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and Carlos Mart́ın-Vide (Eds.)
New Developments in Formal Languages and Applications,
2008
ISBN 978-3-540-78290-2

Vol. 114. Christian Blum, Maria José Blesa Aguilera, Andrea
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Preface

During the past decades scheduling has been among the most studied opti-
mization problems and it is still an active area of research! Scheduling appears
in many areas of science, engineering and industry and takes different forms
depending on the restrictions and optimization criteria of the operating envi-
ronments [8]. For instance, in optimization and computer science, scheduling
has been defined as “the allocation of tasks to resources over time in order to
achieve optimality in one or more objective criteria in an efficient way” and
in production as “production schedule, i.e., the planning of the production
or the sequence of operations according to which jobs pass through machines
and is optimal with respect to certain optimization criteria.”

Although there is a standardized form of stating any scheduling problem,
namely “efficient allocation of n jobs on m machines –which can process no
more than one activity at a time– with the objective to optimize some ob-
jective function of the job completion times”, scheduling is in fact a family
of problems. Indeed, several parameters intervene in the problem definition:
(a) job characteristics (preemptive or not, precedence constraints, release
dates, etc.); (b) resource environment (single vs. parallel machines, unre-
lated machines, identical or uniform machines, etc.); (c) optimization criteria
(minimize total tardiness, the number of late jobs, makespan, flowtime, etc.;
maximize resource utilization, etc.); and, (d) scheduling environment (static
vs. dynamic, in the former the number of jobs to be considered and their ready
times are available while in the later the number of jobs and their character-
istics change over time).

Thus, different scheduling problems are identified in the literature (an
early compendium of sequencing and scheduling problems is found in [1];
see [8] for an annotated bibliography). Among these scheduling problems we
can mention Job Shop, Flow Shop, Sequencing problems, Identical Parallel
Machine Scheduling, Timetabling and Multiprocessor scheduling.

On the other hand, scheduling problems have found their usefulness in a
vast area of applications such as lot sizing [5], manufacturing [2] and produc-
tion scheduling [10], to name a few.
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Despite of large amount or research on scheduling, many researchers and
practitioners from the academia and industry are devoting a considerable
amount of efforts on the problem. This can be explained not only by the fact
that most of the problems in the family of scheduling are computationally
hard [6] and therefore there is still room for improvement in the resolution
methods but also because manufacturing and production are continuously
changing and introducing more and more demanding restrictions (e.g. Recon-
figurable Manufacturing Systems have appeared as the next step in manufac-
turing, aiming the production of any quantity of highly customized products
or novel scheduling problems arising from the field of environmentally con-
scious manufacturing); thus, “new” types of scheduling are arising. Moreover,
the computational resources used for solving scheduling problems have sig-
nificantly increased during the last years allowing to achieve more efficient
solutions of large size scheduling problems.

This volume presents meta-heuristics approaches for scheduling prob-
lems arising in industrial and manufacturing applications. Nowadays, meta-
heuristics have become a de facto approach to tackle in practice with the
complexity of scheduling problems. Early work applied evolutionary comput-
ing methods to scheduling problems (see [3, 4, 9] and [29] for a review). The
present volume is novel in many respects. First, the proposed approaches com-
prise a variety of meta-heuristics (Genetic Algorithms, Memetic Algorithms,
Ant Colony Optimization, Particle Swarm Optimization, Tabu Search, Scatter
Search, Variable Neighborhood Search). Second, in most cases, hybridization
is approached as the most effective way to achieve state-of-the art results.
Third, and most importantly, the scheduling problems arising in real life ap-
plications and real world data instances are solved using these meta-heuristics;
these applications comprise reconfigurable manufacturing systems, lot siz-
ing and scheduling in industry, railway scheduling and process, supply chain
scheduling and scheduling problem arising in a real-world multi-commodity
Oil-derivatives Pipeline. Finally, scheduling problems and meta-heuristics are
presented in a comprehensive way making this volume and interesting contri-
bution to the research on scheduling in industrial and manufacturing applica-
tions.

Chapters were selected after a careful review process by at least three re-
viewers on the basis of the originality, soundness and their contribution to
both meta-heuristics and scheduling in industrial and manufacturing appli-
cations. Relevance of the proposed approaches was an important criterion
for chapter selection, resulting in a volume where the reader will find com-
prehensive up-to-date surveys, novel meta-heuristic approaches and real life
applications. The thirteen chapters of the volume are organized as follows.

In Chapter 1, Zobolas et al. present a survey on the main shop scheduling
problems (flow shop, job shop, open shop, group shop and mixed shop) as
well as their computational complexity. Thereafter, the most important exact,
heuristic and meta-heuristic methods are presented and classified.
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Iori and Martello in Chapter 2 address the identical parallel machine
scheduling problem and some generalizations arising from real world situa-
tions. The authors survey the current state of the art for the most performing
meta-heuristic algorithms, with special emphasis on Scatter Search.

In Chapter 3, Czogalla and Fink study the effectiveness of Particle Swarm
Optimization (PSO) and Variable Neighborhood Descent for the Continu-
ous Flow-Shop Scheduling Problem. The authors examine the use of differ-
ent crossover operators in PSO and hybridization with variable neighborhood
descent. The results of their study stress the importance of local search in
increasing the performance of PSO procedures.

Lee et al. in the fourth chapter present an ACO approach for Scheduling
Jobs on a Single Machine with a Common Due Date. The authors consider
the version of Dynamic ACO in which the parameter of heuristic informa-
tion is dynamically adjusted. Moreover, hybridization with other heuristics is
implemented and evaluated.

In the fifth chapter McGovern and Gupta present the use of the Hunter-
Killer (H-K) general purpose heuristic for solving new complex scheduling
problems arising from the field of environmentally conscious manufacturing,
the goal of which is to determine a product’s part removal schedule. A schedul-
ing application of the H-K heuristic is demonstrated using an electronic prod-
uct case study.

Aydin and Sevkli in the sixth chapter report sequential and parallel Vari-
able Neighborhood Search algorithms for Job Shop Scheduling problems.
Starting from the observation that VNS could sometimes take long time to
reach good solutions, especially when tackling large size instances of Job Shop
Scheduling, the authors propose the parallelization of VNS in order to speed
up computations. A number of variable neighborhood search algorithms are
examined for the problem and then four different parallelization policies are
presented and their performance evaluated.

In the seventh chapter Myszkowski uses Graph Coloring problem for mod-
elling several scheduling problems. The author presents a new evolutionary
approach to the Graph Coloring Problem, which is then applied for solving
timetabling, scheduling, multiprocessor scheduling task and other assignment
problems.

Ferreira et al. in the eighth chapter presents a comparison study for
heuristics and meta-heuristics for lot sizing and scheduling in the soft drinks
industry. The study concentrates on two-level production planning problem
where, on each level, a lot sizing and scheduling problem with parallel ma-
chines, capacity constraints and sequence-dependent setup costs and times
must be solved. The comparison study is accomplished for two different ap-
proaches, namely, an evolutionary technique comprising both a GA and its
MA version, and a decomposition and relaxation approach.

Galan in the ninth chapter proposes hybrid heuristic approaches for
scheduling problems arising in reconfigurable manufacturing systems. Besides
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a specific heuristic for the problem, both Tabu Search and Ant Colony Opti-
mization have been implemented and experimentally evaluated.

Tormos et al. in the tenth chapter introduce a Genetic Algorithm for Rail-
way Scheduling Problems. Their work is motivated by the need to solve very
complex real-world problems such as timetabling in a large railway system.
The authors have used real instances obtained from the Spanish Manager
of Railway Infrastructure to experimentally evaluate the performance of the
proposed GA.

In the eleventh chapter, Banerjee et al., address a natural stigmergic com-
putational technique, namely Bee Colony Optimization, for process scheduling
arising in a milk production center, in which process scheduling, supply chain
network etc. are crucial. The scheduling problem is considered in its multi-
objective form and the concept of Pareto Dominance has been introduced in
the form of Pareto Bee Colony Optimization. A performance simulation and
comparison has been accomplished for the proposed algorithms.

Garćıa Sánchez et al. in Chapter twelve present an approach that combines
simulation and Tabu Search for solving scheduling problem arising in a real-
world multi-commodity Oil-derivatives Pipeline. In the proposed approach,
the simulation enables an accurate assessment of particular schedules, while
the Tabu Search guides the search in order to reach satisfactory schedules. The
authors have applied the proposed methodology to a particular subsystem of
the pipeline Spanish network.

In the last Chapter, Abraham et al. propose several swarm intelligence
based meta-heuristics for scheduling work-flow applications in distributed
data-intensive computing environments. A Variable Neighborhood Particle
Swarm Optimization (VNPSO) algorithm is proposed and the performance
is compared with a multi-start particle swarm optimization algorithm and
multi-start genetic algorithm. Experiment results illustrate the algorithm per-
formance and its feasibility and effectiveness for scheduling work-flow appli-
cations.

We are very much grateful to the authors of this volume and to the review-
ers for their great efforts by reviewing and providing interesting feedback to
authors of the chapter. The editors would like to thank Dr. Thomas Ditzinger
(Springer Engineering Inhouse Editor, Studies in Computational Intelligence
Series), Professor Janusz Kacprzyk (Editor-in-Chief, Springer Studies in Com-
putational Intelligence Series) and Ms. Heather King (Editorial Assistant,
Springer Verlag, Heidelberg) for the editorial assistance and excellent coop-
erative collaboration to produce this important scientific work. We hope that
the reader will share our joy and will find it useful!
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Summary. This chapter sets out to present a very important class of production
scheduling problems and the main methods employed to solve them. More specifi-
cally, after a brief description of single and parallel machines scheduling problems,
which constitute the basis of production scheduling research, the main shop schedul-
ing problems are presented (flow shop, job shop, open shop, group shop and mixed
shop) followed by an analysis of their computational complexity. Thereafter, the
most important exact, heuristic and meta-heuristic methods are presented and clas-
sified. Finally, a thorough review for each shop scheduling problem is conducted
where the most important methods proposed in the literature, specifically for each
problem, are presented.

Key words: Production Scheduling, Single and Parallel Machines Schedul-
ing, Shop Scheduling, Flow Shop, Job Shop, Open Shop, Group Shop, Mixed
Shop, Meta-heuristics.

1.1 Introduction

The production process of manufacturing enterprises has always been a key
factor for overall business success. Production scheduling problems are faced
by thousands of companies worldwide that are engaged in the production of
tangible goods. Thus, it is not without reason that efficiently and effectively
solving production scheduling problems has attracted the interest of many
practitioners and researchers from both fields of production management and
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combinatorial optimization. This interest is further amplified by the similarity
of production scheduling problems with problems arising in other scientific
areas (e.g. packet scheduling in telecommunication networks, PCB design,
routing, timetabling etc) [97] and, therefore, the applicability of the developed
methods in these areas as well. It should be also mentioned that due to the
complex nature of scheduling problems, many new computational methods
for their solution have emerged which can also be applied to a wide range of
combinatorial optimization problems.

Due to the virtually unlimited number of different production environ-
ments, many variations of production scheduling problems exist. However,
academic research and solution methodology development have focused mainly
on a limited number of classical problems which, most of the times, cannot
be directly applied to complex manufacturing structures. Thus, the develop-
ment of flexible solution methodologies, which can be modified and applied
to several different cases, is of critical importance for production management
practice.

Production scheduling problems have detained thousands of researchers
worldwide during the 20th century. Initially, research focused on simplified and
generic problems with limited applicability in real cases [78]. Most such prob-
lems dealt with optimizing a single objective in one-machine environments and
featured many simplified assumptions. Since then, a wide variety of schedul-
ing problems (and their variants) has been identified and an even wider range
of solution methodologies has been proposed. At the very beginning, research
focused on exact methods, i.e. methods that guaranteed the optimum solution
of a given problem. Due to the lack of computational resources and the need to
solve large scale scheduling problems, it was soon realized that exact methods
were impractical and thus research focused on problem specific heuristics. On
the other hand, the need for more robust solution methodologies led to the
development and application of the first meta-heuristic methods (the term
meta-heuristic was proposed by Glover in 1986 [57]) whose performance is
continuously improving. Contemporary methodologies usually combine sev-
eral heuristic and meta-heuristic algorithms (hybrid algorithms) in an effort
to overcome the inherent limitations of single meta-heuristic components.

This chapter focuses on the most important shop production scheduling
problems and the solution methodologies employed to solve them. The remain-
der is organized as follows: Section 1.2 is devoted to the presentation of the
most classical production scheduling problems focusing on shop scheduling.
Section 1.3 describes the main categories of solution methodologies emphasiz-
ing the latest meta-heuristic algorithms. Section 1.4 addresses the Flow Shop
Scheduling Problem (FSSP) and relative research on solution methodologies.
Similarly, Section 1.5 considers the Job Shop Scheduling Problem (JSSP) and
finally, Section 1.6 covers the Open Shop Scheduling Problem (OSSP).
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1.2 Production Scheduling Problems and their
Classification

Although production scheduling problems have overlapping characteristics,
they can be classified based on several facets [30]. Among them, the most
widely used are the job arrival process, the inventory policy, various shop and
job attributes and shop configuration.

Based on the job arrival process, production scheduling problems can be
either static if all jobs arrive at the same time or dynamic if jobs arrive
intermittently. Based on the inventory policy, a problem might be open if
all products are made-to-order or closed if all products are made-to-stock.
Hybrids of open and closed systems are very frequently observed in real cases.
Production scheduling problems can also be classified as deterministic if
job processing times and machine availability is known a priori or, conversely,
probabilistic. Among other job attributes based on which such problems can
be classified is whether the production environment is single or multi stage.
In a single stage environment, each job goes through one machine, whereas in
multi stage environments, each job consists of several operations that might be
processed in different machines. Finally, the number of jobs and machines and
the flow pattern of jobs among machines also constitute a major classification
facet.

It should be mentioned that during the last decades, academic research
has focused mainly on static, deterministic, multi stage shop scheduling prob-
lems. Therefore, this chapter also focuses on these problems and their solution
methodologies.

1.2.1 Single Machine Scheduling Problem

The simplest production environment is the one machine or single machine
environment where all operations go through the same resource. The single
machine scheduling problem was the first to be addressed academically and
its characteristics and findings have been applied to more complex problems.
They are also very useful for studying more complex serial structures where
one machine is the bottleneck of the whole process and thus, generating a
good schedule for the bottleneck machine is essential for the overall schedule
performance. Generally, researchers focus on a specific performance measure
and they try to develop methods to schedule operations in order to opti-
mize the specific performance criterion. Finding the optimum solution with
respect to the specific performance measure is not always feasible (see Section
1.2.4 about computational complexity). Analytically presenting all findings
on single machine scheduling is out of the scope of this chapter and therefore
research findings are summarized in Table 1.1 [144].

The Flowtime of a job is calculated as its completion time minus the
release time, in other words it is the total time the job remains in the system.
In case all jobs are not equally important, weights can be introduced so as the
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Table 1.1: Single machine scheduling.

Performance Measure Optimum solution

Min Flowtime Shortest processing time dispatching rule
Min weighted flowtime Weighted shortest processing time

dispatching rule
Min Total Lateness Shortest processing time dispatching rule
Min Max Tardiness Earliest due date dispatching rule
Min number of tardy jobs Hodgson’s algorithm
Min Tardiness Heuristically optimized
Min weighted number of tardy jobs Heuristically optimized

scheduler can pay special attention to ‘important’ jobs (weighted Flowtime
criterion). The Lateness of a job is calculated as its completion time minus
its due date. If this value is positive then the Lateness is also called Tardiness
while if this value is negative, Lateness is also denoted as Earliness. If there
are specific due dates for all jobs, a very important performance measure
is the ‘number of tardy jobs’ optimized by a special procedure proposed by
Hodgson [144]. Also, see Table 1.2 for a list of the most widely used priority
dispatching rules.

A very important variant of the single machine problem is the single
machine scheduling problem with sequence dependent setups. This problem
is equivalent to the notorious travelling salesman problem (TSP) which is
NP-Hard. Small instances of these problems can be solved efficiently but
in general, both problems are considered computationally intractable and
medium-large instances can only be approximated with heuristic or meta-
heuristic methodologies.

1.2.2 Parallel Machine Scheduling Problem

Most of the times, real life scheduling problems consider multiple machines.
Multiple machines may occur in parallel or in series or both. In parallel ma-
chine scheduling we consider that each job can be processed on any of the
machines and processing times are independent to the machine (identical ma-
chines). The scheduling decisions involved are: a) which machine processes
each job, b) in what order [144]. Similarly to the single machine case, some
problems can be solved optimally while others are approximated. The mini-
mum flowtime problem can be solved with the shortest processing time list
dispatching rule (job with the shortest processing time assigned to the least
loaded machine). On the other hand, large instances of makespan minimiza-
tion problem cannot be solved with exact algorithms in practical computa-
tional times. Further details on parallel machine scheduling are also beyond
of the scope of this chapter.
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1.2.3 Major Shop Scheduling Problems

As the single and parallel machine problems rarely represent actual production
environments, academic research soon focused on more complex problems with
multiple jobs and resources to be considered. Based on the flow pattern of jobs
towards the resources, one can distinguish among several types of shops. The
most studied problems in the literature are the flow shop scheduling problem
(FSSP), the job shop scheduling problem (JSSP) and the open shop scheduling
problem (OSSP), which are analyzed in the following subsections. Apart from
these main three shop scheduling problem cases, the mixed shop (MSSP) and
group shop (GSSP) scheduling problems have recently been proposed but
have attracted much less academic interest and their solution methodologies
are usually variants of the meta-heuristic methods proposed for the three main
problems.

Flow Shop Scheduling Problem

The general flow shop scheduling problem (FSSP) consists of a set of N jobs
(1, 2, . . . , n) to be processed on a set of M machines (1, 2, . . . ,m). In the
FSSP, all jobs are processed sequentially on multiple machines in the same
order. Additionally, each job can be processed on one and only machine at
a time and each machine can process only one job at a time respectively.
Additionally, all operations are assumed non-preemptable and setup times are
included in the processing times and are independent to sequencing decisions.
The scheduling problem lies in finding a sequence of jobs that optimizes a
specific performance criterion (usually makespan, number of tardy jobs, total
tardiness or total flowtime). According to Conway’s [33] notation the FSSP
with makespan criterion can be shown by n/m/F/Cmax and according to
Graham et al [65], it can be shown by F//Cmax.

Many variants of the general FSSP exist, like the zero-buffer flow shops or
flow shop with blocking, the no-wait flow shops and the hybrid flow shops [74].
In the zero-buffer flow shop, a job i having been processed on machine j cannot
advance to machine j + 1 if this machine is still processing the predecessor
of job i. In this case, job i must remain at machine j, also delaying job i’s
successor to be processed on machine j. Generally, in the flow shop with
blocking, there is no intermediate buffer and, therefore, a job cannot proceed
to the next machine until this machine is free. In a no-wait flow shop, once a
job is started on the first machine it has to be continuously processed through
completion at the last machine without interruptions. If this is not possible,
the start of a job on a given machine must be delayed so that the completion
of the operation coincides the starting of the operation on the next machine.
Finally, in the hybrid flow shop, there are K serial workstations and there are
one or more identical parallel machines at each workstation.

Although the variants of the FSSP have extensive industrial applications,
academic research has focused mainly on a reduced version of the general
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FSSP, the permutation flow shop scheduling problem (PFSP) with the added
assumption that jobs must be processed in the same sequence by each of
the M machines. Due to the extensive academic research on the PSFP, the
problem will be analyzed in the rest of this chapter.

Job Shop Scheduling Problem

The general job shop scheduling problem (JSSP) consists of a set of N jobs
(1, 2, . . . , n) to be processed on a finite set of M machines (1, 2, . . . ,m). In
the general JSSP, each job must be processed on every machine and consists
of a series of mi operations which have to be scheduled in a predetermined
order, different for each job. These precedence constraints differentiate the
JSSP from FSSP. Similarly to the FSSP, each job can be processed on one
and only machine at a time and each machine can process only one job at a
time respectively. Additionally, all operations are assumed non-preemptable
and setup times are included in the processing times and are independent
to sequencing decisions. The scheduling problem lies in finding a sequence of
jobs for each machine that optimizes a specific performance criterion (usu-
ally the total makespan) while, at the same time, ensuring the observance of
all problem constraints. According to Conway’s [33] notation the JSSP with
makespan criterion can be shown by n/m/J/Cmax and according to Graham
et al [65], it can be shown by J//Cmax.

At first, a solution to a job shop scheduling problem was represented with
the use of Gantt charts. Although the Gantt chart is an excellent monitoring
tool that displays operation processing throughout the time horizon, its lim-
itations concerning the problem representation itself led to the development
of other representation methods. Among them, the one that prevailed is the
disjunctive graph representation proposed by Roy and Sussmann [138]. How-
ever, it should be mentioned that Gantt charts are still widely used in user
interfaces to represent a solution. Fig. 1.1 displays a disjunctive graph for a
4x3 job-shop problem.

In the node-weighted disjunctive graph of Fig. 1.1, a vertex corresponds to
each operation. The set of nodes (N) represents operations to be processed on
the set of machinesM . The fictitious initial node S is called the source and the
final fictitious node F the sink respectively. Each operation’s processing time
tOkl

is represented by the positive weight of each node j (thus tS = tF = 0).
Okl denotes that the specific operation belongs to job k and is processed on
machine l. Let A be the set of directed conjunctive arcs (shown by complete
lines) representing each job’s precedence constraints, such that (Okl,Okm) ∈ A
indicates that operation Okl is an immediate predecessor of operation Okm

within the subset job’s k operations. Capacity constraints are represented by
the set E of uni-directed orientable edges (shown by dotted lines - one colour
for each machine) where each member of E is linked with a pair of disjunctive
arcs sharing a common machine. Thus, two operations Okl and Oil to be
processed by the same machine l cannot be executed simultaneously.
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Fig. 1.1: The disjunctive graph representation for a 4x3 job shop problem.

Open Shop Scheduling Problem

A special type of the JSSP is the open shop scheduling problem (OSSP).
In the OSSP there is no predefined sequence of operations among jobs and,
therefore, the OSSP has a considerably larger solution space than a JSSP with
similar dimensions (nxm). Probably, the best example of open shop is a car
repair shop where the operation/repair sequence is not strictly defined. Just
like the FSSP and JSSP, the OSSP consists of a set of N jobs (1, 2, . . . , n)
to be processed on a finite set of M machines (1, 2, . . . ,m). In the general
OSSP, each job must be processed on every machine and consists of a series
of mi operations which have to be scheduled in any order. Similarly to the
general FSSP and JSSP, each job can be processed on one and only machine
at a time and each machine can process only one job at a time respectively.
Additionally, all operations are assumed non-preemptable and setup times are
included in the processing times and are independent to sequencing decisions.
The scheduling problem lies in finding a sequence of jobs for each machine
that optimizes a specific performance criterion (usually the total makespan)
while, at the same time, ensuring the observance of all problem constraints.
According to Conway’s [33] notation, the JSSP with makespan criterion can
be shown by n/m/O/Cmax and according to Graham et al [65], it can be
shown by O//Cmax.

Mixed Shop and Group Shop Scheduling Problems

In 1985, the mixed shop scheduling problem (MSSP) was introduced by
Masuda et al [108] and some years later, in 1997, the group shop scheduling
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problem (GSSP) was proposed in the context of a mathematical compe-
tition [80]. In the MSSP, the machine routes of jobs can either be fixed
or unrestricted [103]. The problem can also be regarded as a mix of the
three aforementioned main shop scheduling problems. Similarly, the GSSP
shares many characteristics of the three main shop scheduling problems.
More specifically, let O be a set of operations that is partitioned into sub-
sets J = {J1, ., Jn}, and subsets M = {M1, .,Mm}, where n is the number of
jobs,m is the number of machines. Let Ji be the set of operations which belong
to job i and Mk the set of operations which have to be processed on machine
k. Each job’s i operations belong to g groups G = {G1, ..., Gg}. Within each
group, operations are not restricted while, on the other hand, operations that
belong to different groups must satisfy some precedence relationship between
the groups imposed by the problem. In the special case where each operation
constitutes a group, the GSSP is equivalent to the JSSP. Correspondingly, if
for all jobs, all operations of jobs i belong to the same group, the GSSP is
equivalent to the OSSP.

Considering that the mixed shop and group shop scheduling are special
cases of the three main shop scheduling problems and that the meta-heuristic
solution methodologies used to solve them share many characteristics and in
essence are simple variations of the ones proposed for the main shop scheduling
problems, the MSSP and GSSP are not further analyzed in this chapter.

1.2.4 Computational Complexity of Shop Scheduling Problems

All shop scheduling problems belong to the NP class [95]. Although some spe-
cial cases of these problems might be solved by specific algorithms in polyno-
mial time, in the general case, they are computationally intractable when the
number of machines is greater than three, which means that they can only
be solved with deterministic algorithms with exponential behaviour. More
specifically, the time required to solve shop scheduling problems increases ex-
ponentially with the size of the input [85]. In the following subsections, the
computational complexity of the three major shop scheduling problems is an-
alyzed.

Complexity of the FSSP

Small instances of flow shops can be solved optimally. For example, the
minimum makespan model for two machines can be solved with Johnson’s
algorithm [86] which also solves special cases with three machines. More specif-
ically, Johnson’s algorithm may be applied to a flow shop scheduling problem
when the middle machine (machine 2) is dominated by the other two (a ma-
chine l dominates a machine k if for each job i the processing time of job i on
machine l is greater than or equal to the processing time of job i on machine
k). However, many researchers [63,96] have proved that the n-job m-machine
flow shop sequencing problems belong to the class of NP-Hard problems, and
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therefore, computational time for obtaining an optimal solution increases ex-
ponentially with increasing problem size. As a result, academic research has
focused on the development of heuristic and meta-heuristic methods.

For an n-job, m-machine general flow shop scheduling instance, the maxi-
mum number of possible solutions is (n!)m. Thus, even for a relatively small in-
stance, the number of possible solutions is considerably large (e.g., for a 10x10
instance the maximum number of possible solutions is (10!)10 = 3.96 × 1065.
Concerning the PFSP, a reduced version of the general flow shop, the max-
imum number of possible solutions is considerably smaller, i.e. n!. However,
Garey et al [55] proved that the F3/prmu/Cmax is also strongly NP-Hard
(F3 indicates the three-machine case and prmu denotes the permutation flow
shop variant).

Complexity of the JSSP

The reason for the computational intractability of the JSSP is the fact that
many different and conflicting factors must be taken into account. Such factors
are due date requirements, cost restrictions, production levels, machine capac-
ity, alternative production processes, order characteristics, resource character-
istics and availability etc. However, it is the combinatorial nature of the job
shop problem which determines its computational complexity [30]. Most job
shop scheduling problems belong to the NP class [33]. Lenstra and Rinnooy
Kan [95] proved that the general JSSP is NP-Hard for shops when the num-
ber of machines is greater than three. The only efficiently solvable cases of the
JSSP are [17]:

• The number of jobs is equal to two [22].
• The two-machine JSSP where each job consists of at most two operations

[83].
• The two-machine JSSP with unit processing times [72].
• The two-machine JSSP with a fixed number of jobs (repetitious processing

of jobs on the machines). This case was solved by Brucker [23].

For an n-job, m-machine job shop scheduling instance, the complexity is
equal to the FSSP case ((n!)m possible solutions).

Complexity of the OSSP

Various polynomial algorithms have been proposed for some cases of OSSP.
For the two-machine problem, a polynomial time algorithm has been proposed
by Gonzalez and Sahni [62] while Adiri and Aizikowitz [4] presented a linear
time algorithm for the three-machine OSSP, provided that one machine dom-
inates one of the other two. Although these problems with special structures
are polynomially solvable, Gonzalez and Sahni [62] proved that in the gen-
eral case and if the number of machines is greater than three, the OSSP is
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NP-Complete. For an n-job, m-machine open shop scheduling instance, the
maximum number of possible solutions is (nm)!. Thus, even for a relatively
small instance, the number of possible solutions is considerably large (e.g.,
even for a small 10x10 instance the maximum number of possible solutions
is 100! = 9.33 × 10157). As a result, research on OSSP solution methodology
focused on heuristic and meta-heuristic methodologies.

1.2.5 Optimization of Production Scheduling Problems

Shop scheduling problems are typical representatives of the Combinatorial
Optimization class of problems where solutions are encoded with discrete
variables. Generally, combinatorial optimization problems are optimization
problems where the set of feasible solutions is or can be reduced to a discrete
one, and the goal is to find the best possible solution. According to Blum and
Roli [19], a combinatorial optimization problem P = (S, f) can be defined as:

- A set of variables X = {x1, . . . , xn}.
- Variable domains D1, . . . , Dn.
- Constraints among variables.
- An objective function f to be minimized/maximized where f : D1 ∗ . . . ∗

Dn→ �+.

In a combinatorial optimization problem, the set of all possible and feasible
assignments is:

S = {s = {(x1, u1), . . . , (xn, un)}} | ui ∈ Di, s. (1.1)

S is called a search or solution space and consists of every possible solu-
tion to the specific problem. In order to find an optimum solution, the solution
space has to be explored effectively and efficiently. This optimum solution min-
imizes or maximizes (depending on the problem) the objective function while
satisfying all constraints of the specific problem. The optimum solution is also
called global optimum.

Apart from the solution space, the coding space represents the set of pos-
sible assignments of a problem’s variables after being encoded so that a spe-
cific method can be used. For example, Cheng et al [32] have conducted an
extensive review of possible encoding methods when using evolutionary algo-
rithms in JSSP. Among the representations mentioned, the operation-based
one encodes each possible solution with a vector that corresponds to the op-
eration sequence. In this scheme, the coding space consists of all possible
operation permutations. On the other hand, the solution space of JSSP con-
sists of detailed operation schedules for each machine and may also include
non feasible schedules, i.e. schedules that do not satisfy all constraints of the
problem. Other possible representations for such problems are the job-based,
the preference-list based, the priority rule-based, the completion time-based,
the machine-based and the random keys. In the job-based, the solution to a
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given problem is given by a simple job permutation. More specifically, fol-
lowing this representation, the operations that belong to the first job of the
sequence are scheduled in the earliest possible position and so on, so forth. The
preference-list based representation is a priority rule permutation and at each
position, the operation that complies with the given priority rule is scheduled.
The completion time-based representation is based on a vector of completion
times for all operations while the machine-based representation generates m
vectors with job permutations where m is the number of machines. Finally,
the random keys representation is mainly used with continuous optimization
methods where an operation permutation is extracted from a series of real
values with a heuristic procedure (usually, the position with the lowest real
value is scheduled first and so on, so forth).

Ideally, a representation of a problem should link a single encoded solution
(coding space) to a single feasible solution (solution space) and additionally,
all possible and feasible solutions should be able to be encoded (full coverage
of the solution space). However, in some cases, various encoding schemes not
only direct to infeasible solutions but to illegal ones as well, i.e. solutions
outside the solution space. Therefore, each problem’s representation should
be carefully chosen and always in conjunction with the solution methodology
to be developed.

1.3 Solution Methodologies for Shop Scheduling
Problems

Combinatorial optimization problems can be solved/optimized using two dif-
ferent approaches that are presented in the rest of this Section. The first
approach is by using complete or exact algorithms. The second approach is
applied to more complex or larger problems, leads to near-optimum solutions
and is characterized by the use of approximate algorithms. The second ap-
proach can be further divided to heuristic and meta-heuristic methods. The
scope of this chapter is to present the latest meta-heuristic trends on solv-
ing shop scheduling problems and thus, the analysis focuses on meta-heuristic
methods.

1.3.1 Exact Algorithms

Exact or complete algorithms are guaranteed to find for every finite size
instance of a combinatorial optimization problem an optimal solution in
bounded time. However, for the typical combinatorial optimization problems,
like the shop scheduling problems which are usually NP-Hard, no algorithms
exist to solve these problems in polynomial time. Therefore exact algorithms
need exponential computation time in most cases which leads to impractical
computational burden for real large scale applications. The family of exact
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methods is considerably large but the most common exact/complete meth-
ods for scheduling problems are branch and bound algorithms, mixed integer
programming and decomposition methods.

1.3.2 Heuristic Algorithms

As seen, the use of complete/exact methods to solve complex combinatorial
optimization problems often leads to impractical computational times. This
phenomenon has led the vast majority of researchers on such problems to
approximation methods. In approximation methods, the guarantee of find-
ing optimal solutions is sacrificed in order to get near-optimum solutions in
reasonable and practical computational times. The basic form of approxima-
tion algorithms is called ‘heuristics’, a name derived from the Greek verb
‘ευ�ισκειν’ which means ‘to find’. The usual classification of heuristic meth-
ods is constructive and local search methods [19].

Constructive

Starting from scratch, constructive algorithms generate solutions by gradually
adding parts of the solution to the initially empty partial solution. In typical
shop scheduling problems for example, these parts are usually operations. Con-
structive heuristics are generally the fastest approximate algorithms although
some special implementations may induce high computational load. Their ad-
vantage in computational time requirements is counterbalanced by generally
inferior quality solutions when compared to local search techniques. Among
the most widely used constructive heuristics for shop scheduling problems
are the various ‘Dispatching Rules’. Table 1.2 summarizes the most common
dispatching rules for shop scheduling problems [17].

Dispatching (or Priority) Rules are the most common heuristics for shop
scheduling problems due to their easy implementation and low requirements
in computational power. Although they perform very well in certain cases, no
rule exists that can be applied to all shop problems and perform satisfacto-
rily. Even worse, there is no way to estimate the performance of a dispatching
rule for a specific instance a priori. It should be mentioned that some prior-
ity rules generate the optimum solution in certain simple problems (e.g. the
minimization of flowtime in single-machine scheduling where the SPT priority
rule generates the global optimum solution).

Local Search

According to [19], a neighborhood of a solution s may be defined as a function
N : S → 2S where each s is assigned a set of neighboring solutions N(s) ⊆ S.
N(s) represents all neighboring solutions of s. For every defined neighborhood
of solutions, the solution or solutions of highest quality (i.e. the best objective
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Table 1.2: Dispatching rules.

Rule Description

SOT An operation with the shortest processing time on the machine considered
LOT An operation with longest processing time on the machine considered
LRPT An operation with longest remaining job processing times
SRPT An operation with shortest remaining job processing times
LORPT An operation with highest sum of tail and operation processing time
RandomThe operation for the considered machine is randomly chosen
FCFS The first operation in the queue of jobs waiting for the same machine
SPT A job with smallest total processing time
LPT A job with longest total processing time
LOS An operation with longest subsequent operation processing time
SNRO An operation with smallest number of subsequent operations
LNRO An operation with largest number of subsequent operations

function value) are called locally optimum solutions within the defined neigh-
borhood. In the case where there is only one solution with the best objective
function value, this local optimum is called strict locally optimum solution.

Local search algorithms start from an initial solution (most of the times
generated by a constructive heuristic or randomly) and iteratively try to re-
place part or the whole solution with a better one in an appropriately defined
set of neighboring solutions. In order to replace parts of an initial solution,
local search methods perform a series of moves leading to the formation of
new solutions in the same neighborhood. The most common moves are the
2−Opt, the 1−1 exchange and the 1−0 exchangemoves. The 2−Optmove re-
verses a set of tasks of random length in a machine while the 1− 1 Exchange
move swaps two tasks from the same machine. Finally, the 1 − 0 Exchange
move transfers a task from its position in one machine to another position
in the same machine [161]. Of course, the number of possible moves and the
corresponding neighborhoods are virtually unlimited.

The main drawback of basic local search methods is that they get easily
trapped in local optima as they are myopic in nature. More specifically, local
search with appropriate moves can be very effective in exploring a neighbor-
hood of an initial solution but no mechanism exists that can lead to other
distant neighborhoods of the solution space where the global optimum may
exist. To remedy this weakness, new modern local search methods (explorative
local search) have been developed with embedded meta-strategies to guide the
search process. Such methods are presented in Section 1.3.3.

1.3.3 Meta-heuristic Algorithms

During the last decades, a new family of approximate algorithms has emerged
and has dominated the combinatorial optimization problem solution research.
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This new type of algorithm basically combines heuristic methods in higher
level frameworks. The aim of the new methodology is to efficiently and effec-
tively explore the search space driven by logical moves and knowledge of the
effect of a move [19] facilitating the escape from locally optimum solutions.
These methods are nowadays called meta-heuristics, a term that was first
introduced by Glover [57]. Meta-heuristic methods have an advantage over
simpler heuristics in terms of solution robustness; however they are usually
more difficult to implement and tune as they need special information about
the problem to be solved to obtain good results. Due to the computational
complexity of combinatorial optimization problems, the moderate results ac-
quired by heuristic methods and the time limitations for application of exact
algorithms, the application of meta-heuristic methods to solve such problems
is a well established field of research.

Definition

There are many definitions of meta-heuristic algorithms and methods. Per-
haps, the most thorough definition was given by Stützle in 1999 and is cited
in [19] (p. 270):

“Meta-heuristics are typically high-level strategies which guide an
underlying, more problem specific heuristic, to increase their perfor-
mance. The main goal is to avoid disadvantages of iterative improve-
ment and, in particular, multiple descent by allowing the local search
to escape from local optima. This is achieved by either allowing wors-
ening moves or generating new starting solutions for the local search
in a more intelligent way than just providing random initial solutions.
Many of the methods can be interpreted as introducing bias such that
high quality solutions are produced quickly. This bias can be of various
forms and can be cast as descent bias (based on the objective function),
memory bias (based on previously made decisions) or experience bias
(based on prior performance). Many of the meta-heuristic approaches
rely on probabilistic decisions made during the search. But, the main
difference to pure random search is that in meta-heuristic algorithms
randomness is not used blindly but in an intelligent, biased form.”

Based on the above definition, it could be said that meta-heuristics are an
intelligent way to explore the solution space. Exact algorithms are too slow
for even small to medium search spaces and simple heuristics blindly or my-
opically program the next move based on rules that cannot be characterized
robust and logically defined. Based on recent findings, the best performing
methods for optimizing shop scheduling problem are those encompassing hy-
brid systems such as local search techniques embedded within metastrategies
that overcome local optimality by accepting non improving moves and, thus,
inferior solutions. Although allowing non-improving moves seems contradict-
ing at first, such strategies help meta-heuristic algorithms to escape local
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optimality as the new inferior solutions might be in the neighborhood of the
global optimum and therefore, a simple local search may thereafter lead to
the global optimum solution.

Concerning the search direction strategy, the diversification and intensi-
fication strategies can be defined [19]. When a meta-heuristic method uses
the diversification strategy, the main aim is the effective exploration of all
possible neighborhoods of the solutions space. On the other hand, the inten-
sification strategy focuses on the use of the gathered search knowledge and
the exploration of a narrower solution subspace.

Classification of Meta-heuristic Methods

Several meta-heuristic algorithm classification schemes exist based on various
properties of these methods. Among them, the most meaningful and the most
widely used is based on the quantity of solutions these algorithms deal with.
More specifically, meta-heuristic algorithms can be divided in population-
based and single point search. Population based meta-heuristic methods com-
bine a number of solutions in an effort to generate new solutions that share
good merits of the old ones and are expected to have better fitness. Such
methods are iterative procedures that gradually replace solutions with better
found ones. On the other hand, single point search methods improve upon a
specific solution by exploring its neighborhood with a set of moves.

Another important and widely used classification scheme is based on the
memory used during the search process. Concerning memory usage, it has
nowadays become implicit in modern meta-heuristic methods. Memory usage
constitutes a main characteristic of effective meta-heuristic methods and is the
indication of the intelligence employed during the search process. Memory us-
age may be further divided in short-term and long-term. Short-term memory
keeps track of recent moves and helps avoiding cycling around specific solu-
tions. On the other hand, in the long-term memory, information is gradually
stored and employed at specifically defined stages of the algorithm, depending
on the implementation. Memory-less algorithms are nowadays rarely employed
for complex combinatorial optimization problems.

Meta-heuristic Algorithms used for Shop Scheduling Problems

Almost all meta-heuristic algorithms proposed in the literature have been em-
ployed to solve shop scheduling problems. For a thorough description of these
methods, the reader may refer to Blum and Roli’s work [19]. Epigrammat-
ically, the most popular meta-heuristic methods for solving shop scheduling
problems are:

• Evolutionary Computation algorithms that fall mainly into three main
categories: Genetic Algorithms [77], Evolutionary Strategies [133] and Evo-
lutionary Programming [49]. One of the newest algorithms of this category
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is the Differential Evolution Algorithm (DEA) introduced by Storn and
Price [146].

• Particle Swarm Optimization (PSO) [42].
• Ant Colony Optimization (ACO) introduced by Dorigo [40].
• Scatter Search and Path Relinking proposed by Glover et al [60].
• Neural Networks (NN) that constitute an advanced artificial intelligence

technology that mimics the brain’s learning and decision making process
[51,52].

• Basic Local Search where a neighborhood of a solution is explored with
a set of moves and the local optimum is returned.

• Explorative Local Search mainly represented by the Greedy Random-
ized Adaptive Search Procedure (GRASP) proposed by Feo and Resende
[45], Variable Neighborhood Search (VNS) proposed by Hansen and Mlade-
nović [70] and Iterated Local Search (ILS) proposed by Stützle [149].

• Simulated Annealing (SA) proposed by Kirkpatrick et al [87].
• Tabu Search (TS) proposed by Glover [59].
• Threshold Accepting proposed by Dueck and Scheuer [41].

Hybrid Methods

The development and application of hybrid meta-heuristic algorithms is in-
creasingly attracting academic interest. Hybrid meta-heuristic algorithms
combine different concepts or components from various meta-heuristics [19]
and towards this end, they attempt to merge the strengths and eliminate the
weaknesses of different meta-heuristic concepts. Therefore, the effectiveness
of the solution space search may be further enhanced and new opportunities
emerge which may lead to even more powerful and flexible search methods.
Talbi [158] has proposed a taxonomy for hybrid meta-heuristics. Generally, we
can distinguish three main forms of hybridization [19]. The first form is called
component exchange among meta-heuristic methods and its most typical rep-
resentative is the hybridization of population-based methods with local search
methods. The second form is called cooperative search and typically involves
the exchange of information between two or more different meta-heuristic al-
gorithms. The information exchange level can vary from implementation to
implementation as well as during the same implementation. The third form is
called integrating meta-heuristic algorithms and systematic methods and has
produced very promising results in real-world cases. Among the successful
implementations of this form is the combination of meta-heuristic algorithms
and constraint programming [128].

Most hybrid methods for shop scheduling methods belong to the first form
of hybridization where various components and solution characteristics are
shared among two or more heuristic and meta-heuristic methodologies. The
power of hybrid meta-heuristic methods is indicated by the fact that, as we will
see in the following sections of this chapter, current state-of-the-art methods
for shop scheduling problems are all hybrid meta-heuristic algorithms.
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Adaptive Memory Programming - The Unified View

Judging from the brief review of meta-heuristic algorithms in the previous
section, it is obvious that the family of meta-heuristic methods is large and
keeps growing as new forms and hybrids are still presented. Taillard et al [157]
however mentioned that meta-heuristic methods at their present form share
many common characteristics and could be unified under the term adaptive
memory programming (AMP), firstly proposed by Glover [58]. More specif-
ically, Taillard et al [157] mentioned that most meta-heuristic components
follow a generalized procedure: at first, they memorize parts, whole solutions
or characteristics of solutions during the search process. In a second stage,
this stored information is used to generate new solutions and at the third
stage, this new solution’s neighborhood is explored by means of a local search
method.

Thus, whether a meta-heuristic is a simple population-based genetic al-
gorithm or a sophisticated hybrid incorporating various meta-heuristic com-
ponents, the essence is that it usually follows the same three-step procedure.
Therefore, under the unified view of adaptive memory programming, the vari-
ous meta-heuristic methodologies might not be very different from each other
after all. On the other hand, some methods (like simulated annealing and
threshold accepting) cannot be generalized under the AMP scheme as their
basic versions are virtually memory-less. However, their core methodology can
be used in the improvement stage of the AMP framework (step three of AMP).

1.4 The Flow Shop Scheduling Problem

The flow shop scheduling problem is, as mentioned, NP-Hard. Due to the com-
plexity of the problem, exact algorithms developed for the general FSSP failed
to achieve high quality solutions for problems of increased size in reasonable
time and thus academic research focused on heuristic and meta-heuristic meth-
ods. Regarding solution methodologies, Johnson [86] proposed an O(nlogn)
complexity algorithm which optimally solves the F2//Cmax problem. Under
the special circumstance where the middle machine is dominated by the other
two, Johnson’s algorithm may solve to optimality the F3//Cmax problem.
Among exact methods proposed for the general FSSP, we can distinguish
among dynamic programming [75], branch and bound [37, 81, 90, 104] elimi-
nation rules [6] and, of course, complete enumeration which is the most time
consuming exact method. Considering that these methods may be applied
in small instances of FSSP, it is beyond the scope of this chapter to further
analyze them.

1.4.1 Heuristics for the FSSP

A large number of heuristics has been proposed for the FSSP. The most im-
portant constructive ones are the Palmer [126], CDS [26], RA [38], Gupta [68],
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NEH [118] and HFC [88]. Palmer [126] and Gupta [68] construction heuris-
tics are based on the utilization of a criterion to generate the sequence of
jobs. This criterion is a slope index that is calculated for each job based on
the processing times and their pattern in terms of machine sequence. The
CDS [26] algorithm on the other hand, generates m− 1 artificial two-machine
schedules (where m is the number of machines) and solves them with John-
son’s rule. The best m−1 solution is then chosen as the best sequence for the
m-machine problem. According to the RA heuristic [38], a virtual two ma-
chine problem is defined (just like the CDS heuristic) but instead of directly
applying Johnson’s algorithm over the processing times, weighting schemes
for each machine are calculated before.

The NEH heuristic [118] is much more complex than the aforementioned
heuristics. Initially, jobs are arranged in a descending order of their total
processing time. Then, based on this mentioned order, an increasingly larger
partial sequence is generated at each step by introducing one job from the
unscheduled order into the partial sequence (until all jobs are scheduled). At
each step, a new job is scheduled in all possible positions (k+1 positions where
k is the size of last step’s partial sequence) and after choosing the best place
for this job, regarding the obtained makespan, this new partial sequence is
fixed for the remaining procedure. The HFC heuristic [88] can only be applied
to FSSP and not the reduced version of it, the PFSP. It is a two-stage method
where Johnson’s rule is used extensively in the first stage, while in the second
stage, improvement of the initial schedule is performed by allowing job passing
between machines (non permutation schedules).

In addition to the aforementioned constructive heuristics, a few improve-
ment heuristics have been proposed by Dannenbring [38], Ho and Chang [76]
and Suliman [150]. Contrary to constructive heuristics, improvement heuris-
tics start from an already built schedule and try to improve it by some
given procedure. Dannenbring [38] proposed two simple improvement heuris-
tics based on the constructive heuristic RA proposed by the same author for
initial solution generation: Rapid Access with Close Order Search (RACS)
and Rapid Access with Extensive Search (RAES). RACS works by swapping
every adjacent pair of jobs in a sequence. The best schedule among the n− 1
generated is then given as a result. In RAES heuristic, RACS is repeatedly
applied while improvements are found. Both RACS and RAES heuristics start
from a schedule generated with the RA constructive heuristic.

Ho and Chang [76] developed a method that aims at the minimization of
the elapsed times between the end of the processing of a job in a machine
and the beginning of the processing of the same job in the following machine
in the sequence. The authors refer to this time as ‘gap’ which is calculated
for every possible pair of jobs and machines. Starting from the CDS heuristic
solution, a series of calculations is conducted and then, the heuristic swaps jobs
based on the corresponding gap value. Suliman [150] developed a two-phase
improvement heuristic for the FSSP. In the first phase, similarly to Ho and
Chang’s improvement heuristic, a schedule is generated with the CDS heuristic
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method. In the second phase, the schedule generated is improved with a job
pair exchange mechanism. In an effort to reduce the computational load of
an exhaustive job pair exchange, the number of possible moves is reduced by
introducing a directionality constraint. More specifically, if a better schedule
is acquired by moving a specific job forward, then this job is not allowed to
move backward in the job sequence string.

Although FSSP heuristics perform very fast in most cases, they gener-
ally fail to produce high quality solutions. Even the NEH heuristic, which is
considered the most powerful construction heuristic [154], fails to reach so-
lutions even 5-7% worse than the optimum in some difficult instances due
to Taillard [155]. Therefore, it is not without reason that most of the acad-
emic effort has been put towards the development of meta-heuristic and most
recently, powerful hybrid meta-heuristic methods.

1.4.2 Meta-heuristics for the FSSP

A very large number of meta-heuristic algorithms, hybrid or not, have been
proposed for the FSSP and PSFP. The application list for the FSSP includes
most known meta-heuristic algorithms including evolutionary algorithms, par-
ticle swarm optimization, ant colony optimization, scatter search, neural net-
works, simulated annealing, tabu search and many forms of explorative local
search. Most of these methods use simpler heuristic algorithms to generate an
initial population of solutions.

Concerning the implementation of Genetic Algorithms (GA) in FSSP
and PFSP, some early noteworthy research was performed by Reeves [134].
In his implementation, the offsprings generated at each step of the algorithm
do not replace their parents but solutions with a fitness value below average.
Among the innovations presented in this paper, Reeves used an equivalent to
the One Point Order Crossover operator, called C1. Moreover the algorithm
uses an adaptive mutation rate where the position of one job is simply changed
by the shift mutation operator. A common feature of many meta-heuristic
methods for the FSSP that is also found in this implementation is the use
of the NEH heuristic to seed the initial population with a good sequence
among randomly generated ones. Finally, another innovative feature of Reeves’
implementation is that during selection, parent one is selected using a fitness
rank distribution while parent two is chosen using a uniform distribution.
During the same year, Chen et al [31] presented their own GA for the PFSP.
Their implementation was basically a simple genetic algorithm with some
added features and enhancements. More specifically, in this implementation
the initial population is generated with the CDS and RA heuristics and also
from simple job exchanges of some individuals. The crossover operator used is
the Partially Mapped Crossover (PMX) and it is noteworthy that no mutation
is applied.

Murata et al [115] presented their own version of GA for the PSFP
where the two-point crossover operator and a shift mutation along with an
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elitist strategy to obtain good solutions are used. Based on initial results,
the algorithm failed to achieve results competitive to other meta-heuristic
methodologies and therefore, the authors developed two hybrid versions; ge-
netic simulated annealing and genetic local search. As their name implies,
in these algorithms an improvement is conducted before the selection and
crossover phases by means of a simulated annealing and local search algo-
rithms respectively. These two hybrid algorithms performed better than the
non-hybrid genetic algorithm and the simple implementations of tabu search,
simulated annealing and local search. Reeves and Yamada [135] presented an-
other hybrid genetic algorithm. The innovation in this algorithm was the use
of a Multi-Step Crossover Fusion (MSXF) operator which combined crossover
with a local search procedure. This operator uses one parent as a reference
to conduct a biased local search to the other. The calculation of new up-
per bounds for some Taillard’s [155] benchmark instances is indicative of the
algorithm’s high performance.

Another genetic algorithm was presented by Ponnambalam et al [130].
Their algorithm features the Generalised Position Crossover (GPX), shift
mutation and a randomized initial solution. A hybrid implementation based
on genetic algorithms and simulated annealing was presented by Wang and
Zheng [167]. The powerful NEH heuristic is also used for population initial-
ization and multi-crossover operators are used for solution recombination.
However, the mutation operator is replaced by a simulated annealing com-
ponent. Finally, one of the most recent genetic algorithms for the PFSP and
a hybrid version of it were proposed by Ruiz et al [140]. Ruiz et al used a
modified NEH heuristic to generate a diversified initial population, proposed
four new crossover operators, used shift mutation and implemented special-
ized restart techniques for population renewal. Finally, they hybridized their
genetic algorithm with a local search scheme.

Similarly to the Genetic Algorithm, the Differential Evolution Algo-
rithm (DEA) has also been proposed, in a hybrid form, to solve the PFSP.
More specifically, Tasgetiren et al [162] have proposed a DEA coupled with
local search to optimize the PFSP. The authors borrowed the random key
representation by Bean [14] to convert the real variables to discrete ones and
used a repairing technique so a basic local search could be applied to the re-
sulting solutions. Another attempt to apply the DEA to PSFP for minimizing
makespan, total flowtime and tardiness has been conducted by Onwubolu and
Davendra [124]. The authors compared the proposed method with the classic
genetic algorithm and concluded that DEA demonstrates competitive perfor-
mance and very easy implementation for the specific problem. Considering
that the DEA in its canonical form operates with real variables, the authors
proposed a transformation scheme to convert real-coded solutions to discrete
ones and vice versa.

Particle Swarm Optimization (PSO) has only recent and thus limited
number of applications. The two major papers in this field have been pre-
sented by Lian et al [98] and Tasgetiren et al [163]. Lian et al [98] proposed a
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conversion technique to apply the PSO algorithm in discrete problems like
the FSSP and compared the PSO with a traditional GA. The authors con-
cluded that the PSO performed better than the traditional GA. Similarly,
Tasgetiren et al [163] proposed a hybrid PSO algorithm for the PFSP with
both makespan and total flowtime minimization criteria. More specifically,
they hybridized the basic PSO algorithm with an explorative local search
technique, the Variable Neighborhood Search (VNS). They also proposed a
scheme to allow the PSO to operate in the discrete variable environment of
PFSP. This heuristic scheme is named Shortest Position Value (SPV) and it
is borrowed from the random key representation of Bean [14]. Computational
tests conducted by the author revealed the strength of the proposed method
for both performance criteria and in both Taillard and Watson benchmark
instances.

The Ant Colony Optimization (ACO) algorithm has also been used for
solving the FSSP/PFSP. One of the first attempts to apply ACO to PFSP was
done by Stützle [147] and some years later by Ying and Liao [177]. Ying and
Liao’s computational experiments on Taillard benchmark instances revealed
that the ACO approach is a very effective meta-heuristic for the PFSP. Among
other presented implementations, T’kindt et al [152] proposed a version of
ACO to solve the two-machine flow shop with two criteria. More recently,
Rajendran and Ziegler [132] proposed two versions of ACO to solve the PFSP
with the minimum makespan and minimum total flowtime objectives. The first
algorithm presented is an extension of Stützle’s [147] ideas of the ant colony
algorithm (MMAS algorithm) by including the summation rule suggested by
Merkle and Middendorf [112] and a local search technique.

Nowicki and Smutnicki [121] presented a Scatter Search and Path Re-
linking version (algorithm MSSA) for the PFSP and have conducted exten-
sive research on the properties on the problem’s solutions space. The strength
of their implementation is attested by some new upper bounds found in Tail-
lard’s benchmark instances for minimizing the total makespan. More specif-
ically, the authors have used their TSAB algorithm and extended it using a
modified scatter search algorithm (MSSA). Finally, one of the most important
characteristics of their algorithm is that its good properties remain scalable
with increasing instance size.

There are quite a few works about Neural Networks (NN) applied to
FSSP, although most of them are hybrid implementations with other meta-
heuristics. One of the first works in this field was conducted by Lee and
Shaw [94]. The authors developed a hybrid neural network-genetic algorithm
for the FSSP showing good performance. A few years later, Solimanpur et al
[145] developed a hybrid tabu search-neural network approach called EXFS.
In their implementation, the NEH heuristic is initially used to construct a
solution. Thereafter, tabu search is used to improve the solution and special
neurons are employed to penalize some moves. A more recent implementation
was developed by El-bouri et al [44] for the PFSP. More specifically, they
used solved instances of PFSP instances to train some neurons. Afterwards,
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the neurons were employed to guide a local search procedure to the most
promising job assignments.

Concerning Basic Local Search and Explorative Local Search meth-
ods, there are very few implementations where such methods are used alone
(i.e. not as a part of a hybrid algorithm). It should be mentioned though that,
when hybridized, such methods greatly improved the performance of other
methods, especially of evolutionary methods. One of the few implementations
was the iterated local search (ILS) procedure proposed by Stützle [148] which
was later recoded by Ruiz and Maroto [139]. The latter proved that ILS per-
formed very satisfactorily in the PFSP.

Simulated Annealing (SA) was one of the first meta-heuristic meth-
ods proposed [87] and therefore it is not without reason that a very large
number of SA algorithms have been proposed for the FSSP/PFSP. One of
the first works in this area has been conducted by Osman and Potts [125].
The authors proposed a simple SA algorithm using a shift neighborhood and
a random neighborhood search. Ogbu and Smith [123] proposed an SA algo-
rithm for the PFSP which involved an initialization with the Palmer [126] and
Dannenbring’s [38] RA heuristics. In a later work by the same authors [122],
their initial approach was compared to that of Osman and Potts [125] where
Ogbu and Smith’s [122] algorithm was found slightly more efficient. Gangad-
haran and Rajendran [54] also applied the SA method to solve the FSSP.
Two SA algorithms comparable in performance with Osman and Potts’s [125]
approach were developed by Ishibuchi et al [82].

Zegordi et al [179] developed a hybrid simulated annealing algorithm called
SAMDJ with the incorporation of problem domain knowledge in the basic SA
scheme. More specifically, they used a specially formulated table with sev-
eral rules concerning the biased movement of jobs towards specific positions
or directions in the sequence. It was empirically proven that this table fa-
cilitated the annealing process and lessened the SA control parameters. Per-
formance wise, SAMDJ proved to be slightly inferior in terms of solution
quality compared to Osman and Potts’s [125] SA algorithm but considerably
faster. Murata et al [115], as already mentioned in the genetic algorithm sec-
tion, developed a hybrid genetic-simulated annealing algorithm for the PFSP
which, according to their experiments, outperformed the single meta-heuristic
components when used individually. The same procedure was followed by Moc-
cellin and dos Santos [114] who presented a hybrid tabu search - simulated
annealing heuristic. The hybrid algorithm was then compared to simple tabu
search and simple simulated annealing algorithms, showing the superiority of
the hybrid approach. Wodecki and Božejko [170] proposed an SA algorithm
that was run in a parallel computing environment. The algorithm was tested
against the classic NEH heuristic and superior results were recorded. Finally,
Hasija and Rajendran [71] proposed an algorithm based on simulated anneal-
ing for the PFSP with total tardiness of jobs criterion and two new solution
perturbation schemes. The authors concluded that their algorithm performed
better than existing tabu search and simulated annealing techniques.
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Tabu Search (TS) has also been extensively used to solve the FSSP/PFSP
in single or hybrid forms. One of the first attempts towards this direction was
conducted by Widmer and Hertz [169] who presented the ‘SPIRIT’ method, a
two-stage heuristic. In the first stage, an initial solution is calculated with an
insertion method in direct relation to the Open Travelling Salesman Problem
(OTSP). In the second stage, a standard TS meta-heuristic with exchange
neighborhood is used to improve the initial solution. Taillard [154] also pre-
sented a similar procedure to that of Widmer and Hertz [169]. In Taillard’s
implementation, an improved version of the classic NEH heuristic is used to
obtain good initial schedules which are then improved by a tabu search proce-
dure. After having tested various types of neighborhoods, the one-job change
of position proved to be superior for the specific implementation.

Another meta-heuristic algorithm based on Widmer and Hertz’s [169]
SPIRIT heuristic is the TS method of Moccellin et al [113]. Their implementa-
tion resembles Widmer and Hertz’s procedure with the main difference being
the calculation of the initial solution. One of the most important works in this
field was conducted by Nowicki and Smutnicki [120]. The authors proposed
a TS meta-heuristic where only reduced parts of the possible neighborhoods
are evaluated along with a fast method for obtaining the makespan after per-
forming moves. Although this method is only suitable for the minimization
of makespan criterion (and not the also widely used total flowtime of jobs)
it quickly became the benchmark for other methods due to its high perfor-
mance in terms of solution quality and computational speed. This fact is also
demonstrated by the new best upper bounds found in Taillard’s benchmark
instances. The innovation in Nowicki and Smutnicki’s work is that instead
of moving single jobs during the search procedure, whole blocks of jobs are
moved.

A few years later, Ben-Daya and Al-Fawzan [15] implemented a TS algo-
rithm with extra intensification and diversification schemes that enabled bet-
ter moves in the TS process. The algorithm proposed provides similar results
to the TS algorithm of Taillard [154], indicating a successful implementation.
Finally, as already mentioned in the SA section, a successful hybrid TS-SA
method was proposed by Moccellin and dos Santos [114]. More specifically,
a classic TS was hybridized with an SA procedure and the hybrid algorithm
outperformed the single meta-heuristic components. One of the most recent
implementations for the PFSP with tabu search was proposed by Soliman-
pur et al [145]. The authors developed a hybrid tabu search - neural network
approach and they implemented block properties like Taillard [154]. Finally,
Grabowski and Wodecki [64] proposed a fast TS approach.

Threshold Accepting has also been used to solve PFSP by Gupta
et al [69]. More specifically, the authors developed and compared various lo-
cal search schemes for the two-machine PFSP with two criteria: the main
criterion being the optimization of makespan and a secondary criterion being
either the total flow time, total weighted flow time, or total weighted tardi-
ness. Among the methods tested are simulated annealing, genetic algorithms,
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threshold accepting, tabu search, and multi-level search algorithms. The au-
thors conclude that the multi-level search heuristics were most appropriate for
the flow time related secondary objective, while simulated annealing proved
to be superior best for the due date related objective. The authors also con-
cluded that the genetic algorithm performed poorly if not coupled with some
other local search methods.

1.5 The Job Shop Scheduling Problem

The history of the job shop scheduling problem, starting more than 40 years
ago, is closely linked to the history of the most known benchmark instance
introduced by Fisher and Thompson [46]. This particular 10-job, 10-machine
instance (also known as MT10 or FT10) detained researchers for over 25 years
and signaled a continuous competition among researchers for the most pow-
erful solution procedure. The JSSP solution history is characterized by circles
concerning researchers’ preferences. More specifically, at first, researchers pro-
posed some exact methods followed by an era of heuristic methodologies de-
velopment. Thereafter, researchers focused again on exact methods and JSSP
complexity until the new era of sophisticated heuristic and meta-heuristic
algorithms began.

Branch and bound algorithms are the most efficient exact methods for
JSSP and they explore specific knowledge about the critical path of the prob-
lem. The main principle behind them is the enumeration of all possible feasible
solutions of the problem so that properties or attributes not shared by any
optimal solution are detected as early as possible. A branch of the enumera-
tion tree defines a subset of the feasible solutions where each element of the
subset satisfies this branch. For each subset, the objective value of its best
solution is estimated by a lower bound. In case this lower bound is greater
than the best known upper bound the subset can be dropped from further
consideration. The best known upper bound can be a heuristic solution of the
original problem [17]. Although branch and bound algorithms guarantee the
optimal solving of the problem, they tend to be very slow in combinatorial
optimization problems and rather impractical to use. Their main drawback is
the lack of strong lower bounds in order to cut branches of the tree as early as
possible and reduce the computational time required. Researchers are focused
on finding ways to improve lower bounds.

One of the earliest works in the field of exact methods was performed by
Brooks and White [21] and Greenberg [66]. These methods were based on
Manne’s [106] integer programming formulation. Other papers in this field
are presented by Balas [7], Florian et al [48] and Fisher [47]. A very effi-
cient method was proposed by McMahon and Florian [111] which turned out
to be the best performing exact method for several years. The authors com-
bined the bounds for the single-machine scheduling problem with the objective
function and operation release dates in order to minimize maximum lateness
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with the enumeration of active schedules. They were based on the fact that
among active schedules, the optimal ones existed. In more recent methods, the
neighborhood structure used in some recent local search implementations was
employed as a branching structure [12]. The optimum solution of the infamous
FT10 instance was first found by Lageweg in 1984 as reported by Lawler et
al [91] although no proof of optimality was given. In this work, multi-machine
lower bounds were used. Optimality of the found solution to FT10 (with an
optimum makespan of 930) was first proven by Carlier and Pinson [28]. The
latter were based on one-machine bounds and several simple inference rules
on operation subsets. Current research status concerning branch and bound
schemes is characterized by the very well performing methods of Applegate
and Cook [5] and Martin and Shmoys [107]. Moreover, the use of advanced
inference rules characterize the very well performing branch and bound meth-
ods of Baptiste et al [10, 11], Carlier and Pinson [29] and Brucker et al [25].
Finally, it should be mentioned that an emerging field of research concerning
branch and bound techniques is their coupling with meta-heuristic strategies
to form advanced hybrid algorithms.

1.5.1 Heuristics for the JSSP

Early works for the JSSP can be found as early as 1956 when Jackson [83]
generalized Johnson’s [86] rule for the FSSP and applied it to the two-machine
JSSP. Since then, a large number of heuristic methodologies have been pro-
posed. Perhaps the most frequently applied heuristics for JSSP are the vari-
ous dispatching rules, presented in Section 1.3.2. One of the most important
implementations of priority dispatching rules is Giffler and Thompson’s algo-
rithm [56] which can be generally considered as a common basis of all priority
rule based heuristics. Their algorithm is a constructive heuristic where at each
step, an unscheduled operation is chosen randomly from a conflict set of op-
erations that ‘compete’ for the same machine. This machine corresponds to
the machine that the operation with the lowest processing time among all
unscheduled operations is to be processed at.

Apart from the priority dispatching rules, one of the most powerful heuris-
tics for the JSSP is the shifting bottleneck heuristic originally proposed by
Adams et al [3] and later improved by Balas et al [8]. The main concept of
this algorithm is the solution, for each machine, of a one-machine scheduling
problem to optimality, under the assumption that a lot of arc directions in the
optimal one-machine schedules coincide with the optimal job shop schedule.
The algorithm optimizes the schedule of the bottleneck machine first. The
bottleneck machine is defined as the machine whose one machine optimum
schedule has the longest makespan. The algorithm continues until all ma-
chines are scheduled. The power of this method is that although one-machine
schedules are also NP-Hard, algorithms exist to efficiently solve them [27].
However, the assumption that the lot of arc directions in the optimal one ma-
chine schedules coincide with the optimal job shop schedule is not true and
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thus this method does not lead to the global optimum solution. However, the
shifting bottleneck algorithm has proven to be a very effective heuristic with
many successful implementations in JSSP. This heuristic is also widely used
nowadays for efficient hybrid algorithm implementations.

1.5.2 Meta-heuristics for the JSSP

Similarly to the FSSP, a very large number of hybrid and non hybrid meta-
heuristic algorithms have been proposed for the JSSP. The application list
for the FSSP includes most known meta-heuristic algorithms including evo-
lutionary algorithms, particle swarm optimization, ant colony optimization,
scatter search, neural networks, simulated annealing, tabu search and many
forms of explorative local search. Most of these methods use simpler heuristic
algorithms to generate an initial population of solutions.

Concerning the implementation of Genetic Algorithms (GA) in JSSP,
many researchers have concluded that GAs are not suitable for fine-tuning
of solutions close to optimal ones. In other words, genetic algorithms fail to
intensify the search to the most promising regions of a neighborhood. This
is why successful implementations of genetic algorithms usually incorporate
a local search procedure for search intensification. A large number of early
genetic algorithm applications may be traced in the literature. Among, the
most well-known methods are those of Davis [39], Nakano and Yamada [117],
Yamada and Nakano [172], Tamaki and Nishikawa [159], Mattfeld et al [110],
Croce et al [34], Bierwirth et al [16] and Cheng et al [32]. Among more recent
works in this field, Zhou et al [184] proposed a hybrid genetic algorithm with a
neighborhood search procedure which also used a series of priority dispatching
rules in the genetic evolution process. A very successful implementation of
hybrid genetic algorithms can be found in the work of Wang and Zheng [166].
The authors also mention the drawback of genetic algorithm operators to
disrupt the search in areas close to local or global optima and thus, they
hybridized their GA with a simulated annealing algorithm which enhanced
the intensification operation of their hybrid method. Park et al [127] also
proposed a genetic algorithm and used Giffler and Thompson’s algorithm [56]
for the initial chromosomes generation. Murovec and S̆uhel [116] presented
a hybrid genetic-tabu search implementation with exceptional results in all
benchmarks tested. This is also indicated by the three new upper bounds found
for the ABZ9, YN1 and YN2 benchmark instances. Gonçalves et al [61] have
presented an efficient hybrid GA implementation. The authors utilized the
random keys representation [14] and hybridized their genetic algorithm with
a local search scheme. Finally, Zobolas et al [185] developed a three-component
hybrid algorithm where a Genetic Algorithm, a Differential Evolution and a
Variable Neighborhood Search procedure were employed.

The Particle Swarm Optimization (PSO) method applications in
JSSP are relatively very recent, indicating the great interest of the acad-
emic community in this optimization method. Although PSO can be generally



1 Exact and Meta-heuristic Algorithms for Shop Scheduling 27

used with continuous variables and, therefore, is unsuitable for discrete vari-
ables, most researchers have presented special transformation methods or vari-
ations of the original PSO so that this method can be also applied to JSSP.
Lian et al [99] presented a similar PSO algorithm with the added feature of
converting a continuous domain to a discrete domain. Xia and Wu [171] hy-
bridized the PSO algorithm with a classic simulated algorithm and formed
their HPSO algorithm. Zhao and Zhang [181] also presented a hybrid particle
swarm - simulated annealing algorithm and compared the hybrid version with
the single algorithm implementations. Their hybrid method was found to be
more effective and more efficient than the single meta-heuristic components.
Finally, Sha and Hsu [143] also used a transformation routine but unlike most
researchers, utilized the preference list-based representation and hybridized
their PSO implementation with a tabu search procedure to improve the solu-
tions acquired.

The use of Ant Colony Optimization (ACO) algorithm in solving the
JSSP is rather limited. Just like the PSO algorithm, the implementations
found in literature are very recent. Huang and Liao [79] proposed a hybrid
ant colony - tabu search algorithm. The authors employed a novel decompo-
sition method inspired by the shifting bottleneck procedure and a mechanism
of occasional re-optimizations of partial schedules instead of using the more
conventional feasible solutions construction approach. Heinonen and Petters-
son [73] presented a hybrid ant colony - local search algorithm and focused
on the infamous FT10 benchmark instance so that the ACO performance can
be evaluated.

The application of Neural Networks (NN) to the JSSP can be charac-
terized quite extensive. However, the last few years there seems to be a de-
creasing interest towards neural network implementations for JSSP. Among
early works conducted in this field are the works of Foo and Takefuji [51–53],
Zhou et al [182, 183] and Dagli et al [35]. However, mediocre results have
been obtained and only the work of Sabuncuoglu and Gurgun [141] pro-
duced good results in benchmark tests. Jain and Meeran [84] also presented
a powerful neural network scheme for the JSSP. There are quite a few imple-
mentations of hybrid neural networks with genetic algorithms including the
algorithms of Dagli and Sittisathanchai [36], Lee and Dagli [93] and Yu and
Liang [178]. Among more recent neural network hybrid methods is the work of
Luh et al [105]. The authors combined recurrent neural network optimization
ideas with Lagrangian relaxation for constraint handling to solve the JSSP.
According to their tests, they managed to outperform most neural network im-
plementations presented up to that date. Yang and Wang [176] have presented
an adaptive neural network and heuristics hybrid approach for JSSP. More
specifically they implemented two heuristics that operate in the neural net-
work framework and are used to accelerate the solving process of the neural
network and guarantee its convergence and to obtain non-delay schedules
from the feasible solutions gained by the neural network. Finally, one of the
most recent works in the domain of neural networks for JSSP is the work of
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Fonseca and Navaresse [50] concerning job shop simulation. The proposed
scheme managed to satisfactorily estimate the manufacturing lead times for
orders simultaneously processed in a four-machine job shop. The authors com-
pared their findings with data generated from three well-known simulation
packages (Arena, SIMAN and ProModel) and found out that the manufactur-
ing lead times produced by their scheme turned out to be equally valid.

Concerning Basic Local Search and Explorative Local Search meth-
ods, similarly to the FSSP/PFSP, there are very few implementations where
such methods are used alone (i.e. not as a part of a hybrid algorithm). It
should be mentioned though that, when hybridized, such methods greatly im-
prove the performance of other methods, especially of evolutionary methods.
One of the few implementations was the Greedy Randomized Adaptive Search
Procedure (GRASP) of Resende [136] and the Guided Local Search - Shift-
ing Bottleneck hybrid of Balas and Vazacopoulos [9]. Both algorithms and
especially the one of Balas and Vazacopoulos, have demonstrated very good
performance in the JSSP.

Simulated Annealing, as mentioned in the FSSP section, is one of the
earliest proposed meta-heuristic [87]. The most known implementations of
simulated annealing have been proposed by Matsuo et al [109], Van Laarhoven
et al. [164,165], Aarts et al [1,2], Yamada et al. [175], Sadeh and Nakakuki [142]
and Yamada and Nakano [173, 174]. However, as Jain and Meeran [85] ob-
served, simulated annealing is unable to quickly achieve good solutions to
JSSP problems, perhaps because it is is a generic and memory-less technique.
As a result, academic research focused on hybrid versions of simulated an-
nealing some of which are already mentioned in the previous subsections of
meta-heuristics for the JSSP (e.g. the work of Wang and Zheng [166]). Zhang
et al [180] recently proposed a hybrid simulated annealing - tabu search ap-
proach whose main principle is using simulated annealing to find the elite
solutions inside big valleys so that tabu search can re-intensify search from
the promising solutions. The effectiveness of this method is demonstrated by
the 17 new upper bounds found in benchmark test instances. Finally, a very
recent work on a hybrid simulated annealing algorithm has been conducted by
El-Bouri et al [43]. More specifically, the authors developed a hybrid algorithm
that apart from simulated annealing, it consists of a tabu search and adaptive
memory programming framework. The proposed framework uses two distinct
memories modules: the first memory temporarily prevents further changes in
the configuration of a solution in an effort to maintain the presence of good
solution elements while the second memory aims at tracking good solutions
found during an iteration, so that the best ones can be used as the start-
ing point in a subsequent iteration. The authors compared their algorithm
with the traditional simulated annealing procedure and realized substantial
performance improvements.

Tabu Search (TS) is one of the most powerful meta-heuristics for the
JSSP. This is affirmed by the fact that most state-of-the-art algorithms for
the JSSP include some sort of tabu search functionality. The main strength
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of tabu search is the use of memory that speeds up the solution space search
process. Early implementations of tabu search in JSSP have been conducted
by Taillard [153,156], Barnes and Chambers [13] and Sun et al [151]. One of the
most powerful implementations was proposed by Nowicki and Smutnicki [119].
The computational effectiveness of their TSAB method is demonstrated by the
fact that the notorious FT10 instance was solved in just 30 seconds using a PC
of that era. A later work conducted by Watson et al [168] is based on Nowicki
and Smutnicki’s TSAB algorithm and aims at developing an understanding of
why tabu search is so effective on JSSP. Later hybrid implementations include
Pezzella and Merelli’s [129] hybrid tabu search-shifting bottleneck procedure
where the shifting bottleneck heuristic is initially used to generate schedules
and then to refine solutions in subsequent iterations. Finally, as mentioned in
the simulated annealing for JSSP section, a very recent hybrid tabu search -
simulated annealing method was proposed by Zhang et al [180] which managed
to find new upper bounds for many benchmark instances.

Threshold Accepting algorithms have also been used for JSSP optimiza-
tion but their application is rather limited. One of the first implementations
was proposed by Aarts et al [1] in their computational study of local search
algorithms for JSSP. However, poor results in comparison to other local search
methods were recorded. A variant of the classic threshold accepting algorithm
was proposed by Tarantilis and Kiranoudis [161]. The variant used is named
‘List-Based Threshold Accepting method’ (LBTA) and the authors demon-
strated competitive results. A very important characteristic of this algorithm
is that tuning of only one parameter is needed (namely the list size), thus
making this implementation very easy to tune for a wide variety of problems.
Based on the LBTA method of Tarantilis and Kiranoudis [161], Lee et al [92]
proposed a new version and adopted the probabilistic steepest neighbor selec-
tion strategy to the original LBTA method to compromise between searching
time and neighborhood quality, a strategy aiming at speeding up the search
process.

