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Preface

These are the proceedings of Eurocrypt 2008, the 27th Annual IACR Euro-
crypt Conference. The conference was sponsored by the International Associ-
ation for Cryptologic Research (www.iacr.org), this year in cooperation with
Tubitak (www.tubitak.gov.tr).

The Eurocrypt 2008 Program Committee (PC) consisted of 28 members
whose names are listed on the next page. There were 163 papers submitted
to the conference and the PC chose 31 of them. Each paper was assigned to at
least three PC members, who either handled it themselves or assigned it to an
external referee. After the reviews were submitted, the committee deliberated
both online for several weeks and finally in a face-to-face meeting held in Bristol.
Papers were refereed anonymously, with PC papers having a minimum of five
reviewers. All of our deliberations were aided by the Web Submission and Re-
view Software written and maintained by Shai Halevi. In addition to notification
of the decision of the committee, authors received reviews; the default for any
report given to the committee was that it should be available to the authors as
well.

The committee decided to give the Best Paper Award to Ben Smith for his
paper “Isogenies and the Discrete Logarithm Problem in Jacobians of Genus
3 Hyperelliptic Curves.” The conference program also included two invited lec-
tures: one by Andy Clark entitled “From Gamekeeping to Poaching - Information
Forensics and Associated Challenges,” and the other by Clifford Cocks on “The
Growth and Development of Public Key Cryptography.”

I wish to thank all the people who made the conference possible. First and
foremost the authors who submitted their papers. The hard task of reading,
commenting, debating and finally selecting the papers for the conference fell on
the PC members. Without the hard work of the committee members and their
respective sub-reviewers the whole process would be so much harder to organize.
I thank Shai Halevi for handling the submissions and reviews server, and for also
organizing the phone conference for those people unable to attend the Bristol
PC meeting in person. I am also grateful to members of the IACR board, and
previous PC Chairs, who shared their invaluable advice with me and to A. Murat
Apohan and the rest of the local Organizing Committee.

Finally, I would like to say that it has been a great honor to be PC Chair
for Eurocrypt 2008 and I only hope the readers of the following papers obtain
as much enjoyment as I did in selecting them.

February 2008 Nigel Smart
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Abstract. KeeLoq is a lightweight block cipher with a 32-bit block size
and a 64-bit key. Despite its short key size, it is widely used in remote key-
less entry systems and other wireless authentication applications. For ex-
ample, authentication protocols based on KeeLoq are supposedly used by
various car manufacturers in anti-theft mechanisms. This paper presents
a practical key recovery attack against KeeLoq that requires 216 known
plaintexts and has a time complexity of 244.5 KeeLoq encryptions. It is
based on the slide attack and a novel approach to meet-in-the-middle
attacks. The fully implemented attack requires 65 minutes to obtain the
required data and 7.8 days of calculations on 64 CPU cores. A variant
which requires 216 chosen plaintexts needs only 3.4 days on 64 CPU
cores. Using only 10 000 euro, an attacker can purchase a cluster of 50
dual core computers that will find the secret key in about two days. We
investigated the way KeeLoq is intended to be used in practice and con-
clude that our attack can be used to subvert the security of real systems.
An attacker can acquire chosen plaintexts in practice, and one of the
two suggested key derivation schemes for KeeLoq allows to recover the
master secret from a single key.

Keywords: KeeLoq, cryptanalysis, block ciphers, slide attacks, meet-
in-the-middle attacks.

1 Introduction

The KeeLoq technology [13] by Microchip Technology Inc. includes the KeeLoq
block cipher and several authentication protocols built on top of it. The KeeLoq

� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government, by the IAP Programme P6/26 BCRYPT
of the Belgian State (Belgian Science Policy), and in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT.

�� F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).
��� This author is supported by the Adams Fellowship Program of the Israel Academy

of Sciences and Humanities.

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 1–18, 2008.
c© International Association for Cryptologic Research 2008



2 S. Indesteege et al.

block cipher allows for very low cost and power efficient hardware implementa-
tions. This property has undoubtedly contributed to the popularity of the cipher
in various wireless authentication applications. For example, multiple car man-
ufacturers supposedly use, or have used KeeLoq to protect their cars against
theft [5,6,7,9,17].1

Despite its design in the 80’s, the first cryptanalysis of KeeLoq was only pub-
lished by Bogdanov [5] in February 2007. This attack is based on the slide tech-
nique and a linear approximation of the non-linear Boolean function used in
KeeLoq. The attack has a time complexity of 252 KeeLoq encryptions and requires
16GB of storage. It also requires the entire codebook, i.e., 232 known plaintexts.

Courtois et al. apply algebraic techniques to cryptanalyse KeeLoq [7,9]. Al-
though a direct algebraic attack fails for the full cipher, they reported various
successful slide-algebraic attacks. For example, they claim that an algebraic at-
tack can recover the key when given a slid pair in 2.9 seconds on average. As there
is no way to ensure or identify the existence of a slid pair in the data sample, the
attack is simply repeated 232 times, once for each pair generated from 216 known
plaintexts. They also described attacks requiring the entire codebook, which ex-
ploit certain assumptions with respect to fixed points of the internal state. The
fastest of these requires 227 KeeLoq encryptions and has an estimated success
probability of 44% [9].

In [6], Bogdanov published an updated version of his attack. A refined com-
plexity analysis yields a slightly smaller time complexity, i.e., 250.6 KeeLoq en-
cryptions while still requiring the entire codebook. This paper also includes an
improvement using the work of Courtois et al. [7] on the cycle structure of the
cipher. We note that the time complexity of the attack using the cycle struc-
ture given in [6] is based on an assumption from an earlier version of [7], that a
random word can be read from 16GB of memory with a latency of only 1 clock
cycle. This is very unrealistic in a real machine, so the actual time complexity is
probably much higher. In a later version of [7], this assumption on the memory
latency was changed to be 16 clock cycles.

Our practical attack is based on the slide attack as well. However, unlike other
attacks, we combine it with a novel meet-in-the-middle attack. The optimised
version of the attack uses 216 known plaintexts and has a time complexity of
244.5 KeeLoq encryptions. We have implemented our attack and the total running
time is roughly 500 days. As the attack is fully parallelizable, given x CPU cores,
the total running time is only 500/x days. A variant which requires 216 chosen
plaintexts needs only 218/x days on x CPU cores. For example, for 10 000 euro,
one can obtain 50 dual core computers, which will take about two days to find
the key. Another, probably even cheaper, though illegal option would be to rent
a botnet to carry out the computations.

KeeLoq is used in two protocols, the “Code Hopping” and the “Identify Friend
or Foe (IFF)” protocol. In practice, the latter protocol, a simple challenge response
protocol, is the most interesting target to acquire the data that is necessary to

1 We verified these claims to the best of our ability, however, no car manufacturer
seems eager to publically disclose which algorithms are used.
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Table 1. An overview of the known attacks on KeeLoq

Attack Type Complexity Reference
Data Time Memory

Time-Memory Trade-Off 2 CP 242.7 ≈ 100 TB [11]
Slide/Algebraic 216 KP 265.4 ? [7,9]
Slide/Algebraic 216 KP 251.4 ? [7,9]
Slide/Guess-and-Determine 232 KP 252 16 GB [5]
Slide/Guess-and-Determine 232 KP 250.6 16 GB [6]
Slide/Cycle Structure 232 KP 239.4 16.5 GB [7]
Slide/Cycle/Guess-and-Det.a 232 KP (237) 16.5 GB [6]
Slide/Fixed Points 232 KP 227 > 16 GB [9]

Slide/Meet-in-the-Middle 216 KP 245.0 ≈ 2MB Sect. 3.3
Slide/Meet-in-the-Middle 216 KP 244.5 ≈ 3MB Sect. 3.4
Slide/Meet-in-the-Middle 216 CP 244.5 ≈ 2MB Sect. 3.5

Time-Memory-Data Trade-Off 68 CP, 34 RK 239.3 ≈ 10 TB [2]

Related Key 66 CP, 34 RK≫ negligible negligible Sect. A.1
Related Key 512 CP, 2 RK≫ 232 negligible Sect. A.1
Related Key/Slide/MitM 217 CP, 2 RK⊕ 241.9 ≈ 16MB Sect. A.2

Time complexities are expressed in full KeeLoq encryptions (528 rounds).
KP: known plaintexts; CP: chosen plaintexts
RK≫ : related keys (by rotation); RK⊕: related keys (flip LSB)

a The time complexity for this attack is based on very unrealistic memory latency
assumptions and hence will be much higher in practice.

mount the attack. Because the challenges are not authenticated in any way, an
attacker can obtain as many chosen plaintext/ciphertext pairs as needed from a
transponder (e.g., a car key) implementing this protocol. Depending on the
transponder, it takes 65 or 98 minutes to gather 216 plaintext/ciphertext pairs.

Finally, as was previously noted by Bogdanov [6], we show that one of the two
suggested key derivation algorithms is blatantly flawed, as it allows an attacker
to reconstruct many secret keys once a single secret key has been exposed.

Given that KeeLoq is a cipher that is widely used in practice, side-channel
analysis may also be a viable option for attacking chips that implement KeeLoq.
However, we do not consider this type of attack in this paper. One could also
attack the “Identify Friend or Foe (IFF)” protocol itself. For instance, as the
responses are only 32 bits long, one could mount the birthday attack using 216

known challenge/response pairs. This would not recover the secret key, thus
posing less of a threat to the overall security of the system.

Table 1 presents an overview of the known attacks on KeeLoq, including ours.
In order to make comparisons possible, we have converted all time complexities
to the number of KeeLoq encryptions needed for the attack.2

2 We list slightly better complexities for the attacks from [7,9] because we used a more
realistic conversion factor from CPU clocks to KeeLoq rounds (i.e., 12 rather than 4
CPU cycles per KeeLoq round).
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Fig. 1. The i-th KeeLoq encryption cycle

The structure of this paper is as follows. In Sect. 2, we describe the KeeLoq
block cipher and how it is intended to be used in practice. Our attacks are
described in Sect. 3. In Sect. 4 we discuss our experimental results and in Sect. 5
we show the relevance of our attacks in practice. Finally, in Sect. 6 we conclude.
In Appendix A, we explore some related key attacks on KeeLoq that are more
of theoretical interest.

2 Description and Usage of KeeLoq

2.1 The KeeLoq Block Cipher

The KeeLoq block cipher has a 32-bit block size and a 64-bit key. It consists of
528 identical rounds each using one bit of the key. A round is equivalent to an
iteration of a non-linear feedback shift register (NLFSR), as shown in Fig. 1.

More specifically, let Y (i) = (y(i)
31 , . . . , y

(i)
0 ) ∈ {0, 1}32 be the input to round i

(0 ≤ i < 528) and let K = (k63, . . . , k0) ∈ {0, 1}64 be the key. The input
to round 0 is the plaintext: Y (0) = P . The ciphertext is the output after 528
rounds: C = Y (528). The round function can be described as follows (see Fig. 1):

ϕ(i) = NLF
(
y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)
⊕ y

(i)
16 ⊕ y

(i)
0 ⊕ ki mod 64 ,

Y (i+1) = (ϕ(i), y
(i)
31 , . . . , y

(i)
1 ) .

(1)

The non-linear function NLF is a Boolean function of 5 variables with output
vector 3A5C742Ex — i.e., NLF(i) is the i-th bit of this hexadecimal constant,
where bit 0 is the least significant bit. We can also represent the non-linear
function in its algebraic normal form (ANF):

NLF(x4, x3, x2, x1, x0) = x4x3x2 ⊕ x4x3x1 ⊕ x4x2x0 ⊕ x4x1x0⊕
x4x2 ⊕ x4x0 ⊕ x3x2 ⊕ x3x0 ⊕ x2x1 ⊕ x1x0⊕
x1 ⊕ x0 .

(2)
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Decryption uses the inverse round function, where i now ranges from 528 down
to 1.

θ(i) = NLF
(
y
(i)
30 , y

(i)
25 , y

(i)
19 , y

(i)
8 , y

(i)
0

)
⊕ y

(i)
15 ⊕ y

(i)
31 ⊕ ki−1 mod 64 ,

Y (i−1) = (y(i)
30 , . . . , y

(i)
0 , θ(i)) .

(3)

There used to be some ambiguity about the correct position of the taps. Our
description agrees with the “official” documentation [5,6,9,15]. Additionally, we
have used test vectors generated by an actual HSC410 chip [14], manufactured by
Microchip Inc., to verify that our description and implementation of KeeLoq are
indeed correct. Finally, we note that our attacks are unaffected by this difference.

2.2 Protocols Built on KeeLoq

A device like the HCS410 by Microchip Technology Inc. [14] supports two au-
thentication protocols based on KeeLoq: “KeeLoq Hopping Codes” and “KeeLoq
Identify Friend or Foe (IFF)”. The former uses a 16-bit secret counter, synchro-
nised between both parties. In order to authenticate, the encoder (e.g., a car key)
increments the counter and sends the encrypted counter value to the decoder
(e.g., the car), which verifies if the received ciphertext is correct. In practice, this
protocol would be initiated by a button press of the car owner.

The second protocol, “KeeLoq Identify Friend or Foe (IFF)” [14], is a simple
challenge response protocol. The decoder (e.g., the car) sends a 32-bit challenge.
The transponder (e.g., the car key) uses the challenge as a plaintext, encrypts
it with the KeeLoq block cipher3 under the shared secret key, and replies with
the ciphertext. This protocol is executed without any user interaction whenever
the transponder receives power and an activation signal via inductive coupling
from a nearby decoder. Hence, no battery or button presses are required. It
could for instance be used in vehicle immobilisers by placing the decoder near
the ignition. Inserting the car key in the ignition would place the transponder
within range of the decoder. The latter would then activate the transponder and
execute the protocol, all completely transparent to the user. The car would then
either disarm the immobiliser or activate the alarm, depending on whether the
authentication was successful.

Of course both protocols can be used together in a single device, thereby
saving costs. For example, the HCS410 chip [14] supports this combined mode
of operation, possibly using the same secret key for both protocols, depending
on the configuration options used.

3 Our Attacks on KeeLoq

This section describes our attacks on KeeLoq. We combine a slide attack with a
novel meet-in-the-middle approach to recover the key from a slid pair. First we
3 This corresponds to what is called the “HOP algorithm” in [14]. The other option,

the so-called “IFF algorithm”, uses a reduced version of KeeLoq with 272 rounds
instead of 528. Our attacks are also applicable to this variant, without any change.
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P1 � F �
P2

F � . . . � F � F � C1

P2 � F � F � . . . � F �

C1

F � C2

Fig. 2. A typical slide attack

explain some preliminaries that are used in the attacks. Then we proceed to the
description of the attack scenario using known plaintexts and a generalisation
thereof. Finally, we show how chosen plaintexts can be used to improve the
attack.

3.1 The Slide Property

Slide attacks were introduced by Biryukov and Wagner [3] in 1999. The typical
candidate for a slide attack is a block cipher consisting of a potentially very
large number of iterations of an identical key dependent permutation F . In
other words, the subkeys are repeated and therefore the susceptible cipher can
be written as

C = F (F (. . . F (P )))︸ ︷︷ ︸
r

= F r(P ) . (4)

This permutation does not necessarily have to coincide with the rounds of the
cipher, i.e., F might combine several rounds of the cipher.

A slide attack aims at exploiting such a self-similar structure to reduce the
strength of the entire cipher to the strength of F . Thus, it is independent of
the number of rounds of the cipher. To accomplish this, a so-called slid pair is
needed. This is a pair of plaintexts that satisfies the slide property

P2 = F (P1) . (5)

We depict such a slid pair in Fig. 2. For a slid pair, the corresponding ciphertexts
also satisfy the slide property, i.e., C2 = F (C1). By repeatedly encrypting this
slid pair, we can generate as many slid pairs as needed [4,10]. As each slid
pair gives us a pair of corresponding inputs and outputs of the key dependent
permutation F , it can be used to mount an attack against F .

KeeLoq has 528 identical rounds, each using one bit of the 64-bit key. After
64 rounds the key is repeated. So in the case of KeeLoq, we combine 64 rounds
into F . However, because the number of rounds in the cipher is not an integer
multiple of 64, a straightforward slid attack is not possible. A solution to this
problem is to guess the 16 least significant bits of the key and use this to strip
off the final 16 rounds. Then, a slide attack can be applied to the remaining 512
rounds [5,7,9].

In order to get a slid pair, 216 known plaintexts are used. As the block size
of KeeLoq is 32 bits, we expect that a random set of 216 plaintexts contains a
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slid pair due to the birthday paradox.4 Determining which pair is a slid pair is
done by the attack itself. Simply put, the attack is attempted with every pair.
If it succeeds, the pair is a slid pair, otherwise it is not.

3.2 Determining Key Bits

If two intermediate states of the KeeLoq cipher, separated by 32 rounds (or less)
are known, all the key bits used in these rounds can easily be recovered. This
was first described by Bogdanov [5], who refers to it as the “linear step” of his
attack.

Let Y (i) = (y(i)
31 , . . . , y

(i)
0 ) and Y (i+t) = (y(i+t)

31 , . . . , y
(i+t)
0 ) be the two known

states; t ≤ 32. If we encrypt Y (i) by one round, the newly generated bit is

ϕ(i) = NLF
(
y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)
⊕ y

(i)
16 ⊕ y

(i)
0 ⊕ ki mod 64 . (6)

Because of the non-linear feedback shift register structure of the round function
and since t ≤ 32, the bit ϕ(i) is equal to y

(i+t)
32−t , which is one of the bits of Y (i+t)

and thus known. Hence

ki mod 64 = NLF
(
y
(i)
31 , y

(i)
26 , y

(i)
20 , y

(i)
9 , y

(i)
1

)
⊕ y

(i)
16 ⊕ y

(i)
0 ⊕ y

(i+t)
32−t . (7)

By repeating this t times, all t key bits can be recovered. The amount of
computations that need to be carried out is equivalent to t rounds of KeeLoq.
This simple step will prove to be very useful in our attack.

3.3 Basic Attack Scenario

We now describe the basic attack scenario, which uses 216 known plaintexts.
For clarity, the notation used is shown in Fig. 3 and a pseudocode overview is
given in Fig. 4. We denote 16 rounds of KeeLoq by gk̂, where k̂ denotes the 16
key bits used in these rounds. The 64-bit key k is split into four equal parts:
k = (k̂3, k̂2, k̂1, k̂0), where k̂0 contains the 16 least significant key bits.

As already mentioned in Sect. 3.1, the first step of the attack is to guess k̂0

— the 16 least significant bits of the key. This enables us to partially encrypt
each of the 216 plaintexts by 16 rounds (Pi to Xi) and partially decrypt each of
the 216 ciphertexts by 16 rounds (Cj to Yj).

Encrypting Xi by 16 more rounds yields X�
i . Similarly, decrypting Pj by 16

rounds yields P �
j (see Fig. 3). We denote the 16 most significant bits of X�

i by
X�

i , and the 16 least significant bits of P �
j by P �

j . Note that, because X�
i and

P �
j are separated by 16 rounds, it holds that X�

i = P �
j , provided that Pi and Pj

form a slid pair. This is due to the structure of the cipher.

4 The probability that a set of 216 random plaintexts contains at least one slid pair is

1 −
(
1 − 2−32)232

≈ 0.63. Hence, the attack has a success probability of about 63%.
With not much higher data complexity, higher success rates can be achieved.
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Pi
� gk̂0

� Xi
� gk̂1

� X�
i

gk̂2 P �
j

� gk̂3
� Pj

k̂0 k̂1 k̂2 k̂3 k̂0

Ci
� gk̂1

� C�
i

gk̂2 Y �
j

� gk̂3
� Yj

� gk̂0
� Cj

Fig. 3. The notation used in the attack

for all k̂0 ∈ {0, 1}16 do
for all plaintexts Pi, 0 ≤ i < 216 do

Partially encrypt Pi to Xi.
Partially decrypt Ci to Yi.

for all P �
j ∈ {0, 1}16 do

for all plaintexts Pj , 0 ≤ j < 216 do
Determine the key bits k̂3.
Partially decrypt Yj to Y �

j .

Save the tuple
〈
P �

j , Y �
i , k̂3

〉
in a table.

for all plaintexts Pi, 0 ≤ i < 216 do
Determine the key bits k̂1.
Partially encrypt Ci to C�

i .
for all collisions C�

i = Y �
j in the table do

Determine the key bits k̂2 from X�
i and P �

j .

Determine the key bits k̂′
2 from C�

i and Y �
j .

if k̂2 = k̂′
2 then

Encrypt 2 known plaintexts with the key k = (k̂3, k̂2, k̂1, k̂0).
if the correct ciphertexts are found then

return success (the key is k)
return failure (i.e., there was no slid pair)

Fig. 4. The attack algorithm

The next step in the attack is to apply a meet-in-the-middle approach. We
guess the 16-bit value P �

j . For each plaintext Pj we can then determine k̂3

using the algorithm described in Sect. 3.2. Indeed, as the other bits of P �
j are

determined by Pj , we know all of P �
j when given the plaintext. There is always

exactly one solution per plaintext. Using this part of the key, we can now partially
decrypt Yj to Y �

j . This result is saved in a hash table indexed by the 16-bit value
Y �

j . Each record in the hash table holds a tuple consisting of P �
j , Y �

j and the 16

key bits k̂3.
Now we do something similar from the other side. For each plaintext we use

the algorithm from Sect. 3.2 to determine k̂1. Again this can be done because
we know all of X�

i , and there is exactly one solution per plaintext. Knowing k̂1,
we partially encrypt Ci to C�

i .
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Note that if Pi and Pj are indeed a slid pair their partial encryptions and
decryptions (under the correct key) must “meet in the middle”. More specifically,
it must hold that C�

i = Y �
j . So, we look for a record in the hash table for which

such a collision occurs. Because the hash table is indexed by Y �
j this can be done

very efficiently. A slid pair produces a collision, provided the guesses for k̂0 and
P �

j are correct. Therefore, we are guaranteed that all slid pairs are found at some
point. Of course, a collision does not guarantee that the pair is actually a slid
pair.

Finally, we check each candidate slid pair found. We determine the remaining
key bits k̂2 from X�

i and P �
j and similarly k̂′2 from C�

i and Y �
j . If k̂2 and k̂′2 are

not equal, the candidate pair is not a slid pair. Note that we can determine the
key bits one by one and stop as soon as there is a disagreement. This slightly
reduces the complexity of the attack.

If k̂2 = k̂′2, we have found a pair of plaintexts and a key with the property
that encrypting Pi by 64 rounds gives Pj and encrypting Ci by 64 rounds gives
Cj . This is what is expected from a slid pair. It is however possible that the
recovered key is not the correct key, so we can verify it by a trial encryption
of one of the known plaintexts. Even if a wrong key is suggested during the
attack, and discarded by the trial encryption, we are still guaranteed to find the
correct key eventually, provided there is at least one slid pair among the given
plaintexts.

Complexity Analysis. Using one round of KeeLoq as a unit, the time com-
plexity of the attack can be expressed as

216
(
32 · 216 + 216

(
32 · 216 + 216 (32 + Ncoll · V )

))
, (8)

when Ncoll denotes the expected number of collisions for a single guess of k̂0,
P �

j and a given plaintext Pi, and V denotes the average cost of verifying one
collision, i.e., checking if it leads to a candidate key and if this key is correct.
This follows directly from the description of the attack. As the hash table has
216 entries and a collision is equivalent to a 16-bit condition, Ncoll = 1. In the
verification step, we can determine one bit at a time and stop as soon as there
is a disagreement, which happens with probability 1/2. Only when there is no
disagreement after 16 key bits, we do two full trial encryptions to check the
recovered key. Of course the second trial encryption is only useful if the first one
gave the expected result. Hence, due to this early abort technique, the average
cost of verifying one collision is

V = 2 ·
15∑

i=0

2−i + 2−16 ·
(
528 + 528 · 2−32

)
≈ 4 . (9)

Thus the overall complexity of the attack is 254.0 KeeLoq rounds, which amounts
to 245.0 full KeeLoq encryptions.
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As mentioned before, the data complexity of the attack is 216 known plain-
texts. The storage requirements are very modest. The attack stores the plain-
text/ciphertext pairs, 216 values for Xi and Yi, and a hash table with 216 records
of 80 bits each. This amounts to a bit over 2MB of RAM.

3.4 A Generalisation of the Attack

The attack presented in the previous section can be generalised by varying the
number of rounds to partially encrypt/decrypt in each step of the attack. We
denote by tp the number of rounds to partially encrypt from the plaintext side
(left on Fig. 3) and by tc the number of rounds to partially decrypt from the
ciphertext side (right on Fig. 3). More specifically, encrypting Xi by tp rounds
yields X�

i , encrypting Ci by tp rounds yields C�
i . On the ciphertext side, P �

j is
obtained by decrypting Pj by tc rounds and Y �

j by decrypting Yj by tc rounds.
Also, the partial keys k̂0 through k̂3 are adapted accordingly to contain the
appropriate key bits.

Let to denote the number of bits that, provided Pi and Pj form a slid pair,
overlap between X�

i and P �
j . As X�

i and P �
j are separated by 48− tp − tc rounds,

it holds that to = 32 − (48 − tp − tc) = tp + tc − 16. The to least significant
bits of P �

j are denoted by P �
j and the to most significant bits of X�

i are denoted

by X�
i .

Depending on the choices for the parameters tp and tc, the attack scenario has
to be modified slightly. If tc < to, not all plaintexts necessarily yield a solution
for a given P �

j when determining k̂3 = (k63, . . . , k64−tc) because to − tc of the
guessed bits overlap with plaintext bits. Similarly, if tc > to, each plaintext is
expected to offer multiple solutions because tc − to extra bits have to be guessed
before all of P �

j is known. From the other side, similar observations can be made.
In Sect. 3.3, the parameters were tp = tc = 16 which results in to = 16. It is

clear that the choice of these parameters influences both the time and memory
complexity of the attack.

Complexity Analysis. The generalisation leads to a slightly more complex
formula for expressing the time complexity of the attack. Because of the duality
between guessing extra bits and filtering because of overlapping bits, all cases
can be expressed in a single formula, which is a generalisation of (8) (i.e., with
tp = tc = 16, it reduces to (8)):

216
(
32 · 216 + 2to

(
2tc · 216+tc−to + 216+tp−to (2tp + Ncoll · V )

))
. (10)

In the generalised case, finding a collision is equivalent to finding an entry in
a table of 16 + tp − to elements that satisfies a to bit condition, so Ncoll =
216+tc−to/2to . Verifying a collision now requires an average effort of

V = 2 ·
47−tp−tc∑

i=0

2−i + 2tp+tc−48 ·
(
528 + 528 · 2−32

)
(11)
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KeeLoq rounds. Simplification yields that the total complexity is equal to

32 · 232 + 2tc · 232+tc + 2tp · 232+tp + 4 · 280−tp−tc + 528 · 232 . (12)

The optimum is found when tp = tc = 15 and thus to = 14, where the complexity
reduces to 253.524 KeeLoq rounds or 244.5 full KeeLoq encryptions.

The memory requirements in the generalised case can also easily be evaluated.
As before, 216 plaintext/ciphertext pairs and 216 values for Xi and Yi are stored.
The hash table now has 216+tp−to entries of 64 + tp bits each. For tp = tc = 15,
the required memory is still less than 3 MB.

3.5 A Chosen Plaintext Attack

Using chosen plaintexts instead of known plaintexts, the attack can be improved.
Consider the generalised attack from Sect. 3.4 in the case where tc < to (which
is equivalent to tp > 16). In this case, the to − tc least significant bits of the
plaintext Pj are bits (to, . . . , tc + 1) of P �

j . Hence, choosing the 216 plaintexts in
such a way that these to−tc least significant bits are equal to some constant, only
2tc guesses for P �

j have to be made at the beginning of the meet-in-the-middle
step, instead of 2to .

Complexity Analysis. As chosen plaintexts are only useful for the attack
when tc < to, we will only consider this case. The time complexity of the attack,
in KeeLoq rounds, can be expressed as

216
(
32 · 216 + 2tc

(
2tc · 216 + 216+tp−to (2tp + Ncoll · V )

))
. (13)

The expected number of collisions is Ncoll = 216/2to. The verification cost, V , is
given by (11). Simplification yields

32 · 232 + 2tc · 232+tc + 2tp · 248 + 4 · 280−tp−tc + 528 · 232 . (14)

The optimum is found when tp = 20, tc = 13 and thus to = 17, where the attack
has a time complexity of 253.500 KeeLoq rounds or 244.5 full KeeLoq encryptions.
It is clear that the (theoretical) advantage over the known plaintext attack from
Sect. 3.4 is not significant. However, as is discussed in the next section, the chosen
plaintext variant can provide a significant gain in our practical implementation,
because the verification cost V turns out to be higher there.

The memory complexity is about 2 MB as in Sect. 3.3 because the size of the
hash table is the same. The data complexity remains at 216 plaintext/ciphertext
pairs, but note that we now require chosen plaintexts instead of known plaintexts.

4 Experimental Results

We have fully implemented and tested the attacks, using both simulated data
and real data acquired from a HCS410 chip [14]. We made extensive use of bit
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slicing to do many encryptions in parallel throughout the implementation. How-
ever, because this parallelisation is not useful while verifying a collision, this
verification step becomes more expensive in comparison. Hence, the optimal pa-
rameters for our implementation differ slightly from the theoretical ones. For
the known plaintext attack from Sect. 3.4, the optimal parameters for our im-
plementation were found to be tp = tc = 16. This means that, at least in our
implementation, the best attack is the basic attack from Sect. 3.3. For the chosen
plaintext attack, the optimal parameters are tp = 22 and tc = 13.

If we give the correct values for the 16 least significant key bits, the known
plaintext attack completes in 10.97 minutes on average.5 The chosen plaintext
attack needs just 4.79 minutes to complete the same task.6 This large difference
can be explained by considering the impact of V , the cost of the verification
step, on the time complexity of the attack. If V increases, and tp and tc are
adapted as needed because their optimal values may change, the time complexity
of the known plaintext attack increases much faster than the time complexity
of the chosen plaintext attack does. Hence, even though their theoretical time
complexities are the same, the chosen plaintext attack performs much better in
our practical implementation because V is higher than the theoretical value.

We did not stop either of the attacks once a slid pair and the correct key were
found, so we essentially tested the worst-case behaviour of the attack. This also
explains the very small standard deviations of the measured running times. The
machine used is an AMD Athlon 64 X2 4200+ with 1GB of RAM (only one of
the two CPU cores was used) running Linux 2.6.17. The attack was implemented
in C and compiled with gcc version 4.1.2 (using the -O3 optimiser flag). Critical
parts of the code are written in assembly. Because the memory access pattern is
random, but predictable to some extent, prefetching helped us to make maximum
use of the cache memory.

The known plaintext attack performs over 288 times faster than the fastest
attack with the same data complexity from [7,9], although the actual increase
in speed is probably slightly smaller due to the difference in the machines used.
Courtois et al. used (a single core of) a 1.66GHz Intel Centrino Duo micropro-
cessor [8]. The chosen plaintext attack performs more than 661 times faster, but
this comparison is not very fair because chosen plaintexts are used. We note
that the practicality of our results should also be compared with exhaustive key
search due to the small key size. For the price of about 10 000 euro, one can
obtain a Copacobana machine [12] with 120 FPGAs which is estimated to
take about 1000 days to find a single 64-bit KeeLoq key.7 Using our attack and

5 We performed 500 experiments. The average running time was 658.15 s and the
standard deviation was 1.69 s.

6 We performed 500 experiments. The average running time was 287.17 s and the
standard deviation was 0.55 s.

7 The estimate was done by adapting the 17 days (worst case) required for finding
a 56-bit DES key, taking into consideration the longer key size, the fact that more
KeeLoq implementations fit on each FPGA, but in exchange take more clocks to test
a key.
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50 dual core computers (which can be obtained for roughly the same price), a
KeeLoq key can be found in only two days.

5 Practical Applicability of the Attacks

5.1 Gathering Data

One might wonder if it is possible to gather 216 known, or even chosen plain-
texts from a practical KeeLoq authentication system. As mentioned in Sect. 2.2,
a device like the HCS410 by Microchip Technology Inc. [14] supports two au-
thentication protocols based on KeeLoq: “KeeLoq Hopping Codes” and “KeeLoq
Identify Friend or Foe (IFF)”. As the initial value of the counter used in “KeeLoq
Hopping Codes” is not known, it is not easy to acquire known plaintexts from
this protocol apart from trying all possible initial counter values. Also, since only
216 plaintexts are ever used, knowing this sequence of 216 ciphertexts suffices to
break the system as this sequence is simply repeated.

The second protocol, “KeeLoq Identify Friend or Foe (IFF)” [14], is more ap-
propriate for our attack. It is executed without any user interaction as soon as
the transponder comes within the range of a decoder and is sent an activation
signal. The challenges sent by the decoder are not authenticated in any way.
Because of this, an adversary can build a rogue decoder which can be used to
gather as many plaintext/ciphertext pairs as needed. The plaintexts can be fully
chosen by the adversary, so acquiring chosen plaintexts is no more difficult than
just known plaintexts. The only requirement is that the rogue decoder can be
placed within the range of the victim’s transponder for a certain amount of time.
From the timings given in [14], we can conclude that one authentication com-
pletes within 60ms or 90ms, depending on the baud rate used. This translates
into a required time of 65 or 98 minutes to gather the 216 plaintext/ciphertext
pairs. As these numbers are based on the maximum delay allowed by the specifi-
cation [14], a real chip may respond faster, as our experiments confirm. No data
is given with respect to the operational range in [14], because this depends on
the circuit built around the HCS410 chip. However, one can expect the range to
be short.

5.2 Key Derivation

The impact of the attack becomes even larger when considering the method
used to establish the secret keys, as was previously noted by Bogdanov [6].
To simplify key management, the shared secret keys are derived from a 64-bit
master secret (the manufacturer’s code), a serial number and optionally a seed
value [6,15,16]. The manufacturer’s code is supposed to be constant for a large
number of products (e.g., an entire series from a certain manufacturer) and the
serial number of a transponder chip is public, i.e., it can easily be read out from
the chip. The seed value is only used in the case of so-called “Secure Learning”,
and can also be obtained from a chip with relative ease [6,15,16]. The other
option, “Normal Learning”, does not use a seed value.
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In both types of key derivation mechanisms, a 64-bit identifier is constructed,
which contains the serial number, the (optional) seed and some fixed padding.
Then, the secret key is derived from this identifier and the master secret using
one of two possible methods. The first method simply uses XOR to combine the
identifier and the master key. The consequence of this is that once a single key is
known, together with the corresponding serial number and (optional) seed value,
the master secret can be found very easily.

The second method is based on decryption with the KeeLoq block cipher. The
identifier is split into two 32-bit halves which are decrypted using the KeeLoq
block cipher, and concatenated again to form the 64-bit secret key. The master
secret is used as the decryption key. Although much stronger than the first
method, the master secret can still be found using a brute force search. Evidently,
once the master secret is known, all keys that were derived from it are also
compromised, and the security of the entire system falls to its knees. Thus, it is
a much more interesting target than a single secret key. This may convince an
adversary to legitimately obtain a car key, for the sole purpose of recovering the
master key from its secret key.

6 Conclusion

In this paper we have presented a slide and meet-in-the middle attack on the
KeeLoq block cipher which requires 216 known plaintexts and has a time com-
plexity of 244.5 KeeLoq encryptions, and a variant using 216 chosen plaintexts
with the same theoretical time complexity.

We have fully implemented and tested both attacks. When given 16 key bits,
the known plaintext attack completes successfully in 10.97 minutes. Due to im-
plementation details, the chosen plaintext attack requires only 4.79 minutes when
given 16 key bits. To the best of our knowledge, this is the fastest known attack
on the KeeLoq block cipher.

Finally, we have shown that our attack can be used to attack real systems
using KeeLoq due to the way it is intended to be used in practice. Moreover, one
of the two suggested ways to derive individual Keeloq keys from a master secret
is extremely weak, with potentially serious consequences for the overall security
of systems built using the Keeloq algorithm.
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Fig. 5. A related-key attack using keys related by rotation

A.1 A Related-Key Attack Using Keys Related by Rotation

The first attack exploits the extremely simple way in which the key is mixed
into the state during encryption.

Denote a full encryption of a plaintext P by KeeLoq with the key K by
EK(P ), and encryption through a single round with the subkey bit k by fk(P ).
Consider a pair (K, K ′) of related-keys, such that K ′ = (K ≫ 1). If for a
pair (P, P ′) of plaintexts we have P ′ = fk0(P ), where k0 is the LSB of K, then
EK′(P ′) = fk16(EK(P )). Indeed, in this case the encryption of P ′ under the key
K ′ is equal to the encryption of P under K shifted by one round (see Fig. 5).
This property, which is clearly easy to check, can be used to retrieve two bits of
the secret key K.

Consider a plaintext P . We note that there are only two possible values of
fk0(P ), i.e., 1||(P � 1) and 0||(P � 1). Hence, we ask for the encryption of P
under the key K and for the encryption of the two plaintexts P ′0 = 0||(P � 1)
and P ′1 = 1||(P � 1) under the related-key K ′, and check whether the cipher-
texts satisfy the relation EK′(P ′) = fk16(EK(P )). This check is immediate, since
EK(P ) and fk16(EK(P )) have 31 bits in common. Exactly one of the candidates
(P ′0 or P ′1) is expected to satisfy the relation. This pair satisfies also the relation
P ′ = fk0(P ).

At this stage, since P ′ and P are known, we can infer the value of k0 immedi-
ately from the update rule of KeeLoq, using the relation P ′ = fk0(P ). Similarly,
we can retrieve the value of k16 from the relation EK′(P ′) = fk16(EK(P )).
Hence, using only three chosen plaintexts encrypted under two related-keys, we
can retrieve two key bits with a negligible time complexity.

In order to retrieve additional key bits, we repeat the procedure described
above with the pair of related-keys (K ′, K ′′ = (K ′ ≫ 1)) and one of the plain-
texts P ′0 or P ′1 examined in the first stage. As a result, we require the encryption
of two additional chosen plaintexts (under the key K ′′), and get two additional
key bits: k′0 and k′16, which are equal to k1 and k17.

We can repeat this procedure 16 times to get bits k0, . . . , k31 of the secret
key. Then, the procedure can be repeated with the 16 related keys of the form
(K ≫ 32), (K ≫ 33), . . . , (K ≫ 47) to retrieve the remaining 32 key bits.
The attack then requires 66 plaintexts encrypted under 34 related keys (two
plaintexts under each of 32 keys, and a single plaintext under the two remaining
keys), and a negligible time complexity.
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An option to reduce the required amount of plaintexts and related keys in
exchange for a higher time complexity, is to switch to an exhaustive key search
after a suitable number of key bits has been determined. For example, if 32 key
bits remain to be found, a brute force search can be conducted in several hours
on a PC, or even much less on FPGAs.

Another variant of the attack, requiring less related-keys, is the following. De-
note the encryption of a plaintext P through r rounds of KeeLoq with the key
k = (k0, . . . , kr−1) by f r

k (P ). Consider a pair of related-keys of the form (K, K ′ =
K ≫ r). If a pair of plaintexts (P, P ′) satisfies P ′ = f r

k (P ), then the correspond-
ing ciphertexts satisfy EK′(P ′) = f r

k′(EK(P )), where k′ = (k16, . . . , k16+r−1).
Since EK(P ) and f r

k′(EK(P )) have 32 − r bits in common, this property is easy
to check.

However, when r > 1, the task of detecting P ′ such that P ′ = f r
k (P ) is not

so easy. Actually, there are 2r candidates for P ′, and hence during the attack
we have to check 2r candidate pairs. On the other hand, we can reduce the data
complexity of this stage of the attack to 21+r/2 by using structures: The first
structure S1 consists of 2r/2 plaintexts, such that the 32− r least significant bits
are equal to some constant C in all the plaintexts of the structure, and the other
bits are arbitrary. The second structure S2 also consists of 2r/2 plaintexts, such
that the 32 − r most significant bits are equal to the same constant C in all the
plaintexts of the structure, and the other bits are arbitrary. By birthday paradox
arguments on the 2r possible pairs (P, P ′) such that P ∈ S1 and P ′ ∈ S2 we
expect one pair for which P ′ = f r

k (P ), and this pair can be used for the attack.
In the attack, we go over the 2r possible pairs and check whether the colliding

bits of the relation EK′(P ′) = f r
k′(EK(P )) are satisfied. If r ≤ 16, this check

discards immediately most of the wrong pairs. After finding the right pair, 2r
bits of the key can be found using the algorithm presented in Sect. 3.2.

By choosing different values of r, we can get several variants of the attack:

1. Using r = 16, we can recover 32 key bits, and then the rest of the key can
be recovered using exhaustive key search. The data complexity of the attack
is 512 chosen plaintexts encrypted under two related-keys (256 plaintexts
under each key), and the time complexity is 232 KeeLoq encryptions.

2. Using r = 8 twice (for the pairs (K, K ≫ 8), and (K ≫ 8, K ≫ 16))
we retrieve 32 key bits, and exhaustively search the remaining bits. The
data complexity of the attack is 64 chosen plaintexts encrypted under three
related-keys (16 plaintexts under two keys, and 32 plaintexts under the third
key), and the time complexity is 232 KeeLoq encryptions.

3. Using r = 8 four times (for the pairs (K, K ≫ 8), (K ≫ 8, K ≫ 16),
(K ≫ 32, K ≫ 40), and (K ≫ 40, K ≫ 48)) we can retrieve the full key.
The data complexity of the attack is 128 chosen plaintexts encrypted under
six related-keys (16 plaintexts under four keys, and 32 plaintexts under two
keys), and the time complexity is negligible.

Other variants are also possible, and provide a trade-off between the number of
chosen plaintexts and the number of related-keys.
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A.2 Improved Slide/Meet-in-the-Middle Attack Using
Related-Keys

Using a related-key approach, we can improve the attack presented in Sect. 3.3.
Denote the encryption of a plaintext P through 64 rounds of KeeLoq under the
key K by gK(P ). Denote by e0 the least significant bit of a word. We observe
that if two related-keys (K, K ′) satisfy K ′ = K ⊕ e0, i.e., they differ in the least
significant bit, and two plaintexts (P, P ′) satisfy P ′ = P ⊕ e0, then we have
gK(P ) = gK′(P ′). Indeed, in the first round of encryption the key difference
and the data difference cancel each other. As a result, after the first round the
intermediate values in both encryptions are equal, and the key difference is not
mixed into the data until the 65-th round. Thus, the intermediate values after
64 rounds are equal in both encryptions.

Now, recall that in Sect. 3.1, the pair (Pi, Pj) is called a slid pair if it satisfies
Pj = gK(Pi). The attack searches among 232 candidates for a slid pair, and then
the key can be easily retrieved. Note that by the observation above, if (Pi, Pj) is
a slid pair with respect to K, then the pair (Pi⊕e0, Pj) is a slid pair with respect
to K ′ = K ⊕ e0, and thus EK′(Pj) = g(K′≫16)(EK′(Pi ⊕ e0)). This additional
slid pair can be used to improve the check of candidate slid pairs, and thus to
reduce the time complexity of the attack.

More in detail, (10) can be rewritten as

216
(
48 · 216 + 2to

(
3tc · 216+tc−to + 216+tp−to (3tp + Ncoll · V )

))
. (15)

The expected number of collisions becomes Ncoll = 216+tc−to/22to. Verifying a
collision now costs on average V KeeLoq rounds, where

V =
47−tp−tc∑

i=0

(
2 · 2−2i + 2−2i−1

)
+ 22tp+2tc−96 ·

(
528 + 528 · 2−32

)
. (16)

Simplification yields:

48 · 232 + 3tc · 232+tc + 3tp · 232+tp + 3.33 · 296−2tp−2tc + 528 · 232 . (17)

The optimum is situated at tp = tc = 12 where the time complexity of the attack
is 250.9 KeeLoq rounds, or 241.9 full KeeLoq encryptions.

Summarising the attack, the data complexity is 217 chosen plaintexts en-
crypted under two related-keys (216 plaintexts under each key), and the time
complexity is 241.9 KeeLoq encryptions. The memory complexity is about 16MB.
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Abstract. In this paper, we study the key recovery problem for the C∗

scheme and generalisations where the quadratic monomial of C∗ (the
product of two linearized monomials) is replaced by a product of three
or more linearized monomials. This problem has been further general-
ized to any system of multivariate polynomials hidden by two invertible
linear maps and named the Isomorphism of Polynomials (IP ) problem
by Patarin. Some cryptosystems have been built on this apparently hard
problem such as an authentication protocol proposed by Patarin and a
traitor tracing scheme proposed by Billet and Gilbert. Here we show that
if the hidden multivariate system is the projection of a quadratic mono-
mial on a base finite field, as in C∗, or a cubic (or higher) monomial as
in the traitor tracing scheme, then it is possible to recover an equivalent
secret key in polynomial time O(nd) where n is the number of variables
and d is the degree of the public polynomials.

1 Introduction

Multivariate cryptography provides alternative schemes to RSA or DLog based
cryptosystems where the underlying hard problem consists of solving a system
of multivariate equations over a finite field. This problem is known to be NP-
hard [13]. Moreover it seems to be interesting to build cryptosystems based on
the assumption that it is hard, since contrary to the factorisation or the DLog
problem, there is actually no known polynomial-time quantum algorithm to solve
it, and generic algorithms that use Gröbner basis are exponential in time and
memory. Finally, the proposed cryptosystems are very efficient in practice and
can be implemented on low-cost smartcards since arithmetic on large integer
is not required. Consequently, at the end of the nineties, a lot of multivariate
cryptosystems were proposed.

One rich family of multivariate scheme is derived from a cryptosystem pro-
posed by Matsumoto and Imai since 1988 and called C∗. Even though this scheme
was broken by Patarin in 1995 [18], Patarin proposed various repairs. One of
these repairs is the Minus transformation, suggested by Shamir in [23], which
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is a classical solution to avoid Patarin’s or Gröbner basis attack. The SFLASH
signature scheme, accepted by the NESSIE project in 2003, is a C∗ scheme with
this variation. Recently, SFLASH has been attacked by Dubois et al. in [7,6].
However, the attacks were not able to recover the secret key, as they rely on
Patarin’s attack which is only able to invert the public key.

The IP Problem. The corresponding key recovery problem, named the IP
Problem, which stands for the Isomorphism of Polynomials has been introduced
by Patarin since 1996 in [20] and studied later by Patarin, Goubin and Courtois
in [22]. It can be stated as follows: given two sets of n polynomials in n variables
A, B over a finite field K of q elements, find if there exist two linear and invertible
mappings S and T in K such that A = T ◦ B ◦ S. This problem is not NP-hard
provided the polynomial hierarchy does not collapse as proved by Faugère and
Perret in [10]. However, if we relax S and T to be any linear mapping, then the
problem is called MP, Morphism of Polynomials, and becomes NP-hard as shown
in [22]. Finally, this problem is interesting since many Substitution Permutation
Network block ciphers use as SBoxes a high degree monomial such as x254 in
GF (256) for the AES. Consequently, recovering the key for one round of the AES
is equivalent to solve a special instance of the IP Problem, where the system B
consists in 8 polynomials coming from a high degree monomial projected on
GF (2) and copied 16 times.

1.1 Related Work

Our method for solving the IP problem is not generic but is tailored to work for
some cryptographic instances such as C∗ based schemes or the traitor tracing
scheme of [2]. For these cases, the algorithm is very efficient since it uses only
linear algebra. The first step of our attack is similar to the recent attacks on
SFLASH which can be extended to high degree monomials. In this case, we
define high order differentials which have also been used in the cryptanalysis of
symmetric schemes [16,15,14].

Previous Attacks on the IP problem. It is obvious that guessing S allows
us to solve this problem since we can then compute the T function on some
points and check whether it is a bijective linear mapping in time O(n3qn2

).
If each polynomials of B only depends on a small number of variables such

as 8 among the n in the case of the AES SBox, then polynomial time algorithms
exist such as those described by Biryukov and Shamir in [4] or by Biham in [1].

However, when n is sufficiently large and each polynomial of B depends on
many variables, the best known algorithm proposed so far by Patarin et al. has
a complexity of O(n3qn). This last algorithm is very similar to the one proposed
by Biryukov et al. in [3] in the context of linear equivalence problem for arbitrary
permutations. In the case of SFLASH, where the set B is the projection of a
quadratic monomial defined over F an extension of degree n of K, then the
Patarin et al. best algorithm has a complexity in O(qn/2).
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At Eurocrypt’ 06, Faugère and Perret describe a Gröbner basis algorithm
to solve the IP problem when B is a set of polynomials defined over a small
number n of variables in an extension F. Their algorithm is very efficient when
the system of polynomials B is random and has small degree terms such as
in the authentication scheme proposed by Patarin and some parameters of the
traitor tracing scheme of Billet and Gilbert. However, for larger parameters
proposed by Billet and Gilbert or for the parameters of SFLASH, the algorithm
does not work. Their algorithm considers only terms of small degree in the
system of polynomials so that the system they defined in the unknowns of S
and T will be overdetermined. The complexity of this algorithm is dominated
by the computation of a Gröbner basis for which we do not have complexity
bound reflecting the practical behaviour. So, they conjecture that the complexity
depends on the smallest value d so that there exists terms of degree d in B. For
high degree monomial, as in the cases we consider in this paper, this parameter
is exactly the degree of the monomials.

Differential Attack on SFLASH. As our attack relies on some information
gained during the recent attacks on SFLASH, we informally describe here how
they work.

Recently, some breakthrough results have been published on the cryptanalysis
of the SFLASH signature scheme by Dubois et al. in [7,6]. SFLASH comes from
the C∗ family, i.e. the internal quadratic monomial of the form P (x) = x1+qθ

over an extension F of degree n of the base finite field K is hidden by two linear
bijective mappings S and T . The public key is P = T ◦ P ◦ S and if some
polynomials of the public key are removed, we get a SFLASH public key. In [7],
the authors consider the case where gcd(θ, n) > 1.

The basic idea of [14,7,6] is to recover some of these polynomials or equivalent
polynomials by noticing that the internal polynomial P ◦S over F forms a set of n
polynomials over K. Then, the action of T consists of linear combination of these
n polynomials. Consequently, if we are able to recover other linear combinations
of these polynomials with independent coefficients, we will be able to recover a
complete public key.

The last results show that it is possible to reconstruct equivalent missing
polynomials using only 3 polynomials of the public key. The way to do it is
to reconstruct some special linear applications related to the secret S, of the
form Nu = S−1MuS so that Mu denotes the multiplications by u in F. In [7],
it is shown that the maps Nu where u are solutions of xqθ

+ x = 0 are easy
to recover using a linear characterization, whereas in [6], more involved analysis
are needed. However, this last attack is more powerful since any multiplication
can be recovered. Then, the composition of these maps Nu with the public key
P is of the form T ◦ P ◦ Mu ◦ S and since P is multiplicative, P ◦ Nu is of the
form T ′ ◦ P ◦ S and if T ′ contains rows independent of those of T , then we get
new polynomials of the public key which will be independent from the first ones.
Finally, once the public key is recovered, Patarin’s attack can be applied.

Consequently, in this paper we can assume that no equation is removed.
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1.2 Our Results

In this paper, we show that the recent attacks on multivariate schemes can be
made more devastating and lead to total break of the C∗ schemes family. More
precisely, we show that the IP problem for C∗ is easy and we can recover secret
keys S and T or equivalent can be recovered given a Nu = S−1MuS linear
mappings. Indeed, these matrices depend on the secret S, but Mu are unknown.
Here, we show how we can recover u and then, how we can recover S′ and T ′. This
last step is not always easy and when gcd(n, θ) > 1, many parasitic solutions can
exist. For the SFLASH signature scheme, the recent attacks rely on Patarin’s
attack in their final stage. However, this attack can become exponential in some
bad cases. Here, our attack on the C∗ schemes family is always polynomial to
recover the secret key and can be seen as a new attack on the C∗ scheme.

Moreover, we show that for high degree monomials, we can also recover the
matrices Nu as in the case of the quadratic monomials of SFLASH and recover
the secret keys. To get a linear characterization of Nu, we use high order differ-
entials as an analog to symmetric cryptanalysis. These two results improve on
a result of Faugère and Perret at Eurocrypt ’06 using Gröbner basis [10] which
solves only some particular cases but not all the proposed parameters by Billet
and Gilbert. For the C∗ case, Faugère and Perret indicate that their approach
cannot take into account SFLASH parameters since the system of polynomials is
too sparse. Here, we only present polynomial time attack to recover these values
for SFLASH and the second parameter proposed by Billet and Gilbert in the
case of the traitor tracing scheme [2].

1.3 Organization of the Paper

In section 2 we present the problem Isomorphism of Polynomials which repre-
sents the key recovery problem in multivariate schemes. Then, we present the
differential of the public key which allows to give a characterization of the in-
teresting linear mappings we are looking for. Then, we show how to solve the
IP problem when the internal polynomial is a monomial in section 4. In section
5, we show that the SFLASH public key can be recovered in all cases and on
monomial of higher degree of the traitor tracing scheme before the conclusion.

2 Isomorphisms of Polynomials Problem (IP)

In this section, we present the Isomorphism of Polynomials problem stated by
Patarin et al. in [20,22]. It has been used by Billet and Gilbert in [2] to define a
traitor tracing scheme.

2.1 Description of the IP Problem

The IP Problem is defined for any two sets A, B of n multivariate polynomials
and the problem is to find S and T two linear and bijective maps on n variables
so that A = T ◦B◦S. In this paper, we focus on special instances of this problem
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when the system B is the projection on the base field K of a polynomial defined
over an extension of degree n of K.

Let K be a small finite field of q elements and F an extension of degree n over
K. Let π be an isomorphism from K

n onto F and P some polynomial over F.
Then, let S and T be two linear or affine invertible transformations over K

n.
The maps S and T are kept secret. Finally let P = T ◦π−1 ◦P ◦π ◦S be a set of
n polynomial forms over K

n. This system of multivariate polynomials P is also
named the public key. The problem can now be expressed as follows:

IP Problem. Given K, n, P , and P defined as above, find S′ and T ′ affine
transformations over K

n and π′ isomorphism from K
n onto an extension of

degree n of K such as:

P = T ′ ◦ π′−1 ◦ P ◦ π′ ◦ S′.

Remark 1. The choice of π′ is indifferent. Indeed, should we choose π̃, then there
exists some change of coordinates such that ϕ = π̃−1 ◦ π′. If (T ′, S′, π′) is a
solution, then (T̃ = T ′ ◦ ϕ−1, S̃ = ϕ ◦ S′, π̃) is another solution.

In the sequel, by some misuse of language, we avoid writing the isomorphism
π and its inverse π−1 when their use is obvious and simply write P = T ◦ P ◦ S.

IP with Polynomials. In this article, we mainly study the case where P is a
monomial of the form P (x) = x1+qθ1+...+qθd−1 defined over an extension field F

of degree n of K. If we project this monomial over the base field K, we get n
multivariate polynomial of degree d since the mappings x �→ xqi

for integers i are
K-linear. Consequently, the changes between the public key P and the internal
polynomial P are changes of variables, which do not modify the degree of the
multivariate polynomials.

2.2 Equivalent Keys

Solutions to the IP Problem are in fact not unique. See [24] for a discussion about
equivalent keys. For instance, let’s analyze the case P (x) = x1+qθ

. Let’s note Mu

(multiplications) and ϕi (Frobenius) defined by Mu(x) = ux and ϕi(x) = xqi

.
So if (T ′, S′) is a solution then so are

(T ′◦π−1◦M1/uqθ+1 ◦π, π−1◦Mu◦π◦S′) and (T ′◦π−1◦(ϕi)−1◦π, π−1◦ϕi◦π◦S′).

3 Differential and Properties for Monomials

The differential of the public key of a multivariate scheme has been introduced
in a systematic cryptanalytic method by Fouque et al. in [11]. Later, this method
has been developed and extended in [8,9,7,6] to attack various systems.
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3.1 Differential of Polynomials

For a general polynomial P , the differential in some point a, denoted by DaP ,
is formally defined by:

DaP (x) = P (x + a) − P (x) − P (a) + P (0).

We may also refer it as DP (x, a) which is symmetric since DaP (x) = DxP (a).
The later notation also represents the fact that the differential is a bilinear
expression and consequently, it can be represented by a matrix. In our case, all
polynomials of the public key can be represented as a bilinear mapping.

The interest of studying the differential is that it “lowers” the degree and it is
homogeneous. For instance, if deg(P) = 2 then deg(DaP) = 1 and DaP is linear.
In this case, the differential acts as it “kills” the parts of degree 1 and 0 of P.

Differential of Monomials of Higher Degree. For higher degrees, we may
define differentials of higher order. For instance, if deg(P) = 3: Da,bP (x) =
Da(DbP (x)) defines a second order differential and deg(Da,bP(x)) = 1. We may
also note it DP (a, b, x) for the same reason as previously.

Differential of the Public Key. Let us study how the differential operates on
the public key. We assume here that P (x) = x1+qθ

. First, if S and T are linear,
then we have

DaP(x) = T (DS(a)P (S(x))) (1)

Taking into Account the Affine Parts. If S and T are affine, we denote by
Σc the addition with c. With this notation, we have: (P ◦Σc)(x) = P (x)+xcqθ

+
xqθ

c + P (c). Now, we can easily express that Da(P ◦ Σc)(x) = DaP (x), since
xcqθ

+xqθ

c+P (c) is affine. Since S(x) = DS(x)+S(0) and P ◦S = P ◦ΣS(0)◦DS,
we deduce a similar relation: DaP(x) = DT (DDS(a)P (DS(x))). So, the previous
relation is just like relation (1) where S and T are replaced by their linear part
DS and DT .

3.2 Multiplicative Property of the Differential

In this section, we show that a characterization equation exists for hidden mono-
mials that involves a linear mapping N . Since the equation is linear in the un-
known of N and depends only on the public key, N can be easily found.

Multiplicative Property for SFLASH. For P (x) = x1+qθ

there is an inter-
esting property of the differential:

DxP (Mu(y)) + DyP (Mu(x)) = Mu+uqθ (DyP (x)) (2)

where Mu is the multiplication by u in F. We can also rewrite this equation as
DP (xu, y)+DP (x, yu) = (u+uqθ

)DP (x, y). How is this property (2) transfered
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to the public system? Firstly for the sake of simplicity, we may assume that S
and T are linear. Otherwise, we will see that considering only their linear part
is a good approach when they are affine.

If we denote by Nu the conjugate by S of Mu, namely Nu = S−1 ◦ Mu ◦ S,
property (2) becomes:

DxP(Nu(y)) + DyP(Nu(x)) = T (Mu+uqθ (DS(y)F (S(x))))

= (T ◦ Mu+uqθ ◦ T−1)(DyP(x))
(3)

If we consider the vector space of symmetric bilinear forms such that b(x, x) = 0
of dimension n(n − 1)/2, then the bilinear forms of the left hand side are in the
vector space V spanned by the bilinear forms of the differential of the public
key DyP(x) of dimension n. This equation is linear in the n2 unknowns of Nu

and stating that one quadratic form of the LHS is in this vector space gives
n(n − 1)/2 linear equations and n additional unknowns. Therefore, expressing
that 3 forms of the LHS are in V is sufficient to completely determine Nu.

Multiplicative Property for Higher Degree. For degree 3 or 4, similar
expressions for this property can be derived, by considering respectively:

Dx,yP(Nu(z)) + Dx,zP(Nu(y)) + Dy,zP(Nu(x)), (4)

Dx,y,zP(Nu(v)) + Dx,y,vP(Nu(z)) + Dx,z,vP(Nu(y)) + Dy,z,vP(Nu(x))). (5)

In case (4), we get trilinear forms and the multiplication by u + uqθ

is replaced
by u + uqθ1 + uqθ2 for degree 3 and by u + uqθ1 + uqθ2 + uqθ3 for degree 4.

Multiplicative Property is a Characterization. The property (2) and the
ones infered for higher degree are a characterization. Indeed the only linear
mappings M and M ′ satisfying:

DxP (M(y)) + DyP (M(x)) = M ′(DyP (x)) (6)

are the multiplications.
The idea of the proof is that the K-linear applications over F can be expressed

as linearized polynomials such as M(x) =
∑n−1

i=0 λix
qi

where coefficients λi be-
long to F. By replacing this expression in equation (6), provided that n is large
enough, all coefficients λi must be null except λ0. Hence the result M(x) = λ0x.

Remark 2. This result is true only if n is not too close to d. When n is too small,
there is a side effect that allows linear applications other than multiplications to
be solution of equation (6). Experimentally, we have found the lower limit of n
according to d. For d = 2 and d = 3, we must have n ≥ 5. For d = 4, we must
have n ≥ 7.
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4 Recovering S and T

The basic idea to recover equivalents for S and T is to find some Nu and use
equation: Nu = S−1MuS. If we can recover u, then Mu is known and we can
linearized it to SNu = MuS, where S is the unknown we are looking for.

Description of the Attack. In the following, we describe the different steps
of the attack to recover equivalent S and T .

1. Find all linear transformations L such as DxP(L(y)) + DyP(L(x)) is a set
of bilinear forms, all of them being linear combinations of the elements of
DyP(x). Due to the characterization, the space of solutions is the conjugate
by S of the multiplications.

2. Pick up at random one solution L which characteristic polynomial is irre-
ducible over K.

3. Find u such as L and Mu are conjugate. Since L and Mu must have the
same characteristic polynomial, choose u as any root of the characteristic
polynomial of L. Since characteristic polynomial is irreducible over K, roots
are primitive elements of F.

4. Solve the linear system X.L = Mu.X where the unknown X is a linear
mapping of K

n.
5. Pick up at random any non trivial solution S.
6. Compute T as P ◦ S−1 ◦ P−1.

Recovering L. In [7,6], it is described how the first step of this attack can
be mounted since systems in step 1 is overdefined. Consequently, only a few
coordinates of DyP(x) are sufficient to solve it. This is the same reason why the
“Minus” scheme of SFLASH can be defeated even if some public polynomial are
removed.

It is also possible to reconstruct S and T even though they are affine. The
computations are the same, but we replace P by DP. At steps 5 and 6, we
can find actually the linear parts of S and T , that is DS and DT . Then, using
equation:

(DT )−1 ◦DP(x) = D(F ◦S)(x) = (DS(x))1+qθ

+(DS(x))qθ

S(0)+DS(x)S(0)qθ

replace x by random values, in order to gain enough linear independent equa-
tions, all of the form ayqθ

+by+c = 0, and find the solution S(0). Then, compute
T (0) = P(0) − (DT ◦ P ◦ S)(0).

Recovering Mu. To recover Mu, we first show how we recover u. Since L is the
conjugate of Mu by the secret matrix S, they are similar and so, they have the
same minimal polynomial. Furthermore, u is a root of the minimal polynomial
of Mu

1. Indeed, if Π is the minimal polynomial of Mu, then Π(Mu) = 0 and so
Π(ux) = 0 for all x, and so Π(u) = 0 for x = 1. Moreover, it is also well-known
1 In fact, one can prove that u and Mu have the same minimal polynomial.



Key Recovery on Hidden Monomial Multivariate Schemes 27

that the roots of a minimal polynomial are conjugates, i.e. are the elements
{u, uq, uq2

, . . . , uqn−1}. This result can be easily seen since the coefficients of
the minimal polynomial belong to Fq, and for any element α of Fq, we have
αqi

= α, thus for the minimal polynomial p of u, p(uqi

) = p(u)qi

= 0. The
conjugate property stands also for matrices, since Mu = (ϕi

q)
−1Muqi ϕi

q, where
ϕi

q(x) = xqi

is the ith frobenius map. Therefore, even though we do not choose
the right conjugate, since the frobenius application commutes with the internal
monomial, we will always find equivalent secret keys. So, once L is known, it
suffices to select any of the roots of its minimal polynomial as value for u.

Equivalent Keys and Space of Solutions. At step 1, solutions should be a
subspace of dimension n, isomorphic to F, since it is the conjugate by S of the space
of multiplication matrices. For instance, trivial solutions are diagonal matrices
which correspond to elements of K. So at this step we just need to select any matrix
corresponding to a multiplication by a primitive element of F. At step 3, roots of
the characteristic polynomial are conjugate, since it is irreducible over K and its
coefficients belong to K. Thus selecting uqi

instead of u is equivalent to multiply
the solutions by ϕi. At step 5, solutions can be obtained from a particular one, by
multiplying it by any multiplication matrix Mu.

Remark 3. In the wording of the IP problem, we can assume that P is unknown,
only its degree is known, since the number of monomials of a given degree is
small.

5 Applications

The following experimental results have been obtained with an Opteron 850
2.2GHz, with 32 GBytes of Ram. The systems associated with the instance of
the problems and their solutions have been generated using the Magma software,
version 2.13-15.

If the following tables, tgen is the time for computing the coefficient of the
problem, mainly the linear application that gives DxP(L(y)) + DyP(L(x)) for
any L, at step 1, tsol is the time for solving the problem, which is basically
a linear algebra issue, regarding intersection of subspaces. ‘s.’ and ‘m.’ denote
respectively second and minute.

5.1 SFLASH Signature Scheme

The following results concern a general instance of the IP problem for an ho-
mogeneous C∗scheme of degree 2, that is we are looking for linear S and T .
Nevertheless, this is almost the problem of key recovery for the SFLASH Signa-
ture scheme, where some coordinates (equations) are missing, since finding Mu

enables to regenerate missing coordinates.
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q d n tgen tsol

216 2 19 0.4 s. 0.5 s.
216 2 21 0.6 s. 1 s.
27 2 37 6 s. 23 s.
2 2 67 55 s. 10 s.
27 2 67 60 s. 12 m.

The first row corresponds to the second challenge of Billet and Gilbert.
Faugère and Perret in [10] were unable to solve it and conjectured that the
system was too sparse. Moreover, row 3 and 5 correspond to the practical in-
stances of SFLASH v2 and SFLASH v3. In this case, the number of variables is
too large and Gröbner basis algorithm cannot take into account such parame-
ters. However, contrary to [10], our approach can only deal with internal system
of multivariate scheme coming from the projection of a monomial and not any
polynomials. In the case of SFLASH parameters, we do not give the value r of
the removed equations since previous attacks [7,6] can always be used to recover
missing polynomials of the public key.

5.2 Traitor Tracing of Billet and Gilbert

Here as above, the results concern a general instance of the IP problem for an
homogeneous C∗ scheme, but of degree 3 and 4. The change was in the use of
the expressions (4), and (5).

q d n tgen tsol θ1 θ2 θ3

29 3 10 0.6 s. 0.1 s. 1 4
29 3 18 12 s. 5 s. 1 6
29 3 19 15 s. 7 s. 1 4
29 3 20 20 s. 11 s. 1 4
29 3 21 26 s. 15 s. 1 6
216 4 7 0.2 s. 0.2 s. 1 2 6
216 4 8 0.65 s. 0.4 s. 1 3 7
216 4 9 1.4 s. 0.3 s. 1 2 7
28 4 10 11 s. 8 s. 1 3 5
28 4 11 19 s. 44 s. 1 2 6
28 4 12 32 s. 80 s. 1 2 10

In these experiments, we give the values of θ1, θ2 and θ3 such that the mono-
mials can be inverted and so that there is no intermediate finite field of F, i.e.
gcd(θ1, θ2, n) = 1. We can remark that from n = 7 for d = 4, we can solve the IP
problem for monomials more efficiently than [10]. These results confirm experi-
mentally the complexity of the resolution of the problem, namely O(log(q)2nd).
We can finally remark that the degree d is exactly the heuristic value given
by Faugère and Perret in the case of high degree monomials defined over an
extension field.
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5.3 The �-IC Scheme

At PKC’07, Ding et al. presented a new multivariate scheme based on Cremona
maps in [5]. This scheme has been attacked at PKC’08 by Fouque et al. in [12]. In
this attack, the authors are also able to recover equivalent secret keys. The way
they recover u consists in raising Nu to some power so that uα has a small order
and then, exhaustive search can be performed. Fortunately, for the proposed
parameters, it is always the case. However, if this trick is not possible, our
method that computes the minimal polynomial can be done and we get directly
the value u. Consequently, we can improve the cryptanalysis of the �-IC scheme.

6 Conclusion

Here, we describe a key recovery attack on the C∗schemes family which lead to
the recovery of equivalent secret keys. This means that an attacker would be in
the same position than a legitimate user. Moreover, this attack is polynomial
in time and space, and so it is very practical and can be executed within few
seconds on the recommended values of the parameters of the schemes.
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Abstract. Despite their popularity, lattice reduction algorithms remain
mysterious cryptanalytical tools. Though it has been widely reported
that they behave better than their proved worst-case theoretical bounds,
no precise assessment has ever been given. Such an assessment would be
very helpful to predict the behaviour of lattice-based attacks, as well as to
select keysizes for lattice-based cryptosystems. The goal of this paper is
to provide such an assessment, based on extensive experiments performed
with the NTL library. The experiments suggest several conjectures on the
worst case and the actual behaviour of lattice reduction algorithms. We
believe the assessment might also help to design new reduction algorithms
overcoming the limitations of current algorithms.

Keywords: Lattice Reduction, BKZ, LLL, DEEP Insertions, Lattice-
based cryptosystems.

1 Introduction

Lattices are discrete subgroups of R
n. A lattice L can be represented by a basis,

that is, a set of linearly independent vectors b1, . . . ,bd in R
n such that L is equal

to the set L(b1, . . . ,bd) =
{∑d

i=1 xibi, xi ∈ Z

}
of all integer linear combinations

of the bi’s. The integer d is the dimension of the lattice L. A lattice has infinitely
many bases, but some are more useful than others. The goal of lattice reduction
is to find interesting lattice bases, such as bases consisting of reasonably short
and almost orthogonal vectors.

Lattice reduction is one of the few potentially hard problems currently in use in
public-key cryptography (see [29,23] for surveys on lattice-based cryptosystems),
with the unique property that some lattice-based cryptosystems [3,34,35,33,11]
are based on worst-case assumptions. And the problem is well-known for its
major applications in public-key cryptanalysis (see [29]): knapsack cryptosys-
tems [32], RSA in special settings [7,5], DSA signatures in special settings [16,26],
etc. One peculiarity is the existence of very efficient approximation algorithms,
which can sometimes solve the exact problem. In practice, the most popular
lattice reduction algorithms are: floating-point versions [37,27] of the LLL al-
gorithm [20], the LLL algorithm with deep insertions [37], and the BKZ algo-
rithms [37,38], which are all implemented in the NTL library [39].

Although these algorithms are widely used, their performances remain mys-
terious in many ways: it is folklore that there is a gap between the theoretical

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 31–51, 2008.
c© International Association for Cryptologic Research 2008
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analyses and the experimental performances. In the eighties, the early success of
lattice reduction algorithms in cryptanalysis led to the belief that the strongest
lattice reduction algorithms behaved as perfect oracles, at least in small dimen-
sion. But this belief has shown its limits: many NP-hardness results for lattice
problems have appeared in the past ten years (see [23]), and lattice-based at-
tacks rarely work in very high dimension. Ten years after the introduction of
the NTRU cryptosystem [15], none of the NTRU challenges has been solved,
the smallest one involving a lattice of dimension 334. On the other hand, all
five GGH-challenges [12] have been solved [25], except the 400-dimensional one.
It is striking to see that the GGH-350 challenge has been solved, while no
334-dimensional NTRU lattice has ever been solved. The behaviour of lattice
algorithms is much less understood than that of their factoring and discrete log-
arithm counterpart. It would be useful to have at least a model (consistent with
experiments) for the performances of existing lattice algorithms.

Our Results. We provide a concrete picture of what is achievable today with
the best lattice reduction algorithms known in terms of output quality and run-
ning time, based on extensive experiments performed with the NTL library dur-
ing the past year. This sheds new lights on the practical hardness of the main
lattice problems, and allows to compare the various computational assumptions
(Unique-SVP, Approximate-SVP) used in theoretical lattice-based cryptogra-
phy [33,11,35,34,3]. For instance, our experiments strongly suggest that Unique-
SVP is significantly easier than Approximate-SVP, and that the hardness of
Approximate-SVP depends a lot on the structure of the lattice. Our experiments
also clarify the gap between the theoretical analyses and the experimental per-
formances of lattice algorithms, and point out several surprising phenomenons
on their behaviour. The most important fact is that asymptotically, all the al-
gorithms known seem to only achieve an exponential approximation factor as
predicted by theory, but the exponentiation bases turn out to be extremely
close to 1, much closer than what theory is able to prove. This seems to nullify
the security property of cryptosystems based on the hardness of approximating
lattice problems with big polynomial factors, unless such schemes use large pa-
rameters. On the other hand, it also makes clear what are the limits of today’s
algorithms: in very high dimension, today’s best algorithms roughly square root
the exponential approximation factors of LLL. Our predictions may explain in
retrospect why the 350-dimensional GGH lattice has been solved, but not the
334-dimensional NTRU lattices or the 400-dimensional GGH lattice. We believe
the assessment might help to design new reduction algorithms overcoming the
limitations of current algorithms. As an illustration, we present an alternative
attack on the historical NTRU-107 lattices of dimension 214.

Related work. The NTRU company has performed many experiments with
BKZ to evaluate the cost of breaking NTRU lattices. However, such experiments
only dealt with NTRU lattice bases, which have a very special structure. And
their experiments do not lead to any prediction on what can be achieved in
general. Our work is in the continuation of that of Nguyen and Stehlé [28] on
the average-case of LLL. But the goal of this paper is to provide a much broader
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picture: [28] only performed experiments with LLL (and not improved algorithms
like BKZ which are much more expensive), and focused on the so-called Hermite-
SVP problem, without considering cryptographic lattices with special structure.

Road map. The paper is organized as follows. In Section 2, we provide necessary
background on lattice reduction. In Section 3, we provide a concrete picture of
what lattice reduction algorithms can achieve today. In Section 4, we analyze the
experimental running time of lattice reduction algorithms, and point out several
unexpected phenomenons. In Section 5, we compare our predictions with former
experiments on GGH and NTRU lattices.

2 Background

We refer to [29,23] for a bibliography on lattices.

2.1 Lattices

In this paper, by the term lattice, we mean a discrete subgroup of some R
m.

Lattices are all of the form L(b1, . . . ,bn) = {
∑n

i=1 mibi | mi ∈ Z} where the
bi’s are linearly independent vectors. Such n-tuple of vectors b1, . . . ,bn is called
a basis of the lattice: a basis will be represented by a row matrix. The dimension
of a lattice L is the dimension n of the linear span of L. The volume of k

vectors v1, . . . ,vk is det (〈vi,vj〉)1/2
1≤i,j≤k. The volume vol(L) (or determinant)

of a lattice L is the volume of any basis of L.

Minima. We denote by λi(L) the i-th minimum of a lattice L: it is the radius of
the smallest zero-centered ball containing at least i linearly independent lattice
vectors. The so-called Hermite’s constant γn of dimension n satisfies Minkowski’s
second theorem: for any n-dimensional lattice L, and for any 1 ≤ d ≤ n, we have

(
d∏

i=1

λi(L)

)1/d

≤ √
γnvol(L)1/n.

The exact value of γn is only known for 1 ≤ n ≤ 8 and n = 24. For other
values of n, the best numerical upper bounds known are given in [6]. Asymp-
totically, Hermite’s constant grows linearly in n. Rankin (see [8]) generalized
the minima λi(L) to the smallest subvolumes: γn,m(L) is the minimal value of
vol(x1, . . . ,xm)/vol(L)m/n where (x1, . . . ,xm) range over all m linearly inde-
pendent lattice vectors.

Random lattices. There is a beautiful albeit mathematically sophisticated
notion of random lattice, which follows from Haar measures of classical groups.
Such measures give rise to a natural probability distribution on the set of lat-
tices: by a random lattice, we mean a lattice picked from this distribution. Ran-
dom lattices have the following property (see [1] for a proof): with overwhelming
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probability, the minima of a random n-dimensional lattice L are all asymptoti-
cally close to the Gaussian heuristic, that is, for all 1 ≤ i ≤ n

λi(L)

(volL)1/n
≈ Γ (1 + n/2)1/n

√
π

≈
√

n

2πe
.

Many of our experiments use random lattices: by average case, we will mean
running the algorithm on a random lattice. To generate random lattices, we use
the provable method of [13], like [28].

Random bases. There is unfortunately no standard notion of random bases
for a given lattice. By a random basis, we will mean a basis made of rather large
vectors, chosen in a heuristic random way (see for instance [12]). Note that it is
possible to sample lattice vectors in a sound way, as described by Klein [18] (see
a refined analysis in [31,11]). And from any set of linearly independent lattice
vectors, one can efficiently derive a basis whose vectors are not much longer (see
for instance [2]).

2.2 Lattice Problems

The most famous lattice problem is the shortest vector problem (SVP): Given
a basis of a lattice L, find a lattice vector whose norm is λ1(L). But SVP has
several (easier) variants which are all important for applications:

– Hermite-SVP: Given a lattice L and an approximation factor α > 0, find
a non-zero lattice vector of norm ≤ α · (volL)1/n. The LLL algorithm [20]
and its blockwise generalizations [36,8,10] are designed as polynomial-time
Hermite-SVP algorithms. They achieve an approximation factor (1 + ε)n

exponential in the lattice dimension n where ε > 0 depends on the algorithm
and its parameters. This exponential factor can actually be made slightly
subexponential while keeping the running time polynomial.

– Approx-SVP: Given a lattice L and an approximation factor α ≥ 1, find
a non-zero lattice vector of norm ≤ α · λ1(L). Note that it might be difficult
to verify a solution to this problem, since λ1(L) may not be known exactly.
There are provably secure lattice-based cryptosystems [33,35] based on the
worst-case quantum hardness of Approx-SVP with polynomial factor.

– Unique-SVP: Given a lattice L and a gap γ > 1 such that λ2(L)/λ1(L) ≥ γ,
find a shortest vector of L. There are cryptosystems [3,34] based on the
worst-case hardness of Unique-SVP with polynomial gap: n1.5 for [34] and n7

for [3].

Any algorithm solving Approx-SVP with factor α also solves Hermite-SVP with
factor α

√
γn. Reciprocally, Lovász [21] showed that any algorithm solving

Hermite-SVP with factor α can be used linearly many times to solve Approx-
SVP with factor α2 in polynomial time. There are also reductions [2,24] from the
worst-case of Approx-SVP with a certain polynomial factor to the average-case
(for a certain class of lattices) of Hermite-SVP with a certain polynomial factor.
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Any algorithm solving Approx-SVP with factor α also solves Unique-SVP with
gap ≥ α.

We will not discuss the closest vector problem (CVP), which is often used in
cryptanalysis. However, in high dimension, the best method known to solve CVP
heuristically transforms CVP into Unique-SVP (see for instance the experiments
of [25]).

Knapsack lattices. An interesting class of lattices is the Lagarias-Odlyzko
lattices [19] introduced to solve the knapsack problem: given n integers x1, . . . , xn

uniformly distributed at random in [1;M ] and a sum S =
∑n

i=1 εixi where
εi ∈ {0, 1} and

∑
εi = n

2 , find all the εi. The Lagarias-Odlyzko (LO) lattice L [19]
has the following property: if the density d = n/ log2(M) satisfies d ≤ 0.6463 . . .,
then with overwhelming probability, L has a unique shortest vector related to
the εi, and λ1(L) ≈

√
n/2. It has been proved [19] that there exists d0 such that

if d ≤ d0/n, then with overwhelming probability over the choice of the xi’s, L
has exponential gap, which discloses the εi by application of LLL.

2.3 Lattice Algorithms

When the lattice dimension is sufficiently low, SVP can be solved exactly in prac-
tice using exhaustive search, thanks to enumeration techniques [37]. But beyond
dimension 100, exhaustive search can be ruled out: only approximation algo-
rithms can be run. Such algorithms try to output lattice bases [b1, . . . ,bn] with
small approximation factor ‖b1‖ /λ1(L), or small Hermite factor ‖b1‖ /vol(L)1/n.
The main approximation algorithms used in practice are the following:

LLL: it is a polynomial-time algorithm [20] which provably achieves (with ap-
propriate reduction parameters) a Hermite factor � (4/3)(n−1)/4 ≈ 1.075n

and an approximation factor � (4/3)(n−1)/2 ≈ 1.154n, where n is the lattice
dimension.

DEEP: the LLL algorithm with deep insertions [37] is a variant of LLL with po-
tentially superexponential complexity. It is expected to improve the Hermite
factor and the approximation factor of LLL, but no provable upper bound
is known (except essentially that of LLL). The implementation of NTL ac-
tually depends on a blocksize parameter β: as β increases, one expects to
improve the factors, and increase the running time.

BKZ: this is a blockwise generalization of LLL [37] with potentially super-
exponential complexity. The BKZ algorithm uses a blocksize parameter β:
like DEEP, as β increases, one expects to improve the factors, and in-
crease the running time. Schnorr [36] proved that if BKZ terminates, it
achieves an approximation factor ≤ γ

(n−1)/(β−1)
β . By using similar argu-

ments as [36], it is not difficult to prove that it also achieves a Hermite
factor ≤ √

γβ
1+(n−1)/(β−1).

DEEP and BKZ differ from the (theoretical) polynomial-time blockwise gen-
eralizations of LLL [36,8,10]: we will see that even the best polynomial-time
algorithm known [10] seems to be outperformed in practice by DEEP and BKZ,
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though their complexity might be superexponential. The recent algorithm of [10]
achieves a Hermite factor � √

γβ
(n−1)/(β−1) and an approximation factor �

γ
(n−β)/(β−1)
β .
Approximation algorithms exploit the triangular representation of lattice

bases, related to orthogonalization techniques. Given a basis B = [b1, ...,bn],
the Gram-Schmidt orthogonalization (GSO) process constructs the unique pair
(µ, B∗) of matrices such that B = µB∗ where µ is lower triangular with unit
diagonal and B∗ = [b∗1, . . . ,b

∗
n] has orthogonal row vectors. If we represent

the basis B with respect to the orthonormal basis [b∗1/‖b∗1‖, . . . ,b∗n/‖b∗n‖], we
obtain a triangular matrix whose diagonal coefficients are the ‖b∗i ‖’s. Thus,
vol(B) =

∏n
i=1 ‖b∗i ‖. LLL and BKZ try to limit the decrease of the diagonal

coefficients ‖b∗i ‖.
It is sometimes useful to look at more than just the quality of the first

basis vector b1. In order to evaluate the global quality of a basis, we define
the Gram-Schmidt log (GSL) as the sequence of the logarithms of the ‖b∗i ‖:
GSL(B) =

(
log

(
‖b∗i ‖ /volL1/n

))
i=1..n

. It is folklore that the GSL often looks
like a decreasing straight line after running reduction algorithms. Then the av-
erage slope η of the GSL can be computed with the least mean squares method:
η = 12 · (

∑
i · GSL(B)i)/ ((n + 1) · n · (n − 1)). When the GSL looks like a

straight line, the Hermite factor H and the average slope η are related by
log(H)/n ≈ −η/2.

3 Experimental Quality of Lattice Reduction Algorithms

In this section, we give a concrete picture of what lattice reduction algorithms
can achieve today, and we compare it with the best theoretical results known.
All our experiments were performed with the NTL 5.4.1 library [39].

First of all, we stress that SVP and its variants should all be considered easy
when the lattice dimension is less than 70. Indeed, we will see in Section 4 that
exhaustive search techniques [37] can solve SVP within an hour up to dimension
60. But because such techniques have exponential running time, even a 100-
dimensional lattice is out of reach.

When the lattice dimension is beyond 100, only approximation algorithms
like LLL, DEEP and BKZ can be run, and the goal of this section is to predict
what they can exactly achieve. Before giving the experimental results, let us say
a few words on the methodology. We have ran experiments on a large number
of samples, so that an average behaviour can be reasonably conjectured. For
each selected lattice, we ran experiments on at least twenty randomly chosen
bases, to make sure that reduction algorithms did not take advantage of special
properties of the input basis: the randomization must make sure that the basis
vectors are not short. Note that one cannot just consider the Hermite normal
form (HNF): for instance, the HNF of NTRU lattices has special properties
(half of its vectors are short), which impacts the behaviour of lattice algorithms
(see [9]). This means that we will ignore the effect of choosing special input bases:
for instance, if one applies LLL on the standard basis of the LO lattice [19], or any
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permutation of its rows, it can be shown that if the density is d is lower bounded
by d0 > 0, then the first vector output by LLL approximates the shortest vector
by a subexponential factor 2O(

√
n) rather than the general exponential factor

2O(n). This phenomenon is due to the structure of orthogonal lattices [29].
Basis randomization allows to transform any deterministic algorithm like LLL

or BKZ into a randomized algorithm. Experiments suggest that LLL and BKZ
behave like probabilistic SVP-oracles in low dimension (see Fig. 1): no matter
which lattice is selected, if the input basis is chosen at random, the algorithm
seems to have a non-negligible probability of outputting the shortest vector.
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Fig. 1. Experimental probability of recovering the shortest vector, given a random basis
of a random lattice, with respect to the dimension

3.1 Hermite-SVP

The Hermite factor achieved by reduction algorithms seems to be independent
of the lattice, unless the lattice has an exceptional structure, in which case the
Hermite factor can be smaller than usual (but not higher). By exceptional struc-
ture, we mean an unusually small first minimum λ1(L), or more generally, an
unusually small Rankin invariant (that is, the existence of a sublattice of unusu-
ally small volume). In high dimension, we have never found a class of lattices for
which the Hermite factor was substantially higher than for random lattices. We
therefore speculate that the worst case matches the average case.

When the lattice has no exceptional structure, the Hermite factor of LLL,
DEEP and BKZ seems to be exponential in the lattice dimension: Figure 2
shows the average Hermite factor, with respect to the lattice dimension and the
reduction algorithm; and Figure 3 shows the logarithm of Figure 2. The figures
show that the Hermite factor is approximately of the form ean+b where n is
the lattice dimension and (a, b) seems to only depend on the lattice reduction
algorithm used. Since we are interested in rough estimations, we simplify ean+b

to cn, and Figure 4 shows that a few samples are enough to have a reasonable
approximation of c: indeed, when picking random bases of a given lattice, the
distribution looks Gaussian. Figure 5 shows the evolution of c with respect to
the lattice dimension and the reduction algorithm; the value c seems to converge
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Table 1. Average experimental Hermite factor constant of several approximation al-
gorithms on random lattices, and comparison with theoretical upper bounds

LLL BKZ-20 BKZ-28 DEEP-50

c = Hermite factor1/n 1.0219 1.0128 1.0109 1.011

Best proved upper bound 1.0754 1.0337 1.0282 1.0754

η =average slope GSL -0.0430 -0.0263 -0.0241 -0.026

Best proved lower bound -0.1438 -0.0662 -0.0556 -0.1438

as the dimension increases. Table 1 gives the approximate value of c and the
corresponding GSL slope η, depending on the algorithm, and compare it with
the best theoretical upper bound known. It means that DEEP and BKZ have
overall the same behaviour as LLL, except that they give much smaller constants,
roughly the square root of that of LLL.

The case of LLL is interesting: it is well-known that the worst-case Hermite
factor for LLL is (4/3)(n−1)/4, reached by any lattice basis such that all its 2-
dimensional projected lattices are critical. However, this corresponds to a worst-
case basis, and not to a worst-case lattice. Indeed, when we selected such lattices
but chose a random-looking basis, we obtained the same Hermite factor 1.02n

as with random lattices.
One can note that the constant c is always very close to 1, even for LLL, which

implies that the Hermite factor is always small, unless the lattice dimension
is huge. To give a concrete example, for a 300-dimensional lattice, we obtain
roughly 1.0219300 ≈ 665 for LLL (which is much smaller than the upper bound
1.0754300 ≈ 2176069287) and 1.013300 ≈ 48 for BKZ-20 (which is much smaller
than the upper bound 1.0337300 ≈ 20814). This implies that Hermite-SVP with
factor n is easy up to dimension at least 450.

Figure 6 shows the evolution of the Hermite factor constant c for BKZ, as the
blocksize increases, and provides two comparisons: one with the best theoreti-
cal upper bound known ≈ √

γβ
1/(β−1), using the best numerical upper bounds
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known on γβ, and another with a prototype implementation of the best theo-
retical algorithm known [10], whose theoretical upper bound is √

γβ
1/(β−1). We

see that both BKZ and slide reduction [10] perform clearly much better than
the theoretical upper bound, but BKZ seems better: slide reduction can be run
with a much higher blocksize than BKZ, but even then, the constants seem a bit
worse. The size of the gap between theory and practice is hard to explain: we do
not have a good model for the distribution of the β-dimensional projected lattices
used by BKZ; we only know that it does not correspond numerically to the distri-
bution of a random lattice of dimension β. Figure 7 compares the Hermite factor
constant c achieved by BKZ and DEEP, as the blocksize increases. It is normal
that the constant achieved by BKZ is lower than DEEP for a fixed blocksize,
since BKZ-reduced bases are also necessarily deep-reduced. But the comparison
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is important, because we will see in Section 4 that one can run DEEP on much
bigger blocksize than BKZ, especially for high-dimensional lattices. This opens
the possibility that DEEP might outperform BKZ for high-dimensional lattices.
Figures 6 and 7 suggest that the best reduction algorithms known can achieve
a Hermite factor of roughly 1.01n in high dimension, but not much lower than
that, since BKZ with very high blocksize is not realistic. For instance, a Hermite
factor of 1.005n in dimension 500 looks totally out of reach, unless the lattice
has a truly exceptional structure.

3.2 Approx-SVP

As mentioned in Section 2, if we can solve Hermite-SVP with factor cn in the
worst case, then we can solve Approx-SVP with factor ≤ c2n. Thus, if we be-
lieve the previous experimental results on Hermite-SVP, we already expect the
best reduction algorithms to solve in practice Approx-SVP with factor roughly
1.012n ≈ 1.02n in the worst case. More precisely, we can square all the values
of Table 1 and Figures 6 and 7 to upper bound the approximation factor which
can be achieved in practice. This means that Approx-SVP with factor n should
be easy up to dimension at least 250, even in the worst case.

Surprisingly, we will see that one can often expect a constant much smaller
than 1.02 in practice, depending on the type of lattices. First of all, as no-
ticed in [28], the Hermite factor for random lattices is an upper bound for
the approximation factor. More precisely, we know that for a random lattice,
λ1(L)/vol(L)1/n ≈ Γ (1+n/2)1/n

√
π

≈
√

n
2πe , which means that if the Hermite factor

is h, then the approximation factor is ≈ h/
√

n
2πe . More generally, for any lattice

L such that λ1(L) ≥ vol(L)1/n, the approximation factor is less than the Her-
mite factor: this means that on the average, we should achieve 1.01n rather than
1.02n. That would imply that Approx-SVP with factor n should be easy on the
average up to dimension at least 500.

We have made further experiments to see if the worst case for Approx-SVP
corresponds to the square of the Hermite factor, or something smaller. By the
previous remark, the worst case can only happen for lattices L such that λ1(L) ≤
vol(L)1/n. But if λ1(L) becomes too small compared to vol(L)1/n, reduction
algorithms might be able to exploit this exceptional structure to find the shortest
vector. After testing various classes of lattices, the worst lattices for Approx-SVP
which we have found are the following echelon lattices derived from the classical
worst-case analysis of LLL. We call echelon basis a row matrix of the form:

Echelon(α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

αn−1 0 . . . . . . 0

αn−2 ·
√

α2 − 1 αn−2 . . . 0
...

0 αn−3 ·
√

α2 − 1
. . . . . .

...
...

. . .
. . . α 0

0 . . . 0
√

α2 − 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1)
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where α ∈ [1;
√

4/3]. It is easy to show that the reverse basis C = (bn, . . . ,b1)
is HKZ-reduced, and that the successive minima of the echelon lattice L satisfy:
αk−1 < λk(L) ≤ αk, which allows to precisely estimate λ1(L). We have run
the LLL algorithm on many echelon lattices (where the input basis is randomly
chosen, not an echelon basis), depending on the value of α. The behaviour of
LLL on such lattices is summarized by Figure 8. Two cases can occur:
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Fig. 8. Behaviour of LLL on echelon lattices, with respect to α and the dimension

– Either LLL succeeds in finding the shortest vector of the echelon lattice, in
which case it actually finds the full HKZ-reduced basis. In particular, this
happened whenever α > 1.043,

– Either LLL fails to recover the shortest vector. Then the slope of the output
GSL and the Hermite factor corresponds to those of random lattices: c =
1.0219 and η = −0.043. This means that the approximation factor of LLL is
roughly αn. Since α can be as high as 1.038 (in dimension 350) in Figure 8,
this means that the approximation factor of LLL can be almost as high as
the prediction 1.0212n ≈ 1.044n.

These experiments suggest that the worst case for Approx-SVP is very close to
the square of the average Hermite factor for all reduction algorithms known, since
this is the case for LLL, and the main difference between LLL and DEEP/BKZ
is that they provide better constants. But the experiments also suggest that
one needs to go to very high dimension to prevent reduction algorithms to take
advantage of the lattice structure of such worst cases.

To summarize, it seems reasonable to assume that current algorithms should
achieve in a reasonable time an approximation factor ≤ 1.01n on the average,
and ≤ 1.02n in the worst case.

3.3 Unique-SVP

From a theoretical point of view, we know that if one can solve Approx-SVP with
factor α in the worst-case, then we can solve Unique-SVP for all gap ≥ α. The
previous section therefore suggests that we should be able to solve any Unique-
SVP of gap roughly ≥ 1.02n, which corresponds to the square of the Hermite
factor. In this section, we present experimental evidence which strongly suggest
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that Unique-SVP can be solved with a much smaller gap, namely a fraction of
the Hermite factor 1.01n, rather than the square of the Hermite factor. This
means that Unique-SVP seems to be significantly easier than Approx-SVP.

The main difficulty with testing the hardness of Unique-SVP is to create
lattices for which we precisely know the gap. We therefore performed experiments
on various classes of lattices having a unique shortest vector.

Semi-Orthogonal Lattices. We first tested lattices for which the shortest
vector was in some sense orthogonal to all other lattice vectors. More precisely,
we chose lattices L for which the shortest vector u was such that L′ = L ∩ u⊥

was equal to the projection of L over u⊥: then λ2(L) = λ1(L′) and we chose
L′ in such a way that λ1(L′) could be fixed, so as to select the gap of L. To be
concrete, we tested the following two classes of lattices which are parameterized
by a given pair (g1, g2) of real numbers. The two classes are

⎡
⎢⎢⎢⎢⎣

g1 0 . . . 0

0 g2
. . .

...
...

. . . . . . 0
0 . . . 0 g2

⎤
⎥⎥⎥⎥⎦ and

⎡
⎢⎢⎢⎢⎢⎢⎣

g1 0 0 . . . 0
0 M 0 . . . 0

0 r1 1
. . .

...
...

... 0
. . . 0

0 rn−1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

where ri ∈ [1; M ]

where M is a prime number, selected so that λ2(L) ≈ g2: to do so, notice that
the projection L′ can be assumed to be random (see [13]), which gives a formula
for λ1(L′) depending simply on M .

Notice that the projected lattice L′ is a hypercubic lattice for the first class,
and a random lattice in the second class. In both cases, (volL)1/n

/λ1(L) ≈
λ2(L)/λ1(L) ≈ g2/g1. The experiments on such lattices have been performed in
dimensions 100 to 160, with g2/g1 between 2 and 20, and with randomly chosen
bases.

For both classes, LLL is able to recover the unique shortest vector as soon as
the gap is exponentially large, as shown by Figure 9. More precisely, for the first
class, LLL recovers the unique shortest vector with high probability when the
gap g2/g1 is a fraction of the Hermite factor, as shown by Figure 9 for instance
≥ 0.26 · 1.021n for the first class, and ≥ 0.45 · 1.021n for the second class. The
smaller constants in the first class can perhaps be explained by the presence of
an unusually orthogonal basis in the projected lattice, which triggers the success
of LLL. Again, the behaviour of BKZ is similar to LLL, except that the constants
are even smaller: in fact, the constants are so close to 1 that lattice dimensions
<200 are too small to have good accuracy on the constants. For instance, BKZ-
20 finds the shortest vector in dimension 200 in the first class, as soon as the gap
is ≥ 2.09, and this limit grows up to 6.4 in dimension 300. This suggests that
BKZ-20 retrieves the shortest vector when the gap is ≥ 0.18·1.012n. Surprisingly,
we will see in Section 5 that these very approximate BKZ-20 constants seem
consistent with past high-dimensional experiments on the GGH challenges [12].
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Knapsack lattices. The previous lattices have an exceptional structure com-
pared to a general unique-SVP instance, which might bias the results. This sug-
gests to test other types of lattices, such as the Lagarias-Odlyzko lattices [19].
In order to compare the results with those on semi-orthogonal lattices, we need
to estimate the gap of LO lattices. Unfortunately, no provable formula is known
for the second minimum of LO lattices. However, the analysis of Nguyen and
Stern [30] suggests to heuristically estimate the gap from combinatorial quanti-
ties. More precisely, let N(n, r) be the number of vectors in Z

n or norm ≤ √
r,

which can easily be computed numerically. When r becomes large enough that
N(n, r) 
 M , this hints that λ2(L) ≈

√
r (see [30]). It can be checked experi-

mentally in low dimension that this heuristic approximation is very precise. As
shown in Figures 9 and 10, the minimum gaps for which LLL or BKZ retrieve
the shortest vector are once again proportional to the corresponding Hermite
factors, that is in 0.25 · 1.021n for LLL and 0.48 · 1.012n for BKZ-20.

4 Running Times

In the previous section, we gave experimental estimates on the output quality of
reduction algorithms. In this section, we now analyze the running-time growth to
see if there are surprising phenomenons, and to guess what can be achieved in a
reasonable time. We mainly ran the BKZ routine of NTL with quadratic precision
to avoid floating-point issues, so the running times should not be considered as
optimal.

4.1 Exhaustive Search

In low dimension, SVP can be solved exactly by exhaustive search: in practice,
the most efficient method known is Schnorr-Euchner [37]’s enumeration, which is
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used as a subroutine in BKZ, and which outperforms the theoretical algorithms
of Kannan [17] and AKS [4] (even though they have a much better theoretical
complexity, see [31]). Given as input a reduced basis (the more reduced the basis,
the faster the enumeration), it outputs the shortest vector in 2O(n2) polynomial-
time operations. Figure 11 shows the average experimental running time of the
enumeration (on a 1.7Ghz 64-bit processor), depending on the quality of the
input basis (LLL, BKZ or DEEP). One can see that when the input basis is only
LLL-reduced, the running time looks indeed superexponential 2O(n2). We also
see that SVP can be solved in dimension 60 within an hour, but the growth of
the curve also shows that a 100-dimensional lattice would take at least 35,000
years. A stronger preprocessing will reduce the curve a bit, but it is unlikely to
make 100-dimensional lattices within reach.
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4.2 BKZ

No good upper bound on the complexity of BKZ and DEEP is known. If β
is the blocksize and n is the lattice dimension, the best upper bound is (nβ)n

polynomial-time operations, which is super-exponential. But this upper bound
does not seem tight: it only takes a few seconds to reduce a 100-dimensional
lattice with blocksize 20. Since the theoretical analysis is not satisfying, it is
very important to assess the experimental running time of BKZ, which is shown
in Figures 13 and 12. Obviously, for fixed dimension, the running time of BKZ
increases with the blocksize. But one can observe a brutal increase in the run-
ning time around blocksize 20 to 25 in high dimension, and the slope of the
increase sharpens with the lattice dimension. We tried to determine the cause of
this sudden increase. The increase does not seem to be caused by floating-point
inaccuracies, as experiments with higher floating-point precision led to a similar
phenomenon: Nor is it caused by the cost of the Schnorr-Euchner enumeration:
exhaustive searches typically represent less than 1% of the total reduction time
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in blocksize 25. In fact, it seems to be caused by a sudden increase in the number
of calls to the Schnorr-Euchner enumeration. During a BKZ reduction, each
exhaustive search inside a block gives rise to three possibilities:

1. Either the first block basis vector b∗i is the shortest lattice vector in the
block. Such cases are counted by NoOps in NTL.

2. Either the shortest lattice vector in the block is one of the β projected basis
vectors. Such cases are counted by Triv in NTL.

3. Otherwise, the shortest lattice vector is neither of the β projected basis
vectors. Then the algorithm has to do more operations than in the previous
two cases. Such cases are counted by NonTriv in NTL.

After monitoring (see Figure 14), we observed that the NoOps case occurred most
of the time, followed by Triv reductions and NonTriv reductions for blocksizes
lower than 25. For higher blocksizes, NoOps was still the majority, but NonTriv
iterations occurred more times than Triv iterations.

From Figures 13 and 12, we deduce that blocksizes much higher than 25 are not
realistic in very high lattice dimension: the running time seems to be exponential
in the dimension when the blocksize is ≥ 25, This is why we estimated the
feasibility limit of the Hermite factor to roughly 1.01n in Section 3, based on
Figures 6 and 7: even if we were able to use blocksize 32, we would still not
beat 1.01n.

4.3 DEEP

Figure 15 gives the running time of the DEEP algorithm implemented in NTL,
depending on the blocksize. Compared to Figure 13, we see that the running
time of DEEP is much more regular than BKZ: there is no sharp increase at
blocksize 20-25; the running time grows exponentially on a regular basis. Also
the slope of the running-time of DEEP (in logarithmic scale) does not increase
with the dimension of the lattice. This suggests that DEEP can be run in very
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high dimension with much higher blocksize than BKZ, which may make DEEP
preferable to BKZ. However, Figure 7 showed that even with much higher block-
size, we do not expect to go significantly below the 1.01n prediction for the
Hermite factor.

5 Comparison with Former Lattice-Based Attacks

In Section 3, we tried to predict the asymptotical behaviour of the best reduc-
tion algorithms known. In this section, we compare our predictions with the
largest lattice experiments ever done: surprisingly, our predictions seem consis-
tent with the experiments, and may explain in retrospect why certain lattice
attacks worked, but not others.

5.1 The GGH Challenges

In 1999, Nguyen [25] broke four GGH-challenges [12] in dimension 200, 250,
300 and 350, but the 400-dimensional challenge remained unbroken. The attack
heuristically transformed a CVP-instance into a Unique-SVP instance, where a
heuristic value for the gap of the Unique-SVP instance was known. The Unique-
SVP instances arising from GGH-challenges look a bit like the first class of semi-
orthogonal lattices: this is because GGH secret bases are slight perturbations of
a multiple of the identity matrix.

By extrapolating the experimental results of Section 3, we can make a very
rough guess of what should be the gap limit for which the BKZ-20 algorithm
would solve the Unique-SVP instance corresponding to the GGH challenge. The
results are given in Table 2. Even though the prediction 0.18 · 1.012n is only
a rough estimate, the difference of magnitude shows that in retrospect, it was
not a surprise that Nguyen [25] solved the GGH-challenges with BKZ-20 in
dimension 200, 250 and 300. In dimension 350, the prediction is a bit worse,
which is consistent with the fact that BKZ-20 failed: Nguyen [25] had to use a
pruned BKZ-reduction to solve the GGH-350 challenge. In dimension 400, the
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Table 2. Comparing predictions with past experiments on the GGH challenges

Dimension n 200 250 300 350 400

Estimation of the GGH gap 9.7 9.4 9.5 9.4 9.6

Gap estimate for BKZ-20
from Section 3

2.00 3.55 6.44 11.71 21.25

Algorithm used in [25] BKZ-20 BKZ-20 BKZ-20 pruned-BKZ-60 Not broken

prediction is much worse than the expected gap, and it is therefore not a surprise
that GGH-400 has not been solved. It seems that we would need much stronger
reduction algorithms to solve GGH-400.

Recently, a weak instantiation of GGH was broken in [14], by solving Unique-
SVP instances of polynomial gap using LLL up to at least dimension 1000.
For many parameters, the numerical gap given in [14] is much lower than what
could be hoped from our predictions for LLL, but there is a simple explanation.
The problem considered in [14] is actually much easier than a general Unique-
SVP problem: it is the embedding of a CVP problem when we already know a
nearly-orthogonal basis and the target vector is very close to the lattice. This
implies that LLL only performs a size-reduction of the last basis vector, which
immediately discloses the solution. This also explains why the LLL running times
of [14] were surprisingly low in high dimension.

Recently, a weak instantiation of GGH was broken in [14], by solving Unique-
SVP instances of polynomial gap using LLL, up to at least dimension 1000.
Surprisingly, for many parameters, the numerical gap of the instances solved
in [14] is much lower than what could be hoped from our predictions for LLL. But
there is an explanation. The problem considered in [14] is actually much easier
than a general Unique-SVP problem: it is the embedding of a CVP problem
when we already know a nearly- orthogonal basis and the target vector is very
close to the lattice. This implies that LLL is fed with a special input basis (not a
random basis), so special that LLL will only perform a size-reduction of the last
basis vector, which will immediately disclose the solution. This explains why the
LLL running times of [14] were surprisingly low in very high dimension. In other
words, the attacks of [14] could even have been carried out without LLL.

5.2 The NTRU Lattices

The NTRU cryptosystem [15] is based on the hardness of lattice problems for the
so-called NTRU lattices described in [15]. The key generation process of NTRU
has changed several times over the past ten years: in the original article [15],
the security was based on the hardness of SVP of the NTRU lattices, whereas
more recent versions of NTRU are more based on the hardness of CVP in NTRU
lattices. To simplify, we compare our predictions with the original description of
NTRU based on SVP. In this case, NTRU lattices are essentially characterized
by two parameters: N and q such that the dimension is 2N , the volume is qN ,
and there are heuristically N linearly independent shortest vectors of norm a
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bit smaller than
√

q (and which are related to the secret key). Such lattices
also have 2N trivial short vectors of norm q which are already known. Because
NTRU lattices do not have a unique shortest vector, it is not clear if this fits
any of the models of Section 3. But if we ever find the shortest vector, we will
have found a non-zero vector smaller than q, which means solving Hermite-SVP
for a suitable factor. Since we know the lattice volume, we can estimate the
corresponding Hermite factor for all three historical NTRU parameter sets, as
shown in Table 3. On the other hand, Section 3 suggests that we should be able

Table 3. Hermite factor required to solve the three historical NTRU parameter sets

Value of (N, q) (107, 64) (167, 128) (503, 256)

Hermite factor required (1.00976)2N (1.00729)2N (1.00276)2N

to achieve a Hermite factor of roughly 1.012N : this means that out of the three
NTRU parameter sets, only the first one (N, q) = (107, 64) seems close to what
can be achieved in a reasonable time. This parameter set was not supposed to be
very secure (see [15]), but to our knowledge, no NTRU-107 lattice has ever been
broken by direct lattice reduction. The only successful lattice attack was that of
May in 1999 (see [22]), which combined exhaustive search with lattice reduction
of smaller lattices. Surprisingly, it was estimated in [15] that NTRU-107 could
be broken within a day using raw lattice reduction, but no actual break was
reported: the experiments given in [15] only broke slightly smaller values of N .
In fact, if we compute the Hermite factor corresponding to each NTRU instance
broken in [15] using BKZ, similarly to Table 3, we obtain a Hermite factor of the
form c2N where c varies between 1.0116 and 1.0186: such values of c are clearly
consistent the results of Section 3.

Still, since (1.00976)2N of Table 3 is very close to the prediction 1.012N , it
seems reasonable to believe that NTRU-107 should be within reach of current
algorithms, or small improvements. We therefore made experiments with three
NTRU-107 lattices generated at random. Out of these three, only one was broken
with BKZ: during the computation of BKZ-25, the shortest vector was found,
but BKZ-25 did not even terminate. But BKZ did not succeed with the other
lattices, and we stopped the computation after a few days. We then tested a
stronger reduction algorithm on all three lattices, inspired by Figure 13:

– We partially reduce the NTRU-107 lattice with BKZ with increasing block-
size for a few hours.

– We project the lattice over the orthogonal complement of the first 107 vec-
tors (we chose 107 based on the GSL slope): this gives a 107-dimensional
projected lattice L′ whose shortest vectors might be the projections of the
initial 214-dimensional lattice L.

– We run BKZ on the projected lattice L′ with increasing blocksize until an
unusually short vector is found: because L′ has much smaller dimension L,
Figure 13 implies that we can run much higher blocksize. In practice, we
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could reach blocksize 40. If the short vector is the projection of one of the
shortest vectors of L, we can actually recover a shortest vector of L.

This experiment worked for all three NTRU-107 lattices: we were always able
to recover the secret key, using BKZ of blocksize between 35 and 41 on the pro-
jected lattice, and the total running time was a few hours. By comparison, raw
BKZ reduction only worked for one of the three lattices. This confirms that the
Hermite factor prediction 1.01n gives a good idea of what can be reached in prac-
tice. And knowing better the limits and the performances of current algorithms
might help to design better ones.
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Abstract. We generalize the concept of sequential aggregate signatures
(SAS), proposed by Lysyanskaya, Micali, Reyzin, and Shacham (LMRS)
at Eurocrypt 2004, to a new primitive called sequential aggregate signed
data (SASD) that tries to minimize the total amount of transmitted data,
rather than just signature length. We present SAS and SASD schemes
that offer numerous advantages over the LMRS scheme. Most impor-
tantly, our schemes can be instantiated with uncertified claw-free permu-
tations, thereby allowing implementations based on low-exponent RSA
and factoring, and drastically reducing signing and verification costs.
Our schemes support aggregation of signatures under keys of different
lengths, and the SASD scheme even has as little as 160 bits of band-
width overhead. Finally, we present a multi-signed data scheme that,
when compared to the state-of-the-art multi-signature schemes, is the
first scheme with non-interactive signature generation not based on pair-
ings. All of our constructions are proved secure in the random oracle
model based on families of claw-free permutations.

1 Introduction

Aggregate signatures (AS) [BGLS03] allow any third party to compress individ-
ual signatures σ1, . . . , σn by n different signers on n different messages into an
aggregate signature σ of roughly the same size as a single signature. Sequential
aggregate signatures (SAS) [LMRS04] are a slightly restricted variant where the
signers have to be organized in a sequence, each taking turns in adding their
signature share onto the aggregate. Example applications of (S)AS schemes in-
clude secure routing protocols [KLS00], where routers authenticate paths in the
network, and certificate chains in hierarchical public-key infrastructures, where
certificate authorities (CA) authenticate public keys of lower-level CAs. Another
important application area is that of battery-powered devices such as cell phones,
PDAs, and wireless sensors that have to communicate over energy-consuming
wireless channels.

Drawbacks of existing schemes. Only three instantiations of (S)AS schemes
are presently known: the pairing-based BGLS [BGLS03] and LOSSW [LOS+06]
schemes, and the LMRS [LMRS04] scheme based on families of certified [BY96]

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 52–69, 2008.
c© International Association for Cryptologic Research 2008



Efficient Sequential Aggregate Signed Data 53

trapdoor permutations, but that with some tricks can be instantiated with RSA.
All three schemes have some drawbacks though.

Pairings were only recently introduced to cryptography, and for the time being
do not yet enjoy the same level of support in terms of standardization and imple-
mentations as for example RSA. The main disadvantage of the LMRS scheme
on the other hand is that one of the tricks needed to turn RSA into a certi-
fied permutation is to use a verification exponent e > N .1 This has a dramatic
effect on the computational efficiency of signing and verification, because both
require n long-exponent exponentiations for an aggregate signature containing
n signatures.

Comparing this to pairing-based alternatives, the BGLS scheme also has
rather expensive verification (n pairing computations), but at least has cheap
signing (a single exponentiation). The LOSSW scheme has quite cheap signing
and verification (two pairings and 160n multiplications), albeit at the price of
only being secure in the weaker knowledge of secret key (KOSK) model that
requires signers to hand over (or at least prove knowledge of) their secret keys
to a trusted CA. Both pairing-based schemes have shorter signatures than the
LMRS scheme: 160 bits for BGLS and 320 bits for LOSSW , versus 1024 bits for
LMRS for a security level of 80 bits.

Finally, none of the existing schemes give the signers much freedom in choosing
their own security parameters. This is particularly important for the certificate
chain application, where a top-level CA probably wants higher-grade security
than a private end-user. The pairing-based schemes require all signers to use the
same elliptic-curve groups, so here the signers have no freedom whatsoever. A
limited amount of freedom is allowed in the LMRS scheme, but signers have to
be arranged according to increasing key size, which is exactly the opposite of
what is needed for certificate chains.

Our contributions. We first observe that if one is truly concerned about
saving bandwidth, then focusing solely on signature length is a bit arbitrary.
Indeed, what really matters is the total amount of transmitted data, which
contains messages, signatures, and in many applications the signers’ public keys.
(In fact, replacing the latter with shorter identity strings is the main motivation
for identity-based aggregate signatures [GR06,BN07,BGOY07].) We therefore
state our results in terms of a new, generalized primitive that we call sequential
aggregate signed data (SASD). The verification algorithm takes as only input
the signed data Σ, and outputs vectors of public keys pk = (pk1, . . . , pkn) and
messages M = (M1, . . . , Mn) to indicating that Σ correctly authenticates Mi

under pk i for 1 ≤ i ≤ n, or (⊥, ⊥) to reject. The goal of the scheme is to keep the
net bandwidth overhead to a minimum, i.e., the difference between the length of
the signed data |Σ| and that of the useful messages

∑n
i=1 |Mi|.

1 Alternatively to choosing e > N , one could let each signer append to his public
key a non-interactive zero-knowledge (NIZK) proof [BFM88] that gcd(e,ϕ(N)) = 1.
However, whether general NIZK proofs or special-purpose techniques [CM99,CPP07]
are used, this invariably leads to a blowup in public key size and verification time,
annihilating the gains of using aggregate signatures.
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Table 1. Comparison of existing aggregate signature (AS), sequential aggregate sig-
nature (SAS), sequential aggregate signed data (SASD), multi-signature (MS), and
multi-signed data (MSD) schemes. For each scheme we display whether its security
relies on the knowledge of secret key (KOSK) or random oracle (RO) assumptions, on
which number-theoretic assumptions it can be based (P for pairings, R for RSA, F
for factoring), the net bandwidth overhead in bits, the cost of signing, and the cost
of verification. Only the predominant terms are displayed. Symbols used are security
parameters kp, kf , � for pairings, factoring, and collision-resistance (typical values are
kp = � = 160, kf = 1024); n for the number of signers; P for a pairing operation; E for
a (multi-)exponentiation; and M for a multiplication. We give best/worst-case bounds
for the overhead of the SASD and MSD schemes, as they depend on the length of the
messages being signed.

Scheme Type KOSK RO Inst Overhead Sign Vf
BGLS [BGLS03] AS N Y P kp 1E nP
LOSSW [LOS+06] SAS Y N P 2kp 2P + n�M 2P + n�M
LMRS [LMRS04] SAS N Y R kf nE nE
SASD SASD N Y R,F [�, kf + �] 1E + 2nM 2nM
SAS SAS N Y R,F kf + � 1E + 2nM 2nM

Bol [Bol03] MS Y Y P kp 1E 2P + nM
LOSSW [LOS+06] MS Y N P 2kp 2E + �M 2P + (� + n)M
MSD MSD N Y R,F [�, nkf + �] 1E 2nM

We then present our main construction, the SASD scheme, based on families
of trapdoor permutations in the random oracle model. Its main advantage over
the LMRS scheme is that it does not require the permutations to be certified,
thereby allowing much more efficient instantiations like low-exponent RSA, and
the first instantiation ever from factoring. The construction itself can be seen
as combining ideas from the LMRS scheme and the PSS-R signature scheme
with message recovery [BR96]; the main technical contribution, we think, lies
in the security proof, which requires complex “query bookkeeping” for the sim-
ulation to go through. The impact on efficiency is spectacular (see Table 1):
verification takes 2n multiplications, signing takes one exponentiation and 2n
multiplications, and this at a bandwidth overhead of only 160 bits, which until
now was the exclusive privilege of pairing-based schemes. Moreover, the scheme
allows signers to mix-and-match security parameters at will, allowing much more
flexibility for use in the real world.

There is a small caveat here, namely that the promised overhead only holds
if the messages being signed are of a (modest) minimum length. To show that
our efficiency gains are not just due to the generalization of the primitive, we
additionally present a “purebred” SAS scheme that has a typical overhead of
1184 bits, but that otherwise shares all the advantages offered by the SASD
scheme.

Multi-signatures. A multi-signature (MS) scheme [IN83] is the natural equiv-
alent of an (S)AS scheme where all signers authenticate the same message.
The current state-of-the-art schemes based on RSA or factoring [BN06] have
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interactive signature generation; those based on pairings [Bol03,LOS+06] are
only secure in the KOSK setting. The BGLS scheme could be seen as a MS
scheme (taking into account the issues [BNN07] that arise when signing the
same message), but has significantly less efficient verification.

Analogously to what we did for SASD schemes, we generalize the concept of
MS schemes to multi-signed data (MSD) schemes. We present the MSD scheme
that is the first RSA and factoring-based scheme with non-interactive signature
generation, and that is the first efficient non-interactive scheme secure in the plain
public-key setting, i.e. without making the KOSK assumption. Unlike the SASD
scheme however, the bandwidth gains here are mainly due to message recovery
effects, and disappear completely when very short messages are being signed.

2 Sequential Aggregate Signed Data

Notation. If k ∈ N, then 0k is the bit string containing k zeroes, and {0, 1}k is
the set of all k-bit strings. If x, y are bit strings, then |x| denotes the length (in
bits) of x, and x‖y denotes a bit string from which x and y can be unambiguously
reconstructed. If k ∈ N, S is a set, and y ∈ S, then x = (x1, . . . , xk) ∈ Sk is a
k-dimensional vector, x‖y is the (k + 1)-dimensional vector (x1, . . . , xk, y), and
x|i = (x1, . . . , xi). Let ε and ε denote the empty string and the empty vector,
respectively. If S is a set, then x

$← S denotes the uniform selection of an element
from S. If δ ∈ [0, 1], then b

δ← {0, 1} denotes that b is assigned the outcome of a
biased coin toss that returns 1 with probability δ and 0 with probability 1 − δ.
If A is a randomized algorithm, then y

$← AO(x) means that y is assigned the
output of A on input x when given fresh coin tosses and access to oracle O.

Syntax. A sequential aggregate signed data (SASD) scheme is a tuple of three
algorithms SASD = (Kg, Sign, Vf). Each signer generates a key pair (pk , sk) $←
Kg(1k) consisting of a public key pk and a secret key sk with security parame-
ter k ∈ N. The first signer in the sequence with key pair (pk1, sk1) creates the
signed data Σ1 for message M1 by computing Σ1

$← Sign(sk1, M1). The n-th
signer in the sequence receives from the (n − 1)-st signer the aggregate signed
data Σn−1, and adds his own signature on message Mn onto the aggregation
by running Σn

$← Sign
(
skn, Mn, Σn−1

)
. He then sends Σn on to the (n + 1)-st

signer. The verifier checks the validity of Σn by running the verification algo-
rithm (pk , M ) ← Vf(Σn). This algorithm either returns lists of n public keys pk
and messages M , indicating that the signature correctly authenticates message
Mi under public key pk i for 1 ≤ i ≤ n, or returns (⊥, ⊥) to indicate rejection.
Correctness requires that the verification algorithm returns (pk , M) with prob-
ability one when the signed data is honestly generated by all signers as described
above.

Security. We take our inspiration for the security notion of SASD from the
unforgeability notion of SAS schemes [LMRS04,BNN07]. The game begins with
the generation of the key pair (pk∗, sk∗) $← Kg(1k) of the honest user that will
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be targeted in the attack. The forger F is given pk∗ as input and has access
to a signing oracle Sign(sk∗, ·, ·). This oracle, on input a message Mn and ag-
gregate signed data Σn−1, returns Σn

$← Sign(sk∗, Mn, Σn−1). In the random
oracle model [BR93], the forger is additionally given oracle access to one or more
random functions.

At the end of its execution, F outputs its forgery Σ. The forger wins the game
iff Vf(Σ) = (pk , M) �= (⊥, ⊥) and there exists an index 1 ≤ i ≤ |pk | such that
(1) pk i = pk∗ and (2) F never made a signature query Sign(sk∗, Mi, Σi−1) for
any Σi−1 such that Vf(Σi−1) = (pk |i−1, M |i−1).

The advantage of F is the probability that it wins the above game, where the
probability is taken over the coins of Kg, Sign, and F itself. In the random oracle
model, the probability is also over the choice of the random function(s). We say
that F (t, qS, nmax, ε)-breaks SASD if it runs in time at most t, makes at most qS

signature queries, and has advantage at least ε, and aggregates contain at most
nmax signatures. This means that the aggregate signed data that F submits to
the signing oracle can contain at most nmax − 1 signatures, and that its forgery
can contain at most nmax signatures. In the random oracle, we additionally
bound the number of queries that the adversary makes to each random oracle
separately.

3 Our Main Construction

Claw-free permutations. A family of claw-free trapdoor permutations Π
consists of a randomized permutation generation algorithm Pg that on input 1k

outputs tuples (π, ρ, π−1) describing permutations π, ρ over domain Dπ = Dρ

of size |Dπ| ≥ 2k−1, and the corresponding trapdoor information for the inverse
permutation π−1. There must exist efficient algorithms that given π, x compute
π(x), that given ρ, x compute ρ(x), and that given π−1, x compute π−1(x) for
any x ∈ Dπ. Let tπ denote the time needed to compute π(x). A claw-finding
algorithm A is said to (t, ε)-break Π if it runs in time at most t and

Pr
[

π(x) = ρ(y) : (π, ρ, π−1) $← Pg(1k) ; (x, y) $← A(π, ρ)
]

≥ ε .

Other ingredients. Let k, 	 ∈ N be security parameters, where 	 is a system-
wide parameter but k can be chosen by each signer independently as long as
k > 	. (Typical values for a security level of 80 bits in a factoring-based in-
stantiation would be k = 1024 and 	 = 160.) Let Π be a family of claw-free
trapdoor permutations so that associated to each permutation π in the family
there exists an additive abelian group Gπ ⊆ Dπ such that |Gπ| ≥ 2k−1. Let
d = minπ∈Π(|Gπ|/|Dπ|) be the minimal density of Gπ in Dπ. We stress that π
need not be a permutation over Gπ, and that π need not be homomorphic with
respect to the group operation in Gπ. Let encπ : {0, 1}∗ → {0, 1}∗ × Gπ an effi-
cient encoding algorithm that breaks up a message M into a (shorter) message
m and an element µ ∈ Gπ, and let decπ : {0, 1}∗ × Gπ → {0, 1} be the corre-
sponding decoding algorithm that reconstructs M from (m, µ). We require that
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the decoding function is injective, meaning that decπ(m, µ) = decπ(m′, µ′) ⇒
(m, µ) = (m′, µ′). Finally, let H : {0, 1}∗ → {0, 1}� and Gπ : {0, 1}� → Gπ be
public hash functions modeled as random oracles.

Intuition. Before presenting our SASD scheme, we provide some intuition into
the construction. First consider the following signature scheme with message
recovery, that could be seen as a non-randomized generalization of PSS-R [BR96].
The signer’s public key is a permutation π, the secret key is π−1. To sign a
message M , he computes (m, µ) ← encπ(M), h ← H(M), and X ← π−1(Gπ(h)+
µ). The signature consists of the pair σ = (X, h). Given partial message m and
signature σ, a verifier recomputes µ ← π(X) − Gπ(h), M ← decπ(m, µ), and
returns M iff H(M) = h. Observe that if the encoding is sufficiently dense
(d ≈ 1), then the net signing overhead is limited to |h| = 	 bits, since the
bandwidth of X is reused entirely for message recovery.

Two observations lead from this scheme to our SASD scheme. First, the type
of data that can be “embedded” in X is not restricted to parts of the signed
message; it could also be used for example to embed the signature of the previous
signer. (The same idea actually underlies the LMRS scheme.) Second, suppose
the signer wants to add a second signature on M2 on top of σ1 = (X1, h1). One
idea to keep the net overhead at a constant 	 bits could be to use h2 ← h1⊕H(M2)
and let the overall signed data be (m1, m2, X1, X2, h2). The verifier can then
recover M2 from (m2, X2, h2); h1 from (h2, M2); and M1 from (m1, X1, h1). He
accepts iff H(M1) = h1. A number of additional tweaks would be needed to make
this scheme secure (we do not make any claims about its security here), but this
is the rough idea.

The scheme. We associate to the above building blocks the SAS scheme as
follows. Each signer generates permutations (π, ρ, π−1) $← Pg(1k). The public
key is pk ← π, the secret signing key is sk ← π−1. The aggregate signing and
verification algorithms are given below.

Algorithm SignH,G(π−1, Mn, Σn−1):

If n = 1 then Σ0 ← (ε, ε, ε, 0�)
Parse Σn−1 as (π, mn−1, Xn−1, hn−1)
If VfH,G(Σn−1) = (⊥, ⊥) then return ⊥
(mn, µn) ← encπn(Mn‖mn−1‖Xn−1)
hn ← hn−1 ⊕ H(π‖πn, Mn, mn−1, Xn−1)
gn ← Gπn (hn)
Xn ← π−1

n (gn + µn)
Return Σn ← (π‖πn, mn, Xn, hn)

Algorithm VfH,G(Σ):

Parse Σ as (π, mn, Xn, hn), n = |π|
For i = n, . . . , 1 do

If |Gπi | < 2� then return (⊥, ⊥)
gi ← Gπi(hi) ; µi ← πi(Xi) − gi

Mi‖mi−1‖Xi−1 ← decπi(mi, µi)
hi−1 ← hi ⊕ H(π|i, Mi, mi−1, Xi−1)

If (m0, X0, h0) = (ε, ε, 0�)
Then return

(
π, M = (M1, . . . , Mn)

)
Else return (⊥, ⊥).

Efficiency. Note that the verification algorithm only contains a simple check
on the output size of Gπi(·), but does not check whether Gπi ⊆ Dπi or whether
πi describes a permutation over Dπi . Indeed, unlike the LMRS scheme, the se-
curity analysis of our scheme points out that the security of an honest signer
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is not affected by adversarially generated keys of cosigners, and thereby allows
cheaper instantiations based on uncertified permutations such as low-exponent
RSA and factoring. The real reason only becomes clear in the details of the
security proof, but intuitively the difference is that in our scheme the data em-
bedded in Xi, namely Mi‖mi−1‖Xi−1, is passed as an extra argument to the
hash function H(·), as was done in the signature scheme with message recovery
sketched above. The same trick cannot be applied to the LMRS scheme though
because the embedded data (the previous signature) can only be recovered after
evaluating the hash function. Instead, Lysyanskaya et al. overcome this problem
by simulating random oracles with range Gπ by choosing x

$← Dπ and returning
π(x). For the simulation to be correct, they rely on the fact that even adver-
sarially generated π are permutations. We refer to the security proof for more
details.

Also note that signers can independently choose their own value of the se-
curity parameter k; for the system-wide parameter 	, a comfortably high value
(e.g. 	 = 256 or even 512) can be agreed upon without too much impact on per-
formance. The exact overall bandwidth overhead depends on the length of the
signed messages, the efficiency of the encoding algorithm, the family of permu-
tations being used, the signers’ security parameters k1, . . . , kn and the density d.
For typical instantiations however (see below) the net overhead varies from 	 bits
when sufficiently long messages are being signed (in particular |Mi| ≥ ki −ki−1),
up to 	 + max(k1, . . . , kn) bits for short messages.

Finally, the list of public keys π contained in the signed data can of course
be omitted from the transmission if the verifier already knows them.

4 Instantiating Our Construction

Instantiations from RSA. An RSA key generator [RSA78] is a randomized
algorithm KgRSA that on input 1k outputs tuples (N, e, d) where N = pq is a k-
bit product of two large primes and ed = 1 mod ϕ(N). The RSA function π(x) =
xe mod N is generally assumed to be a trapdoor one-way permutation over Dπ =
Z
∗
N , where d is the trapdoor that allows to compute π−1(x) = xd mod N . An

algorithm A is said to (t, ε)-break the one-wayness of KgRSA if it runs in time at
most t and

Pr
[

xe = y mod N : (N, e, d) $← KgRSA ; y
$← Z

∗
N ; x

$← A(N, e, y)
]

≥ ε .

One can associate a claw-free permutation family to KgRSA by taking ρ(x) =
xe ·y mod N , where y

$← Z
∗
N . It is easy to see that if an algorithm A (t, ε)-breaks

this claw-free permutation, then there exists an algorithm B that (t, ε)-breaks
the one-wayness of KgRSA.

The most important advantage of our scheme over the LMRS scheme is that
small verification exponents can be used, e.g. e = 3 or e = 65537, thereby re-
ducing the cost of an exponentiation with exponent e to that of a couple of
multiplications. Several options exist for the group Gπ, the additive group oper-
ation, the hash function Gπ(·), and the message encoding/decoding algorithms
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to be used. The most straightforward choice would be to use GN,e = Z
∗
N with

multiplication modulo N . A computationally more efficient choice however is to
use GN,e = {0‖x : x ∈ {0, 1}k−1} with the XOR operation. Alternatively, one
can use the permutation family of [HOT04] to save one bit of bandwidth per
signer, but this comes at the cost of doubling the verification time.

Instantiations from factoring. Let KgWil be a randomized algorithm that
on input 1k outputs tuples (N, p, q) where N = pq is a k-bit product of primes
p, q such that p = 3 mod 8 and q = 7 mod 8. For such integers N , also called
Williams integers, we have that −1 is a non-square modulo N with Jacobi symbol
(−1|N) = +1, and that 2 is a non-square with Jacobi symbol (2|N) = −1.
Also, each square modulo N has four square roots (x1, x2, x3, x4) such that
x1 = −x2 mod N , x3 = −x4 mod N , (x1|N) = (x2|N) = +1, and (x2|N) =
(x3|N) = −1. Consider the permutation π : Z

∗
N → Z

∗
N defined as

π(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2 modN if (x|N) = +1 and x < N/2
−x2 modN if (x|N) = +1 and x > N/2
2x2 modN if (x|N) = −1 and x < N/2
−2x2 modN if (x|N) = −1 and x > N/2 .

Note that the Jacobi symbol (x|N) can be computed in time O(|N |2) with-
out knowing the factorization of N . The inverse permutation π−1(y) can be
computed using trapdoor information p, q by finding c ∈ {1, −1, 2, −2} such
that y/c is a quadratic residue modulo N and computing the four square roots
(x1, x−1, x2, x−2) of y/c modulo N , ordered such that (x1|N) = (x−1|N) = +1,
x1 < x−1, (x2|N) = (x−2|N) = −1, x2 < x−2. The inverse of y is the root xc.
Since this is a permutation over Z

∗
N , the same group operations, hash functions

and message encoding algorithms can be used as described for RSA above.
One can associate a family of claw-free trapdoor permutations to KgWil by

taking ρ(x) = π(x) ·r2 mod N where r
$← Z

∗
N . Algorithm A is said to (t, ε)-factor

KgWil if it runs in time at most t and

Pr
[

x ∈ {p, q} : (N, p, q) $← KgWil ; x
$← A(N)

]
≥ ε .

Given a claw π(a) = ρ(b), one can see that a/b mod N is a square root of
r2, which with probability 1/2 is different from ±r mod N and thereby reveals
the factorization of N . Therefore, if an algorithm A (t, ε)-breaks the claw-free
permutation, then there exists an algorithm B that (t, ε/2)-factors KgWil.

5 Security of Our Construction

We prove the security of the SASD scheme in the random oracle model under
the claw-freeness of the permutation family Π . The following theorem gives a
formal security statement with concrete security bounds.
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Theorem 1. If there exists a forger F that (t, qS, qH, qG, nmax, ε)-breaks SASD
in the random oracle model, then there exists a claw-finding algorithm A that
(t′, ε′)-breaks Π with

ε′ ≥ ε

e(qS + 1)
−

4
(
qH + qG + 2nmax(qS + 1)

)2

2�

t′ ≤ t + (1/d + 2)
(
qH + 2nmax(qS + 1) + nmax

)
· tπ .

We prove Theorem 1 in two steps. First, we restrict our attention to a particular
class of forgers that we call sequential forgers, defined in Definition 1. In Lemma 1
we show that for any (non-sequential) forger F there exists a sequential forger
S with about the same success probability and running time. Next, we show in
Lemma 2 how a sequential forger can be used to find a claw in Π . The theorem
then follows directly by combining Lemma 1 and Lemma 2.

Definition 1. We say that a forger S against SASD is sequential if:

1. it never makes the same H(·), G·(·), or Sign(·, ·) query twice;
2. it only makes H(·) queries of the form H(π, Mn, mn−1, Xn−1) such that n =

|π| ≤ nmax and |Gπi | ≥ 2� for all 1 ≤ i ≤ n;
3. for each query H(Qn) = H(π, Mn, mn−1, Xn−1) there exists a unique se-

quence of queries Q1 = (π1, M1, ε, ε), Q2 = (π|2, M2, m1, X1), . . . , Qn−1 =
(π|n−1, Mn−1, mn−2, Xn−2) such that S previously made queries H(Q1), . . . ,
H(Qn−1), in that order, such that

decπi

(
mi , πi(Xi) − Gπi(hi)

)
= Mi‖mi−1‖Xi−1 ,

where hi = hi−1 ⊕ H(Qi) for 1 ≤ i ≤ n, and such that (m0, X0, h0) =
(ε, ε, 0�).

4. it only makes signing queries Sign(π−1, Mn, Σn−1) for valid signed data
Σn−1 = (π, mn−1, Xn−1, hn−1), meaning that n = |π| + 1 ≤ nmax and
VfH,G(Σn−1) �= (⊥, ⊥). Also, before making such a signing query, it makes a
random oracle query H(π, Mn−1, mn−2, Xn−2) and all random oracle queries
needed for the verification VfH,G(Σn−1);

5. it only outputs valid forgeries Σ = (π, mn, Xn, hn), meaning that n = |π| ≤
nmax, that VfH,G(Σ) = (π, M) �= (⊥, ⊥), and that there exists 1 ≤ i ≤ n
such that πi = π∗ and S never made a signing query Sign(π∗−1, Mi, Σi−1)
for any Σi−1 such that VfH,G(Σi−1) = (π|i−1, M |i−1). Also, before halting,
it makes all random oracle queries needed for the verification VfH,G(Σi−1).

The following lemma shows that for any non-sequential forger F, there exists a
sequential forger S with approximately the same success probability and running
time as F.

Lemma 1. If there exists a forger F that (t, qS, qH, qG, nmax, ε)-breaks SASD,
then there exists sequential forger S that (t′, qS, q′H, q′G, nmax, ε

′)-breaks SASD
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(ε, ε, ε)

(π1, m1, Y1)

(
(π1, π2), m2, Y2

)

(π1, m
′
1, Y

′
1)

(
(π1, π2), m

′
2, Y

′
2
)

(
(π1, π2, π3), m3, ⊥

)

(h1, Q1)

(h2, Q2)

(h′
1, Q

′
1)

(⊥, Q3)

(h′
2, Q

′
2)

Fig. 1. The graph G = (V, E) maintained by algorithm S. The solid edges in-
dicate the state of G after F made sequential H(·) queries Q1 = (π1, M1, ε, ε),
Q2 =

(
(π1, π2),M2, m1, X1

)
, Q′

1 = (π1, M
′
1, ε, ε), and a non-sequential query Q3 =(

(π1, π2, π3), M3, m2, X2
)
. The dashed edges depict the problematic cases when at that

point F makes a new query H(Q′
2) = H

(
(π1, π2), M

′
2, m

′
1, X

′
1) that causes event Bad to

occur.

with

ε′ ≥ ε −
2
(
qH + qG + 2nmax(qS + 1)

)2

2�
(1)

q′H ≤ qH + nmax(qS + 1)

q′G ≤ qH + qG + 2nmax(qS + 1)

t′ ≤ t + (qH + 2nmax(qS + 1)) · tπ .

Proof. Given a non-sequential forger F, we build a sequential forger S as follows.
Given input π∗ and access to oracles H′(·), G′·(·), and Sign′(π∗−1, ·, ·), algorithm
S runs F on the same input π∗ and simulates responses to F’s H(·), G·(·) and
Sign(π∗−1, ·, ·) oracle queries.

To satisfy Property 1 of Definition 1, S stores all previous responses to F’s
oracle queries in associative tables, retrieving the appropriate response from
these tables when F asks the same query again. Note that the Sign algorithm is
deterministic, so in a real attack repeating the same query to the signing oracle
will result in the same signature being returned as well. Property 2 is satisfied by
returning random values for F’s “malformed” H(·) queries. To answer F’s G·(·)
queries, S simply relays responses from its own G′·(·) oracle.

Correctly formed H(·) queries are treated in a more complicated manner. S
maintains a directed graph G = (V , E) as illustrated in Fig. 1. Each node is
uniquely identified by a tuple (π, m, Y ) ∈ V , and each edge is uniquely identi-
fied by a tuple (h, Q) ∈ E . We explicitly allow multiple directed edges between
the same pair of nodes. Initially, the graph only contains a so-called root node
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(ε, ε, ε). The idea is that all queries H(Q) satisfying Property 3, so-called sequen-
tial queries, appear in edges in a tree rooted at (ε, ε, ε), while all non-sequential
queries appear in edges not connected to (ε, ε, ε). We refer to the tree rooted
at (ε, ε, ε) as the sequential tree. Property 3 is then enforced by letting S return
H′(Q) for queries in the sequential tree, and random values for all other queries.

When F makes a new query H(Qn) = H(π, Mn, mn−1, Xn−1), S adds a new
edge to G as follows. If n = 1 and m0 = X0 = ε, then the query trivially satisfies
Property 3, so it creates a new edge (h1, Q1) with the root as tail node and
a new node vh = (π1, m1, Y1) as head node, where (m1, µ1) = encπ1(M1‖ε‖ε),
h1 = H(Q1), and Y1 = µ1 + Gπ1(h1). When 1 < n ≤ nmax, algorithm S searches
the graph for a node vt = (π|n−1, mn−1, Yn−1) where Yn−1 = πn−1(Xn−1)).
If such a node exists and it is in the sequential tree, then let (hn−1, Qn−1)
be the incoming edge into vt. We have that πn−1(Xn−1) = Yn−1 = µn−1 +
Gπn−1(hn−1), so the requirements of Property 3 are satisfied by the sequence of
queries (Q1, . . . , Qn−1) on the path from the root to vt. Algorithm S creates a
new edge (hn, Qn) with tail node vt and head node vh = (π, mn, Yn) where hn =
hn−1 ⊕ H(Qn), (mn, µn) = encπn(Mn‖mn−1‖Xn−1), and Yn = µn + Gπn(hn).
If vt is not in the sequential tree, or if no such node vt exists in the graph,
then the query is deemed non-sequential. Algorithm S returns a random value
as the random oracle response, and adds a new edge (⊥, Qn) to the graph with
tail node vt = (π|n−1, mn−1, Yn−1) where Yn = πn−1(Xn−1) and head node
vh = (π, mn, ⊥) where (mn, µn) = encπn(Mn‖mn−1‖Xn−1), adding these nodes
to the graph if they did not yet exist.

The creation of a new edge, however, should not violate the invariants that
only sequential queries are represented by edges in the sequential tree, and that
all of these queries were responded to using outputs of H′(·). Two types of
problems that can occur are illustrated by the dashed arrows for query Q′2 in
Fig. 1. The left arrow illustrates the situation when Q′2 is such that the head
node vh of the new edge coincides with an existing node in the sequential tree.
This is a problem, because if F later makes a query H(Q′3) that “connects” to
vh, then there exist two different sequences (Q1, Q2) and (Q′1, Q

′
2) that satisfy

the requirements of Property 3, violating the uniqueness requirement. The right
dashed arrow in Fig. 1 illustrates the situation when vh coincides with an existing
node that is not part of the sequential tree. The newly created edge would
suddenly incorporate vh into the sequential tree, but this violates the invariant
because S responded the query H(Q3) with a random value, rather than with an
output of H′(·).

To preempt these problems, S aborts its execution whenever a new edge is
added to the sequential tree with a head node that already exists in G. We say
that event Bad occurs when this happens.

Claim. If Σn are valid signed data, meaning n ≤ nmax and VfH,G(Σn) �= (⊥, ⊥),
and event Bad does not occur, then all random oracle queries involved in the
evaluation of VfH,G(Σn) are sequential.

Proof. Let Σn be parsed as (π, mn, Xn, hn). We prove the claim by induction on
the number of signatures n contained in Σ. The claim clearly holds for n = 1,
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because in this case the verification involves only a single query H(π1, M1, ε, ε)
that is always sequential.

Suppose the claim is true for all signed data containing up to n − 1 signa-
tures. Let Qn, . . . , Q1 be the H(·) queries made when evaluating VfH,G(Σn) =
(π, M), where Qi = (π|i, Mi, mi−1, Xi−1), and let h′1, . . . , h

′
n−1 be the inter-

mediate values obtained during the evaluation. If Σn is valid, then Σn−1 =
(π|n−1, mn−1, Xn−1, h

′
n−1) is also valid, namely VfH,G(Σn−1)=(π|n−1, M |n−1).

By the induction hypothesis, F must thus have made the queries H(Q1), . . . ,
H(Qn−1) sequentially, so they must be represented in the graph G by edges
(h1, Q1), . . . , (hn−1, Qn−1) in the sequential tree. Clearly, we have that hi =
h′i = H(Q1) ⊕ . . . H(Qi) for 1 ≤ i ≤ n − 1, and that hn = hn−1 ⊕ H(Qn).

Suppose for contradiction that F queries H(Qn) non-sequentially, so it queries
H(Qn) at least before it queries H(Qn−1). At the moment that F queried H(Qn),
S created an edge (⊥, Qn) with tail node

(
π|n−1, mn−1, Yn−1 = πn−1(Xn−1)

)
not

connected to the sequential tree. When F subsequently queries H(Qn−1), S adds
edge (hn−1, Qn−1) to the sequential tree with head node

(
π|n−1, mn−1, Y

′
n−1 =

µn−1 + Gπn−1(hn−1)
)
. Since decπn−1 is injective however, there is only a single

value of µn−1 so that decπn−1(mn−1, µn−1) = Mn−1‖mn−2‖Xn−2. In the verifi-
cation of Σn, this value is recovered as µn−1 = πn−1(Xn−1) − Gπn−1(hn−1), so
we have that µn−1 = πn−1(Xn−1) − Gπn−1(hn−1) = Y ′n−1 − Gπn−1(hn−1) and
hence, because Gπn−1 is a group, that Yn−1 = Y ′n−1. This however means that
the head node of (hn−1, Qn−1) coincides with the tail node of (hn, Qn), causing
event Bad to occur. So if Bad does not occur, we conclude that F must query
H(Qn) after H(Qn−1), meaning sequentially. �
When F makes a signing query Sign(π∗−1, Mn, Σn−1), algorithm S enforces Prop-
erty 4 of Definition 1 by first verifying Σn−1 and simulating an additional query
H(π‖π∗, Mn, mn−1, Xn−1). Only if Σn−1 verifies correctly does S consult its own
signing oracle; it relays the response of Sign′(π∗−1, Mn, Σn−1) to F. Note that
by Claim 5, if the event Bad does not occur, all H(·) queries involved in the
verification VfH,G(Σn−1) = (π, M) �= (⊥, ⊥) are sequential, so we also have
that VfH

′,G′
(Σn−1) = (π, M).

Finally, S ensures Property 5 by first verifying the forgery, simulating the
necessary random oracle queries, and checking that the conditions with respect
to the previous Sign(π∗−1, ·, ·) queries hold. Again, we rely here on Claim 5 to
guarantee that if event Bad does not occur, then any valid signed data under
random oracles H(·), G·(·) is also valid under H′(·), G′·(·).

It is clear that S is successful in breaking SASD whenever F is and event
Bad does not occur. We want to bound the probability that Bad occurs. A
detailed proof of the following claim, as well as a pseudo-code description of S
and precise bounds on its running time and success probability, are provided in
the full version [Nev08]. An intuition is given below.

Claim. The probability that event Bad happens is at most

Pr [Bad ] ≤
2
(
qH + qG + 2nmax(qS + 1)

)2

2�
.
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To see why the claim is true, observe that event Bad occurs when during
the processing of a sequential query H(Qn), the head node

(
π, mn, Yn = µn +

Gπn(hn)
)

of the created edge coincides with an existing node in the graph. At
this point F’s view is still independent of the value of H(Qn), and therefore also
of hn = hn−1 ⊕H(Qn). The probability that F previously queried gn = Gπn(hn)
is therefore at most its number of queries to G·(·) divided by 2�. If it did not
previously make this query, then gn is a random value from Dπn , and hence so
is Yn = µn + gn. Because for sequential queries we insisted that |Gπn | ≥ 2�, the
probability that Yn coincides with any of the existing nodes in G is at most the
total number of nodes in the graph divided by 2�. Summing over all H(·) queries
yields the bound mentioned above. �

The next lemma shows that any sequential forger S can be turned into a claw-
finding algorithm for Π . The proof reuses ideas from [BR96,Cor00,LMRS04].

Lemma 2. If there exists a sequential forger S that (t, qS, qH, qG, nmax, ε)-breaks
SASD, then there exists a claw-finding algorithm A that (t′, ε′)-breaks Π for

ε′ ≥ ε

e(qS + 1)
− qH(qH + qG)

2�

t′ ≤ t + ((1/d + 1)qH + nmax) · tπ .

Proof. Given a sequential forger S against SASD , consider the following claw-
finding algorithm A against Π . Algorithm A maintains initially empty associative
arrays HT [·] and GT [·, ·]. On input π∗, ρ∗, algorithm A runs S on target public
key π∗, and responds to its oracle queries as follows:

Random oracle query H(Qn): Parse Qn as (π, Mn, mn−1, Xn−1). If n > 1,
then A finds the unique sequence of queries (Q1, . . . , Qn−1) as per Property 3
of a sequential forger, and looks up HT [Qn−1] = (c, x, hn−1). If n = 1, it
sets h0 ← 0�.

If πn �= π∗ then A chooses h
$← {0, 1}�, computes hn ← h ⊕ hn−1, stores

HT [Qn] ← (⊥, ⊥, hn), and returns h to S.
If πn = π∗ then A chooses h

$← {0, 1}� and c
δ← {0, 1}, and computes

(mn, µn) = encπ∗(Mn‖mn−1‖Xn−1) and hn ← h ⊕ hn−1. If c = 0 then A
repeatedly chooses x

$← Dπ∗ and computes gn ← π∗(x)−µn until gn ∈ Gπ∗ .
If c = 1 then A repeatedly chooses x

$← Dπ∗ and computes gn ← ρ∗(x) − µn

until gn ∈ Gπ∗ . (Each of these loops will require 1/d iterations on average.)
If GT [π∗, hn] is already defined, then we say that event Bad1 occurred and
A aborts; otherwise, it sets GT [π∗, hn] ← gn. It stores HT [Qn] ← (c, x, hn)
and returns h to S.

Random oracle query Gπ(h): If GT [π, h] is not defined, then A randomly
chooses GT [π, h] $← Gπ. It returns GT [π, h] to F.

Signing query Sign(π∗−1, Mn, Σn−1) : Parse Σn−1 as (π, mn−1, Xn−1, hn−1).
Algorithm A looks up the entry HT [π‖π∗, Mn, mn−1, Xn−1] = (c, Xn, hn),
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which must exist by Property 4 of a sequential forger. Let (mn, µn) =
encπ∗(Mn‖mn−1‖Xn−1). If c = 0 then A returns Σn = (π‖π∗, mn, Xn, hn).
If c = 1, then we say that event Bad2 occurred and A aborts.

At the end of its execution, the forger outputs its forgery Σn = (π, mn, Xn, hn).
By Property 5 the forgery is valid, so VfH,G(Σn) = (π, M) and there exists an in-
dex 1 ≤ i ≤ n such that πi = π∗ and S never made a query Sign(π∗−1, Mi, Σi−1)
for the unique tuple Σi−1 such that VfH,G(Σi−1) = (π|i−1, M |i−1). Let mi−1,
Xi−1, µi, and Xi be the intermediate values obtained during the computation
of VfH,G(Σn).

