaz, M., Enscore, Jr E., Ham, I. (1983) A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem. Omega-Int Journal Manage
S 11:91–95

119. Nowicki, E., Smutnicki, C. (1996) A fast taboo search algorithm for the job-
shop problem. Manage Sci 42:797–813

120. Nowicki, E., Smutnicki, C. (1996) A fast tabu search algorithm for the permu-
tation flow-shop problem. Eur J Oper Res 91:160–175



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 37

121. Nowicki, E., Smutnicki, C. (2006) Some aspects of scatter search in the flow-
shop problem. Eur J Oper Res 169:654–666

122. Ogbu, F., Smith, D. (1990b) Simulated annealing for the permutation flowshop
problem. OMEGA-Int J Manage S 19:64–67

123. Ogbu, F., Smith, D. (1990a) The application of the simulated annealing al-
gorithms to the solution of the n=m=Cmax flowshop problem. Comput Oper
Res 17:243–253

124. Onwubolu, G.C., Davendra, D. (2006) Scheduling flow-shops using differential
evolution algorithm, Eur J Oper Res 171:674–692

125. Osman, I., Potts, C. (1989) Simulated annealing for permutation flow-shop
scheduling. OMEGA-Int J Manage S 17:551–557

126. Palmer, D.S. (1965) Sequencing jobs through a multistage process in the min-
imum total time: a quick method of obtaining a near optimum. Oper Res Q
16:101–107

127. Park, B.J., Choi, H.R., Kim, H.S. (2003) A hybrid genetic algorithm for the
job shop scheduling problems. Comput Ind Eng 45:597–613

128. Pesant, G., Gendreau, M. (1996) A view of local search in Constraint Pro-
gramming. In Principles and Practice of Constraint Programming- CP’96. Lect
Notes in Computer Science 1118:353–366, Springer-Verlag

129. Pezzella, F., Merelli, E. (2000) A tabu search method guided by shifting bot-
tleneck for the job shop scheduling problem. Eur J Oper Res 120:297–310

130. Ponnambalam, S.G., Aravindan, P., Chandrasekaran, S. (2001) Constructive
and improvement flow shop scheduling heuristics: An extensive evaluation.
Prod Plan Control 12:335–344

131. Prins, C. (2000) Competitive genetic algorithms for the open-shop scheduling
problem. Math Method Oper Res 52:389–411

132. Rajendran, C., Ziegler, H. (2004) Ant-colony algorithms for permutation
flowshop-scheduling to minimize makespan/total flowtime of jobs. Eur J Oper
Res 155:426–438

133. Rechenberg, I. (1973) Evolutionstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog

134. Reeves, C.R. (1995) A genetic algorithm for flowshop sequencing. Comput Oper
Res 22:5–13

135. Reeves, C., Yamada, T. (1998) Genetic algorithms, path relinking, and the
flowshop sequencing problem. Evol Comput 6:45–60

136. Resende, M.G.C. (1997) A GRASP for job shop scheduling. INFORMS Spring
Meeting, San Diego, CA

137. Röck, H., Schmidt, G. (1983) Machine aggregation heuristics in shop-
scheduling. Math Oper Res 45:303–314

138. Roy, B., Sussmann, B. (1964) Les problèmes d’ordonnancement avec con-
straintes disjonctives. Note D.S. no. 9 bis, SEMA, Paris

139. Ruiz, R., Maroto, C. (2005) A comprehensive review and evaluation of permu-
tation flowshop heuristics, Eur J Oper Res 165:479–494

140. Ruiz, R., Maroto, C., Alcaraz, J. (2006) Two newrobust genetic algorithms for
the flowshop scheduling problem, Omega-Int Journal Manage S 34:461–476

141. Sabuncuoglu, I., Gurgun, B. (1996) A neural network model for scheduling
problems. Eur J Oper Res 93:288–299

142. Sadeh, N., Nakakuki, Y. (1996) Focused simulated annealing search an appli-
cation to job-shop scheduling. Ann Oper Res 63:77–103



38 Zobolas, Tarantilis and Ioannou

143. Sha, D.Y., Hsu, C-Y. (2006) A hybrid particle swarm optimization for job shop
scheduling problem. Comput Ind Eng 51:791–808