1.6 The Open Shop Scheduling Problem

The open shop scheduling problem has attracted considerably less attention
from academic researchers than flow shop and job shop scheduling problems,
a fact outlined by the noticeably smaller number of papers in this field. Con-
cerning exact methods for the OSSP, a polynomial time algorithm has been
proposed by Gonzalez and Sahni [63] for the two-machine problem. Brucker
et al [24] developed a branch and bound algorithm for the general m-machine
problem based on the disjunctive graph representation of the problem. The
method was very efficient and some benchmark instances were solved to op-
timality for the first time. Adiri and Aizikowitz [4] presented a linear time
algorithm for the three-machine OSSP, provided that one machine dominates
one of the other two. Algorithms for arbitrary m-machine problems with one
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or two dominating machines are analyzed in Tanaev et al [160]. More re-
cently, Kyparissis and Koulamas [89] presented a polynomial time algorithm
for the two-machine OSSP with the objective of minimizing the total comple-
tion time subject to minimum makespan. They also extended their algorithm
to the three-machine OSSP.

1.6.1 Heuristics for the OSSP

Röck and Schmidt [137] introduced a machine aggregation algorithm for the
generalm-machine OSSP based on the fact that the two-machine cases is poly-
nomially solvable. Some more promising methods focus on ‘dense’ schedules
where no machine is idle unless there is no operation available to be processed
on that machine. Bräsel et al [20] developed some efficient constructive heuris-
tic algorithms based on a structure analysis of the feasible combinations of job
and machine orders. Guéret and Prins [67] presented list scheduling heuristics
with two priorities for each operation, and matching heuristics which are fol-
lowed by a local search improvement procedure. Finally, Liaw [100] introduced
an iterative improvement approach based on a decomposition technique.

1.6.2 Meta-heuristics for the OSSP

Although there are quite a few exact and heuristic methods for the OSSP,
the great difference between the OSSP and the JSSP/FSSP is observed in the
number of meta-heuristic methodologies proposed. Liaw [101] proposed a ro-
bust tabu search algorithm for the OSSP. In this work, Liaw also developed a
dispatching rule for initial solution generation. One year later, a hybrid genetic
algorithm - tabu search algorithm (HGA) for the OSSP was proposed by the
same author [102]. This work was based on the previous work of Liaw on tabu
search for the OSSP and the author managed to improve the results of the first
paper to the point that some benchmark instances were solved to optimality
for the first time. Liaw also compared the results acquired by HGA to those
obtained with list scheduling heuristic, insertion heuristic (IH), simulated an-
nealing and pure TS algorithms and HGA outperformed them all. The same
year, Prins [131] also proposed a genetic algorithm for the OSSP with slightly
worse results than Liaw’s implementation in Taillard’s benchmark instances,
except for some 20x20 problems. A more recent meta-heuristic implementation
for the OSSP was proposed by Blum [18]. More specifically, Blum proposed
a hybrid ant colony optimization with beam search algorithm which outper-
formed both genetic algorithm implementations of Liaw [102] and Prins [131],
rendering the beam-ACO method a state-of-the-art method for OSSP.

Conclusions

In this chapter, the main shop scheduling problems were presented along with
a review of exact, heuristic and meta-heuristic methodologies used to solve
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them. Exact methods fail to solve large instances of these problems in reason-
able computational time while heuristic methods lack the robustness required,
although they induce much less computational effort. Thus, it is not without
reason that late research has mainly focused on meta-heuristic methods for
these hard combinatorial optimization problems.

Concerning current and future research on this field, there are mainly two
trends: the hybridization of single meta-heuristic components to form more
powerful search methods and the use of advanced computational equipment
(i.e. parallel processing). These two trends can be also unified. However, most
importantly, future research should also concentrate on the applicability of any
proposed method in real life scheduling problems. Considering the expansion
of Enterprise Resource Planning (ERP) systems and their applicability in
most production environments, the incorporation of advanced shop scheduling
problem solving methods in ERP systems is of great importance for both
academic research and industrial practice.
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Summary. We address the Identical Parallel Machine Scheduling Problem, one of
the most important basic problems in scheduling theory, and some generalizations
of it arising from real world situations. We survey the current state of the art for the
most performing meta-heuristic algorithms for this class of problems, with special
emphasis on recent results obtained through Scatter Search. We present insights in
the development of this heuristic technique, and discuss the combinatorial difficulties
of the problems through the analysis of extensive computational results.

Key words: Identical Parallel Machine Scheduling, Scatter Search, Local
Search.

2.1 Introduction

Given a set of n jobs j, each having an associated processing time pj (j =
1, . . . , n), and a set of m parallel identical machines i (i = 1, . . . ,m), each of
which can process at most one job at a time, the Identical Parallel Machine
Scheduling Problem calls for the assignment of each job to exactly one machine,
so as to minimize the maximum completion time of a job (makespan). We
assume, as is usual, that 1 < m < n, and that the processing times are positive
integers. The problem is denoted as P||Cmax in the three-field classification by
Graham, Lawler, Lenstra and Rinnooy Kan [23], and is NP-hard in the strong
sense. It is one of the most intensively studied problems in combinatorial
optimization, since it has considerable theoretical interest and arises as a sub-
problem in many real world applications.

The problem is related to another famous combinatorial optimization prob-
lem. In the Bin Packing problem (BPP) we are given n items, each having an
associated size pj (j = 1, . . . , n), and an unlimited number of identical bins
of capacity c: we want to assign each item to one bin, without exceeding its
capacity, so that the number of bins used is minimized. Hence BPP can be
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seen as a “dual” of P||Cmax in which the objective is to minimize the number
of machines needed not to exceed a prefixed makespan c.

In this survey we review recent Scatter Search algorithms for P||Cmax and
two generalizations of it that arise from real world situations. In the next
section we describe the three considered problems. In Section 2.3 we discuss
a general framework for applying Scatter Search to identical parallel ma-
chine scheduling problems, focusing on the most effective components of this
meta-heuristic technique, and detail its use for these problems. The inherent
combinatorial difficulty of the problems and the performance of the Scatter
Search algorithms is analyzed in Section 2.4 through the results of extensive
computational experiments.

2.2 The problems

We first introduce the basic P||Cmax problem, and then derive its two gener-
alizations.

2.2.1 Identical Parallel Machine Scheduling Problem

The problem P||Cmax can be formally stated as an Integer Linear Program-
ming model by introducing a binary variable xij , taking value one if and only
if job j is assigned to machine i (j = 1, . . . , n; i = 1, . . . ,m):

min z (2.1)

s.t.
n∑

j=1

pjxij ≤ z (i = 1, . . . ,m), (2.2)

m∑
i=1

xij = 1 (j = 1, . . . , n), (2.3)

xij ∈ {0, 1} (i = 1, . . . ,m; j = 1, . . . , n), (2.4)

where z is the optimum makespan value.
Although this model can be strengthened by means of valid inequalities

(as shown in Mokotoff [30]), its computational behavior is unsatisfactory from
a practical point of view, due to the high number of variables that take a
fractional value in the solution of its linear programming relaxation.

Exact algorithms with better computational behavior were obtained from
implicit enumeration techniques. Dell’Amico and Martello [11] proposed com-
binatorial lower bounds, dominance criteria and a depth-first branch-and-
bound algorithm based on the following enumeration scheme. The jobs are
sorted so that

p1 ≥ p2 ≥ · · · ≥ pn, (2.5)
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and are assigned to machines by increasing index. Let z̃ denote the incumbent
solution value, and ci (i = 1, . . . ,m) the sum of the processing times currently
assigned to machine i. At level j of the branch-decision tree, at most m nodes
are generated by assigning job j to those machines i such that ci + pj < z̃
(but for each subset of machines having identical ci value, only the one with
minimum index is considered). Computational experiments (see Dell’Amico
and Martello [11,13]) showed a good practical behavior, definitely better than
the one of the algorithm in [30].

Further improvements were obtained by Dell’Amico, Iori, Martello and
Monaci [10] through an algorithm that exploits the dual relationship with the
BPP. Given lower and upper bound L and U (L < U) on the optimal solution
value, the algorithm performs a binary search which, at each iteration, checks
wether there exists a solution with makespan at most c = �(L + U)/2	 (and
updates L or U correspondingly). The core problem is the decision version of
a BPP, which is formulated as a set covering problem and solved through LP
relaxation, column generation and branch-and-price.

Computational evidence shows however that all exact algorithms fail when
addressing large-size instances, hence the problem has received a large atten-
tion from the heuristic point of view. Among the recent relevant contributions
we cite the heuristic algorithm based on a simple exchange neighborhood by
França, Gendreau, Laporte and Müller [16], the multiple exchanges neigh-
borhoods studied by Frangioni, Necciari and Scutellà [17], the Tabu Search
approach by Alvim and Ribeiro [1], the multi-start local search method by
Haouari, Gharbi and Jemmali [24] and finally the Scatter Search algorithm by
Dell’Amico, Iori, Martello and Monaci [10] which is discussed in Section 2.3.1.

2.2.2 Cardinality Constrained Parallel Machine Scheduling
Problem

A well-studied generalization of the P||Cmax arises when the number of jobs
that can be assigned to each machine cannot exceed a given integer k. This
can be modeled by adding to the previous model the constraint:

n∑
j=1

xij ≤ k (i = 1, . . . ,m). (2.6)

The model defined by (2.1)–(2.4) and (2.6) describes what is known in the
literature as the Cardinality Constrained Parallel Machine Scheduling Prob-
lem, denoted as P|# ≤ k|Cmax. Problem P||Cmax is thus the special case of
P|# ≤ k|Cmax arising when k = n−m+ 1 (as there always exists an optimal
solution in which each machine processes at least one job).

Possible applications of this problem arise when m machines (e.g., cells of
a Flexible Manufacturing System, robots of an assembly line) have to perform
n different types of operation. In real world contexts, each machine can have a
limit k on the number of different types of operation it can perform, coming,
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e.g., from the capacity of the cell tool inventory or the number of robot feeders.
If it is imposed that all operations of type j (j = 1, . . . , n) have to be performed
by the same machine, and pj is the total time they require, then P|# ≤ k|Cmax

models the problem of performing all operations with minimum makespan. A
real world P|# ≤ k|Cmax case was presented by Hillier and Brandeau [25], who
studied a printed circuit board assembly process inspired by an application
at Hewlett-Packard. The dual of P|# ≤ k|Cmax is a generalization of BPP in
which a limit k is imposed to the number of items that can be packed into
each bin.

Lower and upper bounds for P|# ≤ k|Cmax were provided by Babel,
Kellerer and Kotov [2] and by Dell’Amico and Martello [12], who also pro-
posed a truncated branch-and-bound algorithm. Felinskas [15] developed ge-
netic algorithms and tested them on the real world case proposed by Hillier
and Brandeau [25]. The Scatter Search algorithm by Dell’Amico, Iori and
Martello [8] is reviewed in Section 2.3.2.

2.2.3 ki-Partitioning Problem

Another interesting generalization (of both P||Cmax and P|# ≤ k|Cmax) is the
ki-Partitioning Problem (ki-PP), introduced by Babel, Kellerer and Kotov [2].
In this case each machine i has a specific cardinality limit ki (i = 1, . . . ,m).
The problem is thus modeled by (2.1)–(2.4), and

n∑
j=1

xij ≤ ki (i = 1, . . . ,m). (2.7)

In the special case where ki = k for i = 1, . . . ,m the problem coincides with
P|# ≤ k|Cmax.

Possible applications of this problem arise again in Flexible Manufacturing
System, when the cells are not identical. The dual of ki-PP is a generalization
of BPP in which the bins are numbered by consecutive integers, the first m
bins have limits ki (i = 1, . . . ,m) on the number of items that can be packed
into them, and all other bins have this limit set to one.

Lower bounds, reduction methods, constructive heuristics and a partic-
ular lower bound computation based on column generation were developed
by Dell’Amico, Iori, Martello and Monaci [9]. The Scatter Search algorithm
proposed by the same authors is described in Section 2.3.3.

2.3 Scatter Search

Scatter Search originates from heuristics for integer programming developed
by Glover [18] in the Seventies. Several books and surveys on this methodology
can be found in the literature. The reader is referred to the recent survey by
Mart́ı, Laguna and Glover [28] and to the special issue of European Journal of
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Operational Research edited by Mart́ı [14]. Scatter Search can be defined as a
population based meta-heuristic that operates on a set of “good” solutions, the
reference set RS, and iteratively creates new solutions by combining subsets
of RS. These new solutions are possibly used to periodically update RS and
the final outcome is the best solution obtained during the search process.

Most implementations of Scatter Search algorithms are based on the tem-
plate formalized for the first time in Glover [19]. Candidate solutions for the
reference set are evaluated on the basis of two criteria: quality and diversity.
The quality of a solution s coincides or is strictly related to its value, denoted
in the following as z(s), while its diversity is a relative measure indicating how
much its structure differs from that of the solutions that are currently in the
reference set. Since the new solutions are created by combining solutions of
RS, diversity is a crucial tool for giving a Scatter Search algorithm the possi-
bility of continuously diversifying the search to efficiently explore the solution
space.

A concise formulation of the template is as follows:

1. generate a starting population P of good solutions;
2. create the initial reference set RS by selecting from P a number of solu-

tions on the basis of their quality and their diversity;
3. while a stopping criterion is not met do

3.1 generate a family of subsets of solutions from RS;
3.2 for each subset S of the family do

3.2.1 combine the solutions in S so as to obtain a set of new solutions;
3.2.2 improve each new solution;
3.2.3 add to RS the solutions that meet a quality or diversity criterion
end for

end while.

Five main issues have to be dealt with, when developing a Scatter Search
algorithm:

A. Starting population (Step 1.). The population should consist of high
quality solutions that differ consistently from one another. It can be con-
structed in a totally random way or using heuristics. It is generally con-
venient to apply an improvement algorithm to each such solution. For
the scheduling problems we are considering, Scatter Search appears to be
quite robust with respect to the initial population, provided that enough
CPU time is given to the overall algorithm.

B. Improvement (Steps 1. and 3.2.2). Local search and post optimization are
frequently used to improve the solutions quality. Similarly to what hap-
pens in the intensification phase of other meta-heuristic approaches, the
balance between computational effort and effectiveness may affect dramat-
ically (in positive or in negative) the behavior of the overall algorithm.

C. Reference set update (Steps 2. and 3.2.3). The reference set is typically
the union of a set Q of high quality solutions and a set D of solutions
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highly different from those in Q and from one another. The reference
set is usually quite small, typically containing 20 to 30 solutions. Two
updating methods are common. A dynamic method updates RS as soon
as a solution meets the required quality or diversity criterion, while in a
static method updating only occurs when all generated subsets have been
handled.

D. Subset generation (Step 3.1). The method adopted to select a subset of
solutions to be combined together can have a relevant effect on the compu-
tational effort spent at each iteration of Step 3. Selecting a high number of
subsets generally produces, at Step 3.2.1, a high number of new candidate
solutions, hence a deep exploration of the current reference set.

E. Solution combination (Step 3.2.1). For each subset of solutions, one or
more new candidate solutions are produced through combination. This
is frequently a crucial aspect of Scatter Search. Specifically tailoring the
combination method to the problem can considerably improve the con-
vergence to high quality solutions.

The initial generation method, the improvement algorithms and the solu-
tion combination method developed for the three problems we are considering
were specifically tailored to the problems, hence are discussed in the next sec-
tions. For the reference set update and for the subset generation instead,
although several approaches were attempted, it turned out that the most ef-
ficient choices were common to the three cases.

Concerning the reference set update (issue C. above), the dynamic method
was always used, with different values for |Q| and |D|.

The subset generation method (issue D. above) always followed the clas-
sical approach proposed by Mart́ı, Laguna and Glover [28], which consists
in generating: (i) all the two-solution subsets; (ii) the three-solution subsets
obtained by adding to each two-solution subset the solution of highest qual-
ity not already contained in it; (iii) the four-solution subsets obtained by the
three-solution subsets in the same way as for (ii); (iv) the |RS| − 4 subsets
containing the best s solutions, for s = 5, 6, . . . , |RS|.

In the next sections we detail the specific methods adopted, for issues A.,
B., and E. above, in the three considered problems.

2.3.1 Scatter Search for P||Cmax

In the scatter search algorithm proposed by Dell’Amico, Iori, Martello and
Monaci [10], a starting population of |P| = 40 solutions was generated
through a number of approximation algorithms (see Mokotoff [29], Brucker [3],
Leung [27] and Chen [5] for recent surveys on the huge literature on heuristics
for P||Cmax). The algorithms used were in particular the well-known Longest
Processing Time algorithm by Graham [21,22], algorithm Multi-Subset, a two-
phase approach by Dell’Amico and Martello [11] and other two-phase algo-
rithms proposed by Mokotoff, Jimeno and Gutiérrez [31].
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The improvement method adopted was a k − 	 swap procedure, used to
swap up to k jobs assigned to a machine with up to 	 jobs assigned to another
one, when this leads to decrease the makespan restricted to such two machines.
Extensive computational experiments showed that exchanging single jobs (k =
	 = 1) gives modest improvements to the solutions quality, exchanging single
jobs and pairs of jobs (k = 	 = 2) has the best balance between CPU time
and efficacy, while higher values of k and/or 	 produce limited improvements
at the expenses of a considerable running time increase.

The reference set RS was composed by the |Q| = 10 solutions with min-
imum makespan and by the |D| = 8 solutions with highest diversity. The
diversity of a solution was measured as follows. Given two jobs j and l (l > j)
and two solutions s 
∈ RS and t ∈ RS, let

δjl(s, t) =

⎧⎨⎩
1 if j and l are processed on the same machine in s

and on different machines in t, or vice versa;
0 otherwise,

(2.8)

and define the diversity of s with respect to RS as

d(s) = min
t∈RS

⎧⎨⎩
ñ−1∑
j=1

ñ∑
l=j+1

δjl(s, t)

⎫⎬⎭ , (2.9)

where ñ = min(n, 4m) is used to limit the evaluation to the largest (hence,
most critical) processing times. An accurate definition of the diversity can
help in avoiding useless computations. In this case, if RS contains a solution
s equivalent to s (i.e., that can be obtained from s by just permuting the
machines) equation (2.8) gives δij(s, s) = 0 for all i and j, so, in (2.9), d(s)
has its minimum (of value 0) for t = s and s is not added to RS.

From each subset S generated at Step 3.1, new solutions are generated
as follows. For each pair of jobs (j, l) (j, l ≤ ñ), let Sjl be the subset of S
containing those solutions in which j and l are processed on the same machine,
and define the sum of the inverse relative errors of such solutions:

ϕjl =
∑

s∈Sjl

L

z(s) − L
, (2.10)

where L denotes the best lower bound value available. (Observe that ϕjl tends
to be high when j and l are processed on the same machine in many good
solutions.) A pair (j, l) is then selected with probability proportional to ϕjl,
and assigned to the machine of lowest index i for which the current completion
time ci satisfies ci +pj +pl ≤ L. If no such machine exists, j and l are assigned
to the machine i with minimum ci. The process is iterated until a complete
solution s is obtained.
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2.3.2 Scatter Search for P|# ≤ k|Cmax

A scatter search algorithm for P|# ≤ k|Cmax was proposed by Dell’Amico,
Iori and Martello [8]. The starting population was obtained by generating
|P| = 80 totally random solutions. Attempts to initialize it through a heuris-
tic algorithm by Babel, Kellerer and Kotov [2] or through adaptations of the
Multi-Subset algorithm by Dell’Amico and Martello [11] gave limited improve-
ments.

The improvements were obtained through: (i) the k − 	 swap procedure
described in Section 2.3.1 with k = 	 = 1 (implying that only shifts of single
jobs from one machine to another, and one to one job exchanges between pairs
of machines were attempted); (ii) a re-optimizing procedure that iteratively
fixes the jobs assigned to one machine, and runs a heuristic to schedule the
remaining jobs onm−1 machines. Additional specially tailored heuristics were
also executed for special instances satisfying n = mk (known as k-partitioning,
see Babel, Kellerer and Kotov [2]), which are particularly difficult to solve in
practice.

The reference set RS was composed by the |Q| = 8 solutions with min-
imum makespan and by the |D| = 7 solutions with highest diversity. The
evaluation of the diversity of a solution was implemented in a simpler way
with respect to P||Cmax. Let yj(s) be the machine job j is assigned to in
solution s. Then the diversity of s with respect to RS is

d(s) = min
t∈RS

∣∣∣ {
j ∈ {1, . . . , ñ} : yj(s) 
= yj(t)

}∣∣∣ (2.11)

with ñ = 2m. Using this definition, the reference set update is much faster
than using (2.9), but the risk exists of having equivalent solutions in RS.

The combination method was as follows. Given a subset S ⊆ RS generated
at Step 3.1, let S(i, j) ⊆ S be the set of solutions of S in which job j is assigned
to machine i, and define an m× n matrix F with

Fij =
∑

s∈S(i,j)

z(s)
z(s) − L

(2.12)

A job-machine pair (i, j) has thus an high Fij value if j is processed on i in
many high quality solutions. The meaning of Fij in (2.12) is similar to that of
ϕjl in (2.10). Three solutions are then created through the following random
process. For j = 1, . . . , n, job j is assigned to to machine i with probability
Fij/

∑m
h=1 Fhj . If this makes machine i to have k jobs assigned, Fil is set to

zero for l = 1, . . . , n in order to prevent the selection of i at the next iterations.
The solution of minimum makespan among the three new solutions is then
improved through the local search procedures mentioned above.
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2.3.3 Scatter Search for ki-PP

The scatter search algorithm by Dell’Amico, Iori, Martello and Monaci [9]
starts by randomly generating and improving an initial population of |P| =
100 solutions.

Concerning the improvement, the algorithms adopted for P|# ≤ k|Cmax

were generalized to the considered case of different ki values.
The reference set RS had |Q| = 10 solutions with lowest makespan, and

|D| = 8 solutions with high diversity.
The diversity of a solution s with respect to RS was computed as in (2.11).

In this case, the advantage of a quick reference set update was preserved
with a very limited risk (with respect to P|# ≤ k|Cmax) of having equivalent
solutions in RS, as in ki-PP the machines are not identical, due to the different
ki values. Also the combination method was very similar to the one adopted
for P|# ≤ k|Cmax, the only difference being in the number of random solutions
generated.

2.4 Computational Results

We give here a concise exposition of the computational results obtained by the
Scatter Search algorithms described in Section 2.3. In Section 2.4.1 we sum-
marize the main results presented in [8–10] on the three problems addressed,
comparing the Scatter Search algorithms with greedy heuristics, local search
and exact methods. In Section 2.4.2 we concentrate on P||Cmax, and com-
pare the Scatter Search algorithm with the most successful meta-heuristics
in the literature. In Section 2.4.3 we evaluate the behavior of the three Scat-
ter Search algorithms on the same set of P||Cmax instances (remind that the
two other problems are generalizations of P||Cmax). We conclude with Section
2.4.4, where we give some details on the parameters tuning.

2.4.1 Scatter Search vs simple heuristics and exact algorithms

We compare in this section the performance of the three Scatter Search al-
gorithms introduced in Section 2.3 with that of the most well-known greedy
heuristics for these three parallel machine scheduling problems, and with three
exact approaches consisting in executing, after the Scatter Search, an implicit
enumeration algorithm. The heuristics can be classified into three categories:
List Scheduling, Threshold and Mixed.

List Scheduling Heuristics initially sort the jobs according to a prespecified
criterion, and then assign them to the machines, one at a time, following a
given rule. For P||Cmax the most famous heuristic of this kind is the Longest
Processing Time (LPT) by Graham [21], which sorts the jobs according to
non-increasing processing time, and then iteratively assigns the next job to
the machine having the minimum current completion time. It is known from
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the probabilistic analysis by Coffman, Lueker and Rinnooy Kan [7] that, if
certain conditions on the processing times are satisfied, the solution produced
by LPT is asymptotically optimal. In [12] and [9], LPT was generalized to
P|# ≤ k|Cmax and ki-PP, respectively, by imbedding in it the cardinality
constraints.

Threshold Heuristics exploit the “duality” with BPP defined in Section
2.1. These algorithms consider a tentative value c for the optimum makespan,
and solve the corresponding BPP instance, with bin capacity c, using one or
more BPP heuristics. If not all items are assigned to them bins, the remaining
items are added through a greedy method. The process is possibly iterated
by adjusting the threshold value on the basis of the solution obtained in
the current attempt. Examples of threshold algorithms for P||Cmax are the
Multi-Subset (MS ) method by Dell’Amico and Martello [11], the Multi Fit
algorithm (MF ) by Coffman, Garey and Johnson [6], and the ε-dual method
by Hochbaum and Shmoys [26]. Algorithm MS was adapted to P|# ≤ k|Cmax

and ki-PP, respectively in [12] and [9].
Mixed Heuristics combine list scheduling and threshold techniques, by

switching from one to another during the construction process. Several mixed
heuristics were proposed by Mokotoff, Jimeno and Gutiérrez [31] for P||Cmax,
and generalized to ki-PP in [9].

In Tables 2.1–2.3 we compare the results given by the heuristics above and
by the Scatter Search. The last column of each table shows the improvement
that was obtained by executing an exact algorithm on the instances that had
not been solved to optimality by the Scatter Search. For each algorithm we
give the percentage of cases where the algorithm found the best solution with
respect to the other algorithms (%best), the percentage of cases where the
algorithm found the optimal solution (%opt) and the percentage gap between
the solution found by the algorithm and the best lower bound (%gap).

In Table 2.1 we compare the results obtained on P||Cmax instances by the
Scatter Search algorithm of Section 2.3.1 and by heuristics from the literature.
The table summarizes the results obtained on two classes of classical P||Cmax

benchmarks: uniform instances, proposed by França, Gendreau, Laporte and
Müller [16], and non-uniform instances, proposed by Frangioni, Necciari and
Scutellà [17]. For a given range [a, b], in the former class each processing time

Table 2.1: Overall performance of heuristics, Scatter Search, and Scatter Search
followed by branch-and-price on 780 P||Cmax instances.

List Mixed Threshold Scatter Scatter Search +
Scheduling Heuristics Heuristics Search Branch-and-Price

%best 21.9 30.9 79.1 97.7 100.0
%opt 21.9 30.9 79.1 97.7 100.0
%gap 0.54 0.36 0.05 0.01 0.00
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is uniformly randomly generated in [a, b], while in the latter class 98% of
the processing times are uniformly randomly generated in [0.9(b − a), b] and
the remaining ones in [a, 0.2(b − a)]. The considered values were, for both
classes, a = 1 and b ∈ {100, 1000, 10000}. The test instances were obtained by
considering all pairs (m,n), with m ∈ {5, 10, 25}, n ∈ {10, 50, 100, 500, 1000}
and m < n, and generating ten instances per pair, resulting in a total of 780
instances3).

The experiments were performed on a Pentium IV 3 GHz. The heuristics
usually needed less than one CPU second. The Scatter Search was allowed
a maximum time limit of 30 seconds for n ≤ 50, and of 120 seconds for
n > 50. The branch-and-price algorithm never exceeded one hour CPU time.
The table shows that the Scatter Search clearly outperforms all the classical
heuristics with respect to the percentages of best and optimal solutions and
to the percentage gap from the best lower bound. The last column shows that
the improvement obtained by executing the exact branch-and-price algorithm
(see [10]) after the Scatter Search is limited, but it allows to solve all instances
to optimality.

In Table 2.2 we compare heuristics for P|# ≤ k|Cmax with the Scat-
ter Search algorithm of Section 2.3.2. The experiments were performed on
a large set of fifteen classes of randomly generated instances (twelve proposed
by Dell’Amico and Martello [12], and three added by Dell’Amico, Iori and
Martello [8]). The first nine classes were obtained by generating the pj values
according to, respectively: (i) uniform distributions in [10, 1000], [200, 1000]
and [500, 1000] (Classes 1-3); (ii) exponential distributions with average value
µ = 25, 50, 100 (Classes 4-6); (iii) normal distributions with average value
µ = 100 and standard deviation σ = 33, 66, 100 (Classes 7-9). The other
six classes were generated as k−partitioning instances (with n = km): (iv)
in Classes 10-12 the pj values were uniformly distributed in [500, 10000],
[1000, 10000] and [1500, 10000]; (v) in the additional Classes 13-15 they were
generated as “perfect packing” instances (i.e., instances for which the optimal
solution value z satisfies z =

∑n
j=1 pj/m), with z = 1000, 5000, 10000. For

each class, different instances were created, involving up to 50 machines and
400 jobs, and having cardinality limit values up to 50. In total, 9420 instances
were generated.

The algorithms were run on a Pentium IV 2.4 GHz. For most of the in-
stances the complete execution of all the algorithms (including branch-and-
bound) needed few seconds in total, and it never exceeded 4 CPU minutes.
The Scatter Search was halted if during the last iteration no new solution
entered the reference set, or after a maximum of 10 iterations of Step 3. (see
the template of Section 2.3). In this case too the Scatter Search clearly out-
performs the classical heuristics in terms of percentage of best and optimal
solutions found and percentage gap. Running a branch-and-bound algorithm

3 http://www.inf.puc-rio.br/∼alvim/adriana/tese.html
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after the Scatter Search only leads to an improvement of 0.5% in %best, and
of 0.2% in %opt.

In Table 2.3 we finally compare the Scatter Search algorithm of Section
2.3.3 with classical heuristics for ki-PP. The algorithms were run on 81 classes
of test problems obtained by combining in all possible ways nine weight
classes for the generation of the pj values and nine cardinality classes for
the generation of the ki values. The weight classes were the first nine classes
adopted in [12] for P|# ≤ k|Cmax, and described above. The first six car-
dinality classes were characterized by a limited range of cardinality limits,
obtained by uniformly randomly generating the ki values so as to ensure
�n/m� − 1 ≤ ki ≤ �n/m� + 3 for i = 1, . . . ,m. The last three cardinality
classes were characterized by more sparse ki values, obtained through a par-
ticular generation procedure (see [9] for a more detailed description). The
algorithms were tested on instances with up to 400 jobs and 50 machines, for
a total of 25110 test problems.

The computational experiments were performed on a Pentium III 1.133
GHz. The Scatter Search was halted if either (i) no reference set update oc-
curred during the last iteration, or (ii) Step 3. was executed α times (with
α = 10 for n < 100, α = 5 for 100 ≤ n < 400 and α = 1 for n ≥ 400). The al-
gorithms usually needed no more than 10 CPU seconds in total, although this
limit could occasionally increase to 500 CPU seconds for particularly difficult
instances. The considerations seen for P|# ≤ k|Cmax apply to this case too.
The Scatter Search consistently improves the behavior of the classical heuris-
tics. Adding an exact approach (in this case, a column generation algorithm)
only leads to small improvements in the solution quality.

2.4.2 Comparison of meta-heuristic algorithms for P||Cmax

In this section we compare the performance of the Scatter Search algorithm for
P||Cmax (see Section 2.3.1) with that of other meta-heuristic algorithms. The
reason for restricting our attention to problem P||Cmax is that this is the only
problem, among the three considered here, for which a clear computational
comparison with other meta-heuristics from the literature is possible.

According to our knowledge, the other most successful meta-heuristic al-
gorithms for P||Cmax are the Tabu Search approach by Alvim and Ribeiro [1]

Table 2.2: Overall performance of heuristics, Scatter Search and Scatter Search fol-
lowed by branch-and-bound on 9420 P|# ≤ k|Cmax instances.

List Threshold Scatter Scatter Search +
Scheduling Heuristics Search Branch-and-Bound

%best 20.2 32.5 99.5 100.0
%opt 20.1 32.5 82.2 82.4
%gap 1.65 6.40 0.05 0.05
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Table 2.3: Overall performance of heuristics, Scatter Search and Scatter Search fol-
lowed by column generation on 25110 ki-PP instances.

List Mixed Threshold Scatter Scatter Search +
Scheduling Heuristics Heuristics Search Column Generation

%best 4.1 8.3 62.6 99.1 100.0
%opt 4.1 8.2 61.2 88.9 89.7
%gap 3.17 1.12 28.5 0.01 0.01

and the multi-start local search method by Haouari, Gharbi and Jemmali [24].
The algorithm in [1] operates by iteratively defining a tentative threshold for
the optimum makespan and solving the associated bin packing problem (see
Section 2.1) through a specialized Tabu Search. The algorithm proposed in [24]
is based on iterated solutions of a subset-sum problem for assigning jobs to
one machine at a time. (Given a set S of n integers, the subset-sum problem
is to find a subset S′ ⊆ S such that the sum of the values in S′ is closest to,
without exceeding, a given integer c.)

Other interesting results in the meta-heuristic field are the simple exchange
neighborhood by França, Gendreau, Laporte and Müller [16], and the multiple
exchange neighborhoods studied by Frangioni, Necciari and Scutellà [17]. We
do not refer explicitly to these results, as the quality of the solutions they
provide is generally worse than that given by the meta-heuristics above.

In Tables 2.4 and 2.5 we compare the three meta-heuristics on the uniform
and non-uniform benchmark instances for P||Cmax described in Section 2.4.1.
The entries give: (i) the average percentage gap between the solution value
found and the best lower bound (%gap); (ii) the average CPU time spent
(sec); (iii) the total number of optimal solutions found (#opt). Each entry
refers to 50 instances for m = 5 (10 instances each for n = 10, 50, 100, 500,
1000) and to 40 instances for m > 5 (10 instances each for n = 50, 100, 500,
1000). We also give the average and total values over the 130 instances of each
range, and over the complete set of 390 instances.

The algorithm by Alvim and Ribeiro [1] was run on a Pentium II 400 MHz
with 256 MB RAM. The algorithm by Haouari, Gharbi and Jemmali [24] was
run on a Pentium IV 3.2 GHz with 1.5 GB RAM, and the %gap values were
evaluated with respect to a better lower bound than the one used for the two
other algorithms. The Scatter Search algorithm by Dell’Amico, Iori, Martello
and Monaci [10] was run on a Pentium IV 3 GHz with 512 MB RAM.

The two competitors are faster than the Scatter Search, especially for
uniform instances (although all CPU times are very reasonable), but the solu-
tions provided by the Scatter Search are clearly better: the number of optimal
solutions found is considerably higher and the percentage gap lower.
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2.4.3 Comparison among Scatter Search algorithms

Since both P|# ≤ k|Cmax and ki-PP are generalizations of P||Cmax, the three
Scatter Search algorithms we considered can all be executed on P||Cmax in-
stances. In order to evaluate the relative merits of the general structure of
these algorithms (which is quite similar for the three cases) and of the differ-
ent specializations adopted to handle the specific constraints, we performed
a new series of experiments by executing the Scatter Search algorithms for
P|# ≤ k|Cmax and ki-PP on the same instances used in Table 2.1 for the
evaluation of the P||Cmax Scatter Search. The results obtained are presented
in Tables 2.6 and 2.7, as average values on a total of 390 instances per table.
The information provided is the same as in the tables of the previous section.

The results for the P||Cmax Scatter Search were directly taken from [10].
The results for the two other Scatter Search algorithms were obtained by
running the corresponding codes on the same computer used in [10], namely a
Pentium IV 3 GHz, without varying the termination criteria adopted as best
choices for the particular problems addressed.

The tables highlight the relevance of the specializations induced in the
algorithms by the cardinality constraints. In Table 2.6 the Scatter Search for
P||Cmax clearly outperforms the ones for P|# ≤ k|Cmax and ki-PP in terms
of solution quality (19 not-optimal solutions versus, respectively, 30 and 29),
although it needs a larger CPU time. All the percentage gaps are very small.
In Table 2.7 the differences in the solution quality become more evident, since

Table 2.4: Meta-heuristic results on 390 P||Cmax uniform instances.

Alvim and Ribeiro Haouari et al. Scatter Search

Range m %gap sec #opt %gap sec #opt %gap sec #opt

5 0.0000 0.00 50 0.0000 0.02 50 0.0000 0.00 50
[1, 102] 10 0.0000 0.00 40 0.0000 0.03 40 0.0000 0.00 40

25 0.0227 0.00 39 0.0453 0.04 38 0.0227 0.75 39

Average/Total 0.0070 0.00 129 0.0139 0.03 128 0.0070 0.23 129

5 0.0000 0.01 50 0.0000 0.08 50 0.0000 0.03 50
[1, 103] 10 0.0019 0.02 38 0.0000 0.09 40 0.0000 0.04 40

25 0.0322 0.02 37 0.0897 0.10 32 0.0311 5.86 38

Average/Total 0.0105 0.02 125 0.0276 0.09 122 0.0096 1.82 128

5 0.0408 0.04 48 0.0406 0.42 48 0.0334 0.05 49
[1, 104] 10 0.0026 0.08 30 0.0021 0.32 30 0.0004 4.64 36

25 0.0536 0.17 29 0.0257 0.19 28 0.0479 30.79 29

Average/Total 0.0330 0.09 107 0.0242 0.32 106 0.0277 10.92 114

Overall 0.0168 0.04 361 0.0219 0.15 356 0.0147 4.32 371
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Table 2.5: Meta-heuristic results on 390 P||Cmax non-uniform instances.

Alvim and Ribeiro Haouari et al. Scatter Search

Range m %gap sec #opt %gap sec #opt %gap sec #opt
5 0.0000 0.01 50 0.0000 0.06 50 0.0000 0.04 50

[1, 102] 10 0.1981 0.13 32 0.0000 0.09 40 0.0000 0.04 40
25 0.0334 0.20 38 0.0000 0.14 40 0.0000 0.37 40

Average/Total 0.0712 0.11 120 0.0000 0.09 130 0.0000 0.14 130

5 0.0000 0.01 50 0.0000 0.15 50 0.0000 0.04 50
[1, 103] 10 0.0000 0.12 40 0.0000 0.19 40 0.0000 0.06 40

25 0.0335 0.41 38 0.0000 0.62 40 0.0000 0.29 40

Average/Total 0.0103 0.17 128 0.0000 0.31 130 0.0000 0.12 130

5 0.0000 0.01 50 0.0000 0.74 50 0.0000 0.05 50
[1, 104] 10 0.0001 0.16 38 0.0002 0.56 37 0.0000 0.05 40

25 0.0338 1.91 33 0.0007 4.11 30 0.0002 10.95 37

Average/Total 0.0104 0.64 121 0.0003 1.72 117 0.0001 3.40 127

Overall 0.0306 0.31 369 0.0001 0.71 377 0.0000 1.22 387

the Scatter Search for P||Cmax only misses 3 optimal solutions, against the
19 and 18 missed by the two other Scatter Search algorithms. The largest
average CPU times were required by the Scatter Search for ki-PP, while the
two other algorithms needed on average about one CPU second. The uniform
instances appear to be a more difficult test bed than the non-uniform ones,
showing a larger average gap and a smaller total number of optimal solutions.

On the other hand we can observe that the Scatter Search template
we adopted appears to be very robust. The Scatter Search algorithms for
P|# ≤ k|Cmax and ki-PP, when executed on P||Cmax instances, obtain very
good results, not too far from the best performance obtained, as it could be
expected, by the Scatter Search specifically tailored for this problem.

2.4.4 Parameters Tuning

We finally comment the parameters tuning within the Scatter Search frame-
work, by particularly focusing on the P||Cmax algorithm of Section 2.3.1, and
reviewing the tuning process with reference to the five main points outlined
in Section 2.3.

Starting Population. The size of the initial pool of solutions was set to
40, after having tried the values 30, 50, 60, 70 and 100. The algorithm is
very robust with respect to this parameter, i.e., all values produced results of
comparable quality.

Improvement. The algorithm is very sensitive to this parameter. Limiting
the k − 	 swap to k = 	 = 1 lead to a non satisfactory performance in which
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Table 2.6: Scatter Search algorithms on 390 P||Cmax uniform instances.

Scatter Search Scatter Search Scatter Search
for P||Cmax for P|# ≤ k|Cmax for ki-PP

Range m %gap sec #opt %gap sec #opt %gap sec #opt

5 0.0000 0.00 50 0.0000 0.00 50 0.0000 0.00 50
[1, 102] 10 0.0000 0.00 40 0.0000 0.00 40 0.0000 0.00 40

25 0.0227 0.75 39 0.0225 0.01 39 0.0225 0.02 39

Average/Total 0.0070 0.23 129 0.0069 0.00 129 0.0069 0.01 129

5 0.0000 0.03 50 0.0000 0.00 50 0.0000 0.00 50
[1, 103] 10 0.0000 0.04 40 0.0021 0.01 38 0.0021 0.23 38

25 0.0311 5.86 38 0.0320 0.05 38 0.0320 0.75 38

Average/Total 0.0096 1.82 128 0.0105 0.02 126 0.0105 0.30 126

5 0.0334 0.05 49 0.0330 0.01 46 0.0329 0.08 47
[1, 104] 10 0.0004 4.64 36 0.0138 0.05 30 0.0091 1.02 30

25 0.0479 30.79 29 0.0695 0.39 29 0.0658 5.95 29

Average/Total 0.0277 10.92 114 0.0383 0.14 105 0.0357 2.18 106

Overall 0.0147 4.32 371 0.0186 0.05 360 0.0177 0.83 361

only 734 optimum values out of 780 instances were found. Using k = 	 = 2
produced the final result (758 optima). Further enlarging the local search
with k = 	 = 3 very slightly decreased the percentage gap without finding
new optima, but required a consistently higher CPU time.

Reference Set Update. Updating the reference set as soon as a solution with
high quality or high diversity is found lead to better solutions than updating
it at the end of the iteration. Varying the sizes of the two subsets Q and D in
the ranges 8 ≤ |Q| ≤ 12 and 6 ≤ |D| ≤ 10 did not produce relevant variations.

Subset Generation Method. The final choice reported in [10] was to adopt
the method proposed by Glover, Laguna and Mart́ı [20] (see Section 2.3).
Considering a more limited number of subsets lead to slightly worse perfor-
mances.

Solution combination. For each subset, the policy of obtaining a single new
solution by combination proved to be better than that of generating more (2,
3 or 4) new solutions. The diversity function (2.9) outperformed (2.11), since
solutions in which the same groups of jobs are assigned to different machines
are not identified as identical by the latter function. Similar arguments hold
for the combination method, as the one adopted in [10] outperformed the one
in [8]. Other methods such as, e.g., using matrix ϕ (see (2.10)) to choose only
one job at a time, lead to slightly worse results. The solution combination
method turned out to be very important, since the Scatter Search algorithm
is particularly sensitive to this aspect.
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Table 2.7: Scatter Search algorithms on 390 P||Cmax non-uniform instances.

Scatter Search Scatter Search Scatter Search
for P||Cmax for P|# ≤ k|Cmax for ki-PP

Range m %gap sec #opt %gap sec #opt %gap sec #opt

5 0.0334 0.05 49 0.0330 0.01 46 0.0329 0.08 47
[1, 102] 10 0.0004 4.64 36 0.0138 0.05 30 0.0091 1.02 30

25 0.0479 30.79 29 0.0695 0.39 29 0.0658 5.95 29

Average/Total 0.0000 0.14 130 0.0000 1.02 130 0.0000 2.07 130

5 0.0000 0.04 50 0.0000 0.01 50 0.0000 0.18 50
[1, 103] 10 0.0000 0.04 40 0.0000 0.17 40 0.0000 1.69 40

25 0.0000 0.37 40 0.0000 3.14 40 0.0000 4.81 40

Average/Total 0.0000 0.12 130 0.0000 0.52 130 0.0000 2.21 130

5 0.0000 0.04 50 0.0000 0.02 50 0.0000 0.36 50
[1, 104] 10 0.0000 0.06 40 0.0000 0.26 40 0.0000 2.70 40

25 0.0000 0.29 40 0.0000 1.42 40 0.0000 4.03 40

Average/Total 0.0001 3.40 127 0.0006 1.43 111 0.0004 3.96 112

Overall 0.0000 1.22 387 0.0002 0.99 371 0.0001 2.75 372

2.5 Conclusions

We presented a survey on heuristic results for the well-known Identical Par-
allel Machine Scheduling Problem and for two generalizations of practical
relevance, known as the Cardinality Constrained Parallel Machine Schedul-
ing Problem and the ki-Partitioning Problem. The problems are particularly
challenging from the heuristic point of view, since they present very low per-
centage gaps between the lower bounds and the upper bounds found by the
classical heuristics from the literature. Hence the room for improvement is
quite limited.

We described three Scatter Search approaches for these problems, high-
lighting their common components and their differences. We evaluated the
behavior of these algorithms by summarizing the results of extensive compu-
tational experiments from the literature, and by presenting new results. The
Scatter Search algorithms consistently improve on the results found by the
classical heuristics. Using different exact methods leads to limited improve-
ments. A test of the three algorithms on the same set of instances shows that
the general approach is very robust.

A possible extensions could be to include Scatter Search in frameworks for
parallel machine computing, such as, e.g., the one proposed by Cahon, Melab
and Talbi [4].
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We thank the Ministero dell’Università e della Ricerca (MIUR) Italy, for the
support given to this project. Thanks are also due to two anonymous ref-
erees for helpful comments. The computational experiments have been exe-
cuted at the Laboratory of Operations Research of the University of Bologna
(Lab.O.R.).

References

1. A.C.F. Alvim and C.C. Ribeiro. A hybrid bin-packing heuristic to multiproces-
sor scheduling. In C.C. Ribeiro and S.L. Martins, editors, Lecture Notes in
Computer Science, volume 3059, pages 1–13. Springer-Verlag, Berlin, 2004.

2. L. Babel, H. Kellerer, and V. Kotov. The k-partitioning problem. Mathematical
Methods of Operations Research, 47:59–82, 1998.

3. P. Brucker. Scheduling Algorithms. Springer-Verlag, New York, 2001.
4. S. Cahon, N. Melab, and E.-G. Talbi. Paradiseo: A framework for the

reusable design of parallel and distributed meta-heuristics. Journal of Heuris-
tics, 10(3):357–380, 2004.

5. B. Chen. Parallel scheduling for early completion. In J.Y.T. Leung, editor,
Handbook of Scheduling: Algorithms, Models, and Performance Analysis, chap-
ter 9, pages 175–184. CRC Press, Boca Raton, FL, 2004.

6. E.G. Coffman, M.R. Garey, and D.S. Johnson. An application of bin-packing
to multiprocessor scheduling. SIAM Journal on Computing, 7:1–17, 1978.

7. E.G. Coffman, G.S. Lueker, and A.H.G. Rinnooy Kan. Asymptotic methods
in the probabilistic analysis of sequencing and packing heuristics. Management
Science, 34:266–290, 1988.

8. M. Dell’Amico, M. Iori, and S. Martello. Heuristic algorithms and scatter search
for the cardinality constrained P ||Cmax problem. Journal of Heuristics, 10:
169–204, 2004.

9. M. Dell’Amico, M. Iori, S. Martello, and M. Monaci. Lower bounds and heuristic
algorithms for the ki-partitioning problem. European Journal of Operational
Research, 171:725–742, 2006.

10. M. Dell’Amico, M. Iori, S. Martello, and M. Monaci. Heuristic and exact algo-
rithms for the identical parallel machine scheduling problem. INFORMS Journal
on Computing, 2007 (to appear).

11. M. Dell’Amico and S. Martello. Optimal scheduling of tasks on identical parallel
processors. ORSA Journal on Computing, 7:191–200, 1995.

12. M. Dell’Amico and S. Martello. Bounds for the cardinality constrained P ||Cmax

problem. Journal of Scheduling, 4:123–138, 2001.
13. M. Dell’Amico and S. Martello. A note on exact algorithms for the identical

parallel machine scheduling problem. European Journal of Operational Research,
160:576–578, 2005.

14. R. Mart́ı (ed.). Feature Cluster on Scatter Search Methods for Optimization.
European Journal of Operational Research, 169, 2, 2006.

15. G. Felinskas. An investigation of heuristic methods and application to optimiza-
tion of resource constrained project schedules. PhD thesis, Vytautas Magnus
University, Vilnius, Lithuania, 2007.



2 Scatter Search Algorithms for Identical Parallel Machine Scheduling 59

16. P.M. França, M. Gendreau, G. Laporte, and F.M. Müller. A composite heuristic
for the identical parallel machine scheduling problem with minimum makespan
objective. Computers & Operations Research, 21:205–210, 1994.

17. A. Frangioni, E. Necciari, and M. G. Scutellà. A multi-exchange neighborhood
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Summary. Recently population-based meta-heuristics under the cover of swarm in-
telligence have gained prominence. This includes particle swarm optimization (PSO),
where the search strategy draws ideas from the social behavior of organisms. While
PSO has been reported as an effective search method in several papers, we are in-
terested in the critical success factors of PSO for solving combinatorial optimization
problems. In particular, we examine the application of PSO with different crossover
operators and hybridization with variable neighborhood descent as an embedded
local search procedure. Computational results are reported for the continuous (no-
wait) flow-shop scheduling problem. The findings demonstrate the importance of
local search as an element of the applied PSO procedures. We report new best
solutions for a number of problem instances from the literature.

Key words: Flow-Shop Scheduling, Particle Swarm Optimization, Genetic
Operators, Variable Neighborhood Descent, Hybridization.

3.1 Introduction

Swarm intelligence involves the design of heuristic methods for solving prob-
lems in a way that is inspired by the social behavior of organisms within swarm
populations, where organisms interact locally with one another and with the
environment. While there is no centralized control structure, interactions be-
tween the organisms may lead to the emergence of global behavior such as
termite colonies building mounds, bird flocking, and fish schooling [7, 37].

Recently population-based meta-heuristics under the cover of swarm in-
telligence have gained prominence. This includes particle swarm optimization
(PSO), which was first introduced by Kennedy and Eberhart [14, 29] for the
optimization of continuous nonlinear functions. While PSO has been reported

J. Czogalla and A. Fink: On the Effectiveness of Particle Swarm Optimization and Vari-

able Neighborhood Descent for the Continuous Flow-Shop Scheduling Problem, Studies in

Computational Intelligence (SCI) 128, 61–89 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



62 Czogalla and Fink

as an effective search method in several papers, we are interested in the critical
success factors when applied to combinatorial optimization problems.

We consider the continuous (no-wait) flow-shop scheduling problem (CFSP)
and analyze PSO hybridized with construction heuristics and variable neigh-
borhood descent as an embedded local search procedure according to [42,43].
Different crossover operators will be investigated and a combined crossover
strategy will be derived. The analysis is based on extensive computational
experiments for benchmark problem instances for the CFSP. We are able to
significantly improve present best results from the literature. The findings
show that local search may constitute the most important element of effective
PSO approaches for combinatorial optimization problems.

In Section 3.2 we introduce the continuous flow-shop scheduling problem.
In Section 3.3 we discuss PSO and extensions for combinatorial optimiza-
tion problems; this includes the investigation of different crossover operators.
Sections 3.4 and 3.5 are dealing with construction heuristics used to create
the initial swarm population and with a local search heuristic, respectively.
Computational results will be the topic of Section 3.6.

3.2 The Continuous Flow-Shop Scheduling Problem

In this section we review the continuous flow-shop scheduling problem (CFSP).
First, we make a short excursion into the steel producing industry to show the
motivation for the ongoing research on the continuous flow-shop scheduling
problem; additionally we list applications in other branches.

3.2.1 How Iron Ore Becomes a Steel Plate

For the production of steel in a first step iron ore and coke are molted together
(ironmaking). In a second step impurities (e.g., excess carbon) are removed
and alloying materials (e.g., manganese, nickel) are added (steelmaking). In
the further process, on the way to finished products such as steel plates and
coils, the molted steel undergoes a series of operations [22] which are capital
and energy extensive. Thus companies have been putting consistent emphasis
on technology advances in the production process to increase productivity and
to save energy [59].

Today steel production is typically done in integrated steel plants where
the blast furnace maintains a steady flow of molten iron since the stopping
of this process is enormously expensive. The molten iron then passes into the
primary steel making process composed of basic oxygen, electric arc or induc-
tion furnace, ladle treatment facility, continuous caster (where the liquid steel
is cast into slabs, since the liquid steel can not be stored) and hot strip mill.
After passing through the primary steel making processes the steel coils may
then pass through further finishing processes, such as pickling to remove sur-
face oxides and annealing to improve mechanical properties [10]. The modern
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integrated process of steelmaking directly connects the steelmaking furnace,
the continuous caster and the hot rolling mill with hot metal flow and makes
a synchronized production [59]. Such a process has many advantages over
the traditional cold charge process but brings new challenges for production
planning and scheduling [59].

The short excursion demonstrates necessities for the application of the
no-wait restriction to real-world problems [13]. First, the production technol-
ogy may require the continuous processing of jobs. Second, a lack of storage
capacity may force the production schedule to adapt the no-wait restriction.
However, lack of intermediate storage capacity between consecutive machines
does not necessarily impose the now-wait restriction, since jobs can wait on
machines (while blocking these machines) until the next machine becomes
available. Hall and Sriskandarajah [22] give a survey on machine scheduling
problems with blocking and no-wait characteristics. Further applications that
demand a no-wait scheduling are concrete ware production [20], food process-
ing [22], pharmaceutical processing [48], chemical production [49], or more
general just in time production and assembly lines.

3.2.2 Formal Description

A flow-shop scheduling problem consists of a set of n jobs which have to be
processed in an identical order on m machines. Each machine can process
exactly one job at a time. The processing time of job i on machine j is given
as tij with 1 ≤ i ≤ n and 1 ≤ j ≤ m. If a job does not need to be processed
on a machine the corresponding processing time equals zero.

The continuous flow-shop scheduling problem includes no-wait restrictions
for the processing of each job, i.e., once the processing of a job begins, there
must not be any waiting times between the processing of any consecutive tasks
of this job. Continuous processing leads to a delay dik, 1 ≤ i ≤ n, 1 ≤ k ≤
n, i 
= k on the first machine between the start of jobs i and k when i and k
are processed directly after each other. The delay can be computed as

dik = max
1≤j≤m

{
j∑

h=1

tih −
j∑

h=2

tk,h−1

}
. (3.1)

The processing order of the jobs is represented as a permutation
Π =< π1, ..., πn > where πi is the job processed at the i-th position of a sched-
ule. Note that the continuous flow-shop scheduling problem with makespan
objective can be modeled as an asymmetric traveling salesman problem and
thus can be solved by applying corresponding methods. In this chapter we
consider the objective to minimize the total processing time (flow-time)

F (Π) =
n∑

i=2

(n+ 1 − i) dπ(i−1),π(i) +
n∑

i=1

m∑
j=1

tij . (3.2)
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The first part of Equation 3.2 sums the implied delays. Since the delay between
two jobs affects all succeeding jobs the respective delay is multiplied with the
number of following jobs. The second part of the formula is the constant total
sum of processing times.

3.2.3 Literature Review

Since Johnson’s seminal paper [28] on the two-machine flow-shop scheduling
problem the literature on flow-shop scheduling has grown rapidly. It was re-
viewed by Day and Hottenstein in 1970 [12] and by Dudek et al. in 1992 [13].
Day and Hottenstein provide a classification of sequencing problems includ-
ing flow-shop problems. Dudek et al. give a detailed overview on flow-shop
sequencing research addressing several problem solving strategies and diverse
optimization criterions. A statistical review of flow-shop literature is presented
by Reisman et al. [52]. Ruiz and Maroto [53] provide a comprehensive review
and evaluation of permutation flow-shop heuristics.

The continuous flow-shop scheduling problem with the objective to min-
imize total flow-time as posed by van Deman and Baker [63] is theoreti-
cally discussed by Gupta [21], Papadimitriou and Kanellakis [44], Szwarc [56],
Adiri and Pohoryles [1], and van der Veen and van Dal [64]. Rajendran and
Chauduri [50] provide a construction heuristic with two priority rules for the
CFSP including computational experiments. Chen et al. [8] provide a genetic
algorithm including computational results. Bertolissi [6] presents a construc-
tion heuristic evaluated by computational experiments. Fink and Voß [15] used
several construction heuristics, tabu search, and simulated annealing and pro-
vided detailed computational results. Pan et al. [42] present extensive com-
putational experiments of a discrete particle swarm optimization algorithm
hybridized with a construction heuristic and variable neighborhood descent.

3.3 Particle Swarm Optimization

In this section we will describe PSO in its canonical form and extensions
for combinatorial optimization problems. Merkle and Middendorf [37] provide
an introduction to PSO and the related literature. Kennedy and Eberhart
[31] present a more detailed introduction to PSO within the scope of swarm
intelligence.

3.3.1 Standard Particle Swarm Optimization

The basic idea of PSO is that a particle i represents a search space location
(solution) xi ∈ R

n. Depending on its velocity vi ∈ R
n particles “fly” through

the search space, thus exploring it and finding new solutions. The velocity of a
particle is updated depending on locations where good solutions have already
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been found by the particle itself or other particles in the swarm. That is, there
are two kinds of memory, individual and social, which direct the “reasoning”
of the particle about the exploration of the search space.

The velocity of a particle i is canonically updated as follows:

vi := w ∗ vi + c1 ∗ U(0, 1) ∗ (pi − xi) + c2 ∗ U(0, 1) ∗ (g − xi) (3.3)

where pi is the best previous position of the particle and g is the best found
position within the swarm so far. The parameter w is called the inertia weight
and represents the influence of the previous velocity. The parameters c1 and
c2 are acceleration coefficients that determine the impact of pi and g, i.e.,
the individual and social memory, respectively. Randomness is introduced by
weighting the influence of the individual and social memory by random values
uniformly drawn from [0,1]. After updating the velocity, the new position of
the particle is calculated as:

xi := xi + vi. (3.4)

Listing 3.1 shows the classic PSO procedure GBEST according to Eber-
hart and Kennedy [14]. After initialization of the parameters the initial pop-
ulation is randomly generated and evaluated using Equation 3.2. The best
position of each particle and the best position of the whole swarm is updated.
Then the velocity and the position of the particles are updated according to
Equations 3.3 and 3.4. After evaluating all particles a new iteration is started.
The loop is repeated until a termination criterion is met (e.g., concerning the
elapsed time or the number of iterations).

Listing 3.1: Standard GBEST particle swarm algorithm.
i n i t i a l i z e parameters
f o r a l l p a r t i c l e s i do

i n i t i a l i z e p o s i t i o n xi and v e l o c i t y vi

eva luate p a r t i c l e i
end f o r
do

f o r a l l p a r t i c l e s i do
update pe r sona l bes t pi

update g l oba l bes t g
end f o r
f o r a l l p a r t i c l e s i do

update v e l o c i t y vi

update po s i t i o n xi

eva luate p a r t i c l e i
end f o r

whi l e stop c r i t e r i o n not met

Premature convergence, causing local search instead of global search, is
a general problem of PSO algorithms. In the literature different approaches
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are proposed in order to improve swarm behavior and the balance between
convergence speed and convergence quality. Shi and Eberhart [55] investi-
gate the influence of the maximum particle velocity and the inertia weight on
the ability to escape from local optima. They provide detailed computational
results and give suggestions for balancing those parameters. Trelea [62] ana-
lyzes PSO using standard results from dynamic system theory, discusses the
tradeoff between exploration and exploitation, and presents guidelines for the
selection of individual and social parameters. As swarm diversity (according
to some measure of the differences between individuals of a swarm) decreases
with swarm evolution, this results in a more thorough search in a restricted
space while running into danger of getting stuck at local optima. Clerc [9] and
Peram et al. [46] propose methods to measure and control diversity in order
to prevent premature convergence.

In Kennedy and Mendes [32] and Mendes et al. [36] neighborhood relations
between particles are introduced. Instead of using g, the best solution of the
swarm so far, to update the velocity of particles, the best particle in some
neighborhood is used. Janson and Middendorf [27] introduce a hierarchical
neighborhood. Parsopoulos and Vrahatis [45] study PSO that makes use of
the combination of different neighborhoods.

Current research is also concernd with the hybridization of PSO with other
heuristic methods. For example, Gimmler et al. [16] analyze the influence of
the type of local search hybridized with PSO for a number of standard test
functions. For machine scheduling applications, Liu et al. [33,34] incorporate
different local search approaches and an adaptive meta-Lamarckian learning
strategy into PSO. Tasgetiren et al. [60,61] combine PSO with variable neigh-
borhood descent.

3.3.2 Discrete Particle Swarm Optimization

Standard PSO is defined for a solution space R
n. In order to apply the concept

of PSO for combinatorial optimization problems one may define a transforma-
tion from R

n to a given problem-specific solution space. This allows keeping
the canonical updating rules of PSO which are based on real-valued solutions
(positions). In the case of the CFSP the solution space and the evaluation
of the total processing time (Equation 3.2) is based on a permutation. Based
on the random key representation [5] Tasgetiren et al. [60, 61] use the small-
est position value (SPV) rule, stating that the job with the smallest position
value is scheduled first, the job with the second smallest position value comes
next, and so on. That is, the order of the jobs is derived from ascending po-
sition values. A similar transformation, called ranked-order-value (ROV), is
used in Liu et al. [33, 34]. There are two problems with respect to such an
approach for a combinatorial optimization problem such as the CFSP. First,
the transformation of particle positions into discrete job permutations may be
time consuming. Second, and more importantly, updating of particle velocities
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and positions is not done directly on the solution representation, thus loosing
information about the search space during the transformation process.

Therefore, it may be indicated to adapt PSO for combinatorial optimiza-
tion problems by means of problem-specific operators. This approach is fol-
lowed, e.g., by [42] for the no-wait flow-shop scheduling problem. It is called
discrete particle swarm optimization (DPSO). In contrast to the standard PSO
updating of positions is done directly on job permutations. In this model Xi

represents as position the job permutation of the i-th particle. Using a binary
operator ⊕ with the meaning that the first operand defines the probability
that the operator given as second operand is applied, the update is done by

Xi := c2 ⊕ F3 (c1 ⊕ F2 (w ⊕ F1 (Xi) , Pi) , G) . (3.5)

The first term of Equation 3.5 is λi = w ⊕ F1 (Xi) which represents the
“velocity” of the particle. F1 is a swap operator which swaps two randomly
chosen jobs within the permutation Xi of the i-th particle. The second part
δi = c1⊕F2 (λi, Pi) represents the individual memory of the particle and F2 is
a crossover operator applying a one-cut crossover on λi and the best position
of the particle so far. The social part is represented byXi = c2⊕F3 (δi, G) with
F3 as a crossover operator using a two-cut crossover on δi and the best position
of the swarm G. The parameters w, c1, and c2 determine the probabilities of
the application of swap and crossover operators, respectively.

Listing 3.2 shows the pseudo code for the DPSO according to an adapted
GBEST model from [14]. Since we are interested in the impact of local search
on the solution quality there is an optional local search method included. Such
a local search method may be employed to improve individual solutions (e.g.,
the best swarm solution G), which results in a hybridization of the concepts
of swarm intelligence and local search.

Listing 3.2: Discrete particle swarm algorithm.
i n i t i a l i z e parameters
f o r a l l p a r t i c l e s i do

i n i t i a l i z e p o s i t i o n Xi ; eva luate p a r t i c l e i
end f o r do

f o r a l l p a r t i c l e s i do
update pe r sona l bes t Pi

update g l oba l bes t G
end f o r
f o r a l l p a r t i c l e s i do

update po s i t i o n Xi

eva luate p a r t i c l e i
end f o r
l o c a l search ( op t i ona l )

whi l e stop c r i t e r i o n not met

Since the first DPSO algorithm proposed by Kennedy and Eberharth [30]
there are several (recent) research papers which consider the design of DPSO
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procedures for different (scheduling) applications. Allahverdi and Al-Anzi [2]
present a DPSO approach where particles are associated with job sequences
and two velocities that correspond to probabilities of changing job positions.
Results for the minimization of the maximum lateness for assembly flow-shop
scheduling outperformed results obtained by tabu search and the earliest due
date heuristic. Anghinolfi and Paolucci [3] investigate a DPSO approach for
the single-machine total weighted tardiness scheduling problem with sequence-
dependent setup times. Based on a discrete model for particle positions the
velocity of a particle is interpreted as the difference in job positions of two
particles. Pan et al. [43] apply DPSO to the single machine total earliness
and tardiness problem with a common due date. A PSO approach for combi-
natorial optimization problems employing problem independent operators is
introduced in Moraglio et al. [38].

The discrete particle swarm optimization concept, with the introduction
of crossover and mutation operators, is similar to other methods that fol-
low the paradigm of evolutionary computation [4]. Both genetic/evolutionary
algorithms and PSO are based on populations formed of individuals repre-
senting solutions. The individuals are subject to some probabilistic operators
such as recombination, mutation, and selection in order to evolve the pop-
ulation towards better fitness values. Scatter search [17] provides a comple-
mentary perspective on PSO. Scatter search generally operates on a relatively
small number of solutions, called reference set. Some combination of two or
more candidates from the reference set creates new solutions, which may be
improved by means of local search, which is also a feature of memetic algo-
rithms [25,40]. Some of the obtained solutions may be inserted into the pop-
ulation according to some rule with the aim to guarantee both high solution
quality and high diversity. A further generalization is possible when following
the characterization of adaptive memory programming by Taillard [58]:

1. A set of solutions or a special data structure that aggregates the particu-
larities of the solutions produced by the search is memorized;

2. A provisional solution is constructed using the data in memory;
3. The provisional solution is improved using a local search algorithm or a

more sophisticated meta-heuristic;
4. The new solution is included in the memory or is used to update the data

structure that memorizes the search history.

Nowadays most effective evolutionary methods use some kind of inher-
ent hybridization with local search to improve individual solutions (in some
cases termed as a mutation operator, which in its original meaning mainly
introduces random effects). In Sections 3.4 and 3.5 we will discuss specific
procedures for generating the initial swarm population and the hybridization
of PSO with a local search algorithm, respectively. In the following we first
consider the design of crossover operators for DPSO when applied for the
CFSP.
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3.3.3 Crossover Operators

In Equation 3.5 crossover operators are employed to create new particle po-
sitions represented by permutations. There are three major interpretations
for permutations [4, 39]. Depending on the problem the relevant information
contained in the permutation is the adjacency relation among the elements,
the relative order of the elements, or the absolute positions of the elements
in the permutation. Considering Equation 3.2 the adjacency relation between
the jobs has the main impact on the objective function. In addition, the ab-
solute positions of jobs or sequences of jobs are of importance since delays
scheduled early are weighted with a larger factor then delays scheduled late.
Besides those considerations the offspring created has to be a valid permu-
tation or a repair mechanism must be applied. In the following we review
some recombination methods developed for permutation problems where the
adjacency relation among the jobs is mainly maintained.

The order-based crossover (OB, see MODIFIED-CROSSOVER in [11])
takes a part of a parent, broken at random, and orders the remaining jobs in
accordance with their order in the second parent [11]. To use the order-based
crossover as a two-cut crossover two crossover points are chosen randomly.
The jobs between the crossover points are copied to the children. Starting
from the second crossover site the jobs from the second parent are copied to
the child if they are not already present in the child [54]. A different crossover
operator is obtained when starting at the first position (OB’).

As an example consider the two following parents and crossover sites:

Parent 1 = 0 1 2 | 3 4 5 | 6 7
Parent 2 = 3 7 4 | 6 0 1 | 2 5.

In the first step we keep jobs 3, 4, and 5 from parent 1 and jobs 6, 0, and 1
from parent 2:

Child 1 = x x x | 3 4 5 | x x
Child 2 = x x x | 6 0 1 | x x.

The empty spots are filled with the not yet used jobs, in the order they appear
in the other parent, starting after the second crossover site:

Child 1 = 0 1 2 | 3 4 5 | 7 6
Child 2 = 4 5 7 | 6 0 1 | 2 3.

We get different offspring when starting at the first position:

Child 1 = 7 6 0 | 3 4 5 | 1 2
Child 2 = 2 3 4 | 6 0 1 | 5 7.

Like the order-based crossover the partially matched crossover (PMX,
introduced in [19]) mainly preserves ordering within the permutations. Under
PMX two crossing sites are picked at random which define a matching section.
In this section jobs are exchanged with jobs corresponding to those mapped
by the other parent. Consider the example from above:
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Parent 1 = 0 1 2 | 3 4 5 | 6 7
Parent 2 = 3 7 4 | 6 0 1 | 2 5.

The first matching jobs are 3 in parent 1 and 6 in parent 2. Therefore jobs 3
and 6 are swapped. Similarly jobs 4 and 0, and 5 and 1 are exchanged:

Child 1 = 4 5 2 | 6 0 1 | 3 7
Child 2 = 6 7 0 | 3 4 5 | 2 1.

After the exchanges each child contains ordering information partially deter-
mined by each of its parents [18]. To obtain a one-cut crossover one of the
crossing sites has to be the left or the right border.

The PTL crossover as proposed in [43] always produces a pair of different
permutations even from identical parents. Two crossing sites are randomly
chosen. The jobs between the crossing points of the first parent are either
moved to the left or the right side of the children. The remaining spots are
filled with the jobs not yet present, in the order they appear in the second
parent.

Parent 1 = 0 1 2 | 3 4 5 | 6 7
Parent 2 = 3 7 4 | 6 0 1 | 2 5.

In our example we move the job sequence 345 to the left side to obtain child
1 and to the right side in order to get child 2:

Child 1 = 3 4 5 | x x x | x x
Child 2 = x x x | x x 3 | 4 5.

The missing jobs are filled according to their appearance in the second parent:

Child 1 = 3 4 5 | 7 6 0 | 1 2
Child 2 = 7 6 0 | 1 2 3 | 4 5.

3.4 Initial Swarm Population

The initial swarm population of a PSO implementation can be created ran-
domly. More common is the employment of dedicated construction heuristics,
which are often based on priority rules. With respect to the permution so-
lution space, objects (jobs) are iteratively added to an incomplete schedule
according to some preference relation.

The nearest neighbor heuristic (NNH), a well known construction heuris-
tic related to the traveling salesman problem, can be modified to serve as
construction heuristic for the CFSP. Starting with a randomly chosen job the
partial schedule Π = 〈π1, ..., πk〉 is iteratively extended by adding an unsched-
uled job πk+1 with a minimal delay between πk and πk+1. This intuitive and
fast construction heuristic seems to be appropriate for the CFSP since jobs
scheduled earlier have a greater impact on the objective function.
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Another variant of construction heuristics are simple insertion heuristics.
In a first step the jobs are presorted in some way. Then the first two pre-
sorted jobs are selected and the best partial sequence for these two jobs is
found considering the two possible partial schedules. The relative positions
of these two jobs are fixed for the remaining steps of the algorithm. At each
of the following iterations of the algorithm the next unscheduled job from
the presorted sequence is selected and all possible insertion positions and the
resulting partial schedules are examined.

In order to create the presorted sequence of jobs the NNH can be employed
(NNNEH) as shown in [42]. Another approach is described in [41], where jobs
with a larger total processing time get a higher priority then jobs with less
total processing time (NEH). Therefore the jobs are ordered in descending
sums of their processing times Ti =

∑m
j=1 ti,j .

The effectiveness of the described construction heuristics generally depends
on the initial job. So we repeat the construction heuristics with each job as
the first job. The resulting solutions build up the initial swarm population
(i.e., we fix the size of the swarm population as the number of jobs).

3.5 Local Search

Local search algorithms are widely used to tackle hard combinatorial opti-
mization problems such as the CFSP. A straightforward local search algo-
rithm starts at some point in the solution space and iteratively moves to a
neighboring location depending on an underlying neighborhood structure and
a move selection rule. In greedy local search the current solution is replaced if
a better solution with respect to the objective function is found. The search
is continued until no better solution can be found in the neighborhood of the
current solution. In this section we examine neighborhood structures for the
CFSP and review the variable neighborhood descent approach.

A neighborhood structure is defined by using an operator that transforms
a given permutation Π into a new permutation Π∗ [51]. We consider two
alternative neighborhoods, both leading to a connected search space. The
swap (or interchange) operator exchanges a pair of jobs πp1 and πp2 with
p1 
= p2, while all the other jobs in the permutation Π remain unchanged.
The size of the swap neighborhood structure is n ∗ (n − 1)/2. The shift (or
insertion) operator removes the job πp1 and inserts it behind the job πp2 with
p1 
= p2 and p1 
= p2 + 1. The size of the shift neighborhood structure results
as (n− 1)2.

Local search will be applied to the best position of the swarm G after
each iteration of DPSO [42]. To prevent local search from getting stuck in a
local minimum the search may be restarted from another starting point, in
the simplest way using a random restart [35]. A more advanced approach is
the variable neighborhood descent (VND) [24]. The VND algorithm is based
on the fact that a local minimum with respect to one neighborhood structure
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is not necessarily a local minimum for another neighborhood structure [23].
Consequently, VND changes the neighborhood during the search [24].
Listing 3.3 shows the pseudo code for VND. Let Nk, k = 1, ..., kmax, be a set
of neighborhood structures usually ordered by the computational complexity
of their application [23]. In our case N1 represents the swap neighborhood
and N2 the shift neighborhood. The VND algorithm performs local search
until a local minimum with respect to the N1 neighborhood is found. The
search process is continued within the neighborhood N2. If a better solution
is found the search returns to the first neighborhood, otherwise the search is
terminated.

The role of perturbation is to escape from local minima. Therefore the
modifications produced by a perturbation should not be undone immediately
by the following local search [26]. We follow the approach of [42] and use 3 to
5 random swap and 3 to 5 random shift moves as perturbation.

Listing 3.3: Variable neighborhood descent.
S := per turbat i on (G)
eva luate S
k := 1
do

f i nd best ne ighbor S∗ in neighborhood Nk o f S
eva luate S∗

i f s o l u t i o n S∗ i s b e t t e r than s o l u t i o n S
S := S∗

k := 1
e l s e

i n c r e a s e k by 1
end i f

whi l e k ≤ kmax

i f s o l u t i o n S i s b e t t e r than s o l u t i o n G
G := S

end i f

3.6 Computational Results

Since we are interested in analyzing the factors contributing to the results
reported in [42] we implemented DPSO for the CFSP in C#, pursuing an
object-oriented approach, thus allowing easy combination of different heuris-
tics. The DPSO was run on an Intel� CoreTM 2 Duo processor with 3.0 GHz
and 2 GB RAM under Microsoft� Windows� XP1. We applied it to Tail-
lard’s benchmark instances2 [57] treated as CFSP instances (as in [15]).
1 In [42] DPSO was coded in Visual C++ and run on an Intel�

Pentium� IV 2.4 GHz with 256 MB RAM.
2 available at: http://mistic.heig-vd.ch/taillard/problemes.dir/problemes.html
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In our computational experiments each configuration is evaluated by 10
runs for each problem instance. The quality of the obtained results is reported
as the percentage relative deviation

∆avg =
solution− solutionref

solutionref
∗ 100 (3.6)

where solution is the total processing time generated by the variants of DPSO
and solutionref is the best result reported in [15] (using simulated annealing,
tabu search, or the pilot method). The relative deviation based on the results
of [15] is also the measure used in [42]. The best objective function values
reported in [15] and [42] are given in Table 3.8 (Appendix of this chapter)
together with the results obtained in our own new computational experiments
(denoted by CF). Note that we have been able to obtain new best results for
all the larger problem instances (with n = 100 and n = 200) while we have at
least re-obtained present best results for the smaller problem instances.

In [15] the 3-index formulation of Picard and Queyranne [47] was used
to compute optimal solutions for the 20 jobs instances (ta001–ta030) and to
obtain lower bounds provided by linear programming relaxation for the 50 jobs
and 100 jobs instances (ta031–ta060 and ta061–ta090, respectively). For the
smaller instances with 20 jobs the best results shown in Table 3.8 correspond
to optimal solutions. The lower bounds for the instances ta031–ta060 and
ta061–ta090 are given in Table 3.9 (Appendix of this chapter).

The parameter values of DPSO as described in Section 3.3.2 are taken
from [42] in order to enable a comparison of results. The one-cut and the two-
cut crossover probabilities are set to c1 = c2 = 0.8. The swap probability (w)
was set to wstart = 0.95 and multiplied after each iteration with a decrement
factor β = 0.975 but never decreased below wmin = 0.40. As mentioned in
Section 3.4 the swarm size was fixed at the number of jobs.

Since in [42] there is no detailed information about the employed crossover
operators we were at first interested in evaluating different crossover operators
as described in Section 3.3.3. These experiments have been performed with a
random construction of the initial swarm population and without using local
search. The quality of the results obtained for different iteration numbers is
shown in Table 3.1 (with the computation times given in CPU seconds). No
particular crossover operator is generally superior. However, it seems that the
PTL crossover operator is best suited for small problem instances while OB’
and PMX work better on large instances.