Algorithm A looks up HT [π|i, Mi, mi−1, Xi−1] = (c, y, hi) and GT [π∗, hi] =
gi. (We know that these entries are defined by Property 5 of a sequential forger.)
If c = 0 then we say that event Bad2 occurred and A aborts. If c = 1 then we
have that ρ∗(y) = gi+µi, but since Σn is valid we also have that π∗(Xi) = gi+µi.
Since Gπ∗ is a group we therefore have that π∗(Xi) = ρ∗(y); algorithm A outputs
(Xi, y) as the claw for (π∗, ρ∗).

A detailed analysis in support of the bounds stated in the lemma reuses
techniques due to Coron [Cor00], and is given in the full version [Nev08]. �

We can now shed some more technical light on how our security proof avoids
relying on the family of permutations being certified like the LMRS scheme does.
The LMRS scheme uses a full-domain random oracle, much like our G·(·) oracle.
In their proof, however, the responses of this oracle need to be simulated such
that the claw-finding algorithm A knows a related preimage for all permutations
π. The usual trick of generating a random preimage x

$← Dπ and computing the
output as π(x) only gives the correct distribution if π is a permutation, hence
the requirement that Π be certified. In our proof, the algorithm A only needs to
know preimages related to queries Gπ∗(·), but not for queries Gπ(·) with π �= π∗.
It can therefore sample random elements from Gπ directly.

6 Variations on the Main Construction

Sequential aggregate signatures. If for some reason the message recov-
ery functionality is undesirable, then the following “purebred” sequential aggre-
gate signature scheme SAS is easily derived from our SASD scheme. Just like
the SASD scheme, the SAS scheme allows for efficient instantiations based on
low-exponent RSA and factoring, and allows signers to independently choose
their security parameter k. The signature size again depends on various issues
such as the encoding efficiency and the permutation being used, but for signers
with security parameters k1, . . . , kn will typically be about max(k1, . . . , kn) + 	
bits.

The signer’s public and private key are again a permutation π and its inverse
π−1; aggregate signing and verification are as follows:
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Algorithm SignH,G(π−1, Mn, π, M , σn−1):

If n = |π| = 1 then σ0 ← (ε, ε, 0�)
Parse σn−1 as (xn−1, Xn−1, hn−1)

If VfH,G(π, M , σn−1) = 0 then return ⊥
(xn, ξn) ← encπn(xn−1‖Xn−1)
hn ← hn−1 ⊕

H(π‖πn, M‖Mn, xn−1, Xn−1)
gn ← Gπn(hn)
Xn ← π−1

n (gn + ξn)
Return σn ← (xn, Xn, hn)

Algorithm VfH,G(π, M , σn):

Parse σn as (xn, Xn, hn), n = |π|
For i = n, . . . , 1 do

If |Gπi | < 2� then return 0
gi ← Gπi(hi) ; ξi ← πi(Xi) − gi

xi−1‖Xi−1 ← decπi(mi, µi)
hi−1 ← hi ⊕

H(π|i, M |i, xi−1, Xi−1)

If (x0, X0, h0) = (ε, ε, 0�) then return 1
Else return 0.

The scheme can be proved secure in the random oracle model under the notion
of [LMRS04,BNN07]. The proof is almost identical to that of Theorem 1. The
definition of a sequential forgers needs to be adapted to queries of the form
H(π, M , xn−1, Xn−1), and nodes in the graph G will be identified by tuples
(π, M , x, Y ). The concrete security bounds are identical to those obtained in
Theorem 1.

Achieving tight security. Closer inspection of Theorem 1 learns that the
reduction loses a factor qS in the success probability of the claw-finding algorithm
A. In principle, this means that higher security parameters have to be used in
order to achieve the same security level, thereby increasing the length of keys
and signatures. One can apply the techniques of Katz-Wang [KW03] however to
obtain a scheme SASDt with a tight security reduction, at the minimal cost of
an increase in signature length of n bits. (The same techniques have also been
applied to achieve tight security for the LMRS scheme in [BNN07].) We refer to
the full version [Nev08] for details.

7 Non-interactive Multi-signed Data

When all signers are authenticating the same message M , a more efficient scheme
exists that does not require any interaction among the signers at all (as opposed
to the sequential interaction required for the other schemes in this paper). Here,
all signers independently generate their signature shares, which can then be
combined by any third party into the final signature.

Syntax and security. A multi-signed data (MSD) scheme is a tuple of al-
gorithms MSD = (Kg, Sign, Comb, Vf). A signer generates his own key pair
via (pk , sk) $← Kg. Each signer creates a partial signature on M via σ

$←
Sign(sk , M). Any third party can combine a list of partial signatures σ into the
final signed data via Σ

$← Comb(pk , M, σ). The verification algorithm Vf(Σ)
returns (pk , M) to indicate that Σ is valid for signers pk and message M , or
returns (⊥, ⊥) to indicate rejection. Correctness requires that Vf(Σ) = (pk , M)
if all signers behave honestly.

In the experiment defining security, the forger F is given a freshly generated pk∗

as input, and has access to a signing oracle Sign(sk∗, ·). It wins if it outputs a forgery
Σ such that Vf(Σ) = (pk , M) �= (⊥, ⊥) with pk i = pk∗ for some 1 ≤ i ≤ |pk | and
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F never queried M to the signing oracle. We say that F (t, qS, nmax, ε)-breaks MSD
if it runs in time at most t, makes at most qS signing queries, its forgery contains
at most nmax signatures, and wins the above game with probability at least ε. In
the random oracle model, we additionally bound the maximum number of queries
that F can make to each random oracle separately.

The scheme. Let k, 	 ∈ N be security parameters where k is chosen by each
signer independently and 	 is fixed system-wide. Let Π be a family of claw-
free trapdoor permutations, let Gπ ⊆ Dπ for π ∈ Π be a group, and let H :
{0, 1}∗ → {0, 1}� and Gπ : {0, 1}� → Gπ be random oracles, exactly as for
the SASD scheme. The encoding and decoding functions are different though:
we assume that encπ : {0, 1}∗ → Gπ, enc(π1,...,πn) : {0, 1}∗ → {0, 1}∗, and
dec(π1,...,πn) : {0, 1}∗× Gπ1 × . . . × Gπn are such that encπi(M) outputs a group
element µi ∈ Gπi ; encπ(M) outputs a partial message m; and the injective
function decπ(m, µ) reconstructs the original message M . Key generation is
consists again of generating a random permutation π as public key and its inverse
π−1 as secret key; the other algorithms are described below.

Algorithm SignH,G(π−1, M):

µ ← encπ(M) ; h ← H(M)
g ← Gπ(h) ; X ← π−1(µ + g)
Return X

Algorithm CombH,G(π, M, X):

m ← encπ (M) ; h ← H(M)
Return Σ ← (π, m, X , h)

Algorithm VfH,G(Σ):

Parse Σ as (π, m, X , h) ; n ← |π|
If |X | �= n then return (⊥, ⊥)
For i = 1, . . . , n do

gi ← Gπi(hi) ; µi ← πi(Xi) − gi

M ← decπ

(
m, (µ1, . . . , µn)

)
If H(M) = h then return (π, M)
Else return (⊥, ⊥).

Security. The following theorem states that the MSD scheme is secure if the
permutation family is claw-free. The proof uses techniques from [BR96,Cor00]
and is provided in the full version [Nev08].

Theorem 2. If there exists a forger F that (t, qS, qH, qG, ε)-breaks MSD in the
random oracle model, then there exists a claw-finding algorithm A that (t′, ε′)-
breaks Π claw-free for

ε′ ≥ ε

e(qS + 1)
− (qG + qH + qS + nmax + 1)2

2�

t′ ≤ t +
qH + qS + nmax + 1

d
· tπ .

Instantiations. One can obtain instantiations of MSD from low-exponent
RSA and factoring using the same permutation families and group structures
described in Section 4. For the encoding function, one could for example split
the message in kmax-bit blocks (e.g. kmax = 4096 when using RSA) and let
µ be the first k bits of the block with index h(π, M) where h : {0, 1}∗ →
{1,. . . , �|M |/kmax�} is a non-cryptographic hash function. The function encπ(M)
returns the remaining bits of M ; decoding works by reconcatenating the different
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message parts in the correct order. For long enough messages M (in particular,
|M | � nkmax), there is no overlap between the message parts of different co-
signers, and MSD achieves the promised length savings.

Alternatively, if the list of co-signers is known at the time of signing, one could
modify the scheme so that encoding is more effective for short messages. Namely,
one could use a single encoding function enc(π1,...,πn) : {0, 1}∗ → {0, 1}∗× Gπ1 ×
. . . × Gπn that ensures there is no overlap between the different message parts.
In this case, however, the scheme needs to be modified to include π in the
computation of h ← H(π, M), because otherwise there may exist (contrived)
encoding algorithms that make the scheme insecure. Details are left as an exercise
to the reader.
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Abstract. We consider the use of threshold signatures in ad-hoc and
dynamic groups such as MANETs (“mobile ad-hoc networks”). While
the known threshold RSA signature schemes have several properties that
make them good candidates for deployment in these scenarios, none of
these schemes seems practical enough for realistic use in these highly-
constrained environments. In particular, this is the case of the most ef-
ficient of these threshold RSA schemes, namely, the one due to Shoup.
Our contribution is in presenting variants of Shoup’s protocol that over-
come the limitations that make the original protocol unsuitable for dy-
namic groups. The resultant schemes provide the efficiency and flexibility
needed in ad-hoc groups, and add the capability of incorporating new
members (share-holders) to the group of potential signers without rely-
ing on central authorities. Namely, any threshold of existing members
can cooperate to add a new member. The schemes are efficient, fully
non-interactive and do not assume broadcast.

1 Introduction

A distributed signature scheme is a protocol where the ability to sign is dis-
tributed among a group of entities, so that a sufficiently large subset can produce
valid signatures while a “small” subset cannot generate such a signature. These
schemes are often referred to as t-out-of-n threshold signatures where n is the to-
tal number of entities and t is the “threshold”. Namely, t+1 cooperating parties
can produce a valid signature, but t or less cannot (even if they depart mali-
ciously from the protocol). Threshold signature schemes are known for standard
signatures such as RSA and DSS. One major appeal of these schemes is that the
verification of a signature uses a regular public key and a standard verification
procedure; hence the verifier of a signature does not need to be aware of the
form (centralized or distributed) in which the signature was generated, or who
were the parties involved, nor does the signature increase in size as a function
of the number of signers.

Typically, in these systems each signing entity holds a share of the signing
key, that it uses to produce a “fragment” of a signature on a given message.

� Full version available in [15].

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 88–107, 2008.
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When a sufficient number of such fragments are collected (i.e., a threshold), the
fragments are combined in some prescribed manner to generate the resultant
(standard) signature on the given message.

Threshold signature were traditionally motivated by applications requiring
the protection of highly-valuable signature keys, such as in the cases of a cer-
tification authority signing public-key certificates or a bank minting electronic
coins. In such applications, threshold signatures increase the security of the key
by preventing “a single point of failure”, and also increase the reliability and
availability of the service (since disabling some nodes does not disrupt the ser-
vice as long as there are t + 1 good functioning nodes). A substantial body of
work has been devoted to designing efficient threshold signature schemes [3,5,9],
especially for standard algorithms such as RSA [11,8,19,14,13,24] and DSS [6,17].
Given this motivation, prior works were mostly concerned with scenarios with a
small number of nodes, with static configuration and tight coordination. (Typ-
ically the protocol would be implemented by a small set of nodes, all of which
are governed by one administrative entity.)

A more recent application of threshold signatures has emerged in the area of
networking and distributed computing, such as in the setting of mobile and ad-
hoc networks (MANETs). In these cases, relatively small subsets of very large
(and dynamic) groups report data, that is aggregated and “certified” by means
of a signature. Examples include vehicular networks where cars report traffic
conditions, sensor networks that report aggregate data such as temperature or
radiation levels, military devices transmitting information to be reported to var-
ious commands, and more. Threshold signatures provide a robust, flexible and
secure way for the nodes to report and certify data that can be verified by third
parties regardless of the specific reporters. All that is needed is the assurance
that a large enough subset of authorized reporters agreed on the data.

In these environments the set of parties is formed in dynamic and ad-hoc
manners. Nodes may be dynamically added to the system, their share of the
secret key can be either installed by trusted authorities before deployment, or
added “on-the-fly” by a qualified subset of nodes already in the network. Large
numbers of nodes may be deployed in the network, and yet at a given time a
node may be in the communication range of only a few other nodes. In many
such applications, communication bandwidth may be constrained (e.g., due to
energy limitations), transmitting large amount of data or heavy interaction may
be infeasible, and expensive communication primitives like broadcast may not be
available. Adapting threshold signature schemes to work in such environments
is challenging. In principle, threshold RSA signatures [11,8,24] are appealing in
this case due to two important properties:

Standard signatures. They implement standard RSA signatures. Namely, the
end-result of running these protocols is a standard RSA signature on the
given message, and anyone can verify that signature as if it was generated
by a standard centralized signer.

Non interactive. Given a message and its share of the secret key, each party
locally computes a “signature fragment” without any interaction with the
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other parties. Then there is a public combination function that takes all
these signature fragments (together with the message and public key) and
turns them into a standard RSA signature.

Note that we would like the scheme to remain non-interactive even when mis-
behaving parties provide wrong signature fragments. For these cases, techniques
from [19,18] can be used to obtain fragment verifiability without losing the non-
interactive nature of the protocols.

From the existing protocols with the above properties, the most practical
is the one due to Shoup [24], which is very efficient in scenarios with static,
relatively small sets of parties. But Shoup’s protocol has a parameter n, which
is a global upper-bound on the number of (potential) parties in the protocol,
and the computation of signature fragments and the combining function use
the number n! in the calculations (specifically as an exponent in a modular
exponentiation operation). This means that the parameter n must be fixed and
known to all parties, and the computation takes time at least linear in n. As the
parameter n grows, as is likely in the dynamic applications that we mentioned,
these computations become expensive or even infeasible.

This problem is even more serious, since in Shoup’s protocol n is an upper
bound on the identities of parties in the protocol, namely it is assumed that no
party has an identity whose value (as an integer) is larger than n. For example, if
the identities are arbitrary 32-bit numbers, the protocol must use n = 232 so n! is
a 237-bit number! (Clearly, using network addresses or serial numbers of 64 bits
or 160-bit hash values is incompatible with this protocol.) The range of identities
can be reduced via tight coordination of the identity name space, but such tight
coordination flies in the face of the flexibility that is expected in dynamic groups.
Further, tight coordination may be impossible in applications that need flexible
addition of nodes, either by loosely-coordinated “trusted authorities” or even by
completely un-coordinated groups of members within the group itself.

This work. We describe two results that extend Shoup’s protocol to dynamic
ad-hoc groups:

– We present a variant of Shoup’s protocol that keeps all the appealing prop-
erties of the original scheme but frees the protocol from any dependency on
the total number of parties. Technically, the dependency on n as discussed
before is replaced with a dependence on t (where t + 1 is the number of
parties that needed to generate a signature).

– We show the practicality of our scheme in the dynamic group scenarios by
extending our threshold scheme to support the addition of new members
without the need to centrally coordinate this join operation. Basically, we
allow any set of t+1 or more parties to cooperate (non-interactively!) in order
to add a new member into the group, without having to invoke any “trusted
authority”. This is done by adapting to our case the elegant non-interactive
solution of Saxena et al. [25].

We believe that the combination of both results leads to the first practical solu-
tion for dynamic and communication-constrained scenarios described above.
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2 Background

In this work we use RSA moduli of special form, namely, the product of safe
primes: N = pq such that p = 2p′+1 and q = 2q′+1 with p′, q′ also primes. We
assume that |p| = |q| = k, where k is the security parameter. With Z∗N we denote
the set of non-negative integers smaller than N which are relatively prime to N .
This is a group with respect to multiplication mod N . Define λ(N) def= 2p′q′

(the Carmichael function of N). We also denote m
def= p′q′.

The RSA function [21] is defined by an integer e which is relatively prime to
λ(N):

∀x ∈ Z∗N RSAN,e(x) = xe mod N

Since e is relatively prime to λ(N) this is a permutation over Z∗N . It is believed
that for a randomly-generated composite N (which is a product of two large
enough safe primes), inverting the RSA function on random inputs is infeasible.
On the other hand, inverting this function is easy given some trapdoor informa-
tion. The trapdoor could be the prime factorization of N , since it would allow
to compute d = e−1 mod λ(N) and hence

if y = xe mod N then x = yd mod N

Assumption 1 (RSA). Consider a generation procedure Gen for generating
pairs (N, e) as above. The RSA Assumption (with parameters (T, ε)) says that
for any algorithm A that runs in time T :

Pr[(N, e) ← Gen, x ∈R Z∗N ; A(N, e, y = xe mod N) = x] ≤ ε

RSA Signatures. We recall the Full Domain Hash RSA (FDH-RSA) signatures.
The public key is (N, e), the secret key is d = e−1 mod λ(N), and a hash function
H which maps arbitrary messages to Z∗N is also part of the public key. To sign
a message M , the signer computes y = H(M) and the signature σ = yd mod N .
To verify a message/signature pair (M, σ) under public key (N, e), the receiver
checks if σe = H(M) mod N . It is well known that the security of FDH-RSA
can be reduced to the RSA Assumption if we model H as a random oracle [4,7].

2.1 Threshold Cryptography

In a threshold cryptographic scheme, the secret key of a cryptographic scheme
is stored in a shared form among several parties [3,5,10]. The goal is to prevent
compromise of the secret key by an attacker who breaks into parties and reads
their memory. Indeed if the secret key were stored in a single party, then a
single break-in would compromise the security of the entire scheme. The idea
of threshold cryptography is to share the key among several parties so that the
attacker must break into several of them before learning the secret key.

Threshold cryptography schemes are thus composed of two phases. The first
is a sharing phase in which the secret key is installed in this shared form among
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the parties; this part can be performed by a trusted dealer who temporarily
knows the secret key, and shares it among the parties, before erasing it from its
memory. (Alternatively the parties jointly generate the key directly in a shared
form.) The second phase is a computation phase, where the parties run some
protocol to jointly perform the cryptographic computations in which the secret
key is employed.

We assume to have a set of upto n parties that can communicate with each
other. We do not assume physically secure channels or a broadcast channel
among them. In addition to the n parties, we also consider a dealer who will
share the secret key among them (we do assume that for this phase there are
private channels between the dealer and the parties).

We assume a computationally bounded adversary, A, who can corrupt up to
t of the n parties in the network, where t is a parameter. (In our application
domain we typically have t � n, but the protocol that we describe works for any
t < n.) We call an adversary that corrupts no more than t parties a t-adversary.
We say that the adversary is static if it corrupts all its parties at the beginning of
the protocol, otherwise we say it is adaptive. An adversary is honest-but-curious
if it does not modify the code of the corrupted parties, but just reads their
memory. A malicious adversary on the other hand may also cause corrupted
parties to behave in any (possibly malicious) way. Yet, the adversary can never
corrupt the dealer.

Threshold Signature Schemes. The following definitions of secure threshold
signature schemes are essentially taken from [17]. A threshold signature scheme
is a pair of protocols (Thresh-Key-Gen, Thresh-Sig) for a set of n parties and a
dealer, and a verification algorithm Ver.

Thresh-Key-Gen is a key generation protocol carried out by a designated dealer
to generate a pair (pk, sk) of public/private keys. At the end of the protocol the
private output of party Pi is a value ski (related to the private key sk). The
public output of the protocol contains the public key pk, and possibly some
additional verification information v.

Thresh-Sig is the distributed signature protocol. The private input of Pi is the
value ski. The public inputs for all parties consist of a message M , the public
key pk, and the verification information v (if any) . The output of the protocol is
a signature sig on M (relative to the public key pk). The verification algorithm
Ver, on input M, sig, pk, checks if sig is a valid signature of M under pk.

The definition of security is adapted from the centralized case. Specifically,
we consider a t-adversary that can interact with the honest parties and ask
them to generate signatures on messages M1, M2, . . . that the adversary chooses
adaptively. In the malicious model the adversary can also actively participate in
these signature-generation protocols (via the set of t parties that it controls), and
in either model the adversary can choose the set of parties that would participate
in the current signature generation. As usual, the goal of the adversary is to
produce a signature on any message M that was not obtained via one of these
runs of the protocol.
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Definition 1. We say that a threshold signature scheme (Thresh-Key-Gen,
Thresh-Sig, Ver) is t-secure (with parameters (T, ε)), if no t-adversary A that
runs in time T can produce a signature on any message M without the partici-
pation of at least one honest party, except with probability ε.

In the semi-honest model this should hold even if A can watch the signature
protocol being run on messages M1, M2, . . . of A’s choosing (so long as M �= Mi

for all i), and in the malicious model this should hold even if the adversary can
actively participate in these protocol executions.

2.2 Secret Sharing vs. Threshold Cryptography

Notice the difference between threshold cryptography and the simpler task of se-
cret sharing [22,2]. In secret sharing, the secret is first shared among the parties
who later reconstruct it. In threshold cryptography, the secret is never recon-
structed, but rather employed as a shared input into a cryptographic computa-
tion. However the sharing mechanisms are usually similar in both areas.

Here we recall Shamir’s scheme for secret sharing [22]. Let q be a prime and
the secret is an integer s ∈ Zq. The goal is to share s among n parties in such a
way that t or less of them have no information about s, while t + 1 of them can
easily reconstruct it.

The dealer chooses t random values at, . . . , a1 in Zq and considers the poly-
nomial f(x) = atx

t + . . . + a1x + s. Assume each party is given as a “name” an
integer between 1 and n. Then party i is given the share si = f(i) mod q. Notice
how t shares give no information about s (for every possible secret s′ there is a
polynomial f ′ consistent with s′ and the t shares). On the other hand t+1 shares
completely define s, via polynomial interpolation. Notice that if si1 , . . . , sit+1 are
t + 1 shares corresponding to the points in S = {i1, . . . , it+1}, then the secret
can be computed from S and these shares as

s = f(0) =
t+1∑
j=1

LS(0, ij)sij mod q

where LS(0, ij) are the appropriate Lagrangian coefficients, namely

LS(α, β) def=

∏
γ∈S,γ �=β(α − γ)∏
γ∈S,γ �=β(β − γ)

mod q (1)

Notice that Shamir’s secret sharing has an interesting homomorphic property
that allows the shares to be used to jointly compute exponentiations of the form
ys where y is known, without reconstructing the secret in the clear. Assume for
example that y is an element in a cyclic group G of known prime order q: then
each party could publish the value γi = ysi in G and then

ys = y(∑ t+1
j=1 LS(0,ij)sij

mod q) =
t+1∏
j=1

γ
LS(0,ij)
ij

∈ G
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2.3 Shoup’s Threshold RSA

The homomorphic property of Shamir’s secret sharing described above would
seem ideal for the setting of threshold RSA, as it would allow the parties to
jointly compute RSA signatures with secret key d, without recovering d itself
(recall that to compute a signature on M , the parties have to jointly compute
σ = yd mod N where y = H(M)). However, a closer look reveals that this
approach does not immediately work in the case of threshold RSA.

The problem is that the sharing must be conducted modulo λ(N), which must
be kept secret from the parties themselves (since knowing λ(N) or a multiple
of it would allow any single party to factor N and compute the secret key d for
itself). This issue arises in the computation of the Lagrangian coefficients mod-
ulo λ(N), since they require the computation of inverses modulo λ(N) (which
are equivalent to knowing a multiple of λ(N)). This problem received consider-
able attention in the threshold cryptography literature (e.g. [11,8]) and various
solutions were proposed. Shoup in [24] presented the most efficient solution to
date.

Shoup observed that if we denote ∆ = n! then the values ∆ · LS(0, j) for
all S, j are integers and no inverse computation modulo λ(N) is required if
we compute the linear combination of the shares using ∆ · LS(0, ij) instead of
LS(0, ij). However doing so we will reconstruct the value σ′ = y∆d mod N rather
than σ = yd mod N . But if e relatively prime to ∆, we can apply the extended
Euclidean algorithm in the exponent [23] to recover σ from σ′. Details of Shoup’s
scheme follow.

Sharing Phase: Given the public key N, e, the dealer (who knows the factoriza-
tion of N) computes d = e−1 mod m. It also chooses t random values a1, . . . , at

in Zm and defines the polynomial f(z) = atz
t + . . .+a1z+d. Party i is given the

share di = f(i) mod m. The (maximal) number n of parties is fixed and public
and with it the value ∆ = n!.
Signature Computation Phase: On input a message M , party i computes
y = H(M) ∈ Z∗N and the signature fragment σi = y2∆·di mod N which it then
publishes. (See the next section for an explanation of the 2∆ factor in the expo-
nent.) Then given any t+1 of these values, σi1 , . . . , σit+1 , anybody can compute

σ′ =
t+1∏
j=1

σ
2∆·LS(0,ij)
ij

mod N (2)

By simple algebra we have that

σ′ =
t+1∏
j=1

y4∆2·LS(0,ij)·dij mod N =

(y4∆2
)
∑ t+1

j=1 LS(0,ij)dij
mod m mod N = y4∆2·d mod N

Notice that the operations (polynomial interpolation) “in the exponent” are
performed mod m because the value y4∆2

has order m.
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At this point we need to show how to compute σ = y1/e, given σ′. If GCD
(e, 4∆2) = 1 (which we ensure by choosing e as a prime larger than n), we
compute integers a, b such that ae + 4b∆2 = 1 and set σ = ya(σ′)b mod N . To
see that σ = y1/e mod N note the following equalities mod N :

σ = ya(σ′)b = (y1/e)ae · (y1/e)4b∆2
= (y1/e)ae+4b∆2

= y1/e.

3 Threshold RSA Signatures for Ad-Hoc Groups

As discussed in the Introduction, we are interested in constructing a threshold
RSA signature for “ad hoc” groups, that can be very large, dynamic, and decen-
tralized, and where parties from very different domains aggregate temporarily
to perform a specific (“ad hoc”) task. In these networks, because of the large
number of parties and the loose coordination among them, it is impractical
(if not impossible) to maintain a coherent centralized naming scheme, i.e., one
where if there are n parties in the network their identities will be integers from
1 to n.

Consider for example the task of adding parties to the network and giving
them shares of the secret key. In Section 5 we describe a solution in which t + 1
honest parties can provide a new party with a new share of the secret key. To
do that, the t + 1 parties must give this new party a unique identity ID and
its share f(ID), where f is the t degree polynomial such that f(0) = d. In a
very decentralized network, it is basically impossible to keep track of the IDs
issued by various subsets of parties in the network, and therefore it is infeasible
to maintain these identities in a small subset of integers.

What is most likely to happen in ad hoc networks is that parties have an
ID already assigned to them, probably a large integer (say a 32-bit or a 160-
bit integer, e.g. their serial number, their IP address or a hash of some other
identity) and we would want to use that ID all across the board. In the example
above, when adding parties to the network, the subset of parties could use the
ID of the new party (if it has one) or generate a random one for it (if the ID are
sufficiently long, it will most likely be unique).

Now consider what happens in Shoup’s scheme when the IDs of parties are
long integers say between 1 and 2k for some parameter k. In this case the com-
putation of the value ∆ = n! is infeasible as one must set n = 2k in order for ∆

to remove all possible denominators in Eq. (2) (note that 2k! > 22k

). There are
two places where this factor ∆ is used in Shoup’s scheme:

(1) In the interpolation of partial signatures: Given the various shares
σi = y2∆f(i), the players reconstruct the value σ′ = y4∆2·f(0) via interpolation
“in the exponent”. One of the two ∆ factors in the exponent is needed for the
correct operation of the scheme, as it is exactly what lets the parties replace the
fractional Lagrangian coefficients with integers that they can compute.

Reducing this ∆ factor is straightforward. Indeed, given the set S of parties
in the threshold computation of the RSA signature, this factor can be easily
replaced by
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∆S
def= lcm

{( ∏
j ∈ S
j �= i

(i − j)
)

: i ∈ S

}
.

Note that if S has t + 1 elements, each a number between 0 and 2k, then ∆S is
bounded by

∆S <
∏

i, j ∈ S
i �= j

(i − j) < (2k)t2 = 2kt2 ,

so the bit-size of ∆S is linear in k and at most quadratic in t.

(2) In the computation of partial signatures: Given public input y and
their private share di, each party computes σi = y2∆di mod N . This additional ∆
factor in the exponent is introduced to obtain a provably secure scheme. Indeed
we need to show that the values transmitted by the good parties do not help the
adversary, beyond the computation of σ = y1/e. This is done by a simulation
argument in which we show that the adversary is able to compute the values
transmitted by the good parties from any t shares (belonging to the parties the
attacker controls) and the value σ = y1/e. Assume that the adversary knows t
shares di1 , . . . , dit , and denote B = {i1, . . . , it} (where B stands for “bad”) the
set of corrupted parties. Denote B̃ = B ∪{0}. Notice that any other share di for
i > t can be computed as

di = LB̃(i, 0)d +
t∑

j=1

LB̃(i, ij)dij mod m

Thus the adversary given the value σ = y1/e can compute the value σi for i > t
output by a good party as follows:

σi = y2∆di = (y2)LB̃(i,0)d+
∑ t

j=1 LB̃(i,ij)dij
mod m = σ2∆LB̃(i,0)

t∏
j=1

(y2dj )∆LB̃(i,j)

Notice that the products ∆LB̃(i, j) are all integer values and thus the adver-
sary can perform this computation (since it does not require computing inverses
modulo m). However, this argument would not hold if the parties transmitted
just σi = ydi (in which case we do not know if a simulation would be possible).

Eliminating this factor is not as easy as in case (1). The reason that we cannot
replace ∆ with some ∆S as above is that the relevant set S here is the set B̃ of
“bad parties” (i.e., those that were compromised by the adversary), and B̃ is not
known to the honest parties. Fortunately, we show below that the analysis can
still be carried out when ∆ is replaced by the much smaller factor 2kt. For this
crucial reduction in the size of the exponent, we pay either by having to carry
out the analysis in the random-oracle model or by strengthening the hardness
assumption. (Note however that the basic Shoup scheme already relies on the
random-oracle model for the non-interactive verification of signature fragments.)

Remark: Shoup presented an alternative protocol for threshold RSA in [24],
where the share of party i is di = ∆−1f(i) mod m (rather than di = f(i)).
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Thereafter the parties do not have to raise their partial signatures to a factor
∆, as it is already “factored in” in their shares. However the dealer still needs to
compute ∆−1 mod m, and the signature generation still needs to exponentiate
to the power of ∆ ·LS(·, ·). Hence both the dealer and the “signature combiner”
work in time at least linear in n (which is exponential in settings where n = 2k).

3.1 Our Threshold RSA Protocol for Ad-Hoc Groups

We now describe the details of our new scheme, which we call TFDH-RSA. We
first describe a basic version that is only secure in the honest-but-curious attack
model. The extension to the malicious attack model is discussed in Section 6.

Sharing Phase: Given the public key N, e (where e is a prime larger than
n = 2k) and the secret key d (such that d = e−1 (mod m)), the dealer chooses
t random values a1, . . . , at in Zm and defines the polynomial f(x) = atx

t + . . .+
a1x + d. Each party i is given the share di = f(i) mod m.

Signature Computation Phase: On input a message M , party i computes
y = H(M) ∈ Z∗N and the signature fragment σi = y2ktdi mod N , which it then
publishes.

Given t + 1 of these values σi1 , . . . , σit+1 the signature σ = yd mod N is
computed as follows. Let

∆S = lcm
{( ∏

j ∈ S
j �= i

(i − j)
)

: i ∈ S

}
(3)

where S = {i1, . . . , it+1}, and set

σ′ =
t+1∏
j=1

σ
∆S ·LS(0,ij)
ij

mod N. (4)

Using extended Euclidean algorithm find values a, b such that ae+b(2kt∆S) = 1.
Finally, the signature σ = yd mod N is computed as σ = ya · (σ′)b mod N .

Note that for any j, the quantity ∆S · LS(0, ij) is an integer that can be
computed just by knowing S and ij (no need to know m or any inverse mod m).
Moreover, this integer is smaller than 2kt2 and then the computation of σ′ is
feasible. To see that the value σ we computed is indeed yd mod N note that
similarly to the case of Eq. (2)

σ′ = y∆S ·2kt·f(0) = y∆S·2kt·d mod N (5)

and then

σ = ya · (σ′)b = (y1/e)ae · (y1/e)b2kt∆s = y1/e (mod N). (6)

Finally, note that the values a, b computed via the extended Euclidean algorithm
exist since by choice of e, GCD(e, 2kt∆S) = 1.
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Remark: the choice of e. The value e must be chosen as a prime larger than
any possible identity (e.g., larger than 2k). Alternatively, if the identities are
random k-bit integers, the value e can be chosen somewhat smaller (but still a
“large enough prime”) and then rely on the fact that with high probability no
two identities will have a difference that is divisible by e.

4 Security Analysis

Ideally, we would like to claim that the protocol above is as secure as the under-
lying signature scheme. In particular, we want to claim that seeing the signature
fragments σi does not gives the adversary any more information than the signa-
ture σ itself, by presenting a simulator S that given σ can generate the view of
the adversary in the protocol (i.e., the signature fragments of the honest parties
σj = xf(j) mod N).

Unfortunately, as we explained above, we do not know how to generate this
view without the extra factor of ∆ in the signature generation. Specifically, the
simulator can only compute the related quantities σ′j = σ

∆B̃

j , where ∆B̃ is as
defined in Eq. (3) (with respect to the set B̃ that consists of zero and the “bad
parties”). The reason is that we can write

σ′j = σ∆B̃ ·LB̃(j,0) ·
∏
i∈B

y∆B̃ ·LB̃(j,i)·di ,

and for all i, the quantity ∆B̃ · LB̃(j, i) is an integer that the simulator can
efficiently compute from B̃, i and j. However, in this case we do not know a way
to “extract” the ∆B̃ root out. In particular we do not know a “public exponent”
corresponding to f(j) that would let us use the GCD calculations in order to
eliminate the extra factor of ∆B̃ in the exponent.

In dealing with this problem, we separate the treatment of the powers of two
in ∆B̃ from the odd factors of it.1 Write

∆B̃ = 2�(B̃)e(B̃)

with e(B̃) odd. Clearly, for any set B̃ of t+1 elements in [1..2k], it must be that
�(B̃) < kt.

Since in our protocol the parties compute signature fragments by raising y =
H(m) to the power 2tkf(i), then the simulator does not need to take 2�(B̃) roots
(see details below). On the other hand the problem of taking e(B̃) roots remains.

We present two solutions for this problem. In Theorem 2 we show that when we
model the function H as a random oracle, our protocol can be proven t-secure (as
per Definition 1) under the standard RSA assumption. This is a strong assurance
of security, especially since random-oracle proofs are the only security assurance
that is known for most standard RSA signatures. However, this proof does not
say much about the security of our signature protocol when instantiated with
1 See discussion after Theorem 1 about the reason for this separation.
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any specific hash function. In particular, it still leaves open the possibility that
there are hash functions H for which centralized RSA signature are secure but
our protocol is not. Therefore, in Theorem 1 we provide a different analysis in the
standard model, relating the security of our protocol with any specific function H
to a slightly modified centralized RSA signature that uses the same function H .
We argue informally that this “slightly modified” scheme is likely to be as secure
as the original one, hence providing yet other assurance of the security of our
protocol.

4.1 Security Theorems

Consider the following signature scheme D-RSA: the public key is (N, e) where
e is prime, and relatively prime with λ(N). The secret key is the factorization
of N . The public key contains a hash function H which outputs elements of Z∗N .
Moreover we allow the adversary to specify an additional parameter e′ that must
be an odd integer co-prime with e.

On input a message M , the signer returns a pair (σ, σ′) such that σe =
(σ′)e′

= H(M) mod N . Given an alleged signature (σ, σ′) on M , however, the
verifier only checks that σe = H(M) mod N .

We say that the D-RSA signature scheme using the hash function H is two-
phase secure if no feasible forger F can win the following game: first F is given
as input N, e and it specifies an odd integer e′, that must be co-prime with e
(Phase 1). Then F conducts a traditional adaptive chosen-message attack (i.e.
F gets signatures on messages of its choice) and produces a valid signature on a
message that it did not request before (Phase 2).

Theorem 1. For any static, honest-but-curious, t-adversary A and for every
hash function H, then TFDH-RSA scheme using H is a secure threshold sig-
nature scheme against A if the D-RSA signature scheme using the same H is
two-phase secure.

Interpretation of Theorem 1. Although we cannot prove that the protocol TFDH-
RSA does not give the adversary any more power than just interacting with the
underlying RSA signature scheme (with the same hash function H), Theorem 1
tells us that it does not give it more power than what it could get from the ability
to get also e′-th roots (in addition to the e-th roots that it gets from the signature
scheme). It is generally believed that when e, e′ are co-primes, then extracting e′-
th roots does not help in extracting e-th roots. In this light, Theorem 1 can be
interpreted as asserting that any attack on the protocol TFDH-RSA must either
break the underlying RSA signatures, or find a way to use e′-th roots in order to
extract e-th roots.

Proof. Assume by contradiction that TFDH-RSA is not secure. Then there exists
an adversary A that interacts with TFDH-RSA, statically corrupting at most t
parties, such that A has a noticeable chance ε of forging an RSA signature. We
want to use this A as a subroutine to construct a forger F that breaks the two-
phase security of D-RSA. We want F to have a similar running time and similar
success probability as A.
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The forger F basically simulates TFDH-RSA for the adversary A. It is given
a public key (N, e), and must run Phase 1. F starts by giving (N, e) to the
adversary A. The latter responds by asking to corrupt a set B = {i1, . . . , it}
of parties. (A can compromise upto t parties, and we assume w.l.o.g. that it
compromises exactly t parties.) Then F chooses t values di1 , . . . , dit at random
in the interval [N/4] and gives to A the value dij as the secret-key share for
party ij. As observed above, the distributions of the shares given by F to A,
is statistically close to the distributions of the shares seen by A during a real
execution of FDH-RSA.

With B the set of corrupted, parties, F sets B̃
def= B ∪ {0} and computes ∆B̃

as defined in Eq. (3), namely

∆B̃ = lcm
{( ∏

j ∈ B̃
j �= i

(i − j)
)

: i ∈ B̃

}
.

It also lets �(B̃) be the largest integer � such that 2� divides ∆B̃ , and sets
e(B̃) = ∆B̃/2�(B̃) and ΓB̃ = 2kt · e(B̃) (so e(B̃) is odd and ∆B̃ divides ΓB̃). The
forger F concludes Phase 1 by specifying the value e′ = e(B̃). (Note that e′ is
co-prime with e, since e is a prime larger than 2k and all the identities in B̃ are
k-bit integers).

Now F starts Phase 2, the adaptive chosen message attack, by running A’s
attack. When A asks for message M to be signed, the forger F asks its own
signature oracle for a signature on M , therefore receiving the values σ, σ′ such
that σe = (σ′)e′

= y = H(M) mod N . Notice that σ is the signature on M that
must be computed in the simulation of TFDH-RSA.

To complete the simulation for A, the forger F must now use σ to produce
the signature fragments of the good parties. Let f(x) be the polynomial (modulo
m) of degree t that satisfies f(i) = di for every i ∈ B and f(0) = d. Then, the
value of σj for j /∈ B is

σj = y2ktf(j) mod N

Remember that
f(j) =

∑
i∈B̃

LB̃(j, i) · f(i) mod m

but because the values LB̃(j, i) are fractions we cannot compute this value di-
rectly or in the exponent. But by multiplying the sum by ΓB̃ will remove all
the denominators. By using σ′ the forger can also bypass the problem of taking
e(B̃)-roots:

Using Shamir’s method of “GCD in the exponent”, the forger F first computes
a value w such that we′·e = y mod N . Namely, since GCD(e, e′) = 1 then F can
find integers a, b such that ae + be′ = 1, and setting w = σb(σ′)a mod N yields
the required value. Next, for each i ∈ B̃ the forger F computes the integer
λj,i

def= ΓB̃ · LB̃(j, i). (These are indeed integers since the denominator in each
of the Lagrangian coefficients divides ∆B̃ and therefore also ΓB̃.) Finally, the
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forger computes σj = wλj,0 ·
∏

i∈B(σ′)λj,idi (mod N). To see that this is the
correct value, observe that:

wλj,0 ·
∏
i∈B

(σ′)λj,idi = wΓB̃LB̃(j,0) ·
∏
i∈B

(σ′)ΓB̃LB̃(j,i)di

(a)
= w(2kte′)LB̃(j,0) ·

∏
i∈B

(σ′)(2
kte′)LB̃(j,i)di

(b)
= (w2kt

)d·e·e′LB̃(j,0) ·
∏
i∈B

(σ′)2
kte′LB̃(j,i)di

= (we′·e)2
ktLB̃(j,0)d ·

∏
i∈B

((σ′)e′
)2

ktLB̃(j,i)di

=
∏
i∈B̃

y2ktLB̃(j,i)f(i) = y2kt ∑
i∈B̃ LB̃(j,i)f(i)

= y2ktf(j) = σj (mod N)

where Equality (a) holds since 2kte′ = 2kte(B̃) = ΓB̃ , and Equality (b) holds
since w2kt

is a quadratic residue modulo N and hence its order divides m, and
since d = e−1 mod m then (w2kt

)d·e = w2kt

mod N . (Note that since we set
d = e−1 mod m and not d = e−1 mod λ(N), then zde = z does not necessarily
hold when z is not a quadratic residue modulo N .)

It follows from the description above that the simulated view that A sees in
this run of F is almost identical to its view in the interaction with the protocol
(the only difference is the negligible difference in the distribution of the dij ’s).
Hence with probability negligibly close to ε, A outputs a valid forgery σ̂ on
some message M̂ . Namely, σ̂e = H(M̂) mod N . The forger F then chooses an
arbitrary value σ̂′ ∈ Z∗N and the pair (M̂, 〈σ̂, σ̂′〉) is a valid forgery for D-RSA
(recall that the second “signature” is not verified in D-RSA).

Remark. Note the reason for separating the powers of two in ∆B̃ from the odd
factors: For the assumption that we make about security of D-RSA, it is crucial
that the parameter e′ be odd (since letting the adversary to extract even roots
might allow it to factor the modulus N). Hence we must limit the extra help that
the simulator can get to only odd roots, and the even factors must be handled
in the protocol itself.

Theorem 2. When the hash function H is modeled as a random oracle, then
TFDH-RSA is a t-secure threshold signature scheme against static, honest-but-
curious adversaries, under the RSA assumption.

One way to prove Theorem 2 is to observe that under the RSA assumption,
the D-RSA signature scheme is two-phase secure in the random-oracle model
(where the proof is nearly identical to the security proof for Full-Domain-Hash
signatures), and so we can use Theorem 1 from above.
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5 Dynamic Additions of New Parties

We consider highly dynamic networks, where parties can join at any time and
must be provided with shares of the signature key when they join. In some cases
it may be reasonable to assume that such a share is installed by a trusted entity
before the party is added to the network, but in other, less centralized situations,
the parties already deployed will have to cooperate in order to furnish the new
party with a share of the signing key.

In [25] an elegant method was introduced to solve the problem of player
addition in secret sharing. The advantage of their scheme is that it is non-
interactive, that is, each of the original t + 1 parties only needs to send a single
message to the new party Pnew . The key idea of their approach is to use a
bivariate polynomial. Similarly to the original Shamir’s scheme, their scheme
works over a prime field.

In this section we show how to adapt their scheme to work for the purpose of
a threshold RSA scheme. The technical problems are the same at the ones we
saw in the previous sections (the interpolation happens modulo a secret number
m). We use some similar techniques to those used earlier, but the end result is
somewhat different. When adding a new party Pnew to the network, the new
share given to it is not the same share as the one it would have received from
the dealer in the sharing phase, but rather some multiple of that original secret.
Thus, we need to modify the signature computation phase to incorporate these
different shares. We show in the following that we are still able to generate
signatures in a threshold fashion.

We modify our description of the threshold RSA from the previous sections
so that the sharing of the secret is done via a bivariate polynomial. We note that
if we do not consider newly added shares then this modification only affects the
format in which the shares are represented but leaves the signature generation
protocol exactly as it is in the case of the single-variate polynomial. The details
follow. Again, we describe the protocol in the case of a honest-but-curious ad-
versary. The details to add robustness (security against a malicious adversary)
appear in Section 6.2

Sharing Phase: Given the public key N, e and the secret key d (such that
d = e−1 (mod m)), the dealer chooses (t + 1)2 values ai,j ∈ Zm (for i, j ∈
[0, t]), at random subject to ai,j = aj,i and a0,0 = d. The dealer then defines
the polynomial f(x, y) =

∑
i,j ai,jx

iyj . Note that since ai,j = aj,i then the
polynomial is symmetric, f(x, y) = f(y, x). The share of party i is the polynomial
di(x) = f(x, i). (We note that only the free term di(0) = f(0, i) will be used
when computing the signature fragments, so reconstructing the signature from
the fragments is unchanged from before.)

2 We note that performing secret sharing via a bivariate polynomial has the added
advantage, that it provides a check that the dealer is actually sharing a unique secret.
This is called verifiable secret sharing (VSS) [1]. We do not discuss this feature in
this paper, but we point out that it could be useful in some applications.
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For the design of our protocol we also need to define an additional value δi.
Initially, for the parties who receive shares from the dealer we have that δi = 1.
Thus each party Pi holds a polynomial di(x) and an integer δi. The system
invariant that we maintain is that for every party i, di(x) ≡ δif(x, i) mod m.
Note that this trivially holds for all the original parties (for which δi = 1).

Incorporating a New Party: When a new party Pnew joins the group, it needs
to receive its shares dnew(x) and δnew, while maintaining the system invariant
that dnew(x) ≡ δnewf(x, new) mod m. This is done by having party Pnew:

1. Receive from every Pij , j = 1, . . . , t + 1, the values αij = dij (new) and δij .
2. Let δ = lcm(δi1 , . . . , δit+1) and recall the definition of ∆S (Eq. 3) for the set

S = {i1, . . . , it+1}. Compute its share as:

dnew(x) = δ∆Sfnew(x) =
t+1∑
j=1

∆SLS(x, ij)
δ

δij

αij (7)

3. Stores as its share this interpolated polynomial dnew(x) and the value δnew =
δ · ∆S .

To see that this computation gives the new party its appropriate share pre-
serving the invariant and that it is feasible to compute this value consider the
following. By definition fnew(x) = f(x, new). Note that due to the symmetry of
f(x, y) and the system invariant, if Pi is a party already in the network, then

fnew(i) = f(i, new) = f(new, i) =
di(new)

δi
mod m (8)

though we can’t explicitly compute the last fraction mod m.
Given δ = lcm(δi1 , . . . , δit+1) as defined in the protocol, multiplying both sides

of Eq.8 by δ and specifying i = ij for all j = 1, . . . , t + 1 we have:

δfnew(ij) =
δ

δij

di(new) mod m

Notice that now the fraction is an integer and can be computed even without
knowing m.

Given the values αij = dij (new) and δij for j = 1, . . . , t+1, we can interpolate
the polynomial δfnew(x) as

δfnew(x) def=
t+1∑
j=1

LS(x, ij)
δ

δij

αij mod m (9)

where LS(x, ij) is the appropriate Lagrangian coefficient (see Eq. 1). Yet, as
this computation needs to be computed mod m and requires the calculation
of the Lagrangian coefficients mod m this cannot be done directly. To enable
the computation we employ the techniques described in the previous sections.
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We multiply Eq.(9) by ∆S resulting in the computation of Eq. (7). Notice that
multiplying by ∆S removes all the denominators on the right-hand side of the
equation. Furthermore, setting δnew = δ · ∆S preserves the system invariant.

Signature Computation Phase: Assume that we want to compute the sig-
nature σ on a message M . Let y = H(M), then we have σ = yd mod N .

Recall that each party Pi holds the polynomial di(x) and the integer δi such
that di(x) = δif(x, i) mod m. Thus each party Pi publishes as its signature
fragment the pair (σi = y2ktdi(0), δi).

Given t + 1 of these signature fragments published by parties Pi1 , . . . , Pit+1 ,
δ and ∆S as above, set

σ′ =
t+1∏
j=1

σ

δ
δij
·∆S ·LS(0,ij)

ij
mod N (10)

Let e′ = 2kt ·δ ·∆S , compute integers a, b such that ae+be′ = 1. Set the signature
to:

σ = yaσ′b mod N

We show that the above computation generates a proper signature. First note
that all the exponents in Eq. (10) are integers (as ∆S removes the denominators
from the Lagrangians, and δij divides δ by definition). Furthermore,

σ′ = y

∑ t+1
j=1 2kt· δ

δij
·∆S ·LS(0,ij)dij

(0)
mod N (11)

Let’s focus on the exponent of y in the above equation: by using the invariant
dij (0) = δij f(0, ij) we have that the exponent equals:

t+1∑
j=1

2kt · δ · ∆S · LS(0, ij)f(0, ij)

From the polynomial interpolation we have that
∑t+1

j=1 LS(0, ij)f(0, ij)=f(0, 0)=
d therefore

σ′ = y2kt·δ·∆S ·d mod N (12)

Assuming that GCD(e, e′) = 1 we use the techniques from the previous section
to extract the signature σ out of σ′. Indeed σ′ = σe′

mod N and there exists
integers a, b such that ae + be′ = 1. Therefore

σ = σae+be′
= yaσ′b mod N

We remark that if we choose e as a prime larger than 2k (the largest possible
identity), then GCD(e, e′) is guaranteed to be 1 as the value e′ can only be the
product of differences of identities.

The proofs follow directly from the proofs of the previous section while incor-
porating the extra factor δ in the simulation.
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Remark: Notice that the shares held by parties in this modified scheme are
larger. Just because of the bivariate polynomial technique, each party holds
t + 1 values mod m rather than a single one. Moreover the size of the shares of
parties added later in the system grow with the additive factor log δ + log ∆S

(notice that Eq. (7) is computed over the integers by Pnew).

Remark: Fazio et al. in [12] consider Shoup’s original protocol and show how
to add parties without using bivariate polynomials. Their work is not directly
applicable to “ad hoc” networks as it requires all parties in the network to
participate in assigning a share to a new party. On the other hand their solution
does not increase the share size by a factor of t and may have more enhanced
properties, such as proactive security.

6 Adding Robustness

The protocols described in the previous sections work only in the presence
of an honest-but-curious adversary. Here we show how to tolerate a malicious
adversary.

During the sharing phase, the dealer chooses a random value g ∈ Z∗N (with
high probability g has order m) and publishes the values Gi,j = gai,j mod N for
all the coefficients ai,j of the sharing polynomial f . Notice that this allows any
party to compute gf(i,j) on any point (i, j) by “polynomial evaluation in the
exponent”.

When a new party Pnew joins the network, it receives from an existing party
Pi the values δi and αi = di(new) = δif(new, i). Then Pnew checks that gαi =
[gf(new,i)]δi mod N where gf(new,i) is computed using the values Gi,j published
by the dealer.

When computing a signature on a message M , where y = H(M), a party Pi

publishes the values δi and σi = y2ktdi(0) mod N , where di(0) = δif(0, i) and
proves that

logg[g
f(0,i)]δi = log

y2kt+1 σ2
i mod m

(the extra squaring operation is needed to make sure that we are in the subgroup
of order m in Z∗N ). Only signature fragments that pass the above verification
test will be accepted.

Efficient zero-knowledge proofs for this language were presented in [19] and
[18]. The ZK proof presented in [18] can be made non-interactive using the Fiat-
Shamir heuristic in the random oracle model.
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Abstract. Standard security notions for encryption schemes do not
guarantee any security if the encrypted messages depend on the secret
key. Yet it is exactly the stronger notion of security in the presence of
key-dependent messages (KDM security) that is required in a number of
applications: most prominently, KDM security plays an important role in
analyzing cryptographic multi-party protocols in a formal calculus. But
although often assumed, the mere existence of KDM secure schemes is
an open problem. The only previously known construction was proven
secure in the random oracle model.

We present symmetric encryption schemes that are KDM secure in
the standard model (i.e., without random oracles). The price we pay is
that we achieve only a relaxed (but still useful) notion of key-dependent
message security. Our work answers (at least partially) an open problem
posed by Black, Rogaway, and Shrimpton. More concretely, our contri-
butions are as follows:
1. We present a (stateless) symmetric encryption scheme that is infor-

mation-theoretically secure in face of a bounded number and length
of encryptions for which the messages depend in an arbitrary way
on the secret key.

2. We present a stateful symmetric encryption scheme that is compu-
tationally secure in face of an arbitrary number of encryptions for
which the messages depend only on the respective current secret
state/key of the scheme. The underlying computational assumption
is minimal: we assume the existence of one-way functions.

3. We give evidence that the only previously known KDM secure en-
cryption scheme cannot be proven secure in the standard model (i.e.,
without random oracles).

Keywords: Key-dependent message security, security proofs, symmetric
encryption schemes.

1 Introduction

Proofs of security are a good and sound way to establish confidence in an encryp-
tion system. However, “proof” is a bit misleading here: usually, a security proof

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 108–126, 2008.
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is not an absolute statement, but merely shows that under certain assumptions,
the scheme is resistant against a certain class of attacks. Nothing is guaranteed
if the assumptions are invalidated or attacks outside the considered class take
place. Therefore, it is crucial that

– the underlying assumptions are plausible, and
– the considered class of attacks is as general as possible.

Additionally, encryption schemes are most often used only as a building block
in a larger protocol context, and thus

– the considered class of attacks should allow for meaningful and general anal-
ysis of the encryption scheme in a larger protocol context.

Indistinguishability of ciphertexts. The most established class of attacks
consists of attacks targeted against the indistinguishability of ciphertexts (IND-
CPA [16], resp. IND-CCA [21] attacks). Here, adversary A’s goal is to win the
following game: first, A chooses two messages m0, m1, then gets the encryption
cb of mb (for a random b ∈ {0, 1}), and finally outputs a guess b′ for b. Now
A wins if b = b′, i.e., if it guessed correctly which message was encrypted. The
scheme is secure if no adversary wins (significantly) more often than in half of
the cases. Intuitively, security in this sense implies that “one ciphertext looks
like any other.”

The IND-CPA and IND-CCA notions have been tremendously successful and
even proved equivalent to a number of alternative and arguably not less appealing
notions (cf. [5,6,10,19]). At the same time, IND-CPA and IND-CCA security can
be achieved under various plausible number-theoretic assumptions [16,13,11].

Key-dependent message security. However, there is one security property
that is useful and important in many applications, yet is not covered by IND-
CPA or IND-CCA security: security in presence of key-dependent messages. More
concretely, imagine a scenario in which the adversary can request encryptions of
arbitrary (but efficiently evaluatable) functions of the secret decryption key. In
other words, the adversary chooses a function g and gets the encryption of g(K)
under secret key K. Note that this is something the adversary may not be able
to generate on its own, not even in the public-key setting. The adversary’s goal
is now to distinguish such a key-dependent encryption from an encryption of a
random message. Security of an encryption is a useful notion to consider since

– in relevant practical settings, this notion is necessary: consider, e.g., encrypt-
ing your hard drive (which may contain the secret key, e.g., on the swap
partition, or in a file that contains your secret keyring),

– certain protocols use key-dependent message security explicitly as a technical
tool [8],

and, possibly most importantly from a theoretical perspective,

– key-dependent message security is a key ingredient for showing that security
results that are proven in a formal calculus are also computationally sound.

This latter reason may come a bit surprising, hence we explain it in more detail.
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Formal security proofs. The idea to automate security proofs can be traced
back to the seminal work of Dolev and Yao [14], who described a formal
calculus to analyze security protocols. To make the calculus accessible to au-
tomatic provers, however, base primitives like encryption (or, later, signatures)
had to be over-idealized, disconnecting them from their concrete computational
implementations. What was missing for almost 20 years was a soundness result,
i.e., a result that essentially states“whatever can be proven in the abstract calcu-
lus holds as well in the cryptographic world, where the ideal encryption operator
is implemented with an encryption scheme.”

But finally, the soundness result by Abadi and Rogaway [1] connected the
formal, machine-accessible world with the cryptographic world. However, with
standard encryption schemes, only a certain subset of possible protocols could
be considered, namely those that only contain expressions which fulfil a certain
“acyclicity” condition.1 To achieve full generality, a stronger requirement (secu-
rity in the presence of key-dependent messages) on the encryption scheme was
needed. This is not a peculiarity of the approach of Abadi and Rogaway; similar
problems occur in related approaches, e.g. [20,2,4]. In particular, Adão et al. [2]
show that in a certain sense, key-dependent message security is a necessity for
formal soundness.

Related work. Around the time when the need for key-dependent security had
been realized, formal characterizations of the security notion were given in [8,7].
Moreover, [7] showed a simple symmetric encryption scheme to be secure with
respect to their notion. However, their scheme was proven in the random oracle
model, and the proof made heavy use of the “ideal” nature of the random oracle
(more details on this in Section 3). Black et al. posed the question of achieving
key-dependent security in the standard model.

Backes et al. [3] consider several strengthenings of the definition from [7]. They
prove structural results among the notions (including a way to “patch” a scheme
that is secure in the sense of [7] to match the notions from [3]). However, Backes
et al. do not give an actual construction of a secure scheme.

Our work. Our goal is to achieve key-dependent message security, as defined
by Black et al., in the standard model. We present several results:

– a (stateless) symmetric encryption scheme that is information-theoretically
secure in face of a bounded number and length of encryptions for which the
messages depend in an arbitrary way on the secret key.

– a stateful symmetric encryption scheme that is computationally secure in
face of an arbitrary number of encryptions for which the messages depend
only on the respective current secret state/key of the scheme. The underlying
computational assumption is minimal: we assume the existence of one-way
functions.

1 They also did only prove security against passive adversaries. However, active secu-
rity was achieved by subsequently by [20,2,4].
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We also stress the strictness of key-dependent message security:

– We give evidence that the only previously known KDM secure encryption
scheme cannot be proven secure in the standard model (i.e., without random
oracles).2

Note. Recently, we learned about the (concurrent and independent) work [17]
of Halevi and Krawczyk. They are interested more generally in keyed primi-
tives (such as pseudorandom functions, PRFs) which are secure in face of key-
dependent inputs. They also show that an encryption scheme constructed from
such a PRF inherits the underlying PRF’s resilience against key-dependent in-
puts/messages. In particular, Halevi and Krawczyk construct a PRF (and a
corresponding encryption scheme) that is secure in face of inputs which depend
in an arbitrary, but known-a-priori way on the key. (That is, for each way in
which the query may depend on the key, they give a PRF which is secure in face
of such inputs.)

In contrast to that, we are interested in constructing encryption schemes that
are secure in face of (encryptions of) messages that depend in an arbitrary,
adaptively determined way on the key. Unfortunately, neither our schemes nor
the schemes of [17] can handle the important case of non-trivial key cycles, that
is, cyclic chains of encryptions of key Ki under key Ki+1 mod n.

2 Preliminaries

Basic notation. Throughout the paper, k ∈ � denotes the security parameter
of a given construction. Intuitively, a larger security parameter should provide
more security, but a scheme’s efficiency is also allowed to degrade with growing
k. A negligible function vanishes faster than any given polynomial. The statis-
tical distance between two random variables X and Y is denoted by δ(X ; Y ).
The Rényi entropy H2(X) of a random variable X is defined as H2(X) :=
−

∑
x log2 Pr [X = x]2. Two families (Xk) and (Yk) of random variables are com-

putationally indistinguishable (written X ≈ Y ) if for every PPT (probabilistic
polynomial-time) algorithm A, the function |Pr [A(Xk) = 1] − Pr [A(Yk) = 1]| is
negligible in k. A family UHF of universal hash functions is a family of func-
tions h : {0, 1}n → {0, 1}m with the property that for x, x′ ∈ {0, 1}n with
x �= x′, all y, y′ ∈ {0, 1}m, and uniformly chosen h ∈ UHF , we have that
Pr[h(x) = y, h(x′) = y′] = 2−2m.

We will further need a strengthened version of the leftover hash lemma that
takes into account additional information S about the randomness K and some
additional information Q unrelated to K.

Lemma 1 (Leftover Hash Lemma, extended). Let K, Q, and S be random
variables over bitstrings of fixed length. Let h be uniformly distributed over a
family UHF of universal hash functions. Let U be uniformly distributed over
bitstrings of length |h(K)|. Assume the following independences:
2 A similar, but technically different result is also contained in the independent

work [17].
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– U and (h, S, Q) are independent.
– K and Q are independent.
– h and (K, S, Q) are independent.

Then the following bound holds:

δ(h, h(K), S, Q ; h, U, S, Q) ≤ 2|S|+|h(K)|/2−H2(K)/2−1.

In a typical application of this lemma, h, K, and Q would be mutually inde-
pendent, and S would be a function of (h, K, Q) (say, a side channel). Further-
more, U would be some completely independent random variable, representing
the ideal randomness. This would then imply all the independence conditions in
the lemma.

Proof. In the following, s, q, k range over all values taken by S, Q, K, respec-
tively. By applying the definition of the statistical distance, we have

ε := δ(h, h(K), S, Q ; h, U, S, Q)

=
∑
s,q

Pr[S = s, Q = q] δ(h, h(K)|S = s, Q = q ; h, U |S = s, Q = q). (1)

Here X |(S = s) stands for the distribution of X under the condition S = s. Since
h and (K, S, Q) are independent, h|(S = s, Q = q) is a universal hash-function.
And since U is independent of (S, Q, h), we have that U is uniformly distributed
and independent of h given S = s, Q = q. Further, since by assumption h is
independent of (K, S, Q), we have that h and K are independent given S =
s, Q = q. Thus the leftover hash lemma in its basic form [18] applies, and we get

δ(h, h(K)|S = s, Q = q ; h, U |S = s, Q = q) ≤ 2|h(K)|/2−H2(K|(S=s,Q=q))/2−1.

Combining this with (1) we get

ε ≤
∑
s,q

Pr[S = s, Q = q] · 2|h(K)|/2−H2(K|(S=s,Q=q))/2−1

=
∑
s,q

Pr[S = s, Q = q] · 1
2

√
2|h(K)| ·

∑
k

Pr[K = k|S = s, Q = q]2

≤
∑
s,q

Pr[Q = q] · 1
2

√
2|h(K)| ·

∑
k

Pr[S = s|Q = q]2 · Pr[K = k|S = s, Q = q]2

=
∑
s,q

Pr[Q = q] · 1
2

√
2|h(K)| ·

∑
k

Pr[K = k, S = s|Q = q]2

≤
∑
s,q

Pr[Q = q] · 1
2

√
2|h(K)| ·

∑
k

Pr[K = k|Q = q]2
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(∗)=
∑
s,q

Pr[Q = q] · 1
2

√
2|h(K)| ·

∑
k

Pr[K = k]2

=
∑
s,q

Pr[Q = q] · 1
2

√
2|h(K)| · 2−H2(K)

=
∑
s,q

Pr[Q = q] · 2|H(k)|/2−H2(K)−1

=
∑

s

2|H(k)|/2−H2(K)−1 = 2|S|+|H(k)|/2−H2(K)−1.

Here (∗) uses that Q and K are independent. ��

Key-dependent message security. For formalizing key-dependent message
security, we use a variation on the definition of Black et al. [7]:

Definition 2 (KDM security, standard model, symmetric setting). Let
Π = (K, E , D) be a symmetric encryption scheme, let K := (K1, . . . , Kn) be
secret keys (where n is polynomial in the security parameter), and let A be an
adversary. Let

– RealK be the oracle that on input g, µ returns C ← E(1k, Kµ, g(K)), and
– FakeK be the oracle that on input g, µ returns C ← E(1k, Kµ, U) for an

independently uniformly selected fresh U ∈ {0, 1}|g(K)|.

In both cases, g is encoded as a circuit.3 The KDM advantage of A is

AdvKDM
Π (A) :=

∣∣∣Pr
[
K $← K : ARealK(·) = 1

]
− Pr

[
K $← K : AFakeK(·) = 1

]∣∣∣

Here K $← K means that each key Ki is chosen independently using K.
We say that Π is KDM secure iff for every PPT adversary A and every

polynomial n, the advantage function AdvKDM
Π (A) is negligible in the security

parameter. We require that A only queries its oracle with fixed-length functions g,
i.e., |g(K)| is the same for all values of K.

The relation to real-or-random security. Definition 2 bears a great re-
semblance to the real-or-random (ROR-CPA) definition for encryption schemes
from [5]. The main difference is that Definition 2 equips the adversary with
an oracle that delivers encryptions of key-dependent messages (i.e., evaluations)
g(K). The way in which these messages depend on the keys is completely up to
the adversary; the only constraint is that g must be efficiently evaluatable and
have a fixed output length.

3 This has the side-effect that for a polynomial-time adversary A, the function g is
also polynomial-time computable.
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On achieving KDM security and active KDM security. Using the
equivalence of ROR-CPA and IND-CPA security from [5], it is easy to see that
Definition 2 is strictly stronger than IND-CPA security. A natural adaption of
Definition 2 to active attacks—such a notion is called AKDM security in [3]—
consists in equipping the adversary with a decryption oracle that is restricted in
the usual sense to prevent trivial attacks. And similarly to the passive case, it
is easy to see that AKDM security is strictly stronger than IND-CCA security.
On the other hand, once a scheme is KDM secure, it can be easily and without
(much) loss of efficiency upgraded to AKDM security, as formalized and proved
in [3]. Hence, the main difficulty lies in finding a scheme that is KDM secure in
the first place. In the following, this will be our focus.

3 The Scheme of Black et al

Definition 2 is very hard to achieve. In fact, the only construction that is known,
due to Black et al. [7], to achieve Definition 2 is in the random oracle model. It
will be very useful to take a closer look at their scheme. We will argue that in a
very concrete sense, nothing less than a random oracle will do for their scheme.
Hence, their construction merely shows how powerful random oracles are, but
does not give a hint on how to achieve KDM security in the standard model.
This constitutes one motivation for our upcoming weakening of KDM security.

Scheme 3 (The scheme ver). Define the symmetric encryption scheme ver =
(K, E , D) with security parameter k ∈ �, message space {0, 1}k and key space
{0, 1}k through

– K(1k) outputs a uniform random key K ∈ {0, 1}k.
– E(1k, K, M) samples R

$← {0, 1}k and outputs the ciphertext (R, H(K||R)⊕
M).

– D(1k, K, (R, D)) outputs the message H(K||R) ⊕ D.

The security of ver with a random oracle. Black et al. prove

Theorem 4 (Security of ver [7]). If H is a random oracle, then ver is KDM
secure.

The main idea of the proof is to consider an event bad, where bad occurs iff

1. the adversary queries H at any point K||R that was previously used for
encryption, or

2. one of the functions g submitted to the encryption oracle queries H at the
currently used point K||R.

If bad does not occur, the adversary’s view is identical in the Real and Fake ex-
periments, thanks to the fact that different random oracle queries H(X), H(Y )
(X �= Y ) are statistically independent: each message is padded with completely
fresh and message-independent randomness. Hence, by showing (with an induc-
tive argument) that bad occurs only with small probability, [7] show the scheme
ver KDM secure.
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The insecurity of ver without a random oracle. Put informally, the proof
of ver utilizes one essential property of the random oracle H : knowledge about
arbitrary many values H(Yi) (with Yi �= X) does not yield any information
about H(X). This use of a random oracle as a provider of statistical indepen-
dence is what makes the proof fail completely with any concrete hash function
used in place of the random oracle. There is no hope for the proof strategy to
succeed without random oracles. A little more formally, we can show that in the
random oracle model, there exists a specific hash function H that has a number
of generally very useful properties: H is collision-resistant, one-way, can be in-
terpreted as a pseudorandom function (in a way compatible with ver), and H
makes ver IND-CPA. But H makes ver completely insecure in the presence of
key-dependent messages. Hence, there can be no fully black-box KDM security
proof for ver that relies on these properties of H alone.

Theorem 5 (Insecurity of ver). Relative to a random oracle O, there exists
a function H such that

1. H is collision-resistant,
2. for any function p(k) ∈ kΘ(1), H is one-way w.r.t. the uniform input distri-

bution on {0, 1}p(k),
3. the function FK(R) := H(K||R) is a pseudorandom function with seed K,
4. the scheme ver, instantiated with H, is IND-CPA secure, but
5. the scheme ver, instantiated with H, is not KDM secure.

Proof (sketch). Assume for simplicity that the security parameter k is even. Say
that the random oracle O maps arbitrary bitstrings to k-bit strings. Then denote
by O�(x) the first k/2 bits of O(x). Now consider the function H : {0, 1}∗ →
{0, 1}k with

H(x) :=

{
O(x) for |x| �= 2k,

O(x�) ⊕ (O�(x)||O�(O�(x))) for x = x�||xr and |x�| = |xr| = k.

We show the claimed properties for H :

1. H is collision-resistant. It is clear that collisions H(x) = H(y) (with
x �= y) cannot be found efficiently if x �= 2k or y �= 2k. So assume x = x�||xr

and y = y�||yr for |x�| = |xr| = |y�| = |yr| = k. Collisions of this form imply
O�(x�) ⊕ O�(x) = O�(y�) ⊕ O�(y) and thus

O�(x�) ⊕ O�(y�) = O�(x) ⊕ O�(y). (2)

If x� = y�, then this constitutes a collision in O�, so we may assume x� �= y�. But
the distributions of O� on k-bit strings and on 2k-bit strings are independent and
both uniform. Hence, finding x and y to satisfy (2) requires a superpolynomial
number of queries to O� (resp. O) with overwhelming probability.

2. H is one-way w.r.t. the uniform distribution on {0, 1}k. For p(k) = 2k,
this follows from collision-resistance and the fact that H is compressing: Since
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the preimages of H are not unique, if we are able to find a preimage x′ of H(x)
for random x ∈ {0, 1}2k, with noticeable probability we will have x �= x′. This
allows to find collisions efficiently. For details see [12]. For p(k) �= 2k, this follows
by definition of H and the fact that the random oracle is one-way.

3. FK(R) := H(K||R) is a pseudorandom function. Consider an adversary
A that has oracle access to O and to FK for uniformly chosen K. We denote A’s
i-th query to FK by Ri. Without loss of generality, assume that A never asks
for the same FK evaluation twice, so the Ri are pairwise distinct. Furthermore,
let Xi := K||Ri, and Yi := O�(K||Ri). We claim that A doesn’t query O with
K or any of the values Xi, Yi, except with negligible probability.

We prove our claim inductively as follows. Let Ei denote the event that A
queries O with a value that starts with K prior to the i-th FK query. Clearly,
E1 happens with exponentially small probability. So fix an i ≥ 1. To complete
our proof, it is sufficient to show that under condition ¬Ei, the probability for
Ei+1 to happen is bounded by a negligible function that does not depend on i.

Assume that ¬Ei holds. That means that, given A’s view up to and including
the (i−1)-th FK query, the key K is uniformly distributed among all k-bit values
(or k-bit prefixes of 2k-bit values) not yet queried by A. By the polynomiality
of A, this means that, from A’s point of view, K is uniformly distributed on an
exponentially-sized subset of 0, 1k. But this means that until the i-th FK query,
A has only an exponentially small chance to query one of K, Xj, Yj (j < i).
Hence Ei+1 | ¬Ei happens only with exponentially small probability.

Summing up, A never queries O with K or any of the Xi, Yi, except with neg-
ligible probability. Hence, FK can be substituted with a truly random function
without A noticing, and the claim follows.

4. ver with H is IND-CPA. Follows immediately from 3.

5. ver with H is not KDM secure. A successful KDM adversary A on ver
is the following: A asks its encryption oracle for an encryption of O(K) (e.g.,
using g with g(x) = O(x) as input to the oracle). In the real KDM game, the
ciphertext will be

(R, H(K||R) ⊕ O(K)) = (R, O�(K||R)||O�(O�(K||R))),

and hence of the form (R, t||O�(t)) for some t, which can be easily recognized
by A. But in the fake KDM game, the ciphertext will have the form (R, U) for
a uniformly and independently distributed U , which is generally not of the form
(R, t||O�(t)). Hence, A can successfully distinguish real encryptions from fake
ones. ��

Halevi and Krawczyk’s example. Halevi and Krawczyk give a different ex-
ample of the “non-implementability”of ver (see [17, Negative Example 4]). They
argue that the random oracle H in ver cannot be implemented with a PRF that
is constructed from an ideal cipher using the Davies-Meyer transform. Their ex-
ample has the advantage of being less artificial, while being formulated in the
ideal cipher model.



Towards Key-Dependent Message Security in the Standard Model 117

4 Information-Theoretic KDM Security

Since key-dependent message security is very hard to achieve, we start with two
simple schemes that do not achieve full KDM security, but serve to explain some
important concepts.

4.1 The General Idea and a Simple Scheme (Informal Presentation)

First observe that the usual one-time pad C = M ⊕K (where C is the ciphertext,
M the message, and K the key) does not achieve KDM security. Encryption of
M = K results in an all-zero ciphertext that is clearly distinguishable from a
random encryption. However, the slight tweak

C = (h, M ⊕ h(K)) (h independently drawn universal hash function)

does achieve a certain form of key-dependent message security: the pad h(K)
that is distilled from K is indistinguishable from uniform and independent ran-
domness, even if h and some arbitrary (but bounded) information M = M(K)
about K is known. (When using suitable bitlengths |K| and |M |, this can be
shown using the leftover hash lemma [18].) So the encryption M ⊕ h(K) of one
single message M = M(K) looks always like uniform randomness. Hence the
scheme is KDM secure in a setting where the encryption oracle is only used
once (but on the other hand, information-theoretic security against unbounded
adversaries is achieved).

4.2 A More Formal Generalization of the Simple Scheme

Of course, one would expect that by expanding the key, the scheme stays secure
even after multiple (key-dependent) encryptions. This is true, but to show this,
a hybrid argument and multiple applications of the leftover hash lemma are
necessary. We formalize this statement now.

Scheme 6 (The scheme p-BKDM (for“p-bounded KDM”)). Let p ∈ �[k]
be a positively-valued polynomial, let �(k) := (2p(k) + 3)k, and let UHF be a
family of universal hash functions that map �(k)-bit strings to k-bit strings.
Define the symmetric encryption scheme p-BKDM = (K, E , D) with security
parameter k ∈ �, message space {0, 1}k, and key space {0, 1}�(k) through

• K(1k) outputs a uniform random key K ∈ {0, 1}�(k).
• E(1k, K, M) samples h

$← UHF and outputs the ciphertext C = (h, h(K) ⊕
M).

• D(1k, K, (h, D)) outputs the message h(K) ⊕ D.

Definition 7 (Bounded KDM security). Let p ∈ �[k] be a positively-valued
polynomial. Then a symmetric encryption scheme Π is p-bounded KDM secure
if it is KDM secure against PPT adversaries that query the encryption oracle
at most p(k) times. Further, Π is information-theoretically p-bounded KDM
secure if it is KDM secure against arbitrary (i.e., computationally unbounded)
adversaries that query the encryption oracle at most p(k) times.
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Theorem 8 (Bounded KDM security of p-BKDM). The scheme
p-BKDM is information-theoretically p-bounded KDM secure.

Proof. In the following, we abbreviate xi, .., xj with xi..j for all variables x. Let
n be the number of keys used. Let an adversary A be given that queries the
encryption oracle at most p(k) times. Without loss of generality we can assume
the adversary to be deterministic (by fixing the random tape that distinguishes
best) and that it performs exactly p(k) queries. In the i-th encryption in the real
experiment, let µi denote the index of the key that has been used, let hi be the
hash function chosen by the encryption function, let mi be the message that is
encrypted, and let ci be the second component of the resulting ciphertext (i.e.,
(hi, ci) is the i-th ciphertext). Since the adversary is deterministic, mi depends
deterministically from the keys K1,n and the ciphertexts c1..i−1, h1..i−1, i.e., there
are deterministic functions f̂i with mi = f̂i(K1,n, c1..i−1, h1..i−1). Similarly, there
are deterministic functions µ̂i such that µi = µ̂i(c1..i−1, h1..i−1).

Let Ui be independent uniformly distributed random variables on {0, 1}k that
are independent of all random variables defined above. Let

εi := δ(h1..i, c1..i ; h1..i, U1..i)

To show that the scheme is information-theoretically p-bounded KDM secure,
i.e., that the adversary cannot distinguish the real and the fake experiment, it
is sufficient to show that εp(k) is negligible since the view of A can be determin-
istically computed from h1..p(k), c1..p(k).

Fix some i ∈ {1, . . . , p(k)}. Let K := Kµi , Q := h1..i−1, S := (mi, c1..i−1),
h := hi and let U be uniformly distributed on {0, 1}k and independent of
(K, Q, S, h). The following conditions hold by construction:

– h is a universal hash function.
– U is uniformly distributed and independent of (h, S, Q).
– K and Q are independent.
– h is independent of (K, S, Q).

So the conditions for Lemma 1 are fulfilled and we have

δ(h, h(K), S, Q ; h, U, S, Q) ≤ 2|S|+|h(K)|/2−H2(K)/2−1 = 2ik+k/2−�(k)/2−1 ≤ 2−k

and thus

δ(h1..i, ci, c1..i−1 ; h1..i, Ui, c1..i−1)

≤ δ(h1..i, hi(Kµi), mi, c1..i−1 ; h1..i, U, mi, c1..i−1) ≤ 2−k (3)

Since (hi, Ui) is independent of (h1..i−1, c1..i−1, U1..i−1) by construction, from
(4.2) we have δ(h1..i, Ui, c1..i−1 ; h1..i, Ui, U1..i−1) = εi−1 and hence using (3)
and the triangle inequality for the statistical distance, we have

εi = δ(h1..i, ci, c1..i−1 ; h1..i, Ui, U1..i−1) ≤ 2−k + εi−1.

Since ε0 = 0, it follows that εp(k) ≤ p(k) · 2−k is negligible. ��
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4.3 Discussion

The usefulness of bounded KDM security. Our scheme p-BKDM can be
used in any protocol where the total length of the encrypted messages does not
depend on the length of the key. At a first glance, this restriction seems to defeat
our purpose to be able to handle key cycles: it is not even possible to encrypt a
key with itself. However, a closer inspection reveals that key dependent messages
occur in two kinds of settings. In the first setting, a protocol might make explicit
use of key cycles in its protocol specification, e.g., it might encrypt a key with
itself (we might call this intentional key cycles). In this case, p-BKDM cannot be
used. In the second setting, a protocol does not explicitly construct key cycles,
but just does not exclude the possibility that—due, e.g., to some leakage of
the key—some messages turn out to depend on the keys (we might call this
unintentional key cycles). In this case, the protocol does not itself construct
key cycles (so the restriction of p-BKDM that a message is shorter than the
key does not pose a problem), but only requires that if key cycles occur the
protocol is still secure. But this is exactly what is guaranteed by p-BKDM. So
for the—possibly much larger—class of protocols with unintentional key cycles
the p-BKDM scheme can be used.

Multiple sessions of p-BKDM. Theorem 8 guarantees that even in the case
of multiple sessions, the scheme p-BKDM is secure assuming that at most p(k)
encryptions are performed in all sessions together. In some applications, espe-
cially if the number of sessions cannot be bounded in advance, one might need
the stronger property that we may encrypt p(k) messages with each key. Intu-
itively, we might argue that when we receive an encryption (h, M ⊕ h(K)) of a
message M , the entropy of the key K decreases by at most |M ⊕h(K)| bits, but
as long as enough entropy remains in K, we do not learn anything about M , and
neither about the keys M depends on. This leads to the following conjecture:

Conjecture 9. The scheme p-BKDM is KDM-secure if the adversary performs
at most p(k) encryptions under each key Ki. This holds even if different keys
have different associated polynomials pi (i.e., key Ki has length O(pi(k)k) and
we encrypt pi times under Ki).

Unfortunately, we do not know how to formally prove Conjecture 9. Formalizing
the above intuition is not straightforward, since it is not clear how to alone define
what it means that the entropy of a given key decreases while the entropy of the
others does not. We leave this conjecture as an open problem.

Why encrypt only key-dependent messages? Definitions 2 and 7 give the
adversary (only) access to an encryption oracle which encrypts arbitrary func-
tions of the key (in contrast to [17] which additionally provides an encryption
oracle for normal messages). In Definition 2, no generality is lost, since an ordi-
nary encryption oracle can be emulated by choosing this function as a constant
function. Call such “ordinary” encryption queries non-KDM queries. Now it is
conceivable that a scheme allows for an unbounded number of non-KDM queries,
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but only a limited number of actually key-dependent queries. The security of such
schemes can be appropriately captured using, e.g., the security definition of [17],
which incorporates separate encryption oracles for key-dependent and non-KDM
queries. While our Definition 7 does not allow to model such schemes, it is easy
to see that our scheme p-BKDM is not secure against an unbounded number of
non-KDM encryptions (not even against computationally bounded adversaries).

5 Computational KDM Security

5.1 Motivation

The dilemma with hybrid arguments. The discussion in Section 4.3 does
not only apply to our scheme p-BKDM. There seems to be a general problem
with proving KDM security with a hybrid argument. Starting with the real KDM
game, substituting the first encryption with a fake one first is not an option: the
later encryptions cannot be properly simulated. But to substitute the last real
encryption first is not easy either: for this, there first of all has to be a guarantee
that at that point, the last key has not already leaked completely to the adver-
sary. In our case, with a bounded overall number of encryptions, we can give an
information-theoretic bound on the amount of information that has been leaked
before the last encryption. But if there is no such bound, information theory
cannot be used to derive such a bound. Instead, a computational assumption
must be used. Yet, there seems to be no straightforward way to derive a use-
ful statement (e.g., about the computational key leakage) that reaches across a
polynomial number of instances from a single computational assumption without
using a hybrid argument. Of course, this excludes certain interactive assump-
tions, which essentially already assume security of the scheme in the first place.
We do not believe that it is useful or interesting to investigate such constructions
and assumptions.

In other words, we cannot use hybrid arguments since we do not know where
to place the first hybrid step. This situation is similar (but not identical) to the
case of selective decommitments [15] and adaptively secure encryption (e.g., [9]).

Hybrid (KEM/DEM) encryption schemes. Another common tool for con-
structing encryption schemes are hybrid encryption schemes (no relation to hy-
brid arguments). In a hybrid encryption scheme, a ciphertext consists of a KEM
(key encapsulation mechanism) part and a DEM (data encapsulation mecha-
nism) part. The KEM part of the ciphertext encapsulates a symmetric key K
that is unrelated to the message M to be encrypted. The DEM part of the ci-
phertext is a (symmetric) encryption of M under K. The actual secret key sk of
the hybrid scheme is the secret key that is needed to decrypt the KEM part. It
is tempting to use a hybrid construction to get rid of the dependency of message
and secret key. However, there still is a dependency between M and sk: the KEM
ciphertext provides a relation between sk and K on the one hand, and the DEM
ciphertext relates K and M on the other. Hybrid encryption techniques do not
help to get rid of dependencies between message and secret key.
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Similarly, hybrid encryption techniques cannot be used to increase the allowed
message lengths of the scheme from the previous section. Concretely, it may be
tempting to use the p-BKDM scheme as a KEM to encapsulate a short key
K, and then to use that key K as secret key for a computationally secure DEM
which encrypts long messages with short keys. Unfortunately, this breaks the
security proof of p-BKDM (and also, depending on the used DEM, also the
security itself). Namely, the proof of p-BKDM depends not on the size of the
KEM key K, but on the amount of released information about the actual KEM
secret key (which corresponds to the length of the message in the KDM setting).
So hybrid encryption does not help here, either.

Stateful KDM security. To nonetheless get a scheme that is secure in face
of arbitrarily many encryptions of key-dependent messages, we propose stateful
encryption schemes. In a stateful encryption scheme, the secret key (i.e., the
internal state) is updated on each encryption. (Decryption must then be syn-
chronized with encryption: we assume that ciphertexts are decrypted in the order
they got produced by encryption.) For such a stateful encryption scheme, there
are essentially two interpretations of KDM security:

• the message may depend on the current secret key (i.e., state) only, or
• the message may depend on the current and all previously used secret keys

(i.e., on the current and all previous states).

We call the first notion weak stateful KDM security, and the second strong stateful
KDM security. Weak stateful KDM security can be thought of as KDM security
in a setting in which erasures are trusted, and strong stateful KDM security
mandates that erasures are not trusted (in the most adversarial sense).

Definition 10 (Weak and strong stateful KDM security). A stateful sym-
metric encryption scheme Π is secure in the sense of weak stateful KDM se-
curity iff Π is fulfills Definition 2, where the encryption queries are interpreted
as a function in the current state of the encryption algorithm. Further, Π is
secure in the sense of strong stateful KDM security iff Π satisfies Definition 2,
where the encryption queries are interpreted as a function in the current and all
previous states of the encryption algorithm.

Below we will give a scheme that circumvents the hybrid argument dilemma
using precisely the fact that there is a changing state.

Relation to Black et al.’s notion of “stateful KDM security”. Black et
al. [7] already consider the potential KDM security of a stateful symmetric en-
cryption scheme. They show that there can be no stateful KDM secure scheme.
However, they showed this under the assumption that encryption is determinis-
tic. In our definition, encryption is still probabilistic, even though stateful. We
use the state update mechanism in addition to using randomness, not instead
of it. Their argument does not apply to our definition of stateful KDM security,
neither to our weak nor to our strong variant.
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Weak vs. strong stateful KDM security. For some applications, strong
stateful KDM security is necessary: encrypting your hard drive (that may contain
the secret key) cannot be done in a provably secure way with weak stateful KDM
security. (Once the secret key gets to be processed by the scheme, the state
may have already been updated, so that the message now depends on a previous
state.) Also, the notion of key cycles (i.e., key Ki is encrypted under Ki+1 mod n)
does not make sense with weak stateful KDM secure schemes. In these cases, the
use of a strong stateful KDM scheme is fine. However, it seems technically much
more difficult to construct a strong stateful KDM secure scheme.

5.2 A Secure Scheme

We do not know how to fulfill strong stateful KDM security. (The issues that
arise are similar as in the stateless case.) However, we can present a scheme that
is secure in the sense of weak stateful KDM security.

Idea of the construction. Our scheme is a computational variant of p-BKDM
(although its analysis will turn out to be very different). The main problem of
p-BKDM is that the secret key runs out of entropy after too many KDM encryp-
tions. Only as long as there is enough entropy left in K, a suitably independent
random pad can be distilled for encryption. However, in a computational setting,
randomness can be expanded with a pseudorandom generator, and some distilled,
high-quality randomness can be used to generate more (pseudo-)randomness as
a new key. More concretely, consider the following scheme:

Scheme 11 (The scheme sKDM (for “stateful KDM”)). Let UHF be a
family of universal hash functions that map 5k-bit strings to k-bit strings, and
let G be a pseudorandom generator (against uniform adversaries) that maps a
k-bit seed to a 6k-bit string. Define the stateful symmetric encryption scheme
sKDM = (K, E , D) with security parameter k ∈ �, message space {0, 1}k, and
key space {0, 1}5k through

• K(1k) outputs a uniform random initial key (i.e., state) K0 ∈ {0, 1}5k.
• E(1k, Kj, Mj) proceeds as follows:

1. sample hj
$← UHF ,

2. set Sj := hj(Kj),
3. set (Kj+1, Pj) := G(S),
4. output Cj := (hj , Pj ⊕ Mj).

Ciphertext is Cj , and new key (i.e., state) is Kj+1.
• D(1k, Kj, (hj , Dj)) proceeds as follows:

1. set Sj := hj(Kj),
2. set (Kj+1, Pj) := G(S),
3. output Mj := Pj ⊕ Dj .

Plaintext is Mj, and new key (i.e., state) is Kj+1.

Theorem 12. If G is a pseudorandom generator, then sKDM satisfies weak
stateful KDM security.
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Proof. Fix an adversary A that attacks sKDM in the sense of weak stateful
KDM security. Say that, without loss of generality, A makes precisely p(k) en-
cryption queries for a positively-valued polynomial p ∈ �[k]. Assume that A has
an advantage that is not negligible.

Preparation for hybrid argument. For 0 ≤ j ≤ p(k), define the hybrid game
Game j as follows. Game j is the same as the weak stateful KDM game with
adversary A, only that

• the first j encryption queries are answered as in the fake weak stateful KDM
game (i.e., with encryptions of uniform and independent randomness), and

• the remaining queries are answered as in the real game (i.e., with encryptions
of adversary-delivered functions evaluated at the current secret key).

Base step for hybrid argument. We will reduce distinguishing between two
adjacent games to some computational assumption. We will now first formulate
this assumption. Let K ∈ {0, 1}5k be uniformly distributed, and let M ∈ {0, 1}k

be arbitrary (in particular, M can be a function of K). Then by Lemma 1 it

follows that δ(M, h, h(K) ; M, h, Uk) ≤ 2−k for independently sampled h
$←

UHF and independent uniform Uk ∈ {0, 1}k. (Actually, in this case we could
even use the original version of the Leftover Hash Lemma [18].) This implies

δ(M, h, G(h(K)) ; M, h, G(Uk)) ≤ 2−k,

from which the computational indistinguishability chain

(M, h, G(h(K)))︸ ︷︷ ︸
=:DR

≈ (M, h, G(U)) ≈ (M, h, U6k)︸ ︷︷ ︸
=:DF

(4)

for independent uniform U6k ∈ {0, 1}6k follows by assumption on G. For our
hybrid argument, it is important that (4) even holds when M is a function of K
chosen by the distinguisher.

Hybrid argument. We will now construct from adversary A an adversary B
that contradicts (4) by distinguishing DR and DF . This contradiction then con-
cludes our proof. Let n denote the number of keys. Let µi denote the index of
the key chosen by A for the i-th encryption. Let gi denote the function chosen by
A in the i-th encryption. Then, the adversary B chooses some j ∈ {1, . . . , p(k)}
uniformly at random and then performs the following simulation for A:

– The first j − 1 encryptions requested by A are simulated as fake encryptions
(i.e., with random messages). This is possible without using the keys since
for a random message, hi(Kµi) is information-theoretically hidden in the
ciphertext.

– For the j-th encryption, B chooses Kµ randomly for all µ �= µj and defines4

M(K) := gj(K1, . . . , Kµj−1, K, Kµj+1, . . . , Kn) and requests an input D =:

4 Note that in this function definition, K is the argument while the Kµi are hardwired.
In particular, B does not need to know the actual value of K for this step.
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(M, h, (P, K ′)) with that M . (Note that D may be DR or DF .) Then B sets
the new key Kµj := K ′ and gives (h, M ⊕ P ) as the ciphertext to A.

– For all further encryptions queries, B computes the real ciphertext using the
keys K1, . . . , Kn produced in the preceding steps.

– Finally, B outputs the output of A.

It is now easy to verify that if B gets DR as input, B simulates the Game j − 1,
and if B gets DF as input, B simulates the Game j. Hence

Pr
[
B(DR) = 1

]
− Pr

[
B(DF ) = 1

]

=
1

p(k)

p(k)∑
j=1

Pr [A = 1 in Game j − 1] − 1
p(k)

p(k)∑
j=1

Pr [A = 1 in Game j]

=
1

p(k)
(
Pr [A = 1 in Game 0] − Pr [A = 1 in Game p(k)]

)
.

The right hand side is not negligible by assumption, thus the right hand side is
not negligible either. This contradicts (4) and thus concludes the proof.

5.3 The Usefulness of Stateful KDM Security

In a sense, strong stateful KDM security is “just as good” as standard KDM
security. Arbitrarily large messages (in particular keys) can be encrypted by
splitting up the message into parts and encrypting each part individually. The
key-depencies of the message parts can be preserved, since the dependencies
across states (i.e., dependencies on earlier keys) are allowed. This technique is
generally not possible with weak stateful KDM security. We know of no weakly
stateful KDM secure scheme with which one could securely encrypt one’s own
key (let alone construct key cycles).

But despite the drawbacks of weak stateful KDM security, we believe that this
notion is still useful: first, it serves as a stepping stone towards achieving strong
stateful KDM security (or even stateless KDM security). Second, in certain appli-
cations, weak stateful KDM security might be sufficient. Imagine, e.g., a setting
in which the encrypted message contains side-channel information (like, say, in-
ternal measurements from the encryption device) on the internal state/secret
key. If we assume that the old state is erased after encryption, the side-channel
information only refers to the current internal state, and weak stateful KDM se-
curity is enough to provide message secrecy. Third, weak stateful KDM security
provides an alternative assumption to the assumption of absence of key cycles
in the formal protocol analysis setting. Instead of assuming the absence of key
cycles (this assumption may not make sense in a scheme in which the key space is
larger than the message space), we can assume that the encrypted terms depend
only on the current internal state of the encryption algorithm. This assumption
is still a strengthening of standard IND-CPA security and makes sense, since the
encryption algorithm is only used to encrypt.
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Abstract. We propose a new computational problem called the twin
Diffie-Hellman problem. This problem is closely related to the usual
(computational) Diffie-Hellman problem and can be used in many of the
same cryptographic constructions that are based on the Diffie-Hellman
problem. Moreover, the twin Diffie-Hellman problem is at least as hard as
the ordinary Diffie-Hellman problem. However, we are able to show that
the twin Diffie-Hellman problem remains hard, even in the presence of a
decision oracle that recognizes solutions to the problem — this is a fea-
ture not enjoyed by the ordinary Diffie-Hellman problem. In particular,
we show how to build a certain “trapdoor test” which allows us to effec-
tively answer such decision oracle queries, without knowing any of the
corresponding discrete logarithms. Our new techniques have many appli-
cations. As one such application, we present a new variant of ElGamal
encryption with very short ciphertexts, and with a very simple and tight
security proof, in the random oracle model, under the assumption that
the ordinary Diffie-Hellman problem is hard. We present several other
applications as well, including: a new variant of Diffie and Hellman’s
non-interactive key exchange protocol; a new variant of Cramer-Shoup
encryption, with a very simple proof in the standard model; a new vari-
ant of Boneh-Franklin identity-based encryption, with very short cipher-
texts; a more robust version of a password-authenticated key exchange
protocol of Abdalla and Pointcheval.

1 Introduction

In some situations, basing security proofs on the hardness of the Diffie-Hellman
problem is hindered by the fact that recognizing correct solutions is also
apparently hard (indeed, the hardness of the latter problem is the Decisional
Diffie-Hellman assumption). There are a number of ways for circumventing these
technical difficulties. One way is to simply make a stronger assumption, namely,
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that the Diffie-Hellman problem remains hard, even given access to a corre-
sponding decision oracle. Another way is to work with groups that are equipped
with efficient pairings, so that such a decision oracle is immediately available.
However, we would like to avoid making stronger assumptions, or working with
specialized groups, if at all possible.

In this paper, we introduce a new problem, the twin Diffie Hellman problem,
which has the following interesting properties:

– the twin Diffie-Hellman problem can easily be employed in many cryp-
tographic constructions where one would usually use the ordinary Diffie-
Hellman problem, without imposing a terrible efficiency penalty;

– the twin Diffie-Hellman problem is hard, even given access to a correspond-
ing decision oracle, assuming the ordinary Diffie-Hellman problem (without
access to any oracles) is hard.

Using the twin Diffie-Hellman problem, we construct a new variant of ElGamal
encryption that is secure against chosen ciphertext attack, in the random oracle
model, under the assumption that the ordinary Diffie-Hellman problem is hard.
Compared to other ElGamal variants with similar security properties, our scheme
is attractive in that it has very short ciphertexts, and a very simple and tighter
security proof.

At the heart of our method is a “trapdoor test” that allows us to implement
an effective decision oracle for the twin Diffie-Hellman problem, without know-
ing any of the corresponding discrete logarithms. This trapdoor test has many
applications, including: a new variant of Diffie and Hellman’s non-interactive
key exchange protocol [10], which is secure in the random oracle model as-
suming the Diffie-Hellman problem is hard; a new variant of Cramer-Shoup
encryption [8] with a very simple security proof, in the standard model, un-
der the hashed decisional Diffie-Hellman assumption; a new variant of Boneh-
Franklin identity-based encryption [5], with very short ciphertexts, and a simple
and tighter security proof in the random oracle model, assuming the bilinear
Diffie-Hellman problem is hard; a very simple and efficient method of securing
a password-authenticated key exchange protocol of Abdalla and Pointcheval [2]
against server compromise, which can be proved secure, using our trapdoor test,
in the random oracle model, under the Diffie-Hellman assumption.

1.1 Hashed ElGamal Encryption and Its Relation to the
Diffie-Hellman Problem

To motivate the discussion, consider the “hashed” ElGamal encryption
scheme [1]. This public-key encryption scheme makes use of a group G of prime
order q with generator g ∈ G, a hash function H, and a symmetric cipher (E, D).
A public key for this scheme is a random group element X , with corresponding
secret key x, where X = gx. To encrypt a message m, one chooses a random
y ∈ Zq, computes

Y := gy, Z := Xy, k := H(Y, Z), c := Ek(m),
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and the ciphertext is (Y, c). Decryption works in the obvious way: given the
ciphertext (Y, c), and secret key x, one computes

Z := Y x, k := H(Y, Z), m := Dk(c).

The Diffie-Hellman Assumption. Clearly, the hashed ElGamal encryption
scheme is secure only if it is hard to compute Z, given the values X and Y .
Define

dh(X, Y ) := Z, where X = gx, Y = gy, and Z = gxy. (1)

The problem of computing dh(X, Y ) given random X, Y ∈ G is the DH problem.
The DH assumption asserts that this problem is hard. However, this assumption
is not sufficient to establish the security of hashed ElGamal against a chosen
ciphertext attack, regardless of what security properties the hash function H
may enjoy.

To illustrate the problem, suppose that an adversary selects group elements
Ŷ and Ẑ in some arbitrary way, and computes k̂ := H(Ŷ , Ẑ) and ĉ := Ek̂(m̂) for
some arbitrary message m̂. Further, suppose the adversary gives the ciphertext
(Ŷ , ĉ) to a “decryption oracle,” obtaining the decryption m. Now, it is very
likely that m̂ = m if and only if Ẑ = dh(X, Ŷ ). Thus, the decryption oracle
can be used by the adversary as an oracle to answer questions of the form “is
dh(X, Ŷ ) = Ẑ?” for group elements Ŷ and Ẑ of the adversary’s choosing. In
general, the adversary would not be able to efficiently answer such questions on
his own, and so the decryption oracle is leaking some information about that
secret key x which could conceivably be used to break the encryption scheme.

The Strong DH Assumption. Therefore, to establish the security of hashed
ElGamal against chosen ciphertext attack, we need a stronger assumption. For
X, Ŷ , Ẑ ∈ G, define the predicate

dhp(X, Ŷ , Ẑ) := dh(X, Ŷ ) ?= Ẑ.

At a bare minimum, we need to assume that it is hard to compute dh(X, Y ),
given random X, Y ∈ G, along with access to a decision oracle for the predicate
dhp(X, ·, ·), which on input (Ŷ , Ẑ), returns dhp(X, Ŷ , Ẑ). This assumption is
called the strong DH assumption [1].1 Moreover, it is not hard to prove, if H
is modeled as a random oracle, that hashed ElGamal is secure against chosen
ciphertext attack under the strong DH assumption, and under the assumption
that the underlying symmetric cipher is itself secure against chosen ciphertext
attack. This was proved in [1,21], for a variant scheme in which Y is not included
in the hash; including Y in the hash gives a more efficient security reduction
(see [9]). Note that the strong DH assumption is different (and weaker) than
the so called gap DH assumption [24] where an adversary gets access to a full
decision oracle for the predicate dhp(·, ·, ·), which on input (X̂, Ŷ , Ẑ), returns
dhp(X̂, Ŷ , Ẑ).
1 We remark that in more recent papers the name strong DH assumption also some-

times refers to a different assumption defined over bilinear maps [3]. We follow the
original terminology from [1].
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1.2 The Twin Diffie-Hellman Assumptions

For general groups, the strong DH assumption may be strictly stronger than the
DH assumption. One of the main results of this paper is to present a slightly
modified version of the DH problem that is just as useful as the (ordinary) DH
problem, and which is just as hard as the (ordinary) DH problem, even given
access to a corresponding decision oracle. Using this, we get a modified version
of hashed ElGamal encryption which can be proved secure under the (ordinary)
DH assumption, in the random oracle model. This modified system is just a bit
less efficient than the original system.

Again, let G be a cyclic group with generator g, and of prime order q. Let dh
be defined as in (1). Define the function

2dh : G
3 → G

2

(X1, X2, Y ) �→ (dh(X1, Y ), dh(X2, Y )).

We call this the twin DH function. One can also define a corresponding twin DH
predicate:

2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2) := 2dh(X1, X2, Ŷ ) ?= (Ẑ1, Ẑ2).

The twin DH assumption states it is hard to compute 2dh(X1, X2, Y ), given
random X1, X2, Y ∈ G. It is clear that the DH assumption implies the twin DH
assumption. The strong twin DH assumption states that it is hard to compute
2dh(X1, X2, Y ), given random X1, X2, Y ∈ G, along with access to a decision
oracle for the predicate 2dhp(X1, X2, ·, ·, ·), which on input (Ŷ , Ẑ1, Ẑ2), returns
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

One of our main results is the following:
Theorem 1. The (ordinary) DH assumption holds if and only if the strong twin
DH assumption holds.
The non-trivial direction to prove is that the DH assumption implies the strong
twin DH assumption.

A Trapdoor Test. While Theorem 1 has direct applications, the basic tool
that is used to prove the theorem, which is a kind of “trapdoor test,” has even
wider applications. Roughly stated, the trapdoor test works as follows: given a
random group element X1, we can efficiently construct a random group element
X2, together with a secret “trapdoor” τ , such that

– X1 and X2 are independent (as random variables), and
– if we are given group elements Ŷ , Ẑ1, Ẑ2, computed as functions of X1 and

X2 (but not τ), then using τ , we can efficiently evaluate the predicate
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2), making a mistake with only negligible probability.

We note that our trapdoor test actually appears implicitly in Shoup’s DH
self-corrector [28]; apparently, its implications were not understood at the time,
although the techniques of Cramer and Shoup [8] are in some sense an extension
of the idea. Due to space constraints we must defer the details of the connection
between our trapdoor test and Shoup’s DH self-corrector to the full version of
this paper.
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1.3 Applications and Results

The twin ElGamal encryption scheme. Theorem 1 suggests the following
twin ElGamal encryption scheme. This scheme makes use of a hash function
H and a symmetric cipher (E, D). A public key for this scheme is a pair of
random group elements (X1, X2), with corresponding secret key is (x1, x2), where
Xi = gxi for i = 1, 2. To encrypt a message m, one chooses a random y ∈ Zq,
computes

Y := gy, Z1 := Xy
1 , Z2 := Xy

2 , k := H(Y, Z1, Z2), c := Ek(m),

and the ciphertext is (Y, c). Decryption works in the obvious way: given the
ciphertext (Y, c), and secret key (x1, x2), one computes

Z1 := Y x1 , Z2 := Y x2 , k := H(Y, Z1, Z2), m := Dk(c).

The arguments in [1] and [9] trivially carry over, so that one can easily show that
the twin ElGamal encryption scheme is secure against chosen ciphertext attack,
under the strong twin DH assumption, and under the assumption that (E, D)
is secure against chosen ciphertext attack, if H is modeled as a random oracle.
Again, by Theorem 1, the same holds under the (ordinary) DH assumption.

Note that the ciphertexts for this scheme are extremely compact — no redun-
dancy is added, as in the Fujisaki-Okamoto transformation [11]. Moreover, the
security reduction for our scheme is very tight. We remark that this seems to be
the first DH-based encryption scheme with short ciphertexts. All other known
constructions either add redundancy to the ciphertext [11,25,29,7,18] or resort
to assumptions stronger than DH [1,9,21].

The twin DH key-exchange protocol. In their paper [10], Diffie and Hell-
man presented the following simple, non-interactive key exchange protocol. Al-
ice chooses a random x ∈ Zq, computes X := gx ∈ G, and publishes the pair
(Alice, X) is a public directory. Similarly, Bob chooses a random y ∈ Zq, com-
putes Y := gy ∈ G, and publishes the pair (Bob, Y ) in a public directory. Alice
and Bob may compute the shared value Z := gxy ∈ G, as follows: Alice retrieves
Bob’s entry from the directory and computes Z as Y x, while Bob retrieves Alice’s
key X , and computes Z as Xy. Before using the value Z, it is generally a good
idea to hash it, together with Alice’s and Bob’s identities, using a cryptographic
hash function H. Thus, the key that Alice and Bob actually use to encrypt data
using a symmetric cipher is k := H(Alice, Bob, Z).

Unfortunately, the status of the security of this scheme is essentially the same
as that of the security of hashed ElGamal against chosen ciphertext attack, if we
allow an adversary to place arbitrary public keys in the public directory (without
requiring some sort of “proof of possession” of a secret key).

To avoid this problem, we define the twin DH protocol, as follows: Alice’s
public key is (X1, X2), and her secret key is (x1, x2), where Xi = gxi for i = 1, 2;
similarly, Bob’s public key is (Y1, Y2), and his secret key is (y1, y2), where Yi = gyi

for i = 1, 2; their shared key is

k := H(Alice, Bob, dh(X1, Y1), dh(X1, Y2), dh(X2, Y1), dh(X2, Y2)),
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where H is a hash function. Of course, Alice computes the 4-tuple of group
elements in the hash as

(Y x1
1 , Y x1

2 , Y x2
1 , Y x2

2 ),

and Bob computes them as

(Xy1
1 , Xy2

1 , Xy1
2 , Xy2

2 ).

Using the “trapdoor test,” it is a simple matter to show that the twin DH
protocol satisfies a natural and strong definition of security, under the (ordinary)
DH assumption, if H is modeled as a random oracle.

A variant of Cramer-Shoup encryption. We present a variant of the public-
key encryption scheme by Cramer and Shoup [8]. Using our trapdoor test, along
with techniques originally developed for identity-based encryption [3], we give
an extremely simple proof of its security against chosen-ciphertext attack, in the
standard model, under the Decisional DH assumption [12]: given X and Y , it is
hard to distinguish dh(X, Y ) from Z, for random X, Y, Z ∈ G. In fact, our proof
works under the weaker hashed Decisional DH assumption: given X and Y , it is
hard to distinguish H(dh(X, Y )) from k, for random X, Y ∈ G, and random k in
the range of H. Note that the original Cramer-Shoup scheme cannot be proved
secure under this weaker assumption — their security relies in an essential way
on the Decisional DH assumption.

As a simple extension of this idea, we can obtain a new analysis of a scheme
given in [17]. There, a variant of the Kurosawa-Desmedt encryption scheme
is given and proved secure under the decisional DH assumption. Our analysis
provides further theoretical understanding. Due to space constraints we must
defer the details of this construction to the full version of this paper.

Obviously, our variants are secure under the DH assumption if H is modeled
as a random oracle. We also note that by using the Goldreich-Levin theorem,
a simple extension of our scheme, which is still fairly practical, can be proved
secure against chosen ciphertext attack under the DH assumption.

The observation that a variant of the Cramer-Shoup encryption scheme can
be proved secure under the hashed Decisional DH assumption was also made
by Brent Waters, in unpublished work (personal communication, 2006) and in-
dependently by Goichiro Hanaoka and Kaoru Kurosawa, also in unpublished
work [16].

Identity-based encryption. Strong versions of assumptions also seem neces-
sary to analyze some identity-based encryption (IBE) schemes that use bilinear
pairings. As a further contribution, we give a twin version of the bilinear DH
(BDH) assumption and prove that the (interactive) strong twin BDH assumption
is implied by the standard BDH assumption.

The well-known IBE scheme of Boneh and Franklin [5] achieves security
against chosen ciphertext, in the random oracle model, by applying the Fujisaki-
Okamoto transformation. Our techniques give a different scheme with shorter
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ciphertexts, and a tighter security reduction. The same technique can also be
applied to the scheme by Kasahara and Sakai [27] which is based on a stronger
bilinear assumption but has improved efficiency.

Other applications. Our twinning technique and in particular the trapdoor
test can be viewed as a general framework that allows to “update” a protocol
Π whose security relies on the strong DH assumption to a protocol Π ′ that has
roughly the same complexity as Π , but whose security is solely based on the
DH assumption. Apart from the applications mentioned above, we remark that
this technique can also be applied to the undeniable signatures and designated
confirmer signatures from [24] and the key-exchange protocols from [19].

As another application of our trapdoor test, one can easily convert the very
elegant and efficient protocol of Abdalla and Pointcheval [2] for password-
authenticated key exchange, into a protocol that provides security against server
compromise, without adding any messages to the protocol, and still basing the
security proof, in the random oracle model, on the DH assumption. For lack of
space, this application will be further discussed in the full version.

2 A Trapdoor Test and a Proof of Theorem 1

It is not hard to see that the strong twin DH implies the DH assumption. To prove
that the DH implies the strong twin DH assumption, we first need our basic tool,
a “trapdoor test”. Its purpose will be intuitively clear in the proof of Theorem 1:
in order to reduce the strong twin DH assumption to the DH assumption, the
DH adversary will have to answer decision oracle queries without knowing the
discrete logarithms of the elements of the strong twin DH problem instance. This
tool gives us a method for doing so.

Theorem 2 (Trapdoor Test). Let G be a cyclic group of prime order q, gen-
erated by g ∈ G. Suppose X1, r, s are mutually independent random variables,
where X1 takes values in G, and each of r, s is uniformly distributed over Zq,
and define the random variable X2 := gs/Xr

1 . Further, suppose that Ŷ , Ẑ1, Ẑ2 are
random variables taking values in G, each of which is defined as some function
of X1 and X2. Then we have:

(i) X2 is uniformly distributed over G;
(ii) X1 and X2 are independent;

(iii) if X1 = gx1 and X2 = gx2 , then the probability that the truth value of

Ẑr
1 Ẑ2 = Ŷ s (2)

does not agree with the truth value of

Ẑ1 = Ŷ x1 ∧ Ẑ2 = Ŷ x2 (3)

is at most 1/q; moreover, if (3) holds, then (2) certainly holds.
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Proof. Observe that s = rx1 + x2. It is easy to verify that X2 is uniformly
distributed over G, and that X1, X2, r are mutually independent, from which (i)
and (ii) follow. To prove (iii), condition on fixed values of X1 and X2. In the
resulting conditional probability space, r is uniformly distributed over Zq, while
x1, x2, Ŷ , Ẑ1, and Ẑ2 are fixed. If (3) holds, then by multiplying together the
two equations in (3), we see that (2) certainly holds. Conversely, if (3) does not
hold, we show that (2) holds with probability at most 1/q. Observe that (2) is
equivalent to

(Ẑ1/Ŷ x1)r = Ŷ x2/Ẑ2. (4)

It is not hard to see that if Ẑ1 = Ŷ x1 and Ẑ2 �= Ŷ x2 , then (4) certainly does not
hold. This leaves us with the case Ẑ1 �= Ŷ x1 . But in this case, the left hand side
of (4) is a random element of G (since r is uniformly distributed over Zq), but
the right hand side is a fixed element of G. Thus, (4) holds with probability 1/q
in this case.

Using this tool, we can easily prove Theorem 1. So that we can give a concrete
security result, let us define some terms. For an adversary B, let us define his DH
advantage, denoted AdvDHB,G, to be the probability that B computes dh(X, Y ),
given random X, Y ∈ G. For an adversary A, let us define his strong twin
DH advantage, denoted Adv2DHA,G, to be the probability that A computes
2dh(X1, X2, Y ), given random X1, X2, Y ∈ G, along with access to a decision
oracle for the predicate 2dhp(X1, X2, ·, ·, ·), which on input Ŷ , Ẑ1, Ẑ2, returns
2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2).

Theorem 1 is a special case of the following:

Theorem 3. Suppose A is a strong twin DH adversary that makes at most Qd

queries to its decision oracle, and runs in time at most τ . Then there exists a
DH adversary B with the following properties: B runs in time at most τ , plus
the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover,

Adv2DHA,G ≤ AdvDHB,G + Qd/q.

In addition, if B does not output “failure,” then its output is correct with prob-
ability at least 1 − 1/q.

Proof. Our DH adversary B works as follows, given a challenge instance (X, Y ) of
the DH problem. First, B chooses r, s ∈ Zq at random, sets X1 := X and X2 :=
gs/Xr

1 , and gives A the challenge instance (X1, X2, Y ). Second, B processes each
decision query (Ŷ , Ẑ1, Ẑ2) by testing if Ẑ1Ẑ

r
2 = Ŷ s holds. Finally, if and when

A outputs (Z1, Z2), B tests if this output is correct by testing if Z1Z
r
2 = Y s

holds; if this does not hold, then B outputs “failure,” and otherwise, B outputs
Z1. The proof is easily completed using Theorem 2.
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3 Twin ElGamal Encryption

3.1 Model and Security

We recall the definition for chosen ciphertext security of a public-key encryption
scheme, denoted PKE. Consider the usual chosen ciphertext attack game, played
between a challenger and a adversary A:

1. The challenger generates a public key/secret key pair, and gives the public
key to A;

2. A makes a number of decryption queries to the challenger; each such query
is a ciphertext Ĉ; the challenger decrypts Ĉ, and sends the result to A;

3. A makes one challenge query, which is a pair of messages (m0, m1); the
challenger chooses b ∈ {0, 1} at random, encrypts mb, and sends the resulting
ciphertext C to A;

4. A makes more decryption queries, just as in step 2, but with the restriction
that Ĉ �= C;

5. A outputs b̂ ∈ {0, 1}.

The advantage AdvCCAA,PKE is defined to be | Pr[b̂ = b]−1/2|. The scheme PKE
is said to be secure against chosen ciphertext attack if for all efficient adversaries
A, the advantage AdvCCAA,PKE is negligible.

If we wish to analyze a scheme PKE in the random oracle model, then hash
functions are replaced by random oracle queries as appropriate, and both chal-
lenger and adversary are given access to the random oracle in the above attack
game. We write AdvCCAro

A,PKE for the corresponding advantage in the random
oracle model.

If SE = (E, D) is a symmetric cipher, then one defines security against chosen
ciphertext attack in exactly the same way, except that in step 1 of the above
attack game, the challenger simply generates a secret key and step 2 of the
above attack game is left out. The advantage AdvCCAA,SE is defined in exactly
the same way, and SE is said to be secure against chosen ciphertext attack if for
all efficient adversaries A, the advantage AdvCCAA,SE is negligible.

The usual construction of a chosen-ciphertext secure symmetric encryption
scheme is to combine a one-time pad and a message-authentication code (MAC).
We remark that such schemes do not necessarily add any redundancy to the
symmetric ciphertext. In fact, Phan and Pointcheval [26] showed that a strong
PRP [13] directly implies a length-preserving chosen-ciphertext secure symmet-
ric encryption scheme that avoids the usual overhead due to the MAC. In prac-
tice one can use certain modes of operation (e.g., CMC [15]) to encrypt large
messages. The resulting scheme is chosen-ciphertext secure provided that the
underlying block-cipher is a strong PRP.

3.2 Security of the Twin ElGamal Scheme

We are now able to establish the security of the twin ElGamal encryption scheme
described in §1.3, which we denote PKE2dh. The security will be based on the
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strong twin DH assumption, of course, and this allows us to borrow the “ora-
cle patching” technique from previous analyses of hashed ElGamal encryption
based on the strong DH assumption. We stress, however, that unlike previous
applications of this technique, the end result is a scheme based on the original
DH assumption.

Theorem 4. Suppose H is modeled as a random oracle and that the DH as-
sumption holds. Then PKE2dh is secure against chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen ciphertext
attack against PKE2dh in the random oracle model, and that A runs in time τ ,
and makes at most Qh hash queries and Qd decryption queries. Then there exists
a DH adversary Bdh and an adversary Bsym that carries out a chosen ciphertext
attack against SE, such that both Bdh and Bsym run in time at most τ , plus the
time to perform O((Qh + Qd) log q) group operations; moreover,

AdvCCAro
A,PKE2dh

≤ AdvDHBdh,G + AdvCCABsym,SE + Qh/q.

Given the equivalence between the strong 2DH and the DH assumption from
Theorem 1, the proof of Theorem 4 is quite standard, but must be deferred to
the full version.

Instantiating PKE2dh with a length-preserving chosen-ciphertext secure sym-
metric encryption scheme, we obtain a DH-based chosen-ciphertext secure en-
cryption scheme with the following properties.

Optimal ciphertext overhead. The ciphertext overhead, i.e. ciphertext size
minus plaintext size, is exactly one group element, which is optimal for Diffie-
Hellman based schemes. For concreteness, for κ = 128 bit security, a typical
implementation in elliptic curve groups gives a concrete ciphertext overhead
of 256 bits.

Encryption/decryption efficiency. Encryption needs three exponentiations
in G, one of which is to the fixed-base g (that can be shared among many
public-keys). Decryption only needs one sequential exponentiation in G to
compute Y x1 and Y x2 simultaneously, which is nearly as efficient as one
single exponentiation (see, e.g., [23]).

4 Non-interactive Key Exchange

In this section we give a model and security definition for non-interactive key
exchange and then analyze the twin DH protocol from section §1.3. Strangely,
after the seminal work of Diffie and Hellman on this subject, it does not seem to
have been explored further in the literature, except in the identity-based setting.

4.1 Model and Security

A non-interactive key exchange scheme KE consists of two algorithms: one for key
generation and one for computing paired keys. The key generation algorithm is
probabilistic and outputs a public key/secret key pair. The paired key algorithm
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takes as input an identity and public key along with another identity and a
secret key, and outputs a shared key for the two identities. Here, identities are
arbitrary strings chosen by the users, and the key authority does not generate
keys itself but acts only as a phonebook.

For security we define an experiment between a challenger and an adversary
A. In this experiment, the challenger takes a random bit b as input and answers
oracle queries for A until A outputs a bit b̂. The challenger answers the following
types of queries for A:

Register honest user ID. A supplies a string id . The challenger runs the
key generation algorithm to generate a public key/secret key pair (pk, sk)
and records the tuple (honest, id , pk, sk) for later. The challenger returns
pk to A.

Register corrupt user ID. In this type of query, A supplies both the string
id and a public key pk. The challenger records the tuple (corrupt, id , pk) for
later.

Get honest paired key. Here A supplies two identities id , id ′ that were reg-
istered as honest users. Now the challenger uses the bit b: if b = 0, the
challenger runs the paired key algorithm using the public key for id and the
secret key for id ′. If b = 1, the challenger generates a random key, records it
for later, and returns that to the adversary. To keep things consistent, the
challenger returns the same random key for the set {id , id ′} every time A
queries for their paired key (perhaps in reversed order).

Get corrupt paired key. Here A supplies two identities id , id ′, where id was
registered as corrupt and id ′ was registered as honest. The challenger runs
the paired key algorithm using the public key for id and the secret key for
id ′ and returns the paired key.

When the adversary finally outputs b̂, it wins the experiment if b̂ = b. For
an adversary A, we define its advantage AdvKAA,KE in this experiment to be
| Pr[b̂ = b] − 1/2|. When a hash function is modeled as a random oracle in the
experiment, we denote the adversary’s advantage by AdvKAro

A,KE. We say that
a non-interactive key-exchange scheme KE is secure against active attacks if for
all efficient adversaries A, the advantage AdvKAro

A,KE is negligible.
We note that in the ideal version of the experiment above (when b = 1), the

challenger returns the same random key for the honest paired key queries for
(id , id ′) and (id ′, id). This essentially means that there should be no concept
of “roles” in the model and that protocols should implement something like a
canonical ordering of all the identities to implicitly define roles if needed.

4.2 Security of the Twin DH Protocol

As stated above, we can prove the twin DH protocol secure under the DH as-
sumption using our trapdoor test. We denote the twin DH protocol by KA2dh.
A complete proof will be given in the full version.

Theorem 5. Suppose H is modeled as a random oracle and that the DH as-
sumption holds. Then KA2dh is secure against active attacks.
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In particular, suppose A is an adversary that attacks KA2dh in the random
oracle model, and that A runs in time τ , and makes at most a total of Q oracle
queries of all types. Then there exists a DH adversary Bdh that runs in time at
most τ plus the time to perform O(Q log q) group operations; moreover,

AdvKAro
A,KA2dh

≤ 2AdvDHBdh,G + 4Q/q.

5 A Variant of the Cramer-Shoup Encryption Scheme

5.1 The (Twin) DDH Assumption

Let G be a group of order q and let g be a random generator. Distinguishing
the two distributions (X, Y, dh(X, Y )) and (X, Y, Z) for random X, Y, Z ∈ G

is the Decision Diffie-Hellman (DDH) problem. The DDH assumption states
that the DDH problem is hard. As a natural decision variant of the Twin
DH problem, the Twin DDH problem is distinguishing the two distributions
(X1, X2, Y, dh(X1, Y )) and (X1, X2, Y, Z) for random X1, X2, Y, Z ∈ G. The
Strong Twin DDH assumption states that the Twin DDH problem is hard, even
given access to a decision oracle for the predicate for 2dhp(X1, X2, ·, ·, ·), which
on input (Ŷ , Ẑ1, Ẑ2) returns 2dhp(X1, X2, Ŷ , Ẑ1, Ẑ2). (Note the value dh(X2, Y )
is never provided as input to the distinguisher since otherwise the Strong Twin
DDH assumption could trivially broken using the 2dhp oracle.)

We also consider a potentially weaker “hashed variants” of the above two
assumptions. For a hash function H : G → {0, 1}κ, the Hashed DDH problem is
to distinguish the two distributions (X, Y, H(dh(X, Y )) and (X, Y, k), for random
X, Y ∈ G and k ∈ {0, 1}κ. The Hashed DDH assumption states that the Hashed
DDH problem is hard. In the same way, we can consider the Strong Twin Hashed
DDH assumption.

We stress that the (Strong Twin) Hashed DDH assumption simplifies to the
(Strong Twin) DDH assumption when H is the identity. Furthermore, there are
natural groups (such as non-prime-order groups) where the DDH problem is
known to be easy yet the Hashed DDH problem is still assumed to be hard for
a reasonable choice of the hash function [12]. If H is modeled as random oracle
then the Hashed DDH and the DH assumption become equivalent.

Using the trapdoor test in Theorem 2, we can prove an analog of Theorem 3.

Theorem 6. The (Hashed) DDH assumption holds if and only if the Strong
Twin (Hashed) DDH assumption holds. In particular, suppose A is a Strong
Twin (Hashed) DDH adversary that makes at most Qd queries to its decision
oracle, and runs in time at most τ . Then there exists a (Hashed) DDH adversary
B with the following properties: B runs in time at most τ , plus the time to perform
O(Qd log q) group operations and some minor bookkeeping; moreover,

Adv2DDHA,G ≤ AdvDDHB,G + Qd/q.
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5.2 A Variant of the Cramer-Shoup Scheme

We now can consider the following encryption scheme which we call PKEc̃s. This
scheme makes use of a symmetric cipher (E, D) and a hash function T : G → Zq

which we assume to be target collision-resistant [9]. A public key for this scheme
is a tuple of random group elements (X1, X̃1, X2, X̃2), with corresponding secret
key (x1, x̃1, x2, x̃2), where Xi = gxi and X̃i = gx̃i for i = 1, 2. To encrypt a
message m, one chooses a random y ∈ Zq, computes

Y := gy, t := T(Y ), Z1 := (Xt
1X̃1)y , Z2 := (Xt

2X̃2)y, k := H(Xy
1 ), c := Ek(m),

and the ciphertext is (Y, Z1, Z2, c). Decryption works as follows: given the ci-
phertext (Y, Z1, Z2, c), and secret key (x1, x̃1, x2, x̃2), one computes t := T(Y )
and checks if

Y x1t+x̃1 = Z1 and Y x2t+x̃2 = Z2. (5)

If not (we say the ciphertext is not consistent), reject; otherwise, compute

k := H(Y x1), m := Dk(c).

We remark that since |G| = |Zq| = q, hash function T could be a bijection.
See [6] for efficient constructions for certain groups G.

Relation to Cramer-Shoup. Our scheme is very similar to the one by Cramer
and Shoup [8]. Syntactically, the difference is that in Cramer-Shoup the value
Z1 is computed as Z1 = Xy

3 (where X3 is another random group element in
the public key) and t is computed as t = T(Y, Z1). However, our variant allows
for a simple security proof based on the Hashed DDH assumption whereas for
the Cramer-Shoup scheme only a proof based on the DDH assumption is known
(and the currently known proofs do not allow for it).

5.3 Security

We now show that, using the trapdoor test, PKEc̃s allows for a very elementary
proof under the Hashed DDH assumption. We stress that are security proof is
not in the random oracle model.

Theorem 7. Suppose T is a target collision resistant hash function. Further,
suppose the Hashed DDH assumption holds, and that the symmetric cipher SE =
(E, D) is secure against chosen ciphertext attack. Then PKEc̃s is secure against
chosen ciphertext attack.

In particular, suppose A is an adversary that carries out a chosen cipher-
text attack against PKEc̃s and that A runs in time τ , and makes at most Qd

decryption queries. Then there exists a Hashed DDH adversary Bddh, an adver-
sary Bsym that carries out a chosen ciphertext attack against SE, and a TCR
adversary Btcr such that both Bddh, Bsym and Btcr run in time at most τ , plus
the time to perform O(Qd log q) group operations; moreover,

AdvCCAA,PKEc̃s ≤ AdvDDHBddh,G,H + AdvCCABsym,SE + AdvTCRBtcr,T + Qd/q.
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Proof. We proceed with a sequence of games.

Game 0. Let Game 0 be the original chosen ciphertext attack game, and let S0

be the event that b̂ = b in this game.

AdvCCAA,PKEc̃s = | Pr[S0] − 1/2|. (6)

Game 1. Let Game 1 be like Game 0, but with the following difference. Game 1
aborts if the adversary, at any time, makes a decryption query containing a
Ŷ such that Ŷ �= Y and T(Ŷ ) = T(Y ) where Y comes from the challenge
ciphertext. Using a standard argument from [9] it is easy to show that

| Pr[S1] − Pr[S0]| ≤ AdvTCRBtcr,T. (7)

Game 2. Let Game 2 be as Game 1 with the following differences. For comput-
ing the public-key the experiment picks x1, x2, y, a1, a2 ∈ Zq at random and
computes X1 = gx1, X2 = gx2 , and Y = gy. Next, it computes t := T(Y )
and

X̃1 := X−t
1 ga1 , X̃2 := X−t

2 ga2 .

Note that the way the public-key is setup uses a technique to prove selective-
ID security for IBE schemes [3].

The challenge ciphertext (Y, Z1, Z2, c) for message mb is computed as

t := T(Y ), Z1 := Y a1 , Z2 := Y a2 , k := H(Xy
1 ), c := Ek(mb). (8)

This is a correctly distributed ciphertext for mb and randomness y = logg(Y )
since, for i = 1, 2, (Xt

i X̃i)y = (Xt−t
i gai)y = (gai)y = Y ai = Zi. We can

assume (Y, Z1, Z2, k) to be computed in the beginning of the experiment
since they are independent of m0, m1.

A decryption query for ciphertext (Ŷ , Ẑ1, Ẑ2, ĉ) is answered as follows.
Compute t̂ = T(Ŷ ). If t = t̂ then verify consistency by checking if Z1 = Ẑ1

and Z2 = Ẑ2. If the ciphertext is consistent then use the challenge key k
defined in (8) to decrypt ĉ. If t �= t̂ then proceed as follows. For i = 1, 2,
compute Z̄i = (Ẑi/Ŷ ai)1/(t̂−t). Consistency of the ciphertext is verified by
checking if

Ŷ x1 = Z̄1 and Ŷ x2 = Z̄2. (9)

Let ŷ = logg Ŷ . The value Ẑi was correctly generated iff Ẑi = (X t̂
i X̃i)ŷ =

(X t̂−t
i gai)ŷ = (Ŷ xi)t̂−t · Ŷ ai which is equivalent to Z̄i = Ŷ xi . Hence, (9)

is equivalent to the test from the original scheme (5). If the ciphertext is
consistent then one can use the symmetric key k̂ = H(Z̄1) = H(Ŷ x1) to
decrypt ĉ and return m̂ = Dk̂(ĉ).

Let S2 be the event that b̂ = b in this game. As we have seen,

Pr[S2] = Pr[S1]. (10)
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Game 3. Let Game 3 be as Game 2 with the only difference that the value k
to compute that challenge ciphertext is now chosen at random from G. We
claim that

| Pr[S3] − Pr[S2]| ≤ Adv2DDHB2ddh,G,H, (11)

where B2ddh is an efficient Strong Twin Hashed DDH adversary that makes at
most Qd queries to the decision oracle. B2ddh is defined as follows. Using the
values (X1, X2, Y, k) from its challenge (where either k = H(dh(X1, Y )) or k
is random), adversary B2ddh runs (without knowing x1, x2, y) the experiment
as described in Game 2 using k as the challenge key in (8) to encrypt mb.
Note that the only point where Games 2 and 3 make use of x1 and x2 is the
consistency check (9) which B2ddh equivalently implements using the 2dhp
oracle, i.e. by checking if

2dhp(X1, X2, Ŷ , Z̄1, Z̄2)

holds. We have that if k = H(dh(X1, Y )) ∈ {0, 1}κ, this perfectly simulates
Game 2, whereas if k ∈ {0, 1}κ is random this perfectly simulates Game 3.
This proves (11).

Finally, it is easy to see that in Game 3, the adversary is essentially
playing the chosen ciphertext attack game against SE. Thus, there is an
efficient adversary Bsym such that

| Pr[S3] − 1/2| = AdvCCABsym,SE. (12)

The theorem now follows by combining (6)–(12) with Theorem 6.

5.4 A Variant with Security from the DH Assumption

We now consider a slight variant of the scheme PKEc̃s that uses the Goldreich-
Levin bit [14,13] to achieve security based on the (standard) DH assumption.

Let ν = O(log κ) be some integer that divides the security parameter κ and
set � = κ/ν. Let the public key now contain the 2� + 3 group elements Y and
Xi = gxi , X̃i = gx̃i , for i = 1, . . . , � + 1. Furthermore, it contains a sufficiently
large random bit-strings R to extract the Diffie-Hellman hard-core bits (a string
of length � · 2κ is sufficient). To encrypt a message m, one chooses a random
y ∈ Zq, computes Y := gy and Zi := (Xt

i X̃i)y, for i = 1, . . . , � + 1, where
t = T(Y ). As before, the function of Z�+1 is the consistency check. From each of
the � unique Diffie-Hellman keys ki = H(Xy

i ) ∈ {0, 1}κ (i = 1, . . . , �) and parts of
R we can now extract a ν = κ/� simultaneous hard-core bits k′i ∈ {0, 1}ν. Finally,
a concatenation of all k′i yields a k-bit symmetric key k ∈ {0, 1}κ that is used
to encrypt m as c = Ek(m). The ciphertext is (Y, Z1, . . . , Z�+1, c). Decryption
first verifies consistency of (Y, Z1, . . . , Z�+1) by checking if Y xit+x̃i = Zi, for all
i = 1, . . . , � + 1. Then the key k is reconstructed from the unique Diffie-Hellman
keys ki = H(Y xi) as in encryption.

For concreteness we can consider a security parameter of κ = 128 bits and set
ν = log2(κ) = 7, which means the ciphertext overhead consists of 128/7+2 ≈ 20
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group elements which account for 20 · 256 ≈ 5000 bits when implemented on
elliptic curves. Note that this is less than two standard RSA moduli for the
same security level (3072 bits each, for κ = 128).

In the full version we show that the above scheme is chosen-ciphertext secure
under the DH assumption. The proof uses a hybrid argument in connection with
the trapdoor test from Theorem 2. Furthermore, it uses the Goldreich-Levin
construction to extract ν = O(log(κ)) hard-core bits out of each Diffie-Hellman
key. The security reduction is polynomial-time but due to the generic hard-core
construction it is not very tight.

6 Identity Based Encryption

In this section we show how to apply the trapdoor test in Theorem 2 to identity-
based encryption in pairing groups. We give a bilinear version of the strong
twin DH problem and show that it can be reduced to the standard bilinear DH
problem. We then use this assumption to construct a new IBE scheme that we
call twin Boneh-Franklin below. The end result is a chosen ciphertext secure
IBE scheme based on bilinear DH with one group element of overhead in the
ciphertexts and a tighter reduction than the original scheme on which it is based.

6.1 A New Bilinear Assumption

In groups equipped with a pairing ê : G × G → GT , we can define the function

bdh(X, Y, W ) := Z, where X = gx, Y = gy, W = gw, and Z = ê(g, g)wxy.

Computing bdh(X, Y, W ) using random X, Y, W ∈ G is the bilinear DH (or
BDH) problem. The BDH assumption states that computing the BDH problem
is hard. We define a predicate

bdhp(X, Ŷ , Ŵ , Ẑ) := bdh(X, Ŷ , Ŵ ) ?= Ẑ.

We can also consider the BDH problem where, in addition to random
(X, Y, W ), one is also given access to an oracle that on input (Ŷ , Ŵ , Ẑ) re-
turns bdhp(X, Ŷ , Ŵ , Ẑ). The strong BDH assumption [22] states that the BDH
problem remains hard even with the help of the oracle.

For reasons similar to the issue with hashed ElGamal encryption, the strong
BDH assumption seems necessary to prove the CCA security of the basic ver-
sion [22] of the original Boneh-Franklin IBE [5]. We can repeat the above idea
and define the twin BDH problem, where one must compute 2bdh(X1, X2, Y, W )
for random X1, X2, Y, W , where we define

2bdh(X1, X2, Y, W ) := (bdh(X1, Y, W ), bdh(X2, Y, W )).

Continuing as above, the strong twin BDH problem is the same as the twin BDH
problem but with a suitably defined decision oracle. In this case define the
predicate

2bdhp(X1, X2, Ŷ , Ŵ , Ẑ1, Ẑ2) := 2bdh(X1, X2, Ŷ , Ŵ ) ?= (Ẑ1, Ẑ2),
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and the decision oracle takes input (Ŷ , Ŵ , Ẑ1, Ẑ2) and returns 2bdhp(X1, X2, Ŷ ,
Ŵ , Ẑ1, Ẑ2). The strong twin BDH assumption states that the BDH problem is
still hard, even with access to the decision oracle.

Finally, we will need a slight generalization of the trapdoor test in Theorem 2.
It is easy to check that the theorem is still true if the elements Ŷ , Ẑ1, Ẑ2 are in
a different cyclic group of the same order (we will take them in the range group
of the pairing). With this observation, we can prove an analog of Theorem 3.

Theorem 8. Suppose A is a strong twin BDH adversary that makes at most
Qd queries to its decision oracle, and runs in time at most τ . Then there exists
a BDH adversary B with the following properties: B runs in time at most τ , plus
the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover,

Adv2BDHA,G ≤ AdvBDHB,G + Qd/q.

In addition, if B does not output “failure,” then its output is correct with prob-
ability at least 1 − 1/q.

6.2 Twin Boneh-Franklin

For model and security definitions of IBE we refer the reader to [5]. Theorem 8
admits a simple analysis of the following IBE scheme, which we call the twin
Boneh-Franklin IBE scheme. This scheme will use two hash functions, H (which
outputs symmetric keys) and G (which outputs group elements), and a symmetric
cipher (E, D). A system public key is a pair of group elements (X1, X2), where
Xi = gxi for i = 1, 2. The system private key is (x1, x2), which are selected at
random from Zq by the setup algorithm. The secret key for an identity id ∈
{0, 1}∗ is (S1, S2) = (G(id)x1 , G(id)x2). To encrypt a message m for identity id ,
one chooses y ∈ Zq and random and sets

Y := gy, Z1 := ê(G(id ), X1)y, Z2 := ê(G(id ), X2)y,

k := H(id , Y, Z1, Z2), c := Ek(m).

The ciphertext is (Y, c). To decrypt using the secret key (S1, S2) for id , one
computes

Z1 := ê(S1, Y ), Z2 := ê(S2, Y ), k := H(id , Y, Z1, Z2), m := Dk(c).

We shall denote this scheme IBE2dh. Now we can essentially borrow the analy-
sis of the original Boneh-Franklin scheme under the strong BDH assumption [22],
except now we prove that the scheme is secure against chosen ciphertext attack
under the strong twin BDH assumption. By Theorem 8, we get that the above
IBE scheme is CCA secure under the BDH assumption if the symmetric cipher
is secure and the hash functions are treated as random oracles. The security
reduction here enjoys the same tightness as the reduction given in [22], which is
tighter than the original analysis of the Boneh-Franklin scheme. Again, for space
reasons we will give a complete statement of this result and the corresponding
proof (which is mostly standard) in the full version.
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We remark that our ideas can also be applied to the IBE scheme from Sakai-
Kasahara [27]. The resulting IBE scheme is more efficient but its security can
only be proved based on the q-BDHI assumption [4].
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Abstract. Predicate encryption is a new paradigm generalizing, among
other things, identity-based encryption. In a predicate encryption scheme,
secret keys correspond to predicates and ciphertexts are associated with
attributes; the secret key SKf corresponding to a predicate f can be used
to decrypt a ciphertext associated with attribute I if and only if f(I) =
1. Constructions of such schemes are currently known for relatively few
classes of predicates.

We construct such a scheme for predicates corresponding to the eval-
uation of inner products over ZN (for some large integer N). This, in
turn, enables constructions in which predicates correspond to the eval-
uation of disjunctions, polynomials, CNF/DNF formulae, or threshold
predicates (among others). Besides serving as a significant step forward
in the theory of predicate encryption, our results lead to a number of
applications that are interesting in their own right.

1 Introduction

Traditional public-key encryption is rather coarse-grained: a sender encrypts a
message M with respect to a given public key PK, and only the owner of the
(unique) secret key associated with PK can decrypt the resulting ciphertext and
recover the message. These straightforward semantics suffice for point-to-point
communication, where encrypted data is intended for one particular user who
is known to the sender in advance. In other settings, however, the sender may
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instead want to define some complex policy determining who is allowed to recover
the encrypted data. For example, classified data might be associated with certain
keywords; this data should be accessible to users who are allowed to read all
classified information, as well as to users allowed to read information associated
with the particular keywords in question. Or, in a health care application, a
patient’s records should perhaps be accessible only to a physician who has treated
the patient in the past.

Applications such as those sketched above require new cryptographic mech-
anisms that provide more fine-grained control over access to encrypted data.
Predicate encryption offers one such tool. At a high level (formal definitions are
given in Section 2), secret keys in a predicate encryption scheme correspond to
predicates in some class F , and a sender associates a ciphertext with an at-
tribute in a set Σ; a ciphertext associated with the attribute I ∈ Σ can be
decrypted by a secret key SKf corresponding to the predicate f ∈ F if and only
if f(I) = 1.

The “basic” level of security achieved by such schemes guarantees, informally,
that a ciphertext associated with attribute I hides all information about the
underlying message unless one holds a secret key giving the explicit ability to
decrypt. I.e., if an adversary A holds keys SKf1 , . . . , SKf�

, then A learns nothing
about a message encrypted using attribute I if f1(I) = · · · = f�(I) = 0. We refer
to this security notion as payload hiding. A stronger notion of security, that
we call attribute hiding, requires further that a ciphertext hides all information
about the associated attribute I except that which is explicitly leaked by the
keys in one’s possession; i.e., an adversary holding secret keys as above learns
only the values f1(I), . . . , f�(I) (in addition to the message in case one of these
evaluates to ‘1’). Formal definitions are given in Section 2.

Much recent work aimed at constructing different types of fine-grained encryp-
tion schemes can be cast in the framework of predicate encryption. Identity-based
encryption (IBE) [21,8,13,4,5,23] can be viewed as predicate encryption for the
class of equality tests; the standard notion of security for IBE [8,12] corresponds
to payload-hiding, while anonymous IBE [7,11,14] corresponds to the stronger
notion of attribute hiding. Attribute-based encryption schemes [20,15,3,19] can
also be cast in the framework of predicate encryption, though in this case all
the listed constructions achieve payload hiding only. Boneh and Waters [10] con-
struct a predicate encryption scheme that handles conjunctions (of, e.g., equality
tests) and range queries; their scheme satisfies the stronger notion of attribute
hiding. Shi et al. [22] also construct a scheme for range queries, but prove se-
curity in a weaker model where attribute hiding is required to hold only if the
adversary holds keys that do not allow recovery of the message.

Other work introducing concepts related to predicate encryption includes
[2,1]. In contrast to the present work, however, the threat model in those works
do not consider collusion among users holding different secret keys. The
problem becomes significantly more difficult when security against collusion is
required.
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1.1 Our Results

An important research direction is to construct predicate encryption schemes
for predicate classes F that are as expressive as possible, with the ultimate goal
being to handle all polynomial-time predicates. We are still far from this goal.
Furthermore, most of the existing work (listed above) yields only payload-hiding
schemes, and existing techniques for obtaining attribute-hiding schemes seem
limited to enforcing conjunctions (indeed, handling disjunctions was left as an
open question in [10]). Getting slightly technical, this is because the underly-
ing cryptographic mechanism used in the above schemes is to pair components
of the secret key with corresponding components of the ciphertext and then
multiply the intermediate results together; a “cancelation” occurs if everything
“matches”, but a random group element results if there is any “mismatch”. Thus,
the holder of a non-matching secret key learns only that there was a mismatch
in at least one position, but does not learn the number of mismatches or their
locations. Very different cryptographic techniques seem needed to support dis-
junctions, since a mismatch in a single position cannot result in a completely
random group element but rather must somehow allow for a “cancelation” if
there is a match in some other position. (We stress that what makes this diffi-
cult is that attribute hiding requires correct decryption to hide the position of
a match and only reveal that there was a match in at least one position.)

The aim of our work is to construct an attribute-hiding scheme handling dis-
junctions. As a stepping stone toward this goal, we first focus on predicates
corresponding to the computation of inner products over ZN (for some large in-
teger N). Formally, we take Σ = Z

n
N as our set of attributes, and take our class

of predicates to be F = {fx | x ∈ Z
n
N} where fx(y) = 1 iff 〈x, y〉 = 0. (Here,

〈x, y〉 denotes the dot product
∑n

i=1 xi · yi mod N of two vectors x and y.)
We construct a predicate encryption scheme for this F without random ora-
cles, based on two new assumptions in composite-order groups equipped with
a bilinear map. Our assumptions are non-interactive and of fixed size (i.e., not
“q-type”), and can be shown to hold in the generic group model. A pessimistic
interpretation of our results would be that we prove security in the generic group
model, but we believe it is of importance that we are able to distill our necessary
assumptions to ones that are compact and falsifiable. Our construction uses new
techniques, including the fact that we work in a bilinear group whose order is a
product of three primes.

We view our main construction as a significant step toward increasing the
expressiveness of predicate encryption. Moreover, we show that any predicate
encryption scheme supporting “inner product” predicates as described above
can be used as a building block to construct predicates of more general types:

– As an easy warm-up, we show that it implies (anonymous) identity-based
encryption as well as hidden-vector encryption [10]. As a consequence, our
work implies all the results of [10].

– We can also construct predicate encryption schemes supporting polynomial
evaluation. Here, we take ZN as our set of attributes, and predicates corre-
spond to polynomials in ZN [x] of some bounded degree; a predicate evaluates
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to 1 iff the corresponding polynomial evaluates to 0 on the point in ques-
tion. We can also extend this to include multi-variate polynomials (in some
bounded number of variables). A “dual” of this construction allows the at-
tributes to be polynomials, and the predicates to correspond to evaluation
at a fixed point.

– Given the above, we can fairly easily support predicates that are disjunctions
of other predicates (e.g., equality), thus achieving our main goal. In the
context of identity-based encryption, this gives the ability to issue secret
keys corresponding to a set of identities that enables decryption whenever
a ciphertext is encrypted to any identity in this set (without leaking which
identity was actually used to encrypt).

– We also show how to handle predicates corresponding to DNF and CNF
formulae of some bounded size.

– Working directly with our “inner product” construction, we can derive a
scheme supporting threshold queries of the following form: Attributes are
subsets of A = {1, . . . , �}, and predicates take the form {fS,t | S ⊆ A} where
fS,t(S′) = 1 iff S ∩ S′ = t. This is useful in the “fuzzy IBE” setting of Sahai
and Waters [20], and improves on their work in that we achieve attribute
hiding (rather than only payload hiding) and handle exact thresholds.

We defer further discussion regarding the above until Section 5.

2 Definitions

We formally define the syntax of predicate encryption and the security proper-
ties discussed informally in the Introduction. (Our definitions follow the general
framework of those given in [10].) Throughout this section, we consider the
general case where Σ denotes an arbitrary set of attributes and F denotes an
arbitrary set of predicates over Σ. Formally, both Σ and F may depend on the
security parameter and/or the master public parameters; for simplicity, we leave
this implicit.

Definition 1. A predicate encryption scheme for the class of predicates F over
the set of attributes Σ consists of four ppt algorithms Setup, GenKey, Enc, Dec
such that:

• Setup takes as input the security parameter 1n and outputs a (master) public
key PK and a (master) secret key SK.

• GenKey takes as input the master secret key SK and a (description of a)
predicate f ∈ F . It outputs a key SKf .

• Enc takes as input the public key PK, an attribute I ∈ Σ, and a message M
in some associated message space. It returns a ciphertext C. We write this
as C ← EncPK(I, M).

• Dec takes as input a secret key SKf and a ciphertext C. It outputs either a
message M or the distinguished symbol ⊥.

For correctness, we require that for all n, all (PK, SK) generated by Setup(1n),
all f ∈ F , any key SKf ← GenKeySK(f), and all I ∈ Σ:
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• If f(I) = 1 then DecSKf
(EncPK(I, M)) = M .

• If f(I) = 0 then DecSKf
(EncPK(I, M)) = ⊥ with all but negligible probability.

We will also consider a variant of the above that we call a predicate-only
scheme. Here, Enc takes only an attribute I (and no message); the correctness
requirement is that DecSKf

(EncPK(I)) = f(I) and so all the receiver learns is
whether the predicate is satisfied. A predicate-only scheme can serve as a useful
building block toward a full-fledged predicate encryption scheme.

Our definition of attribute-hiding security corresponds to the notion described
informally earlier. Here, an adversary may request keys corresponding to the
predicates f1, . . . , f� and is then given either EncPK(I0, M0) or EncPK(I1, M1)
for attributes I0, I1 such that fi(I0) = fi(I1) for all i. Furthermore, if M0 �= M1

then it is required that fi(I0) = fi(I1) = 0 for all i. The goal of the adversary
is to determine which attribute-message pair was encrypted, and the stated
conditions ensure that this is not trivial. Observe that when specialized to the
case when F consists of equality tests on strings, this notion corresponds to
anonymous identity-based encryption (with selective-ID security).

Definition 2. A predicate encryption scheme with respect to F and Σ is at-
tribute hiding (or simple secure) if for all ppt adversaries A, the advantage of
A in the following experiment is negligible in the security parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.
2. Setup(1n) is run to generate PK, SK, and the adversary is given PK.
3. A may adaptively request keys for any predicates f1, . . . , f� ∈ F subject to

the restriction that fi(I0) = fi(I1) for all i. In response, A is given the
corresponding keys SKfi ← GenKeySK(fi).

4. A outputs two equal-length messages M0, M1. If there is an i for which
fi(I0) = fi(I1) = 1, then it is required that M0 = M1.

5. A random bit b is chosen, and A is given the ciphertext C ← EncPK(Ib, Mb).
6. The adversary may continue to request keys for additional predicates, subject

to the same restrictions as before.
7. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

We remark that our definition uses the “selective” notion of security introduced
in [12]. One could also consider the definition where the adversary is allowed to
specify I0, I1 adaptively, based on PK and any secret keys it obtains.