144. Sipper, D., Bulfin, R.L. (1997) Production Planning, Control and Integration,
McGraw Hill

145. Solimanpur, M., Vrat, P., Shankar, R. (2004) A neuro-tabu search heuristic for
the flow shop scheduling problem. Comput Oper Res 31:2151–2164

146. Storn, R., Price, K. (1997) Differential Evolution - A simple and efficient heuris-
tic for global optimization over continuous spaces. J Global Optim 11:341–359

147. Stützle, T. (1998a) An ant approach for the flow shop problem. In EUFIT’98,
Aaeban, Germany, 1560–1564

148. Stützle, T. (1998b) Applying iterated local search to the permutation flow shop
problem. Technical Report, AIDA-98-04, FG Intellektik, TU Darmstadt

149. Stützle, T. (1999) Iterated local search for the quadratic assignment problem.
Technical report, aida-99-03, FG Intellektik, TU Darmstadt.

150. Suliman, S. (2000) A two-phase heuristic approach to the permutation flow-
shop scheduling problem. Int J Prod Econ 64:143–152

151. Sun, D.K., Batta, R., Lin, L. (1995) Effective job-shop scheduling through
active chain manipulation. Comput Oper Res 22:159–172

152. T’kindt, V., Monmarch, N., Tercinet, F., Laugt, D. (2002) An Ant Colony
optimization algorithm to solve a (2) machine bicriteria flowshop-scheduling
problem. Eur J Oper Res 142:250–257

153. Taillard, E. (1989) Parallel taboo search technique for the jobshop
scheduling problem. Internal Research Report ORWP89/11, Départment de
Mathématiques (DMA), École Polytechnique Fédérale de Lausanne, 1015
Lausanne, Switzerland

154. Taillard, E. (1990) Some efficient heuristic methods for the flow shop sequenc-
ing problem. Eur J Oper Res 47:65–74

155. Taillard, E. (1993) Benchmarks for basic scheduling problems. Eur J Oper Res
64:278–285

156. Taillard, E. (1994) Parallel taboo search techniques for the jobshop scheduling
problem. ORSA J Comput 16:108-117

157. Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.-Y. (2001) Adap-
tive memory programming: A unified view of meta-heuristics, Eur J Oper Res
135:1–16

158. Talbi, E-G. (2002) A Taxonomy of Hybrid Meta-heuristics. J Heuristics 8:
541–564

159. Tamaki, H., Nishikawa, Y. (1992) A paralleled genetic algorithm based on
a neighbourhood model and its application to the job-shop scheduling. In:
M?nner R, Manderick B (Eds.), Proceedings of the Second International Work-
shop on Parallel Problem Solving from Nature (PPSN’2), Brussels, Belgium,
573–582

160. Tanaev, V.S., Sotskov, Y.N., Strusevich, V.A. (1994) Scheduling Theory:
Multi-Stage Systems, Kluwer Academic Publishers, Printed in Dordrecht

161. Tarantilis, C.D., Kiranoudis, C.T. (2002) A list-based threshold accepting
method for the job-shop scheduling problems. Int J Prod Econ 77:159–171

162. Tasgetiren, M.F., Sevkli, M., Liang, Y.C., Gencyilmaz, G. (2004) Differen-
tial Evolution Algorithm for Permutation Flowshop Sequencing Problem with
Makespan Criterion. In Proceedings of the 4th International Symposium on
Intelligent Manufacturing Systems (IMS 2004) Sakarya, Turkey, 442–452



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 39

163. Tasgetiren, M.F., Liang, Y,C., Sevkli, M., Gencyilmaz, G. (2007) A parti-
cle swarm optimization algorithm for makespan and total flowtime minimiza-
tion in the permutation flowshop sequencing problem. Eur J Oper Res 177:
1930–1947

164. Van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K. (1988) Job-shop schedul-
ing by simulated annealing. Report OSR8809. Centrum voor Wiskunde en
Informatica, Amsterdam, The Netherlands

165. Van Laarhoven, P.J.M., Aarts, E.H.L., Lenstra, J.K. (1992) Jobshop scheduling
by simulated annealing. Oper Res 40: 113-125

166. Wang, L., Zheng, D.Z. (2001) An effective hybrid optimization strategy for
job-shop scheduling problems. Comput Oper Res 28:585–596