In order to combine the advantages of the crossover operators we chose
different crossover methods for the one-cut and the two-cut crossover; see
Table 3.2. The notation PTL/PMX stands for the combination of PTL as
one-cut crossover and PMX as two-cut crossover. Again there seems to be no
superior combination of crossover operators. However, PTL/PMX performed
best on the smaller instances while OB’/PMX provides the best results for
the larger instances.
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Table 3.1: Comparison of different crossover operators for DPSO.

jobs PMX OB OB’ PTL
iterations ∆avg t ∆avg t ∆avg t ∆avg t

20 1000 4.99 0.01 4.88 0.04 3.48 0.03 3.84 0.03
2000 4.73 0.03 3.50 0.07 3.13 0.07 2.40 0.07

10000 4.19 0.14 1.63 0.36 2.04 0.34 1.15 0.33
50000 3.39 0.68 0.94 1.78 1.80 1.73 0.54 1.57

50 1000 9.26 0.05 17.15 0.14 8.74 0.14 15.52 0.13
2000 8.29 0.10 13.70 0.28 6.71 0.27 12.34 0.26

10000 7.72 0.49 7.52 1.46 4.71 1.31 6.60 1.24
50000 7.16 2.47 4.35 7.15 4.05 6.93 3.94 6.19

100 1000 11.56 0.16 27.43 0.48 12.51 0.46 25.51 0.42
2000 9.54 0.31 23.33 0.91 9.40 0,90 21.45 0.81

10000 8.72 1.50 13.80 4.78 5.79 4.30 13.08 3.98
50000 8.20 7.27 7.32 21.70 4.62 21.70 7.33 19.70

200 1000 14.43 0.61 38.03 1.94 17.88 1.92 36.43 1.66
2000 11.51 1.19 34.20 3.82 13.43 3.88 32.51 3.28

10000 9.08 5.88 22.79 20.44 7.09 18.14 22.40 15.91
50000 8.63 26.52 11.86 97.98 4.71 95.25 12.86 76.13

Table 3.2: Comparison of the combination of crossover operators for DPSO.

jobs PMX/OB’ PMX/PTL OB’/PMX OB’/PTL PTL/PMX PTL/OB’
iter. ∆avg t ∆avg t ∆avg t ∆avg t ∆avg t ∆avg t

20 1000 3.76 0.02 4.63 0.02 3.32 0.02 3.24 0.03 1.60 0.02 3.09 0.03
2000 3.21 0.05 3.25 0.05 3.02 0.05 2.24 0.07 1.11 0.05 2.34 0.07

10000 2.56 0.25 1.18 0.24 2.37 0.24 0.94 0.32 0.53 0.23 0.64 0.24
50000 1.93 1.23 0.30 1.16 1.98 1.17 0.40 1.61 0.41 1.11 0.93 1.70

50 1000 8.33 0.10 18.75 0.09 7.88 0.09 13.57 0.13 7.69 0.09 9.81 0.14
2000 6.64 0.20 17.27 0.18 6.43 0.18 10.84 0.25 5.72 0.19 7.81 0.27

10000 5.11 0.94 11.01 0.92 4.71 0.92 6.24 1.26 2.82 0.91 4.58 1.37
50000 4.45 4.85 6.68 4.40 4.26 4.50 3.67 6.22 1.59 4.34 3.05 6.56

1001000 11.85 0.33 29.03 0.31 10.98 0.30 22.08 0.43 13.47 0.31 15.62 0.44
2000 9.03 0.64 26.37 0.59 8.75 0.59 18.52 0.64 10.05 0.59 12.03 0.88

10000 5.90 3.08 19.81 3.02 5.58 3.04 11.49 4.14 4.78 2.89 6.64 4.48
50000 5.07 64.39 13.98 14.17 4.70 14.14 7.05 20.02 2.39 14.00 3.95 21.35

2001000 17.39 1.40 39.29 1.24 14.91 1.35 32.48 1.82 20.35 1.26 23.41 1.84
2000 12.57 2.80 36.38 2.47 11.58 2.74 28.25 3.60 15.51 2.51 17.55 3.75

10000 6.83 13.21 29.66 12.33 6.34 13.41 19.67 17.78 7.27 12.01 9.32 18.62
50000 5.07 64.39 23.18 57.43 4.55 62.92 12.30 86.98 3.17 57.70 5.25 87.57
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Consequently, we used PMX as two-cut crossover and randomly selected
from PTL and OB’ as one-cut crossover for each particle. Table 3.3 shows the
obtained results in comparison to the results reported by Pan et al. in [42]
(notice that [42] do not give results for 10000 iterations). While Pan et al. re-
port faster computation times, we implemented the methods using an object-
oriented approach with the focus on an easy combination of the different
algorithm elements without putting much value in the optimization of the
code in terms of computation times. However, we mainly obtain significantly
better results even when comparing on the basis of computation times.

The OB’+PTL/PMX crossover operator combination will be used through-
out the remainder of this chapter and will be referred to as DPSO.

Table 3.3: Comparison of advanced crossover strategies for DPSO.

jobs OB’/PMX PTL/PMX OB’+PTL/PMX Pan et al. [42]
iterations ∆avg t ∆avg t ∆avg t ∆avg t

20 1000 3.32 0.02 1.60 0.02 1.89 0.02 2.15 0.01
2000 3.02 0.05 1.11 0.05 1.35 0.05 1.55 0.02

10000 2.37 0.24 0.53 0.23 0.64 0.24 - -
50000 1.98 1.17 0.41 1.11 0.48 1.12 0.40 0.18

50 1000 7.88 0.09 7.69 0.09 6.78 0.09 12.26 0.06
2000 6.43 0.18 5.72 0.19 5.20 0.18 9.41 0.11

10000 4.71 0.92 2.82 0.91 2.86 0.92 - -
50000 4.26 4.50 1.59 4.34 1.83 4.34 2.65 2.35

100 1000 10.98 0.30 13.47 0.31 10.84 0.30 24.11 0.19
2000 8.75 0.59 10.05 0.59 8.06 0.59 19.99 0.38

10000 5.58 3.04 4.78 2.89 4.14 2.97 - -
50000 4.70 14.14 2.39 14.00 2.44 13.97 6.30 8.98

200 1000 14.91 1.35 20.35 1.26 15.58 1.30 34.15 0.69
2000 11.58 2.74 15.51 2.51 11.46 2.57 29.15 1.36

10000 6.34 13.41 7.27 12.01 5.26 12.21 - -
50000 4.55 62.92 3.17 57.70 2.66 59.52 8.88 33.14

In accordance with [42] we also employ a dedicated construction heuris-
tic to create the initial swarm population. The results presented in Table 3.4
are produced by evaluating the initial population without any iteration of
DPSO performed. The insertion heuristics clearly outperform NN. Interest-
ingly NEH, originally developed for the flow-shop scheduling problem with
makespan criterion, performed slightly better than NNNEH. The results in-
dicate that it may be advantageous to employ NEH in the initial phase of
DPSO.

In order to improve the results we hybridized DPSO with VND as local
search component as described in Section 3.5. To evaluate this combination
we first show, in Table 3.5, the results of the application of VND as local
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Table 3.4: Comparison of different construction heuristics.

jobs random NNH NEH NNNEH
∆avg t ∆avg t ∆avg t ∆avg t

20 28.54 0.00 19.04 0.00 1.71 0.00 2.10 0.00
50 47.37 0.00 25.77 0.00 4.04 0.01 4.92 0.01
100 57.29 0.00 25.65 0.01 4.62 0.04 5.58 0.04
200 65.28 0.01 19.62 0.05 3.56 0.34 4.15 0.35

search component within DPSO (DPSOV ND) for a randomly created initial
swarm population.

Table 3.5: Results for DPSOV ND.

t ∆avg

jobs 20 50 100 200

0.02 0.07 2.65 - -
0.05 0.01 1.41 4.23 -
0.09 0.00 0.98 3.18 -
0.16 0.00 0.75 2.49 -
0.50 0.00 0.46 1.11 3.79
1.00 0.00 0.28 0.65 2.38
2.00 0.00 0.18 0.27 1.43

In Table 3.6 DPSO is compared to different hybridized variants. The sub-
script VND denotes a possible local search component, which is applied after
each iteration to the best solution of the swarm G; the superscript NEH de-
notes the application of a dedicated construction heuristic. The results show
that DPSO is clearly outperformed by DPSONEH

V ND . This demonstrates the piv-
otal effect of local search for the effectiveness of the applied PSO procedures.
Comparing the results for the 50 jobs instances DPSO obtained ∆avg=1.83 af-
ter 4.3 seconds while DPSONEH

V ND needed just 0.016 seconds to obtain the same
solution quality. For the 100 and 200 jobs instances DPSO was not able to
obtain results with a quality comparable to solutions obtained by DPSONEH

V ND .
The effect of an increasing computational time on the solution quality, ac-

cording to Table 3.6, is visualized in Figs. 3.1 – 3.4 (Appendix of this chapter).
These figures show that hybridization of DPSO improves the search regardless
of elapsed computation time.

In order to examine the contribution of DPSO mechanisms to the results
obtained by the hybridized instances we run the algorithm with parameter
values for inertia weight and acceleration coefficients set to zero. That is,
after the initialization of the particle swarm neither crossover nor mutation
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Table 3.6: Comparison of DPSO with its hybridized variants.

jobs t DPSO DPSONEH DPSOV ND DPSONEH
V ND

∆avg ∆avg ∆avg ∆avg

20 0.016 2.38 0.81 0.07 0.04
0.031 1.68 0.66 0.02 0.02
0.047 1.35 0.60 0.01 0.01
0.094 1.07 0.53 0.01 0.00
0.156 0.94 0.48 0.00
0.250 0.66 0.40
0.500 0.57 0.32
1.118 0.48 0.26

50 0.016 15.42 3.82 2.65 1.83
0.031 10.99 3.51 1.83 1.29
0.047 9.30 3.30 1.41 1.03
0.094 6.81 2.94 0.98 0.70
0.156 5.54 2.67 0.75 0.58
0.250 4.46 2.43 0.61 0.43
0.500 3.62 2.17 0.46 0.32
1.000 2.82 1.86 0.28 0.17
2.000 2.14 1.59 0.18 0.09

100 0.047 23.72 4.62 - -
0.094 18.30 4.51 3.18 1.92
0.156 14.57 4.34 2.49 1.39
0.250 11.73 4.11 1.89 1.07
0.500 8.72 3.64 1.11 0.59
1.000 6.25 3.13 0.65 0.27
2.000 4.76 2.70 0.27 -0.01
4.000 3.78 2.38 -0.02 -0.20

10.000 2.81 1.93 -0.25 -0.42

200 0.500 23.12 3.55 3.79 -
0.750 19.62 3.51 2.88 1.04
1.000 17.57 3.48 2.38 0.78
2.000 12.64 3.26 1.43 0.28
5.000 8.15 2.77 0.41 -0.29

10.000 5.94 2.41 -0.08 -0.62
15.000 4.79 2.16 -0.35 -0.77
60.000 2.66 1.46 -0.94 -1.22
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is performed. Therefore, instead of evolving the swarm towards better solu-
tions, just the best found solution after the initialization phase is subject to
a repeated application of VND. The results are presented in Table 3.7 and
Figs. 3.5 – 3.8 (Appendix of this chapter). The results indicate that the ob-
tained high quality solutions are mainly caused by VND (and an effective
construction of the initial population by NEH).

Table 3.7: Comparison of hybridized DPSO with VND.

jobs t DPSOV ND V ND DPSONEH
V ND

NEH
V ND

∆avg ∆avg ∆avg ∆avg

20 0.016 0.07 0.00 0.04 0.03
0.031 0.02 0.00 0.02 0.01
0.047 0.01 0.01 0.01
0.094 0.01 0.00 0.00
0.156 0.00

50 0.016 2.65 2.66 1.83 1.82
0.031 1.83 1.87 1.29 1.28
0.047 1.41 1.39 1.03 0.99
0.094 0.98 0.98 0.70 0.70
0.156 0.75 0.75 0.58 0.54
0.250 0.61 0.60 0.43 0.42
0.500 0.46 0.41 0.32 0.30
1.000 0.28 0.28 0.17 0.18
2.000 0.18 0.19 0.09 0.12

100 0.094 3.18 3.18 1.92 1.90
0.156 2.49 2.50 1.39 1.38
0.250 1.89 1.89 1.07 1.07
0.500 1.11 1.12 0.59 0.58
1.000 0.65 0.65 0.27 0.23
2.000 0.27 0.27 -0.01 -0.05
4.000 -0.02 0.00 -0.20 -0.25

10.000 -0.25 -0.26 -0.42 -0.44

200 0.500 3.79 3.80 - -
0.750 2.88 2.88 1.04 1.04
1.000 2.38 2.39 0.78 0.77
2.000 1.43 1.44 0.28 0.26
5.000 0.41 0.40 -0.29 -0.31

10.000 -0.08 -0.09 -0.62 -0.63
15.000 -0.35 -0.32 -0.77 -0.79
60.000 -0.94 -0.94 -1.22 -1.23

To the best of our knowledge the results reported in [15] and [42] are the
best solutions for Taillard’s benchmark instances treated as CFSP instances.
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During our experiments we were able to improve the solutions for 74 out of 80
unsolved instances using DPSONEH

V ND . The obtained best results are listed in
Table 3.8 (Appendix of this chapter). The best solutions are printed in bold
letters (with preference to the prior source in case a best solution was found
repeatedly).

3.7 Conclusions

We examined the application of DPSO in combination with different crossover
strategies, construction heuristics, and variable neighborhood descent. In our
computational experiments DPSO without local search achieved clearly worse
results than classical meta-heuristics such as, e.g., tabu search and simulated
annealing [15]. Based on the computational results we conclude that some
good results recently reported in different papers for DPSO may be mainly
caused by the employment of local search but not by the original concepts of
PSO. While we were able to significantly improve present best results from
the literature by investigating and applying hybridization of DPSO with lo-
cal search components (i.e., new best solutions for 74 out of 80 unsolved
instances), these results are not caused by the core concepts of PSO but by
the embedded local search procedure. In particular, we have found that the
embedded variable neighborhood descent procedure obtained the best results
when particle interactions (i.e., the core concepts of PSO) were deactivated.

With the results at hand PSO and its modified variant DPSO may not
be the number one choice for solving scheduling problems. However, the
performance of DPSO may be improved by a sophisticated employment of
crossover operators. Further research on crossover operators (see, e.g., geo-
metric PSO [38]) and on the hybridization with local search may make DPSO
more effective for solving combinatorial optimization problems.
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Fig. 3.1: Comparison of DPSO with its hybridized variants for 20 jobs instances.
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Fig. 3.3: Comparison of DPSO with its hybridized variants for 100 jobs instances.
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Table 3.8: Best known solutions for Taillard’s benchmark instances.

Instance CF PTL [42] FV [15] Instance CF PTL [42] FV [15]

Ta001 15674 15674 15674 Ta061 303273 304721 308052

Ta002 17250 17250 17250 Ta062 297723 297816 302386

Ta003 15821 15821 15821 Ta063 291033 292227 295239

Ta004 17970 17970 17970 Ta064 276224 276507 278811

Ta005 15317 15317 15317 Ta065 289639 289735 292757

Ta006 15501 15501 15501 Ta066 286860 287133 290819

Ta007 15693 15693 15693 Ta067 297466 298039 300068

Ta008 15955 15955 15955 Ta068 286961 287073 291859

Ta009 16385 16385 16385 Ta069 303357 303550 307650

Ta010 15329 15329 15329 Ta070 297367 297486 301942

Ta011 25205 25205 25205 Ta071 408840 409116 412700

Ta012 26342 26342 26342 Ta072 389674 391125 394562

Ta013 22910 22910 22910 Ta073 402489 403157 405878

Ta014 22243 22243 22243 Ta074 418588 419711 422301

Ta015 23150 23150 23150 Ta075 398088 398544 400175

Ta016 22011 22011 22011 Ta076 388344 388667 391359

Ta017 21939 21939 21939 Ta077 390162 390350 394179

Ta018 24158 24158 24158 Ta078 399060 399549 402025

Ta019 23501 23501 23501 Ta079 413699 413802 416833

Ta020 24597 24597 24597 Ta080 408855 409007 410372

Ta021 38597 38597 38597 Ta081 556991 559288 562150

Ta022 37571 37571 37571 Ta082 561424 563231 563923

Ta023 38312 38312 38312 Ta083 558763 558870 562404

Ta024 38802 38802 38802 Ta084 558797 560726 562918

Ta025 39012 39012 39012 Ta085 552417 552861 556311

Ta026 38562 38562 38562 Ta086 559950 560296 562253

Ta027 39663 39663 39663 Ta087 569714 571150 574102

Ta028 37000 37000 37000 Ta088 573225 573834 578119

Ta029 39228 39228 39228 Ta089 559989 560095 564803

Ta030 37931 37931 37931 Ta090 568013 570292 572798

Ta031 75668 75682 76016 Ta091 1488029 1495277 1521201

Ta032 82874 82874 83403 Ta092 1474847 1479484 1516009

Ta033 78103 78103 78282 Ta093 1488869 1495698 1515535

Ta034 82413 82533 82737 Ta094 1458413 1467327 1489457

Ta035 83476 83761 83901 Ta095 1471096 1471586 1513281

Ta036 80671 80682 80924 Ta096 1468536 1472890 1508331

Ta037 78604 78643 78791 Ta097 1502101 1512442 1541419

Ta038 78726 78821 79007 Ta098 1493418 1497303 1533397

Ta039 75647 75851 75842 Ta099 1475304 1480535 1507422

Ta040 83430 83619 83829 Ta100 1486285 1492115 1520800

Ta041 114051 114091 114398 Ta101 1983177 1991539 2012785

Ta042 112116 112180 112725 Ta102 2024959 2031167 2057409

Ta043 105345 105365 105433 Ta103 2018601 2019902 2050169

Ta044 113206 113427 113540 Ta104 2006227 2016685 2040946

Ta045 115295 115425 115441 Ta105 2006481 2012495 2027138

Ta046 112477 112871 112645 Ta106 2014598 2022120 2046542

Ta047 116521 116631 116560 Ta107 2015856 2020692 2045906

Ta048 114944 114984 115056 Ta108 2020281 2026184 2044218

Ta049 110367 110367 110482 Ta109 2000386 2010833 2037040

Ta050 113427 113427 113462 Ta110 2018903 2025832 2046966

Ta051 172831 172896 172845

Ta052 160888 161029 161092

Ta053 160104 160561 160213

Ta054 161492 161690 161557

Ta055 167410 167635 167640

Ta056 161589 161784 161784

Ta057 167115 167136 167233

Ta058 167822 167822 168100

Ta059 165207 165468 165292

Ta060 168386 168386 168386
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Table 3.9: Lower bounds for Taillard’s benchmark instances (n = 50, n = 100).

Instance LB Instance LB

Ta031 75610.70 Ta061 302064.02

Ta032 82874.00 Ta062 295154.95

Ta033 78057.74 Ta063 289407.54

Ta034 82225.27 Ta064 274015.72

Ta035 83203.86 Ta065 287266.94

Ta036 80463.71 Ta066 284052.95

Ta037 78468.19 Ta067 294788.77

Ta038 78439.81 Ta068 284345.61

Ta039 75447.72 Ta069 301875.64

Ta040 83393.71 Ta070 295123.95

Ta041 113828.62 Ta071 406099.44

Ta042 111730.73 Ta072 388125.73

Ta043 105231.59 Ta073 400153.15

Ta044 112979.41 Ta074 415442.87

Ta045 115006.40 Ta075 394557.15

Ta046 112346.17 Ta076 384510.12

Ta047 115807.41 Ta077 388602.18

Ta048 114625.41 Ta078 395695.23

Ta049 110076.01 Ta079 409478.90

Ta050 113192.35 Ta080 405318.77

Ta051 171424.24 Ta081 553223.49

Ta052 158919.99 Ta082 553759.85

Ta053 159668.42 Ta083 553943.03

Ta054 161031.81 Ta084 554770.65

Ta055 166300.55 Ta085 546111.96

Ta056 160464.79 Ta086 554097.83

Ta057 166434.16 Ta087 565740.72

Ta058 166807.69 Ta088 568422.69

Ta059 163972.67 Ta089 555852.17

Ta060 167745.60 Ta090 562187.82
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Summary. The problem of scheduling jobs on a single machine with a common
due date is one of NP-complete problems. It is to minimize the total earliness and
tardiness penalties. This chapter introduces a Dynamical Ant Colony Optimization
(DACO) with heuristics for scheduling jobs on a single machine with a common
due date. In the proposed algorithm, the parameter of heuristic information is dy-
namically adjusted. Furthermore, additional heuristics are embedded into DACO as
local search to escape from local optima. Compared with other existing approaches
in the literature, the proposed algorithm is very useful for scheduling jobs on a single
machine with a common due date.

Key words: Scheduling, Single Machine, Dynamical Ant Colony Optimiza-
tion, Heuristics.

4.1 Introduction

The scheduling problem with a common due date, known as NP-complete
problem, has been investigated extensively [1–18]. This type of problem has
become an attraction research with the advent of just-in-time (JIT) concept
that an early or a tardy job completion is highly discouraged. To meet the
JIT requirement, there is only one job can be completed exactly on the due
date when scheduling jobs on a single machine with a common due date. All
other jobs have to be completed either before or after the common due date.
An early job completion results in an earliness penalty. On the other hand, a
tardy job completion incurs a tardiness penalty. The objective of scheduling
problem with a common due date is to find an optimal schedule that minimizes
the sum of earliness and tardiness costs for all jobs.
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In the literature, many exact and heuristics algorithms have been proposed
to solve the problem of scheduling jobs on a single machine with a common
due date [1, 4, 11–13, 33]. Biskup and Feldmann [1] proposed a mixed integer
programming model for this problem, and also designed a problem generator
to solve 280 instances using two heuristics for identifying the upper bounds on
the optimal function value. A comprehensive survey, applying polynomial or
pseudo-polynomial time solvable algorithms on special cases, for the common
due date assignment and scheduling problems can be found in [4]. In [11],
Liaw proposed a branch-and-bound algorithm to find optimal solutions for
problems that jobs have distinct due dates. Mondal and Sen [12] developed a
dynamic programming for solving this problem. In [13], a sequential exchange
approach is proposed for minimizing earliness-tardiness penalties of single-
machine scheduling with a common due date. Due to the complexity of this
problem, it is difficult for above approaches to obtain the optimal solution
when the problem size is large [14,15].

Recently, meta-heuristic approaches such as Simulated Annealing (SA),
Genetic Algorithms (GAs) and Tabu Search (TS) have been proposed to find
the near optimal solutions for the problem of scheduling jobs on a single ma-
chine with a common due date [6, 7, 9] and [16–18]. Feldmann and Biskup [5]
applied five meta-heuristic approaches to obtain near-optimal solutions by
solving 140 benchmarks. In [7], James developed the TS algorithm for solving
the problem of scheduling jobs for general earliness and tardiness penalties
with a common due date. Hino et al. [9] proposed a TS-based heuristic and
a GA to minimize the sum of earliness and tardiness penalties of the jobs
with 280 problems with up to 1000 jobs. Mittenthal et al. [16] proposed a hy-
brid algorithm, greedy approach and simulated annealing, for the V-shaped
sequence of solution spaces. Lee and Kim [17] developed a parallel genetic
algorithm for solving the problem of scheduling jobs for general earliness and
tardiness penalties with a common due date. These approaches schedule their
solutions with the first job starting at time zero, and may not find the opti-
mal solutions. Liu and Wu [18] proposed a GA for the optimal common due
date assignment and optimal policy in parallel machine earliness/tardiness
scheduling problems. Pan et al. [33] also presented a discrete Particle Swarm
Optimization algorithm for minimizing total earliness and tardiness penalties
with a common due data on a single-machine. Even though these approaches
could find the best solution in those test problems, the search performances
seem not good enough. In this chapter, we propose a Dynamical Ant Colony
Optimization (DACO) with heuristics for scheduling jobs on a single machine
with a common due date.

The rest of this chapter is organized as follows. Section 4.2 describes
the problem formulation. Section 4.3 introduces the basic ACO concepts. In
Section 4.4, the structure of the proposed algorithm is discussed in detail. Sec-
tion 4.5 reports the use of the proposed algorithm for test instances, and the
effectiveness of the proposed algorithm is also illustrated. Concluding remarks
are presented in Section 4.6.
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4.2 Problem Formulation

The problem of scheduling jobs on a single machine with common due dates
is to minimize the total earliness and tardiness penalties. There are n jobs
available at time zero, each of which requires exactly one operation to be
scheduled on a single machine with the common due date d. There is no
preemption of jobs, and all jobs are sequence independent. For each job i, the
processing time Pi, the penalty per unit time of earliness αi, and the penalty
per unit time of tardiness βi are deterministic and known for i = 1, . . ., n. Let
Ci represent the completion time of job i. The earliness EAi and tardiness
TAi can be obtained by max{d−Ci, 0} and max{Ci −d, 0}, respectively. The
penalty αi∗EAi is incurred when job i is completed EAi time units earlier than
d, whereas the penalty βi∗TAi is incurred when it is completed TAi time units
later than d. The minimization of earliness and tardiness penalties of single-
machine scheduling problems with a common due date can be formulated as
follows [19–22].

STi + Pi + EAi − TAi = d, i = 1, . . . , n (4.1)
STi + Pi − STj − γ(1 − xij) ≤ 0, i = 1, . . . , n− 1; j = i+ 1, . . . , n (4.2)

STj + Pj − STi − γxij ≤ 0, i = 1, . . . , n− 1; j = i+ 1, . . . , n (4.3)
STi, EAi, TAi ≥ 0, i = 1, . . . , n (4.4)

where xij ∈ {0, 1}; xij=1 if job i precedes job j and xij=0, otherwise. n is
the number of jobs, γ denotes a sufficiently large number and ST i denotes
the starting time of job i. Eq. 4.1 indicates each job is early or tardy. Eq. 4.2
represents that the starting time plus processing time of job i is earlier than
or equal to the starting time of job j if job i precedes job j. Eq. 4.3 represents
that the starting time plus processing time of job j is far ahead of the starting
time of job j if job i lags job j. Eq. 4.4 ensures that the starting time, tardiness
and earliness of jobs must be exceeding or equal to zero. Then, the objective
function (F ) for scheduling jobs on a single machine with a common due date
is presented as follows.

F (S) =
n∑

i=1

(αi ∗ EAi + βi ∗ TAi), (4.5)

where S is the feasible schedule of the jobs. To efficiently obtain a better value
for Eq. 4.5, three well-known theorems for scheduling jobs on a single machine
with common due dates are shown below [13].

Theorem 4.1 For scheduling jobs on a single machine with common due
dates, there is an optimal schedule in which either the first job starts at time
zero or one job is completed at the common due date d.

Proof. The proof is shown in [10].
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Theorem 4.2 An optimal schedule exists if there is no idle time between any
consecutive jobs for scheduling jobs on a single machine with common due
dates.

Proof. The proof is presented in [20].

Theorem 4.3 For the optimal schedule, V-shaped property exists around the
common due date. This means that jobs completed before or on common due
date d are scheduled in non-increasing order of the ratios pi/αi and jobs start-
ing on or after d are scheduled in non-decreasing order of the ratios pi/βi in
an optimal schedule.

Proof. The proof can be made by a job interchange argument [1], or can be
followed from Smith’s ratio rule [23].

By Theorem 4.1, the generated schedule follows that the starting time of
the first job at time zero, or the completion time of a job coincides with the
common due date [9, 13, 18]. By Theorem 4.2, the completion time for job
j is calculated by adding the completion time of the previous job and the
processing time of current job i when the schedule is generated [1, 9, 13, 18].
By Theorem 4.3, jobs can be classified into the subsets SEA and STA, in which
starting before or on/after the common due date [1,9,13,18,23]. It should be
noted that above properties must be embedded into the proposed algorithm
for obtaining the global solution and speeding up search performance.

In this chapter, the dynamical architecture of DACO is first derived to
obtain feasible solutions. Furthermore, heuristics are used to ameliorate its
performance and escape from local optima.

4.3 Overview of Ant Colony Optimization

The proposed algorithm is based on Ant Colony Optimization (ACO). In
this section, the basic concept of ACO is introduced. ACO is also a class of
meta-heuristic optimization algorithms inspired by the foraging behavior of
real ants, and has been successively applied in many fields [24–32]. Real ants
can explore and exploit pheromone information, which have been left on the
traversed paths. The ACO algorithm is shown as follows [24]:

Procedure: ACO algorithm
ScheduleActivities

ConstructAntsSolutions
UpdatePheromones
DaemonActions

end ScheduleActivities
end procedure



4 ACO with Heuristics for Scheduling on a Single Machine 95

ConstructAntsSolutions decides a colony of ants that cooperatively
and interactively visit next states by choosing from feasible neighbor nodes.
They move by applying a stochastic local ant-decision policy that consists
of pheromone trails and heuristic information. In this way, ants can con-
struct solutions and find near-optimal solutions for the optimization problems.
UpdatePheromones consists of pheromone evaporation and new pheromone
deposition by which the pheromone trails are modified. Pheromone evapo-
ration is a process of decreasing the intensity of pheromone trails. On the
contrary, the trail’s value can be increased as ants deposit pheromone on the
traversed trails. Pheromone evaporation is a useful form of forgetting that ants
can forage the promising area of the search space, and then can avoid trapping
into local optima. The deposit of new pheromone can increase the probability
that future ants will be directed to use a good solution again. DaemonActions
is used to implement centralized actions such as local optimization procedure
or the collection of global information that decides whether to deposit ad-
ditional pheromone or not. DaemonActions cannot be performed by a single
ant and are optional for ACO. The three above described procedures are man-
aged by ScheduleActivities. ScheduleActivities construct but does not
specify how these three procedures are scheduled and synchronized. In this
chapter, we design a Dynamic ACO to specify the interaction between these
three procedures for scheduling jobs on a single machine with common due
dates.

4.4 The Proposed Algorithm

The ACO has shown its ability to find good solutions for NP-complete op-
timization problems. The problem of scheduling jobs on a single machine
against the common due date with respect to earliness and tardiness penal-
ties is also known as an optimization problem. It is promising that DACO is
applied to solve this problem. In DACO, ants successively choose feasible jobs
into subsequence to construct feasible solutions until all jobs are scheduled.
For constructing solution, each ant decides that the l-th ant positioned on job
r successively selects the next job einto subsequence at iterationt with the
ant-decision policy governed by

e =

⎧⎪⎨⎪⎩
arg{ max

u=allowedl(t)
[τru(t) η�

ru]}, when q ≤ q0

E, otherwise;
(4.6)

where τru(t) is the pheromone trail, ηru is the problem-specific heuristic in-
formation, and � is a parameter representing the importance of heuristic
information, q is a random number uniformly distributed in [0,1], q0 is a pre-
specified parameter (0≤ q0 ≤1), and allowed l(t) is the set of feasible nodes
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currently not assigned by ant l at time t. In Eq. 4.6, q0 is the probability of ex-
ploiting the learned knowledge when q ≤ q0. It indicates that ants will directly
select next jobs by the product of learned pheromone trails and heuristic in-
formation. While q > q0, it performs a biased exploration for the next job, and
E is an index of node selected from allowed l(t) according to the probability
distribution given by:

P l
re(t) =

⎧⎪⎪⎨⎪⎪⎩
τre(t)η�

re∑
u∈allowedl(t)

τru(t)η�
ru
, if e ∈ allowedl(t)

0, otherwise;

(4.7)

For ηru, it is decided according to whether the next job positions in the
SEA or STA subset of the V-shaped. According to Theorem 4.3, ηru is set to
ηru = pr

αr
+ pu

αu
if the next job is positioned in SEA subset, otherwise ηru is

set to ηru = ( pr

βr
+ pu

βu
)−1.

In DACO, the entropy information for estimating the variation of the
pheromone trails is derived to adjust the parameter of heuristic information
(�). Each trail represents as a discrete random variable and the entropy (H)
of the pheromone trails (Y ) at the t-th iteration is defined as:

H(Y ) = −
r∑

l=1

p(yl) log p(yl) (4.8)

where r represents the total number of pheromone trails. It is easy to show that
the probability of initial pheromone trails is the same, Ht has the maximum
value (log r) [3]. Thereafter, the ratio value of H ′, H ′ = Ht/ log r, is used to
dynamically adjust the value of heuristic information (�) according to the
rule given by

� =

⎧⎪⎪⎨⎪⎪⎩
4, Γ < H ′ ≤ 1
3, Π < H ′ ≤ Γ
2, Ω < H ′ ≤ Π
1, 0 < H ′ ≤ Ω

(4.9)

where the values of Γ, Π, and Ω could be predefined constants. The value of
� is set as the highest value in Eq. 4.9, because it guides the ant to increase
the diversity search in the initial iteration. After constructing solutions, the
amount of the pheromone trails will be more and more non-uniform, and the
entropy will decrease gradually. Thus, a lower value of � is used in Eq. 4.9.

In finding feasible solutions, ants perform online step-by-step pheromone
updates as:

τij(t+ 1) = (1 − ϕ)τij(t) + ϕτ0, (4.10)

where 0 < ϕ ≤ 1 is a constant, τ0=(m ∗
n∑

i=1

pi)−1 is the initial value of

pheromone trails and m is the number of ants. After all ants have constructed
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complete solutions, the global update is performed. Global update gives only
the best solution to contribute to the pheromone trail update. The pheromone
trail update rule is performed as:

τij(t+ 1) = (1 − ρ)τij(t) + ρτij(t), (4.11)

where 0 < ρ ≤ 1 is a parameter governing the pheromone decay process,
∆τij(t) = 1/F best, and F best is the objective function of the best solution
obtained from the beginning of the search process.

After obtaining the best solution, additional heuristics are performed to es-
cape form local optima and could also find the global optima. In the proposed
algorithm, the idea of additional heuristics is to greedily swap jobs between
the subsets of SEA and STA for the best solution. There are 4 phases in the
heuristics of the proposed algorithm. Firstly, the jobs in SEA are successively
selected from the first job to swap with all jobs in STA that could obtain
better objective function than that of best solution. In phase 1, the i-th job
in SEA and j−th job in STA are swapped when this swapping causes the ob-
jective function improvement. Additively, the best solution is replaced by the
swapped solution and the global update of Eq. 4.11 is performed. On the con-
trary, the best solution is not changed if this swapping of the i-th job in SEA

and j−th job in STA does not cause the any objective function improvement.
Phase 1 continues until all jobs of the best solution in SEA have been exam-
ined. In phase 2, the jobs in STA are successively selected from the first job to
swap with the jobs in SEA that could obtain better objective function than
that of best solution. This phase continues until all jobs of the best solution
in STA have been examined, and the swapping process is similar to phase 1 if
a better objective function is obtained. In phase 3, a randomly selected i−th
job in SEA may be moved to STA if this move leads to the improvement of
objective function. In phase 4, a randomly selected j−th job in STA may be
moved to SEA if this move leads to the improvement of objective. Additively,
the best solution is also replaced by the new best solution if it is found in
phase 3 and 4. It is noted that all jobs in subsets of SEA and STA must follow
the V-shaped property of Theorem 4.3.

4.5 Simulation Results

In simulation, we need to identify a set of parameters. The simulations with
various values are performed, and the results are all similar. Experiments were
conducted on PCs with PIV 3GHz processor. In the following simulations, we
keep the following values as default: ρ= 0.5, ψ = 0.1, q0 = 0.8, Γ = 0.8,
Π = 0.6, Ω = 0.3, and the number of ants m = 20. It is noted that the
parameters of the proposed algorithm are set to the same values of ACO
except for � = 2 in ACO. For fair comparisons, these compared approaches
are performed to see which approach can find the best solution after a fixed
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period of running without improving objective function [13]. To verify the
effectiveness of the proposed algorithm, the problem sets are taken from [1,13].
The numbers of jobs n are set to 50, 100, 200, 500 and 1000, and four restrictive
factors h = 0.2, 0.4, 0.6, and 0.8 are used to determine the common due
date defined as d = �h∑

Pi	. For each combination of n and h, ten problems
represented the k−th instance of a combination are used for testing. Tables 4.1
to 4.5 tabulate all simulation results for the proposed algorithm.

Table 4.1: Simulation results of n=50 for the proposed algorithm.

n=50 h=0.2 h=0.4 h=0.6 h=0.8

k=1 40,697 23,792 17,969 17,934

k=2 30,613 17,907 14,050 14,040

k=3 34,425 20,500 16,497 16,497

k=4 27,755 16,657 14,080 14,080

k=5 32,307 18,007 14,605 14,605

k=6 34,969 20,385 14,251 14,066

k=7 43,134 23,038 17,616 17,616

k=8 43,839 24,888 21,329 21,329

k=9 34,228 19,984 14,202 13,942

k=10 32,958 19,167 14,366 14,363

Table 4.2: Simulation results of n=100 for the proposed algorithm.

n=100 h=0.2 h=0.4 h=0.6 h=0.8

k=1 145,516 85,884 72,017 72,017

k=2 124,916 72,982 59,230 59,230

k=3 129,800 79,598 68,537 68,537

k=4 129,584 79,405 68,759 68,759

k=5 124,351 71,275 55,286 55,103

k=6 139,188 77,778 62,398 62,398

k=7 135,026 78,244 62,197 62,197

k=8 160,147 94,365 80,708 80,708

k=9 116,522 69,457 58,727 58,727

k=10 118,911 71,850 61,361 61,361

To show the superiority of the proposed algorithm, the percentage im-
provement of the obtained values (FOB) for the proposed algorithm and var-
ious approaches were compared with regard to the benchmarks, provided by
Biskup and Feldman (FBF ), which can be calculated as follows [1, 13]:

Improvement rate (IR) =
FBF − FOB

FBF
∗ 100% (4.12)
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Table 4.3: Simulation results of n=200 for the proposed algorithm.

n =200 h=0.2 h=0.4 h=0.6 h=0.8

k=1 498,653 295,684 254,259 254,259

k=2 541,180 319,199 266,002 266,002

k=3 488,665 293,886 254,476 254,476

k=4 586,257 353,034 297,109 297,109

k=5 513,217 304,662 260,278 260,278

k=6 478,019 279,920 235,702 235,702

k=7 454,757 275,017 246,307 246,307

k=8 494,276 279,172 225,215 225,215

k=9 529,275 310,400 254,637 254,637

k=10 538,332 323,077 268,353 268,353

Table 4.4: Simulation results of n=500 for the proposed algorithm.

n=500 h=0.2 h=0.4 h=0.6 h=0.8

k=1 2,954,852 1,787,698 1,579,031 1,579,031

k=2 3,365,830 1,994,788 1,712,195 1,712,195

k=3 3,102,561 1,864,365 1,641,438 1,641,438

k=4 3,221,011 1,887,284 1,640,783 1,640,783

k=5 3,114,759 1,806,978 1,468,231 1,468,231

k=6 2,792,231 1,610,015 1,411,830 1,411,830

k=7 3,172,398 1,902,617 1,634,330 1,634,330

k=8 3,122,267 1,819,185 1,540,377 1,540,377

k=9 3,364,310 1,973,635 1,680,187 1,680,187

k=10 3,120,383 1,837,336 1,519,181 1,519,181

Table 4.5: Simulation results of n=1000 for the proposed algorithm.

n=1000 h=0.2 h=0.4 h=0.6 h=0.8

k=1 14,054,929 8,110,906 6,410,875 6,410,875

k=2 12,295,998 7,271,371 6,110,091 6,110,091

k=3 11,967,290 6,986,816 5,983,303 5,983,303

k=4 11,796,599 7,024,050 6,085,846 6,085,849

k=5 12,449,588 7,364,810 6,341,477 6,341,477

k=6 11,644,121 6,927,585 6,078,373 6,078,375

k=7 13,277,006 7,861,297 6,574,297 6,574,297

k=8 12,274,736 7,222,137 6,067,312 6,067,312

k=9 11,757,063 7,058,786 6,185,321 6,185,321

k=10 12,427,441 7,275,945 6,145,737 6,145,737
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The averaged improvement rate of the proposed algorithm and various
approaches over the benchmarks are shown in Table 4.6. In Table 4.6, each
cell represents the averaged value of ten instances (k = 1, 2, . . . , 10), and the
best results in the literature are reported in bold. It shows that the proposed
algorithm has the best performance among these compared approaches except
for n=200 and h=0.4. We noted that the proposed algorithm is also superior
to ACO as shown in Table 4.6.

Table 4.6: The averaged improvement rate of the proposed algorithm and various
approaches.

n h Meta-
heuristics
[6]

TS
[9]

GA
[9]

HTG
[9]

HGT
[9]

SEA
[13]

DPSO
[33]

ACO Our algo-
rithm

50 0.2 5.65 5.70 5.68 5.70 5.70 5.58 5.68 5.70 5.70

0.4 4.64 4.66 4.60 4.66 4.66 4.42 4.66 4.66 4.66

0.6 0 0.32 0.31 0.27 0.31 0.31 0.34 0.33 0.34

0.8 0 0.24 0.19 0.23 0.23 0.24 0.24 0.24 0.24

100 0.2 6.18 6.19 6.17 6.19 6.19 6.12 6.19 6.19 6.19

0.4 4.94 4.93 4.91 4.93 4.93 4.85 4.94 4.92 4.94

0.6 0 0.01 0.12 -0.08 -0.04 0.14 0.15 0.15 0.15

0.8 0 0.15 0.12 0.08 0.11 0.17 0.18 0.17 0.18

200 0.2 5.73 5.76 5.74 5.76 5.76 5.75 5.78 5.76 5.78

0.4 3.79 3.74 3.75 3.75 3.75 3.72 3.74 3.75 3.75

0.6 0 0.01 0.13 -0.37 -0.07 0.15 0.15 0.15 0.15

0.8 0 0.04 0.14 -0.26 -0.07 0.15 0.15 0.15 0.15

500 0.2 6.40 6.41 6.41 6.41 6.41 6.42 6.42 6.42 6.43

0.4 3.52 3.57 3.58 3.58 3.58 3.56 3.56 3.57 3.58

0.6 0 -0.25 0.11 -0.73 -0.15 0.11 0.11 0.11 0.11

0.8 0 -0.21 0.11 -0.73 -0.13 0.11 0.11 0.11 0.11

1000 0.2 6.72 6.73 6.75 6.74 6.74 6.77 6.76 6.76 6.77

0.4 4.30 4.39 4.40 4.39 4.39 4.39 4.38 4.38 4.40

0.6 0 -1.01 0.05 -1.28 -0.42 0.05 0.06 0.06 0.06

0.8 0 -1.13 0.05 -1.28 -0.40 0.05 0.06 0.06 0.06

4.6 Conclusions

In this chapter, we propose a Dynamical Ant Colony Optimization with heuris-
tics for scheduling jobs on a single machine with a common due date. In the
proposed algorithm, the entropy information is used to estimate the varia-
tion of the pheromone trails and then to dynamically adjust the parameter
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of heuristic information. Furthermore, heuristics are embedded into the pro-
posed algorithm to ameliorate its search performance. We use the benchmarks,
provided by Biskup and Feldman, to test the performance of the proposed al-
gorithm. From simulation results, it indicates that the proposed algorithm
outperforms original ACO and other approaches.
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Summary. Many sequencing and scheduling problems are recognized as being NP-
complete combinatorial problems. This class of problems often necessitates the use
of near-optimal solution techniques including heuristics and meta-heuristics. The re-
cently developed H-K general purpose heuristic has been successfully demonstrated
on members of this class. This chapter proposes the use of this deterministic heuris-
tic for use on complex scheduling problems. Specifically, the heuristic is applied to
a newly defined problem from the field of environmentally conscious manufacturing,
the goal of which is to determine a product’s part removal schedule. This schedule
provides the sequence of parts to be removed from a product at its end-of-life on a
paced reverse-manufacturing line. It seeks not only to determine a sequence that is
feasible (due to precedence constraints) but also to minimize the number of workers
on the line, equalize the time level-of-effort of each, remove environmentally haz-
ardous and high-demand parts early on, and to schedule the removal of parts with
similar removal directions adjacently. In addition, the problem used in this chapter
is shown to be similar to the Multiprocessor Scheduling Problem, a comparison that
is further carried through the application of a complexity proof. Finally, a scheduling
application of the H-K heuristic is demonstrated using an electronic product case
study from the literature.

Key words: Sequencing, Scheduling, Deterministic Heuristics, Multiproces-
sor Scheduling, Reverse-manufacturing, H-K heuristic.

5.1 Introduction

Scheduling problems can be found in a variety of fields, while their com-
plexity often necessitates the use of sub-optimal solutions through the use of
heuristics or meta-heuristics. A well-studied scheduling problem is the Simple
Assembly Line Balancing problem type I (SALB-I) and type II (SALB-II) [2].
SALB-I seeks to determine the minimum number of workstations necessary
to maintain a production rate while observing any precedence constraints
(i.e., typically parts cannot be installed in any sequence; order is essential).
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These problems have recently been extended to the field of environmentally
conscious manufacturing, specifically reverse manufacturing.

More and more manufacturers are acting to recycle and remanufacture
their post-consumer products due to new and more rigid environmental legis-
lation, increased public awareness, and extended manufacturer responsibility.
A crucial first step is disassembly. Disassembly is defined as the methodi-
cal extraction of valuable parts, subassemblies, and materials from discarded
products through a series of operations. A disassembly system faces many
unique challenges; for example, it has significant inventory problems because
of the disparity between the demands for certain parts or subassemblies and
their yield from disassembly. The flow process is also different. As opposed
to the normal “convergent” flow in regular assembly environment, in disas-
sembly the flow process is “divergent” (a single product is broken down into
many subassemblies and parts). There is also a high degree of uncertainty in
the structure and the quality of the returned products. The conditions of the
products received are usually unknown and the reliability of the components is
suspect. In addition, some parts of or materials in the product may cause pol-
lution or may be hazardous. Unintentional release of these materials or damage
to these parts is a risk during disassembly; in addition these parts or materials
may require special handling, all of which can influence the utilization of the
disassembly workstations. For example, an automobile slated for disassembly
contains a variety of parts and materials that are dangerous to remove and/or
present a hazard to the environment such as the battery, airbags, fuel, and
oil. Various demand sources may also lead to complications in disassembly
sequencing. The reusability of parts creates a demand for them, however, the
demands and availability of the reusable parts is significantly less predicable
than what is found in the assembly process. Most products contain parts that
are installed (and must be removed) in different attitudes, from different areas
of the main structure, or in different directions. Since any required directional
changes increase the setup time for the disassembly process, it is desirable
to minimize the number of directional changes in the chosen disassembly se-
quence. Finally, balancing the disassembly line is critical in minimizing the
use of valuable resources (such as time and money) invested in disassembly
and maximizing the level of automation of the disassembly process and the
quality of the parts or materials recovered.

The Disassembly Line Balancing Problem (DLBP) seeks a sequence of
parts for removal from an end-of-life product on a paced reverse-manufacturing
line that minimizes the resources required for disassembly as well as maximizes
the automation of the process in the interest of ensuring the quality of the
parts or materials recovered. This chapter first mathematically models the
multi-criteria DLBP, which is shown here to be similar to the familiar Multi-
processor Scheduling Problem. The DLBP is then proven to be NP-complete
in the strong sense, necessitating use of specialized solution techniques such
as those from combinatorial optimization. Combinatorial optimization is a
field that combines techniques from applied mathematics, operations research,
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and computer science to solve optimization problems - such as scheduling
problems - over discrete structures. From this field, a newly developed deter-
ministic search algorithm, the Hunter-Killer (H-K) general purpose heuristic,
holds promise for application to scheduling problems. A case study instance
of DLBP from the recent literature is solved using the H-K combinatorial
optimization method.

5.2 Literature Review

Key to addressing any scheduling problem is to understand how complex or
easy it is, what it shares with similar problems, and appropriate methods to
obtain reasonable solutions. For these reasons, a background in optimization
and algorithms is valuable. Tovey [31] provides a well-structured review of
complexity, NP-hardness, NP-hardness proofs, typical NP-hard problems, the
techniques of specialization, forcing, padding, and gadgets, mathematical pro-
gramming versus heuristics, and other complexity classifications. Rosen [28]
provides a useful text in the general area of discrete mathematics including
set theory, logic, algorithms, graph theory, counting, set theory, and proofs.
Papadimitriou and Steiglitz [26] is the de-facto text on combinatorial op-
timization, as is Garey and Johnson [4] in the area of NP-completeness.
Osman and Laporte [25] provide a well-researched paper on all forms of meta-
heuristics, the basic concepts of each, and references to applications. A follow-
on paper by Osman [24] is more compact and also more current.

A major part of scheduling manufacturing and assembly operations, the
assembly line is a production line where material moves continuously at a
uniform rate through a sequence of workstations where assembly work is per-
formed. With research papers going back to the 1950s, the Assembly Line
Balancing problem is well defined and fairly well understood. While possess-
ing some significant differences from assembly line balancing, the recent de-
velopment of DLBP requires that related problems be fully investigated and
understood in order to better define DLBP and to obtain guidance in the
search for appropriate methodologies to solve it. Gutjahr and Nemhauser [12]
first described a solution to the Assembly Line Balancing problem, while Erel
and Gokcen [3] developed a modified version by allowing for mixed-model
lines (assembly lines used to assemble different models of the same product).
Suresh et al. [29] first presented a genetic algorithm to provide a near-optimal
solution to the Assembly Line Balancing problem. Tabu search is used in bal-
ancing assembly lines in Lapierre et al. [17] using SALB-I with instances from
the literature (Arcus 1 and 2) and a case study from industry. Hackman et
al. [13] proposed a branch-and-bound heuristic for the SALB-I problem. Pon-
nambalam et al. [27] compared line-balancing heuristics with a quantitative
evaluation of six assembly line balancing techniques.

Many papers have discussed the different aspects of product recovery.
Brennan et al. [1] and Gupta and Taleb [11] investigated the problems
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associated with disassembly planning and scheduling. Torres et al. [30] re-
ported a study for non-destructive automatic disassembly of personal com-
puters. Güngör and Gupta [6], [7], [9] presented the first introduction to disas-
sembly line balancing, and then developed an algorithm for solving the DLBP
in the presence of failures with the goal of assigning tasks to workstations in a
way that probabilistically minimizes the cost of defective parts [8]. McGovern
et al. [23] first proposed combinatorial optimization techniques for the DLBP.
Güngör and Gupta [5] provide a review of environmentally conscious man-
ufacturing and product recovery. Lambert [15] and Lambert and Gupta [16]
detail a comprehensive review of disassembly sequencing.

5.3 Formulating The Reverse Production Scheduling
Problem

The desired solution to a DLBP instance consists of an ordered sequence (i.e.,
n-tuple) of work elements (also referred to as tasks, components, or parts).
For example, if a solution consisted of the eight-tuple 〈5, 2, 8, 1, 4, 7, 6, 3〉 then
the reverse manufacturing schedule would consist of removing component 5
first (with a corresponding part removal time, or PRTk, of PRT5), followed
by component 2, then component 8, and so on.

While different authors use a variety of definitions for the term “balanced”
in reference to assembly [2] and disassembly lines, we propose the following
definition [23], [20] that considers the total number of workstations NWS and
the station times (i.e., the total processing time requirement in workstation
j) STj ; this definition will be used consistently throughout this chapter:

Definition 5.1 A disassembly line is optimally balanced when the fewest pos-
sible number of workstations is needed and the variation in idle times between
all workstations is minimized, while observing all constraints. This is mathe-
matically described by

Minimize NWS

then

Minimize [max(STx) − min(STy)]∀ x, y ∈ {1, 2, . . . , NWS}.

The scheduling solution methodology demonstrated here addresses the
multiple-criteria aspects (e.g., hazardous parts, high-demand parts, etc.) of
DLBP as follows. Since line balance is the primary consideration in this chap-
ter, additional objectives are only considered subsequently; that is, the H-K
heuristic first seeks to select the best-balanced solution schedule; solutions
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equal in balance measure are then evaluated for hazardous part removal
positions; equal balance and hazard measure solutions are evaluated for high-
demand part removal positions; and equal balance, hazard measure, and
high-demand part removal position solutions are evaluated for the number
of direction changes. Similar to preemptive goal programming, this priority
ranking approach was selected over a weighting scheme for its simplicity, ease
in re-ranking the priorities, ease in expanding or reducing the number of prior-
ities, due to the fact that other weighting methods can be readily addressed at
a later time, and primarily to enable unencumbered efficacy (a method’s effec-
tiveness in finding good solutions) analysis of the combinatorial optimization
methodology and problem data instance under consideration here.

Given the cycle time (the maximum time available at each workstation
on the paced line) CT , a minimum value of the sum of the workstation idle
times (which is also indicative of a minimum total number of workstations) I
is desired and can be described by

I =
NWS∑
j=1

(CT − STj) (5.1)

When perfect balance (i.e., all idle times equal to zero) is not achievable,
either Line Efficiency (LE) or the Smoothness Index (SI) is often used as a
performance evaluation tool [2]. SI rewards similar idle times at each work-
station, but at the expense of allowing for a large (sub-optimal) number of
workstations. This is because SI compares workstation elapsed times to the
largest STj instead of to CT . (SI is very similar in format to the sample
standard deviation from the field of statistics, but using max(STj) | j ∈ {1,
2, ..., NWS} rather than the mean of the station times.) LE rewards the
minimum number of workstations but allows unlimited variance in idle times
between workstations because no comparison is made between STjs. The bal-
ancing method developed by McGovern et al. [23], [20] seeks to simultaneously
minimize the number of workstations while ensuring that idle times at each
workstation are similar, though at the expense of the generation of a nonlinear
objective function. A resulting minimum numerical value is the more desirable
solution, indicating both a low number of workstations and similar idle times
across all workstations. The measure of balance F is represented as

F =
NWS∑
j=1

(CT − STj)
2 (5.2)

Note that mathematically, Eq. 5.2 effectively makes Eq. 5.1 redundant
due to the fact that it addresses both the variation in the idle times at each
workstation as well as the total number of workstations.

Hazard, demand, and direction measures have also been developed for
use in measuring the performance of a heuristic-generated solution schedule
(where n represents the number of parts for removal and PSk identifies the
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kth part in the solution sequence; e.g., for solution 〈3, 1, 2〉, PS2 = 1). Hazard
measure H (with binary value hPSk

equal to one if part k is known to be haz-
ardous, else zero), demand measure D (with value dPSk

equal to the quantity
of part k requested), and part removal direction measure R (with value rPSk

corresponding to the kth part’s removal direction and those directions being
represented by integers) can be summarized as

H =
∑n

k=1 (k · hPSk
) hPSk

=
{

1 , hazardous
0 , otherwise (5.3)

D =
∑n

k=1 (k · dPSk
) dPSk

∈ N ∀ PSk (5.4)

R =
∑n−1

k=1 Rk Rk =
{

1 , rPSk

= rPSk+1

0 , otherwise (5.5)

McGovern and Gupta provide further explanation and details of Formulae
(1) through (5) including upper and lower theoretical bounds [21].

5.4 Modeling The Problem As A Multiprocessor
Scheduling Problem And Proof As Unary NP-Complete

The theory of NP-completeness is applied only to decision problems. While an
optimization problem asks for a structure of a certain type that has a minimum
(or maximum) cost among all such structures, associating a numerical thresh-
old as an additional parameter and asking whether there exists a structure of
the required type having cost no more (less) than that threshold creates the
desired decision problem. The decision version of DLBP is NP-complete in the
strong sense (i.e., unary NP-complete). This can be shown through a proof by
restriction to the Multiprocessor Scheduling Problem [4]. The Multiprocessor
Scheduling Problem (note that some authors define the problem differently;
see Papadimitriou and Steiglitz [26]) is described by:

INSTANCE: A finite set A of tasks, a length l(a) ∈ Z+ for each a ∈ A, a
number m ∈ Z+ of processors, and a deadline B ∈ Z+.

QUESTION: Is there a partition A = A1 ∪ A2 ∪ ... ∪ Am of A into m
disjoint sets such that max

{∑
a∈Ai

l(a) : 1 ≤ i ≤ m
} ≤ B?

In DLBP, NWS is equivalent to m in the Multiprocessor Scheduling Prob-
lem, the set P of part removal tasks is equivalent to A, while CT is equivalent
to B (note that a polynomial time reduction is represented by ≤P and im-
plies that a function exists that can map the solution space of one problem
to another in polynomial time).

Theorem 5.1 The decision version of DLBP is NP-complete in the strong
sense.
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INSTANCE: A finite set P of tasks; partial order ≺ on P; task time
PRTk ∈ Z+, hazardous part binary value hk ∈ {0, 1}, part demand dk ∈ N,
and part removal direction rk ∈ Z for each k ∈ P ; workstation capacity
CT ∈ Z+; number NWS ∈ Z+ of workstations; difference between largest
and smallest idle time V ∈ N; hazard measure H ∈ N; demand measure
D ∈ N; and direction change measure R ∈ N.

QUESTION: Is there a partition of P into disjoint sets PA, PB , ..., PNWS

such that the sum of the sizes of the tasks in each PX is CT or less, the
difference between largest and smallest idle times is V or less, the sum of
the hazardous part binary values multiplied by their sequence position is H
or less, the sum of the demanded part values multiplied by their sequence
position is D or less, the sum of the number of part removal direction changes
is R or less, and it obeys the precedence constraints?

Proof. DLBP ∈ NP. Given an instance, it can be verified in polynomial time if
the answer is “yes” by: counting the number of disjoint sets and showing that
they are NWS or less, summing the sizes of the tasks in each disjoint set and
showing that they are CT or less, examining each of the disjoint sets and not-
ing the largest and the smallest idle times then subtracting the smallest from
the largest and showing that this value is V or less, summing the hazardous
part binary values multiplied by their sequence position and showing this is
H or less, summing the demanded part values multiplied by their sequence
position and showing that this is D or less, summing the number of changes
in part removal direction and showing that this is R or less, and checking that
each task has no predecessors listed after it in the sequence.

Multiprocessor Scheduling ≤P DLBP. Restrict to Multiprocessor Schedul-
ing by allowing only instances in which V = CT , ≺ is empty, and hx = hy,
dx = dy, rx = ry ∀x, y ∈ P .

Therefore, the decision version of DLBP is NP-complete in the strong
sense. ��

It is easy to see that the Bin-Packing problem is similar to DLBP. The Bin-
Packing problem is NP-hard in the strong sense, which indicates that there is
little hope in finding even a pseudo-polynomial time optimization algorithm
for it.

There are normally considered to be two general categories of techniques
for addressing NP-complete problems [4]. The first includes approaches that
attempt to improve upon exhaustive search as much as possible with, for
example, commercial math-programming software. The second allows for sub-
optimal solutions in a reasonable amount of time through the use of heuristics
(intuitive rules-of-thumb). Here, a promising deterministic search heuristic is
demonstrated using a newly developed DLBP case study instance.
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5.5 H-K Heuristic

5.5.1 Heuristic Search Background

Exhaustive search techniques (e.g., pure depth-first or pure breadth-first) will
fail to find a solution to any but the smallest instances within any practical
length of time. Blind search, weak search, naive search, and uninformed search
are all terms used to refer to algorithms that use the simplest, most intuitive
method of searching through a search space, whereas informed search algo-
rithms use heuristics to apply knowledge about the structure of the search
space. An uninformed search algorithm is one that does not take into ac-
count the specific nature of the problem. This allows uninformed searches to
be implemented in general, with the same implementation able to be used in
a wide range of problems. Uninformed searches include breadth-first search,
depth-first search, iterative deepening, and H-K. H-K seeks to take advantage
of the benefits of uninformed search while addressing the exhaustive search
drawbacks of runtime growth with instance size. The independent-agent na-
ture of this search heuristic also lends itself to solution using a grid computer
system, while the heuristic’s deterministic nature lends itself to use as part of
a hybrid.

5.5.2 Heuristic Motivation and Introduction

Exhaustive search is optimal because it looks at every possible answer. While
an optimal solution can be found, this technique is impractical for all but the
simplest combinatorial problems due to the explosive growth in search time.
In many physical search applications (e.g., antisubmarine warfare, search and
rescue) exhaustive search is not possible due to time or sensor limitations. In
these cases, it becomes practical to sample the search space and operate under
the assumption that, for example, the highest point of land found during the
conduct of a limited search is either is the highest point in a given search
area or is reasonably near the highest point. The search technique [18] in this
chapter works by sampling the exhaustive solution set; that is, search the
solution space in a method similar to an exhaustive search but in a pattern
that skips solutions (conceptually similar to the STEP functionality in a FOR
loop as found in computer programming) to significantly minimize the search
space (Fig. 5.1; the shading indicates solutions visited, the border represents
the search space).

This pattern is analogous to the radar acquisition search pattern known
as “spiral scan,” the search and rescue pattern of the “expanding square,” or
the antisubmarine warfare aircraft “magnetic anomaly detector hunting cir-
cle.” Once the solution is generated, the space can be further searched with
additional applications of the H-K heuristic (with modifications from the pre-
vious H-K) or the best-to-date solution can be further refined by performing
subsequent local searches (such as 2-opt or smaller, localized H-K searches).
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Fig. 5.1: Exhaustive search space and the H-K search space and methodology.

Depending on the application, H-K can be run once, multiple times on sub-
sequent solutions, multiple times from the same starting point using differ-
ent skip measure (potentially as a multiprocessor application using parallel
algorithms or as a grid computing application), multiple times from a dif-
ferent starting point using the same skip measure (again, potentially as a
multiprocessor or grid computing application), or followed up with an H-K or
another, differing local search on the best or several of the best sub-optimal so-
lutions generated. While termination normally takes place after all sequences
are generated for a given skip size, termination can also be effected based on
time elapsed or once finding a solution that is within a predetermined bound.
H-K can also be used as the first phase of a hybrid algorithm or to hot start
another methodology (e.g., to provide the initial population in a genetic al-
gorithm). One interesting use for H-K is application to the unusual problem
where quantifying a small improvement (i.e., a greedy decision, such as would
be found in ant colony optimization where the ant agents build a solution
incrementally and, therefore, need to know which of the available solution
elements reflects an improvement) is not possible or is not understood, or
where the incremental greedy improvements may not lead to a global optima.
Finally, H-K would also be useful in quickly gathering a sampling of the so-
lution space to allow for a statistical or other study of the data (e.g., H-K
could enable the determination of the approximate worst-case and best-case
solutions as well as search space statistics, e.g., mean, median, and mode).

The skip size ψ, or more generally ψk (the kth element’s skip measure; i.e.,
for the solution’s third element, visit every 2nd possible task given ψ3 = 2)
can be as small as ψ = 1 or as large as ψ = n. Since ψ = 1 is equivalent to
exhaustive search and ψ = n generates a trivial solution (it returns only one
solution, that being the data in the same sequence as it is given to H-K, that
is, PSk = 〈1, 2, 3, ..., n〉; also, this solution is already considered by any H-K
search having the data presented at least in forward order, regardless of ψ),
in general all skip values can be further constrained as

2 ≤ ψk ≤ n− 1 (5.6)

Depending on structural decisions, H-K can take on a variety of forms,
from a classical optimization algorithm in its most basic form, to a general
evolutionary algorithm with the use of multiple H-K processes, to a biological
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or natural process algorithm by electing random functionality. In order to
demonstrate the method, in this chapter the most basic form of the H-K
heuristic is used: one process (visiting the data once, in forward order), con-
stant starting point of PSk = 〈1, 1, 1, ..., 1〉 (since the solution set is a permu-
tation, there are no repeated items; therefore, the starting point is effectively
PSk = 〈1, 2, 3, ..., n〉), constant skip type (i.e., each element in the solution
sequence is skipped in the same way), constant skip size (i.e., each element in
the sequence is skipped using identical ψ values), and no follow-on solution
refinement.

5.5.3 The H-K Process and DLBP Application

As far as the H-K process itself, since it is a modified exhaustive search allow-
ing for solution sampling, it searches for solutions similar to depth-first search,
iteratively seeking the next permutation iteration - allowing for skips in the
sequence - in lexicographic order. In the basic H-K and with, for example ψ
= 2 and n = 4, the first element in the first solution would be 1, the next
element position would first consider 1, but since 1 is already in the solution
(in element position one PS1), element position two would be incremented
and 2 would be considered and be acceptable. This is repeated for all of the
elements until the first solution (i.e., PSk = 〈1, 2, 3, ..., n〉) is generated. For
the next solution visited, the rightmost element that is able to be incremented
by ψ (equal to 2 in this example) while not exceeding n would be incremented
by ψ and the remaining element positions to the right would be filled lexico-
graphically (smallest to biggest, left to right). This process is continued to the
left until the first element position is reached. The part under consideration
would then be PS1 = 1 which would be incremented by ψ = 2 and, therefore,
3 would be considered and inserted as the first element position value (PS1

= 3). Since part 1 is not yet in the sequence, it would be placed in the second
position (PS2 = 1), part 2 in the third (PS3 = 2), etc., and the process is
repeated. For example, with n = 4, P = {1, 2, 3, 4}, and no precedence con-
straints, instead of considering the 4! = 24 possible permutations, only five are
considered by the single-phase H-K with ψ = 2 and using forward-only data:
PSk = 〈1, 2, 3, 4〉, PSk = 〈1, 4, 2, 3〉, PSk = 〈3, 1, 2, 4〉, PSk = 〈3, 1, 4, 2〉, and
PSk = 〈3, 4, 1, 2〉. With n = 5, P = {1, 2, 3, 4, 5}, and no precedence con-
straints, instead of considering the 5! = 120 possible permutations, only 16
are considered by the single-phase H-K with ψ = 2 and using forward-only
data as demonstrated in Fig. 5.2.

For DLBP H-K this is further modified to test the proposed sequence part
addition for precedence constraints. If all possible parts for a given solution
position fail these checks, the remainder of the positions are not further in-
spected, the procedure falls back to the previously successful solution addition,
increments it by one, and continues. These processes are repeated until all al-
lowed items have been visited in the first solution position (and by default, due
to the nested nature of the search, all subsequent solution positions). All of
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PSk = 〈1, 2, 3, 4, 5〉
PSk = 〈1, 2, 5, 3, 4〉
PSk = 〈1, 4, 2, 3, 5〉
PSk = 〈1, 4, 5, 2, 3〉
PSk = 〈1, 4, 5, 3, 2〉
PSk = 〈3, 1, 2, 4, 5〉
PSk = 〈3, 1, 4, 2, 5〉
PSk = 〈3, 1, 4, 5, 2〉
PSk = 〈3, 4, 1, 2, 5〉
PSk = 〈3, 4, 1, 5, 2〉
PSk = 〈3, 4, 5, 1, 2〉
PSk = 〈5, 1, 2, 3, 4〉
PSk = 〈5, 1, 4, 2, 3〉
PSk = 〈5, 3, 1, 2, 4〉
PSk = 〈5, 3, 1, 4, 2〉
PSk = 〈5, 3, 4, 1, 2〉

Fig. 5.2: DLBP H-K results at n = 5 and ψ = 2.

the parts are maintained in a tabu-type list in order to maintain each solution
as a permutation (i.e., no repeats). Each iteration of the DLBP H-K generated
solution is considered for feasibility. If it is ultimately feasible in its entirety,
DLBP H-K then looks at each element in the solution and places that element
using the Next-Fit (NF) rule (from the Bin-Packing problem application; once
a bin has no space for a given item attempted to be packed into it, that bin
is never used again even though a later, smaller item may appear in the list
and could fit in the bin, see Hu and Shing [14]). DLBP H-K puts the ele-
ment under consideration into the current workstation if it fits. If it does not
fit, a new workstation is assigned and previous workstations are never again
considered. Although NF does not perform as well as First-Fit, Best-Fit, First-
Fit-Decreasing, or Best-Fit-Decreasing when used in the general Bin-Packing
problem, it is the only one of these rules that will work with a DLBP solu-
tion sequence due to the existence of precedence constraints (see McGovern
and Gupta [19] for a DLBP implementation of First-Fit-Decreasing). When
all of the work elements have been assigned to a workstation, the process is
complete and the balance, hazard, demand, and direction measures are calcu-
lated. The best of all of the inspected solution sequences is then saved as the
problem solution. Although the actual software implementation for this study
consisted of a very compact recursive algorithm, in the interest of clarity, the
general DLBP H-K procedure is presented here as a series of nested loops
(Fig. 5.3, where ISSk is the binary flag representing the tabu-type list; set to
one if part k is in the solution sequence, and where FS is the feasible sequence
binary flag; set to one if the sequence is feasible). It should also be noted that
this general representation of the heuristic allows for a different skip value to
be used at each solution element position (as denoted by, for example, ψ1)
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while the heuristic implemented in this chapter used the same skip value at
each solution element position (i.e., ψx = ψy ∀x, y ∈ P ).

Procedure DLBP_H-K { 
SET ISSk := 0 ∀ k∈P
SET FS := 1 
FOR PS1 := 1 to n, STEP ψ1

SET ISSPS1 := 1 
FOR PS2 := 1 to n, STEP ψ2

WHILE (ISSPS2 = = 1 ∨
 PRECEDENCE_FAIL ∧

  not at n)
  Increment PS2 by 1 

IF ISSPS2 = = 1  
THEN SET FS := 0
ELSE SET ISSPS2 := 1 

    : 
    : 

IF FS = =1
FOR PSn := 1 to n STEP ψn

WHILE (ISSPSn = =1 ∨
 PRECEDENCE_FAIL ∧

  not at n)
     Increment PSn by 1 

IF ISSPSn = = 0  
THEN evaluate solution PS

  : 
  : 
IF FS = = 1  
THEN SET ISSPS2 := 0 
ELSE SET FS := 1

SET ISSPS1 := 0 
SET FS := 1

}

Fig. 5.3: The DLBP H-K algorithm.

Skip size affects various measures including any efficacy measures and time
complexity. The general form of the skip size-to-problem size relationship is
formulated as

ψk = n−∆ψk (5.7)

where∆ψk represents the kth element’s delta skip measure; difference between
problem size n and skip size ψk (i.e., for ∆ψk = 10 and n = 80, ψk = 70).

Early tests of time complexity growth with skip size suggest another tech-
nique to be used as part of H-K search. Since any values of ψk that are larger
than the chosen skip value for a given H-K instance take significantly less
processing time, considering all larger skip values should also be considered
in order to increase the search space at the expense of a minimal increase in
search time. In other words, H-K can be run repeatedly on a given instance
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using all skip values from a smallest ψk (selected based upon time complexity
considerations) to the largest (i.e., n−1 per Formula (6)) without a significant
time penalty. In this case, any ψk would be constrained as

n−∆ψk ≤ ψk ≤ n− 1 where 1 ≤ ∆ψk ≤ n− 1 (5.8)

If this technique is used it should also be noted that multiples of ψk visit
the same solutions; for example, for n = 12 and 2 ≤ ψ ≤ 10, the four solutions
considered by ψ = 10 are also visited by ψ = 2 and ψ = 5.

In terms of time complexity, the rate of growth has been observed to be
exponential in the inverse of ψ. The average-case time complexity of H-K
is then listed as O(bb) in skip size, where b = 1/ψ. Due to the nature of
H-K, the number of commands executed in the software do not vary based on
precedence constraints, data sequence, greedy or probabilistic decision mak-
ing, improved solutions nearby, etc., so the worst case is also O(bb), as is the
best case (big-Omega of Ω(bb)), and, therefore, a tight bound exists, which is
Θ(bb). When the maximum skip size is fixed, time complexity can be seen as a
function of problem size n. For example, using forward and reverse data, and
1 ≤ ∆ψ ≤ 10 (and resulting skip sizes of n−10 ≤ ψ ≤ n−1), the average-case
time complexity of DLBP H-K is empirically seen to be O(n2) or polynomial
complexity. The deterministic, single iteration nature of H-K (as used in this
chapter) also indicates that the process would be no faster than this, so it is
expected that the time complexity lower bound is Ω(n2) and, therefore, H-K
appears to have an asymptotically tight bound of Θ(n2) (when configured as
described).

With any heuristic it is important to understand how well it performs when
compared to other solution-generating techniques. Analysis by the authors [22]
shows that the heuristic compares favorably to some familiar search method-
ologies, including those from the areas of probabilistic distributed intelligent
agent meta-heuristics, purely deterministic searches, and hybrid techniques.
Table 5.1 shows comparisons with a genetic algorithm (GA), an ant colony
optimization (ACO) meta-heuristic, a greedy algorithm, a greedy/adjacent
element hill climbing hybrid, and a greedy/2-optimal (2-Opt) hybrid, as well
as with exhaustive search. The table shows each of the combinatorial opti-
mization methodologies’ calculated number of workstations, balance, hazard,
demand, and part removal direction efficacy indices (EIx – where x is some
metric under consideration e.g., H – is the ratio of the difference between
a calculated measure and its worst-case measure, to the difference between
the best-case measure and the worst-case measure) sample means; regression
model average-case experimentally determined time complexity T (n); and as-
sociated asymptotic upper bound (experimentally determined average case
using a DLBP benchmark data set [22]).

The shading provides a quick reference to performance, with darker shades
indicating worsening performance. While exhaustive search is included in the
table, none of its row elements are considered for shading since its purpose in
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Table 5.1: Summary of quantitative measures for various methodologies when com-
pared with the H-K general purpose heuristic.

NWSEI )(normFEI HEI DEI REI T(n) big-Oh
Exhaustive 100% 100% 100% 100% 100% 1.199n! Ο(n!) 
GA 97% 94% 84% 78% 49% 0.033n Ο(n)
ACO 95% 90% 74% 51% 13% 0.001n3 Ο(n3)
Greedy 95% 83% 100% 64% 16% 7×10-8n2 Ο(n2)
Greedy/AEHC 95% 87% 100% 65% 48% 3×10-7n2 Ο(n2)
Greedy/2-Opt 96% 93% 100% 74% 56% 5×10-5n2 Ο(n2)
H-K 96% 92% 90% 49% 20% 0.003n2 Ο(n2)

the table is as the benchmark. Note that the balance measure sample mean
efficacy index is based on a normalized balance (using the square root of F )
in the interest of providing a more appropriate, comparable, and consistent
scale. The time complexity regression model column only contains the highest-
order base in the polynomial and its coefficient in the interest of space and
since these are the portions of the regression model that result in the greatest
runtime growth with instance size.

H-K’s runtime performance can be improved by increasing skip size, while
the opposite (i.e., decreasing skip size) and running different versions of the
data (including running the data in forward and reverse order), would be ex-
pected to increase solution efficacy. Note that, as a recently developed method-
ology, other techniques as proposed in Section 5.5.2 may decrease runtime
and/or increase solution efficacy of the heuristic as well.

5.6 Electronic Product Instance

As a point of reference, an automobile assembly plant has a rather short cycle
time of CT = 60 seconds while at the other extreme is a general aviation
aircraft manufacturer that provides 31

2 hours of cycle time. The number of
components can run into the thousands with even an efficient contemporary
automobile design (e.g., 2005 Ford Mustang) running over 4,000 individual
parts and taking a total of 20 hours to build.

Since DLBP is a recent problem, very few problem instances exist to study
the performance of different heuristic solutions. One data set includes the
cellular telephone problem instance, which as developed, includes a list of
parts and associated part removal times, hazardous content, demand, and
removal direction, as well as precedence relationships.

Gupta et al. [10] provided the basis for the cellular telephone DLBP in-
stance. The growth of cellular telephone use, and rapid changes in technology
and features, has prompted the entry of new models on a regular basis while,
according to a 2005 Collective Good International report, one-hundred-million
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cellular telephones are discarded each year. Unwanted cell phones typically end
up in landfills and usually contain numerous hazardous parts that may contain
mercury, cadmium, arsenic, zinc, nickel, lead, gallium arsenide, and beryllium,
any of which can pose a threat to the environment. As reported in 2005, com-
panies that refurbished cellular telephones typically paid consumers $2 to $20
per phone for the more popular Motorola and Nokia cellular telephones while
cellular telephone recyclers (that may only extract precious metals such as
gold from the circuit boards) paid between $1 and $6 per phone.

Gupta et al. [10] selected a 2001 model year Samsung SCH-3500 cell phone
for disassembly analysis. The result is an appropriate, real-world instance
consisting of n = 25 components having several precedence relationships. The
associated search space is massive, with 25! (1.55 × 1025) possible solutions.
The data set includes a paced disassembly line operating at a speed which
allows CT = 18 seconds per workstation. Collected data on the SCH-3500
is listed in Table 5.2. Demand was estimated based on part value and/or
recycling value; part removal times and precedence relationships (Fig. 5.4)
were determined experimentally (part removal times were repeatedly collected
until a consistent part removal performance was attained).

Fig. 5.4: Cellular telephone precedence relationships (numbers represent task iden-
tification; arrow interpreted as “requires completion of”).