Payload hiding, a strictly weaker notion of security, is defined by forcing I0 =
I1 = I in the above (in which case A has no possible advantage if fi(I) = 1 for
some i). For predicate-only encryption schemes we simply omit the messages in
the above experiment. For convenience, we include in Appendix A a re-statement
of the definition of security given above for the particular inner-product predicate
we use in our main construction.
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3 Background on Pairings and Complexity Assumptions

We review some general notions about bilinear groups of composite order, first
used in cryptographic applications by [9]. In contrast to all prior work using
composite-order bilinear groups, however, we use groups whose order N is a
product of three (distinct) primes. This is for simplicity only, since a variant
of our construction can be proven secure based on a “decisional linear”-type
assumption [6] in a group of composite order N which is a product of two primes.1

Let G be an algorithm that takes as input a security parameter 1n and outputs
a tuple (p, q, r, G, GT , ê) where p, q, r are distinct primes, G and GT are two cyclic
groups of order N = pqr, and ê : G × G → GT is bilinear (i.e., ∀u, v ∈ G and
∀a, b ∈ Z we have ê(ua, vb) = ê(u, v)ab) and non-degenerate (i.e., if g generates G

then ê(g, g) generates GT ). We assume the group operations in G and GT as well
as the bilinear map ê are all computable in time polynomial in n. Furthermore,
we assume that the description of G and GT includes generators of these groups.

We use the notation Gp, Gq, Gr to denote the subgroups of G having order
p, q, and r, respectively. Observe that G = Gp × Gq × Gr. Note also that if g is
a generator of G, then the element gpq is a generator of Gr; the element gpr is a
generator of Gq; and the element gqr is a generator of Gp. Furthermore, if, e.g.,
hp ∈ Gp and hq ∈ Gq then

ê(hp, hq) = ê
(
(gqr)α1 , (gpr)α2

)
= ê

(
gα1 , grα2

)pqr

= 1,

where α1 = loggqr hp and α2 = loggpr hq. Similar rules hold whenever ê is applied
to non-identity elements in distinct subgroups.

3.1 Our Assumptions

We now state the assumptions we use to prove security of our construction. As
remarked earlier, these assumptions are new but we justify them by proving
that they hold in the generic group model under the assumption that finding
a non-trivial factor of N (the group order) is hard. (Details appear in the full
version of this paper [17].) At a minimum, then, our construction can be viewed
as secure in the generic group model. Nevertheless, we state our assumptions
explicitly and highlight that they are non-interactive and of fixed size.

Assumption 1. Let G be as above. We say that G satisfies Assumption 1 if the
advantage of any ppt algorithm A in the following experiment is negligible in
the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be
generators of Gp, Gq, and Gr, respectively.

1 This is analogous to the “folklore” transformation (see, e.g., [16]) that converts a
scheme based on a group whose order N is a product of two primes to a scheme that
uses a prime-order group. Typically, using composite order groups gives a simpler
scheme; since the group sizes are larger, however, group operations are less efficient.
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2. Choose random Q1, Q2, Q3 ∈ Gq, random R1, R2, R3 ∈ Gr, random a, b, s ∈
Zp, and a random bit ν. Give to A the values (N, G, GT , ê) as well as

gp, gr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2.

If ν = 0 give A the value T = gb2s
p R3, while if ν = 1 give A the value

T = gb2s
p Q3R3.

3. A outputs a bit ν′, and succeeds if ν′ = ν.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

Assumption 2. Let G be as above. We say that G satisfies Assumption 2 if the
advantage of any ppt algorithm A in the following experiment is negligible in
the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be
generators of Gp, Gq, and Gr, respectively.

2. Choose random h ∈ Gp and Q1, Q2 ∈ Gq, random s, γ ∈ Zq, and a random
bit ν. Give to A the values (N, G, GT , ê) as well as

gp, gq, gr, h, gs
p, hsQ1, gγ

p Q2, ê(gp, h)γ .

If ν = 0 then give A the value ê(gp, h)γs, while if ν = 1 then give A a random
element of GT .

3. A outputs a bit ν′, and succeeds if ν′ = ν.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

Note that both the above assumptions imply the hardness of factoring N .

4 Our Main Construction

Our main construction is a predicate-only scheme where the set of attributes is
Σ = Z

n
N , and the class of predicates is F = {fx | x ∈ Z

n
N} with fx(y) = 1

iff 〈x, y〉 = 0 mod N . (We use vectors of length n for convenience only.) In this
section we construct a predicate-only scheme and give some intuition about our
proof. In Appendix B we show how our scheme can be extended to give a full-
fledged predicate encryption scheme. All proofs of security appear in the full
version of our paper [17].

Intuition. In our construction, each ciphertext has associated with it a (secret)
vector x, and each secret key corresponds to a vector v. The decryption proce-
dure must check whether x ·v = 0, and reveal nothing about x but whether this
is true. To do this, we will make use of a bilinear group G whose order N is the
product of three primes p, q, and r. Let Gp, Gq, and Gr denote the subgroups of
G having order p, q, and r, respectively. We will (informally) assume, as in [9],
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that a random element in any of these subgroups is indistinguishable from a
random element of G.2 Thus, we can use random elements from one subgroup
to “mask” elements from another subgroup.

At a high level, we will use these subgroups as follows. Gq will be used to
encode the vectors x and v in the ciphertext and secret keys, respectively. Com-
putation of the inner product 〈v, x〉 will be done in Gq (in the exponent), using
the bilinear map. Gp will be used to encode an equation (again in the exponent)
that evaluates to zero when decryption is done properly. This subgroup is used
to prevent an adversary from improperly “manipulating” the computation (by,
e.g., changing the ordering of components of the ciphertext or secret key, raising
these components to some power, etc.). On an intuitive level, if the adversary
tries to manipulate the computation in any way, then the computation occurring
in the Gp subgroup will no longer yield the identity (i.e., will no longer yield 0 in
the exponent), but will instead have the effect of “masking” the correct answer
with a random element of Gp (which will invalidate the entire computation).
Elements in Gr are used for “general masking” of terms in other subgroups;
i.e., random elements of Gr will be multiplied with various components of the
ciphertext (and secret key) in order to “hide” information that might be present
in the Gp and Gq subgroups.

We now proceed to the formal description of our scheme.

4.1 The Construction

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with
G = Gp ×Gq ×Gr. Next, it computes gp, gq, and gr as generators of Gp, Gq, and
Gr, respectively. It then chooses R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at
random for i = 1 to n, and R0 ∈ Gr uniformly at random. The public parameters
include (N = pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq · R0, {H1,i = h1,i · R1,i, H2,i = h2,i · R2,i}n

i=1

)
.

The master secret key SK is
(
p, q, r, gq, {h1,i, h2,i}n

i=1

)
.

EncPK(x). Let x = (x1, . . . , xn) with xi ∈ ZN . This algorithm chooses random
s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n. (Note: a random element R ∈ Gr

can be sampled by choosing random δ ∈ ZN and setting R = gδ
r .) It outputs the

ciphertext

C =
(
C0 = gs

p,
{

C1,i = Hs
1,i · Qα·xi · R3,i, C2,i = Hs

2,i · Qβ·xi · R4,i

}n

i=1

)
.

GenKeySK(v). Let v = (v1, . . . , vn), and recall SK =
(
p, q, r, gq, {h1,i, h2,i}n

i=1

)
.

This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1 to n, random R5 ∈ Gr,
random f1, f2 ∈ Zq, and random Q6 ∈ Gq. It then outputs

SKv =

⎛
⎝ K = R5 · Q6 ·

∏n
i=1 h

−r1,i

1,i · h−r2,i

2,i ,{
K1,i = g

r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

⎞
⎠ .

2 This is only for intuition. Our actual computational assumption is given in Section 3.
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DecSKv(C). Let C =
(
C0, {C1,i, C2,i}n

i=1

)
and SKv =

(
K, {K1,i, K2,i}n

i=1

)
be

as above. The decryption algorithm outputs 1 iff

ê(C0, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i)
?= 1.

Correctness. To see that correctness holds, let C and SKv be as above. Then

ê(C0, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i)

= ê

(
gs

p, R5Q6

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, gr1,i

p gf1·vi
q

)
· ê

(
Hs

2,iQ
β·xiR4,i, gr2,i

p gf2·vi
q

)

= ê

(
gs

p,
n∏

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
hs

1,i · gα·xi
q , gr1,i

p gf1·vi
q

)
· ê

(
hs

2,i · gβ·xi
q , gr2,i

p gf2·vi
q

)

=
n∏

i=1

ê(gq, gq)(αf1+βf2)xivi = ê(gq, gq)(αf1+βf2 mod q)〈x,v〉,

where α, β are random in ZN and f1, f2 are random in Zq. If 〈x, v〉 = 0 mod N ,
then the above evaluates to 1. If 〈x, v〉 �= 0 mod N there are two cases: if 〈x, v〉 �=
0 mod q then with all but negligible probability (over choice of α, β, f1, f2) the
above evaluates to an element other than the identity. The other possibility is
that 〈x, v〉 = 0 mod q, in which case the above would always evaluate to 1;
however, this would reveal a non-trivial factor of N and so this occurs with
only negligible probability (recall, our assumptions imply hardness of finding a
non-trivial factor of N).

There may appear to be some redundancy in our construction; for instance,
the C1,i and C2,i components play almost identical roles. In fact we can view the
encryption system as two parallel sub-systems linked via the C0 component (and
the corresponding component of the secret key). This two sub-system approach
was first used by Boyen and Waters [11]; it can be viewed as a complex gener-
alization of the Naor-Yung [18] “two-key” paradigm to the predicate encryption
setting. A natural question is whether this redundancy can be eliminated to
achieve better performance. While such a construction appears to be secure, our
current proof (that utilizes a non-interactive assumption) relies in an essential
way on having two parallel subsystems.
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4.2 Proof Intuition

The most challenging aspect to providing a proof of our scheme naturally arises
from the disjunctive capabilities of our system. In previous conjunctive systems
(such as the one by Boneh and Waters [10]) the authors proved security by
moving through a sequence of hybrid games, in which an encryption of a vector
x was changed component-by-component to the encryption of a vector y. The
adversary could only ask for queries that did not match either x or y, or queries
that did not “look at” the components in which x and y differed. Thus, it was
relatively straightforward to perform hybrid experiments over the components
of x and y that differed, since the private keys given to the adversary did not
“look at” these components.

In our proof an adversary will again try to determine whether a given cipher-
text was encrypted with respect to x or y. However, in our case the adversary
can legally request a secret key for a vector v such that 〈x, v〉 = 0 and 〈y, v〉 = 0;
i.e., it may obtain a key that should enable correct decryption in either case.
This means that we cannot use the same proof strategy as in previous, conjunc-
tive schemes. For example, if we change just one component at a time, then
the “hybrid” vector used in an intermediate step will likely not be orthogonal
to v (and the adversary will be able to detect this because its secret key will
no longer decrypt the given ciphertext). Therefore, we need to use a sequence of
hybrid games in which entire vectors are changed in one step, instead of using a
sequence of hybrid games where the vector is changed component-by-component.

To do this we take advantage of the fact that, as noted earlier, our encryp-
tion scheme contains two parallel sub-systems. In our proof we will use hybrid
games where a challenge ciphertext will be encrypted with respect to one vector
in the first sub-system and a different vector in the second sub-system. (Note
that such a ciphertext is ill-formed, since any valid ciphertext will always use the
same vector in each sub-system.) Let (a, b) denote a ciphertext encrypted using
vector a in the first sub-system and b in the second sub-system. To prove in-
distinguishability when encrypting to x (which corresponds to (x, x)) and when
encrypting to y (which corresponds to (y, y)), we will prove indistinguishability
of the following sequence of hybrid games:

(x, x) ≈ (x,0) ≈ (x, y) ≈ (0, y) ≈ (y, y).

Using this structure in our proof allows us to use a simulator that will essentially
be able to work in one sub-system without “knowing” what is happening in the
other one. The simulator embeds a “subgroup decision-like” assumption into the
challenge ciphertext for each experiment. The structure of the challenge will de-
termine whether a sub-system encrypts the given vector or the zero vector. Details
of our proof and further discussion are given in the full version of our paper [17].

5 Applications of Our Main Construction

In this section we discuss some applications of predicate encryption schemes of
the type constructed in this paper. Our treatment here is general and can be
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based on any predicate encryption scheme supporting “inner product” queries;
we do not rely on any specific details of our construction.

Given a vector x ∈ Z
�
N , we denote by fx : Z

�
N → {0, 1} the function such

that fx(y) = 1 iff 〈x, y〉 = 0. We define F�
def= {fx | x ∈ Z

�
N}. An inner product

encryption scheme of dimension � is an attribute-hiding predicate encryption
scheme for the class of predicates F�.

5.1 Anonymous Identity-Based Encryption

As a warm-up, we show how anonymous identity-based encryption (IBE) can be
recovered from any inner product encryption scheme of dimension 2. To generate
the master public and secret keys for the IBE scheme, simply run the setup
algorithm of the underlying inner product encryption scheme. To generate secret
keys for the identity I ∈ ZN , set I := (1, I) and output the secret key for the
predicate fI . To encrypt a message M for the identity J ∈ ZN , set J ′ := (−J, 1)
and encrypt the message using the encryption algorithm of the underlying inner
product encryption scheme and the attribute J ′. Since 〈I, J ′〉 = 0 iff I = J ,
correctness and security follow.

5.2 Hidden-Vector Encryption

Given a set Σ, let Σ� = Σ ∪ {�}. Hidden-vector encryption (HVE) [10] cor-
responds to a predicate encryption scheme for the class of predicates Φhve

� =
{φhve

(a1,...,a�)
| a1, . . . , a� ∈ Σ�}, where

φhve
(a1,...,a�)

(x1, . . . , x�) =
{

1 if, for all i, either ai = xi or ai = �
0 otherwise .

A generalization of the ideas from the previous section can be used to real-
ize hidden-vector encryption with Σ = ZN from any inner product encryption
scheme (Setup, GenKey, Enc, Dec) of dimension 2�:

• The setup algorithm is unchanged.
• To generate a secret key corresponding to the predicate φhve

(a1,...,a�)
, first con-

struct a vector A = (A1, . . . , A2�) as follows:

if ai �= � : A2i−1 := 1, A2i := ai

if ai = � : A2i−1 := 0, A2i := 0.

Then output the key obtained by running GenKeySK(fA).
• To encrypt a message M for the attribute x = (x1, . . . , x�), choose random

r1, . . . , r� ∈ ZN and construct a vector Xr = (X1, . . . , X2�) as follows:

X2i−1 := −ri · xi, X2i := ri

(where all multiplication is done modulo N). Then output the ciphertext
C ← EncPK(Xr, M).
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To see that correctness holds, let (a1, . . . , a�), A, (x1, . . . , x�), r, and Xr be
as above. Then:

φhve
(a1,...,a�)

(x1, . . . , x�) = 1 ⇒ ∀r : 〈A, Xr〉 = 0 ⇒ ∀r : fA(Xr) = 1.

Furthermore, assuming gcd(ai − xi, N) = 1 for all i:

φhve
(a1,...,a�)

(x1, . . . , x�) = 0 ⇒ Prr [〈A, Xr〉 = 0] = 1/N

⇒ Prr [fA(Xr) = 1] = 1/N,

which is negligible. Using this, one can prove security of the construction as well.
A straightforward modification of the above gives a scheme that is the “dual”

of HVE, where the set of attributes is (Σ�)� and the class of predicates is Φ̄hve
� =

{φ̄hve
(a1,...,a�)

| a1, . . . , a� ∈ Σ} with

φ̄hve
(a1,...,a�)

(x1, . . . , x�) =
{

1 if, for all i, either ai = xi or xi = �
0 otherwise .

5.3 Predicate Encryption Schemes Supporting Polynomial
Evaluation

We can also construct predicate encryption schemes for predicates corresponding
to polynomial evaluation. Let Φpoly

≤d = {fp | p ∈ ZN [x], deg(p) ≤ d}, where

φp(x) =
{

1 if p(x) = 0
0 otherwise

for x ∈ ZN . Given an inner product encryption scheme (Setup, GenKey, Enc, Dec)
of dimension d + 1, we can construct a predicate encryption scheme for Φpoly

≤d as
follows:

• The setup algorithm is unchanged.
• To generate a secret key corresponding to the polynomial p(x) = adx

d +
· · · + a0x

0, set p := (ad, . . . , a0) and output the key obtained by running
GenKeySK(fp).

• To encrypt a message M for the attribute w ∈ ZN , set w := (wd mod
N, . . . , w0 mod N) and output the ciphertext C ← EncPK(w, M).

Since p(w) = 0 iff 〈p, w〉 = 0, correctness and security follow.
The above shows that we can construct predicate encryption schemes where

predicates correspond to univariate polynomials whose degree d is polynomial
in the security parameter. This can be generalized to the case of polynomials in
t variables, and degree at most d in each variable, as long as dt is polynomial in
the security parameter.

We can also construct schemes that are the “dual” of the above, in which
attributes correspond to polynomials and predicates involve the evaluation of
the input polynomial at some fixed point.
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5.4 Disjunctions, Conjunctions, and Evaluating CNF and DNF
Formulas

Given the polynomial-based constructions of the previous section, we can fairly
easily build predicate encryption schemes for disjunctions of equality tests. For
example, the predicate ORI1,I2 , where ORI1,I2(x) = 1 iff either x = I1 or x = I2,
can be encoded as the univariate polynomial

p(x) = (x − I1) · (x − I2),

which evaluates to 0 iff the relevant predicate evaluates to 1. Similarly, the
predicate ORI1,I2 , where ORI1,I2(x1, x2) = 1 iff either x1 = I1 or x2 = I2, can
be encoded as the bivariate polynomial

p′(x1, x2) = (x1 − I1) · (x2 − I2).

Conjunctions can be handled in a similar fashion. Consider, for example, the
predicate ANDI1,I2 where ANDI1,I2(x1, x1) = 1 if both x1 = I1 and x2 = I2.
Here, we determine the relevant secret key by choosing a random r ∈ ZN and
letting the secret key correspond to the polynomial

p′′(x1, x2) = r · (x1 − I1) + (x2 − I2).

If ANDI1,I2(x1, x1) = 1 then p′′(x1, x2) = 0, whereas if ANDI1,I2(x1, x1) = 0
then, with all but negligible probability over choice of r, it will hold3 that
p′′(x1, x2) �= 0.

The above ideas extend to more complex combinations of disjunctions and
conjunctions, and for boolean variables this means we can handle arbitrary CNF
or DNF formulas. (For non-boolean variables we do not know how to directly
handle negation.) As pointed out in the previous section, the complexity of the
resulting scheme depends polynomially on dt, where t is the number of variables
and d is the maximum degree (of the resulting polynomial) in each variable.

5.5 Exact Thresholds

We conclude with an application that relies directly on inner product encryption.
Here, we consider the setting of “fuzzy IBE” [20], which can be mapped to the
predicate encryption framework as follows: fix a set A = {1, . . . , �} and let the
set of attributes be all subsets of A. Predicates take the form Φ = {φS | S ⊆ A}
where φS(S′) = 1 iff |S∩S′| ≥ t, i.e., S and S′ overlap in at least t positions. Sahai
and Waters [20] show a construction of a payload-hiding predicate encryption
scheme for this class of predicates.

We can construct a scheme where the attribute space is the same as
before, but the class of predicates corresponds to overlap in exactly t positions.
3 In general, the secret key may leak the value of r in which case the adversary will be

able to find x1, x2 such that ANDI1,I2(x1, x1) �= 1 yet p′′(x1, x2) = 0. Since, however,
we consider the “selective” notion of security (where the adversary must commit to
x1, x2 at the outset of the experiment), this is not a problem in our setting.
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(Our scheme will also be attribute hiding.) Namely, set Φ′ = {φ′S | S ⊆ A} with
φ′S(S′) = 1 iff |S ∩ S′| = t. Then, given any inner product encryption scheme of
dimension � + 1:

• The setup algorithm is unchanged.
• To generate a secret key for the predicate φ′S , first define a vector v ∈ Z

�+1
N

as follows:
for 1 ≤ i ≤ �: vi = 1 iff i ∈ S

v�+1 = 1.

Then output the key obtained by running GenKeySK(fv).
• To encrypt a message M for the attribute S′ ⊆ A, define a vector v′ as

follows:
for 1 ≤ i ≤ �: vi = 1 iff i ∈ S′

v�+1 = −t mod N.

Then output the ciphertext C ← EncPK(v′, M).
Since |S ∩ S′| = t exactly when 〈v, v′〉 = 0, correctness and security follow.

Disclaimer

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the U.S. Department of Homeland Security.
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A Security Definition for Inner-Product Encryption

Here, we re-state Definition 2 in the particular setting of our main construction,
which is a predicate-only scheme where the set of attributes4 is Σ = Z

n
N and the

class of predicates is F = {fx | x ∈ Z
n
N} such that fx(y) = 1 ⇔ 〈x, y〉 = 0.

Definition 3. A predicate-only encryption scheme for Σ, F as above is attribute-
hiding if for all ppt adversaries A, the advantage of A in the following experiment
is negligible in the security parameter n:

1. Setup(1n) is run to generate keys PK, SK. This defines a value N which is
given to A.

2. A outputs x, y ∈ Z
n
N , and is then given PK.

3. A may adaptively request keys corresponding to vectors v1, . . . , v� ∈ Z
n
N ,

subject to the restriction that, for all i, 〈vi, x〉 = 〈vi, y〉. In response, A is
given the corresponding keys SKvi

← GenKeySK(fvi
).

4 Technically speaking, both Σ and F depend on the public parameters (since N is
generated as part of PK), but we ignore this technicality.
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4. A random bit b is chosen. If b = 0 then A is given C ← EncPK(x), and if
b = 1 then A is given C ← EncPK(y).

5. The adversary may continue to request keys for additional vectors, subject
to the same restriction as before.

6. A outputs a bit b′, and succeeds if b′ = b.

The advantage of A is the absolute value of the difference between its success
probability and 1/2.

B A Full-Fledged Predicate Encryption Scheme

In Section 4, we showed a construction of a predicate-only scheme. Here, we
extend the previous scheme to obtain a full-fledged predicate encryption scheme
in the sense of Definition 1. The construction follows.

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with
G = Gp ×Gq ×Gr. Next, it computes gp, gq, and gr as generators of Gp, Gq, and
Gr, respectively. It then chooses R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly
at random for i = 1 to n, and R0 ∈ Gr uniformly at random. It also chooses
random γ ∈ Zp and h ∈ Gp. The public parameters include (N = pqr, G, GT , ê)
along with:

PK =

(
gp, gr, Q = gq · R0, P = ê(gp, h)γ ,{
H1,i = h1,i · R1,i, H2,i = h2,i · R2,i

}n

i=1

)
.

(This is identical to the public parameters of the predicate-only scheme with the
exception of the additional element P = ê(gp, h)γ .) The master secret key SK
is

(
p, q, r, gq, h

−γ , {h1,i, h2,i}n
i=1

)
.

EncPK(x, M). View M as an element of GT , and let x = (x1, . . . , xn) with
xi ∈ ZN . This algorithm chooses random s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for
i = 1 to n. It outputs the ciphertext

C =

(
C′ = M · P s, C1 = gs

p,{
C1,i = Hs

1,i · Qα·xi · R3,i, C2,i = Hs
2,i · Qβ·xi · R4,i

}n

i=1

)
.

GenKeySK(v). Let v = (v1, . . . , vn). This algorithm chooses random r1,i, r2,i ∈
Zp for i = 1 to n, random f1, f2 ∈ Zq, random R5 ∈ Gr, and random Q6 ∈ Gq.
It then outputs

SKv =

⎛
⎝ K = R5 · Q6 · h−γ ·

∏n
i=1 h

−r1,i

1,i · h
−r2,i

2,i ,{
K1,i = g

r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

⎞
⎠ .
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DecSKv(C). Let C and SKv be as above. The decryption algorithm outputs

C′ · ê(C1, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i).

As we have described it, decryption never returns an error (i.e., even when
〈v, x〉 �= 0). We will show below that when 〈v, x〉 �= 0 then the output is es-
sentially a random element in the order-q subgroup of GT . By restricting the
message space to some efficiently-recognizable set of negligible density in this
subgroup, we recover the desired semantics by returning an error if the recov-
ered message does not lie in this space.

Correctness. Let C and SKv be as above. Then

C′ · ê(C1, K) ·
n∏

i=1

ê(C1,i, K1,i) · ê(C2,i, K2,i)

= M · P s · ê
(

gs
p, R5Q6h

−γ
n∏

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, gr1,i

p gf1·vi
q

)
· ê

(
Hs

2,iQ
β·xiR4,i, gr2,i

p gf2·vi
q

)

= M · P s · ê
(

gs
p, h−γ

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
hs

1,i gα·xi
q , gr1,i

p gf1·vi
q

)
· ê

(
hs

2,i gβ·xi
q , gr2,i

p gf2·vi
q

)

= M · P s · ê(gp, h)−γs ·
n∏

i=1

ê(gq, gq)(αf1+βf2)xivi = M · ê(gq, gq)(αf1+βf2)〈x,v〉.

If 〈x, v〉 = 0 mod N , then the above evaluates to M . If 〈x, v〉 �= 0 mod N there
are two cases: if 〈x, v〉 �= 0 mod q then the above evaluates to an element whose
distribution is statistically close to uniform in the order-q subgroup of GT . (Re-
call that α, β are chosen at random.) It is possible that 〈x, v〉 = 0 mod q, in
which case the above always evaluates to M ; however, this reveals a non-trivial
factor of N and so an adversary can cause this condition to occur with only
negligible probability.
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Abstract. We describe the use of explicit isogenies to translate in-
stances of the Discrete Logarithm Problem from Jacobians of hyper-
elliptic genus 3 curves to Jacobians of non-hyperelliptic genus 3 curves,
where they are vulnerable to faster index calculus attacks. We provide
explicit formulae for isogenies with kernel isomorphic to (Z/2Z)3 (over
an algebraic closure of the base field) for any hyperelliptic genus 3 curve
over a field of characteristic not 2 or 3. These isogenies are rational for a
positive fraction of all hyperelliptic genus 3 curves defined over a finite
field of characteristic p > 3. Subject to reasonable assumptions, our con-
structions give an explicit and efficient reduction of instances of the DLP
from hyperelliptic to non-hyperelliptic Jacobians for around 18.57% of
all hyperelliptic genus 3 curves over a given finite field.

1 Introduction

After the great success of elliptic curves in cryptography, researchers have natu-
rally been drawn to their higher-dimensional generalizations: Jacobians of higher-
genus curves. Curves of genus 1 (elliptic curves), 2, and 3 are widely believed to
offer the best balance of security and efficiency. This article is concerned with
the security of curves of genus 3.

There are two classes of curves of genus 3: hyperelliptic and non-hyperelliptic.
Each class has a distinct geometry: the canonical morphism of a hyperelliptic
curve is a double cover of a curve of genus 0, while the canonical morphism of a
non-hyperelliptic curve of genus 3 is an isomorphism to a nonsingular plane quar-
tic curve. A hyperelliptic curve cannot be isomorphic (or birational) to a non-
hyperelliptic curve. From a cryptological point of view, the Discrete Logarithm
Problem (DLP) in Jacobians of hyperelliptic curves of genus 3 over Fq may be
solved in Õ(q4/3) group operations, using the index calculus algorithm of Gaudry,
Thomé, Thériault, and Diem [6]. Jacobians of non-hyperelliptic curves of genus 3
over Fq are amenable to Diem’s index calculus algorithm [3], which requires
only Õ(q) group operations to solve the DLP (for comparison, Pollard/baby-
step-giant-step methods require Õ(q3/2) group operations to solve the DLP in
Jacobians of genus 3 curves over Fq). The security of non-hyperelliptic genus 3
curves is therefore widely held to be lower than that of their hyperelliptic cousins.

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 163–180, 2008.
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Our aim is to provide a means of efficiently translating DLPs from Jacobians
of hyperelliptic genus 3 curves to Jacobians of non-hyperelliptic curves, where
faster index calculus is available. We do this by constructing explicit isogenies of
Jacobians: surjective homomorphisms, with finite kernel, from hyperelliptic to
non-hyperelliptic Jacobians. The kernels of our isogenies will intersect trivially
with any subgroup of cryptographic interest, and so the isogenies will restrict to
isomorphisms of DLP subgroups.

Specifically, let H be a hyperelliptic curve of genus 3 over a finite field of
characteristic p > 3. Suppose the Jacobian JH of H contains a subgroup S
isomorphic to (Z/2Z)3 (over an algebraic closure of the base field), generated
by differences of Weierstrass points. If the 2-Weil pairing restricts trivially to S,
then there exists an isogeny with kernel S from JH to a principally polarized
abelian variety A. Using Recillas’ trigonal construction [12], A may be realized
as the Jacobian of a genus 3 curve X . This construction appears to be due to
Donagi and Livné [5]; our contribution, aside from the cryptological application,
is to provide explicit formulae for the curve X and the isogeny. Näıve moduli
space dimension arguments suggest that there is an overwhelming probability
that X will be non-hyperelliptic, and thus explicitly isomorphic to a nonsingular
plane quartic curve C. We therefore obtain an explicit isogeny φ : JH → JC

with kernel S. If φ is defined over Fq, then it maps JH(Fq) into JC(Fq), where
Diem’s Õ(q) index calculus is available. Given points P and Q = [n]P of odd
order in JH(Fq), we can solve the DLP (that is, recovering n from P and Q) in
JC(Fq), using

Q = [n]P =⇒ φ(Q) = [n]φ(P ).

There are several caveats to our approach, besides the requirement of a sub-
group S as described above. First, it does not apply in characteristic 2 or 3. In
characteristic 2, the subgroup S is the kernel of a verschiebung, so X is neces-
sarily hyperelliptic. In characteristic 3, we cannot use the trigonal construction.
Second, in order to obtain an advantage with index calculus on X over H , the
isogeny must be defined over Fq and X must be non-hyperelliptic. We show in
§8 that, subject to some reasonable assumptions, given a hyperelliptic curve H
of genus 3 over a sufficiently large finite field, our algorithms succeed in giving
an explicit rational isogeny from JH to a non-hyperelliptic Jacobian with proba-
bility ≈ 0.1857. In particular, instances of the DLP can be solved in Õ(q) group
operations for around 18.57% of all Jacobians of hyperelliptic curves of genus 3
over a finite field of characteristic p > 3.

Our results have a number of interesting implications for curve-based cryp-
tography, at least for curves of genus 3. First, the difficulty of the DLP in a
subgroup G of JH depends not only on the size of the subgroup G, but upon the
existence of other rational subgroups of JH that can be used to form quotients.
Second, the security of a given hyperelliptic genus 3 curve depends significantly
upon the factorization of its hyperelliptic polynomial. Neither of these results
has any parallel in genus 1 or 2.

After reviewing some standard definitions for hyperelliptic curves in §2, we
define the kernels of our isogenies in §3. In §4, §5 and §6, we describe and derive
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explicit formulae for the trigonal construction, which is our main tool for con-
structing isogenies. After giving an example in §7, we compute (heuristically)
the expectation that the methods of this article will compute a rational isogeny
for a randomly chosen curve in §8. Finally, in §9 we briefly describe some of the
problems involved in generalizing these methods.

A Note on the Base Field

We will work over Fq throughout this article, where q is a power of a prime
p > 3. We let G denote the Galois group Gal(Fq/Fq), which is (topologically)
generated by the qth power Frobenius map. Some of the theory of this article
carries over to fields of characteristic zero: in particular, the results of §5 and §6
are valid over fields of characteristic not 2 or 3.

2 Notation and Conventions for Hyperelliptic Curves

We assume that we are given a hyperelliptic curve H of genus 3 over Fq, and
that the Jacobian JH of H is absolutely simple. We will use both an affine model

H : y2 = F (x),

where F is a squarefree polynomial of degree 7 or 8, and a weighted projective
plane model

H : w2 = F̃ (u, v)

for H (where u, v, and w have weights 1, 1, and 4, respectively). The coordinates
of these models are related by x = u/v and y = w/v4. The polynomial F̃ is
squarefree of total degree 8, with F̃ (u, v) = v8F (u/v) and F̃ (x, 1) = F (x).
We emphasize that F need not be monic. By a randomly chosen hyperelliptic
curve, we mean the hyperelliptic curve defined by w2 = F̃ (u, v), where F̃ is
a uniformly randomly chosen squarefree homogenous bivariate polynomial of
degree 8 over Fq. The canonical hyperelliptic involution ι of H is defined by
(x, y) �→ (x, −y) in the affine model, (u : v : w) �→ (u : v : −w) in the projective
model, and induces the negation map [−1] on JH . The quotient π : H → P

1 ∼=
H/〈ι〉 sends (u : v : w) to (u : v) in the projective model, and (x, y) to x in the
affine model (where it maps onto the affine patch of P

1 where v �= 0).
To compute in JH , we fix an isomorphism from JH to the group of degree-

zero divisor classes on H , denoted Pic0(H). Recall that divisors are formal sums
of points in H(Fq), and if D =

∑
P∈H nP (P ) is a divisor, then

∑
P∈H nP is

the degree of D. We say D is principal if D = div(f) :=
∑

P∈H ordP (f)(P )
for some function f on H , where ordP (f) denotes the number of zeroes (or the
negative of the number of poles) of f at P . Since H is complete, every principal
divisor has degree 0. The group Pic0(H) is defined to be the group of divisors of
degree 0 modulo principal divisors; the equivalence class of a divisor D is denoted
by [D].
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3 The Kernel of the Isogeny

The eight points of H(Fq) where w = 0 are called the Weierstrass points of H .
Each Weierstrass point W corresponds to a linear factor LW = v(W )u −u(W )v
of F̃ . If W1 and W2 are Weierstrass points, then 2(W1)−2(W2) = div(LW1/LW2),
so 2[(W1) − (W2)] = 0; hence [(W1) − (W2)] corresponds to an element of
JH [2](Fq) (the two-torsion subgroup of JH : that is, the kernel of multiplica-
tion by two). In particular, [(W1) − (W2)] = [(W2) − (W1)], so the divisor class
[(W1)−(W2)] corresponds to the pair {W1, W2} of Weierstrass points, and hence
to the quadratic factor LW1LW2 of F̃ .

Proposition 1. To every G-stable partition of the eight Weierstrass points of H
into four disjoint pairs, we may associate an Fq-rational subgroup of JH [2](Fq)
isomorphic to (Z/2Z)3.

Proof. Let {{W ′
1, W

′′
1 }, {W ′

2, W
′′
2 }, {W ′

3, W
′′
3 }, {W ′

4, W
′′
4 }} be a partition of the

Weierstrass points of H into four disjoint pairs. Each pair {W ′
i , W

′′
i } corresponds

to the two-torsion divisor class [(W ′
i ) − (W ′′

i )] in JH [2](Fq). We associate the
subgroup S := 〈[(W ′

i ) − (W ′′
i )] : 1 ≤ i ≤ 4〉 to the partition. Observe that

4∑
i=1

[(W ′
i ) − (W ′′

i )] =
[
div
(
w/

4∏
i=1

LW ′′
i

)]
= 0;

this is the only relation on the classes [(W ′
i )−(W ′′

i )], so S ∼= (Z/2Z)3. The action
of G on JH [2](Fq) corresponds to its action on the Weierstrass points, so if the
partition is G-stable, then the subgroup S is G-stable. 
�

Remark 1. Requiring the pairs of points to be disjoint ensures that the associated
subgroup is 2-Weil isotropic. This is necessary for the quotient by the subgroup
to be an isogeny of principally polarized abelian varieties (see §9).

Remark 2. By “an Fq-rational subgroup of JH [2](Fq) isomorphic to (Z/2Z)3”, we
mean a G-stable subgroup that is isomorphic to (Z/2Z)3 over Fq. We emphasize
that the elements of the subgroup need not be Fq-rational themselves.

Definition 1. We call the subgroups corresponding to partitions of the Weier-
strass points of H as in Proposition 1 tractable subgroups. We let S(H) denote
the set of all Fq-rational tractable subgroups of JH [2](Fq).

Remark 3. Not every subgroup of JH [2](Fq) that is the kernel of an isogeny of
Jacobians is a tractable subgroup. For example, if W1, . . . , W8 are the Weierstrass
points of H , then the subgroup

〈
[(W1) − (Wi) + (Wj) − (Wk)] : (i, j, k) ∈ {(2, 3, 4), (2, 5, 6), (3, 5, 7)}

〉

is maximally 2-Weil isotropic, and hence is the kernel of an isogeny of Jacobians
(see §9). However, this subgroup contains no nontrivial differences of Weierstrass
points, and so cannot be a tractable subgroup.



Isogenies and the Discrete Logarithm Problem 167

Computing S(H) is straightforward if we identify each tractable subgroup with
its corresponding partition of Weierstrass points. Each pair {W ′

i , W
′′
i } of Weier-

strass points corresponds to a quadratic factor of F̃ . Since the pairs are disjoint,
the corresponding quadratic factors are pairwise coprime, and hence form (up
scalar multiples) a factorization of the hyperelliptic polynomial F̃ . We therefore
have a correspondence of tractable subgroups, partitions of Weierstrass points
into pairs, and sets of quadratic polynomials (up to scalar multiples):

S ←→
{
{W ′

i , W
′′
i } : 1 ≤ i ≤ 4

}
←→

{
F1, F2, F3, F4

}
, where F̃ = F1F2F3F4.

Since the action of G on JH [2](Fq) corresponds to its action on the set of Weier-
strass points, the action of G on a tractable subgroup S corresponds to the action
of G on the corresponding set {F1, F2, F3, F4}. In particular, S is Fq-rational pre-
cisely when {F1, F2, F3, F4} is fixed by G. The factors Fi are themselves defined
over Fq precisely when the corresponding points of S are Fq-rational.

We can use this information to compute S(H). The set of pairs of Weierstrass
points contains a G-orbit

(
{W ′

i1
, W ′′

i1
}, . . . , {W ′

in
, W ′′

in
}
)

if and only if (possibly
after exchanging some of the W ′

ik
with the W ′′

ik
) either both (W ′

i1 , . . . , W
′
in

)
and (W ′′

i1
, . . . , W ′′

in
) are G-orbits or (W ′

i1
, . . . , W ′

in
, W ′′

i1
, . . . , W ′′

in
) is a G-orbit.

Every G-orbit of Weierstrass points corresponds to an Fq-irreducible factor of F .
Elementary calculations therefore yield the following useful lemma, as well as
algorithms to compute all of the Fq-rational tractable subgroups of JH [2](Fq).

Lemma 1. Let H : w2 = F̃ (u, v) be a hyperelliptic curve of genus 3 over Fq.
The cardinality of the set S(H) depends only on the degrees of the Fq-irreducible
factors of F̃ , and is described by the following table:

Degrees of Fq-irreducible factors of F̃ #S(H)
(8), (6, 2), (6, 1, 1), (4, 2, 1, 1) 1

(4, 4) 5
(4, 2, 2), (4, 1, 1, 1, 1), (3, 3, 2), (3, 3, 1, 1) 3

(2, 2, 2, 1, 1) 7
(2, 2, 1, 1, 1, 1) 9

(2, 1, 1, 1, 1, 1, 1) 15
(2, 2, 2, 2) 25

(1, 1, 1, 1, 1, 1, 1, 1) 105
Other 0

4 The Trigonal Construction

We will now briefly outline the theoretical aspects of constructing isogenies with
tractable kernels. We will make the construction completely explicit in §5 and §6.

Definition 2. Suppose S = 〈[(W ′
i ) − (W ′′

i )] : 1 ≤ i ≤ 4〉 is a tractable subgroup.
We say that a morphism g : P

1 → P
1 is a trigonal map for S if g has degree 3

and g(π(W ′
i )) = g(π(W ′′

i )) for 1 ≤ i ≤ 4.
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Given a trigonal map g, Recillas’ trigonal construction [12] specifies a curve X
of genus 3 and a map f : X → P

1 of degree 4. The isomorphism class of X is
independent of the choice of g. Theorem 1, due to Donagi and Livné, states that
if g is a trigonal map for S, then S is the kernel of an isogeny from JH to JX .

Theorem 1 (Donagi and Livné [5, §5]). Let S be a tractable subgroup of
JH [2](Fq), and let g : P

1 → P
1 be a trigonal map for S. If X is the curve formed

from g by Recillas’ trigonal construction, then there is an isogeny φ : JH → JX

defined over Fq with kernel S.

We will give only a brief description of the geometry of X here, concentrating
instead on its explicit construction; we refer the reader to Recillas [12], Donagi [4,
§2], Birkenhake and Lange [1, §12.7], and Vakil [15] for the geometrical theory
(and proofs). The isogeny is analogous to the well-known Richelot isogeny in
genus 2 (see Bost and Mestre [2] and Donagi and Livné [5]).

In abstract terms, if U is the subset of the codomain of g above which g ◦π is
unramified, then X is by definition the closure of the curve over U representing
the pushforward to U of the sheaf of sections of π : (g ◦ π)−1(U) → g−1(U) (in
the étale topology). This means in particular that the Fq-points of X over an
Fq-point P of U represent partitions of the six Fq-points of (g ◦π)−1(P ) into two
sets of three exchanged by the hyperelliptic involution. The fibre product of H
and X over P

1 (with respect to g◦π and f) is the union of two isomorphic curves,
R and R′, which are exchanged by the involution on H ×P1 X induced by the
hyperelliptic involution. The natural projections induce coverings πH : R → H
and πX : R → X of degrees 2 and 3, respectively, so R is a (3, 2)-correspondence
between H and X . The map (πX)∗◦(πH)∗ on divisor classes (that is, pulling back
from H to R, then pushing forward onto X) induces an isogeny φ : JH → JX

with kernel S.1 If we replace R with R′ in the above, we obtain an isogeny
isomorphic to −φ. Thus, up to sign, the construction of the isogeny depends
only on the subgroup S. The curves and morphisms described above form the
commutative diagrams shown in Fig. 1.

The hyperelliptic Jacobians form a codimension-1 subspace of the moduli
space of 3-dimensional principally polarized abelian varieties. Näıvely, then, if X
is a curve of genus 3 selected at random, then the probability that X is hyper-
elliptic is inversely proportional to q; for cryptographically relevant sizes of q,
this probability should be negligible. This is consistent with our experimental
observations. In the sequel, by “a randomly chosen curve H and subgroup S in
S(H)”, we mean a randomly chosen hyperelliptic curve H (in the sense of §2),
together with a subgroup S uniformly randomly chosen from S(H).

Hypothesis 1. The probability that the curve X constructed by the trigonal
construction for a randomly chosen H and S in S(H) is hyperelliptic is negligible.

1 Recall that (πH)∗(
∑

P ∈H nP (P )) =
∑

P ∈H nP

∑
Q∈π−1

H
(P )(Q), with appropriate

multiplicities where πH ramifies, and (πX)∗(
∑

Q∈R mQ(Q)) =
∑

Q∈R mQ(πX(Q)).
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R JR
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Fig. 1. The curves, Jacobians, and morphisms of §4

5 Computing Trigonal Maps

Suppose we are given a tractable subgroup S of JH [2](Fq), corresponding to a
partition {{W ′

i , W
′′
i } : 1 ≤ i ≤ 4} of the Weierstrass points of H into pairs. In

this section, we compute polynomials N(x) = x3 +ax+b and D(x) = x2 +cx+d
such that the rational map g : x �→ t = N(x)/D(x) defines a trigonal map for S.
Choosing N and D to have degrees 3 and 2 respectively ensures that g maps the
point at infinity to the point at infinity; this will be useful to us in §6.

By definition, g : P
1 → P

1 is a degree-3 map with g(π(W ′
i )) = g(π(W ′′

i ))
for 1 ≤ i ≤ 4. We will express g as a composition of maps g = p ◦ e, where
e : P

1 → P
3 is the rational normal embedding defined by

e : (u : v) �−→ (u0 : u1 : u2 : u3) = (u3 : u2v : uv2 : v3),

and p : P
3 → P

1 is the projection defined as follows. For each 1 ≤ i ≤ 4, we let Li

denote the line in P
3 passing through e(π(W ′

i )) and e(π(W ′′
i )). There exists at

least one line L intersecting all four of the Li (generically, there are two). We
take p to be the projection away from L; then p(e(π(W ′

i ))) = p(e(π(W ′′
i ))) for

1 ≤ i ≤ 4, so g = p ◦ e is a trigonal map for S. Given equations for L, we can
use linear algebra to compute a, b, c, and d in Fq such that

L = V (u0 + au2 + bu3, u1 + cu2 + du3) .

The projection p : P
3 → P

1 away from L is then defined by

p : (u0 : u1 : u2 : u3) �−→ (u0 + au2 + bu3 : u1 + cu2 + du3),

and therefore g = p ◦ e is defined by

g : (u : v) �−→ (u3 + auv2 + bv3 : u2v + cuv2 + dv3).
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Therefore, if we set N(x) = x3 + ax + b and D(x) = x2 + cx + d, then g will be
defined by the rational map x �−→ N(x)/D(x).

To compute equations for L, we will use the classical theory of Grassmannian
varieties (see Griffiths and Harris [7, §1.5] for details). The set of lines in P

3 has
the structure of an algebraic variety Gr(1, 3), called the Grassmannian. There is
a convenient model for Gr(1, 3) as a quadric hypersurface in P

5: if v0, . . . , v5 are
coordinates on P

5, then we may take

Gr(1, 3) := V (v0v3 + v1v4 + v2v5) .

Lemma 2. There is a bijection between points of Gr(1, 3)(Fq) and lines in P
3,

defined as follows.

1. The point of Gr(1, 3)(Fq) corresponding to the line through (p0 : p1 : p2 : p3)
and (q0 : q1 : q2 : q3) in P

3 has coordinates
(∣∣∣∣ p0 p1

q0 q1

∣∣∣∣ :
∣∣∣∣ p0 p2

q0 q2

∣∣∣∣ :
∣∣∣∣ p0 p3

q0 q3

∣∣∣∣ :
∣∣∣∣ p2 p3

q2 q3

∣∣∣∣ :
∣∣∣∣ p3 p1

q3 q1

∣∣∣∣ :
∣∣∣∣ p1 p2

q1 q2

∣∣∣∣
)

.

2. The line in P
3 corresponding to a point (γ0 : · · · : γ5) of Gr(1, 3)(Fq) is

defined by

V

⎛
⎜⎜⎝

0u0 − γ3u1 − γ4u2 − γ5u3,
γ3u0 + 0u1 − γ2u2 + γ1u3,
γ4u0 + γ2u1 + 0u2 − γ0u3,
γ5u0 − γ1u1 + γ0u2 + 0u3

⎞
⎟⎟⎠

(two of the equations will be redundant linear combinations of the others).

Further, if (γ0 : · · · : γ5) is a point in Gr(1, 3)(Fq) corresponding to a line L,
then the points in Gr(1, 3)(Fq) corresponding to lines meeting L are precisely
those in the hyperplane defined by

∑5
i=0 γivi+3, where the subscripts are taken

modulo 6.

Assume that S is represented by a set {Fi = aiu
2 + biuv + civ

2 : 1 ≤ i ≤ 4}
of quadratics, with each Fi corresponding to the pair {W ′

i , W
′′
i } of Weierstrass

points. Elementary calculations show that the point on Gr(1, 3) corresponding
to the line Li through e(π(W ′

i )) and e(π(W ′′
i )) has coordinates

(c2
i : −cibi : b2

i − aici : a2
i : aibi : aici).

If (γ0 : · · · : γ5) is a point in Gr(1, 3)(Fq) corresponding to a candidate for L,
then by the second part of Lemma 2 we have M(γ0, . . . , γ5)T = 0, where

M =

⎛
⎜⎜⎝

a2
1 a1b1 a1c1 c2

1 −c1b1 (b2
1 − a1c1)

a2
2 a2b2 a2c2 c2

2 −c2b2 (b2
2 − a2c2)

a2
3 a3b3 a3c3 c2

3 −c3b3 (b2
3 − a3c3)

a2
4 a4b4 a4c4 c2

4 −c4b4 (b2
4 − a4c4)

⎞
⎟⎟⎠ . (1)

The kernel of M is two-dimensional, corresponding to a line in P
5. Let {α, β}

be a basis for kerM , writing α = (α0, . . . , α5) and β = (β0, . . . , β5). If S is Fq-
rational, then so is kerM , so we may take the αi and βi to be in Fq. We want to
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find a point PL = (α0 + λβ0 : · · · : α5 + λβ5) where the line in P
5 corresponding

to kerM intersects with Gr(1, 3). The points (u0 : . . . : u3) on the line L in P
3

corresponding to PL satisfy (Mα + λMβ)(u0, . . . , u3)T = 0, where

Mα :=

⎛
⎜⎜⎝

0 −α3 −α4 −α5

α3 0 −α2 α1

α4 α2 0 −α0

α5 −α1 α0 0

⎞
⎟⎟⎠ and Mβ :=

⎛
⎜⎜⎝

0 −β3 −β4 −β5

β3 0 −β2 β1

β4 β2 0 −β0

β5 −β1 β0 0

⎞
⎟⎟⎠ .

By part (2) of Lemma 2, the rank of Mα + λMβ is 2. Using the expression

det(Mα + λMβ) =
(1

2
( 6∑

i=0

βiβi+3

)
λ2 +

( 6∑
i=0

αiβi+3

)
λ +

1
2

6∑
i=0

αiαi+3

)2

(2)

(where the subscripts are taken modulo 6), we see that this occurs precisely when
det(Mα + λMβ) = 0. We can therefore solve det(Mα + λMβ) = 0 to determine
a value for λ, and to see that Fq(λ) is at most a quadratic extension of Fq.
Considering the discriminant of det(Mα +λMβ) gives us an explicit criterion for
determining whether a given tractable subgroup has a rational trigonal map.

Proposition 2. Suppose S is a subgroup in S(H), and let {α = (αi), β = (βi)}
be any Fq-rational basis of the nullspace of the matrix M defined in (1). There
exists an Fq-rational trigonal map for S if and only if

( 6∑
i=0

αiβi+3

)2

−
( 6∑

i=0

αiαi+3

)( 6∑
i=0

βiβi+3

)

is a square in Fq, where the subscripts are taken modulo 6.

Finally, we use Gaussian elimination to compute a, b, c, and d in Fq(λ) such that
(1, 0, a, b) and (0, 1, c, d) generate the rowspace of Mα +λMβ. We may then take
L = V (u0 + au2 + u3, u1 + cu2 + du3). Both L and the projection p : P

3 → P
1

with centre L are defined over Fq(λ). Having computed L, we compute the
projection p, the embedding e, and the trigonal map g = p ◦ e as above.

Proposition 2 shows that the rationality of a trigonal map for a tractable
subgroup S depends only upon whether an element of Fq depending on S is a
square. It seems reasonable to assume that these field elements are uniformly
distributed for random choices of H and S, and indeed this is consistent with
our experimental observations. Since a uniformly randomly chosen element of Fq

is a square with probability ∼ 1/2, we propose the following hypothesis.

Hypothesis 2. The probability that there exists an Fq-rational trigonal map for
a randomly chosen hyperelliptic curve H over Fq and subgroup S in S(H) is 1/2.

6 Equations for the Isogeny

Suppose we have a tractable subgroup S and a trigonal map g for S. We will
now perform an explicit trigonal construction on g to compute a curve X and
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an isogeny φ : JH → JX with kernel S. We assume that g has been derived as
in §5, and in particular that g maps the point at infinity to the point at infinity.

Let U be the subset of A
1 = P

1 \ {(1 : 0)} above which g ◦ π is unramified.
We let X |U denote f−1(U), and let H |U denote (g ◦ π)−1(U).

By definition, every point P in X |U (Fq) corresponds to a pair of triples of
points in H |U (Fq), exchanged by the hyperelliptic involution, with each triple
supported on the fibre of g ◦ π over f(P ). We will construct a model of the
abstract curve X |U in U × A

6. We will not prove that our model is isomorphic
to the abstract curve, but we will exhibit a bijection of geometric points.

To be more explicit, suppose Q is a generic point of U . Since g◦π is unramified
above Q, we may choose preimages P1, P2 and P3 of Q such that

(g ◦ π)−1(Q) = {P1, P2, P3, ι(P1), ι(P2), ι(P3)}. (3)

The four points on X in the preimage f−1(Q) correspond to partitions of the six
points in (g ◦ π)−1(Q) into two unordered triples exchanged by the hyperelliptic
involution:

f−1(Q) =

⎧⎪⎪⎨
⎪⎪⎩

Q1 ↔
{
{P1, P2, P3}, {ι(P1), ι(P2), ι(P3)}

}
,

Q2 ↔
{
{P1, ι(P2), ι(P3)}, {ι(P1), P2, P3}

}
,

Q3 ↔
{
{ι(P1), P2, ι(P3)}, {P1, ι(P2), P3}

}
,

Q4 ↔
{
{ι(P1), ι(P2), P3}, {P1, P2, ι(P3)}

}

⎫⎪⎪⎬
⎪⎪⎭

. (4)

Every triple is cut out by an ideal (a(x), y−b(x)), where a is a cubic polynomial, b
is a quadratic polynomial, and b2 ≡ F (mod a). If we require a to be monic, then
there is a one-to-one correspondence between such ideals and triples; this is the
well-known Mumford representation. The triple is defined over Fq if and only if a
and b are defined over Fq. For example, the triple {P1, P2, P3} corresponds to the
ideal (a(x), y−b(x)) where a(x) =

∏
i(x−x(Pi)) and b satisfies y(Pi) = b(x(Pi))

for 1 ≤ i ≤ 3; the Lagrange interpolation formula may be used to compute b.
If (a(x), y − b(x)) corresponds to one triple in a partition, then (a(x), y + b(x))
corresponds to the other triple. The union of the triples equals the whole fibre
(g ◦ π)−1(Q), and since the union of the triples is cut out by the product of the
corresponding ideals, we know that a(x) must cut out the fibre of g ◦ π over Q.
Therefore, we have a(x) = N(x) − t(Q)D(x).

For notational convenience, we define

G(t, x) = x3 + g2(t)x2 + g1(t)x + g0(t) := N(x) − tD(x).

Let f0, f1, and f2 be the elements of Fq[t] such that

f0(t) + f1(t)x + f2(t)x2 ≡ F (x) (mod G(t, x)).

The triples in the pairs over the generic point of U have Mumford representatives
of the form (G(t, x), y − (b0 + b1x + b2x

2)), where

(b0 + b1x + b2x
2)2 ≡ F (x) (mod G(t, x)). (5)
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Viewing b0, b1, and b2 as coordinates on A
3, we expand both sides of (5) modulo

G(t, x) and equate coefficients to obtain a variety X̃ in U × A
3 parametrizing

triples:
X̃ := V (c0(t, b0, b1, b2), c1(t, b0, b1, b2), c2(t, b0, b1, b2)) ,

where

c0(t, b0, b1, b2) = g2(t)g0(t)b2
2 − 2g0(t)b2b1 + b2

0 − f0(t),
c1(t, b0, b1, b2) = (g2(t)g1(t) − g0(t))b2

2 − 2g1(t)b2b1 + 2b1b0 − f1(t), and
c2(t, b0, b1, b2) = (g2(t)2 − g1(t))b2

2 − 2g2(t)b2b1 + 2b2b0 + b2
1 − f2(t).

(6)

The Mumford representatives corresponding to the triples in each pair are
exchanged by the involution ι∗ : X̃ −→ X̃ defined by

ι∗ : (t, b0, b1, b2) �−→ (t, −b0, −b1, −b2);

the curve X |U is therefore the quotient of X̃ by the involution ι∗. To form this
quotient, let m : U × A

3 −→ U × A
6 be the map defined by

m : (t, b0, b1, b2) �−→ (t, b00, b01, b02, b11, b12, b22) = (t, b2
0, b0b1, b0b2, b

2
1, b1b2, b

2
2);

the image B of m is the variety defined by

B = V

(
b2
01 − b00b11, b01b02 − b00b12, b2

02 − b00b22,
b02b11 − b01b12, b02b12 − b01b22, b2

12 − b11b22

)
⊂ U × A

3.

We have X |U = m(X̃), so

X |U = V

⎛
⎝ g2g0b22 − 2g0b12 + b00 − f0,

(g2g1 − g0)b22 − 2g1b12 + 2b01 − f1,
(g2

2 − g1)b22 − 2g2b12 + 2b02 + b11 − f2

⎞
⎠ ∩ B ⊂ U × A

6. (7)

Consider again the fibre of f : X → P
1 over the generic point Q = (t) of U

(as in (4)). If {P1, P2, P3} is one of the triples in a pair in the fibre, then by
the Lagrange interpolation formula the value of b2 at the corresponding point
of X̃ is

b2 =
∑

y(Pi)/((x(Pi) − x(Pj))(x(Pi) − x(Pk))),

where the sum is taken over the cyclic permutations (i, j, k) of (1, 2, 3). Interpo-
lating for all triples in the pairs in the fibre, an elementary but involved symbolic
calculation shows that if we define ∆1, ∆2, and ∆3 by

∆i := (x(Pj) − x(Pk))2

and Γ1, Γ2, and Γ3 by

Γi :=
(
f2(t)x(Pi)2 + f1(t)x(Pi) + f0(t)

)
∆i = F (x(Pi))∆i

for each cyclic permutation (i, j, k) of (1, 2, 3), and set

∆ := ∆1∆2∆3,

then b2 satisfies
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(
∆b4

2 − 2
(∑

i

Γi

)
b2
2 +

1
∆

(
2
(∑

i

Γ 2
i

)
−
(∑

i

Γi

)2))2

− 64
(∏

i

Γi

)
b2
2 = 0. (8)

Now ∆,
∑

i Γi,
∑

i Γ 2
i , and

∏
i Γi are symmetric functions with respect to per-

mutations of the points in the fibre g−1(Q) = g−1((t)). They are therefore poly-
nomials in the homogeneous elementary symmetric functions

e1 =
∑

x(Pi), e2 =
∑

x(Pi)x(Pj), and e3 =
∏

x(Pi),

which are polynomials in t. Indeed, the ei are given by the coefficients of G(t, x):

e1 = −g2(t), e2 = g1(t), and e3 = −g0(t).

Expressing ∆,
∑

i Γi,
∑

i Γ 2
i , and

∏
i Γi in terms of f0, f1, f2, g0, g1, and g2,

and then simplifying, we define δ4, δ2, and δ0 by

δ4 := −27g2
0 + 18g0g1g2 − 4g0g

3
2 − 4g3

1 + g2
1g

2
2 ,

δ2 := 12f0g1 − 4f0g
2
2 − 18f1g0 + 2f1g1g2 + 12f2g0g2 − 4f2g

2
1 ,

δ0 := −4f0f2 + f2
1 ,

and s by

s := f3
0 − f2

0f1g2 − 2f2
0f2g1 + f2

0 f2g
2
2 + f0f

2
1 g1 + 3f0f1f2g0 − f0f1f2g1g2

− 2f0f
2
2 g0g2 + f0f

2
2 g2

1 − f3
1 g0 + f2

1 f2g0g2 − f1f
2
2 g0g1 + f3

2 g2
0 .

(9)

Since s(t) = F (x(P1))F (x(P2))F (x(P3)) = (y(P1)y(P2)y(P3))2, there is a square
root of s(t) in Fq[t]; in fact, it is defined over Fq(

√
s(0)). We therefore define

δ1 := 8
√

s. (10)

With this notation (8) becomes
(
δ4(t)b4

2 + δ2(t)b2
2 + δ0(t)

)2 − δ1(t)2b2
2 = 0, and

hence on X |U we have
(
δ4(t)b2

22 + δ2(t)b22 + δ0(t)
)2 − δ1(t)2b22 = 0. (11)

Observe that (11) gives us a (singular) affine plane model for X . We can also
use (11) to compute a square root for b22 on X |U : we have

b22 = ρ2, where ρ :=
δ4(t)b2

22 + δ2(t)b22 + δ0(t)
δ1(t)

. (12)

Given a point (t, b00, . . . , b22) of X |U , the two triples of points corresponding to
the two points of X̃ over (t, b00, . . . , b22) have Mumford representatives

(
G(t, x), y−(

b02

ρ
+

b12

ρ
x+

b22

ρ
x2)
)

and
(
G(t, x), y+(

b02

ρ
+

b12

ρ
x+

b22

ρ
x2)
)
. (13)

We will now compute the Recillas correspondence R inducing the isogeny
from JH to JX . We know that R is a component of the fibre product H ×P1 X
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(with respect to g ◦π and f). We may realise the open affine subset H |U ×U X |U
as the subvariety V (G(t, x)) of H |U × X |U . Now, V (G(t, x)) decomposes into
two components: clearing denominators in (13), we find V (G(t, x)) = R ∪ R′,
where

R = V
(
G(t, x), (δ4(t)b2

22 + δ2(t)b22 + δ0(t)
)
y − δ1(t)(b02 + b12x + b22x

2)
)

and

R′ = V
(
G(t, x), (δ4(t)b2

22 + δ2(t)b22 + δ0(t)
)
y + δ1(t)(b02 + b12x + b22x

2)
)
.

The natural projections πX : R → X and πH : R → H send (x, y, t, b00, . . . , b22)
to (t, b00, . . . , b22) and (x, y), respectively. On the level of divisor classes, the
isogeny φ : JH → JX is made explicit by the map

φ = (πX)∗ ◦ (πH)∗.

In terms of ideals cutting out effective divisors, φ is realized by the map

ID �−→
(

ID +
(
G(t, x), y −

(b02

ρ
+

b12

ρ
x +

b22

ρ
x2
)))

∩ Fq[s, t, b00, . . . , b22].

Taking R′ in place of R in the above gives an isogeny equal to −φ.
It remains to determine the rationality of the isogeny. We see from (7) that

X is defined over the field of definition of g. The correspondence R, and the
isogeny φ, are both defined over the field of definition of ρ, which is Fq(

√
s(0)).

This gives us a useful criterion for when an Fq-rational subgroup S and trigonal
map g lead to an Fq-rational isogeny.

Proposition 3. If S is a subgroup in S(H) with an Fq-rational trigonal map g,
then the trigonal construction on g yields an Fq-rational isogeny if and only if
s(0) is a square in Fq, where s is defined in (9).

Remark 4. If φ is not Fq-rational, then JX is a quadratic twist of JH/S (see §9).

If we assume that the values s(0) are uniformly distributed for randomly chosen
H , S, and g, then the probability that s(0) is a square in Fq is 1/2. Indeed, it
is easily seen that s(0) is a square for H if and only if it is not a square for the
quadratic twist of H . This suggests that the probability that we can compute
an Fq-rational φ given an Fq-rational g for a randomly chosen H and S in S(H)
is 1/2. This is consistent with our experimental observations, so we propose
Hypothesis 3.

Hypothesis 3. Given a randomly chosen hyperelliptic curve H over Fq and
tractable subgroup S in S(H) with an Fq-rational trigonal map g, the probability
that we can compute an Fq-rational isogeny φ with kernel S is 1/2.
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7 Computing Isogenies

Suppose we are given a hyperelliptic curve H of genus 3, defined over Fq, and
a DLP in JH(Fq) to solve. Our goal is to compute a nonsingular plane quartic
curve C and an isogeny JH → JC so that we can reduce to a DLP in JC(Fq).

We begin by computing the set S(H) of Fq-rational tractable subgroups
of JH [2](Fq). For each S in S(H), we apply Proposition 2 to determine whether
there exists an Fq-rational trigonal map g for S. If so, we use the formulae of §5
to compute g; if not, we move on to the next S. Having computed g, we apply
Proposition 3 to determine whether we can compute an isogeny over Fq. If so,
we use the formulae of §6 to compute equations for X and the isogeny JH → JX ;
if not, we move on to the next S.

The formulae of §6 give an affine model of X in A
1 × A

6. In order to apply
Diem’s algorithm to the DLP in JX , we need a nonsingular plane quartic model
of X : that is, a nonsingular curve C ⊂ P

2 isomorphic to X , cut out by a quartic
form. Such a model exists if and only if X is not hyperelliptic. To find C, we
compute a basis B of the Riemann–Roch space of a canonical divisor of X . This
is a routine geometrical calculation; some of the various approaches are listed in
Hess [8]. In practice, the algorithms implemented in Magma [9] compute B very
quickly. The three functions in B define a map ψ : X → P

2. If the image of ψ
is a conic, then X is hyperelliptic; in this situation, we move on to the next S.
Otherwise, the image of ψ is a nonsingular plane quartic C, and ψ restricts to
an isomorphism ψ : X → C.

If the procedure outlined above succeeds for some S in S(H), then we have
computed an explicit Fq-rational isogeny ψ∗ ◦ φ : JH → JC . We can then map
our DLP from JH(Fq) into JC(Fq), and solve using Diem’s algorithm.

We emphasize that the entire procedure is very fast: as we saw above, the
curve X and the isogeny can be constructed using only low-degree polynomial
arithmetic and low-dimensional linear algebra. For a rough idea of the compu-
tational effort involved, given a random H over a 160-bit prime field, a näıve
implementation of our algorithms in Magma [9] computes the trigonal map g,
the curve X , the nonsingular plane quartic C, and the isogeny φ : JH → JC

in a few seconds on a 1.2GHz laptop. Since the difficulty of the construction
depends only upon the size of Fq (and not upon the size of the DLP subgroup
of JH(Fq)), we may conclude that instances of the DLP in 160-bit Jacobians
chosen for cryptography may also be reduced to instances of the DLP in non-
hyperelliptic Jacobians in a mattter of seconds.

Example 1. We will give an example over a small field. Let H be the hyperelliptic
curve over F37 defined by

H : y2 = x7 + 28x6 + 15x5 + 20x4 + 33x3 + 12x2 + 29x + 2.

Using the ideas in §3, we see that JH has one F37-rational tractable subgroup:

S(H) = {S} where S =
{

u2 + ξ1uv + ξ2v
2, u2 + ξ37

1 uv + ξ37
2 v2,

u2 + ξ372

1 uv + ξ372

2 v2, uv + 20v2

}
,
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where ξ1 is an element of F373 satisfying ξ3
1 +29ξ2

1 +9ξ1+13 = 0, and ξ2 = ξ50100
1 .

Applying the methods of §5, we compute polynomials

N(x) = x3 + 16x + 22 and D(x) = x2 + 32x + 18

such that g : x �−→ N(x)/D(x) is an F37-rational trigonal map for S. Using the
formulae of §6, we compute a curve X ⊂ A

1 × A
6 of genus 3, defined by

X = V

⎛
⎜⎜⎝

19t5+10t4+12t3+18t2b22+7t2+36tb12+15tb22+t+b00+30b12+30,

5t5+26t4+15t3+32t2b22+23t2+27tb12+2tb22+19t+2b01+5b12+15b22+17,

36t5+29t4+7t3+t2b22+13t2+2tb12+32tb22+21t+2b02+b11+21b22+18,

b00b11−b201,b00b12−b01b02,b00b22−b202,b02b11−b01b12,b02b12−b01b22,b212−b11b22

⎞
⎟⎟⎠

together with a map on divisors inducing an isogeny from JH to JX with kernel S
(we will not show the equations, for lack of space). Computing the canonical
morphism of X , we find that X is non-hyperelliptic, and isomorphic to the
nonsingular plane quartic curve

C = V

(
u4 + 26u3v + 2u3w + 17u2v2 + 9u2vw + 20u2w2 + 34uv3 + 24uv2w

+ 5uvw2 + 36uw3 + 19v4 + 13v3w + v2w2 + 23vw3 + 5w4

)
.

Composing the isomorphism with the isogeny JH → JX , we obtain an explicit
isogeny φ : JH → JC . Using Magma, we can verify that JH and JC are isogenous
by checking that the zeta functions of H and C are identical: indeed,

Z(H ; T ) = Z(C; T ) =
373T 6 + 4 · 372T 5 − 6 · 37T 4 − 240T 3 − 6T 2 + 4T + 1

37T 2 − 38T + 1
.

If D and D′ are the divisor classes on H with Mumford representatives (x2+13x+
29, y−10x−2) and (x2 +19x+18, y−15x−2), respectively, then D′ = [22359]D.
Applying φ, we find that

φ(D) = [(7 : 18 : 1) + (34 : 34 : 1) − (18 : 22 : 1) − (15 : 33 : 1)] and
φ(D′) = [(7 : 23 : 1) + (6 : 13 : 1) − (13 : 15 : 1) − (7 : 18 : 1)] ;

direct calculation verifies that φ(D′) = [22359]φ(D), as expected.

8 Expectation of Existence of Computable Isogenies

We conclude by estimating the proportion of genus 3 hyperelliptic Jacobians
over Fq for which the methods of this article produce a rational isogeny — and
thus the proportion of hyperelliptic curves for which the DLP may be solved
using Diem’s algorithm — as q tends to infinity. We will assume that if we are
given a selection of Fq-rational tractable subgroups, then it is equally probable
that any one of them will yield a rational isogeny. This appears consistent with
our experimental observations.

Hypothesis 4. If S1 and S2 are distinct subgroups in S(H), then the proba-
bility that we can compute an Fq-rational isogeny with kernel S1 is independent
of the probability that we can compute an Fq-rational isogeny with kernel S2.
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Theorem 2. Assume Hypotheses 1, 2, 3, and 4. Let T be the set of integer
partitions of 8; for each T in T we define νT (n) to be the multiplicity of n in T ,
and define s(T ) = #S(H), where H is any hyperelliptic curve over Fq such that
the multiset of degrees of the Fq-irreducible factors of its hyperelliptic polynomial
coincides with T . As q tends to infinity, the expectation that the algorithms in this
article will give a reduction of the DLP in a subgroup of JH(Fq) for a randomly
chosen hyperelliptic curve H of genus 3 over Fq to a subgroup of JC(Fq) for
some nonsingular plane quartic curve C is

∑
T∈T

((
1 − (1 − 1/4)s(T )

)
/
∏
n∈T

(
νT (n)! · nνT (n)

))
≈ 0.1857. (14)

Proof. Hypotheses 1, 2, 3, and 4 together imply that if H is a randomly chosen
hyperelliptic curve of genus 3 over Fq, then the probability that we will succeed
in computing a rational isogeny from JH is

1 − (1 − (1/2 · 1/2))#S(H). (15)

Lemma 1 implies that S(H) depends only on the degrees of the irreducible factors
of F̃ . For each T in T , let Nq(T ) denote the number of homogeneous squarefree
polynomials over Fq whose multiset of degrees of irreducible factors coincides
with T . By (15), the expectation that we can compute an Fq-rational isogeny
from the Jacobian of a randomly chosen hyperelliptic curve to the Jacobian of
a non-hyperelliptic curve using the methods in this article is

Eq :=
∑

T∈T (1 − (1 − 1/4)s(T ))Nq(T )∑
T∈T Nq(T )

.

Let Nq(n) denote the number of monic irreducible polynomials of degree n

over Fq; clearly Nq(T ) = (q − 1)
∏

n∈T

(Nq(n)
νT (n)

)
. Computing Nq(T ) is a straight-

forward combinatorial exercise: we find that Nq(n) = qn/n + O(qn−1), so

Nq(T ) =
( ∏

n∈T

(νT (n)! · nνT (n))−1
)
q9 + O(q8),

and
∑

T∈T Nq(T ) = q9 + O(q8). Therefore, as q tends to infinity, we have

lim
q→∞Eq =

∑
T∈T

(
(1 − (1 − 1/4)s(T ))/

∏
n∈T

(νT (n)! · nνT (n))
)
.

The result follows upon explicitly computing this sum using the values for s(T )
derived in Lemma 1. 
�

Theorem 2 gives the expectation that we can construct an explicit isogeny for a
randomly selected hyperelliptic curve. However, looking at the table in Lemma 1,
we see that we can ensure that a particular curve has no rational isogenies if its
hyperelliptic polynomial has an irreducible factor of degree 5 or 7 (or a single
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irreducible factor of degree 3). It may be difficult to efficiently construct a curve
in this form if we are using the CM construction, for example, to ensure that
the Jacobian has a large prime-order subgroup. In any case, it is interesting to
note that the security of genus 3 hyperelliptic Jacobians depends significantly
upon the factorization of their hyperelliptic polynomials. This observation has
no analogue for elliptic curves or Jacobians of genus 2 curves.

Remark 5. We noted in §4 that the isomorphism class of the curve X in the
trigonal construction is independent of the choice of trigonal map. If there is no
rational trigonal map for a given subgroup S, then the methods of §5 construct
a pair of Galois-conjugate trigonal maps g1 and g2 (corresponding to the roots
of (2)) instead. Applying the trigonal construction to g1 and g2, we obtain a
pair of curves X1 and X2 over Fq2 , which must be twists. If the isomorphism
between these two curves was made explicit, then Galois descent could be used
to compute a curve X in their isomorphism class defined over Fq, and hence a
nonsingular plane quartic C and isogeny JH → JC over Fq. This approach would
allow us to replace the 1/4 in (15) and (14) with 1/2, raising the expectation of
success in Theorem 2 to over 30%.

9 Other Isogenies

In this article, we have used a special kind of (2, 2, 2)-isogeny for moving instances
of the DLP from hyperelliptic to non-hyperelliptic Jacobians. More generally, we
can consider using other types of isogenies. There are two important issues to
consider here: the first is a theoretical restriction on the types of subgroups S of
JH that can be kernels of isogenies of Jacobians, and the second is a practical
restriction on the isogenies that we can currently compute.

Suppose JH is a hyperelliptic Jacobian, and S a (finite) Fq-rational subgroup
of JH . The quotient JH → JH/S exists as an isogeny of abelian varieties (see
Serre [14, §III.3.12], for example). For the quotient to be an isogeny of Jacobians,
there must be an integer m such that S is a maximal isotropic subgroup with
respect to the m-Weil pairing (see Proposition 16.8 of Milne [10]): this ensures
that the canonical polarization on JH induces a principal polarization on the
quotient. The simplest such subgroups have the form (Z/lZ)3 where l is prime.
The theorem of Oort and Ueno [11] then guarantees that there will be an iso-
morphism over Fq from JH/S to the Jacobian JX of some (possibly reducible)
curve X . Standard arguments from Galois cohomology (see Serre [13, §III.1], for
example) show that the isomorphism is defined over either Fq or Fq2 , so JH/S is
either isomorphic to JX over Fq or a quadratic twist of JX . We can expect X to
be isomorphic to a non-hyperelliptic curve C. To compute an Fq-rational isogeny
from JH to a non-hyperelliptic Jacobian, therefore, the minimum requirement
is an Fq-rational l-Weil isotropic subgroup of JH(Fq) isomorphic to (Z/lZ)3 for
some prime l.

The second and more serious problem is the lack of general constructions
for isogenies in genus 3. Apart from integer and Frobenius endomorphisms, we
know of no constructions for explicit isogenies of general Jacobians of genus 3
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hyperelliptic curves other than the one presented here. This situation stands in
marked contrast to the case of isogenies of elliptic curves, which have been made
completely explicit by Vélu [16]. Deriving general formulae for explicit isogenies
in genus 3 (and 2) remains a significant problem in computational number theory.
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6. Gaudry, P., Thomé, E., Thériault, N., Diem, C.: A double large prime variation
for small genus hyperelliptic index calculus. Math. Comp. 76, 475–492 (2007)

7. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley and Sons, Chich-
ester (1978)

8. Hess, F.: Computing Riemann-Roch spaces in algebraic function fields and related
topics. J. Symbolic Computation 33(4), 425–445 (2002)

9. The Magma computational algebra system, http://magma.maths.usyd.edu.au/
10. Milne, J.S.: Abelian varieties. In: Arithmetic geometry (Storrs, Conn., 1984), pp.

103–150. Springer, Heidelberg (1986)
11. Oort, F., Ueno, K.: Principally polarized abelian varieties of dimension two or three

are Jacobian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 377–381 (1973)
12. Recillas, S.: Jacobians of curves with g1

4’s are the Prym’s of trigonal curves. Bol.
Soc. Mat. Mexicana (2) 19(1), 9–13 (1974)

13. Serre, J.-P.: Galois Cohomology. Springer Monographs in Mathematics. Springer,
Heidelberg (2002)

14. Serre, J.-P.: Algebraic Curves and Class Fields. In: GTM, vol. 117, Springer, Hei-
delberg (1988)

15. Vakil, R.: Twelve points on the projective line, branched covers, and rational elliptic
fibrations. Math. Ann. 320(1), 33–54 (2001)
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Abstract. In this paper we prove that the sponge construction intro-
duced in [4] is indifferentiable from a random oracle when being used
with a random transformation or a random permutation and discuss its
implications. To our knowledge, this is the first time indifferentiability
has been shown for a construction calling a random permutation (in-
stead of an ideal compression function or ideal block cipher) and for a
construction generating outputs of any length (instead of a fixed length).

1 Introduction

All cryptographic hash functions of any significance known today, i.e., MD4, MD5,
the SHA and RIPEMD [15] families and several others, share the same design
paradigm. They all consist of the iterated application of a compression function.
The iteration mechanism is known as Merkle-Damg̊ard [8,16] and guarantees that
if the compression function is collision-resistant, the resulting hash function is
collision-resistant. This is a very attractive property as collision-resistance ap-
pears to be one of the most important properties of cryptographic hash functions.
The compression functions of the above mentioned hash functions were designed
with collision-resistance in mind. During the last years, with the recent collision
attacks on SHA-1 as culminating point, it has become clear that designing a com-
pression function that is both collision-resistant and efficient is not an easy task.
Moreover, weaknesses have been shown in the Merkle-Damg̊ard construction it-
self. While it does guarantee certain properties such as collision-resistance on the
condition that the underlying compression function has the same property, this
is not the case for all properties that are expected from cryptographic hash func-
tions. A well known example of such a weakness, discussed in [7], is the insecurity
of the MAC function constructed from a Merkle-Damg̊ard hash function by feed-
ing the latter with the secret key followed by the message.

In [7] Coron et al. propose a number of variants of the Merkle-Damg̊ard con-
struction that do not have this and other weaknesses. For each of these construc-
tions they provide theorems stating that if the compression function is constructed
using an ideal component, i.e., a finite input length (FIL) random oracle or an ideal
block cipher (used as Davies-Meyer compression function), the hash function be-
haves as a random oracle [3] with output truncated to a fixed length. They present

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 181–197, 2008.
c© International Association for Cryptologic Research 2008
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their theorems in the indifferentiability framework that was introduced by Maurer
et al. in [14]. As a (truncated) random oracle has all desired properties that may be
expected from a cryptographic hash function, this provides a direction for the de-
sign of hash functions that do not only provide resistance against collision search,
but are as strong as a truncated random oracle with respect to many criteria. In-
stead of constructing an efficient compression function that is collision-resistant,
one shall now design an efficient function that behaves as a FIL random oracle, or
in other words, a random n+m to n bit compression function, or an ideal block ci-
pher. In the meanwhile, several other hash function constructions have been shown
to be indifferentiable from a random oracle, see for example [2,6]. Note that indif-
ferentiability is not the only approach to proving properties of hash function con-
structions: some authors analyze the properties of the compression function that
can be preserved by the construction [1,2].

Recently, we introduced a new iterative hash function construction, called a
sponge [4]. It builds upon a fixed-length transformation (i.e., with codomain
equal to domain) or permutation f instead of a compression function and can
generate output strings of infinite length. In [4] we proved that when f is a
random transformation or permutation, the resulting function is only distin-
guishable from a random oracle with probability below N(N + 1)/2c+1, where
N is the number of calls to f (and f−1) and c is a security parameter related to
the size of the domain of f . At first sight, one may consider the indistinguisha-
bility proof as an argument that it behaves as a random oracle with probability
1−N(N +1)/2c+1. However, this is restricted to adversaries that can only query
the sponge function and not f (and f−1). In a concrete hash function, f is pub-
licly specified and this is of limited interest. We also included computations of
the complexity of a number of so-called critical operations and discussed how this
impacts the classical properties expected from hash functions such as collision-
resistance and (2nd)-preimage resistance. However, this does not result in lower
bounds for the security of these properties but rather upper bounds to the reach-
able security level. In this paper we apply the approach of [7] to the sponge con-
struction and demonstrate that the advantage of an adversary in differentiating
the sponge construction from a random oracle is about N(N + 1)/2c+1 if the
underlying f is a random transformation and an even smaller upper bound if it
is a random permutation.

As discussed above, this implies that the sponge construction when calling a
random transformation or permutation has all properties of a random oracle as
long as c is large enough. Hence we are now able to provide the security bounds
for collision-resistance and (2nd)-preimage resistance that are lacking in [4].

There are several iterative hash function constructions that have been shown
to be indifferentiable from a random oracle. However, the sponge construction
has two unique features. First, it can generate long outputs. While other con-
structions can only behave as a random oracle whose output has been truncated
to a fixed length, a random sponge does not have this limitation and may also
serve as a reference for stream ciphers. Second, it can be built using a permu-
tation, where both f and f−1 can be queried by the adversary. Paradoxically,
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collision-resistance and (2nd)-preimage resistance can be realized by employing
a function that is easy to invert.

In [4] our main goal was to define a reference for security properties of hash
designs. With our indifferentiability result, we prove that the resistance of the
sponge construction calling a random transformation or permutation is as good
as that of a random oracle, lower bounded by about N(N + 1)/2c+1. This coin-
cides with what is presented in [4] as the flat sponge claim. Despite our original
intention in [4], we argue that the sponge construction can lead to practical
hash function designs. First of all, as mentioned in [4], the support for long
outputs is a useful feature for a hash function when being used as a mask gener-
ating function (MGF) or a key derivation function (KDF). Second, instead of a
collision-resistant compression function (Merkle-Damg̊ard) or a random-looking
compression function or ideal block cipher (as in [7]), it takes the design of a
random-looking permutation. As a good block cipher should behave as a set of
(independent and) random-looking permutations, hash function design can now
benefit from insights gained in block cipher design. However, as opposed to a
block cipher, a permutation has no key schedule and has not the concerns that
come with it such as its computational overhead and possible related-key weak-
nesses. This makes in our opinion the sponge construction a very interesting
alternative to the constructions based on a compression function.

The remainder of this paper is organized as follows. Section 2 gives a short
introduction to indifferentiability applied to hash function constructions and is
followed by Section 3 that defines and discusses the sponge construction in the
indifferentiability setting. Section 4 gives the actual proofs and finally Section 5
discusses its implications.

2 Indifferentiability from a Random Oracle

Indifferentiability deals with the interaction between systems where the objective
is to show that two systems cannot be told apart by an adversary able to query
both systems but not knowing a priori which system is which. For hash function
constructions, a random oracle serves as an ideal system.

We use the definition of random oracle from [3]. A random oracle, denoted
RO, takes as input binary strings of any length and returns for each input a
random infinite string, i.e., it is a map from Z∗2 to Z∞2 , chosen by selecting each
bit of RO(x) uniformly and independently, for every x. In [7] and other papers
on the subject, one does not consider indifferentiability from a random oracle,
but rather a random oracle with output truncated to a fixed number of bits.

The indifferentiability framework was introduced by Maurer et al. in [14] and
is an extension of the classical notion of indistinguishability. Coron et al. applied
it to iterated hash function constructions in [7] and demonstrated for a number of
iterated hash function constructions that they are indifferentiable from a random
oracle if the compression function is a random FIL oracle. In this section we give
a brief introduction to these subjects; for a more in-depth treatment, we refer
to the original papers.
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Fig. 1. The differentiability setup

In the context of iterated hashing the adversary shall distinguish between two
systems that each have two components, as illustrated in Figure 1. The system
at the left is the combination of the ideal compression function F and the hash
function construction C. The adversary can make queries to both components
separately, where the latter in turn calls the former to construct its responses.
This is denoted by C[F ]. These are the two different interfaces to the system to
the left.

The system at the right consists of a random oracle (with truncated output)
RO providing the same interface as C[F ]. To be indifferentiable from the system
at the left, the system at the right also needs a subsystem offering the same
interface to the adversary as the ideal compression function F . This is called a
simulator P and its role is to simulate the ideal compression function F so that
no distinguisher can tell whether it is interacting with the system at the left or
with the one at the right. The output of P should look consistent with what the
distinguisher can obtain from the random oracle RO as if P was F and RO was
C[F ]. To achieve that, the simulator can query the random oracle, denoted by
P [RO]. Note that the simulator does not see the distinguisher’s queries to the
random oracle.

Indifferentiability of C[F ] from a random oracle RO is now satisfied if there
exists a simulator P such that no distinguisher can tell the two systems apart
with non-negligible probability, based on their responses to queries it may send.
We repeat here the definition as given in [7] where the hash function construction
is called Turing machine C, the ideal compression function is called ideal primitive
F and the random oracle is called ideal primitive G.

Definition 1 ([7]). A Turing machine C with oracle access to an ideal primitive
F is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive G if there
exists a simulator P [G], such that for any distinguisher D it holds that:

| Pr [D[C[F ], F ] = 1] − Pr [D[G, P [G]] = 1] | < ε. (1)
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Fig. 2. The padded sponge construction

The simulator has oracle access to G and runs in time at most tS. The distin-
guisher runs in time at most tD and makes at most q queries. Similarly, C[F ]
is said to be indifferentiable from G if ε is a negligible function of the security
parameter k.

Now, it is shown in [14] that if C[F ] is indifferentiable from a random oracle,
then C[F ] can replace the random oracle in any cryptosystem, and the resulting
cryptosystem is at least as secure in the ideal compression function model as in
the random oracle model. This is much stronger than the indistinguishability of
C[F ] from a random oracle, which just merely means that an attacker that can
query C[F ], but has no direct access to F , cannot distinguish it from a random
oracle. As said, for hash function constructions indistinguishability makes little
sense as, for any concrete hash function, the compression function F is public
and hence accessible to the adversary.

3 The Sponge Construction

3.1 Definition

In this section we define the sponge construction. Our definition is a special case
of the more general definition in [4]. To simplify the presentation, we restrict
the input and output of the sponge to binary strings instead of a more general
alphabet. Our indifferentiability result can however easily be extended to the
generic definition. The (padded) sponge construction is illustrated in Figure 2.

In the sequel, we generally denote by x a message in Z∗2, and by p a sequence
of blocks of r bits each (i.e., p ∈ Zr

2
∗), indexed from 0 to |p| − 1, with |p| the

number of r-bit blocks of p.

Definition 2. For positive integers r, c, a sponge function S[F ] maps binary
strings with length a multiple of r to binary strings of any requested length, i.e.,
Zr

2
∗ to Z∞2 . A sponge calls a transformation F operating on Zr+c

2 = Zr
2 × Zc

2

as described in Algorithm 1. Here c is called the capacity and r is called the
bitrate1 of the sponge. The (group) operation ⊕ denotes the bitwise addition of
r-bit blocks and 0r is the all-zero block, the neutral element of this group. The
1 The bitrate r is not to be confused with rate meaning the number of block cipher

calls it takes to implement the compression function, as in, e.g., [12].
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input p to a sponge function must consist of one or more blocks and shall not
have 0r as last block, i.e., |p| > 0 and p|p|−1 �= 0r.

Algorithm 1. The sponge construction S[F ]
Input p = p0p1 . . . p|p|−1 and requested length n

Require: |p| ≥ 1 and p|p|−1 �= 0r

Output z ∈ Zn
2

s = (sa, sc) = (0r, 0c)
for i = 0 to |p| − 1 do

(sa, sc) = F(sa ⊕ pi, sc)
end for
for i = 0 to �n

r
� − 1 do

Append sa to the output
(sa, sc) = F(sa, sc)

end for
Discard the last r�n

r
� − n bits

3.2 Graph Representation of Sponge Operation

In [4] we used a graph representation to prove bounds on success probability of
generating collisions. We adopt this graph representation in the specification of
our simulators. In our discussions on the graphs, we need to clearly distinguish
between the first r bits and the last c bits of an r + c-bit variable s. For this, we
again use the notation of [4]: A = Zr

2 and C = Zc
2 and we call the first r bits of

s its A-part sa, and the last c bits its C-part sc.
We consider the transformation F as a directed graph whose vertex set (called

nodes) is A×C and whose edges are (s, F(s)). It has both 2r+c nodes and edges.
From the node graph, we derive the (directed) supernode graph, with vertex set
(called supernodes) equal to C. In this graph, an edge (sc, tc) is in the edge set if
and only if ∃sa, ta such that ((sa, sc), (ta, tc)) is an edge in the node graph. The
set of supernodes is a partition of the nodes where a supernode contains the 2r

nodes with the same C-part.
The sponge construction operates on a chaining variable s and its operation

can be seen as a walk through the node graph of the chaining variable. We denote
the chaining variable before processing pi by si. Its initial value is s0 = (0r, 0c).
Then for each block pi, it performs a two-step transition. First, it moves to the
node s′ within the same supernode with s′a = si,a ⊕ pi, and then it follows the
edge starting from s′, arriving in si+1. After processing all blocks of p it is in
node s|p|. Then it gives out the A-part of s|p| as z0. For each additional block zi

produced, it follows the edge from s|p|+i−1 arriving in s|p|+i and gives out the
A-part of the latter as zi. Note that this can be considered a special case of the
above two-step transition if we extend p with blocks p|p|+i = 0r for all i ≥ 0.
Clearly, the chaining variable si is completely determined by the first i blocks
of p. We call this a path to si. Or more exactly:
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Definition 3 ([4]). First, the empty string is a path to the node (0r, 0c). Then,
if p is a path to node s = (sa, sc) and there is an edge ((sa ⊕a, sc), t) in the node
graph, p′ = pa is a path to node t.

Note that although a path completely determines a node, there may be many
paths to a node.

It follows from the above that zj of z = S[F ](p) is the A-part of the node
with path p0rj. And so, given a path p (different from 0rj) to a node s, one
can find its A-part by a call to the sponge construction. We have sa = zj with
z = S[F ](p′) and p′ and j given by p = p′0rj such that p′ is a valid sponge input,
i.e., |p′| > 0 and p′|p′|−1 �= 0r. For a path of form 0rj there is no such p′ and
hence the sponge construction cannot be queried to obtain sa.

3.3 The Padded Sponge Construction

The sponge construction S[F ](p) only supports input strings p ∈ Zr
2
∗ where p is

not the empty string and has last block different from 0r. To allow the input to
be any binary string in Z∗2, one needs to define an injective mapping pad(x) that
converts any binary string x to a valid sponge input. The simplest such mapping
pad(x) consists in padding the string with a single bit 1 and a number w of
zeroes with 0 ≤ w < r so that pad(x) contains a multiple of r bits. To indicate
the sponge construction including the padding operation, we use the symbol S′:

S′[F ](x) � S[F ](pad(x)).

3.4 The Distinguisher’s Setting

We give proofs of indifferentiability for the cases that F is a random trans-
formation or a random permutation. A random transformation (permutation)
operating on a certain domain is a transformation selected randomly and uni-
formly from all transformations (permutations) operating on that domain.

The adversary shall distinguish between two systems using their responses to
sequences of queries. At the left is the system (S′[F ], F). The padded sponge
construction S′[F ] provides one interface denoted by H, taking a binary string
x ∈ Z∗2 and an integer n and returning a binary string y ∈ Zn

2 , the sponge output
truncated to n bits. If F is a random transformation it has a single interface
F1 which takes as input an element s of Zr+c

2 and returns t = F(s), an element
of the same set. If F is a random permutation, it has an additional interface
F−1 that implements the inverse of F . Note that the sponge construction in
Algorithm 1 only uses the interface F1.

At the right is the system (RO, P [RO]). It offers the same interface as the
left system, i.e., RO provides the interface H and returns an output truncated
to the requested length. We define two simulators, one for the case of a ran-
dom transformation and another one for the case of a random permutation.
The transformation simulator provides a single interface F1. The permutation
simulator provides both interfaces F1 and F−1.
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Let X be either (S′[F ], F) or (RO, P [RO]). The sequence of queries Q to X
consist of a sequence of queries to the interface H, denoted Q0 and a sequence of
queries to the interface F1 (and F−1), denoted Q1. Q0 is a sequence of couples
(x, n), with x ∈ Z∗2 and n a positive integer. Q1 is a sequence of couples (s, b)
with s ∈ Zr+c

2 and b either 1 or −1, indicating whether the interface F1 or F−1

is addressed. In the case that F is a transformation, b is restricted to 1.

3.5 The Cost of Queries

Definition 1 suggests expressing an upper bound to the advantage of a distin-
guisher in terms of the number of queries q. The bounds provided in [7] however
also make use of parameter �, the maximum input length of the queries. In our
bounds we use another measure for the query complexity which is more natural
when applied to the sponge construction. We call this measure cost and denote
it by N . The cost N of queries to a system X is the total number of calls to F
or F−1 it would yield if X = (F , S′[F ]), either directly due to queries Q1, or
indirectly via queries Q0 to S′[F ]. The cost of a sequence of queries is fully de-
termined by their number and their input and output lengths. Each query to F1

or F−1 contributes 1 to the cost. A query to H with an �-bit input contributes
� �

r � + 	n
r 
 to the cost (assuming the simple padding of Section 3.3 is used). Our

bounds in terms of cost are comparable to those of [7]: for a fixed output size,
as considered in [7], N is an affine function of q and q�.

In the sequel, we consider the indifferentiability as in Definition 1 but with
the cost N replacing the number of queries q and their maximum length �.

4 Indifferentiability Proofs

4.1 The Simulators We Use in Our Proofs

We define simulators for the case that F is a random transformation and for the
case of a random permutation. In both cases, the simulator should behave as a
deterministic function and give responses to queries Q1 that in combination with
the responses to queries Q0 to the random oracle shall minimize the probability
that the system (RO, P [RO]) can be distinguished from a system (S′[F ], F). In
this section we informally explain how our simulators work.

A simulator keeps track of the queries it received and the responses it returned
in a graph, very similar to the graphs discussed in Section 3.2. The only difference
is that initially the simulator graph has no edges and for each new query F1(s)
(or F−1(s)) the simulator generates a response t and adds the edge (s, t) (or
(t, s)). Note that using the responses of the simulator to its queries, the adversary
can fully reconstruct the simulator graph.

In order to motivate the design of the simulators, we now discuss properties
of this graph that it has at any moment during or after the queries, using an
example depicted in Figure 3.

For a subset of the nodes in the simulator graph, the adversary knows a path.
From Definition 3, it is clear that these are the nodes that have an incoming edge
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Fig. 3. Example of simulator graph. The rooted supernodes are in bold. Paths are
indicated in italic next to the nodes having a path.

and are in a supernode that can be reached from supernode 0c by following the
directed edges from supernode to supernode. For this purpose, we define the set
of rooted supernodes R as the subset of C containing 0c and all the supernodes
accessible from it through the supernode graph. By extension, we say that a node
s = (sa, sc) is rooted if sc ∈ R. So the adversary knows paths to all rooted nodes
that have an incoming edge from another rooted node, plus the empty path of
the (0r, 0c) node. For each of these rooted nodes it can query the interface H
of the system hoping to reveal an inconsistency, which is evidence that it is not
(S′[F ], F). We call sponge-consistent the responses to a sequence of queries Q
that do not result in such inconsistency.

We will now explain why our simulators generate sponge-consistent responses
(up to 2c queries Q1). Whenever a simulator receives a query F1(s) with s rooted,
it will result in an image t with known path. Therefore, the simulator constructs
the A-part of t to be sponge-consistent by querying RO using the path to t
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(except for the all-zero path). When the simulator receives a query F1(s) with
s not rooted, no path to the image t is known and it chooses t randomly from
all the nodes (with no incoming edge, if F is a random permutation).

The idea is that the simulators are designed so that a call to F1(s) results only
in the path of a single node becoming known, that of t = F(s) if s is rooted.
For that, when selecting tc for a rooted node s, they exclude the supernodes
with outgoing edges (cases a and c in Figure 3). Additionally, they avoid the
occurrence of nodes with multiple paths. For that, when selecting tc for a rooted
node s, they exclude the rooted supernodes (case b in Figure 3) and those with
outgoing edges (case c in Figure 3). The permutation simulator avoids paths of
nodes becoming known as a result of a call to F−1(s) altogether by excluding
rooted supernodes when selecting tc.

Let O be the set of supernodes with an outgoing edge. When the simulator
receives a query F1(s) with s a rooted node and all supernodes are rooted or have
an outgoing edge, i.e., if R ∪ O = C, it can no longer ensure sponge-consistency
and we call the simulator saturated. As every query to the simulator adds at
most one edge and that hence R ∪ O can be extended by at most 1 per query,
this cannot happen before 2c queries.

4.2 When Being Used with a Random Transformation

The simulator for the case that F is a random transformation is given in Algo-
rithm 2. We prove the indifferentiability by means of a series of lemmas and a
final theorem.

Algorithm 2. The transformation simulator P [RO]
1: Interface F1, taking node s as input
2: if node s has no outgoing edge then
3: if node s is rooted AND R ∪ O �= C (no saturation) then
4: Construct path to t: find path to s, append sa and call the result p
5: Write p as p = p′0rj where p′ does not end with 0r

6: if p′ can be unpadded into x then
7: Assign to ta the value zj with z = RO(x)
8: else
9: Choose ta randomly and uniformly

10: end if
11: Choose tc randomly and uniformly from C \ (R ∪ O)
12: Let t = (ta, tc)
13: else
14: Choose t randomly and uniformly from all nodes
15: end if
16: Add an edge from s to t
17: end if
18: return the node t at the end of the outgoing edge from s
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Lemma 1. To every node in the simulator graph there is at most one path,
unless the simulator is saturated.

Proof. First, we show that the rooted supernodes in the supernode graph form a
tree. When no edges exist, this is indeed the case. The only way to create a new
rooted node is by calling F1(s) with s rooted. Assuming the simulator is not
saturated, this happens only in first part of Algorithm 2 (lines 4–12), if s is rooted
and has no outgoing edge. The new edge only adds a single supernode to R as
the simulator selects it from the supernodes with no outgoing edges. Moreover,
the new edge cannot arrive in a rooted supernode (because the simulator selects
tc from C \ R) or in a supernode from which a rooted supernode can be reached
(because the simulator select tc from the supernodes with no outgoing edges).

Then, for two connected supernodes (sc, tc), there exists only one edge in
the simulator graph of the form ((sa, sc), (ta, tc)). This is because the simulator
chooses a distinct C-part for each new rooted node (unless it is saturated).

Finally, since A is a group, each r-bit block of the path is uniquely determined
by the transitions on the A-part of the nodes. �

For a given set of queries Q and their responses X (Q), we define the sponge
consistency as the property that the responses to Q0 are equal to those that
one would obtain by applying the sponge construction from the responses to Q1

(when the queries Q1 suffice to perform this calculation), i.e., that X (Q0) =
S′[X (Q1)](Q0). By construction, the queries, and their responses, made to the
system (S′[F ], F) are sponge-consistent. For the sponge-consistency of the
queries, and their responses, made to (RO, P [RO]), we refer to the following
lemma.

Lemma 2. Given queries to the simulator P [RO] described in Algorithm 2 and
to RO, it returns sponge-consistent responses, unless the simulator is saturated.

Proof. The adversary can check by querying the random oracle for sponge-
consistency for every node s in the simulator graph to which it knows the path
p. The all-zero path does not correspond to a block that can be output by the
sponge construction, so without loss of generality we assume that p �= 0rj.

Given the path p to the node s, its A-part must be equal to zj with z = RO(x),
where pad(x) = p′ and p′ is a valid sponge input given by p = p′0rj. As Lemma 1
says, there is only a single path to any rooted node in the simulator graph, and
thus the simulator guarantees this equality for the response t to every query to
F1(s) with s a rooted node, as long as it is not saturated.

We also need to show that no path is assigned to a node unless its A-part is
chosen by the lines 6–9 of Algorithm 2. Indeed, the supernode tc (at line 11) is
the only supernode that becomes rooted due to the query. This is because the
simulator excludes supernodes with outgoing edges in the selection of tc (as long
as the simulator is not saturated).

It follows that the simulator guarantees sponge-consistency for all queries Q
up to saturation. �
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Lemma 3. Any sequence of queries Q0 up to cost 2c can be converted to a
sequence of queries Q1 where Q1 gives at least the same amount of information
to the adversary and has no higher cost than Q0.

Proof. A query in Q0 consists of an input x and a length n. Let p = pad(x)0r�n
r �

and we can now convert this query into |p| queries to F1. Let s0 = (0r, 0c) and
si+1 = F1(si,a ⊕ pi, si,a) for 0 ≤ i < |p| be the responses to the new queries. As
Lemma 2 says that all queries up to cost 2c are sponge-consistent, the output
to the original (x, n) query consists of the concatenation of the A-parts of s|p|
to s|p|+�n

r �−1 truncated to n bits. By the definition of the cost of queries, the
original query in Q0 has cost |p| and it results in |p| queries in Q1, each one with
cost 1.

This process can be repeated for all queries in Q0 resulting in a sequence of
queries Q1 with the same cost. If there are queries in Q0 with inputs having
common prefixes, these can give rise to the same queries in Q1 resulting in a
reduction in cost. �

Lemma 4. The advantage of an adversary in distinguishing between F andP [RO]
with the responses to a sequence of N < 2c queries Q1 is upper bounded by:

fT(N) = 1 −
N∏

i=1

(
1 − i

2c

)
.

Proof. The advantage is defined as

Adv(A) = | Pr[A[F ] = 1] − Pr[A[P [RO]] = 1]|

The response sequence x to a sequence of N different queries is a sequence of N
values in A×C. We can provide an upper bound of the advantage by computing
the probability distributions of the outcomes of the queries to F on the one hand
and to P [RO] on the other. The optimal adversary gives back 1 for the response
sequence x if Pr(x|F) > Pr(x|P [RO]) and 0 otherwise, yielding the following
upper bound:

Adv(A) ≤ 1
2

∑
x

| Pr(x|F) − Pr(x|P [RO])|, (2)

where the righthand side of this equation is known as the variational distance.
Since F is a transformation over A × C chosen randomly and uniformly, the
responses to the different queries are independent and uniformally distributed
over A × C. It follows that all (2r2c)N possible outcomes are all equiprobable.

By inspecting Algorithm 2, the simulator always returns uniform values for the
A-part of the image. For the C-part, the simulator chooses it non-uniformly only
if the pre-image s is rooted. To obtain the greatest possible variational distance,
the optimum strategy consists in creating N rooted nodes. As a response to the
first query, it may return all values but 0r. At each subsequent query, one value
of C is added to R, and thus for each query, the simulator returns a C-part
value different from 0r and all previous ones. Note that by restricting N < 2c
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the simulator will not be saturated. Using this strategy gives us an upper bound
on the variational distance. So for the simulator, there are (2r)N (2c − 1)(N)

(where a(n) denotes a!/(a − n)!) possible responses with different C-parts, each
with equal probability ((2r)N (2c − 1)(N))−1, and the (2r)N ((2c)N − (2c − 1)(N))
others have probability 0. This gives:

Adv(A) ≤ 1 −
(2c − 1)(N)

(2c)N
= 1 −

N∏
i=1

(
1 − i

2c

)
. (3)

�

We have now all ingredients to prove the following theorem.

Theorem 1. A padded sponge construction calling a random transformation,
S′[F ], is (tD, tS , N, ε)-indistinguishable from a random oracle, for any tD, tS =
O(N2), N < 2c and any ε with ε > fT(N).

Proof. As discussed in Lemma 3 we can construct from a set of query sequences
Q0, Q1 an equivalent sequence of queries Q1′ ◦Q1 with no higher cost and giving
at least the same information. So, without loss of generality, we only need to
consider adversaries using queries Q

1
= Q1′ ◦ Q1 and their response X (Q

1
) and

no queries Q0.
For any fixed query Q

1
, we look at the problem of distinguishing the random

variable F(Q
1
) from the random variable P [RO](Q

1
). For a sequence of queries

Q
1

with cost N , Lemma 4 upper bounds the advantage of such an adversary to
fT(N).

We have tS = O(N2) as for each query to the simulator with s rooted, it must
find the path to s and send a query to the random oracle of cost equal to the
length of the path to s. The length of the path to s it upper bounded by N , the
total number of rooted supernodes in the simulator graph. �

If N is significantly smaller than 2c, we can use the approximation 1 − x ≈ e−x

for x � 1 to simplify the expression for fT(N):

fT(N) ≈ 1 − e−
N(N+1)

2c+1 <
N(N + 1)

2c+1
. (4)

4.3 When Being Used with a Random Permutation

The simulator for the case that F is a random permutation is given in Algo-
rithm 3. We now can prove indifferentiability using a series of similar lemmas.

The proofs of Lemma 1 and Lemma 2 are valid for the permutation simulator
with respect to all calls to F1 but do naturally not consider calls to F−1. The
proofs can simply be extended to the permutation simulator case by noting that
the F−1 interface of the simulator excludes rooted nodes in the selection of the
response, implying that a call to F−1 cannot lead to new rooted nodes and
hence also not to new paths. The proof of Lemma 3 is valid for the permutation
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Algorithm 3. The permutation simulator P [RO]
Interface F1, taking node s as input
if node s has no outgoing edge then

if node s is rooted AND R ∪ O �= C (no saturation) then
Construct path to t: find path to s, append sa and call the result p
Write p as p = p′0rj where p′ does not end with 0r

if p′ can be unpadded into x then
Assign to ta the value zj with z = RO(x)

else
Choose ta randomly and uniformly

end if
Choose tc randomly and uniformly from C \ (R ∪ O) and such that (ta, tc) has
no incoming edge yet
Let t = (ta, tc)

else
Choose t randomly and uniformly from all nodes that have no incoming edge
yet

end if
Add an edge from s to t

end if

Interface F−1, taking node s as input
if node s has no incoming edge then

Choose ta randomly and uniformly
Choose tc randomly and uniformly from C\R and such that (ta, tc) has no outgoing
edge yet
Let t = (ta, tc)
Add an edge from t to s

end if

simulator as it is. Finally, the output produced by the interfaces F1 and F−1

are consistent, i.e., if F1(s) = t then F−1(t) = s and vice-versa.
Instead of Lemma 4 we now have the following lemma.

Lemma 5. The advantage of an adversary in distinguishing F and P [RO] with
the responses to a sequence of N < 2c queries Q1 is upper bounded by:

fP(N) = 1 −
N−1∏
i=0

(
1 − i+1

2c

1 − i
2r2c

)
.

Proof. The proof is similar to that of Lemma 4. Since F is a permutation over
A × C chosen randomly and uniformly, the only limitation is that for the i-th
query, the image (or preimage) shall not be equal to any of the found images (or
preimage), resulting in (2r2c) − i possibilities. This leads to (2r2c)(N) possible
outcomes each with probability ((2r2c)(N))−1 and (2r2c)N − (2r2c)(N) outcomes
with probability 0.

From inspecting Algorithm 3 if follows that the adversary obtains the greatest
possible variational distance when he creates N rooted nodes. This leads to the
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same distribution as for the transformation simulator. The possible outcomes
of the permutation simulator are a subset of the possible outcomes for F . This
gives:

Adv(A) ≤ 1 −
(2r)N (2c − 1)(N)

(2r2c)(N)
= 1 −

N−1∏
i=0

(
1 − i+1

2c

1 − i
2r2c

)
. (5)

�

These lemmas and proofs result in the following theorem, where the proof is
similar to that of Theorem 1.

Theorem 2. A padded sponge construction calling a random permutation, S′[F ],
is (tD, tS , N, ε)-indistinguishable from a random oracle, for any tD, tS = O(N2),
N < 2c and and for any ε with ε > fP(N).

If N is significantly smaller than 2c, fP (N) can be approximated closely by:

fP (N) ≈ 1 − e−
(1−2−r)N2+(1+2−r)N

2c+1 <
(1 − 2−r)N2 + (1 + 2−r)N

2c+1
. (6)

Note that using a random permutation results in a better bound than using a
random transformation. By assigning distinct C-part values of rooted nodes, the
simulators tend to generate an output distribution which is closer to that of a
permutation than to that of a transformation.

5 Discussion and Conclusions

We have proven that the sponge construction calling a random transformation
or permutation is indifferentiable from a random oracle and obtained concrete
bounds. Here, the security parameter is the capacity c and not the output length
of the hash function. Note that other constructions also consider the size of the
internal state as a security parameter, e.g., [13].

One may ask the question: what does this say about resistance to classical
attacks such as collision-resistance, including multicollisions [9], (2nd) preimage
resistance, including long-message attacks [10] and herding [11]? In general, it
is expected that a hash function offers the same resistance as would a random
oracle, truncated to the hash function’s output length n. The success probability
after q queries is about q2/2n+1 for generating collisions and q/2n for generating
a (2nd) preimage. The sponge construction does not have a fixed output length.
However, when a hash function with the sponge construction is used in an ac-
tual cryptographic scheme, its output will be truncated. Our indifferentiability
bounds in terms of the capacity c permit to express up to which output length
n such a hash function may offer the expected resistance. For example, it offers
collision resistance (as a truncated random oracle would) for any output length
smaller than the capacity and (2nd) preimage resistance for any output length
smaller than half the capacity. In other words, when for instance c = 512, a ran-
dom sponge offers the same resistance as a random oracle but with a maximum
of 2256 in complexity.
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A function with the sponge construction can be used to build a MAC function
(by just pre-pending the key to the input) or, thanks to its long output, to build
a synchronous stream cipher (by taking as input the concatenation of a key and
an IV). Alternatively, the sponge construction can be used as a reference for
expressing security claims when building new such designs.

Note that the bounds we have provided only hold when the sponge construc-
tion makes use of a random transformation or random permutation. When a
concrete transformation or permutation is taken, no such bounds can be given.
See for example [5] and also [14] for discussions on this subject. However, our
bounds do say that using the sponge construction excludes generic attacks with
a success probability higher than the maximum of our bound N(N+1)

2c+1 and the
success probability the attack would have for a random oracle. By generic at-
tacks we mean here attacks such as those described in [9,10,11], that do not
exploit specific properties of the transformation or permutation used but only
properties of the construction.
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Abstract. We propose a new mode of operation, enciphered CBC, for domain
extension of length-preserving functions (like block ciphers), which is a varia-
tion on the popular CBC mode of operation. Our new mode is twice slower than
CBC, but has many (property-preserving) properties not enjoyed by CBC and
other known modes. Most notably, it yields the first constant-rate Variable Input
Length (VIL) MAC from any length preserving Fixed Input Length (FIL) MAC.
This answers the question of Dodis and Puniya from Eurocrypt 2007. Further, our
mode is a secure domain extender for PRFs (with basically the same security as
encrypted CBC). This provides a hedge against the security of the block cipher:
if the block cipher is pseudorandom, one gets a VIL-PRF, while if it is “only” un-
predictable, one “at least” gets a VIL-MAC. Additionally, our mode yields a VIL
random oracle (and, hence, a collision-resistant hash function) when instantiated
with length-preserving random functions, or even random permutations (which
can be queried from both sides). This means that one does not have to re-key the
block cipher during the computation, which was critically used in most previous
constructions (analyzed in the ideal cipher model).

1 Introduction

Modes of operation allow one to build a Variable Input Length (VIL) primitive from
a given Fixed Input Length (FIL) primitive. Currently, variants of two popular modes
of operation are used to implements almost all known VIL primitives: the CBC mode,
which operates on length preserving functions (like a block cipher), and the Merkle-
Damgård (MD, aka as “cascade”) mode, which operates on a compression function. In
practice, the latter compression function h is often implemented out of a block cipher
E via the Davies-Meyers transform: h(x, y) = Ex(y) ⊕ y. Thus, one way or another,
many useful primitives are built from a block cipher in practice. Unfortunately, we argue
that neither the CBC nor the MD mode are entirely satisfactory and a new block cipher
mode of operation is needed.

CBC MODE. Cipher Block Chaining (CBC) is a popular mode of operation for do-
main extension of pseudorandom functions (PRFs) [3], thus allowing one to build a
MAC (recall that a PRF is a MAC) on roughly n� bits by making � calls to an n-bit
block cipher E. However, here one must assume that E is a PRF, even if finally one
is only interested in getting a MAC. Pseudorandomness is a much stronger assumption
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than unpredictability (which is all we need from a MAC). Thus, it is natural to ask if
the CBC-MAC is secure if the block cipher is “only” unpredictable, in other words, if
CBC is a good domain extender for MACs. Aside from being of great theoretical im-
portance, a positive answer to this question would provide a hedge against the security
of the block cipher E: if E is pseudorandom, one gets a VIL-PRF, while if it is only
unpredictable, one at least gets a VIL-MAC. Unfortunately, An and Bellare [1] showed
that this is not the case.1 This motivates the following central question of this work:

Question 1. Is there a simple and efficient way to build a VIL-MAC from a length-
preserving MAC (like an unpredictable block cipher)?

This question was recently explicitly addressed by Dodis and Puniya [14]. They argued
that none of the existing techniques (as opposed to just CBC) give a satisfactory answer
to this question (see [14] for a list of many failed approaches). They also presented
the best-known-to-date solution. The idea is to use the Feistel network for ω(log λ)
rounds (where λ is the security parameter) to get a MAC from 2n to 2n bits. Then one
can safely chop half of the output bits, getting a 2n �→ n bit MAC, after which one
can apply any of the known efficient techniques to extend the domain of a “shrinking
MAC” [1,16]. While elegant, this solution evaluates the given FIL-MAC ω(� logλ)
times to extend the domain of the FIL-MAC by a factor of �. In contrast, the solution
we present shortly will only use 2� calls.

Coming back to CBC, another drawback of this mode is that it does not appear to be
useful for building collision-resistant hash function (CRHFs) or random oracles (ROs)
from block ciphers, even if the block cipher is modeled as an ideal cipher. Indeed, if
the key to the block cipher is fixed and public, it is trivial to find collisions in the CBC
mode, irrespective of the actual cipher.

MD MODE. Unlike the CBC mode, the MD mode seems to be quite universal, and
variants of it were successfully used to argue domain extension results for many proper-
ties, including collision-resistance [11,18,21,8], pseudorandomness [5,6], unforgeabil-
ity [1,16], indifferentiability from a random oracle [10], randomness extraction [12] and
even “multi-property preservation” [7]. However, when using a block cipher, we will
first have to construct a compression from the block cipher before we can apply MD.

One trivial way of doing this would to simply chop part of the output of E. However,
this is very unsatisfactory on multiple levels. First, to achieve constant efficiency rate for
the cascade construction, one must chop a constant fraction of the output bits. However,
already chopping a super-logarithmic number of bits will not, in general, preserve the
security of E as a MAC, making it useless for answering Question 1. Second, even for
the case of PRFs and ROs, where chopping a linear fraction of bits does preserve the
corresponding property, one loses a lot in exact security, since the output is now much
shorter. For example, dropping half of the bits would give a VIL-PRF with efficiency
rate 2 and security µ2/2n/2 (where µ is the total length of queried messages), compared
to efficiency rate 1 and security µ2/2n achieved by CBC.

As another option, which is what is done in practice, one could construct the com-
pression function via the Davies-Meyers transform h(x, y) = Ex(y)⊕y. For one thing,

1 Their attack was specific to a two-block CBC, but it is not hard to extend it to more rounds.
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this is not very efficient, as it requires one to re-key the block cipher for every call, which
is quite expensive for current block ciphers. (For example, eliminating this inefficiency
was explicitly addressed and left as a challenge by Black, Cochran and Shrimpton [9].)
More importantly, however, using the Davies-Meyers construction requires very strong
assumptions on the block cipher to prove security. Namely, one can either make an
ad hoc assumption that the Davies-Meyers compression function satisfies the needed
domain extension property (such as being a PRF or a MAC), or formally prove the
security of the construction in the ideal cipher model. Both of these options are un-
satisfactory. The first option is provably not substantiated even is the block cipher E
is assumed to be a pseudorandom permutation (PRP): for example, one can construct
(artificial) PRPs for which the Davies-Meyers construction is not even unpredictable.
As for the second option, it might be acceptable when dealing with strong properties,
like collision-resistance or indifferentiability, when it is clear that the basic PRP prop-
erty of the block cipher will not be enough [25]. However, to get pseudorandomness, or
even unpredictability, going through the ideal cipher argument seems like a very (and
unnecessarily) heavy hammer.

NEW MODE OF OPERATION. The above deficiencies of the CBC and the MD mode
suggest that there might be a need to design a new mode of operation based on block ci-
phers, or, more generally, length-preserving (keyed or unkeyed) functions. We propose
such a mode which will satisfy the following desirable properties:

– The mode is efficient. If the message length is � blocks, we evaluate the block cipher
at most c� times (c is called the efficiency rate; we will achieve c = 2).

– The mode uses a small, constant number of (secret or public, depending on the
application) keys for the block cipher. In particular, one never has to re-key the
block cipher with some a-priori unpredictable value.

– It gives a provably secure VIL-MAC from length-preserving FIL-MAC, answering
Question 1.

– It gives a provably secure VIL-PRF from a length-preserving FIL-PRF, therefore
providing the hedge against the security of the block cipher E: if E is pseudoran-
dom, the mode gives a PRF; if E is only unpredictable, one at least gets a MAC.

– It gives a way to build a VIL-RO (and, hence, a VIL-CRHF) from several random
permutations.

– The mode is elegant and simple to describe.

Of course, simply being a “secure” domain extension for PRF/MAC/RO is not enough:
the exact security achieved by the reduction is a crucial parameter, and we will elaborate
on this later in this section.

ENCIPHERED CBC. The mode, enciphered CBC, we present in this paper is a relatively
simple variant of the CBC mode. We first describe our “basic” mode, which works
for domain-extension of MACs, PRFs and ROs, and later show the changes needed
to make it work with (random) permutations as well.2 The basic mode, depicted in

2 In the random permutation model (where there are no secret keys) we need to worry about the
inverse queries of the attacker. In contrast, in the secret key setting, a PRF is also a PRP, so the
simpler mode already works for the domain extension of MACs and PRFs.
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Figure 1, consists of three independent length-preserving functions f1, f2, f3 (either
keyed or not, depending on whether we are in the secret key setting, or in the random
oracle model). First, we define an auxiliary compression function g(x, y) = f1(x) ⊕
f2(y). Intuitively, the key property of this function — which will hold in all our appli-
cations — is that it is weakly collision-resistant (WCR) [1]. This means that, given
oracle access to f1 and f2, it is infeasible to find a collision for g. Then we use g(x, y) as
the compression function in the usual MD mode with strengthening: namely, we apply
the Merkle-Damgård chaining to the message (x1 . . . x�, 〈�〉), where (x1 . . . x�) is our
original message, and get output z. Finally, we output f3(z) as the value of our (basic)
enciphered CBC.3

As we argue, if f1, f2, f3 are three independent (keyed) MACs, then the above con-
struction is a (three-keyed) VIL-MAC, answering Question 1. Also, although about
twice less efficient than CBC, enciphered CBC also preserves the PRF property. On
the other hand, if f1, f2, f3 are random oracles, then the construction is indifferentiable
from a VIL-RO. Finally, if we assume that f1 and f2 are such that g(x, y) above is
collision-resistant, then the mode which outputs the value z (and not f3(z)) above is
trivially collision resistant, since this is simply the usual MD transform with strength-
ening applied to a FIL-CRHF. Thus, if f3 is “collision-resistant” (either trivially if it is
a permutation, or even computationally), then enciphered CBC gives a VIL-CRHF. Of
course, the assumption on g is not entirely satisfactory, but we argue that it is meaning-
ful in the standard model.

OPTIMIZATIONS. We also show several optimizations of our mode which, while
slightly less efficient, also work for two, or even one length-preserving round func-
tion. We only mention the two-key mode, since the one-key mode is a bit less “elegant”
and intuitive to describe. The solution we propose (using two functions f and f ′) is
to view {0, 1}n as the finite field GF(2n), and then use the three-key solution with
functions f1(x) = f(x), f2(y) = α · f(y) and f3(z) = f ′(z), where α is any con-
stant in GF(2n) different from 0 and 1.4 Then, we show that the resulting function
g(x, y) = f(x) ⊕ α · f(y) is still WCR in all our applications.

Finally, we show how to extent the basic enciphered CBC mode to the case of random
permutations. As already mentioned in Footnote 2, this is only the issue in the results
concerning the random permutation model, since there the attacker can try to invert the
random permutation. Indeed, the function g(x, y) = f1(x) ⊕ f2(y) is obviously not
collision-resistant (which is crucial for our proof) if the attacker can invert f1 or f2.
Our solution is to use the Davies-Meyers transform, but without the key. Namely, if π1

and π2 are random permutations, we essentially apply the previous mode to functions
f1(x) = π1(x) ⊕ x and f2(y) = π2(y) ⊕ y. This ensures that the function g(x, y) =
π1(x) ⊕ x ⊕ π2(y) ⊕ y is still WCR, even with the oracle access to π−1

1 and π−1
2 . As

for the function f3, it really must look like a random oracle, so we use a slightly more

3 One can also describe enciphered CBC as “enciphering” the input and the output of the stan-
dard CBC mode applied to f1: we encipher all the input blocks (except the first) with f2, and
the output block — with f3. This (less useful) view explains the name of the mode.

4 We recommend the constant corresponding the the “polynomial” X in GF(2n), since multi-
plication by this polynomial in GF(2n) corresponds to one right shift and one XOR (the latter
only if there is a carry), which is very efficient.
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involved construction f3(z) = π3(z) ⊕ π−1
3 (z).5 With these definitions of f1, f2 and

f3 using π1, π2 and π3, we get our final enciphered CBC mode on block ciphers. (As
we mentioned, though, the simplified mode already works for the case of PRFs and
MACs.) We believe that optimizations similar to those made to the simplified mode,
might also reduce the number of random permutations below three, but we leave this
question to future work.

SECURITY. We will now discuss how the security of our mode for MAC/PRF/RO
compares to known constructions. Recall that a mode of operation has rate c if it makes
c� calls to the underlying primitive when given an �-block message. We achieve c = 2.

We will say that a domain extension for MACs has security d, if the security of
the mode is ε · µd where ε is the security of the underlying FIL MAC and µ denotes
the total length of the messages an adversary is allowed to query. Our mode achieves
security d = 4, and this is the first constant-rate construction to achieve any security at
all. For shrinking MACs {0, 1}n+k → {0, 1}n, An and Bellare [1] show that a version
of Merkle-Damgård gives a secure domain extension with security d = 2 (and rate
c = n/k, which is constant if k = Ω(n)). This security is much better than what
we achieve, but it is unclear how to build a shrinking MACs with good security and
compression efficiency (i.e., k = Ω(n)) from a length-preserving MAC. Indeed, prior
to this work, the best known construction of Dodis and Puniya builds a shrinking MAC
with rate c = ω(log λ) (where λ is the security parameters) and security d = 6, which
is inferior to our c = 2 and d = 4.

As for PRFs, our mode achieves basically the same security µ2/2n as encrypted
CBC, which is the best security known for constructions which are iterated, stateless
and deterministic. In fact, as discussed in Section 3.3,we will achieve even better exact
security when using PRPs (i.e., block ciphers) in place of length-preserving PRFs.

Similarly to MACs, we will say that a construction of a VIL-RO has security d, if
it is µd/2n indifferentiable from a random oracle when instantiated with FIL-ROs or
RPs. With this convention, our construction has security d = 4. Recently, Maurer and
Tessaro [17] give a pretty involved construction with the optimal security rate d → 1
(at the expense of large efficiency rate c = O(1)), while the results of Coron et al. [10]
for domain extension of “shrinking ROs” easily imply (by chopping some output bits
of the length-preserving RO) a range of constructions with efficiency c and security
µ2/2(1−1/c)n. Although approaching security d = 2 for a large constant c, for c = 2
this gives poorer security µ2/2n/2 than the security µ4/2n of enciphered CBC.

In the context of building VIL-CRHFs from length-preserving ROs or RPs, Shrimp-
ton and Stam [24] give a simple construction from ROs with c = 3 and optimal d ≈ 2,
while Rogaway and Steinberger [23] recently reported a more complicated construction
from RPs with c = 3 and optimal d ≈ 2. Additionally, in a companion paper [22] they
showed the necessity of non-trivial efficiency/security tradeoffs for any construction
of VIL-CRHF in the random permutation model. This suggests the existence of similar
(or worse) tradeoffs for the related question of building VIL-RO from length-preserving
FIL-RO (or RP).

5 This construction is of independent interest since it shows an indifferentiable construction of
an n-to-n-bit random oracle from an n-to-n bit random permutation.
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To summarize this discussion, we designed the first mode of operation simultane-
ously satisfying several demanding properties, some of which were never satisfied be-
fore (even in isolation). We conjecture that any such mode must require some non-trivial
tradeoff between efficiency and security. Our specific mode, while simple and elegant,
might not give such optimal tradeoffs. In particular, its security of “only” µ4/2n for the
case or ROs and ε ·µ4 for MACs is particularly unsatisfying to make it useful in practice
(where n = 128; note that ε ≥ 2−n). It is an interesting open question to understand
the optimal efficiency/security tradeoffs, and to potentially improve upon our specific
enciphered CBC mode of operation.

2 Preliminaries

We assume that the reader is familiar with the basic security definitions for MACs,
PRFs, CRHFs and indifferentiability from RO. We use exact security definitions for
each of these primitives.

MACS AND PRFS. The security of a MAC is measured via its resistance to existential
forgery under chosen message attack (see [3]). A function family F is a (t, q, µ, ε)-
secure MAC if the success probability of any attacker with running time t, number
of queries q and total message length µ is at most ε. Similarly, the security of PRFs
is measured in terms of its indistinguishability from a truly random function under a
chosen message attack, and a (t, q, µ, ε)-secure PRF is similarly defined.

INDIFFERENTIABILITY FROM RANDOM ORACLE. We follow the definitions of [10]
for indifferentiability of a construction from an ideal primitive F (which will be a ran-
dom oracle in this paper). A construction C, that has oracle access to ideal primitive G,
is (tD, tS , q, µ, ε)-indifferentiable from another ideal primitive F , if there is a G sim-
ulator S that runs in time at most tS , such that any attacker D with running time tD,
number of queries q and total query length µ can distinguish the F model (with access
to F and S) from the G model (with access to C and G) with advantage at most ε.

COLLISION RESISTANCE. A function family F is (t, ε)-secure CRHF family, if the
advantage of any attacker running in time t to find a collision for an f sampled at
random from F , is at most ε.

3 Three-Key Enciphered CBC Construction

In this section, we will define the three-key enciphered CBC mode of operation and
analyze its security under various notions.

First, we make some auxiliary definitions. Given two length-preserving functions
f1, f2 : {0, 1}n → {0, 1}n, we define the shrinking XOR compression function,
g[f1, f2], from 2n bits to n bits by g[f1, f2](x1 ‖ x2)

def= f1(x1) ⊕ f2(x2), where
x1, x2 ∈ {0, 1}n. Given this function, we define the XOR hash function G[f1, f2] to
be simply the cascade construction applied to the XOR compression function. Namely,
given input x = x1 ‖ . . . ‖ x�, where xi ∈ {0, 1}n, we let

G[f1, f2](x1 ‖ . . . ‖ x�)
def= g[f1, f2](x� ‖ g[f1, f2](. . . g[f1, f2](x2 ‖ x1) . . .))
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x1 x2 x3 x� 〈�〉

f2 f2 f2 f2

⊕ ⊕ ⊕ ⊕

f1 f1 f1 f1 f3

Fig. 1. The basic three-key enciphered CBC construction H [f1, f2, f3]

THE CONSTRUCTION. The new mode of operation, H [f1, f2, f3], uses three length-
preserving functions f1, f2, f3 : {0, 1}n → {0, 1}n and takes a variable-length input
x = x1 ‖ . . . ‖ x� (wlog, we assume the length to be a multiple of n; if not, then a suit-
able encoding scheme can be used to achieve this, such as appending a 1 followed by
0s). It simply applies the XOR hash function G[f1, f2] described above to a suffix-free
encoding of the input, followed by the third length-preserving function f3. The particu-
lar suffix-free encoding we use is Merkle-Damgård (MD) strengthening [11,18], where
one simply appends the input length 〈�〉 to the input. The resulting mode, depicted in
Figure 1, is called enciphered CBC mode, and it is defined as:

H [f1, f2, f3](x1 ‖ . . . ‖ x�) = f3(G[f1, f2](x1 ‖ . . . ‖ x� ‖ 〈�〉))

3.1 VIL-MAC from Length-Preserving FIL-MAC

In this section we will prove, that unlike plain CBC, the enciphered CBC (cf. Figure 1)
does give a secure VIL-MAC when instantiated with a length preserving MACs (here
denoted fk1 , fk2 , fk3 to emphasize the secret keys k1, k2, k3). We will use an elegant
methodology of An and Bellare [1] which they used to analyze their NI Construction
of a VIL-MAC from a shrinking FIL-MAC. However, we will see that it will be useful
in our setting as well. In brief, the methodology introduced a notion of weak collision-
resistance (WCR) and essentially reduced the construction of a VIL-MAC to that of a
FIL-WCR. Details follow.

WEAK COLLISION-RESISTANCE (WCR). Consider a keys family of functions F =
{fk}, and the following attack game involving this function family. An attacker A gets
oracle access to fk (for random k) and returns a pair of messages m 
= m′ in the
domain of F . The attacker A wins if these message collide: fk(m) = fk(m′). The
function family F is said to be a (t, q, µ, ε)-secure WCR function family if the success
probability of any attacker with running time t, number of queries q and total message
length µ is at most ε.

FROM WCR TO MAC. The methodology of An and Bellare [1] utilized the notion of
WCR via the following reasoning (which we immediately attempt to apply to the case
of enciphered CBC).

Step 1: The composition of a FIL-MAC fk and a WCR function hk′ is a secure MAC
fk(hk′ (·)) (Lemma 4.2 [1]). Applied to enciphered CBC, where fk3 is a FIL-MAC, it



A New Mode of Operation Block Ciphers 205

means that it suffices to show that the XOR hash function G[fk1 , fk2 ], with suffix-free
inputs, is a VIL-WCR.

Step 2: The cascade construction, with suffix-free inputs, applied to a FIL-WCR func-
tion gives a VIL-WCR function (Lemma 4.3 [1]). In our case, the XOR hash function
is exactly the required cascade construction applied to the XOR compression function
g[fk1 , fk2 ]. Thus, it suffices to show that the latter is FIL-WCR.

Step 3: Build a FIL-WCR. In the case of the NI Construction of [1], one needed to
build a FIL-WCR from a shrinking MAC, which was easy to do: any shrinking FIL-
MAC is FIL-WCR (Lemma 4.4 [1]). Applied to our setting, it would suffice to show
that the XOR compression function fk1(x1) ⊕ fk2(x2) is a FIL-MAC. However, this is
easily seen to be false: for example, the XOR of its outputs applied to inputs (x1 ‖ x2),
(x1 ‖ x′2), (x′1 ‖ x2) and (x′1 ‖ x′2) is always 0n, which easily leads to a forgery.
Despite this “setback”, we give a direct proof that the XOR compression function is a
FIL-WCR, despite not being a FIL-MAC. And this is all we need.

Lemma 1. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a family of functions. Define the
function family g[fk1 , fk2 ](x1 ‖ x2)

def= fk1(x1) ⊕ fk2(x2). If the function family f is
a (t, q, qn, ε)-secure MAC family, then g[fk1 , fk2 ] is a (t′, q, 2qn, ε · q4/2)-secure WCR
family, where t′ = t − O(qn).

Proof: Let A be an adversary which finds a collision for g[fk1 , fk2 ] with probability
ε′ (if k1, k2 are uniformly random). From such an A we will construct a new adversary
B which is basically as efficient as A, and which forges f with probability at least
2ε′/q4. Instead only giving A access to g[fk1 , fk2 ], we allow A to make q queries to
fk1 and fk2 respectively, but we require this queries are made alternately, i.e. after a
query to fkb

, A must make a query to fk3−b
(note that such an A can trivially simulate

q queries to g[fk1 , fk2 ]). Moreover we assume that if x1‖x2, x
′
1‖x′2 is A’s final output,

then A always made the fk1 queries x1, x
′
1 and the fk2 queries x2, x

′
2 (this can be

done wlog. if we allow A two extra queries to fk1 and fk2 respectively). Assume A is
successful, and finds a collision x1‖x2 
= x′1‖x′2 for g[fk1 , fk2 ]. We say that a query
x (say to fk1) is a winner query, if it is the first query where for some b, c, d, the pair
x‖b 
= c‖d is a collision for g[fk1 , fk2 ] and A already knows (i.e. made the queries)
fk2(b), fk1(c), fk2(d). Note that if A found a collision, then it must have made a winner
query. Our attacker B, which must forge fk (for some random unknown k) is now
defined as follows. First B flips a random coin r ∈ {1, 2}, and samples a random key
k′ for f . Now B lets A attack fk1 , fk2 , where fk = fkr and fk′ = fk3−r . During the
attack, for a random i, 2 ≤ i ≤ q, B stops when A makes the i’th query x to fkr and
“guesses” that this will be the winning query. Then B randomly chooses three already
made queries b, c, d, conditioned on x‖b 
= c‖d (hoping that x‖b, c‖d is a collision), and
guesses the forgery ρ := fk3−r (b) ⊕ fkr (c) ⊕ fk3−r(d) for fkr = fk for the message
x. Note that ρ is a good forgery for fk = fkr , if x‖b, c‖d is indeed a collision for
g[fkr , fk3−r ]. Thus B will be successful if A makes a winning query (which happens
with probability ε′), and moreover B correctly guesses r (i.e. whether the winning query
will be a f1 or f2 query), the index i of the winning query and also the three other
queries involved. The probability of all that guesses being correct is at least 2ε′/q4.
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By assumption (on the security of f as a MAC) we have 2ε′/q4 ≤ ε, thus the success
probability of B must be at most ε · q4/2 as claimed.

Combining this result with the Lemmas 4.2 and 4.3 from [1], we immediately get

Theorem 1. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a (t, q, qn, ε)-secure length-
preserving FIL-MAC. Then H [fk1 , fk2 , fk3 ](.) (where k1, k2, k3 is the secret key) is a
(t′, q, qn, ε · q4)-secure variable input-length MAC, where t′ = t − O(qn).

3.2 VIL-RO from Length-Preserving FIL-RO

In this section we show that the enciphered CBC mode provides a domain extension for
length-preserving ROs (in the sense of [10]).

Theorem 2. Consider three length-preserving ROs f1, f2, f3 : {0, 1}n → {0, 1}n.
Then the enciphered CBC construction H [f1, f2, f3] is (tD, tS , q, µ, ε)-indifferentiable
from a VIL-RO. Here tS = O(q2) , ε = O((q + µ)4/2n) and tD is arbitrary.

One might hope that the proof of this theorem can be given by using the corresponding
indifferentiability result of Coron et al [10] for the NMAC construction. However, this
intuition turns out to be incorrect since in order to use the result of [10], we will need
to show that the XOR compression function g[f1, f2] is indifferentiable from a FIL-RO
from 2n bits to n bits. But this is clearly false, since for three n-bit input blocks x, y, y′,
we can see that g[f1, f2](x ‖ y) ⊕ g[f1, f2](x ‖ y′) is independent of the n-bit block x
which is certainly not true for an ideal FIL-RO!

Hence we give a direct proof for this result. In the proof, we need to construct a
FIL-RO simulator that responds to the queries made by the indifferentiability attacker
A to the FIL-ROs f1, f2 and f3 in the VIL-RO model. Roughly speaking, the simulator
responds to f1 and f2 queries at random and hopes that no collisions occur for the
input to f3 in the last round of the enciphered CBC construction. If no such collisions
occur, then it can adjust its response to f3 queries to match the VIL-RO output on the
corresponding variable-length input (which it finds by searching through its previous
responses).

Proof: We will prove the indifferentiability of the enciphered CBC mode of operation
H [f1, f2, f3] from a variable input-length random oracle (VIL-RO) F : {0, 1}∗ →
{0, 1}n, in the random oracle model for the underlying fixed input-length functions
f1, f2, f3 : {0, 1}n → {0, 1}n. The proof consists of two parts: the description of the
FIL-RO simulator and the proof of indifferentiability.

The Simulator. The simulator S responds to queries of the form (i, x), where i ∈
{1, 2, 3} and x ∈ {0, 1}n. In particular, the response y ∈ {0, 1}n of the simulator S to
a query (i, x) will be interpreted as the output fi(x) by the distinguisher, i.e. y = fi(x).
The simulator also maintains a table T consisting of entries of the form (i, x, y), for
each query (i, x) that it responded to with the output y.

f1 QUERIES. In response to a query of the form (1, x), the simulator S looks up its
table for an entry of the form (1, x, y). If it finds such an entry, then it responds with
the output y recorded in this tuple, otherwise it responds to this query by choosing an
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output y that is uniformly distributed over {0, 1}n and records the tuple (1, x, y) in its
table T .

f2 QUERIES. The simulator responds to queries of the form (2, x) in the same way as
it responds to f1 queries, i.e. first looking up its table for a matching tuple (2, x, y), else
responding with a fresh uniformly distributed output y.

f3 QUERIES. In response to queries of the form (3, x), the simulator needs to check if
there is a variable length input X , such that it needs to be consistent with the VIL-RO
output F (X) on this input. It firsts looks up its table T to find out if there is a matching
tuple (3, x, y) corresponding to a duplicate query, in which case it responds with y.
Otherwise, it looks up the table T for a sequence of tuples (1, x1

1, y
1
1) . . . (1, x1

i , y
1
i ) and

(2, x2
1, y

2
1) . . . (2, x2

i , y
2
i ), that satisfy the following conditions:

(a) For j = 2 . . . i, it holds that x1
j = y1

j−1 ⊕ y2
j−1.

(b) For the last tuples (1, x1
i , y

1
i ) and (2, x2

i , y
2
i ), it holds that the current f3 input x =

y1
i ⊕ y2

i .
(c) The bit string x1

1 ‖ x2
1 ‖ . . . ‖ x2

i is such that x2
i = 〈i〉. That is, it should be the

output of Merkle-Damgård strengthening applied to a valid input.

If the simulator finds such a sequence of tuples, then it queries the VIL-RO F to find
out the output y = F (x1

1 ‖ x2
1 ‖ . . . ‖ x2

i−1) and responds to the query (3, x) with the
output y, and records the tuple (3, x, y) in its table T . If it does not find such a sequence
of tuples then it responds with a uniformly random output y ∈ {0, 1}n and records
(3, x, y) in T .

The proof of indifferentiability is postponed to the full version of this paper [13].

3.3 VIL-PRF from Length-Preserving FIL-PRF

If we remove the f2 boxes in our enciphered CBC mode of operation (cf. Figure 1),
we get a well known mode of operation called encrypted CBC, which is known to be
a good domain extension for PRFs [19,20]. The security of encrypted CBC (i.e. the
distinguishing advantage from a uniformly random function, URF) when instantiated
with two PRFs is (µ2/2n + 2ε), where µ is the total length (in n bit blocks) of the
messages queried and ε is a term that accounts for the insecurity of the underlying PRF.
It is not surprising that our enciphered CBC mode is almost as secure, as the application
of f2 (not present in the usual encrypted CBC mode) does not affect the security by
much.

Theorem 3. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a (t, µ, µn, ε)-secure FIL-PRF
family. Then H [fk1 , fk2 , fk3 ](.) is a (t′, q, µn, 2µ2/2n + 3ε)-secure VIL-PRF family
where t′ = t − O(qn).

We will not formally prove this theorem, but just explain how it follows from the known
(t′, q, µn, µ2/2n+2ε) security of the encrypted CBC-MAC (under the same assumption
on the PRF like in the theorem). The main observation here is that we can turn any
distinguisher D for enciphered CBC into a distinguisher D′ for encrypted CBC, by
simply sampling some key k2 at random, and then enciphering with fk2 (except the
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first block) the queries made by D, before forwarding them to the oracle of D′. If the
oracle of D′ is encrypted CBC, then the oracle’s answers look exactly as if they were
computed by an enciphered CBC. In the ideal experiment, where the oracle of D′ is
a VIL-URF, the oracle’s answers still look uniformly random, even if the input is first
applied to fk2 , unless D makes two queries containing blocks x 
= x′ which collide
on fk2 . The probability of that happening can be upper bounded by µ2/2n + ε, as fk2

can be distinguished from a URF with advantage at most ε, and the probability to find
a collision for a URF with range {0, 1}n making µ queries is at most µ2/2n. This
µ2/2n + ε accounts for the gap in the security for enciphered CBC (as in the theorem)
and encrypted CBC (as mentioned above).

IMPROVING THE BOUND FOR BLOCK CIPHERS. As just explained, the gap in the
security of encrypted and enciphered CBC is bounded by the probability that one can
find a collision for the PRF fk2 . Thus, if fk2 is a permutation (where there are no
collisions), (t, q, µn, δ)-security for encrypted CBC implies basically the same (t −
O(µn), q, µn, δ) security for enciphered CBC. This observation is useful, as in practice
the PRF is usually instantiated by a block cipher, which is a permutation. And further,
for the encrypted CBC mode of operation, one can prove much better bounds than
(µ2/2n +2ε) if both fk1 and fk2 are assumed to be pseudorandom permutations (PRPs)
[4,20] as opposed to PRFs. Thus, this better bounds for encrypted CBC translate directly
to our mode of operation. To state the improved bounds, one must assume an upper
bound � on the length of each message queried by the distinguisher (this should not be
a problem in practice, as the bound can be exponential). Let q be the number of queries
the adversary is allowed to make, then if no messages is longer than � ≤ 2n/4 (and thus
the total length µ is at most �q), the security of encrypted CBC instantiated with PRPs
is q2�Θ(1/ ln ln �)/2n (plus some ε term accounting for the insecurity of the PRP). With
the stronger condition that � ≤ 2n/8, one gets an even stronger O(q2/2n) bound [20],
which is tight up to a constant factor. Note that this is much better than the O(q2�2/2n)
bound implied by Theorem 3, and in particular is independent of the message length �.

3.4 Collision Resistance of Enciphered CBC

Now we discuss the collision-resistance of the enciphered CBC mode of operation. Note
that the problem of constructing variable input-length CRHFs from length-preserving
collision-resistant (CR) functions does not make much sense, since it is trivial to con-
struct length-preserving CR functions (such as the identity function). However, as dis-
cussed in the introduction, we can make the following simple observation about the
enciphered CBC mode of operation.

Lemma 2. Consider three length-preserving functions f1, f2 and f3 on n bits. If the
XOR compression function g[f1, f2] and the function f3 are collision-resistant, then the
enciphered CBC mode of operation, H [f1, f2, f3], is collision-resistant as well.

This observation is a simple consequence of the result of Merkle-Damgård [11,18],
since we already use a suffix-free encoding the the enciphered CBC mode. Notice that
assuming that a length-preserving function f3 is a CRHF is a very mild requirement,
since any permutation trivially satisfies this property. Thus, we the main assumption we
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need is that the XOR of functions f1 and f2 is a CRHF. Of course, in the random oracle
model, it is well known the the XOR of two random oracles is collision-resistant (in
fact, in this setting we showed in Section 3.2 that the enciphered CBC mode even gives
a VIL-RO, let alone a “mere” VIL-CRHF).

Our point is that it is not essential to make idealized assumptions on the functions f1

and f2 to prove collision resistance of the construction g[f1, f2]. For instance, consider
any finite field F for which the discrete logarithm problem is hard, and whose elements
can be naturally encoded as binary strings. Define the functions f1, f2 : {0, 1}n →
{0, 1}n as f1(x) = genx

1 and f2(x) = genx
2 , where gen1 and gen2 are two generators

of F. Further, let us replace the XOR operation in g[f1, f2] by a field-multiplication over
F. Then we get a new function g(x ‖ y) = genx

1 · geny
2 which is provably collision-

resistant under the discrete log assumption. Coupled with the RO justification, this ex-
ample suggests that our assumption on g[f1, f2] is not too unreasonable.

We stress, though, that the XOR compression function is definitely not collision-
resistant when f1 and f2 are (public) random permutations, as any two pairs (x, y),
(x′, f−1

2 (f1(x) ⊕ f2(y) ⊕ f1(x′))) give a collision. Indeed, as we explain next, our
mode has to be slightly modified to handle the case of random permutations.

4 A Block Cipher Based Mode of Operation

So far we described the enciphered CBC mode for three length-reserving functions. But,
as already mentioned at the end of Section 3.4 and in Footnote 2, we need to modify
our basic mode in order for it to work with permutations in “unkeyed” settings, such
as indifferentiability from RO and collision-resistance. In the “keyed” settings, i.e. for
MACs and PRFs, replacing the functions with permutations does not make a qualitative
difference (up to a birthday bound), since a PRP is also a PRF. Thus, the enciphered CBC
construction works for domain extension of MACs and PRFs even if one uses a block
cipher to implement the these primitives. However, even in these cases the construction
may have slightly different (up to a birthday bound) exact security. For instance, as
discussed for the case of PRFs in Section 3.3, the enciphered CBC construction has
actually better exact security if permutations are used instead of functions.

“ENHANCED” ENCIPHERED CBC. We now described the (enhanced) enciphered
CBC mode of operation based on three permutations π1, π2 and π3. While this more
complicated mode is only needed for the “unkeyed” settings (RO and CRHF), we will
see that it still works for the “keyed” settings (PRF and MAC), although under slightly
stronger assumptions than before. The mode is depicted in Figure 2 and is denoted
H∗[π1, π2, π3]. We observe that this enhanced mode is precisely the basic enciphered
CBC construction H [f1, f2, f3] with length-preserving functions f1, f2 and f3 defined
as follows: fi(x) = πi(x) ⊕ x for i = 1, 2, and f3(x) = π3(x) ⊕ π−1

3 (x). The reason
for this choice will become clear in the sequel, when we discuss why this “enhanced”
mode works for building VIL-RO and VIL-CRHF.

4.1 Collision Resistance from Random Permutations

Using Lemma 2, in order to argue the collision-resistance of the enhanced mode,
it suffices to argue the collision resistance of the XOR compression function
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x1 x2 x3 x� 〈�〉

π2 π2 π2 π2

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

π1 π1 π1 π1 π−1
3 π3

⊕ ⊕ ⊕ ⊕

Fig. 2. The “enhanced” three-key enciphered CBC construction H∗[π1, π2, π3] which is a domain
extender for random oracles, even if instantiated with random permutations

f(x)⊕f2(y) = π1(x)⊕x⊕π2(y)⊕y, and the function f3(x) = π3(x)⊕π−1
3 (x), even

if the attacker can invert π1, π2 and π3. In the standard model, we will have to simply
make these (unusual but not unreasonable) assumptions for whatever public permuta-
tions we end up using. However, we must first justify that these assumption at least hold
in the random permutation model. We start with the XOR compression function.

Lemma 3. For two independent permutations π1, π2, the XOR compression function
g[f1, f2] (with f1 and f2 as defined above) is (t, ε)-collision-resistant in the random
permutation model for π1 and π2. Here ε = q4/2n if the attacker makes at most q ≤
min(t, 2n−1) random permutation queries.

Proof: Let A be any collision-finding attacker who outputs a collision (x1 ‖ x2), (x′1 ‖
x′2). When the attacker makes its forward query x to πi (here i = 1, 2) or a backward
query y to π−1

i , we will record a tuple (i, x, pii(x)) or (i, pi−1
i (y), y) to a special ta-

ble T . Wlog, we assume that A does not make redundant queries and that, at the the
end of the game, T contains all the “collision-relevant” values (1, x1, y1 = π1(x1),
(1, x′1, y

′
1 = π1(x′1), (2, x2, y2 = π2(x2), (2, x′2, y

′
2 = π1(x′2). This means that instead

of having A output a collision, we can declare A victorious if T contains 4 (not neces-
sarily distinct) tuples, as above, such that x1 ⊕ y1 ⊕ x2 ⊕ y2 = x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2. To
complete the proof, we will argue, by induction on 0 ≤ j ≤ q, that after A makes his
first j queries, the probability that T will contain the required 4-tuple is at most j4/2n.