167. Wang, L., Zheng, D.Z. (2003) An Effective Hybrid Heuristic for Flow Shop
Scheduling. The Int J Adv Manuf Tech 21:38–44

168. Watson, J-P., Howe, A.E., Whitley, L.B. (2006) Deconstructing Nowicki and
Smutnicki’s i-TSAB tabu search algorithm for the job-shop scheduling problem.
Comput Oper Res 33:2623–2644

169. Widmer, M., Hertz, A. (1989) A new heuristic method for the flow shop se-
quencing problem. Eur J Oper Res 41:186–193

170. Wodecki, M., Božejko, W. (2002) Solving the flow shop problem by parallel sim-
ulated annealing. In: Wyrzykowski R, Dongarra J, Paprzycki M, Waàsniewski
J (Eds.), Parallel Processing and Applied Mathematics, 4th International Con-
ference, PPAM 2001. In: Lect Notes Comput Sc 2328:236–244 Springer-Verlag,
Berlin

171. Xia, W-j., Wu, Z-m. (2006) A hybrid particle swarm optimization approach
for the job-shop scheduling problem. Int J Adv Manuf Tech 29:360–366

172. Yamada, T., Nakano, R. (1992) A genetic algorithm applicable to large-scale
job-shop problems. In: M?nner R, Manderick B (Eds.), Proceedings of the
Second International Workshop on Parallel Problem Solving from Nature
(PPSN’2), Brussels, Belgium 281–290

173. Yamada, T., Nakano, R. (1995) Job-shop scheduling by simulated anneal-
ing combined with deterministic local search. In: Meta-heuristics International
Conference (MIC’95), Hilton, Breckenridge, Colorado, USA 344–349

174. Yamada, T., Nakano, R. (1996) Job-shop scheduling by simulated annealing
combined with deterministic local search. Meta-heuristics: Theory and Appli-
cations. Kluwer Academic Publishers, Hingham, MA 237–248

175. Yamada, T., Rosen, B.E., Nakano, R. (1994) A simulated annealing approach
to job-shop scheduling using critical block transition operators. In: IEEE In-
ternational Conference on Neural Networks (ICNN’94), Orlando, Florida, USA
4687–4692

176. Yang, S., Wangm D, (2001) A new adaptive neural network and heuristics
hybrid approach for job-shop scheduling. Comput Oper Res 28:955–971

177. Ying, K.C., Liao, C.J. (2004) An ant colony system for permutation flow-shop
sequencing. Comput Oper Res 31:791–801

178. Yu, H., Liang, W. (2001) Neural network and genetic algorithm-based hybrid
approach to expanded job-shop scheduling. Comput Ind Eng 39:337–356

179. Zegordi, S.H., Itoh, K., Enkawa, T. (1995) Minimizing makespan for flowshop
scheduling by combining simulated annealing with sequencing knowledge. Eur
J Oper Res 85:515–531

180. Zhang, C., Li, P., Rao, Y., Guan, Z. (2007) A very fast TS/SA algorithm for
the job shop scheduling problem. Comput Oper Res, in press



40 Zobolas, Tarantilis and Ioannou

181. Zhao, F., Zhang, Q. (2006) An Improved Particle Swarm Optimization-Based
Approach for Production Scheduling Problems. In Proceedings of the 2006
IEEE International Conference on Mechatronics and Automation June 25 - 28,
2006, Luoyang, China

182. Zhou, D.N., Cherkassky, V., Baldwin, T.R., Hong, D.W. (1990) Scaling neural
networks for job-shop scheduling. In: International Joint Conference on Neural
Networks(IJCNN’90), San Diego, California 889–894

183. Zhou, D.N., Cherkassky, V., Baldwin, T.R., Olson, D.E. (1991) A neural net-
work approach to job-shop scheduling. IEEE T Neural Networ 2: 175–179

184. Zhou, H., Feng, H., Han, L. (2001) The hybrid heuristic genetic algorithm for
job shop scheduling. Comput Ind Eng 40:191–200

185. Zobolas, G., Tarantilis, C.D., Ioannou, G. (2007) A Hybrid Evolutionary Algo-
rithm for the Job Shop Scheduling Problem. J Oper Res Soc, doi: 10.1057/pal-
grave.jors.2602534