5.7 Numerical Analysis

For consistency in software architecture and data structures, the authors wrote
all of the search algorithm code; no off-the-shelf software was used. The com-
puter program was written in C++ and run on a 1.6GHz PM x86-family
workstation. After engineering, the program was first investigated on a vari-
ety of test cases for verification and validation purposes.
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Table 5.2: Knowledge base of the cellular telephone instance.

Task Part Removal Description Time Hazardous Demand Direction

1 Antenna 3 Yes 4 +y

2 Battery 2 Yes 7 -y

3 Antenna guide 3 No 1 -z

4 Bolt (type 1) a 10 No 1 -z

5 Bolt (type 1) b 10 No 1 -z

6 Bolt (type 2) 1 15 No 1 -z

7 Bolt (type 2) 2 15 No 1 -z

8 Bolt (type 2) 3 15 No 1 -z

9 Bolt (type 2) 4 15 No 1 -z

10 Clip 2 No 2 +z

11 Rubber seal 2 No 1 +z

12 Speaker 2 Yes 4 +z

13 White cable 2 No 1 -z

14 Red/blue cable 2 No 1 +y

15 Orange cable 2 No 1 +x

16 Metal top 2 No 1 +y

17 Front cover 2 No 2 +z

18 Back cover 3 No 2 -z

19 Circuit board 18 Yes 8 -z

20 Plastic screen 5 No 1 +z

21 Keyboard 1 No 4 +z

22 LCD 5 No 6 +z

23 Sub-keyboard 15 Yes 7 +z

24 Internal IC 2 No 1 +z

25 Microphone 2 Yes 4 +z

The instance was run (forward-only data; i.e., in the order presented in
Table 5.2) with ∆ψ varying from 1 to 10 (e.g., at n = 25, skip would vary
as 15 ≤ ψ ≤ 24) with the best solution from these searches kept. Note that
for other, smaller data sets the software was set up so that it would not at-
tempt any skip size smaller than ψ = 3 to avoid exhaustive or near-exhaustive
searches (which would result in unrealistically large search times on these small
data sets). This data set was not run with the data in reverse order. Although
H-K is deterministic (and hence always makes the same number of calculations
when run on a given instance), the H-K combinatorial optimization computer
software was run three times to obtain an average of the computation time in
order to accommodate variation in computer operating system overhead (i.e.,
background) processing.

The H-K combinatorial optimization technique quickly provided a solution
to this complex disassembly scheduling case study instance and the results are
shown in Table 5.3 (shading is used to distinguish between workstations). This
solution results in NWS = 11, F = 399, H = 82, D = 940, and R = 10 and
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took 0.01 seconds on average. While the optimal solution for this problem has
not yet been determined (primarily due to the search space size of 1025) a
heuristic designed specifically for this instance was able to obtain NWS = 9
and F = 9 [10].

Table 5.3: H-K solution using the cellular telephone instance and 15 ≤ ψ ≤ 24
(forward only).

Part ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
PRT 3 2 3 10 10 15 15 15 15 2 2 2 2 2 2 2 2 3 18 5 1 5 15 2 2
Workstation 1 1 1 1 2 3 4 5 6 6 7 7 7 7 7 7 7 7 8 9 9 9 10 10 11
Hazardous 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1
Demand 4 7 1 1 1 1 1 1 1 2 1 4 1 1 1 1 2 2 8 1 4 6 7 1 4
Direction 2 3 5 5 5 5 5 5 5 4 4 4 5 2 0 2 4 5 5 4 4 4 4 4 4

While H-K is used here with a single instance in the interest of demonstrat-
ing the implementation of this method for use in sequencing and scheduling
problems, the application of H-K to other instances can be seen in refer-
ences [18] and [22].

5.8 Future Research

Directions for future research can be described as follows:

• It may be of interest to vary the multi-criteria ordering of the objectives;
two possibilities include: a re-ordering of the objectives based on expert
domain knowledge, and a comparison of all permutations of the objec-
tives in search of patterns or unexpected performance improvements or
decreases.

• While the multiple-criteria decision making approach used here made use
of preemptive goal programming, many other methodologies are available
and should be considered to decrease processing time, for an overall or
selective efficacy improvement, or to examine other promising methods
including weighting schemes.

• Multiple versions of the H-K heuristic can be run separately on stand-
alone machines searching different areas of an instance’s search space; this
is especially timely with the advent of grid computing and as such, a
study of the use of grid computing (or some similar hardware and software
technology) using H-K may be in order.

• It may be of interest to make use of the promise of H-K in generating un-
informed solutions from throughout a search space through the use of H-K
as a first phase in a hybrid search (e.g., with follow-on solution refinement
provided by a hill climbing search [19]) or to hot start a genetic algorithm.
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This concludes some suggestions for future research. In addition to the
items listed above, any further developments and applications of recent
methodologies to the H-K algorithm or the Disassembly Line Balancing Prob-
lem that will help to extend the research in these areas may be appropriate.

5.9 Conclusions

An uninformed deterministic search approach to NP-complete scheduling
problems and an application to the multiple-objective DLBP was presented
in this chapter. The H-K general-purpose heuristic rapidly provides a feasible
solution schedule for the DLBP using a search technique that samples the
entire solution space. The DLBP H-K heuristic provides a near-optimal min-
imum number of workstations, with the level of optimality increasing with
the number of constraints. It generates a feasible sequence with optimal or
near-optimal balance, hazardous materials, demand, and part removal direc-
tion measures. The H-K general-purpose heuristic appears well suited to the
scheduling problem format as well as for the solution of problems with non-
linear objectives. Also, H-K provides a natural application to grid or clus-
ter computing where the many networked computers would each work on a
portion of the farmed-out search space and with each exponential increase in
processing speed (attributed to some combination of increased computer clock
speed and/or increases in the number of computers in the grid) the skip size
could be decremented, resulting in improvements in solutions with no increase
in perceived runtime.
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Summary. Variable Neighborhood Search (VNS) is a recently invented meta-
heuristic to use in solving combinatorial optimization problems in which a systematic
change of neighborhood with a local search is carried out. However, as happens with
other meta-heuristics, it sometimes takes long time to reach useful solutions whilst
solving some sort of hard and large scale combinatorial problems such as job shop
scheduling. One of the most considerable way out to overcome this shortcoming is to
parallelize VNS implementations. In this chapter, firstly, a number of variable neigh-
borhood search algorithms are examined for Job Shop Scheduling (JSS) problems
and then four different parallelization policies are tackled as part of efficiency inves-
tigation for parallel VNS algorithms. The experimentation reveals the performance
of various VNS algorithms and the efficiency of policies to follow in parallelization.
In the end, a policy based on unidirectional-ring topology is found most efficient.

Key words: Variable Neighborhood Search, Job Shop Scheduling, Paral-
lelization, Unidirectional-ring Topology.

6.1 Introduction

Meta-heuristics are general frameworks for designing search-based procedures
to solve optimization problems. The heuristic search procedures are carried
out via neighborhood structures (NS), which generally transform solutions
from one state to another throughout the solution space. Variable neighbor-
hood search (VNS) is a recent meta-heuristic for solving combinatorial and
global optimization problems whose basic idea is to systematically change the
neighborhood by simply switching one NS to another whilst conducting the
search. The idea is based upon a simple principle: change the neighborhood
structure when the search is trapped on a local minimum, which is very likely
in most of combinatorial and/or multi-model numerical optimization prob-
lems. Especially, as search space grows fast with growing problem sizes, the
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likelihood of being trapped in local minima becomes inevitable. The main fo-
cus of the research in this field is to recover trapped search or to put effort for
preventing on-line. VNS offers a multiple neighborhood structure with which
one recovers the solutions trapped via the others. The main idea here is to
choose heuristics/neighbourhood structures complementary to each other.

The main limitation with VNS implementations arises in recruiting the
neighborhood structures, which restrain the search with spinning in some
particular regions of the space. The perturbation facility does not sometimes
help to overcome this matter since jumping to another region of the search
space sometimes becomes almost impossible. The most effective healing option
appears to be an efficient parallelism with rigorously developed VNS imple-
mentations since a parallel meta-heuristic allows running concurrent multiple
searches over the domain of the problem; each to be carried out at different
regions. That accelerates the search to cut down the computational time and
provides with a better solution quality. Two main parallelization approaches
have appeared within the literature tackling p-Median problem. Garcia-Lopez
et al. [19] proposed a centrally coordinated synchronous policy while Crainic
et al. [11] implemented an asynchronous policy to coordinate the processors.
Apart form these two methods, we have not come across any other publica-
tions discussing different approaches. The main gap appeared to be whether
or not a non-centrally coordinated parallelism would relieve to improve the
performance with respect to both solution quality and computational time.
For this purpose, we carried out this study examining two above-mentioned
central parallelization approaches and two non-central methods.

Job Shop Scheduling (JSS), which is an NP-hard [20] problem, is the other
part of this research. It is clear that small size instances of the JSS problems
can be solved in reasonable computational time by exact algorithms such as
branch-and-bound approach [4, 12]. However, when the problem size increases,
the computational time of the exact methods grows exponentially. Therefore,
the recent research on JSS problems is focused on heuristic algorithms such
as Simulated Annealing (SA) [5, 26, 31], Genetic Algorithms (GA) [9, 16, 21,
22], Taboo Search (TS) [15, 28, 30], Ant Colony Optimization (ACO) [10,
14], Shifting Bottleneck Procedure [1, 24], Guided Local Search [7], Parallel
Greedy Randomized Adaptive Search Procedure (GRASP) [2] and Constraint
Propagation [17]. A comprehensive survey of the JSS problem can be found
in [25].

In this chapter, we examine four parallelization policies with a particu-
larly fine-tuned implementation of VNS for JSS problems. The main idea
here is to test two previously studied central and two non-central paralleliza-
tion methods/policies for JSS problems. The algorithms have been tested with
several hard benchmark instances of JSS problems. The rest of the chapter
is organized as follows. The second section provides background information
of variable neighborhood search, while the third section presents paralleliza-
tion policies for variable neighborhood search. The fourth section is about
JSS problems, the way how to represent the problems and the neighborhood
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structures employed. The last subsection of the fourth section provides the
implemented VNS variations. The extensively carried out experiments are re-
ported and discussed in the fifth section while the sixth section provides with
the conclusions.

6.2 Variable Neighborhood Search

Variable neighborhood search (VNS) is a recent meta-heuristic approach in-
vented for problem solving in an easier way. It is one of the very well-known
local search methods [27], takes more attention day-by-day, because of its
ease of use and success in solving combinatorial optimization problems [18,
23]. Basically, a local search algorithm carries out exploration within a limited
region of the whole search space. That only facilitates to find better solutions
without going further investigation. The VNS is a simple and effective search
procedure that proceeds to a systematic change of neighborhood. An ordinary
VNS algorithm starts with an initial solution, xε S, where S is the whole set
of search space, and manipulates it through a two-nested loop in which the
core one alters and explores via two main functions so called shake and local
search. The outer loop works as a refresher reiterating the inner loop, while the
inner loop carries out the major search. local search explores for an improved
solution within the local neighborhood, whilst shake diversifies the solution
by switching to another local neighborhood. The inner loop iterates as long
as it keeps improving the solutions, where an integer, k, controls the length of
the loop. Once an inner loop is completed, the outer loop reiterates until the
termination condition is met. Since the complementariness of neighborhood
functions is the key idea behind VNS, the neighborhood structure should be
chosen very rigorously so as to achieve an efficient VNS.

In order to develop an effective VNS algorithm, one needs two kinds of
neighborhood functions; Ns

k(x) and NLS
l (x) resulting each with a particu-

lar neighborhood structure, where Ns
k(x) and NLS

l (x) denote neighborhood
functions for shake and local search functions, respectively. The neighbor-
hood structures used may be more than one for each function (shake and
local search) so as to achieve a valuable neighborhood change. For that pur-
pose, the indices, k and l, are to be used for shake and local search functions,
respectively, in order to ease switching from one to another neighborhood.
Obviously, both indices have upper boundaries, which are denoted with kmax

and lmax. Hence, 1 ≤ k ≤ kmax and 1 ≤ l ≤ lmax are the ranges identified for
each indices.

The VNS comprises the following main steps:
1. Initialization: Find an initial solution x.
2. Repeat the following steps until the stopping condition is met:

(a) Shake Procedure: Generate solution x′εNs
k(x) ? shake function.

(b) Local Search: Apply local search to solution x′ to produce
x”εNLS

l (x′)?
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(c) Improve or not: If x” is better than x, do x← x”

Once all the parameters initialized, the algorithm starts with a randomly
selected initial state and then repeats the following steps. In step 2(a), the
shake function generates new states, and passes it to the local search function
in step 2(b). Once it completes, the result is evaluated in step 2(c), where
the result is promoted if it is better, otherwise the shake function generates
another state for the next iteration.

The shake function works to switch to another region of the search space
so as to carry out a new local search there, as shake functions are to diversify
the exploration. In this study, the shake function does not work in the sense of
variable neighborhood descent (VSD) algorithm, but is designed to conduct
a couple of successive random moves with aforementioned NSs. For instance,
given a state of x∗ is operated with NS1 to obtain x′, which is to be operated
with NS2 consecutively. Finally, NS1 re-operates on the outcome of NS2, say
x”, to obtain x.

6.3 Parallelization of VNS

The main motivation behind parallelism is to improve the performance of
the algorithms with respect to primarily the computational time and secon-
darily the efficiency for the quality of solution. Similar to the other parallel
meta-heuristics, VNS can be parallelized mainly in two ways; one is by de-
composing the domain (data and/or the problem space) if it is separable,
and the other is by parallelizing the algorithm itself in which the unneces-
sarily sequential parts of the procedures can be appropriately organized to
be executed on parallel computational resources. The former way of paral-
lelization is not preferable as due to the restrictions while the latter one has
been examined several times as reported in the literature [4,6]. Besides the
parallelism by data, the easiest way to parallelize VNS is to execute multiple
independent runs of the same algorithm concurrently, and collect the results
in the end. However, such parallelism does not usually provide with desirable
performance. Hence, a better way of parallelism for VNS could be hidden in
more complex methods in which the shake and local search stages of the al-
gorithm can be re-arranged appropriately and work either synchronously or
asynchronously. We came across with mainly two parallel VNS algorithms in
the literature. Garcia-Lopez et al. [19] proposed with a synchronously orga-
nized client-server style of parallelism, where the clients run identical algo-
rithms packed of shake and local search procedures and collect the best of
the whole system every iteration. Crainic et al. [11] discusses a parallelism
of an asynchronously organized client-server system. In this chapter, we ex-
amined 4 approaches including the two approaches acknowledged in [11,19]
tackling with job shop scheduling problems. The main idea is to compare the
performance of each way of parallelization so as to identify the strengths and
weaknesses subject to the conditions undertaken.
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VNS algorithms can be parallelized in a way that an identical local search
is assigned to each processor and the intermediate results are collected for
comparison by a central unit to select the solution to go for further iterations.
Another way is to coordinate the processors in peer-to-peer communication
fashions. Below is the parallelization methods considered in this study. All con-
sidered policies are based on multiple independent runs, where each processor
runs a single iteration of a sequential VNS procedure, which comprises a pair
of shake and local search functions. We call a completed execution of this
procedure on a processor as a “run” and one completed set of runs across all
processors as “generation” in the rest of this chapter.

Fig. 6.1: Synchronous parallelization policy.

1. Synchronized parallelism is the framework proposed by Garcia-Lopez
et al. [19], which implies centralism in coordinating the whole system, where
each processor is equipped with a pair of shake and local search heuristics
and a central unit serves for collaboration among the processors. Each
particular processor executes the algorithm in which the solution supplied
is shaken first and then passed into the local search algorithm to complete
one run. Once each processor completes a run, it reports the result found
to the central unit, and then the central unit compares the results collected
from all processors for the best one to be considered as the initial solution
of the next runs on the processors. Once the central unit identifies the
best of the processors, and then assigns it to every processor for the next
generation. This policy has been sketched in Fig. 6.1, where each iteration
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ends up with reporting their best to the central unit, and the central unit
identifies the best of the system and feeds the processors with it for the
next generation.

2. Asynchronous parallelism is another centrally coordinated method pro-
posed mainly by Crainic et al. [11]. The only difference in between this
approach and the previous one is the way of coordination, where this
approach does not propose a synchronous coordination while the previ-
ous one does. This approach does not require collecting the results allows
each processor reporting the result and choosing the best of the time be-
ing for the next run regardless of whether the all processors reported or
not. Once the central unit receives a new solution from any processor, it
compares the best known and the new solution to update the new best
for further generations. That makes this approach advantageous over the
synchronous one as it allows starting with various initial solutions during
intermediate generations, while the synchronous approach allows only one
solution for every processor in every generation. Therefore, this method
diversifies more. The asynchronous idea is presented in Fig. 6.2, where
every processor is allowed to receive the best solutions from every others
with an asynchronous scheme in which once a processor completes a gen-
erational search, then reports its best to the central unit, and requests the
best of the system at that time regardless of waiting all others.

Fig. 6.2: Asynchronous parallelization policy.



6 Sequential and Parallel VNS for JSS 131

3. Non-central parallelism via unidirectional-ring topology is the third method
in which VNS is parallelized in this work. It implies that a set of proces-
sors are organized in a unidirectional-ring topology, where the processors
named with descending numbers are meant to be organized in a scheme of
unidirectional-ring order in which the succeeding numbers are to be adja-
cent of each other and the first processor is adopted to be the succeeding
processor of the last one. The idea is to feed a particular processor for
the next generation with the outcome of the previous processor while the
first processor is fed by the last processor. Obviously, there is no central
unit employed in this method. A particular processor launches the exe-
cution, and collects the final result in the end. Apart from that, there is
no need for coordination, either, as the method imposes self-coordination.
This method always provides with a number of different ongoing runs with
different initial solutions, and diversifying with exchanging intermediate
states. This idea is shown in Fig. 6.3, where one processor is allowed to
receive the best of only one and to feed only one for the next generation.

Fig. 6.3: Uni-directional ring policy for parallelization.

4. Non-central parallelism via mesh topology is another peer-to-peer organi-
zation of processors. The processors are labelled with the same scheme as
the unidirectional-ring topology is done through. Each particular proces-
sor receives three different solutions resulted from the processor itself



132 Aydin and Sevkli

as well as the previous and the next adjacent ones. It can be described as
bi-directional ring topology since each processor receives messages and/or
correspondence from both of its neighbors. Therefore, the ring organi-
zation works in both directions. The processor selects the best of three
solutions for the next generation. There is no need for central coordination
in this method, either. The mesh policy is indicated in Fig. 6.4.

Fig. 6.4: Mesh policy for parallelization.

As expected, the parallelism helps saving computational time and diver-
sifies the solutions for further search steps. The first aforementioned policy
for parallelism enforces all processors to go with the same initial solutions
with a sole expectation that the randomness in the search may diversify the
solutions. Therefore, the performance of such a parallelism is expected to
help with respect to computational time. The other three policies mentioned
above have more fruitfulness for diversification of solutions besides saving in
computational time as they offer running multiple independent runs with dif-
ferent initial solutions. The asynchronous central approach has the lowest like-
lihood for various initial solutions while the unidirectional-ring topology has
the highest likelihood. The mesh topology looks in an intermediate position.
Hence, the unidirectional-ring topology is expected to provide with a better
quality of solution besides saving computational time since it carries out a
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simultaneous search in multiple regions of the search space, while the other
methods conducts search in fewer regions concurrently. All methods are set
to complete the same number of iterations (generation and moves). Note that
there is no selection rule applicable in exchanging intermediate solutions. That
means the new solutions received by processors are always replaced with the
older ones regardless of their level of solution quality.

6.4 VNS Algorithms for Job Shop Scheduling

The implementation of VNS is provided in the following subsections, after
introducing fundamentals of job shop scheduling problems, the representation
adopted for this study and the alteration (neighborhood) structure for search.

6.4.1 Job shop scheduling problems

Job Shop Scheduling (JSS) problems have been studied for a long time. Due
to their NP-Hard nature, this type of problem has never been dropped from
scientific research and kept becoming a popular testbed for meta-heuristics.

The problem is comprised a set of jobs (J) to be processed on a set of
machines (M) subject to a number of technological constraints. Each job
consists of m operations, Oj = {o1j , o2j , ..., omj}, each operation must be
processed on a particular machine, and there is only one operation of each job
to be processed on each machine. There is a predefined order of the operations
of each particular job in which each operation has to be processed after its
predecessor (PJj) and before its successor (SJj). In the end of the whole
schedule, each machine completes processing n operations in an order that
is determined during the scheduling time, although there is no such order
initially. Therefore, each operation processed on machineMi has a predecessor
(PMi ) and a successor (SMi ). A machine can process only one operation at
a time. There are no set-up times, no release dates and no due dates.

Each operation has a processing time (pij) on related machine starting
at the time of rij . The completion time of operation cij is therefore: cij =
rij + pij , where i = (1, 2, ...,m), j = (1, 2, ..., n) and rij = max(ciPJj

, cPMij).
Machines and jobs have particular completion times, which are denoted and
identified as: cMi = cin and cJj = cin where cin and cjm are the completion
time of the last (nth) operation on ith machine and the completion time of
the last (mth) operation of jth job, respectively. The overall objective is to
minimize the completion time of the whole schedule (makespan), which is the
maximum of machines’ completion times, Cmax = max(CM1, ..., CMm). The
representation is done via a disjunctive graph, as it is widely used.

6.4.2 Problem representation

Schedules are represented in a set of integers, where each stands for a particu-
lar operation of a problem of n jobs, m machines. The integers are job labels,
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and repeated m times within a particular state, where each represent the last
non-completed operation of corresponding job. This way of representation
prevents infeasibility, and always provide with a feasible active schedule. For
instance, we are given a state of [2 1 2 2 1 3 1 3 3], where 1, 2, 3 represents
j1, j2, j3 respectively. Obviously, there are totally 9 operations, but, 3 different
integers, each is repeated 3 times. For instance, the first integer, 2, represents
the first operation of the second job, o21, to be processed first on correspond-
ing machine. Likewise, the second integer, 1, represents the first operation
of the first job, o11. Thus, the set of [2 1 2 2 1 3 1 3 3] is understood as
[o21, o11, o22, o23, o12, o31, o13, o32, o33] where oij , stands for the ith, operation
of jth job. More details on this representation method can be found in [13].

6.4.3 Neighborhood Structure

The neighborhood structure with which the neighboring solutions are deter-
mined to move to is one of the key elements of meta-heuristics that use neigh-
borhood structures. That is why, the performance of those meta-heuristic al-
gorithms significantly depends on the efficiency of the neighborhood structure.
The following two neighborhood structures are employed in this study:

a) Exchange is a function used to explore in which any two randomly selected
operations are simply swapped. For instance, suppose that we are given a
state of [2 1 2 2 1 3 1 3 3] and the two random numbers generated are 2
and 8. After applying Exchange, the new state will be [2 1 3 2 1 3 1 3 2].
Obviously, the 2nd and 8th integers on the state were 2 and 3, respectively
and turned to 3 and 2 with applying Exchange function.

b) Insert is another fine-tuning function that implies inserting a randomly
chosen integer in front of another randomly chosen one. For instance, we
are given the same state as before. ([2 1 2 2 1 3 1 3 3]). In order to apply
Insert, we also need to derive two random numbers; one is for determining
the integer to be inserted and the other is for the place where to insert in.
Let us say those number are 2 and 5, where 2nd integer is 2 and the 5th

one is 3. Consecutively, the new state will be [2 1 3 2 1 2 1 3 3].

Although there are many other, even more efficient, neighborhood struc-
tures reported in the literature, we preferred these two due to simplicity and
ease of use alongside a reasonable efficiency. The others such as critical path
based-functions, provide more efficiency, but definitely require much more
computational time and experience and hard working.

6.4.4 VNS algorithms for JSS

In this chapter, we developed a number of VNS sequential algorithms based
on particular shake and local search functions, which are formed up with the
NS functions identified in previous sub section. The local search function is
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a simple hill climbing algorithm based on both aforementioned neighborhood
structures (NS). As indicated in the following pseudo code, the aforementioned
NSs are used complementary to each other in the way that the functioning
NS keeps iterating as long as better moves are resulted. It switches to the
other NS once the result produced is not better and the algorithm stops if
the number of moves, n, meets a predefined number, nmax. The change of NS
is organized with a binary integer variable, lε(0, 1), in which the value of l
is changed by using an absolute function denoted in | · | norm at the second
part of Step 3(b) of the pseudo code. The local search procedure is mainly as
follows.

1. Get initial solution, x′εS
2. Set n← 0, and l← 1
3. while n ≤ nmax do
(a) if (l = 1) then x”εS ← Exchange(x′);
else if (l = 0) then x”εS ← Insert(x′)
(b) if f(x”) ≤ f(x′) then x′ ← x”; else l← |l − 1|
(c) n← n+ 1
We have examined a number of VNS implementations in [32]; each differs

from the others with the configuration of shake and local search functions
by using the neighborhood structures. The idea is to develop efficient im-
plementation, although the pseudo-code provided above remains as the main
back-bone. Similarly, shake functions have been varying. Following is a list
of 3 VNS algorithms provided with their functional configurations. Note that
VNS-3 is described as no Shake function employed explicitly, but there is al-
ready one shaking procedure embedded into the Local search. The aim here
is to understand whether there is a significant impact of starting with a par-
ticular function on the results.

VNS-1 : Shake ← Exchange + Insert + Exchange,
Local Search ← Exchange + Insert

VNS-2 : Shake ← Exchange + Insert + Exchange,
Local Search ← Exchange

VNS-3 : No Explicit Shake
Local Search ← Exchange + Insert

6.5 Experimental Study

In this chapter, we report the performance of four different parallel VNS
implementations for job shop scheduling problems with a wide range of ex-
perimentation. First, we provided experimental results for various VNS algo-
rithms in order to develop an efficient implementation. Then, a wide range of
experimental result with relevant discussion on the parallelization approaches
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followed and the performance levels gained. The measures considered in this
study are mainly about the solution quality and computational time. The
success of the algorithms regarding the quality of solution has mainly been
accounted with respect to the relative percentage of error (RPE) index, which
is calculated as follows:

RPE =
bf − opt

opt
× 100 (6.1)

where bf is the best makespan found and opt is either the optimum or the
lowest boundary known for unknown optimum values. Obviously, RPE is cal-
culated based on the best value found, and also it can be measured benchmark-
by-benchmark. In order to review the results in a broader view, we developed
a second index based on the latter RPE calculation averaged over the num-
ber of repetitions (experiments are repeated 30 times). That is called ARPE
standing for averaged relative percentage of error. The third index used is
the hitting-ratio (HR) being calculated as the ratio between number of times
optimum hit and the total number of repetitions. This is needed since the
other indexes may not build a sufficient level of confidence with the results.
The experimentation has been carried out on a local area network of PCs
equipped with Intel Pentium IV 2.6 GHz processor and 256MB memory. The
software coded in Java SDK 1.4 and the communications are conducted via
TCP/IP protocol. The processor means, along this chapter, a particular PC
over the network. The JSS benchmark problems, which are very well known
within the field, were picked up from OR-Library [8].

6.5.1 Experimentation with VNS algorithms

Experimental results are obtained with examination of all 3 VNS variations
described above. Table 6.1 presents the experimental results gained by each
VNS algorithm with respect to the quality of solution measured in ARPE and
HR indexes, where former (APRE) is minimized and the latter (HR) is max-
imized. The experiments have been conducted over 30 benchmarks tackled;
some are known moderately hard but some are very hard. The accomplish-
ments of the algorithms are clearly reflected. The APRE and HR indexes
provide very consistently, which proves that measuring the performances re-
flects the real achievement.

The table is two part; each is made of 8 columns, where first two columns of
each part are reserved for identifying the benchmarks and the rest are coupled
two by two for each VNS variation. Here, one column of the two shows the
achievement with respect to APRE and the other with HR. Obviously, VNS-1
is the best with APRE of 0.74 % and HR of 33 % and VNS-3 is the worst
with respect to both measures. The difference between VNS-1 and VNS-2
with respect to the configuration is obviously the use of both neighborhood
structures (NS) in both parts of the algorithm, where VNS-1 uses both NSs
in both parts, but VNS-2 uses both in Shake but, only one in Local search.
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As a result, we observe the significant change with a local search of double
NS versions. The version with the worst performance, VNS-3, does not have
an explicit shake function, though it is implicitly available Local search.

A statistical t test has been carried out over 30 repetitions to check whether
or not the differences are significant. Since the differences between HRs are
variable and, hence, the standard deviations are close to each other, the best
is to compare APREs instead. The differences between performance of VNS-1
and other two is significant with 95% and 99.95%, respectively, where VNS-2
remains better than VNS-3, significantly, too.

Table 6.1: Results obtained from VNS algorithms with respect to 2 indexes for
quality of solution.

VNS-1 VNS-2 VNS-3 VNS-1 VNS-2 VNS-3

Bench. Opt. (%) HR (%) HR (%) HR Bench. Opt. (%) HR (%) HR (%) HR
ft10 930 0.55 0.60 1.11 0.40 4.79 0.00 ft20 1165 0.54 0.50 0.95 0.10 1.08 0.03

abz05 1234 0.10 0.60 0.22 0.40 1.43 0.20 la16 945 0.30 0.50 0.46 0.40 3.04 0.07
abz06 943 0.00 1.00 0.00 1.00 1.53 0.13 la19 842 0.09 0.93 0.15 0.87 2.66 0.03
abz07 656 2.01 0.00 2.70 0.00 3.11 0.00 la21 1046 0.62 0.03 1.30 0.00 2.74 0.00
abz08 665 1.99 0.00 2.86 0.00 3.76 0.00 la22 927 0.24 0.57 0.67 0.13 1.28 0.03
orb01 1059 1.47 0.13 2.62 0.03 5.21 0.00 la24 935 0.60 0.03 1.29 0.00 2.74 0.00
orb02 888 0.33 0.00 0.38 0.00 2.60 0.00 la25 977 0.64 0.07 0.99 0.00 2.27 0.03
orb03 1005 2.60 0.10 2.72 0.10 7.52 0.00 la27 1235 0.91 0.00 1.80 0.00 1.65 0.03
orb04 1005 0.62 0.40 0.93 0.13 2.69 0.00 la28 1216 0.03 0.87 0.42 0.17 0.30 0.53
orb05 887 0.31 0.17 0.76 0.00 4.07 0.00 la29 1152 1.80 0.00 3.04 0.00 3.40 0.00
orb06 1010 0.89 0.10 1.21 0.00 5.91 0.00 la36 1268 0.49 0.27 1.07 0.00 1.98 0.00
orb07 397 0.27 0.80 0.48 0.63 2.49 0.17 la37 1397 0.73 0.37 0.98 0.20 2.41 0.07
orb08 899 1.63 0.23 1.28 0.50 5.58 0.03 la38 1196 0.97 0.07 1.85 0.00 4.19 0.00
orb09 934 0.78 0.13 0.74 0.17 2.34 0.00 la39 1233 0.43 0.30 1.07 0.00 2.58 0.03
orb10 944 0.00 1.00 0.08 0.87 4.86 0.07 la40 1222 0.42 0.00 0.84 0.00 2.25 0.00

Average 0.74 0.33 1.17 0.21 3.08 0.05

6.5.2 Parallel VNS algorithms

As mentioned in Section 4, there are 4 parallelization policies followed in this
study. The first two propose a central control over the communication among
the processors while the last two imply non-central control policies. The first
two approaches are synchronously and asynchronously control the messages
sent by the processors and evaluate the results forwarded with respect to the
quality of solution. The synchronously controlled approach broadcasts the
best of all processors to all for the next generation while the asynchronously
controlled approach offers the best of the time when any processor contacts
the central unit. On the other hand, the non-centrally controlled approaches
communicate in peer-to-peer way and exchange the results in a particular
fashion. The third approach works following a unidirectional-ring topology
and offers the outcome of any processor to the next adjacent for the next
generation while the mesh topology suggests to collect the outcomes of two
adjacent processors and selects the best of three including its own result for



138 Aydin and Sevkli

next generation. Since it is observed as the best VNS implementation, we kept
track on parallelizing VNS-1 with the methods described above. The algorithm
remains the same and the processors are equipped with a pair of shake and
local search algorithms identical to each other. The only thing to change is the
way in which processors are organized. As mentioned before, the motivation is
to gain benefits for the quality of solution besides the computational time. In
order to observe the benefit over the change of the numbers of processors, we
examined 4 configurations for parallelism; 2, 5, 10, and 20-processor and kept
the number of generations fixed at 200 in total. Hence, it becomes 100, 40, 20
and 10 when we examine 2, 5, 10 and 20 processors, respectively. The pairs
of number-of-processors and number-of-generations complete 200 generations
at the end of each trail of experiment. This is also important to build a fair
comparison on computational time [32].

Table 6.2: The progress gained with parallelization methods with respect to the
quality of solution.

Synchronous Asynchronous Ring Topology Mesh Topology

% HR % HR % HR % HR

1p-200g 0.79 0.32 0.79 0.32 0.79 0.32 0.79 0.32
2p-100g 0.76 0.33 0.74 0.34 0.74 0.35 0.75 0.32
5p-40g 0.75 0.32 0.76 0.32 0.65 0.33 0.66 0.34
10p-20g 0.79 0.31 0.76 0.32 0.60 0.36 0.61 0.34
20p-10g 0.80 0.30 0.76 0.31 0.65 0.33 0.55 0.38

Average 0.78 0.31 0.76 0.32 0.69 0.33 0.67 0.34

Investigating the impact of these 4 parallelization approaches, we realized
that the best results provided by mesh topology with respect to the quality of
solutions while the performances remain the same in terms of the computa-
tional time. Table 6.2 presents corresponding information with respect to the
quality of solution in APRE and HR indexes averaged over all problems. As
can be observed from Table 6.2, the synchronous policy provides with almost
the same results with respect to APRE of 0.75 and 0.80 percent for minimum
and maximum values, respectively. The HR scores are very steady as well.

It seems the configuration of 5p-40g provides slightly better. In the asyn-
chronous case, the slightly better results come with the configuration of 2p-
100g. The other cases of configurations are nearly the same. On the other
hand, non-central policies, provides slightly better than the central ones, as
the HR values are getting higher and ARPE values are getting lower. In fact,
the unidirectional-ring topology provides with 0.60 as the minimum in ARPE
and 0.36 in HR with the configuration of 10p-20g while mesh topology offers
0.55 minimum of APRE and 0.38 maximum of HR with the configuration of
20p-10g. As can be observed, there is neither significant difference between
the performances of synchronous central policy and asynchronous one nor
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between ring and mesh topology policies, but there is quite difference between
the performances of central and non-central policies. Although the APRE in-
dex differs in between the central and non-central policies, still it is ignorable
as the values of the index is within the range of 0.80 and 0.55 percent, which
is not very considerable difference. However, the difference in terms of HR can
be significant, as the best of central policies is 34 % while the best non-central
ones is 38 %. This figure can be significant when one has worked with larger
amount of data and larger problems.

The Experiments done so far, does not provide with a satisfactory level
of confidence for understanding the characterization of the behaviors of the
policies examined. We carried out a set of further experiments with different
configurations. We set up 4 configurations; (i) 20 processors each to work for
100 generations, (ii) 20 processors each to work for 50 generations, (iii) 10
processors each to work for 100 generations and (iv) 10 processors each to
work for 50 generations. As each cycle of VNS is counted as a generation, the
total number of VNS cycles for each configuration will be 2000, 1000, 1000
and 500, respectively. All 4 parallelization policies have been examined with
these 4 configurations and the results are shown in Fig. 6.5 and Fig. 6.6, where
the performance measures regarded are APRE and HR indexes, respectively.
There exist 4 groups of 4 bars, where each bar signifies a particular policy.
As mentioned above, ARPE and HR are to be minimized and maximized,
respectively. Thus the lower the APRE value and the higher the HR value the
more desirable.

Fig. 6.5: The performance of parallel algorithms with respect to APRE index.

As can be seen from Fig. 6.5 and Fig. 6.6, the best performance with re-
spect to both indexes and all policies is obtained with 20p-100g configuration
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Fig. 6.6: The performance of parallel algorithms with respect to HR index.

as it has the highest number of generations while the poorest one is obtained
with the configuration of 10p-50g since it runs for the lowest number of gen-
erations. On the other hand, the best performance observed is with the policy
of unidirectional-ring topology and the weakest is with the synchronous one.
This can be observed in all variations presented in both Fig. 6.5 and Fig. 6.6.
This is because the unidirectional-ring topology implies to run the search
in various regions of the space simultaneously while the synchronous policy
offers a search with the multiple execution of the same neighborhood struc-
ture within the same region of the space. That affects the performance of the
search significantly. The central policies (sync and asyn) are usually weaker
than the non-central ones (ring and mesh). That means the non-central ap-
proaches diversify the search much more than the central ones. Although the
unidirectional-ring topology looks usually better than mash, the difference
between the performances is not that significant. Therefore, they can be con-
sidered competitive with respect to the search level carried out. The results
reveal some other things that the experimentation with 10 processors seems
more unstable than the ones with 20 processors. For instance, although the
total number of generations is 1000 in both case of 10p-100g and 20p-50g, the
performance of 20p-50g looks more consistent than 10p-100g referring to the
performance gained with 20p-100g. That is perhaps because of the diversity
of the search, which is double of 10p-100g in 20p-50g. The most stable re-
sults obtained with unidirectional-ring topology and the synchronous policy,
while other two provide with less stability. The reason behind this is still the
diversity as the unidirectional-ring topology provides the highest level and
the synchronous one does the lowest while other two provide with varying
diversities, which sometimes approaches to the highest level sometimes to the
lowest. That is why, the performance looks quite varying.



6 Sequential and Parallel VNS for JSS 141

In general, the performances with respect to APRE look not significant as
the differences are below 1%, but it is significant with respect to HR, especially,
the difference between the best and the worst ones are about 6%, which means
the search carried out with unidirectional-ring topology provides 69% while
the synchronous one does 63%. That is the rate of hitting the optima of the
benchmarks through the whole experimentation. This difference will definitely
get larger whilst solving larger problems.

6.5.3 Related works

As explained earlier, the relevance of this work should be exercised in terms
of two issues; parallel VNS algorithms and job shop scheduling problems. The
related works has been discussed earlier in introduction section and Section 3.
The theme of this subsection is to build a level of confidence with bringing
forward a comparison between our results and the results gained by some
other works related to job shop scheduling recently published. Alongside our
serial and parallel VNS algorithms, Table 6.3 also presents results provided
with various meta-heuristics recently published with respect to the solution
quality in PRE index. The reason to switch to RPE index is due to the
difficulty of calculating APRE index with the results provided in the related
literature. The benchmarks those are considered very hard are chosen from
OR-Library. These algorithms taken into account are listed as follows:

• Distributed evolutionary simulated annealing algorithm (dESA) by Aydin
and Fogarty [5].

• Ant colony optimization algorithm (ACO) by Blum and Sampels [10].
• A Tabu Search Method (TSSB) by Pezzella and Merelli [30].

Table 6.3: A comparison among the meta-heuristics recently published with respect
to the quality of the solution in RPE index.

Related results Serial VNS Parallel VNS
Bench. Opt. dESA ACO TSSB VNS-1 5p-40g 10p-20g 20p-10g

abz07 656 2.44 2.74 1.52 0.46 0.91 0.46 0.91
abz08 665 2.41 3.61 1.95 0.60 0.75 0.89 0.75
abz09 679 2.95 3.39 2.06 0.15 0.29 0.59 0.29
la21 1046 0.00 0.10 0.00 0.00 0.00 0.00 0.00
la24 935 0.32 0.96 0.32 0.00 0.00 0.32 0.00
la25 977 0.00 0.00 0.20 0.00 0.00 0.00 0.00
la27 1235 0.40 0.65 0.00 0.08 0.00 0.00 0.00
la29 1152 2.08 1.39 1.39 0.95 1.03 0.86 1.03
la38 1196 0.42 2.59 0.42 0.00 0.00 0.00 0.00
la40 1222 0.49 0.49 0.90 0.16 0.16 0.16 0.16

Average 1.15 1.59 0.88 0.24 0.31 0.33 0.31
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Since the best of our VNS algorithms in Table 6.1 is VNS-1 with respect
to RPE index, we put the results obtained with that variant and its parallel
versions providing them in the last four columns of Table 6.3. The parallel
versions of VNS have been picked up from the unidirectional-ring topology
as it is found as the best overall policy. We can observe that the serial and
parallel versions of VNS outperform the other algorithms with respect to RPE
index, (not APRE), as the lowest value provided by TSSB is about 0.88 while
VNS provides with 0.33 at most. A t test has been carried out to measure
the significance of differences between any particular parallel and serial VNS
variants and the others, which resulted that there is no significant difference
between any two VNS variants with a probability higher than 75%. However,
the difference between any other work and any VNS is 99.95% significant.
That means parallel and serial VNS algorithms remain competitive among
themselves at this level of configuration, as one parallel variant provides better
for one benchmark but worse for another. VNS-1, which is a serial variant,
provides definitely better than other algorithms.

6.6 Conclusions

In this chapter, we examined a number of serial and parallel VNS algorithms
for job shop scheduling problems, which has been studied for far long time.
Because of its hardness and being representative for planning problems, many
methods have been tested with this family of problems. In this chapter, the
VNS implementations have been tested with respect to the efficiency over
classical job shop problems. The best of the implementations, VNS-1, has
been exploited in investigation of a better parallelism for VNS algorithms. For
the purpose of parallelism, four approaches have been considered through the
whole experimental investigation; synchronous, asynchronous, unidirectional-
ring and mesh policies. The first two approaches imply central coordination
among the processors while the last two requires a non-central coordination,
but rather a peer-to-peer approach.

The main focus steers for a higher level of efficiency via parallelism to
obtain a higher quality of solution within far shorter time. The experimen-
tal investigation reveals that central coordination does not help as much as
non-central coordination does. Since the synchronous policy offers a rigorous
simultaneous search within a particular region of the space, the weakest perfor-
mance took place with this approach. On the other hand, unidirectional-ring
topology proposes a concurrent search in various region of the space, and it
outperforms the others with respect to the solution quality. It has been shown
that the VNS implementation parallelized via unidirectional-ring topology
policy has done well and outperformed a number of meta-heuristics recently
published.
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Summary. This chapter presents a new evolutionary approach to the Graph Col-
oring Problem (GCP) as a generalization of some scheduling problems: timetabling,
scheduling, multiprocessor scheduling task and other assignment problems. The pro-
posed evolutionary approach to the Graph Coloring Problem utilizes information
about the conflict localization in a given coloring. In this context a partial fitness
function (pff ) and its usage to specialize genetic operators (IBIS and BCX) and phe-
notypic measure of diversity in population are described. The particular attention
is given to the practical usage of GCP. The performance of the proposed algorithm
is verified by computer experiments on the set of benchmark graphs instances (DI-
MACS). Additional experiments were done on benchmark graph for timetabling
problem.

Key words: Evolutionary Algorithms, Graph Coloring, Timetabling, Multi-
processor scheduling, Assignment Problems, Genetic Operators.

7.1 Introduction

In this chapter we introduce a new evolutionary approach to the Graph Col-
oring Problem (GCP). The Graph Coloring Problem can be analyzed as a
theoretical problem, but we want to show that there a exists very small gap
to its practical usage. Therefore, in this chapter GCP is analyzed as a general-
ization of selected practical problems (such as timetabling problem, job-shop
scheduling problem or multiprocessor scheduling task problem) and in this
context is considered.

The presented method, so-called GRACOM (GRAph COloring Method),
is based on the usage of information about conflict in coloring (two graph
vertices connected by an edge have the same color). Such information makes
linking each conflict with its vertices possible and builds more detailed color-
ing evaluation function, so-called: partial fitness function (pff ). Values of pff
function give us opportunity to construct the specialized genetic operators. In
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this chapter we propose two such operators: IBIS (Iteration Build Solution) as
a mutation and BCX (Best Color Crossover) as a specialized crossover. This
specific evaluation function pff gives us also something more: we can define a
phenotypic measure of population diversity.

The reminder of the chapter is organized as follows. Section 7.2 presents
Graph Coloring Problem: its definition, notations (used in following sections)
and the problem complexity. In Section 7.3 are described the selected schedul-
ing problems which are analyzed as generalization of Graph Coloring Prob-
lem. Next, Section 7.4 contains details of the GRACOM construction. There
are presented specific information about conflict definition and calculating
method (partial fitness function), definition of genetic operators: IBIS and
BCX, also specific evolutionary algorithm schema modifications. Section 7.5
contents are focused on tests results of the presented method. There are an-
alyzed some evolutionary algorithm parameters, such as selection method,
probability of genetic operators usage or population size. Section 7.6 presents
the summary of GRACOM efficiency in context of benchmark graphs, there
are presented GRACOM efficiency results in comparison to other GCP meth-
ods. This section includes some proposed extensions of evolutionary algorithm
to apply in the given real problems. Section 7.7 describes summary, conclu-
sions and further work.

7.2 Graph Coloring Problem (GCP): definition
and notations

The Graph Coloring Problem (GCP) is one of the most studied NP-hard
problems and can be defined as follows: given undirected graph G = (V,E),
where V is a set of | V |= n vertices and E ⊆ V × V is a set of | E |= m edges,
and an integer number of colors k, to find such function Ψ : V �→ 1, 2..k which,
for every edge of the graph [u, v] ∈ E, u, v ∈ V should satisfy a constraint
Ψ(u) 
= Ψ(v) [1]. We can define a proper coloring as a coloring which is
compatible with the above definition. In the GCP we use k colors to color
properly a given graph, but if a graph can be properly colored with k − 1
colors, then the k -coloring is not optimal. In this way we can consider GCP
as an optimization problem in which we try to find a minimal number of used
colors (chromatic number χG) needed to properly color a given graph [2–4].

Obviously, the GCP landscape S size equals | S |= kn, and is quite large for
graphs with 100 or more vertices [5]. The GCP problem is considered as an NP-
hard and we do not know any of effective algorithm, which can give a solution
in the polynomial time. Its NP-hard complexity practically means that it is
very difficult to find a proper coloring in time acceptable for user even for a
graph with few vertices [2]. There are many approximation methods applied
to the GCP: approximation algorithms [2, 6], heuristics (e.g. DSATUR [1],
RLF [7]), local search algorithms [8, 9], or meta-heuristics, such as the tabu
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search [4, 10], simulated annealing [11], ant colony algorithms [7, 12, 13] or
evolutionary algorithms (EA) [8, 14–19].

Let us focus on the last approach. A graph coloring task for evolutionary
algorithm can be defined as: the properly coloring given undirected graph
G = (V,E) with k (if k = χG it is an optimal coloring) colors with the aid of
number of conflicts reduction, where two vertices u, v ∈ V cause conflict when
both are assigned to the same color and there exists an edge [u, v] ∈ E [9]. In
this approach, the GCP is considered as a Constraint Satisfaction Problem
(CSP), where edges of the colored graph correspond to constraints.

7.3 Applications of Graph Coloring Problem

Despite the fact that the GCP seems to be a theoretical problem, there are
many practical applications of scheduling or assignment, e.g. in examination
timetabling, job shop scheduling, timetabling [16], aircraft scheduling, fre-
quency assignment [20], routing problem and many others [2]. This section
describes only selected the GCP applications.

7.3.1 University timetabling: Examination Timetabling
and Course Timetabling

The timetabling problem is known as NP-hard, involving combinatorial opti-
mization and it is a representative of the multi-constrained class. In literature
the Graph Coloring Problem is considered as generalization of timetabling
problems [21,22].

The typical course timetabling problem (CTP) assigns a set of events
(e.g. classes) to a set of resources (e.g. rooms) and timeslots, satisfying a set
of constraints of various types. Constraints stem from nature of timetabling
problems (e.g. two events with the same resources involved cannot be planned
at the same time) and the specificity of the institution involved. The problem
we consider is a typical university course timetabling problem (UCTP) (e.g.
[23]). It consists of a set of events (classes) that have to be scheduled in a
certain number of timeslots, and a set of rooms with certain features (and
sizes) which events can take place in. The timetabling hard constraints (must
be satisfied) can be defined as follows: (1) no student attends more than one
event at the same time, (2) the room is big enough for all the attending
students and satisfies all the features required by the event and (3) only one
event is in each room at any timeslot [23,24].

The examination timetabling problem (ETP) is also highly con-
strained and, in general, the most common hard constraints are to avoid any
student being scheduled for two different exams at the same time [25] and
it can be defined as the scheduling a number of exams into a set of periods
(timeslots). It this problem we can also find a main hard constraint very simi-
lar to CTP: no student attends more than one exam at the same time. Also in
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this problem we can observe soft constraints (should be satisfied, in opposite
to hard constraints which must be satisfied), such as “reasonable study time
between exams” [25] or limit of exams in the same timeslot.

Solving examination timetabling or course timetabling is proved to be
equivalent to GCP: assigning colors to vertices in graph so that adjacent
vertices always have different colors [26]. The exam (or an event) we consider
as vertex, each constraint (such as two events/exams cannot be realized in
the same time) is represented by the edge connected with two vertices. A set
of timeslots can be represented by a set of used colors and coloring is no legal
if exists a pair of exams avoided to realization at the same time.

7.3.2 Job-shop Scheduling Problem

The Job-shop scheduling problem (JSSP) is a classical manufacturing
problem and is known as NP-complete [27]. JSSP can be described as a set
of n jobs with different processing time with an assignment to a set of m
machines [13, 28]. Each job comprises a set of tasks (so-called operations)
with some ordering relations and the given duration time. A legal (feasible)
schedule is defined as follows: (1) each task order is preserved, (2) machine
cannot process two tasks at the same time and (3) two or more tasks of one
job cannot be processed in parallel.

To show a problem complexity let’s analyze the example of constraints for
the given 6x6 (6 jobs and 6 machines) benchmark sample of JSPP (presented
on Table 7.1). Table 7.1 shows that the job 1 must be processed on the machine
3 and needs 1 unit time, next it goes to machine 1 for 3 time units, and so on.

Table 7.1: Benchmark JSSP problem: 6 jobs and 6 machines [29].

[m,t] [m,t] [m,t] [m,t] [m,t] [m,t]

job1 3,1 1,3 2,6 4,7 6,3 5,6
job2 2,8 3,5 5,10 6,10 1,10 4,4
job3 3,5 4,4 6,8 1,9 2,1 5,7
job4 2,5 1,5 3,5 4,3 5,8 6,9
job5 3,9 2,3 5,5 6,4 1,3 4,1
job6 2,3 4,3 6,9 1,10 5,4 3,1

A JSSP can be considered as GCP problem as follows: each task can be
represented as vertex and the used colors represent the processing time in the
machine schedule. If there exists a pair of tasks that is not coherent to their
ordering relation, its representation as a graph coloring is not legal.

7.3.3 Multiprocessor Scheduling Tasks Problem

The Multiprocessor Scheduling Tasks Problem (MSTP) is known as
NP-complete [30, 31] and is connected with parallel tasks execution on set of
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processors. Between two tasks can occur a relation “predecessor/successor”.
Such a relation can be considered as a hard constraint, where if there exists a
relation 〈t1, t2〉 means that the task t2 cannot be executed before returning of
t1 results (e.g. this value is required in t2 working). This task correlation is pre-
sented as Directed Acyclic Graph (DAG), where the vertex corresponds to a
task and an edge corresponding to an existing relation between two tasks (ver-
tices). Another aspect of the problem is the task execution time (we assume
that we are working on a set of homogeneous processors). Problem solution
is schedule s = 〈t1, ..., tn〉 [30] represents execution rank of each task. The ex-
ecution time of all scheduled tasks is called makespan and it is minimalised
parameter in MSTP.

In [32] construction of DAG with makespan minimalisation it is sug-
gested to solve as a clustering, an ordering or an allocation problem. The
evolutionary algorithm can applied to MSTP problem [30], where an indi-
vidual is a set of elements corresponding to each processor task list, e.g
s = {{t2, t0}, {t1}, {t3, t4}} can be a schedule for 5 tasks and 3 processors.
Indeed it is GCP problem, where processor symbolizes a color and each task
is considered as a graph vertex.

Each of foregoing problems can be solved as a graph coloring problem with
the minor fitness function modifications. In the next section we present a def-
inition of GCP problem as a task to evolutionary algorithm and a proposition
of evolutionary method GRACOM for solving GCP.

7.4 GRACOM: Evolutionary Algorithm applied
to Graph Coloring Problem

The GCP problem is considered as an NP-hard and we do not know any effec-
tive algorithm so we apply other methods such as the evolutionary algorithm.
An evolutionary algorithm is a meta-heuristic that uses Darwinian evolution
paradigm to produce a solution. EA is based on the probabilistic multipoint-
ing searching process of all problem solutions landscape. The balance between
the exploration and the exploitation of landscape and usually is implemented
by correlation between a mutation (the operation works on one solution) and
a crossover (links selected elements of two or more solutions) usage.

EA can be presented in schema (see Fig. 7.1). Firstly, the population of
individuals (solutions) is initialized. In the second step it gives a value of
each corresponding to its degree of solving problem (fitness function). In the
next step stop conditions are tested (if coloring with 0 conflict is found or
generation number limit is exceeded). Next two steps select (by a proportional,
tournament or random method) individuals and operate individuals by genetic
operators to build a new population to close a cycle of EA.

In Fig. 7.1 is presented evolutionary algorithm schema where we provided
two modifications: fitness function form and genetic operators collaboration.
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The small modification of fitness function form refers to partial fitness func-
tion and its values. It means that to evaluate the coloring we need to assign a
number of conflicts to each vertex of the colored graph. The second EA schema
modification concerns with genetic operators collaboration and a usage of one
operator excludes the second one. This modification is strongly imposed by
the genetic operator requirement of evaluated coloring (reduction of number
the pff calculations). The second reason is that both genetic operators give
coloring with changes which should be evaluated. This is important particu-
larly in GCP as it is a combinatoric problem, where a small modification of a
gene value may cause significant change in phenotypic level.

Fig. 7.1: GRACOM schema with provided modifications.

The GRACOM method is based on a number of conflicts assigned to each
vertex of the colored graph. Such detailed information can be used to de-
fine partial fitness function and it has some advantages. In this section are
presented details of the provided GRACOM method in the following order:
solution coding form, partial fitness function calculation method, population
diversity measure and proposition of specialized genetic operators: IBIS and
BCX.

7.4.1 Coding of solution and a partial fitness function (pff )

We decided that an individual in the EA represents a proposition of the graph
coloring as a vector I = 〈Ψ(v1), Ψ(v2), ..., Ψ(vn)〉, where Ψ(vi) ∈ {1, 2, ..., k}
determines color of vi vertex. Such a representation is direct, intuitive and
commonly used, e.g. [5, 8, 18].
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The evaluation function is based on a penalty, value of which depends on
a number of pairs of neighbor vertices colored with the same color (conflict).
Such value gives information how many conflicts exist in a given graph col-
oring, however nothing is said about conflict localizations. In literature, the
number of conflicts correspond only to the whole coloring; even if, consider-
ations are based on a single vertex, it is only a boolean value (if there is a
conflict) [15]. Such a evaluation makes it possible to analyze the graph color-
ing, but also determines which one vertex is in “better” color and which one
in “worse” (causes more conflicts).

The proposed partial fitness function (pff ) evaluates each vertex vi of a
colored graph in the context of other vertices, can be defined as follows:

pff(vi) =
|V |∑
j=1

p(vi, vj),

where p(vi, vj) =
{

1, ifΨ(vi) = Ψ(vj) ∧ [vi, vj ] ∈ E
0, otherwise

(7.1)

If pff(vi) = 0, it means that a vertex vi does not cause conflicts with con-
nected vertices. To determine a total number of conflicts conf(I,G) in a given
coloring I of graph G we use:

conf(I,G) =
1
2

|V |∑
i=1

pff(vi) (7.2)

In Eq. 7.2 the total number of conflicts are calculated twice (for each vertex
in a pair causing conflict) so it should be multiplied by 1

2 .

Fig. 7.2: Graph coloring with 1 conflict and pff values corresponding to each vertex.

In Fig. 7.2 is presented a sample graph with 5 vertices, colored with 3
colors and existing 1 conflict (between v2 and v4 vertex). A pff function value
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of each vertex (except v2 and v4) equals 0. The total evaluation value of given
coloring equals 1.

Thus, the proposed function pff extends a scalar evaluation function to a
vector Ev(I,G) = 〈pff(v1), pff(v2), ..., pff(vn)〉, and assigns an evaluation value
to every vertex of colored graph. Such approach has many advantages, i.e. we
can evaluate each vertex of the colored graph. More about advantages and
disadvantages of such form of an evaluation function can be found in [17].

7.4.2 A measure of population diversity

A population diversity in an evolutionary algorithm is one of the main factor
of its efficiency. A fast lost of the diversity in population leads to a premature
convergence [33]. Therefore, it is important to maintain the high population
diversity. There are two types of diversity measures: genotypic diversity mea-
sure (GDM) and phenotypic diversity measure (PDM). The first one involves
the genetic material held in a population, while the second concerns the phe-
notypic level of individuals [34].

The graph coloring is represented as a vector I = 〈Ψ(v1), Ψ(v2), ..., Ψ(vn)〉
and can measure, in a simple way, distance between two colorings IK and IL
by applying a Hamming distance:

DH(IK , IL) =
|V |∑
i=1

h(ΨK(vi), ΨL(vi)),

where h(ΨK(vi), ΨL(vi)) = {1, ifΨK(vi) 
= ΨL(vj)
0, otherwise

(7.3)

The DH distance has many disadvantages (e.g. does not take into consid-
eration space symmetry [35]), therefore there are also others GDM that can
be applied: histograms, statistical dispersion, Euclidean distance or Entropy
distance [1, 34,35].

A construction of the GDM is rather a simple task, more problematic is the
PDM. In [34] it was proposed to control the relation between individuals with
the best and the average fitness in population (or average and the worst) to
get information about current population diversity. Such measure gives only
statistical information for a given population, although with the aid of the
pff we can have a more precise phenotypic measure of two evaluated graph
colorings EvK and EvL:

Dpff(EvK , EvL) =
|V |∑
i=1

| pffK(vi) − pffL(vi) | (7.4)

where pffK(vi) means: pff value of vi vertex in Kth coloring. A Dpff measure
gives information how two colorings are different on the phenotypic level. Such
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measure can be used to e.g. calculate a phenotypic standard deviation in a
population.

The PDM can seem to be useless but in [34] it was argued that, the princi-
pal feature of this type of measures is that they allow premature convergence
to be predicted rather than being detected. This feature gives information
about level of population diversity and with the aid of it we can run a pre-
ventive strategy of premature convergence.

7.4.3 Genetic operators

It is admitted that classical genetic operators are generally poor for solving
optimization problems and have to incorporate the specific domain knowl-
edge [33]. Defined partial fitness function gives us information, which we can
consider as a CSP domain knowledge, but in fact the graph coloring theory
knowledge is not included (e.g. vertex degree or maximal clique in a graph [2]).
In this section we present two specialized genetic operators: IBIS mutation and
BCX crossover.

Iteration Build Solution (IBIS)

IBIS operator is based on a human heuristic, which can be applied in solving
similar problems. Firstly, graph is colored by quasi-random method, and then
coloring is evaluated. In the next step, we analyze the number of conflicts
caused by each vertex and with reference to its value, it is suggested to recolor
or retain a vertex color. Such a heuristic is the base of IBIS operator. However,
IBIS implements this heuristics with probabilistic aspects: if vertex causes
greater number of conflicts then probability of changing color has a higher
value.

In implementation, operator IBIS takes evaluated coloring and analyzes
each vertex pff value. This function is calculated by applied fuzzy logic driver
(Takagi-Sugeno), which determines the values of color remaining probability
(1 − recolor prob, inverse relationship to pff value) and the tournament size
(tournament size, positive relationship to pff value). The first value decides
if vertex should be recolored and the second one gives number of concurrent
colors (the best one is chosen). If probability of recoloring vertex is too small,
vertex color is taken from parent coloring. The IBIS operator pseudocode is
presented on Fig. 7.3.

The color tournament selection method takes randomly tournament size
for all used colors and checks number of conflicts of a given vertex in each
concurrent color. Then it chooses the color with the least number of conflicts
caused by given vertex.

The main element of IBIS operator is a Takagi-Sugeno fuzzy logic driver.
We decided to apply the Takagi Sugeno driver as we can define simply and
intuitive fuzzy rules to compute IBIS parameters (see Fig. 7.4). Also TS driver
has small consuming processor time (there is no a defuzzification phase). The
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function operator IBIS(coloring in parent, out off )

begin
calculate pff min, pff avg and pff max values in parent coloring;
build TS driver(pff min, pff max, pff avg);

for each vertex vi of colored graph
recolor prob := TS recolor(pffparent(vi));
tournament size := TS tournament(pffparent(vi));

r := random number〈0, 0; 1, 0〉;

if (r<recolor prob) coloroff(vi) := colorparent(vi);
else coloroff(vi) := tournament color(tournament size);

end.

Fig. 7.3: Operator IBIS pseudocode.

If vertex vi causes a few conflicts:
recolor prob is near 1,0 and tournament size is near 0,0

If vertex vi causes average number of conflicts:
recolor prob is near 0,75 and tournament size is near 0,75

If vertex vi causes many conflicts:
recolor prob is near 0,0 and tournament size is near 1,0

Fig. 7.4: Example of Takagi-Sugeno driver rules.

usage of fuzzy logic in evolutionary algorithms is no a novel idea, for example
in [34,36] is used to manage exploration and exploitation process in EA. Also
in other papers we can find a fuzzy logic usage to adapt EA parameters,
individual representation, fitness function or stop conditions. To the best of
our knowledge, there is not any usage of fuzzy logic in the mutation operator.

The implementation of TS driver needs fuzzy sets details. We set a number
of fuzzy sets, shapes and other parameters experimentally. The result is shown
in Fig. 7.5: there are three fuzzy sets (best, avg i worst) based on the average
value of number of conflicts (avg) in given coloring located on x-axis.

To compute a Takagi-Sugeno driver output values we use a below formula:

y =
∑m

i=1 µAi
(x)fAi

(x)∑m
i=1 µAi

(x)
(7.5)
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Fig. 7.5: Example of fuzzy sets used in TS driver.

where y symbolizes one of output values: TS recolor or TS tournament.
A µAi

(x) symbol means given fuzzy sets (µbest, µavg or µworst), and fAi
(x)

represents output value of used fuzzy rules.
To show how IBIS works let’s analyze an example of usage IBIS operator

(see Fig. 7.6) on a simple coloring using 3 colors on a graph with 6 vertices.
We have to remark that the genetic operator has a probabilistic character and
this example should be regarded as an idea not as a deterministic effect.

Fig. 7.6: Example of IBIS usage.

We start to analyze v1 - it causes 2 conflicts and its probability of recoloring
is average and IBIS probably will decide to recolor. There is no difference if
it will be a gray or white color, the tournament selection can give a gray
color. Next vertex v2 also causes 2 conflicts and its probability of recolor is
average too, but let’s assume that its color is unchanged. Vertex v3 causes 3
conflicts and has the biggest TS recolor value and recolor probability. There
are 3 analyzed the colors: black (causes 1 conflict), gray (1 conflict) and white
(0 conflict), and tournament selection gives white color, as it causes 0 conflict.
The other 3 vertices (v4, v5 and v6) does not cause any conflict and its values
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of recolor probability are so small that we can assume that colors are the same
in a new coloring. In this way, a new coloring causes only 1 conflict and it is
generated from coloring with 4 conflicts. The IBIS operator is used as a genetic
operator in the mutation role. It tries to discover the “best” coloring elements
and keeps them in a newly build solution, also elements “average” and “worst”
are changed according to a fuzzy logic Takagi-Sugeno driver suggestion.

Best Color Crossover (BCX)

A classical genetic algorithm with standard genetic operator is poor for solv-
ing optimization problems [33], so it is suggested to build specialized genetic
operators which apply specific domain knowledge. In our approach this role
fulfills a conflict localization (implemented as the pff value).

The main goal of the presented crossover is to connect two colorings (ex-
tended BCX can work on more than two parental colorings) to build a new
coloring with a better or comparable quality (number of conflicts). The BCX
operator analyzes color of each vertex in both parent colorings and according
to number of conflicts selects a color of vertex with the least conflicts. Then
a new coloring is analyzed whether it does not make the quality of coloring
worse; it checks if number of conflicts are smaller than in the parent coloring
and the operator colors of the given vertex. Otherwise, the color of vertex
vi in the new coloring is selected by a tournament method (select the color
which causes the less number of conflicts for vi vertex). A pseudocode of BCX
operator is presented on Fig. 7.7.

function operator BCX(coloring in parent1, in parent2, out off )

begin
for each vertex vi of colored graph

if (pffparent1
(vi) >= pffparent2

(vi))
conflict limit := pffparent2

(vi);
parent color := colorparent2(vi);

else
conflict limit := pffparent1

(vi);
parent color := colorparent1(vi);

conf := count conflicts(off, vi, parent color);

if (conf < conflict limit ) coloroff(vi) := parent color ;
else coloroff(vi) := tournament color(tournament size);

end.

Fig. 7.7: Operator BCX pseudocode.
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The BCX and IBIS operators use the heuristic to build a new coloring,
and also in this operator tournament method is used to a color selection and
provide the nondeterministic element to BCX work. Indeed the tournament
selection is a smart compromise between the time consuming method of the
full search (tournament size parameter equals to a number of all used colors)
and the nondeterministic random method (tournament size parameter equals
to 1).

Fig. 7.8: Example of BCX operator usage.

Let’s consider a BCX example simple graph with 6 vertex colored by 3
colors (see Fig. 7.8). Two evaluated colorings are analyzed vertex by vertex.
Vertex v1 in both coloring is black, and this color is assigned in the new
coloring. Vertex v2 has an analogical situation and black color is also assigned.
For next vertex (v3) can be assigned black color (causes 3 conflicts in parent1)
or white (causes 2 conflict in parent2) - BCX operator chooses white color.
In the new coloring it causes 0 conflict (but not all vertices have assigned
colors) and this color is assigned. Vertex v4 does not cause any conflicts in
both parental colorings, and is assigned gray color from parent2. Almost the
same situation refers to v5 where it causes 1 conflict in both coloring and also
the color from parent2 is assigned (white). The last vertex (v6) causes less
conflicts in color gray from parent1 and this color is assigned.

The BCX crossover replaces a standard semi blind crossover by using spe-
cific domain knowledge (conflict localization). This allows to consider “good”
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the parental coloring elements and build a new coloring with better (or com-
parable) to the parental coloring quality.

7.5 Experiments and results

The experiments were performed using the DIMACS Challenge1 set of 63
graphs, which include generated and real-world GCP graphs. All experiments
were performed using tournament of 2 individuals selection method without
elitism, using IBIS and BCX operators with a modified EA schema: none
coloring is generated by two operators only one is applied, with the BCX
priority. Such a change in EA schema is a consequence of the fact that both
genetic operators may give significant changes in coloring and both need eval-
uated coloring. The maximum number of generation was set to 30000 (this
value is based on experiments).

7.5.1 Genetic operators

The probability of BCX and IBIS has a large influence on the character of evo-
lution process and EA effectiveness. Below we present 3 results selected from
all performed experiments: “frequent” BCX with “rare” IBIS (PBCX = 0, 7
PIBIS = 0, 2), “frequent” BCX with “frequent” IBIS (PBCX = 0, 7, PIBIS =
1) and “rare” BCX with “frequent” IBIS (PBCX = 0, 3 PIBIS = 0, 9). The
last configuration is known as optimal. Experiments presented in this section
are based on the representative for the DIMACS set graph queen14 14, which
is colored with 17 colors, in a reasonable time, using population size equal 5.
Because of the random tie breaking, EA becomes a stochastic method; results
of 100 runs need to be averaged (for successful runs) to obtain useful statistics.

The evolution with configuration (PBCX = 0, 7 PIBIS = 0, 2) has a chaotic
character. The average genotypic diversity equals 3,1 (standard deviation
4,46), the average phenotypic diversity equals 0,56 (standard deviation 0,68)
and in 55% generation there is no diversity in population (premature con-
vergence). In Table 7.2 we present a standard deviation of genotypic and
phenotypic diversity in the evolution process. The average time needed to get
a solution equals 5,4 seconds (the average number of generations equal 13775),
a solution confidence is poor and equals 54%.

EA configuration (PBCX = 0, 7 PIBIS = 1, 0) is more efficient: the time
needed to obtain a solution equals 5,0 seconds (it corresponds to 5023 gen-
erations) and solution confidence equals 95%. The premature convergence is
still a large problem and occurs in 9,5% generations. A configuration known
as optimal gives solution in 1,1 seconds (the average number of generations
2303) and the total confidence (100%). The evolution process (see Table 7.2)

1 http://mat.gsia.cmu.edu/COLORING03/
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runs regularly with phenotypic and genotypic diversity on a high level, suit-
ably 1,51 (std. deviation 0,39) and 9,8 (std. deviation 5,5). The number of
generations with premature convergence were reduced to 0,1%.

The comparison of results of three evolution processes with selected con-
figurations is presented in Table 7.2.

Table 7.2: Genetic operators influence on character of evolution.

genetic Dpavg Dgavg premature tavg solution
PBCX PIBIS (Dpstd dev) (Dgstd dev) convergence[%] [s] [%]

0,7 0,2 0,56 (0,68) 3,1 (4,46) 55 5,4 54
0,7 1,0 1,28 (0,52) 7,69 (4,73) 9,5 5,0 95
0,3 0,9 1,51 (0,39) 9,8 (5,5) 0,1 1,1 100

Computer: Intel Celeron 2.53GHz 512MB RAM
GRACOM config.: PBCX = 0, 3 PIBIS = 0, 9, pop size= 5
graph: queen14 14 17 colors

The data presented in Table 7.2 shows that configuration has a large influ-
ence on the evolution character: the optimal configuration reduces the number
of generations with premature convergence, keeps phenotypic and genotypic
diversity on a high level, and also increases the EA effectiveness.

7.5.2 Population size

In experiments presented in previous sections, population size was kept on a
constant level (5 individuals). However, the population size is also an impor-
tant factor in EA. In this section, we present EA correlation between effec-
tiveness and population size.

In DIMACS graph set, generally, two subsets of graphs were found: one
needs population size 5, the other needs more individuals in population (100,
200 or even 400). Graph queen14 14 is representative for one subset, the sec-
ond subset can be represented by the graph 3-fullins-4. In addition, the other
reason why these graphs are considered is that its solving time is acceptable
and permits to complete all necessary tests.

In Table 7.3 population size influence on the EA effectiveness in solv-
ing two graphs: queen14 14 and 3-fullins-4 is presented. For coloring graph
queen14 14 the optimal population size is 5 individuals: the average time
needed to receive a solution is 1,1 seconds (1868 generations) with low level
of standard deviation of time and number of generations. Even though, EA
has the best effectiveness for the given graph with such a population size, in
0,1% generations we can observe premature convergence.

The presented graph 3-fullins-4 is a representative of the other subset of
tested graphs and EA optimal population size equals 100 or 200. EA with
population of 100 individuals needs the average time equals 1,1 seconds (39,1
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generations) but 200 individuals in population cause the EA more regular
working: standard deviation of time and number of generation is on the lowest
level.

Table 7.3: Population size influence on GRACOM effectiveness.

population size

5 10 20 100 200

t [s] 1,1 5,1 6 46,8 61,9
queen14 14 tstd dev 0,4 6,1 6,1 58 73,2
colors 17 gen 1868 4298 2568 3884 3162

genstd dev 613 5048 2602 4832 3775
pre.conv[%] 0,1 0,0 0,0 0,0 0,0

t [s] 9,7 36,9 57 1,8 2,3
3-fullins 4 tstd dev 16,8 45,8 62 1,1 0,25
colors 8 gen 3879 7623 5939 39,1 25

genstd dev 6717 9503 6558 23,4 2,7
pre.conv[%] 0,47 0,0 0,0 0,0 0,0

Computer: Intel Celeron 2.53GHz 512MB RAM
GRACOM config.: PBCX = 0, 3 PIBIS = 0, 9, pop size = 5

It is interesting that population of 5 individuals leads to premature con-
vergence. It is connected with the genetic drift phenomena, when a small
population causes bigger changes in population on phenotypic and genotypic
level in the EA process. Each individual, even the worst one, in a small popu-
lation has more chances to have an offspring and it causes that the evolution
process can explore regions with the worse fitness. Furthermore, a genetic drift
causes that evolution is similar to random wandering and no longer stays in
the local optima and constantly looks for new regions for exploration.

The premature convergence is caused by a fitter individual, which dom-
inates in the population, and gradually displaces individuals with a worse
fitness. In addition, tests show that premature convergence usually occurs in
one of the local optima where in the population dominates already best known
individual. In classical EA premature convergence can be considered as one of
EAs stop conditions because EA with the same values of parameters cannot
cope with premature convergence. That is why it is a problem in a classical
EA, but in the proposed EA with operators BCX and IBIS such a problem
does not exist.

Thus, we can draw a conclusion that for some subsets of DIMACS graphs
it is worth trying to solve it by EA with population of 5 individuals. Such
a population size despite causing premature convergence is optimal to some
graphs and gives a solution in the best time. Into considerations were taken
many factors that should decide on optimal population size for a given graph,
e.g. the number of vertices, the number of edges, the graph density and oth-
ers graph theory tools. There are no confirmed conclusions, even some of
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the considered relationships give contradiction, e.g. a comparison of two DI-
MACS graphs with 3% density2: will199GPIA (701 vertices, 6772 edges) and
4-fullins-4 (690 vertices, 6650 edges) suggests some similarity in their difficul-
ties. Actually, graph will199GPIA needs 5 or 10 individuals in population to
solve it and it is one of the simplest DIMACS graph. The Graph 4-fullins-4
needs population size of 200 and is much more difficult to solve.

Although, the determination difficulty of a given graph coloring is an open
issue, the intuition gives a hint that there is a relation between the graph
diversity and its GCP difficulties. We can draw some suggestions that graphs
with the high density probably have a larger number of local optima and
are more difficult to solve. Thus, they need a small population size. This
conclusion is confirmed partly by DIMACS set of graphs, e.g. two analyzed
graphs: queen14 14 (196 vertices, 837 edges, density 44%) and 3-fullins-4 (405
vertices, 3524 edges, density 4%). The first analyzed graph (queen14 14 ) has
44% density and needs small population size (5 individuals), the second one
(density 4%) needs population size of 100 or more individuals.

7.5.3 Individual selection method

We tested two individual selection methods: tournament selection and propor-
tional selection (roulette). The most efficient in GRACOM is the tournament
selection, the proportional selection gives the solution in a longer time. We
also tested a random selection: as there is no selection pressure, the GRA-
COM with a random selection is no longer a genetic algorithm. This selection
should stop the evolution process but the specialized operators (applied a lo-
cal search in IBIS and in BCX) allow to continue the evolution process and
gives solution.

We analyzed the elite parameter (elitarism as surviving individuals with
the best evaluation value) influence to GRACOM efficiency, as well. We no-
ticed that small population (5-10 individuals) is dominated by a “super in-
dividual” and stuck the evolution process in one of many local optima. In
larger populations (100-200 individuals) this process can be also observed but
it has a smaller range. In GRACOM we do not recommend to use the elitarism
parameter.

7.6 Tests of GRACOM efficiency

In this section we present the results we were able to obtain using GRACOM
method in test instances. We tested GRACOM on the following instances:

• Nine random graphs (dsjc125.x, dsjc250.x and dsjc500.x ) with an unknown
chromatic number. Those graphs are considered as hard to solve,

2 Density of graph G(V,E) is calculated as den(G) = 2∗|E|
|V |∗(|V |−1)

.
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• Leighton’s graphs le450 xx are very difficult to solve in spite of the known
chromatic number. More about that graphs in section 7,

• Two queen problem graphs queen15 15 and queen16 16,
• Two timetabling benchmark graphs: school xx,
• Two various graphs: 3-insertions 5 and 4-fullins 4

We have tested GRACOM method on DIMACS benchmark graphs. The
DIMACS set is varied graphs and our method can be tested comprehensively.
This set contains e.g. random, scheduling or queen problem graphs. Also tests
on a set of DIMACS benchmark graphs allows to compare results with other
methods. We assumed that in these tests maximal processing time is less
than 5000 seconds (or 10 million generations). GRACOM results presented
on Table 7.4 are statistical, the averaged from 10 (100) runs.