Consider query number j+1. Wlog, assume it is to π1 or π−1
1 . Then, either T already

contained the colliding 4-tuple before this query was made (which, by induction, hap-
pens with probability at most j4/2n), or the answer to the current query j + 1, together
with 3 prior queries, resulted in the colliding equation. Let us fix any one of these at
most j3 choices of 3 prior queries. Once this choice is fixed, it defines a unique answer
to query j + 1 which will result in collision. Indeed, if the query j + 1 is to π1(x1),
and the 3 prior table values are (1, x′1, y

′
1), (2, x2, y2), (2, x′2, y

′
2), then the only answer

y1 which will result in collision is equal to y1 = x1 ⊕ x′1 ⊕ y′1 ⊕ x2 ⊕ y2 ⊕ x′2 ⊕ y′2.
Similarly, if the query was to π−1

1 (y1), then the only answer x1 resulting in a collision
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is x1 = y1 ⊕ x′1 ⊕ y′1 ⊕ x2 ⊕ y2 ⊕ x′2 ⊕ y′2. However, since the total number of queries
j ≤ 2n−1, for each fresh query there are at least 2n − j ≥ 2n−1 equally likely answers.
Thus, the chance that a random such answer will “connect” with a given subset of 3
prior queries is at most 1/2n−1.

Overall, the get that the probability that there will be a collision in T after j + 1
queries is at most j4/2n + j3/2n−1 < (j + 1)4/2n, completing the proof.

Next, we need to prove the collision resistance of the construction f3(x) = π3(x) ⊕
π−1

3 (x) in the random permutation model. However, this will trivially follow from a
much stronger result we prove in the upcoming Lemma 4, which will be needed to
prove the indifferentiability of our mode from a VIL-RO.

4.2 Building VIL-RO from Random Permutations

In this section we argue that the enhanced enciphered CBC mode gives a VIL-RO in
the random permutation model for π1, π2, π3. The actual proof (and the exact security)
of this result is quite similar to the proof of Theorem 2. Therefore, instead of repeat-
ing the (long) proof of this result, we will only (semi-informally) highlight the key
new ingredients of the proof which we must address in the random permutation model.
Concentrating on these ingredients will also help us to “de-mystify” why we defined
the functions f1, f2, f3 in the way we did.

RANDOM ORACLE FROM RANDOM PERMUTATION. The most modular way to extend
Theorem 2 to the random permutation model would be to show how to implement (in
the indifferentiability framework) a length-preserving RO from an RP, and then use
the general composition theorem in the indifferentiability framework (see [10]). And,
indeed, it turns out that this is precisely what we did for the function f3 (but not f1

and f2; stay tuned) by defining it as π3 ⊕ π−1
3 . Intuitively, f3 must really look like a

full-fledged FIL-RO in the proof of Theorem 2. The security of this construction for
f3 is of independent interest, since it builds a FIL-RO from an RP, and follows from
the following Lemma (which also implies that f3 is collision-resistant in the random
permutation model):

Lemma 4. Let π : {0, 1}n → {0, 1}n be a permutation. Then the construction f [π] def=
π ⊕ π−1 is (tD, tS , q, µ, O(q2/2n))-indifferentiable from a length-preserving FIL-RO
on n bits in the random permutation model for π (here tD is arbitrary and tS = O(qn)).

Proof: We will show that the construction f [π] is indifferentiable from a FIL-RO
F : {0, 1}n → {0, 1}n in the random permutation model for π : {0, 1}n → {0, 1}n.
The proof consists of two parts: a description of the RP simulator S and the proof of
indifferentiability.

The Simulator. The simulator S responds to queries of the form (i, x), for i = −1, +1
and x ∈ {0, 1}n. The distinguisher interprets the response of the simulator to a query
(+1, x) (resp. (−1, x)) as the (resp. inverse) permutation output π(x) (resp. π−1(x)).
The simulator maintains a table T of permutation input-output pairs (x, y) such that,
either it responded with y to a query (+1, x) or with x to a query (−1, y). On a query
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(+1, x) (resp. (−1, y)), S first searches its table T for a pair (x, y′) (resp. (x′, y)) and
if it finds such a pair then it responds with y′ (resp. y).

On a new query (+1, x), the simulator searches its table for a pair of the form (x′, x)
(i.e. x was an earlier RP output). If it finds such a pair, then it queries the FIL-RO F to
find the output F (x). It then responds with the output y = x′ ⊕ F (x), and records the
pair (x, y) in its table T .

On a new query (−1, y), the simulator searches its table for a pair of the form (y, y′)
(i.e. y was an earlier RP input). If it finds such a pair, then it queries the FIL-RO F to
find the output F (y). It then responds with the x = y′⊕ F (x) to the query, and records
the pair (x, y) in its table T .

The proof of indifferentiability is postponed to the full version of this paper [13].

Of course, we could have the above Lemma to define f1 and f2 as well, but this would
double the efficiency rate of our enhanced mode from 2 to 4. Instead, we observe that
in the proof of Theorem 2, we “only” need the functions f1 and f2 to be such that the
XOR compression function g[f1, f2] is what we call extractable.6

EXTRACTABILITY. Informally, a hash function gf built from some oracle f is ε-
extractable (where ε could depend on some other parameters), if there exists and ex-
tractor Ext such that no attacker A can “fool” Ext with probability more than ε in the
following game. A is given oracle access to f and outputs a value y. Ext takes y and
the oracle queries that A made to f so far, and attempts to outputs a preimage x of y
under gf . Then A is allowed to run some more (making more calls to f ) and outputs its
own preimage x′ of y. Then A “fools” Ext if gf (x′) = y but x 
= x′.

Coming back to our situation, where f = (f1, f2) and gf = g[f1, f2](x1 ‖ x2) =
f1(x1) ⊕ f2(x2), we only need to argue the extractability of this construction in the
random permutation model, when we define fi(x) = πi(x) ⊕ x. The extractor for this
construction is defined naturally: given y, search the list of A’s queries for a pair of
inputs/outputs (x1, y1), (x2, y2) to π1 and π2, respectively, such that y = x1 ⊕ y1 ⊕
x2 ⊕ y2. If exactly one such pair is found, output x = x1 ‖ x2, else fail. The security
of this extractor is given below.

Lemma 5. For two independent permutations π1, π2, the XOR compression function
g[f1, f2] (with f1 and f2 as defined above) is extractable in the random permutation
model for π1 and π2. In particular, if the attacker makes at most q permutation queries,
it can fool the above extractor with probability at most O(q4/2n).

We remark that extractability can be viewed as a slight strengthening of collision-
resistance: indeed, finding a collision allows one to trivially fool any extractor with
probability at least 1/2. Not surprisingly, the proof of this Lemma is only marginally
harder than the proof of Lemma 3. Omitting details, we use the proof of Lemma 3 to
argue that the extractor will never find more than one preimage of y through A’s oracle

6 Technically, we need the whole XOR hash function G[f1, f2] to be extractable, but it is easy
to see that this is implied by the extractability of the compression function g[f1, f2]. In this
case, if the XOR Hash function is extractable and the attacker makes an oracle call f3(y), the
Simulator can extract the preimage x = (x1 . . . x�) of y and “define” f3(y) = F (y), where
F is the VIL-RO.
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queries. And if at most one such preimage is found, a similar argument can show that
the chance of the attacker to find a different preimage x′ of y is at most q2/2n.

This completes our high-level argument why the enhanced enciphered CBC mode
yields a VIL-RO (and also explains our definition of f1, f2, f3 in terms of π1, π2, π3).

4.3 Revisiting Security for PRFs and MACs

Although the basic enciphered CBC mode already works for the case of PRFs and
MACs, even when permutations are used, we argue that the enhanced mode continues
to work for these settings as well. First, note that if π is a PRF (resp. MAC), then the
construction [π(x) ⊕ x] is also a PRF (resp. MAC) with the same exact security. Thus,
we do not need to make any stronger assumptions on π1 and π2 than what we made
on f1 and f2. However, in order to prove that f3 = π3 ⊕ π−1

3 is a PRF (resp. MAC),
we will need to make slightly stronger assumption on π3 than being the “usual” PRF
(resp. MAC). In some sense, this is expected since an inverse query to π3 is used in
the construction itself. Luckily, the extra assumptions we need are quite standard and
widely believed to hold for current block ciphers. Specifically, for the case of PRFs we
require that π3 is a (strong) pseudorandom permutation (sPRP): i.e., it remains a PRP
even if the attacker can make both the forward and the inverse queries. Similarly, for
the case of MACs, we need to assume that π3 is a (strong) unpredictable permutation
(sUP): i.e., a permutation for which no attacker can produce a (non-trivial) forgery
even if given oracle access to both the forward and the inverse queries. The proof of
this simple lemma will be given in the full version.

Lemma 6. Let Π = {πk}k be a family of permutations, and define the family F =
{fk}k of length-preserving functions by fk(x) = πk(x) ⊕ π−1

k (x). Then F is a

– (t, q, µ, ε + O(q2/2n))-secure PRF if Π is a (t + O(qn), 2q, 2µ, ε)-secure sPRP.
– (t, q, µ, O(ε · q2))-secure MAC if Π is a (t + O(qn), 2q, 2µ, ε)-secure sUP.

of ε · q2 might sound alarming, especially when combining this with the statement of
Theorem 1, where there is an additional loss of the q4 factor. However, a closer look at
the proof of Theorem 1 reveals that the exact security of the enciphered CBC is actually
at most ε3+(ε1+ε2)·q4, where εi is the security of fi. Coupled with the above Lemma,
we get security ε · q2 + (ε1 + ε2) · q4 (where ε is the security of sUP π3, and ε1, ε2 are
the securities of MACs π1 and π2).

5 Two-Key Enciphered CBC Construction

In this section we show that it is possible to instantiate the (basic) enciphered CBC
mode using only two independent length-preserving functions.

A first natural idea is to define the function f2 in the three-key version using the
function f1. For example, we can make f2 = f2. However, in this case it is easy to see
that the resulting mode is insecure for all the security notions considered in this paper.
This is because the resulting XOR compression function g[f1, f1] becomes a constant
function 0n on any “symmetric” input (x ‖ x). Luckily, we show that this problem can
be resolved by instantiating f2 with a different multiple of f1!
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x1 x2 x3 x� 〈�〉

f f f f

� α � α � α � α
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f f f f f ′

Fig. 3. The two-key enciphered CBC construction Hα[f, f ′]

THE CONSTRUCTION. Consider a function f : {0, 1}n → {0, 1}n. We can view the
inputs/outputs of f as elements of the field GF(2n), and the bit-by-bit XOR operation
becomes addition over the field GF(2n). Let α be any element of this field other than 0
or 1. Then we define the functions f1 and f2 in the enciphered CBC mode of operation
H [f1, f2, f3] as follows: f2(·) def= f(·) and f1(·) def= α · f(·). We still use a different FIL
function f ′ as the third function f3 in the construction H [f1, f2, f3].

This defines the new XOR compression function gα[f ] as gα[f ](x1 ‖ x2)
def= f(x1)⊕

(α · f(x2)). Intuitively, the key point we will repeatedly use in our analyses is that the
function gα[f ] is still WCR (or even extractable in the RO model) when α 
∈ {0, 1}.
We also denote the corresponding XOR hash function as Gα[f ], and our new mode of
operation using two functions f ′ and f ′ as Hα[f, f ′], where:

Hα[f, f ′](x1 ‖ . . . ‖ x�)
def= f ′ (Gα[f ](x1 ‖ . . . ‖ x� ‖ 〈�〉))

The construction is illustrated in Figure 3. We will now analyze its security for vari-
ous security notions.

5.1 Two-Key Enciphered CBC Is MAC Preserving

In the full version of the paper we prove the following lemma.

Lemma 7. If the function family f is (t, 2q, 2qn, ε)-secure MAC family, then gα[f ] is a
(t′, q, 2qn, ε · 32 · q4)-secure WCR family, where t′ = t − O(qn).

As explained in Section 3.1, we can now use Lemma 7 along with Lemmas 4.2 and 4.3
from [1] to get the following Theorem.

Theorem 4. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a (t, 2µ, 2µn, ε)-secure length-
preserving FIL-MAC. Then Hα[fk, fk′ ](.) (where k, k′ is the secret key) is a (t′, q, µn,
ε · 33 ·µ4)-secure variable input-length MAC, where t′ = t−O(µn) and q is arbitrary.

5.2 VIL-RO Using the Two-Key Construction

We now show that given two independent FIL-ROs f, f ′ : {0, 1}n → {0, 1}n, the two-
key enciphered CBC construction Hα[f, f ′] is indifferentiable from a VIL-RO F . The
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proof of indifferentiability for this construction is similar to the corresponding proof for
the three FIL-RO enciphered CBC construction. The only difference is in the way the
simulator searches for a variable length input where it might need to be consistent with
the VIL-RO, when responding to a f ′ query. We give a proof of this lemma in the full
version of this paper [13].

Theorem 5. Consider two length-preserving functions f, f ′ : {0, 1}n → {0, 1}n. Then
the new enciphered CBC construction RO2[f, f ′] is (tD, tS , q, µ, ε)-indifferentiable
from a random oracle in the FIL-RO model for f and f ′. Here tS = O(q2), ε =
O((q + µ)4/2n) and the result holds for any tD .

5.3 VIL-PRF Using the Two-Key Construction

Recall that to prove that the three-key enciphered CBC H [f1, f2, f3] is a good domain
extender of PRFs, we reduced its security to the security of encrypted CBC, by simply
simulating the invocations of f2 (which are present in the enciphered, but not in the
encrypted CBC mode). This does not work for Hα[f, f ′], as we can’t simulate f because
we do not know its key (in the three key case, f2 and f1 used independent keys, so this
was possible). So one has to do a direct proof. In the full version of this paper we prove
the following Theorem (we give a high level sketch of the proof in Section 6.3).

Theorem 6. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a (t, 2µ, 2µn, ε)-secure FIL-PRF
family. Then Hα[fk, fk′ ](.) (where k, k′ is the secret key) is a (t′, q, µn, 4µ2/2n + 2ε)-
secure VIL-PRF family where t′ = t − O(µn).

5.4 CRHF Using the Two-Key Construction

In order to prove the collision-resistance of the two-function construction Hα[f, f ′], we
essentially need to show that the XOR compression function gα[f ] is collision-resistant,
since it is trivial to find a length-preserving collision-resistant function f ′ and we use
MD strengthening in this construction (similar to Lemma 2). If we make a suitably
strong assumption (for instance, f is a FIL-RO), then we can show that gα[f ] is a FIL-
RO. We give a proof of this lemma in the full version of this paper.

Lemma 8. Let f : {0, 1}n → {0, 1}n be a length preserving function. The XOR com-
pression function gα[f ] is (t, ε)-secure collision resistant function in the FIL-RO model
for f . Here ε = O(q4/2n), where q is the number of FIL-RO queries made by the
attacker to f .

6 Single-Key Enciphered CBC Construction

Finally, we show how to further optimize our mode to use only a single length-preserving
function f . The first natural idea is to start with the two-key mode from the previous
section, and then simply make the second function f ′ = f . It is easy to see that this does
not affect the collision-resistance much (since the “outer function”f ′ did not do anything
there anyway). Unfortunately, this change makes our mode insecure. In essence, the
reason is due to the fact that our (suffix-free) encoding is not prefix-free, and so called
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f f f f
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f f f f f

Fig. 4. The single-key enciphered CBC construction Hα[f ] for constructing MAC and PRF
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f f f f

� α � α � α � α

⊕ ⊕ ⊕ ⊕

f f f f

f

⊕

Fig. 5. The “enhanced” single-key enciphered CBC construction Hα[f ]′ for constructing RO

“extension attacks” become possible. (This is quite analogous to the usual CBC-MAC
[3] and cascade constructions [5] which are only secure for prefix-free inputs.)

CONSTRUCTION FOR PRFS AND MACS. Luckily, it turns out that if instead of ap-
pending the input length, we prepend it (to get a prefix-free encoding) then the resulting
construction can be proven secure (with f ′ = f ) for the “keyed” setting of MACs and
PRFs. The resulting construction, depicted in Figure 4 and denoted Hα[f ], is formally
defined below:

Hα[f ](x1 ‖ . . . ‖ x�)
def= f (Gα[f ](〈�〉 ‖ x1 ‖ . . . ‖ x�)

CONSTRUCTION FOR VIL-RO. Unfortunately, the above construction is still not
enough for the question of building a VIL-RO from a single FIL-RO. To handle this
case as well, we need to modify the two-key construction as follows:

1. Instead of setting f ′ = f , we use the Davies-Mayers-type construction f ′(x) =
f(x) ⊕ x.

2. We still keep the suffix-free encoding (by appending the number of blocks to the
input), but now also ensure the prefix-free encoding by prepending the number of
blocks to the input.

5), and formally define it on input X = x1 ‖ . . . ‖ x� as follows:
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Hα[f ]′(X) def= f(Gα[f ](〈�〉 ‖ X ‖ 〈�〉)) ⊕ Gα[f ](〈�〉 ‖ X ‖ 〈�〉)
We remark that although this final construction Hα[f ]′ is defined for building VIL-
RO (for which the simpler construction Hα[f ] is not enough), it is easy to extend the
MAC/PRF security of Hα[f ] to show that Hα[f ]′ also works for the case of MACs
and PRFs. For the sake of elegance, though, we only analyze the simpler variant Hα[f ]
when studying the domain extension of PRFs and MACs.

6.1 Single-Key VIL-MAC Construction

To prove that the one-key enciphered CBC Hα[f ] is a good domain extension for
MACs, we cannot apply the methodology of An and Bellare (as explained in Section
3.1) that we used for the three and the two key construction. Recall that in this method-
ology, one first proves that the construction (ignoring the last invocation of f ) is weakly
collision resistant, and then the final application of f (with an independent key) gives
us the MAC property. In Hα[f ] there is no final invocation of f with an independent
key. Instead, in the full version of the paper, we give a direct reduction to prove the
following Theorem.

Theorem 7. If the function family f is a (t, 3µ, 3µn, ε)-secure MAC family, then
Hα[fk], where k is the secret key, is a (t′, q, µn, ε · 49 · µ4)-secure MAC where t′ =
t − O(µn) and q is arbitrary.

6.2 Single-Key VIL-RO Construction

As discussed above, the single-function RO construction Hα[f ]′ is slightly different
from the MAC and PRF case. We show that this construction is indifferentiable from a
VIL-RO. The formal proof of this theorem is more involved than the two/three FIL-RO
case. In particular, the proof of indifferentiability crucially uses the “extractability” of
the Davies-Meyer construction in the end of the “enhanced” enciphered CBC construc-
tion. We defer the formal proof to the full version of this paper [13].

Theorem 8. Consider a length-preserving function f : {0, 1}n → {0, 1}n. Then the
single-function RO construction Hα[f ]′ is (tD, tS , q, , µ, ε)-indifferentiable from a ran-
dom oracle in the FIL-RO model for f . Here tS = O(q2), ε = O((q + µ)4/2n) and the
result holds for any tD.

6.3 Single-Key VIL-PRF Construction

We prove that our single-key enciphered CBC construction Hα[f ] is a secure domain
extension for PRFs by adapting the proof for “plain” prefix-free CBC of Maurer (The-
orem 6 in [15]). The situation here is somewhat more complicated than in the three and
two key cases considered so far. There, security can be proven using the following high
level idea: first one proves that the construction (ignoring the final invocation of f ) is
(computationally) almost universal (see [2]); i.e. any two fixed messages are unlikely
to collide. And this is enough to prove security because of a final invocation of an in-
dependent PRF. For Hα[f ], this proof idea does not directly work, as there is no final
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invocation with an f using an independent key. Fortunately, one can use a powerful
theorem (Theorem 2 from [15]) to still argue security in our setting as well. Details are
deferred to the full version [13].

Theorem 9. Let f : {0, 1}κ × {0, 1}n → {0, 1}n be a (t, 3µ, 3µn, ε)-secure FIL-PRF
family. Then Hα[fk](.) (where k is the secret key) is a (t′, q, µn, 9µ2/2n + 2ε)-secure
VIL-PRF family where t′ = t − O(µn).

Acknowledgments. We would like the thank Dan Boneh, Marc Fischlin and Phillip
Rogaway for several very useful conversations in the early stages of this work.
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Abstract. We provide attacks and analysis that capture a tradeoff, in
the ideal-permutation model, between the speed of a permutation-based
hash function and its potential security. We show that any 2n-bit to n-bit
compression function will have unacceptable collision resistance it makes
fewer than three n-bit permutation invocations, and any 3n-bit to 2n-bit
compression function will have unacceptable security if it makes fewer
than five n-bit permutation invocations. Any rate-α hash function built
from n-bit permutations can be broken, in the sense of finding preimages
as well as collisions, in about N1−α queries, where N = 2n. Our results
provide guidance when trying to design or analyze a permutation-based
hash function about the limits of what can possibly be done.

1 Introduction

Overview. Consider the problem of constructing a cryptographic hash function
where, for reasons of speed, assurance, or minimalism, you’ve decided to base
your design on an off-the-shelf blockcipher, say AES, with an n = 128 bit block-
size and a small, fixed set of keys. To keep things modular, you’ve decided to
first build a 3n-bit to 2n-bit compression function from your n-bit permutations
π1, . . . , πk. You plan to prove your construction sound in the ideal-permutation
model, where the adversary has black-box access to the forward and backwards
direction for each πi.

Perhaps surprisingly, the design problem just described is extremely challeng-
ing. If you write a construction down, chances are good that, after a while, you’ll
find an efficient attack. It’s quite unlikely you’ll find an easy proof. At least this
was our experience, and over a period of many months.

In this paper we partially explain where the design difficulty is coming from.
Basically, the problem is that it costs a surprisingly large number of permuta-
tion invocations to buy a reasonable level of security. In particular, compressing
3n bits to 2n bits needs at least five permutation invocations just to break the
birthday bound of N0.5 queries (where N = 2n) that motivates having a double-
length construction in the first place. And even with five permutations there is
still going to be a collision-finding attack that uses about N0.6 queries, which
isn’t all that great.

In prior work, Black, Cochran, and Shrimpton [1] showed that any rate-1
iterated hash function whose compression function uses a single permutation

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 220–236, 2008.
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call must be insecure in the ideal-permutation model.1 In the present work, the
Black et al. result is seen as a point on a continuum: while one permutation
call is not enough, more and more calls buys you, potentially, better and better
security. Concretely, we exhibit a quantifiable tradeoff between the number of
permutation calls and the effectiveness of a corresponding attack. The attack’s
effectiveness diminishes rather slowly with the number of permutation calls.

The problem of constructing a cryptographic hash function from a fixed-key
blockcipher dates to Preneel, Govaerts, and Vandewalle [8]. They explain the
utility of this problem and specify a family of solutions with inverse rates of 4–8.
For the concrete parameters they suggest, a compression function mapping 310
bits to 256 bits using four calls to 64-bit permutations, our own pigeonhole-
birthday attack (Theorem 2) implies that an adversary will probably have the
information it needs to construct a collision after making just two million queries.
While this doesn’t mean that there’s a computationally efficient way to find the
desired collision, it does mean that, for the stated parameters, one can’t possibly
prove a decent security bound in the random-permutation model.

We want to emphasize at the outset that this paper is about attacks, not
constructions or their security proofs. It remains an intriguing open question if,
for every choice of parameters, there is a construction whose provable security
matches that given by our attacks. Our guess is that the answer is yes, which
would mean that the results of this paper are tight.

Our results and their interpretation. Let us now summarize our re-
sults one-by-one. First we look at the collision resistance of a permutation-based
compression function. We show that if a compression function maps mn bits
to rn bits using k calls to n-bit permutations—a signature we abbreviate as
m k→ r, eliding n—then an adversary will be able to find a collision using some2

N1−(m−0.5r)/k queries, where, again and throughout, N = 2n. In particular, a
2 2→ 1 compression function can be broken with about N1−(2−0.5)/2 = N1/4

queries, which is unacceptably few, while a 3 4→ 2 compression function can be
broken in about about N1−(3−1)/4 = N1/2 queries, which, for a double-length
construction, is again too few.

Our bounds suggest a qualitative difference in behavior between the m k→ 1
(single-length) and the m k→ 2 (double-length) settings: in the first case k = 3
permutations is enough to potentially achieve the optimal security of N1/2

queries, while in the second case no number of permutation calls can ever achieve
the optimal security of N queries. It has recently been shown that one can asymp-
totically achieve the optimal security of N1/2 queries with a 2 3→ 1 compression
function [9], one of the rare choices of parameters for which a m k→ r construction
is known to have a security bound matching that of our attacks.

1 The rate of a permutation-based hash function is α if it processes αn bits worth of
data with each n-bit permutation invocation. The inverse rate β = 1/α is therefore
the number of permutation calls used per n bits of input.

2 In summarizing our results we omit distracting multiplicands or addends that have
a second-order effect.
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Next we put compression functions aside and look at collision resistance for
a full-fledged permutation-based hash function H : {0, 1}∗ → {0, 1}rn. We show
that if the rate of the hash function is α then an adversary can find collisions
with about N1−α queries. In particular, rate-1 hash functions are completely
insecure, as already discovered by Black et al. for the special case of iterated hash
functions using a single permutation call per iteration. In addition, a rate-1/2
double-length hash function (r = 2) will admit an N1/2-query attack. As this
is what one expects from a single-length construction, the conclusion is that a
double-length construction must have a rate of less than 1/2.

We also look at the preimage resistance of permutation-based compression
functions and hash functions. In the former case, a preimage for an m k→ r con-
struction can be found in about N1−(m−r)/k queries. In particular, preimages
can be found in any 2 3→ 1 design with about N2/3 queries. (Happily, the 2 3→ 1
construction we mentioned asymptotically matches this bound [9].) So while
collision-resistance can be “as good as a random function” with a 2 3→ 1 design,
no such design can be comparably good with respect to preimage resistance.
For a full-fledged rate-α hash function, a preimage can be found in about N1−α

queries, which is, rather oddly, the same as for collision resistance.
In a somewhat different spirit, Section 8 of this paper considers the number

of bits that a permutation-based compression function must keep in memory in
order to be collision resistant. We show that an m → r compression function
must, at some point during its computation, keep strictly more than mn bits in
memory, or else it will suffer from devastating attacks. If we imagine that the
compression function is built from n-bit wires connecting the permutations, then
the compression function must, at some point, maintain at least m + 1 active
wires to have any hope for collision resistance.

Appendix A sketches a generalization of the attack of Black et al. Theirs is a
collision attack on permutation-based iterated hash functions that use a single
permutation call per iteration; here we adapt it to the case where k permuta-
tion calls are made per iteration. The attack is only applicable to iterated hash
functions, and our version of it uses a heuristic assumption, but the bound is
slightly better than that of our attack for an arbitrary hash function.

2 The Model

Consider a compression function H : {0, 1}mn → {0, 1}rn built from black-box
n-bit permutations, where m > r ≥ 1 and n ≥ 1. Let us assume that for H
to process its mn-bit input requires making k calls, in order, to permutations
π1, . . . , πk: {0, 1}n → {0, 1}n. Then H necessarily takes the form illustrated in
Fig. 1, for some sequence of functions f1, . . . , fk, g. Along with permutations
π1, . . . , πk: {0, 1}n → {0, 1}n, functions fi: {0, 1}imn → {0, 1}n (i ∈ [1..k]) and
g: {0, 1}(i+1)mn → {0, 1}rn define H . In general, we do not require anything
of f1, . . . , fk, g beyond their having the specified domain and range.

Because π1, . . . , πk are always called in the order π1 and then π2 and so forth,
up to πk, we call the model just described the fixed-order model. It includes
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designs where the permutations π1, . . . , πk are unrelated—the distinct-
permutation setting—and designs where a single permutation π (= π1 = · · · =
πk) is always called—the single-permutation setting. It does not include the case
where the identity of the permutation (ie, which πi is used at each step) is data
dependent. This restriction turns out not to be so significant—more on that in
just a bit.

Let H be a fixed-order compression function, notation as above, and let A be
an adversary with access to oracles π1, . . . , πk (and, in principle, their inverses—
only that this isn’t needed in any of our attacks). The advantage of A in finding
collisions in H is the probability that A asks a sequence of queries such that
there exist distinct inputs v, v′ ∈ {0, 1}mn for which the adversary has asked all
necessary queries to compute H(v) and H(v′). This probability is over the ad-
versary’s coins and over uniform permutation oracles π1, . . . , πk. (This sentence
assumes the distinct-permutation setting. More generally, select a single ran-
dom permutation to model each distinct πi.) Note that we do not insist that the
adversary actually output a collision: we assert that it wins if a computationally-
unbounded adversary could compute a collision from what it knows. It is true
that this makes the attacks less “realistic” than if we had paid attention to the
attacker’s time and required it to print out its collision. But since our main goal
is to understand the limits of what is provably secure in the random-permutation
model, we can ignore time and adopt a liberal notion of adversarial success.

As mentioned already, one can generalize the fixed-order model by letting the
compression function choose which permutation to invoke at each step: in Fig. 1,
add in a line 3.5 saying j ← ei(v, y1, . . . , yi−1), and use j, not i, as the subscript
for π at line 4. This no-fixed-order model was employed by Black, Cochran, and
Shrimpton [1]. We ourselves prefer the fixed-order model, and assume it for quan-
titative results. Philosophically, letting permutation selection vary according to
the data being hashed would make permutation-based hashing conceptually co-
incide with blockcipher-based hashing, contrary to the point of our investigation.
More pragmatically, good lower bounds in the (simpler) fixed-order setting are
already enough to imply good lower bounds in the (more complex) no-fixed-order
setting. To see this, note that if H is a no-fixed-order compression function that
makes k permutation calls, then there’s a functionally identical fixed-order com-
pression function H ′ that makes k2 calls: H ′ just queries its k permutations in
a round-robin fashion. Because of this, lower-bounds applicable to (the fixed-
order) H ′ are inherited by (the no-fixed-order) H if one simply replaces each k
by k2. Since we are always thinking of k as a small constant, the quantitative
change in bounds is not so significant. In particular, every qualitative conclusion
that we draw in this paper is an accurate interpretation of our results for the
fixed-order model and the no-fixed-order model, too.

3 The Trivial Attacks

We begin by acknowledging two trivial but nonetheless significant attacks on any
permutation-based compression function, the exhaustion attack and the birthday
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1 algorithm H(v)
2 for i ← 1 to k do
3 xi ← fi(v, y1, . . . , yi−1)
4 yi ← πi(xi)
5 w ← g(v, y1, . . . , yk)
6 return w

Fig. 1. Illustration and definition for a permutation-based compression function. Re-
garding π1, . . . , πk as oracles, functions f1, . . . , fk and g define the scheme, which maps
an mn-bit input v to an rn-bit output w.

attack. The former attack asks all kN possible queries, where N = 2n. At that
point the hash of every message will be known and so, by the pigeonhole princi-
ple (remember that m > r), there will be messages known to collide. This implies
that it is, in some sense, futile to select an output length exceeding 2n bits, as
2n bits are already enough to accommodate the maximum feasible security3.
With an output length of 3n bits, for example, you’ll never get a construction
withstanding anything near the optimal value of q = N3/2 queries, as no con-
struction can withstand more than q = N1+(lg k)/n � N3/2 queries (the “�” is
because we assume that k is a small number).

The birthday attack is to compute the permutations necessary to hash p = q/k
random messages. By the birthday phenomenon, one expects to see a collision
when p ≈

√
2 ln 2N r/2 ≈ 1.18 N r/2. For a proper upperbound, note that when

N ≥ 216, which we will henceforth implicitly assume, the probability of a collision
is at least 1/2 if p ≥ 1.18 N1/2 balls are randomly and uniformly thrown into N
bins. We record the efficacy of our two attacks in the following proposition.

Proposition 1. Let H : {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function, and let N = 2n. Then with

q=kN queries an adversary can find a collision with probability 1, and with
q=1.18kN r/2 queries an adversary can find a collision with probability ≥1/2.

3 This is assuming an information-theoretic adversary, whose only cost is the number
of queries made; a “real adversary” may well be hindered by a longer output.
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In all theorem statements where, like above, q is an integer but the quantity
on the right may be fractional, it is implicit that q is obtained by rounding up
the expression on the right. Also, here and subsequently, it is not necessary to
restrict m and r to natural number; it is fine to select any rational values m
and r such mn and rn are positive integers.

4 The Pigeonhole Attack

We now give a more interesting collision attack on compression functions. It
succeeds, always, in about kN1−(m−r)/k queries.

Theorem 1. Let H : {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function, and let N = 2n. Then with

q = k (N1−(m−r)/k + 1) ≈ k N1−(m−r)/k

queries an adversary can find a collision in H with probability 1. �

The concrete consequences of this are interesting. Suppose H is a 2 1→ 1 compres-
sion function. Then it can be broken in just q = 2 queries. So k = 1 permutation
calls certainly won’t do, as shown by Black, Cochran, and Shrimpton [1] in the
iterated hash-function setting. In addition, we see that a 2 2→ 1 compression
function can be broken in about N1/2 queries, which is optimal for a hash func-
tion of output length n, except that Theorem 1 states the collision can be found
with probability 1, whereas an ideal construction would require 2N queries for
the same result. Quantitative results are tabulated in the top half of Fig. 2.

Proof. Let p = �q/k	. In brief, the adversary chooses p queries to make to π1 that
enable him to “start” hashing the largest possible number of inputs (each input
requires a π1 query); then the adversary chooses p queries to make to π2 that
will enable him to continue hashing the largest possible number of inputs up to
and including the π2 step; and so on for π3, . . ., πk. If, at the end, the adversary
is still able to hash more than N r inputs, then the adversary wins because some
two inputs necessarily collide. The proof simply consists of computing how large
p must be for the latter event to happen.

Note first the observation that if B balls are thrown into N bins the p ≤ N
most occupied bins must contain at least pB/N balls. We will repeatedly use
this observation below. Now with the hash function H specified by f1, . . . , fk, g,
choose a p-element set X1 ⊆ {0, 1}n that has a maximum number of preimages
under f1. By the observation just made, this maximum number of preimages is
at least pNm/N = pNm−1 points. The adversary will ask for π1 at each point
x1 ∈ X1. The adversary has so far made p queries and there are at least pNm−1

points v ∈ {0, 1}mn for which the adversary knows how to compute the first
permutation in the hash chain. Call this set of points V1. So |V1| ≥ pNm−1 and
for each point v ∈ V1 the adversary knows the corresponding x1, y1, and x2.
Next choose p points X2 ⊆ {0, 1}n with a maximum number of v ∈ V1 that
give rise to an x2 ∈ X2. Again by the observation that began this paragraph,
this set of points V2 has cardinality |V2| ≥ p|V1|/N ≥ p2Nm−2. Continue in
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this way, selecting a set V3 where |V3| ≥ p3Nm−3 and making p more queries
so that the adversary will know how to compute the beginning computations of
a hash value for everything in V3, knowing everything up to and including the
third permutation π3. Continue until the adversary constructs a set Vk where
|Vk| ≥ pkNm−k and the adversary knows how to hash everything in Vk all the
way until the end.

If |Vk| ≥ pkNm−k exceeds N r then, by the pigeonhole principle, there must
be two values in Vk that have the same hash, and this hash is known by the
adversary we have constructed. Thus the adversary will succeed in finding a
collision if pk > N r−m+k, which is to say that it necessarily succeeds if p >
N (r−m+k)/k = N1−(m−r)/k. So the adversary will find a collision if �q/k	 exceeds
N1−(m−r)/k (hence the chosen value of q). This completes the proof.

5 The Pigeonhole-Birthday Attack

In the proof above we used the fact that a collision is guaranteed as soon as
|Vk| ≥ pkNm−k > N r. But it seems unlikely that one would really have to wait
so long as that; if the H-outputs computed by the adversary had been random
then, by the birthday phenomenon, one would expect to see a collision around the
time that |Vk| = N r/2, or to be quite exact around the time that |Vk| = 1.18N r/2.
Let us assume that the hash function outputs computed by the adversary in the
proof of Theorem 1 behave no worse than random outputs with respect to the
appearance of collisions. Call this the uniformity assumption. Then solving for
the integer p in pkNm−k ≥ 1.18N r/2 reveals that we expect to see a collision
after q = kp = k�(1.18)1/kN1−(m−0.5r)/k ≤ k(1 + (1.18)1/kN1−(m−0.5r)/k) ≤
k(1 + 1.18 N1−(m−0.5r)/k) ≈ kN1−(m−0.5r)/k queries, an improvement from the
earlier q ≈ kN1−(m−r)/k by a multiplicative factor of N r/2k. To summarize:

Theorem 2. Let H : {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function. Let N = 2n. Then, under the uniformity assumption, with

q = k(1 + (1.18)1/kN1−(m−0.5r)/k) ≈ k N1−(m−0.5r)/k

queries an adversary can find a collision with probability ≥ 1/2. �

The stated bound suffers from a peculiar behavior in the 2 k→ 1 case when k ≥ 4,
whence the theorem states that q ≈ kN1−3/2k ≥ kN5/8 queries are sufficient for
the attack described, but Proposition 1 ensures that q = 1.18 kN1/2 queries
was already enough. The gap may seem more puzzling considering that the
pigeonhole-birthday attack is a type of birthday attack and, under the uniformity
assumption, it cannot do worse than what Proposition 1 guarantees. The problem
can be traced to the pkNm−k lower bound for the number of outputs obtained
by the pigeonhole attack, which, in turn, stems from the observation made at the
beginning of Theorem 1 that when B balls are thrown into N bins, the p ≤ N
most occupied bins must contain at least pB/N balls. In fact one can strengthen
this observation by noting that the p ≤ N most occupied bins must contain at
least µp,N (B) balls, where µp,N (B) is p�B/N if p ≤ B mod n or B ≡ 0 mod n,
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atk adv asmp m → r ≈ bound 1 2 3 4 5 6 8

ph 1 no 2 → 1 kN1−1/k 2 265.0 286.9 298.0 2104.7 2109.3 2115

ph 1 no 3 → 2 kN1−1/k 2 265.0 286.9 298.0 2104.7 2109.3 2115

pb 0.5 yes 2 → 1 1.18kN1−3/2k 2 233.1 265.7 266.2 266.6 266.8 267.2

pb 0.5 yes 3 → 2 1.18 kN1−2/k 1 3 244.3 266.1 279.2 288.0 299.0

Fig. 2. Attacks on an m k→ r compression function. Columns are the attack (ph for
pigeonhole, pd for pigeonhole-birthday), the adversary’s advantage, whether a heuristic
assumption is used in the analysis, the compression parameters, the approximate value
of q to get this advantage, and numerical values for various values of k, all with n = 128.

and p�B/N	 + B mod N otherwise. One thus gets at least µ
(k)
p,N (Nm) outputs

from the pigeonhole attack (the k-th iterate of the function), better than the
approximation pkNm−k. To find the “real” p needed by the attack one can solve
for the least integer p such that µ

(k)
p,N(Nm) ≥ 1.18N r/2. As this is somewhat

hard to compute, an alternative is to note that, at the end of the pigeonhole-
birthday attack, there are at least p = �q/k	 strings that the adversary knows
how to hash, and so p = 1.18N r/2 queries are enough (still under the uniformity
assumption). We can therefore sharpen the statement of Theorem 2 to select q
as the minimum of the current value of q and 1.18 kN r/2 + k ≈ 1.18 kN r/2,
since p = �q/k	 > q/k − k. In Fig. 2 we use this tighter bound to compute the
third-row entries.

Interpretation. The bound of the pigeonhole-birthday attack is illustrated
numerically in Fig. 2 for n = 128 bits. For 2 → 1 hashing the analysis indicates
that, with k = 2 permutations, a collision will be found in around N1/4 queries.
This is excessively low, making k = 3 permutations the best one can hope for in
this case. With k = 3 permutations the bound jumps to around N1/2 queries,
which is of course optimal for a hash function producing an n-bit output. This
suddenly-optimal behavior is qualitatively different from what happens when
the output length is 2n bits or more, in which case more permutation calls
(potentially) buys more security, but where optimal collision resistance can never
reached. For 3 → 2 hashing the adversary can break the construction in around
q = N1−2/k queries. Since a double-length construction ought to withstand
significantly more than N1/2 queries (otherwise, it makes more sense to use a
single-length construction), the conclusion is that k = 5 permutations is the
minimum number of calls that makes sense for 3 → 2 hashing.

It should be noted that, because of the uniformity assumption, the analysis of
Theorem 2 is essentially heuristic. But assumptions analogous to the uniformity
assumption are routinely made when analyzing cryptographic attacks, sometimes
without even mention that an assumption is being made. And of course one
expects that a good hash function will have outputs that look uniform on any
natural set of inputs produced by an attack.
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6 Attacks on Rate-α Constructions

Theorems 1 and 2 can be recast in terms of what they say about a permutation-
based hash function with a given rate (as opposed to what they say about a com-
pression function with a given number of blockcipher calls). Let H : {0, 1}∗ →
{0, 1}rn be a fixed-order hash function based on an n-bit permutation. This
means that the algorithm is of the form specified in Fig. 1, except that the
input message v may now have any length, and sequences π1, π2, π3, . . . and
f1, f2, f3, . . . are thought of as infinite, and the number k of permutation invoca-
tions is a function k = k(v) of the input v. Then we say that H has rate α if α is
the largest real number such that hashing a message M requires at most |M |/αn
permutation calls. (One could also add in an additive constant δ to account for
padding or other extra work done at the end of processing the message.) The
inverse-rate, β = 1/α, is the number of permutation calls per n-bits of message
processed; hashing M requires at most β|M |/n permutation invocations. We
now show that the pigeonhole and pigeonhole-birthday attacks imply a tradeoff
between the (potential) security of a permutation-based hash function and its
rate.

Theorem 3. Let H : {0, 1}∗ → {0, 1}rn be a permutation-based hash function
with rate α = 1/β and let N = 2n. Then with

q = �β�ln(2)αnr + α	(eN1−α + 1) ≈ 1.89 nrN1−α

queries an adversary can find a collision with probability 1. �

Proof. For any m ≥ 1 we can restrict H to inputs of length mn, whence H
becomes a compression function H ′: {0, 1}mn → {0, 1}rn that makes at most
k = �βm	 permutation calls. By Theorem 1, a collision for this compression
function can be found with probability 1 in k(N1−(m−r)/k+1) ≤ k(N1−α+r/k+1)
queries, where again k = �βm	 (the inequality holds because α ≤ m/k). We set
m = �ln(2)αnr + α so k = �β�ln(2)αnr + α	 (chosen by calculus to minimize
kN1−α+r/k). Then k ≥ β�ln(2)αnr+α−1 ≥ β(ln(2)αnr+α)−1 = ln(2)nr and
N r/k ≤ N1/ ln(2)n = e, so k(N1−α+r/k + 1) ≤ �β�ln(2)αnr + α	(eN1−α + 1), as
desired.

One can improve the constant of 1.89 in Theorem 3 by employing the bound of
Theorem 2 instead of Theorem 1. Then choosing m = �((ln 2)/2)αnr+α yields
a final (approximate) bound of 0.94 nrN1−α queries (for generating a collision
with probability at least 1/2). Besides halving the probability of success, the price
of this change is that one would now need to make the uniformity assumption
on the hash function, inherited from Theorem 2, for mn-bit strings.

Ignoring the leading multiplicative and additive factors in Theorem 3 we can
summarize the result as saying that any rate-α permutation-based hash function
will fail when the number of queries gets to around q = N1−α. In Fig. 3 we
tabulate this more precisely, indicating the sufficient number of queries to break
permutation-based hash functions of various rates.

We comment that, in our result, the number of distinct permutations used by
the hash function does not matter, as long as they are consulted in a fixed order.
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atk adv asmp bound restrictions 2 3 4 5 6 8

ph 1 no 1.89 nr N1−α none N0.57 N0.74 N0.82 N0.87 N0.90 N0.95

pb 0.5 yes 0.94 nr N1−α none N0.56 N0.73 N0.81 N0.86 N0.90 N0.95

tree 0.5 yes 2β N1−α iterated N0.52 N0.69 N0.77 N0.83 N0.86 N0.91

Fig. 3. Collision-finding attacks on a permutation-based hash function H : {0, 1}∗ →
{0, 1}rn with rate α. The rows are: the attack (pigeonhole, pigeonhole-birthday, tree);
the adversary’s advantage; whether a heuristic assumption is used in the analysis; the
approximate bound; restrictions on the result; and threshold values q when n = 128,
r = 2, and inverse rates β = 1/α ∈ {2, 3, 4, 5, 6, 8}.

Potentially, the hash function might never reuse the same permutation twice,
but it would still suffer from the same vulnerabilities as long as it consulted its
permutations in a prescribed order.

7 Attacking Preimage Resistance

We adopt as a notion of preimage resistance that the adversary is presented a
random range point w ∈ {0, 1}rn and succeeds if it finds (or simply knows from
its query history) a preimage to this point. We first observe that our earlier
pigeonhole-attack can be adapted so as to become a preimage-finding attack.
We then extend this to give an attack on an arbitrary hash function. As we have
chosen our range point at random, neither case requires a heuristic assumption.

Theorem 4. Let H : {0, 1}mn → {0, 1}rn be a k-call permutation-based com-
pression function and let N = 2n. Then with

q = k (N1−(m−r)/k + 1) ≈ k N1−(m−r)/k

queries an adversary can invert a random point with probability ≥ 1/2. �

Proof. The attack proceeds as with the pigeonhole attack, Theorem 1, by greed-
ily constructing a set Vk ⊆ {0, 1}mn of cardinality at least pkNm−k for which
the adversary knows how to hash everything in Vk. When this set grows to
half the size of {0, 1}rn the adversary will have a 50% chance of inverting a
randomly selected point w. So the needed number of queries is the smallest q
such that pkNm−k ≥ 0.5 N r, where p = �q/k	. Solving, we must ensure that
�q/k	 ≥ (q − k)/k ≥ 0.51/k N1−(m−r)/k. But 0.51/k N1−(m−r)/k ≤ N1−(m−r)/k

so it suffices that (q − k)/k ≥ N1−(m−r)/k, and the bound follows.

For arbitrary hash functions, as opposed to compression functions, we get the
following result to relate preimage resistance to rate.

Theorem 5. Let H : {0, 1}∗ → {0, 1}rn be a permutation-based hash function
with rate α = 1/β and let N = 2n. Then with

q = �β�ln(2)αnr + α	(eN1−α + 1) ≈ 1.89 nrN1−α

queries an adversary can invert a random point with probability 1/2. �
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Proof. The proof is exactly the same as for Theorem 3 since the bounds of
Theorem 1 and Theorem 4 are the same.

It is interesting that breaking the preimage resistance of a permutation-based
hash function is essentially no harder than breaking its collision resistance; our
attacks differ in effectiveness only by a factor of 4. In addition, while one may
hope to get near-optimal collision resistance with a 2 3→ 1 compression func-
tion, the preimage resistance will be nowhere near optimal: preimage-resistance
will fail by around N2/3 queries, whereas one might hope for something that
works up to around N queries. But, as with the collision-resistance of double-
length constructions, one can hope to push up the preimage resistance to close
to N queries by using more and more permutation calls.

8 The Too-Few-Wires Attack

In this section we switch from considering the number of permutations used
by a compression function to considering the amount of memory it requires.
Mainly we show that a compression function that maps mn bits to rn bits must
keep more than mn bits of information in memory at some point during its
computation—otherwise it will offer essentially no collision resistance.

Instead of thinking about memory it is useful to think in terms of wires. If
we imagine that the compression function is built from n-bit wires connecting
the permutations and processed at different points by arbitrary functions, our
result implies that at least m + 1 wires must be used at some point during the
computation—one one more wire than there are input wires.

Naturally one needs to define what it means for a compression function to
“keep mn bits in memory” during a computation. The model is as follows: we
imagine the mn bits to be kept in m “buckets” of n bits each. At any stage,
the buckets may either be processed by an arbitrary function fi : {0, 1}mn →
{0, 1}mn; or else one of the buckets may be hit with a permutation πi, replacing
the contents of that bucket with the output of the permutation. The buckets are
initialized with the input to the compression function, and the computation is
terminated by an arbitrary function mapping {0, 1}mn to {0, 1}rn.

One may assume that no two functions fi and fj are ever applied one right
after the other (else one could replace them with their composition), and one
can assume that permutations are always applied to the first bucket (as the
fi functions can be used to switch bucket contents). Thus if the compression
function uses k permutations (π1, . . . , πk) and we denote by π̄i the map from
{0, 1}mn to {0, 1}mn that is πi on the the first bucket and the identity on all
others, then the hash of v ∈ {0, 1}mn is fk(π̄k(fk−1(π̄k−1(. . . f0(v) . . . )))) where
fk: {0, 1}mn → {0, 1}rn and fi : {0, 1}mn → {0, 1}mn for i < k. Figure 4 shows
the basic structure, with buckets drawn as wires. The sequence of permuta-
tions (π1, . . . , πk) may be distinct or include repetitions, but we assume that the
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f0

π1

f1

π2

f2

π3

f3

π4

f4

Fig. 4. The structure of a compression function that maps mn bits to rn bits using
mn bits of memory where m = 3, r = 2, and k = 4. Each wire represents n bits.
Functions f0, f1, f2, f3, and f4 are all arbitrary.

permutations are applied in a fixed order, namely that which permutation is
applied at a given point does not depend on the contents of the buckets at that
point (this restriction can in fact be removed with only a slight increase in the
complexity of the attack, so this assumption is mainly made for simplicity). We
then have the following:

Theorem 6. Let H : {0, 1}mn → {0, 1}rn be a permutation-based compression
function using k permutation calls and mn bits of memory. Then a collision can
be found in 2k queries. �

Proof. With notation as in the paragraph before Theorem 6, let j be the least
number such that fj is not a permutation. Note that j is well-defined since fk

is not a permutation. Fix any two distinct inputs u and v in {0, 1}mn such
that fj(u) = fj(v). Because f0, . . ., fj−1 are permutations we can compute
u′ = f−1

0 (π̄−1
1 (f−1

1 (. . . π̄−1
j (u) . . . ))) and v′ = f−1

0 (π̄−1
1 (f−1

1 (. . . π̄−1
j (v) . . . )))

with 2j ≤ 2k permutation calls. Observe that fk(π̄k(fk−1(π̄k−1(. . . f0(u′) . . . ))))
= fk(π̄k(fk−1(π̄k−1(. . . f0(v′) . . . )))) since fj(u) = fj(v) and we are done.

One can generalize this result. Assume that we have at our disposal k ideal
primitives ρ1, . . . , ρk, which are functions from {0, 1}mn to {0, 1}mn and such
that (i) finding a collision for ρi costs qi expected queries to ρi, unless ρi is a
permutation, in which case (ii) finding a preimage for ρi costs one query. (An
n-bit permutation can be seen as such a primitive, acting only on the first n
bits.) A compression function using (ordered) calls ρ1, . . . , ρk and mn bits of
memory can be modeled as above, with mn-bit to mn-bit functions f0, . . . , fk

interwoven with ρ1, . . . , ρk. Then one can easily adapt the proof of Theorem 6 to
show that the cost of finding a collision for the compression function is at most
max(qi)+2k, where the max is taken over all i such that ρi is not a permutation,
and is defined as 0 if all the ρi’s are permutations. (Proof: take the least j such
that either fj or ρj is not a permutation; in the former case let u, v be collid-
ing inputs of fj, in the latter case let u, v be colliding inputs of ρj paid for with qj
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queries; then push back u, v to inputs u′, v′ for the original function using the
fact that all ρi’s and fi’s for i < j are permutations.)

This observation has some interesting consequences. For example, say that
ρ1, . . . , ρk are random functions from n bits to n bits, so that it costs 2n/2

queries to find a collision for given ρi. Then a compression function from mn
bits to rn bits using mn bits of memory, m > r, will have collision resistance of
at most 2k+2n/2, where k is the number of times the random function is called.
This is unsatisfactory if r ≥ 2. It does not matter whether the random functions
are distinct or not, nor how many of them are used.

One can also apply the argument to a blockcipher-based construction, say one
with n-bit keys and blocks. First define what it means for a blockcipher to “act”
on mn bits: one could assume, say, that the first bucket of n bits is used for the
blockcipher’s key, that the second bucket of n bits is used for the blockcipher’s
input, and that the blockcipher’s output replaces either the first or second bucket.
If the blockcipher’s output replaces the key, then the blockcipher application is
not a permutation and has collision resistance of 2n/2 (a collision can be obtained
by keeping the word constant and tweaking the key); otherwise the blockcipher
application constitutes a permutation. Thus, any mn-bit to rn-bit blockcipher-
based compression function using only mn-bits of memory in the sense described
has collision resistance of ∼ 2n/2, which is once again unsatisfactory if r ≥ 2.

As an example of the findings in this section in action, suppose that someone
proposes a 3n-bit to 2n-bit compression function as shown in Fig. 4, but where we
have 10 rounds and each fi has some combinatorially strong mixing properties.
It will not matter that there are a large number of rounds or that the mixing is
strong; the scheme will be breakable in a handful of queries. The issue is that the
first collision in any of the fi’s can be “pushed back” through the permutations
to make two colliding inputs. Then suppose that, to prevent the pushing back,
the designer replaces each x �→ πi(x) by the feed-forward gadget x �→ x⊕ πi(x).
Then the number of required wires has gone up by 1, and the attack is blocked.
However if we treat the gadget x⊕ πi(x) as a primitive, the number of wires is
back down to 3 and the generalized attack shows that a collision can be found in
2n/2 queries, or the number of queries necessary to find a collision for the gadget
x⊕ πi(x). This is insufficient in a scheme that outputs 2n bits.

Finally, we comment that it was not important for the attacks of this section
that the input length and output length of the compression be multiples of n;
all that matters is that the input has at least one more bit than the output.
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A The Tree Attack

This collision-finding attack is applicable only to an iterated hash function. For
that setting and with typical parameters, it does a bit better than the pigeonhole-
birthday attack. We describe the attack both for that reason and because it
generalizes the interesting attack of Black, Cochran, and Shrimpton [1].

When we say that H is an iterated permutation-based hash function we mean
that it processes one sn = (m−r)n-bit word of message with each iteration, using
a compression function H ′: {0, 1}mn → {0, 1}rn. Hash function H is defined by
H(w1 · · · w�) = h� where hi = H ′(hi−1 ‖wi) and h0 ∈ {0, 1}rn, the initial chain-
ing value, is a constant. The compression function H ′(h, w) is g(h, w, y1, . . . , yk)
where xi = fi(h, w, y1, y2, . . . , yi−1) and yi = πi(xi). The construction uses k
calls to process sn bits, so its rate is α = s/k = (m−r)/k. Natural variants
to this model, like letting the compression function H ′ depend on the position
index i, are immaterial in the sequel.
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As the name suggests, the tree attack is associated to a certain tree, which
we will call the known-hash tree. The known-hash tree is constructed determin-
istically from a set of queries. Before describing anything else, we show how to
construct the known-hash tree from a set of queries

The known-hash tree is a subtree of an infinite rooted tree called the full tree.
The full tree has k + 1 types of nodes, which we denote type 0, type 1, . . .,
type k. A node of type i has children only of type i + 1, except for a node of
type k, which has children of type 0. The root of the full tree has type 0. Nodes
of type 1, . . . , k have outdegree N and nodes of type 0 have outdegree Ns. (As
usual, N = 2n.) The outgoing edges from nodes of type 1, . . . , k are labeled
with all the values from 0 to N − 1, whereas the outgoing edges from nodes of
type 0 are labeled with all the values from 0 to Ns − 1. Every node of type 0
has an associated value in {0, 1}rn defined inductively as follows: the root has
value h0 and a non-root node v of type 0 has value g(h, w, y1, . . . , yk) where h is
the value of the first node u of type 0 on the path from v to the root, and where
w, y1, . . . , yk are the values on the edges of the path from u to v. Nodes of type
1, . . . , k also have values, defined as follows: the value of a node v of type i ≥ 1
is xi = fi(h, w, y1, y2, . . . , yi−1) where h is the value of the first node u of type 0
on the path from v to the root, and where w, y1, . . . , yi−1 are the values of the
edges on the path from u to v.

This completes the description of the full tree. The known-hash tree is a
subtree of the full tree. It is defined from a set of queries Q = {(i1, xi1 , yi1), . . .,
(iq, xiq , yiq )} made by the adversary, where πij (xij ) = yij for all 1 ≤ j ≤ q. A
node v of the full tree is in the known-hash tree if and only if for every node
vi �= v of type i ≥ 1 on the path from v to the root the query (i, xi, yi) is in Q
where xi is the value of vi and where yi is the value of the outgoing edge of vi

on the path to v. It follows that if v is in the known-hash tree then so are all of
its ancestors, so this is defines a valid (but possibly infinite) tree.

If a node v of type 0 is in the known-hash tree then the adversary knows the
hash of the word w1w2 · · ·wm where w1, . . . , wm are the values of the outgoing
edges of the nodes of type 0 on the path from the root to v. This hash is in fact
equal to the value of node v. One can also see that every node of type i ≥ 1
has outdegree ≤ 1 in the known-hash tree, since for every value xi there is only
one yi such that πi(xi) = yi. However the outdegree of every node of type 0
is always Ns, since if a node of type 0 is in the known-hash tree then so, by
definition, are all of its children. We will call the reduced outdegree of a node v
of type 0 the number of outgoing edges from v that lie on a path to a node of
type 0 further down the tree from v. The reduced known-hash tree, or simply
reduced tree, is the restriction of the known-hash tree to nodes of type 0, where
there is an edge from u to v in the reduced tree if and only if u is the first node
of type 0 on the path from v to the root in the known-hash tree. Note that the
outdegree of a node v in the reduced tree is equal to the reduced outdegree of v
in the known-hash tree. One can define a natural bijection from the outgoing
edges of v in the reduced tree to those outgoing edges of v in the known-hash
tree that lie on a path to some node of type 0 further down. Using this bijection
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we can label in the natural way the edges of the reduced tree with values from
{0, 1}sn. Then every path in the reduced tree corresponds to a word whose hash
can be computed by the adversary, with the value of that hash being the value
of the terminal node for that path. Thus the reduced tree gives a sort of digest
of which hashes the adversary can compute4 from the queries Q.

For the attack, the adversary will make queries so as to grow the known-hash
tree in a greedy fashion. It will make queries to π1, . . . , πk in cyclical order. When
the adversary makes a query to πi it will choose a value xi that maximizes the
number of terminal nodes of type i in the known-hash tree that have value xi;
that is, the adversary simply chooses the value such that there are a largest
possible number of terminal nodes of type i with that value in the known-hash
tree (here a terminal node is a leaf of the known-hash tree). If there are no
terminal nodes of type i, the adversary can make an arbitrary query to πi.
We assume the adversary makes kp queries in all, namely p queries to every
permutation. Note that at any given query the known-hash tree could “blow
up” and go to infinity; the number of added edges may be much larger than the
number of terminal nodes.

This completes the description of the attack. We will now argue that, for q
sufficiently large, the adversary has a good chance of obtaining a collision. First
note that with kp greedy queries (not the ones we have described above), the
pigeonhole argument shows that we can compute the value of the compression
function on at least

N r+s
( p

N

)k

(1)

points in the domain D = {0, 1}r+s of the compression function. This means that
the average over the values h ∈ {0, 1}rn of the number of points w ∈ {0, 1}sn for
which we can compute the value of the compression function on input h ‖ w is

N r+s
( p

N

)k

/N r = Ns
( p

N

)k

. (2)

On the other hand, the same average is approximated by the average outdegree
of a node in the reduced tree after the adversary has carried out the above
tree attack: every node corresponds to a value of h, and every outgoing edge
corresponds to a value of w for which the output of the compression function on
input h ‖ w is known. The (heuristic) assumption underlying the tree attack is
that for moderately large values of p, this outdegree average should approximate
the average (2); after all, both the pigeonhole attack and the tree attack choose
queries greedily. Then if (2) is moderately large, say equal to 2, we expect the
reduced tree to have average outdegree close to 2. But any tree with average
outdegree exceeding 1 must be infinite, and must also have unbounded width;
4 The adversary may even know how to compute more hashes than those given from

the reduced tree, for example if the function g(h, w, y1, . . . , yk) ignores some of the
yi’s, making it not necessary to know their values. However since we are describing
an attack and not a proof of security, this is irrelevant.
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thus the reduced tree has blown up to infinity and we can find a collision by the
pigeonhole principle (and even find a collision at the same level of the tree—
meaning a collision of equal-length strings—because the width is unbounded).

To be more concrete, say that we choose p = q/k large enough that

Ns
( p

N

)k

≥ 2 (3)

Then one would expect that with some constant probability close to 1, but say
with at least probability 1/2, the tree attack yields a reduced tree of average
outdegree exceeding 1. Then the reduced tree has blown up to infinity and we
hold a collision. This would give us an attack with probability of success 1/2.
The cost of the attack would be q = kp where

p =
⌈
21/kN1−s/k

⌉
≈ 21/kN1−s/k , (4)

which is to say q ≈ k 21/k N1−α ≤ 2k N1−α, because α = s/k. This is an
improvement on the bound for the pigeonhole-birthday attack since we expect k
to be significantly smaller than n.

Theorem 7. Let H : {0, 1}∗ → {0, 1}rn be an iterated permutation-based hash
function with rate α, its underlying compression function employing k permu-
tation calls, and let N = 2n. Then, under the heuristic assumptions described
above, with

q ≈ 2k N1−α

queries an adversary can find a collision with probability ≥ 1/2. �

Most iterated hash functions have s = 1, in which case k = k/s = 1/α = β
and the bound of Theorem 7 can be rewritten as 2β N1−α; this is the version of
the bound used for the numerical examples of Fig. 3. Note that for α = k = 1,
the case considered by Black et al. [1], the tree attack gives a bound of q = 2
queries. This may seem seem small, but as Black et al. note, any construction in
which for any h, x1 ∈ {0, 1}n there is some w ∈ {0, 1}n such that x1 = f1(h, w)
can indeed be broken in two queries, using the same argument as for the tree
attack (in such a construction, the tree trivially blows up to infinity after just two
queries, with uniform reduced outdegree of 2). Moreover, natural constructions
will have this feature since it seems undesirable for the function f1(h, ·) to contain
collisions (as a function from {0, 1}n to {0, 1}n). However, for constructions
that are artificially designed to hold off the attack, the bound 2kN1−α may be
overly optimistic when it is very small (but in this case one does not much mind
being off).
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Abstract. At Crypto ’07, Fouque, Leurent and Nguyen presented full
key-recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5, by ex-
tending the partial key-recovery attacks of Contini and Yin from Asi-
acrypt ’06. Such attacks are based on collision attacks on the underlying
hash function, and the most expensive stage is the recovery of the so-
called outer key. In this paper, we show that the outer key can be re-
covered with near-collisions instead of collisions: near-collisions can be
easier to find and can disclose more information. This improves the com-
plexity of the FLN attack on HMAC/NMAC-MD4: the number of MAC
queries decreases from 288 to 272, and the number of MD4 computations
decreases from 295 to 277. We also improved the total complexity of the
related-key attack on NMAC-MD5. Moreover, our attack on NMAC-
MD5 can partially recover the outer key without the knowledge of the
inner key, which might be of independent interest.

Keywords: HMAC, NMAC, key-recovery, MD4, MD5, differential at-
tack, near-collision.

1 Introduction

Many cryptographic schemes and protocols use hash functions. Their actual
security might need to be reassessed, in light of the seminal work by Wang et
al. [12,13,14,15] on finding collisions on hash functions from the MD4 family. This
paper deals with key-recovery attacks on HMAC and NMAC using differential
techniques. HMAC and NMAC are hash-based message authentication codes
proposed by Bellare, Canetti and Krawczyk [1]. HMAC has been implemented in
widely used protocols including SSL, TLS, SSH, and IPsec. The construction of
HMAC/NMAC is based on a keyed hash function. Let H be an iterated Merkle-
Damg̊ard hash function, which defines a keyed hash function Hk by replacing
the IV with the key k. Then HMAC and NMAC are defined as:

HMACk(M) = H(k̄ ⊕ opad||H(k̄ ⊕ ipad||M));
NMACk1,k2(M) = Hk1(Hk2(M)),

where M is the input message, k and (k1, k2) are the secret keys of HMAC and
NMACrespectively, k̄meanskpaddedtoasingleblock, ||meansconcatenation,and

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 237–253, 2008.
c© International Association for Cryptologic Research 2008
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opad and ipad are two one-block length constants. NMAC is the theoretical foun-
dation of HMAC: HMACk is essentially the same as NMACH(k̄⊕opad),H(k̄⊕ipad),
except with a change in the length value included in the padding. In [1,2], the se-
curity proof was first given for NMAC, and then extended to HMAC. Attacks on
NMAC can usually be adapted to HMAC, except in the related-key setting. Here-
after, k1 and k2 (for HMAC: H(k̄ ⊕ opad) and H(k̄ ⊕ ipad) with the appropriate
changes in the padding) are referred to as the outer key and the inner key, respec-
tively. The corresponding hash functions of k1 and k2 are referred to as the outer
hash function and the inner hash function, respectively.

The security of HMAC and NMAC
The security of HMAC /NMAC has been carefully analyzed by its designers [1,2].
It has been proved that NMAC is a pseudo-random function family (PRF) under
a single assumption: (1) compression function of the keyed hash function is
a PRF. The proof for NMAC has been extended to HMAC by an additional
assumption: (2) the key derivation function in HMAC is a PRF. However, if the
underlying hash function is weak (such as MD4 and MD5), the above proofs
may not apply.

There are three types of attacks [4,5,6,8,9] on HMAC/NMAC:

-Distinguishing attacks: distinguish HMAC/NMAC from a random function.
-Existential forgery attacks: compute a valid MAC for a random message.
-Universal forgery attacks: compute a valid MAC for any given message.

We focus on universal forgery attacks, by trying to recover the secret keys k1

and k2, like in previous work [4,5,9]. Contini and Yin [4] proposed partial key-
recovery attacks on HMAC/NMAC instantiated with MD4, MD51, SHA-0 and
step-reduced SHA-1. Their attacks can only recover the inner key k2, which is
insufficient for a universal forgery attack. Fouque, Leurent and Nguyen [5] pre-
sented the first full-key attack on HMAC/NMAC-MD4, by proposing an outer-
key recovery attack. They also extended the attack of [4] into a full key-recovery
attack on NMAC-MD5 in the related-key setting: this attack was independently
found by Rechberger and Rijmen [9], who also proposed a full key-recovery at-
tack in the related-key setting on NMAC with SHA-1 reduced to 34 steps. These
full key-recovery attacks first apply the attack of [4] to recover the inner key k2,
then use additional MAC queries to derive several bits of the outer key k1, and
finally the rest of the outer key is obtained by the exhaustive search using offline
hash computations. Recovering the outer key is so far the most expensive stage.

Our contributions
We propose new outer-key recovery attacks on HMAC/NMAC-MD4 and NMAC-
MD52, which leads to full key-recovery attacks by using the inner-key attacks
of [4]. Compared to previous work by Fouque et al. [5], the main novelty is the
use of near-collisions instead of collisions. Recall that a near-collision is a pair

1 The attack on NMAC-MD5 is a related-key attack, and therefore does not apply to
HMAC-MD5.

2 Our attack on NMAC-MD5 is in the related-key setting, like [5,9].
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of distinct messages whose hash values are almost the same, differing only by
a few bits (see [7]): our near-collisions are based on a local collision at some
intermediate step of the compression function, which significantly simplifies the
difference propagation in the last few steps. Our attacks can be sketched as
follows. We call the MAC oracle on exponentially many messages chosen in such
a way that we can expect to find near-collisions in the outer hash function. By
observing the shape of the near-collisions obtained, we are able to derive certain
bits of the final values of the four 32-bit intermediate values a, b, c, d of the outer
hash function. This discloses a few bits of the outer key k1, since each 128-bit
MAC value is exactly (ka+a, kb+b, kc+c, kd+d) because MD4 and MD5 use the
Davies-Meyer mode, where k1 is decomposed as four 32-bit variables ka, kb, kc

and kd.
The cost of our attacks is summarized in Table 1. In the case of HMAC/NMAC-

MD4, near-collisions are easier to find and disclose more information, which allows
to considerably improve the FLN attack [5] in both the number of MAC queries
and the number of offline MD4 computations. In the case of NMAC-MD5, com-
pared to the FLN-RR attack [5,9], total complexity is decreased. Moreover, we
note that our attack can partially recover the outer key without the knowledge of
the inner key k2, which might be of independent interest.

Table 1. Comparison with previous work

Universal forgery attack previous result our new result

HMAC-MD4 Online queries 288 [5] 272

NMAC-MD4 Offline MD4 computations 295 [5] 277

Total complexity 295 277

NMAC-MD5 Online queries 251 [5,9] 275

related-key setting Offline MD5 computations 2100 [5,9] 275

Total complexity 2100 276

Organization of the paper
Section 2 reviews background and related work. In Section 3, we explain the
advantages of our attacks compared to previous work. In Sections 4 and 5, we
present in details our attacks on HMAC/NMAC-MD4 and NMAC-MD5. Finally,
we conclude and give open problems in Section 6.

2 Background and Notation

2.1 Description of MD5 and MD4

There is no standard notation for the description of MD5 and MD4. In this
paper, we adopt a notation similar to that of [4].

MD5 and MD4 have the Merkle-Damg̊ard structure and output a 128-bit
hash value. First, the input message is padded to be the multiple of 512 bits:
add ‘1’ in the tail of the input message; add ‘0’s until the bit length becomes
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448 modulo 512; add the length of input message (before padding) to the last
64 bits. Then the padded message M is divided into 512-bit messages M =
(M0, M1, . . . , Mn−1). The 128-bit IV is represented as H0 (which is the secret
key in the keyed hash function). The compression function is first applied on
M0 and H0 as input, which outputs a 128-bit value H1. By iterating over all the
message blocks Mi, we obtain a final 128-bit value Hn, which is defined to be
the hash value of M .

Compression function of MD5
The compression function takes a 512-bit message block m and a 128-bit value
H as input. First, m is divided into sixteen 32-bit values (m0, . . . , m15), and
H is divided into four 32-bit variables (a0, b0, c0, d0). The compression function
consists of 64 steps, regrouped into four 16-step rounds. Each step is defined as
follows:

ai = di−1, ci = bi−1, di = ci−1,
bi = bi−1 + (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,

where mk is one of (m0, . . . , m15), the index k being given by a permutation of
{0, . . . , 15} depending on the round, t is a constant defined in each round, ≪ si

means a left-rotation by si bits, and f is a Boolean function depending on the
round.

1R: f(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z)
2R: f(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
3R: f(X, Y, Z) = X ⊕ Y ⊕ Z
4R: f(X, Y, Z) = (X ∨ ¬Z) ⊕ Y

The final output is (a0 + a64, b0 + b64, c0 + c64, d0 + d64), which means that MD5
uses the Davies-Meyer mode.

Compression function of MD4
The differences between MD5 and MD4 are the following:

- MD4 consists of 48 steps regrouped into three 16-step rounds.
- Each step is defined as: bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,

where mk is given by different round permutations.
- In the 2nd round: f(X, Y, Z) = (X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z).

2.2 Pseudo-collision of MD5

In [3], den Boer and Bosselaers found a pseudo-collision on the compression
function of MD5 of the following form:

MD5(IV , M)=MD5(IV ′, M)

Here, the one-block message M is the same, and only the IVs are different. The
total probability of their pseudo-collision is 2−46, provided that IV and IV ′

satisfy the following relations:
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- ∆IV = (IV ⊕IV ′) = (0x80000000, 0x80000000, 0x80000000, 0x80000000);
- If we decompose the IV as four 32-bit variables (a0, b0, c0, d0), then the
MSBs of b0, c0 and d0 must be the same.

In the rest of this paper, the difference ∆IV of their pseudo-collision will be
denoted by ∆MSB , and this pseudo-collision will be referred to as the dBB
pseudo-collision.

2.3 Recovering the Inner Key of HMAC/NMAC-MD4

We recall the differential attack of Contini and Yin [4] to recover the inner key:

1. Determine a message difference ∆M and a differential path DP for a collision
attack on MD4. Let n be the number of sufficient conditions.

2. Generate a random one-block message M , and send both M and M+∆M to
the HMAC/NMAC oracle until one pair of messages (M1, M1+∆M) collides.
Since the number of sufficient conditions is n, such a pair (M1, M1 + ∆M)
will be obtained after roughly 2n pairs of messages are queried.

3. Recover the intermediate chaining variables (ICV) in step t of 1RofH(k2, M1).
This technique is onemain contributionof the inner-key recoveryattackofCon-
tini and Yin [4]. For details, please refer to [4].

4. Derive the inner key k2 by inverse calculation from the obtained ICV. This
is easy since each step of MD4 is invertible. For instance, with MD4, if mt−1

and ICV in step t are known, ICV in step t − 1 can be calculated as follows.

bt−1 = ct, ct−1 = dt, dt−1 = at,

at−1 = (bt ≫ s0) − mt−1 − f(ct, dt, at).

The related-key attack on NMAC-MD5 [4] is based on the same ideas. The
attack exploits the freedom over the input messages, which explains why this
attack is the most efficient attack known to recover the inner key k2. However,
for the outer hash function of HMAC/NMAC, the input message is the output
of the inner hash function, for which there is much less freedom. This attack is
therefore not well-suited to recover the outer key.

2.4 Recovering the Outer Key of HMAC/NMAC-MD4

We recall the differential attack of Fouque, Leurent and Nguyen [5] to recover
the outer key:

1. Determine a message difference ∆M and a differential path DP for a collision
attack on MD4 in such a way that the differential path has one sufficient
condition depending on one bit of k1. Let n be the number of sufficient
conditions without counting the one on k1.

2. Generate pairs of messages (M, M ′) satisfying Hk2(M ′) = Hk2(M) + ∆M .
This technique is detailed in Appendix A, which will be utilized in our own
attack.
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3. Send M and M ′ to the HMAC/NMAC oracle. Once roughly 2n pairs of
messages (M, M ′) are queried, if a collision is obtained, the outer key k1

satisfies the sufficient condition. Otherwise, k1 is very unlikely to satisfy the
sufficient condition. So with 2n+1 queries, we will recover one bit of k1.

4. Change ∆M and DP , and recover other bits of k1.

The first two steps are the most important steps of the attack [5]. The main idea
is to find a differential path with one sufficient condition on the outer key k1.
If k1 satisfies the condition, a collision will be found with a suitable number of
queries. Otherwise, no collision is likely to be found after the same number of
queries. This will disclose bits of k1.

However, if we divide the outer key k1 as (ka, kb, kc, kd) for the computation
of the outer MD4, then it turns out that such conditions can only be set on kb

and kc, so the attack can not recover any of the bits of ka and kd.

3 Attacks on HMAC/NMAC with Near-Collisions

In this section, we give an overview of our new attacks on HMAC/NMAC based
on near-collisions. A detailed description of the attacks will be given in respec-
tively Section 4 for the MD4 case, and Section 5 for the MD5 case.

3.1 Overview

We first give an overview in the case of MD4. Thanks to [4], we can already
assume that we know the inner key k2 of HMAC/NMAC-MD4, and we want
to recover the outer key k1, which will be decomposed as four 32-bit variables
ka, kb, kc and kd. Because MD4 uses the Davies-Meyer mode, we know that the
128-bit value of HMAC/NMAC-MD4 is exactly (ka + a, kb + b, kc + c, kd + d),
where a, b, c, d denote the final values of the four 32-bit intermediate values of
the outer MD4.

The FLN attack [5] used an IV-dependent differential path for MD4 colli-
sions, and derived bits of k1 by observing whether or not collisions for the outer
MD4 occurred. We will use a differential path for MD4 near-collisions which is
independent of the IV, and we will collect near-collisions. These near-collisions
are based on a local collision at some intermediate step of the MD4 compression
function. Thanks to special properties of our differential path, we will be able to
extract certain bits of (a, b, c, d), depending on the shape of the near-collision.
Because of the Davies-Meyer mode, this will disclose certain bits of k1.

Thus, the structure of our attack on HMAC/NMAC-MD4 is the following:

1. Determine a message difference ∆M and a differential path DP for a near-
collision attack on MD4. Let n be the number of sufficient conditions.

2. Generate pairs of messages (M, M ′) satisfying Hk2(M ′) = Hk2(M) + ∆M .
We can use the FLN technique [5], described in Appendix A.

3. Send M and M ′ to the HMAC/NMAC-MD4 oracle. Once roughly 2n pairs
of messages (M, M ′) are queried, we obtain a near-collision.
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4. Once a near-collision with (M, M ′) is obtained, we look at the shape of the
near-collision: due to choice of our differential path, we know that certain
shapes of near-collisions can only arise if certain bits of (a, b, c, d) are equal
to 1 at the end of the computation of NMAC-MD4(M). This discloses bits
of k1 thanks to the Davies-Meyer mode.

5. Change ∆M and DP , and recover other bits of k1.

Our related-key attack on NMAC-MD5 is based on similar ideas. We use
the differential path of [3] associated to the dBB pseudo-collision. This dif-
ferential path also gives rise to near-pseudo-collisions, that is, MD5(IV , M)
and MD5(IV ′, M) only differ by a few bits. Of course, instead of calling the
NMAC-MD5 oracle on random messages M and M ′ such that Hk2(M ′) =
Hk2(M) + ∆M , we will call the NMAC-MD5 oracle on a randomly chosen M
with two related keys corresponding to ∆MSB . Because this does not use the
inner key k2, we will thus be able to recover bits of k1 without knowing k2.

3.2 Features

We summarize the main features of our attacks, compared to [5,9]:

The HMAC/NMAC-MD4 case:
- Generating a near-collision requires much less queries than a collision.

Compared to the FLN attack [5], the number of MAC queries is reduced
to 272 from 288,

- Our MD4 near-collisions disclose more information than collisions. In-
deed, we can recover bits of kb, kc and kd, rather than just bits of kb

and kc. Compared to the FLN attack [5], this discloses 51 bits of the
outer key k1, instead of only 22 bits. Hence, the number of offline MD4
computations is reduced to 277 from 295 (FLN attack decreased their
offline complexity to 295 from 2106 using some speeding up technique.
Please refer to [5] for details.).

The NMAC-MD5 case:
- our attack does not require any control over the input messages, so our

attack can partially recover the outer key k1 without knowing the inner
key k2, unlike previous work. This might be of independent interest.
We increase the number of online queries, but we can derive more in-
formation on the outer key: 63 bits of k1 can be recovered, instead of
only 28 bits [5,9]. There is no standard calculation method of the total
complexity. We will follow that of [9]: the sum of the online complexity
and the offline complexity. Finally we recovered 53 bits of k1 in order
to make the online and the offline complexity be equal: 275. The total
complexity of MD5 computations is reduced to 276 from 2100.

4 New Key Recovery Attack on HMAC/NMAC-MD4

We now precisely describe our new outer-key recovery attack on HMAC/NMAC-
MD4. Recall that the outer key k1 is decomposed as (ka, kb, kc, kd).
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Denote the final values (after 48 steps) of the 32-bit intermediate values of the
outer MD4 as (a48, b48, c48, d48). Then the output of HMAC/NMAC-MD4 is:
(ha, hb, hc, hd)=(ka + a48, kb + b48, kc + c48, kd + d48). So we have the following
relations when comparing two outputs of HMAC/NMAC-MD4:

∆ha=∆a48, ∆hb=∆b48, ∆hc=∆c48 and ∆hd=∆d48.3

As a result, we can detect the difference propagation in the last four steps of
the outer MD4 from the final output values of HMAC/NMAC. Based on this
weakness of HMAC/NMAC-MD4 due to the Davies-Meyer mode, we will obtain
bit-values of a48, c48 and d48. This, in turn, will disclose bits of ka, kc and kd.

Our attack has both online work and offline work. We will first describe our
near-collision on MD4. Then, we will explain details of online work and offline
work.

4.1 Near-Collisions on MD4

The main contribution of this paper is the use of near-collisions. Our near-
collisions on MD4 are based on a local collision at step 29. We determine the
message differences ∆M as ∆m3=2i, that is, the messages only differ in m3.
The corresponding differential path is given in Appendix D. This differential
path works for the cases i = 3 ∼ 5, 7 ∼ 17, 20 ∼ 25: other values of i fail because
of carry expansion.

The above near-collisions have the following properties:

- m3 is used in step 45 of 3R. If the local collision in step 29 happens, the
differences propagation in the last four steps will be significantly simplified.

- Because we use a local collision in step 29, we only need to consider the dif-
ferential path until step 29. This reduces the number of sufficient conditions,
and therefore the number of queries to obtain a near-collision.

4.2 Online Work: Obtaining Bit-Values of a48, c48 and d48

The procedure is as follows, where the message difference ∆M is ∆m3 = 2i:

1. Generate pairs of messages (M, M ′) such that MD4(k2, M ′)=MD4(k2, M)+
∆M . We adapt the technique proposed in [5], which is given in Appendix A.

2. Send such messages M and M ′ to the HMAC/NMAC-MD4 oracle to obtain
any of the following three kinds of near-collisions:

- Pairs (M i
a, M i

a’) such that ∆ha=2i+3, ∆hd=∗2i+12 and ∆hc=∗2i+23 ±
2i+14 ± 2i+15; 4

- Pairs (M i
c, M

i
c’) such that ∆ha=2i+3, ∆hd=∗2i+12, ∆hc=∗2i+23 ∗ 2i+14,

and expected ∆hb;5

3 If two values differ at the MSBs, there will exist error probability. We will ignore
such situations because they do not happen in our attack.

4 ∗ means that the sign does not matter, and ±2i+14 ± 2i+15 means that the signs of
these two differences are the same.

5 ∆hb consists of ±2i+6 ± 2i+7.
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- Pairs (M i
d, M i

d’) such that: ∆ha=2i+3, ∆hd=∗2i+12 and ∆hc=∗2i+14 ±
2i+23 ± 2i+23.

3. Change the index i, and repeat steps 1 and 2 until all values of i are used.

First, let us observe that the above near-collisions are very likely to come from
our differential path. Indeed, the shape of our near-collisions impose fixed differ-
ences on three 32-bit words, so a pair (M, M ′) chosen uniformly at random would
give such a near-collision with probability 2−96. However, our pairs (M, M ′) cho-
sen in step 1 have a much higher probability 2−64 to near-collide.6

We now claim that the messages obtained above with near-collisions satisfy
the following conditions on the final values of the intermediate values of the
outer MD4:

M i
a: a48,i+3 = 1; M i

c : c48,i+3 = 1; M i
d: d48,i+3 = 1.

For instance, consider the case of M i
a. Because of the near-collision, the difference

propagation in 3R only exists in the last four steps. At step 47, the variable
generated is c48. And input differences only exist in a48 and d48: ∆a48 = 2i+3

and ∆d48 = ∗2i+12. Since the number of the bits of the left rotation is 11, both
±2i+14 and ±2i+15 of ∆c48 must be caused by 2i+3 of ∆a48. Such a difference
propagation can not happen if there does not exist a carry during the calculation
a48+2i+3, so the probability of a48,i+3=1 is 1. With a similar reasoning, the
messages M i

c and M i
d satisfy c48,i+3 = 1 and d48,i+3 = 1, respectively.

Finally, we can obtained near-colliding messages M i
a such that a48,i+3=1 for

i=3 ∼ 5, 7 ∼ 15, 20 ∼ 25: other values of i fail because of carry expansion.
In total, there are 18 near-colliding messages M i

a, which can disclose values of
ka,i+3. Details are shown in section 4.3. So we can recover 18 bit-values of ka

by online work. Similarly, kc and kd are also partially recovered by online work.
Near-colliding messages M i

c and M i
d are obtained for i = 3 ∼ 5, 9 ∼ 17, 20 ∼ 23

and i = 3 ∼ 5, 9 ∼ 17, 21 ∼ 25 respectively. So 16 bit-values of kc and 17
bit-values of kd, corresponding kc,i+3 and kd,i+3 of M i

c and M i
d respectively, can

be recovered. In total, 51 bits of the outer key k1 are recovered by the online
work.

4.3 Offline Work: Recovering ka, kc and kd

The way to recover ka, kc and kd is the same. We will pick ka as an example to
explain the details:

1. Guess the values of ka,i for i = 0 ∼ 5, 9, 19 ∼ 22, 29 ∼ 31: the index i
that we fail obtaining M i−3

a . These bit-values of ka will be recovered by the
offline exhaustive search. The total number of possibilities is 214.

2. Calculate other bits of ka from the least significant to the most significant
bits using M i

a. First, the 6-th bit of ka will be calculated using M3
a .

- Recovering ka,6: compare ka,5∼0 with ha,5∼0. If ka,5∼0 > ha,5∼0, there
exists a carry from bit 5 to 6 during the computation of ka+a48. Oth-
erwise, there will be no carry from bit 5 to 6 during the computation of

6 Details are shown in section 4.4.
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ka+a48. Since a48,6=1, the carry influence is known, and the value ha,6

is known, so the value ka,6 can be calculated.
Then, the 7-th bit will be derived from M4

a . Then the 8-th bit, and so on.
Finally, all other bits of ka will be recovered.

By a similar process, all the bits of kc and kd will be recovered.

4.4 Complexity Analysis

As explained in section 4.2, we can obtain 18 bits, 17 bits and 16 bits of ka, kd

and kc using M i
a, M i

d and M i
c, respectively. Totally 51 bits of k1 are recovered by

the online work, so the complexity of the offline exhaustive search is 277 (2128−51)
MD4 computations.

Now we analyze the complexity of online work. This depends on the prob-
ability of the specified shape of near-collision, which can be regarded as two
parts: probability of near-collision and that of specified difference propagation
in the last four steps. The probability of our near-collisions is 2−60 since there
are in total 60 conditions of differential path. The probabilities of difference
propagation in the last four steps of outer MD4 are shown in Appendix B. One
pair (M i

a, M i
a’), (M i

c , M i
c’), and (M i

d, M i
d’) can be obtained with a probability

2−60 × 1 × 2
3 × 1

9 (greater than 2−64), 2−60 × 2
3 × 4

9 × 1
4 (greater than 2−64), and

2−60 × 2
3 × 1

9 (greater than 2−64) respectively: one above pair can be obtained
with roughly 266 queries. As a result, the total online complexity is 51×266 (less
than 272) queries.

Experiment
It is impossible to carry out the real experiment. Instead, we separate the ex-
periment to two parts:

- Confirm the correctness of DP: an example is shown in Appendix C.
- Confirm the correctness of key recovery technique by only focusing on the

last four steps of outer MD4: the intermediate variables at step 44 and the
message m3 are randomly generated.

5 New Key Recovery Attack on NMAC-MD5

Similarly with MD4 case, we can detect the difference propagation in the last
four steps of the outer MD5 from the final output values of HMAC/NMAC-MD5.
It seems that our near-collision attack can be extended to HMAC/NMAC-MD5.
However, we have not found suitable message difference and differential path
for near-collision on MD5. Thanks to dBB pseudo-collision, where the difference
propagation in the last four steps of the outer MD5 is very simple, we will be
able to obtain bit-values of the intermediate values (after 64 steps) in the outer
MD5 by detecting the shape of near-pseudo-collision or pseudo-collision. This,
in turn, will disclose the outer key k1.

In this section, we will explain the details of our outer-key recovery attack on
NMAC-MD5 in the related-key setting: the attacker obtains MD5k1(MD5k2(M))
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and MD5k′
1
(MD5k2(M)) denoted as NMAC and NMAC’ respectively hereafter;

k1 and k′1 satisfy ∆MSB defined in section 2.2. Recall that k1 is decomposed as
(ka, kb, kc, kd). Denote the intermediate variables (after 64 steps) in the outer
MD5 as (a64, b64, c64, d64). Then the output of NMAC-MD5 is: (ha, hb, hc, hd) =
(ka + a64, kb + b64, kc + c64, kd + d64).

Our new outer-key recovery attack consists of online work and offline work.
The online work partially recovers ka and kc without knowledge of the inner
key k2, which might be of independent interest. The offline work is just the
exhaustive search, where the inner key is necessary. We will first describe near-
pseudo-collision on MD5. Then we will explain details of the online work. Since
the offline work is just the exhaustive search, we will omit it.

5.1 Near-Pseudo-collision on MD5

According to dBB pseudo-collision, once a local collision happens at step 63, the
shape of near-pseudo-collision will depend on a64,31 and c64,31:

- if a64,31 = c64,31: collision happens;
- if a64,31 �= c64,31: the final output differences are ∆ha = 0, ∆hb = ±220,

∆hc = 0 and ∆hd = 0.

So we can obtain the relation between a64,31 and c64,31 by detecting the shape
of near-pseudo-collision.7

5.2 Online Work: Recovering ka,31∼30 and kc,31∼30

The procedure is as follows:

1. Generate messages randomly and send them to NMAC and NMAC’ to obtain
near-pseudo-colliding messages {M}, regrouped depending on the values of
ha,30 and hc,30:

- {M0} : ha,30 = 0 and hc,30 = 0;
- {M1} : ha,30 = 0 and hc,30 = 1;
- {M2} : ha,30 = 1 and hc,30 = 0;
- {M3} : ha,30 = 1 and hc,30 = 1.

2. Determine relation between ka,31 and kc,31 based on each element of each
sub-group utilizing the following tool:

Tool: during ka +a64/kc +c64, if ha,30/hc,30 = 0, there exists a carry from
bit 30 to 31. Otherwise, there does not exist a carry from bit 30 to 31.

3. Check the results of step 2 for each sub-group. There should be only one sub-
group that all elements have the same result, which will disclose ka,31∼30 and
kc,31∼30 as follows:

the result of step 2 is the real relation between ka,31 and kc,31;
ka,30 = 1 − ha,30; kc,30 = 1 − hc,30.

7 Hereafter, we regard pseudo-collision as a special kind of near-pseudo-collision just
for simplicity.
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First we will explain why the relation between ka,31 and kc,31 can be deter-
mined at step 2: the above tool determines the carry influence from bit 30 to 31
during ka + a64/kc + c64; the shapes of near-pseudo-collisions show the relation
between a64,31 and c64,31; the relation between ha,31 and hc,31 is easy to check.
Pick one pseudo-colliding element m ∈ {M0} as an example. We can obtain that
a64,31 = c64,31; there exists a carry from bit 30 to 31 during ka + a64/kc + c64.
Consequently, the relation between ka,31 and kc,31 is determined as follows:

ha,31 = hc,31 ⇒ ka,31 = kc,31;
ha,31 �= hc,31 ⇒ ka,31 �= kc,31.

Then we will explain why only one sub-group does not have different results
at step 2. This is because of the utilized tool. The error probability of the tool
depends on the relation between ka/c,30 and ha/c,30.

- ka/c,30 = ha/c,30: error probability is 1
2 . For example, if both values are 0,

according to the tool, we will assume that there is always a carry from bit
30 to 31. However, in fact the carry influence depends on the value a/c64,31:
carry exists if a/c64,30 = 1, and no carry if a/c64,30 = 0. Since the value of
a/c64,30 is random, the error probability is 1

2 .
- ka/c,30 �= ha/c,30: error probability is 0. For example, if ka/c,30 = 0 and

ha/c,30 = 1, we can obtain that ka/c,30∼0 < ha/c,30∼0, so there will be no
carry with probability 1, which is the same with the tool.

So only the sub-group satisfying ka/c,30 �= ha/c,30 should be without error. In
other words, all elements of this sub-group have the same result at step 2. This
also explains the way we recover ka/c,31∼30 at step 3.

5.3 Online Work: Recovering Other Bits of ka and kc

Since the way of recovering ka is exactly the same with that of recovering kc, we
will pick ka as an example in this section. The value of ka is recovered from the
most significant to the least significant bit. Suppose bits ka,30∼(i+1) (0 ≤ i ≤ 29)
have been already obtained. The following procedure shows how to recover ka,i.

1. Randomly generate messages and send them to the two NMACs until one
message M1 obtained satisfying the following three conditions:

a) near-pseudo-collision happens;
b) ha,j=ka,j (i + 1 ≤ j ≤ 30);
c) hc,30 �= kc,30.

2. Determine the carry influence from bit i to i + 1 during ka + a64, where
a64 is the intermediate value (after 64 steps) of the outer MD5 of MD5k1(
MD5k2(M1)).

3. Determine the value of ka,i by the result of step 2.
-Carry: ha,i=1 ⇒ ka,i=1;

ha,i=0 ⇒ repeat steps 1 and 2.
-No carry: ha,i=0 ⇒ ka,i=0;

ha,i=1 ⇒ repeat steps 1 and 2.
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First, we can easily obtain the carry influence from bit 30 to 31 during ka +
a64 based on conditions a) and c): condition a) guarantees that the relation
between a64,31 and c64,31 can be determined; condition c) guarantees that the
carry influence from bit 30 to 31 can be determined during kc + c64.

Then, we will obtain the carry influence from bit i to i+1 based on condition
b): condition b) guarantees that the carry influence from bit i to i + 1 and that
from bit 30 to 31 are the same during ka + a64.

Finally, we will recover the value of ka,i: if there exists a carry from bit i to
i+1 and ha,i = 1, then ka,i = 1with probability 1; if there does not exist a carry
from bit i to i + 1 and ha,i = 0, then ka,i = 0with probability 1;

5.4 Complexity Analysis

Near-pseudo-collision is with a rough probability 2−45 since there are in total 45
conditions until step 63 according to dBB pseudo-collision on MD5.
Complexity of recovering ka,31∼30 and kc,31∼30

As explained in section 5.2, the error probability of other sub-groups is 1
2 . So we

need to generate four elements for each sub-group. To guarantee the attack will
succeed, we will totally generate 32 elements for {M}. The complexity will be
32 × 246 = 251 queries.
Complexity of recovering ka,i and kc,i (0 ≤ i ≤ 29)
Considering the complexity of recovering ka,i is the same with that of recovering
kc,i, we will pick ka,i as an example.

In section 5.3, it needs 246 × 230−(i+1)+1 × 2 = 277−i queries to obtain one
message satisfying conditions a), b) and c) in step 1. According to steps 2 and
3, we might repeat step 1 twice. So totally the complexity is 2 × 277−i = 278−i

queries.
There is no standard calculation method of the total complexity. We will

follow that of [9], which is the sum of the online and the offline complexity.
If we will recover bits of ka,30∼i and kc,30∼i, with roughly 280−i queries, the
value of i should make the online and the offline complexity be equal: 280−i =
2128−(31−i)×2−1 ⇒ i = 5. As a result, we will recover ka,30∼5, kc,30∼5 and the
relation between ka,31 and kc,31. The online complexity is less than 275 queries,
and the offline complexity is 275 MD5 computations.8

Experiment
It is impossible to carry out the real experiment. Similarly with HMAC/NMAC-
MD4 case, we only focus on the last 4 steps of outer MD5, so we will randomly
generate the intermediate variables at step 60 and messages m2 and m4.

6 Conclusion

This paper proposed new outer-key recovery attacks on HMAC/NMAC-MD4
and NMAC-MD5 (with related-key setting).
8 For the offline MD5 computations, we will assume the inner key k2 has been obtained

by the inner-key recovery attack of Contini and Yin [4].
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So far, no key-recovery attack has been published on HMAC/NMAC-MD5
without related-key setting. There are two reasons: (1) the inner-key recovery
attack of Contini and Yin [4] can not succeed because all differential paths
published so far have more than 128 sufficient conditions; (2) Wang et al.’s
collision attack on MD5, multi-block collision, can no be used for the outer-key
recovery attack, because the input message of the outer MD5 is the hash values
of the inner MD5, just one-block length.

Our near-collisions may solve the second problem, since our near-collisions
are only one-block length. Here we focus on the outer-key recovery attack, and
assume that the inner key has been obtained. Moreover, our near-collisions are
easier to be obtained than collisions, only counting sufficient conditions until
some intermediate step where a local collision happens.

As explained above, once the number of sufficient conditions of near-collision is
less than 128, outer-key recovery attack might be a real attack on HMAC/NMAC-
MD5 without related-key setting.
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A FLN Attack: Generating Pairs of Messages (M, M ′)
That Hk2(M ′)=Hk2(M)+∆M Efficiently

In [5], Fouque et al. proposed an efficient way to generate pairs of messages
(M, M ′) satisfying Hk2(M ′)=Hk2(M)+∆M .9 This technique works on hash
functions that have the Merkle-Damg̊ard structure. The procedure is as follows:

1. Generate one pair of one-block length messages (M1, M
′
1) satisfying Hk2(M ′)

= Hk2(M)+∆M by birthday attack, where padding is not considered. Since
the output of MD4 is 128-bit length, (M1, M

′
1) will be obtained after roughly

264 MD4 computation.
2. (M1, M

′
1) will be extended to a family of two-block pair messages such that

Hk2(M1||M2) = Hk2(M ′
1||M ′

2)+∆M . The length of M2 and M ′
2 must be no

longer than 447 bits because of the padding rule.

Selecting M2 and M ′
2

Denote Hk2(M) and Hk2(M ′) as h1 and h′1, respectively. we will obtain that
Hk2(M1||M2) = Hh1(M2) and Hk2(M ′

1||M ′
2) = Hh′

1
(M ′

2). Denote intermedi-
ate chaining variables after 48 steps as ICV48. MD4h1(M2)= h1 + ICV48.
Similarly, MD4h′

1
(M ′

2)= h′1 + ICV′48. Since h′1=h1+∆M , if ICV′48 = ICV48,
MD4h′

1
(M ′

2)=MD4h1(M2) + ∆M , so MD4k2(M1||M2)=MD4k2(M ′
1||M ′

2) +
∆M . As explained above, M2 and M ′

2 should satisfy that ICV48 = ICV′48.
Such pair M2 and M ′

2 can be obtained utilizing Wang et al.’ collision attack
on MD4. Please refer to [5] for more details.

9 As shown in section 2.4, ∆M is determined differences of inner hash values instead
of M ′ − M .
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B Probabilities of Difference Propagation in 3R

If near-collision happens, and the message difference ∆M is ∆m3 = 2i.

-∆a48=2i+3: the probability is 1 except that bit i or i + 3is MSB. During our
attack, i ≤ 25, so i + 3 ≤ 28.

-∆d48=∗2i+12: the probability can be regarded as 2
3 . ∆d48 depends on the bit

carry expansion of ∆a48 because f works bit-independently. f is XOR.
No carry with probability 1

2 : ∆d48=∗2i+12 with probability 1.
1-bit carry with probability 1

4 : ∆d48=∗2i+12 with probability 1
2 .

2-bit carries with probability 1
8 : ∆d48=∗2i+12 with probability 1

4 .
...

So the probability is almost 1/2
1−1/4= 2

3 .
∆c48=∗2i+23 ± 2i+14 ± 2i+15: Similarly with analysis above, ∗223 of ∆c48 is

with probability 2
3 . ±2i+14 ±2i+15 of ∆c48 is with probability 1

6 . Totally, the
probability is 2

3 × 1
6 = 1

9 .
∆c48=∗2i+23 ∗ 2i+24: similarly with analysis above, the probability is 2

3 × 2
3= 4

9 .
∆c48=∗2i+14 ± 2i+23 ± 2i+24: similarly with analysis above, the probability is

2
3 × 1

6 = 1
9 .

±2i+6 ± 2i+7 of ∆b48: the probability of ∆c48 with a carry is 1
2 , and the

probability that ∆f consists of ±2i+23±2i+24 is 1
2 . Totally, the probability

is 1
4 .

C An Example of Near-Collision on HMAC/NMAC-MD4

In order to confirm the correctness of our differential path of near-collision on
MD4, we will provide an example in Table 2. The messge difference is ∆m3 = 23.

Table 2. An example of near-collision

Outer key k2 ka = 0xae23667d; kb = 0x9ae8ba3c; kc = 0x3775447e; kd = 0x9614f6dc

Near-colliding messages m0 = 0x4bb5f397; m1 = 0x9a645f8a; m2 = 0x7f3529c4; m3 = 0x1e7b8317̄
(output of the inner MD4) m′

0 = 0x4bb5f397; m′
1 = 0x9a645f8a; m′

2 = 0x7f3529c4; m′
3 = 0x1e7b831f̄

Step 29 of the outer MD4 a29 = 0x84f021a1; b29 = 0x89f4c2d8; c29 = 0x62dbbc57; d29 = 0x76bdb3a6

D DP and SCs of Near-Collision on MD4

The shown DP and SC is for ∆m3=23. DP and SC for other cases can be
derived from this one by rotating all the bit differences and bit conditions. Cases
i = 3 ∼ 5, 7 ∼ 17, 20 ∼ 25 succeeds.
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Table 3. DP and SCs

Step Shift ∆bi

i si ∆mi−1 Numerical difference Sufficient conditions

1 3

2 7

3 11 b3,22 = b2,22

4 19 23 222 b4,22 = 0

5 3 b5,22 = 0

6 7 b6,22 = 1

7 11 b7,9 = b6,9

8 19 29 b8,9 = 0

9 3 b9,9 = 0

10 7 b10,9 = 1

11 11 b11,28 = b10,28

12 19 228 b12,28 = 0

13 3 b13,28 = 0

14 7 b14,28 = 1

15 11 b15,15 = b14,15

16 19 215 b16,15 = 0

17 3 b17,15 = b15,15

18 5 b18,15 = b17,15

19 9 b19,28 = b18,28, b19,29 �= b18,29, b19,30 = b18,30

20 13 228 (28 ∼ 30) b20,0 = b19,0, b20,28∼29 = 1, b20,30 = 0

21 3 −20 b21,0 = 1, b21,28∼30 = b19,28∼30

22 5 b22,0 = b20,0, b22,28∼30 = b21,28∼30

23 9 b23,0 = b22,0, b23,9 = b22,9

24 13 29 b24,3∼8 = b23,3∼8, b24,9 = 0

25 3 −23 (3 ∼ 9) b25,3∼8 = 0, b24,9 = 1

26 5 b26,3∼8 = b24,3∼8

27 9 b27,3∼8 = b26,3∼8, b27,9 �= b26,9

28 13

29 3 23

30 5

The symbol i ∼ j for numerical difference means difference propagates from bit i to j.
The symbol i ∼ j for sufficient conditions means all bits from i to j.
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Abstract. We analyse the hash function family based on walks in LPS
Ramanujan graphs recently introduced by Charles et al. We present an
algorithm for finding collisions that runs in quasi-linear time in the length
of the hashed value. A concrete instance of the hash function is consid-
ered, based on a 100-digit prime. A short collision is given, together with
implementation details.

1 Introduction

Given the recent profusion of efficient attacks against widely used practical hash
functions, among which the MD and SHA families, there is a growing need for
hash functions built upon different principles, and in particular with some degree
of proven collision resistance that would come under the form: finding a collision
is equivalent to solving a clearly identified mathematical problem. A promising
design strategy that has been experimented with in the past and is undergoing
recent developments [2,3], consists of choosing a large fixed graph that has a
short and computationally efficient description, together with a natural corre-
spondence between strings over a given alphabet and paths in the graph. The
output of the hashed function is declared to be the endpoint of the path. Find-
ing collisions is then essentially equivalent to finding cycles in the graph. If the
hashed values have to be written with at least n bits, then the smallest cycle
size (the girth of the graph) can be made to be at least cn for constant c, so that
general purpose algorithms for finding cycles in graphs are useless because they
are exponential in the cycle size.

Hash functions based on this principle were introduced in the past in [18,17,19].
The graphs are Cayley graphs over the groups G of 2 × 2 matrices SL2 over finite
fields of prime orders [18,19] and order a power of 2 [17]. A Cayley graph over the
group G has the group elements as vertex set and there is an edge between group
elements x and y if y = xs where s belongs to a small, fixed, carefully chosen set
S of group elements.
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Finding collisions in such schemes is tantamount to factoring group elements
into short non-trivial products of elements of S. The first attempt [18] was broken
in [16]. Attacks have then been mounted against [19,17] in [4,6,14]. However,
a close look at these papers shows that they do not find genuine collisions.
Geiselman [6] does discuss a method, but it produces collisions between input
messages of astronomical size. Charnes and Pieprzyk [4] choose the field Fp

that defines the hash function after choosing a potential collision. Similarly,
Steinwandt et al. [14] choose the polynomial P (X) over F2 that defines the
hash function a posteriori. This means that if the defining parameters of the
hash function (the prime p or the polynomial P (X)) are for example chosen to
be the output of a trusted one-way function, no method is known to date for
breaking these schemes. This is encouraging for SL2 based hash functions and
more generally, for hashing schemes whose collision resistance is based on the
hardness of factoring in arithmetic groups.

Hashing schemes that build upon these ideas have also been proposed and
discussed in [1,15]. An application to authenticating sequences and signing video
images is given in [12].

In recent work [2,3], Charles et al. presented two hash function families that
are also based on walking the message through a graph with arithmetic proper-
ties. The emphasis is on the expanding quality of the associated graph. Expansion
is relevant to the hashing scheme because it implies the rapidly-mixing property,
which means that when the input messages are sufficiently random, the output
is uniformly distributed over the set of hash codes. This property stays true even
when the input messages are limited to relatively small lengths. A proof of this
property is clearly desirable for hashing, especially so if the hash functions are
used in protocols whose security relies on the random oracle model.

In the present paper we consider the second hashing scheme of Charles et
al., which is the fastest and the most likely to be considered for actual use
[10]. Specifically, this scheme is based on the celebrated “Ramanujan” expander
graphs of Lubotzky, Philips and Sarnak. In [3] the scheme is claimed to be an
improvement over [19,17] and the underlying theoretical problem believed to be
difficult. In what follows we solve the underlying problem, namely the factori-
sation of unity into generators of the Ramanujan Cayley graph, and provide
collisions for arbitrary instances of the LPS Ramanujan hashing scheme of [3].
We exhibit an algorithm for finding collisions that runs in time quasi-linear in n,
where n is the hashcode size. An actual example is discussed and implementation
details are given.

The paper is organised as follows. In Section 2 we give a precise description of
the hash function of [3]. In Section 3 we give an overview of the attack together
with the arithmetic properties that we need. In Section 4 we provide missing de-
tails. In Section 5 we discuss a worked-out example for a Ramanujan graph based
on a 100-digit prime. Dealing with 1024-bit primes is not a problem but putting
the factorisation in print would be ungainly and uninformative. In Section 6 we
give some comments on the attack, on possible repairs, and more generally on
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hashing schemes based on factoring in groups. A Maple program implementing
the attack is given in the appendix.

2 The Hash Function

The cryptographic function under study, that will be denoted by H , is a partic-
ular instance of the following construction.

2.1 The General Construction

Defining parameter
A finite group G, and a set of generators S such that S−1 = S. Let a

def= |S| − 1.
Choose now a function:

π : {0, 1, . . . , a − 1} × S → S

such that for any g ∈ S the set π ({0, 1, . . . , a − 1} × {g}) is equal to S \ {g−1}.

Algorithm
Convert the input message to a base-a number x0x1 . . . xk. Define the sequence
(gi)0≤i≤k inductively as follows

gi = π(xi, gi−1)

where g−1 is some fixed element in S. The hashcode of the input message is just
the group element

H(x) = gg0g1 . . . gk

where g is a fixed element of G and x = (x0, x1, . . . , xk).
This construction is slightly more complex than the one presented in [17,19].

The idea is roughly the same: replace the symbols of the text to be hashed with
group elements and multiply them together to obtain the hashed value. What
is different here is the fact that the way a group element is mapped to a letter
in the text depends both on the letter and on the previous associated group
element. This rather involved definition is a consequence of the fact that in the
generator set S there are pairs of generators which are inverse of each other. This
implies that in order to avoid trivial collisions one should avoid having products
gigi+1 where gi = g−1

i+1. The way π is defined on the set {0, 1, . . . , a − 1} × {g}
avoids this unwanted phenomenon.

It can be checked [3] that finding collisions for the hash function reduces to
the following problem

Problem 2.1. — Find g1, g2, . . . , gt all in S such that

g1g2 . . . gt = 1

gigi+1 �= 1 ∀i ∈ {1, 2, . . . , t − 1}
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More precisely, finding a collision for H with two messages of size t′ and t′′

gives a solution to the previous problem for some t ≤ t′ + t′′. This can checked
as follows. The hashed value of the first message is the result of a product of
the form gg′1 . . . g′t′ whereas the second one corresponds to a product gg′′1 . . . g′′t′′

where the g′i’s and the g′′i ’s belong to S. Both values coincide and therefore
g′1 . . . g′t′ = g′′1 . . . g′′t′′ . This implies that g′1 . . . g′t′g

′′−1
t′′ . . . g′′−1

1 = 1. Conversely,
consider a factorisation of the form g1g2 . . . gt = 1 with g1, g2, . . . , gt all in S and
gigi+1 �= 1 for i in {1, 2, . . . , t − 1}. This implies that g1g2 . . . gt′ = g−1

t . . . g−1
t′+1

for any t′ in {1, . . . t − 1}. If g−1
1 and gt are both different from g−1 this yields

a collision for the hash function with messages of size t′ and t − t′ respectively.
Otherwise, if |S| ≥ 4 there exists g′ in S such that g′ ∈ S\{g−1

−1, g
−1
1 , gt}. Observe

now that gg′g1g2 . . . gt′ = gg′g−1
t . . . g−1

t′+1 and that the first term corresponds to
the hashed value of a message of size t′+1 whereas the second term corresponds
to the hashed value of a message of size t − t′ + 1.

As explained in the introduction, the Cayley graph associated to G and S has
vertex set G and there is an edge between x and y if and only if y is equal to x.g
for some g in S. Calculating the hashcode gg1g2 . . . gt of a t-symbol long input
message amounts to taking a non-backtracking walk in the graph by starting at
vertex g and performing the following steps

g
g1→ gg1

g2→ gg1g2 → · · · gt→ gg1g2 . . . gt.

This walk is non-backtracking since we do not allow products of the form gigi+1

that would be equal to the identity.
The particular Cayley graph chosen by the authors of [3] (whose defining group

G and generator set S are presented in Subsection 2.2 below) is the celebrated
Ramanujan graph construction of Lubotzky, Phillips, Sarnak (LPS) [11]. It has
two properties relevant to hashing.

First, the graph is a good expander (see [3], [13] for details and [9] for a
modern survey on expander graphs). This implies among other things that a
random walk in this graph is close to the uniform distribution when the length
of the walk is some constant times the logarithm of the number of vertices. From
this property it is readily seen that the distribution of the hashed values is close
to the uniform distribution as soon as the text size is some constant times the
hashcode size. In the Ramanujan graph case, the size of the constant is quite
small (slightly above 2 will do the job here).

Second, the LPS graph has no small cycles. This ensures that solutions to
Problem 2.1 are large enough to make exhaustive search hopeless.

2.2 The Particular Choice of [2,3]

The authors of [2,3] choose for G the group PSL2(Fp): recall that SL2(Fp) is
the group of 2 × 2 matrices of determinant 1 with entries in Fp and PSL2(Fp)
is obtained from SL2(Fp) by taking the quotient by its centre, that is {1, −1}.
This amounts to identifying matrix A with −A. The group PSL2(Fp) is of size
p(p2 − 1)/2. The prime p is chosen congruent to 1 modulo 4. The size of the
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generator set S will be equal to � + 1 where � is a small prime congruent to 1
modulo 4 and which is also a quadratic residue (mod p). The generators are
obtained from the � + 1 integer solutions (a, b, c, d) of the Diophantine equation

⎧⎨
⎩

a2 + b2 + c2 + d2 = �
a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2)

(1)

For a proof that the number of solutions to (1) is indeed � + 1 see for example
[5, Ch. 2]. To each such (a, b, c, d) we associate the 2 × 2 matrix with entries in
the ring Z[i] of Gaussian integers

M(a, b, c, d) =
(

a + ib c + id
−c + id a − ib

)
. (2)

We then map the entries of M(a, b, c, d) to elements of Fp by applying the ring
homomorphism

φ : Z[i] → Fp

a + ib �→ a + ιb
(3)

where ι is a square root of −1 modulo p (which lies in Fp since p ≡ 1 (mod 4)).
After applying φ we denote the resulting matrices by M̃(a, b, c, d). Note that

Fact 2.2. — The determinant of M̃(a, b, c, d) is equal to � (mod p).

We now view the matrices M̃(a, b, c, d) as elements of PGL2(Fp). Recall that
this is the group of 2 × 2 invertible matrices with entries in Fp obtained after
identifying pairs of matrices M and N whenever there exists λ ∈ Fp such that
M = λN (mod p).

The set of generators S is now declared to be the set of matrices M̃(a, b, c, d)
in PGL2(Fp).

Note that S−1 = S. This comes from the fact that in PGL2(Fp) we have

M̃(a, b, c, d)M̃(a, −b, −c, −d) =
(

a + ιb c + ιd
−c + ιd a − ιb

)(
a − ιb −c − ιd
c − ιd a + ιb

)

=
(

a2 + b2 + c2 + d2 0
0 a2 + b2 + c2 + d2

)

≡
(

1 0
0 1

)
.

Finally, it should also be noted that S does not generate the whole group
PGL2(Fp). This comes from the fact that all the matrices in S have determi-
nant � which is a square modulo p. Therefore only matrices with determinant
that are quadratic residues (mod p) are generated. It can be checked that the
generated subgroup G is isomorphic to PSL2(Fp) (see [11,13]).

The Cayley graph associated to G and S is denoted by X�,p and is the LPS
Ramanujan graph mentioned above. Apart from its expansion properties, the



Collisions for the LPS Expander Graph Hash Function 259

graph X�,p has a girth (smallest cycle length) at least 2 log� p (see [11,13]). Prac-
tical sizes of the parameters would be a prime p of several hundred bits (say
1024) and a small prime � (say 5). This would mean that the smallest solution
to Problem 2.1 must involve at least 882 generators.

3 An Outline of the Attack

Factoring in PGL2(Fp) directly seems difficult. Our strategy will be to first lift
matrices of PGL2(Fp) into a set of matrices with entries in Z[i], and then factor
into a product of lifted generators of S, namely the matrices of (2). The relevant
set of matrices is

Ω =
{(

a + ib c + id
−c + id a − ib

)∣∣∣∣ (a, b, c, d) ∈ Ew for some integer w > 0
}

where Ew is the set of 4-tuples (a, b, c, d) ∈ Z
4 such that

⎧⎨
⎩

a2 + b2 + c2 + d2 = �w

a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2).

(4)

Consider now the set Σ of �+1 matrices M(a, b, c, d) with Z[i] entries defined
in (2). In other words, Σ is the subset of Ω corresponding to 4-tuples (a, b, c, d)
in E1, and it is also the lifted version of the set of generators S. It turns out
that the set Ω coincides, up to multiplication by ±1 and by powers of �, with
products of elements of Σ. Precisely, we have the following lemma which is a
reformulation of Corollary 3.2 of [11]: for more details, see also [13, Lemma 2.5.4]
or [5, Corollary 2.6.14].

Lemma 3.1. — Any matrix M in Ω can be expressed in a unique way as a
product

M = ±�rM1M2 . . . Me

where log� (detM) = e + 2r and the Mi’s all belong to Σ and MiMi+1 �= � 1 for
i ∈ {1, . . . , e − 1}.

The attack now proceeds along the following lines.

Step 1 (lifting the identity in Ω): The aim of this step is to find a matrix
M in Ω which is not of the form �r1 and such that if we replace the complex
entries by their “corresponding” values in Fp (i.e. apply the mapping φ (3)) then
we obtain a matrix M̃ of the form λ1. This amounts to finding a, b, c, d in Z such
that ⎧⎪⎪⎨

⎪⎪⎩

a2 + b2 + c2 + d2 = �w

a > 0, a ≡ 1 (mod 2)
b ≡ c ≡ d ≡ 0 (mod 2p)

b2 + c2 + d2 �= 0

(5)

for some positive integer w.
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Step 2 (factorisation step): Find the factorisation of M promised by Corol-
lary 3.1:

M = ±�rM1M2 . . .Me.

What really makes this task simple is the fact that the factorisation is unique.
Proceed as follows. We first find the greatest integer r such that �r divides the
4 entries of M . Let M ′ be such that M = �rM ′. We denote by G1, . . . , G�+1 the
� + 1 elements forming the lifted generator set Σ.

We start by finding the rightmost element in the factorisation of M ′ by com-
puting all products of the form ±M ′G−1

i . Necessarily one of these products will
be in Ω: it will correspond to the factorisation of M ′ where we have dropped the
last element of the factorisation. It is impossible that there is more than one of
these products which lies in Ω: by using the fact that every element of Ω can be
factored into elements of Σ we would obtain at least two different factorisations
for M ′. This would contradict the unique factorisation property. Therefore, the
unique Gi for which ±M ′G−1

i belongs to Ω is the last element of the factorisa-
tion of M ′. Notice that checking whether a product ±M ′G−1

i is in Ω or not is
computationally easy given the definition of Ω. We continue this process and it
has to stop after log�(det M) − 2r steps because at each iteration the determi-
nant of the left part of the factorisation gets divided by � and because M ′ is of
determinant �w−2r. The complexity of this step is obviously proportional to the
length of the factorisation, i.e. at most w. We will see below that we can choose
w to be approximately 2 log� p, so that the complexity is not more than O(log p).

Step 3 (final step): The point is that the matrix M̃ with entries in Fp reduces
to the identity in PGL2(Fp) and can be factored in this group by using the � +1
generators of S as follows:

1 ≡ M̃ ≡ M̃1M̃2 . . . M̃e

where M̃i is the application of the aforementioned homomorphism φ to each
entry of Mi (meaning M̃i belongs to S). This solves Problem 2.1.

4 Solving Step 1

Solving Equation (5) seems to be easier when w is even. So let us arbitrarily set
w = 2k and let us write b = 2px, c = 2py, d = 2pz. We are looking for integer
solutions (a, x, y, z) to the equation

a2 + 4p2(x2 + y2 + z2) = �2k.

This implies that

(�k − a)(�k + a) = 4p2(x2 + y2 + z2)

Let us choose a = �k − 2mp2 for some integer m. In this case, (�k − a)(�k + a) =
2mp2(2�k − 2mp2). Thus x, y, z should satisfy the equation

x2 + y2 + z2 = m(�k − mp2) (6)
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Let us now specify how m and k are chosen. a should be positive and k as small
as possible in order to minimise the length of the factorisation of the identity
obtained at the end. We choose k to be the smallest integer such that �k−4p2 > 0.
We may then either choose m = 1 or m = 2 in order to keep a positive. We claim
now that for either m = 1 or m = 2 the number m(�k − mp2) is a sum of three
squares. Let us recall Legendre’s theorem (see [7]) which asserts that all integers
are sums of 3 squares with the exception of the integers of the form 4s(8t + 7)
where s and t are integers. Assume that m = 1 does not work. In other words,
�k −p2 is not a sum of three squares. This means that there exists s and t which
are non-negative integers such that �k − p2 = 4s(8t + 7). Note that s has to be
positive in this case. Observe now that 2(�k − 2p2) = 4s(16t + 14) − 2p2. This
number is neither a multiple of 4 nor odd. Therefore it can not be of the form
4u(8v + 7). This shows that m = 2 is suitable for our purpose.

It remains now to find x, y, z which satisfy Equation (6). One way of achieving
this goal is to subtract from m(�k−mp2) a random x2 and to hope that the result
N is a sum of 2 squares. In this case there is a simple and efficient algorithm
relying on Euclid’s algorithm for finding y and z explicitly such that y2 + z2 =
N . Fermat’s theorem (see [7]) on sums of two squares says that a number is
expressible as a sum of two squares if and only if its prime factors congruent to
3 modulo 4 occur with an even exponent. Our approach is to try to find values
of x for which N is of the form 2sp′ where p′ is a prime congruent to 1 modulo
4. When m = 1 for instance, we choose even values of x and since �k − p2 ≡ 0
mod 4 we check whether (�k − p2 − x2)/4 is a prime congruent to 1 modulo 4.
This happens roughly with probability of order O(1/ ln(�k − p2)).

It remains to explain how we find y and z such that

y2 + z2 = N. (7)

This is classical and can be done by using continued fraction expansion. We give
the details for the sake of self-sufficiency and to explain implementation details.
Let us recall that the convergents pn

qn
of the continued fraction expansion of a

real number x are obtained inductively from the formulas

(p−1, q−1) = (0, 1)
(p0, q0) = (1, 0)

and for all nonnegative values of n for which qnx − pn �= 0

an =
[
−qn−1x − pn−1

qnx − pn

]

pn+1 = anpn + pn−1

qn+1 = anqn + qn−1

where [ ] denotes the integer part.
The sequence (qn)n≥0 is strictly increasing and the pn

qn
are very good rational

approximations of x. They satisfy:
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Proposition 4.1. — We have:
∣∣∣∣x − pn

qn

∣∣∣∣ ≤ 1
qnqn+1

.

From Fermat’s theorem and the identity

(a2 + b2)(c2 + d2) = (ac − bd)2 + (bc + ad)2

we know that in order to find integer solutions of Equation (7) we just need to
solve this kind of equation when N is a prime congruent to 1 modulo 4. In this
case, −1 is a quadratic residue modulo N . This fact is used as follows

Proposition 4.2. — Let N be a prime congruent to 1 modulo 4, R be a
square root of −1 modulo N and ξ

def
= R

N . Let pi

qi
be the convergents associated

to the continued fraction expansion of ξ. Let n be the unique integer such that
qn <

√
N < qn+1. We have

q2
n + (qnR − pnN)2 = N.

Proof. First of all it should be noticed that such an n exists: the sequence of the
qi’s is increasing and is defined up to the term qj such that qj = N . It follows

from Proposition 4.1 that
∣∣∣ R
N − pn

qn

∣∣∣ < 1
qnqn+1

. Hence
∣∣qn

R
N − pn

∣∣ < 1
qn+1

< 1√
N

(because qn+1 >
√

N). This implies that |qnR − pnN | <
√

N. We also have
qn <

√
N . Putting both inequalities together we obtain q2

n+(qnR−pnN)2 < 2N .
Let us notice now that

q2
n + (qnR − pnN)2 ≡ q2

n + q2
nR2 (mod N)

≡ 0 (mod N)

Therefore, we necessarily have that q2
n + (qnR − pnN)2 = N .

The exact complexity of this step is unclear, this is due to the problem of esti-
mating the time complexity for finding an N whose prime factors congruent to
3 modulo 4 all occur with an even exponent. We can upper bound this quantity
by the complexity for finding an N of the form 2sq, where q is a prime congruent
to 1 modulo 4 and heuristic arguments based on the density of primes congruent
to 1 modulo 4 indicate that the number of x’s which have to be tried in order
to find a proper N will be of order O(log p). The complexity for performing the
continued fraction expansion is also of order O(log p). Therefore the total com-
plexity of this step should be extremely low and will be of order O(log p). This
has been confirmed experimentally (see Section 5).

5 An Example of an Attack

In this example we take p = 10100 + 949 which is the first prime p > 10100 such
that p = 1 mod 4. Computations were done with a Maple program given in the
appendix.
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Next, consider the hash function corresponding to the graph X5,p, i.e. we set
� = 5, the first possible case since we must have � = 1 mod 4. It turns out that
5 is a quadratic residue for this choice of p. The 6 generators of X5,p are given
by the matrices with Z[i] entries,

G1 =
(

1 2
−2 1

)
G2 =

(
1 + 2i 0

0 1 − 2i

)
G3 =

(
1 2i
2i 1

)

G4 =
(

1 −2i
−2i 1

)
G5 =

(
1 − 2i 0

0 1 + 2i

)
G6 =

(
1 −2
2 1

)

or by their images G̃j in PGL2(Fp).

Step 1. We first look for a, b, c, d satisfying (5). We choose k to be the first
integer larger than log5(2p2) to make the right hand side of (6) positive. We
obtain k = 287. We then compute 5k −p2 which is of the form 4u with u odd. As
was quite likely, we have u �= 7 mod 8, which means that u can be expressed as
a sum of three squares. Furthermore, it turns out that we have u = 1 mod 4, so
we try subtracting from u squares of the form 4v2 and test u−4v2 for primality.
When we meet a prime, it will necessarily be congruent to 1 modulo 4, so that
we will be able to express it as a sum of two squares. The first v such that
N = u − 4v2 is prime is v = 1431.

We then proceed to express N as a sum of two squares. We first find a square
root R of −1 modulo N . We arbitrarily choose the root whose representation in
{1, . . . , N − 1} is largest. We then expand R/N into a continued fraction and
compute the largest n such that pn/qn is the nth convergent of the continued
fraction expansion and qn <

√
N . In this particular case we find n = 192. We

then set

x = 2qn

y = 2(pnN − qnR)
z = 4 × 1431 = 5724

and obtain 5k − p2 = 4u = x2 + y2 + z2. We then set

a =
√

52k − 16up2 which is an integer
b = 2px

c = 2py

d = 2pz

Step 2. We now factor in Ω the matrix

M =
(

a + ib c + id
−c + id a − ib

)

into a product of Gj ’s. We know that there is a unique way to do this, and that
the length of the factorisation is 2k = 574, i.e.

M = ±M1 . . . M2k
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where Mj = Gσ(j) with σ(j) ∈ {1, 2, . . . , 6}. To compute σ, we first multiply
on the right M by all six matrices G1 . . .G6, and test whether all entries are
multiples of 5. When this happens we have found Gσ(574). We compute M ′ =
MG−1

σ(574) = 1
5MG7−σ(574) and proceed recursively, testing M ′Gj at most six

times to obtain σ(573), and so on. After 574 iterations were are left either with
the identity matrix 1 or with −1. The first 24 values σ(1), σ(2), . . . , σ(24) of σ
are

2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5, 5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6,

and the remaining 550 values are given by the array in figure 1, each row giving
the next 25 values. We have exhibited the factorisation of unity

6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1, 2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1,
4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3, 5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1,
2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5, 1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1,
3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6, 3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4,
5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3, 1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6,
2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1, 5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1,
1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6, 6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6,
5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2, 1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2,
1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1, 2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4,
2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5, 1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4,
6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1, 2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5,
5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6, 6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1,
2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1, 4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3,
5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1, 2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5,
1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1, 3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6,
3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4, 5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3,
1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6, 2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1,
5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1, 1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6,
6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6, 5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2,
1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2, 1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1,
2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5,
1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4, 6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1.

Fig. 1. The remaining 550 values σ(25), . . . , σ(574)

1 = G̃σ(1)G̃σ(2) . . . G̃σ(574)

in PGL2(Fp). This can easily be checked with the program given in the appendix.
Running time is counted in seconds rather than minutes, and stays that way if
p is replaced by a 1024-bit prime.

6 Comments

The attack presented here is somewhat reminiscent of the “density attack” (to
the terminology of [17]) that was used in [16] to break the hashing scheme first
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proposed in [18]. In that attack the group unit element is first lifted into a “dense”
subset of SL2(Z) and then a factorisation algorithm is applied in SL2(Z).

Can the “Ramanujan” hash function family be fixed so as to make the present
attack unfeasible ? Well, there are several natural solutions to address this prob-
lem. One idea is to change the set of generators from S to S2 (we square the
elements of S) for example. That way the present attack will succeed only if one
manages to lift the identity element of G onto a matrix of Ω that has a very
special (and rare) factorisation into elements of S. A similar idea is to reduce
the set S by throwing away some generators. In this case though, one must be
careful to ensure that the modified set of generators generates the same subgroup
of PGL2(Fp) as the original generator set. It is also unclear what will happen
to the expansion properties when modifying the hash function in this way, and
more study is required to come up with suitable choices.

The very property that makes the graphs X�,p Ramanujan gave us a tool
for mounting an attack, so resorting to these highly structured Cayley graphs
may not be the best idea if one is to base a hash function on factoring in arith-
metic groups like SL2 (or PSL2 or PGL2). However, for hashing purposes, lesser
guaranteed expansion properties may be sufficient. A promising result in that
direction is the recent paper of Helfgott [8] which shows that, for any generating
set S of G = SL2(Fp), any element of G can be expressed as a product of ele-
ments of S of length not more than O(logc p). This falls somewhat short of the
rapidly-mixing property, but it does guarantee that if any such Cayley graph is
used as the basis of a hashing scheme, then over a set of relatively small-length
input messages, the corresponding set of hashed values ranges over the whole
group G.
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A Appendix

## Setting up the parameters of the hash function.

> p:= nextprime(10^100):
> p mod 4;

3
> p := nextprime(p):
> p mod 4;

1
> with(numtheory):
> legendre(5,p);

1

## Step 1.

> evalf(log(2*p^2)/log(5));
286.5659883

> k:=287;
k := 287

> Z:=5^287-p^2:

http://arxiv.org/abs/math/0509024
http://www.freepatentsonline.com/20070098150.html
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> Z mod 4;
0

> Z mod 8;
4

> u:=Z/4:
> u mod 4;

1

## Finding a square that substracted to u yields a prime N = 1 mod 4.

> for v to 10000 do if isprime(u-4*v^2)=true then print(v): fi: od:
1431
1794
4434
5610
6555
6666
8484
9405

> N:= u-4*1431^2:
> N mod 4;

1

## Expressing the prime N as a sum of two squares.

> R:= Roots(X^2+1) mod N:
> T:=R[1][1]:
> cf := cfrac(T/N):
> n:=0:
> while nthdenom(cf,n+1)<evalf(sqrt(N)) do n:=n+1: od: print(n);

192
> Q:=nthdenom(cf,192): P := nthnumer(cf,192):
> x:=2*Q:
> y:=2*(Q*T-P*N):
> z:=4*1431;

z := 5724

## Checking that we have found three squares that sum to 4u.

> x^2+y^2+z^2 -4*u;
0

## Defining the matrix M .

> 5^(2*k)-4*p^2*(x^2+y^2+z^2):
> a:= sqrt(%):
> b:=2*p*x:
> c:=2*p*y:
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> d:=2*p*z:
> with(LinearAlgebra):
> M := Matrix(2,2):
> M[1,1]:=a+I*b:
> M[2,2]:=a-I*b:
> M[1,2]:=c+I*d:
> M[2,1]:=-c+I*d:

## Checking the length of the factorisation of M that should be 2k.

> Determinant(M):
> eval(log(%)/log(5));

574

## Step 2.
## Define the set of generators G1, . . . , G6.

> G[1] := Matrix(2,2):
> G[1][1,1]:=1: G[1][1,2]:=2: G[1][2,1]:=-2: G[1][2,2]:=1:
> G[1];

[ 1 2]
[ ]
[-2 1]

> G[6] := Matrix(2,2):
> G[6][1,1]:=1: G[6][2,2]:=1: G[6][1,2]:=-2: G[6][2,1]:=2:
> G[2] := Matrix(2,2):
> G[2][1,1]:=1+2*I: G[2][2,2]:=1-2*I: G[2][1,2]:=0: G[2][2,1]:=0:
> G[5]:=Matrix(2,2):
> G[5][1,1]:=1-2*I: G[5][2,2]:=1+2*I: G[5][1,2]:=0: G[5][2,1]:=0:
> G[3]:=Matrix(2,2):
> G[3][1,1]:=1: G[3][2,2]:=1: G[3][1,2]:=2*I: G[3][2,1]:=2*I:
> G[4]:=Matrix(2,2):
> G[4][1,1]:=1: G[4][2,2]:=1: G[4][1,2]:=-2*I: G[4][2,1]:=-2*I:

## The procedure that factors M into a product of Gi’s.

> fact := proc(m,MM)
> local L,H,i,j,X:
> L:=[]: H[1]:=MM:
> for i to m do
> for j to 6 do
> X := Multiply(H[i],G[j]):
> if (X[1,1] mod 5)=0 and (X[1,2] mod 5)=0 and (X[2,1] mod 5)=0
> and (X[2,2] mod 5)=0 then
> H[i+1]:=X/5: L := [7-j,op(L)]: fi: od:
> od:
> print(H[m+1]); return(L);
> end proc:
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## The actual factorisation for this particular example.

> F:=fact(574,M);
[-1 0]
[ ]
[0 -1]

F := [2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5, 5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6,
6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1, 2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1,
4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3, 5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1,
2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5, 1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1,
3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6, 3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4,
5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3, 1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6,
2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1, 5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1,
1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6, 6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6,
5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2, 1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2,
1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1, 2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4,
2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5, 1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4,
6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1, 2, 4, 2, 3, 3, 3, 3, 1, 1, 4, 1, 5,
5, 5, 5, 1, 5, 1, 1, 1, 4, 1, 4, 6, 6, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 3, 1,
2, 2, 1, 2, 6, 6, 6, 3, 1, 5, 4, 1, 4, 5, 1, 1, 3, 2, 3, 6, 5, 5, 5, 3, 3,
5, 5, 6, 2, 4, 1, 1, 5, 3, 1, 5, 1, 2, 1, 2, 1, 5, 6, 4, 1, 4, 4, 4, 6, 5,
1, 5, 3, 1, 2, 2, 4, 1, 4, 5, 4, 1, 3, 6, 3, 3, 1, 4, 6, 3, 5, 5, 6, 4, 6,
3, 3, 1, 2, 3, 3, 2, 4, 5, 3, 5, 4, 5, 4, 2, 2, 2, 4, 6, 4, 1, 1, 4, 2, 3,
1, 4, 5, 4, 6, 5, 5, 3, 1, 4, 5, 6, 2, 1, 2, 6, 2, 1, 3, 3, 2, 6, 6, 5, 1,
5, 3, 1, 5, 1, 5, 1, 2, 6, 3, 3, 1, 1, 1, 4, 2, 1, 1, 3, 5, 6, 4, 6, 2, 6,
6, 3, 6, 2, 6, 6, 6, 2, 4, 1, 2, 6, 5, 3, 1, 4, 1, 2, 6, 4, 4, 2, 4, 4, 2,
1, 2, 4, 4, 1, 2, 2, 2, 2, 6, 3, 2, 1, 2, 4, 2, 6, 2, 2, 4, 4, 1, 1, 1, 1,
2, 6, 2, 4, 5, 3, 2, 4, 1, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 5, 6, 2, 4, 5, 5,
1, 4, 1, 3, 2, 6, 6, 4, 6, 4, 6, 4, 6, 3, 1, 1, 2, 6, 3, 2, 6, 6, 6, 3, 1]

## Verification: checking that M is indeed expressed in this way.

> Id:=Matrix(2,2):
> Id[1,1]:=1: Id[2,2]:=1:
>
> t:=Id:
> for i to 574 do t:=Multiply(t,G[F[i]]): od:
> M+t;

[0 0]
[ ]
[0 0]
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Abstract. We develop a new generic long-message second preimage at-
tack, based on combining the techniques in the second preimage attacks
of Dean [8] and Kelsey and Schneier [16] with the herding attack of Kelsey
and Kohno [15]. We show that these generic attacks apply to hash func-
tions using the Merkle-Damgård construction with only slightly more
work than the previously known attack, but allow enormously more con-
trol of the contents of the second preimage found. Additionally, we show
that our new attack applies to several hash function constructions which
are not vulnerable to the previously known attack, including the dithered
hash proposal of Rivest [25], Shoup’s UOWHF[26] and the ROX hash
construction [2]. We analyze the properties of the dithering sequence used
in [25], and develop a time-memory tradeoff which allows us to apply our
second preimage attack to a wide range of dithering sequences, including
sequences which are much stronger than those in Rivest’s proposals. Fi-
nally, we show that both the existing second preimage attacks [8,16] and
our new attack can be applied even more efficiently to multiple target
messages; in general, given a set of many target messages with a total
of 2R message blocks, these second preimage attacks can find a second
preimage for one of those target messages with no more work than would
be necessary to find a second preimage for a single target message of 2R

message blocks.

Keywords: Cryptanalysis, Hash Function, Dithering.

1 Introduction

A number of recent attacks on hash functions have highlighted weaknesses of
both specific hash functions, and the general Merkle-Damgård construction.
Wang et al. [28,29,30,31], Biham et al. [3], Klima [19] and Joux et al. [14] all
show that differential attacks can be used to efficiently find collisions in specific
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hash functions based on the MD4 design, such as MD5, RIPEMD, SHA-0 and
SHA-1. This type of result is important for at least two reasons. First, collision
resistance is a required property for a hash function, and many applications of
hash functions fail when collisions can be found. Second, efficiently found col-
lisions permit additional attacks on hash functions using the Merkle-Damgård
construction, as in Joux’s [13] multicollision attack on cascade hashes, and the
long-message second preimage attacks of Dean [8] and Kelsey and Schneier [16].

After Kelsey and Schneier published their attack, several researchers proposed
a variant of the Merkle-Damgård construction, in which a third input to the com-
pression function, called a “dithering sequence” in [25] and this paper, is used to
block the attack. Specifically, using a dithering sequence prevents the construc-
tion of “expandable messages,” required for both Dean and Kelsey and Schneier’s
attacks. In this paper, we develop a new kind of second preimage attack, which
applies to some dithered variants of the Merkle-Damgård construction.

1.1 Related Work

The PhD thesis of Dean [8] presented a second preimage attack that works
against a subset of hash functions using the Merkle-Damgård construction.
Kelsey and Schneier [16] extended this result to work for all Merkle-Damgård
hashes. For an n-bit hash function, their result allows an attacker to find a sec-
ond preimage of a 2k block1 target message with k · 2n/2+1 + 2n−k evaluations
of the compression function. The attack relies on the ability to construct an
expandable message, a set of incomplete messages of widely varying length, all
of which yield the same intermediate hash result. This attack can be seen as a
variant of the long message attack [20], in which the expandable message is used
to carry out the attack despite the Merkle-Damgård strengthening.

Variants of the Merkle-Damgård construction that attempt to preclude the
aforementioned second preimage attacks are the Haifa 2 [23] construction pro-
posed by Biham and Dunkelman and the “dithered” Merkle-Damgård hash by
Rivest [25]. Haifa includes the number of message bits hashed so far in the
message block. The simplest way to implement Haifa is to shorten each data
block by 64 bits, filling those 64 bits with the 64 bit counter used internally to
track the length of the hash input so far. Rivest, on the other hand, introduced a
clever way to decrease the number of bits used for this extra input to either 2 or
16, thus increasing the bandwidth available for actual data, by using a specific
sequence of values to “dither” the actual inputs. The properties of this sequence
were claimed by Rivest to be sufficient to avoid the second preimage attack on
the hash function.

The herding attack of Kelsey and Kohno [15] can be seen as another variant of
the long-message attack. In their attack, the attacker first does a large precom-
putation, and then commits to a hash value h. Later, upon being challenged with

1 In this paper, we describe message lengths in terms of message blocks, rather than
bits. Most common hash functions use blocks of length 512 or 1024 bits.

2 We do not have any attacks more efficient than exhaustive search on Haifa.
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a prefix P , the attacker constructs a suffix S such that hash(P ||S) = h. Their
paper introduced the “diamond structure”, which is reminiscent of a complete
binary tree. It is a 2�-multicollision in which each message in the multicollision
has a different initial chaining value, and which is constructed in the precompu-
tation step of the attack. The herding attack on an n-bit hash function requires
approximately 22n/3+1 work.

1.2 Our Results

In this paper, we develop a new generic second preimage attack on Merkle-
Damgård hash functions and dithered Merkle-Damgård variants, treating the
compression functions as black boxes. Our basic technique relies on the diamond
from the herding attack of [15]. If the diamond is a 2�-multicollision, we obtain a
second preimage of a message of length 2k blocks with 2n/2+�/2+2 +2n−� +2n−k

compression function computations. The attack is optimized when � ≈ n/3,
yielding an attack of complexity 5 · 22n/3 + 2n−k.

Our attack is slightly more expensive than the k · 2n/2+1 + 2n−k complexity
from [16] (for SHA-1, in which n = 160 and k = 55, the Kelsey-Schneier attack
complexity is about 2105 work whereas ours is approximately 2109). However, the
new attack can be applied to Merkle-Damgård variants for which the attack of
[16] is impossible. Our result also permits the attacker to leave most of the target
message intact in the second preimage, or to arbitrarily choose the contents
of roughly the first half of the second preimage, while leaving the remainder
identical to the target message.

We can also apply our new second preimage attack to the dithered Merkle-
Damgård hash variant of [25], exploiting the fact that the dithering sequences
have many repetitions of some subsequences. For Rivest’s proposed 16-bit dither-
ing sequence, the attack requires 2n/2+�/2+2 + (8� + 32768) · 2n−k + 2n−� work,
which for SHA-1 is approximately 2120. This is slightly worse than the attacks
against the basic Merkle-Damgård construction but it is still much smaller than
the 2160 security which was expected for the dithered construction. We show
that the security of a dithered Merkle-Damgård hash is dependent on the num-
ber of distinct �-letter subwords in the dithering sequence, and that the sequence
chosen by Rivest is very susceptible to our attack.

We also show that the attack on dithered hashes is subject to a time-memory
tradeoff that enables the construction of second preimages for any dithering input
defined over a small alphabet with only a small amount of online computation
after an expensive precomputation stage.

We further apply our attack to a one way hash function designed by Shoup [26],
which has some similarities with dithered hashing. The attack applies as well to
constructions that derive from this design, such as ROX [2]. Our technique yields
the first published attack against these particular hash functions. This addition-
ally proves that Shoup’s security bound is tight, since there is asymptotically only
a factor of O (k) between his bound and our attack’s complexity.

Finally, we show that both the original second-preimage attack of [8,16] and
our attack can be extended to the case in which there are multiple target
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messages. In general, finding a second preimage for any one of 2t target messages
of length 2k blocks each requires approximately the same work as finding a single
second preimage for a message of 2k+t blocks.

1.3 Organization of the Paper

We describe our attack against the Merkle-Damgård construction in section 2.
We introduce some terminology and describe the dithered Merkle-Damgård con-
struction in section 3, and then we extend our attack to tackle dithered Merkle-
Damgård in section 4. We apply it to Rivest’s concrete proposal, as well as to
some of the variations that he suggested. In section 5, we show that our attack
works also against Shoup’s UOWHF construction. We conclude with section 6,
where we show how the second preimage attack may be applied to finding a
second preimage for one of a large set of target messages.

2 A New Generic Second Preimage Attack

2.1 The Merkle-Damgård Construction

We first describe briefly the classical Merkle-Damgård construction. An iterated
hash function HF : {0, 1}∗ → {0, 1}n is built by iterating a basic compression
function F : {0, 1}m × {0, 1}n → {0, 1}n. The hash process works as follows:

– Pad and split a message M into r blocks x1, . . . , xr of m bits each.
– Set h0 to the initialization value IV .
– For each message block i compute hi = F (hi−1, xi).
– Output HF (M) = hr.

The padding is usually done by appending a single ’1’ bit followed by as
many ’0’ bits as needed to complete an m-bit block. Merkle [21] and Damgård
[7] independently proved in 1989 that making the binary encoding of the message
length part of the padding improves the security of the construction: with this so-
called strengthening, the scheme is proven to be Collision-Resistance Preserving,
in the sense that a collision in the hash function HF would imply a collision in
the compression function F . As a side effect, the strengthening defines a limit
over the maximal size of the messages that can be processed. In most deployed
hash functions, this limit is 264 bits, or equivalently 255 512-bit blocks. In the
sequel, we denote the maximal number of admissible blocks by 2k.

2.2 Second Preimage Attack on Merkle-Damgård Hash

We now describe a new technique to find second preimages on a Merkle-Damgård
hash. It relies heavily on the “diamond structure” introduced by Kelsey and
Kohno [15].

A diamond of size � is a multicollision that has the shape of a complete
converging binary tree of depth �, with 2� leaves (hence we often refer to it
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as a collision tree). Its nodes are labelled by chaining values over n bits, and
its edges are labelled by message blocks over m bits, which map between the
chaining values at the two ends of the edge by the compression function. Thus,
from any one of the 2� leaves, there is a path labelled by � message blocks that
leads to the same target value hT labelling the root of the tree.

Let M be a target message of length 2k blocks. The main idea of our attack
is that connecting a message to a collision tree can be done in less than 2n

work. Moreover, connecting the root of the tree to one of the 2k chaining values
encountered during the computation of HF (M) takes only 2n−k compression
function calls. The attack works in 4 steps as described in figure 1.

�
hT

hT M
B F (hT , B) = hi0 i0

� + 1 ≤ i0 <
∣∣M ∣∣ B0

P i0 − � − 1
h = HF (P ) T

� h hT

M ′ = P ||T ||B0||xi0+1 . . . x2k

Fig. 1. Summary of the attack on classic Merkle-Damgård

Messages M ′ and M are of equal length and hash to the same value, before
strengthening, so they produce the same hash value despite the Merkle-Damgård
strengthening.

A collision tree of depth � can be constructed with time and space complexity
2

n
2 + �

2+2 (see [15] for details). The second step of the attack can be carried out
with 2n−k work, and the third one with 2n−� work. The total time complexity
of the attack is then: 2

n
2 + �

2 +2 + 2n−k + 2n−�. This quantity becomes minimal
when � = (n − 2)/3, and in this setting, the total cost of our attack is about
5 · 22n/3 + 2n−k.

2.3 Comparison with Kelsey and Schneier

On the original Merkle-Damgård construction, the attack of [16] is more efficient
than ours (on SHA-1, they can find a second preimage of a message of size 255

with 2105 work, whereas we need 2109 calls to the compression function to obtain
the same result).

However, our technique gives the adversary more control on the second preim-
age, since she can typically choose about the first half of the message in an arbi-
trary way. For example, she could choose to replicate most of the target message,
leading to a second preimage that differs from the original by only k + 2 blocks.
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The main apparent difference between the two techniques is that the attack of
Kelsey and Schneier relies on expandable messages. An expandable message M
is a family of messages with different number of blocks but with the same hash
when the final length block is not included in the computation. Their attack
constructs such an expandable message in time k · 2n/2+1. Our attack can also
be viewed as a new, more flexible technique to build expandable messages, by
choosing a prefix of the appropriate length and connecting it to the collision
tree. This can be done in time 2n/2+k/2+2 + 2n−k. Altough it is more expensive,
this new technique can be adapted to work even when an additional dithering
input is given, as we will demonstrate in the sequel.

3 Dithered Hashing

The general idea of dithered hashing is to perturb the hashing process by using an
additional input to the compression function, formed by the consecutive elements
of a fixed dithering sequence. This gives the attacker less control over the input
of the compression function, and makes the hash of a message block dependent
on its position in the whole message. In particular, the goal of dithering is to
prevent attacks based on expandable messages.

Since the dithering sequence z has to be at least as long as the maximal
number of blocks in any message that can be processed by the hash function,
it is reasonable to consider infinite sequences as candidates for z. Let A be a
finite alphabet, and let the dithering sequence z be an eventually infinite word
over A. Let z[i] denote the i-th element of z. The dithered Merkle-Damgård
construction is obtained by setting hi = F (hi−1, xi, z [i]) in the definition of the
Merkle-Damgård scheme.

3.1 Words and Sequences

Notations and Terminology. Let ω be a word over the finite alphabet A. The
dot operator denotes concatenation. If ω can be written as ω = x.y.z (where
x,y or z can be empty), we say that x is a prefix of ω and that y is a factor (or
subword) of ω. A finite word ω is a square if it can be written as ω = x.x, where x
is not empty. A finite word ω is an abelian square if it can be written as ω = x.x′

where x′ is a permutation of x (i.e., a reordering of the letters of x). A word is said
to be square-free (resp. abelian square-free) if none of its factors is a square (resp.
an abelian square). Note that abelian square-free words are also square-free.

An Infinite Abelian Square-Free Sequence. In 1992, Keränen [17] exhib-
ited an infinite abelian square-free word k over a four-letter alphabet (there are
no infinite abelian square-free words over a ternary alphabet). In this paper, we
call this infinite abelian square-free word the Keränen sequence. Details about
this construction can be found in [17,18,25].

Sequence Complexity. The number of factors of a given size of an infinite
word gives an intuitive notion of its complexity: a sequence is more complex
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(or richer) if it possesses a large number of different factors. We denote by
Factz(�) the number of factors of size � of the sequence z.

3.2 Rivest’s Proposals

Keränen-DMD. Rivest suggested to directly use the Keränen sequence as a
source of dithering inputs. The dithering inputs are taken from the alphabet
A = {a, b, c, d}, and can be encoded by two bits. The number of data bits in
the input of the compression function is thus reduced by only two bits, which
improves the hashing efficiency (compared to longer encodings of dither inputs).
It is possible to generate the Keränen sequence online, one symbol at a time, in
logarithmic space and constant amortized time.