Table 7.4: GRACOM test results on DIMACS benchmark graphs.
graph best GRACOM runs generations time [s]

known colors success gavg tavg

(fails) (gstd dev) (tstd dev)
dsjc125.1* 5 6 10 (0) 11162 (1770) 1,2 (1)

5 10 (0) 15934 (9523) 2,79 (1,6)
dsjc125.5 17 19 10 (0) 2799 (1650) 15,9 (9)

18 10 (0) 149279 (154885) 26,6 (27)
dsjc125.9 44 45 10 (0) 199254 (110273) 34,9 (19)

44 10 (0) 1072684 (811322) 195,1 (147)
dsjc250.1 8 10 10(0) 959 (406) 0,4 (0,1)

9 10(0) 18231 (20505) 7,9 (9,0)
dsjc250.5 28 30 10 (0) 1452290 (1508411) 504,6 (573)
dsjc250.9 72 78 10 (0) 215388 (139133) 74,3 (48)
dsjc500.1 12 13 10 (0) 675424 (429119) 638,9 (408)
dsjc500.5 48 52 10 (0) 4082001 (2645723) 2730 (1772)
dsjc500.9* 126 140 10 (0) 1015813 (1115271) 2602 (2708)
le450 15a 15 16 10 (0) 154712 (127689) 116,1 (95)
le450 15c 15 21 10 (0) 2226900 (1601067) 1578,4 (1148)
le450 25c 25 26 10 (0) 5730955 (2683631) 3811 (1778)

3-insertions 5** ? 10 10 (0) 21 (2) 4,8 (0,4)
6 10 (0) 30 (6) 10,1 (2,2)

queen16 16 18 18 10 (0) 49502 (943) 7,2 (4,1)
queen15 15 16 17 10 (0) 37041 (17910) 121,5 (5,8)
school1 nsh 14 14 100(0) 275211 (613007) 152,5 (339)
4-fullins 4** 7 8 10 (0) 22 (3) 7,1 (3,7)

Computer: Intel Pentium IV 2.8GHz (dualCore), 512MB RAM
Computational time is limited to 5000 seconds.
GRACOM config.: PBCX = 0, 3 PIBIS = 0, 9 pop size= 5
pop size = (*)20 (**)200 individuals

In Table 7.4 we present results obtained by GRACOM on the graphs se-
lected from a DIMACS set. The presented results include graphs and configu-
ration that are solved in (a) reasonable assumed time: less than 5000 second,
(b) solution is always found. These two conditions make that some graphs
cannot be colored optimally - results of extended experiments are presented
in Table 7.4.

We compared GRACOM efficiency (minimal number of used colors)
with other methods. We compared it with methods the most effective in
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DIMACS challenge: HCA (Hybrid of Evolutionary Algorithm and Tabu
Search method) [33], CLGA (Genetic Algorithm with heuristics) [14], ACO
(Ant Colony Optimization) [12] and ILS (Iterated Local Search) [8]. Methods
were tested on DIMACS benchmark graphs and on this base we compare its
results. The selected graphs are considered as a difficulty to solve and make
possible to do objective method comparisons. Results of comparisons are pre-
sented in Table 7.5, where each method is evaluated by a minimal number of
colors used to the graph coloring. Results of GRACOM are based on longer
time experiments (less than 2 hours of processor3 working time).

Table 7.5: Comparison of selected methods efficiency.

graph best known GRACOM CLGA ILS HCA ACO

dsjc125.1 5 5 - - - 5
dsjc125.5 17 17 - - - 18
dsjc125.9 44 44 - - - 44
dsjc250.1 8 8 - - - 9
dsjc250.5 28 29 37 28 28 53
dsjc250.9 72 74 - - - 74
dsjc500.1 12 13 - - - 15
dsjc500.5 48 51 66 50 48 53
dsjc500.9 126 135 - - - 135
le450 15a 15 15 18 - 15 -
le450 15c 15 20 27 15 15 15
le450 25c 25 26 - 26 26 27

3-insertions 5 ? 6 6 - 6 -
queen16 16 18 18 - - 18 -
queen15 15 16 17 - - - 17
school1 nsh 14 14 - - - 14
4-fullins 4 8 5 7 - - -

In Table 7.5 we can see GRACOM high efficiency as the GCP solving
method. It gives an optimal or suboptimal solution in a reasonable time (less
than 2 hours of the processing time). Also, very interesting information we
can get from summary of DIMACS’03 challenge. It was said that there is no
“the best” GCP method dedicated to all graphs, rather some methods have
better results with some sets of graphs.

7.6.1 Scheduling experiments

It was said that scheduling problems can be generalized to GCP. In this section
we present some experimental results for Timetabling problems and consider-
ation on Job-Shop Scheduling Problem in the GCP context.

3 Intel Pentium IV 2.8GHz (dualCore), 512MB RAM.
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To prove GRACOM practical usage in the scheduling problem we have tested
our method on benchmark graphs constructed to Timetabling Problem. We
selected school11 xx and le450 xx graphs families.

Graphs school1 xx
Many high schools ask their students to select a set of courses for the com-
ing year to construct a timetable that allows students to take chosen courses.
The problem is to construct such a graph that vertices represents courses and
edges represent students. If exists any student that attends two courses there
is an edge. The edge also exists if two courses have the same teacher.

Two problems school1 xx concern about 500 students and two semesters
(the entire year). Each graph includes 385 vertices and is guaranteed 14-
colorable. Graph school1 includes entire timetabling graph, and school1 nsh
subgraph does not take into consideration study halls [37].

Table 7.6: Timetabling benchmark graphs.

graph color | V | | E | density(G) GRACOM
runs(fails) tavg

school1 14 385 19095 26% 100(0) 4,0[s]
school1 nsh 14 352 14612 24% 100(0) 152,5[s]

Test results are presented on Table 7.6. We can see that GRACOM method
solves problems school1 xx in the acceptable time. Also GRACOM efficiency
is high: the solution it is always found and it is an optimal solution.

Graphs le450 xx
These graphs were introduced by F.T.Leighton (Leighton F.T., “A graph col-
oring problem for large scheduling problems”, Journal of Research of the Na-
tional Bureau of Standards 84, pp.489-505, 1979) and its main feature is χG

guaranteed (5, 15 or 25 colors, it is given in a graph name). Each of these
graphs have 450 vertices and the density equals 25%. In Leighton’s opinion,
such a density is characteristic to exams scheduling problems. GRACOM re-
sults for selected le450 xx graphs are presented on Table 7.4 and Table 7.5.

The Graph Coloring Problem is defined as a generalization of schedul-
ing problems and can be applied to solve this problem directly, e.g. in
TimeTabling or Examination TimeTabling Problem we can include
a classroom assignment method [38]. This method has a set of non-conflicting
exams and for each timeslot it should be taken by students and a set of class-
rooms (according to its capacity).

The other method we can apply solving Job-Shop Scheduling Prob-
lem. We can provide some “local” modification of GCP definition to Mixed
Graph Coloring [13] [39]. In this model we define a graph G =< V,A,E >
where V,E are adequately a set of vertices and a set of edges, A is a set of
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arcs. Each arc connects two vertices and represents a relation “predecessor/-
successor”, it means that if (vi, vj) ∈ A means Ψ(vi) < Ψ(vj) and the edge
inclusion [vi, vj ] ∈ E implies Ψ(vi) 
= Ψ(vj) [39].

We have also tested an early form of GRACOM on University TimeTabling
Problem benchmark instances. Results of this test were presented in [40]. Also
others researches tested such approach (e.g. [16]).

7.7 Conclusions and future work

In this chapter we introduced a novel evolutionary approach (GRACOM) to
GCP and its application in scheduling problems. The basic scheduling defi-
nitions, problems and GCP notations are presented. The GRACOM method
is described in details: partial fitness function, phenotypic and genotypic and
specialized genetic operators (IBIS, BCX). The chapter shows that there exist
a very small gap between GCP and scheduling real world problems. We hope
that its would arouse interest in GCP scheduling application and evolutionary
solving method.

The provided GRACOM method based on evolutionary algorithm prove
its high efficiency but there are some future work directions. We plan to re-
alize parallel GRACOM implementation to speed up the search process. We
hope that GRACOM with multiplied population causes the evolution process
more stable. The second reason of parallelism realization is testing GRACOM
scalability.
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Summary. This chapter studies a two-level production planning problem where,
on each level, a lot sizing and scheduling problem with parallel machines, capac-
ity constraints and sequence-dependent setup costs and times must be solved. The
problem can be found in soft drink companies where the production process involves
two interdependent levels with decisions concerning raw material storage and soft
drink bottling. Models and solution approaches proposed so far are surveyed and
conceptually compared. Two different approaches have been selected to perform a
series of computational comparisons: an evolutionary technique comprising a genetic
algorithm and its memetic version, and a decomposition and relaxation approach.

Key words: Two-level Production Planning, Lot Sizing, Scheduling, Soft
Drinks Industry, Genetic Algorithm, Memetic Algorithm.

8.1 Introduction

The motivation behind writing this contribution is to offer the academic
and practitioner industrial engineering community dealing with planning and
scheduling tasks in the soft drinks industry a text with the most recent
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contributions to the field and also a comparative study with some selected
approaches. A major concern that inspired the chapter was to review modern
techniques especially designed for building production schedules applied to
real world settings. The technical literature devoted to planning and schedul-
ing is vast and there are plenty of sophisticated methods. However, the
specificities of the soft drinks industry require dedicated models and specific
solution methodologies that justify a text like this one. Thus, the objective of
this chapter is first to discuss the planning features of a soft drinks plant and
then to assess the main suitable mathematical models, as well as to explore
and evaluate the quality and computing time of some selected solution methods.

8.1.1 Soft Drinks Plant

The consumption of soft drinks has grown considerably worldwide. In Brazil,
where part of the present research has been carried out, there are more than
800 plants supplying a 13-billion liter annual consumer market, which is the
third in the world. This figure represents an amount which is twice as large
as ten years ago. The diversity of products offered to consumers, the scale
of plants and the complexity of modern filling lines require the adoption of
optimization-based programs to produce efficient production plans. Indeed, a
plenty of specialized commercial packages have been launched over the last
years as an effort to overcome the difficulties human schedulers have faced.
However, in most cases the complexity of the planning task imposes hard
manual adjustments for the production schedules produced by those pack-
ages. The biggest contribution of the approaches studied in this chapter is to
propose integrated optimization-based models able to encompass both the two
interdependent production levels, namely the tank level and the bottling level.
Due to its inherent complexity, the needed synchronization between these two
levels is disregarded by commercial packages thus often leading to ineffective
production schedules.

The production process found in medium to large plants consists of an
upper level with capacitated mixing tanks used to prepare and store liquids
which are pumped to the lower level constituted by bottling or canning lines
disposed in parallel (Fig. 8.1). At the tank level, decisions concerning the
amount and the time the raw materials have to be stored in every available
tank must be made. Analogously, at the production line level the lot size of
each demanded item and its corresponding schedule in each line must also be
determined. However, a line is able to meet the weekly demand only if the
necessary amount of raw material can be stored in a connected tank. Indeed,
a solution which integrates these two lot sizing and scheduling problems has
to be determined. Moreover, once the necessary amount of raw material is
stored, it can not stay for a long time waiting to be pumped to lines. There
is a synchronization problem here because the production in lines and the
storage in tanks must be compatible with each other throughout the time
horizon. Hence, a lot sizing and scheduling problem has to be solved at each
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one of these two-levels taking into account that the corresponding decisions
must be synchronized.

Tanks

Products

Production
lines

Fig. 8.1: The two-level production process.

Possibly the two-level synchronization is the most challenging aspect of
this problem. Due to this fact, this problem is called the Synchronized and
Integrated Two-level Lot sizing and Scheduling Problem (SITLSP) [1].

The raw materials are the flavors of the liquids which are bottled in the
production lines. For technical reasons, a tank is only filled up when empty
and two different raw materials cannot be stored at the same time in the same
tank. A sequence-dependent changeover time (setup) of up to several hours
occurs to clean and fill up a tank, even if the same soft drink is replaced.
A sequence-dependent setup time means that the time required to prepare
and fill a tank for the next liquid depends on the liquid previously stored.
Indeed, the setup time when a diet drink follows a plain flavor drink is much
longer when the sequence is inverted. Nothing can be pumped to a production
line from the tank during the setup time. One tank can be connected to
several production lines which will share the same raw material. Moreover,
the production lines can be connected to any tank. However, it can receive
raw material from only one tank at a time. The final product (item) is defined
by the flavor of the soft drink and the type of container (glass bottles, plastic
bottles or cans) of different sizes. In large plants it is common to find situations
where various products can share a common production line and various lines
can produce the same product in parallel. The production schedule also has
to take into consideration the impact of product changeovers on the effective
capacity of the production lines. As in the mixing tanks, these changeover
times (setups) are also sequence-dependent and occur whenever a line has
two different products switched.

The weekly demands have to be met within a time horizon of a certain
number of weeks. Since the forecasts of customer orders are error-prone, there
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is little interest in seeking solutions in large horizons. Instead, it is more
realistic to work in a rolling-horizon basis with a 3 or 4-week time horizon.
The excessive number of final products leads to inventory costs. There are
also inventory costs for the storage of raw materials in tanks in various time
periods. The sequence-dependent setup costs for products and raw materials
are proportional to the sequence-dependent setup times in lines and tanks,
respectively.

As synchronization is a key feature to be taken into consideration, a deeper
explanation in this respect is now in order. As said before, the lines must wait
until the liquids are ready to be pumped to them. On the other hand, the
liquids stored in tanks can not be sent to the lines unless they are ready to
initiate the bottling process. Fig. 8.2 illustrates the commitment between the
two levels.

P1 P2 P3 P3 P4 P5

     

Micro - 1

rmA
Tank

Line

Micro - 2 Micro - 3 Micro - 4 Micro -5 Micro - 6

rmB rmC rmC rmD rmD

Fig. 8.2: Batches sequenced but not synchronized.

Observe that batches of liquids and items are properly sequenced in the
tank and in the line, respectively, but they are not synchronized. The gaps
between two batches of liquids (rmA, rmB, rmC, rmD) and items (P1, P2,
P3, P4, P5) represent given changeover times. The planning horizon is divided
into 6 micro-periods. Notice that item P3 is produced in both micro-periods
3 and 4; it uses the same liquid rmC but needs tank replenishment. Also
observe that the same liquid rmD is used in distinct products P4 and P5
because they make use of, say, different bottle sizes. Due to the discrepancies
between tank and line setup times, the product batches have to be delayed by
inserting idle times (black rectangles) in the production line in micro-periods
1-4 while the liquid batches must be delayed as well by inserting idle times
(empty rectangles) in micro-periods 5 and 6, as shown in Fig. 8.3.

Given that the matter of synchronization has to be treated by postpon-
ing batches, it causes impact on the capacities of tanks and production lines
and may result in infeasible schedules. Therefore, these actions must be con-
sidered together with lot sizing and scheduling decisions. Thinking in terms
of mathematical models, they must incorporate decision variables especially
designed to deal with the crucial issue of synchronization thus adding substan-
tial complexity to model building and implementation of solution techniques.
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Micro - 1

rmA
Tank

Micro - 2 Micro - 3 Micro - 4 Micro -5 Micro - 6

rmB rmC rmC rmD rmD

P5P3   P3 P4P1 P2
Line

Fig. 8.3: Sequenced and synchronized batches.

8.1.2 Literature Review

The SITLSP is a two-level lot sizing and scheduling problem with some par-
ticular considerations - such as the two-level synchronization - which render
it much more complex. In this literature review the main published articles
addressing the SITLSP itself or similar problems dealing with the planning
and scheduling tasks in the soft drinks industry will be summarized and com-
mented on. As a result of this review, the two most promising methods are
selected and then described in detail in the next sections, followed by a com-
putational study which compares their performances and application fields.

The SITLSP addresses various issues of classical lot sizing and scheduling
problems that have been dealt with in the literature before. We refer to [2] and
the references therein for overviews in capacitated lot sizing and scheduling
problems. The capacitated lot sizing and scheduling problem is a NP-hard
optimization problem [3], but finding a feasible solution is easy (e.g., a lot-
for-lot like policy) if no setup times are to be taken into account. If setup
times are present, the problem of finding a feasible solution is NP-complete
already. A discussion of lot sizing and scheduling with sequence-dependent
setup costs or sequence-dependent setup times can be found in e.g. [4]- [8].
Publications addressing multi-level lot sizing (scheduling) problems can be
found in e.g. [9]- [13]. Studies regarding these problems with parallel machines
are found in e.g. [4], [14]- [18].

However, to the best of our knowledge, the only work that comes close
to the SITLSP is the one described in [16], which is a multi-level extension
of [8]. In this approach, however, it might be necessary to split up a lot into
smaller ones in order not to lose generality. This would not be a practical idea
in solving the SITLSP because every new lot for the tanks requires a new
setup, which is not desired.

Focusing the attention only on articles which specifically deal with the
SITLSP, one can cite [19] where an extensive mixed-integer mathematical
model describing the problem is presented. Unfortunately, due to its com-
plexity and size, the model had to be omitted in this chapter. Instead, a brief
explanation regarding its formulation is given next. The underlying idea to
create a model for the SITLSP combines issues from the General Lot sizing



174 Ferreira et al.

and Scheduling Problem (GLSP) and the Continuous Setup Lot Sizing Prob-
lem (CSLP). A comparison of the CSLP and GLSP and more details about
these problems can be found in [2], [20]- [22].

As shown in [19], the SITLSP model supposes that a planning horizon
is divided into T (macro-) periods of the same length. A maximum number
of slots (S for each line and S for each tank) is fixed for each macro-period
t = t1, t2, . . . , tT . The limited number of slot assignments is an idea taken from
the GLSP. This enables us to determine in the SITLSP for which liquid (raw
material) a particular slot in a particular line (tank) is reserved, and which
lot size (a lot of size zero is possible) should be scheduled. Fig. 8.4 illustrates
the idea. Consider T = 2 macro-periods, 5 raw materials (rmA, rmB, rmC,
rmD and rmE), 6 products (P1, P2, . . . , P6), 3 tanks (Tk1, Tk2 and Tk3)
and 3 lines (L1, L2 and L3). Suppose that the raw material rmA produces the
product P1, rmB produces P2 and P3, rmC produces P4, rmD produces
P5 and rmE produces P6. The total number of slots is S = S = 2 and it can
not be exceeded in each macro-period.

Tk1

Tk2

Tk3

L1

L2

L3

macro-period 1 macro-period 2

First slot Second slot First slot Second slot

rmC

rmA rmA rmB

rmCrmD rmD

P4 P4
P1 P1

P5 P5

P6

rmE
P2 P3

Fig. 8.4: Sequence of slots for tanks and lines.

Fig. 8.4 shows that only one slot is occupied by lots of raw materials and
products in tank Tk3 and line L3, respectively, during the first macro-period.
In the second macro-period, there is no slot occupied in Tk3 and L3. On the
other hand, two slots need to be occupied by lots of rmA in the first macro-
period of Tk1. This raw material is used to produce P1 which is assigned
to the two possible slots in the first macro-period of L1. In this case, the
necessary amount of rmA to produce P1 filled up Tk1 completely in the first
slot assignment. Another slot assignment of rmA is necessary to conclude the
production of P1. Refilling Tk1 with rmA leads to an interruption in L1, so
a second slot assignment of P1 in L1 is also made. Variables indexed by slots
in the SITLSP mathematical model made it possible to write constraints that
integrate the line and tank occupation [1, 19].

As well as the assignment of liquids to tanks and products for lines in
each macro-period, it is also necessary to synchronize the slots scheduled in
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a two-level problem like this. This is done using the micro-period idea found
in the CSLP, where each macro-period t is divided into Tm micro-periods
with the same length. Furthermore, according to the CSLP assumptions, the
capacity of each micro-period can be total or partially occupied and only one
product type (item) can be produced per micro-period. These assumptions
are used in the SITLSP. Fig. 8.5 illustrates this idea using the assignment
shown in Fig. 8.4.

Tk1

Tk2

Tk3

L1

L2

L3

0 101 2 3 4 5 6 7 8 9 Time

macro-period 1 macro-period 2

micro-period

rmA rmA rmB

rmC rmCrmD rmD

rmE

P1 P1 P2 P3

P4 P4P5 P5

P6

Fig. 8.5: Synchronization between lines and tank slots.

The macro-periods are divided into 5 micro-periods of the same length.
The times necessary to prepare each tank (setup time) are represented now by
the slots with acronyms rmA, rmB, rmC, rmD and rmE. In the same way,
the processing time of each product is represented by the slots with symbols
P1, P2, P3, P4 and P5. For instance, the two slots of Tk1 occupied by rmA
indicate that the tank is ready to be used at the end of the first micro-period
and it is refilled with the same raw material between the third and fourth
micro-period. The micro-periods enable us to synchronize the beginning of P1
production in the second micro-period of L1 after the end of rmA setup time
in Tk1. Moreover, we can see when the refilling of Tk1 occurs in the second
slot of Tk1. This requires the interruption of P1 and the beginning of the
second slot occupation of P1 in L1, after the end of rmA setup time in Tk1.
The constraints and variables indexed by the micro-period make it possible
to describe these situations in the mathematical model of the SITLSP [1,19].

The objective function is to minimize the total sum of setup costs, in-
ventory holding costs, and production costs for tanks and production lines.
Observe that for a given demand a feasible solution may not exist. In order to
guarantee a feasible solution the model allows for shortages. This is modelled
by allowing every item a certain quantity of units to be “produced” in the first
period without using capacity. Naturally, a very high penalty M is attached
to such shortages so that, whenever there is a feasible solution that fulfills all
demands, one would prefer this one.
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In short, one can say that the main contribution of the approach used to
model the SITLSP is to integrate and synchronize two lot sizing and schedul-
ing problems. This is done using variables and constraints indexed by slots
and micro-periods. The variables and constraints indexed by slots help to in-
tegrate a feasible sequence of occupation in the two levels, while variables and
constraints indexed by micro-periods help to determine a feasible synchro-
nization in the two levels within the time horizon. The entire set of variables
and constraints is able to mathematically describe most of the decisions and
constraints present in the industrial problem studied here.

The SITLSP model is coded and solved using the GAMS/CPLEX package
that uses a branch-and-cut solution approach to find an optimal solution. For
small instances the method is fast and reliable but as problem size grows,
the number of distinct integer solutions increases exponentially, causing the
search to take too long even for finding the first integer feasible solution. The
computational results in a series of instances with T = 1, 2 , 3 and 4 macro-
periods and Tm = 5 micro-periods revealed that for T > 2 the method failed
in finding optimal solutions within 1 hour of execution time.

A second paper [23] dealing with the SITLSP introduces an evolutionary
approach capable of overcoming the limitations faced by the previous method
[19] which is not useful to solve real world instances. Being an approximate
approach, optimal solutions are not guaranteed but performance comparisons
carried out in the paper using a set of small instances with known optimal
solutions have shown good behavior in reasonable computing time.

Evolutionary algorithms (EAs) belong to a class of computational meth-
ods called bio-inspired systems that simulate biological processes such as
crossover, mutation and natural selection. The simulation of these processes
follows the method when searching for a solution (individual) of a specific
problem. The method begins by analyzing a set of problem solutions (pop-
ulation) and determines new solutions applying genetic operators (selection,
crossover and mutation) to the previous set of solutions. Some solutions (new
or old ones) are selected and form the new set of solutions for the next itera-
tion. This procedure is repeated until some stop criterion is satisfied. The first
work concerning EA was presented by [24] and details on their implementa-
tion can be found in [25] and [26]. A memetic algorithm (MA) is a hybrid
population-based approach [27] which combines the recognized strength of
population methods such as genetic algorithms (GA) with the intensification
capability of a local search. In a MA, all agents or individuals evolve solutions
until they are local minima of a certain neighborhood, i.e. after steps of re-
combination and mutation, a local search is applied to the resulting solutions.

The GA presented in [23] proposes a multi-population approach that can
be understood as a variant of island models. The method was developed using
the NP-Opt that is an object-oriented framework written in JAVA code [28].
This framework has optimization procedures based on evolutionary computa-
tion techniques to address NP-hard problems.

The computational experiments carried out with the GA approach on a set
of large instances with up to 12 macro-periods, 10 micro-periods and 15 final
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products show that the method is able to solve real-world instances. Conse-
quently it was one of the approaches selected to take part in the comparisons
using real data.

Recently another interesting method capable of handling the SITLSP and
also applied to the planning and scheduling of soft drinks has been proposed.
Unlike the approach presented in [1] where a highly general (and complex)
model is introduced and solved by a commercial MIP package, the MIP model
formulated in [29] is more restricted and amenable to be solved by approxi-
mate approaches. Amongst other differences that will be pointed out in detail
in Section 8.3, the mathematical formulation is less general than the one pre-
sented in [1] as it forces the quantity of tanks to be the same as for the lines.
On the other hand it opens up the possibility that a tank can be filled with
all liquids needed by its line.

Alternatively from [1], which uses a MIP package for finding optimal so-
lutions, the solution approach adopted in [29] relies on different heuristic
methods to obtain approximate production schedules. The details of these
heuristics will be explained fully in the next section.

In [30] a mathematical programming model to deal with the planning
of a canning line at a drinks manufacturer is introduced. Compared to the
models presented in [1] and [29], this one is much more restricted because
it disregards any sequencing considerations when designing production plans.
Instead, it focuses only on planning issues, i.e., lot sizing problems. The MIP
model objective function minimizes inventories and backorder penalties. The
model allows for different setup times depending on whether the changeover
between canned products involves a change of liquid or not. However, the
model does not consider sequence-dependent setup times. Solution strategies
consist of a “lazy” default - simply let an industrial strength branch-and-
bound MIP solver try to find a good solution within a pre-specified amount
of time - to more sophisticated heuristic approaches. One of these that is
worth mentioning is a local search-based meta-heuristic which the author
called diminishing-neighborhood search (DNS). In this approach one starts the
method with the largest possible neighborhood to avoid bad local optima, and
then narrow the neighborhood in a continuously diminishing way as the search
proceeds towards a good solution, even if it is still a non-global optimum. The
methods were tested in real data instances with up to 41 distinct products
to be filled from 14 different liquids in a planning horizon made up of 13
consecutive weeks (periods). The final conclusion is that the methods present
a classical trade off between quality and CPU time with the best results being
obtained by DNS at the expense of 2 hours of computing time. In spite of the
interesting solution methods and results reported in [30], the approach will not
be included in the comparisons mainly due to the more restrictive character
of the production system for which it was developed.

Closing this introduction, one can conclude that the methods for dealing
with the SITLSP embedded in a soft drinks production planning scenario,
and most importantly with potential to be applied in real world situations
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in a broad sense, are the EA approaches as the one proposed in [23] and the
heuristic model-based method presented in [29]. Therefore, a computational
comparison involving these two approaches are conducted in a series of prac-
tical instances obtained from a large soft drinks manufacturer. One of the
purposes of the comparison is to suggest practical guidance on which method
best suits the different possible situations found in the industry. The other
sections are organized as follows. In Section 8.2 an MA approach based on
the GA developed in [23] is proposed while the methods introduced in [29] are
presented in Section 8.3. Section 8.4 shows the instances used in the compu-
tational comparisons and discussions on the test results. Finally, Section 8.5
concludes the chapter and discusses some topics for further research.

8.2 Evolutionary Approaches

In this section a memetic version of the GA presented in [23] is proposed to
solve the SITLSP . The term “Memetic Algorithms” [27,31] (MAs) was intro-
duced in the late 80s as a class of meta-heuristics that have the hybridization of
different algorithmic approaches as a crucial aspect in their conceptions. The
majority of the MA applications are population-based approaches in which a
set of cooperating and competing agents are engaged in periods of individual
improvement of the solutions while they sporadically interact. The adjective
‘memetic’ comes from the term ‘meme’, coined by Dawkins [32] as an analogy
to the term ‘gene’ in the context of cultural evolution. It stands for the unit
of information which reproduces itself as people exchange ideas. MAs are also
referred in the technical literature as hybrid genetic algorithms and usually
they take a less sophisticated conception as a combination of GAs with a local
search procedure applied to some of the individuals in the population.

8.2.1 The MA structure

EAs are global search procedures inspired by biological evolution processes
[24,25]. Amongst the EAs, the GAs are the most popular. A GA differs from
local search or constructive heuristics because it has an initial set of solutions
(individuals) which have been randomly established. Also called chromosomes,
these individuals are solution representations for the problem to be solved. At
each GA generation, the individual’s fitness is measured and genetic operators
are executed in the population. These operators are based on genetic behavior
such as crossover, mutation and selection. The individuals with better fitness
values remain in the population from one generation to another. MAs and GAs
have been applied to solve complex and real-world problems (see [33]- [35]).

The evolutionary methods presented in this section are conceived as a
multi-population approach with a hierarchical ternary tree structure. The
multi-population approach was chosen because populations that evolve sep-
arately usually have different characteristics according to the genetic drift
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idea [36]. This can lead to a more effective exploration in the solution space
of the problem. A better performance of hierarchically structured popula-
tions over non-structured population schemes in EAs has been attested in
previous experiments concerning different problems (e.g. machine scheduling,
asymmetric travelling salesman, capacitor placement). Computational results
solving these optimization problems were reported by [18], [28] and [37] using a
multi-population GA with a hierarchical ternary tree structure. Furthermore,
the authors in [38] reported that the results obtained with the total tardiness
single machine scheduling problem using GA with hierarchically structured
populations are better than the ones with non-structured populations. These
findings have been confirmed by the multi-population MA developed to solve
the SITLSP. Moreover, the adoption of the multi-population approach has
enhanced the convergence features of the GA, postponing premature conver-
gence and improving its whole effectiveness [23].

Best Individual

Clusters

Leader

Supporters

Cluster

Fig. 8.6: MA clustered population.

The MA population structure consists of several clusters, each one having a
leader solution and three supporter solutions, as shown in Fig. 8.6. The leader
of a cluster is always fitter than its supporters. As a consequence, top clusters
tend on average to have fitter individuals than bottom clusters. As new indi-
viduals are constantly generated, replacing old ones, periodic adjustments are
necessary to keep this structure well ordered. The number of individuals in the
population is restricted to the numbers of nodes in a complete ternary tree, i.e.
(3k− 1)/2 where k is the number of levels of the tree. That is, 13 individuals
are necessary to construct a ternary tree with 3 levels, 40 to make one with 4
levels and so on. Previous experiments with distinct tree structures (binary,
ternary, etc.) and a variable number of levels (two, three, etc.) attested that
the best results were obtained by a 3-level ternary tree [6]. Observe that the
population is constituted by four distinct clusters, three in the bottom level
and one in the upper level, with four leaders, respectively. The upper level
leader (best individual) is always the fitter individual in the population.
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The MA procedure applied to the structured population is summarized in
Algorithm 8.1. The initial population Pop() is generated and submitted to a
generation loop. Operators recombinePop() and mutatePop() produce a new
individual (or more than one) which is improved by a local search algorithm in
optmizePop(). In structurePop() the population is re-structured to maintain
the hierarchy between agents.

Algorithm 8.1: The MA procedure.
initializePop();
repeat

recombinePop();
mutatePop();
optimizePop();
structurePop();

until Termination condition;

The operator recombinePop() performs a crossover over a cluster (selected
at random) and always involves a supporter node (selected at random) and
its corresponding leader node. The new individual (Child) is submitted to a
mutation procedure mutatePop() depending on the mutation probability test
result. The operator optimizePop() applies a local search to Child and if it is
now better than some parents, the Child will replace the parent with the worst
fitness value (Fig. 8.7). Otherwise, the new individual is not inserted into this
population. After every crossover/mutation/optimization/replacement oper-
ation, adjustments carried out by structurePop() are necessary to keep the
cluster structure well ordered where the best is always the leader (Fig. 8.8).
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Fig. 8.7: Population before and after Child insertion.
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Fig. 8.8: Adjustments in the population.
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8.2.2 The multi-population structure

Multi-population MAs are common in implementations in which computa-
tional tests are executed on parallel computers. Usually in such case, each
processor is responsible for one population. Results obtained on parallel
computers are in general much better than the ones obtained on sequential
machines. Even though the computational implementation and tests have been
carried out on a single-processor computer, the multi-population scheme has
been implemented to take advantage of the hierarchical population structure.
This decision is also supported by the fact that the SITLSP is a complex com-
binatorial problem for which simplistic evolutionary solution approaches tend
to fail. Fig. 8.9 shows how four populations interact. After a certain number of
executions of the genetic operators crossover and mutation performed in each
population, followed by a local search step applied to the best individual, one
can check if the population convergence occurred, i.e. if no new individuals
are inserted in it. If not, the process is repeated until convergence of all the
populations. In this case the migration step takes place with a copy of each
best individual being inserted into the next population and by replacing some
individual randomly selected - except the best one.

Fig. 8.9: Migration policy.

The pseudo-code shown in Algorithm 8.2 summarizes the whole multi-
population MA algorithm. The algorithm executes a fixed number of genera-
tions in each population while there is no convergence. This process involves
a parent selection (selectParents), a new individual creation by crossover
execution (crossover(individualA, individualB)), a possible mutation execu-
tion to the new individual (mutation(newInd)), its fitness evaluation (eval-
uateFitnessIndividual(newInd)) and its insertion or not into the population
(insertPopulation(newInd, pop(i))). The population convergence occurs when
there are no new individuals inserted after a fixed number of generations given
by the parameter γ ∗ PopSize, where γ is the crossover rate and PopSize is
the population size. A migration between populations (executeMigration) is
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executed when all populations have converged and the stop criterion has not
been satisfied yet. A new initialization of the populations (initializePopula-
tion(pop(i))) will occur, but the best individual and the migrated individuals
are kept. The stop criterion is usually a pre-specified computing time.

The MA described in this section was implemented using the NP-Opt
[28, 37], an object-oriented framework written in JAVA code which contains
procedures based on evolutionary computation techniques to address NP-hard
problems.

Algorithm 8.2: Pseudo-code for the multi-population memetic algo-
rithm.
repeat

for i=1 to numberOfPopulations do
initializePopulation(pop(i));
evaluatePopulationFitness(pop(i));
structurePopulation(pop(i));
repeat

for j=1 to numberOfGenerations do
selectParents(individualA,individualB);
newInd=crossover(individualA,individualB);
if execute mutation newInd then

newInd=mutation(newInd);
evaluateFitnessIndividual(newInd);
insertPopulation(newInd,pop(i));

end
structurePopulation(pop(i));
localSearch(pop(i));

end
until populationConvergence pop(i);

end
for i=1 to numberOfPopulations do

executeMigration(pop(i));
end

until stop criterion;

8.2.3 Individual representation

A MA approach was developed to solve a lot sizing and scheduling problem
with sequence-dependent setup times in [39], where an individual is repre-
sented by a string of paired values (type of product and lot size) for each
scheduling period. A similar representation of solution as an individual is pro-
posed by [40] for a GA used to solve the capacitated lot sizing and loading
problem with setup times, parallel facilities and overtime. In this approach,
the individual is also a string of paired values, where the first value is the
lot size and the second is the facility. A GA with more elaborated solution
representation is proposed by [41], where a binary matrix PxT (P products
and T periods) represents an individual for the multi-level lot sizing problem.
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Each binary entry yi,t = 1, if a setup for product i occurs in t; otherwise
yi,t = 0. All the GA publications mentioned have specific genetic operators.
Their crossover, mutation and selection procedures were designed to deal with
those individual representations for lot size and scheduling problems.

A new solution representation is proposed in this work. It is close to one
presented in [42] that uses assignment rules in a multi-level proportional lot
sizing and scheduling problem with multiple machines. Fig. 8.10 introduces
the individual representation proposed for the SITLSP.
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Fig. 8.10: Individual for the SITLSP.

An individual is a two-dimensional matrix with T rows and N columns.
The number of rows represents the number of macro-periods t1, t2, . . . , tT .
The number of columns represents the number of genes and there can be a
different number of genes per macro-period. Each gene corresponds to a cell
(m,n), m ∈ T , n ∈ N , in the individual matrix and contains the following
data:

• Pmn: product in gene n to be produced in macro-period m.
• Dmn: lot size of product Pmn.
• SLmn: sequence of lines where Dmn can be produced.
• STkmn: sequence of tanks where the raw material of Dmn can be stored.

The demand dit of product i in micro-period t is divided into several lots
(Dmn) and randomly distributed among the genes in micro-periods t, t − 1,
t − 2, . . . , 1. The sequences SLmn and STkmn are randomly generated with
length k. Sequence SLmn=(α1, . . . , αk) with αi ∈ {1, . . . , L}, where αi is a
possible line number and L is the number of lines. The value αi is taken from L
possible values. Sequence STkmn=(β1, . . . , βk) with βi ∈ {1, 2, . . . , 2L}, where
βi defines where and how the raw material will be stored. Parameter L is the
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number of tanks. The βi is taken from 2L possible values, but the real tank
number j is obtained from βi using:

j =
{
βi, 1 ≤ βi ≤ L;
βi − L, L < βi ≤ 2L.

(8.1)

If 1 ≤ βi ≤ L, the tank j = i will be occupied after the raw material
previously stored has been used. This forces the method to find solutions
where there is a partial use of the tank capacity. If L < βi ≤ 2L, the tank
j = βi − L will be immediately occupied. This forces the method to find
solutions where the tank capacity is completely used. These conditions have
some exceptions. If tank j, selected by one of the previous criterions, stores
a raw material different from the raw material of the product Pmn, it will be
necessarily occupied after the raw material which was previously stored has
been used. The same will happen if tank j is completely full. On the other
hand, if tank j is empty, it will be immediately occupied. If j is not empty, but
the raw material stored is the same as Pmn and the minimum tank capacity has
not been satisfied, this tank will be also occupied immediately. The individuals
in each initial population are generated following the pseudo-code illustrated
in Algorithm 8.3. There are T macro-periods, J products, L lines and L tanks.
The variable Dem receives the total demand dPi,t of product Pi in the macro-
period t. This demand is randomly divided and distributed among the genes.
At this point, the sequences of lines (SLmn) and tanks (STkmn) are also
randomly generated.

Algorithm 8.3: Individual initialization algorithm.
for t = t1, t2, . . . , tT do

repeat
Select a product Pi ∈ {P1, P2, . . . , PJ} randomly with dPi,t > 0;
Set Dem=dPi,t;
while Dem > 0 do

Select the matrix row m ∈ {t1, t2, . . . , t} of the individual
randomly;
Determine n as the first gene available in line m of the
individual;
Determine Dm,n 
= 0 with Dm,n ∈ [0, Dem] randomly
generated;
Insert Dm,n and Pi in the gene position (m,n) of the
individual;
Generate SLm,n = (α1, . . . , αk) with ai ∈ {1, . . . , L}
randomly selected;
Generate STkm,n = (β1, . . . , βk) with βi ∈ {1, . . . , 2L}
randomly selected;
Set Dem = Dem−Dm,n;

end
until All demands have been distributed among the genes;

end
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The following example clarifies the solution representation of an individual.
Suppose two products (P1 and P2) where each product has a demand of 100
units to be filled in macro-period t1 and another 200 units to be filled in
macro-period t2. The products use different raw materials (Rm1 and Rm2,
respectively). Moreover, there are two lines available to produce both products
and two tanks available to store both raw materials. Fig. 8.11 shows two
possible representations, both based on the individual initialization algorithm.
The demands are distributed in their respective macro-periods in individual
1. However, the demand of P1 in t1 is split between two genes. The same
happens with the demand of P2 in t2. In individual 2, part of the P1 demand
in t2 is split between two genes in t1. Notice that the sequence of lines (SLmn)
and tanks (STkmn) can repeat values of αi ∈ {1, 2} and βi ∈ {1, 2, 3, 4} for
L = L = 2 and k = 4 (length).
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Fig. 8.11: Two possible individuals.

8.2.4 Decoding and evaluation

The decoding procedure is responsible for determining a problem solution
from the data encoded in an individual. The procedure starts from the first
gene in the last macro-period up to the last gene in the first macro-period.
This backward procedure enable us to postpone setups and processing time of
products and raw materials in lines and tanks. However, there is no guarantee
that all demands will be produced at the end and a penalty in the fitness is
taken into account for that.

An example illustrates the decoding procedure. Consider the same data
used in the example of the last section and individual 1 shown there. Let’s
also suppose that for each macro-period there are 5 micro-periods with the
same length. Therefore, the time horizon is divided into 10 micro-periods. The
process begins by the first gene in the last macro-period (Fig. 8.12). A lot of
product P2 (D21 = 100) has to be produced using the first pair (α1, β1) =
(2, 3) from sequences SL21 and STk21. Product P2 is produced in line 2
because α1 = 2 and let’s assume that its processing time takes two micro-
periods. The other processing times used in this example are suppositions as
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well. According to equation (1), raw material Rm2 of P2 has to be stored
in tank j=3-2=1 because β1=3 and 2 < β1 < 4 with L = 2. Given the
criteria defined in Section 8.2.2, tank j=1 is empty and it must be occupied
immediately. A tank should be ready at least one micro-period before the
production starts on the lines. Therefore, the setup time of Rm2 occurs one
micro-period before the P2 production starts in L2 (see Fig. 8.12).
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Fig. 8.12: Decoding of the first gene in t2.

Let us suppose that the setup time of raw materials will take one micro-
period in any tank in this example. The demand of this gene has been
completely scheduled, so the next gene in t2 is decoded now (Fig. 8.13). The
first pair of rules (α1, β1) = (2, 1) is selected to schedule 100 units of P2
which are produced in L2 (α1 = 2). Value β1=1 means j = 1 (1 ≤ β1 ≤ 2) by
equation (1) and this tank must be occupied after the raw material which was
previously stored has been used. At this point, it is worth noticing that this
criterion allows for establishing schedules with a tank partially filled. Fig. 8.14
shows the decoding of the third gene in t2. A lot from product P1 (D21 = 200)
has to be scheduled in line L1 (α1 = 1) and its raw material has to be stored
in the empty tank j = 4-2 = 2 (2 < β1 ≤ 4). However, let’s suppose now
that tank j = 2 has a capacity of storing raw material sufficient to produce
only 100 units of P1. In this case, the next pair (α2, β2)=(1,2) is selected to
schedule the remaining lot D12 = 200-100 = 100 (Fig. 8.15). The remaining
lot is also produced in L1 (α2 = 1) and a new setup time of Rm1 occurs in
tank j = 2.

The decoding process continues in the first gene of t1 (Fig. 8.16). Product
P2 is produced in L2 (α1 = 2). A setup time occurs because P1 is produced
next in L1. Let’s suppose that the setup time from P1 to P2 takes one micro-
period. The tank j = 1 (β1=3 with 2 < β1 ≤4) should be immediately oc-
cupied, but it already stores Rm1. In this case, a new lot assignment to this
tank is necessary.
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Fig. 8.15: Decoding of the remaining demand of the third gene in t2.

The next gene decoding is shown in Fig. 8.17. Line L1 (α1 = 1) is selected
to produce D12 = 100 units of P2. Let’s suppose that the setup time from
P2 to P1 takes two micro-periods. Raw material Rm2 is assigned to j = 4-
2 = 2 (β1 = 4) and it must be ready one micro-period before L1 produces
P2. Fig. 8.18 has the last gene decoding. Product P1 is scheduled in L2
(α1 = 2) and there is no setup time because P1 is also produced next. Rm1
will integrate the lot previously stored in tank j = 3-2 = 1 because β1 = 3.
For this reason, the setup time of tank j = 1 is anticipated to the second
micro-period.

8.2.5 Crossover and mutation

Previous computational experiments with various crossover operators revealed
that the best behavior was attained by the uniform crossover. In this recom-
bination operator, genes from two different parents that occupy the same po-
sition in the individuals have some probability of being inherited by the child.
Individuals 1 and 2 (Fig. 8.11) are used to show how the uniform crossover
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Fig. 8.18: Decoding of the remaining demand of the third gene in t2.

operator works. Sequences SLmn and STkmn are not relevant because the
new individual (Child) will inherit these sequences without changes. Fig. 8.19
illustrates the crossover of Ind1 and Ind2.
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Fig. 8.19: Uniform crossover example.
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For each gene in the same position in Ind1 and Ind2, a random value
λ ∈ [0, 1] is generated. If λ < 0.5, the Child inherits the gene from Ind1;
otherwise, the Child inherits the gene from Ind2. The genes selected following
this procedure are shaded in Fig. 8.19. Notice that there are more genes in
macro-periods t1 of Ind2 than in the same macro-period of Ind1. In this case,
the procedure continues in Ind2 selecting those genes where λ ≥ 0.5. We do
not allow excessive demands in a new individual. For example, the gene from
Ind1 marked by a circle in Fig. 8.19 is not inherited because it would exceed
the total demand of P1 in the Child. If there is a gene in the same position
in Ind2, this gene must be inherited by the Child if the same problem does
not occur. On the other hand, a lack of demand can take place at the end of
the crossover. For this reason, a repair procedure is necessary and the demand
deficits in some macro-period are inserted.

Mutation aims to keep diversity in a population avoiding premature con-
vergence. A mutation rate determines the number of individuals that are
changed. The mutations adopted basically swap gene positions (Fig. 8.20).
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Fig. 8.20: Mutation types.

The first type swaps the positions of two selected genes in the same macro-
period. In the second type, the selected gene is removed and inserted into
another position which is also randomly selected. The third type swaps the
positions of two chosen genes that are in different macro-periods. The new
gene positions have to respect the macro-period demand of each product. A
product swap will not take place if it can violate the demand satisfaction. The
mutation procedure randomly chooses which mutation type will be applied to
the individual.

8.2.6 Local search algorithm

A substantial part of the computational effort related to MA implementations
is due to the local search. Bearing this in mind, and also that SITLSP is a
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complex combinatorial problem to be solved in a real-world context, a simple
local search method is a natural choice. A threshold accepting (TA) proce-
dure was elected as the local search built-in method to be used in this MA
implementation [43]. The pseudo-code of the TA is shown in Algorithm 8.4.

The neighborhood movements can lead to worse individuals and the TA
accepts them, since their fitness value remain inside a threshold. Doing this
the method can skip from local minima. Threshold reductions lead the method
to convergence. Two neighborhood movements were carried out to modify the
best individual making changes in the gene positions and changes in the lot
size. The changes in the gene positions follow the same behavior of the three
types of mutations described in the previous section. Regarding the mutation
types, the allowed movements are:

• Swap positions of two genes in the same macro-period.
• Remove one gene and insert it into another position.
• Swap positions of two genes in different macro-periods.

The changes in the lot sizes consider two cases:

• Split lots of one gene in two pieces. One piece stays in the gene and the
other piece is inserted into another position of the individual.

• Merge lots of the same product. The lot of one gene is removed from its
original position and inserted into another gene with the same product.

Problems with demand satisfaction are taking into account, so neighbor-
hood movements that lead to infeasibility are forbidden. After the fixed num-
ber of generations has been completed, the MA takes the best individual of
the population and executes the TA local search. First, one of the three pos-
sible changes in the gene positions are randomly chosen and executed. After
a maximum number of iterations, the TA stops and restarts executing now
changes in the lot sizes. Moreover, the two possible changes in the lot sizes
are randomly chosen and executed over randomly selected genes. In the end,
if a better individual is obtained, it is inserted as the new best individual of
this population.

Algorithm 8.4: Local search procedure.
individual =bestIndividual;
repeat

newIndividual = moveExecution(individual);
∆f = fitness(Individual)-fitness(newIndividual);
if ∆f > −Th∗fitness(individual) then

individual = newIndividual;
else

reduce(Th);
end

until maxNumberOfIteration;



8 Meta-heuristics for lot sizing and scheduling in the soft drinks industry 191

The MA as conceived here transforms itself into a GA simply by the delet-
ing the local search procedure. Although our experience with previous research
has demonstrated that in most cases the MA versions outperform their GA
versions, a comparison within a fixed amount of time will be carried out in
Section 8.4. The underlying issue under consideration is whether the time
spent by the local search executions in the MA is favorably used to reach
better solutions or if it could be used better by the GA version which will
spend this time executing a higher number of generations.

8.3 The Decomposition and Relaxation Approach

In this section the mathematical model to represent the SITLSP and the
solution approaches proposed in [29] are described. The model considers the
synchrony between the production levels and integrates the lot sizing and
scheduling decisions as well as the model in [19]. However, as pointed out in
Section 8.1.2, it differs from the latter in many aspects. A simplification of
the problem is considered supposing that each filling line, thereafter called
machine, has a dedicated tank. Each tank can be filled, in turn, with all the
liquids needed by the associated machine. The planning horizon is divided
into T macro-periods. It is a big bucket model and to obtain the order at
which the items will be produced each macro-period is divided into a number
of micro-periods. The total number of micro-periods is defined by the user,
but should be set as the maximum number of setups in each macro-period.
The micro-period size is flexible and is defined by the model since it depends
on the item’s lot size. The total number of micro-periods in both levels is the
same and only one item (liquid flavor) can be produced in each micro-period.

8.3.1 Model development

To describe the Two-Level Multi-Machine Lot Scheduling Model (P2LMM)
given in [29,44], let the following parameters define the problem size:

J = number of soft-drinks (items);
M = number of machines (and tanks);
F =number of liquid flavors;
T = number of macro-periods;
N = total number of micro-periods (i.e. total number of setups);

and let (i, j,m, k, l, t, s) be the index set defined as:

i, j ∈ {1 . . . J}; t ∈ {1 . . . T}; k, l ∈ {1 . . . F}; s ∈ {1 . . . N};m ∈ {1 . . .M}.
Consider also, that the following sets and data are known:
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Sets:

St = set of micro-periods in each macro-period t ;
Pt = first micro-period of period t ;
ρj = set of machines that can produce item j ;
δm = set of items that can be produced on machine m;
θm = set of liquid flavors that can be produced on tank m;
ωml = set of items that can be produced on machine m and need flavor l.

The data and variables described below with superscript I relate to Level
I (tank) and with superscript II relate to Level II (bottling):
Data:

djt = demand for item j in macro-period t;
hj = non-negative inventory cost for item j;
gj = non-negative backorder cost for item j;
sI

kl = changeover cost from liquid flavor k to l;

sII
ij = changeover cost from item i to j;

bIkl = changeover time from liquid flavor k to l;

bII
ij = changeover time from item i to j;

aII
mj = production time in machine m of item j;

KI
m = total capacity of tank m, in liters of liquid;

KII
mt = total time capacity in machine m in period t;

rjl = quantity of liquid flavor l necessary for the production of one lot of
item j;

qI
ls = minimum quantity to produce liquid flavor l in micro-period s;
I+
j0 = Initial inventory for item j.

Variables:

I+
jt = inventory for item j at the end of macro-period t ;

I−jt = backorder for item j at the end of macro-period t ;

xII
mjs = production quantity in machine m of item j in micro-period s;

yI
mls =

{
1, if the tank m is setup for syrup l in micro-period s;
0, otherwise

yII
mjs =

{
1, if the machine m is setup for item j in micro-period s
0, otherwise

zI
mkls =

{
1, if there is changeover in tank m from syrup k to l in s;
0, otherwise

zII
mijs =

{
1, if there is changeover in machine m from item i to j in s;
0, otherwise
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To include the synchrony between the two production levels in the P2LMM
model another set of variables is necessary. As discussed in Section 8.1, a
machine must wait until the liquid is ready in the tank. The set of continuous
variables, vII

ms ≥ 0, computes this waiting time for each machine m, in each
micro-period s. The waiting time is equal to the difference between the tank
changeover time and the machine changeover time. That is:

vII
ms ≥

∑
k∈δm

∑
l∈θm

bIklz
I
mkls−

∑
i∈δm

∑
j∈δm

bII
ij z

II
mijs m = 1, . . . ,M, s = 1, . . . , N

If the machine changeover time from item i to j is greater than the tank
changeover time from liquid flavor k to l, the waiting variable is zero and
only the machine changeover time is considered in the associated capacity
constraint. Otherwise, the total waiting time of the macro-period is taken
into account.

The P2LMM model is then:

Min Z =
J∑

j=1

T∑
t=1

(hj I
+
jt + gj I

−
jt) +

M∑
m=1

N∑
s=1

∑
k∈θm

∑
l∈θm

sI
kl z

I
mkls

+
M∑

m=1

N∑
s=1

∑
i∈δm

∑
j∈δm

sII
ij z

II
mijs (8.2)

Subject To

Level I (Tank)∑
j∈ωml

rljx
II
mjs ≤ KI

m
yI

mls, m = 1, . . . ,M, l ∈ θm, s = 1, . . . , N ; (8.3)

∑
j∈ωml

rljx
II
mjs ≥ qI

lsy
I
mls, m = 1, . . . ,M, l ∈ θm, s = 1, . . . , N ; (8.4)

∑
l∈θm

yI
ml(s−1) ≥

∑
l∈θm

yI
mls, m = 1, . . . ,M, t = 1, . . . , T, s ∈ St − {Pt}; (8.5)

zI
mkls ≥ yI

mk(s−1)+y
I
mls−1, m = 1, . . . ,M, k, l ∈ θm, s = 2, . . . , N ;(8.6)

zI
mkls ≥ ∑

j∈ωml

yII
mj(s−1)+y

I
mls−1, m = 1, . . . ,M, k, l ∈ θm,

t = 2, . . . , (T − 1), s = Pt;
(8.7)
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k∈θm

∑
l∈θm

zI
mkls ≤ 1, m = 1, , . . . ,M, s = 1, . . . , N ; (8.8)

∑
k∈θm

zI
mkl1 ≥ yI

ml1, m = 1, . . . ,M, l ∈ θm ; (8.9)

Level II (bottling)

I+
j(t−1) + I−

jt
+

∑
m∈ρj

∑
s∈St

xII
mjs

= I+
jt

+ I−
j(t−1)

+ djt, j = 1, . . . , J,

t = 1, . . . , T
(8.10)

∑
j∈δm

∑
s∈St

aII
j x

II
mjs +

∑
i∈δm

∑
j∈δm

∑
s∈St

bII
ij z

II
mijs +

∑
s∈St

vII
ms ≤ KII

mt,

m = 1, . . . ,M, t = 1, . . . , T
(8.11)

v
II

ms ≥ ∑
k∈θm

∑
l∈θm

bIklz
I
mkls −

∑
i∈δm

∑
j∈δm

bII
ij z

II
mijs,

m = 1, . . . ,M, s = 1, . . . , N ;
(8.12)

xII
mjs ≤ KII

mt

aII
mj
yII

mjs, m = 1, . . . ,M,

j ∈ δm, t = 1, . . . , T, s ∈ St;
(8.13)

∑
j∈δm

yII
mjs = 1, m = 1, . . . ,M, s = 1, . . . , N ; (8.14)

zII
mijs ≥ yII

mi(s−1)+y
II
mjs−1, m = 1, . . . ,M, i, j ∈ δm,

s = 2, . . . , N
(8.15)

∑
i∈δm

∑
j∈δm

zII
mijs ≤ 1, m = 1, . . . ,M, s = 1, . . . , N ; (8.16)

∑
i∈δm

zII
mij1 ≥ yII

mj1, m = 1, . . . ,M, j ∈ δm; (8.17)

I+
jt, I

−
jt ≥ 0, j = 1, . . . , J, t = 1, . . . , T,

zI
mkls, vms, x

II
mjs, z

II
mijs ≥ 0, yI

mls, y
II
mjs ∈ {0, 1}

m = 1, . . . ,M, i, j ∈ δm, k, l ∈ θm, s = 1, . . . , N.

(8.18)
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The objective function 8.2 is to minimize the total sum of inventory costs,
backorder costs, machine and tank changeover costs. In Level I, the demand
for liquid flavor l is computed in terms of the production variables. That is,
the demand for liquid l in each tank m in each micro-period s is given by and∑

j∈ωml
rljx

II
mjs. The constraints (8.3), similar to constraints (8.13) in Level II,

together with constraints (8.4) guarantees that if tankm is setup for syrup l in
micro-period s (yI

mls = 1) there will be production of liquid flavor l (between
the minimum quantity necessary for liquid homogeny and the tank maximum
capacity). The constraints (8.5) force the idle micro-periods to happen at the
end of the associated macro-period. Constraints (8.6), similar to constraints
(8.15) in Level II, control the liquid flavor changeover. Note that the tank
setup does not hold from one macro period to another if the setup variable in
the last micro-period is zero. Therefore, constraints (8.7) are needed to count
the changeover between macro-periods. Note also that the setup variables in
level II indicate which liquid flavor was prepared in the last non-idle micro-
period of each macro-period. Constraints (8.8), similar to constraints (8.16) in
Level II, count the first changeover of each tank. Constraints (8.9), similar to
constraints (8.17) in Level II, guarantee that there is at most one changeover
in each tank m in each micro-period s.

In Level II, constraints (8.10) represent the flow conservation constraints
for each item in each macro-period. Since the production variable is defined
for each micro-period, to obtain the total production of item j in a given
macro-period t it is necessary to sum the associated production variables over
all machines where it can be produced (m ∈ δj) and micro-periods (s ∈
St) of macro-period t. Constraints (8.11) represent the machine capacity in
each macro-period. Note here the inclusion of the waiting variable, vII

ms, to
ensure that the lot schedule will be feasible. The waiting time in machine m
in each micro-period s is computed by constraints (8.12) as explained above.
Constraints (8.13) guarantee that there is a production of item j only if the
associated setup variable is set to one, and constraints (8.14) and (8.15) count
the changeover in each machine m in each micro-period s. Constraints (8.14)
refer to a single mode production in each micro-period s. Note that production
may not occur although the machine is always ready to produce an item.

Finally, constraints (8.18) define the non-negativity and integrality restric-
tions. Note that the changeover variables zI

mkls and zII
mijs are continuous. Con-

straints (8.5), (8.6), (8.14), (8.15), and the optimization sense (minimization)
ensure that these variables will take only 0 or 1 values.

As happened to the model presented in [19], the solution of practical in-
stances of model P2LMM using the exact methods included in standard soft-
ware such as CPLEX [45] was not satisfactory. This indicated the need to
develop specific solution strategies.
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8.3.2 Relax and fix strategies

The relax and fix heuristic has been largely used as a method to obtain good
primal bounds (feasible solutions) for hard mixed-integer programs either on
its own or in hybrid algorithms e.g. [47]- [50]. In this approach, first the
integer variable set is partitioned into P disjunctive sets Qi, i = 1, . . . , P . At
iteration n, the variables of Qn are defined as integers while all others are
relaxed. The resulting problem is then solved. If it is infeasible, the procedure
finishes since it is not possible to find a feasible solution with the variables
in Qi, i = 1, . . . , n − 1 fixed at their actual values. Otherwise the variables
of Qn are fixed at their current values and the process is repeated for all the
P sets. Besides the variable set partition, criteria to fix the variables in set
Qn must also be defined before applying the procedure. The main feature
of this heuristic is the solution of submodels that are smaller, and possibly
easier, than the original one. The partition of variables and the criteria used
to fix the variables have a strong connection with the degree of the submodel
difficulty.

In the usual relax and fix strategy the variables are grouped by periods
(macro-periods) and only the integer variables are fixed at each iteration. In
[47] these criteria were used in the solution of a multi machine multi items lot
sizing model. The heuristics iterations number is thus the number of periods.
In [48] this heuristic is applied to a class of project scheduling problems and
explores various strategies to partition the set of binary variables. The relax
and fix heuristic has also been used in combination with meta-heuristics such
as Tabu Search. In [49] a hybrid tabu search procedure in which the relax
and fix heuristic is used either to initialize a solution or to complete partial
solutions is presented. The hybrid approach is applied to solve a big bucket lot
sizing problem with setup and backlog costs. At each iteration of the relax and
fix heuristic only the variables of a given period that concern a single product
is fixed. The strategy is called relax-and-fix-one-product. The main advantage
of this strategy is to solve smaller submodels since some mono-period, mono-
machine multi-items lot sizing problems are hard to solve. In [1] a relax and
fix heuristic to solve the SITLSP model formulated in [19] is proposed. The
criterion used is to first fix the binary variables in Level I, then the ones in
Level II, in a backward fashion. That is from the last period to the first. Other
relax and fix strategies also fix continuous variables. In [50] the relax and fix
heuristic is classified as a particular case of a progressive interval heuristics.
They also mention that fixing continuous variables reduce the flexibility of
the heuristic and propose various strategies varying the number of continuous
variables fixed.

The P2LMM model presents various possibilities to build sets Qi, i =
1, . . . , P [29]. The setup and changeover variables are indexed by levels, ma-
chines, items and periods. These indexes are explored when defining various
variable partition strategies. Different criteria were proposed to fix variables.
For example, after solving a submodel in a given iteration, it is possible to only
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fix the binary variables associated to non-zero production variables. Table 8.1
shows 12 relax and fix strategies, divided into two groups. The Group 1 has
five strategies (G1.1 - G1.5) and the Group 2 has seven (G2.1 - G2.7). The
first column shows the strategy name (Strat.), the second and third columns
show the criteria used for the partition (Part.) and fixing (Fix) the variables,
respectively. The variables presented in Table 8.1 are the same ones used to
describe the model P2LMM, however some of its indexes were omitted.

Table 8.1: Relax and Fix Strategies.

Strat. Part. Fix

G1.1 Period yI , yII

G1.2 Period yI , zI , yII ,zII

G1.3 Period yI , zI , yII , zII , xII

G1.4 Period yI , zI , yII , zII i.th.p.*
G1.5 Period yI , zI , yII , zII

i.th.p. with reevaluation
G2.1 Machine/Period yI , yII

G2.2 Level I then Level II yI , yII

G2.3 Level II then Level I yI , yII

G2.4 Period/ Level I then Level II yI , yII

G2.5 Period/ Level II then Level I yI , yII

G2.6 Machine/Period/ Level II and yI , yII

Machine/Period/ Level I
G2.7 Machine/Period/ Level II and yI , zI , yII , zII

Machine/Period/ Level I i.th.p. with reevaluation

The first five strategies (G1.1 - G1.5) use the usual criteria of partitioning
the variables according to periods. They differ from each other by the criteria
used to fix the variables in a given iteration. These criteria are based on the
idea that the submodels should have a dimension that favors the decision
process. The objective was to evaluate the influence of the variables in the
submodels solution.

The Group 2 strategies explore the multi-machine, two level structure of
the model to partition the set of variables. The objective was to evaluate the
influence of each machine (level) in the solution of the submodels. Note that
the criterion used to fix the variables in this group is the same one used in the
strategy G1.1, except for the strategy G2.7. In this criterion, when the variable
yII is fixed to one, it only assures that the machine will be prepared, it does
not say if the item will be produced or not. The variable yI besides defining
that the tank will be prepared, also states that there will be production of
an item, between the tank capacities (constraints (2) and (3) in the P2LMM
model). In the strategy G2.7, besides the binary variables, the continuous
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variables (zI , zII) are also considered to be fixed when there is production
(xII > 0). In this strategy the idle micro-periods in previous iterations which
did not have any variables fixed are also reevaluated for further variable fixing.

At each iteration of the relax and fix heuristic an instance of a mixed
integer optimization submodel has to be solved. In general, they are solved by
exact methods included in standard software (e.g. the branch and cut method
in CPLEX). Although the submodels in each iteration are smaller than the
original model, they are still difficult. If the optimal solution of the submodel
solved at each iteration is not achieved in a pre-defined amount of time, the
branch and cut execution is halted and the best solution is used to fix the
variables.

8.3.3 The relaxation approach

In some industries the liquid preparation in Level I does not represent a bottle-
neck for the production process. That is, the tank capacities are large enough
to ensure that whenever a machine needs a liquid of a given flavor it will
be ready to be released. Therefore, there is no need to control either the
changeover in the tanks or the synchrony between the two production levels,
only the minimum tank capacity constraints to ensure the liquid homogeny
is necessary in Level I. This situation was explored as a solution approach
to model P2LMM. The Relaxation Approach (RA) is based on the idea that
once the production decision is taken in Level II, the decision for Level I is
easily taken.

In [44] a one level model to the production planning of a small soft drink
manufacturer that has only one machine and several tanks is presented. To
extend their model to the multi-machines case, only constraints (8.3), (8.4),
(8.10), (8.12)-(8.18) has to be considered, dropping the changeover variables
in Level I, zI

mkls, and adding the constraint:

∑
j∈δm

∑
s∈St

aII
j x

II
mjs +

∑
i∈δm

∑
j∈δm

∑
s∈St

bII
ij z

II
mijs ≤ KII

mt,

m = 1, . . . ,M, t = 1, . . . , T
(8.19)

The objective function is:

Min
J∑

j=1

T∑
t=1

(hj I
+
jt + gj I

−
jt) +

M∑
m=1

N∑
s=1

∑
i∈δm

∑
j∈δm

sII
ij z

II
mijs (8.20)

These sets of constraints and the objective function 8.20 define a one level
multi-machines lot scheduling (P1LMM) model. It can be used in the first
phase of the RA algorithm (described below) to define the lot sizing and
scheduling of items in Level II. An adjustment of the solution of this model
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might be necessary to take into account the synchrony between the two lev-
els. This can be obtained by model P2LMM with the setup variables fixed
according to the solution of model P1LMM. That is, if item j is produced
then the tank and the machine must be setup. This procedure is outlined in
Algorithm 8.5, where σj is the liquid flavor necessary to produce item j.

Algorithm 8.5: The RA Algorithm.
Step 1 Solve the P1LMM model;
Step 2 if P1LMM is feasible then

for m=1 to M; j ∈ δm,s = 1, . . . , N do
if xII

mjs > 0 then
Fix the setup variables of P2LMM model according
to;
for j ∈ δm, l ∈ σj do

yII
mjs = 1 and yI

mls = 1
end

end
end

end
Step 3 Solve the P2LMM model obtained in Step 2.

The relax and fix strategies presented in Section 8.3.2 can also be used
to solve the models in Steps 1 and 3 of Algorithm RA. Note however that in
model P1LMM in Level I only the capacities constraints are considered and
there are no changeover variables associated to this level. Therefore the relax
and fix strategies described in Table 8.1 have to be modified accordingly. If the
models in Algorithm RA are solved by standard software and their optimal
solution are not achieved in a pre-defined amount of time, the branch and cut
execution is also halted and the best solution is considered. Other solution
approaches for SITLSP are presented and tested in [44] and [51].

8.4 Computational Tests

In this section we present and analyze the computational results of the evolu-
tionary algorithms (MA and GA) described in Section 8.2, and the decomposi-
tion and relaxation approaches described in Section 8.3, when applied to solve
industrial instances of SITLSP. Among all approaches reported in Section 8.3,
we present the results of only P2LMM G2.7 (relax-and fix strategy G2.7 ap-
plied to model P2LMM) and RA G2.1 (relax-and-fix strategy G2.1 applied
to the model P1LMM of Algorithm RA), since they were the ones that pro-
duced the best solutions for this set of instances tested. Other computational
tests with randomly generated examples of small-to-moderate and moderate-
to-large sizes and other industrial instances were performed with the MA and
the GA approaches presented in Section 8.2. The P2EMM G2.7, RA G2.1
and the other approaches of Section 8.3 are as well tested in other examples.
Their results are reported in [23] and [29], respectively.
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8.4.1 Generation of instances

The solution methods presented in Sections 8.2 and 8.3 can be easily adapted
to represent the particularities of different soft drinks companies. To follow, we
describe next the necessary adjustments to represent the situation encountered
at a Brazilian soft drink manufacturer, Plant A, as well as the data used to
generate the instances used in the computational tests described in Section
8.4.2.

Plant A produces many types of soft drinks (items) characterized by the
liquid flavor and bottle type. It has various tanks and filling lines (machines)
with different capacities. Some tanks (machines) are dedicated to produce
only a given subset of flavors (items), whereas others can produce any one.
There is a single liquid flavor (l = 4) whose demand is by far superior to the
others. While most of the liquid flavors have demands around 20,000 units
per period, flavor 4 has demand around 150,000 units. It also has a high setup
time and cost. Therefore, in Plant A there is a tank which is fully dedicated
to continuously produce flavor 4. That is, whenever a machine is ready to
produce an item that uses this flavor, the tank is also ready to release it.

To represent this situation in model P2LMM of Section 8.3, the changeover
time in Level I from any flavor k to flavor 4 and from flavor 4 to any other is
set to zero (bIk4 = bI4k = 0). Similar adjustments are made in the evolutionary
algorithms of Section 8.2. Although there is no need to setup the tanks for
flavor 4, there is still a need to setup the machines when items that need this
flavor are produced. However, the tank setup variable, yI

m4s cannot be set
to zero, since when this is done, constraints (8.3) together with (8.4) impose
that the production of any item that uses this flavor is zero (if yI

m4s = 0 then
xII

mjs = 0, for j ∈ ωm4). Therefore the tank capacity (constraints (8.3) and
(8.4)) for l = 4 is dropped.

When defining the lot size and schedule, Plant A also considers that the
inventory in a given period must be enough to cover the demand in the next
period. To have a fair comparison between the model and the company solu-
tions, a new set of constraints should be included in the model:

I+
jt = dj(t+1), j = 1, . . . , J ; t = 2, . . . , T + 1; (8.21)

Two minor modifications were made in the MA and GA to ensure that their
solutions are comparable to the solutions of P2LMM G2.7 and RA G2.1, as
well as the solutions used by Plant A. The first change refers to the assumption
that each filling line has a dedicated tank, that is, there is only one tank
allocated to only one line. Therefore, the criterion of the MA/GA for selecting
a tank, instead of determined by (Section 8.2):

j =
{
βi, 1 ≤ βi ≤ L;
βi − L, L < βi ≤ 2L.

(8.22)
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It was re-defined as: j = βi, where βi = αi. In addition, the fitness func-
tion of the MA/GA was modified to include only the product inventory, prod-
uct changeover and demand shortage costs. As the company primarily favors
production schedules with no demand shortages, the shortage unit cost was
considered as a sufficiently large penalization so as to avoid shortages in the
solutions. In cases whereby the MA and GA were unable to find a schedule
without shortages, their solution was simply considered infeasible. The same
was considered with the solutions of approaches P2LMM G2.7 and RA G2.1.
We refer to these modified versions of MA and GA as MA1 and GA1, respec-
tively.

The second change in the MA/GA is the consideration of penalization costs
over the liquid flavor inventories maintained in the tanks from one period to
another. In other words, besides the costs taken into account in the fitness
function of the MA1 and GA1, we also considered penalization costs to avoid
holding liquid flavor inventories between consecutive periods. This is because
the company prefers production schedules that do not hold liquid inventories
from one period to other, because they are perishable. Recall from Section 8.3
that approaches P2LMM G2.7 and RA G2.1 do not hold liquid inventories.
We refer to these modified versions of the MA and GA as MA2 and GA2,
respectively.

Several visits to Plant A were made in order to understand its production
processes and to collect the data necessary to simulate their SITLSP. Data
associated to demands, changeover times in both levels, tank and machine
capacities, etc., were obtained during these visits. The details of the collected
data are presented in [29, 51]. The data was used to generate 15 instances of
the SITLSP.

The first instance (P1) was generated based on data related to two ma-
chines that can produce items in common. The first one (machine 1) can
produce 23 items and the second one (machine 2) only 10 out of these. That
is, there are 13 items that can be produced on any one of these two machines.
Eighteen different flavors are necessary to produce this set of items.

Three weeks were considered in the planning horizon. Machine 1 was avail-
able for four working days per week (total of 5,760 minutes per week) and ma-
chine 2 six working days (total of 8,640 minutes per week). It was estimated
that the tank could have up to five changeovers per day. Taking the average
of the number machine working days (5 days), it is possible to have up to 25
changeovers per week. Therefore, the P1 instance has three macro-periods (3
weeks) with a total of 75 micro-periods (25 per macro-period). The production
scheduling for this instance was provided by Plant A, making the comparison
with the strategies proposed in Sections 8.2 and 8.3 possible.

To simulate different scenarios, four other instances (P2-P5) were gener-
ated by modifying part of the data used in instance P1. The inventory costs
were doubled (P2), the changeover costs halved (P3), the total demand was
redistributed among the periods (P4), and the machines capacities were re-
duced (P5). These modifications are detailed in Table 8.2.
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Demand data related to a period of 30 weeks was also available. This data
allowed the generation of another group of 10 instances (P6-P15). Each one
of these instances is associated to three consecutive weeks. Instances P6, P7,
P14 and P15 are associated to periods of higher demands when compared to
P8-P13. Except for the demands, all the other parameters used to generate
these instances were the same ones used to generate instance P1. More details
of the procedure used to generate the instances can be found in [29,51].

Table 8.2: Modifications in instance P1 to generate P2-P5.

Instances Modification

P1 Plant A data
P2 Inventory costs of P1 doubled
P3 Inventory costs of P1 doubled and the changeover costs of P1 halved.
P4 The total demand of P1 was randomly redistributed among the periods.
P5 The machines capacities were reduced

8.4.2 Computational results

The experiments described in this section ran on a microcomputer Pentium
IV with 1 GB Ram and 2.8 GHz. The approaches P2LMM G2.7 and RA G2.1
were implemented using the modelling language AMPL [52] and the optimiza-
tion solver CPLEX 10.0 [45] with default parameters, while the MA and the
GA were implemented using the NP-Opt [28,37], an object-oriented framework
written in JAVA code which contains procedures based on evolutionary com-
putation techniques to address NP-hard problems. An execution time limit
of 4 hours was established to solve each example by each method. The MA
and the GA were applied three times to each example and the best solution
obtained was chosen. In order to satisfy the total time limit of 4 hours, a limit
of 4800 seconds was also imposed to each MA or GA run. It should be men-
tioned that the 4-hour limit is acceptable to support the decisions involved in
the production scheduling of the company.

The MA and GA have been adjusted with 3 populations structured in
ternary trees of 13 individuals each, which means a total of 39 individuals. The
crossover rate ρ was set to 1.5 leading the methods to execute 19 crossovers
over each population. The mutation rate was fixed at 0.7 where a γ value is
randomly chosen in [0, 1] with uniform distribution. The mutation operator
is executed on the new individual, if γ < 0.7. All these values are based on
previous tests which are reported in [1].

Table 8.3 presents the total cost values (in thousands of monetary units)
of the solutions obtained by the MA1, GA1, MA2 and GA2, in comparison
with the solutions of P2LMM G2.7 and RA G2.1, for the instances P1-P15. As
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mentioned, for each example, the values of the memetic and genetic algorithms
correspond to the lowest cost solution found among the three executions of
the algorithm. Note that the values of the table correspond only to inventory
and changeover costs, since there are no demand shortages. The symbol “inf.”
in the table indicates that the method was unable to find a feasible solution
(i.e., a solution without demand shortages) within the time limit. The best
solution value of each example is highlighted in bold.

Table 8.3: Solution values of methods P2LMM G2.7, RA G2.1, MA1, GA1, MA2
and GA2 for instances P1-P15.

Ex. P2LMM G2.7 RA G2.1 MA1 GA1 MA2 GA2

P1 399.3 322.3 256.8 285.6 244.6 271.4
P2 509.6 325.9 306.7 280.3 287.5 268.4
P3 270.3 212.9 146.6 148 141.8 158.8
P4 480,3 330.5 217.6 221.5 214.4 208.1
P5 inf. inf. inf. inf. inf. inf.
P6 inf. inf. inf. inf. inf. inf.
P7 inf. inf. inf. inf. inf. inf.
P8 inf. 529 inf. inf. inf. inf.
P9 560.9 261.7 inf. 372.5 348.7 391.6
P10 744.4 266.2 303.9 317.1 358.3 375.4
P11 461.6 294 inf. inf. inf. inf.
P12 inf. 344.8 inf. inf. inf. inf.
P13 inf. 358.5 405.7 422.4 393 483.6
P14 inf. inf. inf. inf. inf. inf.
P15 inf. inf. inf. inf. inf. inf.

“inf.” - No feasible solution found within the time limit

As discussed in Section 8.4.1, instance P1 is the only one of the problem set
for which we are aware of the corresponding production schedule used by Plant
A. This company solution meets all product demands with no delays, yielding
a total cost of 422.7 in thousands of monetary units. Comparing this solution
to the ones presented in Table 8.3, we notice that all methods P2LMM G.7,
RA G2.1, MA1, GA1, MA2 and GA2 were able to find better solutions than
the company, with relative cost reductions of 5.5%, 23.8%, 39.2%, 32.4%,
42.1% and 35.8%, respectively. This indicates that these approaches have a
potential to generate competitive solutions - note that the cost reductions
can be significant. Moreover, it can be observed that the memetic versions
outperformed the genetic ones.

In instances P1 and P2-P4 (which are based on instance P1), the solu-
tions obtained by MA1, GA1, MA2 and GA2 are better than the ones ob-
tained by P2LMM G.7 and RA G2.1 (Table 8.3). For these instances, the
P2LMM model involved in approach P2LMM G.7 has 86,359 variables (4,575
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binary variables) and 86,140 constraints, while the P1LMM model in approach
RA G2.1 has 54,559 variables (4,575 binary variables) and 49,544 constraints.
Some performance variations between the MA1 and MA2 (and between the
GA1 and GA2) are due to the randomly generated initial populations of the
algorithms. In particular, we do not know if instance P5 is feasible (from
the point of view of demand shortages), since none of the methods found a
solution without shortages. This instance was generated using the same data
as P1, except for the reduction in the machine capacities (Table 8.2).

The remaining instances P6-P15 refer to collected data of the product de-
mands for different months, provided by Plant A. Since we do not have the
production schedules used by the company for these examples, we are not
aware if they are feasible from the point of view of the demand shortages.
In these examples, approach RA G2.1 produced better solutions than MA1,
GA1, MA2 and GA2. Moreover, for all instances P1-P15, the RA G2.1 solu-
tions dominate the ones of P2LMM G.7 (Table 8.3). As well as for instance
P5, we do not know if instances P6, P7, P14 and P15 are feasible, since none
of the methods found a solution without shortages. The minimum capacity
necessary to produce all the items in these instances is higher than in the
others. However, it is worth mentioning that by using realistic backlogging or
lost sales unit costs (instead of large penalties) in these methods, they can be
employed to generate effective schedules balancing the trade-offs between the
inventory, changeover and shortage costs.

Table 8.4 resumes the relative deviations of the solution values of MA1,
GA1, MA2 and GA2 regarding approach RA G2.1. These deviations were
calculated using the expression:Dev(%) = 100(z−z)/z, where z is the solution
value of MA1 (or GA1, MA2, GA2) and z is the value found by approach
RA G2.1. Note that the deviations of the evolutionary algorithms with respect
to RA G2.1 are relatively large, varying from -37.0% to 49.6%. The superiority
of the memetic approach over its genetic version is also corroborated by these
results.

Given that the methods were unable to find a solution with no demand
shortages for instances P5, P6, P7, P14 and P15, we roughly approximate
the backlogging unit costs as the profit contributions of the products and
we applied the methods again to solve the examples using these parame-
ters as the shortage unit costs. Table 8.5 presents the modified total cost
values (in thousands of monetary units) of these experiments - note that,
unlike Table 8.3, these values correspond to inventory, changeover and short-
age costs. The best solution found for each example alternates between the
methods RA G2.1, MA1, GA1 and MA2, and these methods do not dominate
each other. Table 8.6 depicts the relative deviations of the evolutionary ap-
proaches with respect to method RA G2.1 for the examples with demand
shortages.

Considering the results in Tables 8.3 and 8.5, we note that MA1 (or
MA2) outperforms GA1 (or GA2) in 8 out of the 12 examples for which
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Table 8.4: Relative deviations of the solution values of MA1, GA1, MA2 and GA2
with respect to approach RA G2.1.

Ex. MA1 GA1 MA2 GA2

P1 -20.3 -11.4 -24.1 -15.8
P2 -5.9 -14 -11.8 -17.6
P3 -31.1 -30.5 -33.4 -25.4
P4 -34.1 -33 -35.1 -37
P8 *** *** *** ***
P9 *** 42.3 33.2 49.6
P10 14.2 19.1 34.6 41
P11 *** *** *** ***
P12 *** *** *** ***
P13 13.1 17.8 9.6 34.9

*** The deviation was not computed because the approaches MA1,
GA1, MA2 or GA2 did not find a feasible solution within the time limit

Table 8.5: Modified solution values of methods P2LMM G2.7, RA G2.1, MA1, GA1,
MA2 and GA2 with demand shortages.

Ex. P2LMM G2.7 RA G2.1 MA1 GA1 MA2 GA2

P5 603.7 379.5 371.7 422.2 485.7 393.7
P6 663.9 526.5 565.4 492.8 527 567.1
P7 591.5 509.5 370.4 398.1 372.8 413.9
P14 588.5 449.5 357.6 343.3 310.4 378.5
P15 671.3 446.2 476.6 541.1 555.4 491.2

Table 8.6: Relative deviations of the solution values of MA1, GA1, MA2 and GA2
with respect to approach RA G2.1 (infeasible examples).

Ex. MA1 GA1 MA2 GA2

P5 -2 11.2 27.9 3.7
P6 7.3 -6.4 0.1 7.7
P7 -27.3 -21.9 -26.8 -18.8
P14 -20.4 -23.6 -30.9 -15.8
P15 6.8 21.3 24.5 10.1

these algorithms found a feasible solution, indicating a better performance of
MA over GA in these instances. A similar result was observed in the other
instances randomly generated and tested in [1]. Moreover, comparing MA2
and RA G2.1, we note that MA2 outperforms RA G2.1 in 6 examples and
RA G2.1 outperforms MA2 in 9 examples, showing that these methods are
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competitive. The GA2 and MA2 approaches provide a better solution in sce-
narios where the total capacity is loose and the RA G2.1 in scenarios where
the total capacity is tight.

It is worth remarking that, for all instances P1-P15, the gap between
the best feasible solutions of model P2LMM (found within the time limit)
and its linear relaxation solution is over 90%, which does not provide much
information about the optimality gap of the solutions in Tables 8.3 and 8.5.

8.5 Final Remarks and Conclusions

In this chapter we study a two-level production planning problem involving, on
each level, a lot sizing and scheduling problem with parallel machines, capac-
ity constraints and sequence-dependent setup costs and times. The problem
is referred to as the Synchronized and Integrated Two-Level Lot sizing and
Scheduling Problem (SITLSP) and it can be found in some industrial settings,
as, for example, in soft drink companies where the production process involves
two interdependent levels with decisions concerning raw material storage and
soft drink bottling.

A mixed integer programming model for the SITLSP was introduced in
[19], integrating and synchronizing the two lot sizing and scheduling problems
involved. This model can be useful when dealing with small-to-moderate size
instances, however, as the problem size grows, the number of distinct integer
solutions increases exponentially, causing the branch-and-bound search to take
too long, even for finding the first integer feasible solution.

In order to overcome these limitations, and deal with larger and more re-
alistic problem instances, a genetic algorithm with a particular representation
of solutions for individuals and a hierarchically structured multi-population is
proposed in [23]. In Section 8.2 the genetic approach is extended by a memetic
algorithm version. A tailor-made decoding procedure is used to evaluate the
solution encoded in the gene of each individual. Moreover, a tailor-made re-
combination over population clusters takes place and migrations among differ-
ent populations are allowed. The memetic approach is capable of generating
competitive solutions if compared with the ones utilized in practice, as shown
in Section 8.4.

As an alternative for these meta-heuristic approaches, another solution
method capable of dealing with realistic problem instances of the SITLSP is
presented (Section 8.3). Unlike the highly general and complex MIP model
in [19], a simplified MIP formulation, in the sense that it forces the number of
tanks to be the same as the filling lines so that each line has a dedicated tank,
is described. The solution approach of the simplified model relies on different
relax-and-fix heuristics and model decomposition strategies.

The performances of the memetic algorithm-MA (as well as its genetic
version- GA) and the decomposition/relaxation approaches (P2LMM G2.7
and RA G2.1) are evaluated solving a set of instances based on actual data
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provided by a Brazilian soft drink company. All approaches are capable of
producing competitive solutions when compared to the production schedule
used by the company, requiring affordable computational runtime. In some
cases the cost savings of the solutions are substantial (Section 8.4). Comparing
the relative performances of the approaches when solving this problem set, it is
observed that the MA outperforms the GA and that the MA and the RA G2.1
do not dominate each other. In particular, the MA provides a better solution
in scenarios where the total capacity is loose and the RA G2.1 in scenarios
where the total capacity is tight.

Topics for future research include new experiments with the methods stud-
ied in this chapter involving real instances to be obtained from other soft
drinks plants. The evolutionary approaches can be improved by introducing
new genetic operators, especially other crossovers not tested yet and other
more powerful local search-based algorithms such as Simulated Annealing or
Tabu Search. The introduction of valid inequalities is a research topic to be
attempted to improve the decomposition/relaxation approaches.

As point out in the Introduction, the main purpose of this chapter was
bring to the attention of the academic community and also to the industrial
engineering practitioners the state-of-the art of computer-aided tools used to
generate effective production schedules in the soft drink industry. Focusing the
SITLSP, a hard combinatorial optimization problem, we believe that the most
important conclusions that can be extracted from the studied methods as well
as from the computational assessment performed in this chapter are two-fold:
first, mathematical modelling provides deeper insight into a very complex
industrial planning problem, and, second, tailor-made optimization methods
can yield less costly and more effective production schedules in reasonable
computing times when compared with the ones provided by general purpose
commercial packages commonly used by the industry.
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Summary. Reconfigurable Manufacturing Systems (RMS) are the next step in
manufacturing, allowing the production of any quantity of highly customized prod-
ucts together with the benefits of mass production. In RMS, products are grouped
into families, each of which requires one configuration of the system. The system is
configured for producing the first family of products. Once it is finished, the system
is reconfigured in order to produce the second family, and so forth. Then, the effec-
tiveness of a RMS depends on the selection of the best set of product families and
their scheduling. A methodology has been developed to group products into families,
which takes into account the requirements of products in RMS. Once the families
have been selected, a model to optimize the production scheduling is presented. This
model is based on minimizing the costs required to reconfigure the system while both
the capacity and functionality of machines are maximized. The complexity of the
problem suggests the use of heuristics methodologies. Several heuristics are candi-
dates to be used. With the aim of covering different approaches, both a specific
heuristic for this problem and general heuristics or meta-heuristics have been de-
veloped. Tabu search is a traditional meta-heuristic that has demonstrated to offer
satisfactory results to a broad range of combinatorial problems, and it has been
considered to be implemented. In order to use another meta-heuristic to compare
results, ant colony optimization techniques have been implemented because they
have demonstrated to offer good behaviors to similar problems.

Key words: Reconfigurable Manufacturing Systems, Meta-heuristics,
Scheduling, Tabu Search, Ant Colony Optimization.

9.1 Introduction

Markets are driven by globalization, product customization and a continuous
improvement of the manufacturing technology [1]. Time reduction to introduce
new products to the market with high quality maintaining low cost has be-
come essential to survive in this new scenario [2]. Therefore, the manufacturing
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system must be able to produce different batch sizes from a portfolio of prod-
uct types with the capacity and functionality required in each case.

Traditional manufacturing systems, such as dedicated manufacturing sys-
tems, produce large volumes from a small range of products under known
demand by using fixed resources. Other systems, such as flexible and cellular
manufacturing systems, emerged due to the need of satisfying new markets
by offering small volumes from a wide range of products, with predictable de-
mand and high inversion costs. Agile manufacturing systems may react to the
continuous changes of the current competitive market, but they are focused
on organizational aspects more than on manufacturing system operations [3].

Nowadays, the manufacturing industry faces the challenge of satisfying
quickly the dynamic requirements of the customers. The key factor is the
ability to launch new products to the market with high quality, low cost
and fast delivery [4]. This may be reached through mass customization, a
new paradigm for industries to provide products fulfilling customer needs
with mass production efficiency [5]. Its implementation requires managing a
variety of customized processes, economies of scale and high flexibility in the
production processes. The manufacturing system must be able to produce a
wide variety of products, with a quick launch of products to the market, with
low cost and high quality. Reconfigurable manufacturing systems (RMS) arise
to face this challenge.

RMS can produce a wide variety of products by rearranging the manufac-
turing system itself. It is composed of combinations of hardware and software
modules which can be rearranged in a rapid and reliable way, avoid becoming
obsolete. Besides, it is open-ended, so it may be improved regularly through
the implementation of new methodologies. A RMS is designed at the outset
for rapid adjustment of its production capacity and functionality, with the aim
of satisfying the requirements of the market through changing or rearranging
its components [1].

Several studies about the future of manufacturing for the 2015–2020 hori-
zon include the RMS as a priority line of research. The Delphi study entitled
“Visionary manufacturing challenges for 2020” has identified and catalogued
the RMS as one of the “six grand challenges” about the future of manu-
facturing [6]. The FutMan project “The future of manufacturing in Europe
2015–2520” demands the development of flexible adaptive and reconfigurable
manufacturing equipment [7]. Finally, the IMTI project “The integrated man-
ufacturing technology initiative–2015 vision” includes the need of rapidly re-
configurable and self-configuring facilities [8].

The European Union knows the importance of RMS and promotes its
development by supporting the I*PROMS (innovative production machines
and systems). Network of Excellence within the 6th framework programme of
research. Its objective is to develop concepts, tools and techniques to make
flexible and reconfigurable production systems [9]. Likewise, in 1996 the Na-
tional Science Foundation (NSF) of the US created the Engineering Research
Center for Reconfigurable Manufacturing Systems with the aim of helping
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the nation to face the challenges of an ever-growing and ever-changing global
economy.

9.2 Scope of the Research

The process of designing and operating a RMS can be split into three main
issues: system-level, machine and controls and ramp-up time reduction [10].
System-level issues are focused on the design of the production system. They
are guided by tools to link product features with modules of machines, ob-
taining as a result a layout of the production system and a process plan.
Machine and control issues are considered to enable rapid and efficient reuse
of modular components, including the design of modular components and
open-architecture controllers. Finally, ramp-up time reduction tries to reduce
the time required to manufacture products by diagnosing component failure
or deviation of product quality.

This research is focused on system-level issues. Methodologies, mathemat-
ical models and heuristics will be developed with the aim of selecting and
sequencing product families that minimize the cost of reconfiguring the pro-
duction system.

The first step deals with the formation of product families. Literature
presents plenty of methods to obtain families and diverse formation criteria,
especially regarding cellular manufacturing. Nevertheless, these methods and
criteria cannot be used directly in reconfigurable manufacturing because it
has its own singularities that must be taken into consideration, which differ
from other manufacturing paradigms. Identification of the key attributes of
products that must be considered for their clustering is a key issue. After
that, a methodology to group products into families and a model to select
the best set of families and their scheduling are required. The selection of
different sequences implies different costs and therefore a detailed selection
is necessary. The development of heuristics when exact methodologies cannot
offer a solution must be considered.

9.3 Formation of Product Families for RMS

9.3.1 Identification of Product Attributes

The formation of product families in RMS has to be based in some grouping
criteria. These criteria are the key attributes of products that are considered
important for their manufacturing in the production system.

Modularity is considered a key attribute of RMS because it is essential
for implementing customized and complex products. Modularity can be de-
fined as the degree to which a product is composed of independent modules,
without interactions among them [11]. For customized products, modularity
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allows the assembly of simple and functionally independent parts. Although
the number of parts in the modular design is larger than in the integral design,
the benefits of modularity arise from the fact that the total time of machining
operations and manufacturing costs are low in the modular design because
of the simplicity of those parts [12]. The integral designs result in complex
parts that require more complicated and costly resources. Modularity can
also be regarded as a strategy for effectively organizing complex products and
processes [4].

The object of developing a RMS is to ensure a variety of products that
reflects market requirements. Product variety is defined as the diversity of
products provided to the marketplace by a production system [13]. Apart from
modularity, another important concept related to product variety is common-
ality [14] which can be defined as a measure of how well the product uses
standardized parts [15], with the view of reducing the total number of differ-
ent parts. Commonality ensures that a component of a product is shared by
two or more products of the same family [16].

Another key attribute is the compatibility between products from the same
family. Products that, for example, require the same technical operations or
target the same market must be grouped in the same family.

The elements in a RMS must be reusable. Although it is referred to ma-
chines, controllers, etc. more than to products, product reusability could be
maximized through arranging products and assigning them to families of sim-
ilar products. Reusability measures the use of existing design configurations
while reconfiguring manufacturing elements for a new product type [17].

Within the framework of RMS, manufacturers receive orders of products
for all the families, so producing a high volume of a certain family may delay
the delivery time of the rest of the families [2]. Thus, product demand is
another key attribute to consider in RMS.

9.3.2 Review and Selection of Grouping Methods

The proliferation of methods for grouping products arose with the develop-
ment of cellular manufacturing systems (CMS); the first manufacturing par-
adigm focused on making the cost-effective manufacture of several part types
possible. Traditionally, grouping products into families and cell formation in
CMS have been closely linked.

Instead of developing new methods for grouping products in RMS, a study
of the methods used in CMS will be carried out with the aim of identifying one
of them that can be conveniently modified in order to stand the requirements
for products in RMS.

Several methods have been developed for families’ formation [18], such as
descriptive procedures, mathematical programming approaches, array-based
clustering methods, and hierarchical clustering, among others.
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Most of the descriptive procedures are not highly sophisticated or accurate,
although they are cost-effective [19]. They may be appropriate to little and
repeated problems, but they do not provide good solutions in general.

Mathematical programming approaches are incompletely formulated [18]
and therefore their usefulness is limited in industrial environments. All these
models are computationally complex and it is unlikely that they can provide
good solutions to large-scale problems.

The array-based clustering methods achieve acceptable solutions with low
computational cost. Although ordered matrices can be developed using array-
based clustering, disjoint part families or machine groups are not identify.
Besides, they have the disadvantage of depending on the initial incidence
matrix configuration [19].

The hierarchical clustering agglomerative methods group together similar
elements (products) in clusters based on their similarities of attributes. The
coefficients that measure similarity between two parts are calculated from the
incidence matrix. After that, a dendogram (inverted tree structure) shows
the similarity degree for grouping parts. These methods are the most broadly
implemented. They use similarity or dissimilarity coefficients among parts to
obtain the groups. The most important similarity coefficient for part-family
formation is the Jaccard similarity coefficient [20], which measures the sim-
ilarity between a pair of products (m,n), and it is defined in terms of the
machines that each product has to visit.

In the context of cell (and families) formation, only agglomerative clus-
tering techniques have been used [18]. These techniques have a string effect
known as chaining, which creates a few large clusters while leaving several
parts unmerged [21]. Among those techniques, Average Linkage Clustering
(ALC) algorithm has the least tendency to chain [22] and it is considered in
this chapter as the most appropriate to apply.

9.3.3 Development of the Methodology

Formation of Matrices

The application of ALC starts with the part-machine incidence matrix for-
mation, which is a matrix that indicates whether a part is processed by a
machine.

The process of designing matrices in RMS has to take into account the
product attributes previously identified. Matrices that indicate, for each pair
of products to group, how well those products are similar in terms of modu-
larity, commonality, compatibility, reusability, and demand are necessary.

Modularity Matrix

Modularity can be obtained from the bill of materials (BOM), which repre-
sents the product structure, including the components and subassemblies that
make up the product.
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The implementation of the modularity matrix is a three-stage procedure.
In the first stage, the product-part matrix is created according to the compo-
nent tree. This matrix is composed of n products i = (A,B, . . . n) and m parts
j = (1, 2, . . .m) in rows and columns, respectively. Values in the matrix (aij)
are 1 if product i requires part j, and 0 otherwise. Those values are obtained
from the BOM. For example, Fig. 9.1 represents the BOM of four different
products (A,B,C,D).

A

4 3 1

5 2 

B

6

7 9

5 2

D

10

11

8
5 2 

C

9 7

12 6

5

Fig. 9.1: Example of BOM.

From this BOM, the product-part matrix can be obtained, as it is depicted
in Table 9.1.

Table 9.1: Product-part matrix.

1 2 3 4 5 6 7 8 9 10 11 12

A 1 1 1 1 1 0 0 0 0 0 0 0
B 0 1 0 0 1 1 1 0 1 0 0 0
C 0 0 0 0 1 1 1 0 1 0 0 1
D 0 1 0 0 1 0 0 1 0 1 1 0

The level of product modularity is calculated in the second stage. That
is achieved using expression 9.1, which determines the number of modular
components of the product compared to the total number of components that
form the product:

Mp =
Ψp

Φp
0 ≤Mp ≤ 1 (9.1)

The modularity level of product p (Mp) depends on the number of com-
ponents of product p that are shared by more products (Ψp), and on the total
number of components of product p (Φp). Following the example in Table 9.1,
the modularity level of products A, B, C, and D is calculated using expres-
sion 9.1:
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MA = 2
5 = 0.4 MB = 5

5 = 1 MC = 4
5 = 0.8 MD = 2

5 = 0.4

In the third stage, the modularity matrix is formed through the similarities
between pairs of products. The similarities coefficients are calculated with
expression 9.2:

Spq = 1 − |Mp −Mq| 0 ≤ Spq ≤ 1 (9.2)

Spq is the similarity between products p and q. Mp and Mq are the mod-
ularity levels of products p and q, respectively. Referring to the described
example, the similarity coefficients between pairs of products are calculated
using expression 9.2. Note that Spq = Sqp.

SAB = 1 − |0.4 − 1| = 0.4 SAC = 1 − |0.4 − 0.8| = 0.6
SAD = 1 − |0.4 − 0.4| = 1 SBC = 1 − |1 − 0.8| = 0.8
SBD = 1 − |1 − 0.4| = 0.4 SCD = 1 − |0.8 − 0.4| = 0.6

The modularity matrix is presented in Table 9.2, composed of the four prod-
ucts in rows and columns. The formation process of the modularity matrix
can be described with the algorithm presented in Fig. 9.2.

Table 9.2: Modularity matrix.

B C D

A 0.4 0.6 1
B 0.8 0.4
C 0.6

Commonality Matrix

The commonality matrix can be used to identify products that share some
parts. The implementation of the commonality matrix is a two-stage proce-
dure. First, a product-part matrix is developed. For the above example, this
matrix was shown in Table 9.1. In the second stage, the similarity between
pairs of products (p, q) is measured with the Jaccard’s similarity coefficient,
which may be expressed as:

Jpq =
a

a+ b+ c
0 ≤ Jpq ≤ 1 (9.3)

Where a indicates the number of parts that form both products p and q,
b stands for the number of parts that form product p but not product q, and
c the number of parts that form product q but not product p. Therefore, if
Jpq = 1 then both products are composed of the same parts, and if Jpq = 0
then products are composed of different parts. Products with higher similarity
coefficients are grouped together.
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Product-part matrix 
formation with aij

coefficients 

Modularity matrix 
formation 

Are all the parts and 
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yes no 

Start 

BOM
representation 

End 

Calculate Spq

Calculate Mp

Fig. 9.2: Algorithm for modularity matrix.

Applying expression 9.3 to the example, the Jaccard’s coefficients are:

JAB = JAD = JBD = 1+1
1+1+1+1+1+1+1+1 = 0.25 JBC = 1+1+1+1

1+1+1+1+1+1 = 0.67

JAC = JCD = 1
1+1+1+1+1+1+1+1+1 = 0.11

The commonality matrix finishes when transferring these results to a matrix,
as shown in Table 9.3. The matrix formation process is presented with the
algorithm shown in Fig. 9.3.

Table 9.3: Commonality matrix.

B C D

A 0.25 0.11 0.25
B 0.67 0.25
C 0.11

Compatibility Matrix

Compatibility measures the degree to which different products can be joined to
form a family of similar products. It can be calculated from the compatibility
matrix, which maps the compatibility of each product against all others.

Compatibility is classified into technological and marketing. Technologi-
cal compatibility refers to technical similarities among products, which share
some operations as, for instance, manufacturing and assembly operations.
Marketing compatibility refers to the combination of products into families
that together are desirable for a certain market [23].
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Product-part matrix 
formation with aij

coefficients 

Commonality matrix 
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Are all the parts and 
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BOM 
representation 

End

Calculate Jpq

Fig. 9.3: Algorithm for commonality matrix.

Compatibility can be calculated using two matrices, one for measuring
the technological compatibility and the other for the marketing one. The
matrices are based on the suggestions of a team composed of experts and
consumers, and they can be developed sequentially or simultaneously. The
technological-compatibility matrix should be designed by a team consisting of
experts from all the production stages (such as manufacturing and assembly).
The marketing-compatibility matrix should be developed by a team consisting
of marketing experts (such as sales personnel, distributors, and retailers), and
consumers.

If a new product is introduced into a family by replacing another, both
compatibility matrices must be reformulated. This is due to the new product
details, which may define new sets of interactions with existing products.
In the case of innovative products, expert judgement is the basis for proper
marketing compatibility evaluation.

The matrices are composed by products in rows and columns. Referring to
the values in the matrices, 0 indicates full product incompatibility, and 1 full
product compatibility. Experts may not be able to classify all pairs of prod-
ucts as compatible or incompatible; therefore measures between 0 and 1 are
required. Being i and j two different products, their compatibility coefficients
in the matrix (aij) are 0 ≤ aij ≤ 1.

For example, if two products are compatible in manufacturing operations
but not in assembly operations or they are compatible in one market segment
but not in others, then a ratio measurement between 0 and 1 is required.
Possible measurements are shown in Table 9.4.

Another option is to develop two groups of matrices. One group should be
composed of technological compatibility matrices, such as three single matri-
ces regarding manufacturing, assembly and inspection operations. The other
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Table 9.4: Compatibility values among products.

Compatibility Values

Not compatible 0
Slightly compatible 0.3
Compatible 0.5
Very compatible 0.8
Highly compatible 1

group should include marketing compatibility matrices, one for each market
segment.

An example of a compatibility matrix for four products is shown in
Table 9.5. As the design stage has taken into consideration the modularity
nature of products, it is expected that a high degree of compatibility among
products exists.

Table 9.5: Compatibility matrix.

B C D

A 1 0 1
B 1 1
C 0

The formation process of compatibility matrices is presented with the al-
gorithm presented in Fig. 9.4.

Reusability Matrix

Reusability deals, at product level, with the use of existing product com-
ponents to manufacture a new product type. Thus, reusability is maximized
when all components of a product are used to manufacture the following prod-
uct.

The implementation of the reusability matrix is a three-stage procedure. In
the first stage, the product-component matrix is formed in the same way as in
modularity and commonality matrices: matching products and components.
This matrix was shown in Table 9.1.

In the second stage, a matrix composed by products in rows and columns
is required. The coefficients of this matrix refer to the reusability between
products p and q, when product q is manufactured just after being produced
product p, and are calculated with expression 9.4:

Rpq =
γpq

Φp
0 ≤ Rpq ≤ 1 (9.4)

Reusability between products p and q (Rpq) depends on the number of
components of product p shared with product q (γpq), and on the total number
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Fig. 9.4: Algorithm for compatibility matrix.

of components of product p (Φp). Note that, Rpq 
= Rqp unless products have
the same number of components.

The values for the reusability in the example of Table 9.1 are obtained
using expression 9.4:

RAB = RBA = 2
5 = 0.4 RAC = RCA = 1

5 = 0.2 RAD = RDA = 2
5 = 0.4

RBC = RCB = 4
5 = 0.8 RBD = RDB = 2

5 = 0.4 RCD = RDC = 1
5 =0.2

These values are transferred to the previous matrix shown in Table 9.6.

Table 9.6: Reusability matrix.

B C D

A 0.4 0.2 0.4
B 0.8 0.4
C 0.2

In the reusability matrix, and in order to keep consistency among the de-
veloped matrices, Rpq and Rqp should be equal. Consequently, the third stage
consists of calculating the coefficients of the reusability matrix (Λpq), through
expression 9.5, as the arithmetic mean of the pairs of products, whether they
are not the same:

Λpq =
Rpq +Rqp

2
0 ≤ Λpq ≤ 1 (9.5)
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In this example, as Rpq = Rqp both previous and reusability matrices
are the same (Table 9.6). The formation process of the reusability matrix is
presented with the algorithm shown in Fig. 9.5.

Fig. 9.5: Algorithm for reusability matrix.

Demand Matrix

The elements of a homogeneous system configuration should have similar ca-
pacity. In order to obtain a cost effective system configuration, the system
capacity should have the highest possible utilization rate. Therefore, a re-
quirement is to group products with similar demands to select a machining
system with similar capacity.

Therefore, the interaction value between products p and q is calculated
using expression 9.6:

Dpq = 1 − |dp − dq|
dmax − dmin

0 ≤ Dpq ≤ 1 (9.6)

Where Dpq is the interaction value between products p and q, di the de-
mand of product i = {p, q}, dmax the maximum value of di, and dmin the
minimum value of di. Besides, Dpq = Dqp.

For example, if the demand for four products A,B,C, and D is DA = 5,
DB = 7, DC = 3, and DD = 5 units, the product demand matrix coefficients
are calculated using expression 9.6.

DAB = 1 − |5−7|
7−3 = 0.5 DAC = 1 − |5−3|

7−3 = 0.5 DAD = 1 − |5−5|
7−3 = 1

DBC = 1 − |7−3|
7−3 = 0 DBD = 1 − |7−5|

7−3 = 0.5 DCD = 1 − |3−5|
7−3 = 0.5

The resulting matrix is shown in Table 9.7.
The matrix formation process is presented with the algorithm shown in

Fig. 9.6.
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Table 9.7: Demand matrix.

B C D

A 0.5 0.5 1
B 0 0.5
C 0.5

Calculation of the 
interaction values 

between products Dpq

Product demand matrix 
formation 

All the values are 
calculated? 

yesno 

Product 
demand 

Start 

End

Fig. 9.6: Algorithm for product demand matrix.

Clustering Methodology for RMS

A unique matrix comprising the values of interaction among products in ALC
algorithm is required. Thus, values included in the matrices are used to calcu-
late a weighted matrix that balances the requirements. This is a multi-criteria
decision making problem, solved using weighting techniques.

The purpose of weighting methods is to assign values to a set of objec-
tives/criteria to indicate their relative importance. The most popular method
is the Analytic Hierarchy Process (AHP) proposed by Saaty [24]. The im-
portance of the criteria is rated on a nine-point scale, ranging from equal
importance (1) to absolutely more important (9). Then, eigenvalues are cal-
culated to represent weights. Advantages of the AHP method include the
capability of assessing the consistency of the decision makers’ ratings, and it
allows sensitivity analysis. For these reasons, the AHP method will be used
for obtaining the weighted matrix.

The formation of the unique matrix comprising the five requirements is
calculated as the sum of the coefficients of each product requirement matrix,
which are also multiplied by their corresponding weights. The coefficients of
this matrix (aij) are calculated with expression 9.7:

aij =
∑
r∈R

aijr
σr 0 ≤ aij ≤ 1 (9.7)
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Where R is the set of requirements, aijr
stands for the coefficients in the

matrix of each requirement, and σr is the weight of each requirement.
Supposing that the weights obtained with the AHP methodology are: 0.15

for modularity, 0.35 for commonality and compatibility, 0.10 for reusability,
and 0.05 for product demand. The coefficients for the unique matrix are cal-
culated using expression 9.7:

aAB = 0.4 · 0.15 + 0.25 · 0.35 + 1 · 0.35 + 0.4 · 0.1 + 0.5 · 0.05 = 0.56
aAC = 0.6 · 0.15 + 0.11 · 0.35 + 0 · 0.35 + 0.2 · 0.1 + 0.5 · 0.05 = 0.17
aAD = 1 · 0.15 + 0.25 · 0.35 + 1 · 0.35 + 0.4 · 0.1 + 1 · 0.05 = 0.68
aBC = 0.8 · 0.15 + 0.67 · 0.35 + 1 · 0.35 + 0.8 · 0.1 + 0 · 0.05 = 0.79
aBD = 0.4 · 0.15 + 0.25 · 0.35 + 1 · 0.35 + 0.4 · 0.1 + 0.5 · 0.05 = 0.56
aCD = 0.6 · 0.15 + 0.11 · 0.35 + 0 · 0.35 + 0.2 · 0.1 + 0.5 · 0.05 = 0.17

With these values, the unique matrix is shown in Table 9.8.

Table 9.8: Unique matrix.

B C D

A 0.56 0.17 0.68
B 0.79 0.56
C 0.17

Application of the ALC Algorithm

The ALC methodology can be applied when the key attributes of products are
displayed in one single matrix. This methodology starts by grouping products
with higher coefficient of similarity. Then, a sub-matrix considering the prod-
ucts grouped as a family is created. Similarities between parts are recalculated
as the average values using expression 9.8:

Sij =

∑
m∈i

∑
n∈j

Smn

NiNj
(9.8)

Where i,j are families; m,n parts of family i and j, respectively; Sij the
coefficient of similarity between families i and j; Smn the coefficient of simi-
larity between parts m and n; and Ni, Nj the number of parts in family i and
j, respectively.

This procedure is repeated until all products are grouped into a family. As
a result, a dendogram is obtained. An algorithm for this method is shown in
Fig. 9.7.

Applying this algorithm to the unique matrix from the above example,
the maximum value of Sij is 0.79 between products B and C, thus they are
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Fig. 9.7: Algorithm for the ALC method.

grouped in the family (BC) and Sij are recalculated for the new sub-matrix
applying expression 9.8.

SA,(B,C) = (SAB + SAC)/2 = (0.56 + 0.17)/2 = 0.37
SA,D = 0.68

S(B,C),D = (SBD + SCD)/2 = (0.56 + 0.17)/2 = 0.37

These values are shown in Table 9.9.

Table 9.9: Intermediate matrix.

BC D

A 0.37 0.68
BC 0.37

The new matrix’s maximum value is 0.68 corresponding to products A and
D. Both products are grouped and the new Sij are recalculated:

S(A,D),(B,C) = (0.56 + 0.17 + 0.56 + 0.17)/4 = 0.37

This value is translated to the final matrix presented in Table 9.10, which
indicates that the four products can be grouped together in the same family
with 37% of similarity among the products.

Table 9.10: Final matrix.

BC

AD 0.37

The resulting dendogram is shown in Fig. 9.8. From this dendogram the
selection of product families can be made. There are four different levels, each
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with different families. Upper levels are composed of several families with
few products and high similarity among them. On the contrary, families in
bottom levels are composed of few families with lots of products with low
similarity. For example, three families can be formed with a similarity of 79%
among the products in the families (level 2). The first family is composed of
products B−C, the second one is composed of product A, and the last family
is composed of product D.

37% 

68% 

79% 

B           C            A           D 

PRODUCTS 

SI
M

IL
A

R
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Y
 

level=1 

level=2 

level=3 

level=4 

Fig. 9.8: Dendogram

In the traditional ALC method used in group technology, the selection of
families was determined by the costs incurred when a product could not be
manufactured within its cell, and the costs incurred when a machine within
a cell could not manufacture a product of its associated family. In the de-
sign of RMS, this selection depends on other factors which are described in
section 9.4.

9.4 Selection and Scheduling of Product Families
for RMS

This section describes the process to select product families and their pro-
duction scheduling. To achieve this goal, the main parameters required to
minimize the costs to configure the production system will be identified.

The selection of families and their scheduling in the production system is a
complex problem which requires the development and validation of mathemat-
ical tools. The accuracy of these tools depends on the costs used. Nowadays
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the implementation of RMS is in the beginning and therefore it is not possible
to obtain real data of the operational costs required to configure the produc-
tion system. To overcome this limitation, a methodology to estimate these
costs will be developed.

9.4.1 Selection of Parameters

A reconfigurable manufacturing system focuses on manufacturing the prod-
uct families at the same system, which is configured to produce each family.
Once a family is manufactured, the system is reconfigured for producing the
following family effectively. In each change of the configuration, the manufac-
turing company incurs in a changeover cost, which depends on the current
configuration and the destination configuration [2].

About the formation of product families, three different situations are
possible. First, it is possible to join all products in a single family, being the
manufacturing system composed of the machines required to manufacture the
products. In this situation, the company does not incur in changeover costs,
but idle machines and/or machines whose functionality is not fully used exist.
Besides, the capacity of the machines is normally higher than the one required
for manufacturing each product independently.

Second, in the case of selecting a family for each product, the company has
to face the costs to changeover the system, but the number of idle machines
is minimized while their functionalities and capacities are both fully utilized.

Finally, the last case occurs when a smaller number of families than
the number of different products is selected. In this situation, although the
changeover cost is not avoided, changes are few and consequently the cost is
low. Moreover, idle machines are fewer than in the first case. The functional-
ities and capacities of the machines are not fully used but the utilization rate
is higher if compared to the first case.

Concluding, the key parameters to take into consideration for selecting
product families are the changeover cost of the system (reconfiguration cost),
cost of idle machines, cost of the under-utilization of the functionality of the
machines and cost of the under-utilization of the capacity of the machines
(under-utilization costs).

The selection of families can be solved calculating the cost of each level in
the dendogram and the level with the lowest cost will be selected. Thus, all
the possible solutions are evaluated. Computing time depends on the number
of possible combinations to schedule the families, which may be much higher
than the time available to make decisions. Therefore, a model that includes
the key parameters expressed above and facilitates this selection is required.

9.4.2 Methodology to Estimate Costs

To solve the model, accuracy costs are essential. The literature does not
present any methodology to estimate costs required to change modules or
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machines on RMS. In this section, a specific methodology to obtain those
costs that takes into account the singularities of RMS is presented.

Identification of Parameters

Instead of doing a direct and global estimation for both costs, a strategy
“divide and defeat” has been followed. On one hand, reconfigurability costs
have been decomposed into three different parameters, each with its own cost.
These parameters are:

• A single module of a machine is removed or included.
• A machine is removed.
• A machine is included.

On the other hand, under-utilization costs have been decomposed into two
parameters, which are estimated. These parameters are:

• A module is not used when manufacturing a product from a certain family.
• A machine (with all its modules) is not used when manufacturing a product

from a certain family.

Costs of reconfiguration deal with incurred costs to change the configura-
tion of the system for producing a family to another configuration for pro-
ducing the following family. These costs have to be calculated for each pair
of families in each level of the dendogram. The last level contains one family
and therefore the reconfiguration of the system is not required. This is shown
in the objective function of the model, which the first term indicates the cost
of reconfiguration until level L− 1, being L the total number of levels.

Costs estimation starts with the identification of the components which
compose the products that form both families. Those components are pro-
duced by a specific module belonging to certain machines. Machines in RMS
are composed of different modules each of them develops a specific function-
ality.

The same example with four products is presented for costs estimation.
Data required for the estimation are relationships among products and com-
ponents, among components and the modules that produce them, and among
modules and its machines. Moreover, parameters in which are decomposed the
cost of reconfiguration and cost of under-utilization of resources are estimated.

Modules for manufacturing the components, together with their machines,
are presented in Table 9.11:

The dendogram shown in Fig. 9.8 presents the different families that can
be formed depending on the similarities among products. From level 1, four
families are obtained, each of which composed of one product. The name of
each family is the name of the products that compose that family. Therefore,
the families in level 1 are: A, B, C, and D. From level 2, three families are
obtained, one composed of two products (family BC, and the rest composed
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Table 9.11: Machines, modules and components.

Machine Modules Components

M1 M11 1

M2 M21 2,4,10
M22 3
M23 11

M3 M31 5,6
M32 7,9
M33 12

M4 M41 8

of one product (families A and D). From level 3 two families appear, both
composed of two products (families BC and AD). Finally, from level 4 one
only family is obtained composed of the four products (family BCAD).

Cost of parameters regarding reconfigurability must be estimated based
on experience. The first parameter controls if a module from a machine is
used to produce one product but not other products. The second and third
parameters deal with if a machine is required to produce one product but not
other products. Their estimations are presented in Table 9.12:

Table 9.12: Cost estimation for reconfigurability parameters.

Parameter Symbol Cost

A single module of a machine is removed or included α 1
A machine is removed β 5
A machine is included γ 6

For a certain scheduling of families, the cost of reconfiguration (monetary
unit) is calculated as the sum of multiplying the cost of each parameter (mon-
etary unit/change) by the number of changes or removal/inclusion of modules
of machines. For example, if reconfiguration in a sequence of three families
requires three removals of modules, one removal of a machine and two inclu-
sions of machines, the reconfiguration cost is R = 3α+ 1β + 2γ.

An example of cost estimation for reconfiguration from family A to D
is presented in Table 9.13. This table shows that machine M1 is used when
producing A, but not when producing D. Therefore, M1 has to be removed
and its corresponding cost (β) is incurred. On the contrary, machine M4 is
not required for producing A but it is required for producing D and therefore
it must be included in the new system configuration together with its cost
(γ). Machine M3 is required for both families, so no cost is incurred because
it remains in the new system. Finally, machine M2 is composed of three
different modules. Note that the machine is required for both families, so it
is not removed. Module M21 is necessary for both families, and it remains in
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the machine (without cost). Modules M22 and M23 are required only for one
family and they must be removed and included, respectively.

Table 9.13: Cost of reconfiguration from family A to family D.

Family
Module Machine A D Parameter Cost

M11 M1 1 0 β 5

M21 M2 1 1 - 0
M22 1 0 α 1
M23 0 1 α 1

M31 M3 1 1 - 0

M41 M4 0 1 γ 6

13

Costs of under-utilization of resources deal with incurred costs due to not
using machines or modules. These costs have to be calculated for each family
formed in any level of the dendogram. The first level of the dendogram is
composed of families containing one single product. As the RMS is configured
for producing a specific family, when producing a family composed of one
product, the system is installed with the capacity and functionality needed [1]
allowing full utilization of the resources installed. Consequently, the cost of
under-utilization for families composed of one product is zero.

Parameters about costs of under-utilization are estimated based on expe-
rience. The first parameter deals with if a module of a machine is not used
when producing a product of the family. The second parameter deals with if a
machine is not used when producing a product of the family. Their estimation
can be seen in Table 9.14:

Table 9.14: Cost estimation for parameters regarding under-utilization of resources.

Parameter Symbol Cost

A module is not used when manufacturing a product from a certain
family

δ 1

A machine (with all its modules) is not used when manufacturing
a product from a certain family

ε 7

Costs of under-utilization for a certain sequence (monetary unit) is cal-
culated as the sum of multiplying each parameter (monetary unit/time of
under-utilization) by the time of under-utilization of each module or machine.
For example, for a sequence of three families, the time that a certain module
has been idle for 220 minutes and a machine has been idle for 100 minutes,
the cost of under-utilization is H = 220δ + 100ε.



9 Hybrid Heuristic Approaches for Scheduling in RMS 231

As manufacturing times in reconfigurable machines are unavailable, an
approximation to calculate the under-utilization costs has been developed.
Thus, the number of times that a module or machine has not been used to
manufacture a product is taken into account instead of time.

Table 9.15 shows the estimation of family ADBC. For example, focusing
in machine M2, when producing A the module M23 is not used, and the cost
(δ) is incurred. When producing D is now the module M22 which is not used
and another cost δ is incurred. However, when producing B two modules are
not used (M22 and M23) and a cost 2δ must be added. Finally, to produce
C the machine M2 is not necessary, so cost ε is required. The total cost is
H = δ + δ + 2δ + ε = 4δ + ε.

Table 9.15: Cost of under-utilization in family ADBC.

Product
Module Machine A D B C Parameter Cost

M11 M1 1 0 0 0 3ε 21

M21 M2 1 1 1 0 4δ+ε 11
M22 1 0 0 0
M23 0 1 0 0

M31 M3 1 1 1 1 - 0
M32 0 0 1 1 2δ 2
M33 0 0 0 1 3δ 3

M41 M4 0 1 0 0 3ε 21

58

Cost Sensitivity

Values assigned to each parameter determine the level of the dendogram that
presents the minimum cost and therefore it determines the set of families to
form. Thus, a sensitivity analysis for each parameter is required.

It sounds logic that, when increasing any parameter associated to the re-
configuration costs keeping constant the under-utilization costs, the minimum
cost is achieved when forming few product families, or in other words, in the
lower levels of the dendogram. The reason is that in the lower levels, with few
families, the number of reconfigurations is low and therefore it is less sensitive
to parameters of reconfiguration (α, β, γ).

Figures 9.9, 9.10 and 9.11 show the sensitivity of parameters of reconfig-
uration costs for the selection of different levels of the dendogram. It can be
seen that when increasing the cost of reconfiguration, the minimum cost goes
to lower levels of the dendogram.

Similarly, when increasing any parameter associated to under-utilization
cost being constant the reconfiguration ones, the minimum cost is obtained
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Fig. 9.11: Total costs in each level for different values of parameter γ.
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when forming several product families, or in other words, in the upper levels
of the dendogram. The reason is that in those levels a system with lots of
families (reconfigurations) is formed and the total cost is less sensitive to
under-utilization parameters.

Figures 9.12 and 9.13 show the sensitivity of parameters of under-utilization
costs for the selection of different levels of the dendogram. It can be seen that
when increasing the cost of reconfiguration, the minimum cost goes to upper
levels of the dendogram.
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Fig. 9.13: Total costs in each level for different values of parameter ε.
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9.4.3 Mathematical Model

For the effective working of the RMS, a family of products is selected to be
produced. When finishing, the following family is ready to be produced within
a specifically-designed production system. This process is repeated until the
production of each product family. New orders for launching products to the
market and the limitations of the storage capacity of the companies are two
reasons that require the production of the same products again. Therefore,
when the production of the last product family has been completed, the system
is reconfigured for producing the first product family again, and the process
is repeated. Only when the companies add or remove products from their
portfolios, or their demands are very different, the methodology may selects
different product families and different sequences of production.

This problem is very close to the Travelling Salesman Problem (TSP),
which seeks to identify an itinerary that minimizes the total distance travelled
by a salesman who has to visit a certain number of cities once, leaving from
one of them (base city) and returning to this one. Therefore, some similarities
may be highlighted. First, cities in the TSP are product families in RMS.
Second, the goal in the TSP is to minimize the total distance travelled. In
RMS, the goal is to minimize the total cost. Finally, in the TSP the salesman
has to arrive to the base city, and in RMS when the last family has been
produced the system is reconfigured for the first one.

The RMS problem requires the development of a model that solves a TSP
in each level and selects the level which presents the minimum cost. There-
fore, the problem to solve is a multilevel-TSP. Under-utilization costs for each
family of a certain level are the same (they do not depend on the production
scheduling) and therefore only reconfiguration costs must be taken into con-
sideration. With the aim of calculating the total cost, the under-utilization
cost must be added to the sequence that presents the minimum reconfigu-
ration cost. As the TSP is a NP-complete problem [25], the selection and
sequence of product families is NP-complete too.

The proposed model supposes that machines present infinite capacity. It is
assumed that only one manufacturing routing exists for each product, so only
one process plan exists for each product component and each manufacturing
operation is carried out in one machine or module of machine. Each machine
has its own modules which are not shared with other machines.

The notation used for model development (indices, parameters and vari-
ables) is shown in Table 9.16. The objective is to select the set of families
to produce and its manufacturing sequence that minimize the reconfiguration
and under-utilization costs while producing the families.

The constraints to take into account are:

1. Only one level in the dendogram is selected (const. 9.10).
2. All the families from the selected level will be produced, and none of other

levels (const. 9.11). Besides, the number of variables for the changeover
of the production system (T ) must be equal to the number of families
(const. 9.12).
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Table 9.16: Indices, parameters and variables.

Indices

i, j Families
l Level

Parameters

L Number of levels
Fl Set of families to produce in level l (l = 1 . . . L)
Nl Number of families to produce in level l, so Nl = |Fl|
Rij Cost of reconfiguration from family i to family j (i ∈ Fl; j ∈ Fl; i �=

j; l = 1 . . . L − 1)
Hi Cost of the under-utilization of machines’ resources while producing

family i

Variables

Tijl 1 if family i is produced just before family j, in level l (i ∈ Fl; j ∈
Fl; i �= j; l = 1 . . . L − 1)

Qil 1 if family i within level l is produced (i ∈ Fl; l = 1 . . . L)
Kl 1 if all the families within level l are produced (l = 1 . . . L)
Uil ≥ 0, auxiliary variables for avoiding subtours (i ∈ Fl−1; l = 1 . . . L−2)

3. In each level l, the families are manufactured one by one following a pro-
duction order, and at the end the system is configured for manufacturing
the initial family. Variables T can exist before one family (const. 9.13)
and after one family (const. 9.14) only. The same occur in the TSP and
Assignment problems.

4. Subtours within each level are not feasible. Therefore, the Miller-Tucker-
Zemlin constraints are introduced [26]. This set of constraints avoids that,
as for example, five families were produced in two different ways, such as:
1 → 2 → 3 → 1 → . . . and 4 → 5 → 4 → . . . (const. 9.15).

5. Sign constraints of binary variables (T , Q, and K) and auxiliary variables
(U).

Therefore, the mathematical model is the following:

Min
∑
i∈Fl

∑
j∈Fl

L−1∑
l=1

Rij Tijl +
∑
i∈Fl

L∑
l=1

HiQil (9.9)

Subject to:

L∑
l=1

Kl = 1 (9.10)

L∑
i∈Fl

Qil = NlKl ∀l = 1, . . . , L (9.11)
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∑
i∈Fl

∑
j∈Fl

Tijl = NlKl ∀l = 1, . . . , L− 1 j 
= i (9.12)

∑
j∈Fl

Tijl ≤ l ∀i ∈ Fl ∀l = 1, . . . , L− 2 j 
= i (9.13)

∑
i∈Fl

Tijl ≤ l ∀j ∈ Fl ∀l = 1, . . . , L− 2 i 
= j (9.14)

NlTijl + Uil − Ujl ≤ Nl − l ∀i∀j ∈ Fl − 1 j 
= i ∀l = 1, . . . , L− 2 (9.15)

Tijl = {0, 1} ∀i ∈ Fl ∀j ∈ Fl j 
= i ∀l = 1, . . . , L− 1 (9.16)

Qil = {0, 1} ∀i ∈ Fl ∀l = 1, . . . , L (9.17)

Kl = {0, 1} ∀l = 1, . . . , L (9.18)

Uil ≥ 0 ∀i ∈ Fl − 1 ∀l = 1, . . . , L− 2 (9.19)

The families are manufactured in cyclical order, pointing out that it does
not matter which family is manufactured first, as long as the order remains
the same. Costs associated with the manufacturing order do not exist at all.

The parameters required to solve the model are described in Table 9.16.
Most of them (L, Fl, and Nl), can be taken directly from the dendogram,
but the rest (Rij and Hi) are unknown and they must be estimated. Once
calculated both costs, the mathematical model can be solved.

The input information can be easily automated, with minor human inter-
vention. The cost methodology requires information from the bill of materials
(BOM), which is stored in the information system of the company. The BOM
informs about both the components of a specific product and the machine
that performs the required operations. The human intervention consists of
the estimation of the five parameters identified above on reconfiguration and
under-utilization costs. The values of these parameters are introduced in the
information system and linked with the BOM to obtain the costs required for
the model.

The proposed approach will be illustrated on the resolution of some in-
stances taken from the literature. Due to the lack of existing reconfigurable
systems, some instances from the literature regarding cellular manufacturing
systems have been modified in order to be taken as RMS problems. Data in
CMS instances are machines and parts. Machines have been converted into
products, and parts into product components. Besides, the same number of
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reconfigurable machines than products has been selected, and the number of
machine modules is twice than machines.

Table 9.17 shows the set of instances to test, their references and com-
ments. The number of product families varies among 1 (all the products
grouped in one family) and the number of products (each family composed of
one product). The CPU time required to solve the proposed model increases
with the number of products. Those instances have been solved using linear
programming software, and a CPU at 3.06 GHz and 256 MB PC.

Table 9.17: Batch of instances.

Instance Reference Comment Instance Reference Comment

ADI97 [27] CHE96C [34] Problem 3
AKT96 [28] COA88 [35]
ASK87 [29] CRA96 [36]
AST91 [30] KIN80 [37]
BOC91A [31] Problem 1 KUM86 [38]
BOC91B [31] Problem 2 MCC72A [39] Problem 1
BOC91C [31] Problem 3 MCC72B [39] Problem 2
BOC91D [31] Problem 4 NG96 [40]
BOC91E [31] Problem 5 SEI89 [41]
BOC91F [31] Problem 6 SHA95A [42] Problem 1
BOC91G [31] Problem 7 SHA95B [42] Problem 2
BOC91H [31] Problem 8 SHA95C [42] Problem 3
BOC91I [31] Problem 9 SHA95D [42] Problem 4
BOC91J [31] Problem 10 SRI90 [43]
CHA82 [32] VAK90 [44]
CHE95 [33] VEN90A [45] Problem 1
CHE96A [34] Problem 1 VEN90B [45] Problem 2
CHE96B [34] Problem 2

Fig. 9.14 presents the variation of CPU time with the number of products.
It can be seen the exponential tendency of the CPU time required to solve
the instances.

As can be observed, the tendency of CPU time with the number of products
is increased hardly when the number of products is higher than 25. There-
fore, the model is appropriated for problems with 25 products or less. This
result shows that an approach based on heuristics must be developed to solve
problems with more than 25 different products.

9.5 Production Planning with Heuristics

Due to the existing difficulty to solve combinatorial problems in an opti-
mal way, the development and implementation of heuristic procedures able to
provide acceptable solutions within a reasonable computing time has become
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Fig. 9.14: Tendency of CPU time with the number of products.

essential [46]. In order to build a solution or to improve an existing one, heuris-
tic algorithms frequently use any kind of specific knowledge of the problem
to solve. As commented before, the problem to face is similar to the TSP.
As reconfiguration from a family to another one is different than the opposite
way, the problem is an asymmetric TSP (ATSP), and the heuristics that solve
it may be divided in the following categories:

• Specific heuristics for the ATSP.
• General heuristics or meta-heuristics applied to the ATSP.

Some of them offer solutions near to the optimal one. Therefore, if a small
deviation from the optimal solution is acceptable, these techniques can be
used as solution methods [47].

The specific heuristics are simple algorithms that usually require relatively
short computational times. Generally speaking, they may be divided into the
following four categories [47,48]: (a) Hamiltonian cycle construction heuristics,
(b) Hamiltonian cycle improving heuristics, (c) Heuristics based on patching
cycles together, and (d) Hybrid heuristics. Considering a graph composed of
nodes (cities) and arcs (distances among cities), a cycle is a path in which the
same arc is not travelled twice, and it finishes at the base city. A Hamiltonian
cycle, besides the above requirements, has to cover all the nodes only once.

Tour construction heuristics add a city in each iteration of the algo-
rithm until a Hamiltonian cycle has been covered. In RMS, the problem is
a multilevel-TSP and therefore each step of the algorithm adds one product
family to sequence, in each level of the dendogram. They are very fast algo-
rithms, so frequently are used to generate an approximate solution when time
is limited, obtaining a starting point for the application of other algorithms or
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even an upper bound for exact algorithms. A famous heuristic is the Nearest
Neighbor [49] which starts choosing a city randomly and then the salesman
goes to the nearest unvisited city. Some other heuristics are Greedy [50], ran-
dom insertion [51], or Clark-Wright heuristic [52].

Tour improvement heuristics try to improve a previously constructed tour
through the implementation of several solutions which are very similar to the
original one. Thus, these algorithms are known as local search algorithms.
For the RMS problem, these heuristics are intended to find a production
scheduling of product families which are similar to the first one but with lower
costs. Some examples are the 2-Opt, 3-Opt and the Lin-Kernighan heuristics
[53].

Patching heuristics start by combining two different cycles into the shortest
one possible by breaking one arc in each cycle and patching together the
two resulting paths. The process is repeated until one unique cycle remains.
Examples are the Karp-Steele patching [54], the recursive path contraction
algorithm, and the contract or path heuristic [51].

Finally, hybrid algorithms combine some of the above features. They usu-
ally start with a tour construction process improved by a local search. Some
examples are the GENI and GENIUS heuristics [48].

In the last years, the development of a specific class of algorithms called
meta-heuristics has gained research attention. They are based on general
frameworks which can be applied to diverse optimization problems with little
modifications [55]. Some examples are Simulated Annealing [56], Genetic Al-
gorithms [57], Tabu Search [58], GRASP [59], Neural Networks [60], and Ant
Colonies Optimization [61].

To solve the problem of selecting and sequencing product families in RMS,
a tabu search will be applied because it has demonstrated to be a useful
optimization technique to solve different combinatorial problems. Besides, ant
colony optimization presents good adaptation to the TSP, driving to consider
as suitable the use of ant colony optimization models to compare the obtained
results with tabu search.

9.5.1 Heuristics to Solve the RMS Problem

In order to solve the RMS problem, a specific heuristic based on the near-
est neighbor method will be developed and implemented. Results have been
compared to those obtained with the exact method developed in section 9.4.3.
Besides, a general meta-heuristic based on ant colony optimization has been
implemented to compare the quality of the solutions obtained with the specific
heuristic.

Variant of the Nearest Neighbor Heuristic

This heuristic, specifically developed for RMS, starts by evaluating the recon-
figuration costs between each pair of product families. Then, the minimum
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cost is chosen to be used as starting point. Once scheduled the first pair of
families, the following family to add to the sequence is the not-yet-scheduled-
family with minimum reconfiguration cost. The procedure finishes when all
product families are scheduled in one single sequence. For example, consid-
ering four product families to schedule A,B,C,D, the reconfiguration costs
between them is presented in Table 9.18.

Table 9.18: Reconfiguration costs between families.

A B C D

A - 5 2 7
B 2 - 3 1
C 9 5 - 8
D 6 4 6 -

The sequence that presents the minimum reconfiguration cost is {B → D}
and it is chosen as the first pair of families to schedule. From D, the following
possible family with the minimum reconfiguration cost is chosen. There are
two possible families to choose {A,C} and both have the same cost, so one of
them is chosen randomly, for example family A, and the current sequence is
{B → D → A}. As there is only one family to sequence, it is allocated at the
end. Therefore, the final sequence obtained with this heuristic is {B → D →
A→ C}.

Table 9.19 shows the results obtained with the implementation of the devel-
oped heuristic to the batch of instances used to test the mathematical model.
Deviation percentages of the solutions gained with the heuristic regarding op-
timal solutions are shown too. In each case, computing time required to solve
the instances is lower than one second.

Results showed in Table 9.19 can be considered as satisfactory because the
heuristic offers good solutions to NP problems in less than one second . In 19
of the 35 instances the deviation from the optimum is lower than 5%, in 28
instances deviation is lower than 10% and all of them present a deviation lower
to 18%. As an average value, the deviation of the instances from optimum is
5.85%. It must be noticed that to obtain results with the application of the
optimal method, the computing time required becomes not feasible with more
than 25 products to group. This heuristic can offer a solution very quickly to
the RMS problem with any number of products to group.

Ant Colony Optimization

Ant colony optimization (ACO) is a general heuristic or meta-heuristic in-
spired in the behavior of real ants. The literature presents different algorithms
based on ACO, such as Ant System [62], Ant-Q [63], Ant Colony System [61],
Max-Min Ant System [64], Rank-Based Ant System [65] and Ant-Net [66].
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Table 9.19: Specific heuristic and ACS meta-heuristic results.

Instance Optimal
method †

Specific
heuristic

Deviation
(%) from
optimum

ACS
values
average

Deviation
(%) from
optimum

CPU time
average

SHA95B 85 87 2.35 86.8 2.12 0:00:13
SHA95D 88 88 † 0.00 90.2 2.50 0:00:17
COA88 89 89 † 0.00 89 † 0.00 0:00:16
AKT96 126 129 2.38 133 5.56 0:00:12
CHE96A 128 138 7.81 128 † 0.00 0:00:14
SHA95C 158 167 5.70 159 0.63 0:00:19
SEI89 143 144 0.70 143 † 0.00 0:00:12
MCC72A 79 79 † 0.00 80.4 1.77 0:00:25
VAK90 166 166 † 0.00 166 † 0.00 0:00:40
CRA96 150 152 1.33 152.8 1.87 0:00:27
ASK87 159 163 2.52 163.2 2.64 0:00:32
CHA82 98 102 4.08 98 † 0.00 0:00:41
SHA95A 78 82 5.13 78 † 0.00 0:01:16
CHE95 136 148 8.82 137 0.74 0:01:01
BOC91A 340 367 7.94 340 † 0.00 0:00:12
BOC91B 242 250 3.31 243.6 0.66 0:01:33
BOC91C 211 224 6.16 220.4 4.45 0:00:59
BOC91D 302 315 4.30 329.6 9.14 0:00:51
BOC91E 240 240 † 0.00 240 † 0.00 0:01:10
BOC91F 252 260 3.17 297.8 18.17 0:00:55
BOC91G 286 297 3.85 286 † 0.00 0:00:49
BOC91H 294 301 2.38 299 1.70 0:01:13
BOC91I 241 275 14.11 256.8 6.56 0:00:35
BOC91J 222 255 14.86 246.4 10.99 0:00:40
SRI90 243 255 4.94 253.8 4.44 0:00:23
KIN80 353 368 4.25 377.8 7.03 0:00:45
ASK91 118 122 3.39 126 6.78 0:02:02
VEN90B 305 322 5.57 308.8 1.25 0:03:00
CHE96B 341 392 14.96 385.8 13.14 0:01:28
CHE96C 278 325 16.91 288 3.60 0:02:34
NG96 248 292 17.74 264.2 6.53 0:01:31
VEN90A 126 134 6.35 126 † 0.00 0:00:34
KUM86 364 412 13.19 396.8 9.01 0:02:59
ADI97 497 529 6.44 518 4.23 0:04:04
MCC72B 541 596 10.17 562.8 4.03 0:06:03
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One of the most implemented methods is the Ant Colony System (ACS).
In this algorithm, a set of artificial ants cooperate in the solution of a problem
through exchanging information via the pheromone deposited on the paths.
ACS is based on the Ant System and it improves its efficiency to solve the
symmetric and asymmetric TSP.

The implemented algorithm of ACS to solve the RMS problem works as
follows. An ant is located in each product family. They start to move towards
other families following a state transition rule. While each ant constructs its
sequence, they modify the quantity of pheromone on the visited paths through
a local pheromone updating rule. Once the ants have finished their sequences,
the amount of pheromone on edges is modified again by applying the global
updating rule. The algorithm can be divided into four stages [61]:

1. Initialization. Pheromone values of each possible sequence from a family
r to another family s are initialized to a positive constant value (τ0 ≥ 0).
Therefore, at the beginning there is no past memory and ants schedule,
with the highest probability, the families with lower reconfiguration cost.

2. Solution construction. In this stage, the product family to schedule is
selected step by step by the ants. The selection is made among the possible
families probabilistically, following the pseudo-random-proportional rule
presented in expression 9.20. This rule provides a balance between the
exploration of new production sequences and the exploitation of sequences
that offer good results.

s =
{

arg maxu∈Jk(r){[τ(r, u)] · [η(r, u)]β} q ≤ q0
S otherwise

(9.20)

Where q is a random number (0 ≤ q ≤ 1), q0 is a parameter (0 ≤ q0 ≤ 1)
and S is a random variable selected following the probability distribution
presented in expression 9.21.

pk(r, s) =

⎧⎨⎩
[τ(r,s)]·[η(r,s)]β∑

u∈Jk(r)
[τ(r,u)]·[η(r,u)]β

s ∈ Jk(r)

0 otherwise
(9.21)

Where τ is the pheromone, η = 1/δ is the inverse of the reconfiguration
cost δ(r, s), Jk(r) is the set of families not-yet-scheduled by the ant k in
family r and β is a parameter that determines the relative importance
of the pheromone against the reconfiguration cost (β > 0). The element
τ(r, s)] · [η(r, s) reinforces the selection of families with low reconfiguration
costs but high quantity of pheromone. The relative importance of the
exploitation of a good solution against the exploitation of new sequences
is determined with the parameter q0. Thus, if q ≤ q0 a good solution is
exploited and an exploration otherwise.

3. Local pheromone update. When ants construct their sequence Sk, they
modify the pheromone trail by applying the local pheromone updating
rule, presented in expression 9.22.
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τ(r, s) ← (1 − ρ) · τ(r, s) + ρ ·∆τ(r, s) (9.22)

Where ρ is a second pheromone evaporation rate (0 < ρ < 1) and
∆τ(r, s) = τ0 (initial level of pheromone). This rule tries to obtain a
dynamic change on sequence preferences. If this rule is not applied, the
ants will search within a little neighborhood of the best previous sequence.

4. Global pheromone update. This rule is applied when the ants have gener-
ated their sequences. Pheromone is deposited by the ant that generates
the best sequence, with expression 9.23.

τ(r, s) ← (1 − ϕ) · τ(r, s) + ϕ ·∆τ(r, s) (9.23)

Where:

∆τ(r, s) =
{ 1

Lsg
(r, s) ∈ best global sequence

0 otherwise
(9.24)

Being ϕ the pheromone evaporation rate (0 < ϕ < 1) and Lsg is the total
reconfiguration cost of the best global sequence.

The literature demonstrates that ACS parameters are independent of the
problem to face. Parameters that offer the best results were presented by
Dorigo and Gambardella [61], except for the number of ants, which will be
set to the number of product families to schedule. This is due to the nature
of the RMS problem, which solves an ATSP in each level of the dendogram,
and the number of ants is set to each problem, not for each level.

The same batch of 35 instances is solved with ACS. Due to the random
nature of this procedure, the experiments are repeated five times and the
average values have been taken into consideration. Table 9.19 presents the
average value of the obtained solutions by applying ACS and the deviation
percentage regarding the optimum together with the required CPU time.

The implementation of the ACS meta-heuristic drives to acceptable results,
quite similar to those obtained with the specific heuristic developed for the
RMS problem. In fact, 25 of the 35 instances solved reached their solution with
an average deviation from the optimum lower than 5%, 32 instances got their
solutions with a deviation lower than 10%. Finally, all of them present an aver-
age deviation lower than 19%. The average instance deviation is 4.65%, better
but similar than the obtained with the specific heuristic (5.85%) whereas com-
puting time in ACS, though admissible, is higher than the required for the
specific heuristic developed.

9.5.2 Hybrid Approaches to Solve the RMS Problem

The development of hybrid methods that include construction and improve-
ment heuristics is considered as one of the most effective strategies to
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solve combinatorial optimization problems [48]. The problem of selecting
and sequencing product families in RMS is a difficult problem, as stated in
Table 9.20, which presents the growing number of possible sequences when
increasing the number of products to group.

Table 9.20: Number of solutions regarding the number of products to group.

No. products 10 40 80 100 150

No. possible solutions 4 · 105 2 · 1046 7 · 10118 9 · 10157 6 · 10262

This number of products to group is determined with expression 9.25:

L−1∑
l=1

(Nl − 1)! (9.25)

Where l indicates the level of the dendogram, L the total number of levels
and Nl the number of families to produce in level l.

This problem can be faced by hybridization between the specific heuristic
developed (nearest neighbor variant) and tabu search meta-heuristic. Once
applied the specific heuristic, the results obtained will be improved with a
tabu search procedure. Another option is to construct a sequence with ACS
and to improve the results by applying a local search procedure.

Hybrid Approach of Nearest Neighbor Variant and Tabu Search

Tabu search selects the best possible movement in each step, allowing a solu-
tion worse than the actual one to escape from a local optimum and to continue
the search for better solutions. In order to avoid the return at a former local
optimum and to create a cycle, some movements are classified as “tabu” in
next iterations.

The neighborhood of the solution has been generated with inserting move-
ments, which consists of including a scheduled family in a different position of
the sequence. For example, in the sequence {A→ B → C → D} family A can
be inserted in the third position, being the new sequence {B → C → A→ D}.
In order to generate the neighborhood, each family is inserted in other posi-
tions of the sequence and therefore, the size of the neighborhood for a set of
n product families is n(n− 1). As intensification rule, the algorithm searches
in the neighborhood and selects as the new solution the sequence of families
with the lowest cost, though it may be higher than the cost of the current
sequence. The algorithm finishes after a certain number of iterations. The
maximum number of iterations has been fixed according with the number of
families at n3 + n2.

It is well known that tabu list size affects the performance of the heuristic
[58]. Studies about optimizing tabu list size for the asymmetric TSP have not
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been found in the literature, but those about the symmetric TSP demonstrate
that this size depends on the number of cities to visit. Therefore, tabu list size
to use will be the number of product families to group (n). Tabu list does not
store the whole sequence, but some attributes of it: the family that changes
its position and the position to insert the family.

Note that a RMS instance is composed of several sets of families, in differ-
ent levels of the dendogram. Therefore, an ATSP in each level of the dendo-
gram must be solved by applying the above approach. As all possible sequences
in the same level have the same under-utilization costs, they are not used in
the above procedure but it is added at the end. Once costs have been obtained
for each level, the procedure finishes by selecting the best of them.

The implemented procedure tries to improve the solutions offered by the
specific heuristic. Once finished, the intensification process starts by generat-
ing the neighborhood of the solution. The new sequences are evaluated and
the best one is selected in each step. The process finishes when n3 + n2 itera-
tions have been completed. The algorithm has been storing the best solution
found in each step, and gives it back when finishing. Results are shown in
Table 9.21, which demonstrates that the implementation of the hybrid ap-
proach improves, or make equal in the worst case, the solution obtained with
the specific heuristic for each instance. The instance average deviation from
the optimum gained with this approach is 1.83%, quite better than the 5.85%
obtained with the specific heuristic.

Former results have demonstrated that the hybrid approach of the specific
heuristic and tabu search drives to obtain better results than the obtained
without hybridization to solve the problem in RMS. Now, this approach is
intended to be improved with refinements to the tabu search process: the
application of a second stopping criterion and the implementation of a diver-
sification rule.

An optimal stopping condition is compulsory to obtain satisfactory solu-
tions with low computational effort. Studying the quality of these solutions, it
has been realized that the best solutions are obtained in the early iterations.
Thus, thirteen instances (composed of a total sum of 202 levels) have been
selected randomly in order to study the iteration in which the best solution is
found. Results have shown that the best solution has been found doing lower
than 12% of the upper bound iterations number (n3+n2). Therefore, the batch
of instances can be solved with the stopping criteria of a maximum number
of iterations without improving the best solution found. For assuring more
iterations than the 12% obtained experimentally, this condition has been set
to 30%. Results have demonstrated that the same results are obtained, and
consequently saving computing time. Figure 9.15 shows the difference in com-
puting time with and without the stopping condition, and how it increases
together with the number of products to group.

A diversification rule has been developed with the aim of searching in
other areas of the solution space when it is difficult to overcome huge local
optima. This rule is implemented by generating 1000 random solutions when
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Table 9.21: Solution of instances applying tabu search.

Instance Optimal
method †

Specific
heuristic

Tabu
search

Deviation
(%) from
optimum

CPU time

SHA95B 85 87 85 † 0.00 0:00:01
SHA95D 88 88 † 88 † 0.00 0:00:02
COA88 89 89 † 89 † 0.00 0:00:04
AKT96 126 129 128 1.59 0:00:08
CHE96A 128 138 128 † 0.00 0:00:05
SHA95C 158 167 159 0.63 0:00:04
SEI89 143 144 143 † 0.00 0:00:07
MCC72A 79 79 † 79 † 0.00 0:00:12
VAK90 166 166 † 166 † 0.00 0:00:12
CRA96 150 152 150 † 0.00 0:00:24
ASK87 159 163 159 † 0.00 0:00:34
CHA82 98 102 98 † 0.00 0:00:44
SHA95A 78 82 78 † 0.00 0:00:45
CHE95 136 148 136 † 0.00 0:00:46
BOC91A 340 367 350 2.94 0:01:18
BOC91B 242 250 242 † 0.83 0:01:08
BOC91C 211 224 212 0.47 0:01:07
BOC91D 302 315 302 † 0.00 0:01:19
BOC91E 240 240 † 240 † 0.00 0:01:15
BOC91F 252 260 252 † 0.00 0:01:11
BOC91G 286 297 286 † 0.00 0:01:09
BOC91H 294 301 301 2.38 0:01:08
BOC91I 241 275 253 4.98 0:01:08
BOC91J 222 255 232 4.50 0:01:12
SRI90 243 255 243 † 0.00 0:01:07
KIN80 353 368 362 2.55 0:01:07
ASK91 118 122 120 1.69 0:03:19
VEN90B 305 322 305 † 0.00 0:04:32
CHE96B 341 392 364 6.74 0:04:17
CHE96C 278 325 299 7.55 0:04:10
NG96 248 292 290 16.94 0:04:08
VEN90A 126 134 128 1.59 0:07:52
KUM86 364 412 369 1.37 0:09:44
ADI97 497 529 516 3.82 0:20:49
MCC72B 541 596 559 3.33 0:25:28

the best solution has not been improved after a certain number of iterations.
The heuristic evaluates all of them and selects the best one as the current
solution. The stopping condition and the diversification rule can be imple-
mented together only if the number of iterations without improving the best
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Fig. 9.15: Difference in computing time due to the second stopping condition.

solution found is smaller than the stopping condition. If the new area does not
improve the best solution, new searches in other areas may be an adequate
strategy.

With the aim of obtaining the best number of iterations without improving
to implement the rule, some experiments have been carried out. Experiments
have been applied with different numbers of iterations without improving:
10, 5, 1, and 0.5% of the maximum number of iterations. As a comparative
measurement, the sum of deviation from the optimum of the previous batch
of instances has been used. As computing times are similar, experimental
results have shown up that the best is to use 1%. Thus, the optimum num-
ber of iterations without improving the current solution before applying the
diversification rule is 0.01(n3 + n2).

The implementation of this rule improves the previous solutions in most
of the cases, as it is shown in Table 9.22. Due to the random condition of the
diversification rule, instances have been solved five times to obtain results.

Table 9.22 has shown successive improvements when applying the hybrid
approach to solve the RMS problem, from the implementation of the specific
heuristic to the implementation of the hybrid approach based on tabu search
with diversification rule. In the last case, the optimal solution is obtained in
31 of the 35 instances. Instance average deviation from the optimum is 0.26%.

Hybrid Approach of ACS with Local Search

As ACS is a constructive heuristic, the development of an improvement heuris-
tic on the generated solution may drives to a better result. This hybrid method
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Table 9.22: Solution of instances applying the diversification rule.

Instance Optimal
method †

Specific
heuristic

Tabu
search

Tabu search
with diversi-
fication rule

Deviation
(%) from
optimum

CPU time

SHA95B 85 87 85 † 85 † 0.00 0:00:01
SHA95D 88 88 † 88 † 88 † 0.00 0:00:02
COA88 89 89 † 89 † 89 † 0.00 0:00:02
AKT96 126 129 128 126 † 0.00 0:00:06
CHE96A 128 138 128 † 128 † 0.00 0:00:02
SHA95C 158 167 159 159 0.63 0:00:02
SEI89 143 144 143 † 143 † 0.00 0:00:04
MCC72A 79 79 † 79 † 79 † 0.00 0:00:05
VAK90 166 166 † 166 † 166 † 0.00 0:00:06
CRA96 150 152 150 † 150 † 0.00 0:00:08
ASK87 159 163 159 † 159 † 0.00 0:00:13
CHA82 98 102 98 † 98 † 0.00 0:00:16
SHA95A 78 82 78 † 78 † 0.00 0:00:16
CHE95 136 148 136 † 136 † 0.00 0:00:22
BOC91A 340 367 350 340 † 0.00 0:00:28
BOC91B 242 250 244 242 † 0.00 0:00:28
BOC91C 211 224 212 211 † 0.00 0:00:28
BOC91D 302 315 302 † 302 † 0.00 0:00:24
BOC91E 240 240 † 240 † 240 † 0.00 0:00:29
BOC91F 252 260 252 † 252 † 0.00 0:00:26
BOC91G 286 297 286 † 286 † 0.00 0:00:24
BOC91H 294 301 301 294 † 0.00 0:00:35
BOC91I 241 275 253 241 † 0.00 0:00:38
BOC91J 222 255 232 231 4.05 0:00:32
SRI90 243 255 243 † 243 † 0.00 0:00:26
KIN80 353 368 362 353 † 0.00 0:00:29
ASK91 118 122 120 120 1.69 0:01:08
VEN90B 305 322 305 † 305 † 0.00 0:01:27
CHE96B 341 392 364 341 † 0.00 0:02:08
CHE96C 278 325 299 278 † 0.00 0:01:42
NG96 248 292 290 248 † 0.00 0:02:20
VEN90A 126 134 128 126 † 0.00 0:02:23
KUM86 364 412 369 364 † 0.00 0:05:44
ADI97 497 529 516 497 † 0.00 0:10:18
MCC72B 541 596 559 555 2.95 0:10:09

has been applied on diverse combinatorial problems such as the TSP [61], the
quadratic assignment problem [67] or the sequential ordering problem [55].