Rivest’s Concrete Proposal. Rivest’s concrete proposal is referred to as
DMD-CP (Dithered Merkle-Damgård – Concrete Proposal). To speed up the
generation of the dithering sequence, Rivest proposed a slightly modified scheme,
in which the dithering symbols are 16-bit wide. If the message M is r blocks long,
then for 1 ≤ i < r the i-th dithering symbol has the form:

(
0,k

[⌊
i/213

⌋]
, i mod 213

)
∈ {0, 1} × A × {0, 1}13

The idea is to increment the counter for each dithering symbol, and to shift to
the next letter in the Keränen sequence, only when the counter overflows. This
“diluted” dithering sequence can essentially be generated 213 times faster than
the Keränen sequence. The last dithering symbol has a different form (recall that
m is the number of bits in a message block):

(1, |M | mod m) ∈ {0, 1} × {0, 1}15

4 Second Preimage Attacks on Dithered Merkle-Damgård

In this section, we present the first known second preimage attack on Rivest’s
dithered Merkle-Damgård construction. In section 4.1, we adapt the attack of
section 2 to Keränen-DMD, obtaining second preimages in time (k + 40.5) ·
2n−k+3. We then apply the extended attack to DMD-CP, obtaining second
preimages with about 2n−k+15 evaluations of the compression function. We show
some examples of sequences which make the corresponding dithered construc-
tions immune to our attack. This notably covers the case of Haifa [23]. Lastly,
in section 4.2 we present a variation of the attack, which includes an expensive
preprocessing, but which is able to cope with sequences of high complexity over
a small alphabet with a very small online cost.

4.1 Adapting the Attack to Dithered Merkle-Damgård

Let us now assume that the hashing algorithm uses a dithering sequence z.
When building the collision tree, we must choose which dithering symbols to use.
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A simple solution is to use the same dithering symbol for all the edges at the
same depth in the tree. A tuple of � letters is then required to build the collision
tree. We will also need an additional letter to connect the tree to the message
M . This way, in order to build a collision tree of depth �, we have to fix a word
ω of size �+1, use ω[i] as the dithering symbol of depth i, and use the last letter
of ω to realize the connection.

The dithering sequence makes the hash of a block dependent on its position
in the whole message. Therefore, the collision tree can be connected to its target
only at certain positions, namely, at the positions where ω and z match. The
set of positions in the message where this is possible is then given by:

Range =
{
i ∈ N

∣∣∣ (� + 1 ≤ i
)

∧
(
z[i − �] . . . z[i] = ω

)}
.

Note that finding a connecting block B0 in the second step defines the length
of the prefix that is required. If i0 ∈ Range, it will be possible to build the
second preimage. Otherwise, another block B0 has to be found.

To make sure that Range is not empty, ω has to be a factor of z. Ideally, ω
should be the factor of length �+1 which occurs most frequently in z, as the cost
of the attack ultimately depends on the number of connecting blocks tried before
finding a useful one (with i0 ∈ Range). What is the probability that a factor ω
appears at a random position in z? Although this is highly sequence-dependent,
it is possible to give a generic lower bound: in the worst case, all factors of size
� + 1 appear in z with the same frequency. In this setting, the probability that
a randomly chosen factor of size � + 1 in z is the word ω is 1/Factz(� + 1).

The main property of z influencing the cost of our attack is its complexity
(which is related to its min-entropy), whereas its repetition-freeness influences
the cost of Kelsey and Schneier type attacks.

ω z |ω| = � + 1
� ω

hT

B0 hT hi hi0

ω[�] io ∈ Range

Fig. 2. Summary of the attack when a dithering sequence z is used

The cost of finding this second preimage for a given sequence z, in the worst-
case situation where all factors appear with the same frequency, is given by:

2
n
2 + �

2+2 + Factz(� + 1) · 2n−k + 2n−�.

Cryptanalysis of Keränen-DMD. The cost of the extended attack against
Keränen-DMD depends on the complexity of the sequence k. Since it has a very
regular structure, k has an unusually low complexity.
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Lemma 1. For � ≤ 85, we have:

Factk(�) ≤ 8 · � + 332.

Despite being strongly repetition-free, the sequence k offers an extremely weak
security level against our attack. We illustrate this by evaluating the cost of our
attack on Keranen-DMD:

2
n
2 + �

2+2 + (8 · � + 340) · 2n−k + 2n−�.

If n is of the same order than about 3k, then the first term of this sum is of the
same order than the other two, and if n � 3k then it can simply be neglected.
We will use this approximation several times in the sequel. By setting � = k − 3,
the total cost of the attack is about: (k + 40.5) · 2n−k+3 which is much smaller
than 2n in spite of the dithering.

Cryptanalysis of DMD-CP. We now apply the attack to Rivest’s concrete
proposal. We first need to evaluate the complexity of its dithering sequence.
Recall from section 3.2 that it is based on the Keränen sequence, but that we
move on to the next symbol of the sequence only when a 13 bit counter overflows.
The original motivation was to reduce the cost of the dithering, but it has the
unintentional effect of increasing the resulting sequence complexity. However, it
is possible to prove that this effect is quite small:

Lemma 2. Let c denote the sequence obtained by diluting k with a 13-bit counter.
Then for every 0 ≤ � < 213, we have:

Factc(�) = 8 · � + 32760.

The dilution does not generate a sequence of a higher asymptotic complexity: it
is still linear in �, even though the constant term is bigger due to the counter.
The cost of the attack is therefore:

2
n
2 + �

2 +2 + (8 · � + 32768) · 2n−k + 2n−�.

Again, if n is greater than about 3k, the best value of � is k − 3, and the
complexity of the attack is then approximately: (k + 4094) · 2n−k+3 � 2n−k+15.
For settings corresponding to SHA-1, a second preimage can be computed in
time 2120.

Countermeasures. Even though the dilution does not increase the asymptotic
complexity of a sequence, the presence of a counter increases the complexity of
the attack. If we simply used a counter over i bits as the dithering sequence,
the number of factors of size � would be Fact(�) = 2i (as long as i ≤ �). The
complexity of the attack would then become: 2

n
2 + �

2 +2 + 2n−k+i + 2n−�.
In practice, the dominating term is 2n−k+i. By taking i = k, we would obtain

a scheme which is resistant to our attack. This is essentially the choice made by
the designers of Haifa [23], but such a dithering sequence consumes k bits of
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bandwidth. Note that as long as the counter does not overflow, no variation of
the attack of Kelsey and Schneier can be applied to the dithered construction.

Using a counter (i.e., a big alphabet) is a simple way to obtain a dither-
ing sequence of high complexity. An other, somewhat orthogonal, possibility to
improve the resistance of Rivest’s dithered hashing to our attack is to use a
dithering sequence of high complexity over a small alphabet (to preserve band-
width). In appendix A we show that there is an abelian square-free sequence
over 6 letters with complexity greater than 2�/2. Then, with � = 2k/3, the total
cost of the online attack is about 2n−2k/3.

Another possible way to improve the resistance of Rivets’s construction against
our attack is to use a pseudo random sequence over a small alphabet. Even though
it may not be repetition-free, its complexity is almost maximal. Suppose the al-
phabet has size

∣∣A∣∣ = 2i. Then the expected number of �-letter factors in a pseudo
random word of size 2k is lower-bounded by: 2i·� ·

(
1 − exp−2k−i·�) (refer to [12],

theorem 2, for a proof of this claim)). The total optimal cost of the online attack is
then at least 2n−k/(i+1)+2 and is obtained with � = k/(i+1). With 8-bit dithering
symbols and if k = 55, as in the SHA family, the complexity of the attack is 2n−5.

4.2 A Generic Attack on Any Dithering Scheme with a Small
Alphabet

The attacks described so far exploited the low complexity of Rivest’s specific
dithering sequences. In this section we show that the weakness is more general,
and that after an O (2n) preprocessing, second preimages can be found for mes-
sages of length 2k ≤ 2n/4 in O

(
22·(n−k)/3

)
time and space for any dithering

sequence (even of maximal complexity) if the dithering alphabet is small. Sec-
ond preimages for longer messages can be found in max

(
O

(
2k

)
, O

(
2n/2

))
time

and min
(
O

(
2n−k

)
, O

(
2n/2

))
memory.

Outline of the Attack. The new attack can be viewed as a type of time-
memory tradeoff. For any given compression function, we precompute a fixed
data structure which can then be used to find additional preimages for any
dithering sequence and any given message of sufficient length. In the attack
we will need to find connecting blocks leading from the message to our data
structure and from our data structure to the message. The data structure will
allow us to generate a sequence of blocks of the required length, leading from
the entry point to the exit point, using the given dithering sequence.

A simple structure of this type is the kite generator3 which will allow us to
find a second preimage for a message made of O

(
2k

)
message blocks in time

max
(
O

(
2k

)
, O

(
2(n−k)/2

))
and O

(∣∣A∣∣ · 2n−k
)

space. Note that for the SHA-1
parameters of n = 160 and k = 55, the time complexity of the new attack
is 255, which is just the time needed to hash the original message. However,
the size of the kite generator for the above parameters exceeds 2110. The kite

3 We call it a kite generator since we use it to generate kites of the form.
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Message

h1 h2kh2IV hi(· · ·) (· · ·)

hiIV ht

= =

Fig. 3. A Kite

generator is a labelled directed graph whose 2n−k vertices are labelled by some
easily recognized subset of the chaining values that includes the IV (e.g., the
tiny fraction of hash values which are extremely close to IV ). Each directed
edge (which can be traversed in both directions) is labelled by one letter α
from the dithering alphabet and one message block x, and it leads from vertex
h1 to vertex h2 if F (h1, x, α) = h2. Each vertex in the generator should have
exactly two outgoing edges labelled by each dithering letter, and thus the expected
number of ingoing edges labelled by each letter is also 2. The generator is highly
connected in the sense that there is an exponentially large diverging binary tree
with any desired dithering sequence starting at any vertex, and an exponentially
large converging tree 4 with any desired dithering sequence (whose degrees are
not always 2) ending at most vertices. It can be viewed as a generalization of
the collision tree of Kelsey and Kohno [15], which is a single tree with a single
root in only the converging direction and with no dithering labels.

Once computed (during an unbounded precomputation stage), we can use
the generator to find a second preimage for any given message M with 2k blocks
and any dithering sequence. We first hash the long input M to find (with high
probability) some intermediate hash value hi which appears in the generator.
We then use the generator to replace the first i blocks in the message by a
different set of i blocks. We start from the generator vertex labelled by IV , and
follow some path in the generator of length i − (n − k) which has the desired
dithering sequence (there are exponentially many paths we can choose from). It
leads to some hash value ht in the generator. We then evaluate the full diverging
tree of depth (n − k)/2 and the desired dithering sequence starting at ht, and
the full converging tree of depth (n − k)/2 and the desired dithering sequence
ending at hi. Since the number of leaves in each tree is O

(
2(n−k)/2

)
and they

are labelled by only 2n−k possible values, we expect by the birthday paradox to
find a common chaining value among the two sets of leaves. We can now combine
the long random chain of length i − (n − k) with the two short tree chains of
length (n − k)/2 to find a kite-shaped structure of the same length i and with
the same dithering sequence as the original message between the two chaining
values IV and hi. Note that the common leaf of the two trees can be found with
no additional space by using a variant of Pollard’s rho method which traverses
pseudo-randomly chosen paths in the two trees until it cycles.

4 See [10] for a formal justification of this claim.
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This attack can be applied with essentially the same complexity even when
the IV is not known during the precomputation stage (e.g., when it is time
dependent). When we hash the original long message, we have to find two in-
termediate hash values hi and hj (instead of IV and hi) which are contained in
the generator and connect them by a properly dithered kite-shaped structure of
the same length.

The main problem of this technique is that for the typical case in which
k < n/2, it uses more space than time, and if we try to equalize them by
reducing the size of the kite generator, we are unlikely to find any common
chaining values between the given message and the generator. Finding a way
to connect the generator back into the message will require 2n−k+1 additional
steps, which will make the time complexity too high. To bypass this difficulty,
we will use the classic time-memory tradeoff of Hellman tables.

Hellman’s TMTO attack. Time/memory Tradeoffs (TMTO) were first in-
troduced in 1980 by Hellman [11]. The idea is to improve brute force attacks
by trading time for memory when inverting a function f : {0, 1}n → {0, 1}n.
Suppose we have an image element y and wish to find a pre-image x ∈ f−1(y).
One extreme would be to go over all possible elements x until we find one such
that f(x) = y, while the other extreme would be to pre-compute a huge table
containing pairs (x, f(x)) sorted by the second element. Hellman’s idea was to
consider what happens when applying f iteratively. We start at a random el-
ement x0 and compute xi+1 = f(xi) for t steps saving only the start and end
points of the generated chain (x0, xt). We repeat this process with different ini-
tial points and generate a total of c chains. Now on input y we start generating
a chain starting from y and check if we reach one of the saved endpoints. If we
have, we generate the corresponding chain, starting from the original starting
point and hope to find a preimage of y. Notice that as the number of chains c
increases beyond 2n/t2, the contribution from additional chains decreases with
the number of chains. To counter this birthday paradox effect, Hellman sug-
gested to construct a number of tables, each using a slightly different function
fi, such that knowing a preimage of y under fi implies knowing such a preimage
under f . Hellman’s original suggestion, which works well in practice, was to use
fi(x) = f(x ⊕ i). Thus if we create d = 2n/3 tables each with a different fi,
such that each table contains c = 2n/3 chains of length t = 2n/3, about 88%
of the 2n points will be covered by at least one table. Notice that the running
time of Hellman’s algorithm is t · d = 22n/3 while the memory requirement is
d · c = 22n/3.

The Attack. As mentioned above, we need to find a linking block from the kite-
generator to the message when its size is too small to have a common point. To
solve this problem, we denote one of the vertices in the kite-generator by N and
construct for each α ∈ A a set of d Hellman tables with c chains, each of length
t, such that t · c · d = 2n−k by iterating the basic function fα(x) = F (N, x, α).
During the online phase, for each intermediate hash value hi in the message, we
use the set of tables corresponding to the dithering character α used to reach hi
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and try to find a block leading from the specified vertex N to hi using α. Since
the tables cover approximately 2n−k elements, the probability of finding such a
block for hi is 2−k. As the message is of length 2k, we expect to find on average
one connecting hi. Notice that although we create chains for the Hellman tables,
they do not correspond to the chain of hash values of a message, and thus we
do not have to use the correct dithering sequence along these paths. The only
purpose of the chains is to invert the function fα and thereby find a single block
linking N to one of the intermediate hash values along the given message.

Now that we have a method for connecting a predetermined hash value N to
a message, we can replace the role of the kite-generator of finding a prefix which
ends at N with a simpler construction. Since we were not constrained in our
choice of N we can simplify the kite generator to the single point IV with a self
loop for each dithering symbol α ∈ A. During the preprocessing, we exhaustively
search for each α ∈ A a block xα such that F (IV, xα, α) = IV . Given such self
loops, we use in each step the block xα corresponding to the current dithering
symbol α and thus we can generate a message of any length starting and ending
with IV . This IV serves as the point N in Hellman’s algorithm. Note that this
construction does not have the advantage of the original kite generator that IV
can be unknown during the preprocessing stage.

Combining the two steps, we first find a linking block from IV to one of
the intermediate hash values of the message using the correct dithering symbol.
Then, using the IV self loops, we construct a prefix of the required length linking
back to IV . During the preprocessing, the cost of constructing the Hellman tables
is

∣∣A∣∣ · t · c · d = O
(∣∣A∣∣ · 2n−k

)
time and

∣∣A∣∣ · c · d space, while constructing the
IV self loops takes O

(∣∣A∣∣ · 2n
)

time and
∣∣A∣∣ space. As the cost of finding the

self loops is the dominating factor, the total time used in the preprocessing
phase is O

(∣∣A∣∣ · 2n
)

and the total space used is
∣∣A∣∣ · c · d. In the online phase,

generating the prefix takes time O
(
2k

)
and finding a linking block to one of the

2k intermediate hash values takes time O
(
2k · t · d

)
, so the total time spent in

the online phase is O
(
2k · t · d

)
. For constant sized alphabets this leads to the

following complexities: for k ≤ n/4, a tradeoff balancing the time and memory
costs is t = 2(n−k)/3, c = 2(n+2k)/3, d = 2(n−4k)/3 giving total time and memory
complexities of O

(
22·(n−k)/3

)
. For n/4 < k ≤ n/2 the balanced time/memory

tradeoff is achieved by using for each α a single table with parameters c = 2n/2

and t = 2n/2−k giving a flat time and memory complexities of O
(
2n/2

)
. For

a non-constant sized alphabet A, the general time-memory tradeoff curve is
T · M2 · 22k = 22n ·

∣∣A∣∣2 for k ≤ n/4 and T ≥ 22k.

5 An Attack on Shoup’s UOWHF

In this section, we show that our attack is generic enough to be applied against
hash functions enjoying a different security property, namely Universal One-
Way Hash Functions (UOWHF). A UOWHF is a family of hash functions H
for which any computationally bounded adversary A wins the following game
with negligible probability. First A chooses a message M , then a key K is chosen
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at random and given to A. The adversary wins if she violates the Target Collision
Resistance (TCR) of H , that is if she generates a message M ′ different from M
that collides with M for the key K (i.e., such that HK(M) = HK(M ′) with
M 
= M ′).

Shoup [26] proposed a simple construction for a UOWHF that hashes mes-
sages of arbitrary size, given a UOWHF that hashes messages of fixed size. It
is a Merkle-Damgård-like mode of operation, but before every iteration, one of
several possible masks is XORed to the chaining value. The number of masks is
logarithmic in the length of the hashed message, and the order in which they
are used is carefully chosen to maximize the security of the scheme. This is
reminiscent of dithered hashing, except that here the dithering process does not
decrease the bandwidth available to actual data.

We first describe briefly Shoup’s construction, and then show how our attack
can be applied against it. The complexity of the attack demonstrates that for
this particular construction, Shoup’s security bound is nearly tight.

5.1 Description

This construction has some similarities with Rivest’s dithered hashing. It starts
from a universal one way compression function F that is keyed by a key K,
FK : {0, 1}m × {0, 1}n → {0, 1}n. This compression function is then iterated, as
described below, to obtain a variable input length UOWHF HF

K .
The scheme uses a set of masks µ0, . . . , µk−1 (where 2k − 1 is the length of

the longest possible message), each one of which is a random n-bit string. The
key of the whole iterated function consists of K and of these masks. After each
application of the compression function, a mask is XORed to the chaining value.
The order in which the masks are applied is defined by a specified sequence over
the alphabet A = {0, . . . , k − 1}. The scheduling sequence is z[i] = ν2(i), for
1 ≤ i ≤ 2k, where ν2(i) denotes the largest integer ν such that 2ν divides i.
Let M be a message that can be split into r blocks x1, . . . , xr and let h0 be an
arbitrary n-bit string. We define hi = FK

(
hi−1 ⊕ µν2(i), xi

)
, and HF

K(M) = hr.

5.2 An Attack Matching the Security Bound

In [26], Shoup proves the following security result:

Theorem 1 (Main result of [26]). If an adversary is able to break the target
collision resistance of HF with probability ε in time T , then one can construct
an adversary that breaks the target collision resistance of F in time T , with
probability ε/2k.

In this section we show that this bound is almost tight. First, we give an alternate
definition of the dithering sequence z. We define:

ui =

{
0 if i = 1,
ui−1.(i − 1).ui−1 otherwise.
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As an example, we have u4 = 010201030102010. It is clear that |ui| = 2i − 1,
and it is easy to show that for all i, ui is a prefix of z. The dithering sequence is
thus simply uk.

The most frequently-occurring factor of size � < 2k in z is the prefix of size �
of z. It is a prefix of uj with j = �log2 (� + 1)�, and uj itself occurs about 2k−j

times in z = uk. The probability for a random factor of z of size � to be exactly
this candidate is equal to the number of occurrences of this candidate divided by
the number of �-bit strings in z. Thus this probability is 2k−j

2k−�
. This can in turn

be lower-bounded by: 2−j ≥ 1
2(�+1) . Our attack can be applied against the TCR

property of HF as described above. Choose at random a (long) target message
M . Once the key is chosen at random, build a collision tree using a prefix of z of
size � for the dithering, and continue as described in section 4. The cost of the
attack is then:

T = 2
n
2 + �

2+2 + 2(� + 1) · 2n−k + 2n−�.

This attack breaks the target collision resistance with probability nearly 1.
Therefore, with Shoup’s result, one can construct an adversary A against F
with running time T and probability of success 1/2k. If F is a black box, the
best attack against F ’s TCR property is the exhaustive search. Thus, the best
attacker in time T against F has success probability T/2n. When n ≥ 3k, T �
(2k + 3) · 2n−k (with � = k − 1), and thus the best adversary running in time
T has success probability O

(
k/2k

)
when success probability of A is 1/2k. This

implies that there is no attack better than ours by a factor greater than O (k)
or, in other words, there is only a factor O (k) between Shoup’s security proof
and our attack.

The ROX construction by [2], which also uses the Shoup’s mask sequence to
XOR with the chaining values is susceptible to the same type of attack, which
is also provably near-optimal.

5.3 Comparing the Shoup and Rivest Dithering Techniques

An intriguing connection between Shoup’s and Rivest’s ideas shows up as soon
as we notice that the scheduling sequence z chosen by Shoup is abelian square-
free. In fact, one year after Shoup’s construction was published, Mironov [22]
proved that an even stronger notion of repetition-freeness was necessary: z is,
and has to be, even-free. A word is even-free if all of its non-empty factors contain
at least one letter an odd number of times. Note that all even-free words are
abelian square-free. We believe that the role these non-trivial sequences play in
iterated constructions in cryptography (such as hashing) has yet to be completely
understood.

6 Second Preimage Attack with Multiple Targets

Both the older generic second preimage results of [8,16] and our results can be
applied efficiently to multiple target messages. The work needed for these attacks
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depends on the number of intermediate hash values of the target message, as this
determines the work needed to find a linking message from the collision tree (our
attack) or expandable message ([8,16]). A set of 2R messages, each of 2K blocks,
has the same number of intermediate hash values as a single message of 2R+K

blocks, and so the difficulty of finding a second preimage for one of a set of 2R

such messages is no greater than that of finding a second preimage for a single
2R+K block target message. In general, for the older second preimage attacks,
the total work to find one second preimage falls linearly in the number of target
messages; for our attack, it falls linearly so long as the total number of blocks
2R satisfies R < (n − 4)/3.

Consider for example an application which has used SHA-1 to hash 230 dif-
ferent messages, each of 220 message blocks. Finding a second preimage for a
given one of these messages using the attack of [16] requires about 2141 work.
However, finding a second preimage for any one of these of these 230 target
messages requires 2111 work. (Naturally, the attacker cannot control for which
target message he finds a second preimage.)

This works because we can consider each intermediate hash value in each
message as a potential target to which the root of the collision tree (or an
expandable message) can be connected, regardless of the message it belongs
to, and regardless of its length. Once we connect to an intermediate value, we
have to determine to which particuliar target message it belongs. Then we can
compute the second preimage of that message. Using similar logic, we can extend
our attack on Rivest’s dithered hashes, Shoup’s UOWHF, and the ROX hash
construction to apply to multiple target messages.

This observation is important for two reasons: First, simply restricting the
length of messages processed by a hash function is not sufficient to block the long
message attack; this is relevant for determining the necessary security parameters
of future hash functions. Second, this observation allows long-message second
preimage attacks to be applied to target messages of practical length. A second
preimage attack which is feasible only for a message of 250 blocks has no practical
relevance, as there are probably no applications which use messages of that
length. A second preimage attack which can be applied to a large set of messages
of, say, 224 blocks, might have some practical impact. While the computational
requirements of these attacks are still infeasible, this observation shows that the
attacks can apply to messages of practical length.
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A Some Sequence-Complexity Related Results

Sequences Generated by Morphisms. We say that a function τ : A∗ → A∗
is a morphism if for all words x and y, τ(x.y) = τ(x).τ(y). A morphism is then
entirely determined by the images of the individuals letters. A morphism is said
to be r-uniform (with r ∈ N) if for all word x, |τ(x)| = r · |x|. If, for a given
letter α ∈ A, we have τ(α) = α.x for some word x, then τ is non-erasing for
α. Given a morphism τ and an initialization letter α, let un denote the n-th
iterate of τ over α: un = τn(α). If τ is r-uniform (with r ≥ 2) and non-erasing
for α, then un is a strict prefix of un+1, for all n ∈ N. Let τ∞(α) denote the
limit of this sequence: it is the only fixed point of τ that begins with the letter
α. Such infinite sequences are called uniform tag sequences [5] or r-automatic
sequences [1]. Because they have a very regular structure, there is a spectacular
result [5] regarding the complexity of infinite sequences generated by uniform
morphisms:

Theorem 2 (Cobham, 1972). Let z be an infinite sequence generated by an
r-uniform morphism, and assume that the alphabet size

∣∣A∣∣ is constant. Then z
has linear complexity:

Factz(�) ≤ r · |A|2 · �.

It is worth mentioning that similar results exist in the case of sequences generated
by non-uniform morphisms [24,9], although the upper bound can be quadratic
in �. Since the Keran̈en sequence is 85-uniform [17,18,25], the result of theorem 2
gives: Factk(�) ≤ 1360·�. This upper-bound is relatively rough, and for particular
values of �, it is possible to obtain a much better approximation, such as the one
given in lemma 1 (which is tight). The interested reader should consult the full
version of this paper.
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There are Abelian Square-Free Sequences of Exponential Complexity.
It is indeed possible to construct an infinite abelian square-free sequence of
exponential complexity, although we do not know how to do it without slightly
enlarging the alphabet.

We start with the abelian square-free Keran̈en sequence k over {a, b, c, d},
and with another sequence u over {0, 1} that has an exponential complexity.
Such a sequence can be built for example by concatenating the binary encoding
of all the consecutive integers. Then we can create a sequence z̃ over the union
alphabet A = {a, b, c, d, 0, 1} by interleaving k and u: z̃ = k[1].u[1].k[2].u[2]. . . . .
The resulting shuffled sequence inherits both properties: it is still abelian square-
free, and has a complexity of order Ω

(
2�/2

)
.
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Abstract. Recently, Aumann and Lindell introduced a new realistic
security model for secure computation, namely, security against covert
adversaries. The main motivation was to obtain secure computation
protocols which are efficient enough to be usable in practice. Aumann
and Lindell presented an efficient two party computation protocol se-
cure against covert adversaries. They were able to utilize cut and choose
techniques rather than relying on expensive zero knowledge proofs.

In this paper, we design an efficient multi-party computation proto-
col in the covert adversary model which remains secure even if a ma-
jority of the parties are dishonest. We also substantially improve the
two-party protocol of Aumann and Lindell. Our protocols avoid general
NP-reductions and only make a black box use of efficiently implementable
cryptographic primitives. Our two-party protocol is constant-round while
the multi-party one requires a logarithmic (in number of parties) number
of rounds of interaction between the parties. Our protocols are secure as
per the standard simulation-based definitions of security.

Although our main focus is on designing efficient protocols in the
covert adversary model, the techniques used in our two party case directly
generalize to improve the efficiency of two party computation protocols
secure against standard malicious adversaries.

1 Introduction

Secure multi-party computation (MPC) allows a set of n parties to compute a
joint function of their inputs while keeping their inputs private. General secure
MPC has been an early success of modern cryptography through works such as
[Yao86,GMW87,BOGW88,CCD88]. The early MPC protocols used very generic
techniques and were inefficient. Hence, now that most of the questions regarding
the feasibility of secure computation have been addressed (at least in the stand
alone setting), many of the recent works have focused on improving the efficiency
of these protocols.

The most hostile situation where one could hope to do secure computation is
when we have a dishonest majority. That is, where up to (n − 1) parties could
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be corrupted and could deviate arbitrarily from the protocol. The feasibility of
secure computation in this setting was shown by [GMW87]. Several later results
focused on improving its efficiency (often quantified as round complexity).

Most of these constructions use general zero-knowledge proofs to compile
honest-but-curious MPC protocols into fully malicious MPC protocols. These
zero-knowledge compilers are of great theoretical importance but lead to rather
inefficient constructions. These compilers make a non-black-box use of the un-
derlying cryptographic primitives. To illustrate this inefficiency, consider the
following example taken from [IKLP06]. Suppose that due to major advances in
cryptanalytic techniques, all basic cryptographic primitives require a full second
of computation on a fast CPU. Non-black-box constructions require parties to
prove in zero-knowledge, statements that involve the computation of the under-
lying primitives, say a trapdoor permutation. These zero-knowledge protocols,
in turn, invoke cryptographic primitives for every gate of a circuit computing a
trapdoor permutation. Since (by our assumption) a trapdoor permutation takes
one second to compute, its circuit implementation contains trillions of gates,
thereby requiring the protocol trillions of second to run. A black box construc-
tion, on the other hand, would make the number of invocations of the primitive
independent of the complexity of implementing the primitive.

Due to lack of efficient and practical constructions for the case of dishonest
majority, a natural question that arises is “Can we relax the model (while still
keeping it meaningful) in a way which allows us to obtain efficient protocols likely
to be useful in practice?”.

One such model is the well known honest majority model. The model addi-
tionally allows for the construction of protocols with guaranteed output delivery.
Positive steps to achieve efficient protocols in this model were taken by Damgard
and Ishai [DI05]. They presented an efficient protocol which makes a black box
use of only a pseudorandom generator.

Another such model is the model of covert adversaries (incomparable to the
model of honest majority) recently introduced by Aumann and Lindell[AL07]
(see also [CO99]). A covert adversary may deviate from steps of the protocol in
an attempt to cheat, but such deviations are detected by honest parties with good
probability (although not with negligibly close to 1). As Aumann and Lindell
argue, covert adversaries model many real-world settings where adversaries are
willing to actively cheat (and therefore are not semi-honest) but only if they
are not caught doing so. This is the case for many business, financial, political
and diplomatic settings where honest behavior cannot be assumed but where
companies, institutions, or individuals cannot afford the embarrassment, loss
of reputation and negative press associated with being caught cheating. They
further proceed to design an efficient two-party computation protocol secure
against covert adversaries with only blackbox access to the underlying primitives.
Their construction applies cut-and-choose techniques to Yao’s garbled circuit,
and takes advantage of an efficient oblivious transfer protocol secure against
covert adversaries. Currently, there is no such counterpart for the case of ≥ 3
parties with dishonest majority.
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Our Results

Multi-party Computation against Covert Adversaries. We construct a protocol
for multi-party computation in the covert adversary model. Our protocol pro-
vides standard simulation based security guarantee if any number of the parties
collude maliciously. Our techniques rely on efficient cut and choose techniques
and avoid expensive zero-knowledge proofs to move from honest-but-curious to
malicious security. We only make a black-box use of efficiently implementable
cryptographic primitives.

The protocol requires O(n3ts|C|) bits of communication (and similar compu-
tation time) to securely evaluate a circuit C with deterrence 1 − 1

t . Here 1
t is

the noticeable, but small probability with which the cheating parties may escape
detection, and s is a cryptographic security parameter. In contrast, the most ef-
ficient previously known protocols, due to Katz, Ostrovsky and Smith [KOS03]
and Pass [Pas04], require zero-knowledge proofs about circuits of size O(n3s|C|).

The protocol in this paper requires O(log n) rounds of interaction, due to
an initial coin-flipping phase that follows the Chor-Rabin scheduling paradigm
[CR87]. The round complexity can be reduced to a constant using non-black-box
simulation techniques [Bar02,KOS03,Pas04], but the corresponding increase in
computational complexity makes it unlikely that the resulting protocol would
be practical.

We remark that there have been a number of two-parties protocols designed
using cut and choose techniques [MNPS04,MF06,Woo07,LP07], where one party
prepares several garbled circuits while the other party randomly checks a subset
of them. However, this paper is the first work to employ such techniques for the
design of efficient protocols in the multi-party setting.

Two-party Computation against Covert Adversaries. In a protocol secure against
covert adversaries, any attempts to cheat by an adversary is detected by hon-
est parties with probability at least ε, where ε is the deterrence probability.
Therefore, a high deterrence probability is crucial in making the model of covert
adversaries a practical/realistic model for real-world applications. In this paper
we design a two-party protocol secure against covert adversaries in which the
deterrence probability ε = 1 − 1/t, for any value of t polynomial in the security
parameter, comes almost for free in terms of the communication complexity of
the protocol. The following table compares our result against that of previous
work, where |C| is the circuit size, m is the input size, and s is the statistical
security parameter.

Protocol Communication Complexity
[AL07] O(t|C| + tsm)

This paper (section 3.1) O(|C| + sm + t)

Two-party Computation against Fully Malicious Adversaries. Although we
mainly focus on covert adversaries, we also show how our techniques lead to
secure two-party computation schemes against fully malicious adversaries. Par-
ticularly, by applying our techniques to the existing cut-and-choose protocols,
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i.e. [LP07,Woo07,MF06], we improve the communication cost of these protocols
without affecting their security guarantees. In this case, our improvement in the
communication cost of these protocols is not asymptotic but rather in concrete
terms.

Related Work. Katz et al. [KOS03] and Pass [Pas04] give the most round-efficient
secure MPC protocols with dishonest majority. Ishai et al. [IKLP06], give the
first construction for dishonest majority with only black-box access to a trapdoor
permutation. Although theoretically very interesting, these approaches are not
attractive in terms of efficiency due to the usage of very generic complexity
theoretic techniques.

The compiler of Lindell [Lin01] may be applied to achieve constant-round
protocols for secure two-party computation. More recent works on secure two-
party computation avoid the zero-knowledge machinery (using cut-and-choose
techniques), and design efficient protocols with only black-box access to the un-
derlying primitives. Application of cut-and-choose techniques to Yao’s garbled
circuit was first suggested by Pinkas [Pin03], and further refined and extended
in [MNPS04,MF06,Woo07,LP07]. The protocols of [MF06] and [LP07] lead to
O(s|C|+s2m) communication between the parties, while the protocol of [Woo07]
only requires O(s|C|) communication where s is the security parameter. Our im-
provement in the communication cost of these protocols is not asymptotic but
rather in concrete terms. Lindell and Pinkas [LP07] also showed how the cut-
and-choose techniques could be modified to also yield simulation-based proofs
of security. Their ideas can also be applied to [MF06,Woo07]. A different ap-
proach for defending against malicious adversaries in two party computation
is taken by Jarecki and Shmatikov [JS07]. The basic idea in their work is to
have the first party generate a garbled circuit and prove its correctness by giv-
ing an efficient number-theoretic zero-knowledge proof of correctness for every
gate in the circuit. This protocol is more communication efficient than the cut-
and-choose schemes, but increases the computational burden of the parties. In
particular, the protocol of [JS07] requires O(|C|) public-key operations while
the cut-and-choose schemes only require O(m) public-key operations. As shown
in experiments (e.g. see [MNPS04]) the public-key operations tend to be the
computational bottle-neck in practice.

The idea of allowing the adversary to cheat as long as it will be detected
with a reasonable probability was first considered in [FY92] under the term t-
detectability. Work of [FY92] only considers honest majority and the definition
is not simulation based. Canetti and Ostrovsky [CO99] consider honest-looking
adversaries who may deviate arbitrarily form the protocol specification as long
as the deviation cannot be detected. [AL07] introduce the notion of covert adver-
saries which is similar in nature to the previous works but strengthens them in
several ways. The most notable are that it quantifies over all possible adversaries
(as opposed to adversaries that behave in a certain way), and puts the burden
of detection of cheating on the protocol, and not on the honest parties analyzing
the transcript distribution later on.
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2 Preliminaries

2.1 Definition of Security Against Covert Adversaries

Aumann and Lindell, [AL07], give a formal definition of security against covert
adversaries in the ideal/real simulation paradigm. This notion of adversary lies
somewhere between those of semi-honest and malicious adversaries. Loosely
speaking, the definition provides the following guarantee: Let 0 ≤ ε ≤ 1 be
a value (called the deterrence factor). Then any attempts to cheat by an adver-
sary is detected by the honest parties with probability at least ε. Thus provided
that ε is sufficiently large, an adversary that wishes not to get caught cheating
will refrain from attempting to cheat, lest it be caught doing so. Furthermore, in
the strongest version of security against covert adversaries introduced in [AL07],
the adversary will not learn any information about the honest parties’ inputs
if he gets caught. What follows next is the strongest version of their definition
(which is what we use as the security definition for all of our protocols) and is
directly taken from [AL07]. The executions in the real and ideal model are as
follows:

Execution in the real model. Let the set of parties be P1, . . . , Pn and let
I ⊂ [n] denote the indices of corrupted parties, controlled by an adversary A. We
consider the real model in which a real n-party protocol π is executed (and there
exist no trusted third party). In this case, the adversary A sends all messages in
place of corrupted parties, and may follow an arbitrary polynomial-time strategy.
In contrast, the honest parties follow the instructions of π.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality where f =
(f1, . . . , fn), and let π be an n-party protocol for computing f . Furthermore,
let A be a non-uniform probabilist polynomial-time machine and let I be the
set of corrupted parties. Then the real execution of π on inputs x̄, auxiliary input
z to A and security parameter s, denoted REALπ,A(z),I(x̄, s), is defined as the
output vector of the honest parties and the adversary A from the real execution
of π.

Execution in the Ideal Model. Let ε : N → [0, 1] be a function. Then the
ideal execution with ε proceeds as follows.

Inputs: Each party obtains an input; the ith party’s input is denoted by xi;
we assume that all inputs are of the same length m. The adversary receives an
auxiliary-input z.

Send inputs to trusted party: Any honest party Pj sends its received input
xj to the trusted party. The corrupted parties, controlled by A, may either send
their received input or send some other input of the same length to the trusted
party. This decision is made by A and may depend on xi for i ∈ I and the
auxiliary input z. Denote the vector of inputs sent to the trusted party by w̄.

Abort Options: If a corrupted party sends wi = aborti to the trusted party
as its input, then the trusted party sends aborti to all of the honest parties and
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halts. If a corrupted party sends wi = corruptedi as its input to the trusted party,
then the trusted party sends corruptedi to all of the honest parties and halts.

Attempted cheat option: If a corrupted party sends wi = cheati to the trusted
party as its input, then:

1. With probability 1 − ε, the trusted party sends corruptedi to the adversary
and all of the honest parties.

2. With probability ε, the trusted party sends undetected and all of the honest
parties inputs {xj}j /∈I to the adversary. The trusted party asks the adversary
for outputs {yj}j /∈I , and sends them to the honest parties.

The ideal execution then ends at this point. If no wi equals aborti, corruptedi

or cheati the ideal execution continues below.

Trusted party answers adversary: The trusted party computes (f1(w̄), . . . ,
fm(w̄)) and sends fi(w̄) to A, for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the ad-
versary sends either aborti for some i ∈ I or continue to the trusted party. If
the trusted party receives the continue then it sends fi(w̄) to all honest parties
Pj(j /∈ I). Otherwise, if it receives aborti for some i ∈ I, it sends aborti to all
honest parties.

Outputs: An honest party always outputs the messages it obtained from the
trusted party. The corrupted parties output nothing. The adversary A outputs
any arbitrary (probabilistic polynomial-time computable) function of the initial
inputs {xi}i∈I and messages obtained from the trusted party.

The output of honest parties and the adversary in an execution of the above
model is denoted by IDEALε

f,S(z),I(x̄, s) where s is the statistical security
parameter.

Definition 1. Let f, π, ε be as described above. Protocol π is said to securely
compute f in the presence of covert adversaries with ε−deterrence if for every non-
uniform probabilistic polynomial-time adversary A for the real model, there exist
a non-uniform probabilistic polynomial-time adversary S for the ideal model such
that for every I ⊆ [n], every balanced vector x̄ ∈ ({0, 1}∗)n, and every auxiliary
input z ∈ {0, 1}∗:

IDEALε
f,S(z),I(x̄, s)

c≡ REALπ,A(z),I(x̄, s)

3 The Two Party Case

3.1 Efficient Two Party Computation for Covert Adversaries

Aumann and Lindell [AL07] design an efficient two-party computation protocol
secure against covert adversaries. In their protocol, two parties P1 and P2 wish
to securely compute a circuit C that computes a function f on parties private
inputs. The high level idea of their protocol is that party P1 computes t garbled
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circuits1, and sends them to party P2. P2 then randomly chooses one circuit to
compute and asks P1 to reveal the secrets of the remaining (t − 1) circuits. This
ensures that a cheating P1 gets caught with probability at least equal to 1−1/t.
There are other subtleties in order to deal with parties’ inputs and to achieve
simulation-based security. We will go into more detail regarding these subtleties
later in this section. Aumann and Lindell also design a special and highly efficient
oblivious transfer protocol secure against covert adversaries which makes their
solution even more practical. The efficiency of their protocol can be summarized
in the following statement (|C| is the circuit size, m is the input size and s is
the security parameter):

Theorem 1. ([AL07]) There exist a two-party computation protocol secure
against covert adversaries with deterrence value 1 − 1/t such that the protocol
runs in a constant number of rounds, and requires O(t|C|+ tsm) communication
between the two players.

Our Protocol. We now design a secure two-party computation protocol in
presence of covert adversaries for which the deterrence probability 1 − 1/t, for
any value of t polynomial in the security parameter, comes almost for free in
terms of the communication complexity of the protocol (assuming the circuit
being evaluated is large enough). In the remiander of the paper, we assume
familiarity with the Yao’s garbled circuit protocol.

We first observe that for the simulation-based proof of the protocol to go
through and for the simulator to be able to extract corrupted P2’s inputs, it is
not necessary to run the complete oblivious transfers early in the protocol for all
the garbled circuits. Instead, it is enough to go as far in the steps of the OTs as
is necessary for party P2 to be committed to his input bits while party P1 is still
free to choose his inputs to the OT. Parties then postpone the remaining steps of
the OTs until later in the protocol when one circuit among the t garbled circuits
is chosen to be evaluated. With some care, this leads to asymptotic improvement
in communication complexity of our protocol.

To achieve further improvement in communication complexity, we take a dif-
ferent approach to constructing the garbled circuit. In order to compute a garbled
circuit (and the commitments for input keys), party P1 generates a short random
seed and feeds it to a pseudorandom generator in order to generate the neces-
sary randomness. He then uses the randomness to construct the garbled circuit
and the necessary commitments. When the protocol starts, party P1 sends to
P2 only a hash of each garbled circuit using a collision-resistant hash function.
Later in the protocol, in order to expose the secrets of each circuit, party P1 can
simply send the seeds corresponding to that circuit to P2, and not the whole
opened circuit. In the full version of this paper, we describe in more detail, how
to generate the garbled circuit in this way.

Before describing the details of our protocol, it is helpful to review a trick
introduced by [LP07] for preventing a subtle malicious behavior by a corrupted
1 The garbled circuits are constructed according to Yao’s garbled circuit protocol(see

[LP04] for a detailed explanation).
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P1. For instance, during an oblivious transfer protocol, a corrupted P1 can use
an invalid string for the key associated with value 0 for P2’s input bit but a
valid string for the key associated with 1. An honest P2 is bound to abort if
any of the keys he receives are invalid. But the action P2 takes reveals his input
bit to P1. To avoid this problem, we use a circuit that computes the function
g(x1, x

1
2, . . . , x

s
2) = f(x1, ⊕s

i=1x
i
2) instead of a circuit that directly computes f .

For his actual input x2, party P2 chooses s random inputs x1
2, . . . , x

s
2 such that

x2 = x1
2 ⊕ . . .⊕xs

2. This solves the problem since for P1 to learn any information
about P2’s input he has to send invalid keys for all s shares. But, if P1 attempts
to give invalid key for all s shares of P2’s input, he will get caught with expo-
nentially high probability in s. We are now ready to describe our protocol. We
borrow some of our notations from [LP04] and [AL07].

The Protocol

Party P1’s input: x1

Party P2’s input: x2

Common input: Both parties have security parameter m; for simplicity let
|x1| = |x2| = m. Parties agree on the description of a circuit C for inputs of
length m that computes function f . P2 chooses a collision-resistant hash function
h. Parties agree on a pseudorandom generator G, a garbling algorithm Garble,
a perfectly binding commitment scheme Comb, and a deterrence probability
1 − 1/t.

1. Parties P1 and P2 define a new circuit C′ that receives s + 1 inputs x1,
x1

2, . . . , x
s
2 each of length m, and computes the function f(x1, ⊕s

i=1x
i
2). Note

that C′ has m(s + 1) input wires. Denote the input wires associated with x1

by w1, . . . , wm and the input wires associated with xi
2 by wim+1, . . . , wim+m

for i = 1, . . . , s.
2. Party P2 chooses (s−1) random strings x1

2, . . . , x
s−1
2 ∈R {0, 1}m and defines

xs
2 = (⊕s−1

i=1 xi
2) ⊕ x2. The value z2 = (x1

2, . . . , x
s
2) serves as P2’s new input of

length sm to C′.
3. Parties perform the first four steps of the OT protocol of [AL07] for P2’s sm

input bits (see the full version for more detail). 2

4. Party P1 generates t random seeds s1, . . . , st of appropriate length and com-
putes GCi = Garble(G, si, C

′) for 1 ≤ i ≤ t (see the full version of this paper
for Garble() algorithm). He then sends h(GC1)), . . . , h(GCt) to P2.

5. P1 generates t random seeds s′1, . . . , s
′
t of appropriate length and computes

G(s′i) from which he extracts the randomness rb,i
j (later used to construct

a commitment) for every 1 ≤ i ≤ t, every j ∈ {1, . . . , sm + m}, and ev-
ery b ∈ {0, 1}, and the random order for the commitments to keys for
his own input wires (see next step). He then computes the commitments

2 Any other constant-round oblivious transfer protocol secure against covert adver-
saries with the property that– there exists an step in the protocol where P2 is com-
mitted to his input while P1 is still free to choose his input– can be used here as
well.
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cb,i
j = Comb(k

b,i
j , rb,i

j ) for every i ∈ {1, . . . , t}, every j ∈ {1, . . . , sm + m},
and every b ∈ {0, 1}.

6. For every 1 ≤ i ≤ t, P1 computes two sets Ai and Bi, consisting of pairs
of commitments. The order of each pair in Bi is chosen at random (using
the randomness generated by G(s′i)), but the order of each pair in Ai is
deterministic, i.e., commitment to the key corresponding to 0 comes before
the one corresponding to 1.

Ai = {(c0,i
m+1, c

1,i
m+1), . . . , (c

0,i
m+sm, c1,i

m+sm)}
Bi = {(c0,i

1 , c1,i
1 ), . . . , (c1,i

m , c0,i
m )}

P1 then sends h(A1), . . . , h(At) and h(B1), . . . , h(Bt) to P2.
7. P2 chooses a random index e ∈R {0, 1}log(t) and sends it to P1.3

8. Let O = {1 . . . e− 1, e+1 . . . t}. P1 sends to P2, si and s′i for every i ∈ O. P2

Computes h(GCi) = h(Garble(G, si, C
′)) for every i ∈ O and verifies that

they are equal to what he received from P1. He also computes G(s′i) to get
the decommitment values for commitments in Ai and Bi for every i ∈ O. P2

then uses the keys and decommitments to recompute h(Ai) and h(Bi) on his
own for every i ∈ O, and to verify that they are equal to what he received
from P1. If not, it outputs corrupted1 and halts.

9. P1 sends to P2 the actual garbled circuit GCe, and the sets of commitment
pairs Ae and Be (note that P2 only held h(GCe), h(Ae), and h(Be)). P1 also
sends decommitments to the input keys associated with his input for the
circuit.

10. P2 checks that the values received are valid decommitments to the com-
mitments in Be (he can open one commitment in every pair) and outputs
corrupted1 if this is not the case.

11. Parties perform steps 5 and 6 of the OT protocols (see the full version of
this paper for details regarding how this is done). P1’s input to the OTs are
random strings corresponding to the eth circuit. As a result, P2 learns one
of the two strings (k0,e

i+m||r1,e
i+m, k1,e

i+m||r1,e
i+m) for the ith OT (1 ≤ i ≤ sm).

12. P2 learns the decommitments and key values for his input bits from the OTs’
outputs. He checks that the decommitments are valid for the commitments
in Ae and that he received keys corresponding to his correct inputs. He
outputs corrupted1 if this is not the case. He then proceeds with computing
the garbled circuit C′(x1, z2) = C(x1, x2), and outputs the result. If the
keys are not correct and therefore he cannot compute the circuit, he outputs
corrupted1.

13. If at anytime during the protocol one of the parties aborts unexpectedly, the
other party will output abort and halt.

The general structure of our proof of security is the same as the proof in
[AL07]. Due to lack of space details of the simulation are given in the full version
of this paper. The following claim summarizes our result.

3 For simplicity we assume that t is a power of 2.
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Claim. Assuming that h is a collision-resistant hash function, Comb is a perfectly
binding commitment scheme, and G is a pseudorandom generator, then the above
protocol is secure against covert adversaries with deterrence value 1 − 1/t. The
protocol runs in a constant number of rounds, and requires O(|C| + sm + t)
communication between the two players.

3.2 Extension to General Secure Two Party Computation

Our technique of only sending a hash (using a collision resistant hash function)
of circuits and commitments directly generalizes to to the case of secure two
party computation in the standard malicious adversary model.

Almost all the existing works for defending Yao’s garbled circuit protocol
against malicious adversaries in an efficient way [MF06,LP07,Woo07] use the
cut-and-choose techniques. More specifically, party P1 sends t garbled circuits
to P2; half of the circuits are chosen at random and their secrets are revealed
by P1; the remaining circuits are evaluated and the majority value is the final
output of the protocol. Additional mechanisms are used to verify input consis-
tency and to force the parties to use the same input values for majority of the
circuits. Using our new garbling method and sending hash of circuits instead of
the circuits themselves (as discussed previously) we automatically improve effi-
ciency of these protocols. By carefully choosing the number of hashed garbled
circuits and the fraction of circuits that are opened, we can make the efficiency
gain quite substantial. Please see the full version of this paper for more detail
on good choices of parameters. Next we outline some of these efficiency gains
through some concrete examples.

Efficiency in Practice. For simplicity we demonstrate our improvements via
comparison with the equality-checker scheme of [MF06] since a detailed analysis
for it is available in [Woo07]. But, it is important to note that our techniques lead
to similar improvements to all of the most-efficient protocols in the literature such
as the expander-checker scheme of [Woo07] and the scheme proposed in [LP07]
which also provides simulation-based security. Details of the modifications to the
original equality-checker scheme are given in the full version of this paper.

By setting the parameters of the protocol (as we show in the full version
of this paper), we can make the modified equality-checker (equality-checker-2)
superior to the original one (equality-checker-1) in practice. The optimal choice
of parameters depends on several factors such as the circuit size, the input size,
and the size of the output of hash function. We work out some of these numbers
in the full version to highlight the efficiency gained by using our techniques.
Consider the following examples where the circuit are taken from [MNPS04].
Using those numbers, for a circuit that compares two 32-bit integers using 256
gates, our protocols roughly lead to factor of 12 improvement in communication
complexity for the same probability of undetected cheating, and for a circuit
that computes the median of two sorted arrays of ten 16-bit integers, with 4383
gates, we gain at least a factor of 30 improvement.
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4 The Multi Party Case

We construct a multi party computation protocol secure against covert adver-
saries for a given deterrence parameter 1 − 1

t . Let there be n parties denoted by
P1, . . . , Pn. The basic idea of the protocol is as follows. The parties run t par-
allel sessions, each session leading to the distributed generation of one garbled
circuit. These sessions in the protocol are called the “garbled circuit generation
sessions” (or GCG sessions in short). The protocol employed to generate these
garbled circuits in the GCG sessions is a protocol secure only against semi hon-
est adversaries and is based on the constant round BMR construction [BMR90].
Instead of employing zero knowledge proofs to go from semi-honest security to
malicious security, we employ cut and choose techniques where the parties en-
sure the honesty of each other in t − 1 random GCG sessions. This is done
by generating a shared challenge string which is used to select the one GCG
session whose garbled circuit will be used for actual computation. The parties
are required to reveal the (already committed) randomness used for every other
GCG session. For a party, given the randomness and the incoming messages, the
outgoing messages become deterministic. Hence the whole transcript of a GCG
session can be checked (given randomness used by all the parties in this session)
and any deviations can be detected.

The main problem which we face to turn this basic idea into a construction is
that the secret inputs of the honest parties might be leaked since an adversarial
party might deviate arbitrarily from the protocol in any GCG session (and this
deviation is not detected until all the sessions have finished). This is because the
distributed garbled circuit generation ideas in the BMR construction [BMR90]
make use of the actual inputs of the honest parties (so that for each input
wire, parties have the appropriate key required to evaluate the resulting garbled
circuit). To solve this problem, we modify the BMR construction “from the
inside” to enable these GCG sessions execute without using the inputs of the
parties. Our modifications also allow the parties to check honesty of each other
in these sessions without revealing their individual inputs (while still allowing
the simulator to be able to extract these inputs during the proof of security).

4.1 Building Blocks

One of the building blocks of our protocol is a secure function evaluation protocol
which is secure against honest-but-curious adversaries, and whose round com-
plexity is proportional to the multiplicative depth of the circuit being evaluated
(over Z2 = GF (2)). A textbook protocol such as that given by Goldreich [Gol04]
(which is a variant of the semi-honest GMW protocol [GMW87]) suffices. We
remark that this protocol will be used only to evaluate very short and simple
circuits (such as computing XOR of a few strings).

We also need several subprotocols which are secure against standard (not only
covert) malicious adversaries. We summarize these here:
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– Simulatable Coin Flipping From Scratch (CoinFlipPublic):
This protocol emulates the usual coin-flipping functionality [Lin01] in the
presence of arbitrary malicious adversaries. In particular, a simulator who
controls a single player can control the outcome of the coin flip.

The remaining primitives assume the availability of a common random string
σ. We assume that these primitives implement the corresponding ideal function-
ality in the CRS model.

– Simultaneous commitment (Commitσ(x1, ..., xn)): Every player chooses
a value xi and commits to it. At the end of the protocol, the vector of
commitments is known to all parties. The commitments are such that a
simulator having trapdoor information about the CRS σ can extract the
committed values.

– Open commitments (OpenComσ): Players simultaneously open their
commitments over the broadcast channel.
For the simulation to work, this protocol needs to be simulation-sound, in
the following sense: if the simulator is controlling a subset of cheating players
Pi, i ∈ Isim, then he should be able to output a valid simulation in which
all honest players lie about their committed values yet all cheating players
are constrained to tell the truth or be caught.

– Committed Coin Flipping (CommitedCoinFlipPublicσ and
CommittedCoinFlipσToPi):
Generates a commitment to a random string such that all players are com-
mitted to shares of the coin. In the second variant, Pi learns the random
string and is committed to it.

– Open coin:
Opens a committed coin to all players over the broadcast channel. The sim-
ulator should be able to control the coin flip.

These primitives can be implemented very efficiently under several number-
theoretic assumptions. For concreteness, we have described efficient instantia-
tions based on the DDH assumption in the full version of this paper. These are
summarized here.

Lemma 1. Suppose the Decisional Diffie-Hellman problem is hard in group G.
There exist secure implementations of the protocols above. The CRS protocols
(Commitσ, OpenComσ, CommitedCoinFlipPublicσ, CommittedCoinFlipσToPi) re-
quire O(n�+n2k) bits of communication each, and a shared CRS of length 2n+1
group elements. Here k is the bit length of the elements of the group G, and �
is the bit length of the strings being generated, committed, or opened. Generat-
ing a CRS of length � bits via CoinFlipPublic requires O(n2 log(n)k + n�) bits of
communication and O(log n) rounds.

4.2 Main Multiparty Protocol

We now turn to the protocol itself. Let C be a circuit corresponding to the
function f(x1, x2, . . . , xn) which the parties wish to jointly compute. We denote
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the total number of wires (including the input and output wires) in C by W , each
having index in the range 1 to W . Let F and G be pseudorandom generators with
seed length s (here s is the security parameter). The parties run the following
protocol.

Stage 0. Collectively flip a single string σ having length poly(s). The string σ is
used as a CRS for the commitment and coin-flipping in the remaining stages
of the protocol.

σ ← CoinFlipPublic

Stage 1. The parties generate the commitment to a shared challenge random
string e ∈ [t]

e ← CommitedCoinFlipPublicσ

The challenge e will later be used to select which of the GCG sessions (out
of the t sessions) will be used for actual computation. The parties will be re-
quired to show that they were honest in all other GCG sessions (by revealing
their randomness).

Stage 2. For each i ∈ [n] and S ∈ [t], collectively flip coins ri[S] of length s and
open the commitment (and decommitment strings) to Pi only:

ri[S] ← CommittedCoinFlipσToPi

Thus, a party Pi obtains a random string ri[S] for every session S ∈ [t]. All
other parties have obtained commitment to ri[S]. The random string ri[S]
can be expanded using the pseudorandom generator F . It will be used by Pi

for the following:
– To generate the share λw

i [S] ∈ {0, 1} of the wire mask λw[S] (in Stage
3 of our protocol) for every wire w in the garbled circuit GC[S] to be
generated in session S. Recall that in a garbled circuit GC[S], for every
wire w, we have two wire keys (denoted by kw,0[S] and kw,1[S]): one
corresponding to the bit on wire w being 0 and the other to bit being 1
(during the actual evaluation of the garbled circuit, a party would only
be able to find one of these keys for every wire). The wire mask determine
the correspondence between the two wire keys and the bit value, i.e., the
key kw,b[S] corresponds to the bit b ⊕ λw [S].

– To run the GCG session S (i.e., Stage 4 of our protocol). Note that we
generate the wire masks for the garbled circuits in stage 3 (instead of 4)
to enable the parties to run stage 4 without using their inputs.

Stage 3. Every player Pi is responsible for a subset of the input wires Ji, and
holds an input bit xw for each w ∈ Ji. For every w ∈ Ji, and session S, Pi

computes Iw[S] = xw ⊕ λw
i [S]. For each S, players simultaneously commit

to the value Iw for each of their input wires (each input wire is committed
to by exactly one player):{
COM(Iw [S]) : input wires w

}
← Commitσ

(
{Iw[S] : S ∈ {1, ..., t}, w ∈

input wires }
)
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Recall that exactly one of the sessions will be used for actual secure function
evaluation. In that session, the above commitment will be opened and xw ⊕
λw

i [S] will be revealed (however λw
i [S] will remain hidden). In rest of sessions

where the garbled circuit generated will be opened and checked completely
by all the parties, the wire mask share λw

i [S] will be revealed (since its
a part of the garbled circuit description and generated using randomness
ri[S]). However the above commitment to xw ⊕λw

i [S] will not be opened for
those sessions. This ensures the secrecy of the input xw (while still allowing
to simulator to extract it in our proof of security).

Stage 4. This is the stage in which the parties run t parallel garbled circuit
generation session. This stage is based on the BMR construction but does
not make use of the inputs of the parties. Each session in this stage can be
seen as an independent efficient protocol (secure against honest but curious
adversaries) where:
– In the beginning, the parties already hold shares of the wire masks λw

i [S]
to be used for the garbled circuit generation (as opposed to generating
these wire masks in this protocol itself).

– In the end, the parties hold a garbled circuit GC[S] for evaluating the
function f . Furthermore, each party also holds parts of the wire keys
for input wires (such that when for all input wires, all the parts of the
appropriate wire key are broadcast, the parties can evaluate the gar-
bled circuit; which key is broadcast is decided by the openings of the
commitments of stage 3).

We now describe this stage in more detail.
1. Pi broadcasts the wire mask shares λw

i [S] for all input wires belonging
to other players (i.e., for w not in Ji), and for all output wires. Thus only
the masks for Pi’s inputs, and for internal wires, remain secret from the
outside world . Note that λw[S] =

⊕n
i=1 λw

i [S] is the wire mask for wire
w. Each player holds shares of the wire masks.

2. For every wire w of the circuit C, Pi generates two random key parts
kw,0

i [S] and kw,1
i [S]. The full wire keys are defined as the concatenation

of the individual key parts. That is, kw,0[S] = kw,0
1 [S]◦ . . . ◦kw,0

n [S] and
kw,1[S] = kw,1

1 [S]◦ . . . ◦kw,1
n [S].

3. Recall that for every gate in the circuit, the wire keys of incoming wires
will be used to encrypt the wire keys for outgoing wires (to construct
what is called a gate table). However it is not desirable to use a regu-
lar symmetric key encryption algorithm for this purpose. The reason is
that the gate tables will be generated by using a (honest but curious)
secure function evaluation protocol (see next step) and the complexity
of the circuit to be evaluated will depend upon the complexity of the
encryption algorithm. To avoid this problem, the parties locally expand
their key parts into large strings (and then later simply use a one time
pad to encrypt). More precisely, Pi expands the key parts kw,0

i [S] and
kw,1

i [S] using the pseudorandom generator G to obtain two new keys,
i.e.,(pw,�

i [S], qw,�
i [S]) = G(kw,�

i [S]), for � ∈ {0, 1}. Each of the new keys
has length n|kw,�

i [S]| (enough to encrypt a full wire key).
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4. The players then run a Secure Function Evaluation protocol secure
against honest-but-curious adversaries to evaluate a simple circuit to
generate the gate tables. This stage is inspired by a similar stage of the
Beaver et al. protocol [BMR90]. This is the step that dominates the com-
putation and communication complexity of our construction. However as
opposed to BMR, the underlying multi-party computation protocol used
here only needs to be secure against semi-honest adversaries. More de-
tails follow.

For every gate g in the circuit C, define a gate table as follows. Let
a, b be the two input wires and c be the output wire for the gate g,
and denote the operation performed by the gate g by ⊗ (e.g. AND, OR,
NAND, etc). Before the protocol starts, Pi holds the following inputs:
pa,�

i [S], qa,�
i [S], pb,�

i [S], qb,�
i [S], kc,�

i [S] where � ∈ {0, 1} along with shares
λa

i [S], λb
i [S], λc

i [S] of wire masks λa[S], λb[S], λc[S]. Pi runs the protocol
along with other parties to compute the following gate table:

Ag = pa,0
1 [S]⊕ . . . ⊕pa,0

n [S]⊕pb,0
1 [S]⊕ . . .⊕pb,0

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S] ⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

Bg = qa,0
1 [S]⊕ . . . ⊕qa,0

n [S]⊕pb,1
1 [S]⊕ . . . ⊕pb,1

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S] ⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

Cg = pa,1
1 [S]⊕ . . . ⊕pa,1

n [S]⊕qb,0
1 [S]⊕ . . . ⊕qb,0

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S] ⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

Dg = qa,1
1 [S]⊕ . . . ⊕qa,1

n [S]⊕qb,1
1 [S]⊕ . . .⊕qb,1

n [S]

⊕
{

kc,0
1 [S]◦ . . . ◦kc,0

n [S] if λa[S] ⊗ λb[S] = λc[S]
kc,1
1 [S]◦ . . . ◦kc,1

n [S] otherwise

This circuit has multiplicative depth 2. If we use the honest-but-curious SFE
protocol from [Gol04], this stage requires a constant number of rounds.

At the end of this phase, for each session S, the parties hold a garbled
circuit GC[S] (which consists of the gate tables as generated above, along
with the wire masks λw[S] for each output wire w).

Stage 5. The parties now open the challenge e generated in Step 3, using
OpenComσ.

Stage 6. For each session S �= e, each party Pi opens the commitment to ri[S]
generated in Step 1. Given r1[S], . . . , rn[S], all the wire mask shares and the
protocol of Stage 4.2 become completely deterministic. More precisely, each
player can regenerate the transcript of Stage 4.2, and can thus verify that
all parties played honestly for all sessions S �= e. If Pi detects a deviation
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from the honest behavior, it aborts identifying the malicious party Pj who
deviated.

Note that the only point so far where the parties were required to use
their inputs is Stage 3 (where Pi committed to xw ⊕ λw

i [S] for all w ∈ Ji).
However these commitments were not used in any other stage. Hence, since
these commitments have not yet been opened nor used anywhere else, if the
players abort at this stage then no information is learned by the adversary.

Once the parties successfully get past this stage without aborting, we have
a guarantee that the garbled circuit GC[e] was correctly generated except
with probability 1

t . Thus, 1
t bounds the probability with which an adversary

can cheat successfully in our protocol.
Stage 7. For all input wires w ∈ Ji, Pi now opens the commitments COMw[e]

(see Stage 3) using OpenComσ, thus revealing Iw = λw
i [e] ⊕ xw . Set Lw =

Iw ⊕
⊕i−1

j=1 λw
j [e] ⊕

⊕n
j=i+1 λw

j [e] (where λw
j [e] was broadcast in stage 4(a)),

i.e., Lw = λw[e] ⊕ xw. Every party P�, 1 ≤ � ≤ n broadcasts the key parts
kw,Lw

� [e].
Stage 8. Pi now has the garbled circuit GC[e] as well the wire keys kw,Lw

[e] =
kw,Lw

1 [e]◦ . . . ◦kw,Lw

n [e] for all input wires w of the circuit. Hence Pi can now
evaluate the garbled circuit on its own in a standard manner to compute
the desired function output C(x1, x2, . . . , xn). For more details on how the
garbled circuit GC[e] is evaluated, see [BMR90].

The following theorem summarizes our result. See the full version of this paper
for the analysis of our construction.

Theorem 2. If the coin-flipping and commitment primitives are secure against
malicious adversaries and the SFE scheme is secure against honest-but-curious
adversaries, then the above construction is secure in the presence of covert ad-
versaries with 1 − 1

t deterrence.
If we instantiate the coin-flippping and commitment primitives as in Lemma 1,

and use the SFE scheme of [Gol04], then the protocol above requires O(log n)
rounds and a total of O(n3ts|C|) bits of communication to evaluate a boolean
circuit of size |C|, where s is the security parameter (the input size of a pseu-
dorandom generator). The computational complexity is the same up to polyloga-
rithmic factors.

If we use the constant-round coin-flipping protocols of Katz et al. [KOS03]
or Pass [Pas04], then the protocol above runs in constant rounds, but requires
substantially slower (though still polynomial) computations.

The protocol above is the first multiparty protocol we know of which is tailored to
covert adversaries. As a point of comparison, to our knowledge the most efficient
protocol secure against malicious adversaries that tolerates up to n−1 cheaters is
that of Katz et al. [KOS03]. The running time of the KOS protocol is dominated
by the complexity of proving statements about circuits of size O(n3s|C|) (this is
the cost incurred by compiling an honest-but-curious SFE protocol). In contrast,
our protocol runns in time Õ(n3st). Thus, the contribution of this protocol can be
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seen as relating the complexity of security against covert adversaries to security
against honest-but-curious adversaries:

Cost of deterrence 1 − 1
t

against covert adversaries

� t ·
(
Cost of honest-but-curious garbled circuit generation

)
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Abstract. Secure multi-party computation (MPC) is a central problem in cryp-
tography. Unfortunately, it is well known that MPC is possible if and only if the
underlying communication network has very large connectivity — in fact, Ω(t),
where t is the number of potential corruptions in the network. This impossibil-
ity result renders existing MPC results far less applicable in practice, since many
deployed networks have in fact a very small degree.

In this paper, we show how to circumvent this impossibility result and achieve
meaningful security guarantees for graphs with small degree (such as expander
graphs and several other topologies). In fact, the notion we introduce, which we
call almost-everywhere MPC, building on the notion of almost-everywhere agree-
ment due to Dwork, Peleg, Pippenger and Upfal, allows the degree of the network
to be much smaller than the total number of allowed corruptions. In essence, our
definition allows the adversary to implicitly wiretap some of the good nodes by
corrupting sufficiently many nodes in the “neighborhood” of those nodes. We
show protocols that satisfy our new definition, retaining both correctness and
privacy for most nodes despite small connectivity, no matter how the adversary
chooses his corruptions.

Instrumental in our constructions is a new model and protocol for the secure
message transmission (SMT) problem, which we call SMT by public discussion,
and which we use for the establishment of pairwise secure channels in limited
connectivity networks.

Keywords: Secure multi-party computation, secure message transmission,
almost-everywhere agreement, expander graphs, bounded-degree networks.

1 Introduction

Secure multi-party computation (MPC) [33,21,2,6] is one of the most fundamental prob-
lems in cryptography.Simply put, in MPC n players jointly compute and obtain the value
of an arbitrary n-ary polynomial-time computable function on their inputs, in such way
that even if some fraction of the players are corrupted by a malicious adversary, the cor-
rect outputs as well as the privacy of the inputs of the uncorrupted (honest) players are
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guaranteed. After its formulation, MPC has been studied extensively, and many flavors
with regards to, for example, the type of corruptions allowed by the adversary, its com-
putational power, and definitions of security, have been considered in the literature.

In this paper our focus is on unconditional, or information-theoretic, secure multi-
party computation, as considered in [2,6], where no restrictions are placed on the
computational power of the adversary. In this setting, assuming that players can commu-
nicate with every other player over not only dedicated but also private communication
channels, MPC is achievable as long as more than 2

3 of the players remain uncorrupted.
Moreover, this bound on the number of players is tight.

The above scenario, however, assumes point-to-point private communication chan-
nel between every pair of players. In fact, with a few noted exceptions (more on this
below), this is not only true for unconditional MPC, but for most of the work on other
models as well. Since reliable, let alone private communication is costly to achieve,
fully connected networks sound like a prohibitive proposition. Indeed, this question
was posed by Dolev [9], and later by Dolev, Dwork, Waarts and Yung [10], whose com-
bined results show that in fact if there are t corrupted players, then (2t+1)-connectivity
is both necessary and sufficient for unconditional MPC. On the other hand, typically in
practical networks most nodes have a very small connectivity, which is independent of
the size of the network.

In this paper, we show that meaningful statements about unconditional MPC can
be made even if every node has small, even constant, connectivity. Clearly, in such a
setting, we must give up on some of the honest nodes, for example, in the case of such
nodes being totally “surrounded” in the network by corrupted nodes; still, we would
like to be able to guarantee the security of a large fraction of uncorrupted nodes.

Our notion of ”giving up” nodes originates from the notion of almost-everywhere
agreement proposed by Dwork, Peleg, Pippenger and Upfal [11], who study how to
achieve Byzantine agreement [26,25] in a limited connectivity setting. We build on the
notions developed in [11], and in some sense, our central result can be viewed as a
generalization of theirs. In essence, given a broadcast channel (implied by Byzantine
agreement) and a constant number of uncorrupted paths among a large subset of nodes
in the network, we show how to implement secure (i.e., reliable and private) channels
among them, and thus achieve almost-everywhere MPC. “In essence” because apart
from the construction, as opposed to just achieving the correctness property for a par-
ticular MPC instance (Byzantine agreement), substantial additional efforts are required
in order to capture the privacy requirement of general MPC, particularly in the case of
adaptive corruptions, and proving it correct.

One of the tools that we use to achieve the above transformation, which we call
secure message transmission by public discussion, might be of independent of interest.
As mentioned above, Dolev et al. [10] show a tight (2t + 1)-connectivity bound for
the (perfectly) secure message transmission (SMT) problem, of one node sending a
message perfectly privately and correctly to another node over a network. That many
channels, in fact, are needed to establish a public channel (no privacy concerns, only
reliability). In our model, a public channel for large subsets of nodes can be constructed
in a different way, and thus we are able to let the adversary corrupt all but one of the
channels connecting those nodes, at the expense of a small error.
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We stress that while in almost-everywhere MPC we give up the privacy and correct-
ness of some of the nodes, we consider this a realistic assumption. Indeed, the require-
ments on a corrupted node are also given up in the classical model of MPC, and what we
define here is a model where the adversary by corrupting some t nodes, can potentially
corrupt another set of t′ nodes, which depends on t and the particular network. How-
ever, as long as the entire set is sufficiently small, i.e., t + t′ < n

3 , it is guaranteed that
the rest of the nodes can achieve the requirements of secure multi-party computation,
even on networks with bounded degree.

Related work. As already mentioned, our new notion is closely related to the concept
of almost-everywhere agreement introduced in [11], and further explored in [30,5]. We
review the results in [30] in Section 4.3, where we describe especial networks where
almost-everywhere MPC can be achieved.

We also already mentioned the relation of our tool for secure channels to the prob-
lem of perfectly secure message transmission [10], which has been further studied in,
e.g., [28,8,29,1,12,24]. In [15], Franklin and Wright take a different approach and study
the necessary and sufficient conditions for secure message transmissions over multicast
lines.

Our model for secure message transmission by public discussion is also related to the
one used in privacy amplification and secret key agreement ([4,3] and extensive number
of follow-ups), where there also is an authentic public channel, and a private channel
which the adversary is allowed to eavesdrop and/or tamper, depending on the various
sub-models. Our problem can be viewed as a special instance of secret key agreement
in the presence of severe tampering and transmission errors, but for a very specialized
tampering function, if we view all the channels as a combined channel.

“Hybrid” failure models have been considered in the literature, where the adversary
is allowed to maliciously corrupt some fraction of the players and in addition to cause
some more benign form of failure to some other players [19,14]. In [14] in particular,
Fitzi, Hirt and Maurer allow the adversary to eavesdrop on the additional players. In
our model, the potential additional eavesdropping (as well as violation of correctness)
is defined structurally, given the graph topology and the location of the truly corrupted
nodes.

Finally, the problem statement of almost-everywhere secure computation, as well
as the overall approach are joint work with Shailesh Vaya [31,17,18]. (See Acknowl-
edgements for a more detailed account on this collaboration.) The work reported in [32]
follows this approach as well: adding privacy to networks that admit almost-everywhere
agreement, using a protocol cast there as achieving secret key agreement by public dis-
cussion (see above). Besides several other issues, a salient difference (shortcoming)
in [32] is the approach to a simulation-based security definition [22], where the ideal-
world adversary (the simulator), besides having access to the inputs of the corrupted
players, is also given access to the inputs of the honest players that are given up; such
a strong assumption gives the simulator an additional unfair advantage compared to the
real-world adversary. In contrast, in this paper we propose an indistinguishability-based
security definition, known to be weaker than simulation-based, but meaningful. Further
remarks on definitional issues are included in Sections 2.2 and 5.
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Organization of the rest of the paper and our contributions. The rest of the paper
is organized as follows. In Section 2 we present the model for and our definition of
almost-everywhere MPC, together with other building blocks that will be used in our
construction. In Section 3 we present the new model and protocol for SMT by pub-
lic discussion, which we then use to obtain secure channels. Section 4 is dedicated to
almost-everywhere MPC. First (Section 4.1), we define a class of graphs with special
properties, which we call almost-everywhere admissible graphs. The literature on
almost-everywhere agreement describes several such graphs; however, not all of them
are suited to satisfy the privacy requirements of our application. We show an efficient
transformation of graphs Gn with degree d that allow almost-everywhere agreement
into a graph G2nof degree O(d) that is almost-everywhere admissible. We then show
(Section 4.2) how to construct protocols for almost-everywhere MPC on such graphs
satisfying our definition, followed by concrete results for some specific networks (Sec-
tion 4.3). We conclude in Section 5 with a summary and directions for future work.

2 Model, Definitions and Tools

In this paper we consider networks (graphs) G = (V, E) that are not fully connected, as
in [11,30,5]. We let |V | = n. We will also refer to the nodes in V as “players,” and to the
edges in E as (communication) links or channels. The networks are synchronous, and
the computation can be divided into rounds; in each round, a player may send a (possi-
bly different) message on each of its incident links, and messages sent in one round are
delivered before the next round. Up to t of the players can be actively corrupted by an
adversary A; we will use T ⊂ V , |T | = t to denote the set of corrupted players, and
sometimes we will refer to A as a t-adversary. We assume that A has unlimited compu-
tational power, and, furthermore, that A is rushing, meaning he can learn the messages
sent by the uncorrupted players in each round before deciding on the messages of cor-
rupted players for this round, and adaptive, meaning that information obtained from a
set of corrupted players at a particular round can affect the choice of the next player(s)
to be corrupted.

2.1 Building Blocks

Our protocols for almost-everywhere MPC will be using several building blocks, in-
cluding almost-everywhere agreement [11], verifiable secret sharing (VSS) [7], and a
new primitive introduced in this paper that we call secure message transmission by
public discussion (Section 3).

Byzantine agreement and almost-everywhere agreement. We start with the standard
definition of Byzantine agreement [25,26]. Here the network model is that of a fully
connected network of pairwise authenticated channels.

Definition 1. A protocol for parties {P1, . . . , Pn}, each holding an initial value vi, is
a Byzantine agreement protocol if the following conditions hold for any t-adversary:

– AGREEMENT: All honest parties output the same value.
– VALIDITY: If for all honest parties vi = v, then all honest parties output v. �
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It is known that n > 3t is necessary and sufficient for Byzantine agreement [25,26],
and there exist efficient (polynomial-time and round-optimal) deterministic protocols
achieving it [16]. We will in fact rely on the related task called broadcast, where there
is a distinguished player (the sender) P ∗ holding an initial value v. The agreement con-
dition remains the same as above; validity requires that if the sender is honest, then all
honest players output v. Broadcast easily reduces to Byzantine agreement, preserving
the above bound on the number of players (in the information-theoretic setting).

In [11], Dwork, Peleg, Pippenger and Upfal relax the full (more specifically, Ω(t))
connectivity requirement of the original Byzantine agreement formulation, proposing
almost-everywhere agreement — “almost everywhere” because with partial connectiv-
ity agreement involving all the honest players is not possible and one must settle for
agreement with exceptions, where some of the honest players are left out. Thus, in this
context, the number of exceptions constitutes another relevant parameter for agreement
and broadcast protocols. Dwork et al. consider several classes of networks depending
on their degree; the general approach, however, is to show how to simulate the sending
of a message from one player to another in the fully connected setting by a transmis-
sion scheme working over multiple paths on the partially connected network in such a
way that if none of the players belongs to a set, call it T +, which includes the set of
corrupted players (T ) plus the left-out honest players, then the simulation is faithful.
In turn, this makes it possible to simulate any Byzantine agreement protocol for fully
connected networks which does not rely on the privacy of the links by treating players
from T + as corrupted. We further review and apply some of the results in [11], as well
as those in follow-up work [30], in Section 4.3.

As before in the full connectivity case, an almost-everywhere broadcast protocol can
be derived by having the sender first (attempt to) send his value to all other players
using the transmission simulation scheme, and then having all players run the almost-
everywhere agreement protocol; for an honest sender in T + the validity condition is
not guaranteed, but agreement guarantees that all the players in V − T+ will output the
same value.

Verifiable secret sharing. Here the network model is that of a fully connected network
of pairwise secure channels. One of the players is given a special role of being the dealer
D. A VSS protocol consists of two phases: in the first phase, the dealer D distributes a
secret s, while in the second, taking place possibly at a later time, the players cooperate
in order to retrieve it. A more detailed specification is as follows:

Sharing phase: The dealer initially holds secret s ∈ K where K is a finite field
of sufficient size; at the end of the phase each player Pi holds some private
information vi.

Reconstruction phase: Each player Pi reveals his private information vi. Then, on the
revealed information v′i (a corrupted player may reveal v′i �= vi), a reconstruction
function is applied in order to compute the secret, i.e., s = Rec(v′1, . . . , v

′
n).

The guarantees that are required from a VSS protocol are as follows.

Definition 2. An n-player protocol is called a (perfect) (n, t)-VSS protocol if, for any
t-adversary, the following condition holds:
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– PRIVACY: If D is honest, then the adversary’s view during the sharing phase re-
veals no information about s. More formally, the adversary’s view is identically
distributed under all different values of s.

– CORRECTNESS: If D is honest, then the reconstructed value is equal to the
secret s.

– COMMITMENT: After the sharing phase, a unique value s∗ is determined which will
be reconstructed in the reconstruction phase; i.e., s∗ = Rec(v′1, · · · , v′n) regardless
of the information provided by the corrupted players. �

It is known that n > 3t is necessary and sufficient for VSS [2], and there exist efficient
protocols achieving it [20,13]1. If an (negligible) error is allowed, and additionally a
broadcast channel is given, then n > 2t suffices [27].

The last tool that we will be using, secure message transmission by public discussion,
we treat separately in Section 3.

2.2 Almost-Everywhere MPC

We now turn to the formulation of almost-everywhere secure multi-party computation.
It follows from results in [9,10] that in the type of networks that we are considering,
it is not possible to establish secure channels between every pair of nodes, a known
requirement for MPC. Indeed, depending on connectivity patterns, some nodes in V
may have a majority (or even all) of the links coming from nodes controlled by A.
Thus, and as in [11,30,5] in the context of almost-everywhere agreement, our approach
to secure multi-party computation on such networks is also to “give up” on those nodes.

More formally, let V denote the power set of V , V(≤t) the set of all subsets of V of
size at most t, and let X : V(≤t) → V be a function with the following properties:

1. X is monotically increasing, i.e., T1 ⊂ T2, implies X (T1) ⊂ X (T2); and
2. T ⊂ X (T ).

We say a protocol Π achieves X secure multi-party computation (X-MPC for short),
where X

def= maxT⊂V,|T |=t{|X (T )|}, if for every subset T of nodes controlled by the
t-adversary by the end of the protocol, there exists a set W ⊂ V of uncorrupted players,
|W | ≥ n − X , such that all the players in W are able to perform secure multi-party
computation. In the case of a fully connected network, X (T ) = T . Sometimes we will
refer to the players in W as privileged, and to the players in X (T ) − T as doomed.

Recall that the two main requirements in MPC are correctness of the output of the
function being computed and privacy of the honest players’ inputs. Prior work men-
tioned above for the limited connectivity setting was only concerned with the correct-
ness of a function; given the additional privacy requirement of MPC, specifying what
“to able to perform secure multi-party computation” means becomes more challenging.
This gets further complicated by the fact that we are considering adaptive adversaries,
which implies that the sets defined above might change (in particular, the set of given-
up players will grow) during the execution of the protocol, and we would like, for any
protocol, to state security guarantees for the honest players as these sets change.

1 In fact, these protocols additionally assume the availability of a broadcast channel, which can
be implemented on the fully connected point-to-point network, since n > 3t.
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The “commit-and-compute” paradigm. Typically, MPC protocols to compute a func-
tion on the inputs of the players f(x1, x2, · · · , xn) (assuming for simplicity that all the
players get the same result) tolerating active adversaries would start with the players ex-
ecuting a commitment phase, where the players’ inputs are shared among the rest of the
players, followed by a computation phase, followed by an output phase. For X-MPC,
we make the commitment phase explicit and part of the definition, as this will allow us
to precisely state the conditions on nodes in an unfavorable connectivity situation.

Definition 3. Let Gn = (V, E), |V | = n be a network, and T , X (T ), X and W as
defined above. An n-player two-phase protocol is an X secure multi-party computation
protocol if for any probabilistic polynomial-time computable function f , the following
two conditions are satisfied at the end of the respective phases:

Commitment phase: During this phase, all players in V commit to their inputs.
– BINDING: For all Pi ∈ V , there is a uniquely defined value x∗i ; if Pi ∈ W ,

then x∗i = xi.
– PRIVACY: For all players Pi ∈ W , x∗i is information-theoretically hidden.

Computation phase:
– CORRECTNESS: For all players Pi ∈ W , f(x∗1, x∗2, · · · , x∗n) is the value output

by Pi.
– PRIVACY: Consider two runs of the protocol such that X (T1) = X (T2) (and

thus W1 = W2 = W ) and let
−→
x∗S denote the vector of committed inputs corre-

sponding to players in a given set S. If for all
−→
x∗W ,

−−−−→
z∗X (T1)

,
−→
y∗W ,

−−−−→
z∗X (T2)

it holds

that f(
−→
x∗W ,

−−−−→
z∗X (T1)

) = f(
−→
y∗W ,

−−−−→
z∗X (T2)

), then the adversary’s views in the two
runs are statistically indistinguishable. �

We now make some remarks regarding our X-MPC definition.

Remark 1. In the adaptive-adversary setting, the sets T , X (T ) and W might change
dynamically during the execution of a protocol. Thus, we stress that in the definition
above these sets are always defined with respect to the completion of a phase.

Remark 2. It is well known that an information-theoretic definition of privacy in terms
of indistinguishability is weaker than a simulation-based counterpart. For example, con-
sider a secure — according to our definition — multi-party protocol to compute f(x) for
a one-way permutation f , where x should remain hidden from all players. Information
theoretically, the computation of f(x) and the computation that would reveal x reveals
the same amount of information to an infinitely powerful adversary; however, in the
latter case, clearly x does not remain hidden. This example, due to Canetti, illustrates
that one should not “mix” information-theoretic notions and computational notions, and
that only suitable properties, such as those guaranteed by information-theoretically se-
cure MPC protocols ([2,6] and follow-ups), will remain secure according to our defini-
tion. See Section 5 for further remarks on simulation-based definitions for the X-MPC
setting.

Before turning to protocols for X-MPC, in the next section we introduce the last tool
that our protocols will be using, which will allow for the establishment of secure chan-
nels in the limited connectivity setting.
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3 Secure Message Transmission by Public Discussion

Let us first specify the (new) communication model that we are considering in this
section; we will then relate this model to the X-MPC context. Here we consider just
two players, S and R, connected by a set of channels C = {C1, ..., CN}, the contents
of all but one of which can be eavesdropped and modified (in an arbitrary manner) by
an adaptive, computationally unbounded adversary A. Additionally, S and R have at
their disposal an authentic and reliable public channel Pub.

The goal is to realize, using this communication model, a means for S to securely
send messages to R, a functionality known as secure message transmission (SMT) [10].
We will later be using this version of SMT in Section 4, to realize secure channels
between nodes that are not directly connected, but with a connectivity pattern that can
be abstracted out as the one considered in this section. First, we recall the properties of
SMT.

Definition 4. A protocol between S and R achieves secure message transmission if it
transmits a message from S to R such that the following two conditions are satisfied:

– CORRECTNESS: R learns the message except with probability ε.
– PRIVACY: A does not get any information about the message being transmitted. �

We now describe such protocol. Let M denote the space of (without loss of general-
ity) q-bit messages. Let � be such that:

1. � ≥ q, and

2. � > c log N
ε , for suitable c (specified later).

We also assume the availability of an error-correcting code tolerating a constant fraction
of errors and constant blow-up; for concreteness, say up to 1

4 of errors can be corrected,
and that a q-bit message maps to a 12q-bit codeword. Let Enc and Dec be the code’s
associated functions. The protocol, called PUB-SMT, is shown in Figure 1.

Theorem 1. Protocol PUB-SMT, running on the network described above, is a four-
round SMT protocol according to Definition 4, transmitting O(max(q, log N

ε )) bits on
each of the N channels and N · O(max(q, log N

ε )) bits over the public channel.

Proof

CORRECTNESS: Correctness would not hold if adversary A is able to corrupt Round
1 messages over any of the N channels and remain undetected. For each channel
Ci, this would happen if A is able to corrupt more than 3� bits. The probability of
detecting one of these changes when one bit is revealed in Round 2 is at least 1

5 ;
thus, the probability that A remains undetected when 3� bits are revealed is less
than (4

5 )3�. That’s for each individual channel. The probability that A succeeds on

any channel is N(4
5 )3�. Setting N(4

5 )3� < ε yields � >
log N

ε

3 log 5
4

= O(log N
ε ).

PRIVACY: Since according to the formulation of the problem, at least one channel (say,
channel Cj ) remains hidden from the adversary, this channel will always remain in



Almost-Everywhere Secure Computation 315

Protocol PUB-SMT , ,

1. Over each channel C , sends to uniformly chosen random bit
string , . Let , , be the string received by on channel
C . rejects all channels where .

2. Let denote with randomly chosen positions (for each chan-
nel) replaced with “ .” For each C , sends to over Pub.

3. For all channels C , if and differ in any of the “opened” bits,
declares channel C as “faulty.” I.e., sends to over Pub an -bit string

which identifi es the faulty channels (say, as ).
Let C C C , , denote the set of remaining, non-faulty chan-
nels, and , , , denote the corresponding string of unopened
bits; let be the corresponding string in ’s possession.

4. Let (if , pad accordingly). For ,
chooses such that , and sends Enc ,

, over Pub.
For , fi rst computes Dec , and then

to retrieve the message.

Fig. 1. Protocol for secure message transmission by public discussion

the set of non-faulty channels C, and thus any message will be masked by this
channel’s bits. Hence, for all messages M1, M2 ∈ M and for all adversaries A,
the distribution of A’s view when M1 is transmitted is identical to the distribution
when M2 is transmitted.

The communication complexity is easily established by inspection. ��

The availability of the public channel makes it possible to tolerate a powerful adversary,
who is allowed to eavesdrop and/or change the contents of all but one of the N channels.
As mentioned at the beginning of the section, our application of SMT by public discus-
sion to almost-everywhere MPC will be to provide secure channels between nodes that
are not directly connected in the underlying network, and this section’s channels will be
instantiated by disjoint paths. Thus, in order to guarantee privacy not only with respect
to the adversary, but also with respect to the other honest players, we will be requiring
that at least two, instead of just one, of the channels (paths) remain untouched (i.e., the
corresponding nodes remain uncorrupted) by the adversary. We show how to achieve
this in the next section.

4 Almost-Everywhere Secure Multi-party Computation

In this section we first consider graphs with some special properties, which we call
almost-everywhere admissible graphs, and which will constitute our candidate networks
for almost-everywhere MPC. The literature on almost-everywhere agreement [11,30,5]
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describes several classes of such graphs; however, not all of them are suited to satisfy the
privacy requirement of almost-everywhere MPC mentioned above. First, given graphs
with degree d = d(n) that allow almost-everywhere agreement — more specifically,
almost-everywhere broadcast, we show an explicit transformation to a new graph with
degree O(d) satisfying the requirement. We then show a protocol for almost-everywhere
MPC on this type of graphs, followed by instantiations of our results on concrete
networks.

4.1 Almost-Everywhere Admissible Graphs

First, a more general definition, to succintly express graphs whose sets of privileged
nodes have a minimum of uncorrupted paths connectivity as well as a broadcast channel.

Definition 5. Let Gn = (V, E), |V | = n be a graph, T ⊂ V , |T | ≤ t, X : V(t) → V
a monotically increasing function and W = V − X (T ). We say that Gn is almost-
everywhere (i, t)-admissible ((i, t)-admissible for short) if the following two conditions
are satisfied:

1. Nodes in W can successfully run almost-everywhere broadcast protocols with poly-
nomial message complexity2 ; and

2. there exists a computable map SELECT-PATH(Gn, u, v) outputting a set PATHS
(u, v) such that
(a) for all u, v ∈ V , |PATHS(u, v)| ∈ O(poly(n));
(b) for all u, v ∈ W , PATHS(u, v) contains at least i disjoint paths fully contained

in W . �

Further, if both procedures in conditions 1 and 2 — the almost-everywhere broadcast
protocol and map SELECT-PATH, respectively — are efficiently computable, we call
Gn an efficient (i, t)-admissible graph.

(2, t)-admissible graphs are required by our application as, as mentioned before, two
disjoint paths are needed in order to guarantee privacy with respect to intermediate
nodes in the paths between nodes, even if those nodes are not corrupted. On the other
hand, (1, t)-admissible graphs are of particular interest, as there exist constructions for
graphs of bounded degree that yield large sets W , while tolerating sets T with the
largest sizes, i.e., |T | = O(n) ([30]; see Corollary 4 in Section 4.3). Given that, we
now show a transformation to turn (1, t)-admissible graphs into (2, t)-admissible, while
(asymptotically) maintaining the original graphs’ desired properties. Recall that we let
X = maxT⊂V,|T |=t{|X (T )|}.

Lemma 1. Let Gn = (V, E) and G′2n = (V ′, E′) both be (1, t)-admissible graphs
according to Definition 5. Then, one can construct a (2, t)-admissible graph G′′2n =
(V ′′, E′′) with subset W ′′ such that |W ′′| ≥ 2n − O(X ′′), where X ′′ = X + X ′.

Proof. Graph G′′2n is constructed as follows. First, take two copies of Gn, call them
G1 and G2. Define V ′′ = V1

⋃
V2 and add additional edges between the isomorphic

2 By “successfully” we mean that for privileged senders (i.e., senders in W ) the validity condi-
tion is satisfied (see Section 2).
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vertices of G1 and G2. Note that the resulting graph so far has 2n vertices, and 2|E| +
|V | edges.

Next, order the V ′′ vertex set in an arbitrary order and add to it all the edges from
graph G′2n; the resulting edge set is E′′, with |E′′| = 2|E|+|V |+|E′|. For convenience,
call G3 the instance of G′2n applied to G′′2n.

We note that we allow any (but up to) t nodes to be corrupted in G′′2n. We account
for every node corrupted in G′′2n as two corruptions: one in either (vertex set of) G1 or
G2, and simultaneously as a corruption in G3, since G3 “reuses” the vertex sets of G1

and G2.
Now, for a subset of nodes S1 ⊂ V1, let I(S1) be the set of nodes in V2 isomorphic

to the nodes in S1; define set I(S2) similarly. Let T ′′ = T1

⋃
T2

⋃
T3, and let W1

(respectively, W2 and W3) be the subset of nodes in G1 (respectively, G2, G3) satisfying
the premises of the lemma — Gn and G′2n being (1, t)-admissible graphs.

Finally, let W ′′ = (W1 − I(T2)
⋃

W2 − I(T1))
⋂

W3. We now show that nodes
in W ′′ can successfully run an almost-everywhere broadcast protocol, and that for all
u, v ∈ W ′′, two disjoint paths fully contained in W ′′ exist connecting them. We have
the following cases:

1. u, v ∈ V1

⋂
W ′′ : Almost-everywhere broadcast is obtained from G3, specifically

by running the protocol solely on G3’s edges.3 One path of uncorrupted nodes
between nodes u and v is given to us by the premises of the lemma with respect to
G1. The second path is as follows: 1) u → u′, where u′ = I(u), 2) u′ → v′, where
v′ ∈ I(v), and 3) v′ → v.

2. u, v ∈ V2

⋂
W ′′ : Similar to case 1.

3. u ∈ (V1

⋂
W ′′) and v ∈ (V2

⋂
W ′′): Again, almost-everywhere broadcast is given

to us by G3. Let u′ = I(u) and v′ = I(v). The two paths containing nodes in W ′′

are as follows:
(a) u → u′; u′ � v: a path in W ′′ assumed by the lemma for G2;
(b) u� v′, a path in W ′′ assumed by the lemma for G1; v′ → v.

4. u ∈ (V2

⋂
W ′′) and v ∈ (V1

⋂
W ′′): Similar to case 3.

Let us now estimate the size of the subset W ′′:

|W ′′| ≥ |V ′′| − |X (T1)| − |I(T2)| − |X (T2)| − |I(T1)| − |X ′(T3)|
≥ |V ′′| − 4X − X ′ (since |I(Ti) ≤ |X (Ti)| ≤ X , i = 1, 2)

= 2n − O(X ′′),

where X ′′ = X + X ′. ��

In the next section we show how to construct X-MPC protocols on (2, t)-admissible
graphs.

4.2 Almost-Everywhere MPC Protocols

We will be using several building blocks, including protocol PUB-SMT from Section 3,
as well as protocols for unconditional VSS (see Section 2.1) and MPC [2], the last two
defined on a fully connected network.

3 This is important, as this property is not preserved under edge addition.



318 J.A. Garay and R. Ostrovsky

However, first we would like to modify the specification of information-theoretically
secure MPC (on a fully connected network and tolerating active adversaries) some-
what, so that it suits our purposes. Typically, the definition postulates an ideal model
(equipped with a trusted third party) and compares it to the real model, demanding that
in real life the adversary does not gain any advantage compared to what happens in
the ideal model [22]. In order to achieve this goal, all known implementations of MPC
follow a “commit-and-compute” paradigm. It is convenient for us to recast those results
in that paradigm.

Recall that there are n players P1, ..., Pn, each Pi holding a private value xi, and
wishing to jointly compute some function f(x1, · · · , xn). We call the modified protocol
C&C-MPC, consisting of two phases:

Commit phase: Players commit to their inputs by acting as dealers in the sharing phase
of a (n, n

3 )-VSS protocol — i.e., an unconditional, optimally resilient VSS protocol
(e.g., [20,13]). (n executions of the protocol are run in parallel.) At the end of this
phase, each player Pi holds a vector of n secret values (shares) x∗i = (v1

i , ...vn
i ),

one for each VSS invocation.
Computation phase: Players execute the original MPC protocol to compute an “aug-

mented” function f∗ defined as the composition of f and n invocations of Rec, the
reconstruction function of the VSS protocol:

f∗(x∗1, x
∗
2, ..., x

∗
n) =f(Rec(v1

1 , v
1
2 , ..., v

1
n), Rec(v2

1 , v
2
2 , ..., v

2
n), ...,

Rec(vn
1 , vn

2 , ..., vn
n)),

where Rec is the reconstruction function of the (n, n
3 )-VSS protocol.

We stress that the Rec protocol is not executed “in the open” as one typically would
in an execution of a VSS protocol, but as part of the MPC protocol. Thus, the results
of each Rec invocation remain hidden within the MPC computation. Assuming the
security of the VSS protocol, it is easy to see that C&C-MPC satisfies the same re-
quirements as the original MPC protocol (correctness, privacy, and independence of
inputs).

Having specified this version of MPC, our general approach to almost-everywhere
MPC will be to have the players simulate C&C-MPC on the partially connected, admis-
sible network, chosen with a suitable set of parameters, with the following replacement
of actions:

1. The sending (and receiving) of messages on the secure channels substituted by
invocations to protocol PUB-SMT, and

2. invocations to the public channel (in PUB-SMT) and broadcast (VSS protocol)
substituted by invocations to the almost-everywhere broadcast protocol.

We give a more detailed description of the protocol and argue its security below.

Theorem 2. Let Gn = (V, E) be a (2, t)-admissible graph, with T , X and W as in
Definition 5. Let X = maxT⊂V,|T |=t{|X (T )|} and such that X < n

3 . Then there exists
a protocol that achieves X secure multi-party computation against an adaptive, rushing
t-adversary.
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Proof sketch. First, we specify the communication structure of the protocol simulation.
Each round of protocol C&C-MPC for complete networks is thought of as a “super-
round.” Each super-round has the same structure, with players taking turns4 (in, say,
lexicographic order) to perform the simulation of sends and receives required in the
original round. More specifically, at the onset, each player Pi locally invokes procedure
SELECT-PATH(Gn, Pi, Pj), the computable map given by Gn, to obtain set PATHS(Pi,
Pj), for every Pj . Whenever Pi is required to send message m to Pj , Pi and Pj run
PUB-SMT(Pi, Pj , m, PATHS(Pi, Pj)); invocations to the public channel by Pi (resp.,
Pj) in PUB-SMT are substituted by invocations to the almost-everywhere broadcast
protocol, also given by Gn, with Pi (resp., Pj) acting as the sender. Similarly, invoca-
tions by Pi to broadcast in the (n, n

3 )-VSS protocol are replaced by an invocation to the
almost-everywhere broadcast protocol with Pi as the sender.

Let f(x1, x2, · · · , xn) be the function to be computed, where xi is Pi’s private in-
put. Players now simulate the execution of the C&C-MPC protocol: first the commit
phase — let x∗1, x

∗
2, ..., x

∗
n be the values held by the players at the end of this phase,

followed by the computation of the “augmented” function f∗.
First, note that the communication structure of the protocol simulation within the

super-round (serialized, one player at a time, in turn one edge at a time) does not intro-
duce any security vulnerabilities, as the original simulated protocols are robust against
rushing adversaries, who are allowed to learn the messages sent by the honest players
in a round before deciding on the messages for the same round.

We now argue that the conditions of Definition 3, our definition of X secure multi-
party computation, are satisfied.

Commitment phase. The premise of the theorem guarantees that |W | > 2n
3 . Thus, it

follows from the (simulation of the) sharing phase of the (n, n
3 )-VSS protocol and the

properties of almost-everywhere broadcast that for every player Pi ∈ V , there is a
value x∗i uniquely defined by its shares vj

i , 1 ≤ j ≤ n; for players in W in particular,
x∗i = xi, since those players are able to run almost-everywhere broadcast successfully
(see Definition 5). We stress that players in X (T ), not only the corrupted ones but also
the doomed ones, might provide modified values or not be able to provide any input
at all; regardless, they will be unique and well defined per the properties above. This
gives the binding property of the commitment phase. The privacy of the input values
for players in W follows from the privacy condition of PUB-SMT, which again these
players are able to execute successfully, and which guarantees that the views of the
adversary — as well as of other honest players, since the graph is (2, t)-admissible —
under the transmission of any two messages are identical.

Computation phase. Regarding correctness, again since |W | > 2n
3 and players in W

can send each other private messages and simulate broadcast faithfully, they can carry
on the reconstruction and the computation on the uniquely defined shared values in
the commitment phase, following the protocol for fully connected MPC. Privacy of
the computation phase follows from a hybrid argument and reduction to the privacy
of the message transmission scheme. In a fully connected network, the condition of

4 This for simplicity, and to avoid a more detailed analysis of possible interference. Techniques
from [5] could in principle be applied in order to reduce the total number of rounds.
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indistinguishable views for the adversary for all
−−−→
x∗V−T ,

−−−→
y∗V−T ,

−→
z∗T such that the out-

put of the function is the same, i.e., f(
−−−→
x∗V−T ,

−→
z∗T ) = f(

−−−→
y∗V−T ,

−→
z∗T ), is known to hold

for an information-theoretically secure MPC protocol as long as the sets of corrupted
players are the same [2]. Thus, if the adversary would be able to distinguish the two
views with non-negligible advantage in the simulated execution, then there would be a
particular super-round — in turn, player turn; in turn, message transmission — where
the adversary can distinguish the two runs on Gn, but does not distinguish them in the
fully connected network. This would contradict the security of the message transmis-
sion protocol between two privileged players. ��

4.3 Almost-Everywhere MPC on Classes of Networks

In this section we enumerate several classes of networks where almost-everywhere
MPC is possible, as a corollary of admissible graphs given in the almost-everywhere
agreement literature. The first three corollaries follow from results in [11], and the last
one from [30].

Corollary 1. For all r ≥ 5, almost all r-regular graphs (i.e., all but a vanishingly small
fraction of such graphs) admit O(t)-MPC, where |T | = t ≤ n1−c, for some constant
c = c(r), where c(r) → 0 as r → n.

The next corollaries apply to explicit graphs for which the number of doomed players
is small.

Corollary 2. For every ε > 0 there exists a network Gn = (V, E) of degree O(nε) and
t = O(n) on which O(t)-MPC is possible.

The corollary follows from a recursive construction of networks of unbounded degree
in [11] that yields (2, O(n))-admissible graphs with X = O(t).

Corollary 3. There exists a constant-degree network with t = O( n
log n ) on which O(t)-

MPC is possible.

This network is constructed by taking a butterfly network, which constitutes a (2, O
( n
log n ))-admissible graph, with X = O(t log t), and superimposing a 5-regular graph;

this yields a regular graph of degree 9, on which a compression procedure can be run to
“sharpen” the X term to O(t) [11].

Finally, Upfal [30] shows how to explicitly construct constant-degree expander
graphs that yield (1, O(n))-admissible graphs — i.e., tolerating large (linear) number
of corruptions (compare to the other constant-degree networks above) — while avoid-
ing the blow-up in the number of doomed players. Applying the construction given in
Lemma 1, we obtain:

Corollary 4. There exist constant-degree networks with t = O(n) on which O(t)-MPC
is possible.

The protocol achieving it, however, is not efficient (i.e., polynomial-time), as the re-
sulting admissible graph is not efficient; specifically, the almost-everywhere broadcast
component has polynomial message complexity but requires exponential computation.
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5 Summary and Future Work

In this paper we introduced the notion of almost-everywhere secure multi-party compu-
tation for partially connected networks, and showed how to achieve meaningful security
guarantees whenever possible. We proposed a definition for X-MPC, and a protocol sat-
isfying it. We also gave concrete examples for specific networks, building on work from
almost-everywhere agreement.

Regarding our definitional approach, which follows the one in [23], it is well known
that simulation-based definitions of security are stronger than and preferable to indistin
guishability-based ones. However, in the setting of almost-everywhere secure compu-
tation, the simulation-based approach encounters the following problem: it seems chal-
lenging how to define, in a meaningful and network-independent way, the simulation
and the adversarial view of the state of the doomed players, or indeed how to even deal
with this dynamically growing set; even though these nodes are not part of the nodes
for which we guarantee privacy and a correct output, it is not clear what view of these
nodes the adversary gets. Indeed, for some of the doomed nodes the adversary could
learn all the information and be able to change their inputs, while for others the adver-
sary would only get partial control. We leave the refinement of and alternatives to our
almost-everywhere MPC definition as a subject for future research. We stress though
that in many situations, the security guarantees given by our approach are sufficient,
especially if running information-theoretically secure protocols, such as the one in [2].

Regarding our new model for SMT by public discussion, it would be interesting to
reduce the communication, in particular on the public channel (say, to sublinear in N ),
and provide some measure of optimality.

Finally, providing a polynomial-time protocol for almost-everywhere agreement —
and thus for almost-everywhere MPC — on networks of bounded degree tolerating a
linear number of corruptions remains an interesting open problem.
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Abstract. In the model of perfectly secure message transmission schemes
(PSMTs), there are n channels between a sender and a receiver. An in-
finitely powerful adversary A may corrupt (observe and forge) the mes-
sages sent through t out of n channels. The sender wishes to send a secret
s to the receiver perfectly privately and perfectly reliably without sharing
any key with the receiver.

In this paper, we show the first 2-round PSMT for n = 2t + 1 such
that not only the transmission rate is O(n) but also the computational
costs of the sender and the receiver are both polynomial in n. This means
that we solve the open problem raised by Agarwal, Cramer and de Haan
at CRYPTO 2006.

Keywords: Perfectly secure message transmission, information theoretic
security, efficiency.

1 Introduction

In the model of (r-round, n-channel) message transmission schemes [2], there are
n channels between a sender and a receiver. An infinitely powerful adversary A
may corrupt (observe and forge) the messages sent through t out of n channels.
The sender wishes to send a secret s to the receiver in r-rounds without sharing
any key with the receiver.

We say that a message transmission scheme is perfectly secure if it satisfies
perfect privacy and perfect reliability. The perfect privacy means that the ad-
versary A learns no information on s, and the perfect reliability means that the
receiver can output ŝ = s correctly.

For r = 1, Dolev et al. showed that there exists a 1-round perfectly secure
message transmission scheme (PSMT) if and only if n ≥ 3t + 1 [2]. They also
showed an efficient 1-round PSMT [2].

For r ≥ 2, it is known that there exists a 2-round PSMT if and only if
n ≥ 2t + 1 [2]. However, it is very difficult to construct an efficient scheme for
n = 2t + 1. Dolev et al. [2] showed a 3-round PSMT such that the transmission
rate is O(n5), where the transmission rate is defined as

the total number of bits transmitted
the size of the secrets

.
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Sayeed et al. [7] showed a 2-round PSMT such that the transmission rate is
O(n3).

Recently, Srinathan et al. showed that n is a lower bound on the transmission
rate of 2-round PSMT [8]. Then Agarwal, Cramer and de Haan [1] showed a
2-round PSMT such that the transmission rate is O(n) at CRYPTO 2006 based
on the work of Srinathan et al. [8]1. However, the communication complexity
is exponential because the sender must broadcast consistency check vectors of
size2

w =
(

n − 1
t + 1

)
=

(
2t

t + 1

)
.

In other words, Agarwal et al. [1] achieved the transmission rate of O(n) by
sending exponentially many secrets. Therefore, the computational costs of the
sender and the receiver are both exponential. Indeed, the authors wrote [1, Sec.6]
that:

”We do not know whether a similar protocol can exist where sender and receiver
restricted to polynomial time (in terms of the number of channels n) only”.

In this paper, we solve this open problem. That is, we show the first 2-round
PSMT for n = 2t + 1 such that not only the transmission rate is O(n) but
also the computational costs of the sender and the receiver are both polynomial
in n.

Table 1. 2-Round PSMT for n = 2t + 1

Trans. rate com. complexity Receiver Sender

Agarwal et al. [1] O(n) exponential exponential exponential

This paper O(n) O(n3) poly poly

The main novelty of our approach is to introduce a notion of pseudo-basis to
the coding theory. Let C be a linear code of length n over a finite field F with the
minimum Hamming distance d = t+1. Consider a message transmission scheme
such that the sender chooses a codeword Xi = (xi1, · · · , xin) of C randomly and
sends xij through channel j for j = 1, · · · , n. Note that the receiver can detect t
errors, but cannot correct them because d = t + 1.

If the sender sends many codewords, however, then we can do something
better. Suppose that the sender sent Xi as shown above, and the receiver received
Yi = Xi+Ei for i = 1, · · · , m, where Ei is an error vector caused by the adversary.
We now observe that the dimension of the space E spanned by the error vectors
E1, · · · , Em is at most t because the adversary corrupts at most t channels.
Suppose that {Ei1 , · · · , Eik

} is such a basis, where k ≤ t. For the same indices,

1 Srinathan et al. claimed that they constructed a 2-round PSMT such that the trans-
mission rate is O(n) in [8]. However, Agarwal et al. pointed out that it has a flaw
in [1].

2 Indeed, in [1, page 407], it is written that ”at most O(w) indices and field elements
are broadcast ....”, where w is defined in [1, page 403] as shown above.
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we say that B = {Yi1 , · · · , Yik
} is a pseudo-basis of Y = {Y1, · · · , Ym}. We then

show that a receiver can find a pseudo-basis B of Y in polynomial time.
By using this algorithm, we first show a 3-round PSMT for n = 2t + 1 such

that the transmission rate is O(n) and the computational cost of the sender
and the receiver are both polynomial in n. (See Fig.2.5.) Then combining the
technique of [8,1], we show a 2-round PSMT such that not only the transmission
rate is O(n) but also the computational cost of the sender and the receiver are
both polynomial in n.

(Remark) Recently, Fitzi et al. showed an efficient 2-round PSMT for n ≥ (2+ε)t
for any constant ε > 0 [4], but not for n = 2t + 1.

2 Main Idea

Suppose that there are n channels between the sender and the receiver, and an
adversary may corrupt t out of n channels. We use F to denote GF (p), where
p is a prime such that p > n.3 Let C be a linear code of length n such that
a codeword is X = (f(1), · · · , f(n)), where f(x) is a polynomial over F with
deg f(x) ≤ t.

2.1 Difference from Random t Errors

Consider a message transmission scheme such that the sender chooses a codeword
X = (f(1), · · ·, f(n)) of C randomly, and sends f(i) through channel i for
i = 1, · · · , n. Then the adversary learns no information on f(0) even if she
observes t channels because deg f(x) ≤ t. Thus perfect privacy is satisfied.

If n = 3t+1, then the minimum Hamming distance of C is d = n− t = 2t+1.
Hence the receiver can correct t errors caused by the adversary. Thus perfect
reliability is also satisfied. Therefore we can obtain a 1-round PSMT easily.

If n = 2t+1, however, the minimum Hamming distance of C is d = n−t = t+1.
Hence the receiver can only detect t errors, but cannot correct them. This is the
main reason why the construction of PSMT for n = 2t + 1 is difficult.

What is a difference between usual error correction and PSMTs ? If the sender
sends a single codeword X ∈ C only, then the adversary causes t errors randomly.
Hence there is no difference. If the sender sends many codewords X1, · · · , Xm ∈ C,
however, the errors are not totally random. This is because the errors always
occur at the same t (or less) places !

To see this more precisely, suppose that the receiver received

Yi = Xi + Ei, (1)

where Ei = (ei1, · · · , ein) is an error vector caused by the adversary. Define

support(Ei) = {j | eij �= 0}.

3 We adopt GF (p) only to make the presentation simpler, where the elements are
denoted by 0, 1, 2, · · ·. But in general, our results hold for any finite field F whose
size is larger than n.
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Then there exist some t-subset {j1, · · · , jt} of n channels such that each error
vector Ei satisfies

support(Ei) ⊆ {j1, · · · , jt}, (2)

where {j1, · · · , jt} is the set of channels that the adversary forged.
This means that the space E spanned by E1, · · · , Em has dimension at most t.

We will exploit this fact extensively.

2.2 Pseudo-basis and Pseudo-dimension

Let V denote the n-dimensional vector space over F . For two vectors Y, E ∈ V ,
we write

Y = E mod C
if Y − E ∈ C.

For i = 1, · · · , m, suppose that the receiver received Yi such that

Yi = Xi + Ei,

where Xi ∈ C is a codeword that the sender sent and Ei is the error vector
caused by the adversary. From now on, (Yi, Xi, Ei) has this meaning. Then we
have that

Yi = Ei mod C (3)

for each i. Let E be a subspace spanned by E1, · · · , Em.
We first define a notion of pseudo-span.

Definition 1. We say that {Yj1, · · · , Yjk} ⊂ Y pseudo-spans Y if each Yi ∈ Y
can be written as

Yi = a1Yj1 + · · · + akYjk mod C
for some ai ∈ F.

We next define a pseudo-basis and the pseudo-dimension of Y.

Definition 2

– Let k be the dimension of E. We then say that Y has the pseudo-dimension k.
– Let {Ej1, · · · , Ejk} be a basis of E. For the same indices, we say that {Yj1, · · · ,

Yjk} is a pseudo-basis of Y.

The following theorem is clear since the adversary forges at most t channels.

Theorem 1. The pseudo-dimension of Y is at most t.

Suppose that {Yj1, · · · , Yjk} is a pseudo-basis of Y. Define

FORGED =
k⋃

i=1

support(Eji). (4)

It is then clear that FORGED is the set of all channels that the adversary forged.
Therefore, the following theorem holds.
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Theorem 2. For each j,

support(Ej) ⊆ FORGED.

We finally prove the following theorem.

Theorem 3. B = {Yj1, · · · , Yjk} is a pseudo-basis of Y if and only if B is a
minimal subset of Y which pseudo-spans Y.

(Proof) (I) Suppose that B is a minimal subset of Y which pseudo-spans Y. Then
each Yi ∈ Y can be written as

Yi = a1Yj1 + · · · + akYjk mod C

for some ai ∈ F. From eq.(3), we obtain that

Ei = a1Ej1 + · · · + akEjk mod C.

Hence
Ei − a1Ej1 − · · · − akEjk ∈ C.

The Hamming weight of the left hand side is at most t while the minimum
Hamming weight of C is t + 1. Therefore, Ei − a1Ej1 − · · · − akEjk is a zero-
vector. Hence we obtain that

Ei = a1Ej1 + · · · + akEjk.

This means that {Ej1, · · · , Ejk} spans E . Further the minimality of B implies
that {Ej1, · · · , Ejk} is a basis of E . Therefore, from Def.2, B = {Yj1, · · · , Yjk} is
is a pseudo-basis of Y.

(II) Suppose that B = {Yj1, · · · , Yjk} is a pseudo-basis of Y. Then {Ej1, · · · , Ejk}
is a basis of E . Therefore each Ei can be written as

Ei = a1Ej1 + · · · + akEjk

for some ai ∈ F. This means that each Yi is written as

Yi = a1Yj1 + · · · + akYjk mod C

from eq.(3). Hence B pseudo-spans Y. If B is not minimal, then we can show
that a smaller subset of {Ej1, · · · , Ejk} is a basis of E . This is a contradiction.
Therefore, B is a minimal subset of Y which pseudo-spans Y. Q.E.D.

2.3 How to Find Pseudo-basis

In this subsection, we show a polynomial time algorithm which finds the pseudo-
dimension k and a pseudo-basis B = {B1, · · · , Bk} of Y = {Y1, · · · , Ym}. We
begin with a definition of linearly pseudo-express.
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Definition 3. We say that Y is linearly pseudo-expressed by {B1, · · · , Bk} if

Y = a1B1 + · · · + akBk mod C

for some a1 · · · , ak ∈ F.

We first show in Fig.2.3 a polynomial time algorithm which checks if Y is lin-
early pseudo-expressed by {B1, · · · , Bk}. For a parameter α = (a1 · · · , ak), define
X(α) as

X(α) = Y − (a1B1 + · · · + akBk) (5)
= (x1(α), · · · , xn(α)).

From the definition, Y is linearly pseudo-expressed by {B1, · · · , Bk} if and only
if there exists some α such that X(α) ∈ C. It is clear that xj(α) is a linear
expression of (a1 · · · , ak) from eq.(5). In Fig.2.3, it is also easy to see that each
coefficient of fα(x) is a linear expression of (a1 · · · , ak). Hence fα(j) = xj(α) is
a linear equation on (a1 · · · , ak) at step 3.

It is now clear that the algorithm of Fig.2.3 outputs YES if and only if X(α) ∈
C for some α. Hence it outputs YES if and only if Y is linearly pseudo-expressed
by {B1, · · · , Bk}.

Input: Y and B = {B1, · · · , Bk}.

1. Construct X(α) = (x1(α), · · · , xn(α)) of eq.(5).
2. Construct a polynomial fα(x) with deg fα(x) ≤ t such that

fα(i) = xi(α)
for i = 1, · · · , t + 1 by using Lagrange formula.

3. Output YES if the following set of linear equations has a solution α.
fα(t + 2) = xt+2(α),

...
fα(n) = xn(α).

Otherwise output NO.

Fig. 1. How to Check if Y is linearly pseudo-expressed by B

We finally show in Fig.2 a polynomial time algorithm which finds the pseudo-
dimension k and a pseudo-basis B = {B1, · · · , Bk} of Y = {Y1, · · · , Ym}. The
correctness of the algorithm is guaranteed by Theorem 3.

2.4 Broadcast

We say that a sender (receiver) broadcasts x if it she sends x over all n channels.
Since the adversary corrupts at most t out of n = 2t + 1 channels, the receiver
(sender) receives x correctly from at least t + 1 channels. Therefore, the receiver
(sender) can accept x correctly by taking the majority vote.
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Input: Y = {Y1, · · · , Ym}.

1. Let i = 1 and B = ∅.
2. While i ≤ m and |B| < t, do:
(a) Check if Yi is linearly pseudo-expressed by B by using Fig.2.3.

If NO, then add Yi to B.
(b) Let i ← i + 1.
3. Output B as a pseudo-basis and k = |B| as the pseudo-dimension.

Fig. 2. How to Find a Pseudo-Basis B of Y

2.5 How to Apply to 3-Round PSMT

We now present an efficient 3-round PSMT for n = 2t + 1 in Fig.2.5.

The sender wishes to send � = nt secrets s1, · · · , s� ∈ F to the receiver.

1. The sender sends a random codeword Xi = (fi(1), · · · , fi(n)),
and the receiver receives Yi = Xi + Ei for i = 1, · · · , � + t,
where deg fi(x) ≤ t and Ei is the error vector caused by the adversary.

2. The receiver finds a pseudo-basis B = {Yj1, · · · , Yjk}, where k ≤ t,
by using the algorithm of Fig.2.
He then broadcasts B and ΛB = {j1, · · · , jk}.

3. The sender constructs FORGED of eq.(4) from {Ej = Yj − Xj | j ∈ ΛB},
encrypts s1, · · · , s� by using {fi(0) | i �∈ ΛB} as the key of one-time pad,
and then broadcasts FORGED and the ciphertexts.

4. The receiver reconstructs fi(x) by ignoring all channels of FORGED,
and applying Lagrange formula to the remaining elements of Yi.
He then decrypts the ciphertexts by using {fi(0) | i �∈ ΛB}.

Fig. 3. Our 3-round PSMT for n = 2t + 1

Further by combining the technique of [8,1], we can construct a 2-round PSMT
such that not only the transmission rate is O(n), but also the computational cost
of the sender and the receiver are both polynomial in n. The details will be given
in the following sections.

3 Details of Our 3-Round PSMT

In this section, we describe the details of our 3-round PSMT for n = 2t + 1
which was outlined in Sec.2.5, and prove its security. We also show that the
transmission rate is O(n) and the computational cost of the sender and the
receiver are both polynomial in n.

Remember that FORGED is the set of all channels which the adversary forged,
and ”broadcast” is defined in Sec.2.4.
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3.1 3-Round Protocol for n = 2t + 1

The sender wishes to send � = nt secrets s1, · · · , s� ∈ F to the receiver.

Step 1. The sender does the following for i = 1, 2, · · · , t + �.
1. She chooses a polynomial fi(x) over F such that deg fi(x) ≤ t randomly.

Let Xi = (fi(1), · · · , fi(n)).
2. She send fi(j) through channel j for j = 1, · · · , n.

The receiver then receives Yi = Xi + Ei, where Ei is the error vector caused
by the adversary.

Step 2. The receiver does the following.
1. Find the pseudo-dimension k and a pseudo-basis B = {Yj1, · · · , Yjk} of

{Y1, · · · , Yt+�} by using the algorithm of Fig.2.
2. Broadcast k, B and ΛB = {j1, · · · , jk}. where ΛB is the set of indices of B.

Step 3. The sender does the following.

1. Construct FORGED of eq.(4) from {Ej = Yj − Xj | j ∈ ΛB}.
2. Compute c1 = s1 + fi1(0), · · · , c� = s� + fi�

(0) for i1, · · · , i� �∈ ΛB.
3. Broadcast FORGED and (c1, · · · , c�).

Step 4. The receiver does the following. Let Yi = (yi1, · · · , yin).

1. For each i �∈ ΛB, find a polynomial f ′i(x) with deg f ′i(x) ≤ t such that

f ′i(j) = yi,j

for all j �∈ FORGED.
2. Compute s′1 = c1 − f ′i1(0), · · · , s′� = c� − f ′i�

(0) for i1, · · · , i� �∈ ΛB.
3. Output (s′1, · · · , s′�).

3.2 Security

We first prove the perfect privacy. Consider fi(x) such that i �∈ ΛB. For such i,
Yi is not broadcast at step 2-2. Hence the adversary observes at most t elements
of (fi(1), · · · , fi(n)). This means that she has no information on fi(0) because
deg fi(x) ≤ t. Therefore since {fi(0) | i �∈ ΛB} is used as the key of one-time-pad,
the adversary learns no information on s1, · · · , s�.

We next prove the perfect reliability. We first show that there exist � indices
i1, i2, · · · , i� such that

{i1, i2, · · · , i�} ⊆ {1, 2, · · · , t + �} \ ΛB.

This is because
t + � − |ΛB| ≥ t + � − t = �.

from Theorem 1. We next show that f ′i(x) = fi(x) for each i �∈ ΛB at Step 4.
This is because

f ′i(j) = yi,j = xi,j = fi(j)
for all j �∈ FORGED, and

n − |FORGED| ≥ 2t + 1 − t ≥ t + 1.

Also note that deg fi(x) ≤ t and deg f ′i(x) ≤ t. Therefore s′i = si for i = 1, · · · , �.
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3.3 Efficiency

Let |F| denote the bit length of the field elements. Let COM(i) denote the com-
munication complexity of Step i for i = 1, 2, 3. Then

COM(1) = O(n(t + �))|F|) = O(n�|F|),
COM(2) = O(n2t|F|) = O(n�|F|),
COM(3) = O(n�|F| + tn log2 n) = O(n�|F|)

since � = nt. Hence the total communication complexity is O(n�|F|) = O(n3|F|).
Further the sender sends � secrets s1, · · · , s� ∈ F. Therefore, the transmission
rate is O(n) because

n�|F|
�|F| = n.

It is easy to see that the computational costs of the sender and the receiver
are both polynomial in n.

4 Our Basic 2-Round PSMT

In this section, we show our basic 2-round PSMT for n = 2t + 1 such that the
transmission rate is O(n2t) and the computational costs of the sender and the
receiver are both polynomial in n.

For two vectors U = (u1, · · · , un) and Y = (y1, · · · , yn), define

du(U, Y ) = {uj | uj �= yj}
dI(U, Y ) = {j | uj �= yj}.

Remember that C is the set of all (f(1), · · · , f(n)) such that deg f(x) ≤ t.

4.1 Randomness Extractor

Suppose that the adversary has no information on � out of m random elements
r1, · · · , rm ∈ F. In this case, let R(x) be a polynomial with deg R(x) ≤ m − 1
such that R(i) = ri for i = 1, · · · , m. Then it is well known [1, Sec.2.4] that the
adversary has no information on

z1 = R(m + 1), · · · , z� = R(m + �).

4.2 Basic 2-Round Protocol

The sender wishes to send a secret s ∈ F to the receiver.

Step 1. The receiver does the following for i = 1, 2, . . . , n.

1. He chooses a random polynomial fi(x) such that deg fi(x) ≤ t.
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2. He sends
Xi = (fi(1), · · · , fi(n))

through channel i, and the sender receives

Ui = (ui1, . . . , uin).

3. Through each channel j, he sends fi(j) and the sender receives

yij = fi(j) + eij ,

where eij is the error caused by the adversary. Let

Yi = (yi1, · · · , yin), Ei = (ei1, · · · , ein).

Step 2. The sender does the following.

1. For i = 1, · · · , n,
(a) If uii �= yii or |du(Ui, Yi)| ≥ t + 1 or Ui /∈ C,

then broadcast ”ignore channel i”.4
This channel will be ignored from now on because it is forged clearly.

(b) Else define ri as
ri = uii = yii. (6)

2. Find a polynomial R(x) with deg R(x) ≤ n − 1 such that

R(i) = ri

for each i.
3. Compute R(n + 1) and broadcast

c = s + R(n + 1).

4. Find the pseudo-dimension k and a pseudo-basis B = {Yj1, · · · , Yjk} of
{Y1, · · · , Yn} by using the algorithm of Fig.2.

Broadcast k, B and ΛB = {j1, · · · , jk}.
5. Broadcast du(Ui, Yi) and dI(Ui, Yi) for each i.

Step 3. The receiver does the following.

1. Construct FORGED of eq.(4) from {Ei = Yi − Xi | i ∈ ΛB}.
2. For each i, find a polynomial ui(x) with deg ui(x) ≤ t such that

ui(j) = uij for all j ∈ dI(Ui, Yi),
ui(j) = fi(j) for all j such that j /∈ dI(Ui, Yi) and j /∈ FORGED

3. Find a polynomial R′(x) with deg R′(x) ≤ n − 1 such that

R′(i) = ui(i)

for each i.5
4. Compute R′(n + 1) and output

s′ = c − R′(n + 1).

4 For simplicity, we assume that there are no such channels in what follows.
5 ”For each i” can be replaced by ”for each i /∈ ΛB” at step 2-2 and step 3-3.
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4.3 Security

We first prove the perfect privacy.

Lemma 1. There is at least one ri on which the adversary has no information.

Proof. Consider a non-corrupted channel i such that i /∈ ΛB. First the sender
does not broadcast ri at step 2-4 because i /∈ ΛB. Next because fi(i) is sent
through channel i that the adversary does not corrupt, we have

ri = uii = fi(i).

Further the adversary observes at most t values of (fi(1), · · · , fi(n)). Hence the
adversary has no information on ri = fi(i) because deg fi(x) ≤ t.

Finally there exists at least one non-corrupted channel i such that i /∈ ΛB
because

n − t − |ΛB| ≥ n − 2t = 1.

��

Therefore, the adversary has no information on R(n + 1) from Sec.4.1. Hence
she learns no information on s from c = s + R(n + 1).

We next prove the perfect reliability. If j /∈ FORGED and j /∈ dI(Ui, Yi), then
fi(j) = yij = uij from the definition of dI(Ui, Yi). Therefore, at step 3-2,

ui(j) = uij

for all j ∈ dI(Ui, Yi), and for all j such that j /∈ dI(Ui, Yi) and j /∈ FORGED.
This means that ui(j) = uij for each j ∈ (FORGED ∪ dI(Ui, Yi)), where

|FORGED ∪ dI(Ui, Yi))| ≥ |FORGED| ≥ n − t = (2t + 1) − t = t + 1.

Further since deg ui(x) ≤ t and Ui ∈ C, it holds that

(ui(1), · · · , ui(n)) = (ui1, · · · , uin).

In particular, ui(i) = uii. Therefore from eq.(6), we have that

R(i) = ri = uii = ui(i) = R′(i)

for each i. Hence we obtain that R′(x) = R(x) because deg R′(x) ≤ n − 1 and
deg R(x) ≤ n − 1. Consequently,

s′ = c − R′(n + 1) = c − R(n + 1) = s.

Thus the receiver can compute s′ = s correctly.

4.4 Efficiency

Let COM(i) denote the communication complexity of Step i for i = 1, 2. Note
that |du(Ui, Yi)| = |dI(Ui, Yi)| ≤ t for each i. Then
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COM(1) = O(n(n + n)|F|) = O(n2|F|),
COM(2) = O((|dI(Ui, Yi)| log2 n + |du(Ui, Yi)||F|)n2

+(log2 n + n|B||F| + |ΛB| log2 n)n + |F|n)
= O(tn2 log2 n + tn2|F| + n log2 n + n2t|F| + tn log2 n + |F|n)
= O(n2t|F|)

because |B| = |ΛB| ≤ t. Hence the total communication complexity is O(n2t|F|).
The transmission rate is O(n2t) because the sender sends one secret.

It is easy to see that the computational cost of the sender and the receiver
are polynomial in n.

5 More Efficient 2-Round Protocol

In our basic 2-round protocol, the transmission rate was O(n2t). In this section,
we reduce it to O(n2). We will use nt codewords Xi ∈ C to send t2 secrets in this
section while n codewords were used to send a single secret in the basic 2-round
PSMT.

5.1 Protocol

The sender wishes to send � = t2 secrets s1, s2, . . . , s� ∈ F to the receiver.

Step 1. The receiver does the following for each channel i.
For h = 0, 1, · · · , t − 1;

1. He chooses a random polynomial fi+hn(x) such that deg fi+hn(x) ≤ t.
2. He sends

Xi+hn = (fi+hn(1), · · · , fi+hn(n))

through channel i, and the sender receives

Ui+hn = (ui+hn,1, · · · , ui+hn,n)

3. Through each channel j, he sends fi+hn(j) and the sender receives

yi+hn,j = fi+hn(j) + ei+hn,j ,

where ei+hn,j is the error caused by the adversary. Let

Yi+hn = (yi+hn,1, · · · , yi+hn,n), Ei+hn = (ei+hn,1, · · · , ei+hn,n).

Step 2. The sender does the following.

1. Find the pseudo-dimension k and a pseudo-basis B = {Yj1, . . . , Yjk} of
{Y1, · · · , Ytn} by using the algorithm of Fig.2.
Broadcast k, B and ΛB = {j1, · · · , jk}.
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2. For i = 1, · · · , n,
(a) If ui+hn,i �= yi+hn,i or |du(Ui+hn, Yi+hn)| ≥ k + 16

or Ui+hn �∈ C for some h, then broadcast ”ignore channel i”.7

This channel will be ignored from now on because it is forged clearly.
(b) Else define ri+hn as

ri+hn = ui+hn,i = yi+hn,i (7)

for h = 0, · · · , t − 1.
3. Find a polynomial R(x) with deg R(x) ≤ nt − 1 such that

R(i + hn) = ri+hn

for each i + hn.
4. Compute R(nt + 1), · · · , R(nt + �) and broadcast

c1 = s1 + R(nt + 1), · · · , c� = s� + R(nt + �).

5. Broadcast du(Ui+hn, Yi+hn) and dI(Ui+hn, Yi+hn) for each i + hn.

Step 3. The receiver does the following.

1. Construct FORGED of eq.(4) from {Ei = Yi − Xi | i ∈ ΛB}.
2. For each i+hn, find a polynomial ui+hn(x) with deg ui+hn(x) ≤ t such that

ui+hn(j) = ui+hn,j for all j ∈ dI(Ui+hn, Yi+hn)
ui+hn(j) = fi+hn(j) for all j such that j /∈ dI(Ui+hn, Yi+hn) and j /∈ FORGED

3. Find a polynomial R′(x) with deg R′(x) ≤ nt − 1 such that

R′(i + hn) = ui+hn(i)

for each i + hn.8

4. Compute R′(nt + 1), · · · , R′(nt + �) and output

s′1 = c1 − R′(nt + 1), · · · , s′� = c� − R′(nt + �).

5.2 Security

We first prove the perfect privacy.

Lemma 2. There exists a subset A ⊂ {r1, · · · , rtn} such that |A| ≥ � and the
adversary has no information on A.

6 k is the number of channels that the adversary forged on {Yi+hn}.
7 For simplicity, we assume that there are no such channels in what follows.
8 ”For each i + hn” can be replaced by ”for each i + hn /∈ ΛB” at step 2-3 and step

3-3.
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Proof. Consider a non-corrupted channel i such that i + hn /∈ ΛB. First the
sender does not broadcast ri+hn at step 2-1 because i + hn /∈ ΛB. Next since
fi+hn(i) is sent through channel i that the adversary does not corrupt, we have

ri+hn = ui+hn,i = fi+hn(i).

Further the adversary observes at most t values of (fi+hn(1), · · · , fi+hn(n)).
Hence the adversary has no information on ri+hn = fi+hn(i) because
deg fi+hn(x) ≤ t.

Note that the adversary corrupts at most t channels and for each corrupted
channel i, the adversary gets ri, ri+n, . . . , ri+(t−1)n. Therefore, there exists a
subset A ⊂ {r1, · · · , rtn} such that

|A| ≥ nt − |ΛB| − t2 = nt − k − t2

and the adversary has no information on A. Finally

nt − k − t2 ≥ (2t + 1)t − t − t2 = t2 = �.

��

Therefore, the adversary has no information on R(nt + 1), . . ., R(nt + �) from
Sec.4.1. Hence she learns no information on si for i = 1, · · · , �.

We next prove the perfect reliability. If j /∈ FORGED and j /∈ dI(Ui+hn, Yi+hn),
then fi+hn(j) = yi+hn,j = ui+hn,j from the definition of dI(Ui+hn, Yi+hn). There-
fore,

ui+hn(j) = ui+hn,j

for all j ∈ dI(Ui+hn, Yi+hn), and for all j such that j /∈ dI(Ui+hn, Yi+hn) and
j /∈ FORGED. This means that ui+hn(j) = ui+hn,j for each j ∈ (FORGED ∪
dI(Ui+hn, Yi+hn)), where

|FORGED ∪ dI(Ui+hn, Yi+hn))| ≥ |FORGED| ≥ n − t = 2t + 1 − t = t + 1.

Further since deg ui+hn(x) ≤ t and Ui+hn ∈ C, it holds that

(ui+hn(1), · · · , ui+hn(n)) = (ui+hn,1, · · · , ui+hn,n).

In particular, ui+hn(i) = ui+hn,i. Therefore from eq.(7), we have that

R(i + hn) = ri+hn = ui+hn,i = ui+hn(i) = R′(i + hn)

for each i + hn. Hence we obtain that R′(x) = R(x) because deg R′(x) ≤ nt − 1
and deg R(x) ≤ nt − 1. Consequently,

s′i = ci − R′(nt + i) = ci − R(nt + i) = si.

Thus the receiver can compute s′i = si correctly for i = 1, · · · , �.

5.3 Efficiency

Let COM(i) denote the communication complexity of Step i for i = 1, 2. Note
that |du(Ui+hn, Yi+hn)| = |dI(Ui+hn, Yi+hn)| ≤ t for each i + hn. Then
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COM(1) = O(tn(n + n)|F|) = O(tn2|F|),
COM(2) = O((|dI(Ui+hn, Yi+hn)| log2 n + |du(Ui+hn, Yi+hn)||F|)tn × n

+ (log2 n + n|B||F| + |ΛB| log2 n)n + t2|F|n)
= O(n2t2 log2 n + n2t2|F| + n log2 n + n2t|F| + tn log2 n + t2|F|n)
= O(n2t2|F|)

because |B|= |ΛB| ≤ t. Hence, the total communication complexity is O(n2t2|F|),
and the transmission rate is O(n2) because the sender sends t2 secrets.

It is easy to see that the computational costs of the sender and the receiver
are both polynomial in n.

6 Final 2-Round PSMT

The transmission rate is still O(n2) in the 2-round PSMT shown in Sec.5. In
this section, we show how to reduce it to O(n) by using the technique of [1, page
406] and [8]. Then we can obtain the first 2-round PSMT for n = 2t + 1 such
that not only the transmission rate is O(n) but also the computational costs of
the sender and the receiver are both polynomial in n.

6.1 Generalized Broadcast

Suppose that the receiver knows the locations of k (≤ t) channels that the
adversary forged. For example, suppose that the receiver knows that channels
1, 2, · · · , k are forged by the adversary. Then the adversary can corrupt at most
t − k channels among the remaining n − k channels k + 1, · · · , n. In this case,
it is well known that the sender can send k + 1 field elements u1, u2, . . . , uk+1

reliably with the communication complexity O(n|F|) as shown below.

1. The sender finds a polynomial p(x) with deg p(x) ≤ k such that p(1) = u1,
p(2) = u2, . . . , p(k + 1) = uk+1.

2. She sends p(i) through channel i for i = 1, · · · , n.

Without loss of generality, suppose that the receiver knows that channels
1, · · · , k are forged by the adversary. Then he consider a shortened code such
that a codeword is (p(k +1), · · · , p(n)). The minimum Hamming distance of this
code is (n − k) − k = 2t + 1 − 2k = 2(t − k) + 1. Hence the receiver can correct
the remaining t − k errors.

This means that the receiver can decode (p(k + 1), · · · , p(n)) correctly. Then
he can reconstruct p(x) by using Lagrange formula because

n − k = 2t + 1 − k ≥ 2k + 1 − k = k + 1 ≥ deg p(x) + 1.

Therefore he can obtain u1 = p(1), . . . , uk+1 = p(k + 1) correctly.

6.2 How to Improve Step 2-5

Step 2-5 is the most expensive part in the 2-round PSMT shown in Sec.5. In this
subsection, we will show a method which reduces the communication complexity
of step 2-5 from O(n2t2|F|) to O(n2t|F|).
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At step 2-5, the sender broadcasts

du(Ui+hn, Yi+hn) and dI(Ui+hn, Yi+hn)

for each i + hn. Note that the size of all du(Ui+hn, Yi+hn) is bounded by

n∑
i=1

t−1∑
h=0

|du(Ui+hn, Yi+hn)| ≤ knt (8)

because |du(Ui+hn, Yi+hn)| ≤ k from Step 2-2(a), where

k = |B| = |FORGED|

is the number of channels that the adversary forged on {Yi+hn}. On the other
hand, the following lemma holds.

Lemma 3. The sender can send k + 1 field elements reliably with the commu-
nication complexity O(n|F|) at step 2-5.

Proof. The sender knows the value of k because she computes B. The receiver
knows the locations of k forged channels because he computes FORGED. There-
fore, we can use the generalized broadcasting technique shown in Sec.6.1. ��

Now from eq.(8) and Lemma 3, it is easy to see that the communication com-
plexity of step 2-5 can be reduced to O(n2t|F|).

6.3 Final Efficiency

Consequently, we obtain COM(2) = O(n2t|F|) because the communication com-
plexity of step 2-5 is now reduced to O(n2t|F|). On the other hand, COM(1) =
O(n2t|F|) from Sec.5.3. To summarize,

COM(1) = O(n2t|F|) and COM(2) = O(n2t|F|)

in our final 2-round PSMT. Hence, the total communication complexity is
O(n3|F|) because n = 2t + 1.

Now the transmission rate is O(n) because the sender sends t2 secrets which
is O(n2|F|). Finally, it is easy to see that the computational costs of the sender
and the receiver are both polynomial in n.

References

1. Agarwal, S., Cramer, R., de Haan, R.: Asymptotically Optimal Two-Round Perfectly
Secure Message Transmission. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
pp. 394–408. Springer, Heidelberg (2006)

2. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmission.
J. ACM 40(1), 17–47 (1993)



340 K. Kurosawa and K. Suzuki

3. Desmedt, Y., Wang, Y., Burmester, M.: A Complete Characterization of Tolerable
Adversary Structures for Secure Point-to-Point Transmissions Without Feedback.
In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 277–287. Springer,
Heidelberg (2005)

4. Fitzi, M., Franklin, M., Garay, J., Vardhan, S.: Towards Optimal and Efficient
Perfectly Secure Message Transmission. In: Vadhan, S.P. (ed.) TCC 2007. LNCS,
vol. 4392, pp. 311–322. Springer, Heidelberg (2007)

5. Hirt, M., Maurer, U.: Player Simulation and General Adversary Structures in Perfect
Multiparty Computation. J. Cryptology 13(1), 31–60 (2000)

6. Kumar, M.V.N.A., Goundan, P.R., Srinathan, K., Rangan, C.P.: On perfectly secure
communication over arbitrary networks. In: PODC 2002, pp. 193–202 (2002)

7. Md Sayeed, H., Abu-Amara, H.: Efficient Perfectly Secure Message Transmission in
Synchronous Networks. Inf. Comput. 126(1), 53–61 (1996)

8. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal Perfectly Secure Message
Transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561.
Springer, Heidelberg (2004)



Protocols and Lower Bounds for Failure

Localization in the Internet
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Abstract. A secure failure-localization path-quality-monitoring (FL-
PQM) protocols allows a sender to localize faulty links on a single path
through a network to a receiver, even when intermediate nodes on the
path behave adversarially. Such protocols were proposed as tools that en-
able Internet service providers to select high-performance paths through
the Internet, or to enforce contractual obligations. We give the first for-
mal definitions of security for FL-PQM protocols and construct:

1. A simple FL-PQM protocol that can localize a faulty link every
time a packet is not correctly delivered. This protocol’s communica-
tion overhead is O(1) additional messages of length O(n) per packet
(where n is the security parameter).

2. A more efficient FL-PQM protocol that can localize a faulty link
when a noticeable fraction of the packets sent during some time pe-
riod are not correctly delivered. The number of additional messages
is an arbitrarily small fraction of the total number of packets.

We also prove lower bounds for such protocols:

1. Every secure FL-PQM protocol requires each intermediate node on
the path to have some shared secret information (e.g. keys).

2. If secure FL-PQM protocols exist then so do one-way functions.
3. Every black-box construction of a FL-PQM protocol from a random

oracle that securely localizes every packet and adds at most O(log n)
messages overhead per packet requires each intermediate node to
invoke the oracle.

These results show that implementing FL-PQM requires active coop-
eration (i.e. maintaining keys and agreeing on, and performing, crypto-
graphic protocols) from all of the intermediate nodes along the path.
This may be problematic in the Internet, where links operate at ex-
tremely high speeds, and intermediate nodes are owned by competing
business entities with little incentive to cooperate.

Keywords: Failure localization, secure routing, black-box separation.

1 Introduction

The Internet is an indispensable part of our society, and yet its basic founda-
tions remain vulnerable to attack. Secure routing protocols seek to remedy this
by not only providing guarantees on the correct setup of paths from sender to
receiver through a network (e.g. secure BGP [16]), but also by verifying that

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 341–360, 2008.
c© International Association for Cryptologic Research 2008



342 B. Barak, S. Goldberg, and D. Xiao

data packets are actually delivered correctly along these paths. Packet deliv-
ery is surprisingly susceptible to simple attacks; in the current Internet, packets
are typically sent along a single path from sender to receiver, and so a mali-
cious node along the data path can easily drop or modify packets before they
reach their destination. To detect and respond to such attacks, the networking
community has recently been studying monitoring and measurement protocols
that are used to obtain information about packet loss events on a data path
(e.g. [2, 3, 4, 5, 7, 18, 19, 21, 23, 24]). The motivation for such protocols is twofold.
First, they provide the sender with information that he can use during path
setup to select a single, high-performance path to the receiver from the multi-
ple available paths through the network [11]. Second, since Internet service is
a contractual business, where senders pay nodes along the data path to carry
their packets, information from Internet measurement protocols is highly valu-
able for enforcing contractual obligations between nodes. In fact, Laskowski and
Chuang [17] recently argued that this information is not only valuable, but also
necessary to counter the Internet industry’s growing trend towards degraded
path performance. Note that if monitoring protocols are used to enforce contrac-
tual obligations, nodes may have an economic incentive to bias the information
obtained from these protocols.

In this work we provide a rigorous cryptographic examination of secure mon-
itoring protocols that are robust even in the presence of malicious nodes on the
data path. In particular, we study techniques that allow a sender to localize the
specific links along the data path where packets were dropped or modified— a
task that we call failure-localization path-quality monitoring. While some proto-
cols for this task are deployed in the Internet today (e.g. traceroute [1]), they are
not robust to nodes that behave adversarially in order to bias measurements.

1.1 Our Results

We make the following contributions to the study of secure failure-localization
path-quality monitoring protocols (in the rest of the paper we call these simply
failure localization or FL protocols). Throughout the paper, we use the word
“packet” to denote data that the sender wishes to transmit, and “message” to
refer to both data packets and FL-protocol-related messages.

Definition. In Section 2, we give the first formal definition of security for
failure localization protocols. We note that some of the previous FL protocols
suggested in the literature, such as [21, 4, 2], do not satisfy our definition. (We
sketch attacks in Appendix A.)

We give two variants of the definition— per-packet security requires localizing
a link each time a packet is not delivered, while statistical security only requires
this when a noticeable fraction of packets fail to arrive. An important feature of
our definition is that it accounts for the fact that messages can be dropped in
the Internet for benign reasons like congestion. We note that care must be taken
to design protocols that are simultaneously robust to both adversarial behaviour
and benign congestion. We discuss the effect of this assumption on some previous
work [4] in Appendix A.
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Protocols. We present two simple protocols satisfying our per-packet (Sec-
tion 3.1) and statistical (Section 3.2) security definitions. Both of these protocols
do not modify the packets sent on the path; instead, they add additional mes-
sages. Thus our protocols have the important advantage of allowing backwards
compatibility with the current techniques for processing packets in a router,
minimizing latency in the router, and not increasing packet size.

Our main measure of efficiency for such protocols is communication overhead—
the number and size of messages added by the protocols. The per-packet protocol
adds a single O(n)-length message to every packet sent (n is the security param-
eter), and O(K) additional O(n)-length messages when a failure occurs (where
K is the number of nodes on the path). The statistical protocol only needs O(K)
additional O(n)-length messages per T packets sent. In our setting K is constant,
while T could be poly(n), which implies the statements in the abstract.

Lower bounds. Like many of the protocols in the literature [3, 4, 21, 19, 2],
both of our protocols require cryptographic keys and computations at each node.
These requirements are considered severe in the networking literature; setting
up a key infrastructure and agreeing on cryptographic primitives is challenging
in the distributed world of the Internet, where each node is owned by a different
entity with sometimes incompatible incentives. However, in Section 4 we show
that these requirements are to some degree inherent by:

1. Proving that every secure (per-packet or statistical) FL protocol requires a
key infrastructure, or more precisely, that intermediate nodes and Alice and
Bob must all share some secret information between each other.

2. Proving that a one-way function can be constructed from any secure FL
protocol.

3. Giving evidence that any practical per-packet secure FL protocol must use
these keys in a cryptographic way at every node (e.g. , it does not suffice
to use the secret information with some simple, non-cryptographic, hash
functions as in [7]). We show that in every black-box construction of such
a protocol from a random oracle, where at most O(log n) protocol messages
are added per packet, then every intermediate node must query the random
oracle. We note that known protocols designed for Internet routers currently
avoid using public-key operations, non-black-box constructions, or adding
more than a constant number of protocol messages per packet. We also show
that for statistically-secure FL, or FL protocols adding ω(log n) messages
per packet, the necessity of cryptography depends on subtle variations in
the security definition.

Implications of our results. Our lower bounds raise questions about the prac-
ticality of deploying FL protocols. In small highly-secure networks or for certain
classes of traffic, the high key-management and cryptographic overhead required
for FL protocols may be tolerable. However, FL protocols may be impractical for
widespread deployment in the Internet; firstly because intermediate nodes are
owned by competing business entities that may have little incentive to set up a
key infrastructure and agree on cryptographic protocols, and secondly because
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cryptographic computations are expensive in the core of the Internet, where
packets must be processed at extremely high speeds (about 2 ns per packet).
Thus, our work can be seen as a motivation for finding security functionalities
for the Internet that are more practical than failure localization.

1.2 Related Work

Some of this work (in particular, the results of Section 3 and a weaker version
of Theorem 5) appeared in our earlier technical report [8]. We built on [8] in
[9], where, together with Jennifer Rexford and Eran Tromer, we gave formal
definitions, constructions, and lower bounds for the simpler task of path-quality
monitoring (PQM). In a PQM protocol the sender only wishes to detect if a
failure occurred, rather than localize the specific faulty link along the path. We
use the results from [9, 8] in Section 3.2 to show how a PQM protocol can be
composed to obtain a statistical FL protocol, and in Section 4.2 to argue that
FL protocols need cryptographic computations.

In addition to the FL protocols from the networking literature [3,4,21,19,2,24],
our work is also related to the work on secure message transmission (SMT) be-
gun by Dolev, Dwork, Waart, and Yung in [6]. In SMT, a sender and receiver
are connected by a multiple parallel wires, any of which can be corrupted by an
adversary. Here, we consider a single path with a series of nodes that can be cor-
rupted by an adversary, instead of multiple parallel paths. Furthermore, while
multiple parallel paths allow SMT protocols to prevent failures, in our single
path setting, an adversarial intermediate node can always block the communi-
cation between sender and receiver. As such, here we only consider techniques
for detecting and localizing failures.

2 Our Model

In a failure localization (FL) protocol, a sender Alice wants to know whether
the packets she sends to receiver Bob arrive unmodified, and if not, to find the
link along the path where the failure occurred (see Figure 1). We say a failure or
fault occurs when a data packet that was sent by Alice fails to arrive unmodified
at Bob. Following the literature, we assume that Alice knows the identities of
all the nodes of the data path. We work in the setting where all traffic travels
on symmetric paths (i.e. intermediate nodes have bi-directional communication
links with their neighbors, and messages that sender Alice sends to receiver
Bob traverse the same path as the messages that Bob sends back to Alice). We
say that messages travelling towards Alice are going upstream, and messages
travelling towards Bob are going downstream. An adversary Eve can occupy any
set of nodes on the path between Alice and Bob, and can add, drop, or modify
messages sent on the links adjacent to any of the nodes she controls. She can
also use timing information to attack the protocol.

Localizing links, not nodes. It is well known that an FL protocol can only
pinpoint a link where a failure occurred, rather than the node responsible for
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the failure. To see why, refer to Figure 1, and suppose that (a) Eve controlling
node R2 becomes unresponsive by ignoring all the messages she receives from R1.
Now suppose that (b) Eve controls node R1 and pretends that R2 is unresponsive
by dropping all communication to and from R2. Because cases (a) and (b) are
completely indistinguishable from Alice’s point of view, at best Alice can localize
the failure to link (1, 2).

RA (Alice) � R1 � R2 � . . .� RK � RB (Bob)

Fig. 1. A path from Alice to Bob via K intermediate nodes

Congestion. Congestion-related packet loss is widespread on the current In-
ternet, caused by protocols like TCP [15] that naturally drive the network into
a state of congestion. Our definition accounts for congestion by assuming links
can drop each message independently with some probability. One could come up
with other models for congestion (e.g. allowing Eve to specify the distribution
of congestion-related packet loss), and for some plausible choices our positive re-
sults will still hold. However, we use independent drops for the sake of simplicity.
Furthermore, assuming that congestion is not controlled by the adversary only
strengthens our negative results and makes our model more realistic.

2.1 Security Definition

Let n be the security parameter. A failure localization protocol consists of an
efficient initialization algorithm Init taking n uniformly random bits and gen-
erating keys for each node, and efficient node algorithms Alice, Bob, R1, . . . , RK

which take in a key and communicate with each other as in Figure 1. We always
fix K = O(1) independent of n.1 The Alice algorithm takes in a packet that she
wants to send to Bob. If communication is successful, then the Bob algorithm
outputs the packet that Alice sent. Our security definitions are game-based:

Definition 1 (Security game for FL). The game begins when Eve chooses
a subset of nodes E ⊆ {1, . . . , K} that she will occupy for the duration of the
game. The Init algorithm is then used to generate keys for each node, and Eve is
given the keys for the nodes i ∈ E that she controls. We define an oracle Source
that generates data packets d for the Alice algorithm to send. We allow Eve to
choose the packets that the Source oracle generates, subject to the condition
that she may not choose the same packet more than once during the game.2 We
1 Typically in the Internet, the path length K is less than 20 when nodes represent

individual routers, and when nodes represent Internet Service Providers (ISPs) then
there are on average K ≈ 4, and no more 7 nodes on a typical path [16].

2 We make this assumption because there is natural entropy in packet contents, due to
TCP sequence numbers and IP ID fields [7]. To enforce this assumption in practice,
protocol messages can be timestamped with with an expiry time, such that with
high probability (over the entropy in the packet contents), no repeated packets are
sent for the duration of the time interval for which the protocol messages are valid.
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allow Eve to add, drop, or modify any of the messages sent on the links adjacent
to the nodes she occupies. We include congestion in our model by requiring that,
for each message sent on each link on the path, the link goes down or drops the
message with some constant probability ρ > 0. Notice that this means that a
failure can happen at links not adjacent to a node occupied by Eve.

We introduce the notion of time into our model by assuming that the game
proceeds in discrete timesteps; in each timestep, a node can take in an input and
produce an output, and each link can transmit a single message. (Thus, each
timestep represents an event occurring on the network.) Because it is expensive
to have securely synchronized clocks in a distributed system like the Internet,3

we do not allow the honest algorithms to take timing information as an input.
However, to model timing attacks, we assume that Eve knows which timestep
that the game is in.

Then, our per-packet security definition uses the the game defined in Definition 1:

Definition 2 (Per-packet security for FL). In the per-packet security game,
Eve gets to interact with the Source oracle and the “honest” node algorithms as
in Definition 1, until she decides to stop. For each packet sent, Alice must output
either

√
(i.e. not raise an alarm) or a link � (i.e. raise an alarm and localize

a failure to �). We assume that the game is sequential: Alice must output a
decision for each data packet before starting to transmit the next data packet
(see remarks below). We say that an FL protocol is per-packet secure if the
following hold:

1. (Secure localization). For every packet d sent by the Source oracle that is
not successfully output by Bob, then Alice outputs a link � such that either
(a) link � is adjacent to a node occupied by Eve, or (b) link � went down
due to congestion for one of the messages (including FL protocol messages)
associated with sending packet d from Alice to Bob.

2. (No false positives). For every packet d sent by the Source oracle that is
successfully output by Bob, for which there was no congestion, and for which
Eve does not deviate from the protocol, Alice outputs

√
.

We need to introduce a few new concepts for our statistical security defini-
tion. First, we define an interval as a sequence of T packets (and associated FL
protocol messages) that Alice sends to Bob.4 Next, we use the following param-
eters: a false alarm threshold α, a detection threshold for the path β (where
0 < α < β < 1) and an error parameter δ ∈ {0, 1}. Usually, we will set α such
that congestion alone almost never causes the failure rate on a path to exceed
the false alarm threshold.

Definition 3 ((α, β, δ)-Statistical security for FL). In the statistical secu-
rity game, Eve is allowed to choose the number of intervals for which she wants
3 Indeed, the NTP protocol used for clock synchronization on the Internet is not

secure [12], and thus should not be used as an input to a secure FL protocol.
4 We can think of an interval as all the packets sent in some time period (e.g. approx-

imately 107 packets are sent 100 msec over a 5 Gbps Internet path).
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to interact with the Source oracle and the honest nodes as in Definition 1. The
number of packets per interval T may grow with n, but is always at least some
minimum number depending α, β, δ, K. At the end of each interval, Alice needs
to output either

√
(i.e. not raise an alarm) or a link � (i.e. raise an alarm and

localize a link). The game is sequential; Alice must output a decision for each
interval before starting the next interval. Then, an FL protocol is statistically
secure if the following hold:

1. (Secure localization). For any interval in the security game where Eve causes
the failure rate on the path to exceed the detection threshold β, then with
probability 1 − δ Alice raises alarm for a link � that is adjacent to Eve, or a
link � whose failure rate exceeds α

K+1 .
2. (Few false positives). For any interval in the security game where Eve does

not deviate from the correct algorithm Ri of any of the nodes i ∈ E that she
controls and the failure rate on each link is below the (per-link) false alarm
threshold α

K+1 , then the probability that Alice outputs
√

is at least 1 − δ.

We now discuss some properties of our security definition.

Benign and malicious failures. Our security definitions require Alice to
accurately localize failures, but these failures may be caused by Eve, or may
be the result of benign causes, such as congestion. We do not require Alice to
distinguish between benign or malicious (i.e. due to Eve) failures, because Eve
can always drop packets in a way that “looks like” congestion.

Sequential games. For simplicity, in our per-packet security game we required
Alice to make FL decisions before she sends a new data packet. This is to capture
the fact that such protocols should provide “real-time” information about the
quality of the paths she uses, and so we did not allow Alice in the per-packet
case to make decisions only after sending many packets (as is done in the sta-
tistical security case). We note that while our negative results (i.e. attacks) are
sequential, our positive results (i.e. , protocols) do not use the assumption of
sequential execution in any way, and are secure in a more general setting where
Eve can choose when Alice needs to output an FL decision each packet. We
emphasize that the sequential assumption does not prevent Alice from keeping
state and using information from past packets in order to make FL decisions.
(Though none of our positive results require that Alice does this.)

Movements of the adversary. Our model does not allow Eve to move from
node to node in a single security game. This assumption makes sense when Eve
models a Internet service provider that tries, for business reasons, to bias the
results of FL protocol. Furthermore, when Eve is an external attacker or virus
that compromises a router, “leaving” a router means that the legitimate owner
of the router removed the attacker from the router, e.g. by refreshing its keys. We
model this key refresh process as a re-start of the security game. Furthermore,
in practice “movements” to a new router happen infrequently, since an external
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attacker typically needs a different strategy each time it compromises a router
owned by a different business entity.

Generalizations. All our results generalize to the setting where congestion
rates, false alarm thresholds, and detection thresholds are different per link; we
set them all equal here for simplicity. Our negative results also hold for the
weaker adversary model where Eve can occupy only one node and the Source
oracle generates independent (efficiently-samplable) packets from a distribution
that is not controlled by Eve.

3 Protocols

We now present protocols for secure per-packet and statistical FL. Our protocols
are related, though not identical to those of [2, 3, 4]. (In Appendix A we show
that the protocols in [2, 4] do not satisfy our security definitions.)

We use the notation [m]k to denote a message m authenticated by a key k
using a message authentication code (MAC); such schemes can be constructed
from any one-way function [10, 22]. We’ll often use the well-known notion of
an onion report : if every node Ri wants to transmit a report τi to Alice in an
authenticated way, then we define inductively θK+1 = [(K + 1, τBob)]kBob and
for 1 ≤ i ≤ K, θi = [(i, τi, θi+1)]ki . That is, each Ri’s report is appended
with its downstream neighbors’ reports before being authenticated and passed
upstream. Onion reports prevent Eve from selectively dropping reports — if Eve
occupies Rj and wants to drop the report τi of Ri for some i > j then, under the
assumption that Eve cannot forge MACs, Alice will discover that Rj tampered
with the onion report. We also note that every time we send or store a packet
d in acknowledgments and reports, we could save space by replacing d with an
O(n)-length hash of d via some collision-resistant hash function, where n is the
security parameter.

3.1 Optimistic Per-Packet FL Protocol

We assume that each node Ri shares a symmetric key ki with Alice. For each
packet that Alice sends, the protocol proceeds in two phases:

The detect phase. Alice stores each packet d that she sends to Bob. When
Bob receives the packet d, he responds with an ack of the form a = [d]kB .
Alice removes the the packet d from storage when she receives a validly MAC’ed
corresponding ack, and raises an alarm if a valid ack is not received.5 We also
require each intermediate node to store each data packet and corresponding ack.

The localize phase. This phase is run only if Alice raises an alarm for a packet
d. Alice sends an onion report request q = (report, d) downstream towards Bob.
To respond to the request, each node Ri checks if he stored data packet d; if he

5 In practice, each packet d should be stored along with a local timeout at Alice. If
the ack does not arrive before the timeout expires, then Alice should raise an alarm.
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did, Ri sets τi = (q, i, d, a) where a is the ack he saw corresponding to packet
d, and substituting the symbol ⊥ for d and/or a if he failed to to receive that
packet or an ack. Ri then creates an onion report θi using τi as described above.
In the onion report, Ri can substitute the symbol θi+1 = ⊥ if he fails to receive
a θi+1 from Ri+1.

To localize the failure, Alice classifies the onion reports that she received in
response to her onion report request q. An onion report θi = [q′, i′, d′, a′, θi+1]ki

is “consistent” if it is present, i.e. θi �= ⊥, and all of the following four conditions
hold. Otherwise, an onion report is “inconsistent”.

1. q′ = q sent out by Alice.
2. The MAC on θi is valid.
3. d′ = d, where d is the packet queried in q.
4. a′ is not a valid ack for packet d.

Alice localizes then localizes the upstream-most link (i, i + 1) where the onion
reports transition from consistent to inconsistent.

Theorem 1. The optimistic FL protocol is per-packet secure.

The proof follows via a simple reduction to the security of the MAC, and is
defered to the full version. We remark that the detect phase of this protocol
requires a large amount of storage and communication overhead at each node.
This high overhead makes this protocol impractical for regular Internet traffic;
however, it might be useful for specialized highly-secure networks, or for certain
classes of traffic e.g. network management traffic.

3.2 A Composition Technique for Statistical FL

We now consider statistical security protocols, that apply results from our pre-
vious work on statistical PQM [8,9] to obtain statistical FL protocols with much
lower overhead. In a statistical PQM protocol, Alice detects whenever the aver-
age failure rate exceeds a threshold β (but she need not localize a link).

Here we show how to compose the lightweight PQM protocols we presented
in [9] to obtain a statistical FL protocol. While it is possible to give a very
general composition theorem, for clarity and concreteness in this version we
describe only how to compose the simpler symmetric secure sampling (SSS)
protocol of [9]. We defer our more general composition result to the full version
of this paper. In particular, we can compose the secure sketch protocol of [9] that
has a communication overhead of only a single O(log T + n) length packet for
every interval, thus yielding the result stated in Section 1.1.

Symmetric Secure Sampling (SSS), a statistical PQM protocol from
[9,8]. SSS requires Alice and Bob to securely designate a random p fraction of
the data packets that Alice sends to Bob as “probes”, and require that Bob send
MAC’d acknowledgments for all the probes. We call p the probe frequency. To
do this, Alice and Bob share a secret k = (k1, k2). For each packet d that Alice
sends to Bob, they use k1 to compute a function Probe that determines whether
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or not a packet d is a probe and should therefore be stored, and acknowledged.
To acknowledge a probe, Bob sends Alice an ack [d]k2 that is MAC’ed using
k2. The Probe function is implemented using a pseudorandom function (PRF)
f keyed with k1, that we think of as mapping strings to integers in [0, 2n−1];
we define Probek1(d) output “Yes” if fk1(d) < p2n and output “No” otherwise.
For each interval, Alice stores each probe packet (i.e. each packet d such that
Probek1(d) =Yes). At the end of the interval, after T packets are sent, Alice
computes V , a count of the number of stored (probe) packets for which she
failed to receive a valid ack. She computes the average failure rate as V

pT .

A composition that does not work. Perhaps the most natural approach to
construct a statistical FL protocol is to have Alice run K simultaneous PQM
protocols with each of the intermediate nodes, and use the statistics from each
protocol to infer behaviour at each link (similar to [21,4,24]). However, we now
show that this composition is vulnerable to the following timing attack : Suppose
a packet d that Alice sends to Bob is ack’d by innocent node Rj with message a.
Then, if Eve occupies node Ri for i < j−1, she can determine that Rj originated
the ack a by counting the timesteps that elapsed between the timestep in which
she saw d and timestep in which she saw a. Then, Eve can implicate Rj by
selectively dropping every ack that originates at Rj . Notice that this attack
results from the structure of this composition, and cannot be prevented even
when acks are encrypted.6 In practice, this attack can be launched when isolated
burst of packets triggers a separate burst of acks at each intermediate node.

Composing PQM to statistical FL. We require that every node Ri shares
pairwise keys kA

i , kB
i with Alice and Bob respectively. Using kB

i , each interme-
diate node runs a statistical PQM protocol with Bob with the following modifi-
cation: whenever Bob decides to send an ack for a packet d to an intermediate
node Ri, Bob will (1) always address the ack to Alice and (2) MAC the ack in
onion fashion, starting with kB

Alice (on the inside of the onion) and ending with
kB

K (on the outside of the onion). Each node forwards all acks upstream, and
processes only the ack he expects. At the end of the interval u, Alice will send
an onion report request q = (report, u) to all the intermediate nodes. Each in-
termediate node produces a MAC’d onion report θi = [q, i, Vi, θi+1]kA

i
where Vi

is his estimate of the average failure rate on the path between himself and Bob.
Letting α, β be the false alarm and detection thresholds, when Alice receives the
final onion report θ1, she computes F� = Vi −Vi+1 for each link � = (i, i+1), and
outputs � if F� > α+β

2(K+1) , or if � = (i, i + 1) is the upstream-most link when the
onion report θi+1 refers to the wrong interval, is missing, or is invalidly MAC’ed.
We prove that this scheme is secure provided that the interval length T is long
enough and the congestion rate ρ is small enough.

Theorem 2. The composition of SSS described above with probe frequency p
satisfies (α, β, δ)-strong statistical security when each interval contains at least
T = O( K2

p(β−α)2 ln K
δ ) packets and the congestion rate satisfies β − α � Kρ.

6 [24] deals with this by randomizing the sending time of acks.
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Alice Eve Bob

PQM

ack

PQM

ackAlice Bob

Fig. 2. On the left an insecure composition, on the right our secure composition

Proof. First, observe that the probability that any efficient adversary Eve suc-
cessfully forges an ack for a dropped packet by forging a MAC used in SSS is
negligible. As in the Optimistic Protocol, the probability that any efficient ad-
versary Eve successfully forges the onion report of an honest node (by forging
the MAC on the onion report) is negligible as well. Hence, for the rest of this
proof assume that Eve does not forge an ack to a dropped packet or validly forge
the onion report of an honest node. Moreover, we can assume that Eve does not
tamper with the onion report, or else she will implicate a link adjacent to one
of the nodes she controls. We now work within a single interval:

– Let Vi be Ri’s estimate of the failure rate between Ri and Bob.
– Let Di be a count of the number of packets that were dropped or modified

on the path between Ri and Bob.
– Let Ci be the number of acks intended for any node that were dropped or

modified on the path between Bob and Ri.
– Let p′ = p

1−(1−p)K+1 be the probability that a node Ri expects an ack to a
packet d (i.e. ProbekB

i
(d) = Yes) conditioned on there being at least one node

expecting an ack to packet d (i.e. ∃j ∈ {0, . . . , K}, ProbekB
j
(d) = Yes).7

Note that when Ri estimates the average failure rate on the path from Ri to
Bob, she is unable to distinguish between dropped packets and dropped acks.
Also, it is possible that Di > Di+1 or Ci > Ci+1 for two adjacent uncorrupted
nodes because of congestion. In the absence of adversarial behavior at Ri, the
expectation of the estimator Vi that Alice receives in the onion report is 1

T (Di +
p′

p Ci). Finally, notice that the average failure rate on link (i, i+1) is 1
T (Di−Di+1).

Set γ = β−α
2(K+1) . If T = O( K2

p(β−α)2 ln K
δ ) then we have the following lemmata:

Lemma 1 (Deviation of the estimator Vi). For each i /∈ E where E is the
set of nodes corrupted by Eve it holds (up to negligible error) that

Pr
[∣∣∣Vi − 1

T (Di + p′

p Ci)
∣∣∣ > 1

4γ
]

< δ
4(K+1)

Lemma 2 (Acks dropped due to congestion). For each i, i + 1 /∈ E, it
holds (up to negligible error) that

Pr
[

p′

p
Ci−Ci+1

T > γ
2

]
< δ

2(K+1)

7 This quantity is the probability that a node Ri samples an ack that was dropped
between Ri and RB , since at least one node must have sampled the corresponding
packet in order for the ack to be transmitted at all.
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The proofs of these lemmata are technical, but not difficult. We defer them
to the full version. Both proofs are applications of the Chernoff bound under
the assumption that the Probe function is implemented with a truly random
function; the negligible error refers the difference between a PRF and a truly
random function. The proof of Lemma 1 relies on the fact that Eve cannot bias
node Ri’s estimate of Ci by selectively dropping acks because (1) acks destined
for different nodes look identical, and they all originate at Bob (so that an
adversary cannot use timing to distinguish between them), and (2) acks are onion
MAC’d, so the adversary cannot selectively tamper with an ack intended for an
upstream node. The proof of Lemma 2 also relies on the fact that β − α � Kρ.

Few false positives: To prove this, we consider an interval where all the nodes
on the path behave honestly, and show that, with probability at least 1−δ, Alice
will not raise an alarm during this “honest interval”.

Consider link � = (i, i + 1) where the average failure rate is less than the false
alarm threshold so 1

T (Di −Di+1) < α
K+1 . We now show that Alice will not raise

an alarm for this link � by proving that Alice’s estimate of the failure rate for �,
i.e. Vi − Vi+1, does not exceed her alarm decision threshold, i.e. α+β

2(K+1) . We do
this by proving that

Pr
[∣∣(Vi − Vi+1) − 1

T (Di − Di+1)
∣∣ > α+β

2(K+1) − α
K+1 = γ

]
< δ

K+1 (3.1)

Notice that “Few false positives” condition follows from (3.1) by a union bound
over all K + 1 links.

To prove (3.1), we start with the expression below, and apply the triangle
inequality, and then Lemma 1:

Pr[|(Vi − Vi+1) − (Di−Di+1
T + p′

p
Ci−Ci+1

T )| > γ/2]

≤ Pr[|Vi − 1
T (Di + p′

p Ci)| > γ/4] + Pr[|Vi+1 − 1
T (Di+1 + p′

p Ci+1)| > γ/4]

≤ δ
2(K+1) (3.2)

Next, from Lemma 2 we know that Pr[p′

p
Ci−Ci+1

T > γ/2] ≤ δ
2(K+1) , and so a

union bound over this expression and (3.2) proves (3.1).

Secure localization: We now show that if Eve drops more than a β fraction
of packets in any interval, then Alice will catch her with probability at least
1−δ. Since the actual failure rate on the path is 1

T DA > β, we start by applying
Lemma 1 to find that Alice’s estimate of the failure rate is VA > β − γ

4 with
probability at least 1− δ

4(K+1) . We now use an averaging argument to claim that

there exists some link � = (i, i + 1) such that Vi − Vi+1 > α+β
2(K+1) . To see why,

suppose for the sake of contradiction that for all i we had Vi − Vi+1 ≤ α+β
2(K+1) .

Then, it follows that

VA =
K∑

i=0

(Vi − Vi+1) ≤
∑

�

α+β
2(K+1) = α+β

2 < β − γ
4
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where VK+1 = 0 (Bob’s estimate of drops to himself is 0). But this contradicts
our condition that VA > β − γ

4 , so there is at least one link � = (i, i + 1) with
Vi − Vi+1 > α+β

2(K+1) so that Alice raises an alarm.
Next, recall that we assume that for any link where the true failure rate due

to congestion less than α
K+1 , we have from our proof of the “Few false positives”

condition that with probability δ
K+1 , Alice does not raise an alarm for link �

between two honest nodes. Then, Alice must have raised the alarm for a link
adjacent to Eve with probability at least 1− δ (by a union bound) or a link with
actual failure rate larger than α

K+1 , and secure localization follows.

4 Lower Bounds

We now argue that in any secure per-packet FL scheme Alice requires shared keys
with Bob and the intermediate nodes, and Alice, Bob and each intermediate node
must perform cryptographic operations. We only argue for intermediate nodes
R2, . . . , RK ; R1 is a border case which requires neither keys nor crypto because
we assume Alice is always honest.

4.1 Failure Localization Needs Keys at Each Node

Since FL provides strictly stronger security guarantees than path-quality mon-
itoring, it follows from the results in [9] that in any secure FL protocol, Alice
and Bob must have shared keys. We also have the following theorem that proves
that in any secure FL protocol, each intermediate node must share keys with
some Alice:

Theorem 3. Suppose Init generates some auxiliary information auxi for each
node Ri for i = 1, ..., K, Alice, Bob. A FL protocol cannot be (per-packet or sta-
tistical) secure if there is any node i ∈ {2, . . . , K} such that (auxAlice, aux1, . . . ,
auxi−1) and auxi are independent.

Proof. Suppose Ri has auxi that is independent of (auxAlice, . . . , auxi−1). Then,
the following two cases are indistinguishable from Alice’s view: (a) Node Ri+1is
malicious and blocks communication on link (i, i+1), and (b) Eve occupies node
Ri−1, and drops packets while simulating case (a) by picking an independent aux′i
and running Ri(aux′i) while pretending as if (i, i + 1) is down. These two cases
are indistinguishable because auxi is independent of (auxAlice, . . . , auxi−1), and
so Alice will localize the failure to the same link in both case (a) and (b). But
this breaks security, since Ri+1, Ri−1 do not share a common link.

4.2 Failure Localization Needs Crypto at Each Node

In [9], we give a reduction from one-way functions to secure PQM, proving:

Theorem 4 (From [9]). The existence of a per-packet secure PQM protocol
implies the existence of an infinitely-often one-way function (i.o.-OWF).
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Since one-way functions are equivalent to many cryptographic primitives (in the
sense that these primitives exist if and only if one-way functions exist [13]), this
result can be interpreted to mean that nodes participating in any secure PQM
protocol must perform cryptographic computations. Since FL gives a strictly
stronger security guarantee than PQM, we also have that in any FL protocol,
some node on the data path must perform cryptography. However, Theorem 4
only implies that the entire system performs cryptography. We want to prove
that any secure FL protocol requires each intermediate node R1, . . . , RK to per-
form cryptography. Because it is not clear even how to formalize this in full
generality, we instead apply the methodology of Impagliazzo and Rudich [14] to
do this for black-box constructions of FL protocols from a random oracle RO.
We model “performing cryptography” as querying the random oracle, and show
that in such a secure FL protocol each node must query the RO.

In [14], Impagliazzo and Rudich showed that there can be no secure black-
box construction of key agreement (KA) from a random oracle. They argued
that if any such KA construction is secure, then it must also be secure in a
relativized world where every party has access to a random oracle RO, and a
PSPACE oracle. (A PSPACE oracle solves any PSPACE-complete problem, e.g.
True Quantified Boolean Formulae (TQBF)). Intuitively, in this (PSPACE, RO)
world, every computation is easy to invert except for those computed by the RO.
They obtain their result by showing, for every possible black-box construction
of KA from a random oracle, that there exists an efficient algorithm (relative to
(PSPACE, RO)) that breaks the security of KA. Using the the same reasoning,
any secure black-box FL protocol constructed from a RO must remain secure
even relative to a (RO, PSPACE) oracle. Then, to obtain our result, it suffices to
exhibit an efficient algorithm (relative to (PSPACE, RO)) that breaks security of
any black-box FL protocol where one node does not call RO. We do this below.

We will use the notion of an exchange to denote a data packet and all the
FL-protocol-related messages associated with that packet. Because our game is
sequential (see Section 2), Alice’s must decide to localize a link � or output

√

before the next exchange begins. We now prove that a per-packet FL protocol
with r = O(log n)messages per exchange must invoke the random oracle at every
node. We note that protocols where number of messages per packet grows with
n are impractical and so “practical” protocols should use r = O(1) messages
per exchange. (See Remark 1 below on the possibility of extending this result to
statistical security and/or protocols with ω(log n) messages per exchange.)

Theorem 5. Fix a fully black-box per-packet FL protocol that uses access to a
random oracle RO, where at least one node Ri for i ∈ {2, . . . , I} never calls
the RO and where the maximum number of messages per exchange is O(log n).
Then there exists an efficient algorithm relative to (PSPACE, RO) that breaks the
security of the scheme with non-negligible probability over the randomness of RO
and the internal randomness of the algorithm.

The proof of Theorem 5 is quite technical and is deferred to the full version. We
sketch the proof, which resembles that of Theorem 3. Eve controls node Ri−1

and impersonates Ri, but now auxi is secret, so Eve must first learn auxi:
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1. Learning to impersonate. Sitting at Ri−1, Eve observes t exchanges (t is poly-
nomial in n), where Eve asks Source to transmit a uniformly random data
packet. She then uses the learning algorithm of Naor and Rothblum [20] to
obtain a pair of impersonator algorithms A′, B′, whose interaction generates
a distribution over transcripts for the t + 1’th exchange. A′ impersonates
nodes Alice, R1, . . . , Ri−1 and B′ impersonates nodes Ri, . . . , RK , Bob.

2. Dropping and impersonating. On the t + 1’th exchange, for each message m
going from Ri−1 to Ri, Eve computes a response m′ herself using algorithm
B′ and returns m′ to Ri−1; she does not send any messages to Ri.

Now, Eve at Ri−1 will break security if she manages to use B′ to impersonate
an honest exchange during which link (i, i + 1) is down. (This breaks security
since link (i, i+1) is not adjacent to Ri−1.) The crucial observation is that here,
Eve need only impersonate node Ri, and that Ri does not “protect” its secret
keys by calling the RO. Intuitively, Eve should be able to impersonate Ri since
any computations that Ri does are easy to invert in the (PSPACE, RO) world.
We now argue that Eve can break security with non-negligible probability.

Recall (Section 2) that Alice is allowed to use information from past exchanges
to help her decide how to send messages in new exchanges. Fortunately, the
algorithm of Naor and Rothblum [20] is specifically designed to deal with this,
and guarantees that observing t = poly(n/ε) many exchanges (in Step 1) Eve can
obtain, with probability 1 − ε, algorithms A′, B′ that generate an impersonated
transcript that is ε-statistically close to the “honest” transcript of messages on
the link (i − 1, i) (generated by interactions of honest Alice, R1, ..., RK , Bob.)

Suppose Eve obtained an A′, B′ that satisfy the guarantee above. Our first
challenge is that the Naor-Rothblum algorithm does not guarantee that A′, B′

generates an impersonated transcript that is statistically close to the “honest”
transcript of messages on (i − 1, i) when the observer has access to the RO. For-
tunately, with probability ρr all the messages sent from Ri to Ri−1 are computed
without access the RO. This happens when congestion causes link (i, i+1) to go
down for the duration of an exchange (so that Ri, who never calls the RO, has
to compute all his upstream messages on his own).

Our next challenge is that Eve has no control, or even knowledge, of when
congestion causes this event to occur. Indeed, the distribution generated by
A′, B′ is only guaranteed to be close to the honest transcript overall; there is no
guarantee that it is close to the honest transcript conditioned on congestion on
(i, i+1). Fortunately, we can show that with probability ρr, A′, B′ will generate
a “useful” impersonated transcript that is ε/ρr-statistically close to the honest
transcripts conditioned on the event that link (i, i + 1) is down. Eve does not
necessarily know when she impersonates a useful transcript; she simply has to
hope that she is lucky enough for this to happen.

The last challenge is that even when Eve is lucky enough to obtain a useful
transcript, we still need a guarantee that (a) conditioned on B′ generating a
useful transcript, using B′ to interact with the honest algorithm Ri−1 results
in a transcript that is statistically close to (b) the transcript between honest
algorithms Ri−1 and Ri conditioned on link (i, i+1) being down. Unfortunately,
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the Naor-Rothblum algorithm does not give any guarantees when an honest
algorithm interacts with an impersonated algorithm for more than 1 round.
Thus, we prove that, with probability at least (ρ/2)r, the impersonator algorithm
B′ interacting with honest Alice, ...Ri−1 still generates a useful transcript such
that the statistical distance between (a) and (b) is at most 1/100. (This assumes
we take ε small enough; ε = (ρ/10)4r = 1/poly(n) suffices.)

To summarize, with probability ≥ 99/100 Eve obtains algorithms A′, B′ from
the Naor-Rothblum algorithm that can successfully impersonate all the honest
algorithms. Then, with probability roughly (ρ/2)r, she can use B′ to interact
with Ri−1 as in Step 2 to drop a packet at Ri−1 and generate a useful imperson-
ated transcript that is 1/100-statistically close to the honest transcript produced
when Ri−1 and Ri interact conditioned on link (i, i+1) being down. This breaks
security with non-negligible probability, since link (i, i + 1) is not adjacent to
Eve at Ri−1.

Statistical security. Our negative results in the statistical setting are more
subtle. First of all, from [9, 8] the analog of Theorem 4 also holds, showing
that the entire system needs to “perform cryptography”. However, we run into
trouble when we try to show that cryptography is required at each intermediate
node. It turns out that Definition 3 does not inherently require complexity-based
cryptography at intermediate nodes. We sketch a statistically secure FL proto-
col where the intermediate nodes R1, . . . , RK use only information-theoretically
secure primitives (although Alice and Bob still use regular MAC’s). While this
protocol is completely impractical in terms of communication and storage over-
head, we present it here to demonstrate the subtleties of Definition 3.8

Remark 1 (Impractical “crypto-free” statistical FL protocol.). The protocol uses
one-time MACs (OTMAC), information-theoretic objects that have the same
properties as regular MACs except that they can only be used a single time.
(OTMACs and can be constructed from Carter-Wegman hashing.) Each node
Ri shares pairwise keys with Alice. All the intermediate nodes and Bob store each
packet that Alice sends to Bob. For each packet, Bob replies with an ack signed
using a regular MAC. At the end of the interval, Alice counts the number of acks
that she either fails to receive, or are invalid. The first time this count exceeds a β-
fraction, Alice sends a “report request” message that is signed using a OTMAC
to R1, . . . , RK , RK+1. Each node R1, . . . , RK responds with a report of every
single packet they have witnessed, that is “onion signed” using the OTMAC (as
in Section 3.1). Alice uses these reports in the usual way to localize link � adjacent
to Eve. From this point onwards Alice simply counts valid acknowledgments from
Bob, and blames link � each time the count exceeds a β fraction.

8 In concurrent work, Wong et al. [24] propose a statistical FL scheme where no cryp-
tography is performed during an interval. Instead, they precompute shared secrets
that are appended to packets over the course of an interval and are used guarantee
security. The secrets must refreshed periodically, which requires cryptographic par-
ticipation by the intermediate nodes. This contrasts with the impractical scheme we
describe here, which truly never requires any intermediate node to perform crypto.
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The protocol satisfies Definition 3 because the probability that the failure rate at
any link exceeds β by congestion alone is negligible. Since we do not allow Eve to
move during the security game, if Alice successfully localizes Eve to link � once,
it means it must have been Eve’s fault, and so from then on Alice can always
blame all failures on link �. As noted above, similar “impractical” protocols exist
for per-packet protocols with ω(log n) additional messages per packet (since all
ω(log n) messages are lost to congestion with only negligible probability), except
that we replace the idea of “exceeding β fraction of failures” with “losing an
entire exchange due to congestion”. We may interpret this as follows:

1. It is unreasonable to assume that the failure rate at a link exceeds β only
due to adversarial behaviour (i.e. Eve). For example, occasionally congestion
might spike, or a router might malfunction or go down due maintenance,
causing more than a β-fraction of packets to be dropped. If we assume such
events happen with non-negligible probability, we can adapt the proof of
Theorem 4 to show that cryptography is necessary at intermediate nodes
for statistical security. As a corollary, if Eve can control congestion at links
she does not occupy, then we need cryptography at every intermediate node.
Our FL protocols remain secure even under the strongest such definition,
where the failure rate on a link not occupied by Eve can exceed β.

2. We can take this issue outside of our model. If we say that it is reasonable
that Eve cannot move during the security game, and that the failure rate can-
not exceed β on a link that Eve does not control, then, as we showed above,
there exist protocols where the intermediate nodes do not use complexity-
based cryptography. However, we must be cognizant that in the real world
there can be multiple adversaries that we would like to localize correctly, or
the adversary may be able to move from one link to another. If protocols
that do not use cryptography at intermediate nodes are to remain secure af-
ter Eve moves (and learns the key of previous nodes she occupied), then the
keys at each node should be refreshed periodically. This key refresh process
would require each intermediate node to use cryptography.

5 Open Problems

We gave lower bounds on the key-management and cryptographic overhead of
secure FL protocols. The problem of bounding the storage requirements in an
FL protocol is also still open. Furthermore, our results here only apply to FL
on single symmetric paths between a single sender-receiver pair. An interesting
question would be to consider FL for asymmetric paths, where the packets Bob
sends back to Alice may take a different path than the packets that Alice sends to
Bob. Another interesting direction is to consider FL in networks where packets
can travel simultaneously on multiple paths, as in the SMT framework [6].
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A Vulnerabilities of Other FL Protocols

We sketch why the protocols of [21, 4, 2] do not satisfy our security definition.

An On-demand Secure Routing Protocol Resilient to Byzantine Fail-
ures [4]: Awerbuch, Holmer, Nita-Rotaru and Rubens present a statistical FL
protocol in which Alice and Bob run a secure failure detection protocol, where
Bob sends out authenticated acks for each packet he receives. Once the number
of Packet delivery failures exceeds some threshold, say β, then Alice appends
a encrypted list of “probed nodes” to each new packet that she sends out. If
a node is included in the list of probed nodes, it is expected to send Alice an
ack when it receives the packet containing the list. The acks are formed as our
“onion reports”. To localize failures, Alice chooses probed nodes according to a
binary search algorithm, until she localizes a single link.

Now, consider an adversary Eve that sits at Ri and, for every sent packet
where Ri is not included in the list of probed nodes, Eve happily causes failures.
Eve stops causing failures whenever Ri is included in the list of probed nodes.
Alice will never be able to localize such an Eve to a single link; as long as Eve
behaves herself when she is part of the list of probed nodes, Alice has no way to
find her. Our protocols avoid this problem by running their “detection phases”
and “localization phases” on the same set of packets.

Furthermore, care must be taken in implementing this protocol in the presence
of both adversarial behaviour and benign congestion. To see why, suppose that
Eve causes the protocol to enter the localization phase. In [4], the binary search
algorithm proceeds by one step each time failures are detected. It is important
to ensure that normal congestion (on a link that is not adjacent to Eve) cannot
cause the binary search algorithm to search for Eve in the wrong part of the path.
To do this, the binary search algorithm should proceed by one step only when
the failure rate exceeds some carefully chosen false alarm threshold (related to
loss rate caused by normal congestion and the length of the portion of path that
is currently being searched).
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Packet Obituaries [2]: Argyraki, Maniatis, Cheriton, and Shenker propose
an FL protocol that is similar to our Optimistic Protocol of Section 3.1. Each
node locally stores digests of the packets they see, and at the end of some time
interval, nodes send out reports to Alice that contain these packet digests. Alice
then uses the information from these reports to localize failures on the path.
The designers of this protocol focused on the benign setting, but mentioned that
reports should also be individually authenticated. However, because these reports
are not formed in a onion manner (as in our Optimistic Protocol) an adversarial
node can implicate a innocent downstream node by selectively dropping the
innocent node’s reports.

Secure Traceroute [21]: We sketch attacks in the full version; this protocol
has many of the same problems as [4, 2].
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Abstract. The innovative HB+ protocol of Juels and Weis [10] extends
device authentication to low-cost RFID tags. However, despite the very
simple on-tag computation there remain some practical problems with
HB+ and despite an elegant proof of security against some limited active
attacks, there is a simple man-in-the-middle attack due to Gilbert et
al. [8]. In this paper we consider improvements to HB+ in terms of both
security and practicality. We introduce a new protocol that we denote
random-HB#. This proposal avoids many practical drawbacks of HB+,
remains provably resistant to attacks in the model of Juels and Weis,
and at the same time is provably resistant to a broader class of active
attacks that includes the attack of [8]. We then describe an enhanced
variant called HB# which offers practical advantages over HB+.

Keywords: HB+, RFID tags, authentication, LPN, Toeplitz matrix.

1 Introduction

The deployment of low-cost RFID tags is gathering pace. One familiar applica-
tion is the inventory tracking of consumer items such as clothes, media products,
and pharmaceuticals. However since blank tags can be programmed, there are
opportunities for an attacker to clone an RFID tag and to introduce counter-
feit goods into the supply chain. Thus, in this and other application areas there
is much interest in deploying mechanisms for cryptographic tag authentication.
However the physical demands for the deployment of cryptography on a cheap
tag are substantial. Not only is space limited [10], but the peak and average
power consumption often pose a demanding barrier for a tag that derives its
power from a reader. Furthermore, since RFID tags pass fleetingly past a reader
and are used in multi-tag and multi-reader environments, the communication is
limited and its coordination complex.

Juels and Weis introduced HB+, a three-pass symmetric key authentication
protocol, at Crypto 2005 [10]. HB+ is computationally lightweight—requiring
only simple bit-wise operations—and it is supported by a proof of security [10].
There are, however, some practical deficiencies in HB+ and the value of the proof
of security has been somewhat limited by a simple active attack due to Gilbert
et al. [8] which we will refer to as the GRS attack. Nevertheless, the simplicity
of both the original proposal and the active attack have led to a number of
HB-related publications (see Section 2.2).

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 361–378, 2008.
c© International Association for Cryptologic Research 2008
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Tag (secret x, y) Reader (secret x, y)
ν ∈R {0, 1|Prob(ν = 1) = η}

Choose b ∈R {0, 1}k b−−−−−−−−→
a←−−−−−−−− Choose a ∈R {0, 1}k

Let z = a · xt ⊕ b · yt ⊕ ν
z−−−−−−−−→ Check a · xt ⊕ b · yt = z

Fig. 1. One single round of HB+ [10]. The entire authentication process requires r
rounds and, in this basic form, each round consists of the three passes shown. Provided
the tag fails less than some threshold t number of rounds, the tag is authenticated.

In this paper we propose solutions that improve on the practical problems of
HB+ while providing resistance to the GRS attack. The two simple proposals
random-HB# and HB# provide more practical error rates than the original
HB+ and reduce the communication payload by a factor of around 20 (depending
on the parameter sets). The protocol random-HB# is provably secure in the
detection-based model, the adversarial model used in all current proofs of security
for HB+ and its variants. But random-HB# is also provably secure against
the GRS attack and more generally in what we term the grs-mim model, an
adversarial model that permits an active adversary to manipulate messages from
the reader. The related protocol HB# then gives a truly efficient scheme. While
the same proofs do not immediately extend in their entirety to HB#, we can still
say a surprising amount about the scheme in both theory and practice.

Our paper is organised as follows. First we describe HB+ and some variants.
Then, in Section 3, we introduce random-HB# and provide full security proofs.
In Section 4 we describe HB# and its security and practical performance. We
then highlight future work and draw our conclusions. Throughout we aim to use
established notation. There will be some interplay between vectors x ∈ {0, 1}k

(which we always consider to be row vectors) and scalars in GF(2). We use bold
type x to indicate a row vector while scalars x are written in normal text. The
bitwise addition of two vectors will be denoted ⊕ just as for scalars. We denote
the Hamming weight of x by Hwt(x).

2 HB+ Variants and Tag Authentication

There are now several protocols based on HB+ and these offer a variable level
of security and practicality. We start by reviewing the original protocol. HB+

is a three-pass authentication protocol built on the conjectured hardness of the
Learning from Parity with Noise (LPN) problem [10].

LPN Problem. Let A be a random (q × k)-binary matrix, let x be a
random k-bit vector, let η ∈]0, 1

2 [ be a noise parameter, and let ν be
a random q-bit vector such that Hwt(ν) ≤ ηq. Given A, η, and z =
A · xt ⊕ νt, find a k-bit vector yt such that Hwt(A · yt ⊕ z) ≤ ηq.
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The HB+ protocol is outlined in Figure 1. One doesn’t need to look long to
see that the goal of low on-tag computation has been achieved. Leaving aside
generating b and the bit ν, computation on the tag is reduced to a dot-product
(which can be computed bit-wise) and a single bit exclusive-or. Also HB+ is ac-
companied by a proof of security. The adversarial model for this proof is referred
to as the detection-based model [10] and requires that the adversary queries a
tag q times and then attempts to pass the HB+ authentication process by in-
teracting with the reader once. Some commentators are not convinced that this
adversarial model is sufficiently strong and an active attack against HB+ exists
when the adversary can interact with both the tag and the reader before at-
tempting to impersonate the tag [8]. That said, the proof of security still has
considerable value. The original proof [10] was rather sophisticated and applied
to an adversary attempting to fool the reader over a single round of HB+. This
was extended by Katz and Shin [12] who also considered the parallel version of
HB+ with communications batched into one round of a three-pass protocol.

2.1 Some Problems with HB+

While HB+ is computationally lightweight it still has some practical defects. The
possibility of a legitimate tag being rejected has been commented on [12], but
other issues such as the complex and extensive tag-reader communication would
make HB+ difficult to use. First, however, we highlight the fact that methods to
solve the LPN problem have improved since the original presentation of HB+.

LPN security and parameter choices. When considering the security and
implementation of HB+ there are four parameters that we need to set:

k : the length of the secrets, η : the noise level,
r : the number of rounds, t : the threshold for tag acceptance.

The first two parameters, k and η, quantify the resistance of the underlying LPN
problem to attack. In [11] it is suggested that the parameter sets k = 224 and
η = 0.25 provide around 80-bit security. Katz and Shin [12] propose k ≈ 200
with η = 0.125, but we note that the reduced level of noise means that the LPN
problem instance becomes easier and would necessitate an increase1 to k.

Since the publication of HB+ the LPN problem has been studied in more
detail and the BKW algorithm cited in [10,12] has been improved. Fossorier et
al. [6] show that the parameter choices used by [10] offer a level of security no
greater than 261 operations rather than the 280 claimed. However, this has been
superseded by the work of Levieil and Fouque [16] which suggests that the real
security level offered by the parameters in [10] is no more than 252 operations.
Considering [16] we propose alternative parameter values in Section 4.2 that
are more consistent with the intended security level. In particular we propose
k = 512 and η = 0.125 or, more conservatively, k = 512 and η = 0.25.
1 However [12] is concerned with security proofs and specific parameter choices are

somewhat orthogonal to their work.
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Table 1. Error rates and transmission costs for different parameter sets in HB+. The
threshold t = rη is proposed in [10] so we use �rη� in this table. For the other pa-
rameters, [10] suggest k = 224 and η = 0.25 (leaving r unspecified) while [12] suggests
k ≈ 200, η = 0.125, with 40 ≤ r ≤ 50. Based on the work of [16], we also consider the
data transmission costs when k = 512 in the last column.

False reject False accept Transmission cost (bits)
r η k rate (PFR) rate (PFA) [k as given] [k = 512]
80 0.25 224 0.44 4 × 10−6 35, 920 82, 000
60 0.25 224 0.43 6 × 10−5 26, 984 61, 500
40 0.25 224 0.42 1 × 10−3 17, 960 41, 000

50 0.125 200 0.44 2 × 10−8 20, 050 51, 250
40 0.125 200 0.38 7 × 10−9 16, 040 41, 000

Error rates. A false rejection, a legitimate tag being rejected by a legitimate
reader, occurs when the number of incorrect authentications exceeds the thresh-
old t. A false acceptance takes place when an illegitimate tag is accepted by a
legitimate reader. This occurs when t or fewer verification errors take place and
we assume the illegitimate tag is reduced to guessing the reply z at random. The
probability of a false rejection, PFR, and a false acceptance, PFA, are given by

PFR =
r∑

i=t+1

(
r

i

)
ηi(1 − η)r−i and PFA =

t∑
i=0

(
r

i

)
2−r.

Note that both the false rejection and acceptance rate are independent of k, the
size of the secrets, while the false acceptance rate is also independent of the noise
level η used in HB+. In the original descriptions of HB+ a threshold of t = rη is
suggested. However (see Table 1) such a choice gives an unacceptably high false
rejection rate. It is hard to imagine any practical scenario where a probability
higher than 1% of rejecting a legitimate tag could be tolerated.

Transmission costs. HB+ is a three-pass protocol that runs over r rounds.
This requires the exchange of 2k + 1 bits per round and 2rk + r bits in total. In
the parallel version of the protocol, the data transmission requirements are the
same but the data is packed into three passes of rk, rk, and r bits respectively.
A three-pass protocol is considerably more practical than a 3r-pass protocol
(this was also mentioned in [12] as a justification for parallel HB+). However
the total amount of data transferred in both cases remains unacceptably high.
In Table 1 we provide some estimates for the transmission costs in using HB+.
In particular we use parameter values that cover those proposed in [10,12]. We
also include the transmission costs if we were to use parameter sizes that come
closer to providing the intended 80-bit level of security.

An active attack. A simple active attack on HB+ was provided in [8]. There
it is assumed that an adversary can manipulate challenges sent by a legitimate
reader to a legitimate tag during the authentication exchange, and can learn
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Tag (secret x, y) Reader (secret x, y)
ν ∈ {0, 1|Prob(ν = 1) = η}

Choose b ∈R {0, 1}k b−−−−−−−−→
a′ = a ⊕ δ←−−−−−−−−−−−− · · · a←−−−−− Choose a ∈R {0, 1}k

Let z′ = a′ · xt ⊕ b · yt ⊕ ν
z′

−−−−−−−−→ Check a · xt ⊕ b · yt = z′

Fig. 2. The attack of Gilbert et al. [8] on HB+. The adversary modifies the commu-
nications between reader and tag (by adding some perturbation δ) and notes whether
authentication is still successful. This reveals one bit of secret information.

whether such manipulation gives an authentication failure. The attack consists
of choosing a constant k-bit vector δ and using it to perturb the challenges
sent by a legitimate reader to the tag; δ is exclusive-or’ed to each authentication
challenge for each of the r rounds of authentication. If the authentication process
is successful then we must have that δ · xt = 0 with overwhelming probability.
Otherwise δ · xt = 1 with overwhelming probability and acceptance or rejection
by the reader reveals one bit of secret information. The attack is illustrated in
Figure 2 for one round of the HB+ protocol. To retrieve the k-bit secret x, one
can repeat the attack k times for linearly independent δ’s and solve the resulting
system. Conveniently, an adversary can choose δ’s with a single non-zero bit.
With x an attacker can impersonate the tag by setting b = 0. Alternatively,
an attacker can emulate a false tag using x, send a chosen blinding factor b to
a legitimate reader, and return a · xt to the challenge a. If authentication is
successful b · yt = 0, otherwise b · yt = 1, with overwhelming probability, and y
can be recovered with k linearly independent b.

Whether or not the attack is technically easy to mount it is certificational.
The attack is mathematically simple and fully compromises HB+. Protocols that
resist this attack, while maintaining the computational simplicity of HB+, would
therefore be very attractive.

2.2 Other Work on HB+ and Tag Authentication

The novelty of the HB+ protocol has generated considerable interest and much
research. We have already mentioned the work of Katz and Shin [12] that closed
gaps and extended the original proof of security. Follow-on work by Katz and
Smith [13] has further extended these theoretical results to a larger range of
noise levels 1

4 ≤ η < 1
2 whereas previous work [12] was only valid for η < 1

4 .
Other researchers have considered the active attack of Gilbert et al. [8]. Among

them Bringer et al. [2] have outlined a protocol named HB++. However the re-
sulting protocol has some practical drawbacks. The data transmission costs of
HB+ remain and the on-tag computation now includes bit-wise rotations and
a small-block permutation f . Furthermore, an additional pre-protocol involving
a universal hash function h is required to derive new tag/reader secrets at the
start of each authentication. All this requires additional hardware and moves
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Parameters: (kX , kY , m, η, u)

Tag (secret X, Y ) Reader (secret X, Y )
ν ∈R {{0, 1}m|

Prob.(νi = 1) = η for 1 ≤ i ≤ m}

Choose b ∈R {0, 1}kY
b−−−−−−−−→
a←−−−−−−−− Choose a ∈R {0, 1}kX

Let z = a · X ⊕ b · Y ⊕ ν
z−−−−−−−−→ Check

Hwt(a · X ⊕ b · Y ⊕ z) ≤ um

Fig. 3. The random-HB# authentication protocol where the secrets X and Y are
binary random matrices and the protocol has a single round. The verification step
requires the comparison of two vectors and yields a pass/fail verdict.

away from the essential simplicity of the HB+ protocol. Piramuthu [20] pro-
poses a modification to HB++ in which the bit-wise rotations are varied for each
round of the authentication and the message flow is simplified (saving one bit
per authentication round). However the exact security claims are unclear. The
variant HB∗ is proposed by Duc and Kim [4] while another prominent protocol
is HB-MP [19]. While both claim to be resistant to the attacks of [8], linear time
attacks by the authors [7] show that this is not the case.

Naturally, research into other mechanisms for unilateral and mutual authen-
tication continue in parallel. Schemes based on symmetric cryptography might
use a lightweight block cipher [1,21] in a challenge-response protocol while other
schemes might use asymmetric techniques such as GPS [9,18]. Other proposals
include squash [22] which might be viewed as a dedicated MAC, though the
security goals appear to be somewhat reduced when compared to HB+ and the
proposals random-HB# and HB# in this paper.

But this parallel work only serves to emphasize the interest in tag authenti-
cation and the importance of understanding the limits of proposals like HB+.
Despite the mixed success of current proposals in the literature, HB+ still holds
much promise. This is due to the exceptionally low on-tag computational re-
quirements and the fact that a proof of security, even if the model is weaker
than we might ideally like, is a positive attribute.

3 The Proposal random-HB#

We now introduce random-HB# (random-HB-sharp). This goes a long way to
fixing many of the practical problems of HB+. Like many other HB+-variants,
we prove the security of random-HB# in the detection-based model, referred to
in what follows as the det-model. But we go further and prove the security of
random-HB# against a class of attacks that includes the GRS attack in what we
term the grs-mim-model. More details are given in Section 3.1, but this model
allows an active attacker to change any message from the reader in any way that
they wish and observe the decision of the reader of whether to accept or not.
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In random-HB# we generalise HB+ and change the form of the secrets x and
y from k-bit vectors into (kX ×m)- and (kY ×m)-binary matrices X and Y . We
illustrate random-HB# protocol in Figure 3. One way of looking at random-
HB# is to observe that it is equivalent to m iterations of HB+, but each column
of X and Y in random-HB# effectively represents a different HB+ secret x and
y. However, while random-HB# carries much of the appearance of the HB+

protocol, there are important differences. In particular, the final verification by
the reader consists of the comparison of two m-bit vectors a · X ⊕ b · Y and z.
For reader-verification we merely count the number of positions e that are in
error and if e ≤ t for some threshold t = um, where u ∈]η, 1

2 [, then we deduce
that the tag is authentic. Thus random-HB# and HB# (see Section 4) consist
of a single round.

3.1 Security Results for random-HB#

We now provide security proofs for random-HB# in two models. The first is
the det-model used in much of the founding work on HB+ [10,12]. Here the
adversary is only allowed to query an honest tag without access to the reader.
The second permits an active attacker to manipulate messages sent by the reader
and will be referred to as the grs-mim-model.

Security definitions. In the following, the security parameter will be k, to
which the number of rows of the secret matrices X and Y are related by kX =
Θ(k) and kY = Θ(k). We will say that a function (from positive integers to
positive real numbers) is negligible if it approaches zero faster than any inverse
polynomial, and noticeable if it is larger than some inverse polynomial. An algo-
rithm will be efficient if it is a Probabilistic Polynomial-Time Turing machine.
By saying that LPN is a hard problem, we mean that any efficient adversary
solves it with only negligible probability.

We will let TX,Y,η denote the algorithm run by an honest tag in the random-
HB# protocol and RX,Y,u the algorithm run by the tag reader. We will prove
the security of random-HB# in two models:

– The det-model, defined in [10,12], where attacks are carried out in two
phases: the adversary first interacts q times with the honest tag. Then the
adversary interacts with the reader and tries to impersonate the valid tag.

– The grs-mim-model: in a first phase, the adversary can eavesdrop on all
communications between an honest tag and an honest reader (including the
reader-decision of whether to accept or not) and in addition the attacker
can modify any message from the reader to the tag for q executions of the
protocol. Then the adversary interacts only with the reader and tries to
impersonate the valid tag.

Note that the det-model is a restriction of the grs-mim-model as any attack
in the det-model can easily be converted into an attack in the grs-mim-model.
By replying at random to a challenge, the probability an adversary imperson-
ating a tag will succeed is the false acceptance rate PFA = 2−m

∑um
i=0

(
m
i

)
. This
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quantity is the best soundness we can achieve for random-HB#. Note that it is
a function of m and u and not of the security parameter k, which will only set
how close to PFA the advantage of an adversary is bound to be. Note also that
PFA is negligible for any u ∈]η, 1

2 [ and any m = Θ(k). We define the advantage
of an adversary against the random-HB# protocol in the det and grs-mim
models as its overhead success probability over PFA in impersonating the tag:

Advdet
A (kX , kY , m, η, u, q)

def=

Pr
[
X

$←− MX , Y
$←− MY , ATX,Y,η (1k) : 〈A, RX,Y,u〉 = acc

]
− PFA;

Advgrs-mim
A (kX , kY , m, η, u, q)

def=

Pr
[
X

$←− MX , Y
$←− MY , ATX,Y,η ,RX,Y,u(1k) : 〈A, RX,Y,u〉 = acc

]
− PFA.

where MX and MY denote resp. the sets of (kX × m)- and (kY × m)-binary
matrices and acc denotes “accept”.

Proof methods. We do not reduce the security of random-HB# directly to
the LPN problem. A preliminary step of our analysis is to define a natural
matrix-based extension of the LPN problem and to prove its hardness. For this
we appeal to the theory of “weakly verifiable puzzles”. This is a notion introduced
by Canetti, Halevi, and Steiner [3] and, informally, refers to a situation where
only the entity that generates the puzzle holds secret information enabling the
correctness of a candidate solution to be efficiently verified. As noticed by Katz
and Shin [12], attacking the one-round HB protocol [10] in the passive model
(that is, given q noisy samples (ai, ai·xt⊕νi), where x is a secret k-bit vector and
the ai are random k-bit vectors, and a random challenge a, guess a ·xt) may be
viewed as a weakly verifiable puzzle. The result by Juels and Weis [10, Lemma 1]
asserts, in essence, that this puzzle is (1 − 1

2 )-hard if we assume the hardness of
the LPN problem, which means that any efficient adversary trying to solve it has
a success probability that is negligibly close (in k) to 1

2 . Canetti et al. [3] proved
that if no efficient algorithm can solve a puzzle with probability more than ε,
then no efficient algorithm can solve m independent puzzles simultaneously with
probability more than εm. Thus, we define an extension of the HB puzzle that
we call the MHB puzzle: given q noisy samples (ai, ai · X ⊕ νi), where X is
a secret (k × m)-matrix and the ai are random k-bit vectors, and a random
challenge a, guess a ·X . Using Canetti et al.’s result, we prove that any efficient
adversary trying to solve it has a success probability that is negligibly close (in
k) to 1

2m . All the necessary definitions and results are given in the full version
of this paper.2

The security analysis is carried out in two steps. First we reduce the security
of random-HB# in the det-model to the MHB puzzle. Then we reduce the
security in the grs-mim-model to the security in the det-model.

2 Available from http://eprint.iacr.org/2008/028
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Theorem 1 (Security of random-HB# in the det-model). Let A be an ad-
versary attacking the random-HB# protocol with parameters (kX , kY , m, η, u) in
the det-model, interacting with the tag in at most q executions of the random-
HB# protocol, running in time T , and achieving advantage greater than δ. Then
there is an adversary A′, running in time at most 2mLq(2 + log2 q)T , solv-
ing the MHB puzzle with parameters (kY , m, η, q′), where q′ = mLq(2 + log2 q)
and L = 512

δ4(1−2u)4 (ln m − ln ln 2), with success probability >
(

1
2m + δ

4

)
. Hence,

assuming the hardness of the LPN problem, the advantage of any efficient det-
adversary against the random-HB# protocol is negligible in k. As a consequence,
for parameters m = Θ(k), the probability of any efficient det-adversary to im-
personate a valid tag is negligible in k.

Proof. We slightly adapt the proof of Juels and Weis [11, Appendix C]. We
denote by {(bi, zi)}1≤i≤q′ the set of samples obtained by A′ from the MHB
puzzle generator with secret matrix Y and b the challenge vector for which A′
aims to output z = b · Y . A′ uses its samples to simulate a tag algorithm TX,Y,η

where X is random with one line equal to z. A′ proceeds as follows:

1. Choose a random j, 1 ≤ j ≤ kX , and construct the kX ×m matrix X ′ where
all rows are random except the j-th one which is undefined (say, equal to
zero). Let xl denote the l-th row of X ′.

2. Divide the q′ = mLq(1+ r) samples {(bi, zi)}1≤i≤q′ into mL sets of q(1+ r)
samples. For each bit position s = 1 to m, repeat the following L times,
considering a fresh set of q(1 + r) samples each time:
(a) For i = 1 to q repeat the following: draw a random bit αi (this is a guess

at the j-th bit of the challenge a+
i which will be sent by the adversary

A). If αi = 0, send to A the blinding vector b+
i = bi, if αi = 1, send to

A the blinding vector b+
i = bi ⊕ b. A sends back the challenge a+

i . If
the guess was right (i.e. αi = a+

i [j]), then answer with the vector

z+
i =

⊕
l �=j

(
a+

i [l] · xl

)
⊕ zi.

Otherwise rewind adversary A to the beginning of its i-th query and try
with a new (bi′ , zi′) chosen among the rq supplementary samples.

(b) If the rq samples are exhausted before the simulation of the query phase
of A ends, randomly guess z[s].

(c) Otherwise, go to the cloning phase of A: A sends a blinding vector b̂.
Choose two random challenge vectors â1 and â2 such that they differ
in their j-th bit. Transmit â1 to A, record its response ẑ1, rewind the
adversary, transmit â2 to A, and record its response ẑ2 as well.

(d) Compute the guess for z[s] as

ẑ1[s] ⊕ ẑ2[s] ⊕

⎛
⎝⊕

l �=j

(â1[l] ⊕ â2[l]) · xl[s]

⎞
⎠ .
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3. Once L guesses have been made for each m bits of z, take the majority
outcome for each of them and output the answer accordingly.

Let us analyse what A′ achieves. The repeated experiments on A share some
common randomness ω (namely X and Y ). Let us denote by ω′ the randomness
“renewed” at each experiment (that is the randomness used to simulate the tag,
the random challenge â, and A’s internal randomness). By a standard averaging
argument, it holds that with probability greater than PFA+ δ

2 over ω, the answer
returned by A is correct in at least m − t positions with probability greater3
than δ

2 over ω′. Let us assume that this is the case and show that A′ returns a
correct answer z with probability greater than 1

2 . The theorem will follow since
PFA > 2

2m as soon as t > 1 and the overall probability of success for A′ will be
greater than PFA

2 + δ
4 > 1

2m + δ
4 .

First we will show that, during phase 2(a), A′ simulates a tag algorithm TX,Y,η,
where X is the X ′ matrix with z as j-th row. To see this, observe that when
αi = a+

i [j] = 0, then

z+
i = a+

i · X ⊕ bi · Y ⊕ νi = a+
i · X ⊕ b+

i · Y ⊕ νi,

whereas when αi = a+
i [j] = 1, then

z+
i = a+

i ·X ⊕z ⊕bi ·Y ⊕νi = a+
i ·X ⊕ (bi ⊕b) ·Y ⊕νi = a+

i ·X ⊕b+
i ·Y ⊕νi.

Let us now analyse the advantage A′ enjoys during a single guess for one bit
of z during phase 2. First, one can upper bound the probability that A′ enters
phase 2(b) by the probability that any one of the q experiments results in the
discarding of r pairs of the extra challenge-response pairs, which is q2−r. Taking
r = log2 q + 1 yields a probability not greater than 1/2.

Consider phase 2(d) for a fixed bit position s. The guess of A′ is right when
both bits ẑ1[s] and ẑ2[s] are correct, or when they are both incorrect. Hence we
are interested in lower bounding the probability p′ of this event. First, we will
lower bound the probability p over ω′ that the s-th bit of the answer returned
by A is correct. We will assume w.l.o.g. that this probability is the same in all
positions (otherwise one can “symmetrize” A by applying a random permutation
of {1, . . . , m} to the problem). We can lower bound p as follows. Suppose we
draw a random bit position s. Clearly, this bit is correct with probability p over
the choice of s and ω′. At the same time, conditioned on the fact that more
than m− t bits are correct, the s-th bit of the answer is correct with probability
greater than 1 − u. Consequently, the overall probability for the s-th bit to be
correct is greater than (1 − u) δ

2 + 1
2 (1 − δ

2 ), hence p ≥ 1
2 + ε where ε = δ

2 (1
2 − u).

Juels and Weis proved [10, Lemma 2] that in this case, the probability, condi-
tioned on the fact that â1 and â2 differ in a single bit j, that both bits ẑ1[s] and
ẑ2[s] are correct or incorrect at the same time, is greater than 1

2 + ε3/2 − (ε3 +
1)/kX . However one can improve on their analysis by using Jensen’s inequality4.
3 Otherwise the probability of success of the adversary would be upper bounded by

(1 − PFA − δ
2 ) δ

2 + PFA + δ
2 < δ + PFA, contradicting the hypothesis on A.

4 Note that this will also improve the security reduction for HB+.
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Let γ denote the randomness except for â in the experiment ω′ we are consid-
ering. For a fixed γ, let pγ denote the probability over â that the s-th bit of the
answer from A is correct. We’ve just proved that

∑
γ pγ ≥ 1

2 + ε. Let p′γ denote
for a fixed γ, the probability, conditioned on the fact that â1 and â2 differ in a
single bit j, that both bits ẑ1[s] and ẑ2[s] are correct or incorrect at the same
time. Following the proof of [10, Lemma 2] we have p′γ ≥ φ(pγ) where

φ(x) = x2

(
kX + log2 x − 1

kX

)
+ (1 − x)2

(
kX + log2(1 − x) − 1

kX

)
.

As φ is convex, one has the following inequalities:

p′ =
∑

γ

p′γ ≥
∑

γ

φ(pγ) ≥ φ(
∑

γ

pγ) = φ(p) ≥ φ(
1
2

+ ε) ≥ 1
2

+ 2ε2 − 1
kX

.

As A′ enters phase 2(b) with probability less than 1/2, the probability that A′
guesses bit z[s] correctly is lower-bounded by 1

4 + p′

2 ≥ 1
2 + ε′, with ε′ = ε2 − 1

2kX
.

Using the Chernoff bound, taking the majority outcome of the L experiments
allows A′ to guess bit s with probability greater than

π =
(

1 − e
−Lε′2
1+2ε′

)
≥

(
1 − e

−Lε′2
2

)
.

All m bits will be correct with probability greater than πm ≥
(
1 − e

−Lε′2
2

)m

.

A probability of success greater than 1
2 can be attained by taking

L =
2
ε′2

ln
(

1

1 − e−
ln 2
m

)
∼ 512

δ4(1 − 2u)4
(ln m − ln ln 2).

Hence, any efficient det-adversary achieving a noticeable advantage against the
random-HB# protocol can be turned into an efficient solver of the MHB puzzle
with a success probability greater than 1

2m + δ′, where δ′ is noticeable. This
contradicts the assumption that LPN is hard. �

Theorem 2 (Security of random-HB# in the grs-mim-model). Let A be
an adversary attacking the random-HB# protocol in the grs-mim-model, mod-
ifying at most q executions of the protocol between an honest tag and an honest
reader, running in time T , and achieving advantage greater than δ. Then, under
an easily met condition on the parameter set (see the proof and Section 4.2),
there is an adversary A′ attacking the random-HB# protocol in the det-model,
interacting at most q times with an honest tag, running in time O(T ), and im-
personating a valid tag with success probability greater than (PFA + δ)(1− qε) for
some negligible function ε. Hence, assuming the hardness of the LPN problem, the
advantage of any efficient grs-mim-adversary against the random-HB# proto-
col is negligible in k. As a consequence, for parameters m = Θ(k), the probability
of any efficient grs-mim-adversary to impersonate a valid tag is negligible in k.
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Proof. As A′ has access to an honest tag that it can query freely, there is no
difficulty in simulating an honest tag to A. The main challenge comes with the
task of simulating the honest reader. Recall that in the grs-mim-model, the
adversary is only allowed to modify the messages from the reader to the tag. A′
launches the first phase of the adversary A and simulates the tag and the reader
for q times as follows:

1. A′ obtains from the real tag TX,Y,η a blinding vector bi; A′ sends bi as the
blinding vector of the simulated tag to the simulated reader.

2. A′ sends a random vector ai as the challenge of the simulated reader. A
modifies it into a′

i = ai ⊕ αi. A′ forwards a′
i to the real tag.

3. The real tag returns an answer zi = a′
i · X ⊕ bi · Y ⊕ νi to A′ which uses it

as the answer of the simulated tag to the simulated reader.
4. If αi was the all zero vector, A′ outputs “accept” as the answer of the

simulated reader, otherwise it outputs “reject”.

After this first phase, A′ launches the cloning phase of A and replicates its be-
haviour with the real reader. From the point of view of A, the tag TX,Y,η is
perfectly simulated by A′. Let Simi denote the event that the reader RX,Y,u is
correctly simulated by A during the i-th execution of the protocol, and Sim be
the event that the reader is correctly simulated for all the q executions of the
protocol, Sim = ∩q

i=1Simi. Conditioning on this event Sim, the success proba-
bility of A′ is the same as the success probability of A, i.e. PFA + δ. Hence, we
have to lower bound the probability of Sim.

Consider one execution of the disturbed protocol. When αi = 0, A′ clearly
fails at simulating the reader with a probability equal to the probability of
wrongly rejecting an honest tag, i.e. PFR. For the case αi �= 0 we make the
following reasoning. Assume that the error vector αi · X added by A has a
Hamming weight d. This vector is added before the Bernoullian noise added by
the tag, so that νi is independent of αi · X . Consequently, the resulting error
vector νi ⊕ αi · X has a Hamming weight distributed as the sum of d Bernoulli
variables taking the value 1 with probability 1 − η and 0 with probability η,
and m − d Bernoulli variables taking the value 1 with probability η and 0 with
probability 1 − η. Hence, the mean value of the Hamming weight of the error
vector is µ(d) = d(1− η)+ (m−d)η, and by the Chernoff bound, when µ(d) > t,

this weight is less than t with probability less than e−
(µ−t)2

2µ , which remains true
for any d′ ≥ d. Consequently, if the matrix X is such that for any α �= 0,
Hwt(α · X) is high enough, outputting “reject” as soon as αi �= 0 will be a
successful strategy. We formalize this as follows.

Let dmin(X) = minα�=0 (Hwt(α · X)) denote the minimal distance of the ma-
trix X . We recall the following classical result of coding theory:

Lemma 1. Let d be an integer in [1..
⌊

m
2

⌋
] and let H be the entropy function

H(x) = −x log2(x) − (1 − x) log2(1 − x). Then

Pr
X

[dmin(X) ≤ d] ≤ 2−
(
1− kX

m −H( d
m )

)
m

.
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This is a simple consequence of the following upper bound on the number of m-bit
vectors of Hamming weight less than d:

∑d
i=0

(
m
i

)
≤ 2mH( d

m ). For any non-zero
vector α, α · X is uniformly distributed, and hence has Hamming weight less
than d with probability less than 2m(H( d

m )−1). The lemma follows by a union
bound.

Let d̃ be the least integer such that µ > t, i.e. d̃ = 1 +
⌊

t−ηm
1−2η

⌋
. Then for any

d ≥ d̃ when αi �= 0, one can write

Pr
X,νi

[Simi] = Pr
νi

[Simi | dmin(X) > d] · Pr
X

[dmin(X) > d]

+ Pr
νi

[Simi | dmin(X) ≤ d] · Pr
X

[min(X) ≤ d]

≤ Pr
νi

[Simi | dmin(X) > d] + Pr
X

[dmin(X) ≤ d]

≤ e−
(µ−t)2

2µ + 2−
(
1− kX

m −H( d
m )

)
m

.

For this upper bound to be useful, the coefficient
(
1 − kX

m − H( d
m )

)
must be

positive for some d ≥ d̃, in particular for d̃ as it is a decreasing function of d.
This is a condition which is easily met for typical values of the parameters (see
Section 4.2). Note also that for the asymptotic reduction we have to define d̃ as
the least integer such that µ(d̃) > (1 + c)t for some c > 0 in order to ascertain
that the first term in the upper bound will be negligible. This way one has, for

all d ≥ d̃, e−
(µ−t)2

2µ ≤ e−
uc2

2(1+c) m.
Together we have Pr[Simi] ≤ ε, where ε is a negligible function given by

ε = max
{

PFR, min
d≥d̃

(
e−

(µ−t)2

2µ + 2−
(
1−kX

m −H( d
m )

)
m

)}
.

Consequently, Pr[Sim] ≥ (1 − qε) and A′ has a success probability greater than
(PFA + δ)(1 − qε).

If δ is noticeable then qε(PFA + δ) ≤ δ/2 for k big enough, and the success
probability of A′ is greater than PFA + δ

2 . This contradicts Theorem 1. �

With random-HB# we have a surprisingly successful proposal. It is as com-
putationally efficient as HB+ since it consists of a series of bitwise dot-product
computations. At the same time it is simpler in terms of communication since
there is only a single round and the total amount of data transmitted is much
less than for HB+. It also possesses a proof of security in the detection-based
model, exactly like HB+, but also against man-in-the-middle adversaries of the
type used in the GRS attack. However there remains one drawback: storage. We
show how to remedy this situation in the next section.

4 The Proposal HB#

In random-HB# the tag is required to store two random (kX×m)- and (kY ×m)-
binary matrices X and Y where kX , kY and m are three-digit figures. The storage
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costs on the tag would be insurmountable. With this in mind we propose the
protocol HB#. This has very modest storage requirements while preserving the
computational efficiency of HB+. While there are some subtle technical issues
that mean we cannot transfer all the provably security results from random-
HB# to HB# we can transfer some. These, together with a plausible conjecture,
allow us to claim that HB# is secure in the grs-mim-model. HB# depends
on the notion of a Toeplitz matrix. These were used by Krawczyk in message
authentication proposals where their good distribution properties and efficient
implementation were noted [14,15].

A (k×m)-binary Toeplitz matrix M is a matrix for which the entries on every
upper-left to lower-right diagonal have the same value. Since the diagonal values
of a Toeplitz matrix are fixed, the entire matrix is specified by the top row and
the first column. Thus a Toeplitz matrix can be stored in k + m − 1 bits rather
than the km bits required for a truly random matrix. For any (k + m − 1)-bit
vector s, we denote by Ts the Toeplitz matrix whose top row and first column
are represented by s. HB# is defined exactly as random-HB# except that X
and Y are now two random (kX × m) and (kY × m)-binary Toeplitz matrices.

4.1 Security Results for HB#

While there is every indication that HB# is secure in the det-model, this re-
mains to be shown. A first obvious step in this direction would be to prove that
the Toeplitz variant of the MHB puzzle remains hard. We state the following
conjecture to stimulate further research:

Conjecture 1 (Hardness of the Toeplitz-MHB puzzle). Let k be a security param-
eter, η ∈]0, 1/2[, and m and q be polynomials in k. Let X be a random secret
(k × m)-binary Toeplitz matrix, and (a1, . . . , aq) be q random vectors of length
k. Then any efficient algorithm, on input q noisy samples (ai, ai ·X ⊕νi), where
each bit of νi is 1 with probability η, and a random vector a of length k, outputs
z = a · X with probability negligibly close to 1

2m .

Just as for random-HB#, we can relate the security of the HB# protocol in the
grs-mim-model to its security in the det-model.

Theorem 3 (Security of HB# in the grs-mim-model). Let A be an ad-
versary attacking the HB# protocol in the grs-mim-model, modifying at most q
executions of the protocol between an honest tag and an honest reader, running
in time T , and achieving advantage greater than δ. Then, under an easily met
condition on the parameter set (see proof of Theorem 2 and Section 4.2), there
is an adversary A′ attacking the HB# protocol in the det-model, interacting at
most q times with an honest tag, running in time O(T ), and impersonating a
valid tag with success probability greater than (PFA+δ)(1−qε) for some negligible
function ε.

Proof. (Outline) The proof is analogous to that of Theorem 2 and omitted for
reasons of space. It relies on the observation that Lemma 1 remains true when
the probability is taken over the set of random (kX × m)-Toeplitz matrices. �
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Table 2. Practical parameters for HB#

HB# False reject False accept Transmission Storage
kX kY m η t rate (PFR) rate (PFA) (bits) (bits)
80 512 1164 0.25 405 2−45 2−83 1, 756 2, 918
80 512 441 0.125 113 2−45 2−83 1, 033 1, 472

Hence, the security of HB# in the det-model (which we believe to be a likely
conjecture) would directly transfer to the grs-mim-model.

4.2 Parameter Values for HB#

When considering the error rates in HB#, we have considerable flexibility in how
we set the acceptance threshold t. Recall that the false rejection rate depends on
m, t, and η and the false acceptance rate depends on m and t only. The overall
security of the scheme depends on kX , kY and η. However, as already noted by
Levieil and Fouque [16] for HB+, and as is clear from the proof of Theorem 1,
kX and kY play two different roles: only kY is related to the difficulty of the
LPN problem, while kX need only be 80-bit long to achieve 80-bit security.

Some example parameters for different noise levels η are given by Levieil and
Fouque [16]. These give very reasonable error rates of PFR < 2−40 and PFA <
2−80. When combined with the larger values of kY required for good security
with the LPN problem, the HB# protocol compares very favourably to HB+.
The practical characteristics are summarised in Table 2. The condition necessary
for Theorems 2 and 3 to hold is verified for both sets of parameters: for the first
one, d̃ = 229 and

(
1 − kX

m − H( d̃
m )

)
� 0.216, while for the second one d̃ = 78

and
(
1 − kX

m − H( d̃
m )

)
� 0.145. The storage cost of HB# is (kX + kY + 2m − 2)

bits which is larger than the 2k bits required for HB+. However, depending on
the choice of m this is not necessarily a substantial increase. The given parameter
choices offer 80-bit security (using the latest results on the LPN problem), the
false acceptance and rejection rates are less than 2−80 and 2−40 respectively,
and the total communication requirements are around 1,500 bits. This should
be compared to error rates of 2−1 and 2−20 and transmission costs of up to
80,000 bits in the case of HB+ (48,000 bits when x is only 80-bit long) for
corresponding parameters. HB# requires simple bit operations on-the-tag and
thus remains computationally simple.

5 Further Work and HB# Variants

General MIM adversaries. The result of Theorem 3 shows that an adversary
successfully mounting an attack on HB# must either (i) break HB# in the det-
model (which we believe is highly improbable), or (ii) break the LPN problem,
or (iii) use an undiscovered active attack involving more than manipulation of
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the messages from the reader. This raises the question of the security of HB#

against general man-in-the-middle adversaries allowed to perturb any message
of the protocol. Though we do not have a formal proof of such a result, we
can make the following heuristic analysis. To provide an appropriate context we
might recall earlier work by Krawczyk [14,15]. Let us denote by HT , where T
stands for “random Toeplitz” matrix, the (k, m)-family of k-bit to m-bit linear
functions a �→ a ·Ts associated with the set of k×m binary Toeplitz matrices Ts,
each associated with a (k + m − 1)-bit vector s, and equipped with the uniform
probability. The work of Krawczyk [15], which in turn references related work
by Mansour et al. [17], in effect establishes that HT is 1

2m -balanced. In other
words, for any non-zero vector a, a · Ts is uniformly distributed over {0, 1}m.
This results from the fact that if a is a non-zero vector then a · Ts can be re-
written as the product of s with a (k + m − 1) × m matrix derived from a that
has rank m.

We can use this property of Toeplitz matrices to argue in favour of the re-
sistance of HB# against arbitrary man-in-the-middle adversaries. Consider an
attack where the adversary perturbs a, b and z by adding respectively three
disturbance vectors α, β, γ. The modified error vector is then ν′ = ν ⊕ α · X ⊕
β · Y ⊕ γ. When α �= 0 or β �= 0, then due to the 1

2m -balance of HT , ν′ is uni-
formly distributed and the probability that modifications of the communication
between tag and reader result in successful authentication is the false acceptance
probability PFA. The reader’s decision has negligible entropy and hence yields no
information on X or Y to the adversary. On the contrary, when (α, β) = (0,0),
the answer z returned by the tag is uniformly random so that γ may be consid-
ered as independent of X and Y . The reader’s decision depends only on ν ⊕ γ
and again yields no information on X or Y to the adversary. It is helpful to
note the essential difference between a man-in-the-middle attack on HB# and
the same attack on HB+. When attacking HB+, e.g. as is done in the GRS at-
tack, the adversary gains 1 bit of information on x at every tag and reader HB+

authentication (independently of whether it is successful or not), leading to a
linear-time attack. By contrast, in the case of HB#, whatever the strategy for
choosing (α, β, γ), the mutual information between the reader’s decision and the
matrices X and Y is negligible and no efficient adversary can gather noticeable
information on X or Y . Though we believe that these observations can be made
rigorous, it remains an open problem to extend the technique used in proof of
Theorems 2 and 3 to arbitrary man-in-the-middle attacks and to find the right
way of simulating the reader when the adversary can also modify b and z.

Variants and optimisations. Independently of this theoretical work, there
are interesting variants to HB# that might be of practical value. One interesting
option, also mentioned in [12], is for the legitimate tag to test that the noise
vector ν contains no more than t ones before using it. This means the probabil-
ity of a false rejection would fall to zero. The main advantage of this approach
would be to allow the size of m to decrease while maintaining a reasonable false
acceptance rate. For instance, with m = 256, η = 0.125, and t = 48 we would
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ordinarily have that PFA ≈ 2−81 while PFR ≈ 2−9. However, this relatively high
false rejection rate can be eliminated by allowing the tag to check ν before use.

Another possibility to decrease storage and communication costs is to reduce
kY ; for this, it might be interesting to consider the effect of using a larger noise
level, i.e. to have η > 1

4 . In such circumstances kY could be reduced—while
maintaining the same level of security—thereby leading to storage and com-
munications savings. While it is not immediately clear that this would be a
successful approach, when coupled with restrictions to the noise vector ν this
may be worth exploring. Another optimisation could be to use techniques in-
spired by Krawczyk [14,15] to efficiently re-generate the Toeplitz matrices (e.g.
by using a LFSR). We leave such proposals as topics for future research.

6 Conclusions

In this paper we have presented two new lightweight authentication protocols.
While close variants of HB+, these new protocols offer considerable advan-
tages over related work in the literature. random-HB# is provably secure in
the detection-based model, just like HB+, but it is also provably resistant to a
broader class of attacks that includes [8]. The protocol HB# trades some of the
theoretical underpinnings to random-HB# and attains a truly practical perfor-
mance profile. Both random-HB# and HB# offer practical improvements over
HB+, and this remains the case even when using the problem sizes required after
recent progress on solving the underlying LPN problem.
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Abstract. A shuffle of a set of ciphertexts is a new set of ciphertexts with the
same plaintexts in permuted order. Shuffles of homomorphic encryptions are a
key component in mix-nets, which in turn are used in protocols for anonymization
and voting. Since the plaintexts are encrypted it is not directly verifiable whether
a shuffle is correct, and it is often necessary to prove the correctness of a shuffle
using a zero-knowledge proof or argument.

In previous zero-knowledge shuffle arguments from the literature the commu-
nication complexity grows linearly with the number of ciphertexts in the shuffle.
We suggest the first practical shuffle argument with sub-linear communication
complexity. Our result stems from combining previous work on shuffle arguments
with ideas taken from probabilistically checkable proofs.

Keywords: Shuffle, zero-knowledge argument, sub-linear communication, ho-
momorphic encryption, mix-net.

1 Introduction

A shuffle of ciphertexts e1, . . . , eN is a new set of ciphertexts E1, . . . , EN with the
same plaintexts in permuted order. Shuffles are used in many protocols for anony-
mous communication and voting. It is usually important to verify the correctness
of the shuffle. Take for instance a voting protocol where the ciphertexts are en-
crypted votes; it is important to avoid that some of the ciphertexts in the shuf-
fle are substituted with encryptions of other votes. There has therefore been much
research on designing zero-knowledge arguments1 for the correctness of a shuffle
[37,1,2,17,30,31,21,16,33,34,32,15,24,38].

When designing shuffle arguments, efficiency is a major concern. It is realistic to
have elections with millions of encrypted votes, in which case the statement to be proven
is very large. In this paper, our main goal is to get a practical shuffle argument with low
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1 By zero-knowledge arguments [8] we refer to computationally-sound zero-knowledge
proofs [20].
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communication complexity. A theoretical solution to this problem would be to use Kil-
ian’s communication-efficient zero-knowledge argument [26] (see also Micali [29]).
This method, however, requires a reduction to Circuit Satisfiability, a subsequent appli-
cation of the PCP-theorem [4,3,12], and using a collision-free hash-function to build a
hash-tree that includes the entire PCP. Even with the best PCP constructions known to
date (cf. [7]), such an approach would be inefficient in practice.

OUR CONTRIBUTION. We present a sublinear-communication 7-move public coin per-
fect zero-knowledge argument of knowledge for the correctness of a shuffle of ElGamal
ciphertexts [13]. (The protocol is presented in the common random string model, but can
also be implemented in the plain model at the cost of a slightly higher constant number
of rounds.) All shuffle arguments previously suggested in the literature have communi-
cation complexity Ω(N)κ, where N is the number of ciphertexts in the shuffle and κ
is a security parameter specifying the finite group over which the scheme works. Our
shuffle argument has communication complexity O(m2 + n)κ for m and n such that
N = mn. (The constant in the expression is low as well, see Section 8 for a more pre-
cise efficiency analysis.) With m = N1/3 this would give a size of O(N2/3)κ bits, but
in practice a smaller choice of m will usually be better for computational reasons. Our
shuffle argument moderately increases the prover’s computational burden and reduces
the amount of communication and the verifier’s computational burden in comparison
with previous work.

For practical purposes it will be natural to use the Fiat-Shamir heuristic [14] (i.e.
compute the verifier’s public-coin challenges using a cryptographic hash-function) to
make our shuffle argument non-interactive. The Fiat-Shamir heuristic justifies reducing
the communication and verifier computation at the cost of increased prover computa-
tion, since the non-interactive shuffle argument needs to be computed only once by the
prover but may be distributed to and checked by many verifiers. Letting the prover do
some extra work in order to reduce the communication and the computational burden
of each verifier is therefore a good trade-off in practice. To the best of our knowledge,
our protocol is the first practical instance of a sublinear-communication argument for
any interesting nontrivial statement.

We have some further remarks on our result. Our technique also applies to other ho-
momorphic cryptosystems, for instance Paillier encryption [35]; a more general treat-
ment of a wider class of homomorphic encryptions can be obtained along the lines of
[21]. For simplicity we focus just on ElGamal encryption in this paper. Similarly to pre-
vious shuffle arguments from the literature, we will present our protocol as an honest
verifier zero-knowledge argument. There are very efficient standard techniques for con-
verting honest verifier zero-knowledge arguments into fully zero-knowledge arguments
[10,18,22].

TECHNIQUES. Our starting point is the honest verifier zero-knowledge shuffle argu-
ment by Groth [21], which builds on ideas by Neff [30]. Borrowing some of the ideas
underlying the PCP theorem, namely the use of Hadamard codes and batch-verification
techniques, we reduce the size of the shuffle argument. We note that unlike Kilian [26]
we do not reduce the shuffle statement to an NP-complete language such as SAT; in-
stead we work directly with the ciphertexts in the shuffle statement. Moreover, while
we use ideas behind the PCP theorem we do not make use of a full-blown PCP.
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In particular, our argument avoids any use of linearity testing, low-degree testing, or
other forms of code proximity testing that appear in all known PCPs.

RELATED WORK. Our work was inspired by the recent work of Ishai, Kushile-
vitz, and Ostrovsky [25], which introduced an approach for constructing sublinear-
communication arguments using exponentially long but succinctly described PCPs.
Similarly to [25] we use short homomorphic commitments as the main cryptographic
building block. There are, however, several important differences between our tech-
niques and those from [25]. In particular, the arguments obtained in [25] do not address
our zero-knowledge requirement (and are only concerned with soundness), they inher-
ently require the verifier to use private coins (which are undesirable in the context of
our application), and they employ linearity testing that subsequently requires soundness
amplification. Finally, the approach of [25] is generic and does not account for the spe-
cial structure of the shuffle problem; this structure is crucial for avoiding an expensive
reduction to SAT.

2 Preliminaries

2.1 Notation

We let ΣN denote the symmetric group on {1, 2, . . . , N}. Given two functions f, g :
N → [0, 1] we write f(κ) ≈ g(κ) when |f(κ) − g(κ)| = O(κ−c) for every constant
c. We say that the function f is negligible when f(κ) ≈ 0 and that it is overwhelming
when f(κ) ≈ 1.

Algorithms in our shuffle argument will get a security parameter κ as input, which
specifies the size of the group we are working over. Sometimes we for notational sim-
plicity avoid writing this explicitly, assuming κ can be deduced indirectly from other
inputs given to the algorithms.

All our algorithms will be probabilistic polynomial time algorithms. We will assume
that they can sample randomness from sets of the type Zq . We note that such random-
ness can be sampled from a source of uniform random bits in expected polynomial time
(in log q).

We write A(x; r) = y when A, on input x and randomness r, outputs y. We write
y ← A(x) for the process of picking randomness r at random and setting y := A(x; r).
We also write y ← S for sampling y uniformly at random from the set S.

When defining security, we assume that there is an adversary attacking our scheme.
This adversary is modeled as a non-uniform polynomial time stateful algorithm. By
stateful, we mean that we do not need to give it the same input twice, it remembers
from the last invocation what its state was. This makes the notation a little simpler,
since we do not need to explicitly write out the transfer of state from one invocation to
the next.

2.2 Group Generation

We will work over a group Gq of a prime order q. This could for instance be a subgroup
of Z

∗
p, where p is a prime and gcd(q2, p−1) = q; or it could be an elliptic curve group or
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subgroup. We will assume the discrete logarithm problem is hard in Gq . More precisely,
let G be a generating algorithm that takes a security parameter κ as input and outputs
gk := (q, Gq, g), where by Gq we denote a computationally efficient representation of
the group and g is a random generator for Gq . The discrete logarithm assumption says
that for any non-uniform polynomial time adversary A:

Pr
[
(q, Gq, g) ← G(1κ); x ← Zq; h := gx : A(q, Gq , g, h) = x

]
≈ 0.

(When the randomness of G is taken from a common random string, the above definition
needs to be strengthened so that A is given the randomness used by G.)

2.3 Generalized Pedersen Commitment

We will use a variant of the Pedersen commitment scheme [36] that permits making a
commitment to a length-n vector in Z

n
q rather than a single element of Zq as in Peder-

sen’s original commitment. A crucial feature of this generalization is that the amount
of communication it involves does not grow with n. The generalized scheme proceeds
as follows. The key generation algorithm Kcom takes (q, Gq, g) as input and outputs a
commitment key ck := (g1, . . . , gn, h), where g1, . . . , gn, h are randomly chosen gen-
erators of Gq . The message space is Mck := Z

n
q , the randomizer space is Rck := Zq

and the commitment space is Cck := Gq . (The parameter n will be given as an addi-
tional input to all algorithms; however, we prefer to keep it implicit in the notation.)

To commit to an n-tuple (m1, . . . , mn) ∈ Z
n
q we pick randomness r ← Zq and

compute the commitment C := hr
∏n

i=1 gmi

i . The commitment is perfectly hiding
since no matter what the messages are, the commitment is uniformly distributed in Gq .
The commitment is computationally binding under the discrete logarithm assumption;
we will skip the simple proof.

The commitment key ck will be part of the common random string in our shuffle
argument. We remark that it can be sampled from a random string. We write C :=
comck(m1, . . . , mn; r) for making a commitment to m1, . . . , mn using randomness r.
The commitment scheme is homomorphic, i.e., for all m1, m

′
1, . . . , mn, m′n, r, r′ ∈ Zq

we have

comck(m1,. . ., mn; r)· comck(m′1,. . ., m
′
n; r′)=comck(m1+m′1,. . ., mm+m′n; r+r′).

In some cases we will commit to less than n elements; this can be accomplished quite
easily by setting the remaining messages to 0.

We will always assume that parties check that commitments are valid, meaning they
check that C ∈ Gq . If Gq is a subgroup of Z

∗
p this can be done by checking that

Cq = 1, however, batch verification techniques can be used to lower this cost when
we have multiple commitments to check.2 If Gq is an elliptic curve of order q, then the
validity check just consists of checking that C is a point on the curve, which is very
inexpensive.

2 See also [21] for a variant of the Pedersen commitment scheme over Z
∗
p that makes it possible

to completely eliminate the cost of verifying validity.
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2.4 ElGamal Encryption

ElGamal encryption [13] in the group Gq works as follows. The public key is pk :=
y = gx with a random secret key sk := x ← Z

∗
q . The message space is Mpk := Gq ,

the randomizer space is Rpk := Zq and the ciphertext space is Cpk := Gq × Gq . To
encrypt a message m ∈ Gq using randomness R ∈ Zq we compute the ciphertext
Epk(m; R) := (gR, yRm). To decrypt a ciphertext (u, v) we compute m = vu−x.

The semantic security of ElGamal encryption is equivalent to the DDH assumption.
Semantic security may be needed for the shuffle itself to be secure; however, the security
of our shuffle argument will rely on the discrete logarithm assumption only. In particu-
lar, our shuffle argument is still sound and zero-knowledge even if the cryptosystem is
insecure or the decryption key has been exposed.

ElGamal encryption is homomorphic with entry-wise multiplication in the ciphertext
space. For all (m, R), (m′, R′) ∈ Mpk × Rpk we have

Epk(mm′; R + R′) = (gR+R′
, yR+R′

mm′)

= (gR, yRm) · (gR′
, yR′

m′) = Epk(m; R) · Epk(m′; R′).

We will always assume that the ciphertexts in the shuffle are valid, i.e., (u, v) ∈
Gq × Gq . Batch verification techniques can reduce the cost of verifying validity when
we have multiple ciphertexts. To further reduce the cost of ciphertext verification, Groth
[21] suggests a variant of ElGamal encryption that makes batch-checking ciphertext
validity faster. Our shuffle argument works also for this variant of ElGamal encryption.

Our shuffle argument works with many types of cryptosystems; the choice of El-
Gamal encryption is made mostly for notational convenience. Our technique can be
directly applied with any homomorphic cryptosystem that has a message space of order
q. We are neither restricted to using the same underlying group (q, Gq, g) as the com-
mitment scheme nor restricted to using ElGamal encryption or variants thereof. Using
techniques from [21] it is also possible to generalize the shuffle argument to work for
cryptosystems that do not have message spaces of order q. This latter application does
require a few changes to the shuffle argument though and does increase the complexity
of the shuffle argument, but the resulting protocol still has the same sub-linear asymp-
totic complexity.

2.5 Special Honest Verifier Zero-Knowledge Arguments of Knowledge

We will assume there is a setup algorithm G that generates some setup information
gk. This setup information could for instance be a description of a group that we will
be working in. Consider a pair of probabilistic polynomial time interactive algorithms
(P, V ) called the prover and the verifier. They may have access to a common random
string σ generated by a probabilistic polynomial time key generation algorithm K . We
consider a polynomial time decidable ternary relation R. For an element x we call w a
witness if (gk, x, w) ∈ R. We define a corresponding group-dependent language Lgk

consisting of elements x that have a witness w such that (gk, x, w) ∈ R. We write tr ←
〈P (x), V (y)〉 for the public transcript produced by P and V when interacting on inputs
x and y together with the randomness used by V . This transcript ends with V either
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accepting or rejecting. We sometimes shorten the notation by saying 〈P (x), V (y)〉 = b
if V ends by accepting, b = 1, or rejecting, b = 0.

Definition 1 (Argument). The triple (K, P, V ) is called an argument for relation R
with setup G if for all non-uniform polynomial time interactive adversaries A we have

Completeness

Pr
[
gk ← G(1κ); σ ← K(gk); (x, w) ← A(gk, σ) :

(gk, x, w) /∈ R or 〈P (gk, σ, x, w), V (gk, σ, x)〉 = 1
]

≈ 1.

Computational soundness

Pr
[
gk ← G(1κ); σ ← K(gk); x ← A(gk, σ) :

x /∈ Lgk and 〈A, V (gk, σ, x)〉 = 1
]

≈ 0.

Definition 2 (Public coin argument). An argument (K, P, V ) is public coin if the ver-
ifier’s messages are chosen uniformly at random independently of the messages sent by
the prover and the setup parameters gk, σ.

We define special honest verifier zero-knowledge (SHVZK) [9] for a public coin argu-
ment as the ability to simulate the transcript for any set of challenges without access to
the witness.

Definition 3 (Perfect special honest verifier zero-knowledge). The public coin ar-
gument (K, P, V ) is called a special honest verifier zero-knowledge argument for R
with setup G if there exists a probabilistic polynomial time simulator S such that for all
non-uniform polynomial time adversaries A we have

Pr
[
gk ← G(1κ); σ ← K(gk); (x, w, ρ) ← A(gk, σ);

tr ← 〈P (gk, σ, x, w), V (gk, σ, x; ρ)〉 : (gk, x, w) ∈ R and A(tr) = 1
]

= Pr
[
gk ← G(1κ); σ ← K(gk); (x, w, ρ) ← A(gk, σ);

tr ← S(gk, σ, x, ρ) : (gk, x, w) ∈ R and A(tr) = 1
]
.

We remark that there are efficient techniques to convert SHVZK arguments into zero-
knowledge arguments for arbitrary verifiers in the common random string model
[10,18,22]. In this paper, we will therefore for simplicity focus just on the special honest
verifier zero-knowledge case.

WITNESS-EXTENDED EMULATION. We shall define an argument of knowledge3

through witness-extended emulation, the name taken from Lindell [28]. Whereas Lin-
dell’s definition pertains to proofs of knowledge in the plain model, we will adapt his

3 The standard definition of proofs of knowledge by Bellare and Goldreich [5] does not apply in
our setting, since we work in the common random string model and are interested in arguments
of knowledge. See Damgård and Fujisaki [11] for a discussion of this issue.
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definition to the setting of public coin arguments in the common random string model.
Informally, our definition says: given an adversary that produces an acceptable argu-
ment with probability ε, there exists an emulator that produces a similar argument with
probability ε, but at the same time provides a witness.

Definition 4 (Witness-extended emulation). We say the public coin argument
(K, P, V ) has witness-extended emulation if for all deterministic polynomial time P ∗

there exists an expected polynomial time emulator E such that for all non-uniform poly-
nomial time adversaries A we have

Pr
[
gk ← G(1κ); σ ← K(gk); (x, s) ← A(gk, σ);

tr ← 〈P ∗(gk, σ, x, s), V (gk, σ, x)〉 : A(tr) = 1
]

≈ Pr
[
gk ← G(1κ); σ ← K(gk); (x, s) ← A(gk, σ);

(tr, w) ← E〈P
∗(gk,σ,x,s),V (gk,σ,x)〉(gk, σ, x) :

A(tr) = 1 and if tr is accepting then (gk, x, w) ∈ R
]
,

where E has access to a transcript oracle 〈P ∗(gk, σ, x, s), V (gk, σ, x)〉 that can be
rewound to a particular round and run again with the verifier using fresh randomness.

We think of s as being the state of P ∗, including the randomness. Then we have an
argument of knowledge in the sense that the emulator can extract a witness whenever P ∗

is able to make a convincing argument. This shows that the definition implies soundness.
We remark that the verifier’s randomness is part of the transcript and the prover is
deterministic. So combining the emulated transcript with gk, σ, x, s gives us the view
of both the prover and the verifier and at the same time gives us the witness.

Damgård and Fujisaki [11] have suggested an alternative definition of an argument
of knowledge in the presence of a common random string. Witness-extended emulation
as defined above implies knowledge soundness as defined by them [22].

THE FIAT-SHAMIR HEURISTIC. The Fiat-Shamir heuristic [14] can be used to make
public coin SHVZK arguments non-interactive. In the Fiat-Shamir heuristic the veri-
fier’s challenges are computed by applying a cryptographic hash-function to the tran-
script of the protocol. Security can be formally argued in the random oracle model [6],
in which the hash-function is modeled as a completely random function that returns
a random string on each input it has not been queried before. While the Fiat-Shamir
heuristic is not sound in general [19], it is still commonly believed to be a safe practice
when applied to “natural” protocols.

2.6 Problem Specification and Setup

We will construct a 7-move public coin perfect SHVZK argument for the relation

R =
{
(gk = (q, Gq , g), (pk = y, e1, . . . , eN , E1, . . . , EN ), (π, R1, . . . , RN ))

∣∣∣
y ∈ Gq ∧ π ∈ ΣN ∧ R1, . . . , RN ∈ Rpk ∧ ∀i : Ei = eπ−1(i)Epk(1; Ri)

}
.
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In our SHVZK argument, the common random string σ will be generated as a pub-
lic key (g1, . . . , gn, h) for the n-element Pedersen commitment scheme described in
Section 2.3. Depending on the applications, there are many possible choices for who
generates the commitment key and how this generation is done. For use in a mix-net,
we could for instance imagine that there is a setup phase, where the mix-servers run a
multi-party computation protocol to generate the setup and the commitment key. An-
other option is to let the verifier generate the common random string, since it is easy to
verify whether a commitment key is valid or not. This option yields an 8-move (honest-
verifier zero-knowledge) argument in the plain model.4

2.7 Polynomial Identity Testing

For completeness we state a variation of the well-known Schwartz-Zippel lemma that
we use several times in the paper.

Lemma 1 (Schwartz-Zippel). Let p be a non-zero multivariate polynomial of degree d
over Zq , then the probability of p(x1, . . . , xν) = 0 for randomly chosen x1, . . . , xν ←
Zq is at most d/q.

The Schwartz-Zippel lemma is frequently used in polynomial identity testing. Given
two multi-variate polynomials p1 and p2 we can test whether p1(x1, . . . , xν) −
p2(x1, . . . , xν) = 0 for random x1, . . . , xν ← Zq . If the two polynomials are iden-
tical this will always be true, whereas if the two polynomials are different then there is
only probability max(d1, d2)/q for the equality to hold.

3 Product of Committed Elements

Consider a sequence of commitments A1, . . . , Am and a value a ∈ Zq . We will give an
SHVZK argument of knowledge of {aij}m,n

i=1,j=1 and {ri}m
i=1 such that

A1 = comck(a11 , a12 , . . . , a1n ; r1)
...

Am = comck(am1 , am2 , . . . , amn ; rm)
and a =

m∏
i=1

n∏
j=1

aij mod q.

The argument is of sub-linear size; the prover will send m2 commitments and 2n el-
ements from Zq , where N = mn is the total number of committed elements aij . For
m = N1/3 this gives a size of O(N2/3)κ bits.

The argument is quite complex so let us first describe some of the ideas that go into it.
In our argument, the prover will prove knowledge of the contents of the commitments.

4 We can also get full zero-knowledge in the plain model. The verifier picks the common random
string as above and also picks an additional key for a trapdoor commitment scheme. The
verifier then makes engages in a zero-knowledge proof of knowledge of the trapdoor. We
can now use the standard techniques for converting honest verifier zero-knowledge arguments
to full zero-knowledge arguments [10,18,22]. By running the two proofs in parallel, the round
complexity is only 8. Note, however, that since the verifier must know the secret trapdoor of
the additional commitment scheme, the protocol is no longer public coin.
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For the sake of simplicity we will first describe the argument assuming the prover knows
the contents of the commitments and by the computational binding property of the
commitment scheme is bound to these values. We will also for the sake of simplicity
just focus on soundness and later when giving the full protocol add extra parts that will
give us honest verifier zero-knowledge and witness-extended emulation. (Note that even
completeness and soundness alone are nontrivial to achieve when considering sublinear
communication arguments.)

Consider first commitments A1, . . . , Am as described above. The verifier will pick a
random challenge s1, . . . , sm. By the homomorphic property

m∏
i=1

Asi

i = comck(
m∑

i=1

siai1, . . . ,

m∑
i=1

siain;
m∑

i=1

siri).

In our argument the prover will open this commitment multi-exponentiation as f1 :=∑m
i=1 siai1, . . . , fn :=

∑m
i=1 siain, z :=

∑m
i=1 siri.

Consider now the case where we have three sets of commitments
{Ai}m

i=1, {B�}m
�=1, {Ci�}m,m

i=1,�=1 containing respectively m × n matrices
A, B and m2 × n matrix C. The verifier will choose random challenges
s1, . . . , sm, t1, . . . , tm ← Zq . The prover can open the commitment products∏m

i=1 Asi

i ,
∏m

�=1 Bt�

� ,
∏m

i=1

∏m
�=1 Csit�

i� as described above. This gives us for each of
the n columns

fj :=
m∑

i=1

siaij , Fj :=
m∑

�=1

t�b�j , φj :=
m∑

i=1

m∑
�=1

sit�ci�j .

In our proofs the verifier will check for each column that φj = fjFj . These checks can
be seen as quadratic equations in variables s1, . . . , sm, t1, . . . , tm of the form

(
m∑

i=1

siaij)(
m∑

�=1

t�b�j) =
m∑

i=1

m∑
�=1

sit�ci�j .

If ci�j = aijb�j for all i, 	, j the check will always pass, whereas if this is not the case,
then by the Schwartz-Zippel lemma there is overwhelming probability over the choice
of s1, . . . , sm, t1, . . . , tm that the check will fail. (This type of checking is also used in
the Hadamard-based PCP of Arora et al. [3].) We therefore have an argument for Cii

being a commitment to {aijbij}n
j=1. The commitments Ci� for i 	= 	 are just fillers that

make the argument work, we will not need them for anything else. In the argument we
only reveal O(n) elements in Zq to simultaneously prove N = mn equalities ciij =
aijbij ; this is what will give us sub-linear communication complexity.

Let us now explain how we choose the matrix B. For 1 ≤ I ≤ m, 1 ≤ J ≤ n
we set bIJ :=

∏I−1
i=1

∏n
j=1 aij ·

∏J
j=1 aIj . This means that B is a matrix chosen

such that bij is the previous element in the matrix B multiplied with aij . In particular,
we have bmn =

∏m
i=1

∏n
j=1 aij = a. In addition, we will have an extra column with

b10 := 1 and for 1 < i ≤ m : bi0 := bi−1,n. In other words, the 0th column vector
is the nth column vector of B shifted one step down. The prover will make a separate
set of m commitments B′1, . . . , B

′
m to this column. Choosing B′1 := comck(1; 0) it
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is straightforward to verify that b10 = 1. To show that the rest of the 0th column is
correctly constructed the prover will open

∏m−1
�=2 (B′�)

t�−1 to the message Fn−tma. The
linear equations give us

∑m−1
�=2 t�−1b�0 + tma =

∑m
�=1 t�b�n, which by the Schwartz-

Zippel lemma has negligible probability of being true unless bmn = a and b�+1,0 = b�n

for 1 ≤ 	 < m.
We have now described B extended with a 0th column vector. Write B̃ for the matrix

with the 0th column and the first n−1 columns of B. We will apply the A, B, C matrix
argument we described before to the matrices A, B̃, C, where we use commitments
Cii := Bi. This argument demonstrates for each 1 ≤ j ≤ n that bij = aijbi,j−1.
Putting everything together we now have: b10 = 1, bij = aijbi,j−1, bi0 = bi−1,n and
bmn = a, which is sufficient to conclude that a =

∏m
i=1

∏n
j=1 aij .

We will now describe the full protocol. The most significant change from the descrip-
tion given above is that we now add also elements a0j , b0j that are chosen at random to
the matrices. The role of these elements is to give honest verifier zero-knowledge. The
prover reveals elements of the form fj := a0j+

∑m
i=1 siaij and Fj := b0j+

∑m
�=1 t�b�j ,

which reveal nothing about
∑m

i=1 siaij and
∑m

�=1 t�b�j when a0j and b0j are random.

Initial message
a01, . . . , a0n ← Zq ; r0 ← Rck ; A0 := comck(a01, a02, . . . , a0n; r0)
For 1 ≤ I ≤ m, 1 ≤ J ≤ n : bIJ :=

∏I−1
i=1

∏n
j=1 aij ·

∏J
j=1 aIj

b01, . . . , b0n ← Zq ; rb0, rb1 . . . , rbm ← Rck

B0 := comck(b01 , b02, , . . . , b0n ; rb0)
B1 := comck(b11 , b12 , . . . , b1n ; rb1)

...
Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)

Define b10 := 1, b20 := b1n, . . . , bm0 := bm−1,n

r′2, . . . , r′m ← Rck ; B′2 := comck(b20; r′2), . . . , B′m := comck(bm0; r′m)
b00 ← Zq ; r′0 ← Rck ; B′0 := comck(b00; r′0)
r̂ ← Rck ; B̂ := comck(b0n; r̂)
For 0 ≤ i, 	 ≤ m : ri� ← Rck and for 1 ≤ i ≤ m : rii := rbi.
For 0 ≤ i, 	 ≤ m :

Ci� := comck(ai1b�0, . . . , ainb�,n−1; ri�)

Since bij = aijbi,j−1 and rii = rbi we have for 1 ≤ i ≤ m that Cii = Bi.
Send (A0, B0, B

′
0, B

′
2, . . . , B

′
m, B̂, C00, . . . , Cmm) to the verifier

Challenge: s1, . . . , sm, t1, . . . , tm ← Zq

Answer
For 1 ≤ j ≤ n : fj := a0j +

∑m
i=1 siaij ; Fj := b0j +

∑m
�=1 t�b�j ; F0 :=

b00 +
∑m

�=1 t�b�0

z := r0 +
∑m

i=1 siri ; zb := rb0 +
∑m

�=1 t�rb� ; z′ := r′0 +
∑m

�=2 t�r
′
� ; ẑ :=

r̂ +
∑m

�=2 t�−1r
′
�

zab := r00 +
∑m

i=1 siri0 +
∑m

�=1 t�r0� +
∑m

i=1

∑m
�=1 sit�ri�

Send (f1, . . . , fn, F0, . . . , Fn, z, zb, z
′, ẑ, zab) to the verifier
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Verification
Check A0

∏m
i=1 Asi

i = comck(f1, . . . , fn; z)
For 1 ≤ 	 ≤ m set B� := c��. Check B0

∏m
�=1 Bt�

� = comck(F1, . . . , Fn; zb)
Set B′1 := comck(1; 0). Check B′0

∏m
�=1(B

′
�)

t� = comck(F0; z′).
Check B̂

∏m
�=2(B

′
�)

t�−1 = comck(Fn − tma; ẑ)
Check

C00 ·
m∏

i=1

Csi

i0 ·
m∏

�=1

Ct�

0� ·
m∏

i=1

m∏
�=1

Csit�

i� = comck(f1F0, . . . , fnFn−1; zab)

Theorem 1. The protocol described above is a 3-move public-coin perfect SHVZK ar-
gument of knowledge of aij and ri such that a =

∏m
i=1

∏n
j=1 aij and for all i we have

Ai = comck(ai1, . . . , ain; ri).

The proof can be found in the full paper [23].

4 Committed Permutation of Known Elements

Consider a vector of commitments B1, . . . , Bm and a set of values {aij}m,n
i=1,j=1. In this

section we will give an argument of knowledge of π ∈ ΣN and {ri}m
i=1 such that:

B1 = comck(aπ−1(11) , aπ−1(12) , . . . , aπ−1(1n) ; r1)
...

Bm = comck(aπ−1(m1) , aπ−1(m2) , . . . , aπ−1(mn) ; rm)

(Here we identify [N ] with [m] × [n].)
Our argument uses Neff’s idea [30], which is to let the verifier pick a value x at

random and let the prover argue that the committed values bij satisfy
∏m

i=1

∏n
j=1(x −

bij) =
∏m

i=1

∏n
j=1(x−aij). If the committed bij are a permutation of aij this equation

holds, since polynomials are invariant under permutation of their roots. On the other
hand, if bij are not a permutation of aij , then by the Schwartz-Zippel lemma there is
negligible chance over the choice of x for the equality to hold.

Initial challenge: x ← Zq

Answer: Define B′1 := comck(x, . . . , x; 0)B−1
1 , . . . , B′m := comck(x, . . . , x; 0)B−1

m

and a :=
∏m

i=1

∏n
j=1(x − aij).

Make a 3-move argument of knowledge of openings of B′1, . . . , B
′
m such that the

product of all the entries is a.

Theorem 2. The protocol is a 4-move public coin perfect SHVZK argument of knowl-
edge of aij , ri, π such that Bi := comck(aπ−1(i1), . . . , aπ−1(in); ri).

We refer to the full paper [23] for a proof.
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5 Multi-exponentiation to Committed Exponents

Consider a set of commitments A1, . . . , Am, a matrix of ciphertexts E11, . . . , Emn and
a ciphertext E. In this section we will give an argument of knowledge of {aij}m,n

i=1,j=1,
{ri}m

i=1 and R such that:

A1 = comck(a11 , a12 , . . . , a1n ; r1)
...

Am = comck(am1 , am2 , . . . , amn ; rm)
and E = Epk(1; R)

m∏
i=1

n∏
j=1

E
aij

ij .

The argument will contain m2 commitments, m2 ciphertexts and n elements in Zq ,
where N = mn. Choosing m = N1/3 gives a communication complexity of O(N2/3)κ
bits.

When describing the idea, let us first just consider how to get soundness and ig-
nore the issue of zero-knowledge for a moment. In the argument, the prover will prove
knowledge of the committed exponents, so let us from now on assume the committed
values are well-defined. The prover can compute m2 ciphertexts

Di� =
n∏

j=1

E
aij

�j .

We have E = Epk(1; R)
∏m

i=1 Dii = Epk(1; R)
∏m

i=1

∏n
j=1 E

aij

ij . Ignoring R that
can be dealt with using standard zero-knowledge techniques all that remains is for the
verifier to be convinced Di� have been correctly computed. For this purpose the verifier
will select challenges t1, . . . , tm ← Zq at random. The prover will open

∏m
i=1 Ati

i to the
values f1 :=

∑m
i=1 tiai1, . . . , fn :=

∑m
i=1 tiain. The verifier now checks for each 1 ≤

	 ≤ m that
∏n

j=1 E
fj

�j =
∏m

i=1 Dti

i� . Writing this out we have
∏m

i=1(
∏n

j=1 E
aij

�j )ti =∏m
i=1 Dti

i� . Since ti are chosen at random, there is overwhelming probability for one of
these checks to fail unless for all i, 	 we have Di� =

∏n
j=1 E

aij

�j .
In the argument, we wish to have honest verifier zero-knowledge. We will there-

fore multiply the Di� ciphertexts with random encryptions to avoid leaking information
about the exponents. This, however, makes it possible to encrypt anything in Di�, so
to avoid cheating we commit to the plaintexts of those random encryptions and use the
commitments to prove that they all cancel out against each other.

Initial message
a01, . . . , a0n ← Zq ; r0 ← Rck ; A0 = comck(a01, a02, . . . , a0n; r0)
b01, . . . , bmm ← Zq ; r01, . . . , rmm ← Rck ; bmm := −

∑m−1
i=1 bii ; rmm :=

−
∑m−1

i=1 rii

C01 := comck(b01; r01) . . . C0m := comck(b0m; r0m)
...

...
Cm1 := comck(bm1; rm1) . . . Cmm := comck(bmm; rmm)
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R01, . . . , Rmm ← Rpk ; Rmm := R −
∑m−1

i=1 Rii

D01 := Epk(gb01 ; R01)
∏n

j=1 E
a0j

1j · · · D0m := Epk(gb0m ; R0m)
∏n

j=1 E
a0j

mj
...

...
Dm1 := Epk(gbm1 ; Rm1)

∏n
j=1 E

amj

1j · · · Dmm := Epk(gbmm ; Rmm)
∏n

j=1 E
amj

mj

Send (A0, C01, . . . , Cmm, D01, . . . , Dmm) to the verifier
Challenge: t1, . . . , tm ← Zq

Answer
For 1 ≤ j ≤ n : fj := a0j +

∑m
i=1 tiaij ; z := r0 +

∑m
i=1 tiri

For 1 ≤ 	 ≤ m : F� := b0� +
∑m

i=1 tibi� ; z� := r0� +
∑m

i=1 tiri� ; Z� :=
R0� +

∑m
i=1 tiRi�

Send (f1, . . . , fn, F1, . . . , Fm, z, z1, . . . , zm, Z1, . . . , Zm) to the verifier
Verification

Check A0

∏m
i=1 Ati

i = comck(f1, . . . , fn; z)
For 1 ≤ 	 ≤ m check

C0�

m∏
i=1

Cti

i� = comck(F�; z�) and Epk(gF� ; Z�)
n∏

j=1

E
fj

�j = D0�

m∏
i=1

Dti

i�

Check
∏m

i=1 Cii = comck(0; 0)
Check E =

∏m
i=1 Dii

Theorem 3. The protocol above is a 3-move public coin perfect SHVZK argument of
knowledge of a11, . . . , amn, r1, . . . , rm, R so E = Epk(1; R)

∏m
i=1

∏n
j=1 E

aij

ij and
Ai = comck(ai1, . . . , ain; ri).

We refer to the full paper [23] for the proof.

6 Shuffle Argument

Given ciphertexts {eij}m,n
i=1,j=1 and {Eij}m,n

i=1,j=1 we will give an argument of
knowledge of π ∈ ΣN and {Rij}m,n

i=1,j=1 such that for all i, j we have Eij =
eπ−1(ij)Epk(1; Rij). The most expensive components of the argument will be a prod-
uct of committed elements argument and a multi-exponentiation to committed elements
argument described in the previous sections. The total size of the argument is therefore
O(m2 + n)κ bits, where N = mn. With m = N1/3 this gives an argument of size
O(N2/3)κ bits.

The argument proceeds in seven steps. First the prover commits to the permutation
π, by making a commitment to 1, . . . , N in permuted order. Then the verifier picks
challenges s1, . . . , sm, t1, . . . , tn at random. The prover commits to the challenges sitj
in permuted order. The prover now proves that she has committed to sitj permuted in
the same order as the permutation committed to in the initial commitment. The point of
the argument is that since the permutation is committed before seeing the challenges, the
prover has no choice in creating the commitment, the random challenges have already
been assigned unique slots in the commitment.
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The other part of the argument is to use the committed exponentiation technique to
show that

∏m
i=1

∏n
j=1 e

sitj

ij = Epk(1; R)
∏m

i=1

∏n
j=1 E

sitj

π(ij) for some known R. If we

look at the plaintext, this implies
∏m

i=1

∏n
j=1 m

sitj

ij =
∏m

i=1

∏n
j=1 M

sitj

π(ij). With the
permutation fixed before the challenges are chosen at random there is overwhelming
probability that the argument fails unless for all i, j we have Mij = mπ−1(ij).

Initial message: The prover sets aπ(ij) := m(i − 1) + j. The prover picks
ra1, . . . , ram ← Rck and sets

A1 := comck(a11 , a12 , . . . , a1n ; ra1)
...

Am := comck(am1 , am2 , . . . , amn ; ram)

First challenge: s1, . . . , sm, t1, . . . , tn ← Zq

First answer: We define bπ(ij) := sitj . The prover picks rb1, . . . , rbn ← Rck and sets

B1 := comck(b11 , b12 , . . . , b1n ; rb1)
...

Bm := comck(bm1 , bm2 , . . . , bmn ; rbm)

Second challenge: λ ← Zq

Answer: Make a 4-move argument of knowledge of π ∈ ΣN and openings of
Aλ

1B1, . . . , A
λ
mBm so they contain a permutation of the N values λ(m(i − 1) +

j) + sitj . Observe, the first move of this argument can be made in parallel with the
second challenge so we only use three additional moves.
Make a 3-move argument of knowledge of bij , rbi, R so

B1 = comck(b11 , b12 , . . . , b1n ; rb1)
...

Bm = comck(bm1 , bm2 , . . . , bmn ; rbm)

and
m∏

i=1

n∏
j=1

e
sitj

ij = Epk(1; R)
m∏

i=1

n∏
j=1

E
bij

ij .

Theorem 4. The protocol is a 7-move public coin perfect SHVZK argument of knowl-
edge of π ∈ Σ and Rij ∈ Rpk so Eij = eπ−1(ij)Epk(1; Rij).

We refer to the full paper [23] for the proof.

7 Efficient Verification

The small size of the argument gives a corresponding low cost of verification. There are,
however, 2N ciphertexts that we must exponentiate in the verification. In this section
we show that the verifier computation can be reduced to making multi-exponentiations
of the ciphertexts to small exponents.
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7.1 Prover-Assisted Multi-exponentiation

In our shuffle argument, the verifier has to compute
m∏

i=1

n∏
j=1

e
sitj

ij .

The prover can assist this computation by computing D1, . . . , Dn as Dj :=
∏m

i=1 esi

ij .
The verifier can then compute

m∏
i=1

n∏
j=1

e
sitj

ij =
m∏

j=1

D
tj

j .

What remains is for the verifier to check that the ciphertexts are correct, which can be
done by verifying

n∏
j=1

D
αj

j =
m∏

i=1

(
n∏

j=1

e
αj

ij )si

for randomly chosen αj . Since the check is done off-line, the verifier can use small ex-
ponents αj , say, 32-bit exponents. This trick reduces the amount of verifier computation
that is needed for computing

∏m
i=1

∏n
i=1 e

sitj

ij to one m-exponentiation to exponents
from Zq and m + 1 n-exponentiations to small exponents.

When m is small, this strategy may actually end up increasing the communication
complexity of the shuffle. However, the exact same method can be employed when we
let the verifier compute the tj-values as products the n products of ψ1, . . . , ψn1 and
τ1, . . . , τn2 where n = n1n2. If we choose n2 =

√
N for instance, we get that the

prover only sends
√

N ciphertexts to the verifier. The verifier then makes
√

N -multi-
exponentiations to small exponents α1, . . . , α√N .

7.2 Randomized Verification

In the argument for multi-exponentiation to committed exponents, the verifier must
check m equalities of the form

Epk(gF� ; Z�)
n∏

j=1

E
fj

�j = D0�

m∏
i=1

Dti

i� .

This can be done off-line in a randomized way by picking α1, . . . , αm at random and
testing whether

Epk(g
∑ m

�=1 α�F� ;
m∑

�=1

α�Z�)
n∏

j=1

(
m∏

�=1

Eα�

�j

)fj

=
m∏

�=1

⎛
⎝Epk(gF� ; Z�)

n∏
j=1

E
fj

�j

⎞
⎠

α�

=
m∏

�=1

Dα�

0�

m∏
i=1

(
m∏

�=1

Dα�

i�

)ti

.

This way, we make n m-multi-exponentiations to small exponents α� and one n-multi-
exponentiation to larger exponents fj .
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8 Comparison

Let us compare our shuffle argument with the most efficient arguments for correctness
of a shuffle of ElGamal ciphertexts in the literature. Furukawa and Sako [17] suggested
an efficient argument for correctness of a shuffle based on committing to a permutation
matrix. This scheme was further refined by Furukawa [15]. We will use Groth and
Lu’s [24] estimates for the complexity of Furukawa’s scheme. Neff [30,31] gave an
efficient interactive proof for correctness of a shuffle. Building on those ideas Groth
[21] suggested a perfect SHVZK argument for correctness of a shuffle. Our shuffle
argument builds on Neff’s and Groth’s schemes.

We will compare the schemes using an elliptic curve of prime order q. We use
|q| = 256 so SHA256 can be used to choose the public coin challenges. We measure
the communication complexity in bits and measure the prover and verifier computation
in single exponentiations. By this we mean that in all schemes, we count the cost of a
multi-exponentiation to n exponents as n single exponentiations. We compare the most
efficient shuffle arguments in Table 1. Section 7 offer a couple of speedup techniques.

Table 1. Comparison of shuffle arguments for N = mn ElGamal ciphertexts

Elliptic curve Furukawa-Sako Groth Furukawa proposed
Group order: |q| = 256 [17] [21] [15,24]
Prover (single expo.) 8N 6N 7N 3mN + 5N
Verifier (single expo.) 10N 6N 8N 4N + 3n
Prover’s communication (bits) 1280N 768N 768N 768m2 + 768n
Rounds 3 7 3 7

If we employ the randomization techniques from Section 7 then the prover’s cost in-
creases by 2N exponentiations, whereas the verifier’s complexity reduces to 4N small
exponentiations and m2 + 3n exponentiations to full size exponents from Zq .

For all schemes it holds that multi-exponentiation techniques can reduce their cost,
see e.g. Lim [27]. We refer to the full paper of Groth [21] for a discussion of random-
ization techniques and other tricks that can be used to reduce the computational com-
plexity of all the shuffle arguments. An additional improvement of our scheme is to let
the prover assist the verifier in computing the multi-exponentiation

∏m
i=1

∏n
j=1 e

sitj

ij ,
see Section 7. Table 2 has back-of-the-envelope estimates when we compare an op-
timized version of our scheme to that of Groth [21]. We assume that we are shuffling
N = 100, 000 ElGamal ciphertexts with parameters m = 10, n = 10, 000 so N = mn.

Table 2. Comparison of shuffle arguments for 100, 000 ElGamal ciphertexts

Groth [21] proposed
Prover’s computation 18 · 106 mults (18 sec.) 143 · 106 mults (143 sec.)
Verifier’s computation 14 · 106 mults (14 sec.) 5 · 106 mults ( 5 sec.)
Prover’s communication 77 Mbits 8 Mbits
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We count the computational cost in the number of multiplications. In parenthesis we
are giving timing estimates assuming the use of equipment where a multiplication takes
1µs, which is conservative given today’s equipment. We only count the cost of the shuf-
fle argument in Table 2, not the cost of computing the shuffle or the size of the shuffle
(51 Mbits).
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Abstract. Precise zero knowledge introduced by Micali and Pass
(STOC’06) guarantees that the view of any verifier V can be simu-
lated in time closely related to the actual (as opposed to worst-case)
time spent by V in the generated view. We provide the first construc-
tions of precise concurrent zero-knowledge protocols. Our constructions
have essentially optimal precision; consequently this improves also upon
the previously tightest non-precise concurrent zero-knowledge protocols
by Kilian and Petrank (STOC’01) and Prabhakaran, Rosen and Sahai
(FOCS’02) whose simulators have a quadratic worst-case overhead. Ad-
ditionally, we achieve a statistically-precise concurrent zero-knowledge
property—which requires simulation of unbounded verifiers participat-
ing in an unbounded number of concurrent executions; as such we obtain
the first (even non-precise) concurrent zero-knowledge protocols which
handle verifiers participating in a super-polynomial number of concurrent
executions.

1 Introduction

Zero-knowledge interactive proofs, introduced by Goldwasser, Micali and Rackoff
[GMR85] are constructs allowing one player (called the Prover) to convince an-
other player (called the Verifier) of the validity of a mathematical statement
x ∈ L, while providing no additional knowledge to the Verifier. The zero-
knowledge property is formalized by requiring that the view of any PPT verifier
V in an interaction with a prover can be “indistinguishably reconstructed” by
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a PPT simulator S, interacting with no one, on input just x. Since whatever
V “sees” in the interaction can be reconstructed by the simulator, the interac-
tion does not yield anything to V that cannot already be computed with just
the input x. Because the simulator is allowed to be an arbitrary PPT machine,
this traditional notion of ZK only guarantees that the class of PPT verifiers
learn nothing. To measure the knowledge gained by a particular verifier, Goldre-
ich, Micali and Wigderson [GMW87] (see also [Gol01]) put forward the notion
of knowledge tightness : intuitively, the “tightness” of a simulation is a func-
tion relating the (worst-case) running-time of the verifier and the (expected)
running-time of the simulator—thus, in a knowledge-tight ZK proof, the verifier
is guaranteed not to gain more knowledge than what it could have computed in
time closely related to its worst-case running-time.

Micali and Pass [MP06] recently introduced the notion of precise zero knowl-
edge (originally called local ZK in [MP06]). In contrast to traditional ZK (and
also knowledge-tight ZK), precise ZK considers the knowledge of an individual
verifier in an individual execution—it requires that the view of any verifier V ,
in which V takes t computational steps, can be reconstructed in time closely
related to t—say 2t steps. More generally, we say that a zero-knowledge proof
has precision p(·, ·) if the simulator uses at most p(n, t) steps to output a view
in which V takes t steps on common input an instance x ∈ {0, 1}n.

This notion thus guarantees that the verifier does not learn more than what
can be computed in time closely related to the actual time it spent in an in-
teraction with the prover. Such a guarantee is important, for instance, when
considering knowledge of “semi-easy” properties of the instance x, considering
proofs for “semi-easy” languages L, or when considering deniability of interactive
protocols (see [MP06,Pas06] for more discussion).

The notion of precise ZK, however, only considers verifiers in a stand-alone ex-
ecution. A more realistic model introduced by Dwork, Naor and Sahai [DNS98],
instead considers the execution of zero-knowledge proofs in an asynchronous and
concurrent setting. More precisely, we consider a single adversary mounting a co-
ordinated attack by acting as a verifier in many concurrent sessions of the same
protocol. Concurrent zero-knowledge proofs are significantly harder to construct
and analyze.

Richardson and Kilian [RK99] constructed the first concurrent zero-knowledge
argument in the standard model (without any extra set-up assumptions). Their
protocol requires O(nε) number of rounds. Kilian and Petrank [KP01] later im-
proved the round complexity to Õ(log2 n). Finally, Prabhakaran, Rosen and
Sahai [PRS02] provided a tighter analyis of the [KP01] simulator showing that
Õ(log n) rounds are sufficient. However, none of the simulators exhibited for
these protocols are precise, leaving open the following question:

Do there exist precise concurrent zero-knowledge proofs (or arguments)?

In fact, the simulators of [RK99,KP01,PRS02] are not only imprecise, but
even the overhead of the simulator with respect to the worst-case running-time of
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the verifier—as in the definition of knowledge tightness—is high. The simulator
of [RK99] had worst-case precision p(n, t) = tO(logn t)—namely, the running-
time of their simulator for a verifier V with worst-case running-time t is p(n, t)
on input a statement x ∈ {0, 1}n. This was significantely improved by [KP01]
who obtained a quadratic worst-case precision, namely p(n, t) = O(t2); the later
result by [PRS02] did not improve upon this, leaving open the following question:

Do there exist concurrent zero-knowledge arguments (or proofs) with sub-
quadratic worst-case precision?

Our Results. Our main result answers both of the above questions in the affir-
mative. In fact, we present concurrent zero-knowledge protocols with essentially
optimal precision. Our main lemma shows the following.

Lemma 1 (Main Lemma). Assuming the existence of one-way functions, for
every k, g ∈ N such that k/g ∈ ω(log n), there exists an O(k)-round concurrent
zero knowledge argument with precision p(t) ∈ O(t · 2logg t) for all languages
in NP.

By setting k and g appropriately, we obtain a simulation with near-optimal
precision.

Theorem 1. Assuming the existence of one-way functions, for every ε > 0,
there exists a ω(log n)-round concurrent zero knowledge argument for all lan-
guages in NP with precision p(t) = O(t1+ε).

Theorem 2. Assuming the existence of one-way functions, for every ε > 0,
there exists an O(nε)-round concurrent zero knowledge argument for all lan-
guages in NP with precision p(t) = O(t2

2
ε logn t). As a corollary, we obtain the

following: For every ε > 0, there exists an O(nε)-round protocol 〈P, V 〉 such that
for every c > 0, 〈P, V 〉 is a concurrent zero knowledge argument with precision
p(n, t) = O(t) with respect to verifiers with running time bounded by nc for all
languages in NP.

Finally, we also construct statistically-precise concurrent ZK arguments for all
of NP , which requires simulation of all verifiers, even those having a priori
unbounded running time.

Theorem 3. Assume the existence of claw-free permutations, then there exists
a poly(n)-round statistically precise concurrent zero-knowledge argument for all
of NP with precision p(t) = t1+

1
log n .

As far as we know, this is the first (even non-precise) concurrent ZK protocol
which handles verifiers participating in an unbounded number of executions.
Previous work on statistical concurrent ZK also considers verifiers with an un-
bounded running-time; however, those simulations break down if the verifier can
participate in a super-polynomial number of executions.
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Our Techniques. Micali and Pass show that only trivial languages have black-
box simulator with polynomial precision [MP06]. To obtain precise simulation,
they instead “time” the verifier and then try to “cut off” the verifier whenever it
attempts to run for too long. A first approach would be to adapt this technique
to the simulators of [RK99,KP01,PRS02]. However, a direct application of this
cut-off technique breaks down the correctness proof of these simulators.

To circumvent this problem, we instead introduce a new simulation technique,
which rewinds the verifier obliviously based on time. In a sense, our simulator
is not only oblivious of the content of the messages sent by the verifier (as
the simulator by [KP01]), but also oblivious to when messages are sent by the
verifier!

The way our simulator performs rewindings relies on the rewinding schedule
of [KP01], and our analysis relies on that of [PRS02]. However, obtaining our
results requires us to both modify and generalize this rewinding schedule and
therefore also change the analysis. In fact, we cannot use the same rewinding
schedule as KP/PRS as this yields at best a quadratic worst-case precision.

2 Definitions and Preliminaries

Notation. Let L denote an NP language and RL the corresponding NP-relation.
Let (P ,V) denote an interactive proof (argument) system where P and V are
the prover and verifier algorithms respectively. By V∗(x, z, •) we denote a non-
uniform concurrent adversarial verifier with common input x and auxiliary input
(or advice) z whose random coins are fixed to a sufficiently long string chosen
uniformly at random; P(x, w, •) is defined analogously where w ∈ RL(x).

Note that V∗ is a concurrent adversarial verifier. Formally, it means the follow-
ing. Adversary V∗, given an input x ∈ L, interacts with an unbounded number
of independent copies of P (all on common input x)1. An execution of a proto-
col between a copy of P and V∗ is called a session. Adversary V∗ can interact
with all the copies at the same time (i.e., concurrently), interleaving messages
from various sessions in any order it wants. That is, V∗ has control over the
scheduling of messages from various sessions. In order to implement a schedul-
ing, V∗ concatenates each message with the session number to which the next
scheduled message belongs. The prover copy corresponding to that session then
immediately replies to the verifier message as specified by the protocol. The
view of concurrent adversary V∗ in a concurrent execution consists of the com-
mon input x, the sequence of prover and verifier messages exchanged during the
interaction, and the contents of the random tape of V∗.

Let viewV∗(x,z,•) be the random variable denoting the view of V∗(x, z, •) in
a concurrent interaction with the copies of P(x, w, •). Let viewSV∗ (x,z,•) denote
the view output by the simulator. When the simulator’s random tape is fixed to
1 We remark that instead of a single fixed theorem x, V∗ can be allowed to adaptively

choose provers with different theorems x′. For ease of notation, we choose a single
theorem x for all copies of P . This is not actually a restriction and our results hold
even when V∗ adaptively chooses different theorems.
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r, its output is instead denoted by viewSV∗ (x,z,r). Finally, let TSV∗(x,z,r) denote
the steps taken by the simulator and let TV∗(view) denote the steps taken by
V∗ in the view view. For ease of notation, we will use viewV∗ to abbreviate
viewV∗(x,z,•), and viewSV∗ to abbreviate viewSV∗(x,z,•), whenever it is clear
from the context.

Definition 1 (Precise Concurrent Zero Knowledge). Let p : N × N → N
be a monotonically increasing function. (P,V) is a concurrent zero knowledge
proof (argument) system with precision p if for every non-uniform probabilistic
polynomial time V∗, the following conditions hold:

1. For all x ∈ L, z ∈ {0, 1}∗, the following distributions are computationally
indistinguishable over L:{

viewV∗(x,z,•)
}

and
{
viewSV∗ (x,z,•)

}
2. For all x ∈ L, z ∈ {0, 1}∗, and every sufficiently long r ∈ {0, 1}∗, it holds

that:
TSV∗(x,z,r) ≤ p(|x|, TV∗(viewSV∗ (x,z,r))).

When there is no restriction on the running time of V∗ and the first condition
requires the two distributions to be statistically close (resp., identical), we say
(P , V) is statistical (resp., perfect) zero knowledge.

Next, we briefly describe some of the cryptographic tools used in our
construction.

Special Honest Verifier Zero Knowledge (HVZK). A (three round) pro-
tocol is special-HVZK if, given the verifier’s challenge in advance, the simulator
can construct the first and the last message of the protocol such that the simu-
lated view is computationally indistinguishable from the real view of an honest
verifier. The Blum-Hamiltonicity protocol [Blu87] used in our construction is
special-HVZK. When the simulated view is identical to the real view, we say the
protocol is perfect-special-HVZK.

View Simulation. We assume familarity with the notion of “simulating the
verifier’s view”. In particular, one can fix the random tape of the adversarial
verifier V∗ during simulation, and treat V∗ as a deterministic machine.

Perfectly/Statistically Binding Commitments. We assume familiarity
with “perfectly/statistically binding and computationally hiding” commitment
schemes. Such commitment schemes are known based on the existence of one
way function [Nao91,HILL99]. Naor’s scheme has a two round commit phase
where the first message is sent by the receiver. Thereafter, the sender can cre-
ate the commitment using a randomized algorithm, denoted c ← compb(v).
The decommitment phase is only one round, in which the sender simply sends
v and the randomness used, to the receiver. This will be denoted by (v, r) ←
dcompb(c). More on commitment schemes appears in the full version of this
paper [PPS+07].
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3 Our Protocol

We describe our Precise Concurrent Zero-Knowledge Argument, PCZK, in
Figure 1. It is a slight variant of the PRS-protocol [PRS02]; in fact, the only
difference is that we pad each verifier message with the string 0l if our zero
knowledge simulator (found in Figure 5) requires l steps of computation to pro-
duce the next message (l grows with the size of x). For simplicity, we use perfectly
binding commitments in PCZK, although it suffices to use statistically binding
commitments, which in turn rely on the existence of one way functions. The
parameter k determines the round complexity of PCZK.

PCZK(k): A Protocol for Precise Concurrent Zero Knowledge Arguments.
All verifier messages are padded with the string 0l where l is the running time required
by our simulator (Figure 5) to compute the next prover message.

(Stage 1)

P0: Select the first message of the perfectly binding commitment scheme
(compb,dcompb) and send it to V.

V0: Select σ
R← {0, 1}n and set β ← compb(σ). Now select strings σ0

i,j
R← {0, 1}n and

σ1
i,j ← {0, 1}n such that σ0

i,j ⊕ σ1
i,j = σ, for i, j = 1, 2, . . . , k (total 2k2 strings).

Create commitments βb
i,j ← compb(σ

b
i,j) for all values of i, j and b = 0, 1. Send

β, {β0
i,j}k

i,j=1, {β1
i,j}k

i,j=1, to P .

For j = 1, 2, . . . , k proceed as follows.

Pj: Select rj ∈ {0, 1}k uniformly at random and send it to the verifier.
Vj: Let ri,j denote the ith bit of rj . Then, send σ0

i,j (resp., σ1
i,j) and the decommitment

information of β0
i,j (resp., β1

i,j), if ri,j = 0 (resp., if ri,j = 1) to the prover.

(Stage 2)

p1: If V failed to properly decommit in Step Vj, for any j ∈ [k], abort the protocol.
Otherwise, run n parallel and independent copies of BH-prover (Figure 2) and
send the n prover messages p̂1 to the verifier.

v1: Reveal the challenge σ and send decommitment information for all commitments
which are unopened so far. Each bit of σ can be thought of as verifier’s challenge
in Step v̂1 of BH-protocol.

p2: Prover verifies that all the decommitments are proper and that σ = σ0
i,j ⊕ σ1

i,j .
If yes, execute the step p̂2 for each of the n parallel copies of the BH-protocol.

v2: Verify each of the n parallel proofs as described in v̂2. If all n v̂2 steps are
accepting, accept the proof, otherwise reject the proof.

Fig. 1. Our Precise Concurrent Zero Knowledge Protocol

Since our PCZK-protocol is just an instantiation of the PRS-protocol (with
extra padding), it is both complete and sound.
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The Blum-Hamiltonicity(BH) Protocol [Blu87].

p̂1: Choose a random permutation π of vertices V . Commit to the adjacency matrix
of the permuted graph, denoted π(G), and the permutation π, using a perfectly
binding commitment scheme. Notice that the adjacency matrix of the permuted
graph contains a 1 in position (π(i), π(j)) if (i, j) ∈ E. Send both the commit-
ments to the verifier.

v̂1: Select a bit σ ∈ {0, 1}, called the challenge, uniformly at random and send it to
the prover.

p̂2: If σ = 0, send π along with the decommitment information of all commitments.
If σ = 1 (or anything else), decommit all entries (π(i), π(j)) with (i, j) ∈ C by
sending the decommitment information for the corresponding commitments.

v̂2: If σ = 0, verify that the revealed graph is identical to the graph π(G) obtained by
applying the revealed permutation π to the common input G. If σ = 1, verify that
all the revealed values are 1 and that they form a cycle of length n. In both cases,
verify that all the revealed commitments are correct using the decommitment
information received. If the corresponding conditions are satisfied, accept the
proof, otherwise reject the proof.

Fig. 2. The Blum-Hamiltonicity protocol used in PCZK

4 Our Simulator and Its Analysis

4.1 Overview

At a high level, our simulator receives several opportunities to rewind the verifier
and extract the “trapdoor” σ that will allow it to complete the simulation. More
precisely, our simulator will attempt to rewind the verifier in one of the k “slots”
(i.e. a message pair 〈(Pj), (Vj)〉) in the first stage. If at any point it obtains the
decommitment information for two different challenges (Pj), the simulator can
extract the secret σ (that the verifier sends in the Stage 2) and simulate the rest
of the protocol using the special-HVZK property of the BH-protocol.

To handle concurrency and precision, consider first the KP/PRS simulator.
This simulator relies on a static and oblivious rewinding schedule, where the
simulator rewinds the verifier after some fixed number of messages, independent
of the message content. Specifically, the total number of verifier messages over all
sessions are divided into two halves. The KP/PRS-rewinding schedule recursively
invokes itself on each of the halves twice (completing two runs of the first half
before proceeding to the two runs of the second half). The first run of each half
is called the primary thread, and the latter is called the secondary thread. As
shown in [KP01,PRS02], after the verifier commits to σ in any given session s,
the KP/PRS-simulator gets several opportunities to extract it before Stage 2
of session s begins. We also call the thread of execution in the final output by
the simulator the main thread. The KP/PRS-simulator keeps uses the secondary
threads (recursively) as the main thread; all other threads, used to gather useful
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information for extracting σ, are called look-ahead threads. However, since the
verifier’s running time in look-ahead threads could be significantly longer than
its running time in the main thread, the KP/PRS-simulator is not precise.

On the other hand, consider the precise simulation by Micali and Pass [MP06].
When rewinding a verifier, the MP simulator cuts off the second run of the verifier
if it takes more time than the first run, and outputs the view of the verifier on the
first run. Consequently, the running time of the simulator is proportional to the
running time of the verifier on the output view. In order to apply the MP “cut”
strategy on top of the KP/PRS-simulator, we need to use the primary thread
(recursively) as the main output thread, and “cut” the secondary thread with
respect to the primary thread. However, this cut-off will cause the simulator to
abort more often, which significantly complicates the analysis.

To circumvent the above problems, we introduce a new simulation technique.
For simplicity, we first present a simulator that knows an upper bound to the
running-time of the verifier. Later, using a standard “doubling” argument, we
remove this assumption. Like the KP/PRS-rewinding schedule, our simulator is
oblivious of the verifier. But instead of rewinding based on the number of mes-
sages sent, we instead rewind based on the number of steps taken by the verifier
(and thus this simulator is oblivious not only to the content of the messages sent
by the verifier, but also to the time when these messages are sent!). In more
detail, our simulator divides the total running time T of V∗ into two halves and
executes itself recursively on each half twice. In each half, we execute the pri-
mary and secondary threads in parallel. As we show later, this approach results
in a simulation with quadratic precision.

To improve the precision, we further generalize the KP/PRS rewinding sched-
ule. Instead of dividing T into two halves, we instead consider a simulator that
divides T into g parts, where g is called the splitting factor. By choosing g ap-
propriately, we are able to provide precision p(t) ∈ O(t1+ε) for every constant ε.
Furthermore, we show how to achieve essentially linear precision by adjusting
both k (the round complexity of our protocol) and g appropriately.

4.2 Worst Case Quadratic Simulation

We first describe a procedure that takes as input a parameter t and simu-
lates the view of the verifier for t steps. The simulate procedure described in
Figure 3 employs the KP rewinding method with the changes discussed earlier.
In Stage 1, simulate simply generates uniformly random messages. simulate

attempts to extract σ using rewindings, and uses the special honest-verifier ZK

property of the BH protocol to generate Stage 2 messages. If the extraction of
σ fails, it outputs ⊥. The parameter st is the state of V∗ from which the simula-
tion should start, and the parameter H is simply a global history of all “useful
messages” for extracting σ.2

Let st0 be the initial state of V∗ and d = dt be the maximum recursion depth of
simulate(t, st0, ∅). The actual precise simulator constructed in the next section
uses simulate as a sub-routine, for which we show some properties below. In

2 For a careful treatment of H, see [Ros04].
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Proposition 2, we show that simulate(t, st0, ∅) has a worst case running time of
O(t2), and in Proposition 3 we show that simulate outputs ⊥ with negligible
probability.

The simulate(t, st, H) Procedure.

1. If t = 1,
(a) If the next scheduled message, pu, is a first stage prover message, choose pu

uniformly. Otherwise, if pu is a second stage prover message, compute pu

using the prove procedure (Figure 4). Feed pu to the verifier. If the next
scheduled message is verifier’s message, run the verifier from its current state
st for exactly 1 step. If an output is received then set vu ← V∗(hist, pu).
Further, if vu is a first stage verifier message, store vu in H.

(b) Update st to the current state of V∗. Output (st, H).
2. Otherwise (i.e., t > 1),

(a) Execute the following two processes in parallel :
i. (st1, H1) ← simulate(t/2, st, H). (primary process)
ii. (st2, H2) ← simulate(t/2, st, H). (secondary process)

Merge H1 and H2. Set the resulting table equal to H.
(b) Next, execute the following two processes in parallel, starting from st1,

i. (st3, H3) ← simulate(t/2, st1, H). (primary process)
ii. (st4, H4) ← simulate(t/2, st1, H)3. (secondary process)

(c) Merge H3 and H4. Set the resulting table equal to H.
Output (st3, H) and the view of V∗ on the thread connecting st, st1, and st3.

Fig. 3. The time-based oblivious simulator

Proposition 2 (Running Time of simulate). simulate(t, ·, ·) has worst-
case running time O(t2).

Proof. We partition the running time of simulate into the time spent emulating
V∗, and the time spent simulating the prover (i.e. generating prover messages).
By construction, simulate(t, ·, ·) spends time at most t emulating V∗ on main
thread. Furthermore, the number of parallel executions double per level of re-
cursion. Thus, the time spent in simulating V∗ by simulate(t, ·, ·) is t ·2d, where
the d is the maximum depth of recursion. Since d = dt = 	log2 t
 ≤ 1 + log2 t,
we conclude that simulate spends at most 2t2 steps emulating V∗. To compute
the time spent simulating the prover, recall that the verifier pads each messages
with 0l if the simulate requires l steps of computation to generate the next
message. Therefore, simulate always spends less time simulating the prover
than V∗ giving us a bound of 2 · 2t2 = 4t2 on the total running time. �

3 In the case where t does not divide evenly into two, we use �t/2� + 1 in step (2a),
and �t/2� in step (2b).
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The prove Procedure.