The local search process starts when each ant has obtained a sequence.
Then, an iterative process of searching a better solution starts in the neigh-
borhood of the current sequence and, if found, it is adopted as the new
sequence. The process finishes when a local optimum has been reached. The
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Table 9.23: Solution of instances applying ACS hybridized with local search.

Instance Optimal
method †

ACS ACS with
local
search

Deviation
(%) from
optimum

CPU time

SHA95B 85 86.8 85.4 0.47 0:00:12
SHA95D 88 90.2 88 † 0.00 0:00:13
COA88 89 89 † 90.6 1.80 0:00:12
AKT96 126 133 130 3.17 0:00:01
CHE96A 128 128 † 128 † 0.00 0:00:13
SHA95C 158 159 158.8 0.51 0:00:11
SEI89 143 143 † 143 † 0.00 0:00:12
MCC72A 79 80.4 79 † 0.00 0:00:12
VAK90 166 166 † 168.8 1.69 0:00:16
CRA96 150 152.8 154.8 3.20 0:00:11
ASK87 159 163.2 163 2.52 0:00:02
CHA82 98 98 † 101.2 3.27 0:00:01
SHA95A 78 78 † 78 † 0.00 0:00:12
CHE95 136 137 136.2 0.15 0:00:13
BOC91A 340 340 † 340 † 0.00 0:00:04
BOC91B 242 243.6 242 † 0.00 0:00:07
BOC91C 211 220.4 213 0.95 0:00:13
BOC91D 302 329.6 311.6 3.18 0:00:24
BOC91E 240 240 † 247 2.92 0:00:10
BOC91F 252 297.8 259 2.78 0:00:10
BOC91G 286 286 † 286 † 0.00 0:00:05
BOC91H 294 299 306.6 4.29 0:00:06
BOC91I 241 256.8 253 4.98 0:00:20
BOC91J 222 246.4 245 10.36 0:00:12
SRI90 243 253.8 248 2.06 0:00:11
KIN80 353 377.8 356 0.85 0:00:13
ASK91 118 126 123.6 4.75 0:00:13
VEN90B 305 308.8 308 0.98 0:00:11
CHE96B 341 385.8 351 2.93 0:00:13
CHE96C 278 288 278 † 0.00 0:00:11
NG96 248 264.2 255.8 3.15 0:00:11
VEN90A 126 126 † 126 † 0.00 0:00:13
KUM86 364 396.8 372 2.20 0:00:13
ADI97 497 518 510.8 2.78 0:00:01
MCC72B 541 562.8 550 1.66 0:00:12

neighborhood is obtained through inserting movements. Results are presented
in Table 9.23, which states that if applying a local search procedure to the
solution obtained with ACS, it is improved in several instances, obtaining
1.93% of average deviation from the optimum using a very competitive com-
puting time.
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9.6 Conclusions

This chapter has presented a new methodology to group products into families,
a central issue in the design of RMS. The importance of selecting a proper
set of families lies in the fact that the production system is configured to
manufacture a certain family, and the system is reconfigured to manufacture
the following one.

The presented methodology takes into consideration five key requirements
of products to be grouped in RMS. It is possible that those attributes do not
present the same importance in different circumstances, so the application of
the AHP methodology helps the designer to decide the importance of those
requirements.

The output of the methodology is a dendogram that presents different
sets of product families that can be selected, based on similarities among the
products that compose those families. To allow a feasible reconfiguration of a
production system, a mathematical model to select the families of products
that minimize the costs of reconfiguration and under-utilization in RMS has
been developed. The major difficulty is the value of both costs, which are un-
known, so an accuracy estimation is required. This has been solved by dividing
the costs into five parameters, which are easier to estimate. A methodology
has been presented for a complete cost estimation based on those parameters.
Finally, the model has been validated.

The selection of families among several possibilities is a highly complex
problem (NP-complete), and therefore calculations for the resolution of the
model grow exponentially together with the number of products. Therefore,
the use of heuristic methods has been suggested. For tackling this situation,
two heuristic hybrid approaches to select and sequence product families in
RMS have been presented. On one hand, the procedure is based on the
hybridization between a variant of the nearest neighbor heuristic and tabu
search. On the other hand, between ACS and a local search procedure.

The implemented specific heuristic based on the nearest neighbor offers
good solutions very quickly (in less than one second). These results have been
compared to those obtained with an optimal method and a general heuristic
based on ant colony optimization, showing that the developed heuristic is very
competitive. Solutions to the problem are significantly improved when the
specific heuristic hybridizes with tabu search, within a reasonable computing
time. These results have been improved applying a second stopping criterion
and a diversification rule to the tabu search procedure. Finally, the hybrid
approach composed of ACS and a local search procedure has improved the
solutions offered by the ACS algorithm on its own.

Therefore, it can be stated that the implementation of the hybrid ap-
proaches to solve the RMS problem drives to obtain satisfactory results within
a reasonable computing time, overcoming the limitations imposed by the op-
timal method which was limited to offer results when there was less than 25
products to group.
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Summary. This work is focused on the application of evolutionary algorithms to
solve very complex real-world problems. For this purpose a Genetic Algorithm is
designed to solve the Train Timetabling Problem. Optimizing train timetables on a
single line track is known to be NP-hard with respect to the number of conflicts in
the schedule. This makes it difficult to obtain good solutions to real life problems in
a reasonable computational time and raises the need for good heuristic scheduling
techniques. The railway scheduling problem considered in this work implies the
optimization of trains on a railway line that is occupied (or not) by other trains
with fixed timetables. The timetable for the new trains is obtained with a Genetic
Algorithm (GA) that includes a guided process to build the initial population. The
proposed GA is tested using real instances obtained from the Spanish Manager of
Railway Infrastructure (ADIF). The results of the computational experience, point
out that GA is an appropriate method to explore the search space of this complex
problems and able to lead to good solutions in a short amount of time.

Key words: Scheduling, Train Timetabling Problem, Genetic Algorithms,
Parameterized Regret-Based Biased Random Sampling, Real World Instances.

10.1 Introduction

Genetic Algorithms (GAs) have been successfully applied to combinatorial
problems and are able to handle huge search spaces as those arising in real-
life scheduling problems. GAs perform a multidirectional stochastic search on
the complete search space that is intensified in the most promising areas.

The Train Timetabling Problem (TTP) is a difficult and time-consuming
task in the case of real networks. The huge search space to explore when solv-
ing real-world instances of TTP makes GAs a suitable approach to efficiently
solve it. A feasible train timetable should specify for each train the departure
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and arrival times to each dependency of the network in such a way that the
line capacity and other operational constraints are taken into account. Tradi-
tionally, plans were generated manually and adjusted so as all constraints are
met. However, the new framework of strong competition, privatization and
deregulation jointly with the increasing of computer speeds are reasons that
justify the need of automatic tools able to efficiently generate feasible and
optimized timetables.

Assuming TTP is a very complex problem and GA a suitable procedure
to cope with it, we have designed a GA for this train scheduling problem.
Once the problem has been formally described, a Genetic Algorithm has been
designed and validated through its application on a set of real-world problem
instances provided by the Spanish Manager of Railway Infrastructure (ADIF).
In addition, the heuristic technique described in this work has been embedded
in a computer-aided tool that is being successfully used by ADIF.

The chapter is organized as follows. Section 10.2 is devoted to the formal
description of the Train Timetabling Problem on a high-loaded railway line.
The proposed method, based on a Genetic Algorithm (GA), is described in
Section 10.3. Section 10.4 presents some examples and results of the applica-
tion of the proposed GA to real-world railway timetabling problems. Finally,
conclusions and directions for future research are pointed out in Section 10.5.

10.2 The Train Timetabling Problem (TTP)

Given a railway line that may have single as well as double-track sections,
the Train Timetabling Problem (TTP) consists in computing timetables for
passengers and cargo trains that satisfy the existing constraints and optimize
a multicriteria objective function. The railway line may be occupied by other
trains whose priority is higher than that of the new ones, and the new trains
to be added may belong to different train operators. The locations to be
visited by each train may also be different from each other. The timetable
given to each new train must be feasible, that is, it must satisfy a given set
of constraints. Among the constraints arising in this problem, it is possible
the requirement for periodicity of the timetables. Periodicity leads to the
classification of TTP as (i) Periodic (or cyclic) Train Timetabling and (ii)
Non Periodic Train Timetabling.

In Periodic Timetabling each trip is operated in a periodic way. That is,
each period of the timetable is the same. An advantage of a periodic railway
system is the fact that such a system’s timetable is easy to remember for the
passengers. A drawback is that such a system is expensive to operate from
the point of view of the use of resources such as rolling stock and crews. The
mathematical model called Periodic Event Scheduling Problem (PESP) by
Serafini and Ukovich [16] is the most widely used in the literature. In PESP a
set of repetitive events is scheduled under periodic time window constraints.
Hence, the events are scheduled for one cycle in such a way that the cycle can
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be repeated. The PESP model has been used by Nachtigall and Voget [13],
Odijk [14], Kroon and Peeters [10], Liebchen [12].

Non Periodic Train Timetabling is especially relevant on heavy-traffic,
long-distance corridors where the capacity of the infrastructure is limited due
to great traffic densities. This allows the Infrastructure Manager to optimally
allocate the train paths requested by the Train Operators and proceed with
the overall timetable design process, possibly with final local refinements and
minor adjustments made by planner. Many references consider Mixed Inte-
ger Problem formulations in which the arrival and departures times are rep-
resented by continuous variables and there are binary variables expressing
the order of the train departures from each station. The non periodic train
timetabling problem has been considered by several authors: Szpigel [18],
Javanovic and Harker [8], Cai and Goh [1], Carey and Lockwood [4], Higgins
et al. [6], Silva de Oliveira [17], Kwan and Mistry [11], Caprara et al. [3],
Ingolotti et al. [7].

The main problem the Spanish Manager of Infrastructure faces is the al-
location of the paths requested by transport operators and the process of
designing the overall timetable. These timetables are generally non periodic
and have to met a wide set of constraints and achieve a multicriteria objective
function. A detailed formal description of both the constraints and the objec-
tive function is given in the following subsections. First we will introduce the
notation that will be used hereafter.

10.2.1 Notation

The notation used to describe the problem is the following.

Parameters:

• T: finite set of trains t considered in the problem. T = {t1, t2, ..., tk}
• TC ⊂ T: subset of trains that are in circulation and whose timetables

cannot be modified (TC can be empty).
• Tnew ⊆ T: subset of non-scheduled trains that do not have yet a timetable

and that must be added to the railway line with a feasible timetable. Thus
T = TC ∪ Tnew and TC ∩ Tnew = ∅

• li: location (station, halt, junction). The types of locations considered are
described as follows:
– Station: Place for trains to park, stop or pass through. Each station

is associated with a unique station identifier. There are two or more
tracks in a station where crossings or overtaking can be performed.

– Halt: Place for trains to stop, pass through, but not park. Each halt is
associated with a unique halt identifier.

– Junction: Place where two different tracks fork. There is no stop time.
• Ni: number of tracks in location li.
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• NPi: number of tracks with platform (necessary for commercial stops) in
location li.

• L = {l0, l1, ..., lm}: railway line that is composed by an ordered sequence
of locations that may be visited by trains t ∈ T . The contiguous locations
li and li+1 are linked by a single or double track section.

• Jt = {lt0, lt1, ..., ltnt
}: journey of train t. It is described by an ordered se-

quence of locations to be visited by a train t such that ∀t ∈ T,∃Ji : Jt ⊆ L.
The journey Jt shows the order that is used by train t to visit a given set
of locations. Thus, lti and ltnt

represent the ith and last location visited by
train t, respectively.

• TD: set of trains travelling in the down direction.
t ∈ TD ↔ (∀lti : 0 ≤ i < nt,∃lj ∈ {L \ {lm}} : lti = lj ∧ lti+1 = lj+1).

• TU: set of trains travelling in the up direction.
t ∈ TU ↔ (∀lti : 0 ≤ i < nt,∃lj ∈ {L \ {l0}} : lti = lj ∧ lti+1 = lj−1). Thus
T = TD ∪ TU and TD ∩ TU = ∅

• Ct
i minimum time required for train t to perform commercial operations

(such as boarding or leaving passengers) at station i (commercial stop).
• ∆t

i→(i+1): journey time for train t from location lti to lt(i+1).
• �ItL, ItU	: interval for departure time of train t ∈ Tnew from the initial

station of its journey.
• �Ft

L,F
t
U	: interval for arrival time of train t ∈ Tnew to the final station of

its journey.

Variables:

• dept
i departure time of train t ∈ T from the location i, where i ∈ Jt \{ltnt

}.
• arrt

i arrival time of train t ∈ T to the location i, where i ∈ Jt \ {lt0}.
Planners usually use running maps as graphic tools to help them in the

planning process. A running map is a time-space diagram like the one shown
in Fig. 10.1 where several train crossings can be observed. The names of the
stations are presented on the left side and the vertical line represents the
number of tracks between stations (one-way or two-way). Horizontal dotted
lines represent halts or junctions, while solid lines represent stations. On a
railway network, the planner needs to schedule the paths of nk trains going
in one direction and mk trains going in the opposite direction for trains of a
given type. The trains to schedule can require (or not) a given frequency.

10.2.2 Feasibility of a Solution - Set of Constraints

In order to be feasible, a timetable has to met a set of constraints that can
be classified in three main groups depending on whether they are concerning
with: (i) user requirements (parameters of trains to be scheduled), (ii) traffic
rules, (iii) railway infrastructure topology. The constraints described in this
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Fig. 10.1: Running Map.

work have been defined together with the Spanish Manager of Railway In-
frastructure (ADIF) in such a way that the resulting timetable was feasible
and practicable.

User Requirements:

• Interval for the Initial Departure: each train t ∈ Tnew should leave its
initial station lt0 at a time dept

0 such that,

ItL ≤ dept
0 ≤ ItU. (10.1)

• Interval for the Arrival Time: each train t ∈ Tnew should arrive to its
final station ltnt

at a time arrt
nt

such that,

Ft
L ≤ arrt

nt
≤ Ft

U. (10.2)

• Maximum Delay : a maximum delay Λt and a minimum journey time Mt

are specified for each train t ∈ Tnew; thus, the upper bound for the journey
time of t ∈ Tnew is given by the following expression:

(arrt
nt

− dept
0 − Mt)

Mt
≤ Λt. (10.3)
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Traffic constraints:

• Journey Time: for each train and each track section, a Journey time is
given by ∆t

i→(i+1), which represents the time the train t should employ
to go from location lti to location lti+1. Therefore, the following expression
must be fulfilled

arrt
i+1 = dept

i +∆t
i→(i+1). (10.4)

• Crossing : according to the following expression, a single-track section
(i → i + 1, down direction) cannot be occupied by two trains going in
opposite directions (t ∈ TD and t′ ∈ TU).

dept′
i+1 > arrt

i+1 ∨ dept
i > arrt′

i . (10.5)

Fig. 10.2: (a) Crossing conflict. (b) Train in Down direction waits. (c) Train in Up
direction waits.

• Commercial Stop: each train t ∈ Tnew is required to remain in a station
lti at least Ct

i time units:
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dept
i ≥ arrt

i + Ct
i. (10.6)

• Overtaking on the track section: overtaking must be avoided between any
two trains, {t, t′} ⊆ T, going in the same direction on any double-track
sections, k → (k + 1), of their journeys:

(arrt
k+1 > arrt′

k+1) ↔ (dept
k > dept′

k ). (10.7)

• Delay for unexpected stop: when a train t stops in a station j to avoid
conflicts with other trains (overtaking/crossing), and no commercial stop
was planned (Ct

j = 0) in this station, the journey time of train t that
corresponds to the previous (ltj−1 → ltj) and next (ltj → ltj+1) track sections
of j must be increased by Γt time units. This increase represents the speed
reduction of the train due to the braking and speeding up in the station.

dept
j−arrt

j > 0∧Ct
j = 0 → ∆j−1→j =∆j−1→j+Γt∧∆j→j+1 = ∆j→j+1+Γt.

(10.8)

Fig. 10.3: Unexpected Stop.

• Reception Time: The difference between the arrival times of any two trains
{t, t′} ⊆ T ∧{t, t′} ⊆ Tnew in the same station l is defined by the expres-
sion below, where Rt is the reception time specified for the train that
arrives to l first.

arrt′
l ≥ arrt

l → arrt′
l − arrt

l ≥ Rt. (10.9)

• Expedition Time: The difference between the departure and arrival times
of any two trains {t, t′} ⊆ T ∧{t, t′} ⊆ Tnew in the same station l is
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Fig. 10.4: Reception time between train t and train t’.

defined by the expression below, where Et is the expedition time specified
for t.

|dept′
l − arrt

l | ≥ Et. (10.10)

Fig. 10.5: Expedition time between train t and train t’.

• Simultaneous Departure: the difference between departure times from the
same station of two trains going in opposite directions must be at least S,
when both trains stop in the station. This constraint is formulated as:

∀t, t′ ∈ Tnew : dept
i − arrt

i > 0 ∧ dept′
i − arrt′

i > 0 → |dept
i − dept′

i | ≥ S.
(10.11)

Infrastructure constraints:

• Finite Capacity of Stations: a train t ∈ Tnew could arrive to a location lti
if and only if it has at least one available track (with platform, if Ct

i > 0).
In order to formulate this constraint, consider:

∀x ∈ Tnew : Tx = {t ∈ T : t 
= x, Jt ∩ Jx 
= ∅} and

Meet(x, t, l) =
{

1 if [arrx
l , dep

x
l ] ∩ [arrt

l , dep
t
l ] 
= ∅ ∧ Ct

l = 0
0 else
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MeetP(x, t, l) =
{

1 if [arrx
l , dep

x
l ] ∩ [arrt

l , dep
t
l ] 
= ∅ ∧ Ct

l > 0
0 else

Hence, the constraint of finite capacity of stations is formulated as follows:

∀x ∈ Tnew,∀l ∈ Jx : ((
∑

t∈Tx

Meet(x, t, l) +
∑

t∈Tx

MeetP(x, t, l) < Nl)∧

(Cx
l > 0 →

∑
t∈Tx

MeetP(x, t, l) < NPl
)). (10.12)

• Closing Time: Let [H1
l ,H

2
l ] be the closing time for maintenance operations

of station l. The closing time imposes constraints over regular operations
-trains can pass but cannot stop in the station (see the next expression).
And can even forbid regular operations, trains can neither pass nor stop
(i.e.: the number of tracks in the station is decreased to one (see (10.12)).

dept
l < H1

l ∨ arrt
l > H2

l . (10.13)

• Headway Time: If two trains, {t, t′} ⊆ T, travelling in the same direction
leave the same location lk towards the location lk+1, they are required to
have a difference in departure times of at least ϕd

k and a difference in their
arrival times of at least ϕa

k. When the blocking type in the track section
is Automatic, then ϕa

k = ϕd
k. Consider the following expression

|dept
k − dept′

k | ≥ ϕd
k. (10.14)

|arrt
k+1 − arrt′

k+1| ≥ ϕa
k. (10.15)

According to the company requirements, the method proposed should ob-
tain the best available solution so that all the above constraints are satisfied.
As we previously pointed out, the network could be previously occupied by
other trains whose timetable have not been changed. That is to say ∀t ∈ TC,
the variables arrt

i and dept
i, have been previously instantiated with given val-

ues. This means ∀t ∈ TC,∀i ∈ Jt, arr
t
i ∈ CONSTANT, dept

i ∈ CONSTANT
and the process generates the constraints so that the arrival and departure
time of trains in circulation are constants, and it does not generate constraints
that only involve variables corresponding to trains in circulation. Next, the
process verifies that each new train satisfies each constraint taking into ac-
count the remaining new trains as well as all the trains already in circulation.
In other words, if a constraint is violated and it relates new trains with trains
in circulation, the only timetables that should be modified are those corre-
sponding to new trains.

The set of constraints just described corresponds to Spanish Railway Com-
pany requirements and do not match exactly with other published works.
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Several criteria can exist to assess the quality of the solution, for example:
minimize travel time, minimize the passenger waiting time in the case of
changeovers, balance the delay of trains in both directions, etc. The objective
function considered in this work is described in the next section.

10.2.3 Optimality of a Solution - Objective function

In order to assess the quality of each solution, we obtain the optimal solution
(optimal traversal time) for each specific train t ∈ Tnew. The optimal solution
of train t is computed by the scheduling of the new train t (verifying all prob-
lem constraints) on the network being occupied only by trains in circulation
(TC). This optimal solution for train t (Γ t

opt) is the lowest time required by t
to complete its journey. The other trains to be scheduled in Tnew are ignored.

Once the optimal time for each new train to be scheduled has been com-
puted, the criterion to measure the quality of each solution will be the average
delay of new trains with respect to their optimum (δ). That is:

δt =
(arrt

nt
− dept

0) − Γ t
opt

Γ t
opt

; δU =

∑
t∈TU∩Tnew

δt

|TU ∩ Tnew| ; δD =

∑
t∈TD∩Tnew

δt

|TD ∩ Tnew| ; δ=
δU + δD
|Tnew|

Finally, assuming TTABLE being one problem solution and therefore the
timetable for all new trains, the objective function of this problem is formu-
lated as:

f (TTABLE) = MIN(δ) (10.16)

If there are no trains in circulation in L (T = Tnew), the optimal time of
a new train t would be:

Mt = Γ t
opt =

nt−1∑
i=0

∆t
i→(i+1) +

nt−1∑
i=0

Ct
i (10.17)

10.3 Solving Process: A Genetic Algorithm Approach

The solving method proposed in this work for the TTP is based on a Job-Shop
approach. In short, the General Job-Shop Scheduling Problem arising in many
companies implies the execution of a set of orders consisting of jobs, satisfying
a set of time and resource constraints. Precedence relationships of jobs of each
order means time constraints and resource constraints that occur when one
resource can not be simultaneously used by two jobs, that is, a manufacturing
machine can not simultaneously perform two jobs. The main objective is to
generate a schedule (job timetable) where each job satisfies time and resource
constraints with the lowest computational effort and optimizing a measure of
performance (usually makespan).
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In the case of the TTP, each train can be decomposed in a set of or-
dered Train-track section (T-ts) that has to verify a set of time and resource
constraints: precedence relations of track sections for each train as time con-
straints and resource constraints when one-way track section can not be si-
multaneously occupied by two trains. The objective is to build a schedule
(train timetable) where each Train-track section satisfies time and resource
constraints and optimizes a measure of performance with the lowest compu-
tational effort.

In this context, if limitation of resources is not taken into account, the
problem is reduced to propagating the initial departure time, dept

0, from lt0
until ltnt

using the journey time ∆t
i→(i+1) that corresponds to each train t

and each track section lti → lti+1. However, in this problem resources have a
finite capacity. A single line contains a set of single-track sections that cannot
be occupied by more than one train at a given time, just as machines in a
job-shop can process only one job at a given time. The TTP is an optimiza-
tion combinatorial problem whose search space grows exponentially when the
number of conflicts increases. This may be due to an increase in the number
of trains, or to a decrease in the capacity of stations (number of tracks with
platform if commercial stop exists), etc. It is well known that this problem
is NP-Hard [2], therefore, heuristic methods are common approaches, able to
obtain “good” solutions with a reasonable computational time. These heuris-
tics have to be able to explore the large search spaces arising in this type
of problems and to achieve a good solution in a short computational time.
Therefore, the GA approach is suitable to cope with the TTP.

Assuming the parallelism just established between both problems, the GA
developed to solve the TTP assumes each train as an order t that is split into
specific jobs tjk and where each job implies that train t uses one track to go
from location j to location k. We represent a job by a pair (t, st

i), where t is
the train and st

i is the ith track section of its journey.

10.3.1 Basic Scheme of the GA

Fig. 10.6 shows the general scheme of a generic genetic algorithm. First, the
initial population (P in Fig. 10.6), whose size is POP SIZE, is generated and
evaluated following a scheduling scheme that is described in both Fig. 10.8
and subsection Initial Population. The following steps are repeated until the
terminating condition end cond (execution time, number of feasible solutions
or number of generations), is reached. Some individuals that compose the pop-
ulation P in Fig. 10.6, are modified by applying the procedures Selection(),
Crossover(), and Mutation(). Thus, a new population P is obtained in each
generation. Each iteration of Fig. 10.6 corresponds to a new generation of in-
dividuals.
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Function Genetic_Algorithm(POP_SIZE, end_cond) As Timetabling

begin

P =Generate_Initial_Population(POP_SIZE)

while NOT (end_cond) do

begin

P =Selection(P )

P =Crossover(P )

P =Mutation(P )

BEST_L =Evaluate_Population(P )

end

return BEST_L

end

Fig. 10.6: General Genetic Algorithm.

10.3.2 Definition of Individuals: Solution Encoding

In order to apply a GA to a particular problem, an internal representation for
the solution space is needed. The choice of this component is one of the critical
aspects for the success/failure of the GA for the problem under study. In the
literature, we have found different types of representations for the solution
of different scheduling problems. In this work, we have used an activity list
as representation of a solution. This solution representation has been widely
used in project scheduling. The solution is encoded as a precedence feasible
list of pairs (t, st

i), that is, if (t, st
x) and (t, st

y) are the jth and kth gene of a
chromosome of the same individual and x < y, then j < k.

The corresponding train schedule is generated applying a modified version
of the Serial Schedule Generation Scheme used in Project Scheduling [9]. In
the list of pairs all trains are merged in order to obtain a feasible solution. In
our implementation, the new trains are scheduled following the order estab-
lished by the list. Each individual in the population is represented by an array
with as many positions as pairs (t, st

i) exist in the railway scheduling problem
considered. Fig. 10.7 shows the activity list representation for a problem with
N pairs (t, st

i).

Fig. 10.7: Activity List Representation.
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According to this list, (t, st
k) is the ith pair to be scheduled. Considering

that st
k = ltk → ltk+1, the departure time of train t from ltk will be the earliest

feasible time from arrt
k + Ct

k. Note that when applying the de-codification
process described in subsection 10.3.8, one and only one schedule can be de-
duced from a given sequence, but different sequences could be transformed
into the same schedule.

Fig. 10.8: Each activity list represents one path of the search tree.

As Fig. 10.8 shows, an activity list represents one path of the search tree.
Different order of the activity list usually will imply a different solution.

10.3.3 Fitness Computation

When applying the GA, we need to define an evaluation function that de-
termines the probability of survival of an individual to the next generation.
In this chapter, the average deviation with respect to the optimal solution
for the train is returned as the fitness value. In other words, an individual
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χ will have the fitness value obtained from the objective function defined in
Section 10.2.3.

10.3.4 Initial Population

The GA starts with the generation of an initial population, that is, a set of
POP SIZE feasible solutions. This set of feasible solutions can be obtained
with different scheduling techniques. For the design of a GA, the initial pop-
ulation should include a variety of medium to good feasible solutions in order
to increase the quality of the best solution in the evolutionary process. In
this work, the value of the POP SIZE is 50. The initial population has been
obtained with an iterative heuristic based on random sampling methods and
that is repeated POP SIZE times (Fig. 10.9). N is the total number of track
sections for all trains t ∈ TNS . It is shown how is created the activity list by
selecting a train (t) and a set of track sections s ∈ Jt for each iteration, until
all the (N) track sections have been scheduled for each new train. A solution
is obtained once N iterations have been completed. Each solution gives a
scheduling order, L = (tx, stx

0 ), ..., (tz, stz
j ), ..., (ty, s

ty
nty ) that represents a new

individual of the initial population.
The scheduling method developed implies the search of a path in a tree as

the one shown in Fig. 10.8. At each decision point, a train with track-sections
unscheduled is selected. This process obtains a feasible timetable with a value
of the fitness function.

The main decision in the procedure Select_Train() is: which train has to
be scheduled at each decision point. Even though a random decision (RAN-
DOM) could be taken selecting the train to schedule randomly, we have ap-
plied a Regret-Based Biased Random Sampling (RBRS) procedure that makes
the selection of a train dependent on its deviation with respect to the optimal
solution (optimal running time of the train calculated as indicated in Section
10.2.3). This approach guides the scheduling process in order to obtain better
solutions.

The Parameterized Regret-Based Biased Random Sampling (RBRS) selects
trains of TNS through a random device. The use of a random device can be
considered as a mapping ψ : i ∈ TNS → [0..1] where a probability ψ(i) of
being selected (being

∑
i∈TNS

ψ(i) = 1) is assigned to each t ∈ TNS . The regret

value (ρi) for each train i ∈ TNS compares the priority value of train i −ν(i)−
with the worst priority value ν(j) of the trains of TNS and is calculated as
follows:

ρi : max
j∈TNS

(νj) − (νi). (10.18)

Therefore, the parameterized probability mapping ψ(i) is calculated as:

ψ(i) :
(ρj + ε)α∑

j∈TNS

(ρj + ε)α
. (10.19)
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Function Generate_Initial_Population(POP_SIZE) As Population

begin

ref =Get_Low_Bound_Opt_Sol()

i =0

P =""

While (i <POP_SIZE)

begin

L = "" //L is a new list of chromosomes

j =0

While (j <N)

begin

t =Select_Train() //using the RBRS method

s =Select_Track_Section(t )

d =Get_Departure(t ,s)

Set_Timetable((t ,s ),d )

L =L +(t ,s ) //(t ,s ) is inserted in L

j =j +1

end

Set_Fitness_To_Individual(L , ref )

P =P +L

i=i+1

end

return P

end

Fig. 10.9: Procedure to obtain the Initial Population.

This parameterized Regret-Based Biased Random Sampling has been
widely and successfully used in project scheduling (Schirmer and Riesenberg
[15], Tormos and Lova [19]). The priority value of each train is calculated
according to its current delay with respect to the scheduled timetable. Trains
with higher delays have more probabilities of being selected. We have im-
plemented the procedure Generate_Initial_Population() using the RBRS
method to select the next train to be scheduled, with α = 1 and ε = 0.5.

10.3.5 Crossover

One of the unique and important aspects of the techniques involving Genetic
Algorithms is the important role that recombination (traditionally, in the
form of crossover operator) plays. Crossover combines the features of two par-
ent chromosomes to form two offspring that inherit their characteristics. The
individuals of the population are mated randomly and each pair undergoes
the crossover operation with a probability of Pcross, producing two children
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by crossover. The parent population is replaced by the offspring population.
The crossover is one of the most important genetic operators and must be
correctly designed. Crossover must combine solutions to produce new ones.
Crossover must preserve and combine “good building blocks” to build better
individuals [5]. Given two individuals selected for crossover, a mother M and
a father F, two offspring, a daughter D and a son S are produced.

We have implemented the well-known one point crossover with Pcross =
0.8. First we draw a random crossover-point k, with k between 1 and N
(number of Train-Track Section in the problem). The first k positions in D
are directly taken from M, in the same order. The rest of the activities in D
are taken with their relative order in the father’s sequence. In this way, the
solution generated, the daughter, is a precedence feasible solution. Obviously,
the generation of S is similar to the daughter’s but S inherits the first posi-
tions directly from F, and the rest of the Train-Track Section from M. The
pseudocode for this crossover technique is shown in Fig. 10.10.

Function Random_Crossover_Point()

begin

//Draw a random integer k , with 1<= k <= N

//k is the random crossover-point

//Generation of the daughter

for i=1 to k do

Di = Mi

for i=k+1 to N do

begin

I = lowest index 1<= I<= N and Fi not in {D1, ..., D(i-1)}
Di = Fi

end

//Generation of the son

........

end

Fig. 10.10: Crossover Procedure.

10.3.6 Mutation

Once the crossover operator has been applied and the offspring population has
replaced the parent population, the mutation operator is applied to the off-
spring population. Mutation alters one or more genes (positions) of a selected
chromosome (solution) to reintroduce lost genetic material and introduce some
extra variability into the population.
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The mutation operator that we have implemented works as follows: for
each pair (t, st

i) in the sequence, a new position is randomly chosen. In order to
generate only precedence feasible solutions, this new position must be higher
than its predecessor and lower than its successor. The chromosome is inserted
in the new position with a probability Pmut. In our implementation Pmut =
0.05.

10.3.7 Selection

Selection is an artificial version of the natural phenomenon called the survival
of the fittest. In nature, competition among individuals for scarce resources
and for mates results in the fittest individuals dominating over weaker ones.
Based on their relative quality or rank, individuals receive a number of copies.
A fitter individual receives a higher number of offspring and, therefore, has a
higher probability of surviving in the subsequent generation. There are several
ways of implementing the selection mechanism.

We have implemented 2-tournament selection. This selection mechanism
implies that two individuals are randomly chosen from the population and
compete for survival. The best of them (the one with the best fitness
value) will appear in the subsequent population. This procedure is repeated
POP SIZE times, until POP SIZE individuals are selected to appear in the
next population.

10.3.8 Decodification Process

In this subsection, we detail the procedure Evaluate_Population() of Fig.
10.6. This procedure receives a population P from which it should obtain
POP SIZE solutions. Each solution will be evaluated according to the objec-
tive function that is defined in Section 10.2.3 (Set_Fitness_Individual()
in Fig. 10.11).

For each pair p = (t, st
i) ∈ L, a departure time is computed by means of the

function Get_Departure(), which returns d = arrt
i + Ct

i if i > 0, otherwise
d = m such that m is the initial departure time given by the user.

Considering that st
i starts at station lti and ends at station lti+1, the proce-

dure Set_Timetable() assigns a possible departure and arrival time to train t
in each location between lti and lti+1, according to the journey time (∆t

i→(i+1))
defined for this train from lti to lti+1. The next step consists in verifying whether
all the constraints defined in 10.2.2 are satisfied by the timetable given for t in
st

i. If any constraint is not satisfied, the departure time in lti is increased until
that constraint is satisfied. This increment in the departure time in lti causes
a technical stop of the train t at this station. A backtracking may occur if
the station is closed for technical operations or if the station does not have
enough tracks.

Once a feasible timetable has been found in this track section for train t,
the same procedure is repeated with the next chromosome (t′, st′

k ).
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The priority of the trains in each track section, that is, which train should
be delayed if a conflict appears, is determined by the order in which each
gene is numbered in the activity list. When a conflict occurs between two
trains in the same track section, the priority is for the train whose timetable
in this track section was assigned first. As different individuals define different
priorities among the trains different solutions may be obtained.

Procedure Evaluate_Population(P )

begin

i =0

While(i <|P |) do

begin

L =Get_Individual(i ,P )

k =0

while(k <|L |)

begin

p =Get_Chromosome(L ,k )

d =Get_Departure(p )

Set_Timetable(p ,d )

k =k +1

end

i =i +1

Set_Fitness_Individual(L )

end

end

Fig. 10.11: De-codification Process.

The parameter setting of the proposed GA results from previous compu-
tational experiments.

10.4 Solving Real Cases with GA

The application of the GA described is illustrated using a real-world problem.
The line considered is the railway line between Madrid and Jaen which covers
54 locations (stations, halts, siding, etc); it is 369.4 kilometers long and has
30/23 two/one-way track sections. Each horizontal line in Fig. 10.12 shows
the position of each location.

The timetabling shown in Fig. 10.12a corresponds to the traffic in the
line Madrid-Jaen and in the time window [12:00, 24:00] there are 103 trains
in circulation, before adding the new trains. Each point of the oblique lines
corresponds to the position of one train (axis Y) at a given time (axis X).
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(a) Trains in Circulation (b) Solution

Fig. 10.12: Graphical Representation of a Problem Example and its Solution.

We have to add 59 new trains to the line in the time window [12:00, 24:00]
satisfying the constraints, taking into account the trains in circulation and
minimizing the average delay of the new trains. Usually, the planner works
only assisted by a graphical tool and schedules trains in a lexicographic order
(one train after another). The solution obtained is a feasible solution but not
necessarily a good solution due to the multiple combinations that must be
considered simultaneously. Fig. 10.12b shows the solution obtained using the
GA approach in 300 seconds using a Pentium IV 3.6 Ghz processor. The value
of the objective function for this solution is 7.2% (see Section 10.2.3).

10.4.1 Results

The performance of the GA developed has been tested using a set of real-
world problems provided by the Spanish Manager of Railway Infrastructure
(ADIF). The description of the instances is given in Table 10.1 (columns 2
to 10) by means of: length of the railway line, number of single/double track
sections, number of locations and stations, number of trains and track sections
(T-ts) corresponding to all these trains, considering trains in circulation and
new trains, respectively.
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Table 10.1: Real railway problem instances provided by ADIF.

Problems
Infrastructure Description Trains in Circulation New Trains

Km 1-Way 2-Way Loc Stat Trains T-ts Trains T-ts

1 96 16 0 13 13 47 1397 16 180

2 129 21 0 22 15 27 302 30 296

3 256 38 0 39 28 81 1169 16 159

4 401 37 1 39 24 0 0 35 499

Each problem has been solved using the two constructive methods used to
generate the Initial Population that differs in the criterion to select the trains:

• Random selection of each train to be scheduled in each iteration (RAN-
DOM).

• Selection of each train using the Parameterized Regret Biased Based Ran-
dom Sampling method (RBRS).

• The results obtained by means of these constructive methods are compared
against those achieved by the GA with the same computational time.

Table 10.2 summarizes the results for each solving method with respect to the
number of solutions generated (# of Solutions) and Average Deviation with
respect to the Optimal Solution (ADOS) according to expression (10.16). The
tests have been carried out in a Pentium IV 3.6 Ghz processor and the running
time was of 300 seconds for all the problems. α = 1 and ε = 0.5. The different
number of solutions generated depending on the method used is because a
prune procedure is applied when the RANDOM and RBRS approaches are
used. That is, when a partial schedule produces a value of the objective func-
tion worse than the best value obtained at the time, then the current iteration
is interrupted and the construction of a new one starts. However with the GA
approach, the prune is not possible because each iteration must be completed
to obtain a fitness value for the solution. This fitness value is necessary to
obtain the next generation of individuals.

Table 10.2: Results of the RANDOM, RBRS and the GA scheduling methods.

Problems
RANDOM RBRS GA

# of Solutions ADOS # of Solutions ADOS # of Solutions ADOS

1 267 18 263 15.4 255 15.1

2 611 10.1 608 10.0 313 9.6

3 424 14.7 521 14.1 382 12.4

4 405 19.2 397 17.9 285 16.0

Results of Table 10.2 show that the GA proposed outperforms both RAN-
DOM and RBRS methods for all problem instances considered. These results
demonstrate the efficiency of the GA to solve Railway Scheduling problems
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against other constructive algorithms and support the idea of developing more
sophisticated and powerful GAs to solve complex problems such as Train
Timetabling Problem.

10.5 Conclusions

Optimizing a train schedule on a single line track is known to be NP-Hard.
This makes it difficult to determine optimum solutions to real life problems
in reasonable time and raises the need for good scheduling techniques. The
Train Timetabling Problem considered in this work implies the optimization
of new trains on a railway line that is occupied (or not) by other trains with
fixed timetables. The schedule for the new trains is obtained with a Genetic
Algorithm that includes a guided process to build the initial population.

The GA developed has been used to solve real-world instances and its per-
formance has been compared against constructive approaches. The results of
the computational experience, point out that GA is an appropriate method to
explore the search space of this complex problems and that further research in
the design of efficient GA is justified. The GA approach proposed in this work
might be improved with the use of local search able to intensify performance
around promising regions of local optima. An added value of the proposed
GA is that its main concepts are embedded in a computer-aided tool that is
being successfully used by the Spanish Manager of Railway Infrastructure.
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Summary. This chapter proposes a natural stigmergic computational technique
Bee Colony for process scheduling and optimization problems developed by mim-
icking social insects’ behavior. The case study considered in the chapter is a milk
production center, where process scheduling, supply chain network etc. are crucial,
as slight deviation in scheduling may lead to perish out the item causing finan-
cial loss of the plant. The process scheduling of such plants extensively deals with
multi-objective conflicting criteria, hence the concept of Pareto Dominance has been
introduced in the form of Pareto Bee Colony Optimization. Some facts about social
insects namely bees are presented with an emphasis on how they could interact and
self organized for solving real world problems. Finally, a performance simulation and
comparison has been accomplished envisaging other similar bio-inspired algorithms.

Key words: Supply Networks, Scheduling, Bee Colony Optimization, Multi-
objective Optimization, Pareto Bee Colony.

11.1 Introduction and Background

Supply networks are organizations of partially autonomous production and
distribution centers through which goods are processed and delivered to
customers. Optimizing the activities of a supply network to improve pro-
duction throughput and timeliness of the delivery requires dealing with a
number of large-scale, interrelated assignments, scheduling and routing prob-
lems. The optimization is especially challenging for a supply network that
delivers rapidly perishable goods, such as raw materials used for manufactur-
ing foods and beverages. The perishable goods are only used within a period
of restricted time limit, so it is expected that their production and delivery
are made only on stipulated demand and even their routing through proper
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channel also becomes an issue. Naturally the problem of such type requires
multi optimization with large number of constraints at different stages. The
specialty of such optimization is not only about their costs but also flexibility
and robustness of the solution could also be considered. It is observed that any
small deviation over local activity may inject a cascaded delay while deploying
the common resources. Therefore, referring the aspect of perishable material
for food industry, this may turn into substantially significant financial loss
and even degrading the brand value of the company, and all the conventional
predefined optimal solutions could become impractical due to various other
constraints. Professionals find it as trade off between the minimizing the costs
of operations and providing shock absorption over these disruptions.

There are certain commercial tools (like CPLEX) available to address these
issues. A considerable number of works that demonstrate the approach of sup-
ply network logistics issues, but comparatively less versions of multi optimiza-
tion scheduling based on meta-heuristics have been established. We propose
a novel hybrid meta-heuristics optimally in a supply network for perishable
material concerned with food industry. The genesis of the search strategy is
based on evolutionary computation method, mainly to exploit its efficient ex-
ploration/exploitation capability in the large search space of the main decision
variables characterizing our scheduling problem. The solution integrates the
followings:

• A detailed mathematical model of the logistic problem that unambiguously
specifies the free decision variables.

• A set of fast heuristics organized in a hierarchical structure that is able to
construct a fully feasible solution starting from an initial assignment of a
subset of decision variables.

• A multi-objective bee colony based rough set algorithm that searches for
the set of best tradeoff solutions considering both the costs and the ro-
bustness of the corresponding schedules.

The proposed solution is presented in the context of reducing the risk and
uncertainty in optimization. The optimization algorithm returns a set of solu-
tions with different cost and risk tradeoffs, allowing the analyst to adapt the
planning depending on the attitude to risk. The subsequent section presents
an overview of supply chain modelling through diversified methodologies es-
pecially envisaging adaptive and intelligent techniques.

Background

The globalization, dynamics, and frequent variations of customer demands on
today’s markets increase the needs of companies to form supply chains (SCs)
and cooperative business partnerships that enable them to survive on today’s
competitive market [6, 7]. SCs are networks of autonomous business entities
that collectively procure, manufacture, and distribute certain products. The
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objective of a SC is to respond efficiently to customer demands and at the same
time, it must minimize the cost of all participating business entities. To achieve
this objective the supply chain management (SCM) system must coordinate
and optimize the procurement, production, and distribution of goods. In real-
ity, however, SCs are often operating in dynamic and non-homogenous cultural
environments. Therefore, current SCM systems need to adopt adaptive learn-
ing features and reasoning of theory of evidence to reflect the changes in the
dynamic cultural environment. In practical research, there are couples of sup-
ply chain works primarily concerned with adaptive reasoning and seems to be
hybrid intelligent. For example, Several systems were developed to model the
SCs complexity using a GA, for examples Truong and Azadivar [8] have inte-
grated GAs, mixed integer programming methods, and simulation techniques
into a hybrid optimization model, while other researchers use GAs and Pareto
Optimal techniques [9]. Furthermore, Al-Mutawah, Lee, and Cheung have de-
veloped a Distributed Multi-objective Genetic Algorithm (DMOGA) to solve
the SC optimization problem in [10]. One common limitation of DMOGA and
other typical genetic based implementation of multi-objective optimization is
the inheritance process of GA, which restricts the parents to transfer experi-
ences only to their offspring, ignoring the influence of other external sources.
In real world, particularly in a distributed environment, SC applications data
are collected from heterogeneous sources, implying the need to co-opt other
sources of influence as well.

11.2 Related Works on Meta-heuristics

As it has been discussed in previous sections, the supply chain is a complex
network of facilities and organizations with interconnected activities but dif-
ferent and conflicting objectives. Many companies are interested in analyzing
their supply chain as an entire and unique system to be able to improve their
business. However, in most cases the task of designing, analyzing and manag-
ing the supply chain has been done based on experience and intuition; very
few analytical models and design tools have been used in the process. This im-
plies that finding the best supply chain strategies for a particular firm, group
of firms or sector poses significant challenges to the industry and academia.
The optimization literature focuses on algorithms for computing solutions to
constrained optimization problems.

Meta-heuristics have many desirable features to be an excellent method
to solve very complex SCM problems: in general they are simple, easy to
implement, robust and have been proven highly effective to solve hard prob-
lems. Several other aspects are worth to mention. The first one is the meta-
heuristicsc modular nature that leads to short development times and updates,
given a clear advantage over other techniques for industrial applications. This
modular aspect is especially important given the current times of implement-
ing a Decision Support System (DSS) in a firm and the rapid changes that
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occurs in the area of SCM. The next important aspect is the amount of data
involved in any optimization model for an integrated supply chain problem,
which can be overwhelming. The complexity of the models for the SCM and
the incapacity of solving in real time some of them by the traditional tech-
niques, force the use of the obvious technique to reduce this complex issue
by data aggregation [11]. However this approach can hide important aspects
that impact the decisions. Other reports published presented a complex vehi-
cle routing model to the distribution in the food and beverages industries [12].

A literature search in food science and technology databases reveals that
optimization using response surface modelling (RSM) has been, and contin-
ues to be, the most common approach. RSM techniques were introduced in
the 1950s associated with design of experiments methods [1,2]. Although the
usefulness of RSM in certain conditions must be recognized, this approach has
a number of important drawbacks due to the empirical, local and stationary
nature of the simple algebraic models used. In contrast, a number of power-
ful model-based optimization methods have been developed during the last
decades, which use more rigorous, time-dependent models. Primarily, at the
core is the problem domain from which instances were drawn. The problem
domain consist twenty four distinct instance classes on the basis of twelve
distinct problem specifications. Except for the 100-job single machine total
weighted tardiness instance class, for each instance class, a new benchmark
set of 125 instances was created. Furthermore, solutions were obtained for all
3000 instances and recorded to serve as reference for future research. In order
to find these solutions, new solution representations were developed for the
problems with a parallel machine environment. Moreover, well known speed
up techniques for the single machine total weighted tardiness problem were
adapted to the constraints posed by objective functions that ignore weights
or impose a unit penalty on each late job. Finally, the speed up techniques
was adapted to work in machine environments with more than one machine
in parallel [3].

Mixed planning and scheduling problem was discussed in length and it has
been shown how to extend a conventional scheduler by some planning capabil-
ities during the investigation on complex process models [4]. Balanced theory
and practice of planning and scheduling in supply chains also have become
prominent area of implementation [5]. The project first gives an overview
of the various planning and scheduling models that have been studied in
the literature, including lot sizing models and machine scheduling models.
It subsequently categorizes the various industrial sectors in which planning
and scheduling in the supply chains are important; these industries include
continuous manufacturing as well as discrete manufacturing followed by the
description how planning and scheduling models can be used in the design
and the development of decision support systems for planning and scheduling
in supply chains and discuss in detail the implementation of such a system at
the Carlsberg A/S beer-brewer in Denmark.
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The trend of research and implementation found to be more practical
when natural heuristics has been incepted in scheduling the activities. Many
project tasks and manufacturing processes consist of interdependent time-
related activities that can be represented as networks. Deciding which of these
sub-processes should receive extra resources to speed up the whole network
(i.e. where activity crashing should be applied) usually involves the pursuit of
multiple objectives amid a lack of a priori preference information. A common
decision support approach lies in first determining efficient combinations of
activity crashing measures and then pursuing an interactive exploration of
this space.

11.3 Motivation and Importance Behind the Model

Most of the raw material of food and beverages are perishable due to their
complex preservation approach and thus conventional Just in Time (JIT)
methodology doesn’t hold good as it seldom fails in uncertainty and ambiguity.
The distribution network of finished frozen food products also requires utmost
prompt delivery over a broader geographical coverage preventing them from
damage in terms of food value and nutrition. The vehicle used for dispatching
have limited capacity, and so large demands require several vehicle loads to
transport all the products at proper places in time. These activities have to
be properly synchronized, because the unloading at the customer site must
be continuous in order to prevent compromising the food value properties
of the product. Each production centers of food processing aims to increase
resource utilization decrease costs and ensure the timeliness of the deliveries.
Hence, those centers pursue multiple, contradictory goals. At present, many
companies tend either to rely on skilled operators that work out production
plans based on their experience, or to plan production operations on very
short time horizons, sacrificing the optimization on longer horizon to achieve
a reduced risk of delayed delivery.

The plethora of different type ambiguous problems of supply network en-
visages the present working project deploying certain novel components of
evolutionary computations. The aim is to present a smarter and easily under-
stood model, which could assist the logistics managers of food industry for
scheduling their supply network in an optimized direction both on and off the
production (including distribution).

Concept of Hybrid Meta Heuristics for the Proposed Model

We consider the problem of scheduling of events in the form of Directed Acyclic
Graph (DAG). Each node in the graph represents an executable task. Each
directed edge represents a precedence constraint (or simply dependence) be-
tween two tasks; the sink node cannot start execution until the source node
has finished and the transmission of the required amount of data from the



282 Banerjee et al.

source node to the sink node has been completed. We assume that the DAG
has always a single entry node (i.e. a node with no parents) and a single exit
node (i.e. a node with no children). The target environment consists of a set of
heterogeneous events, which are fully connected; a data transfer cost is given
for each pair of events (like controlling the procurement of more perishable
raw materials, enabling the dispatch of food product and beverage over the
distribution network, etc). A task can execute on any available events; the
execution cost of each task on each event is also given. The task scheduling
problem is to allocate tasks for execution onto events in such a way that prece-
dence constraints are respected and the overall execution time is minimized.
It is assumed that only one task can execute on an event at a time and once
a task has started execution it cannot be preempted.

The heuristic consists of three phases: (a) Ranking; (b) Group creation;
and (c) Scheduling independent tasks within each group. For each of the stages
the proposal is combining two different techniques concerned to tackle both
optimization and uncertainty in the execution of the events. We incorporate
Bee colony optimization (BCO) and rough set approach for this mode.

In the first phase, a weight is assigned to each node and edge of the graph;
this is based on averaging all possible values for the cost of each node (or edge,
respectively) on each events (or combination of events, respectively). Using
this weight, upward ranking is computed and a rank value is assigned to each
node. The rank value, of a node ri is recursively defined as follows:

ri = wi+max(cij+rj), (11.1)

where ∀j ∈ si and wi is the weight of node i, Si is the set of immediate
successors of node i and cij is the weight of the edge connecting nodes i
and j.

In the second phase, nodes are sorted in descending order of their rank
value; using this order, they are considered for assignment to groups as follows.
The first node (i.e. the node with the highest rank value) is added to a group
numbered 0. Successive nodes, always in descending order of their rank value,
are placed in the same group as long as they are independent with all the nodes
already assigned to the group (i.e. there is no dependence between them in
the DAG). If dependence is found, then the node with the smallest rank value
(i.e. the sink of the dependence) is made the member of a new group; the
new group’s number is the current group’s number increased by one. Again,
subsequent tasks, in terms of their rank value, will be added to this group as
long as they are not dependent to any other node which is a member of this
group; if they are, a new group will be created and so on. The outcome from
this process is a set of ordered groups, each of which consists of a number of
independent tasks, and has a predetermined priority (based on the original
ranking of the nodes; a smaller group number indicates higher priority).

The third phase of heuristics comprises of a schedule of the DAG can be
obtained by considering each group in ascending order of its number, and
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using any heuristic for scheduling the independent tasks within each group.
It is noted that the input of the latter heuristic will be a set of (independent)
tasks; a set of machines; the array giving the execution cost of each node on
any machine; and, another array giving the earliest time that each task may
start execution on each event.

11.4 Bee Colony Optimization

Various unsocial insect colonies such as ants, wasps, termites and bees exhibit
remarkable problem solving behavior. Although a single insect is quite lim-
ited in its ability, complex behavior is exhibited at the level of the colony that
emerges from the interactions of the individual insects [13]. This phenomenon
is called Self-Organization. The foraging behavior of honey bees has been ex-
tensively studied and is a useful example of self-organization. Computational
biology and modelling of these self organized properties mediated in solving
plenty of complex optimization and scheduling problems.

Mathematical Model of Foraging for Honey Bees

Foraging is an interesting property to observe for honey bees and it is com-
plex process involving large number of individuals collecting food from many
different sources. Differential equation models have shown how quite simple
communication mechanisms can produce complex and functional group level
foraging patterns. Here, we concentrate our focus on the mathematical aspects
of foraging including waggle dance of bees during the foraging. For example,
although individual honey bee foragers follow only a small number of the
waggle dances advertising flower patches, the colony can nonetheless focus its
foraging effort on the most profitable patches. Similarly, certain ants deploy
their foragers preferentially on the shorter of two paths, despite few if any in-
dividual insects directly comparing the paths [15,16]. The potential benefit of
the existing mathematical models are to understand how population change
through time. The number of bees foraging for a particular food source can be
represented as single variable that changes its value as the insects are recruited
to and abandon the source. These recruitment and abandonment rates can be
written as functions of the number of insects foraging at a source, waiting at
the nest, or scouting for new sources. There are many impressive literatures
available on the different aspects of differential equation based modelling of
insects encompassing the foraging [17–26].

In the mathematical model, several behavioral states could be contem-
plated. Colonies have access to n number of food sources. Each state has an
associated variable, indexed by source (by default). Hence, the different sates
in the dynamic model would like to be:

• Waiting (denoted as W ): Waiting at the nest and available to start
foraging.
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• Searching (denoted as S): Searching for food sources.
• Exploiting (Ei): Exploiting food source i. Workers in this state do not

directly recruit nest mates, although they may leave signals, such as
pheromone trails, that increase the likelihood of other foragers finding
the source.

• Recruiting (Ri): Attempting to recruit nest mates to food source i.
• Following (Fi): Attempting to follow recruiters to food source i.

In order to model and deploy the differential equation in these behavioral
states of bees, we would like to establish a series of mathematical anomalies
stated as follows:

• A waiting worker W can become an exploiting forager at source i Ei

through three different routes, iff she might be activated to search (through
function a), and then discover the food source (through di). Or, she might
be led toward the food source through direct contact or communication
(hi) with another worker, arriving (si) only if the communication is suc-
cessful. Finally, she might reach a food source by following an indirect
signal, such as a pheromone trail (through ji).

• The function ji represents indirect recruitment, where successful foragers
influence their environment in a manner that increases the chance of nest
mates finding the food.

• The function f i represents direct recruitment, where successful foragers ei-
ther physically lead nest mates to the food source or directly communicate,
in the nest, the location of the source [27].

• The population of workers in the nest, W , increases as searchers are de-
activated (b), exploiters retire from foraging (gi), and followers get lost
and return to the nest (vi). Conversely, the population decreases as nest
workers are activated to search (a), as they are led by indirect recruit-
ment signals to become exploiters (ji), and as they begin to follow direct
recruitment to various food sources (hi).

Considering these dynamic conditions, we can write series of equations [14]:

dw/dt = b+
n∑

i=1

gi +
n∑

i=1

vi − a−
n∑

i=1

ji −
n∑

i=1

hi (11.2)

where b is deactivated searchers as population of workers w increases in the
nest, gi denotes exploiters retire from foraging, vi denotes return to the nest,
a denotes activated workers, ji is the recruitment signal and hi denotes the
direct recruitment of different food source.

The exhaustive mathematical treatment even prescribe to estimate the
optimal investment in workers by colonies that use this foraging mechanism.
A productivity function can be defined as to show how foraging efficiency
depends on the maximum number of ants foraging at a food source at stable
equilibrium [28]. These collective decision making of bees assist to model more
complex situation very similar to group of robots taking a decisions in a group.
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11.5 Multi-Objective Optimization and Standard Bee
Colony Optimization Algorithm

Most real world optimization problems are naturally posed as multi-objective
optimization problems. However, due to the complexities involved in solv-
ing optimization problem and due to lack of suitable and efficient solution
techniques, they have been transformed and solved as single objective opti-
mization problem. Moreover, because of the presence of conflicting multiple
objectives, a multi objective optimization problem results n a number of opti-
mal solutions, known as Pareto optimal solutions [29]. In standard practice of
using bee’s natural properties in computation it has been observed there may
be substantial number of instances where selection of best and nearly best
solution against very close processes comprising of conflicts or constraints as-
sociated with it. This leads to the solution of Pareto type and in this proposal,
we introduce the concept of PBCO (Pareto Bee Colony Optimization) in the
context of scheduling of several processes very similar to the case of Milk
Production Center presented here. Primarily, the standard bee colony and its
property have been considered and subsequently their affinity to the process
scheduling is discussed.

Algorithm 11.1: Basic Bee Colony Optimization Algorithm-High Level
Description.

Step 1 : I n i t i a l i z a t i o n . Determine the number o f Bees and
the number o f i t e r a t i o n s I . S e l e c t the s e t o f
Stages ST = { st1 , st2 , . . . , stm } .
Find any Fea s i b l e s o l u t i o n x o f the problem .
This s o l u t i o n i s the i n i t i a l Best So lu t i on .

Step 2 : Forward Pass : Allow Bees to f l y from the hive
and to choose B p a r t i a l s o l u t i o n s from the s e t
o f p a r t i a l s o l u t i o n Sj at s tage S t j .

Step 3 : Backward Pass : Send a l l bees back to the h ive .
Allow bees to exchange in fo rmat ion about qua l i t y
o f the p a r t i a l s o l u t i o n created ( without
r e c r u i t i n g nest mates ) or dance .

Step 4 : Update Best So lu t i on and return to the nest with
increment ing the counter .

A general scheduling problem can be formalized as follows [30]. We con-
sider a finite set of operations O, partitioned into m subsets 〈M1, . . . ,M2〉 =:
M(

⋃
M i = O) and into n subsets 〈J1, ......, Jn〉 =: J(

⋃
Jk = 0). Together
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with a partial order p ⊆ O×O such that p∩ J i × Jj for i 
= j and a function
p : O → N . A feasible solution is a refined partial order p∗ ⊇ p for which the
restrictions p ∗ IM i ×M i and p ∗ Jk × Jk are total, ∀i, k. Most importantly,
the cost of a feasible solution is defined by Cmax(p/ast) := max{∑ p(o)|C
is a chain in (O, p∗)}. The effort is to minimize Cmax. Here M i is the set of
operations that have to be processed on machine i. Jk is the set of operations
belong to job k (analogues to core task and sub tasks of the Milk production
center mentioned in the case study). All the processes or operations must be
performed sequentially and this constraint has been expressed in p∗.

Considering theses assumptions as the benchmark of the case study of the
milk production center where the processes are sequential and time bound
otherwise the milk core need to be perished out, the model is likely to con-
centrate on the optimal execution of process scheduling maintaining their
intermediate time and other constraints during the makespan. The makespan
of the scheduling has been modelled through proposed Pareto Bee Colony Op-
timization (PBCO), envisaging their natural property like waggle dance and
foraging.

11.5.1 Waggle Dance –Computational Interpretations

A forager f i on return to the hive from nectar exploration will attempt with
probability p to perform waggle dance on the dance floor with duration D =
diA, where di changes with profitability rating while A denotes waggle dance
scaling factor. Further, it will also attempt with probability ri to observe
and follow a randomly selected dance. The probability ri is dynamic and
also changes with profitability rating. If a forager chooses to follow a selected
dance, it will use the “path” taken by the forager performing the dance to
guide its direction for flower patches. We term the path as “preferred path”.
The path for a forager is a series of landmarks from a source (hive) to a
destination (nectar).

11.5.2 Forage and Combining Rough Set

For foraging algorithm, a population of l foragers is defined in the colony. The
foragers move along branches from one node to another node in the disjunctive
graph and so construct paths representing solutions. A forager must visit
every node once and only once in the graph, starting from initial node (i.e.
source) and finishing at final node (i.e. sink), so as to construct a complete
solution. When a forager is at a specific node, it can only move to next node
that is defined in a list of presently allowed nodes, imposed by precedence
constraints of operations. It has been observed that after complete deployment
and performance benchmark of the proposed BCO uncertainty and ambiguity
part still exist. In order to the model more feasible and applicable, the concept
of rough set is sorted to use in conjunction with BCO.
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11.5.3 Process Scheduling and Optimization under Uncertainty

The scheduling problem has usually been seen as a function of known and
reliable information. Modelling approaches developed are mainly determinis-
tic, that is, they are based on nominal or estimated values for all the para-
meters, thus implicitly assuming that a predictive schedule will be executed
exactly as planned. However, this assumption is somehow utopian since most
plants operate in an unstable and dynamic environment, where unexpected
events continually occur. Scheduling problems involve data coming from dif-
ferent sources, and which varies rapidly over time as customer orders, resource
availabilities and/or processes undergo changes. Data may be ambiguous, out-
dated or inaccurately predicted before the problem is solved. Because of the
dynamic and uncertain conditions of a real process system, the schedule ex-
ecuted in the plant will probably differ from the predicted one. The effects
of the uncertainty may impact on the system’s efficiency, eventually leading
either to an infeasible situation, or to the generation of opportunities that
improve its performance. These situations may become even more significant
with the new trends towards managing the whole SC. As stated by Aytug
et al. [34], internet technology enables companies within a SC to share their
production schedules. In this environment, changes to the production schedule
at a downstream node of the SC can cause significant disruptions in upstream
operations. These variations can be amplified causing what is known as the
bullwhip effect [35]. The consideration of the uncertainty when modelling the
problem is essential for the development of reliable and effective decision-
support systems. Several methodologies are available in PSE (Process Systems
Engineering) for optimization under uncertainty. They are categorized, in line
with the method used to represent the uncertainty, represented as follows: (a)
Probabilistic data - based methods; (b) Stochastic optimization; (c) Fuzzy or
Rough Set data - based methods; and (d) Fuzzy Programming.

Blackhurst et al. [36] proposed a network-based methodology to model and
analyze the operation of a SC as an abstracted network, with uncertainty in
variables such as requirements, capacity, material delivery times, manufactur-
ing times, costs, due dates and priorities. The term stochastic optimization
is sometimes used referred to meta-heuristics because of the probabilistic na-
ture of these optimization methods. In general, and as differentiated by some
impressive research [37], stochastic optimization involves methods specially
developed to address problems with uncertain data, whereas meta-heuristics
use stochastic properties in their search.

Although the present model is not deploying stochastic optimization, but
broadly the uncertainty part of scheduling events is handled through Rough
set based rule metaphor. Hence, the core meta heuristics is being the Pareto
Bee colony, subsequently rough set assists to model the associated events with
the process and could rank them as well.
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11.5.4 Rough Set

Rough set theory is an extension of conventional set theory that supports
approximations in decision making. It possesses many features in common (to
a certain extent) with the Dempster-Shafer theory of evidence and fuzzy set
theory. The rough set itself is the approximation of a vague concept (set) by
a pair of precise concepts, called lower and upper approximations, which are
a classification of the domain of interest into disjoint categories. The lower
approximation is a description of the domain objects which are known with
certainty to belong to the subset of interest, whereas the upper approximation
is a description of the objects which possibly belong to the subset. For the
present problem, the features of individual events have been accumulated:

A feature xi is relevant if there exists some value of that feature and
a predictor output value or A feature xi is weakly relevant if it is not
strongly relevant, and there exists some from the set of the features
forming a pattern vi, for which there exist subset of features

followed by a ranking of such evaluated features and eventually the choice
of the first best m features. Thus ranking of features of all events related
to scheduling process of milk food processing industry both on and off the
production, including dispatch could be modelled by rough set theory. The
content of large-scale data sets containing numerical and categorical informa-
tion can not be easily interpreted unless the information is transformed into
a form that can be understood by human users. The rule extraction algo-
rithms are designed to identify patterns in such data sets and express them
as decision rules. The rule extraction concept is illustrated next.

Rule and Data Set

Consider the data set in Table 11.1 with five objects, four features F1-F4, and
the decision (outcome).

Table 11.1: Rule Snapshot of Rough Set.

RULE 1 IF (F2 = 0) THEN (D = Low); [2, 6.67%, 100%][3, 5]

RULE 2 IF (F1 = 0) AND (F4 = High) THEN (D = 0); [1, 33.33%, 100.00%][1]

RULE 3 IF (F4 = 0) THEN (D = Medium); [1, 100%, 100%][4]

RULE 4 IF (F1 = 1) THEN (D = High); [1, 100%, 100%][2]

The features denote process parameters (e.g., temperature, pressure, time)
and the decision is the component performance, high, medium, low. A rule
extraction algorithm transforms the data set of Table 11.1 into the decision
rules of Table 11.2. The two sets of numbers in square brackets behind each
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Table 11.2: Decision rules in Rough Set.

0 0 0 1 Low

0 0 1 3 Low

0 1 0 2 Low

0 1 1 0 Medium

1 1 0 2 High

rule describe its properties. The decision rules of Table 11.1 correspond to the
patterns indicated by shaded cells in the matrix in Table 11.2.

11.6 Case Study of Milk Food Product Processing
and Production

The raw chilled milk so received subjected to different processes like pas-
teurization heating and separation/standardization. The detailed process is
outlined as follows:

• Raw milk in 40 liters can is received through milk routes established all
over the milk shed.

• The milk is graded, weighed an sampled

Problem Statement

The milk production center (MPC) also to undergo different processes and
sub processes such as first regeneration, second regeneration, third regenera-
tion, heating, cooling, chilling, internal sub-processing for products, packaging,
storage and distribution. The parameters shown in Table 11.3 are crucial for
all critical processes and sub processes:

Table 11.3: Process Parameters in Milk Processing Centers.

Process Sub-Process Time-Temp-Pressure Remark

Milk reception Dispatch <15 mts Crucial
Pasteurization 1st Generation, 20 sec/ 75-85 o Very Crucial

2nd generation, Heating, C/25kg/cm2 Stem
Cooling and Chilling Pressure

Standardization Other Sub processes 5-6 degree Celsius Important
for Milk based products

There are at least 10 major processes identified without split up, which
need to be monitored and scheduled priori basis. The processes comprise of
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different process or makespan of sub processes and its time windows. The
conceptual flow diagram of the case study is shown in Fig. fig:MHS-09-1 and
its associated parameters are demonstrated in Table 11.3. Among all these
parameters certain are influential enough to implicate scheduling of processes,
etc.

The broad idea is to incorporate the proposed Pareto Bee Colony Opti-
mization in terms of process scheduling with multi-objectives and constraints.
Later on, a few uncertain and ambiguous parameters are separated in schedul-
ing process and rough set approach is coined to address this issue.

Fig. 11.1: Process Flow Diagram of MPC.

The Mathematical Model

Let us represent the given activity structure as an activity node based network
in a milk production center (MPC), whose nodes can be numbered as 1, . . . , n.
Arcs are used to indicate precedence relationship between nodes (activities).
The time required for activity i is denoted by d(i). For given values d(i), the
shortest project time δ is defined as the length of critical path. We assume
that a finite set M(i) of measures is to each node i. A measure xi ∈ M(i) is
any means that influences the duration of the process based activity connected
with node i. Each measures xi is realized by certain values:

• The modified duration d(i, xi) of activity i resulting as a consequence of
the measure xi. The proposed model is concerned in speeding ups the
processes and sub processes, so we assume d(i, xi) ≤ di.

• The cost associated by the process also have been accumulated.
• The model also comprises of target functions like:
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hf1(x) = ϕ1(δ(x)), (11.3)

where, is the shortest project time after reduction of the durations d(i) to the
values d(i, xi) to the values d(i, xi).

The core process in the milk production center (MPC) is quite exceptional
problem in the context of just in time scheduling approach.

Fig. 11.2: Directed Process Graph of Milk Processing Center.

The present model of milk processing comprising four major tasks or
processes and 8 sub processes (Fig. 11.2). The scenario is interpreted through
directed graph. Directed graph G, consisting of two sets of nodes, V1 and V2,
corresponding respectively to materials and tasks. Successor and predecessor
nodes to a node in V1 are always nodes in V2 and, vice-versa, successor and
predecessor nodes to a node in V2 are always nodes in V1. Hence the arcs in
the graph always connect nodes from Vi to Vj , where i 
= j. An arc (r, i) from
a node in r ∈ V1 to a node i ∈ V2 is introduced if task i requires material r
as an input. The label on arc (r, i) is ρi,r, the fraction of input to task i due
to material r. Similarly, an arc (i, r) from a node i ∈ V2 to a node r ∈ V1 is
included in the graph if task i produces material r. The label on arc (i, r) is
σi,r, the fraction of output from task i in the form of material r. Fig. 11.2
provides an example of such a network with 8 materials (numbered 1-8) and
4 tasks (labelled A-D).

11.6.1 The Proposed PBC Optimization Algorithm

The present problem of Milk Production and its sub process can be mapped
with the Pareto Bee colony’s characteristics. A forager fi on return to the
hive from nectar exploration will attempt with probability p to perform wag-
gle dance on the dance floor with duration D = di A, where di changes with
profitability rating, while A denotes waggle dance scaling factor. Further, it
will also attempt with a probability ri to observe and follow a randomly se-
lected dance. The probability ri is dynamic and also changes with profitability
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rating. If a forager chooses to follow a selected dance it will deploy the path
followed by the forager performing the dance to guide its direction for flower
patch. In this model we define it as Preferred Process Path (PPP). Hence, the
path for a forager is a series of landmarks from a source (hive) to a destination
(nectar).

The proposed model of PBCO also implicates a direct relation with the ob-
jective function to the profitability rating. Therefore P fi

= 1
ϕ1(δ(x)) , where Pfi

is the profitability rating for a forager. Theoretically, the average profitability
rating of Bee colony is

Pfcolony
= 1/n

∑
1/f1(x) = ϕ1(δ((x)),

where n is the number of waggle dance just in time, (refer to the process and
resources in directed process graph).

Moreover, 1/f1(x) = ϕ(δ(x)) is the value of objective function, which
should be maximum if a forage fi or fj performs waggle dance. The duration
of dance is proportional to the completion of process time, which in turn just
in time accomplished between all sub processes. In the process graph, forager
must visit each process node i exactly once and it will follow a state transition
rule to select best process path, so that no processes of milk production or
its sub-process are being delayed. The state transition rule followed by the
forager on the process span graph is according to the rule:

Pij =
[ρij(t)]α · [1/dij]β∑
[ρij(t)]α · [1/dij]β .

The rating ρij of the directed edge between process nodes i and j is
given by:

ρij =
{

α
1 −mα/k −m

where α is the value assigned to the Preferred Process Path (PPP), α < 1.0;
k is the number of allowed nodes and m the number of preferred paths. The
parameters α and β are the probability of the best process path which is in
relation between preferred path versus heuristic distance. According to this
rule, edges that are found in the preferred path and that are shorter will have
a higher probability to be chosen for the solution. The heuristic distance is
the processing time of the operation associated with node j. When a forager
completes a full path, the edges it has travelled and the make-span (process
span) of the resulting solution will be kept for the waggle dance when it returns
to the hive.
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Algorithm 11.2: Pareto Bee Colony Optimization -High Level Description

Initialize solution set by the empty set determine the number of bees and
iterations
Select the set of processes stage PT = {pt1, pt2, ...ptm}
Initilaze bee pheromone matrix τk {Store best update solution}
Determine the weight say wk for each objective k for different processes at
random {Start Pareto}
repeat

for bees 1 to B do
Set i = 1
repeat

repeat
Set j = 1

until j = m
until i = i

end for
until termination criteria of each process is satisfied
Call ForwardPass ( ); {Allow bees to fly from the hive and to choose B
partial solutions from the set of partial solutions Sj at stage ptj}
for i = 1 to n do

select the next process node to traverse according to Pij=
[ρij(t)]α×[ 1

dij
]β∑

[[ρij(t)]α×[ 1
dij

]β ]

{Pj ∈ allowed process node} { where ρij is the rating of the edge between
node i and j} { dij denotes heuristic distance between node i and j } {Pij

prior probability to traverse from node i to j}
if the solution x is efficient solution achieved till ith iteration then

update the best solution
x := xi
Waggle Dance ( ) {profitability rating of Bee colony is

Pfcolony = 1/n
∑

/f1(x) = ϕ1(δ((x))

where n is the number of waggle dance through process span}
end if
j = 1

end for
for each objective k from the solution just found by B bees do

identify ( R − 1 )best solution xtk for object k. {τk is the bee pheromone
matrix for each solution construct x }

end for
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11.7 Implementation of PBCO as Multi Objective
Optimization

The proposed algorithm has been implemented in C++ on Window XP plat-
form (Pentium IV-2.4 GHz. processor, 256 MB RAM). The milk process-
ing is completely just in time approach as each sub processes are also time
bound and material is perishable. The time duration of waggle dance on the
process graph is again dependent on the polymorphic method comprising of
objective function, shortest process schedule time, and path trace iteration
of milk processing. A List type data structure is maintained for and checked
against the maximum number of iterations of honeybees across process graph.
Practically, the model keeps the traced path in a list, which comprises con-
secutive operations in pairs. The effective algorithm is involved in operation
scheduling and its uncertainty in supply chain process observed in a typical
m time bounded milk production unit. The foraging algorithm (waggle dance
and nectar exploration) has been incorporated considering bifocal approaches
identical with either process or machine centric.

For any process centric approach, a list of currently eligible processes that
can be scheduled is always maintained during scheduling process. In order to
be viable to process span (makespan), a process’s preceding sub-process (of
a job) must have been scheduled. Each process planned for Milk production
Center in the list is checked against the most recently scheduled sub-processes
(on the same machine or parallel processes like cleaning the container, etc.) to
identify if the “edge” between the two operations (the most recently scheduled
process and the process under consideration from the list) is found in the
preferred path. Higher rating ρij are assigned to the process with edge found
in the path. The scheduling is implemented through Pareto optimal solution,
as there are conflict objective among the processes. On the other hand for
machine centric approach, a discrete-event simulation and event list of events,
which are in sorted order of increasing time, is maintained during scheduling
process. At time t = 0, events relating to machine-ready status are inserted
into the list. Events in the list are removed and executed one by one according
to the event time. In case of tie for events having the same time, an event
will be randomly picked. For the machine that is associated with the selected
event, a list of currently eligible operations will be identified. Each operation
in the list is checked against the most recently scheduled operation on the
same machine to identify if the “edge” between the two operations is found
in the preferred path. Higher rating ρij will be assigned to the operation if
the edge is found in the path. Although machine centric approach is slightly
better than process centric, but the present case study has the variation of
processes depending on different milk by products, hence it adopts the process
centric approach to test the proposed PBCO algorithm.
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11.7.1 Experimental Evaluation

A commercial snippet of data set for a typical Milk Production Center of
Asian Country has been accumulated and referred in the case study. The
climatic condition is extremely sensitive for Milk and its associated products

The simulation of the data set through C++ coding results some interest-
ing process centric features (see Figs. 11.3 and 11.4. The Pareto distribution
of process, optimal time and makespan of processes are presented in the bi-
variate polynomial form.

Month Milk Pasteu Pasteurized Holding Chilling Milk Tanker Dispatch
procu rized time in temp Storage Milk Dis- time of Milk
rement milk seconds oC temp. -patch Time) Pasteurized Products

( mill. lit.) Temp.oC Ideal Val. Ideal Val. (in (in minutes milk (in processing
Ideal Val. <20 4-(-1) Celsius) Ideal Val. hrs) Ideal time,

75-78 Ideal < 15 Val. > 4.0 storage
Val.5-6 etc. Max.

Val. 8-1

DEC. 05 12.6 78 18 4 5 13 3 8
JAN. 06 14 75 20 5 6 12 4.5 9
FEB. 06 12.4 75 19.5 -1 5 13 4 11
MAR. 06 11.4 76 19 -1 5 15 5 8
APR. 06 9 78 19 -1 5 11 4 9
MAY. 06 7. 4 75 17 -1 5 13 4.2 10
JUNE. 06 6.1 77 20 -2 5 14 3.8 10
JULY. 06 5.7 76 20 0 6 12 4 9
AUG. 06 6.6 75 19 3 6 13 4.5 9
SEPT. 06 7.6 77 18 3 5 11 5 10
OCT. 06 9.2 78 17 1 6 12 3 12
NOV. 06 12.6 76 20 1 5 13 4.5 11
DEC. 06 13.8 77 20 4 6 13 4 10

Table 11.4: Dairy data Evaluated through PBCO (Courtesy Jaipur Dairy, Jaipur,
India).

The distribution of normal makespan of processes identified in MPC (Milk
Production Center) is shown in Fig. 11.3 (Colony Multi-Objective Process
Span –Cosine Series Bivariate Order 8) envisaging X, Y and Z axis span. Black
Dots are glimpses of bee colony which take care of process span considering
source and sink part of process. This denotes the complex multi objective
scheduling in the Milk production corresponding the various processes and
including time process and temperature. The approach of model is just in
time, where the trade off between distribution of bee agents and reinforcement
provided by Bee colony is shown by the black dots.

Another distribution map of time (Pareto Optimal Time Span) is shown
in Fig. 11.4, scaling and process overlap among the overlapped processes. The
peaks of the dots give predictive approach to notify the completion of process
in optimal time or either in just in time.

11.7.2 Process Betterment through PBCO - A Comparative
Study

To compare and evaluate the performance of the proposed bee colony algo-
rithm, we have included two other meta-heuristics in our experimental study.
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Fig. 11.3: Pareto Bee Colony Process Span, Multi-Objective and Optimal Time
Distribution.

Fig. 11.4: Pareto Bee Colony Process Span, Multi-Objective and Optimal Time
Distribution.

The first is an Ant Colony Optimization (ACO) algorithm [32]. The sec-
ond algorithm is a Tabu Search (TS) algorithm developed by Nowicki and
Smutnicki [33].

Within a multi-objective optimization approach, the solutions are com-
pared with respect to their relative “dominance” on both cost and availability
objectives. The solutions not dominated by any other are non-dominated so-
lutions. A set (archive) of Pareto-optimal, non-dominated solutions (solutions
which are not dominated by any other one) can be collected during the ACO
search. Similarly, in order to improve the efficiency of the exploration process,
one needs to keep track not only of local information (like the current value of
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Table 11.5: Parameters.

Parameters PBC ACO TS

Maximum Number of iterations 1500 1500 1000

Population Process Process No
Size No. (MPC ) No (MPC)

Weight of Pheromone Trail α 1.0 1.0

Weight of heuristic value β 2.0 2.0

Parameter for local updating and profit rat-
ing ρij

0.8

Scale Factor 100

Pheromone Evaporation Coefficient 0.1

Weight of the availability in the heuristic η 0.3 0.5

Weight of the cost in the heuristic η 0.3 0.5

Maximum Number of Elite Solution 25 25

Maximum Size of Tabu List 10

Table 11.6: Performance Comparison of four Meta-heuristics.

Betterment PBC BC AC TS Most Critical
Process in MPC of Process

Mean 10.05 11.2 11.45 6.62 Pasteurization
percent

Maximum 38 38.7 38.6 27.33 Holding and chilling

Most Close 16 15 11 22 For
Solution all
schedule processes
without
failure

the objective function) but also of some information related to the exploration
process. This systematic use of memory is an essential feature of TS method.

In order to establish comparison, the parameter settings for three algo-
rithms have been presented in Table 11.5.

Table 11.6 elaborates the brief comparison of the process span scheduling
in Milk Production Center with three major perspective of meta-heuristics
algorithms. Although results exhibit that TS is the smartest choice among
the four, it provides most likelihood results within smallest execution time.
Practically, TS has the advantage to solicit the best solution and it takes
care to the Tabu list, instead of constructing the solution from source to sink
applied to Bee and Ant Colony. The proposed Pareto Bee is slightly better
than standard Bee Colony, where as broadly different from ACO heuristics
in the context of process scheduling. The inclusion of rough set is a primary
back up for the associated events with the process and could rank them as
well under diversified condition.
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11.8 Conclusions and Future Work

A hybrid meta-heuristic approach based on a multi-objective Bee Colony al-
gorithm combined with constructive rough set heuristics is a valuable decision
support tool for planning operations in a supply network for rapidly perish-
able material for food processing industry. Provided a detailed mathematical
model of the supply network, our experimental investigation shows that such
a hybrid approach is able to provide an effective scheduling algorithm. This
work also provides a comparative platform on bio-inspired algorithms and
rough set (e.g. Bee Colony, Ant Colony and Tau Search) used for scheduling
in food and beverage processing industry. The involvement of multi-objective
process span through Pareto scheduling also is proposed in this chapter. Fur-
ther hybridization with other soft computing approach like fuzzy logic [31]
could be developed on honey bee algorithm. The more extension on rough
set in process scheduling is also expected. In this work, exact preferred path
of the process schedule span has not been evaluated; rather we incorporated
local search heuristics. This is because the processes and sub processes in the
case study of Milk production Center are somewhat static in nature. It has
been observed that among the all bio-inspired and stigmergic formulation of
algorithm, ant colony is the most prominent one, but there are different agent
based application areas where the agents work in a completely distributed
environment and thus maintaining the pheromone transition table becomes
slightly impractical. In those cases, Bee colony could be a better alternative.
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Álvaro Garćıa-Sánchez1, Luis Miguel Arreche2, and Miguel Ortega-Mier3
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(Spain) miguel.ortega.mier@upm.es

Summary. In this chapter a methodology for addressing a real-world multi-
commodity pipeline scheduling problem is presented. For this problem, a Tabu
Search and a Simulation model have been devised. The simulation model allows
an accurate and suitable assessment of every particular schedule, whereas the Tabu
Search guides the searching process and eventually succeeds in obtaining satisfactory
schedules in terms of a set of relevant criteria. This methodology has been applied
to a particular subsystem of the pipeline Spanish network. As a result, the proposed
Tabu Search has proved to be an effective and efficient technique for solving the
problem.

Key words: Multi-commodity Pipeline, Scheduling, Tabu Search, Simula-
tion, Real World Instances.

12.1 Introduction

Among the different means of transport for delivering oil derivatives to distant
destinations, pipeline transportation is the one which yields smaller variable
costs along with a great degree of reliability, especially if ships are not a
feasible alternative.

The main particularity of pipeline transportation arises from the way
packages advance through the pipes: each package pushes the one previously
pumped and so on. Since there is not any physical separation in between
every two packages, some mixture occurs while they are displaced, producing
an interface of contaminated product, which may not meet the specifications
of either of the products that produce the contaminated interface.

Depending of the nature of the products which cause the interface, the
treatment is different, ranging from pouring the interface into different tanks
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(the cheapest case) to reprocessing the interface in a refinery (the most ex-
pensive one). Some products should by no means get mixed, and others can
be allowed to get mixed to some extent.

Apart from the consideration made above, there are other elements that
condition the feasibility of the schedule, such as the following ones: products
should be available in the right amount at the right time to meet the cus-
tomers’ demand; the storage capacity is limited; refineries cannot produce
over a maximum rate; pumping stations can work at a flow rate somewhere
between the minimum and maximum admissible values for the pipeline con-
figuration; besides, pipeline usually work combined with other means of trans-
port, whose effects over the inventory level and the demand might have be
considered; additionally, the time devoted to maintenance tasks might be rel-
evant, in which case it ought to be taken into account. Finally, sometimes a
long-chain polymer is added to obtain a higher flow rate. This polymer, called
flow rate enhancer, is only needed in tiny quantities, but nevertheless it may
represent a significant cost. As the flow rate enhancer advances through the
pipes, it degrades into short-chain polymers not affecting at all the specifica-
tions of the different derivatives.

CLH (Compañ́ıa Loǵıstica de Hidrocarburos) is the most important logistic
operator in Spain, with a network covering most of the Iberian Peninsula and
comprising more than 3400 km of pipes. Traditionally, to address the pipeline
scheduling problem, some schedulers have had to use their expertise to obtain
a schedule without specific tools for this purpose. The objective of this work
is to provide schedulers with useful tools to assist in their task. Schedulers
from this company have to obtain a schedule on a monthly basis. For that,
they are given all the necessary information five days ahead of the beginning
of the scheduling horizon. With the aid of support-decision tools such as this
presented here, schedulers can achieve better schedules and in a shorter period
of time.

As will be described later, schedules are assessed with regard to a set of
criteria. The company managers express their preferences in terms of that set
instead of using a single measure of the schedule characterizing its quality.
That is the reason why the problem addressed in this chapter consists in
obtaining a so-called satisfactory schedule, which is a schedule with all its
criteria being equal or better than certain satisfactory values for those criteria.

This chapter is organized as follows. Section 12.2 offers a literature review
of the pipeline scheduling problem. Following, in Section 12.3, the problem
under study is stated as well as the approach adopted to address it. In Section
12.4, the simulation models to represent pipelines are presented. Section 12.5
contains a brief description of the proposed Tabu Search. In Section 12.6,
some computational results are offered and some final conclusions and further
work are presented in Section 12.7.
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12.2 Literature review

With regard to the multi-commodity pipeline scheduling problem, although
the literature is relatively scarce [1–3], there are different approaches. In every
work simplifications have been introduced and sometimes the resulting prob-
lems are quite unrealistic, harnessing their credibility for real-world applica-
tion. Both exact and heuristics methods have been devised for the pipeline
scheduling problem.

One of the earliest formalizations of the problem corresponds to Hane and
Ratliff [2], whose objective is to obtain a schedule with the minimum value
of an index which is related the pumping costs. As the authors themselves
reckon it is not suitable for real-world problems. Milidú et al. [3] study the
complexity of the problem and propose an algorithmic approach to obtain a
feasible schedule which is optimum in terms of the pumping costs. Rejowski
and Pinto [4] offer a Mixed Integer Linear Programming (MILP) model to
solve the scheduling problem for a linear pipeline, where the objective func-
tion is the global cost (pumping, storage and interface costs). The work in [5]
represents a step further, since the new MILP includes some additional con-
straints which improve the efficiency of the model. In [6] and [7] a continuous
time MILP solves the problem presented in [4] in quite a shorter time, being
a much simpler and more accurate model.

Other approaches based either on heuristics or on meta-heuristics have
been developed. Campognara and De Souza [8] present a graph theory based
approach to represent the problem and offer a MILP to solve the it, but
since it is not efficient enough, a heuristic approach is presented that allows
the schedulers to obtain a daily schedule in time to implement it. Sasikumar
et al. [9] utilize a beam search heuristic to obtain a good enough schedule for
a tree-topology pipeline. Ali et al. [10] have developed a model to deal simul-
taneously with the problem of scheduling and that of setting an appropriate
pumping configuration; for that purpose they propose a two-stage methodol-
ogy where stages feed-back one another. Finally, in [11] a genetic algorithm
guided by a multiobjective fitness function can be found. This work is broad-
ened in [12] where a MILP is also formulated and, finally, a hybrid technique is
proposed, which yields relatively small times by feeding the genetic algorithm
with schedules obtained with the MILP.

A common characteristic of most of the previous work is that the time
horizon is much smaller than a month, which is a typical time frame for a
schedule. This is precisely the motivation of the present work, since the devel-
oped tool is capable of addressing the task of finding a satisfactory schedule
for time horizons of a month for real-world problems.
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12.3 Problem Statement and Modelling Approach

12.3.1 Pipeline system characteristics

The problem addressed in this paper refers to systems that consist of a series
of elements connected through pipelines of different length and radius. These
elements can be of any of the following types:

• A refinery, which is the location where different derivatives are produced
from oil and from which derivatives are pumped.

• A terminal, which is a set of tanks where derivatives are stored to meet the
demand. Tanks are fed by a pipe which connects the terminal with some
upstream nodes. There might exist as well a pipe connecting the terminal
to other nodes downstream.

• A branching node, which is a location at the end of a pipe from which two
o more other pipes are fed.

• A branching terminal, which is a terminal which feeds two or more pipes
downstream.

As to the characteristic of the systems that can be addressed with the devel-
oped tool, the previous elements can be part of pipelines meeting the following
requirements:

• Pipes only have one flow sense, not being allowed reversible pipes.
• Branchings, but not cycles, are admissible.
• There can be different sources, from which products can be pumped to

one or more pipes.
• There is no limitation regarding the number of nodes in the pipeline.
• The flow rate at which products are pumped from sources into the pipeline

can either be constant or depend on the contents and splitting of the
packages present in branchings.

A great number of pipelines -mostly, tree topology ones- can be represented
in the terms described above and, indeed, other configuration can be mod-
elled through a set of tree topology pipelines working together [13]. One last
remark is due concerning the pumping rates. Although actual pipelines have
different pumping stations along their pipes to keep fluids with the appro-
priate pressure, for modelling purposes, a pumping station s will be a set of
logical elements with which the flow is controlled downstream a particular
source. Each station is linked to a particular source and feeds a set of nodes
downstream that source. For example, a refinery may feed two totally different
branches. Each branch will be run by a different pumping station. The total
number of stations is S.

12.3.2 Problem Definition and Schedule Representation

The problem is defined when the following information is established:
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• The number of nodes, N ; the number of products, P .
• Relation between nodes. Each node is characterized by an identifier

1, 2, ..., N , its type (refinery, 0; terminal, 1; or branching, 2) the number
and the identifiers of its immediate downstream successors. For example,
node 1 may be a terminal (node type =1), with two nodes immediately
located downstream.

• Initial contents. In order to properly represent the system state at the
beginning of the horizon, the different products in each pipeline, their
relative position within the pipe and their splitting downstream must be
set.

• Scheduling horizon, H, which is an integer value of weeks (typically, four
or five in order to analyze a month).

• Storage capacity and initial level of inventory. For every tank in the system
(defined by the node, n and the product, p, within that node), its capacity,
CAP (n, p), and initial level of inventory, IS(n, p), have to be set.

• Demands. Demands for every tank in the system for the scheduling hori-
zon, including the withdrawal pattern during the week. By letting D(n, p)
be the demand of product p in node n for the complete horizon, the de-
mand of product p in node n for the k-th hour of the j-th day of the i-th
week, referred to as Dijk(n, p), is calculated as a product of the proportion
withdrawn during the week, ϕweek

i (n, p), the proportion withdrawn during
the j-th day within that week, ϕday

j (n, p), and the proportion withdrawn
during the k-th hour within that day, ϕhour

k (n, p). Therefore:

Dijk(n, p) = ϕweek
i (n, p) · ϕday

j (n, p) · ϕhour
k (n, p). (12.1)

• Delivery plan. In the long run, the demand for each product-node pair has
to be equal to the deliveries of that pair. For the sake of simplicity the
delivery plan is built so that every tank receives an amount of product
that is equal to the its total demand during the scheduling horizon.

• Available flow rates. The flow rate of every pipe can depend on the level
of flow rate enhancer and on the contents of the pipeline, this dependence
should be formulated to be included in the simulator. For each particular
instance, this relationship is to be determined, as it is described for the
case study presented in Section 12.6.

Each schedule consists of a series of K packages of different products, where
the k-th package of pumping station s, referred to as PCK(k, s), is defined
by:

• The type of product, Ppck(k, s); each product being referred to as an in-
teger value between 1 and P ;

• The volume, Vpck(k, s) (any integer number);
• The level of flow rate enhancer injection, Epck(k, s), which can be: 1(high

level), 2 (low level) and 3 (no flow rate enhancer added);
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• The splitting downstream along the different terminals, given by frn(k, s),
n = 1, ..., N , where frn(k, s) is the portion of the k-th package which is sent
to node n. If node n is not a terminal frn(k, s) = 0. The volume of package
k sent to node n from pumping station s is, therefore, Vpck(k, s)frn(k, s).

12.3.3 Objective

The objective is to obtain a set of satisfactory schedules (see later) for the set
of pumping stations.

To assess how good a schedule is, six criteria are defined, F1, F2, ..., F6:

• Shortages (F1): the amount of products which could not be withdrawn
when customers required them because the incumbent tank was empty.

• Forbidden interfaces (F2): the times two products that are not allowed to
get in contact actually do.

• Interface stoppages (F3): the time during which some interface is stuck
in a pipe. When this occurs, interfaces grow too fast and, thus, interface
stoppages are not desirable, but sometimes are not avoidable.

• Blockages (F4): the time during which a package cannot be pumped into
a tank at the desired flow because the tank is full.

• Interfaces cost (F5): the cost associated with the sequence of products and
their mixing.

• Non-delivered volume (F6): the amount of the planned volume which has
not been delivered within the time horizon.

A schedule is satisfactory if for the previous criteria, its values are not
larger than a set of target-values, F obj

1 , F obj
2 , ..., F obj

6 . Notice that these target
values can be equal to zero. For example, the number of forbidden interfaces
is typically zero (F obj

2 = 0).

12.3.4 Modelling Approach

As commented above, the approaches developed so far lack some realism in
terms either of the assumptions made or the horizon length for which a sched-
ule is obtained or the problem size (too short for real-world application).
Therefore, for this purpose a simulation optimization approach was adopted.
By means of using a simulation model it is possible to evaluate the quality of a
schedule including some complex elements difficult to model when using exact
methods. A set of predefined modules were developed in Witness [14] for easily
building and modifying pipeline simulation models. This simulation models
offer a quick assessment of any particular schedule. Besides, a VB application
was also developed, first, for helping configure and run the simulation and,
second, for implementing the Tabu Search (TS). This TS generates alterna-
tive schedules and guides the searching process in order to eventually obtain
satisfactory schedules.
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Fig. 12.1: Modelling Approach.

The scheme in Fig. 12.1 illustrates the modelling approach for this prob-
lem. First, the simulation model can be used as a stand-alone tool to evaluate
the quality of a schedule. Actually, schedulers can introduce different schedule
s, modify them and evaluate their quality. For that purpose, the model is to
be configured and initialized: the model should properly represent the system
under study and the state of the system at the beginning of the horizon. Once
the model has been run, an evaluation of the schedule is obtained. In the fol-
lowing sections an outline of the simulation models and the Tabu Search are
given. When combined with the Tabu Search, which needs to be configured
and tuned, the information from the simulation model is properly exploited
in order to generate new schedules. By operating iteratively, eventually, sat-
isfactory schedules can be obtained.

12.4 The Pipeline Simulator

There are several commercial pipeline simulators (such as Stoner pipeline
Simulator or pipeline Studio, from Energy Solutions) that emulate with great
fidelity the behavior of the different elements in the system in fluid-dynamic
terms. In particular, these simulators help the system operators assess the
conditions anywhere (pressure, viscosity, etc.) However, these tools are not
useful for the purpose of scheduling the pipeline. Since, in order to run the
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simulator, it has to be operated in the same way the real pipeline is operated,
the simulated time to real time ratio is notably high (roughly, 1 to 10), which
means that they are useless for assessing a great number of schedules in time
to choose one. Besides, it takes a great amount of time, work and money to
set one of these simulators up.

Fig. 12.2: Witness overall view.

For the specific purpose of scheduling, a simulator has been developed with
the appropriate accuracy for this task. This simulator has been developed
taking advantage of Witness, a commercial simulation package. In Fig. 12.2
it can be seen a screen-shot of Witness for a particular simulation model.
Though any general purpose language would have allowed the creation of the
models, Witness offers a series of predefined elements that highly facilitate
the model building process. Additionally, to make the process even easier and
faster, some Witness modules have been created which properly combined can
represent some models. These models can be suitable for the system under
study or can be a starting point to create an even more complex model or to
add some particularities of a specific system.

There are two basic types of modules: those that represent elements of
the system (refineries, storage facilities, terminals and branchings) and those
designed to control the model (general, statistics, calendar and set-up).

After running a schedule, the simulator offers the following information:

• Non-met demand for every tank, which is the amount of each product that
was not available when requested at the different destination points.

• Non-delivered volume, which is the amount of product which was not
delivered during the time horizon. This value is not necessarily equal to
the non-met demand. Actually, if the initial inventory level at a tank is
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high enough it might meet all the demand without receiving the scheduled
volume. Similarly, all the amount of a particular product might be sent
during the time horizon but not in a timely manner, so that sometimes,
customers cannot withdraw the demanded product.

• The global numbers of shortages, blockages and stopped interfaces.
• In case of shortage for a particular product in a particular terminal, it

is recorded the first critical package, being the package that is traversing
that terminal when the shortage occurs.

• In case of blockage, due to a package being pumped to a full tank, the
package that originates the blockage is recorded. Besides, the model of-
fers the amount of product that could actually be pumped into the tank
without blocking the pipeline.

• When blockages occurs it is not irrelevant how much time this has hap-
pened. Therefore, the amount of time that each tank has been blocked is
reported.

• Finally, the last package pumped for each pumping station is given, which
is an indicator of how far the schedule is from being feasible with regard
to the non-delivered volume.

• Besides, an estimate of the cost associated to the contaminated product is
given according to an average estimation of the volume of each kind of in-
terface. For the given sequence of products, an empirical formula provided
by the CLH managers was used, specific to the pipelines under study.

Finally, to build up a model, a start-up file has been created to which
modules must be added. To facilitate the configuration of the model, a Visual
Basic application has been created. Fig. 12.3 illustrates the interrelations of
the applications. The VB application offers several forms which properly filled
out depict a particular system for a specific time horizon and automatically
configures the elements in the Witness model. This Visual Basic application
reads data both from the simulator itself and from the text files the latter
generates after assessing a schedule. Besides, the Tabu Search (presented in
Section 12.5) is embedded in the VB application. It is noteworthy that the
simulator allows the introduction of several values for the flow rate for every
source depending on the contents of the pipeline and the amount of flow rate
enhancer in the packages sent.

12.5 Tabu Search

In this section, the main characteristics of the Tabu Search are described.
First, a general outline of its logic is given, and later, in different subsections
its most important elements are presented.
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Fig. 12.3: Applications interconnection.

12.5.1 General Outline

The concept of stage is defined and used in the Tabu Search method. A total
of nine stages have been identified after experimenting with different sets of
stages. Although there may still be some room for improvement, theses nine
stages have proved to be effective. Each stage is defined by two characteristics:

1. The type of movements to generate the neighbours from a given schedule
and

2. What is referred to as its main criterion. Every stage attempts to im-
prove a particular criterion, which is called the main criterion for that
stage, without allowing the rest of them worsen more than a predefined
extent (secondary criteria), therefore eligible schedules must be “within
limits”.

As described in Algorithm 12.1, the procedure begins with an initial sched-
ule s∗, whose criteria are Fs∗(c), c = 1, ..., 6. If the schedule is satisfactory,
the process ends. If not, the first stage is selected to be run. The stage will
stop if a schedule with a satisfactory value of the main criterion is found:
Fs∗(c∗) ≤ F obj(c∗). Once the stage stops, this same logic applies again until
some terminating condition is met.

The stages operate similarly: from a given schedule, a neighbourhood (N)
is generated (using the particular movements of a stage), the best not-tabu and
within-limits neighbour is chosen. Sometimes, the neighbourhood may be too
large to be explored. That is the reason why a parameter, Carmax is defined
so that if the neighbourhood is larger that L only a group of L neighbours
are evaluated. The neighbors to be explored are selected randomly among
the original neighborhood, so that every schedule has the same probability to



12 Simulation and Tabu Search for pipeline scheduling 311

Algorithm 12.1: General Logic.

Initializing routine
Generate s∗

while Global Terminating Criterion not met do
Select Stage (being c∗ its main criterion)
while Local Terminating Criterion does not apply do

if Fs∗(c∗) ≥ F obj(c∗) then
Execute stage’s routines (see algorithm 12.2)

else
Exit while

end if
end while

end while

qualify for evaluation. Other times, there are not any eligible neighbors, in
which case a diversification list is kept. This diversification is updated every
time a neighborhood is explored, by randomly adding any eligible neighbor
different from the chosen one. When the diversification list is needed, it is
evaluated as any regularly obtained neighborhood.

The pseudo-code in Algorithm 12.2 illustrates how stages work in some
more detail. In that pseudo-code:

s is the current schedule
N stands for the neighborhood obtained from the current schedule
T stands for the global tabu list
t stands for the local tabu list
D stands for the diversification list
Cardmax is the maximum number of neighbors to be examined during

each iteration within a stage
Both the tabu lists and the diversification lists will be presented later.

12.5.2 Types of Movements

In order to obtain new schedules from a given one, four different types of
movements are considered. These movements always operate with packages
within the same pumping station. Following a formal description of them is
given whereas Fig. 12.4 graphically illustrates them.

1. Package insertion. This movement consists in inserting a package in a
new position. If for station s, PCK(i, s) is inserted into the j-th position,
the resulting sequence for station s is the following (the apostrophes refer
to the new packages, after the movement has been executed).
If i > j



312 Garćıa-Sánchez et al.

Algorithm 12.2: Stage logic. Main criterion: Fc.

BEGIN Stage
s = 0
if Fc ≥ F obj

c then
s = s + 1
if s ≤ S then

while Terminating condition does not apply do
Generate N

if N �= ∅ then
if Card(N) > Cardmax then

Reduce N

end if
Evaluate N with the simulator
if ∃n ∈ N/n is not tabu and n is within limits then

s∗ = {n∗ ∈ N/Fc(n
∗) ≤ Fc(n)∀n ∈ N}

Update T, t and D

else
if D �= ∅ then

Evaluate D with the simulator
if ∃n ∈ D/n is not tabu and n is within limits then

s∗ = {n∗ ∈ D/Fc(n
∗) ≤ Fc(n)∀n ∈ N}

Update T and D

else
exit for

end if
else

exit for
end if

end if
else

if D �= ∅ then
Evaluate D with the simulator
if ∃n ∈ D/n is not tabu and n is within limits then

s∗ = {n∗ ∈ D/Fc(n
∗) ≤ Fc(n)∀n ∈ N}

Update T and D

else
exit for

end if
else

exit for
end if

end if
end while

end if
end if
END stage
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Table 12.1: Characterization of stages.

Stage Main Criterion movement type

1 F1 Package insertion
2 F1 Volume insertion
3 F2 Package insertion
4 F2 Volume insertion
5 F3 Package insertion
6 F3 Volume insertion
7 F4 Package insertion
8 F4 Volume insertion
9 F5 and F6 All movements

PCK ′(m, s) = PCK′(m− 1, s) if j < m ≤ i (12.2)
PCK ′(m, s) = PCK′(m− 1, s) if m > i or m < j (12.3)

If i < j

PCK ′(m, s) = PCK′(m− 1, s) if j < m ≤ i (12.4)
PCK ′(m, s) = PCK′(m− 1, s) if m > j or m < i (12.5)

For example, when a shortage in a particular tank of product p occurs,
moving forward in the sequence a package containing this product (and
being part of it directed to the incumbent tank) may reduce or even avoid
that shortage.

2. Volume insertion. This consists in moving part of the volume (∆V )
directed to node n from a package, PCK(s, i), to a different package (of
the same product), PCK(s, j). The resulting packages remain as follows.
As to the volume of each package:

Vpck(i, s) = Vpck(i, s) −∆V (12.6)
Vpck(j, s) = Vpck(j, s) +∆V (12.7)

And as to the splitting of the packages:
For PCK(j, s)

fr′n(i, s) =
frn(i, s)Vpck(i, s)

V ′
pck(i, s)

if n 
= n∗ (12.8)

fr′n∗(i, s) =
frn∗(i, s)Vpck(i, s) −∆V

V ′
pck(i, s)

(12.9)

For PCK(i, s)
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fr′n(j, s) =
frn(j, s)Vpck(j, s)

V ′
pck(j, s)

if n 
= n∗ (12.10)

fr′n∗(j, s) =
frn∗(j, s)Vpck(i, s) +∆V

V ′
pck(j, s)

(12.11)

Again, following the previous example, moving part of a package to an-
other one may help reduce the shortage in a tank.

3. Package disaggregation. Disaggregating package PCK(i, s) into two
different ones, PCK ′(i, s) and PCK ′(i+ 1, s) consists in splitting a pro-
portion (pr) of it, so that:

V ′
pck(i, s) = Vpck(i, s)pr (12.12)

V ′
pck(i+ 1, s) = Vpck(i, s)(1 − pr) (12.13)

fr′n(i, s) = fr′n(i+ 1, s) = frn(i, s) (12.14)
(12.15)

As for the rest of the packages:

PCK ′(j, s) = PCK(j, s) if j < i (12.16)
PCK ′(j, s) = PCK(j − 1, s) if j > i (12.17)

Sometimes the previous movements may not be either possible or effec-
tive. Therefore, another movement which can be useful is disaggregating
a package into two different ones, yielding two identical packages only
differing in their volumes.

4. Package aggregation. Aggregating packages PCK(i, s) and PCK(i +
1, s) means obtaining a new package PCK′(i, s), so that:

V ′
pck(i, s) = Vpck(i, s) + Vpck(i+ 1, s) (12.18)

fr′n(i, s) =
frn(i, s)Vpck(i, s) + frn(i+ 1, s)Vpck(i+ 1, s)

V ′
pck(i, s)

(12.19)

As for the rest of the packages

PCK ′(j, s) = PCK(j, s) if j < i (12.20)
PCK ′(j, s) = PCK(j + 1, s) if j > i (12.21)

After completing every stage, all contiguous packages of the same product
are aggregated. The rationale of this movement is that a set of small
packages of the same product may not allow obtain any neighbour but
the aggregation of them all may.
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Each stage operates by using a single type of movement or serveral move-
ments as listed in Table 12.1, so that selecting a stage determines the type of
movements to be used.

Fig. 12.4: Types of movements.

12.5.3 Stage selection

After experimenting with several rules to choose the following stage, a good
performance was achieved by means of choosing a stage whose main criterion
is that one which has experienced the largest relative increase over the last
stages.

Since some stages share their main criterion, the stage whose movements
entail a deeper structure change in the schedule is run first, followed (if nec-
essary) by the stage with that same criterion and which introduces minor
changes in the schedule structure.

Therefore, if stage 1 ends without obtaining a schedule with a satisfactory
value for its main criterion (shortages, F1), automatically, stage 2 is run.
Stages 3, 5 and 7 operate likewise, according to information in Table 12.2

Table 12.2: Stage sequence.

Ending Stage Following Stage

1 2
3 4
5 6
7 8
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When either any stage entailing minor changes to the schedule (2, 4, 6 and
8) or stage 9 finish, the following stage is selected by means of choosing, first,
the new main criterion and next the stage itself. For every criterion c, it is
defined an index I(c) (Eq. 12.22).

I(c) =

⎧⎪⎨⎪⎩
Ft(c) − F obj(c)

max
x≥t−H

{Fx(c)} − F obj(c)
if Ft(c) > F obj(c)

0 if Ft(c) ≤ F obj(c)

(12.22)

where:
H is a parameter, so that the greater it is, the more influcence the search

history has to select the following stage
t is the number of stages run so far.
Fx(c) is the value of criterion c of the schedule obtained after completing

the x-th stage.
Ft(c) is, therefore, the value of criterion c of the schedule obtained af-

ter completing the last stage run so far. After the main criterion has been

Table 12.3: Stage sequence (II).

Main criterion Following Stage

1, Shortages 1
2, Forbidden Interfaces 3
3, Blockages 9
4, Interface Stoppages 5
5, Interfaces Costs 7
6, Non-delivered Volume 9

selected, the next stage to be run is selected according to the correspondence
in Table 12.3. For example, if the following main criterion is F1 (shortages),
the next stage will be stage 1. Likewise, if F5 (the interface cost) is selected
as the next main criterion, stage 5 would be chosen. As will be seen later
(Section 12.5), this method has proved to be effective, since it does not allow
criteria worsen so much that it is not possible to obtain schedules with values
for the objective function close to the target values and, eventually, it obtains
satisfactory schedules.

12.5.4 Tabu Lists and Aspiration Criterion

Two different Tabu lists condition and guide the selecting process of the avail-
able neighbours, one at a local level and another one at a global level.

• Local tabu lists, t. There are as many local tabu lists as stages, where
the information regarding the packages involved in each movement are
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stored, so that these packages are now allowed to be found again during
some amount of iterations.
Every time a new schedule is selected, the tabu list stores the information
corresponding to the package which has been modified, inserted, etc. so
that for a certain number of iterations schedules with an identical package
in that position does not qualify as eligible.
When a schedule is tagged as tabu, if it offers a value for criterion c greater
or equal than the best obtained so far, the aspiration criterion applies and
the schedule is no longer tabu

• Global Tabu List, T. Besides, a global tabu list is created containing
whole schedules for a pumping station, so that no neighbour is selected if
it is contained in the global tabu list. There is no aspiration criterion for
this list.

12.5.5 Diversification list

Tipically, from a given schedule it is possible to obtain several neighbours.
Every iteration, after a new schedule has been chosen from the neighbourhood,
another schedule is randomly selected among the rest of neighbours and it is
stored in the diversification list. If for a particular iteration, there are not any
neighbours or all of them are tabu or not within limits, the elements contained
in the diversification list are studied as if they were the neighbourhood itself.

12.5.6 Terminating criterion

Two different sets of termination criteria need to be set: at global level and
locally for every stage.

• Globally, the searching procedure ends when any of the following condi-
tions apply:

– a certain number of satisfactory schedules have been found,
– the total computational time has exceeded a determined value,
– the number of stages that have been run is greater than a specified

value.

• For every stage, the process stops if:

– a maximum time has elapsed,
– a certain number of iterations have been accomplished,
– a different number of iterations have been done without attaining any

improvement, or
– there are not any eligible neighbours for any station -not even in the

diversification list.
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12.5.7 Worsening Limits

Every time a neighbourhood N is explored, being c∗ the main criterion of
the stage and F 0(c) the value of criterion c for the initial schedule of the
incumbent stage, a neighbour n ∈ N is eligible as the new schedule for the
following iteration if:

Fn(c) ≤ {F 0(c)(1 − α(c)), F 0(c) + β(c)} ∀c 
= c∗, (12.23)

where α(c) and β(c) are parameters that determine the allowance for the sec-
ondary criteria to worsen during that particular stage. The rationale behind
is to let the searching process wander and explore those areas with sched-
ules that are not attractive a priori, and avoid the process to get stuck in a
particular region.

12.6 Case Study. Computational results

The previous method has been applied to one CLH subsystem, for which a
simulation model was created. Following, the main results are shown.

The system consists of six nodes, including a refinery which feeds two
branches, connecting a branching node and four terminals. The time horizon
is four weeks, which is a very typical time span for the scheduling problem.
In Fig. 12.5, a sketch of the system is available. The storage capacity for

Fig. 12.5: System configuration.

every tank in this system is given in Table 12.5, where the figures indicate the
capacity of the corresponding pipe. The initial contents of the tanks for the
horizon are given in Table 12.5.

The pipeline contents are given in Table 12.6. The demand is characterized
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Table 12.4: Storage Capacity (m3).

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5 Prod.6 Prod.7

Node 3 20055 6784 12597 0 9127 0 4488
Node 4 229872 34619 34914 35162 18622 8555 4280
Node 6 148192 16393 18804 51295 85743 18178 11937
Node 7 15376 9245 10179 0 11451 0 4852

Table 12.5: Initial contents (m3).

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5 Prod.6 Prod.7

Node 3 14900 1346 3660 0 4591 0 3069
Node 4 106228 27300 14779 6400 11477 2569 3549
Node 6 90815 5393 12014 11019 62916 10075 3685
Node 7 6619 4310 7781 0 3435 0 3353

Table 12.6: Initial pipeline contents.

Pipe Product Volume (m3) fr3 fr4 fr6 fr7

N1/N2-N3 1 4484 0.50 0.50 0.00 0.00
N1/N2-N5 3 895 0.00 0.00 1.00 0.00
N3-N4 1 8100 0.00 1.00 0.00 0.00
N5-N6 3 1630 0.00 0.00 1.00 0.00
N5-N7 1 3381 0.00 0.00 0.00 1.00

by the values or ϕweek,ϕday and ϕhour. The weekly demand is balanced over
the horizon, so that ϕweek

i = 0.25 ∀i. As to the daily demand, on Sundays,
no product is withdrawn from tanks, and ϕday

j = 1/6 for the rest of the days.
The hourly pattern demand is given in Table 12.7. Finally, the amounts of

Table 12.7: Hourly demand pattern, ϕhour.

ϕhour
1 ϕhour

2 ϕhour
3 ϕhour

4 ϕhour
5 ϕhour

6 ϕhour
7 ϕhour

8 ϕhour
9 ϕhour

10 ϕhour
11 ϕhour

12

0.00 0.50 0.50 0.50 2.00 10.00 15.00 12.00 14.00 10.00 8.00 8.00

ϕhour
13 ϕhour

14 ϕhour
15 ϕhour

16 ϕhour
17 ϕhour

18 ϕhour
19 ϕhour

20 ϕhour
21 ϕhour

22 ϕhour
23 ϕhour

24

5.00 4.00 2.00 2.00 1.00 2.00 1.00 1.00 1.00 0.50 0.00 0.00

the different products to be sent are given in Table 12.8.
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Table 12.8: Total demand for the horizon (m3).

Prod.1 Prod.2 Prod.3 Prod.4 Prod.5 Prod.6 Prod.7

Node 3 40825 6683 14451 0 7948 0 3612
Node 4 76141 0 3703 72258 5870 3658 0
Node 6 38567 16258 3974 0 27096 3341 6141
Node 7 37935 4516 3070 0 9393 0 2709

For this system the target values set for the 4-week horizon were those in
Table 12.9. Basically, shortages and forbidden interfaces are not allowed in
any case. All the planned volume should be delivered within the horizon. The
pipeline can be blocked up to 12 hours, interfaces can be stopped no more than
12 hours. Finally, a target value was set for the interface cost according to the
managers’ preferences (values both in Table 12.9 and Figs. 12.6 and 12.7 are
a linear transformation of the actual values, for the sake of confidentiality).

Table 12.9: Target values, F obj .

Criterion Target value

Shortages 0
Non-delivered volume 0
Forbidden interfaces 0
Interface costs 95000
Interface stoppages 12
Blockages 12

Table 12.10: Parameter values.

Parameter Value

Maximum number of stages 200
Total runtime (min) 300
Global Tabu List length 50
Max. iterations per stage 10
Max. stage runtime (min) 8
Local Tabu List length 5

The parameters were conveniently tuned by trying different sets of val-
ues. For example, when the neighborhood was explored intensively, too much
time was spent in assessing a large number of schedules without letting the
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technique drift to different regions within the solution space. Alternatively,
if only a reduced number of neighbors were assessed, potentially interesting
schedules were not studied and the searching process quickly wandered to-
wards different regions. Similarly, the maximum runtime for each stage and
the maximum number of iterations without improving the main criterion for a
particular stage were adjusted so that the overall process was efficient enough.
If the runtime was to short, there was not enough time to improve the main
criterion whereas if the runtime was to long, not many stages were run and
therefore it was impossible to achieve a satisfactory schedule within a reason-
able amount of time. Eventually, with the parameters given in Table 12.10
the technique offered a suitable performance as described later.

The Tabu Search was run 20 times, being 300 minutes long each run. As an
example, in Figs. 12.6, 12.7, 12.8 and 12.9, there can be observed the evolution
of two criteria for a particular run. Figs. 12.6 and 12.7 show how interface
costs evolved over a particular run, and, for that same run, the evolution of
the number of forbidden interfaces are given in Figs. 12.8 and 12.9.
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Fig. 12.6: Evolution of the interface costs over stages.

For these 20 runs a confidence interval was calculated for the time to obtain
a first satisfactory schedule and another one for the number of satisfactory
schedules obtained (0.05 significance level). It is noteworthy that every time
a satisfactory schedule is obtained, the target values are altogether reduced
by multiplying them by a factor (0.95 in this case). That is the reason why
it is interesting obtaining more than a single schedule. For all runs, al least



322 Garćıa-Sánchez et al.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  50  100  150  200  250  300  350

co
st

 (
m

on
et

ar
y 

un
its

)

time (min)

Evaluated neighbours over time
Selected neighbours over time

Fig. 12.7: Evolution of the interface costs over time.
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Fig. 12.9: Evolution of the number of forbidden interfaces.

Table 12.11: Performance measure.

Index Confidence interval

Number of satisfactory schedules (2.82, 3.48)
Time to find the first schedule (18.94, 33.16)

two satisfactory schedules where found, which means that the technique is
effective.

With regard to the efficiency, the time to find a fist schedule was never
longer than an hour. From the time schedulers receive their data until the
beginning of the horizon, they have 5 days to prepare a schedule. With this
tool, it is possible to obtain a schedule with plenty of time to assess whether
some features excluded from the model have not been taken into account and
the schedule needs some alteration.

12.7 Conclusions and Future Work

Pipeline scheduling is a complex task which has not received much attention.
For this problem a simulator has been devised. This simulator represents
the pipeline with enough accuracy for assessing the quality of a schedule in
terms of the scheduling problem, being an effective tool for this purpose.
Besides, a Tabu Search has been implemented in order to generate and select
different schedules with the objective of achieving a satisfactory schedule,
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where satisfactory means that the schedule offers values equal or smaller than
certain target values.

As further work, it could be of interest to broaden the scope of application
to other pipelines, with more complex topologies, including reversible pipes
and pipe crossings. It may also be interesting trying to improve the efficiency
of the technique by means of devising new stages.

In all, in this chapter, after describing some general remarks about the
importance and the particularities of pipeline scheduling, a set of modules
to build simulation models has been presented. Besides, a Tabu Search has
been described, which in combination with the simulation models, has resulted
effective and efficient in terms of obtaining satisfactory schedules.

References

1. C. Zhao-ying. Decisión support system for management of oil pipelines. Intel-
ligence in Economics and Management, pages 103–106, 1986.

2. Christopher A. Hane and H. Donald Ratliff. Sequencing inputs to multi-
commodity pipelines. Annals of Operations Research, 57(1):73–101, December
1995.

3. R. L. Milidu, A. A. Pessoa, and E. S. Laber. Pipeline transportation of petro-
leum with no due dates. In Proceedings of the LATIN 2002,Theoretical Infor-
matics: 5th Latin American Symposium, April 2002.

4. R. Rejowski and J. M. Pinto. Scheduling of a multiproduct pipeline system.
Computers & Chemical Engineering, 27(8-9):1229–1246, September 2003.

5. R. Rejowski and J. M. Pinto. Efficient MILP formulations and valid cuts for
multiproduct pipeline scheduling. Computers & Chemical Engineering, 28(8):
1511–1528, July 2004.

6. D. C. Cafaro and J. A. Cerda. Continuous-time approach to multiproduct
pipeline scheduling. In Proceedings of European Symposium on Computer Aided
Process Engineering, pages 65–73, 2003.

7. Diego C. Cafaro and Jaime Cerda. Optimal scheduling of multiproduct pipeline
systems using a non-discrete milp formulation. Computers & Chemical Engi-
neering, 28(10):2053–2068, September 2004.

8. E. Camponogara and P. S. De Souza. A-teams for oil transportation problem
through pipelines. In Proceedings of the International Conference of Information
Systems Analysis and Synthesis, pages 718–725, 1986.

9. M. Sasikumar, P. Ravi Prakash, Shailaja M. Patil, and S. Ramani. Pipes: A
heuristic search model for pipeline schedule generation. Knowledge-Based Sys-
tems, 10(3):169–175, October 1997.

10. S. I. Ali, K. Nakatani, and S. D Liman. A conceptual model and its imple-
mentation for petroleum products pipeline. In Decision Sciences Institute 1998
Proceedings, volume 3, pages 1274–1276, 1998.

11. J. M. De la Cruz, B. De Andrés-Toro, A. Herrán, E. B. Porta, and P. F. Blanco.
Multiobjective optimization of the transport in oil pipelines networks. In Pro-
ceedings of the 2003 Emerging Technologies and Factory Automation, pages
566–573, 2003.



12 Simulation and Tabu Search for pipeline scheduling 325

12. J. M. De la Cruz, J. L. R. Mart́ın, A. H. González, and P. Fernández. Hybrid
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Summary. Recently, the scheduling problem in distributed data-intensive com-
puting environments has been an active research topic. This Chapter models the
scheduling problem for work-flow applications in distributed data-intensive comput-
ing environments (FDSP) and makes an attempt to formulate the problem. Several
meta-heuristics inspired from particle swarm optimization algorithm are proposed
to formulate efficient schedules. The proposed variable neighborhood particle par-
ticle swarm optimization algorithm is compared with a multi-start particle swarm
optimization and multi-start genetic algorithm. Experiment results illustrate the al-
gorithm performance and its feasibility and effectiveness for scheduling work-flow
applications.
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13.1 Introduction

With the development of the high performance computing (HPC), computa-
tional grid, etc., some complex applications are designed by communities of
researchers in domains such as chemistry, meteorology, high-energy physics,
astronomy, biology and human brain planning (HBP) [1], [2]. For implement-
ing and utilizing successfully those applications, one of the most important
task is to find appropriate schedules before the application is executed. The
goal is to find an optimal assignment of tasks in the applications with respect
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to the costs of the available resources. However, the scheduling problem in
distributed data-intensive computing environments seems quite different from
the conventional situation. Scheduling jobs and resources in data-intensive ap-
plications need to meet the specific requirements, including process flow, data
access/transfer, completion cost, flexibility and availability. All kinds of com-
ponents in the application can interact with each other directly or indirectly.
Scheduling algorithm in traditional computing paradigms barely consider the
data transfer problem during mapping computational tasks, and this negli-
gence would be costly in the case of distributed data-intensive applications [3].

Priority scheduling plays a crucial role in the differentiated services ar-
chitecture for the provisioning of Quality-of-Service (QoS) of network-based
applications. Jin and Min [17] proposed a novel analytical model for prior-
ity queuing systems subject to heterogeneous Long Range Dependent (LRD)
self-similar or Short Range Dependent (SRD) Poisson traffic. Authors [17]
applied the generalized Schilder’s theorem to deal with heterogeneous traffic
and further develop the analytical upper and lower bounds of the queue length
distributions for individual traffic flows.

Sabrina et al. [18], discuss issues in designing resource schedulers for
processing engines in programmable networks. Authors developed two CPU
scheduling algorithms that could schedule CPU resource adaptively among all
the competing flows. One of the packet scheduling algorithm is called start
time weighted fair queueing that does not require packet processing times and
the other one is called prediction based fair queueing, which uses a prediction
algorithm to estimate CPU requirements of packet.

Rodrigues et al. [19] proposed a branch and bound approach based on
constraint-based search (CBS) for scheduling of continuous processes. Tasks
time-windows are submitted to a constraint propagation procedure that iden-
tifies existing orderings among tasks and linear programming is used to deter-
mine the optimal flow rate for each bucket whenever all buckets are ordered
in the branch and bound.

In this chapter, we introduce the scheduling problem for work-flow ap-
plications in distributed data-intensive computing environments. Rest of the
Chapter is organized as follows. We model and formulate the problem in
Section 13.2. We present an approach based on particle swarm algorithm based
heuristics in Section 13.3. In Section 13.4, experiment results and discussions
are provided. Finally, we conclude our work in the chapter.

13.2 Problem formulation

The scheduling problem in distributed data-intensive computing environments
has been an active research topic, and therefore many terminologies have been
suggested. Unfortunately, some of these technical terms are neither clearly
stated nor consistently used by different researchers, which frequently makes
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readers confused. For clarity purposes, some key terminologies are re-defined
for formulating the problem.

• Machine (computing unit)
Machine (computing unit) is a set of computational resources with limited
capacities. It may be a simple personal machine, a workstation, a super-
computer, or a cluster of workstations. The computational capacity of
the machine is depend on its number of CPUs, amount of memory, basic
storage space and other specializations. In other words, each machine has
its calculating speed, which can be expressed in number of Cycles Per
Unit Time (CPUT).

• Data Resource
Data resources are the datasets, which effect the scheduling. They are
commonly located on various storage repositories or data hosts. Data re-
sources are connected to the computational resources (machines) by links
of different bandwidths.

• Job and Operation
A job is considered as a single set of multiple atomic operations/tasks.
Each operation will be typically allocated to execute on one single ma-
chine without preemption. It has input and output data, and processing
requirements in order to complete its task. One of the most important
processing requirements is the work-flow, which is the ordering of a set of
operations for a specific application. These operations can be started only
after the completion of the previous operations from this sequence, which
is the so-called workflow constraints. The operation has the processing
length in number of cycles.

• Work-flow Application
A work-flow application consists of a collection of interacting components
that need to be executed in a certain partial order for solving successful
a certain problem. The components involve a number of dependent or
independent jobs, machines, the bandwidth of the network, etc. They
have specific control and data dependencies between them.

• Schedule and Scheduling Problem
A schedule is the mapping of the tasks to specific time intervals of ma-
chines. A scheduling problem is specified by a set of machines, a set
of jobs/operations, optimality criteria, environmental specifications, and
by other constraints. The Scheduling Problem for work-flow applications
in distributed Data-intensive computing environments is abbreviated as
“FDSP”.

To formulate the scheduling problem, suppose a work-flow application
comprises of q Jobs {J1, J2, · · · , Jq}, m Machines {M1,M2, · · · ,Mm} and k
Data hosts {D1, D2, · · · , Dk}. In the application considered, the processing
speeds of the machine are {P1, P2, · · · , Pm}. Each job consists of a set of op-
erations Jj = {Oj,1, Oj,2, · · · , Oj,p}. For convenience, we will decompose all
the jobs to atomic operations and re-sort the operations as {O1, O2, · · · , On}.
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The processing lengths of the operation are {L1, L2, · · · , Ln}. All the oper-
ations are in the specific work-flow, and they will be carried orderly on the
machines with data retrieval, data input and data output.

The operations in the work-flow can be represented as or transformed to
a Directed Acyclic Graph (DAG), where each node in the DAG represents
an operation and the edges denote control/data dependencies. The relation
between the operations can be represented by a flow matrix F = [fi,j ], in
which the element fi,j stores the weight value if the edge < Oi, Oj > is in the
graph, otherwise it is set to “-1”. Fig. 13.1 depicts a work-flow of 9 operations.
The recursive loop between O1 and O9 can be neglected when the scheduling
focus on the stage within the loop. Its flow matrix F is represented as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 8 3 9 −1 −1 −1 −1 −1
−1 −1 −1 −1 5 6 −1 −1 −1
−1 −1 −1 −1 −1 2 12 11 −1
−1 −1 −1 −1 −1 −1 −1 7 −1
−1 −1 −1 −1 −1 −1 −1 −1 13
−1 −1 −1 −1 −1 −1 −1 −1 4
−1 −1 −1 −1 −1 −1 −1 −1 1
−1 −1 −1 −1 −1 −1 −1 −1 8
−1 −1 −1 −1 −1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The data host dependencies of the operations are determined by the re-

trieval matrix R = [ri,j ]. The element ri,j is the retrieval time, which Oi

executes retrieval processing on the data host Dj . There are the other ma-
trices A = [ai,j ] and B = [bi,j ], where the element ai,j in the former is the
distance between between the machine Mi and Mj , and the element bi,j in the
latter is the distance between the machine Mi and the data host Dj . For each
operation, its completion time is the sum of three components: the input data
time, the retrieval data time, and the execution time on the assigned machine.
It is to be noted that the input data time can be started to accumulate only
after the completion of the previous operations in the work-flow.

Given a feasible solution S = {S1, S2, · · · , Sn}, Si is the serial num-
ber of the machine, which the operation Oi is assigned on. Define COi

(i ∈ {1, 2, · · · , n}) as the completion time that the machine MSi
finishes the

operation Oi. For the operation Oi, its completion time COi
can be calculated

by Eq. (13.1).

COi
=

n∑
l=1

fl,i �=−1

fl,iaSl,Si
+

k∑
h=1

ri,hbSi,h + Li/PSi
(13.1)

To formulate the objective,
∑
CMi

represents the time that the machine
Mi completes the processing of all the operations assigned on it. Define
Cmax = max{∑CMi

} as the makespan, and Csum =
∑m

i=1(
∑
CMi

) as the
flowtime. The scheduling problem is thus to both determine an assignment
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Fig. 13.1: A works-flow application with 9 operations.

and a sequence of the operations on all machines that minimize some criteria.
Most important optimality criteria are to be minimized:

1. the maximum completion time (makespan): Cmax;
2. the sum of the completion times (flowtime): Csum.

Minimizing Csum asks the average operation is finished quickly, at the ex-
pense of the largest operation taking a long time, whereas minimizing Cmax,
asks that no operation takes too long, at the expense of most operations taking
a long time. Minimization of Cmax would result in maximization of Csum. The
weighted aggregation is the most common approach to the problems. Accord-
ing to this approach, the objectives, F1 = min{Cmax} and F2 = min{Csum},
are aggregated as a weighted combination:

F = w1min{F1} + w2min{F2} (13.2)

where w1 and w2 are non-negative weights, and w1 + w2 = 1. These weights
can be either fixed or adapt dynamically during the optimization. The fixed
weights, w1 = w2 = 0.5, are used in this article. In fact, the dynamic weighted
aggregation mainly takes Cmax into account [4] because Csum is commonly
much larger than Cmax and the solution has a large weight on Csum during
minimizing of the objective. Alternatively, the weights can be changed grad-
ually according to the Eqs. (13.3) and (13.4). The changes in the dynamic
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weights (R = 200) are illustrated in Fig. 13.2.

w1(t) = |sin(2πt/R)| (13.3)

w2(t) = 1 − w1(t) (13.4)
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Fig. 13.2: Changes in dynamic weights.

13.3 Particle Swarm Heuristics for FDSP

13.3.1 Canonical Model

Particle swarm algorithm is inspired by social behavior patterns of organ-
isms that live and interact within large groups. In particular, it incorporates
swarming behaviors observed in flocks of birds, schools of fish, or swarms of
bees, and even human social behavior, from which the Swarm Intelligence(SI)
paradigm has emerged [5, 6]. It could be implemented and applied easily to
solve various function optimization problems, or the problems that can be
transformed to function optimization problems.

As an algorithm, its main strength is its fast convergence, which compares
favorably with many global optimization algorithms [7–9]. The canonical PSO
model consists of a swarm of particles, which are initialized with a population
of random candidate solutions. They move iteratively through the d-dimension
problem space to search the new solutions, where the fitness, f , can be calcu-
lated as the certain qualities measure.

Each particle has a position represented by a position-vector xi (i is the
index of the particle), and a velocity represented by a velocity-vector vi. Each
particle remembers its own best position so far in a vector x#

i , and its j-th
dimensional value is x#

ij . The best position-vector among the swarm so far is
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then stored in a vector x∗, and its j-th dimensional value is x∗j . During the
iteration time t, the update of the velocity from the previous velocity to the
new velocity is determined by Eq.(13.5). The new position is then determined
by the sum of the previous position and the new velocity by Eq.(13.6).

vij(t+ 1) = wvij(t) + c1r1(x
#
ij(t) − xij(t)) + c2r2(x∗j (t) − xij(t)). (13.5)

xij(t+ 1) = xij(t) + vij(t+ 1). (13.6)

where w is called as the inertia factor, r1 and r2 are the random numbers,
which are used to maintain the diversity of the population, and are uniformly
distributed in the interval [0,1] for the j-th dimension of the i-th particle. c1
is a positive constant, called as coefficient of the self-recognition component,
c2 is a positive constant, called as coefficient of the social component.

From Eq.(13.5), a particle decides where to move next, considering its own
experience, which is the memory of its best past position, and the experience
of its most successful particle in the swarm. In the particle swarm model,
the particle searches the solutions in the problem space with a range [−s, s]
(If the range is not symmetrical, it can be translated to the corresponding
symmetrical range.) In order to guide the particles effectively in the search
space, the maximum moving distance during one iteration must be clamped
in between the maximum velocity [−vmax, vmax] given in Eq.(13.7):

vij = sign(vij)min(|vij | , vmax). (13.7)

xi,j = sign(xi,j)min(|xi,j | , xmax) (13.8)

The value of vmax is p × s, with 0.1 ≤ p ≤ 1.0 and is usually chosen to be
s, i.e. p = 1. The pseudo-code for particle swarm optimization algorithm is
illustrated in Algorithm 1.

The termination criteria are usually one of the following:

• Maximum number of iterations: the optimization process is terminated
after a fixed number of iterations, for example, 1000 iterations.

• Number of iterations without improvement: the optimization process is
terminated after some fixed number of iterations without any improve-
ment.

• Minimum objective function error: the error between the obtained ob-
jective function value and the best fitness value is less than a pre-fixed
anticipated threshold.

The role of inertia weight w, in Eq.(13.5), is considered critical for the
convergence behavior of PSO. The inertia weight is employed to control the
impact of the previous history of velocities on the current one. Accordingly,
the parameter w regulates the trade-off between the global (wide-ranging)
and local (nearby) exploration abilities of the swarm. A large inertia weight
facilitates global exploration (searching new areas), while a small one tends
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Algorithm 13.1: Particle Swarm Optimization Algorithm

01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = t + 1;
05. Calculate the fitness value of each particle;
06. x∗ =
argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
09. For j = 1 to Dimension
10. Update the j-th dimension value of xi and vi

10. according to Eqs.(13.5), (13.6), (13.7), (13.8);
12. Next j
13. Next i
14. End While.

to facilitate local exploration, i.e. fine-tuning the current search area. A suit-
able value for the inertia weight w usually provides balance between global
and local exploration abilities and consequently results in a reduction of the
number of iterations required to locate the optimum solution. Initially, the
inertia weight is set as a constant. However, some experiment results indi-
cates that it is better to initially set the inertia to a large value, in order to
promote global exploration of the search space, and gradually decrease it to
get more refined solutions [10,11]. Thus, an initial value around 1.2 and grad-
ually reducing towards 0 can be considered as a good choice for w. A better
method is to use some adaptive approaches (example: fuzzy controller), in
which the parameters can be adaptively fine tuned according to the problem
under consideration [12,13].

The parameters c1 and c2, in Eq.(13.5), are not critical for the convergence
of PSO. However, proper fine-tuning may result in faster convergence and
alleviation of local minima. As default values, usually, c1 = c2 = 2 are used,
but some experiment results indicate that c1 = c2 = 1.49 might provide even
better results. Recent work reports that it might be even better to choose a
larger cognitive parameter, c1, than a social parameter, c2, but with c1 + c2 ≤
4 [16].

The particle swarm algorithm can be described generally as a population
of vectors whose trajectories oscillate around a region which is defined by
each individual’s previous best success and the success of some other particle.
Various methods have been used to identify some other particle to influence
the individual. Eberhart and Kennedy called the two basic methods as “gbest
model” and “lbest model” [5]. In the lbest model, particles have information
only of their own and their nearest array neighbors’ best (lbest), rather than
that of the entire group.
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In the gbest model, the trajectory for each particle’s search is influenced by
the best point found by any member of the entire population. The best particle
acts as an attractor, pulling all the particles towards it. Eventually all particles
will converge to this position. The lbest model allows each individual to be
influenced by some smaller number of adjacent members of the population
array. The particles selected to be in one subset of the swarm have no direct
relationship to the other particles in the other neighborhood.

Typically lbest neighborhoods comprise exactly two neighbors. When the
number of neighbors increases to all but itself in the lbest model, the case is
equivalent to the gbest model. Some experiment results testified that gbest
model converges quickly on problem solutions but has a weakness for becom-
ing trapped in local optima, while lbest model converges slowly on problem
solutions but is able to “flow around” local optima, as the individuals explore
different regions. The gbest model has faster convergence. But very often for
multi-modal problems involving high dimensions it tends to suffer from pre-
mature convergence.

13.3.2 Variable Neighborhood Particle Swarm Optimization
Algorithm (VNPSO)

Variable Neighborhood Search (VNS) is a relatively recent metaheuristic
which relies on iteratively exploring neighborhoods of growing size to iden-
tify better local optima with shaking strategies [14, 15]. More precisely, VNS
escapes from the current local minimum x∗ by initiating other local searches
from starting points sampled from a neighborhood of x∗, which increases its
size iteratively until a local minimum is better than the current one is found.
These steps are repeated until a given termination condition is met. The
metaheuristic method, Variable Neighborhood Particle Swarm Optimization
(VNPSO) algorithm, was originally inspired by VNS [20]. In PSO, if a par-
ticle’s velocity decreases to a threshold vc, a new velocity is assigned using
Eq.(13.9):

vij(t) = wv̂+ c1r1(x
#
ij(t−1)−xij(t−1))+ c2r2(x∗j (t−1)−xij(t−1)) (13.9)

v̂ =

{
vij if |vij | ≥ vc

u(−1, 1)vmax/η if |vij | < vc

(13.10)

The VNPSO algorithm scheme is summarized as Algorithm 2. The performance
of the algorithm is directly correlated to two parameter values, vc and η.
A large vc shortens the oscillation period, and it provides a great probability
for the particles to leap over local minima using the same number of iterations.
But a large vc compels the particles in the quick “flying” state, which leads
them not to search the solution and forcing them not to refine the search. The
value of η changes directly the variable search neighborhoods for the particles.
It is to be noted that the algorithm is different from the multi-start technique.
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We also implemented the Multi-Start Particle Swarm Optimization (MSPSO)
(illustrated in Algorithm 3) and the Multi-Start Genetic Algorithm (MSGA)
to compare the empirical performances.

Algorithm 13.2: Variable Neighborhood Particle Swarm Optimization

01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Set the flag of iterations without improvement Nohope = 0.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. x∗ =
argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
08. If x∗ is improved then Nohope = 0, else Nohope = Nohope + 1.
09. For i= 1 to n
10. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of xi and vi

14. according to Eqs.(13.5),(13.7),(13.6),(13.8);
15. else
16. Update the j-th dimension value of xi and vi

17. according to Eqs.(13.10),(13.9),(13.6),(13.8).
18. Next j
19. Next i
20. End While.

For applying PSO successfully for the FDSP problem, one of the key is-
sues is the mapping of the problem solution to the PSO particle space, which
directly affects its feasibility and performance. We setup a search space of
n dimension for an (n − Operations,m −Machines) FDSP problem. Each
dimension was limited to [1,m + 1). For example, consider a little scale
(7−Operations, 3−Machines) FDSP, Fig. 13.3 shows a mapping between a
one possible assignment instance to a particle position coordinates in the PSO
domain. Each dimension of the particle’s position maps one operation, and
the value of the position indicates the machine number to which this task/-
operation is assigned to during the course of PSO. So the value of a particle’s
position should be an integer but after updating the velocity and position of
the particles, the particle’s position may appear real values such as 1.4, etc.
It is meaningless for the assignment. Therefore, in the algorithm we usually
round off the real optimum value to its nearest integer number. By this way,
we convert a continuous optimization algorithm to a scheduling problem. The
particle’s position is a series of priority levels of assigned machines according
to the order of operations. The sequence of the operations will be not changed
during the iteration.
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Algorithm 13.3: Multi-start Particle Swarm Optimization

01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. Set the flag of iterations without improvement Nohope = 0.
04. While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle;
07. x∗ =
argminn

i=1(f(x∗(t − 1)), f(x1(t)), f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)));
08. If x∗ is improved then Nohope = 0, else Nohope = Nohope + 1.
09. For i= 1 to n
10. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t));
11. For j = 1 to d
12. If Nohope < 10 then
13. Update the j-th dimension value of xi and vi

14. according to Eqs.(13.5),(13.7),(13.6),(13.8);
15. else
16. Re-initialize the positions and the velocities
17. for all the particles randomly.
18. Next j
19. Next i
20. End While.

Fig. 13.3: The Mapping between particle and FJSP.

Since the particle’s position indicates the potential schedule, the position
can be “decoded” to the feasible solution. It is to be noted that the position
matrix may violate the work-flow constraints. The starting point of operations
must be started only after the completion of the previous latest operation in
the work-flow. The best situation is the starting point of the operation in
alignment with the ending point of its previous latest operation. After all the
operations have been processed, we get the feasible scheduling solution and
then calculate the cost of the solution.
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13.4 Experiment Results and Algorithm Performance
Demonstration

To illustrate the effectiveness and performance of the particle swarm searching
algorithm, three representative instances based on practical data have been se-
lected. In our experiments, the algorithms used for comparison were VNPSO,
MSPSO (Multi-start PSO) and MSGA (Multi-start GA). In VNPSO, η and
vc were set to 2 and 1e-7 before 15,000 iterations, while they were set to 5 and
1e-10 after 15,000 iterations. Other specific parameter settings of the different
algorithms are described in Table 13.1. The algorithms were run 20 times with
different random seeds. Each trial had a fixed number of 2,000 iterations. The
average fitness values of the best solutions throughout the optimization run
were recorded. Usually another emphasis will be to generate the schedules at
a minimal amount of time. So the completion time for 20 trials were used as
one of the criteria to improve their performance.

Table 13.1: Parameter settings for the algorithms.

Algorithm Parameter name Parameter value

Size of the population 20
GA Probability of crossover 0.9

Probability of mutation 0.09
Swarm size 20
Self-recognition coefficient c1 1.49

PSOs Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1
Clamping Coefficient ρ 0.5

We illustrate a small scale FDSP problem involving an application with 9
operations, 3 machines and 3 data hosts represented as (O9,M3, D3) prob-
lem. The speeds of the 3 machines are 4, 3, 2 CPUT, respectively, i.e.,
P = {4, 3, 2}. The length of the 9 operations are 6,12,16,20,28,36,42,52,60
cycles, respectively, i.e., L = {6, 12, 16, 20, 28, 36, 42, 52, 60}. The flow matrix
is F as depicted in Section 13.2, and all other information are as follows:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 18 76
50 4 51
1 85 15
19 11 1
39 12 0
73 0 1
57 29 77
36 0 74
61 82 30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



13 Particle Swarm Heuristics for FDSP 339

A =

⎡⎣ 0 21 95
21 0 41
95 41 0

⎤⎦
B =

⎡⎣ 0 45 91
45 0 59
91 59 0

⎤⎦
Fig. 13.4 illustrates the performance of the three algorithms during the

search processes for (O9,M3, D3) problem. The best scheduling solution in
the 20 MSGA runs is {3, 1, 2, 3, 1, 1, 1, 3, 1}, in which the makespan is 23654
and the flowtime is 34075.

The best scheduling solution obtained in the 20 MSPSO and VNPSO runs
is {3, 1, 2, 3, 1, 1, 2, 3, 2}, in which the makespan is 15011 and the flowtime is
30647. While MSPSO provides the best results 8 times in 20 runs, VNPSO
provides the best result 10 times in the same runs respectively.

Fig. 13.5 provides an optimal schedule for ((O9,M3, D3) problem, in which
“W” means the waiting time. As depicted in Fig. 13.5, the operations O2 and
O3 both have to wait for 1611 time units before they are processed in the
scheduling solution.

Further, we tested the three algorithms for two more FDSP problems, i.e.
(O10,M3, D3) and (O12,M4, D3). Empirical results are illustrated in Table
13.2. In general, VNPSO performs better than the other two approaches,
although its computational time is worse than MSPSO. VNPSO could be an
ideal approach for solving the large scale problems when other algorithms
failed to give a better solution.

Table 13.2: Comparison of performance for different FDSPs.

Instance Items MSGA MSPSO VNPSO

average 28864 24152 28.8000
(O9, M3, D3)

time 200.2780 133.6920 181.2970
average 21148 19594 16389

(O10, M3, D3)
time 210.6230 138.5890 140.3920
average 16146 14692 14412

(O12, M4, D3)
time 235.1080 152.5520 154.4420

13.5 Conclusions

In this chapter, we modeled and formulated the scheduling problem for
work-flow applications in distributed data-intensive computing environments
(FDSP). A particle swarm optimization based variable neighborhood search
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Fig. 13.4: Performance for the FDSP (O9, M3, D3)

Fig. 13.5: A scheduling solution for the FDSP (O9, M3, D3)

is proposed to solve the problem. Empirical results demonstrate that the pro-
posed VNPSO algorithm is feasible and effective. VNPSO can be applied
in distributed data-intensive applications to meet the specified requirements,
including work-flow constraints, data retrieval/transfer, job interaction, min-
imum completion cost, flexibility and availability.

Our future research is targeted to generate more FDSP instances and in-
vestigate more optimization/meta-heuristic approaches.
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15. P. Hansen and N. Mladenović. “Variable neighbourhood search”. Handbook of
Metaheuristics, Dordrecht, Kluwer Academic Publishers, 2003.

16. M. Clerc, and J. Kennedy. “The Particle Swarm-explosion, Stability, and Con-
vergence in A Multidimensional Complex Space”. IEEE Transactions on Evo-
lutionary Computation, 2002, 6, pp. 58–73.

17. X. Jin and G. Min, Performance analysis of priority scheduling mechanisms
under heterogeneous network traffic Journal of Computer and System Sciences,
Volume 73, Issue 8, pp. 1207-1220, 2007.

18. F. Sabrina, C.D. Nguyen, S. Jha, D. Platt and F. Safaei, Processing resource
scheduling in programmable networks Computer Communications, Volume 28,
Issue 6, pp. 676-687, 2005.

19. L.C.A. Rodrigues, R. Carnieri and F. Neves Jr., Scheduling of continuous
processes using constraint-based search: An application to branch and bound
Computer Aided Chemical Engineering, Volume 10, pp. 751-756, 2002.

20. A. Abraham, H. Liu, and T.G. Chang, Variable Neighborhood Particle Swarm
Optimization Algorithm, Genetic and Evolutionary Computation Conference
(GECCO-2006), Seattle, USA, 2006.



Index

k −  swap, 47, 48, 55
ki-Partitioning Problem, 44, 48–50, 52,

54, 57

Adaptive memory programming, 17
Aggregation, 314
Agile manufacturing systems, 212
Ant Colony Optimization, 94, 296

ant decision policy, 95
pheromone evaporation, 95
pheromone trials, 95
pheromone update, 96

Approximation methods, 12
Aspiration, 316, 317
Assembly Line Balancing, 105, 107
Asynchronous Parallelism, 130
Averaged Related Percent Error, 136

Backtracking, 271
Bin Packing Problem, 41, 43, 44, 50
Branch-and-bound, 42, 44, 51, 52
Branch-and-price, 43, 50, 51

Cardinality Constrained Parallel
Machine Scheduling Problem, 43,
48, 50, 52, 54

Case study, 305, 318
Cellular Telephone Index, 118
Column generation, 43, 44, 52, 53
Combinatorial optimization, 10
Contaminated interface, 301
Crossover, 69

Partially matched, 69
PTL, 70

crossover
order-based, 69

Decoding procedure, 185, 206
Decomposition and relaxation, 191, 199,

206, 207
Delivering oil, 301
Directed Acyclic Graph, 281

precedence constraint, 281
task, 282

Disaggregation, 314
Disassembly, 106

balancing, 106
demand, 106
hazardous material, 106
product, 106

Disassembly Line Balancing Problem,
106

Distributed data-intensive computing,
328

Diversification list, 311, 317
Diversity, 45–49, 56
DPSO, see particle swarm optimization
Dynamic ACO, 96

entropy information, 96
Dynamical Ant Colony Optimization,

91

Electronic Product Instance, 118
Exact algorithms, 11

Flow shop, 5, 8, 17
Flow-shop scheduling, 62

continuous, 62



344 Index

no-wait, 62
Foraging,Colonies, 283

GAs, 255
Genetic Algorithm

2-tournament selection, 271
activity list, 266
Chromosome, 266
Crossover, 269
Gene, 266
Initial population, 268
Mutation, 270
One point crossover, 270
Real-world problem, 272
Selection, 271
Solution encoding, 266

Genetic Algorithms, 176, 178, 203, 206
Genetic operators, 176, 178, 181, 183,

207
GRACOM, 149

BCX operator, 156
example, 157
pseudocode, 157

efficiency, 161
experiments, 158

genetic operators, 158
population size, 159
selection method, 161

IBIS operator, 153
example, 155
pseudocode, 153
Takagi-Sugeno fuzzy logic driver,

153
partial fitness function, 150
population diversity measure, 152
solution coding, 150

Graph Coloring Problem, 146
applications, 147

Group shop, 8

H-K heuristic, 105, 108, 112, 121, 122
Hit Ratio, 136
Hybrid meta-heuristics, 16

Identical Parallel Machine Scheduling
Problem, 41, 42, 46, 49, 50, 52, 54

Improvement, 45, 47–49, 55
Insertion, 311, 313
Interface, 301–303

Job shop, 6, 9, 24
Job Shop Scheduling, 133
Job-shop Scheduling Problem, 148
Job-shop scheduling problem, 264

Line level, 170
List Scheduling heuristics, 49, 50, 52, 53
Local search, 71, 176, 178, 180, 190

-based meta-heuristic, 177
algorithm, 180, 189, 207
procedure, 178, 190, 191
step, 181

Longest Processing Time, 46, 49, 50

Makespan, 41–43, 136
Mathematical model, 172, 173, 191
Memetic

algorithm, 178, 206
Memetic Algorithm, 176
Mesh Topology, 131
Meta-heuristics, 14, 178, 196, 206
Milk processing, 291

mathematical model, 291
Mixed heuristics, 49, 50, 53
Mixed shop, 7
Movement, 311, 313
Multi-objective optimization, 285

conflicting objectives, 285
Pareto, 285

Multi-population, 206
approach, 176, 178, 179
GA, 179
MA, 179, 181
scheme, 181
sctructure, 181

Multi-Start Genetic Algorithm, 336
Multi-start local search, 43, 53
Multi-Start Particle Swarm Optimiza-

tion, 336
Multi-subset, 46, 48, 50
Multiprocessor Scheduling Problem,

105, 106, 110
Multiprocessor Scheduling Tasks

Problem, 148

Nearest neighbor heuristic, 70
Neighbor, 310
Neighborhood, 71, 310
Neighborhood Structure, 134



Index 345

Neighbors, 310
NNH, see nearest neighbor heuristic
Non periodic train timetabling, 257
NP-hard, 107

Open shop, 7, 9, 29
Operation Based Representation, 133

P2LMM model, 193, 196
Parallel

computers, 181
facilities, 182
machines, 206

Parallel machine scheduling, 4
Parallel machines, 173
Parallelization of VNS, 128
Pareto Bee Colony Optimization, 285
Particle swarm algorithm, 332
Particle swarm optimization, 61, 64

discrete, 67
Pipeline, 301–304

simulator, 307
Planning horizon, 172, 191, 201
Population, 284
Preferred Process Path, 292
Product, 106
Product interface, 301
Production levels, 170, 191, 198
Production line, 171

parallel, 171
Production scheduling, 1
PSO, see particle swarm optimization

Quality, 45, 46, 56

Ranking, Group creation, Scheduling
independent tasks, 282

RBRS, 268
Reference set, 45–49, 51, 52, 56
Relax and fix

heuristic, 196, 198
heuristic,wolsey, 196
strategies, 197, 199
strategy, 196

Relaxation approach, 198
Resource constraints, 264
Rough set, 286, 288

Scatter Search, 42–46, 48, 49, 52, 54,
55, 57

Schedule, 302–304, 306
scheduler, 302, 303
scheduling, 301–303, 305

Scheduling, 91
Scheduling jobs on a single machine, 91

earliness, 91
equations of earliness and tardiness

penalties, 93
JIT requirement, 91
penalty, 91
problem formulation, 93
simulation results, 97
tardiness, 91
with a common due date, 91

Self-Organization, 283
Serial schedule generation scheme, 266
Setup, 185, 191, 195

cost, 172, 173, 175, 196, 206
time, 171–173, 175, 177, 182, 186,

200, 206
setup

cost, 200
Shift operator, 71
Shop scheduling, 5
Simulation, 301, 302, 306

simulator, 305, 307, 308, 312
Simulation package, 308
Single Machine, 91
Single machine scheduling, 3
SITLSP, 173, 178, 189
Soft drinks, 169, 170

industry, 173, 207
manufacturer, 178, 198, 200
mathematical model, 170

Solution combination, 46, 48, 49, 56
Starting population, 45, 46, 48, 55
Subset generation, 46, 47, 56
Supply chain

perishable materials, 281
planning, 280
scheduling, 280
sub-processes, 281

Supply chain management, 278
Supply network, 277
Surface modelling, 280
Swap operator, 71
Swarm intelligence, 61
Synchronization, 170, 173
Synchronized Parallelism, 129



346 Index

Tabu list, 311, 316
Tabu Search, 43, 52, 53, 296, 301, 302,

306, 307, 309, 310, 321, 323, 324
Tank level, 170
Ternary tree structure, 178, 179
Threshold heuristics, 49, 50, 52, 53
Time constraints, 264
TTP, 255

Unidirectional-Ring Topology, 131
University Course Timetabling

Problem, 147

V-shaped property, 92, 94, 97

Variable Neighborhood

Particle Swarm Optimization, 335

Variable neighborhood descent, 71

Variable Neighborhood Search, 127, 335

VND, see variable neighborhood
descent

Witness, 306



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