Let s ∈ [m] be the session for which the prove procedure is invoked.
The procedure outputs either p1 or p2, whichever is required by SV∗ .
Let hist denote the set of messages exchanged between SV∗ and V∗ in
the current thread. The prove procedure works as follows.

1. If the verifier has aborted in any of the k first stage messages of
session s (i.e., hist contains Vj=ABORT for j ∈ [k] of session s), abort
session s.

2. Otherwise, search the table H to find values σ0
i,j , σ

1
i,j belonging

to session s, for some i, j ∈ [k]. If no such pairs are found, out-
put ⊥ (indicating failure of the simulation). Otherwise, extract the
challenge σ = σ1σ2 . . . σn as σ0

i,j ⊕ σ1
i,j , and proceed as follows.

(a) If the next scheduled message is p1, then for each h ∈ [n]
act as follows. If σh = 0, act according to Step p̂1 of BH-
protocol. Otherwise (i.e., if σh = 1), commit to the entries
of the adjacency matrix of the complete graph Kn and to a
random permutation π.

(b) Otherwise (i.e., the next scheduled message is p2), check (in
hist) that the verifier has properly decommitted to all relevant
values (and that the hth bit of σ0

j ⊕σ1
j equals σh for all j ∈ [k])

and abort otherwise.
For each h ∈ [n] act as follows. If σh = 0, decommit to all the
commitments (i.e., π and the adjacency matrix). Otherwise
(i.e., if σh = 1), decommit only to the entries (π(i), π(j)) with
(i, j) ∈ C where C is an arbitrary Hamiltonian cycle in Kn.

Fig. 4. The prove Procedure used by simulate for Stage 2 messages

Proposition 3. The probability that simulate outputs ⊥ is negligible in n.

Proof. The high-level structure of our proof follows the proof of PRS. We observe
that simulate outputs ⊥ only when it tries to generate Stage 2 messages. We
show in Lemma 4 that for each session, the probability of outputting ⊥ for the
first time on any thread is negligible. Since simulate only runs for polynomial
time, there are at most polynomial sessions and threads.4 Therefore, we conclude
using the union bound that simulate outputs ⊥ with negligible probability.

Lemma 4. For any session s0 and any thread l0 (called the reference session
and the reference thread), the probability that session s0 and thread l0 is the first
time simulate outputs ⊥ is negligible.

Proof. Recall that for simulate to extract σ, V∗ needs to reply to two different
challenges (Pj) with corresponding (Vj) messages (j ≥ 1) (after V∗ has already

4 We will reexamine this claim in section 5, where simulation time is (a priori)
unbounded.
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committed to σ). Since simulate generates only polynomially many uniformly
random (Pj) messages, the probability of any two challenge being identical is
exponentially small in n. Therefore, it is sufficient to bound the probability
conditioned on simulate never repeating the same challenge.5

We now proceed using a random-tape counting argument similar to PRS.
For a fixed session s0 and thread l0, we call a random tape ρ bad, if running
simulate with that random tape makes it output ⊥ first on session s0 in thread
l0. The random tape is called good otherwise. As in PRS, we show that every bad
random tape can be mapped to a set of super-polynomially many good random
tapes. Furthermore, this set of good random tapes is unique. Such a mapping
implies that the probability of a random tape being bad is negligible. Towards
this goal, we provide a mapping f that takes a bad random tape to a set of good
random tapes.

To construct f , we need some properties of good and bad random tapes. We
call a slot (i.e. a message pair 〈(Pj), (Vj)〉) good if the verifier does not ABORT on
this challenge. Then:

1. When simulate uses a bad random tape, all k slots of session s0 on thread
l0 are good. (Otherwise, simulate can legitimately abort session s0 without
outputting ⊥.)

2. A random tape is good if there is a good slot such that (1) it is on a non-
reference thread l �= l0, (2) it occurs after V∗ has committed to σ with
message (V0) on thread l0, and (3) it occurs before the Stage 2 message
(p1) takes place on thread l0. This good slot guarantees that simulate can
extract σ if needed.

Properties 1 and 2 together give the following insight: Given a bad tape,
“moving” a good slot from the reference thread l0 to a non-reference thread pro-
duces a good random tape. Moreover, the rewind-schedule of simulate enables
us to “swap” slots across threads by swapping segments of simulate’s random
tape. Specifically, whenever simulate splits into primary and secondary pro-
cesses, the two processes share the same start state, and are simulated for the
same number of steps in parallel; swapping their random tapes would swap the
simulation results on the corresponding threads6.

We define a rewinding interval to be a recursive execution of simulate on
the reference thread l0 that contains a slot, i.e. a 〈(Pj), (Vj)〉-pair, but does
not contain the initial message (V0) or the Stage 2 message (p1). A minimal
rewinding interval is defined to be a rewinding interval where none of its children
intervals (i.e. smaller recursive executions of simulate on l0) contain the same
slot (i.e. both (Pj) and (Vj)). Following the intuition mentioned above, swapping
the randomness of a rewinding interval with its corresponding intervals on non-
reference threads will generate a good tape (shown in Claim 3).

We next construct the mapping f to carry out the swapping of rewinding
intervals in a structured way. Intuitively, f finds disjoint subsets of minimal
5 As in footnote 4, we will reexamine this claim in section 5, where simulation time is

unbounded.
6 V∗ is assumed to be deterministic.
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rewinding intervals and performs the swapping operation on them. The f we use
here is exactly the same mapping constructed in PRS (see Figure 5.4 of [Ros04],
or the appendix for a more detailed description). Even though our simulator
differs from that of PRS, the mapping f works on any simulator satisfying the
following two properties: (1) Each rewinding is executed twice. (2) Any two
rewindings are either disjoint or one is completely contained in the other.

We proceed to give four properties of f . Claim 1 bounds the number of random
tapes produced by f based on the number of minimal rewinding intervals, while
Claim 2 shows that f maps different bad tapes to disjoint sets of tapes. Both
these properties of f syntactically follows by using the same proof of PRS for
any simulator that satisfy the two properties mentioned above and we inherit
them directly. In the following claims, ρ denotes a bad random tape.

Claim 1 (f produces many tapes). |f(ρ)| ≥ 2k′−d, where k′ is the number
of minimal rewinding intervals and d is the maximum number of intervals that
can overlap with each other.

Remark: We reuse the symbol d since the maximum number of intervals that
can overlap each other is just the maximum depth of recursion.

Claim 2 (f produces disjoint sets of tapes). If ρ′ �= ρ is another bad tape,
f(ρ) and f(ρ′) are disjoint.

Proof. These two claims were the crux of [PRS02] [Ros04]. See Claim 5.4.12
and Claim 5.4.11 in [Ros04], for more details. We remark that Claim 1 is proved
with an elaborate counting argument. Claim 2, on the other hand, is proved
by constructing an “inverse” of f based on the following observation. On a bad
tape, good slots appear only on the reference thread l0. Therefore, given a tape
produced by f , one can locate the minimal intervals swapped by f by searching
for good slots on non-reference threads, and invert those swappings. �
In Claim 3 we show that, the tapes produced by f are good, while Claim 4
counts the number of minimal rewinding intervals. These two claims depend
on how simulate recursively calls itself and hence we cannot refer to PRS for
the proof of these two claims; nevertheless, they do hold with respect to our
simulator as we prove below.

Claim 3 (f produces good tapes). The set f(ρ)\{ρ} contains only good
tapes (for simulate).

Proof. This claim depends on the order in which simulate executes its recursive
calls, since that in turn determines when σ extracted. The proof of this claim
by PRS (see Claim 5.4.10 in [Ros04]) requires the main thread of the simulator
to be executed after the look-ahead threads. simulate, however, runs the two
executions in parallel. Nevertheless, we provide an alternative proof that handles
such a parallel rewinding.

Consider ρ′ ∈ f(ρ), ρ′ �= ρ. Let I be the first minimal rewinding interval
swapped by f , and let J be the corresponding interval where I is swapped to.
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Since I is the first interval to be swapped, the contents of I and J are exchanged
on ρ′ (while later intervals may be entirely changed due to this swap). Observe
that after swapping, the 〈(Pj), (Vj)〉 message pair that originally occurred in I
will now appear on a non-reference thread inside J . Now, there are two cases
depending on J :

Case 1: J does not contain the first Stage 2 message (p1) before the
swap. After swapping the random tapes, (p1) would occur on the reference
thread after executing both I and J . By property 2, we arrive at a good
tape.

Case 2: J contains the first Stage 2 message (p1) before the swap.
By the definition of a bad random tape, simulate gets stuck for the first
time on the reference thread after I and J are executed; Consequently, after
swapping the random tape, simulate will not get stuck during I. simulate

also cannot get stuck later on thread l0, again due to property 2. In this
case, we also arrive at a good tape. �

Claim 4. There are at least k′ = k−2d minimal rewinding intervals for session
s0 on thread l0 (for simulate).

Proof. This claim depends on the number of recursive calls made by simulate.
For now, simulate(t, ·, ·) splits t into two halves just like in PRS, thus this
result follows using the same proof as in PRS. Later, in Claim 7, we provide a
self-contained proof of this fact in a more general setting. �
Concluding proof of Lemma 4: It follows from Claims 1, 2, 3 and 4 that
every bad tape is mapped to a unique set of at least 2k−3d good random tapes.
Hence, the probability that a random tape is bad is at most

1
2k−3d

Recall that d = 	log2 T 
 ∈ O(log n), since T is a polynomial in n. Therefore, the
probability of a bad tape occurring is negligible if k ∈ ω(log n). �
This concludes the proof of Proposition 3. �

4.3 Precise Quadratic Simulation

Recall that simulate takes as input t, and simulates the verifier for t steps.
Since the actual simulator SV∗ (described in Figure 5) does not know a priori
the running time of the verifier, it calls simulate with increasing values of t̂,
doubling every time simulate returns an incomplete view. On the other hand,
should simulate ever output ⊥, SV∗ will immediately output ⊥ as will and
terminate. Also, SV∗ runs simulate with two random tapes, one of which is
used exclusively whenever simulate is on the main thread. Since, SV∗ uses the
same tape every time it calls simulate, the view of V∗ on the main thread
proceeds identically in all the calls to simulate.
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SV∗(ρ1, ρ2), where ρ1 and ρ2 are random tapes.

1. Set t̂ = 1, st = initial state of V∗, H = ∅.
2. While simulate did not generate a full view of V∗:

(a) t̂ ← 2t̂
(b) run simulate(t̂, st, ∅, (ρ1, ρ2)), where random tape ρ1 is exclusively used to

simulate the verifier on the main thread, and random tape ρ2 is used for all
other threads.

(c) output ⊥ if simulate outputs ⊥
3. Output the full view V∗ (i.e., random coins and messages exchanged) generated

on the final run of simulate(t̂, st, ∅)

Fig. 5. The Quadratically Precise Simulator

Lemma 5 (Concurrent Zero Knowledge). The ensembles {viewSV∗

(x, z)}x∈L,z∈{0,1}∗ and {viewV∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistin-
guishable over L.

Proof. We consider the following “intermediate” simulator S′ that on input x
(and auxiliary input z), proceeds just like S (which in turn behaves like an honest
prover) in order to generate messages in Stage 1 of the view. Upon entering Stage
2, S′ outputs ⊥ if S does; otherwise, S′ proceeds as an honest prover in order to
generate messages in Stage 2 of the view. Indistinguishability of the simulation
by S then follows from the following two claims:

Claim 5. The ensembles {viewS′
V∗ (x, z)}x∈L,z∈{0,1}∗ and {viewV∗

(x, z)}x∈L,z∈{0,1}∗ are statistically close over L.

Proof. We consider another intermediate simulator S′′ that proceeds identically
like S′ except that whenever S′ outputs ⊥ in a Stage 2 message, S′ instead
continues simulating like an honest prover. Essentially, S′′ never fails. Since S′′
calls simulate for several values of t, this can skew the distribution. However,
recall that the random tape fed by S′′ into simulate to simulate the view on the
main thread is identical for every call. Therefore, the view on the main thread of
simulate proceeds identically in every call to simulate. Thus, it follows from
the fact that the Stage 1 messages are generated uniform at random and that
S′′ proceeds as the honest prover in Stage 2, the view output by S′′ and the
view of V∗ are identically distributed.

It remains to show that view output by S′ and S′′ are statistically close over L.
The only difference between S′ and S′′ is that S′ outputs ⊥ sometimes. It suffices
to show that S′ outputs ⊥ with negligible probability. From Proposition 3, we
know that simulate outputs ⊥ only with negligible probability. Since simulate

is called at most logarithmically many times due to the doubling of t, using the
union bound we conclude that S′ outputs ⊥ with negligible probability. �
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Claim 6. The ensembles {viewSV∗ (x, z)}x∈L,z∈{0,1}∗ and {viewS′
V∗

(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over L.

Proof. The only difference between S and S′ is in the manner in which the Stage
2 messages are generated. Indistinguishability follows from the special honest-
verifier ZK property using a standard hybrid argument, as given below.

Assume for contradiction that there exists a verifier V ∗, a distinguisher D
and a polynomial p(·) such that D distinguishes the ensembles {viewSV∗ (x, z)}
and {viewS′

V∗ (x, z)} with probability 1
p(n) . Furthermore, let the running time

of V ∗ be bounded by some polynomial q(n). We consider a sequence of hybrid
simulators, Si for i = 0 to q(n). Si proceeds exactly like S, with the exception
that in the first i proofs that reach the second stage, it proceeds using the honest
prover strategy in the second stage for those proofs. By construction S0 = S and
Sq(n) = S′ (since there are at most q(n) sessions, bounded by the running time
of the simulators). By assumption the output of S0 and Sq(n) are distinguishable
with probability 1

p(n) , so there must exist some j such that the output of Sj

and Sj+1 are distinguishable with probability 1
p(n)q(n) . Furthermore, since Sj

proceeds exactly as Sj+1 in the first j sessions that reach the second stage, and
by construction they proceed identically in the first stage in all sessions, there
exists a partial view v of Sj and Sj+1—which defines an instance for the protocol
in the second stage of the j + 1 session—such that the output of Sj and Sj+1

are distinguishable, conditioned on the event that Sj and Sj+1 feed V ∗ the view
v. Since the only difference between the view of V ∗ in Sj and Sj+1 is that the
former is a simulated view, while the later is a view generated using an honest
prover strategy, this contradicts the special honest-verifier ZK property of the
BH-protocol in the second stage of the protocol. �

Lemma 6 (Quadratic Precision). Let viewSV∗ be the output of the simulator
SV∗ , and t be the running time of V∗ on the view viewSV∗ . Then, SV∗ runs in
time O(t2).

Proof. Recall that, SV∗ runs simulate with increasing values of t̂, doubling each
time, until a view is output. We again use the fact that the view on the main
thread of simulate proceeds identically (in this case, proceeds as viewSV∗ )
since the random tape used to simulate the main thread is identical in every call
to simulate. Therefore, the final value of t̂ when v is output satisfies,

t ≤ t̂ < 2t

The running time of SV∗ is simply the sum of the running times of
simulate(t, st, ∅) with t = 1, 2, 4, . . . , t̂. By Lemma 2, this running time is
bounded by

c12 + c22 + c42 + · · · + ct̂2 ≤ 2ct̂2 ≤ 8ct2

For some constant c. �



412 O. Pandey et al.

4.4 Improved Precision

We now consider a generalized version of simulate. Let g ≥ 2 be an integer;
simulateg(t, ·, ·) will now divide t in g smaller intervals. If t does not divide
into g evenly, that is if t = qg + r with r > 0, let the first r sub-intervals have
length t/g� + 1, and the rest of the g − r sub-intervals have length t/g�. We
call g the splitting factor, and assume k/g ∈ ω(log n) as stated in Theorem 1.
Due to the lack of space most of the details of this section are given in the full
version [PPS+07]. We only state our main claims here.

In the full version, we demonstrate that the running time of our new simulator
is given by the following lemma.

Lemma 7 (Improved Precision). Let viewSV∗ be the output of the simulator
SV∗ using simulateg, and t be the running time of V∗ on the view viewSV∗ .
Then, SV∗ runs in time O(t · 2logg t) = O(t1+logg 2).

Thereafter, we show there the indistinguishability of the simulator’s output.

Lemma 8 (Concurrent Zero Knowledge). {viewSV∗ (x, z)}x∈L,z∈{0,1}∗ and
{viewV∗(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over L.

Finally, in order to deduce our main lemma, we demonstrate the following im-
portant claim regarding the number of minimum intervals with respect to our
new simulator. This claim is analogous to claim 4. It, however, depends on the
splitting factor g and is modified as follows:

Claim 7 (Number of Minimal Rewinding Intervals). There are at least
k′ = k

g−1 − 2d minimal rewinding intervals for session s0 on thread l0 (for
simulateg), where d is the recursion depth.

The main use of this lemma is in deducing that our new simulator outputs ⊥
with only negligible probability.

4.5 Proof of Main Lemma and Consequences

Lemma 9 (Main Lemma). Assuming the existence of one-way functions, then
for every k, g ∈ N such that k/g ∈ ω(log n), there exists an O(k)-round concur-
rent zero knowledge argument with precision p(t) ∈ O(t ·2logg t) for all languages
in NP.

Proof. Using Lemmata 7 and 8, we conclude that the simulator SV∗ (using
simulateg) outputs a verifier view of the right distribution with precision O(t ·
2logg t). �
By setting g = 21/ε and k ∈ ω(log n) in our main lemma, we get our first
theorem.

Theorem 4. Assuming the existence of one-way functions, for every ε > 0,
there exists a ω(log n)-round concurrent zero knowledge argument for all lan-
guages in NP with precision p(t) = O(t1+ε).
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Finally, by setting g = nε/2 and k = nε in our main lemma, we get our next
theorem.

Theorem 5. Assuming the existence of one-way functions, for every ε > 0,
there exists an O(nε)-round concurrent zero knowledge argument for all lan-
guages in NP with precision p(t) = O(t2

2
ε logn t). As a corollary, we obtain the

following: For every ε > 0, there exists an O(nε)-round protocol 〈P, V 〉 such that
for every c > 0, 〈P, V 〉 is a concurrent zero knowledge argument with precision
p(n, t) = O(t) with respect to verifiers with running time bounded by nc for all
languages in NP.

5 Statistically Precise Concurrent Zero-Knowledge

In this section, we construct a statistically precise concurrent ZK argument for
all of NP . Recall that statistically precise ZK requires the simulation of all
malicious verifiers (even those having a priori unbounded running time) and
the distribution of the simulated view must be statistically close to that of the
real view. A first approach is to use the previous protocol and simulator with
the splitting factor fixed appropriately. However this approach does not work
directly; briefly the reason being that we will need k to superpolynomial in n.
We thus present a slightly modified simulator, which appears shortly.

Theorem 6. Assume the existence of claw-free permutations, then there exists
a poly(n)-round statistically precise concurrent zero-knowledge argument for all
of NP with precision p(n, t) = O(t1+

1
log n ).

Description of protocol: We essentially use the same protocol described in Sec-
tion 3 setting the number of rounds k = 5n2 log n (n is the security parameter),
with the following exception: In Stage 2 of the protocol, the prover uses perfectly
hiding commitments in the BH-protocol instead of computational hiding. This
makes the BH-protocol perfect-special-HVZK.

Description of simulator S: The simulator S executes SV∗ with g = n and
outputs whatever SV∗ outputs, with the following exception: while executing
simulaten (inside SV∗), if the verifier in the main thread runs for more than
2n log2 n steps, it terminates the execution of simulaten and retrieves the
partial history hist simulated in the main thread so far. Then, it continues
to simulate the verifier from hist in a “straight-line” fashion—it generates
uniformly random messages for the Stage 1 of the protocol, and when it reaches
Stage 2 of the protocol for some session, it runs the brute-force-prove proce-
dure, given in the full version. An analysis of this simulator appears in [PPS+07].

Acknowledgements. We would like to thank Alon Rosen for several helpful
discussions.
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Abstract. Non-interactive zero-knowledge proofs and non-interactive witness-
indistinguishable proofs have played a significant role in the theory of cryp-
tography. However, lack of efficiency has prevented them from being used in
practice. One of the roots of this inefficiency is that non-interactive zero-
knowledge proofs have been constructed for general NP-complete languages such
as Circuit Satisfiability, causing an expensive blowup in the size of the statement
when reducing it to a circuit. The contribution of this paper is a general method-
ology for constructing very simple and efficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishable proofs that work directly for
groups with a bilinear map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous success in the field of
cryptography in recent years and have been used to construct a plethora of pro-
tocols. This paper provides non-interactive witness-indistinguishable proofs and
non-interactive zero-knowledge proofs that can be used in connection with these
protocols. Our goal is to spread the use of non-interactive cryptographic proofs
from mainly theoretical purposes to the large class of practical cryptographic pro-
tocols based on bilinear groups.
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1 Introduction

Non-interactive zero-knowledge proofs and non-interactive witness-indistinguishable
proofs have played a significant role in the theory of cryptography. However, lack of
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Blum, Feldman and Micali [4] introduced NIZK proofs. Their paper and sub-
sequent work, e.g. [19,16,29,17], demonstrates that NIZK proofs exist for all of NP.
Unfortunately, these NIZK proofs are all very inefficient. While leading to interest-
ing theoretical results, such as the construction of public-key encryption secure against
chosen-ciphertext attack by Dolev, Dwork and Naor [18], they have therefore not had
any impact in practice.

Since we want to construct NIZK proofs that can be used in practice, it is worth-
while to identify the roots of the inefficiency in the above mentioned NIZK proofs. One
drawback is that they were designed with a general NP-complete language in mind, e.g.
Circuit Satisfiability. In practice, we want to prove statements such as “the ciphertext
c encrypts a signature on the message m” or “the three commitments ca, cb, cc contain
messages a, b, c so c = ab”. An NP-reduction of even very simple statements like these
gives us big circuits containing thousands of gates and the corresponding NIZK proofs
become very large.

While we want to avoid an expensive NP-reduction, it is still desirable to have
a general way to express statements that arise in practice instead of having to con-
struct non-interactive proofs on an ad hoc basis. A useful observation in this context
is that many public-key cryptography protocols are based on finite abelian groups. If
we can capture statements that express relations between group elements, then we can
express statements that come up in practice such as “the commitments ca, cb, cc con-
tain messages so c = ab” or “the plaintext of c is a signature on m”, as long as those
commitment, encryption, and signature schemes work over the same finite group. In
the paper, we will therefore construct NIWI and NIZK proofs for group-dependent
languages.

The next issue to address is where to find suitable group-dependent languages. We
will look at statements related to groups with a bilinear map, which have become widely
used in the design of cryptographic protocols. Not only have bilinear groups been used
to give new constructions of such cryptographic staples as public-key encryption, dig-
ital signatures, and key agreement (see [31] and the references therein), but bilinear
groups have enabled the first constructions achieving goals that had never been attained
before. The most notable of these is the Identity-Based Encryption scheme of Boneh
and Franklin [10] (see also [6,7,35]), and there are many others, such as Attribute-
Based Encryption [32,22], Searchable Public-Key Encryption [9,12,13], and One-time
Double-Homomorphic Encryption [11]. For an incomplete list of papers (currently over
200) on the application of bilinear groups in cryptography, see [2].

1.1 Our Contribution

For completeness, let us recap the definition of a bilinear group. Please note that
for notational convenience we will follow the tradition of mathematics and use
additive notation1 for the binary operations in G1 and G2. We have a probabilistic

1 We remark that in the cryptographic literature it is more common to use multiplicative nota-
tion for these groups, since the “discrete log problem” is believed to be hard in these groups,
which is also important to us. In our setting, however, it will be much more convenient to use
multiplicative notation to refer to the action of the bilinear map.
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polynomial time algorithm G that takes a security parameter as input and outputs
(n, G1, G2, GT , e, P1, P2) where

– G1, G2, GT are descriptions of cyclic groups of order n.
– The elements P1, P2 generate G1 and G2 respectively.
– e : G1 × G2 is a non-degenerate bilinear map so e(P1, P2) generates GT and for

all a, b ∈ Zn we have e(aP1, bP2) = e(P1, P2)ab.
– We can efficiently compute group operations, compute the bilinear map and decide

membership.

In this work, we develop a general set of highly efficient techniques for proving state-
ments involving bilinear groups. The generality of our work extends in two directions.
First, we formulate our constructions in terms of modules over commutative rings with
an associated bilinear map. This framework captures all known bilinear groups with
cryptographic significance – for both supersingular and ordinary elliptic curves, for
groups of both prime and composite order. Second, we consider all mathematical op-
erations that can take place in the context of a bilinear group - addition in G1 and G2,
scalar point-multiplication, addition or multiplication of scalars, and use of the bilin-
ear map. We also allow both group elements and exponents to be “unknowns” in the
statements to be proven.

With our level of generality, it would for example be easy to write down a short
statement, using the operations above, that encodes “c is an encryption of the value
committed to in d under the product of the two keys committed to in a and b” where the
encryptions and commitments being referred to are existing cryptographic constructions
based on bilinear groups. Logical operations like AND and OR are also easy to encode
into our framework using standard techniques in arithmetization.

The proof systems we build are non-interactive. This allows them to be used in
contexts where interaction is undesirable or impossible. We first build highly efficient
witness-indistinguishable proof systems, which are of independent interest. We then
show how to transform these into zero-knowledge proof systems. We also provide a de-
tailed examination of the efficiency of our constructions in various settings (depending
on what type of bilinear group is used).

The security of constructions arising from our framework can be based on any of a
variety of computational assumptions about bilinear groups (3 of which we discuss in
detail here). Thus, our techniques do not rely on any one assumption in particular.

Informal Statement of Our Results. We consider equations over variables
from G1, G2 and Zn as described in Figure 1. We construct efficient witness-
indistinguishable proofs for the simultaneous satisfiability of a set of such equations.
The witness-indistinguishable proofs have perfect completeness and there are two com-
putationally indistinguishable types of common reference strings giving respectively
perfect soundness and perfect witness indistinguishability. Due to lack of space we
have to refer to the full paper [28] for precise definitions.

We also consider the question of non-interactive zero-knowledge. We show that we
can give zero-knowledge proofs for multi-scalar multiplication in G1 or G2 and for
quadratic equations in Zn. We can also give zero-knowledge proofs for pairing product
equations with tT = 1. When tT �= 1 we can still give zero-knowledge proofs if we can
find P1, Q1, . . . , Pn, Qn such that tT =

∏n
i=1 e(Pi, Qi).
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Variables: X1, . . . , Xm ∈ G1 , Y1, . . . , Yn ∈ G2 , x1, . . . , xm′ , y1, . . . , yn′ ∈ Zn. a

Pairing product equation:

n∏
i=1

e(Ai, Yi) ·
m∏

i=1

e(Xi, Bi) ·
m∏

i=1

n∏
j=1

e(Xi, Yj)
γij = tT ,

for constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT , γij ∈ Zn.
Multi-scalar multiplication equation in G1:

n′∑
i=1

yiAi +

m∑
i=1

biXi +

m∑
i=1

n′∑
j=1

γijyjXi = T1,

for constants Ai, T1 ∈ G1 and bi, γij ∈ Zn. b

Multi-scalar multiplication equation in G2:

n∑
i=1

aiYi +
m′∑
i=1

xiBi +
m′∑
i=1

n∑
j=1

γijxiYj = T2,

for constants Bi, T2 ∈ G2 and ai, γij ∈ Zn.
Quadratic equation in Zn:

n′∑
i=1

aiyi +
m′∑
i=1

xibi +
m′∑
i=1

n′∑
j=1

γijxiyj = t,

for constants ai, γij , t ∈ Zn.

a We list variables in Zn in two separate groups because we will treat them differently in
the NIWI proofs. If we wish to deal with only one group of variables in Zn we can add
equations in Zn of the form x1 = y1, x2 = y2, etc.

b With multiplicative notation, these equations would be multi-exponentiation equations. We
use additive notation for G1 and G2, since this will be notationally convenient in the paper,
but stress that the discrete logarithm problem will typically be hard in these groups.

Fig. 1. Equations over groups with bilinear map

Instantiations. In the full paper we give three possible instantiations of the bilinear
groups; there are many more. The first instantiation is based on the composite order
groups introduced by Boneh, Goh and Nissim [11]. We work over a composite order
bilinear group (n, G, GT , e, P) where n = pq. The security of this instantiation is
based on the subgroup decision assumption that says it is hard to distinguish random
elements of order n from random elements of order q.

The second instantiation is based on prime order groups (p, G1, G2, GT , e, P1, P2).
Security depends on the symmetric external Diffie-Hellman (SXDH) assumption
[33,8,1,20,34] that says the DDH problem is hard in both G1 and G2.

The third instantiation is based on prime order groups (p, G, GT , e, P) where
the decisional linear (DLIN) problem is hard. The DLIN problem introduced by
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Boneh, Boyen and Shacham [8] states that given (αP , βP , rαP , sβP , tP) for random
α, β, r, s ∈ Zp it is hard to tell whether t = r + s or t is random.

The instantiations illustrate the variety of ways bilinear groups can be constructed.
We can choose prime order or composite order groups, we can use G1 = G2 and
G1 �= G2, and we can make various cryptographic assumptions. All three security as-
sumptions have been used in the cryptographic literature to build interesting protocols.

For all three instantiations, the techniques presented here give us short NIWI proofs.
In particular, the cost in proof size of each extra equation is constant and independent
of the number of variables in the equation. The size of the proofs, can be computed by
adding the cost, measured in group elements from G1 or G2, of each variable and each
equation listed in Figure 2. We refer to the full paper [28] for more detailed tables.

Subgroup decision SXDH DLIN
Variable in G1 or G2 1 2 3
Variable in Zn or Zp 1 2 3
Paring product equation 1 8 9
Multi-scalar multiplication in G1 or G2 1 6 9
Quadratic equation in Zn or Zp 1 4 6

Fig. 2. Number of group elements each variable or equation adds to the size of a NIWI proof

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonstrated that all NP-
languages have non-interactive proofs, however, did not yield efficient proofs. One
cause for these proofs being inefficient in practice was the need for an expensive NP-
reduction to e.g. Circuit Satisfiability. Another cause of inefficiency was the reliance on
the so-called hidden bits model, which even for small circuits is inefficient.

Groth, Ostrovsky, and Sahai [27,26] investigated NIZK proofs for Circuit Satisfia-
bility using bilinear groups. This addressed the second cause of inefficiency since their
techniques give efficient proofs for Circuit Satisfiability, but to use their proofs one
must still make an NP-reduction to Circuit Satisfiability thus limiting the applications.
We stress that while [27,26] used bilinear groups, their application was to build proof
systems for Circuit Satisfiability. Here, we devise entirely new techniques to deal with
general statements about equations in bilinear groups, without having to reduce to an
NP-complete language.

Addressing the issue of avoiding an expensive NP-reduction we have works by
Boyen and Waters [13,14] that suggest efficient NIWI proofs for statements related
to group signatures. These proofs are based on bilinear groups of composite order and
rely on the subgroup decision assumption.

Groth [23] was the first to suggest a general group-dependent language and NIZK
proofs for statements in this language. He investigated satisfiability of pairing product
equations and only allowed group elements to be variables. He also looked only at the
special case of prime order groups G, GT with a bilinear map e : G × G → GT

and, based on the decisional linear assumption [8], constructed NIZK proofs for such
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pairing product equations. However, even for very small statements, the very different
and much more complicated techniques of Groth yield proofs consisting of thousands
of group elements (whereas ours would be in the tens). Our techniques are much easier
to understand, significantly more general, and vastly more efficient.

We summarize our comparison with other works on NIZK proofs in Figure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [29] [27,26]
Group-dependent language [23] (restricted case) This work

Fig. 3. Classification of NIZK proofs according to usefulness

We note that there have been many earlier works (starting with [21]) dealing with
efficient interactive zero-knowledge protocols for a number of algebraic relations.
Here, we focus on non-interactive proofs. We also note that even for interactive zero-
knowledge proofs, no set of techniques was known for dealing with general algebraic
assertions arising in bilinear groups, as we do here.

1.3 New Techniques

[27,26,23] start by constructing non-interactive proofs for simple statements and then
combine many of them to get more powerful proofs. The main building block in [27],
for instance, is a proof that a given commitment contains either 0 or 1, which has little
expressive power on its own. Our approach is the opposite: we directly construct proofs
for very expressive languages; as such, our techniques are very different from previous
work.

The way we achieve our generality is by viewing the groups G1, G2, GT as modules
over the ring Zn. The ring Zn itself can also be viewed as a Zn-module. We there-
fore look at the more general question of satisfiability of quadratic equations over Zn-
modules A1, A2, AT with a bilinear map, see Section 2 for details. Since many bilinear
groups with various cryptographic assumptions and various mathematical properties
can be viewed as modules we are not bound to any particular bilinear group or any par-
ticular assumption. We remark that while bilinear groups can be interpreted as modules
with a bilinear map, it is possible that there exist other interesting modules with a bilin-
ear map that are not based on bilinear groups. We leave the existence of such modules
as an interesting open problem.

Given modules A1, A2, AT with a bilinear map, we construct new modules
B1, B2, BT , also equipped with a bilinear map, and we map the elements in A1, A2, AT

into B1, B2, BT . More precisely, we devise commitment schemes that map variables
from A1, A2 to the modules B1, B2. The commitment schemes are homomorphic with
respect to the module operations but also with respect to the bilinear map.

Our techniques for constructing witness-indistinguishable proofs are fairly involved
mathematically, but we will try to present some high level intuition here. (We give more
detailed intuition later in Section 5, where we present our main proof system). The main
idea is the following: because our commitment schemes are homomorphic and we equip
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them with a bilinear map, we can take the equation that we are trying to prove, and just
replace the variables in the equation with commitments to those variables. Of course,
because the commitment schemes are hiding, the equations will no longer be valid.
Intuitively, however, we can extract out the additional terms introduced by the random-
ness of the commitments: if we give away these terms in the proof, then this would be a
convincing proof of the equation’s validity (again, because of the homomorphic proper-
ties). But, giving away these terms might destroy witness indistinguishability. Suppose,
however, that there is only one “additional term” introduced by substituting the com-
mitments. Then, because it would be the unique value which makes the equation true,
giving it away would preserve witness indistinguishability! In general, we are not so
lucky. But if there are many terms, that means that these terms are not unique, and be-
cause of the nice algebraic environment that we work in, we can randomize these terms
so that the equation is still true, but so that we effectively reduce to the case of there
being a single term being given away with a unique value.

1.4 Applications

Independently of our work, Boyen and Waters [14] have constructed non-interactive
proofs that they use for group signatures (see also their earlier paper [13]). These proofs
can be seen as examples of the NIWI proofs in instantiation 1. Subsequent to the an-
nouncement of our work, several papers have built upon it: Chandran, Groth and Sahai
[15] have constructed ring-signatures of sub-linear size using the NIWI proofs in the
first instantiation, which is based on the subgroup decision problem. Groth and Lu
[25] have used the NIWI and NIZK proofs from instantiation 3 to construct a NIZK
proof for the correctness of a shuffle. Groth [24] has used the NIWI and NIZK proofs
from instantiation 3 to construct a fully anonymous group signature scheme. Belenkiy,
Chase, Kohlweiss and Lysyanskaya [3] have used instantiations 2 and 3 to construct
non-interactive anonymous credentials. Also, by attaching NIZK proofs to semantically
secure public-key encryption in any instantiation we get an efficient non-interactive
verifiable cryptosystem. Boneh [5] has suggested using this for optimistic fair ex-
change [30], where two parties use a trusted but lazy third party to guarantee fairness.

2 Modules with Bilinear Maps

Let (R, +, ·, 0, 1) be a finite commutative ring. Recall that an R-module A is an abelian
group (A, +, 0) where the ring acts on the group such that ∀r, s ∈ R ∀x, y ∈ A :

(r + s)x = rx + sx ∧ r(x + y) = rx + ry ∧ r(sx) = (rs)x ∧ 1x = x.

A cyclic group G of order n can in a natural way be viewed as a Zn-module. We will
observe that all the equations in Figure 1 can be viewed as equations over Zn-modules
with a bilinear map. To generalize completely, let R be a finite commutative ring and let
A1, A2, AT be finite R-modules with a bilinear map f : A1 × A2 → AT . We consider
quadratic equations over variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2 of the form

n∑
j=1

f(aj, yj) +
m∑

i=1

f(xi, bi) +
m∑

i=1

n∑
j=1

γijf(xi, yj) = t.
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In order to simplify notation, let us for x1, . . . , xn ∈ A1, y1, . . . , yn ∈ A2 define

x · y =
n∑

i=1

f(xi, yi).

The equations can now be written as

a · y + x · b + x · Γy = t.

We note for future use that due to the bilinear properties of f , we have for any matrix
Γ ∈ Matm×n(R) and for any x1, . . . , xm, y1, . . . , yn that x · Γy = Γ�x · y.

Let us now return to the equations in Figure 1 and see how they can be recast as
quadratic equations over Zn-modules with a bilinear map.

Pairing product equations: Define R = Zn, A1 = G1, A2 = G2, AT =
GT , f(x, y) = e(x, y) and we can rewrite2 the pairing product equation as
(A · Y)(X · B)(X · ΓY) = tT .

Multi-scalar multiplication in G1: Define R = Zn, A1 = G1, A2 = Zn, AT =
G1, f(X , y) = yX and we can rewrite the multi-scalar multiplication equation
as A · y + X · b + X · Γy = T1.

Multi-scalar multiplication in G2: Define R = Zn, A1 = Zn, A2 = G2, AT =
G2, f(x, Y) = xY and we can rewrite the multi-scalar multiplication equation
as a · Y + x · B + x · ΓY = T2.

Quadratic equation in Zn: Define R = Zn, A1 = Zn, A2 = Zn, AT =
Zn, f(x, y) = xy mod n and we can rewrite the quadratic equation in Zn as
a · y + x · b + x · Γy = t.

From now on, we will therefore focus on the more general problem of constructing non-
interactive composable witness-indistinguishable proofs for satisfiability of quadratic
equations over R-modules A1, A2, AT (using additive notation for all modules) with a
bilinear map f .

3 Commitment from Modules

In our NIWI proofs we will commit to the variables x1, . . . , xm ∈ A1, y1, . . . , yn ∈ A2.
We do this by mapping them into other R-modules B1, B2 and making the commit-
ments in those modules.

Let us for now just consider how to commit to elements from one R-module A. The
public key for the commitment scheme will describe another R-module B and R-linear
maps ι : A → B and p : B → A. It will also contain elements u1, . . . , un ∈ B. To
commit to x ∈ A we pick r1, . . . , rn ← R at random and compute the commitment

c := ι(x) +
n∑

i=1

riui.

Our commitment scheme will have two types of commitment keys.

2 We use multiplicative notation here, because, usually GT is written multiplicatively in the
literature. When we work with the abstract modules, however, we will use additive notation.
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Hiding key: A hiding key contains (B, ι, p, u1, . . . , un) such that ι(G) ⊆
〈u1, . . . , un〉. The commitment c := ι(x) +

∑n
i=1 riui is perfectly hiding when

r1, . . . , rn are chosen at random from R.
Binding key: A binding key contains (B, ι, p, u1, . . . , un) such that ∀i : p(ui) = 0

and ι ◦ p is the identity.3 The commitment c := ι(x) +
∑n

i=1 riui is perfectly
binding, since it determines x as p(c) = p(ι(x)) = x.4

Computational indistinguishability: The main assumption that we will be making
throughout this paper is that the distribution of hiding keys and the distribution of
binding keys are computationally indistinguishable. Witness-indistinguishability of
our NIWI proofs and later the zero-knowledge property of our NIZK proofs will
rely on this property.

Often we will commit to many elements at a time so let us define some convenient
notation. Given elements x1, . . . , xm we write c := ι(x)+ Ru with R ∈ Matm×n(R)
for making commitments c1, . . . , cm computed as ci := ι(xi) +

∑n
j=1 rijuj .

The treatment of commitments using the language of modules generalizes sev-
eral previous works dealing with commitments over bilinear groups, including
[11,27,26,23,36]. We refer to the full paper [28] for a demonstration of how the com-
mitment scheme can be instantiated with respectively the subgroup decision, the SXDH
and the DLIN assumptions.

4 Setup

In our NIWI proofs the common reference string will contain commitment keys to
commit to elements in respectively A1 and A2. These commitment keys specify
B1, ι1, p1, u1, . . . , um̂ so ι1 ◦ p1 is the identity map and B2, ι2, p2, v1, . . . , vn̂ so ι2 ◦ p2

is the identity map. In addition, the common reference string will also specify a third
R-module BT together with R-linear maps ιT : AT → BT and pT : BT → AT so
ιT ◦ pT is the identity map. There will be a bilinear map F : B1 × B2 → BT as well.
We require that the maps are commutative. We refer to Figure 4 for an overview of the
modules and the maps.

For notational convenience, let us define for x ∈ Bn
1 , y ∈ Bn

2 that

x • y =
n∑

i=1

F (xi, yi).

The final part of the common reference string is a set of matrices H1, . . . , Hη ∈
Matm̂×n̂(R) that all satisfy u • Hiv = 0.5

3 In the full paper [28], we also consider the case where ι ◦ p is not the identity. In particular, in
the instantiation based on the subgroup decision problem, ι ◦ p is the projection on the order p
subgroup of G.

4 The map p is not efficiently computable. However, one can imagine scenarios where a secret
key will make p efficiently computable making the commitment scheme a cryptosystem with
p being the decryption operation.

5 The number of matrices H1, . . . , Hη depends on the concrete setting. In many cases, we need
no matrices at all and we have η = 0, but there are also cases where they are needed.
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A1 × A2 → AT

f
ι1 ↓↑ p1 ι2 ↓↑ p2 ιT ↓↑ pT

B1 × B2 → BT

F

∀x ∈ A1 ∀y ∈ A2 : F (ι1(x), ι2(y)) = ιT (f(x, y))

∀x ∈ B1 ∀y ∈ B2 : f(p1(x), p2(x)) = pT (F (x, y))

Fig. 4. Modules and maps between them

There will be two different types of settings of interest to us.

Soundness setting: In the soundness setting, we require that the commitment keys are
binding so we have p1(u) = 0 and p2(v) = 0.

Witness-indistinguishability setting: In the witness-indistinguishability setting we
have hiding commitment keys, so ι1(G1) ⊆ 〈u1, . . . , um̂〉 and ι2(G2) ⊆
〈v1, . . . , vn̂〉. We also require that H1, . . . , Hη generate the R-module of all ma-
trices H so u • Hv = 0. As we will see in the next section, these matrices play a
role as randomizers in the witness-indistinguishability proof.

Computational indistinguishability: The (only) computational assumption this paper
is based on is that the two settings can be set up in a computationally indistinguish-
able way. The instantiations show that there are many ways to get such computa-
tionally indistinguishable soundness and witness-indistinguishability setups.

All three instantiations based on the subgroup decision, the SXDH and the DLIN
assumptions enable us to make this kind of setup, see the full paper [28] for details.

5 Proving That Committed Values Satisfy a Quadratic Equation

Recall that in our setting, a quadratic equation looks like the following:

a · y + x · b + x · Γy = t, (1)

with constants a ∈ An
1 , b ∈ Am

2 , Γ ∈ Matm×n(R), t ∈ AT . We will first consider the
case of a single quadratic equation of the above form. The first step in our NIWI proof
will be to commit to all the variables x, y. The commitments are of the form

c = ι1(x) + Ru , d = ι2(y) + Sv, (2)

with R ∈ Matm×m̂(R), S ∈ Matn×n̂(R). The prover’s task is to convince the verifier
that the commitments contain x ∈ Am

1 , y ∈ An
2 that satisfy the quadratic equation.

(Note that for all equations we will use these same commitments.)

Intuition. Before giving the proof let us give some intuition. In the previous sections,
we have carefully set up our commitments so that the commitments themselves also
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“behave” like the values being committed to: they also belong to modules (the B mod-
ules) equipped with a bilinear map (the map F , also implicitly used in the • operation).
Given that we have done this, a natural idea is to take the quadratic equation (1), and
“plug in” the commitments (2) in place of the variables; let us evaluate:

ι1(a) • d + c • ι2(b) + c • Γd.

After some computations, where we expand the commitments (2), make use of the
bilinearity of •, and rearrange terms (the details can be found in the proof of Theorem
1 in the full paper [28]) we get

(
ι1(a) • ι2(y) + ι1(x) • ι2(b) + ι1(x) • Γι2(y)

)

+ι1(a) • Sv + Ru • ι2(b) + ι1(x) • ΓSv + Ru • Γι2(y) + Ru • ΓSv.

By the commutative properties of the maps, the first group of three terms is equal to
ιT (t), if Equation 1 holds. Looking at the remaining terms, note that the verifier knows
u and v. Using the fact that bilinearity implies that for any x, y we have x • Γy =
Γ�x• y, we can sort the remaining terms so that they match either u or v to get (again
see the proof of Theorem 1 in the full paper for details)

ιT (t)+u•
(
R�ι2(b)+R�Γι2(y)+R�ΓSv

)
+

(
S�ι1(a)+S�Γ�ι1(x)

)
•v. (3)

Now, for sake of intuition, let us make some simplifying assumptions: Let’s assume
that we’re working in a symmetric case where A1 = A2, and B1 = B2, and therefore
u = v and, so, the above equation can be simplified further to get:

ιT (t) + u •
(
R�ι2(b) + R�Γι2(y) + R�ΓSu + S�ι1(a) + S�Γ�ι1(x)

)
.

Now, suppose the prover gives to the verifier as his proof π =
(
R�ι2(b) +

R�Γι2(y) + S�ι1(a) + S�Γ�ι1(x)
)

. The verifier would then check that the fol-

lowing verification equation holds:

ι1(a) • d + c • ι2(b) + c • Γd = ιT (t) + u • π.

It is easy to see that this proof would be convincing in the soundness setting, because
we have that p1(u) = 0. Then the verifier would know (but not be able to compute)
that by applying the maps p1, p2, pT we get

a • p2(d) + p1(c) • b + p1(c) • Γp2(d) = t + p1(u) • p2(π) = t.

This gives us soundness, since x := p1(c) and y := p2(d) satisfy the equations.
The remaining problem is to get witness-indistinguishability. Recall that in the

witness-indistinguishability setting, the commitments are perfectly hiding. Therefore,
in the verification equation, nothing except for π has any information about x and y
except for the information that can be inferred from the quadratic equation itself. So,
let’s consider two cases:
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1. Suppose that π is the unique value so that the verification equation is valid. In
this case, we trivially have witness indistinguishability, since this means that all
witnesses would lead to the same value for π.

2. The simple case above might seem too good to be true, but let’s see what it means if
it isn’t true. If two values π and π′ both satisfy the verification equation, then just
subtracting the equations shows that u • (π − π′) = 0. On the other hand, recall
that in the witness indistinguishability setting, the u vectors generate the entire
space where π or π′ live, and furthermore we know that the matrices H1, . . . , Hη

generate all H such that u•Hu = 0. Therefore, let’s choose r1, . . . , rη at random,
and consider the distribution π′′ = π +

∑η
i=1 riHiu. We thus obtain the same

distribution on π′′ regardless of what π we started from, and such that π′′ always
satisfies the verification equation.

Thus, for the symmetric case we obtain a witness indistinguishable proof system. For
the general non-symmetric case, instead of having just π for the u part of Equation 3,
we would also have a proof θ for the v part. In this case, we would also have to make
sure that this split does not reveal any information about the witness. What we will do
is to randomize the proofs such that they get a uniform distribution on all π, θ that
satisfy the verification equation. If we pick T ← Matn̂×m̂(R) at random we have that
θ + Tu completely randomizes θ. The part we add in θ can be “subtracted” from π by
observing that

ιT (t) + u • π + θ • v = ιT (t) + u •
(

π − T�v
)

+
(

θ + Tu
)

• v.

This leads to a unique distribution of proofs for the general non-symmetric case as well.
Having explained the intuition behind the proof system, we proceed to a formal de-

scription and proof of security properties.

Proof: Pick T ← Matn̂×m̂(R), r1, . . . , rη ← R at random. Compute

π := R�ι2(b) + R�Γι2(y) + R�ΓSv − T�v +
η∑

i=1

riHiv

θ := S�ι1(a) + S�Γ�ι1(x) + Tu

and return the proof (θ, π).
Verification: Return 1 if and only if

ι1(a) • d + c • ι2(b) + c • Γd = ιT (t) + u • π + θ • v.

Perfect completeness of our NIWI proof will follow from the following theorem
no matter whether we are in the soundness setting or the witness-indistinguishability
setting. We refer to the full paper [28] for the proof.

Theorem 1. Given x ∈ Am
1 , y ∈ An

2 , R ∈ Matm×m̂(R), S ∈ Matn×n̂(R) satisfying

c = ι1(x) + Ru , d = ι2(y) + Sv , a · y + x · b + x · Γy = t,

we have for all choices of T, r1, . . . , rη that the proofs π, θ constructed as above will
be accepted.

Perfect soundness of our NIWI proof follows from the following theorem.



Efficient Non-interactive Proof Systems for Bilinear Groups 427

Theorem 2. In the soundness setting, where we have p1(u) = 0 and p2(v) = 0, a
valid proof implies a · p2(d) + p1(c) · b + p1(c) · Γp2(d) = t.

Proof. An acceptable proof π, θ satisfies ι(a) • d + c • ι2(b) + c • Γd = ιT (t) + u •
π + θ • v. The commutative property of the linear and bilinear maps gives us

p1(ι1(a)) · p2(d) + p1(c) · p2(ι2(b)) + p1(c) · Γp2(d)
= pT (ιT (t)) + p1(u) · p2(π) + p1(θ) · p2(v) = pT (ιT (t)).

�
Composable witness-indistinguishability follows from the following theorem, which
we prove in the full paper [28].

Theorem 3. In the witness-indistinguishable setting where ι1(G1) ⊆ 〈u1, . . . , um̂〉,
ι2(G2) ⊆ 〈v1, . . . , vn̂〉 and H1, . . . , Hη generate all matrices H so u • Hv = 0, all
satisfying witnesses x, y, R, S yield proofs π ∈ 〈v1, . . . , vn̂〉m̂ and θ ∈ 〈u1, . . . , um̂〉n̂

that are uniformly distributed conditioned on the verification equation ι1(a) • d + c •
ι2(b) + c • Γd = ιT (t) + u • π + θ • v.

6 NIWI Proof for Satisfiability of a Set of Quadratic Equations

We will now give the full composable NIWI proof for satisfiability of a set of quadratic
equations in a module with a bilinear map. The cryptographic assumption we make is
that the common reference string is created by one of two algorithms K or S and that
their outputs are computationally indistinguishable. The first algorithm outputs a com-
mon reference string that specifies a soundness setting, whereas the second algorithm
outputs a common reference string that specifies a witness-indistinguishability setting.

Setup: gk := (R, A1, A2, AT , f) ← G(1k).
Soundness string:

σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , u, v, H1, . . . , Hη) ← K(gk).
Witness-Indistinguishability String:

σ := (B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , u, v, H1, . . . , Hη) ← S(gk).
Proof: The input consists of gk, σ, a list of quadratic equations {(ai, bi, Γi, ti)}N

i=1

and a satisfying witness x ∈ Am
1 , y ∈ An

2 .
Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all

the variables as c := x + Ru and d := y + Sv.
For each equation (ai, bi, Γi, ti) make a proof as described in Section 5. In other

words, pick Ti ← Matn̂×m̂(R) and ri1, . . . , riη ← R compute

πi := R�ι2(bi) + R�Γι2(y) + R�ΓSv − T�i v +
η∑

j=1

rijHjv

θi := S�ι1(ai) + S�Γ�ι1(x) + Tiu.

Output the proof (c, d, {(πi, θi)}N
i=1).
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Verification: The input is gk, σ, {(ai, bi, Γi, ti)}N
i=1 and the proof (c, d, {(πi, θi)}).

For each equation check

ι1(ai) • d + c • ι2(bi) + c • Γid = ιT (ti) + u • πi + θi • v.

Output 1 if all the checks pass, else output 0.

The construction gives us a NIWI proof. We prove the following theorem in the full
paper [28].

Theorem 4. The protocol given above is a NIWI proof for satisfiability of a set of
quadratic equations with perfect completeness, perfect soundness and composable
witness-indistinguishability.

Proof of knowledge. We observe that if K outputs an additional secret piece of infor-
mation ξ that makes it possible to efficiently compute p1 and p2, then it is straightfor-
ward to compute the witness x = p1(c) and y = p2(d), so the proof is a perfect proof
of knowledge.

Proof size. The size of the common reference string is m̂ elements in B1 and n̂ elements
in B2 in addition to the description of the modules, the maps and H1, . . . , Hη. The size
of the proof is m + Nn̂ elements in B1 and n + Nm̂ elements in B2.

Typically, m̂ and n̂ will be small, giving us a proof size that is O(m + n + N)
elements in B1 and B2. The proof size may thus be smaller than the description of the
statement, which can be of size up to Nn elements in A1, Nm elements in A2, Nmn
elements in R and N elements in AT .

6.1 NIWI Proofs for Bilinear Groups

We will now outline the strategy for making NIWI proofs for satisfiability of a set of
quadratic equations over bilinear groups. As we described in Section 2, there are four
different types of equations, corresponding to the following four combinations of Zn-
modules:

Pairing product equations: A1 = G1, A2 = G2, AT = GT , f(X , Y) = e(X , Y).
Multi-scalar multiplication in G1: A1 = G1, A2 = Zn, AT = G1, f(X , y) = yX .
Multi-scalar multiplication in G2: A1 = Zn, A2 = G2, AT = GT , f(x, Y) = xY .
Quadratic equations in Zn: A1 = Zn, A2 = Zn, AT = Zn, f(x, y) = xy mod n.

The common reference string will specify commitment schemes to respectively scalars
and group elements. We first commit to all the variables and then make the NIWI proofs
that correspond to the types of equations that we are looking at. It is important that
we use the same commitment schemes and commitments for all equations, i.e., for
instance we only commit to a scalar x once and we use the same commitment in the
proof whether the equation x is involved in is a multi-scalar multiplication in G2 or
a quadratic equations in Zn. The use of the same commitment in all the equations is
necessary to ensure a consistent choice of x throughout the proof. As a consequence
of this we use the same module B′1 to commit to x in both multi-scalar multiplication
in G2 and quadratic equations in Zn. We therefore end up with at most four different
modules B1, B

′
1, B2, B

′
2 to commit to respectively X , x, Y, y variables. We give the

full construction of efficient NIWI proofs for the three instantiations based on subgroup
decision, SXDH and DLIN respectively in the full paper [28].
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7 Zero-Knowledge

We will show that in many cases it is possible to make zero-knowledge proofs for
satisfiability of quadratic equations. An obvious strategy is to use our NIWI proofs
directly, however, such proofs may not be zero-knowledge because the zero-knowledge
simulator may not be able to compute any witness for satisfiability of the equations. It
turns out that the strategy is better than it seems at first sight, because we will often
be able to modify the set of quadratic equations into an equivalent set of quadratic
equations where a witness can be found.

We consider first the case where A1 = R, A2 = AT , f(r, y) = ry and where S
outputs an extra piece of information τ that makes it possible to trapdoor open the
commitments in B1. More precisely, τ permits the computation of s ∈ Rm̂ so ι1(1) =
ι1(0)+s�u. We remark that this is a common case; in bilinear groups both multi-scalar
multiplication equations in G1, G2 and quadratic equations in Zn have this structure.

Define c = ι1(1) to be a commitment to φ = 1. Let us rewrite the equations in the
statement as

ai · y + f(−φ, ti) + x · bi + x · Γy = 0.

We have introduced a new variable φ and if we choose all of our variables in these
modified equations to be 0 then we have a satisfying witness. In the simulation, we give
the simulator trapdoor information that permits it to open c to 0 and we can now use the
NIWI proof from Section 6.

We will now describe the NIZK proof. The setup, common reference string gen-
eration, proof and verification work as a standard NIWI proof. Here we describe the
simulator.

Simulation string: Using ι1(1) = ι1(0) +
∑m̂

i=1 siui the simulation string is
(σ, τ) := ((B1, B2, BT , F, ι1, p1, ι2, p2, ιT , pT , u, v), s, H1, . . . , Hη) ← S1(gk).

Simulated proof: The input consists of gk, σ, a list of quadratic equations
{(ai, bi, Γi, ti)}N

i=1 and a satisfying witness x, y.
Rewrite the equations as ai · y + x · bi + f(φ, −ti) + x · Γiy = 0. Define

x := 0, y := 0 and φ = 0 to get a witness that satisfies all equations.
Pick at random R ← Matm×m̂(R) and S ← Matn×n̂(R) and commit to all

the variables as c := 0 + Ru and d := 0 + Sv. We also use c := ι1(1) =
ι1(0) +

∑m̂
i=1 siui and append it to c.

For each modified equation (ai, bi, −ti, Γi, 0) make a proof as described in
Section 5. Return the simulated proof {(c, d, πi, θi)}N

i=1.

We prove in the full paper [28] that this construction gives us a perfect NIZK proof.

Theorem 5. The NIWI proof from Section 6 with the simulator described above is a
composable NIZK proof for satisfiability of pairing product equations with perfect com-
pleteness, soundness and composable zero-knowledge, when A1 = R and the commit-
ment in B1 can be trapdoor opened.

7.1 NIZK Proofs for Bilinear Groups

Let us return to the four types of quadratic equations given in Figure 1. If we set up the
common reference string such that we can trapdoor open respectively ι′1(1) and ι′2(1)
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to 0 ∈ Zn then multi-scalar multiplication equations and quadratic equations in Zn are
of the form for which we can give zero-knowledge proofs (at no additional cost).

In the case of pairing product equations we do not know how to get zero-knowledge,
since even with the trapdoors we may not be able to compute a satisfiability witness.
We do observe though that in the special case, where all tT = 1 the choice of X =
O, Y = O is a satisfactory witness. Since we also use X = O, Y = O in the other
zero-knowledge proofs, the simulator can use this witness and give a NIWI proof. In
the special case where all tT = 1 we can therefore make NIZK proofs for satisfiability
of the set of pairing product equations.

Next, let us look at the case where we have a pairing product equation with
tT =

∏n
i=1 e(Pi, Qi) for some known Pi, Qi. In this case, we can add linear equa-

tions Zi = Pi to the set of multi-scalar multiplication equations in G1. We already
know that such equations have zero-knowledge proofs. We can now rewrite the pairing
product equation as (A · Y)(X · B)(Z · Q)(X · ΓY) = 1. We can therefore also
make zero-knowledge proofs if all the pairing product equations have tT of the form
tT =

∏n
i=1 e(Pi, Qi) for some known Pi, Qi.

The case of pairing product equations points to a couple of differences between
witness-indistinguishable proofs and zero-knowledge proofs using our techniques.
NIWI proofs can handle any target tT , whereas zero-knowledge proofs can only handle
special types of target tT . Furthermore, if tT �= 1 the size of the NIWI proof for this
equation is constant, whereas the NIZK proof for the same equation may be larger.
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Abstract. Zero Knowledge Sets, introduced by Micali, Rabin and Kil-
ian in [17], allow a prover to commit to a secret set S in a way such
that it can later prove, non interactively, statements of the form x ∈ S
(or x /∈ S), without revealing any further information (on top of what
explicitly revealed by the inclusion/exclusion statements above) on S,
not even its size. Later, Chase et al. [5] abstracted away the Micali, Ra-
bin and Kilian’s construction by introducing an elegant new variant of
commitments that they called (trapdoor) mercurial commitments. Using
this primitive, it was shown in [5,4] how to construct zero knowledge sets
from a variety of assumptions (both general and number theoretic).

In this paper we introduce the notion of trapdoor q-mercurial com-
mitments (qTMCs), a notion of mercurial commitment that allows the
sender to commit to an ordered sequence of exactly q messages, rather
than to a single one. Following [17,5] we show how to construct ZKS
from qTMCs and collision resistant hash functions.

Then, we present an efficient realization of qTMCs that is secure under
the so called Strong Diffie Hellman assumption, a number theoretic con-
jecture recently introduced by Boneh and Boyen in [3]. Using our scheme
as basic building block, we obtain a construction of ZKS that allows for
proofs that are much shorter with respect to the best previously known
implementations. In particular, for an appropriate choice of the parame-
ters, our proofs are up to 33% shorter for the case of proofs of membership,
and up to 73% shorter for the case of proofs of non membership.

1 Introduction

Imagine some party P wants to commit to a set S, in a way such that any other
party V can “access” S in a limited but reliable manner. By limited here we
mean that V is given indirect access to S, in the sense that she is allowed to ask
only questions of the form “is x in S?”. P answers such questions by providing
publicly verifiable proofs for the statements x ∈ S (or x /∈ S). Such proofs should
be reliable in the sense that a cheating P should not be able to convince V that
some x is in the set while is not (or viceversa). At the same time, they should
be “discreet” enough not to reveal anything beyond their validity.
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The notion of Zero Knowledge Sets (ZKS) was recently introduced by Micali,
Rabin and Kilian [17] to address exactly this problem. Informally, ZKS allow
a prover P to commit to an arbitrary (but finite) set S in a way such that
P can later prove statements of the form x ∈ S or x /∈ S without revealing
any significant information about S (not even its size!). As already pointed out
in [17], the notion of zero knowledge sets can be easily extended to encompass the
more general notion of elementary databases (EDB). In a nutshell, an elementary
database is a set S with the additional property that each x ∈ S comes with
an associated value S(x). In the following we will refer to ZKS to include zero
knowledge EDB as well.

The solution by Micali et al. is non interactive and works in the so called
shared random string model (i.e. where a random string, built by some trusted
third party, is made available to all participants) building upon a very clever
utilization of a simple commitment scheme, originally proposed by Pedersen [20].

Commitment schemes play a central role in cryptography. Informally, they
can be seen as the digital equivalent of an opaque envelope. Whatever is put
inside the envelope remains secret until the latter is opened (hiding property)
and whoever creates the commitment should not be able to open it with a
message that is not the one originally inserted (binding property). Typically, a
commitment scheme is a two phase procedure. During the first phase, the sender
creates a commitment C, to some message m, using an appropriate commitment
algorithm, and sends C to the receiver R. In the opening phase the sender opens
C by giving R all the necessary material to (efficiently) verify that C was indeed
a valid commitment to m.

Since Pedersen’s commitment relies on the intractability of the discrete loga-
rithm, so does the construction in [17]. Later, Chase et al. [5] abstracted away
Micali et al.’s solution and described the exact properties a commitment scheme
should possess in order to allow a similar construction. This led to an elegant
new variant of commitments, that they called mercurial commitment.

Informally, a mercurial commitment is a commitment scheme where the binding
requirement is somewhat relaxed in order to allow for two decommitment proce-
dures: an hard anda soft one.At committing time, the sender candecide aswhether
to create an hard commitment or a soft one, from the message m he has in mind.
Hard commitments are like standard ones, in the sense that they can be (hard or
soft) opened only with respect to the message that was originally used to construct
the commitment. Soft commitments, on the other hand, allow for more freedom,
as they cannot be hard opened in any way, but they can be soft opened to any arbi-
trary message. An important requirement of mercurial commitments is that, hard
and soft commitments should look alike to any polynomially bounded observer.

Using this new primitive, Chase et al. proved that it is possible to construct
ZKS from a variety of assumptions (number theoretic or general)1. Their most

1 More precisely, they require the mercurial commitment to be trapdoor as well. Very
informally, this means that the scheme comes with a trapdoor information tk (nor-
mally not available to anyone) that allows to completely destroy the binding property
of the commitment.
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general implementation, shows that (non interactive) ZKS can be constructed,
in the shared random string model, assuming non interactive zero knowledge
proofs (NIZK) [2] and collision resistant hash functions [8]2. Moreover, they
showed that collision resistant hash function are necessary to construct ZKS, as
they are implied by the latter. Finally, Catalano, Dodis and Visconti [4] gave a
construction of (trapdoor) mercurial commitments from one way functions in the
shared random string model. This result completed the picture as it showed that
collision resistant hash functions are necessary and sufficient for non interactive
ZKS in the shared random string model.

Our Contribution. All the constructions above, build upon the common idea
of constructing an authenticated Merkle tree of depth k where each internal
node is a mercurial commitment (rather than the hash) of its two children. Very
informally, to prove that a given x ∈ {0, 1}k belongs to the committed set S,
the prover simply opens all the commitments in the path from the root to the
leaf labeled by x (more details about this methodology will be given later on).
Thus the length of the resulting proof is k · d, where d denotes the length of
the opening of the mercurial commitment, and k has to be chosen so that 2k

is larger than the size of any “reasonably” large set S3. Assuming k = 128 and
d = O(k), as it is the case for all known implementations, this often leads to
very long proofs.

It is thus important to research if using the properties of specific number-
theoretic problems, it is possible to devise zero knowledge sets that allow for
shorter proofs. Such proofs would be desirable in all those scenarios where space
or bandwidth are limited. A typical example of such a scenario is mobile internet
connections, where customers pay depending on the number of blocks sent and
received.

In this paper, we present a new construction of ZKS that allows for much
shorter proofs, with respect to the best currently known implementation (which
is the Micali et al. construction when implemented on certain classes of ellip-
tic curves. From now on we will use the acronym MRK to refer to such an
implementation).

Our solution relies on a new primitive that we call trapdoor q-Mercurial Com-
mitment (qTMC, for short). Informally, qTMCs allow the sender to commit to a
sequence of exactly q messages (m1, . . . , mq), rather than to a single one, as with
standard mercurial commitments. The sender can later open the commitment
with respect to any message mi but, in order to do so successfully, he has to
correctly specify the exact position held by the message in the sequence. In other

2 It is known that one can construct NIZK under the assumption that trapdoor per-
mutations exist or under the assumption that verifiable random functions (VRF)
exist [12,18]. These two assumptions, however, are, as far as we currently know,
incomparable.

3 This is because 2k is also an upper bound for the size of the set. Thus, to meet the
requirements of ZKS it should not reveal anything about the cardinality of the set
itself.
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words, trapdoor q-Mercurial commitments allow to commit to ordered sequences
of q messages.

Following [17,5], we show how to construct ZKS from qTMCs and collision
resistant hash functions. This step is rather simple but very useful for our goal,
as it reduces the task of realizing efficient ZKS to the task of realizing efficient
qTMCs. Indeed, even though the proposed transformation allows us to use a
“flat” Merkle tree (i.e. with branching factor q, rather than two), it does not
lead, by itself, to shorter proofs.

Recall that, informally, a proof for the statement x ∈ S (or x /∈ S) consists of
an authenticated path from the root to the leaf labeled by x. The trouble is that
in all known implementations of ZKS, to verify the authenticity of a node in the
path, one must know all siblings of the node. If the tree is binary, the proof con-
tains twice as many nodes as the the depth of the tree (since each node must be
accompanied by its sibling). Thus, the length of a proof being proportional to the
branching factor of the tree, increasing the latter, is actually a bad idea in general.
Indeed, suppose we want to consider sets defined over a universe of N elements.
Using a binary authentication tree one gets proofs whose length is proportional
to log2 N(2n), where n is the size of the authentication information contained in
each node. Using a tree with branching degree q, on the other hand, one would
get proofs of size logq N(qn), which is actually more than in previous case.

Overcoming the proofs blow-up. In this paper we propose an implementa-
tion of trapdoor q mercurial commitments that overcomes the above limitation.
Our solution relies on the so called Strong Diffie Hellman assumption originally
introduced by Boneh and Boyen [3] and builds upon the weakly secure digital
signature given in [3]. The proposed implementation exploits the algebraic prop-
erties of the employed number theoretic primitive to produce a qTMC that allows
for short openings. More precisely the size of each hard opening still depends
linearly on q, but the size of each soft opening becomes constant and completely
independent of q.

This results in ZKS that allow for much shorter proofs than MRK. Concretely,
and for an appropriate choice of the parameter q, our proofs are up to 33% shorter
for the case of proofs of membership, and up to 73% shorter for the case of proofs
of non membership.

Zero Knowledge Sets vs Signatures. The idea of obtaining short proofs
by changing the authentication procedure to deal with a “flat” authentication
tree, is reminiscent of a technique originally suggested by Dwork and Naor [9], in
the context of digital signature schemes. In a nutshell, the Dwork-Naor method
allows to increase the branching factor of the tree without inflating the signature
size. This is achieved, by, basically, authenticating each node with respect to its
parent, but without providing its siblings.

Adapting this idea to work to the case of zero knowledge sets, presents several
non trivial technical difficulties4. The main problem comes from the fact that, in

4 It is probably instructive to mention the fact that, indeed, the Dwork Naor solution,
and its improvements such as [7], do not work in our setting
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ZKS, one has to make sure that a dishonest prover cannot construct two, both
valid, proofs for the statements x ∈ S and x /∈ S. Such a requirement imposes
limitations just not present when dealing with digital signatures 5.

Other Related work. Ostrovsky, Rackoff and Smith [19] described a con-
struction that allows a prover to commit to a database and to provide answers
that are consistent with the commitment. Their solution can handle more elabo-
rate queries than just membership ones. Moreover they also consider the issue of
adding privacy to their protocol. However their construction requires interaction
(at least if one wants to avoid the use of random oracles) and requires the prover
to keep a counter for the questions asked so far.

Gennaro and Micali [11] recently introduced the notion of independent zero
knowledge sets. Informally, independent ZKS protocols prevent an adversary
from successfully correlate her set to the one of a honest prover. Their notion of
independence also implies that the resulting ZKS protocol is non-malleable and
requires a new commitment scheme that is both independent and mercurial. We
do not consider such an extension here.

Liskov [15] considered the problem of updating zero-knowledge databases.
In [15] definitions for updatable zero knowledge databases are given, together
with a construction based on verifiable random functions [18] and mercurial
commitments. The construction, however, is in the random oracle model [1].

Very recently Prabhakaran and Xue [21] introduced the notion of statistically
hiding sets (SHS) that is related but different than ZKS. Informally, SHS require
the hiding property to hold with respect to unbounded verifiers. At the same
time, however, they relax the zero knowledge requirement to allow for unbounded
simulators.

Road Map. The paper is organized as follows. In section 2 we introduce the
notion of trapdoor q mercurial commitments and provide the relevant defini-
tions for zero knowledge sets. Section 3 is devoted to the construction of ZKS
from trapdoor q mercurial commitments. In section 4 we show how to construct
efficient qTMCs from the Strong Diffie Hellman Assumption. Efficiency consid-
erations and comparisons with previous work are given in section 5. Finally
conclusions and directions for future work are given in section 6.

2 Preliminaries

Informally, we say that a function is negligible if it vanishes faster than the inverse
of any polynomial.

5 For instance, the soundness requirement above, imposes that exactly one single path
from the root to a leaf, should be “labelable” as x. It seems very hard (if at all
possible) to achieve this, when both type of proofs (i.e. proofs of membership and
proofs of non membership) allow to authenticate each node (with respect to its
parent), without providing its siblings.
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2.1 Trapdoor q-Mercurial Commitments

Informally, a trapdoor q-mercurial commitment (qTMC for brevity) extends the
notion of (trapdoor) mercurial commitment, by allowing the sender to commit to
an (ordered) sequence of q messages, rather than to a single one. More precisely,
and like standard (trapdoor) mercurial commitments (see [4] for a definition
of trapdoor mercurial commitments), trapdoor q-mercurial commitments allows
for two different decommitting procedures. In addition to the standard opening
mechanism, there is a partial opening (also referred as tease or soft open) algo-
rithm that allows for some sort of equivocation. At committing stage, the sender
can decide to produce a commitment in two ways. Hard commitments should be
hiding in the usual sense, but should satisfy a very strong binding requirement
(that we call strong binding). Informally, strong binding means that a sender S
should be able to open a commitment only with respect to messages that were in
the “correct” position in the sequence S originally committed to. More precisely,
when opening an hard commitment for a message m, the sender is required to
specify an index i ∈ {1, . . . , q}, indicating the position of m in the sequence.
In the case of hard commitments, the strong binding property imposes that the
commitment should be successfully opened and teased to (m, i) only if m was
the i-th message in the sequence S originally committed to. Soft commitments,
on the other hand cannot be opened, but can be teased with respect to messages
belonging to any arbitrary sequence of q messages.

More formally, a trapdoor q-mercurial commitment is defined by the following
set of algorithms: (qKeyGen, qHCom, qHOpen, qHVer, qSCom, qSOpen, qSVer,
qFake, qHEquiv, qSEquiv).

qKeyGen(1k, q) is a probabilistic algorithm that takes in input a security pa-
rameter k and the number q of committed values and outputs a pair of
public/private keys (pk, tk).

qHCompk(m1, · · · , mq) Given an ordered tuple of messages, qHCom computes a
hard commitment C to (m1, · · · , mq) using the public key pk and returns
some auxiliary information aux.

qHOpenpk(m, i, aux) Let (C, aux) = qHCompk(m1, · · · , mq), if m = mi the hard
opening algorithm qHOpenpk(m, i, aux) produces a hard decommitment π.
The algorithm returns an error message otherwise.

qHVerpk(m, i, C, π) The hard verification algorithm qHVerpk(m, i, C, π) accepts
(outputs 1) only if π proves that C is created to a tuple (m1, · · · , mq) such
that mi = m.

qSCompk() produces a soft commitment C and an auxiliary information aux. A
soft commitment string C is created to no specific sequence of messages.

qSOpenpk(m, i, flag, aux) produces a soft decommitment τ (also known as
”tease”) to a message m at position i. The parameter flag ∈ {H, S} in-
dicates if τ corresponds to either a hard commitment (C, aux) = qHCompk

(m1, · · · , mq) or to a soft commitment (C, aux) = qSCompk(). The algorithm
returns an error message if C is an hard commitment and m �= mi.
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qSVerpk(m, i, C, τ) checks if τ is a valid decommitment for C to m of index i. If
it outputs 1 and τ corresponds to a hard commitment C to (m1, · · · , mq),
then C could be hard-opened to (m, i), or rather m = mi.

qFakepk,tk() takes as input the trapdoor tk and produces a q-fake commitment
C. C is not bound to any sequence (m1, · · · , mq). It also returns an auxiliary
information aux.

qHEquivpk,tk(m1, · · · , mq, i, aux) The non-adaptive hard equivocation algorithm
generates a hard decommitment π for (C, aux) = qFakepk,tk() to the i-th
message of (m1, · · · , mq). The algorithm is non adaptive in the sense that,
for a given C, the sequence (m1, · · · , mq) has to be determined once and for
all, before qHEquiv is executed. A q-fake commitment is very similar to a
soft commitment with the additional property that it can be hard-opened.

qSEquivpk,tk(m, i, aux) generates a soft decommitment τ to m of position i using
the auxiliary information produced by the qFake algorithm.

The correctness requirements for trapdoor q-Mercurial commitments are essen-
tially the same as those for ”traditional” commitment schemes. In particular we
require that ∀(m1, · · · , mq) ∈ Mq, the following statements are false only with
negligible probability.

1. if (C, aux) = qHCompk(m1, · · · , mq):

qHVerpk(mi, i, C, qHOpenpk(mi, i, aux)) = 1 ∀i = 1 . . . q

2. If (C, aux) = qHCompk(m1, · · · , mq)

qSVerpk(mi, i, C, qSOpenpk(mi, i, H, aux)) = 1 ∀i = 1 . . . q

3. If (C, aux) = qSCompk()

qSVerpk(mi, i, C, qSOpenpk(mi, i, S, aux)) = 1 ∀i = 1 . . . q

4. If (C, aux) = qFakepk,tk()

qHVerpk(mi, i, C, qHEquivpk,tk(m1, · · · , mq, i, aux)) = 1

qSVerpk(mi, i, C, qSEquivpk,tk(mi, i, aux)) = 1 ∀i = 1 . . . q

Security. The security properties for a trapdoor q-mercurial commitment
scheme are as follows:

– q-Mercurial binding. Having knowledge of pk it is computationally infea-
sible for an algorithm A to come up with C, m, i, π, m′, π′ such that either
one of the following cases holds:

• π is a valid hard decommitment for C to (m, i) and π′ is a valid hard
decommitment for C to (m′, i), with m �= m′. We call such case a ”hard
collision”.
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• π is a valid hard decommitment for C to (m, i) and π′ is a valid soft
decommitment for C to (m′, i), with m �= m′. We call such case a ”soft
collision”.

– q-Mercurial hiding. There exists no PPT adversary A that, knowing pk,
can find a tuple (m1, · · · , mq) ∈ Mq and an index i for which it can distin-
guish (C, qSOpenpk(mi, i, H, aux)) from (C′, qSOpenpk(mi, i, S, aux′)), where
(C, aux) = qHCompk(m1, · · · , mq) and (C′, aux′) = qSCompk().

– Equivocations. There exists no PPT adversary A that, knowing pk and
the trapdoor tk, can win any of the following games with non-negligible
probability. In such games A should be able to tell apart the ”real” world
from the corresponding ”ideal” one. The games are formalized in terms of
a challenger that flips a binary coin b ∈ {0, 1}. If b = 0 it gives to A a
real commitment/decommitment tuple; if b = 1 it gives to A an ideal tuple
produced using the fake algorithms.

In the q-HHEquivocation and the q-HSEquivocation games below, A
chooses (m1, · · · , mq) ∈ Mq and receives a commitment string C. Then A
gives an index i ∈ {1, · · · , q} to the challenger and finally it receives a hard
decommitment π.

• q-HHEquivocation. If b = 0 the challenger hands to A the value
(C, aux) = qHCompk(m1, · · · , mq). A gives i to the challenger and gets
back π = qHOpenpk(mi, i, aux). Otherwise the challenger computes
(C, aux) = qFakepk,tk(), π = qHEquivpk,tk(m1, · · · , mq, i, aux).

• q-HSEquivocation. The challenger computes
(C, aux) = qHCompk(m1, · · · , mq), π = qSOpenpk(mi, i, H, aux) in the
case b = 0 or (C, aux) = qFakepk,tk(), π = qSEquivpk,tk(mi, i, aux) if
b = 1.

• q-SSEquivocation. If b = 0 the challenger generates (C, aux) =
qSCompk() and gives C to A. Next, A chooses m ∈ M and an in-
dex i ∈ {1, · · · , q}, it gives (m, i) to the challenger and receives back
qSOpenpk(m, i, S, aux). If b = 1, A first gets qFakepk,tk(), then it chooses
m ∈ M, i ∈ {1, · · · , q}, gives (m, i) to the challenger and gets back
qSEquivpk,tk(m, i, aux).

At some point A outputs b′ as its guess for b and wins if b′ = b.
As for the case of trapdoor mercurial commitments (see [4]) it is easy to
see that the q-mercurial hiding is implied by the q-HSEquivocation and q-
SSEquivocation.

2.2 Zero-Knowledge Sets

Zero knowledge sets [17] allows one to commit to some secret set S and then to,
non interactively, produce proofs of the form x ∈ S or x /∈ S. This is done without
revealing any further information (i.e. that cannot be deduced by the statements
above) about S, not even its size. Following the approach of [17], here we focus
on the more general notion of zero-knowledge elementary databases (EDB), since
the notion of zero-knowledge sets is a special case of zero-knowledge EDBs (see
[17] for more details about this). Let [D] be the set of keys associated to a
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database D. We assume that [D] is a proper subset of {0, 1}∗. If x ∈ [D], we
denote with y = D(x) its associated value in the database D. If x /∈ [D] we
let D(x) = ⊥. An EDB system is formally defined by a triple of algorithms
(P1, P2, V):

– P1, the committer algorithm, takes in input a database D and the common
reference string CRS and outputs a public key ZPK and a secret key ZSK.

– On input the common reference string CRS, the secret key ZSK and an
element x, the prover algorithm P2 produces a proof πx of either D(x) = y
or D(x) = ⊥.

– The third algorithm is the verifier V(CRS, ZPK, x, πx). It outputs y if
D(x) = y, out if D(x) = ⊥ or ⊥ if the proof πx is not valid.

The formal definition of zero-knowledge EDB is given in [17]6.

3 Zero Knowledge EDB from Trapdoor q-Mercurial
Commitments

In this section we describe a construction of zero-knowledge EDB, from trapdoor
q-mercurial commitments (defined in section 2.1), trapdoor mercurial commit-
ments [5,4] and collision resistant hash functions. The construction is very simple,
as it generalizes easily from the original [17,5] constructions. Still, it plays an
important role in our quest for efficient zero knowledge sets, as it allows us to
concentrate solely on the problem of realizing efficient qTMCs.

Intuitive Construction. Assume we want to commit to a database D with
keys of length k. We associate each key x to a leaf in a q-ary tree of height k. Thus
x can be viewed as a number representing the labeling of the leaf in q-ary en-
coding (see the example in Figure 1). Since the number of all possible keys is qk,
to make the committing phase efficient (i.e. polynomial in k) the tree is pruned
by cutting those subtrees containing only keys of elements not in the database.
The roots of such subtrees are kept in the tree (we call them the “frontier”). The
internal nodes in the frontier are “filled” with soft commitments. The remaining
nodes are filled as follows. Each leaf contains an hard commitment (computed
using the standard trapdoor mercurial commitment scheme) of a value nH(x)

related to D(x)7. Each internal node contains the hard q-commitment to the
hashes of the values contained in its q sons. The q-commitment contained in the
root of the tree is the public key of the zero-knowledge EDB.

When the prover P is asked for a proof of an element x ∈ D (for instance
such that D(x) = y), it proceeds as follows. It exhibits hard openings for the
commitments contained in the nodes in the path from the root to the leaf x.

6 We point out here that we will prove our construction secure with respect to a slightly
different definition (with respect to the one given in [17]) in which the completeness
requirement is relaxed to allow a negligible probability of error.

7 More precisely nH(x) is the hash of D(x) if x is in the database and 0 otherwise.
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Fig. 1. A 3-ary tree of height 3 before and after a query to the database
key 311. Each node of the tree contains a mercurial commitment: the label H is for
hard commitments, S for the soft ones. Moreover the squares represent q-commitments,
while the circles represent standard commitments. If the set of database keys is S =
{121, 122, 123, 221}, the darker nodes are those belonging to a path from the root to
an element in the set. The light shaded nodes are the frontier.

More precisely, for each level of the tree, it opens the hard q-commitment with
respect to the position determined by the q-ary encoding of x for that level.
Queries corresponding to keys x such that D(x) = ⊥ are answered as follows.
First, the prover generates the possibly missing portion of the subtree containing
x. Next, it soft opens all the commitments contained in the nodes in the path
from x to the root. The soft commitments stored in the frontier nodes are then
teased to the values contained in its newly generated children.

It is easy to see that the completeness property follows from the completeness
of the two commitment schemes used. Similarly, the binding properties of the
two commitment schemes, together with the collision resistance of the underlying
hash function, guarantees that (1) no hard commitment can be opened to two
different values, and (2) no hard commitment can be opened to a value and then
teased to a different one.
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Finally the zero-knowledge property follows from the fact that both the two
commitments schemes are hiding and equivocable (the fake commitments and
fake openings produced by the simulator are indistinguishable from the commit-
ments and openings produced from a real prover).

A detailed description of the construction sketched above, together with a
complete security proof, is given in the full version of this paper.

4 Trapdoor q-Mercurial Commitment Based on SDH

In this section we show an efficient construction of trapdoor q-mercurial com-
mitments QC.

Our construction relies on the Strong Diffie-Hellman assumption (SDH for
short), introduced by Boneh and Boyen in [3]. Informally, the SDH assumption
in bilinear groups G1, G2 of prime order p states that, for every PPT algorithm
A and for a parameter q, the following probability is negligible:

Pr[A(g1, g
x
1 , g

(x2)
1 , · · · , g

(xq)
1 , g2, g

x
2 ) = (c, g1/(x+c)

1 )].

If we suppose that G(1k) is a bilinear group generator which takes in input a
security parameter k, then (asymptotically) the SDH assumption holds for G if
the probability above is negligible in k, for any q polynomial in k (see [3] for the
formal definition).

The SDH assumption obviously implies the discrete logarithm assumption (i.e.
if the former holds, so has to do the latter). A reduction in the other direction,
however, is not known. Recently, however, Cheon [6] proved that, for many
primes p, the q-Strong Diffie Hellman problem has computational complexity
reduced by O(

√
q) with respect to that of the discrete logarithm problem (in the

same group).

The new scheme. Now we describe our proposed trapdoor q-Mercurial Com-
mitment scheme, in terms of its component algorithms (qKeyGen, qHCom,
qHOpen, qHVer, qSCom, qSOpen, qSVer, qFake, qHEquiv, qSEquiv), as described
in section 2.1.

The technical construction of the proposed scheme builds upon the simulator
described in the security proof of the weak signature scheme given in [3].

In what follows H denotes a family of collision resistant hash functions whose
range is Zp.

qKeyGen(1k, q) The key generation algorithm runs a bilinear group generator
G(1k) for which the SDH assumption holds [3] to get back the description of
groups G1, G2, GT and a bilinear map e : G1 ×G2 → GT . Such groups share
the same prime order p.

The description of the groups contains the group generators: g1 ∈ G1,
g2 ∈ G2. The algorithm proceeds by picking a random integer x ← Z

∗
p and

it sets A1 = gx
1 , · · · , Aq = gxq

1 , h = gx
2 . Next, it chooses a collision resistant

hash function H from H.
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The public key is set as PK = (g1, A1, · · · , Aq, g2, h, H), while the trap-
door is TK = x.

qHComPK(m1, · · · , mq) . The hard commitment algorithm randomly selects
α, w ← Z

∗
p and computes Ci = H(i||mi), ∀i = 1, · · · , q (the symbol || de-

notes concatenation). Next, it defines the polynomial

f(z) =
q∏

i=1

(z + Ci) =
q∑

i=0

(βiz
i)

and sets g′1 = (
∏q

i=0 Aαiβi

i )w = g
f(αx)w
1 and g′2 = hα. In the unlucky

case that either g′1 = 1 or g′2 = 1, then one simply retries with another
random α.

Thus, letting γ = αx, we have g′1 = g
f(γ)w
1 and g′2 = hα = gγ

2 .
The commitment is (g′1, g

′
2). The auxiliary information is aux=(α, w,

m1, · · · , mq).
qHOpenPK(m, j, aux) outputs π = (α, w, m1, · · · , mj−1, mj+1, · · · , mq).
qHVerPK(m, j, C, π) computes the q − 1 terms Ci = H(i||mi)∀mi ∈ π and

Cj = H(j||m). Next, it defines the polynomial f(z) =
∏q

i=1(z + Ci) and
computes the βi coefficients as above.

Checks if g′1 = (
∏q

i=0 Aαiβi

i )w and g′2 = hα. If both tests succeed, it
outputs 1.

qSComPK() picks α′, y ← Z
∗
p at random, sets

g′1 = gα′

1 , g′2 = gy
2

and outputs (g′1, g′2) and aux = (α′, y).
qSOpenPK(m, j, flag, aux) If flag = H the algorithm computes Ci = H(i||mi),

∀i = 1, · · · , j − 1, j + 1, · · · , q, Cj = H(j||m), it sets

fj(z) =
f(z)

(z + Cj)
=

q∏
i=1∧i�=j

(z + Ci) =
q−1∑
i=0

δiz
i

Next, it computes σj = (
∏q−1

i=0 Aδiα
i

i )w = g
f(γ)w
γ+Cj

1 = (g′1)
1

γ+Cj . The output is
σj .

If flag = S the algorithm computes Cj = H(j||m) and outputs σj = (g′1)
1

y+Cj .
qSVerPK(m, j, C, τ) The soft verification algorithm takes in input a message m

and an index j ∈ {1, · · · , q}. It computes Cj = H(j||mj), and checks if
e(σj , g

′
2g

Cj

2 ) = e(g′1, g2). If this is the case, it outputs 1.
qFakePK,TK() The fake commitment algorithm is the same as qSCom.
qHEquivPK,TK(m1, · · · , mq, j, aux) The non-adaptive hard equivocation algo-

rithm uses the trapdoor key TK to hard open a fake commitment (which
is originally a commitment to nothing). It computes Ci = H(i||mi), ∀i =
1, · · · , q and constructs the polynomial

f(z) =
q∏

i=1

(z + Ci) =
q∑

i=0

βiz
i.
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It sets α = y
x , w= α′

f(y) and outputs π={α, w, m1, · · · , mj−1, mj+1, · · · , mq}.
qSEquivPK,TK(m, j, aux) The soft equivocation algorithm is the same as qSOpen.

4.1 Properties of the Scheme

First notice that our commitment scheme is “proper” in the sense of [4]. Recall
that a mercurial commitment scheme is said to be “proper” if the soft decom-
mitment is a proper subset of the hard decommitment. In our scheme, a soft
decommitment is implicitly contained in a hard one. Indeed, given a hard open-
ing π = (α, w, m1, · · · , mj−1, mj+1, · · · , mq) to a message m at position j and
the public key PK, we are able to compute a valid soft decommitment σj to the
message m of index j.

The correctness of the scheme can be easily verified by inspection. With the
next theorem we show that the remaining properties of qTMC are realized as
well.

Theorem 1. Assuming that the Strong Diffie-Hellmann holds for G and H is a
family of collision resistant hash functions, QC is a trapdoor q-mercurial com-
mitment scheme.

Proof (Theorem 1). To prove the theorem we need to make sure that the pro-
posed scheme is binding and hiding, in the sense discussed in section 2.1. We
prove each property separately.

q-mercurial binding. To prove the property we need to make sure that nei-
ther hard collisions nor soft ones are possible. We prove that it is infeasible to
find any of such collisions under the Strong Diffie Hellmann assumption (SDH)
for the bilinear group generator G [3] and the collision resistance of the hash
function H .

Let us first consider soft collisions. Next we describe how to adapt the same
proof for the case of hard collisions.

Soft collisions. Assume there exists an adversary AS that with non-negligible
probability ε can find a soft collision. We show how to build a simulator BS that
uses AS to solve the q-SDH problem, or to break the collision resistance of H ,
with probability at least ε/2.

BS receives in input from its challenger a (q + 3)-tuple (g1, g
x
1 , · · · , gxq

1 , g2, g
x
2 )

and the description of a hash function H . The simulator runs AS on input such
values as the public key of the q-mercurial commitment scheme. Then with
probability ε the adversary outputs (C, m, j, π, m′, τ) such that: C = (g′1, g′2) is
a commitment, m �= m′, π = (α, w, m1, · · · , mj−1, mj+1, · · · , mq) is a valid hard
opening for C to the message m at position j and τ = (σj) is a valid soft opening
for C to m′ of index j. We distinguish two cases:

1. m �= m′ and Cj = H(j||m) = H(j||m′) = C′j ;
2. m �= m′ and Cj �= C′j .
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At least one of these cases occurs with probability at least ε/2. In the first case
the simulator immediately has a collision for H . In case 2 we show how to solve
the q-SDH problem.

Since qSVerPK(m′, j, C, τ) = 1 we have that e(σj , g
′
2g

C′
j

2 ) = e(g′1, g2). More-

over, the correct verification of π implies that g′2 = hα = gγ
2 thus σj = (g′1)

1
γ+C′

j .
Using long division we can write the q-degree polynomial f as f(z) = η(z)(z+

C′j)+ η−1 where η(z) =
∑q−1

i=0 ηiz
i is a polynomial of degree q − 1 and η−1 ∈ Zp.

Thus we can write σj = (gη(γ)
1 g

η−1
γ+C′

j

1 )w. Hence first BS computes:

δ = (σ1/w
j ·

q−1∏
i=0

A−ηiα
i

i )1/η−1 = (gη(γ)
1 g

η−1
γ+C′

j

1 g
−η(γ)
1 )1/η−1 = g

1
γ+C′

j

1 .

Finally it computes δ∗ = δα = g

α
αx+C′

j

1 = g

1
x+C′

j
/α

1 and C∗ = C′j/α. The simulator
gives (δ∗, C∗) to its challenger. It is easy to see that such pair breaks the q-SDH
assumption. Thus with non-negligible advantage ε/2 BS can break either the
q-SDH assumption or the collision resistance of H .

Hard collisions. Let us now assume there exists an adversary AH that, given
the public key of a q-mercurial commitment scheme, can find a hard collision with
non-negligible probability ε. Then we construct a simulator BH that either solves
the q-SDH problem or breaks the collision resistance of H with probability at
least ε/2. The simulator BH is similar to the one described above. The difference
is that AH outputs: (C, m, j, π, m′, π′) such that: C = (g′1, g

′
2) is a commitment,

m �= m′ are two different messages, π = (α, w, m1, · · · , mj−1, mj+1, · · · , mq) is a
valid hard opening for C to m of index j and π′ = (α′, w′, m′1, · · · , m′j−1, m

′
j+1,

· · · , m′q) is a valid hard opening for C to m′ of index j. Again we consider two
cases:

1. m �= m′ and Cj = H(j||m) = H(j||m′) = C′j ,
2. m �= m′ and Cj �= C′j .

Case 1 is the same as before. In case 2, BH solves the q-SDH problem as fol-
lows. Since qHVerPK(m, j, C, π) = 1 and qHVerPK(m′, j, C, π′) = 1, it must be
the case that α = α′ (α �= α′, would lead to two different g′2 hα and hα′

).
Moreover, since the commitment scheme is proper from the valid hard opening
π′ = (α′, w′, m′1, · · · , m′j−1, m

′
j+1, · · · , m′q) for m′j we can “extract” a valid soft

opening for m′j . Thus, using exactly the same argument described above, we
break the SDH assumption.

Hiding and Equivocation. First notice that, since our scheme is proper, it
suffices to check only q-HHEquivocation and q-SSEquivocation hold. In both
cases we show that it is infeasible for an adversary to distinguish between a real
commitment/decommitment tuple from a fake/equivocation one.

In the q-HHEquivocation game the adversary is asked to tell apart

{(gf(γ)w
1 , gαx

2 ), (α, w, m1, · · · , mj−1, mj+1, · · · , mq)}
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from

{(gα′

1 , gy
2), (α =

y

x
, w =

α′

f(γ)
, m1, · · · , mj−1, mj+1, · · · , mq)}

In both cases α, w are uniformly random in Z
∗
p. This is because, in the first

tuple, they are chosen uniformly and at random, while in the second tuple they
are distributed, respectively, as y and α′, which were chosen uniformly and at
random in Z

∗
p.

Thus the two distributions are indistinguishable.
The proof of indistinguishability for the q-SSEquivocation is trivial. Indeed,

it is easy to see that the elements in the two distributions

{(gα′

1 , gy
2), σi = (g′1)

1
γ+Ci }

{(gα′

1 , gy
2), σi = (g′1)

1
γ+Ci }

are distributed in exactly the same manner.

5 Efficiency Considerations

In the previous section we proposed a trapdoor q-mercurial commitment scheme
QC based on the Strong Diffie-Hellmann assumption. In order to build efficient
zero knowledge EDB, we also use a trapdoor mercurial commitment scheme C
based on the Discrete Logarithm constructions given in [17,5]. For our conve-
nience we consider an implementation of the scheme that allows us to use some
of the parameter already in use for the qTMC scheme. In particular, we use
g1, A1 ∈ G1 from the public key of QC as the public key for C.

Combining the two schemes as described in section 3, we obtain an imple-
mentation of zero-knowledge EDB (based on the SDH problem) that allows for
proofs that are significantly shorter than those produced by previous proposals.

Below we compare our proposal with the most efficient (in terms of space) im-
plementation known so far, namely the one by Micali et al. [17] (MRK from now
on, for short), when implemented over elliptic curves with short representation.

We measure efficiency in terms of the space taken by each proof. For both
schemes, we assume that the universe U has size |U| = 2k = qh and, that
q = 2k′

, for simplicity.

Groups Used in the Comparisons. Following [10] we fix a security param-
eter 
 = 256 to achieve k = 128 bits of security. Specifically G1 is realized as a
subgroup of points on an elliptic curve E over a finite field Fp of size p, where p
is an 
 bits prime. If e is a parameter called embedding degree, G2 is a subgroup
of E(Fpe) and GT ⊂ E(F∗pe). In particular we consider elliptic curves with em-
bedding degree e = 12 and CM discriminant D = −3. As suggested in [10], for
the case of Type 3 groups (see [10] for details), such parameters enable to obtain
elements of G2 that have size twice the size of elements of G1.
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Table 1. Space required by proofs, in our scheme

q Membership Non-membership

2 773 516
4 517 260
8 517 174.7
16 645 132
32 926.6 106.4
64 1455.7 89.3
128 2418.7 77.1
256 4165 68

Bandwidth. A proof of membership in our scheme contains h(q + 4) + 5 ele-
ments8. A proof of non-membership 4h + 4. In MRK’s scheme a proof of mem-
bership requires 6k + 5 elements, while a proof of non-membership needs 5k + 4
elements. In both cases all the elements have size 
, but, for our scheme, we let
q vary. For such a choice of parameters we obtain the following results.

The scheme of Micali et al. requires 773 elements for proofs of membership
and 644 for proofs of non-membership. Results for our scheme are summarized
in Table 1.

Notice that our scheme produces proofs of non-membership, that are always
much shorter than the corresponding MRK proofs. The space required by our
proofs of membership, on the other hand, compares favorably to MRK scheme
only until q ≤ 16, it gets slightly worse for q = 32, and much worse for larger
values of q. Thus, the choice of q = 8 leads to proofs of membership that are
(approximately) 33% shorter, and to proofs of non membership that are almost
73% shorter than MRK!

Notice that such a choice of q (i.e. q = 8) keeps the scheme practical also in
terms of length of the common reference string. Notice also that, according to
our present knowledge of the SDH problem, it seems reasonable to consider the
same security parameter for our scheme and for the MRK implementation. This
is because Cheon [6] attack requires q to be an upper-bound to a factor of either
p − 1 or p+ 1 in order to be effective. If one sets q = 8, as suggested in the table
above, this would imply that one should increase the key size of at most 2 bits in
the worst case. Thus using the same security parameter for both ours and MRK
seems to be reasonable for all practical purposes.

6 Conclusions

In this paper we introduced and implemented the notion of trapdoor q mercurial
commitments. Our construction can be used to construct zero knowledge sets
that allow for proofs that are much shorter than those obtained by previous
8 We assume each element has size �. This is because, the size of each element in G2

is twice that of an element in G1. Thus whenever an element in G2 is considered,
this counts as two elements in G1.
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work. It would be interesting to investigate if it is possible to come up with an
even more efficient implementation of the new primitive. In particular, it would
be very interesting to construct a qTMC that allows for openings whose length
is independent of q.
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Abstract. In this work we introduce a novel paradigm for the construc-
tion of ramp schemes with strong multiplication that allows the secret
to be chosen in an extension field, whereas the shares lie in a base field.
When applied to the setting of Shamir’s scheme, for example, this leads
to a ramp scheme with strong multiplication from which protocols can be
constructed for atomic secure multiplication with communication equal
to a linear number of field elements in the size of the network.

This is also achieved by the results from Cramer, Damgaard and de
Haan from EUROCRYPT 2007. However, our new ramp scheme has
an improved privacy bound that is essentially optimal and leads to a
significant mathematical simplification of the earlier results on atomic
secure multiplication.

As a result, by considering high degree rational points on algebraic
curves, this can now be generalized to algebraic geometric ramp schemes
with strong multiplication over a constant size field, which in turn leads
to low communication atomic secure multiplication where the base field
can now be taken constant, as opposed to earlier work.

1 Introduction

Recent constructions of ramp schemes with (strong) multiplication [2,3] play a
crucial role in advances in the communication efficiency of secure multi-party
computation [2,3,4] and, quite surprisingly, of constant rate zero knowledge
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proofs for circuit satisfiability [9]. The constructions of these dedicated ramp
schemes rely on the theory of error correcting codes as well as arithmetic geome-
try, and allow for the field of definition to be fixed, while offering almost optimal
corruption tolerance. This is to be contrasted with Shamir’s scheme, where the
field size is linear in the size of the network.

In this work we introduce a novel paradigm for the construction of ramp
schemes with strong multiplication [5] that allows the secret to be chosen in an
extension field, whereas the shares lie in a base field. Our paradigm is based on
selection of certain suitable rational subcodes of error correcting codes defined
over extension fields.

Applied to the setting of Shamir’s scheme, for example, this comes down to
choosing random polynomials f subject to the constraints that f(0) is equal to
the secret s lying in an extension field L, while the shares f(P ) lie in a subfield
K. In particular, this appears to be a novel way of turning Shamir’s scheme into a
ramp scheme with strong multiplication. When applied to the setting of Shamir’s
scheme, for example, this leads to a ramp scheme with strong multiplication
from which protocols can be constructed for atomic secure multiplication with
communication equal to a linear number of field elements in the size of the
network. This is also achieved by the results from Cramer, Damgaard and de
Haan from EUROCRYPT 2007. However, our new ramp scheme has an improved
privacy bound (an additive factor linear in the degree of the field extension) that
is essentially optimal and it leads to a significant mathematical simplification of
the earlier results on atomic secret multiplication.

As a result, by considering high degree rational points on algebraic curves,
this can now be generalized to algebraic geometric ramp schemes with strong
multiplication over a constant size field, which in turn leads to low communica-
tion atomic secure multiplication where the base field can now be taken constant,
as opposed to earlier work. This introduces a second scheme with strong multi-
plication over a constant-sized field, where the previous known such scheme due
to Chen and Cramer [2] could be used to perform multiple multiplications in
parallel at the cost of one.

For both these algebraic geometric schemes we additionally propose new gen-
eral zero-error multiparty computation protocols secure against a malicious ad-
versary, with corruption tolerance t = Ω(n), and where each multiplication in
the protocol requires communication of O(n3) base field elements to perform a
multiplication involving up to Ω(n) base field elements. This matches the com-
munication cost of the low-cost protocol for the special case presented in [4], but
requires the use of more involved techniques due to the lack of structure in these
general schemes.

2 Prior Work

We first formally define the concept of ramp scheme, which is essentially a non-
perfect secret sharing scheme. Ramp schemes are useful because they can achieve
a high information rate, i.e., the size of the shares can be much smaller than
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the size of the secret. We then proceed with a brief reiteration of two strongly
multiplicative variants of such ramp schemes, which were presented in [7] and
[4]. Both of these ramp schemes are ideal and have a high information rate.
In particular they involve secret vectors that consist of k field elements while
producing shares that consist of a single field element.

2.1 Ramp Schemes

Let P = {p1, . . . , pn} be a set of players and A and Γ be two subsets of 2P such
that Γ ∩ A = ∅. We define a ramp scheme over the field Fq as follows.

Let a d × e matrix M over Fq and a mapping φ : {1, . . . , d} → {1, . . . , n} be
given. Given a subset A of P we denote by MA the set of the rows Mj of M such
that φ(j) ∈ A.

Definition 1. The matrix M defines a ramp scheme if the following two con-
ditions hold:

1. For any A ∈ A, and any k elements w1, . . . , wk ∈ Fq, there exists a vector
v ∈ KerMA such that its first k coordinates are w1, . . . , wk.

2. For any B ∈ Γ , the ith unit vector εi ∈ F
e
q is in the image of MT

B for all
i ∈ {1, . . . , k}.

We say that A and Γ are the adversary structure and access structure of the
scheme, respectively.

To share a secret vector (s1, . . . , sk) with the scheme above, a dealer chooses
a random vector v ∈ F

e
q such that its first k coordinates are (s1, . . . , sk) and

sends to player pj the elements Miv for which φ(i) = j. Condition 1 implies that
any set of players in the adversary structure can get no information about the
secrets, while condition 2 ensures that any set of players in the access structure
can reconstruct the secret vector using their shares. Note that the definition
in [4] specifies a special case of this definition, where the access and adversary
structure are defined by two (different) thresholds.

In the following, let � : F
k
q ×F

k
q → F

k
q be a symmetric non-degenerate bilinear

map. We define multiplication of secret shared vectors s, t ∈ F
k
q to be via this

map, which we denote by s � t.

Definition 2. A ramp scheme is multiplicative if for any i ∈ {1, . . . , k}, there
exist λ

(i)
1 , . . . , λ

(i)
d ∈ Fq such that for any two secret vectors s and t with sets of

shares (a1, . . . , ad) and (b1, . . . , bd), we have that (s � t)i =
∑d

j=1 λ
(i)
j ajbj.

Definition 3. A ramp scheme is strongly multiplicative if it is multiplicative
on any subset of players for which the complement is in the adversary structure.
In other words, given any A ∈ A, for any i ∈ {1, . . . , k} and any j so that φ(j) ∈
Ā there exists a λ

(i)
j in Fq such that for every two secret vectors s and t with sets

of shares (a1, . . . , ad) and (b1, . . . , bd), we have that (s�t)i =
∑

j:φ(j)∈Ā λ
(i)
j ajbj.
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2.2 Parallel Secure Computation

The first ramp scheme we discuss is due to Franklin and Yung [7]. It has the
advantage that, at the price of an additive factor k in the corruption tolerance,
we can perform multiplication for k elements in parallel at the cost of a single
multiplication.

The ramp scheme works as follows. Let t and k be such that t + k − 1 < n/2
and assume that the finite field Fq is such that |Fq| ≥ n + k. Let the sets
{x1, . . . , xn} and {e1, . . . , ek} be two disjoint sets of distinct elements from Fq.
Now for a vector a = (u1, . . . , uk) of secret elements from Fq, we select a random
polynomial f(X) ∈ Fq[X ] of degree at most t + k − 1 such that f(ej) = uj for
j = 1, 2, . . . , k and define the shares to be aj = f(xj) for j = 1, 2, . . . , n.

Clearly, t + k shares or more jointly determine f and hence the secret vector
a, so the access structure includes all player sets of size at least t + k. As to
privacy, it is a straightforward consequence of Lagrange-interpolation that t or
fewer shares jointly give no information on the secret vector, so the adversary
structure includes all player sets of size at most t. We can sum these properties
up by calling the resulting scheme a (t, t + k)-ramp scheme, with secrets of
length k.

Assume that we additionally performed this sharing with a polynomial g(X)
for a secret vector b = (v1, . . . , vk). Since for j = 1, 2, . . . , k it holds that
(fg)(ej) = ujvj and furthermore (fg)(xi) = f(xi)g(xi) for i = 1, 2, . . . , n, it
follows from Lagrange’s interpolation theorem that the scheme is multiplicative.
Therefore, we can use the generic method described in [4] to bootstrap a protocol
for parallel multiplication from this scheme. For additional details, see [7] or [4].

2.3 Extension Field Multiplication

The other relevant ramp scheme can be found in [4]. With this ramp scheme
it is possible to perform multiplications in a finite field using only communica-
tion and operations over a subfield, reducing the communication cost of every
single multiplication by a multiplicative factor. For the technique to be used it
is required that the finite field has a sufficiently large extension degree k over
a subfield. Furthermore, the corruption tolerance needs to be decreased by an
additive factor 2k.

The scheme works as follows. Let t and k be such that t + 2k − 2 < n/2.
A finite field Fqk = Fq(α) is selected such that |Fq| > n. Let x1, . . . , xn be
distinct non-zero elements from Fq, let a = u0 + u1α + . . . + uk−1α

k−1 ∈ Fqk

be a secret element and define u(X) = u0 + u1X + . . . + uk−1X
k−1 ∈ Fq[X ].

Choose a random polynomial r(X) ∈ Fq[X ] of degree at most t − 1 and define
f(X) = u(X) + r(X) · X2k−1 ∈ Fq[X ].

Clearly, since f has degree t+2k− 2, it is clear that t+2k− 1 shares or more
jointly determine f and hence the secret vector a. As to privacy, let u′(X) ∈
Fq[X ] of degree at most k − 1 be arbitrary and let r′(X) be the polynomial that
evaluates to r(xi) + (u(xi) − u′(xi))/x2k−1

i for t points xi. Then the polynomial
f ′(X) = u′(X) + r′(X) · X2k−1 is consistent with the evaluation of f in these t
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points, but the secret corresponds with u′(X) here. So it is a (t, t+2k−1)-ramp
scheme, with secrets of length k.

Now, when we multiply two such polynomials f(X) = u(X) + r(X) · X2k−1

and g(X) = v(X) + r′(X) · X2k−1, the product polynomial fg has as its first
2k − 1 coefficients homogeneous sums sk =

∑
i+j=k uivj of coefficients in u(X)

and v(X). It is shown in [4] that this suffices for calculating the coefficients of
the secret product in Fqk via linear functions on the local products of the shares.
Therefore, this scheme is also multiplicative and can be used to perform the
secure multiplication over Fqk using shares in Fq. For additional details see [4].

Note that in order to share a secret of length k, the scheme introduces a gap
between the privacy and reconstruction thresholds of size 2k − 1, whereas the
scheme due to Franklin and Yung only requires a gap of size k. In Section 3 we
introduce an improved version of this scheme that matches the latter thresholds.

3 An Initial Observation

A closer examination of the scheme in [4] shows that it uses a secret sharing
polynomial that has a fixed k-size gap between the lower degree coefficients that
relate to the secret and the higher degree coefficients that introduce random-
ness. In fact, this explains the disparity between the parameters of the schemes
described in Sections 2.2 and 2.3.

The observation described in this section allows to remove this disparity and
leads to a scheme with tight parameters that is additionally much easier to
describe than the scheme from Section 2.3, while it achieves the same effect. Due
to its more natural structure, it additionally generalizes over algebraic geometric
curves as demonstrated in Section 4. This leads to low communication atomic
secure multiplication protocols where the base field can now be taken constant
as opposed to linear in the number of players as required by the approach in [4].

The proposed scheme is based on the following theorem, which generalizes
Lagrange’s interpolation theorem to a setting where the evaluation points are
taken from different extension fields of a perfect base field K while the secret
sharing polynomial is taken from K[X ]. The idea is that the evaluation points
get assigned different weights, depending on the extension degree of the smallest
extension field of K in which they occur.

Theorem 1. Let K be a perfect field, and let K denote an algebraic closure of
K. Fix distinct a1, . . . , al ∈ K such that there is no pair ai, aj (i �= j) where aj is
a Galois-conjugate (over K) of ai. For i = 1, . . . , l, let ni denote [K(ai) : K], the
degree of K(ai) over K as a field extension, and let N denote

∑l
i=1[K(ai) : K].

Then, for each b1, . . . , bl with bi ∈ K(ai) (i = 1, . . . , l), there exists a unique
polynomial f(X) ∈ K[X ] such that deg (f) < N and f(ai) = bi, i = 1, . . . , l.

Proof. Let K[X ]<N denote the polynomials in K[X ] of degree smaller than N .
Consider the map

φ : K[X ]<N −→
l⊕

i=1

K(ai), f �→ (f(a1), . . . , f(al)).



456 H. Chen et al.

We want to show that φ is an isomorphism of K-vector spaces. Since the dimen-
sions on both sides are equal, it is sufficient to argue that φ is injective. Indeed,
suppose g maps to 0. Then, for i = 1, . . . , l, g(ai) = 0. Since g ∈ K[X ], g must
be a multiple of the minimal polynomial h of ai in K[x]. The Galois-conjugates
of ai are the roots of h and hence they are roots of g. Because the field is perfect,
h is separable, i.e. all the roots of h are different, and the number of these roots
is equal to ni, so the number of conjugates of ai is ni. Note that ai and aj are
not Galois conjugates for any i, j so g has at least

∑l
i=1 ni = N zeroes in K.

Thus, viewing g as an element of K[X ], we conclude that g ≡ 0.
The new scheme works as follows. Let t and k be such that t + k − 1 < n/2.
A finite field Fqk = Fq[α] is selected such that |Fq| ≥ n. Let x1, . . . , xn be
distinct (not necessarily non-zero) elements from Fq and select e ∈ Fqk such
that [Fq(e) : Fq] = k. The secret sharing is now performed as follows. For a
secret element a ∈ Fqk , we choose a random polynomial f(X) ∈ Fq[X ] of degree
at most t+k−1 such that f(e) = a. The shares are again f(x1), f(x2), . . . , f(xn).

Theorem 2. The previous scheme has (t + k)-reconstruction and t-privacy.

Proof. Reconstruction: Given the value of f in t+k points xi1 , . . . , xit+k
, we can

apply the previous theorem with l = t + k, aj = xij (so nj = 1 and N = t + k),
to see that these shares determine the polynomial and hence the secret.

Privacy: Given the value of f in t points xi1 , . . . , xit take in the previous
theorem l = t + 1, aj = xij for j = 1, . . . , l − 1 and al = e. Then nj = 1
for j = 1, . . . , l − 1 and nl = k, so N = t + k. The theorem shows that for
every possible choice of the secret a ∈ Fqk , there exists a unique polynomial of
degree less than t + k such that f(e) = a and f evaluates to the known values
in xi1 , . . . , xit . 


3.1 Multi-party Computation Secure Against an Eavesdropping
Adversary

We can now use this scheme to perform secure multi-party computation of el-
ements in Fqk using communication and operations over the base field Fq. In
particular, when k = O(n), this results in a secure multiplication protocol for
which O(n2) field elements in Fq need to be communicated, while the multipli-
cation is between elements in Fqk . This corresponds with a communication of
only O(n) field elements in Fqk .

The secure multiplication works as follows. Assume that t + k − 1 < n/2
and that secrets a ∈ Fqk and b ∈ Fqk have been secret shared, resulting in
shares a1, a2, . . . , an and b1, b2, . . . , bn. Due to Theorem 1 applied to the product
polynomial fg there exist constants λ1, λ2, . . . , λn ∈ Fqk such that f(e)g(e) =∑n

i=1 λif(xi)g(xi). Writing this out over the basis {1, α, . . . , αk−1} we find co-
efficients λ

(j)
i ∈ Fq such that πj(f(e)g(e)) =

∑n
i=1 λ

(j)
i f(xi)g(xi), where πj is

the map that maps an element
∑k−1

j=0 wj+1α
j to the coefficient wj . Now every

player pi reshares the element
∑k−1

j=0 λ
(j+1)
i f(xi)g(xi)αj , and it is easy to see
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that due to the linearity of the scheme the players can then locally sum up their
new shares to obtain a share in f(e)g(e).

4 Algebraic Geometric Ramp Schemes

Algebraic geometric ramp schemes were first proposed in [2] and later in [3],
although the latter scheme is not multiplicative. Here we present a new algebraic
geometric ramp scheme, which can be seen as a generalization of the scheme in
[4], in the sense that it also allows to perform multiplication over a finite field
based on operations in a subfield.

Applying some of the algebraic geometric coding techniques of [2] and using
the curves introduced by Garćıa and Stichtenoth [8], we can for instance obtain
families of curves from which we can define strongly multiplicative ramp schemes
with corruption tolerance t with (1/3−ε)n < t < n/3 for any ε > 0 over constant-
sized fields. In particular this implies that we can work with fixed-size shares,
i.e., schemes where the share size is independent of the number of players, which
was impossible to achieve with the scheme from [4].

We next describe the ramp scheme of [2] and introduce our new algebraic
geometric ramp scheme where the dealer uses a high degree rational point on
the curve to allocate the secret. Furthermore, we provide proofs that demon-
strate both schemes are (strongly) multiplicative given a large enough number
of participating players and additionally show how to compute the coefficients
corresponding with the (strong) multiplication property.

4.1 Preliminaries

A very nice overview of most of the algebraic geometry theory that is required
to describe the results in this paper can be found in [2]. Here we briefly reiterate
the key ingredients and in addition introduce the notion of differential form.

Let Fq be a finite field with algebraic closure Fq and let C be an absolutely
irreducible, projective smooth curve defined over Fq with genus g. The function
field Fq(C) contains elements, called rational functions, which can be seen as
maps from the curve C to Fq. The non-zero rational functions have the property
that they can have at most a finite number of poles and zeroes, where the
number of poles equals the number of zeroes when both are counted with the
correct multiplicities.

A divisor is a formal sum D =
∑

P∈C aP ·P with aP ∈ Z for which the support
supp(D), i.e., the set of points P for which aP is nonzero, is finite. Given two
divisors D =

∑
P∈C aP ·P and D′ =

∑
P∈C a′P ·P , we say that D ≥ D′ if aP ≥ a′P

for all the points P on the curve. The degree of a divisor D =
∑

P∈C aP · P is
the sum of its coefficients, i.e., deg(D) =

∑
P∈C aP .

Every rational function f ∈ Fq(C) defines a divisor (f) =
∑

P∈C νP (f) · P ,
where νP can be seen as a function that counts the number of zeroes or poles of
f with the correct multiplicity for every point P . Clearly, deg(f) = 0 for every
f ∈ Fq(C).
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The set Ω(C) contains all rational differential forms on C.1 Every differential
form η ∈ Ω(C) defines a divisor (η), where every pair of such differential forms
η, η′ ∈ Ω(C) gives rise to linearly equivalent divisors, i.e., (η′) = (η) + (f) for
some f ∈ Fq(C). Any such divisor K defined by a differential form is called a
canonical divisor. For any canonical divisor K, we have that deg(K) = 2g − 2.

The residue maps ResP : Ω(C) → Fq assign to every differential form η ∈ Ω(C)
an evaluation in the point P ∈ C, where ResP (η) = 0 if η does not have a pole
in P and ResP (η) �= 0 if η has a pole in P of multiplicity one. As with divisors
based on rational functions, the multiplicity of a zero or pole in η can be read
off from the coefficient at P in the formal divisor sum (η) =

∑
P∈C aP · P .

Furthermore, the Residue Theorem states that for any η ∈ Ω(C) we have that∑
P∈C ResP (η) = 0.
For any divisor D, the corresponding Riemann-Roch space L(D) is defined

by L(D) = {f ∈ Fq(C) | (f) + D ≥ 0}. This is a vector space over Fq and
its dimension is denoted 
(D). For any canonical divisor K we have 
(K) = g,
and for any divisor D with deg(D) < 0 we have that 
(D) = 0. More generally,
the Riemann-Roch Theorem states that for any divisor D we have that 
(D) =

(K −D)+deg(D)−g+1. This implies in particular that 
(D) = deg(D)−g+1
when deg(D) > 2g − 2.

Similarly, we can for any divisor D define the space Ω(D) by

Ω(D) = {ω ∈ Ω(C)\{0} | (ω) + D ≥ 0} ∪ {0}.

There exists an isomorphism L(K + D) � Ω(D) via the map f �→ fη, where
(η) = K, which allows us to apply the Riemann-Roch Theorem to calculate the
dimension of Ω(D).

An Fq-rational point on C is a point that can be represented using coordinates
in Fq. An Fq-rational divisor is a divisor for which the support is invariant under
the Galois group Gal(Fq/Fq). Note that such a divisor can have support outside
of the Fq-rational points on C. The Riemann-Roch space of an Fq-rational divisor
admits a basis defined over Fq, and we can consider the Fq-linear span of this
basis. We refer to functions in such an Fq-linear span as Fq-rational functions.
Similarly, we can define the subset of Fq-rational differential forms in a set Ω(C).
In the sequel all rational functions and differential forms are Fq-rational, unless
otherwise specified.

4.2 Interpolation in Riemann-Roch spaces

The following result is the algebraic geometry counterpart of Theorem 1 corre-
sponding with an arbitrary algebraic curve C.

Theorem 3. Let P1, . . . , Pl be points on the curve C such that Pi and Pj are
not conjugate for any i �= j. For i = 1, . . . , l let ni be the smallest number such

1 Rather than formally defining differential forms here, we restrict the description to
an overview of their relevant properties. For a formal description of differential forms,
the interested reader is referred to [11].
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that Pi is Fqni -rational and define N =
∑l

i=1 ni. Let G be a rational divisor
such that supp G

⋂
{P1, . . . , Pl} = ∅. Then:

1. If N ≥ deg(G) + 1, for any (y1, . . . , yl) with yi ∈ Fqni there exists at most
one f ∈ L(G) such that f(Pi) = yi for all i = 1, . . . , l

2. If N ≤ deg(G) − 2g + 1, for any (y1, . . . , yl) with yi ∈ Fqni there exists at
least one f ∈ L(G) such that f(Pi) = yi for all i = 1, . . . , l. Furthermore,
the number of such rational functions is the same for any (y1, . . . , yl).

Proof. Let φ : L(G) →
⊕l

i=1 Fqni , defined by f �→ (f(P1), . . . , f(Pl)). For
i = 1, . . . , l, let P

(0)
i = Pi, . . . , P

(ni−1)
i be the ni conjugates of Pi under the

Frobenius automorphism over Fq. Observe that
∑ni−1

j=0 P
(j)
i is a rational point,

as any element of the group Gal(Fq/Fq) permutes the conjugates of Pi. Call
A = G −

∑n
i=1(

∑ni−1
j=0 P

(j)
i ). Then Ker(φ) = L(A). Observe that deg(A) =

deg(G) − N . Then

1. If N ≥ deg(G) + 1, deg(A) < 0 and 
(A) = 0. Hence φ is injective, which
proves the property.

2. If N ≤ deg(G) − 2g + 1, then deg(A) ≥ 2g − 1 and we can invoke Riemann-
Roch theorem to conclude that l(A) = deg(A)−g+1 = deg(G)−N −g+1 =
l(G) − N . We know that dim(Imφ) = dim(L(G)) − dim(Kerφ) = l(G) −
l(A) = N . Therefore φ is surjective. 


4.3 An Algebraic Geometric Ramp Scheme with Parallel
Multiplication [2]

Let D = {Q1, . . . , Qk, P1, . . . , Pn} be a set of Fq-rational points on the curve C
and G be an Fq-rational divisor of degree 2g + t + k − 1 with support disjoint
from D. Note that since G can have support outside the Fq-rational points, it is
possible to include all Fq-rational points on C in D. Every point Pi corresponds
to a player pi and every point Qj corresponds to the jth position of a secret
vector, as follows. To share the secret vector (s1, . . . , sk) ∈ F

k
q the dealer takes a

random rational function f ∈ L(G) such that f(Qi) = si for all i = 1, . . . , k and
sends player pi the value f(Pi) ∈ Fq as his share.

The scheme described above fits into the formal matricial definition of ramp
scheme given in Section 2.1, which is useful for the following sections. Let
{f1, . . . , fu} be a basis of L(G) such that fi(Qj) = 1 if i = j and fi(Qj) = 0 if
i �= j, for i = {1, . . . , u} and j = {1, . . . , k}. It is easy to see that we can always
choose such a basis due to Theorem 3. Indeed, we have that k < deg(G)−2g+1 =
t + k + 1 so the theorem ensures the existence of such fi for i = 1, . . . , k. Now
simply take {fk+1, . . . , fu} as a basis of L(G −

∑k
i=1 Qi), which has dimension

u − k according to the Riemann-Roch Theorem.
Next, define the matrix M whose (i, j) entry is fj(Pi). If we take a vector

v = (s1, . . . , sk, rk+1, . . . , rn) and multiply any row of Mi by v, we obtain the
value g(Pi), where g =

∑k
j=1 sjfj +

∑n
j=k+1 rjfj. It holds that g(Qi) = si for

any i = 1, . . . , k.
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Theorem 4. The description above defines a ramp scheme with t-privacy and
(2g + t + k)-reconstruction.

Proof. It can be easily seen as a special case of Theorem 3 that any rational
function in L(G) is uniquely determined by its evaluations in deg(G)+1 rational
points (this is exactly Lemma 1 of [2]). In our case, deg(G) = 2g + t + k − 1 so
any 2g + t + k players can reconstruct the rational function and thus the secret
vector.

Next we prove privacy. Let A be any set of t players. We only need to argue
that for any secret vector s = (s1, . . . , sk) ∈ F

k
q there exists a rational function

f such that f(Qi) = si and the evaluation of f in the points corresponding to
the players in A is zero. Theorem 3 shows us that this is true because t + k =
deg(G) − 2g + 1. 


4.4 A New Algebraic Geometric Ramp Scheme with Extension
Field Multiplication

Let D = {P1, . . . , Pn} again be a set of Fq-rational points on the curve C such
that supp(G)

⋂
D = ∅, and additionally let Q be a point on the curve outside

the support of G that is Fqk -rational and not Fqd -rational for any integer d < k.
Let {e1, e2, . . . , ek} be a basis of Fqk over Fq. To share the secret vector

(s1, . . . , sk), the dealer selects a random rational function f ∈ L(G) such that
f(Q) = s1e1 + . . . + skek ∈ Fqk , and sends player pi the value f(Pi) ∈ Fq as his
share.

We can also represent this ramp scheme by a matrix. In this case we take a
basis {f1, . . . , fu} of L(G) such that fi(Q) = ei for i = 1, . . . , k and fi(Q) =
0 for i = k + 1, . . . , n. It can again be shown that such a basis exists using
Theorem 3. We have only one point of degree k and k ≤ deg(G) − 2g + 1, so
we know such fi exist for i = 1, . . . , k, and we can take {fk+1, . . . , fu} a basis
of L(G − Q −

∑k−1
i=1 Qi), where Q1, Q2, . . . , Qk−1 are the conjugate points of Q

under the Frobenius automorphism over Fq.
Let M be the matrix M whose (i, j) entry is fj(Pi). As before, if we take

a vector v = (s1, . . . , sk, rk+1, . . . , rn) and multiply any row of Mi by v, we
obtain the value g(Pi), where g =

∑k
j=1 sjfj +

∑n
j=k+1 rjfj and it holds that

g(Q) =
∑k

i=1 siei.

Theorem 5. The description above defines a ramp scheme with t-privacy and
(2g + t + k)-reconstruction.

Proof. As before, both properties are a direct consequence of Theorem 3. 


4.5 Multiplication

Both of the schemes thus described introduce their own form of multiplication.
For the parallel multiplication scheme, given two vectors s = (s1, s2, . . . , sk) and
t = (t1, t2, . . . , tk), we can define the product s � t = (s1t1, s2t2, . . . , sktk).
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For the extension field multiplication scheme, given any two vectors s =
(s1, s2, . . . , sk) and t = (t1, t2, . . . , tk), representing the elements s = s1e1+s2e2+
. . .+skek ∈ Fqk and t = t1e1+t2e2+. . .+tkek ∈ Fqk , the product of these two ele-
ments in the field Fqk is some element u = u1e1+u2e2+. . .+ukek ∈ Fqk for some
ui ∈ Fq. We can therefore define the product of s and t as s�t = (u1, u2, . . . , uk).

We next prove that, given enough players, the two schemes are multiplicative
and strongly multiplicative with regard to their respective multiplications.

Theorem 6. The parallel multiplication scheme is multiplicative when n ≥ 2t+
4g + 2k − 1 and strongly multiplicative when n ≥ 3t + 4g + 2k − 1.

Proof. We need to show that for any i = 1, . . . , k there are coefficients
λ

(i)
1 , . . . , λ

(i)
n such that for any f, g ∈ L(G), f(Qi)g(Qi) =

∑n
j=1 λ

(i)
j f(Pj)g(Pj).

Note that if f and g are in L(G) their product is in the space L(2G).
According to Theorem 3 we have that if deg(2G) + 1 ≤ n the mapping φ :

L(2G) →
⊕n

j=1 Fq defined by h �→ (h(P1), . . . , h(Pn)) is linear and injective, so
it has an inverse and it is also linear. Furthermore, the maps ψi : L(2G) → Fq

defined by h �→ h(Qi) are also linear for any i ∈ {1, . . . , k}. So the composition of
φ−1 and any ψi is linear. Therefore fg(Qi) is a linear combination of f(Pj)g(Pj)
for any f and g in L(G). Finally observe that the condition deg(2G) + 1 ≤ n
holds whenever 4g + 2t + 2k − 1 ≤ n. 


Similar to the simpler finite field setting the coefficients λ
(i)
j can be explicitly

determined. We now describe how to obtain these using the Residue Theorem
(see [11]).

Determining the coefficients λ
(i)
j . A consequence of the Residue Theorem

is that for any function ϕ in L(2G) and any differential ω in Ω(Qi +
∑n

j=1 Pj −
2G) the relation 0 =

∑n
j=1 resPj (ϕω) + resQi(ϕω) =

∑n
j=1 ϕ(Pj)resPj (ω) +

ϕ(Qi)resQi(ω) holds. Therefore, if there exists a nonzero element ω in Ω(Qi +∑n
j=1 Pj − 2G), applying the theorem for the rational function fg gives a lin-

ear relation between the values fg(Qi) and fg(Pj) for j = 1, . . . , n for some
coefficients which do not depend on f and g. If we can additionally ensure
that the coefficient resQi(ω) is non-zero, then we have a relation of the form

fg(Qi) =
∑n

j=1 − resPj
(ω)

resQi
(ω)fg(Pj). Thus, λ

(i)
j = − resPj

(ω)

resQi
(ω) and we are done.

It is a known fact that we can define an isomorphism of Fq-vector spaces
φ : L(K + Qi +

∑n
j=1 Pj − 2G) → Ω(Qi +

∑n
j=1 Pj − 2G) defined by φ(h) = hη

where K is a canonical divisor and η is a differential such that div(η) = K. It
suffices to find an element h in L(K +Qi +

∑n
j=1 Pj −2G) with a first order pole

in Qi. Hence, we have to show that there exists an element in the difference of
the spaces L(K + Qi +

∑n
j=1 Pj − 2G) and L(K +

∑n
j=1 Pj − 2G). Applying the

Riemann-Roch theorem for n ≥ 2t + 4g + 2k − 1 shows us that the dimensions
of these spaces differ and the result follows.

Theorem 7. The extension field multiplication scheme is multiplicative when
n ≥ 2t + 4g + 2k − 1 and strongly multiplicative when n ≥ 3t + 4g + 2k − 1.
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Proof. Now we need to show that for any i = 1, . . . , k there exist coefficients
λ

(i)
1 , . . . , λ

(i)
n in Fq such that for any f, g ∈ L(G), πi(f(Q)g(Q)) =

∑n
j=1 λ

(i)
j

f(Pj)g(Pj). An argument similar to that in Theorem 6 shows that, for n ≥ 2t +
4g+2k−1, there exist elements rj ∈Fqk such that f(Q)g(Q)=

∑n
j=1 rjf(Pj)g(Pj).

Now, note that rj =
∑k

i=1 λ
(i)
j ei, which gives us the desired result. 


5 Multi-party Computation Secure Against an Active
Adversary

In the sequel we present the techniques that can be used to construct multi-
party computation protocols secure against an active adversary for the algebraic
geometric ramp schemes presented earlier. Due to the lack of structure in these
schemes compared to the simpler polynomial-based approaches we need to in-
troduce some new techniques here. Most of these techniques revolve around the
construction of some specialized variants of VSS, which are then employed to
ensure that the players honestly participate in the protocol.

6 A VSS Protocol for the Algebraic Geometric Schemes

When the number of players is sufficiently large, we can perform efficient recon-
struction of the secret in the presence of corrupted shares. This is due to the
strong relation between our schemes and Goppa error correction codes [11]. In
both schemes, the set of possible share vectors forms a Goppa code over Fq of
length n (the number of players) with minimum distance larger than or equal
to n − deg(G). We know that a code with minimum distance d allows for recon-
struction of a codeword in the presence of t errors, provided that 2t + 1 ≤ d.
Furthermore, it is known how to efficiently correct such errors for Goppa codes.
We have the following property:

Property 1. Assume that a honest dealer shares a secret vector with one of
the algebraic geometric ramp schemes in the previous section. If n ≥ 3t+2g+k,
honest players can efficiently reconstruct the secret vector even when up to t
corrupted players provide incorrect shares.

Note that this bound is weaker than that required for strong multiplicativity for
any of the two schemes in Section 4.

We now describe the general procedure used to verifiably secret share a vec-
tor with a ramp scheme. Recall that in the usual definition of a verifiable secret
sharing (VSS), the VSS ensures that at the end of the sharing either all honest
players hold consistent shares in a value s or the dealer is disqualified. Addi-
tionally, when the dealer is not disqualified, it is guaranteed that the players
can uniquely reconstruct the secret s by pooling their shares in s, even when
some of the dishonest players provide an incorrect share. We follow this standard
definition of VSS, except that we allow the secret to be a vector.
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6.1 Definitions and Notation

We need to introduce some new notation. Given an Fq-vector space V with base
{v1, . . . , vu}, consider the tensor product V ⊗V . The elements in the space V ⊗V
are formal sums

∑
i,j aij(vi ⊗ vj) with aij ∈ Fq. The symmetric tensor S2(V )

is defined to be the subspace consisting of all the elements in V ⊗ V such that
aij = aji for all i, j ∈ {1, . . . , u}.

We define now the space S2(L(G)). Given an element F in this space, we can
evaluate it in any pair (P, Q) of points on the curve, where if F =

∑
i,j aij(fi⊗fj)

we have F (P, Q) =
∑

i,j aij(fi(P )fj(Q)). Now, if Pi is the point corresponding
to the player pi, we define Fi to be the rational function in L(G) such that
Fi(P ) = F (Pi, P ).

For the parallel multiplication scheme from Section 4.3 we define F0 to be
the rational function defined by F0(P ) = F (Q1, P ). Furthermore, for the exten-
sion field multiplication scheme from Section 4.4, let F0 be the rational function
defined as follows. Take the function F ′0(Y ) = F (Q, Y ) =

∑
i,j aijfi(Q)fj(Y )

in the variable Y that runs over the points on the curve. Note that the coef-
ficients aijfi(Q) belong to Fqk . Now we can define the rational function F0 =∑

i,j π1(aijfi(Q))fj , where the function π1 is the projection function that has
been described in Section 3.1. We now have the following symmetry property,
which is easily verified.

Proposition 1. We have that Fi(Pj) = Fj(Pi) and Fi(Q1) = F0(Pi) for the
parallel multiplication scheme (respectively, π1(Fi(Q)) = F0(Pi) for the extension
field multiplication scheme) for any F ∈ S2(L(G)) and i, j ∈ {1, . . . , n}.

6.2 The VSS Scheme

Conceptually, the rational function F0 plays the same role in the VSS as the
secret sharing polynomial does for Shamir’s scheme. We now describe how to
perform the VSS for the two algebraic geometric schemes.

First, given a secret vector (s1, s2, . . . , sk) and a divisor D (for our purposes
D is always G or 2G) we define the set S(s1,...,sk)(D) = {f ∈ L(D) : f(Ql) =
sl ∀l = 1, . . . , k} for the parallel multiplication scheme and S(s1,...,sk)(D) = {f ∈
L(D) : f(Q) = s1e1 + s2e2 + · · · + skek} for the extension field multiplication
scheme. The set S(s1,...,sk)(D) forms the sets of rational functions from which F0

can be drawn when the secret vector is (s1, . . . , sk).
Let us also define S(s1,...,sk)(D) = {F ∈ S2(L(D)) : F0 ∈ S(s1,...,sk)(D)} for

any of both schemes. If the dealer now wants to VSS a vector (s1, s2, . . . , sk)
he must first select a uniformly random element F in S(s1,...,sk)(G) and then
send player pi the rational function Fi ∈ L(G) for i = 1, 2, . . . , n. After this
the players execute a number of steps to ensure the consistency of the data
that they received from the dealer. These steps are very similar to those for the
Shamir-based VSS described in [5] and we do not enumerate them here. The
value Fi(Q1) = F (Pi, Q1) = F0(Pi) (respectively π1(Fi(Q)) = F0(Pi)) should be
seen as player pi

′s share in the parallel multiplication scheme (respectively the
extension field multiplication scheme).
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We next prove that this VSS scheme can always be applied and that it provides
privacy in the presence of any adversary controlling up to t players. Unique
reconstruction of the secret for the honest players follows from an argument
similar to that for the Shamir-based VSS scheme and is omitted here.

For the privacy statement, we first assume without loss of generality that the
rational share functions Fi that adversarial players receive are all zero. For any
subset B ⊂ {P1, . . . , Pn} with |B| = e ≤ t, we define the sets WB(D) = {f ∈
L(D) : f(Pj) = 0 ∀j ∈ B} and WB(D) = {F ∈ S2(L(D)) : Fj = 0 ∀j ∈ B}
respectively denoting the potential secret sharing functions and rational share
functions corresponding to this assumption. Note that in particular when e = 0,
we have WB(D) = L(D) and WB(D) = S2(L(D)).

For the privacy statement to hold, we mainly need to prove that we have
|S(s1,...,sk)(G) ∩ WB(G)| = |S(s′

1,...,s′
k)(G) ∩ WB(G)| for any two secret vectors

(s1, . . . , sk) and (s′1, . . . , s
′
k). To prove that the VSS can always be applied we

need to prove that |S(s1,...,sk)(G)| > 0 for any secret vector (s1, . . . , sk). Both
statements can be deduced from the following theorem:

Theorem 8. For any adversary set B and any secret vector (s1, . . . , sk), the
mapping S(s1,...,sk)(G) ∩ WB(G) → S(s1,...,sk)(G) ∩ WB(G) given by F �→ F0 is
surjective.

Proof. We here give the proof for the parallel multiplication scheme. The proof
for the extension field multiplication scheme is very similar and therefore omitted
here.

Let f be an element of S(s1,...,sk)(G) ∩ WB(G). If s1 �= 0 then take F =
1
s1

(f ⊗ f). We have that Fj = 1
s1

f(Pj)f = 0 for any player pj ∈ B because
f ∈ WB(G), so F ∈ WB(G). Moreover F0 = 1

s1
f(Q1)f = f .

If s1 = 0 then select an h ∈ L(G) such that h(Q1) = 1 and h(Pj) = 0 for all
j ∈ B. Such h exists due to the privacy properties of the parallel multiplication
scheme described in Section 4.3. Now define F = f ⊗ h + h ⊗ f . We have
F0 = h(Q1)f + f(Q1)h = f and Fj = h(Pj)f + f(Pj)h = 0 ∀ Pj ∈ B. This
completes the proof. 

If we take B = ∅, Theorem 8 implies that we can always VSS a secret vector
since it was already clear from Sections 4.3 and 4.4 that we can always secret
share a secret vector. As for the privacy property, observe that as a consequence
of the surjectivity of the mapping, for any set B in the adversary structure and
any secret vector (s1, . . . , sk) we know that S(s1,...,sk)(G)∩WB(G) is non-empty.
Now, given the secret vectors (s1, . . . , sk) and (s′1, . . . , s

′
k), take any element F in

S(s′
1−s1,...,s′

k−sk)(G) ∩ WB(G). We have that addition by the function F induces
a bijective mapping between the sets S(s1,...,sk)(G)∩WB(G) and S(s′

1,...,s′
k
)(G)∩

WB(G).
It can be seen, using Property 1 and the proof for the consistency checks in [5],

that the VSS protocol additionally guarantees consistency between the shares of
the honest players whenever n ≥ 3t + 2g + k.
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7 Low Complexity MPC for Algebraic Geometric Ramp
Schemes

In this section we demonstrate multi-party computation protocols secure against
an active adversary based on the algebraic geometric ramp schemes from Sec-
tion 4, where we assume that n is sufficiently large so that we can perform
efficient reconstruction of the secret vectors for rational functions in L(2G) and
we are also able to perform VSS over L(2G). Concretely, this is ensured when
n ≥ 4t + 4g + 2k − 1.

The protocols in this section require the communication of O(n3) field ele-
ments while operating on vectors consisting of k elements, which matches that
attained for the special case detailed in [4]. However, since we lack the convenient
structure that the polynomials provided in [4], we required some new specialized
forms of VSS to ensure that the players honestly follow the protocol. Below, we
provide the details of the special types of VSS that we require.

7.1 Tailored VSS

It is possible to place some restrictions on the randomly selected element F ∈
S2(L(2G)) that is used for the VSS in order to ensure to the players that the
VSS’ed secret vector is of a special form. Here two types of structural restrictions
are relevant for our results; one where some positions in the secret vector are
fixed to zero and one where all positions in the secret vector contain the same
value. We also look at the combination of these two types, where all-zero vectors
replace the secret vectors. This particular variant is used to a create a “one-
time-pad” that is used to securely verify the equality of the secret vectors in two
secret sharings, and is invoked in a slightly different manner as explained below.

We additionally note the following about the special types of VSS before
providing the details in the following sections. In Section 7.2, whenever the
secret vector is non-zero, the special types of VSS are used to generate rational
functions in L(G). On the other hand, when the special VSS is used to generate
a one-time-pad, the resulting rational functions are in L(2G). Note that, since
L(G) ⊂ L(2G), we can use a basis for L(2G) of the form f1, f2, . . . , fu′ , where
the rational functions f1, f2, . . . , fu form the selected basis for L(G). Note also
that S2(L(G)) can be embedded in S2(L(2G)) in the natural way.

Fixing zeros and producing repetition. The restriction is imposed as follows
for the case where we introduce zero’s in the vector such that the first position of
the vector remains non-zero. Let I ⊂ {1, . . . , k} be a set consisting of positions in
the vector that should be zero. Let {uv} be a base of L(2G) of the appropriate form
as described in Sections 4.3 and 4.4 and VI(2G) ⊂ L(2G) be spanned by {uv}v/∈I .
Then VI(2G) consists of all functions of L(2G) which are zero in Qj for j ∈ I. Anal-
ogously define VI(2G) = {F ∈ S2(L(2G)) : Fj(Ql) = 0 ∀j = 0, . . . , n, l ∈ I},
which can be seen as a bivariate version of this set. If we now VSS using elements
in VI(2G) not only does the secret rational function belong to VI(2G), but so do
all rational functions that are received as shares by the players.
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We need a similar kind of restriction for the generation of one-time-pads in
L(2G) by a certain player pi, except that in this case we will require that all the
elements of VI(2G) have their first coordinate equal to zero. Therefore given an
F ∈ VI(2G), we have that F0 = 0 and this cannot be used as a one-time-pad due
to it’s lack of randomness. We propose to use the rational function Fi that player
pi receives as his share instead, where the evaluations Fj(Pi) = Fi(Pj) of the
players pj act as the shares in Fi.2 It remains to show that we can always VSS a
random but restricted rational function Fi in this way, and that this procedure
does not leak additional useful information to the adversary. The first property
is a consequence of the following theorem.

Theorem 9. Let B be a set in the adversary structure. The mapping VI(2G) ∩
WB(2G) → VI(2G) ∩ WB(2G) given by F �→ Fi is surjective.

The proof is very similar to that of Theorem 8 and omitted here due to space
considerations. As a consequence of this theorem, given any rational function
f ∈ VI(2G) there exists at least one F ∈ VI(2G) such that Fi = f . Moreover,
the VSS does not add new information to the adversary about Fi, as shown in
the following theorem.

Theorem 10. Let B be a set in the adversary structure and F any uniformly
randomly selected element of VI(2G) under the restrictions given above. Then,
the values (Fj)j∈B add no further information about Fi to the information given
by Fi(Pj).

Proof. It suffices to prove that for every rational function f ∈ VI(2G) such
that f(Pj) = 0 for all j ∈ B, we can find an F in VI(2G) such that Fj = 0 for
all j in B and Fi = f . This is again a consequence of Theorem 9. 

The repetitive type of structural restriction is only needed for the parallel mul-
tiplication scheme and consist of the following. A player wants to VSS a vector
(s, s, . . . , s) of k equal elements in such a way that the coefficients of the rational
share functions F1, F2 and Fn at the basis elements f1, . . . , fk are also equal.

Let us define the sets Rs(D) = {F ∈ S2(L(D)) : F0(Q1) = · · · = F0(Qk) =
s and Fj(Q1) = · · · = Fj(Qk) ∀j = 0, . . . , n} and Rs(D) = {f ∈ L(D) : f(Q1) =
· · · = f(Qk) = s}. Privacy and existence can, similar to before, be deduced from
the following theorem.

Theorem 11. The mapping Rs(G) ∩ WB(G) → Rs(G) ∩ WB(G) given by F �→
F0 is surjective for any s ∈ Fq.

We omit the proof, as it is very similar to that of Theorems 8 and 9.

Creating a default sharing for (λ
(1)
i , λ

(2)
i , . . . , λ

(k)
i ). Consider the vec-

tor λi = (λ(1)
i , λ

(2)
i , . . . , λ

(k)
i ). We here create a default ramp sharing of this

2 This is not known to be possible in the space L(G) as defined here, but any encom-
passing space L(G′) of larger dimension with supp(G′)∩D = ∅ suffices. In particular
this can be done in the space L(2G).
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(public) vector that is used later on. To do so, we take the rational function
λi =

∑k
j=1 λ

(j)
i fj ∈ L(G), such that the share of player pj is λi(Pj). Note that

in the parallel multiplication scheme λi(Q�) = λ
(�)
i , while in the extension field

multiplication scheme λi(Q) =
∑k

l=1 λ
(�)
i e�. This sharing is later used to create

VSS’ed shares in the vector (λ(1)
i y, λ

(2)
i y, . . . , λ

(k)
i y) in the space L(2G) from a

VSS of y in the space L(G).

7.2 The MPC Protocols Secure Against an Active Adversary

As usual, addition and multiplication with a constant can be performed locally
by the players. Therefore, the main focus is on the initialization, secure multipli-
cation and reconstruction parts of the protocol. During the multiplication part
of the protocol, the special types of VSS that were introduced in Section 7.1
are used to force the dishonest players to follow the protocol honestly. Due to
this, the protocol can basically be seen as an application of the protocol secure
against an eavesdropping adversary enhanced with checking information that
ensures that players perform the correct steps. We now present the details of the
main protocol parts.

Initialization. The dealer verifiably secret shares s, t ∈ F
k
q using uniformly

random elements F ∈ Ss, G ∈ St, resulting in rational functions fi := Fi

and gi := Gi for every player pi and secret sharing functions f0 := F0 and
g0 := G0. For the parallel multiplication scheme we denote fi0 := fi(Q1) and
gi0 := gi(Q1) and similarly for the extension field multiplication scheme we
denote fi0 := π1(fi(Q)) and gi0 := π1(gi(Q)) for i, j = 1, 2, . . . , n.

Using this notation it is to be understood that fi0 is the actual share of player
pi in the scheme based on F and similarly for the gi0 and G. Furthermore, for
both schemes we denote fij := fi(Pj) and gij := gi(Pj) for i, j = 1, 2, . . . , n,
where the share fij can be seen as the share of player pi in the rational function
Fj held by player pj . We also use this convention of using lower case letters to
denote the shares and rational functions for the other VSSes introduced in the
protocols below.

Multiplication. The following two protocols describe the main parts of the
multiplication protocol for the parallel multiplication scheme. After proving their
properties, we then sketch the changes required for the extension field multipli-
cation scheme. The general structure of the multiplication protocol is as follows.
First, every player pi simultaneously:

1. Reshares the product aibi of his shares ai and bi in the VSS of the secret
vectors that are to be multiplied in a special format depending on the scheme
involved.

2. Reshares his contribution λiaibi = (λ(1)
i aibi, λ

(2)
i aibi, . . . , λ

(k)
i aibi) in the

output of the multiplication, where the validity of this resharing is verified
using the special resharing created in the previous step.
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After this the players can add up their shares in the contributions λiaibi of
the players to obtain shares in the product s � t =

∑n
i=1 λiaibi. Below these

subprotocols are listed for the respective secret sharing schemes.

Protocol 1: (Parallel multiplication) Resharing the input of player pi

Input: Two VSSes with elements F, G ∈ S2(L(G)).
Output: A VSS with D ∈R Rs(G) with s = fi0gi0 or a disqualification for player
pi.
Protocol:

1. Player pi VSSes D ∈R Rs(G).
2. Player pi VSSes S ∈R V{1}(2G).
3. The players publicly verify that s − d0(Q1) + si0 = 0. If not, player pi is

disqualified.

Protocol 2: (Parallel multiplication) Computing contribution player
pi

Input: A VSS with D ∈ Rs(G).
Output: A VSS with Hi ∈R S(λis)(G) or a disqualification for player pi.
Protocol:

1. The players locally generate shares λj in the default sharing of λi.
2. Player pi VSSes Hi ∈R S(λis)(G).
3. Player pi VSSes T ∈R V{1,2,...,k}(2G).
4. The players verify that [λ0d0 − hi

0 + ti](Q�) = 0 for 
 = 1, 2, . . . , k. If not,
player pi is disqualified.

We now prove that Protocol 1 is private and correct. Since the privacy and
correctness proofs for the other protocols are very similar, these are omitted.

Theorem 12. At the end of Protocol 1, either player pi has been disqualified,
or the output is a sharing of the correct form.

Proof. The main claim to be verified is that d0(Q�) = fi(Q1)gi(Q1) for j =
1, 2, . . . , k if player pi is not disqualified at the end of the protocol. We have
fi(Q1)gi(Q1) − d0(Q1) + si(Q1) = 0 iff fi(Q1)gi(Q1) = d0(Q1).

Due to the applications of VSS, every player pj holds a value [figi−d0+si](Pj)
in the rational function [figi − d0 + si]. The rational function [figi − d0 + si]
and the evaluations held by the players now define a ramp sharing scheme over
L(2G) and from our assumptions on the number of players, we know that the
players can efficiently and correctly reconstruct the value [figi − d0 + si](Q1)
from the pooling of their shares. Due to the special VSS structure used for S,
the claim now follows. 


Theorem 13. If player pi is honest, pooling the shares fijgij −d0(Pj)+sij leaks
no additional information on figi or d0.

Proof. Due to the privacy properties of the secret sharing scheme we can first
assume wlog that the shares (dj)j∈A, (fijgij)j∈A, (sij)j∈A of the adversary in
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the three sharings are all equal to zero. The adversary knows a priori that figi ∈
L(2G) ∩ WB(2G), si ∈ V{1}(2G) ∩ WB(2G) and d0 ∈ Rs(G) ∩ WB(G) for some
s he does not know. He also knows that figi − d0 ∈ V{1}(2G) ∩ WB(2G). We
must prove that pooling the shares, and therefore learning the rational function
h = figi − d0 + si, adds no further information to this knowledge.

To do so we prove that for any d ∈ Rs(G) ∩ WB(G), and f, g ∈ L(G) such
that fg ∈ L(2G) ∩ WB(2G) and fg(Q1) = i(Q1), there exist F, G ∈ S2(L(G)),
I ∈ Rs(G) ∩ WB(G) and S ∈ V{1}(2G) ∩ WB(2G), such that si0 = 0, fi = f ,
gi = g, d0 = d and figi − d0 + si = h. As a particular case of Theorem 8 we
can see that there exist F, G ∈ S2(L(G)) and D ∈ Rs(G) ∩ WB(G) such that
fi = f , fi = g, d0 = d. Finally take z = h− figi +d0 which is a rational function
in V{1}(2G) ∩ WB(2G). As a consequence of Theorem 9 we can show that there
exists S ∈ V{1}(2G) ∩ WB(2G) with si = z and that completes the proof. 

We now briefly describe the adjustments that need to be made to the protocols
above in order to obtain equally efficient secure protocols for the extension field
multiplication. The most important modification is that whereas in the previ-
ously listed protocols every player pi VSSes the product s of his local shares
using an element in Rs(G), for the extension field multiplication scheme the
VSS needs to use an element in S(s,0,...,0). The reason for this is that in the sec-
ond protocol this allows multiplication with the public sharing for λi in order to
locally create a VSS of λis in L(2G), similar to what is done in Protocol 2. The
second change, which is also required due to the differing structures of the two
schemes, is that in the second scheme the coefficients of the secret vector are ac-
cessed via the projection maps π1, π2, . . . , πk, which requires small adjustments
in the final verification steps of the two protocols.

Share construction. Every player pj locally sums his rational function shares
Hi

j , resulting in a rational function share Hj =
∑n

i=1 Hi
j in the product s � t.

7.3 Complexity Analysis of the Multiplication Protocol

During the multiplication protocol every player performs a constant number of
VSSes, where every VSS requires O(n2) communication. Therefore, the multi-
plication part requires O(n3) communication for k elements.
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Abstract. Consider an abstract storage device Σ(G) that can hold a single el-
ement x from a fixed, publicly known finite group G. Storage is private in the
sense that an adversary does not have read access to Σ(G) at all. However, Σ(G)
is non-robust in the sense that the adversary can modify its contents by adding
some offset ∆ ∈ G. Due to the privacy of the storage device, the value ∆ can only
depend on an adversary’s a priori knowledge of x. We introduce a new primitive
called an algebraic manipulation detection (AMD) code, which encodes a source
s into a value x stored on Σ(G) so that any tampering by an adversary will be de-
tected. We give a nearly optimal construction of AMD codes, which can flexibly
accommodate arbitrary choices for the length of the source s and security level.
We use this construction in two applications:

– We show how to efficiently convert any linear secret sharing scheme into a
robust secret sharing scheme, which ensures that no unqualified subset of
players can modify their shares and cause the reconstruction of some value
s′ �= s.

– We show how to build nearly optimal robust fuzzy extractors for several nat-
ural metrics. Robust fuzzy extractors enable one to reliably extract and later
recover random keys from noisy and non-uniform secrets, such as biomet-
rics, by relying only on non-robust public storage. In the past, such construc-
tions were known only in the random oracle model, or required the entropy
rate of the secret to be greater than half. Our construction relies on a ran-
domly chosen common reference string (CRS) available to all parties.

1 Introduction

We consider an abstract storage device Σ(G) that can hold a single element x from a
fixed, publicly known finite (additive) group G. Storage is private in the sense that an
adversary does not have read access to Σ(G) at all. However, Σ(G) allows tampering
in the sense that an adversary may manipulate the stored value x by adding some offset
∆ ∈ G of his choice. As a result, Σ(G) stores the element x + ∆ ∈ G. Due to the

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 471–488, 2008.
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privacy of the storage device, the value ∆ can only depend on an adversary’s a priori
knowledge of x. For instance, one-time-pad encryption can be understood as such a
storage device: it hides the message perfectly, but an adversary can add (bitwise-xor)
a string to the message without being detected. Of course, by itself, this example is
not very interesting, since it requires some additional private and tamper-proof storage
for the one-time pad key. 1 However, in the two applications discussed below, no other
private or tamper-proof storage is available and hence we will need to use Σ(G) alone
to achieve authenticity.

1.1 Linear Secret Sharing Schemes

In a linear secret sharing scheme (e.g. Shamir’s secret sharing [24] and many others) a
secret s is distributed among n players so that each player gets some algebraic share of
the secret. Any qualified subset of the players can pool their shares together and recover
s by means of a linear transformation over the appropriate domain while any unquali-
fied subset gets no information about s. Unfortunately, the correctness of the recovery
procedure is guaranteed only if all the shares are correct. In particular, if a qualified
subset of the players pools their shares for reconstruction, but the honest players among
them form an unqualified set, then the dishonest players (possibly just one!) can cause
the reconstruction of a modified secret. Moreover, the difference between the correct
secret s and the reconstructed secret s′ is controlled by the corrupted players, due to
the linearity of the scheme. Luckily, this is “all” that the corrupted players can do: (1)
by the privacy of the secret sharing scheme, the noise introduced by the corrupted play-
ers can only depend on their prior knowledge of the secret and (2) by the linearity of
the secret sharing scheme, for any attempted modification of their shares, the corrupted
players must “know” the additive difference between s and s′. In essence, a linear secret
sharing scheme of s can be viewed as storing s on our abstract device Σ(G).

To deal with this problem, we introduce the notion of an algebraic manipulation
detection (AMD) code. This is a probabilistic encoding of a source s from a given set
S as an element of the group G, with unique decodability. The security of the code
ensures that, when the encoding is stored in Σ(G), any manipulation of contents by an
adversary will be detected except with a small error probability δ. The guarantee holds
even if the adversary has full a priori knowledge of the source state s. No secret keys
are required since we rely on the privacy of Σ(G) instead.

Using an AMD code, we can turn any linear secret sharing scheme into a robust
secret sharing scheme [26], which ensures that no unqualified subset of players can
modify their shares and cause the reconstruction of some value s′ �= s. The transforma-
tion is very simple: apply the linear secret sharing scheme to the encoding of s rather
than s itself.

In terms of parameters, we obtain robust secret sharing schemes which are nearly
as efficient as their non-robust counterparts, since the overhead added by encoding a
source will be very small. More precisely, to achieve security 2−κ, we build an AMD
code where the length of the encoding of a u-bit value s is only 2κ + O(log(u/κ)) bits

1 For example, by using a slightly longer secret key containing a key to a one-time MAC in
addition to the one-time-pad key, one can trivially add authentication to this application.
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longer than the length of s. This construction is close to optimal since we prove a lower
bound of 2κ on the amount of overhead that an AMD encoding must add to the size
of the source. As a concrete example, in order to robustly secret share a 1 megabyte
message with security level δ = 2−128, our best construction adds fewer than 300 bits
by encoding the message, whereas previous constructions (described below) add nearly
2 megabytes.

Relation to Prior Work on Secret Sharing. Although AMD codes were never for-
mally defined in previous work, some constructions of AMD codes have appeared,
mostly in connection with making secret sharing robust [19,6,20]. Although some of
these constructions are essentially optimal, all of them are largely inflexible in that the
error probability δ is dictated by the cardinality of the source space S: δ ≈ 1/|S|. In
particular, this implies that when the cardinality of S is large, the known constructions
may introduce significantly more overhead than what is needed to achieve a particular
security threshold. In contrast, our constructions can accommodate arbitrary choices of
security δ and message length u.

For example, Cabello, Padró and Sáez [6] (see also [22,21]) proposed an elegant
construction of a robust secret sharing scheme which implicitly relies on the following
AMD code. For any finite field F of order q, the encoding of the secret s ∈ F is a triple
(s, x, x · s), where x ∈R F. This code achieves security δ = 1/q and optimal message
overhead 2 log(q) = 2 log(1/δ) for this value of δ. However, as already mentioned,
it is far from optimal when we only desire a security level δ � 1/q, making this
construction inflexible for many applications.

In the context of robust secret sharing, the inflexibility issue mentioned above has
recently been addressed in a paper by Obana and Araki [18], where a flexible robust
secret sharing scheme (in fact, an AMD code in our terminology) was proposed and
claimed to be “proven” secure. However, in the full version of this paper [8], we give
an attack on their construction showing it to be completely insecure.

1.2 Fuzzy Extractors

A less obvious example comes from the domain of fuzzy extractors [10]. A fuzzy extrac-
tor extracts a uniformly random key R from some non-uniform secret w (e.g., biometric
data) in such a way that this key can be recovered from any w′ sufficiently close to w in
some appropriate metric space.2 To accomplish this task, the fuzzy extractor also com-
putes a public helper string P in addition to the extracted key R, and then recovers R
using w′ and P . In their original paper, Dodis et al. [10] constructed fuzzy extractors for
the Hamming and several other metrics. Unfortunately, the original notion of a fuzzy
extractor critically depends on the value of P being stored on a tamper-proof (though
public) device. As observed by Boyen et al. [5,4], this severely limits the usability of the
concept. To address this problem, [5,4] introduced a stronger notion of a robust fuzzy
extractor, where any tampering of P will be detected by the user, even with an imper-
fect reading w′ of w! Thus, P can be stored on a potentially untrusted server without
the fear that a wrong key R̃ �= R will be extracted.

2 For now and much of the paper, we will concentrate on the Hamming space over {0, 1}n, later
pointing out how to extend our results to related metrics.
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Prior Work and Our Result. All of the prior work on robust fuzzy extractors uses
some form of a message authentication code (MAC) keyed by w to authenticate the
public parameters P . Such codes are difficult to construct since w is not a uniformly
random secret, and the authentication information needs to be verifiable using an im-
perfect reading w′ of w.

Nevertheless, Boyen et al. [4] gave a generic transformation which makes a fuzzy
extractor robust in the random oracle model, without considerably sacrificing any of
the parameters. In the plain model, Dodis et al. [11] showed how to achieve robustness
if the initial secret w contains an entropy rate of at least one half (i.e. the entropy of
the secret is at least half the length of the secret). The work of [12] shows that this
requirement is necessary for information theoretic security in the plain model, even if
no errors are allowed (i.e., w = w′). Moreover, when the secret does meet this entropy
rate threshold, robustness in [11] is only achieved at a large cost in the length of the
extracted random key, as compared to the optimal non-robust extractors for the same
entropy threshold.

In this work we take a difference approach and use a portion of the extracted ran-
domness R to authenticate the public parameters P . Of course, using a MAC naively
is insecure since the adversary who modifies P to P̃ will cause the extraction of some
R̃ �= R and we cannot guarantee that the adversary is unable to produce an authentica-
tion tag for P̃ under the key R̃.

We overcome this difficulty by carefully analyzing the effects of modifying the pub-
lic helper P on the extracted randomness R. We construct fuzzy extractors with a spe-
cial linearity property so that any modification of P into P̃ can be essentially subsumed
by giving the attacker the ability to control the difference ∆ between the original key
R extracted from w, P and the “defective” key R̃ = R + ∆ extracted from w′, P̃ .
Thus, on a very high level, storing the public helper P on a public and unprotected
storage can be viewed as implicitly storing the extracted key R on our abstract storage
device Σ(G).

In this application one does not have the freedom of storing some encoding of R on
Σ(G), so AMD codes are not directly applicable. Instead, we introduce a related notion
called a (one-time) message authentication code with key manipulation security (KMS-
MAC). Abstractly, this authentication code is keyed by a random element of some finite
group G, and remains secure even if the key is stored in Σ(G) so that an adversary can
tamper with it by adding an offset ∆. We show how to construct KMS-MACs using
appropriate AMD codes.3 Using a KMS-MAC, we can turn any fuzzy extractor with the
above mentioned special linearity property into a robust fuzzy extractor with essentially
the same parameters and no restrictions on the entropy rate of the secret w. However,
this is (necessarily) done in the Common Reference String (CRS) model, as we explain
below.

COMMON REFERENCE STRING MODEL. Unfortunately, the impossibility result of
[12] guarantees that fuzzy extractors with the special linearity property cannot be con-
structed in the plain model since they imply robust fuzzy extractors for secrets with

3 The idea of a KMS-MAC is implicitly used in [11] with a construction that is indeed quite
similar to ours. However, the construction there is more complicated since the key is not guar-
anteed to be uniformly random.
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entropy rate below a half. We overcome this pessimistic state of affairs by building such
fuzzy extractors (and hence corresponding robust fuzzy extractors) in the Common Ref-
erence String (CRS) model. The common reference string can be chosen once when
the system is designed and can be hardwired/hardcoded into all hardware/software im-
plementing the system. Moreover, the CRS can be published publicly and we allow the
attacker to observe (but not modify) it.4 Our CRS is a random bitstring - it has no trap-
doors and we do not require any ability to “program” it. Since most users do not create
their own hardware/software but instead assume that a third party implementation is
correct, the assumption that this implementation also contains an honestly generated
random string does not significantly increase the amount of trust required from users.
We do assume that the probability distribution from which the secret w is chosen is
independent of the CRS. This is a very natural assumption for biometrics and many
other scenarios. However, it also means that our scheme is not applicable in the setting
of exposure resilient cryptography (see [9]) where the attacker can learn some function
of the secret after seeing the CRS.

What our result shows, however, is that this seemingly minor addition not only al-
lows us to achieve robustness without additional restrictions on the entropy rate of
the secret, but also to nearly match the extracted key length of non-robust fuzzy ex-
tractor constructions (or the robust fuzzy extractor constructions in the random oracle
model [4]).

2 Algebraic Manipulation Detection Codes

Definition 1. An (S, G, δ)-algebraic manipulation detection code, or (S, G, δ)-AMD
code for short, is a probabilistic encoding map E : S → G from a set S of size S
into an (additive) group G of order G, together with a (deterministic) decoding function
D : G → S∪{⊥} such that D(E(s)) = s with probability 1 for any s ∈ S. The security
of an AMD code requires that for any s ∈ S, ∆ ∈ G, Pr[D(E(s) + ∆) �∈ {s, ⊥}] ≤ δ.

An AMD code is called systematic if S is a group, and the encoding is of the form

E : S → S × G1 × G2, s 	→ (s, x, f(x, s))

for some function f and x ∈R G1. The decoding function of a systematic AMD code is
naturally given by D(s′, x′, σ′) = s′ if σ′ = f(x′, s′) and ⊥ otherwise.

Intuitively, E(s) can safely be stored on a private storage device Σ(G) so that an adver-
sary who manipulates the stored value by adding an offset ∆, cannot cause it to decode
to some s′ �= s. It is also possible to define a weak AMD code where security only
holds for a random s ∈ S rather than an arbitrary one. We focus of regular (strong)
AMD codes and mention some constructions and applications of weak AMD codes in
the full version of this work [8].

From a practical perspective, it is typically not sufficient to have one particular code,
but rather one would like to have a class of codes at hand such that for every choice u

4 We remark that assuming tamper-proof storage of the CRS, which can be shared by many
users, is very different than assuming tamper-proof storage of a “user-specific” helper string
P . Indeed, the former can be hardwired into the system, and the latter can not.
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for the bit-length of the source s and for every choice κ of the security level, there exists
a code that “fits” these parameters. This motivates the following definition:

Definition 2. An AMD code family is a class of AMD codes such that for any κ, u ∈ N

there exists an (S, G, δ)-AMD code in that class with S ≥ 2u and δ ≤ 2−κ.

We point out that in this definition, the group G can be different for every AMD code
in the family and is left unspecified. In our constructions the group G will often be
the additive group of the vector space F

d for some field F. Specifically, we will often
focus on the field F2d (as an additive group, this is equivalent to F

d
2) so addition (and

subtraction) is just bitwise-xor of d bit long strings.
We would like the construction of an AMD code to be close to optimal in that G

should not be much larger than S . We consider the tag size � of a (S, G, δ)-AMD
code defined as � = log(G) − log(S). Intuitively, this denotes the number of bits that
the AMD code appends to the source. More generally we define the efficiency of an
AMD code family as follows.

Definition 3. The effective tag size �∗(κ, u) with respect to κ, u ∈ N of an AMD
code family is defined as �∗(κ, u) = min{log(G)} − u where the minimum is over all
(S, G, δ)-AMD codes in that class with S ≥ 2u and δ ≤ 2−κ.

In the full version of this work [8], we prove the following lower bound on the effective
tag size of an AMD code family.

Theorem 1. Any AMD code family has an affective tag size lower bounded by
�∗(κ, u) ≥ 2κ − 2−u+1 ≥ 2κ − 1.

2.1 Optimal and Flexible Construction

We are now ready to present a construction of AMD codes which is both optimal and
flexible. As noted in the introduction, a similar, but more complicated construction ap-
peared in [11], though it was presented as part of a larger construction, and its properties
were not stated explicitly as a stand-alone primitive. The two constructions were dis-
covered concurrently and independently from each other.

Let F be a field of size q and characteristic p, and let d be any integer such that d + 2
is not divisible by p. Define the function E : F

d → F
d×F×F by E(s) = (s, x, f(x, s))

where

f(x, s) = xd+2 +
d∑

i=1

six
i

Theorem 2. The given construction is a systematic (qd, qd+2, (d + 1)/q)-AMD code
with tag size � = 2 log q.

Proof. We wish to show that for any s ∈ F and ∆ ∈ F
d+2: Pr[D(E(s) + ∆) �∈

{s, ⊥}] ≤ δ. It is enough to show that for any s′ �= s and any ∆x, ∆f ∈ F: Pr[f(x, s)+
∆f = f(x + ∆x, s′)] ≤ δ. Hence we consider the event

xd+2 +
d∑

i=1

six
i + ∆f = (x + ∆x)d+2 +

d∑
i=1

s′i(x + ∆x)i (1)
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We rewrite the right hand side of (1) as xd+2+(d+2)∆xxd+1+
∑d

i=1 s′ix
i +∆x ·p(x),

where p(x) is some polynomial of degree at most d in x. Subtracting this term from both
sides of equation (1), xd+2 cancels out and we get

−(d + 2)∆xxd+1 +
d∑

i=1

(si − s′i)x
i − ∆x · p(x) + ∆f = 0 (2)

We claim that the left side of equation 2 is a non-zero polynomial of degree at most
d + 1. To see this, let us consider two cases:

1. If ∆x �= 0, then the leading coefficient is −(d + 2)∆x �= 0 (here we use the fact
that d + 2 is not divisible by the characteristic of the field).

2. If ∆x = 0, then (2) simplifies to
∑d

i=1(si−s′i)x
i+∆f = 0, which is not identically

zero since we assumed that s �= s′.

This shows that (2) has at most d + 1 solutions x. Let B be the set of such solutions so
|B| ≤ d + 1. Then

Pr[D(E(s) + ∆) �∈ {s, ⊥}] = Pr
x←F

[x ∈ B] ≤ d + 1
q

��

Notice, the elements of the range group G = F
d × F × F can be conveniently viewed

as elements of Z
t
p, for some t (recall, p is the characteristic of F). Thus, addition in

G simply corresponds to element-wise addition modulo p. When p = 2, this simply
becomes the XOR operation.

Quantifying the above construction over all fields F and all values of d (such that
d + 2 is not divisible by p), we get a very flexible AMD family. Indeed, we show that
the effective tag size of the family is nearly optimal.

Corollary 1. The effective tag size of the AMD code family is �∗(κ, u) ≤ 2κ +
2 log(u

κ + 3) + 2. Moreover, this can be achieved with the range group G being the
group of bitstrings under the bitwise-xor operation.5

We prove the above corollary in the full version of our work [8].

3 Application to Robust Secret Sharing

A secret sharing scheme is given by two probabilistic functions. The function Share
maps a secret s from some group G to a vector S = (S1, . . . , Sn) where the shares
Si are in some group Gi. The function Recover takes as input a vector of shares S̃ =
(S̃1, . . . , S̃n) where S̃i ∈ Gi ∪{⊥} and outputs s̃ ∈ G ∪{⊥}. A secret sharing schemes

5 We can also imagine situations where the “base” field F
′ of some characteristic p is given to

us, and our freedom is in choosing the extension field F and the appropriate value of d so that
S can be embedded into F

d. Under such restrictions, the effective tag size becomes roughly
2κ + 2 log(u) + O(log p).



478 R. Cramer et al.

is defined over some monotone access structure which maps subsets B ⊆ {1, . . . , n} to
a status: qualified,unqualified, ⊥. The correctness property of such a scheme
states that for any s ∈ G and any qualified set B, the following is true with probability
1. If S ← Share(s) and S̃ is defined to be S̃i = Si for each i ∈ B and S̃i = ⊥ for each
i �∈ B, then Recover(S̃) = s. Similarly, the privacy of such a scheme states that for any
unqualified subset A, the shares {Si}i∈A reveal no information about the secret s (this
is formalized using standard indistinguishability).

Thus, qualified sets of players can recover the secret from their pooled shares, while
unqualified subsets learn no information about the secret. Sets of players which are
neither qualified nor unqualified might not be able to recover the secret in full but might
gain some partial information about its value.

A linear secret sharing scheme has the property that the Recover function is linear:
given any s ∈ G, any S ∈ Share(s), and any vector S′ (possibly containing some
⊥ symbols), we have Recover(S + S′) = s + Recover(S′), where vector addition is
defined element-wise and addition with ⊥ is defined by ⊥ + x = x + ⊥ = ⊥ for all x.

Examples of linear secret sharing schemes include Shamir’s secret sharing scheme
[24] where the access structure is simply a threshold on the number of players, or a
scheme for a general access structure in [15].

We consider a setting where an honest dealer uses a secret sharing scheme to share
some secret s among n players. Later, an outside entity called the reconstructor con-
tacts some qualified subset B of the players, collects their shares and reconstructs the
secret. The security of the scheme ensures that, as long as the set A ⊆ B of players
corrupted by an adversary is unqualified, the adversary gets no information about the
shared secret. However, if the honest players B\A also form an unqualified subset,
then the adversary can enforce the reconstruction of an incorrect secret by handing in
incorrect shares. In fact, if the reconstructor contacts a minimal qualified subset of the
players, then even a single corrupted player can cause the reconstruction of an incorrect
secret. Robust secret sharing schemes (defined in [26,3]) ensure that such attacks can’t
succeed: as long as the adversary corrupts only an unqualified subset of the players, the
reconstructor will never recover a modified version of the secret.

Definition 4. A secret sharing scheme is δ-robust if for any unbounded adversary A
who corrupts an unqualified set of players A ⊆ {1, . . . , n} and any s ∈ G, we have the
following. Let S ← Share(s) and S̃ be a value such that, for each 1 ≤ i ≤ n,

S̃i =
{

A(i, s, {Si}i∈A) if i ∈ A
Si or ⊥ if i �∈ A

Then Pr[Recover(S̃) �∈ {s, ⊥}] ≤ δ.

We note that in a (non-robust) linear secret sharing scheme, when the adversary modifies
shares by setting S̃i = Si+∆i then, by linearity of the scheme, the adversary also knows
the difference ∆ = s̃ − s between the reconstructed secret s̃ and the shared secret s.
This implies that we can think of s as being stored in an abstract storage device Σ(G),
which is private for an adversary who corrupts an unqualified subset of the players,
yet is not-robust in that the adversary can specify additive offsets so that Σ(G) stores
s + ∆. This immediately implies that we can turn any linear secret sharing scheme into
an δ-robust secret sharing scheme using AMD codes.
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Theorem 3. Let (Share, Recover) denote a linear secret sharing scheme with domain
G of order G, and let (E , D) be an (S, G, δ)-AMD code with range G. Then the scheme
(Share∗, Recover∗) given by Share∗(s)=Share(E(s)), Recover∗(S̃) = D(Recover(S̃))
is an δ-robust secret sharing scheme.

Proof. Let S = Share∗(S) and let S̃ be a vector meeting the requirements of Def. 4.
Let S′ = S̃ − S. The vector S′ contains 0 for honest players, ⊥ for absent players, and
arbitrary values for dishonest players. We have:

Pr[Recover∗(S̃) �∈ {s, ⊥}] = Pr[D(Recover(S) + Recover(S′)) �∈ {s, ⊥}]
= Pr[D(E(s) + ∆) �∈ {s, ⊥}]

where the value ∆ = Recover(S′) is determined by the adversarial strategy A. By
the privacy of the secret sharing scheme, it is only based on the adversary’s a-priori
knowledge of the shared secret and is otherwise independent of the value E(s). The
conclusion then follows immediately from the definition of AMD codes. ��

For Shamir secret sharing (and similar schemes), where the group G can be an arbitrary
field of size q ≥ n, we can use the optimal and flexible AMD code construction from
Section 2.1. In doing so, each player’s share would increase by roughly 2 log(1/δ) +
2 logu bits (where u in the length of the message) as compared to the non-robust case.

ROBUST INFORMATION DISPERSAL. Systematic AMD codes have an additional ben-
efit in that the encoding leaves the original value s intact. This could be beneficial in
the scenario where players do not care about the privacy of s, but only about its au-
thenticity. In other words, it is safe to use information dispersal on s or, alternatively, s
can be stored in some public non-robust storage. Using a systematic AMD code which
maps s to (s, x, f(x, s)), the players can just secret share the authentication information
(x, f(x, s)) and use it later to authenticate s.Even when the value s is large, the authen-
tication information (x, f(x, s)) remains relatively small. Concretely, to authenticate an
u-bit secret s, we only need to secret share roughly 2(log(1/δ) + log u) bits.

SECURE AND PRIVATE STORAGE / SECURE MESSAGE TRANSMISSION. In some ap-
plications we want to make sure that, as long as the honest players form a qualified
set and the dishonest players form an unqualified set, the correct secret will always be
reconstructed (we do not allow the option of reconstructing ⊥). This problem is known
under the name (unconditional) secure information dispersal [23,16] or non-interactive
secure message transmission [14,13]. There is a generic, though for large player sets
computationally inefficient, construction based on a robust secret sharing [7]: for every
qualified subset of the involved players, invoke the robust reconstruction until for one
set of shares no foul play is detected and a secret is reconstructed. If the robust secret
sharing scheme is 1/2κ+n-secure, then this procedure succeeds in producing the correct
secret except with probability at most 1/2κ.

ANONYMOUS MESSAGE TRANSMISSION. In recent work [2], Broadbent and Tapp
explicitly used the notion of AMD codes introduced in this paper (and our construction
of them) in the setting of unconditionally secure multi-party protocols with a dishonest
majority. Specifically, AMD codes allowed them to obtain robustness in their protocol
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for anonymous message transmission. This protocol, and with it the underlying AMD
code, was then used in [1] as a building block to obtain a protocol for anonymous
quantum communication.

4 Message Authentication Codes with Key Manipulation Security

As a notion related to AMD codes, we define message authentication codes which re-
main secure even if the adversary can manipulate the key. More precisely, we assume
that (only) the key of the authentication code is stored on an abstract private device
Σ(G) to which the adversary has algebraic manipulation access, but the message and
the authentication tag are stored publicly and the adversary can modify them at will.
This is in contrast to AMD codes where the entire encoding of the message is stored in
Σ(G).

Definition 5. An (S, G, T, δ)-message authentication code with key manipulation se-
curity (KMS MAC) is a function MAC : S × G → T which maps a source message in
a set S of size S to a tag in the set T of size T using a key from a group G of order G.
We require that for any s �= s′ ∈ S, any σ, σ′ ∈ T and any ∆ ∈ G

Pr[MAC(s′, K + ∆) = σ′ | MAC(s, K) = σ] ≤ δ

where the probability is taken over a uniformly random key K ∈R G.

Intuitively, the adversary get some message/tag pair (s, σ). The adversary wins if he can
produce an offset ∆ and a message s′ �= s along with a tag σ′ such that the pair (s′, σ′)
verifies correctly under the key K + ∆. The above definition guarantees that such an
attack succeeds with probability at most δ. In fact, the definition is slightly stronger than
required, since we quantify over all possible tags σ of the message s (rather than just
looking at a randomly generated one). However, since the above definition is achievable
and simpler to state, we will consider this stronger notion only. We can also think of a
KMS-MAC as a generalization of a standard message authentication code, which only
guarantees security for ∆ = 0.

As with AMD codes, we will consider the notion of a KMS-MAC family. For effi-
ciency, we are interested in minimizing the tag size log(T ) and the key size log(G). The
following well known lower bounds on standard message authentication codes (e.g., see
[25]) obviously also apply to the stronger notion of a KMS-MAC.

Lemma 1. For any authentication code with security δ ≤ 2−κ, the key size log(G)
must be at least 2κ, and the tag size log(T ) must be at least κ.

We now give a construction of a KMS-MAC out of any systematic AMD code.

Theorem 4. Let E : S → S × G1 × G2, s 	→ (s, x, f(x, s)) be a systematic
(|S|, |S|||G1||G2|, δ)-AMD code. Then the function MAC : S × (G1 × G2) → G2 yields
a (|S|, |G1||G2|, |G2|, δ)-KMS-MAC:

MAC(s, (x1, x2)) = f(x1, s) + x2
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Proof. Assume K = (x1, x2) ∈ G1 × G2 is chosen uniformly at random, and consider
arbitrary ∆ = (∆1, ∆2) ∈ G1 × G2, σ, σ′ ∈ G2, and s, s′ ∈ S, where s �= s′.

The event MAC(s, K) = σ is the event f(x1, s) + x2 = σ, which is the same as
x2 = −f(x1, s)+ σ. Let us call this event E1. Similarly, the event MAC(s′, K + ∆) =
σ′ is the event f(x1 +∆1, s

′)+(x2 +∆2) = σ′, which is the same as f(x1 +∆1, s
′) =

−x2 + σ′ − ∆2. Let us call this event E2. Thus, we need to bound Pr[E2 | E1].
Let us denote ∆f = −σ + σ′ − ∆2 and define an auxiliary event E′2 as f(x1 +

∆1, s
′) = f(x1, s) + ∆f . We claim that Pr[E2 | E1] = Pr[E′2 | E1]. Indeed, if

x2 = −f(x1, s) + σ, then

−x2+σ′−∆2 =−(−f(x1, s)+σ)+σ′−∆2 = f(x1, s)+(−σ+σ′−∆2)=f(x1, s)+∆f

Finally, notice that E′2 and E1 are independent. Indeed, since E′2 does not depend on x2,
and x2 is chosen at random from G2, whether or not x2 is equal to −f(x1, s) + σ does
not affect any other events not involving x2. Thus, Pr[E′2 | E1] = Pr[E′2]. Therefore,
we have

Pr[MAC(s′, K+∆) = σ′ | MAC(s, K)=σ] = Pr[f(x1+∆1, s
′)=f(x1, s)+∆f ] ≤ δ

where the last inequality follows directly from the security of the AMD code, since
s �= s′. ��

Using the systematic AMD code family constructed in Section 2.1, we get a nearly
optimal KMS-MAC family. In particular, plugging in the systematic AMD code family
from Theorem 2 and using the parameters obtained in Corollary 1, we get:

Corollary 2. There is a KMS-MAC family such that, for any κ, u ∈ N, the family
contains an (S, G, T, δ)-KMS-MAC (with respect to XOR operation) with δ ≤ 2−κ,
S ≥ 2u and

log(G) ≤ 2κ + 2 log (u/κ + 3) + 2
log(T ) ≤ κ + log (u/κ + 3) + 1

5 Application to Robust Fuzzy Extractors

We start by reviewing the some basic definitions needed to define the notion of fuzzy
extractors from [10].

MIN-ENTROPY. The min-entropy of a random variable X is
H∞(X) = − log(maxx PrX [x]). Following [10], we define the (average) conditional
min-entropy of X given Y as H̃∞(X | Y ) = − log(Ey←Y (2−H∞(X|Y =y))) (here
the expectation is taken over y for which Pr[Y = y] is nonzero). This definition is
convenient for cryptographic purposes, because the probability that the adversary will
predict X given Y is 2−H̃∞(X|Y ). Finally, we will use [10, Lemma 2.2], which states
that H̃∞(X | Y ) ≥ H∞((X, Y )) − λ, where 2λ is the number of elements in Y .

SECURE SKETCHES. Let M be a metric space with distance function dis. Informally,
a secure sketch enables recovery of a string w ∈ M from any “close” string w′ ∈ M
without leaking too much information about w.
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Definition 6. An (m, m′, t)-secure sketch for a metric space M is a pair of efficient
randomized procedures (SS, Rec) s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗. The
recovery procedure Rec takes an element w′ ∈ M and s ∈ {0, 1}∗.

2. Correctness: If dis(w, w′) ≤ t then Rec(w′, SS(w)) = w.
3. Security: For any distribution W over M with min-entropy m, the (average) min-

entropy of W conditioned on s does not decrease very much. Specifically, if
H∞(W ) ≥ m then H̃∞(W | SS(W )) ≥ m′.

The quantity m − m′ is called the entropy loss of the secure sketch.

As already mentioned in Footnote 2, we will concentrate on the Hamming metric over
{0, 1}n, later extending our results to several related metrics. For this metric we will
make use of the syndrome construction from [10]. For our current purposes, though, we
only need to know that this construction is a linear transformation over F

n
2 .

STATISTICAL DISTANCE. Let X1, X2 be two probability distributions over some space
S. Their statistical distance is SD (X1, X2)

def= 1
2

∑
s∈S | PrX1 [s] − PrX2 [s]|. If

SD (X1, X2) ≤ ε, we say they are ε-close, and write X1 ≈ε X2. Note that ε-close dis-
tributions cannot be distinguished with advantage better than ε even by a computation-
ally unbounded adversary. We use the notation Ud to denote (fresh) uniform distribution
over {0, 1}d.

RANDOMNESS EXTRACTORS FOR AVG. MIN ENTROPY. A randomness extractor, as
defined in [17], extracts a uniformly random string from any secret with high enough
entropy using some randomness as a seed. Here we include a slightly altered definition
to ensure that we can extract randomness from any secret with high enough average
min-entropy.

Definition 7. A function Ext : {0, 1}n × {0, 1}d → {0, 1}� is called a (m, 	, ε)-
extractor if for all random variables X and Y such that X ∈ {0, 1}n and H̃∞(X |
Y ) ≥ m, and I ← Ud, we have SD ( (Y, Ext(X ; I), I) , (Y, U�, Ud) ) ≤ ε.

It was shown by [10, Lemma 2.4] that universal hash functions are good extractors in
the above sense. In particular, the construction Ext : {0, 1}n × {0, 1}n → {0, 1}�,
defined by Ext(x, i) def= [x · i]�1 is a (m, 	, ε)-extractor for any 	 ≤ m − 2 log(1/ε). Here
the multiplication x · i is performed in the field F2n and the notation [z]�1 denotes the
first 	 bits of z.

FUZZY EXTRACTORS. A fuzzy extractor extracts a uniformly random key from some
secret w in such a way that the key can be recovered from any w′ close to w. The notion
was first defined in [10]. Here we alter the definition to allow for a public common
reference string (CRS).

Definition 8. An (m, 	, t, ε)-fuzzy extractor for a metric space M is defined by ran-
domized procedures (Init, Gen, Rep) with the following properties:
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1. The procedure Init takes no inputs and outputs a string CRS ∈ {0, 1}∗.
2. The generation procedure Gen, on input w ∈ M, CRS ∈ {0, 1}∗, outputs an

extracted string R ∈ {0, 1}� and a helper string P ∈ {0, 1}∗. The reproduction
procedure Rep takes w′ ∈ M and P, CRS ∈ {0, 1}∗ as inputs. It outputs w̃ ∈
M ∪ {⊥}.

3. Correctness: If dis(w, w′) ≤ t and (R, P ) ← Gen(w, CRS), then Rep(w′, P,
CRS) = R.

4. Privacy: For any distribution W with min-entropy m over the metric M , the string
R is close to uniform even conditioned on the value of P . Formally, if H∞(W ) ≥
m and (R, P ) ← Gen(W, CRS), then (R, P, CRS) ≈ε (U�, P, CRS).

Composing an (m, m′, t)-secure sketch with a (m′, 	, ε)-extractor Ext : M ×
{0, 1}d → {0, 1}� (as defined in Def. 7) yields a (m, 	, t, ε)-fuzzy extractor [10]. The
construction of [10] has an empty CRS and sets P = (SS(w), i) and R = Ext(w; i)
for a random i. However, it is easy to see that the construction would remain secure if
the extractor seed i was contained in the CRS and P was just SS(w). One advantage of
such approach would be that the Gen and Rep algorithms are then deterministic which
might make them easier to implement in hardware. Another advantage is that it would
eventually allow us to overcome the impossibility barrier of robust fuzzy extractors
(defined next) in the plain model.

5.1 Definition of Robust Fuzzy Extractor in CRS Model

Fuzzy extractors allow one to reveal P publicly without sacrificing the security of the
extracted randomness R. However, there are no guarantees when an active attacker
modifies P . To prevent such attacks, robust fuzzy extractors were defined and con-
structed in [4,11]. Here we define robust fuzzy extractors in the CRS model.

For two (correlated) random variables W, W ′ over a metric space M, we say
dis(W, W ′) ≤ t if the distance between W and W ′ is at most t with probability one.
We call (W, W ′) a (t, m)-correlated pair if dis(W, W ′) ≤ t and H∞(W ) ≥ m. It
will turn out that we can get more efficient constructions if we assume that the random
variable ∆ = W − W ′ indicating the errors between W and W ′ is independent of
W (this was the only case considered by [4]). However, we do not want to make this
assumption in general since it is often unlikely to hold. We define the family Fall

t,m to be

the family of all (t, m)-correlated pairs (W, W ′) and the family F indep
t,m to be the family

of (t, m)-correlated pairs for which ∆ = W − W ′ is independent of W .

Definition 9. An (m, 	, t, ε, δ)-robust fuzzy extractor for a metric space M and a fam-
ily F of (t, m)-correlated pairs is an (m, 	, t, ε)-fuzzy extractor over M such that for
all (W, W ′) ∈ F and all adversaries A

Pr
[
Rep(P̃ , w′, CRS) �= ⊥

P̃ �= P

∣∣∣∣ CRS ← Init(), (w, w′) ← (W, W ′)
(P, R) ← Gen(w, CRS), P̃ ← A(P, R, CRS)

]
≤ δ

We call the above notion post-application robustness and it will serve as our main
definition. We also consider a slightly weaker notion, called pre-application robustness
where we do not give R to the adversary A.
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The distinction between pre-application and post-application robustness was already
made in [4,11]. Intuitively, when a user Alice extracts a key using a robust fuzzy extrac-
tor, she may use this key for some purpose such that the adversary can (partially) learn
the value of the key. The adversary can then mount an attack that modifies P based on
this learned value. For post-application security, we insist that robustness is preserved
even in this setting. For pre-application security, we assume that the adversary has no
partial information about the value of the key.

5.2 Construction

We are now ready to construct robust fuzzy extractors in the CRS model. First, let
us outline a general idea for the construction using an extractor Ext, a secure sketch
(SS, Rec) and a one-time (information-theoretic) message authentication code MAC. A
pictorial representation of the construction is shown in Figure 1 and pseudo-code is
given below.

Init() outputs a random seed i for the extractor Ext as a shared CRS.
Gen(w, i) does the following:

R ← Ext(w, i) which we parse as R = (Rmac, Rout).
s ← SS(w), σ ← MAC(s, Rmac), P := (s, σ).
Output (P, Rout).

Rep(w′, P̃ , i) does the following:
Parse P̃ = (s̃, σ̃). Let w̃ ← Rec(w′, s̃). If d(w̃, w′) > t then output ⊥.
Using w̃ and i, compute R̃ and parse it as R̃out, R̃mac.
Verify σ̃ = MAC(s̃, R̃mac). If equation holds output R̃out, otherwise output ⊥.

The idea is fairly intuitive. First, we extract randomness from w using the public
extractor seed i. Then we use part of the extracted randomness Rout as the output, and
the remaining part Rmac as the key for the one-time information-theoretic MAC to
authenticate the secure sketch s of w.

However, in arguing robustness of the reconstruction phase, we notice that there is
a problem. When an adversary modifies s to some value s̃ then this will force the user
to incorrectly recover w̃ �= w, which in turn leads to the reconstruction of R̃ �= R and
R̃mac �= Rmac. So the key R̃mac, which is used to verify the authenticity of s, will
itself be modified when s is!

To break the circularity, we will need to use a special linearity property of the fuzzy
extractor. Namely, we want yo make sure that an adversary who modifies s to s̃ will
know the offset R∆̃

mac = R̃mac − Rmac. We formalize this as follows.

FUZZY EXTRACTOR LINEARITY PROPERTY: For any w, w′, i, let ∆ = w′ − w,
s = SS(w), R = Ext(w, i). For any s̃, let w̃ = Rec(w′, s̃) and R̃ = Ext(w̃, i). Then,
there is a deterministic function g such that R∆̃ = R̃ − R = g(∆, s, s̃, i).

It is easy to show that, using the syndrome based construction of a secure sketch
and the extractor Ext(x, i) def= [x · i]�1, the resulting fuzzy extractor satisfies the above
linearity property. In the full version of this paper, we give a more general treatment
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Fig. 1. Construction of Robust Fuzzy Extractor

showing that many other natural secure sketch and extractor constructions produce a
fuzzy extractor with the above property.

Given a fuzzy extractor with the above linearity property, we can can think of Rmac

as being stored in an abstract device Σ(G) which is private but only weakly robust in
that the adversary can specify an additive offset by modifying s. We can then use a
KMS-MAC which remains secure even when the key is stored on such a device. Hence,
the adversary will not be able to come up with a valid pair (s̃, σ̃) where s̃ �= s. We
formalize this intuition in the next section.

5.3 Security of Construction and Parameters

We are now show that the construction outlined in Section 5.2 indeed satisfies the defi-
nition of a robust fuzzy extractor. Let (SS, Rec) be a (m, m′, t)-secure sketch and let u
be an upper bound on the size of SS(w). Let MAC be a (S, G, T, δ)-KMS-MAC, such
that S ≥ 2u. Assume that the keys for MAC come from a group G = {0, 1}k under
the XOR operation so that G = 2k. Let F be a class of (t, m)-correlated variables
(W, W ′) and let m̂ be the largest value such that m̂ ≤ H̃∞(W |SS(W ), W − W ′) for
any (W, W ′) ∈ F . Let Ext be a (m̂, 	, ε)-strong randomness extractor seeded by ran-
domness i of length d. Lastly, assume that our secure sketch and randomness extractor
produce a fuzzy extractor which satisfies the above defined fuzzy extractor linearity
property.

Theorem 5. When instantiated with the primitives Ext, MAC and (SS, Rec), our con-
struction yields a (m, 	 − k, t, 2ε, δ + ε)-robust-fuzzy extractor for the family F .

Proof. The correctness property of the fuzzy extractor is guaranteed by the correct-
ness of the secure sketch. The privacy property follows from the security of the ran-
domness extractor. Recall, that the adversary can observe i, s, σ. Since, by definition,
m̂ ≤ H̃∞(W |SS(W )) the distribution (i, s, Rmac, Rout) can be distinguished from
(i, s, Uk, U�−k) with probability at most ε. In particular,

(i, s, Rmac, Rout) ≈ε (i, s, Uk, U�−k) ≈ε (i, s, Rmac, U�−k)

and so (i, s, Rmac, Rout) ≈2ε (i, s, Rmac, U�−k) by the triangle inequality. An ad-
versary given i, s, σ is weaker than an adversary given i, s, Rmac and even this latter
adversary can distinguish Rout from R�−k with probability at most 2ε.
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For robustness, consider any pair (W, W ′) ∈ F and any adversary A attacking the
robustness of the scheme. Then

Pr[A succeeds] = Pr

⎡
⎣Rep(P̃ , w′, CRS) �= ⊥

and P̃ �= P

∣∣∣∣∣∣
CRS ← Init(), (w, w′) ← (W, W ′)

(P, R) ← Gen(w, CRS)
P̃ ← A(CRS, P, R)

⎤
⎦

= Pr

⎡
⎢⎢⎢⎢⎣

MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) �= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i ← Ud, (w, w′) ← (W, W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s, Rmac)
(s̃, σ̃) ← A(i, s, σ, Rout)

w̃ := Rec(w′, s̃), (R̃mac, R̃out) := Ext(w̃, i)

⎤
⎥⎥⎥⎥⎦

Now we use the fuzzy extractor linearity property which defines the deterministic func-
tion g such that

Pr[A succeeds] = Pr

⎡
⎢⎢⎢⎢⎣

MAC(s̃, R̃mac) = σ̃
(s̃, σ̃) �= (s, σ)

∣∣∣∣∣∣∣∣∣∣

i ← Ud, (w, w′) ← (W, W ′)
(Rmac, Rout) := Ext(w, i)

s := SS(w), σ := MAC(s, Rmac)
(s̃, σ̃) ← A(i, s, σ, Rout)

∆ := w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)

⎤
⎥⎥⎥⎥⎦

On the right hand side of the inequality, the pair (w, w′) and the value i determine the
values ∆, s, Rmac, Rout. But the distributions (∆, s, i, Rmac, Rout) and (∆, s, i, U�)
can be distinguished with probability at most ε, by the security of the extractor and the
fact that m̂ ≤ H̃∞(W |SS(W ), ∆).

Hence we have:

Pr[A succeeds]

≤ ε + Pr

⎡
⎢⎢⎣

MAC(s̃, R̃mac) = σ̃

(s̃, σ̃) �= (s, σ)

∣∣∣∣∣∣∣∣

i ← Ud, Rmac ← Uk, (w, w′) ← (W, W ′)
s := SS(w), σ := MAC(s, Rmac)

(s̃, σ̃) ← A(i, s, σ, U�−k)
∆ ← w′ − w, R̃mac := Rmac + g(∆, s, s̃, i)

⎤
⎥⎥⎦

≤ ε + max
R∆

mac,s̃�=s,σ,σ̃
Pr

⎡
⎣MAC(s̃, R̃mac) = σ̃

∣∣∣∣∣∣
Rmac ← Uk

σ := MAC(s, Rmac)
R̃mac := Rmac + R∆

mac

⎤
⎦

≤ ε + δ

Where the last inequality follows from the security of the KMS-MAC. ��

The above theorem is stated with generality in mind. We now examine the parame-
ters we get when plugging in the optimal implementation of a KMS-MAC and us-
ing the “multiplication” extractor Ext(x, i) def= [x · i]v1. Recall, we let u denote the
length of the secure sketch and n denotes the length of the secret w. We define m′ =
H̃∞(W |SS(W )) ≥ m − u to be the residual min entropy “left” in w after seing s.
Using Theorem 5 and some simple manipulation, we finally get the following concrete
corollary.
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Corollary 3. Let m, t, ε and δ ≥ ε be chosen arbitrarily. Let ρ = 2 log
(

2(u+3)
ε(δ−ε)

)
+ 2.

Let v = t
(
log

(
n
t

)
+ log e

)
be the upper bound on the volume of the Hamming ball of

radius t. We construct an (m, 	, t, ε, δ)-robust fuzzy where the extracted key length 	 is
given by:

– For the family Fall
(t,m) and post-application robustness 	 = m′ − v − ρ.

– For the family Fall
(t,m) and pre-application robustness 	 = m′ − ρ as long as m′ −

v ≥ ρ.
– For the family F indep

(t,m) and both pre/post-application robustness 	 = m′ − ρ.

The corollary is proven by bounding the value H̃∞(W |SS(W ), W − W ′) for the two
families F indep

(t,m) and Fall
(t,m). We give a detailed proof in the full version of this work [8].

COMPARISON WITH PREVIOUS CONSTRUCTIONS: Recall that the “non-robust” con-
struction of [10] extracts 	 ≤ m′ − 2 log

(
1
ε

)
bits. On the other hand, the robust con-

struction of [11] requires 	 ≤ 1
3

(
2m − n − u − 2t log

(
en
t

)
− 2 log

(
n

ε2δ

))
− O(1).

The bounds achieved in this paper are significantly closer to the non-robust version.

5.4 Extension to Other Metrics

We note that the above construction can be extended for other metric spaces and secure
sketches. For example, we can easily extend our discussion of the hamming distance
over a binary alphabet to an alphabet of size q where Fq is a field. In addition, our con-
struction extends to the set difference metric in exactly the same way as the construction
of [11].
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Abstract. We construct obfuscators of point functions with multibit output and
other related functions. A point function with multibit output returns a fixed string
on a single input point and zero everywhere else. Obfuscation of such functions
has a useful application as a strong form of symmetric encryption which guar-
antees security even when the key has very low entropy: Essentially, learning
information about the plaintext is paramount to finding the key via exhaustive
search on the key space.

Although the constructions appear to be simple and modular, their analysis
turns out to be quite intricate. In particular, we uncover some weaknesses in the
current definitions of obfuscation. One weakness is that current definitions do
not guarantee security even under very weak forms of composition. We thus de-
fine a notion of obfuscation that is preserved under an appropriate composition
operation. The constructions can use any obfuscator of point functions under the
proposed definition. Alternatively, they can use perfect one way (POW) functions
with statistical indistinguishability, or with computational indistinguishability at
the price of somewhat weaker security.

Keywords: obfuscation, composable obfuscation, multibit point function obfus-
cation, digital locker, point function obfuscation.

1 Introduction

Program Obfuscation is one of the most intriguing open problems in cryptography. In-
formally, a program obfuscator (or, simply, an obfuscator) is a compiler that converts
a program into another one, called the obfuscated program or code, that has a similar
functionality but satisfies certain secrecy requirements. Informally, the secrecy require-
ment stipulates that whatever “useful” information the obfuscated code reveals is learn-
able from the program’s input/output behavior. In other words, an obfuscated program
should not reveal anything useful beyond what’s learned by inspecting the program’s
outputs on inputs of choice. This requirement is formalized by Barak et al. [2] through a
simulation-based definition called the virtual-blackbox property. The virtual-blackbox
property says that every adversary has a corresponding simulator that emulates the out-
put of the adversary given only oracle (i.e., blackbox) access to the same functionality
being obfuscated.
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In the same work, Barak et al. provide impossibility results regarding general obfus-
cation, even when the output of the adversary is restricted to predicates. In other words,
it is shown that there are certain functionalities and corresponding predicates where
these predicates are learnable from any program implementing the functionalities but
not so given blackbox access to them. In light of this general negative result, we are
forced to study obfuscation of restricted classes of functions if we wish to adopt the def-
inition of [2]. Here, we follow this line of work. In particular, we build on the previous
work on point function obfuscation [4,5,13,11] towards obfuscating slightly more com-
plex functions, namely point functions with multibit output. Moreover, we show that
obfuscation of point functions are not necessarily secure even under self-composition,
a property needed in our analysis. We next go into a more detailed exposition of our
work.

Obfuscation of point functions with multibit output. A point function returns 1 on a
single input and 0 everywhere else. Formally, Fx(y) = 1 if y = x and 0 otherwise. A
point function with multibit output generalizes point functions in that it outputs, on a
single input, a long string instead of 1. Formally, Fx,y(z) = y if z = x, and 0 otherwise.

The connection to symmetric encryption. Obfuscators for point functions with multibit
output have a useful application as what we call a digital locker. A digital locker is a
strong form of symmetric encryption which provides meaningful security even the key
is taken from a distribution with very low entropy. More specifically, the guarantee is
that the complexity of learning anything about the plaintext corresponds to that of find-
ing the key via exhaustive search over the key space. We formalize this privacy notion
using the simulation paradigm in a way similar to obfuscation. Namely, we require that
the behavior of the adversary on an encryption of message m with key k be simulatable
given blackbox access to the multibit point function, Fk,m. Consequently, obfuscation
of point functions with multibit output can be used to realize digital lockers as follows:
to encrypt a message m using a key k, simply output an obfuscation of Fk,m.

Real life applications of digital lockers include password-based encryption where
the human-generated password is far from uniform. For instance, Firefox has a pass-
word manager that acts as a digital locker [1]. The password manager locks website
credentials using a master password chosen by the user. Then, the user has to provide
this password in order to unlock the content. It is stressed that the goal here is not to
prevent exhaustive search over the keys, but rather to guarantee that this is essentially
the only possible attack.

The construction. Even though obfuscation of point functions with multibit output is
known in the Random Oracle Model [11], it is not known in the standard model ex-
cept when the function is drawn from a uniform distribution (specifically, when x in
Fx,y is uniform) [7] or when the output length of the function is short (specifically,
when |y| = O(log|x|)) [13]. Here, we provide a transformation from point function
obfuscators to obfuscators of point functions with multibit output. The idea is simple.
The obfuscation of multibit point functions consists of some number of copies of ob-
fuscated point functions. These copies have the property that the first and the ith copy
correspond to an obfuscation of the same point function if and only if the ith bit in
the multibit output is 1. In more detail, let Fa,b be the multibit point function to be
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obfuscated, t = |b|, and O(Fa, r) be the obfuscation of the point function, Fa, us-
ing randomness r. Then, the obfuscation of Fa,b consists of O(Fa, r0), O(x1, r1), ...,
O(xt, rt), where xi is Fa if bi = 1 and xi is a uniformly chosen point function other-
wise. To recover b from the correct a and this obfuscation, first verify that O(Fa, r0)
(a) = 1, then b = O(x1, r1)(a), ..., O(xt, rt)(a).

On composing obfuscation. The construction described above is very simple and mod-
ular, and one expects that its proof be likewise. However, it turns out that this is not the
case. To prove the security of the above transformation, we face an issue. Observe that
our construction is composed of a concatenation of t + 1 obfuscated point functions.
Thus, in order for our construction to be secure, the original obfuscation has to remain
secure under composition. However, we show that the current definition of obfusca-
tion does not guarantee composition. This is also the case even for composing multiple
obfuscated copies of the same function. Interestingly, the statement still holds even if
we consider obfuscation secure in the presence of auxiliary information. We emphasize
that this is a fundamental point about the definition of obfuscation that is of independent
interest.

In more detail, we show that there exists an obfuscation of point functions that reveals
the input when it is self-composed. Specifically, we show an obfuscator, O, such that for
any x, it is possible to recover x from O(Fx, r1), ..., O(Fx, rnlog(n)), where n = |x|.

Moreover, similar results holds for POW functions and POW functions secure with
auxiliary information [4,5]. At a high level, a POW function can be thought of as an
obfuscation of point function. See Appendix A for more details on POW functions and
their relation to point function obfuscation.

In light of these negative results, we analyze the above construction using, as the
underlying primitive, three different forms of composable obfuscation of point func-
tions. First, if the underlying primitive is a composable obfuscation of point functions
(as in simply-composable obfuscation of [11]), then this construction is a composable
obfuscation of multibit point functions. This is actually a characterization: composable
obfuscation of point functions exists if and only if that of point functions with multibit
output exists. Second, we show that our construction is an obfuscation of multibit point
functions if the underlying primitive is a statistically indistinguishable POW function.1

Third, if the primitive is a computationally indistinguishable POW function, then the
construction is an obfuscation provided that y in Fx,y , is “independent” of x.

Finally, we show how to generalize this construction to obfuscate set-membership
predicates and functions for polynomial-sized sets. A set-membership predicate out-
puts 1 if the input belongs to the set and 0 otherwise, while a set-membership function
outputs a string, yi, if the input matches a set member, xi, and 0 otherwise.

A tighter definition of obfuscation. The standard definition of obfuscation incorporates
an unspecified “polynomial slack”, in the sense that it allows the simulator to query its
oracle an unspecified polynomial number of times, regardless of the complexity of the
adversary. This translates to allowing obfuscation schemes that leak secret information

1 To be accurate, the second construction satisfies approximate functionality only computation-
ally, i.e., it is hard to efficiently find an input point on which the obfuscated function differs
from the original one.
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on some unspecified polynomial number of functions in a given family. In the context
of digital lockers, this allows encryption schemes that, say, reveal the plaintext on a
polynomial number of keys. We propose ways to fix this weakness in the definition and
constructions of obfuscators and digital lockers; however our solution here is far from
being completely satisfactory.

1.1 Related Work

Obfuscating Point Functions in the Random Oracle Model. Lynn et al. [11], inspired
by the password-hiding scheme in Unix that stores a hash of the password instead of the
password itself, propose a similar obfuscation of point functions in the random oracle
model. In this model, an obfuscator, O, has oracle access to a truly random function,
R. In order to construct an obfuscation of a point function, Fx, O queries R on x to
get z = R(x) and then stores z in the obfuscated code, O(Fx). O(Fx) also contains
preprocessing code which on input y returns 1 if and only if R(y) = z.

It is easy to see that O(Fx) and Fx have approximate functionality (they have the
same functionality almost always). Intuitively, O(Fx) is an obfuscation of Fx because
R’s answers on queries are completely independent and random. So, storing R(x) does
not reveal any information about x, but it allows verification of a guess, which is also
achievable via oracle access to Fx.

Also, Lynn et al. [11] generalize this construction to obfuscate multibit output point
functions and set-membership predicates and functions in the random oracle model. To
obfuscate a multibit point function, Fx,y , choose a random r, and output r, R1(x, r),
R2(x, r)⊕ y, where R1 and R2 denote the first and second half of the bits of R(.). This
construction is secure under composition (as in Definition 2 or the simply-composable
definition of [11]). In Section 3.2, we instantiate this scheme. The resulting construction
is more efficient than our first one but uses a stronger assumption.

Obfuscating Point Functions in the standard model. Perfectly one-way (POW) func-
tions [4] can be used to obfuscate a point function Fx by replacing the random oracle
in [11] with a POW function, H . Here, instead of storing R(x), we store H(x) in the
obfuscated code and use the verifier for H to determine if H(x) is a valid hash of the
input.

Canetti [4] constructs a POW hash function based on a strong version of the Diffie-
Hellman assumption. In particular, it assumes that the Diffie-Hellman assumption holds
not only against uniform distributions but also with respect to any well-spread distribu-
tion. Moreover, Wee [13] shows how to obfuscate point functions and point functions
with logarithmic output based on a strong one-way permutation assumption. Specifi-
cally, the assumption is that any polynomial-time machine can invert the permutation
on at most a polynomial number of points. The two constructions mentioned so far
(and our construction as well) use a weaker notion of obfuscation than the one in [2].
Specifically, the simulator in [4,13] depends on the simulation-error gap between the
adversary and the simulator. (see Definition 1 for more detail).

Canetti et al. [5] provide two constructions of POW functions based on standard
computational assumptions (in particular, based on either claw-free permutations or
one-way permutations). The simulator for these constructions does not depend on the
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gap. However, the input distribution is assumed to have high min-entropy (nε). More-
over, Futoransky et al. [7] show how to obfuscate point functions and point functions
with multibit output based on standard assumption. However, the input distribution
is assumed to be uniform. Finally, Hofheinz et al. [10] obfuscate point functions de-
terministically. However, the secrecy requirement does not guarantee no information
leakage, rather that it is hard to recover the input in its entirety. This obfuscation is
self-composable because the obfuscator is deterministic. However, it is not composable
according to our notion. In particular, different obfuscated point functions can not be
securely composed.

Encryption with imperfect randomness. The question of encryption with “imperfect
randomness” is studied also in [12,6,3], yielding some strong impossibility results.
However, these results do not apply to our case since they assume that the parties have
no source of perfect randomness, whereas we allow the parties to use perfect random-
ness other than the key. In our setting, symmetric encryption with imperfect keys can be
constructed using randomness extractors in standard ways, as long as the distribution of
the key has sufficient min-entropy. Here however we are concerned with the case where
there is no a priori guarantee on the min-entropy of the key.

1.2 Organization

In Section 2, we recall common notations and definitions including that of obfuscation,
leaving definitions of POW functions to Appendix A. We present our construction and
analyze it in Section 3. (We also present a more efficient construction under a stronger
assumption in Section 3.2.) In Section 4, we study the issue of composable obfuscation.
Finally, we discuss the connection to encryption schemes in Section 5.

2 Preliminaries

Let Xn denote a probability distribution on {0, 1}n and Un the uniform distribution
on {0, 1}n. Then, X = {Xn}n∈N is called a distribution ensemble (distribution for
short). A distribution is called well-spread if it has superlogarithmic min-entropy, i.e.,
maxkPr[Xn = k] is a negligible function in n. Moreover, a ← Dn means that a
is chosen from {0, 1}n according to distribution Dn. Also, denote by ∆(Xn, Yn) the
statistical difference between the two distributions Xn and Yn over {0, 1}n. Formally,
∆(Xn, Yn) = 1

2Σa∈{0,1}n |Pr[Xn = a] − Pr[Yn = a]|.
A probabilistic function family is a set of efficient probabilistic functions having

common input and output domains. Formally, Hn = {Hk}k∈Kn is a function family
with key space Kn and randomness domain Rn if, for all k ∈ Kn, Hk : In × Rn →
On. A probabilistic function family has public randomness if for all k, Hk(x, r) =
r, H ′k(x, r) for some deterministic function H ′k. A family ensemble is a collection of
function families, i.e., H = {Hn}n∈N.

Let PPT denote any probabilistic polynomial-time Turing machine, and nonuniform
PPT any probabilistic polynomial-sized circuit family. A PPT (respectively nonuniform
PPT) A with oracle access to O is denoted by AO .
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A function, µ, is called negligible if it decreases faster than any inverse polynomial.
Formally, it is negligible if, for any polynomial p, there exists an Np such that, for all
n ≥ Np: µ(n) < 1

p(n) . In this work, we reserve µ to denote negligible functions. An
uninvertible function, f , with respect to a well-spread distribution, X, is an efficiently
computable function that is hard to invert on X. Formally, for any PPT, A, Pr[x ←
Xn, A(f(x)) = x] < µ(n).

A set-membership predicate, FS={x1,...,xt} : {0, 1}n → {0, 1}, outputs 1 if and
only if its input is in S. Here, S is assumed to have at most polynomially many elements.
A set-membership function, F(x1,y1),...,(xt,yt) : {0, 1}n → {y1, ..., yt, 0} outputs yi if
and only if the input matches xi.

2.1 Obfuscation

We adopt the definition of obfuscation used in [4,13] because obfuscation of point func-
tions is known for this notion only (if the distribution on this class of functions is not
restricted). This definition is weaker than the one in [2] because the size of the simulator
is allowed to depend on the quality of the simulation. Formally,

Definition 1 (Obfuscation). Let F be any family of functions. A PPT, O, is called an
obfuscator of F, if:

1. Approximate Functionality For any F ∈ F: Pr[∃x, O(F )(x) �= F (x)] is negligi-
ble. Here, the probability is taken over the coin tosses of O.

2. Polynomial Slowdown There is a polynomial p such that, for any F ∈ F, O(F )
runs in time at most p(TF ), where TF is the worst-case running time of F .

3. Weak Virtual Black-box Property For any nonuniform PPT A and any polynomial
p, there exists a nonuniform PPT S such that for any F ∈ F and sufficiently large
n:

|Pr[b ← A(O(F )) : b = 1] − Pr[b ← SF (1|F |) : b = 1]| ≤ 1
p(n)

.

3 Obfuscating Point Functions with Multibit Output

We show how to obfuscate point functions with multibit output as well as set-membership
predicates and functions for polynomial-sized sets. Because the constructions and proofs
for obfuscating set-membership predicates and functions are similar to that for multibit
point function, we focus on the latter. We comment on the former in Section 3.1. We
also present a more efficient obfuscation of multibit point functions using a stronger
assumption in Section 3.2.

We use obfuscated point functions as building blocks in obfuscating point functions
with multibit output. The idea is simple. To obfuscate Fx,y , we encode y bit-by-bit using
an obfuscator for Fx. Specifically, if the ith bit of y is 1, it is encoded as an obfuscation
of Fx, otherwise, it is encoded as an obfuscation of an independent and uniform point
function. In more detail, let H be a randomized obfuscator for point functions. Then the
obfuscation contains H(Fx, r), H(Fx1 , r1), ...,H(Fxt , rt), where t = |y| and xi = x
if the ith bit of y is 1, otherwise, xi is uniform. The first obfuscated point functions
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always corresponds to x, and is used to check whether the input is actually x. Now, y
can be recovered given z = x. First, check that H(Fx, r)(z) = 1. If so, for every i,
yi = H(Fxi , ri)(z).

Formally, we present an obfuscator, O, for the class of multibit output point func-
tions, F. O, on input Fx,y , where y has length t, selects r1, ..., rt+1 from Rn, the ran-
domness domain of the point function obfuscator, H . It then computes H(Fx, r1). It
also computes H(Fx, ri+1) if the yi = 1 and H(zi+1, ri+1) otherwise, where zi+1 is
uniform. Let ux = u1, ..., ut+1 be the sequence of obfuscated functions just computed.
Then O outputs the following obfuscation, O(Fx,y), with ux stored in it.

input: a

if u1(a) = 0 then1

return 0;2

else3

for i ← 2 to t + 1 do4

if ui(a) = 1 then5

yi−1 ← 1;6

else7

yi−1 ← 0;8

return y = y1, ..., yt;9

end10

Algorithm 1. O(Fx,y)

Analysis. This construction is simple and modular. It is possible to replace H by any
relative of point function obfuscation such as POW functions (see Appendix A) and an-
alyze the security of the construction based on the security of the underlying primitive.
We would like to prove that our construction is secure based on the simple assumption
that the underlying primitive is an obfuscation of point functions. However, as we show
in Section 4, this is not possible. This is so because the definition of obfuscation does
not guarantee even self-composition. Thus, there exist point function obfuscators and
POW functions for which this construction is provably insecure.

We investigate the secrecy of this construction based on three underlying primitives
with different composition properties. In the first case, we consider the notion of com-
posable obfuscation (as in Definition 2, also known as simply-composable obfuscation
in [11]). We show a characterization that composable point function obfuscation ex-
ists if and only if composable multibit point function obfuscation exists. In the second
case, we show that if H is a statistically indistinguishable POW function, then our con-
struction is secure. Finally, if H is a computationally indistinguishable POW then this
construction satisfies a weaker form of obfuscation where y, in Fx,y, has to be indepen-
dent of x.

Analysis based on composable obfuscation. In this work, composable obfuscation
refers to the fact that concatenating any sequence of obfuscated functions, where the
functions are taken from the same class, constitutes an obfuscation for that sequence
of functions. This form of composition, also known as simply-composable obfuscation
in [11], should not be confused with self-composition which means that concatenating
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a sequence of independent obfuscation of the same function does not compromise se-
crecy. Formally,

Definition 2 (t-Composable Obfuscation, [11]). Let F be any family of functions. A
PPT, O, is called a t-composable obfuscator for F, if:

1. Approximate functionality and polynomial slowdown are as before.
2. Virtual Black-box property For any nonuniform PPT, A, and any polynomial, p,

there is a nonuniform PPT, S, such that for any functions F1, ..., Ft(n) ∈ F (n is a
security parameters, e.g., n = |F1| = ... = |Ft(n)|) and sufficiently large n:

|Pr[b ← A(O(F1), ...O(Ft(n)) : b = 1] − Pr[b ← SF1,...,Ft(n)(1n) : b = 1]| ≤ 1
p(n)

If O is a t-composable obfuscator for F for any polynomial t, then it is called a com-
posable obfuscator.

If H satisfies (t + 1)-composable obfuscation for some t, then our construction can be
shown to be an obfuscation of multibit point function with output length t. Approx-
imate functionality and polynomial slowdown follow from the corresponding prop-
erties on H . By the virtual black-box property on H , the output of A(O(Fx,y) =
O(Fx), O(Fx1 ), ..., O(Fxt(n))) can be simulated by S

Fx,Fx1 ,...,Fxt(n) (1n), where xi =
Fx if yi = 1 and xi is uniform otherwise. Moreover, oracle access to Fx, Fx1 , ..., Fxt(n)

can be simulated with oracle access to Fx,y: If S queries any of its oracle on a point
z such that Fx,y(z) = 0, then answer 0 (this may incur a negligible simulation error
only), otherwise, z = x so y can be fully recovered. Thus, this construction satisfies the
virtual black-box property.

Observe that our construction is a composable obfuscation of multibit point functions
with the appropriate parameters. Specifically, if the output length of the multibit point
function is restricted to at most t, then this construction is a t′-composable obfuscation
if H is (t + 1)t′-composable. In addition, it is easy to see that the existence of a t-
composable obfuscation of multibit point functions implies a t-composable obfuscation
of point functions. Formally, we have the following characterization with a proof that
follows the above discussion.

Theorem 1. Composable obfuscators of point functions with multibit output exist if
and only if composable obfuscators of point functions exist.

Specifically, if a point function obfuscator, H , is (t + 1)t′-composable (as in Defi-
nition 2) then the above construction is a t′-composable obfuscation of multibit point
functions with output length t. On the other hand, a t-composable obfuscation of multi-
bit point functions implies a t-composable obfuscation of point functions.

Analysis based on statistical indistinguishability. Suppose G is a statistically indistin-
guishable POW family ensemble (see Appendix A for the formal definition). We can
replace H by G in the above construction. Specifically, the obfuscator, O, samples a
key, k, for G and replaces H(x, .)(a) with V (a, Gk(x, .)), where V is the verification
algorithm for G. This results in an obfuscation of point function with multibit output ex-
cept with computational approximate functionality [13], i.e, no adversary can efficiently



Obfuscating Point Functions with Multibit Output 497

find a point on which the original function differs from the obfuscated one. This relax-
ation to approximate functionality is necessary when using statistical POW functions
because they can not be statistically collision resistant. On the other hand, we argue that
the result satisfies the virtual-blackbox property. Informally, from the fact that G is a
statistical POW function we can conclude that an obfuscation of Fx,y , where x is taken
from a well-spread distribution and y is arbitrary, is statistically close to a sequence of
hashes of random inputs. It follows that for all but polynomially many x, an obfusca-
tion of Fx,y is indistinguishable from random hashes. Consequently, we get a simulator
that runs the adversary on random hashes unless x is taken from that polynomial set,
in which case the simulator can recover y and run the adversary on an obfuscation of
Fx,y . Formally,

Theorem 2. Let G be a statistically (t + 1)-indistinguishable POW function (as in
Definition 8). Then, the above construction is an obfuscation of point functions with
multibit output length t (as in Definition 1), where approximate functionality is only
computational.

Proof (Sketch). Polynomial slowdown follows immediately from the fact that G has a
polynomial output length. Also, by public verification and collision resistance of POW
functions (definition 6), it follows that O satisfies computational approximate function-
ality.

Virtual black-box property. Recall, the definition of statistical indistinguishability says
that for any well-spread distribution, X:

∆(Gk(Xn, R1
n), ..., Gk(Xn, R(t+1)(n)

n ), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n )

is negligible, where each distribution Ri
n (respectively, U i

n) is the same as Rn (respec-
tively, Un).

Using the fact that for any function, λ, ∆(λ(X), λ(Y )) ≤ ∆(X, Y ), we have for any
distribution,XY on (x, y), where the corresponding distribution on x is well-spread:

∆(O(FXn ,Yn), Gk(U1
n, R1

n), ..., Gk(U t(n)
n , R(t+1)(n)

n ) (1)

is negligible. (We assume without loss of generality that O(Fx,y) consists only of the
t + 1 G-hashes.)

Using the same technique from the proof of Theorem 4 in [4], it can be shown that
O(Fx,y) is indistinguishable from G-hashes of uniform strings on all but a polynomial
number of x. That is, for any nonuniform PPT, A, and any polynomial, p, there exists a
polynomial size family of sets, {Ln}, such that for sufficiently large n, and x /∈ Ln and
any y:

|Pr[b ← A(O(Fx,y)) : b = 1] − Pr[u1, ..., ut+1 ← Un, ..., Un,

r1, ..., rt+1 ← Rn, ..., Rn, b ← A(Gk(u1, r1), ..., Gk(ut+1, rt+1)) : b = 1]| ≤ 1
p(n)

.

(2)
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Intuitively, this is true because otherwise there is a super-polynomial number of values
for x (with a corresponding value for y), on which A can distinguish O(Fx,y) from
hashes of random strings. By defining a well-spread distribution, e.g., a uniform distri-
bution, on this superpolynomial number of values for x, A violates (1).

Now, for any nonuniform PPT, A, and a polynomial, p, we construct a nonuniform
PPT, S that simulates A. S receives the polynomial-size set, Ln, as an advice string. It
checks if the oracle, Fx,y, responds with the nonzero value, y, to any element in the set,
Ln. If so, then S can compute O(Fx,y) and simulate A on it. Otherwise, x is not in Ln,
so S runs A on hashes of random inputs. By (2), this is close to a true simulation. For
more detail, we refer the reader to the proof of Theorem 4 in [4]. 	


Analysis based on computational indistinguishability. We would like to weaken the as-
sumption in Theorem 2 to computational indistinguishability. However, it is not clear
how to use computational indistinguishability, i.e., Gk(x, r1), ..., Gk(x, rt+1) is com-
putationally indistinguishable from hashes of uniform, to conclude that O(Fx,y) is in-
distinguishable from hashes of random inputs. It seems that the problem lies in the
potential dependence of y on x, e.g., y may be equal to x. This is not a problem in the
statistical case because we can use the fact that statistical difference does not increase
by applying the same function on both distributions. In the computational setting, if we
use the traditional blackbox reduction, we need to construct O(Fx,y) from hashes of
x and then run A on it. However, it is not clear how to do so if y = x. On the other
hand, suppose y is independent of x, e.g., y is taken independently from a uniform
distribution. Then, for some y, it is possible to compute O(Fx,y) given hashes of x,
Gk(x, r1), ..., Gk(x, rt+1), by replacing Gk(x, ri) with a hash of a random string if the
ith bit of y is 0. Thus, we know that computational indistinguishability gives us a weaker
notion of obfuscation where the simulator depends on the distribution on y. Whether
computational indistinguishability gives us the standard virtual-blackbox property re-
mains unknown. Nevertheless, this weak obfuscation can be used as a digital locker as
described in the introduction. The caveat is that the message being encrypted should
be independent of the encryption key. This is the case if, for instance, the message is
chosen without knowledge of the key.

Formally, the virtual black-box property becomes: for any nonuniform PPT A, any
polynomial p, and any (efficiently samplable) distribution Y, there exists a nonuniform
PPT S such that for any x and sufficiently large n:

|Pr[y ← Yn, b ← A(O(Fx,y)) : b = 1] − Pr[y ← Yn, b ← SFx,y(1|Fx,y|) : b = 1]|

≤ 1
p(n)

. (3)

Also, we remark that this construction has either approximate or computational approx-
imate functionality depending on whether the POW function satisfies statistical or com-
putational collision resistance. Formally, we have the following theorem whose proof
follows that of Theorem 2 and the above discussion, and is not recreated here.

Theorem 3. If G is a computationally (t + 1)-indistinguishable POW function, then
the above construction is an obfuscation of point function with output length t, where
the virtual-blackbox property is as in (3).
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3.1 Obfuscating Set-Membership Predicates and Functions

To obfuscate a set-membership predicate, simply obfuscate the point functions on ev-
ery element in the set (this is feasible because the set has a polynomial size), and then
store all the obfuscated functions in a randomly permuted order. To determine whether
a particular input is in the set, we only need to check whether any of the obfuscated
functions outputs 1 on this input. It can be shown that this construction is an obfusca-
tion of set-membership predicate based on composable obfuscation of point functions.
Moreover, to obfuscate a set-membership function, F(x1,y1),...,(xt,yt), we only need to
run the obfuscator for the multibit output point function on each Fxi,yi , and then store
these obfuscated functions in a randomly permuted order. It can be shown that com-
posable obfuscation of point functions is a necessary and sufficient condition for the
security of this construction.

3.2 A More Efficient Obfuscation of Point Functions with Multibit Output

We note that the obfuscation of point function with multibit output in the RO model [11]
can be instantiated by using a stronger assumption on the underlying primitive. The end
result is a more efficient construction than the one described previously. Specifically,
let G be a POW function with public randomness. To obfuscate Fx,y, select r1 and
r2 uniformly from the randomness domain of G and output Gk(x, r1), r2, z, where
Gk(x, r2) = (r2, v) and z = y ⊕ v.2 To recover y from (a, b, c) and x′, first check that
V (x′, a) = 1, if so, then return y = c ⊕ v, where Gk(x′, b) = (b, v). Even though this
construction is more efficient than the first one, it suffers from two problems. First, in
order to completely hide y, it is not sufficient that G be indistinguishable as in Definition
9 rather its output has to be indistinguishable from uniform. If, for example, the first bit
of the hash is always 0, then the first bit of y is revealed. Second, for the proof to
go through, we need to assume that G is statistically indistinguishable from uniform
because y may depend on x. Contrast this assumption with the one used in Theorem 2,
where G is statistically indistinguishable from hashes of uniform strings.

4 On Composable Obfuscation of Point Functions

In Section 3, we provided a transformation from an obfuscation of a point function to
an obfuscation of a point function with multibit output. This transformation requires an
essential property on the given obfuscation, specifically, composition. In other words,
our construction assumes that we have an obfuscation of a point function such that se-
curity is not compromised when multiple obfuscated functions are given. Notably, The-
orems 1, 2, and 3 all assume that H satisfies some form of composable security. Since
the obfuscator is probabilistic, composable security is nontrivial. In this section, we
address this question. Specifically, does the basic definition of obfuscation imply com-
position? From a different angle, Canetti et al. [5] ask if semantic perfect one-wayness
implies indistinguishable perfect one-wayness or if t-indistinguishable POW functions

2 Without loss of generality, we assume that y and v have the same length. Otherwise, the input
should be of a longer input, say x0t.
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are t + 1-indistinguishable. We answer these questions negatively: such primitives are
not necessarily secure even under self-composition. 3 In more detail, we show that weak
c-indistinguishable POW functions (where the probability is taken over the choices of
the seed as well, [5]) are not necessarily c + 1-indistinguishable for any constant c.
We also show that POW functions, POW functions with auxiliary input, and obfus-
cation of point functions do not imply composition. Specifically, 1-indistinguishable
POW functions and obfuscation of point functions are not necessarily secure for a poly-
nomial number of copies. Moreover, even though 1-indistinguishable POW functions
with auxiliary input is also c-indistinguishable for any constant c, it is not necessarily
t-indistinguishable with auxiliary input for a polylogarithmic t.

In Section 4.1, we show a tight impossibility result for weak POW functions. Specif-
ically, we show that for any constant c, weak c-indistinguishable POW functions are
not weakly c + 1-indistinguishable. We also show that if t is polynomial, then weak
t-indistinguishable POW functions are not weakly n(t + 1)2-indistinguishable. In Sec-
tion 4.2, we prove that sematic POW functions, 1-indistinguishable POW functions, and
point function obfuscation are not secure if composed roughly nlog(n) times. More-
over, if we consider the same functions with respect to auxiliary information, then we
have a tighter result where they are not secure with respect to auxiliary information if
composed superlogarithmically-many times.

4.1 Weak POW Functions Are Not Self-composable in General

A weak POW function deviates from Definition 9 in that the probability is taken over
the choices of the function key as well. Here, we show that a weak c-indistinguishable
POW function with respect to the uniform distribution may not be c+1 indistinguishable
for any constant c. The idea is simple: we take any weak 3c-indistinguishable POW
function and convert it into a new function that is c-indistinguishable but the output
contains shares of the input such that it is easy to compute the input from c + 1 hashes.
Informally, we add c uniform strings to the original seed and make sure that a hash of
the input using any one of those c strings appears in the output with probability 1

c+1 .
Also, with the same probability the exclusive-or of the input and all the aforementioned
hashes appears in the output. Therefore, if the output of the function contains all c
hashes and the exclusive-or of these hashes with the input, then it is easy to recover the
input.

Formally, let H be any (possibly weak) 3c-indistinguishable POW function with key
space, Kn, and public randomness. We also assume that H is also 3c-indistinguishable
from uniform. Define a new family ensemble, G, with a key space (Kn, Rn, ..., Rn︸ ︷︷ ︸

c

), an

input domain ({0, 1}n, {0, 1}n), and randomness domain (Rn, {0, 1}logc), as follows:

Gk,u1,...,uc((x1, x2), (r1, r2)) =
{

r2, Hk(x1, r1), Hk(x2, r1), Hk(x1, ur2) if r2 �= 0
r2, Hk(x1, r1), Hk(x1, u1) ⊕ Hk(x1, u2)... ⊕ Hk(x1, uc) ⊕ x2 if r2 = 0

3 Recall, self-composition refers to concatenation of multiple outputs of a randomized function
on the same input.
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Now, observe that it is easy to recover x2 from Gk,u1,...,uc((x1, x2), (r0
1 , 0)), ...,

Gk,u1,...,uc((x1, x2), (rc
1, c)). Thus, G is not (c + 1)-indistinguishable because c + 1

randomly-chosen hashes of (x1, x2) have distinct r2 (i.e., match the aforementioned
hashes) with probability (c+1)!

(c+1)c+1 . On the other hand, we argue that G is a weak c-
indistinguishable POW function with respect to the uniform distribution . First, com-
pleteness and collision resistance follow from that on H. Second,

Gk,u1,...,uc((x1, x2), (r1
1 , r

1
2)), ..., Gk,u1,...,uc((x1, x2), (rc

1, r
c
2))

is indistinguishable from

Gk,u1,...,uc((v1, x2), (r1
1 , r1

2)), ..., Gk,u1,...,uc((vc, x2), (rc
1, r

c
2))

by the 3c-indistinguishability property on H, where v1, ..., vc are uniform and indepen-
dent. Moreover, by the 3c-indistinguishability from uniform, we have

Gk,u1,...,uc((v1, x2), (r1
1 , r1

2)), ..., Gk,u1,...,uc((vc, x2), (rc
1, r

c
2))

is indistinguishable from

Gk,u1,...,uc((v1, w1), (r1
1 , r

1
2)), ..., Gk,u1,...,uc((vc, wc), (rc

1, r
c
2)),

where w1, ..., wc are uniform and independent.
Moreover, this result can be generalized to any polynomial t. If H is 3t-

indistinguishable from uniform, then G is a weak t-indistinguishable POW function
with respect to the uniform distribution. On the other hand, G is not n(t + 1)2-
indistinguishable with respect to the uniform distribution. This is so because all the
(t + 1) “shares” appear in n(t + 1)2 hashes with overwhelming probability. This result
is stated formally in the following theorem.

Theorem 4. Let H be any weak POW function that is 3t-indistinguishable from uni-
form and has public randomness. Then for any constant c ≤ t, there exist weak POW
functions that are c-indistinguishable (respectively, t-indistinguishable) with respect
to the uniform distribution but not c + 1-indistinguishable (respectively, n(t + 1)2-
indistinguishable) with respect to the uniform distribution.

4.2 Point Function Obfuscation and POW Functions Are Not Self-composable
in General

We show that POW functions, POW functions with auxiliary input, obfuscation of point
functions, and obfuscation of point functions with auxiliary input are not generally self-
composable. Also, we note that the obfuscation of point functions in [13] is not self-
composable as well. The idea is simple, we start with a POW function and append to
its output a hardcore bit, specifically the inner product between the input and a random
string. This hardcore bit does not compromise security of a single hash. However, the
function becomes completely insecure for polynomially many hashes as the input can
be recovered with high probability by solving a linear system of equations.
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Here, we present the proof for the case of POW functions with auxiliary input only.
Let H be a POW function that is 1-indistinguishable with auxiliary input. Define a new
family ensemble, G:

Gk(x, (r1, r2)) = r2, Hk(x, r1), 〈x, r2〉,

where 〈x, r2〉 is the inner product of x and r2 mod 2. We argue that G is 1-
indistinguishable with auxiliary input. First, completeness and collision resistance fol-
low from that on H. Moreover, for any uninvertible function F , F (x), H(x, r1), r2

is one-way in x because H is 1-indistinguishable with auxiliary input. There-
fore, by Goldreich-Levin theorem [8], we have that F (x), r2, H(x, r1), 〈x, r2〉 is
indistinguishable from F (x), r2, H(x, r1), b, where b is uniform. Moreover, by 1-
indistinguishability with auxiliary input on H, F (x), r2, H(x, r1), b, is indistinguish-
able from F (x), r2, H(Un, r1), b.

On the other hand, G is not polylogarithmically indistinguishable with auxiliary in-
put. To see that, let F be a function that outputs the last n−ω(1)log(n) bits of its input.
Then, F is uninvertible with respect to the uniform distribution. However, we argue that
given F (x) and a polylogarithmic number of hashes, x can be recovered completely by
solving a system of linear equations. Formally,

Lemma 1. For any two constants c and ε, there exists a t, which is polylogarithmic in
n (specifically, t = ω(1)log(n)log ω(1)log(n)

−ln( 1
nc +ε)

) and a PPT, A, such that for any k ∈ Kn:

Pr[x ← Un, r1, ..., rt ← RG
n , ..., RG

n , A(F (x), Gk(x, r1), ..., Gk(x, rt))] ≥ 1
nc

.

Proof. Let A be a PPT that ignores all H hashes (Hk(x, .)) but plugs-in the values of the
last n−ω(1)log(n) bits of x in the system of linear equations: r2

1 , 〈x, r2
1〉, ..., r2

t , 〈x, r2
t 〉.

We show that by solving this system we can recover x with probability 1
nc . Given the

last n−ω(1)log(n) bits of x revealed by F , we can recover x from ω(1)log(n) linearly
independent equations on the first ω(1)log(n) bits. Thus, we need to show that we
have this many linearly independent equations in t uniformly chosen equations with
probability 1

nc . First, observe that a uniform and independent r is linearly independent
from ω(1)log(n) − 1 or less equations with probability at least 1

2 . Consequently, the
probability that t equations contain ω(1)log(n) linearly independent equations is at
least:

(1 − 1

2
log ω(1)log(n)

−ln( 1
nc +ε)

)ω(1)log(n) ≥ eln( 1
nc +ε) − ε =

1
nc

.

	


Using the same construction, G, it is possible to show that 1-indistinguishable
POW functions (respectively obfuscation of point functions) are not necessar-
ily t-indistinguishable (respectively, secure under t-self-composition), where t =
nlog n

−ln( 1
nc +ε)

. As a concrete example, the same analysis can be used to show that

the obfuscation of point function in [13] is not secure when composing t obfuscated
copies of the same point function. These results can be stated formally as follows.



Obfuscating Point Functions with Multibit Output 503

Theorem 5. If there exists a 1-indistinguishable POW function (respectively, a point
function obfuscation) with auxiliary input then there exists another 1-indistinguishable
POW function (respectively, another point function obfuscation) with auxiliary input
such that for any constants c and ε, the latter is not t-indistinguishable (respectively, is
not a t-self-composable point function obfuscation) with auxiliary input with respect to
the uniform distribution , where t = ω(1)log(n)log ω(1)log(n)

−ln( 1
nc +ε)

.

Moreover, if there exists a 1-indistinguishable POW function (respectively, a point
function obfuscation) then there exists another 1-indistinguishable POW function (re-
spectively, another point function obfuscation) such that for any constants c and ε, the
latter is not t-indistinguishable (respectively, is not a t-self-composable point function
obfuscation) with respect to the uniform distribution, where t = nlog n

−ln( 1
nc +ε)

.

5 On the Relationship between Obfuscation of Point Functions
with Multibit Output and Symmetric Encryption

It is interesting to note that obfuscation of point functions with multibit output and
symmetric encryption are similar. At the conceptual level, they capture the same idea
except with a subtle difference. First, both of them satisfy the same correctness prop-
erty. In particular, an encryption scheme (respectively, obfuscation of point function
with multibit output) allows the recovery of the message (respectively, y) given the key
(respectively, x). Second, they share similar privacy requirements. An obfuscation hides
the special output, y, of the function, Fx,y unless x is given. Likewise, a symmetric en-
cryption should ensure the privacy of the message unless the adversary possesses the
key. However, the former primitive differs from the latter in that its behavior is defined
over all possible input x, while the decryption scheme leaves the behavior undefined on
wrong keys. In other words, one may, at least conceptually, think of an obfuscation of
point functions with multibit output as a special form of encryption, where wrong keys
are promptly detected by the decryption algorithm.

At a more technical level, another difference arises, regarding the assumption on the
key distribution. Recall that symmetric encryption requires uniform keys. On the other
hand, an obfuscation of point functions with multibit output does not assume anything
about the distribution on x. Specifically, it provides a definition of privacy for any x.
Thus, casting the former primitive as an encryption scheme ,i.e., as O(Fkey,message),
gives us an encryption scheme with the same privacy as defined for obfuscation. In
other words, any predicate computed from the ciphertext can also be computed by ex-
haustively searching for the right key to recover the message. Formally,

Definition 3 (Single-message encryption for any key). A symmetric encryption
scheme, (E, D), satisfies privacy for any key if for any nonuniform PPT A, and any
polynomial p, there exists a nonuniform PPT S such that for any key, k, any message,
m, and sufficiently large n:

|Pr[b ← A(E(k, m)) : b = 1] − Pr[b ← SFk,m(1n) : b = 1]| ≤ 1
p(n)

.

Observe that in the special case where the key is uniform or even sampled from a well-
spread distribution, Definition 3 implies that whatever predicate computed from the
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ciphertext can be computed without it (and without oracle access to Fk,m). Formally, an
encryption scheme satisfying Definition 3 also satisfies the following privacy property.

Definition 4 (Single-message encryption with well-spread keys). A symmetric en-
cryption scheme, (E, D), satisfies privacy for well-spread keys if for any nonuniform
PPT A, and any polynomial p, there exists a nonuniform PPT S such that for any well-
spread distribution, K = {Kn}n∈N, any message m, and sufficiently large n:

|Pr[k ← Kn, b ← A(E(k, m)) : b = 1] − Pr[b ← S(1n) : b = 1]| ≤ 1
p(n)

.

Although Definitions 3 and 4 consider single-message encryption, encryption of mul-
tiple messages can be readily achieved using appropriately composable obfuscation of
point functions with multibit output.

5.1 Weakness of Definition 3

It may seem that Definition 3 captures our intuition that the only way of breaking the
encryption scheme is through exhaustively searching for the correct key. However, it
turns out that this definition is not strong enough. Specifically, there are encryption
schemes that satisfy this definition but reveal the plaintext when the key is taken from a
polynomial-size set. For instance, modify any encryption scheme that satisfies Defini-
tion 3 so that it reveals the plaintext when the key is one of the first n lexicographically-
ordered keys. The new scheme still satisfies this definition because the simulator can
query the oracle on those n keys to recover the message. However, this scheme does
not match our intuitive requirement. This is so because an adversary can, in constant
time, output the first bit of the plaintext on the first n keys but the simulator needs O(n)
time to do the same. We stress that this weakness is already inherent in the notion of
obfuscation, not just in the application to encryption.

Coming up with a realizable definition that captures our intuition about encryption
with low-entropy keys is interesting, given the potential applications in password-based
encryption. Here, we take a step in this direction. We strengthen Definition 3 by restrict-
ing the number of queries of the simulator to some fixed polynomial in the running time
of the adversary and the simulation error. In more detail, for any key, k, the number of
queries the simulator makes in the worst case is bounded by a fixed polynomial in the
worst-case running-time of the adversary, and the simulation error.

Definition 5 (t-secure encryption). A symmetric encryption scheme, (E, D), is t-
secure if for any nonuniform PPT A, and any polynomial p, there exists a nonuniform
PPT S such that for any key, k, any message, m, and sufficiently large n:

|Pr[b ← A(E(k, m)) : b = 1] − Pr[b ← SFk,m(1n) : b = 1]| ≤ 1
p(n)

,

where S makes at most t(RA,k,m, n, p) queries and RA,k,m is the worst-case running
time of A on E(k, m), taken over the coin tosses of A and E.
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The definition of obfuscation can also be strengthened in a similar way. Obviously,
the smaller t is, the stronger the security guarantee. For instance, if an encryption
scheme (respectively, obfuscation) is t-secure then it (respectively, the obfuscator) can
not do certain “stupid” things such as outputting the plaintext (respectively, the origi-
nal function) in the clear on more than nt(|E(.,.)|,n,n)

n−1 keys (respectively, nt(|O(.)|,n,n)
n−1

functions). We note that the construction in Section 3 satisfies this definition for some
specific t. However, the question remains as to how small t can be made.
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A Perfectly One-Way Probabilistic Hash Functions

A perfectly one-way hash function, POW for short, is a probabilistic function that sat-
isfies collision resistance and hides all information about its input. Due to its proba-
bilistic nature, such a function is coupled with an efficient verification algorithm that
determines, given (x, y), whether y is a valid hash of x. Usually, collision resistance of
deterministic hash functions requires that it is hard to find two input strings mapped to
the same hash. However, because these functions are probabilistic by nature, we need
to modify collision resistance to take the verification process into account. In particular,
collision resistance says that it is hard to find two input and one output strings such that
the verification scheme accepts the output as a valid hash of both input points. Formally,

Definition 6 (Public Verification, [4]). A family ensemble, H = {Hn}n∈N, satisfies
public verification if there exists a deterministic polynomial-time algorithm V such
that:

1. Completeness: ∀k ∈ Kn, x ∈ {0, 1}n, r ∈ Rn, V (x, Hk(x, r)) = 1.
2. Collision Resistance: For any nonuniform PPT, A:

Pr[k ← Kn, (x1, x2, y) ← A(k) : x1 �= x2∧V (x1, y) = V (x2, y) = 1] < µ(n).

There are several ways to formulate information hiding, some of which are not equiva-
lent. We start with the most basic definition, namely semantic perfect one-wayness, and
later present two more definitions, namely, statistical and computational indistinguisha-
bility. Semantic perfect one-wayness has its roots in semantic security of probabilistic
encryption [9] which requires that every function that can be computed given the ci-
phertext can also be computed without it. However, the notion of secrecy in this setting
is slightly weaker than semantic security because a hash can be used to verify whether
a guess is correct or not. This notion is captured by a simulation-based definition which
requires that every predicate computable given a hash can also be computed by a simu-
lator with oracle access to the corresponding point function. Formally,

Definition 7 (Semantic Perfect One-wayness, [4]). A family ensemble H =
{Hn}n∈N, is called semantically perfectly one-way if it satisfies public verification
(Definition 6) and, for any nonuniform PPT, A, and polynomial, p, there exists a nonuni-
form PPT S such that for sufficiently large n, any k, and any x:

|Pr[r ← Rn, b ← A(k, Hk(x, r)) : b = 1] −

Pr[r ← Rn, b ← SFx(k) : b = 1]| ≤ 1
p(n)

.

Recall Fx is the point function on x.

Remark 1. Note that semantic perfect one-wayness corresponds in a straightforward
way to the virtual blackbox property required for obfuscating point functions in Defini-
tion 1. Thus, a function satisfying definition 7 is an obfuscation of a point function (with
computational approximate functionality). However, the converse may not be true.
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In more detail, let H be a semantic POW function. To obfuscate Fx, sample a seed,
k, and random string, r, for H and output the obfuscation, O(Fx) = k, Hk(x, r). The
new function, O(Fx), simply computes the predicate V (., Hk(x, r)). It can be shown
that O is an obfuscator for the class of point functions. Completeness and collision
resistance on H imply computational approximate functionality while semantic perfect
one-wayness implies the virtual-blackbox property. On the other hand, an obfuscation
of point functions may not be a POW function because approximate functionality does
not rule out collisions chosen in an adversarial way.

As mentioned in the introduction, neither Definition 1 nor Definition 7 is sufficient for
the security of our construction in Section 3 because they do not guarantee composi-
tion. Thus, we analyze our construction based on primitives with different composable
properties. Two of these primitives are statistical and computational POW functions,
which are defined in the rest of this appendix.

Statistical Perfect One-wayness. Statistical information hiding is captured by requiring
statistical closeness between hashes of the same input and those of different inputs.

Definition 8 (Statistical t-Indistinguishability). A family ensemble H = {Hn}n∈N,
where Hk : {0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is called statistically t-
indistinguishable if it satisfies public verification (Definition 6) and for any well-spread
distribution X = {Xn}n∈N and any k ∈ Kn,

∆(Hk(Xn, R1
n), ..., Hk(Xn, Rt(n)

n )︸ ︷︷ ︸
t(n)

, Hk(U1
n, R1

n), ..., Hk(U t(n)
n , Rt(n)

n )︸ ︷︷ ︸
t(n)

) ≤ µ(n),

where each distribution Ri
n (respectively, U i

n) is the same as Rn (respectively, Un).
Moreover, if H is statistically t-indistinguishable for any polynomial, t, then it is

called statistically indistinguishable.

We note that the first construction in [5] is slightly weaker than Definition 8 in that the
input distribution has nε min-entropy instead of superlogarithmic min-entropy. Con-
structing functions with the latter property remains an open problem.

Computational Perfect One-wayness. Computational perfect one-wayness differs from
statistical perfect one-wayness in two main ways. The first and obvious difference is that
indistinguishability holds for polynomially-bounded adversaries only. Second, com-
putational perfect one-wayness differs depending on whether we take the presence of
auxiliary information into account. In this context, we restrict the notion of auxiliary
information to uninvertible functions about the input.

Instead of explicitly writing two definitions, one with auxiliary information and an-
other without it, we present here one definition only. To take both cases into account,
we use the convention that auxiliary information is surrounded by boxes. So, by remov-
ing the words in boxes from Definition 9, we get the first definition while keeping the
boxes gives us the second one. Formally,

Definition 9 (t-Indistinguishability)
Let X = {Xn}n∈N be any well-spread distribution. Let F be any (possibly prob-
abilistic) uninvertible function. A family ensemble H = {Hn}n∈N, where Hk :



508 R. Canetti and R.R. Dakdouk

{0, 1}n × Rn → {0, 1}l(n) for some polynomial l, is called t-indistinguishable with

respect to X, with auxiliary input F , if it satisfies public verification (Definition 6) and
for any k ∈ Kn and any PPT A:

|Pr[x ← Xn, z ← F (x) , (r1, ..., rt) ← (Rn, ..., Rn) :

A(k, z , Hk(x, r1), ..., Hk(x, rt)) = 1] −

Pr[x ← Xn, (u1, ..., ut) ← (Un, ..., Un), z ← F (x) , (r1, ..., rt) ← (Rn, ..., Rn) :

A(k, z , Hk(u1, r1), ..., Hk(ut, rt)) = 1]| ≤ µ(n).

If H is t-indistinguishable with any auxiliary input F with respect to any well-

spread distribution X, then it is called t-indistinguishable with auxiliary input . More-

over, if it is t-indistinguishable with auxiliary input for any polynomial t, then it is

called indistinguishable with auxiliary input .
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Abstract. We consider proof of knowledge protocols where the cheat-
ing prover may communicate with some external adversarial environment
during the run of the proof. Without additional setup assumptions, no
witness hiding protocol can securely ensure that the prover knows a wit-
ness in this scenario. This is because the prover may just be forwarding
messages between the environment and the verifier while the environ-
ment performs all the necessary computation.

In this paper we consider an �-isolated prover, which is restricted to
exchanging at most � bits of information with its environment. We intro-
duce a new notion called �-isolated proofs of knowledge (�-IPoK). These
protocols securely ensure that an �-isolated prover knows the witness.
To prevent the above-mentioned attack, an �-IPoK protocol has to have
communication complexity greater than �. We show that for any relation
in NP and any value �, there is an �-IPoK protocol for that relation. In
addition, the communication complexity of such a protocol only needs
to be larger than � by a constant multiplicative factor.

1 Introduction

A proof of knowledge [GMR85, BG92], is a protocol where a prover demonstrates
to a verifier that he has a certain piece of information — typically the witness for
some instance of an NP relation. Soundness of such a proof is usually formalized
by insisting that there is a way to extract the witness from any prover who
successfully convinces the verifier. The definition implicitly assumes that the
prover talks to no one else during the proof. Intuitively, this may seem necessary
to ensure that it is the prover himself who knows the witness, and not someone
else helping the prover.

Nevertheless, in this paper we will consider a cheating prover who is able to
communicate with some external adversarial entity, called the environment. We
will insist that knowledge soundness still means that a witness can be extracted
from the prover himself. From a technical point of view this means that an
extractor is allowed to rewind the prover, but not the environment.

When the cheating prover can communicate arbitrarily with the environment,
this notion can only be achieved by trivial protocols where the prover essentially
hands the witness to the verifier. The obvious reason is that the witness may
be located in the environment and the cheating prover only acts as a channel

N. Smart (Ed.): EUROCRYPT 2008, LNCS 4965, pp. 509–526, 2008.
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between the environment and the verifier while the environment gives an honest
proof. In such a case, the cheating prover learns nothing more than the honest
verifier during the proof and hence extraction implies that the honest verifier
always learns a witness from a single run of the protocol. This simple attack
requires the prover and the environment to communicate an entire transcript
of an honest proof. We study what happens when such an attack is prevented
by limiting the communication between the prover and the environment to be
shorter than the communication used in the protocol.

One can imagine many ways such a partial isolation could be achieved in
practical scenarios. If the prover is in close proximity to the verifier, they can
be expected to communicate orders of magnitude faster than the prover can
communicate with its environment. If in very close proximity, the fixed speed of
light alone can be used to isolate a prover. Alternatively, consider a prover imple-
mented on a smart card: for example, a smart card performing an identification
protocol. The card reader could try to shield the card completely (e.g., using
a Faraday cage) but this requires significant resources. It might be much easier
to only prevent large amounts of communication. For example, the card reader
could limit the amount of communication by measuring the energy consump-
tion of the card. A significant amount of communication takes up a noticeable
amount of energy, typically orders of magnitudes larger than what the card needs
for standard operation.

To facilitate a formal study of such settings, we propose a notion of �-isolated
proofs of knowledge (�-IPoK), where the cheating prover is restricted to commu-
nicating only � bits of information with the environment during the run of the
proof. Note that the number of bits of information communicated does not neces-
sarily correspond to physical bits. For example, if the prover and the environment
share (very) well synchronized clocks, then a short signal can communicate many
bits of information based on the time it is sent. Later, we will also see that some
of our protocols only need to restrict the number of exchanged messages where
each message may contain arbitrarily many bits of information.

In practice, the physical setting determines the level of isolation and hence the
communication threshold �. For any such threshold, we would like to construct
an �-IPoK protocol. We therefore consider the notion of a parametrized IPoK
compiler, or just IPoK, that generates an �-IPoK protocol for any value of �
polynomial in the security parameter κ. Letting C denote the communication
complexity of the generated proof system, we call O = C/� the overhead. We saw
that any non-trivial �-IPoK protocol must have C > �, so an overhead greater
than 1 is necessary.

It turns out to be easy to construct an IPoK with overhead O = poly(κ) and
with O(�+κ) rounds of communication. This is done by repeating a standard Σ-
protocol � + κ times so that there are many iterations where the prover cannot
consult the environment. While this seems straightforward, it is not entirely
trivial to prove that it works. Next, we show that, using novel techniques, it
is also possible to construct an IPoK protocol with a constant overhead. This
IPoK compiler generates protocols in which the number of rounds grows with
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the communication threshold �. We show that this is necessary for any black-
box extractable construction. However, using the non-programmable random
oracle model as a non-black-box technique, we construct a constant round IPoK
with an overhead that gets arbitrarily close to 1. Applying the non-black-box
techniques introduced by Barak, we can get a constant-round construction based
on a standard assumption. This last compiler, however, does not have a constant
overhead. Our IPoK compilers are all non-trivial in that they produce protocols
that are Zero Knowledge (ZK) in the standard sense (when the verifier is fully
isolated), or at least witness indistinguishable (WI).

We also propose a notion of �-isolated zero-knowledge (�-IZK), where we re-
quire that a simulator can simulate any cheating verifier V ∗ that communicates
at most � bits with its environment during the proof. Since 0-IZK is essentially
equivalent to the standard notion of ZK, it is known that every relation in NP
has a 0-IPoK, 0-IZK protocol. On the other hand, consider a cheating verifier
that simply acts as a channel between the environment and the honest prover
while the environment runs the honest verifier code to generate challenge mes-
sages. A simulator for this scenario must essentially run an accepting proof with
the environment, which means that it must know a witness. Since the simulator
is only given the instance and not the witness, this implies that �-IZK proof of
knowledge protocols with communication complexity C ≤ � only exist for trivial
languages where the witness is easy to find. On the positive side, we show how to
construct an �-IZK, �-IPoK protocol for any NP relation R and any pre-defined
threshold � polynomial in the security parameter κ.

We conclude the paper by mentioning some applications of �-IPoK using the
physical assumption that one can �-isolate a prover for the duration of the proof
phase. Firstly, we can use a witness indistinguishable (WI) �-IPoK to prevent
“man-in-the-middle” attacks on identification schemes. Secondly, in a followup
paper [DNW07], we show how to implement arbitrary multiparty computation
securely in the UC framework without relying on any trusted third parties if
the players can be partially isolated during a short, initial proof phase. This
improves on the work of [Katz07], which showed that arbitrary MPC is possible
in the UC framework when parties are fully isolated by putting their functionality
on a tamper-proof hardware token. In some sense, our follow-up work justifies
our choice of considering partially isolated parties for proofs of knowledge only
rather than studying arbitrary multiparty computation in general, since the
latter follows from the former.

2 Σ-Protocols

An NP relation R is a set of pairs (x, w) where (x, w)
?
∈ R can be checked in

poly-time in the length of x. For such a relation we define the witnesses for an
instance x as WR(x) = {w|(x, w) ∈ R} and the language L(R) = {x|WR(x) �= ∅}.

We use Σ-protocols throughout the paper. A Σ-protocol is given by four
PPT ITMs (P, V, S, X ). In a Σ-protocol for relation R, the prover P is given
(x, w) ∈ R and the verifier V is given x. The protocol has three rounds: the
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prover P (x, w) sends the first message a, the verifier V (x) sends a uniformly
random challenge e ∈ {0, 1}l, and P returns a response z. At the conclusion
of the protocol, V (x) outputs a judgment J = accept or J = reject based
only on the conversation (x, a, e, z). An accepting conversation (x, a, e, z) is one
for which V outputs accept. A Σ-protocol is called complete for R if P (x, w)
and V (x) always produce accepting conversations. It is called special knowledge
sound for R if, given two accepting conversations (x, a, e, z) and (x, a, e′, z′) with
e �= e′, the extractor X outputs w = X (x, a, e, z, e′, z′) such that (x, w) ∈ R.
It is called special honest verifier zero-knowledge for R if for all (x, w) ∈ R the
simulator S on input (x, e) produces a simulated conversation (x, a, e, z) which is
computationally indistinguishable from a conversation produced by P (x, w) on
challenge e. It is called statistical special honest verifier zero-knowledge for R if the
distribution of simulated conversations is statistically close to the distribution
of conversations produced by (P, V ). A Σ-protocol is called a (statistical) Σ-
protocol for R if it is complete, special knowledge sound and (statistical) special
honest verifier zero-knowledge for R.

Many relations in cryptography have statistical Σ-protocols, but not all NP
relations are known to have statistical Σ-protocols. If, however, there exists per-
fectly binding, computationally hiding commitment schemes then all NP relations
have a Σ-protocol with computational special honest verifier zero knowledge.

Given two NP relations R1 and R2 one can define R = R1∨R2 by ((x1, x2), w)
∈ R iff (x1, w) ∈ R1 or (x2, w) ∈ R2. Given two Σ-protocols Σ1 and Σ2 for
R1 respectively R2 one can use the OR-construction [CDS94] to construct a Σ-
protocol Σ = Σ1 ∨ Σ2 for R1 ∨ R2. This Σ-protocol will in addition be witness
indistinguishable (WI) in the sense that a proof with instance x using witness
w1 is (at least computationally) indistinguishable from a proof with instance x
using witness w2 for an arbitrary (PPT) cheating verifier V ∗ — even if V ∗ is
given w1 and w2. This in turn implies that the proof is witness hiding (WH) if
the relations are hard: A cheating verifier which can compute a witness for R
with non-negligible probability p, after seeing a proof, by definition computes
a witness for either R1 or R2 with probability p. If we let P use a random
witness, wl ∈ {w1, w2}, then because of WI, the cheating verifier will compute
the witness w3−l not used by P with a probability negligibly close to p/2. This
would contradict the hardness of R3−l.

3 Isolated Proof of Knowledge and Isolated
Zero-Knowledge

We start by introducing the notions of ∞-IPoK and ∞-IZK, and then discuss
how to restrict the communication. An interactive proof system is defined by
the PPT ITMs (P, V ). We define the following notions:

Completeness. We let some PPT environment Z pick (x, w) ∈ R and then run
(P, V ) on (x, w). We require that V accepts with all but negligible probability.
For simplicity we consider only protocols running in some fixed number of rounds
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ρ. The honest execution proceeds as in Fig. 1. We require that Pr[Exec
R
P,V,Z(κ) =

0] is negligible in κ for all PPT Z.

setup: First all entities are given κ. Then Z is run to produce (x,w) ∈ R. Then
(x,w) is input to P and x is input to V .

execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message
v(r) that is input to P which is activated to produce a message p(r) that is
input to V . Then V is activated to produce a judgment J ∈ {accept, reject}.
The output of the execution is a bit Exec, where Exec = 1 iff J = accept.

Fig. 1. Execution Exec
R
P,V,Z(κ) with honest parties

Knowledge Soundness. We model a cheating prover by replacing P with an
arbitrary PPT ITM P ∗. We assume that the cheating prover is able to communi-
cate with its environment during the attack on V . In addition we now allow the
environment to pick x which is not necessarily in L(R). We augment the game
with a PPT extractor X whose goal is to recover the witness w from the view of
the prover (including its random coins and its communication with the verifier
V and environment Z) at the conclusion of any accepting run of the protocol.
The extraction game is outlined in Fig. 2. We say that a protocol is an ∞-IPoK
if for each PPT environment Z and each PPT cheating prover P ∗ there exists a
PPT extractor X such that Pr[Extr

R
P ∗,V,Z,X (κ) = 0] is negligible in κ.

setup: First all entities are given κ. Then Z is run to produce x, and x is input to
P ∗ and V .

execution: Then for r = 1, . . . , ρ the verifier V is activated to produce a message
v(r) that is input to P ∗ which is activated to produce a message p(r) that is
input to V . Besides this P ∗ can at any time output a message y to Z and get
back a reply z. At the conclusion of the ρ rounds, the verifier V produces a
judgment J ∈ {accept, reject}.

extraction: The output of an execution is a bit Extr. If J = reject then Extr =
1. Otherwise we construct the view σ to be a concatenation of the random coins
of P ∗, the messages v(r), p(r) exchanged between prover and verifier, and all the
messages exchanged between prover and environment. We let w = X (κ, σ). If
w ∈ WR(x), then Extr = 1 and otherwise Extr = 0.

Fig. 2. Knowledge soundness extraction: Extr
R
P ∗,V,Z,X (κ)

If there exists one X which works for all provers P ∗ and all environments Z,
and X only uses rewinding black-box access to P ∗, then we say that (P, V ) is
a black-box ∞-IPoK for R. Sometimes we allow a small cheat and let X run in
expected polynomial time in which case we say that the protocol is an expected
∞-IPoK.
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Zero Knowledge. We model a cheating verifier by replacing V with an arbi-
trary PPT ITM V ∗. We assume that the cheating verifier is able to communicate
with its environment during the attack on P . We model this by allowing V ∗ to
communicate with Z. We assume that the execution stops by Z outputting a
bit. The execution with a cheating verifier is given in Fig. 3.

To define zero-knowledge we compare the execution Exec
R
P,V ∗,Z to a simu-

lation Sim
R
S,Z , where S is an ITM acting as simulator. We want to capture that

the proof does not leak any information on w to V ∗ which V ∗ could not have
generated itself. We model the information that V ∗ can collect by what it is able
to output to the environment. The job of the simulator S is then to demonstrate
constructively that whatever V ∗ can leak to the environment could have been
computed by V ∗ without access to P . The details are given in Fig. 4. Because sim-
ulation using a strict PPT simulator is hard, one usually allows a small cheat by
letting S be expected PPT. We say that (P, V ) is ∞-IZK for R if, for every PPT
environment Z and every PPT cheating verifier V ∗, there exists an expected
PPT simulator S such that | Pr[Sim

R
S,Z(κ) = 1] − Pr[Exec

R
P,V ∗,Z(κ) = 1]| is

negligible in κ.

setup: First all entities are given κ. Then Z is run to produce (x,w) ∈ R. Then
(x,w) is input to P and x is input to V ∗.

execution: Then for r = 1, . . . , ρ the cheating verifier V ∗ is activated to produce a
message v(r) that is input to P which is activated to produce a message p(r) that
is input to V ∗. Besides this V ∗ can at any time output a message y to Z and
get back a reply z. The execution stops by Z outputting a bit Exec ∈ {0, 1}.

Fig. 3. Execution Exec
R
P,V ∗,Z(κ) with a cheating verifier

setup: First all entities are given κ. Then Z is run to produce (x,w) ∈ R. Then x
is input to S .

execution: Then S can at any time output a message y to Z and get back a reply
z ∈ {0, 1}∗. The execution stops by Z outputting a bit Sim ∈ {0, 1}.

Fig. 4. Simulation Sim
R
S,Z(κ)

Isolation. The above definition of ∞-IZK, ∞-IPoK captures universally com-
posable zero knowledge proofs of knowledge, as the cheating party is allowed
arbitrary communication with its environment. We now describe how to model
a corrupted party that is isolated from its environment. We start with the cheat-
ing prover in Fig. 2. We do not restrict how much P ∗ and Z communicate before
or after the proof phase. However, from the point where P ∗ receives v(1) until
it outputs p(ρ) we count the number of bits of information exchanged between
Z and P ∗. We say that P ∗ is (�Z , �P )-isolated if P ∗ sends at most �P bits of
information to Z and receives at most �Z bits of information from Z.
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We restrict the cheating verifier in Fig. 3 in the same way, counting its commu-
nication with Z from sending v(1) until receiving p(ρ). We then say that (P, V )
is an (�Z , �P )-IPoK for R if, in the definition of knowledge soundness, we re-
strict ourselves to (�Z , �P )-isolated cheating provers P ∗. Similarly, we say that
(P, V ) is (�Z , �V )-IZK for R if we restrict the definition of zero knowledge to
only (�Z , �V )-isolated cheating verifiers V ∗. We define black-box and expected
notions as above. We use �-X to denote (�, �)-X.

Finally, we define the notion of a parametrized IPoK, or just IPoK, which takes
the security parameter κ and the isolation parameter � as inputs and produces
an �-IPoK protocol. An IPoK + IZK compiler produces a protocol which is �-
IPoK and �-IZK. Letting C(κ, �) denote the communication complexity of the
produced �-IPoK, we use C(κ, �)/� to denote the overhead of the IPoK.

4 Constructing IPoK Compilers

4.1 A Simple Construction

Given any NP relation R, let Σ be a computational Σ-protocol for R. We present
a simple construction of an IPoK compiler for R using the protocol Σ. For any
� and κ, let Σ∗ be the proof system where Σ is run ρ = � + κ times in sequence
with one-bit challenges: For r = 1, . . . , ρ, first P computes a first message ar for
Σ and sends it to V . Then the verifier sends a uniformly random er ∈ {0, 1}
and P returns the response zr to V . The verifier V accepts iff (x, ar, er, zr) is
accepting for all r = 1, . . . , ρ.

Theorem 1. The proof system Σ∗ is an �-IPoK for R. In addition, it is ZK in
the standard sense of a fully isolated verifier.

Proof. It is well known that there is an expected PPT simulator which sim-
ulates many repetitions of a Σ-protocol with 1 bit challenges for any isolated
malicious verifier V ∗. Hence Σ∗ is 0-IZK. This also implies that it is witness
indistinguishable (WI).

To see that Σ∗ is �-IPoK, let P ∗ be any cheating prover. The strong knowledge
soundness extractor (recall Fig. 2) gets the transcript of a random accepting
execution. Then, for each r = 1, . . . , ρ, it rewinds P ∗ to the point just before er

was sent to P ∗ and sends er′ = 1 − er instead. If P ∗ sends anything to Z, then
the extractor aborts the work on round r. Otherwise, it runs P ∗ (and replays
any communication that was sent from Z to P ∗ in this stage during the actual
proof) and gets a response zr′. If (x, ar , er′, zr′) is accepting, then we can use
the special knowledge soundness of Σ to compute w ∈ WR(x). Otherwise, the
extractor proceeds to the next round. If no round yields w ∈ WR(x), then it
gives up.

Clearly X is PPT. We want to show that the probability that P ∗ yields an
accepting execution which X cannot extract is negligible; We call such an exe-
cution a winning execution since on such executions Z and P ∗ win the extraction
game outlined in Fig. 2.
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First let us frame the problem more abstractly. The random coins of P ∗ and Z
together completely determine a strategy of how P ∗ responds to the challenges
posed by V and the communication exchanged for each such message. We model
such a strategy as a binary tree T . The edges of the tree represent the two
possible challenges the verifier can send at any point in the protocol. The nodes
of the tree represent the state of the prover P ∗ (and the environment Z) at
various stages in the protocol. An execution of the protocol between P ∗ and V
corresponds to a random path from the root of the tree to a leaf.

We call a node e-correct if the prover that finds itself in the state represented
by that node gives the correct response (one on which the verifier does not reject)
for the challenge bit e ∈ {0, 1}, possibly after conferring with the environment.
Otherwise we call the node e-incorrect. Similarly we call a node e-communicating
if, on the challenge bit e, the prover sends some communication to the environ-
ment before giving a response.

Now let us look at the paths in the tree T that correspond to winning ex-
ecutions. For any node N along such a path, let e be the challenge bit that
corresponds to the outgoing edge of N which lies on the path of the winning
execution and let ē = 1 − e. Then

1. N is e-correct. This has to be the case since the path is accepting.
2. N is ē-incorrect or is ē-communicating. This has to be the case since other-

wise the extractor would be able to extract a witness from this execution.

Now assume that two winning paths diverge from a node N . Then by property
1, N is 0-correct and 1-correct. By property 2, it then follows that N is 0-
communicating and 1-communicating. But there can be at most � such nodes
on any path since the prover can communicate at most � times. This shows that
the (non-regular) subtree of T containing only winning paths contains at most
2� paths. There are 2κ+� total paths in T and hence the probability of choosing
a winning path is upper bounded by 1/2κ. We note that the above bound holds
for any tree T and hence the probability of a bad execution occurring in a tree
randomly chosen using the coins of P ∗ and Z is also upper bounded by 1/2κ

which is negligible in κ.
We note that in the above proof, we only need to limit communication from

the environment to the prover. In other words, we actually described an (�, ∞)-
IPoK. In addition, the proof also works if we only restrict the number of messages
from the environment to the prover but allow each message to contain arbitrary
many bits of information.

4.2 A Constant Overhead Construction

As before, let R be a relation in NP and let Σ be a Σ-protocol for R with
conversations (a, e, z). We use Σ as a building block from which we compile
our �-IPoK protocol. We again use many repetitions of a Σ-protocol with 1 bit
challenges. However, the prover does not respond with the full value of z in each
round, but only with a small share of z in some ramp secret sharing scheme. This
way, the number of bits exchanged in each round is small. At the same time,
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if there are enough rounds in which the prover cannot communicate with the
environment, the extractor can use rewinding and learn enough of the shares
to recover the alternative response z′ and hence the witness w. The protocol
uses a perfectly binding, computationally hiding commitment scheme which can
commit to m bits using a O(m)-bit string. It also uses a family of secret-sharing
schemes SSS over some finite field GF(2v). We write a secret sharing of a message
z as (Z[1], . . . , Z[N ]) = SSS(z; r), where r is the randomness used. Here, Z[i] are
the shares and they are elements in the field GF(2v). We call (Z[1], . . . , Z[N ]) a
codeword.

The values of M and N depend on the security parameter κ and the communication
threshold �:

– The input to the prover is (x,w) ∈ R, and the verifier gets x.
– The following interaction is repeated for m = 1, . . . , M :

1. We first have a commit phase. The prover computes:
(a) A random first message am for Σ.

(b) A response z
(b)
m to first message am and challenge b for b ∈ {0, 1}.

(c) A secret sharing Z
(b)
m = SSS(z

(b)
m ; r

(b)
m ) of the secret z

(b)
m using random-

ness r
(b)
m .

(d) A commitment c
(b)
m to the pair (z

(b)
m , r

(b)
m ).

The prover sends (am, c
(0)
m , c

(1)
m ) to V .

2. We now have a read phase of N rounds, where in each round n = 1, . . . , N
the verifier may read the n’th field element in one of the codewords Z

(0)
m

or Z
(1)
m . Formally, for n = 1, . . . , N

(a) V chooses a challenge e ∈ {0, 1, ⊥} with probability distribution
Pr(0) = Pr(1) = α/2, Pr(⊥) = (1 − α) and sends the challenge to
V .

(b) If e �= ⊥, P sends the field element Z
(e)
m [n] to V . Else it sends back ⊥.

If the verifier tries to read more than αN field elements in a single codeword
Z

(e)
m , then the prover stops the protocol, and the verifier rejects.

3. Lastly, there is a verification phase, where the verifier is allowed to see the
opening to one of c

(0)
m or c

(1)
m to check that during the read phase it got

valid shares of a valid response:
(a) V sends a uniformly random challenge b ∈ {0, 1} to P .

(b) P sends an opening of c
(b)
m to V which then recovers (z

(b)
m , r

(b)
m ).

(c) V verifies that

i. The shares of z
(b)
m received during the read stage were calculated

correctly from the sharing Z
(b)
m = SSS(z

(b)
m ; r

(b)
m ).

ii. The conversation (x, am, b, z
(b)
m ) is an accepting conversation of Σ.

Fig. 5. The Constant-Overhead Protocol

We assume that there exists a constant α > 0 such that for any N there is
an instantiation of the secret sharing scheme which shares a message consisting
of αN field elements and has a privacy threshold αN (any αN shares of the
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codeword reveal no information about the shared secret). In addition, the sharing
allows efficient reconstruction when any αN of the shares Z[i] are lost (i.e.
replaced by ⊥). We call α the rate of the secret-sharing scheme. Using this
notation, the full protocol is described in Fig. 5.

Secret-sharing schemes with constant rate α, can be constructed using what is
typically called “ramp schemes”. A well-known ramp scheme can be constructed
by modifying Shamir secret sharing so that the shares are defined by evaluating
a polynomial of degree 2αN − 1 in which the secret makes up the top αN high
degree coefficients and the remaining coefficients are random. This scheme has
a rate of α ≈ 1/3 but requires us to use a field with v ≥ log2(N) which (as we
will see later) will not give us a constant-overhead scheme. It is also possible to
use a ramp scheme over a small (constant sized) finite field. Such schemes were
studied recently in [CC06], [CCGHV07]. In particular, the result of [CCGHV07]
shows how to use algebraic geometric codes to get a scheme with rate α = 5

21
in the field GF(2v) with v = 6. The code is based on the curves of Garćıa and
Stichtenoth [GS96] for which there are efficient constructions.1

Let f(κ) be the communication complexity of the original Σ-protocol. In our
construction we then pick

N ≈ max(α−1f(κ) , 4−1α−1�/κ) , (1)
M ≈ (βL + βF + 1)κ + 1 , (2)

where we define the constants

βL ≈ 16α−1 log2(e) , βF ≈ −1/ log2(α/4) . (3)

The scheme SSS allows us to share a message consisting of αN ≥ f(κ) field
elements, each of length v bits, which gives the capacity of at least f(κ) bits and
hence enough to share a response z of the protocol Σ.

Communication Complexity. The communication complexity of all the com-
mit phases and all of the verification phases is O(Mf(κ)) The communication
complexity of a single read phase is simply (v + 2)N since it takes 2 bits to
encode the challenge e and v bits to encode the response. The communication
complexity of all the read phases is then MN(v + 2). Since N ≥ f(κ), the total
communication complexity of the protocol is then O(MNv). Under the assump-
tions that � ≥ 4κf(κ), equation (1) just becomes N ≥ 4−1α−1�/κ. Assuming,
in addition, that v is constant, the communication complexity of the protocol
simply becomes O(�) which means that the protocol has a constant overhead for
large enough �.

The round complexity of the protocol is O(MN) which, under the above
assumptions on � and v, is also O(�).
1 Unfortunately, such codes do not exist for all N . However, for any N there is an N ′

in the interval N ≤ N ′ ≤ 8N for which we can construct such a code. We ignore
this subtlety in further discussion since it means at most a small constant blowup
of our parameters.
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Completeness. It is clear that an honest prover and an honest verifier generate
an accepting conversation as long as the verifier does not try to read more than
αN positions in the same codeword. The expected number of field elements an
honest verifier reads in a particular codeword is (α/2)N . Using the Chernoff
bound, it is easy to see that the probability of reading more than αN elements
in a single codeword is negligible in N and hence also in κ. Using union bound,
we see that the probability of this happening for any one of the possible 2M
codewords is still negligible in κ.

Knowledge Soundness Extractor. The extractor tries to reconstruct as
much as possible of the codewords Z

(0)
m , Z

(1)
m for each m = 1, 2, . . . , M . It rewinds

to each round in which the prover did not communicate during the original ex-
ecution of the protocol. The extractor then tries both of the challenges 0, 1 and
replays any communication from the environment to the prover that occurred
in the original execution. If the prover tries to send out a message to the envi-
ronment, the extractor gives up on recovering that share of the codeword and
replaces it with a loss symbol ⊥. Otherwise the extractor successfully recovers
the same share that the verifier would have gotten during the real execution.
At the end of this process, the extractor will hold some candidate codewords
Z̃

(0)
m , Z̃

(1)
m for each epoch m ∈ 1, . . . , M . For each such m, either the extractor

can correctly decode both codewords and recover the witness or:

1. One of the codewords has more than αN loss symbols.
2. One of the codewords contains at least one share which is faulty because it

does not correspond to the committed secret sharing.
3. One of the shared secrets z

(b)
m is an incorrect response to the first message

am and the challenge bit b.

We show that the probability of an accepting conversation having one of the
above possibilities occur in each epoch m = 1, . . . , M is negligible in the security
parameter κ. Intuitively, there cannot be too many states in which the prover will
communicate resulting in a loss symbols, since the prover is limited to sending
at most � bits to the environment. There also cannot be too many times where
the prover sends faulty shares in an accepting conversation because such con-
versations have a high likelihood of the prover being “caught” in the verification
phase. For the same reason, there cannot be too many times where the prover
shares an incorrect response zm. We formalize this intuition in the full version
of this paper and show that the probability of the prover being involved in an
accepting conversation with the verifier on which the extractor subsequently fails
to extract a witness, is upper bounded by 3 × 2−κ. The proof only relies on re-
stricting the number of bits from the prover to the environment. Also, as in the
previous protocol, we only need to restrict the number of exchanged messages
but can allow each message to contain arbitrary many bits of information.

The ZK Simulator. We now show that the protocol is also ZK in the standard
sense, which also implies that it is WI. Here we simply modify the usual simulator
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for simulating many repetitions of a Σ-protocol with 1-bit challenges. On each
epoch m, the simulator uses the special HVZK property to produce a random
conversation (a, e, z) for Σ where e is a random bit. It then, in addition, produces
a random secret sharing SSS(z; r) and a commitment c

(e)
m to (z, r). In addition

it produces a commitment c
(1−e)
m to some garbage value. The simulator sends

(a, c
(0)
m , c

(1)
m ) to V ∗. Then the simulator simulates the read phase of the protocol

by responding with random field elements for the challenges 1 − e and with the
secret shares of the codeword SSS(z; r) for challenges e. Lastly, in the verification
phase, if the verifier V ∗ picks the challenge e then the simulator honestly opens
c
(e)
m and goes on to the next round. On the other hand, if V ∗ sends the challenge

1 − e then the simulator rewinds V ∗ to the beginning of the epoch and tries
again. This is an expected polynomial time simulation and is indistinguishable
from a real execution by the hiding property of the commitment scheme and the
privacy of the secret sharing scheme.

4.3 Impossibility of a Constant Round Black-Box Extractable IPoK

In both of the IPoK constructions that we saw so far, the number of rounds grows
with the communication threshold �. Clearly, this has to be the case if we are only
restricting the number of messages exchanged rather than the number of bits
of information since otherwise the simple attack mentioned in the introduction
will work. However, we now show that this is a necessary characteristic of any
black-box extractable IPoK compiler even when we restrict the number of bits
of information. In particular, once � is super-logarithmic (� = ω(log(κ))), then
no protocol with O(1) rounds can be a witness hiding �-IPoK.

Theorem 2. Any black-box construction of a witness hiding (expected) IPoK
compiler, parametrized by the communication threshold � and the security pa-
rameter κ, with ρ rounds of communication must satisfy �/ρ = O(log(κ)).

Proof. We start with any protocol that runs in ρ rounds and let q = 
�/ρ�.
Let f : {0, 1}∗ × {0, 1}m → {0, 1}q be a pseudorandom function with keys of
size m. The existence of pseudorandom functions follows from that of one way
functions which are guaranteed to exist if witness hiding proofs of knowledge
exist at all. We define a class of provers with (hardcoded) values r, s ∈ {0, 1}m

and (x, w) ∈ R. For each such prover we have the corresponding environment
with the (hardcoded) value r (which acts as a shared key between environment
and prover) and the hardcoded instance x. A prover P ∗ and the corresponding
environment Z are chosen randomly from this class. The prover P ∗ acts just like
an honest prover but checks in with the environment to make sure it has not
been rewound prior to each round. The interaction is outlined in Fig. 6.

The outlined interaction has P ∗ send q bits on every round and receive q bits
on every round. Since qρ ≤ �, the cheating prover is indeed �-isolated. Assume
that there is an extractor X which recovers a witness. Since the proof is witness
hiding, the extractor must be able to get some more output from P ∗, other than
just one run of the protocol. However, the only way to do so in a black-box
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The prover P ∗ begins by setting view to be the empty string. For i = 1, . . . , ρ:

1. The verifier sends v(i) to P ∗.
2. P ∗ sets view ← view||v(i), computes σ

(i)
s ← f(view; s), and sends σ

(i)
s to Z.

3. Z sends σ
(i)
r ← f((σ

(i)
s , i); r) to P ∗.

4. P ∗ verifies σ
(i)
r = f((σ

(i)
s , i); r). If not then P ∗ quits. Otherwise P ∗ computes

the response p(i) and sends it to V .

In the above interaction, Z has a counter to keep track of the round i. After it
reaches i = ρ and sends out σ

(ρ)
r , it aborts and stops responding to any incoming

messages.

Fig. 6. Interaction between P ∗ and Z during a proof with V

manner is to rewind P ∗ and get an additional response p′(i) for some round i.
This is only possible if X finds a collision on f(·; s) or guesses the value of f(·; r)
on some point, which can happen in expected polynomial time if and only if
q = O(log(κ)).

4.4 Non Black-Box Techniques

In Theorem 2, we showed that non-black-box techniques are needed to construct
a constant-round IPoK compiler. The idea of using non-black box techniques
based on standard cryptographic assumptions was first studied by Barak in
[Bar01]. In the full version of this paper, we show how to use Barak’s techniques
to construct a constant round IPoK + IZK compiler.2 Since the extractor for such
a protocol does not rely on rewinding, it is also possible to construct protocols
that are resettable-ZK [CGGM99, BGGL01]: that is the zero knowledge property
holds even when the verifier can reset the prover and force it to run multiple
times with the same random coins. This is especially pertinent to our setting
where isolation might be achieved by putting a prover on a smart-card which
can be easily reset. Barak’s non-black-box techniques are, however, inefficient in
practice (requiring an application of the Cook-Levin reduction) and it does not
seem that they can be used to get a constant round protocol which also has a
constant overhead.

Here we take a different approach and present a very efficient constant round
protocol using random oracles. As before, let R be an NP-relation, and let Σ be

2 For the reader familiar with Barak’s basic idea, the adaption to the isolated setting
is fairly straight forward: The basic idea is that the prover produces a commitment c
to some machine M , then the verifier returns a long random string r, and the prover
shows that either the claim holds or M(c) = r. The simulator takes M = V ∗ to be
the cheating verifier. In the isolated setting we prove that either the claim holds or
M(c, aux) = r for some auxiliary input aux of length at most � bits. The simulator
takes aux to be the communication between V ∗ and Z. By letting r be longer than
� + κ bits the soundness is maintained.
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1. First V sends a uniformly random string r of length κ + � bits to P .
2. Then P starts running κ instances of Σ. It sends the first messages a1, ..., aκ

to V . Then, for i = 1, . . . , κ:
The prover P computes z

(0)
i , z

(1)
i , where ze

i is the response to the first
message ai and the challenge bit e in Σ. The prover chooses random strings
r
(0)
i , r

(1)
i of length κ and sets (s

(0)
i , s

(1)
i ) = (H(r, r

(0)
i , z

(0)
i ), H(r, r

(1)
i , z

(1)
i )).

Lastly, the prover sends (s
(0)
i , s

(1)
i ) to V .

3. V sends random challenge bits e1, ..., eκ to P .
4. For i = 1, . . . , κ, P sends z

(ei)
i , r

(ei)
i to V . By calling H , V checks that s

(ei)
i =

H(r, r
(ei)
i , z

(ei)
i ), and also that (ai, ei, z

(ei)
i ) is an accepting conversation for Σ.

Fig. 7. A WI IPoK from a Random Oracle

a Σ-protocol for R. We assume an oracle H that takes inputs of size 3κ + � bits
and outputs κ bits. The protocol is given in Fig. 7.

Theorem 3. The proof system Σ+ is �-IPoK for R. In addition Σ+ is WI if
Σ is WI. The overhead of the given compiler is 1 + o(1) for large enough �.

Proof. The communication exchanged is that of κ runs of the Σ-protocol (which
is poly(κ)) plus the randomness r and ri and the tags si: a total of � + poly(κ).
This gives an overhead of 1+poly(κ)/� which is 1+ o(1) for large enough �. The
protocol runs in 4 rounds.

The required extractor simply looks at all oracle calls made by P ∗ and tests if
there exists two calls specifying inputs of form (r, r(0)

i , z
(0)
i ), (r, r(1)

i , z
(1)
i ) where

the outputs were used by P ∗ to form a pair (s(0)
i , s

(1)
i ) and where V would accept

both z
(0)
i and z

(1)
i . If so, it computes the witness using the special soundness

property of Σ, otherwise it gives up.
Since P ∗ can send at most � bits to the environment, the environment has at

least κ bits of uncertainty about r. Therefore all calls to H where r appears in the
input must have been made by P ∗, except with negligible probability. Further-
more, since oracle outputs are κ bits long, they cannot be guessed except with
negligible probability. Hence, any value s

(ei)
i that is checked by V in Step 4 of the

protocol, must have been generated by P ∗ calling H on an input r, r
(ei)
i , z

(ei)
i that

V would accept. We say that such an element s
(ei)
i = H(r, r(ei)

i , z
(ei)
i ) generated

by P ∗ calling H is well formed.
It follows that, except with negligible probability, the only way in which P ∗

can construct a set of pairs {(s(0)
i , s

(1)
i )} that will make V accept and the extrac-

tor fail is if every pair (s(0)
i , s

(1)
i ) contains exactly 1 well formed element. But

then V accepts with probability at most 2−κ.
If the underlying Σ-protocol is witness indistinguishable, then so are poly-

nomially many repetitions of the protocol run in parallel. The only additional
information the cheating verifier gets here are the hashes s

(ēi)
i = H(r, r(ēi)

i , z
(ēi)
i )

where ēi = 1 − ei is the bit which the verifier did not pick as a challenge in
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Step 3 of the protocol. However, these hashes look random (even if the verifier
knows a witness w and can guess z

(ēi)
i ) unless the verifier guesses r

(ēi)
i which

only happens with negligible probability. Hence the protocol is indeed WI.

We have stated the above result in the random oracle model for simplicity. In
reality, we only use the oracle in a limited way. We do not need a “programmable”
oracle, i.e., the technique where the security reduction gets to decide what the
oracle should output. We rely on the random oracle model to ensure that an
output cannot be computed in a distributed fashion between two parties, each
having only some portion of the input (i.e., the cheating prover knowing r and
the environment knowing zi,e). We believe it should be possible to instantiate
our oracle with a concrete function and a well defined non-black-box assumption
(along the lines of the knowledge of exponent assumption) rather than basing
ourselves on a heuristic.

4.5 From IPoK + WI to IPoK + IZK

For theoretical interest we include the following construction of an IPoK + IZK
from a WI IPoK. In practice, this is only useful if we are in a situation where
both the prover and the verifier can be assumed to be isolated. The construction
is based on the FLS paradigm [FLS99].

Theorem 4. Assuming the existence a perfectly binding, computationally hiding
commitment scheme, there exists an IPoK + IZK compiler for every relation in
NP.

Proof. Let R be any NP relation. The verifier sends two commitments C0 =
commit(m0; r0) and C1 = commit(m1; r1) to κ-bit random elements m0 and
m1 using randomizers r0 and r1 respectively. Then V gives a WI �-IPoK of
(m, r) such that C1 = commit(m; r) or C2 = commit(m; r). It selects which
witness (m1, r1) or (m2, r2) to use uniformly at random. If the proof is accepting,
then P gives a WI �-IPoK of (m, r, w) such that C0 = commit(m; r) or C1 =
commit(m; r) or (x, w) ∈ R.

To show that the protocol is �-IZK, the simulator runs V ∗ through the con-
clusion of the first WI IPoK protocol. If the proof given by V ∗ is accepting
then, since V ∗ is �-isolated, the simulator can extract some (m, r) such that
C0 = commit(m; r) or C1 = commit(m; r). Then the simulator runs the second
WI IPoK using the witness (m, r, ε), and the �-IZK property follows from the
witness indistinguishability of this proof.

To show that the protocol is �-IPoK, the extractor simply extracts a wit-
ness in the WI proof given by the prover to get some (m, r, w) such that C0 =
commit(m; r) or C1 = commit(m; r) or (x, w) ∈ R. If the extractor extracts a
witness (m, r) for C0 or C1 then, with probability close to 1

2 , this differs from
the witness used in the first �-IPoK (by witness indistinguishability) and hence
the prover and extractor together break the hiding property of the commitment
scheme. Hence, with all but negligible probability, the extractor recovers a wit-
ness w such that (x, w) ∈ R.
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5 Applications of WI IPoK

5.1 Preventing “Man-in-the-Middle” Attacks on Identification
Schemes

An identification scheme is an interactive protocol where one party acts as a
prover to securely prove its identity to another party acting as a verifier. Each
prover has a public key which is known to all others. The usual solution has
the prover perform a witness hiding proof of knowledge of the corresponding
secret key. A “man-in-the-middle” attack on an identification scheme involves a
cheating party simultaneously acting as a verifier for party A and a prover for
party B. By simply redirecting messages between A and B the adversary is able
to claim A’s identity and successfully convince the party B. A previous solution
for preventing such attacks, outlined in [CD97] requires a PKI in a strong sense:
all the verifiers must have a registered public key for which they are guaranteed
to know the secret key. Each prover then customizes his proof to a specific verifier
so that the verifier is unable to redirect the proof to another party. Apart from
requiring a strong PKI, in practice this also requires that the prover checks the
identity of the verifier that he communicates with. For instance, if you use your
mobile phone to do a proof of identity and get access to some resource R, the
phone must display the identity of R, so you can verify that you actually meant
to access R.

As an alternative solution, we propose using the physical assumption that the
prover is �-isolated from all parties aside from the verifier. In the introduction,
we discussed some scenarios where this could be a reasonable assumption. The
prover simply uses a witness hiding �-IPoK to prove his identity. The �-IPoK
property ensures that the prover himself knows a witness even if he simultane-
ously acts as a verifier in another instance of the proof, while the witness hiding
property ensures that the verifier cannot learn such a witness. This solution only
requires that the verifier knows the correct public key for the prover, and for this
a standard PKI suffices! In addition, the responsibility of not being fooled by
man-in-the-middle attacks now falls, not on the prover, but on the verifier who
must ensure that any prover he is interacting with is properly isolated. This
places the burden on the physical design of the apparatus and so is much less
prone to human mistakes.

5.2 Setting Up a PKI for General UC MPC

It is known that general multiparty computation secure in the UC framework
is not possible without an honest majority and without any additional setup
assumptions [CKL03]. To remedy this, previous work used setup assumptions
such as the presence of a common reference string (CRS) or the existence of a
public key infrastructure (PKI) where players are guaranteed to know the secret
key corresponding to their registered public key. Both of the above assumptions
require a trusted third party to initialize the setup. It is desirable to eliminate
(or at least reduce) the level of trust required. We instead propose using the
physical assumption that a player can be partially isolated during a portion of
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the computation. A variant of this setting was previously considered in [Katz07],
which showed that one can implement arbitrary multiparty computation in the
UC framework without any trusted third parties by using tamper proof hard-
ware tokens. In particular, it is assumed that a player can isolate such a token
so that it cannot communicate even a single bit of information with any other
party. With �-IPoK protocols, we can weaken the physical setup and only require
that a party can be partially isolated from the environment during a portion of
the computation. The parties once and for all register public keys with each
other and provide proofs of knowledge of the corresponding secret keys using
an �-IPoK protocol where the prover functionality is �-isolated from the envi-
ronment. In a followup paper [DNW07], we show that this setup can be used
as basis for UC secure multiparty computation tolerating an arbitrary number
of adaptive corruptions. Note that, in particular, those results show that the
witness indistinguishability property of the registration proof is sufficient and
zero-knowledge is not required. This is an essential point, as in most settings it
is unreasonable to assume that both of the interacting parties are isolated from
the environment and we showed that one cannot achieve ZK without isolating
the verifier to some extent.

6 Future Directions

The most interesting future research would be to improve the efficiency of the
constructions we gave. In particular, it would be nice to have a smaller constant
overhead than what we achieve in Section 4.2. Perhaps one could even find a
black-box construction with an overhead of 1 + o(1) or show that such con-
structions are impossible. In addition, it would be interesting to come up with a
specific reasonable non-black-box assumption (along the lines of the knowledge
of exponent assumption) under which one could prove the security of the proto-
col in Fig. 7 or some similar protocol which runs in a constant number of rounds
and has an overhead of 1 + o(1).
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Abstract. Designing secure protocols in the Universal Composability
(UC) framework confers many advantages. In particular, it allows the
protocols to be securely used as building blocks in more complex pro-
tocols, and assists in understanding their security properties. Unfortu-
nately, most existing models in which universally composable computa-
tion is possible (for useful functionalities) require a trusted setup stage.
Recently, Katz [Eurocrypt ’07] proposed an alternative to the trusted
setup assumption: tamper-proof hardware. Instead of trusting a third
party to correctly generate the setup information, each party can create
its own hardware tokens, which it sends to the other parties. Each party
is only required to trust that its own tokens are tamper-proof.

Katz designed a UC commitment protocol that requires both parties
to generate hardware tokens. In addition, his protocol relies on a specific
number-theoretic assumption. In this paper, we construct UC commit-
ment protocols for “David” and “Goliath”: we only require a single party
(Goliath) to be capable of generating tokens. We construct a version of
the protocol that is secure for computationally unbounded parties, and a
more efficient version that makes computational assumptions only about
David (we require only the existence of a one-way function). Our proto-
cols are simple enough to be performed by hand on David’s side.

These properties may allow such protocols to be used in situations
which are inherently asymmetric in real-life, especially those involving
individuals versus large organizations. Classic examples include voting
protocols (voters versus “the government”) and protocols involving pri-
vate medical data (patients versus insurance-agencies or hospitals).

1 Introduction

Designing secure protocols that run in complex environments, such as those typi-
cally found in real-world applications, is a very challenging task. The design must
take into account that such protocols may be executed concurrently with multi-
ple other copies of the same protocol (e.g., many voters voting at the same time)
or with different protocols (e.g., performing an electronic bank transaction in re-
sponse to the results of an on-line auction). The Universal Composability (UC)
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framework was introduced by Canetti [5] to model the security of cryptographic
protocols when executed in such environments. Protocols proven secure within
the UC framework are, in particular, secure even under arbitrary composition.

Unfortunately, it turns out that unless a majority of the participating parties
are honest (which can never be assumed when there are only two participants),
almost no useful functionality can be securely realized in this framework [7,8]. On
the positive side, however, Canetti and Fischlin [7] managed to circumvent these
impossibility results by assuming a strong form of setup – a common reference
string (CRS). This suffices for realizing any (well-formed) functionality in the
UC framework while tolerating any number of dishonest parties [9].

The main drawback of assuming the availability of a CRS is that this requires
trust in the party that constructs the CRS, and there are no security guarantees
if the CRS is set in an adversarial manner. This state of affairs motivated the
research of alternative setup assumptions that can circumvent the impossibility
results, and imply the feasibility of securely realizing natural functionalities in
the UC framework. A variety of alternative setup assumptions have already been
explored, such as public-key registration services [1,6], signature cards [19] and
a variation of the CRS assumption in which multiple strings are available [18].

The above mentioned setup assumptions still require trust in at least some par-
ties in the system. Recently, Katz [20] proposed an alternative assumption that
eliminates the need for such trusted parties. Katz suggested basing UC computa-
tions on a physical assumption: the existence of tamper-proof hardware. Under
this assumption, an honest party can construct a hardware token TF implement-
ing any polynomial-time functionality F , but an adversary given the token TF

can do no more than observe the input/output characteristics of this token. Katz
showed that such a primitive can be used, together with standard cryptographic
assumptions, to realize the ideal multiple commitment functionality in the UC
framework while tolerating any number of dishonest parties, and hence to realize
general UC multi-party computation [9].

1.1 Our Contributions

We revisit Katz’s proposal of basing universally composable computations on
tamper-proof hardware. More specifically, we focus on realizing the ideal
commitment functionalities (which suffice for realizing general UC multi-party
computation [9]). In this work, we construct UC commitment protocols using
tamper-proof hardware tokens that have several advantages over Katz’s protocol:

David and Goliath: Asymmetric Assumptions Suffice. Katz’s commit-
ment protocol is symmetric with respect to the assumptions about the two par-
ties: both parties must create a hardware token, and both must assume that
their token is proof against tampering by the other party. In many situations,
however, the two participating parties are not symmetric. For example, in a vot-
ing scenario, voters may not be able to create their own hardware, or may not
trust that hardware they create (or buy) is truly “tamper-proof” against the
government (the other party in a voting protocol).
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Our commitment protocols only require a single party (Goliath) to generate
a token. The other party (David) must ensure the token cannot communicate
with Goliath, but does not have to make any assumptions about the power of
Goliath. We construct different commitment protocols for Goliath as the sender
and for Goliath as the receiver.

Reducing the Computational Assumptions. In addition to relying on the
existence of tamper-proof hardware tokens, Katz’s protocol relies on a specific
number-theoretic assumption — the decisional Diffie-Hellman assumption. Katz
posed as an open problem to rely on general computational assumptions (under
the assumption that tamper-proof hardware exists). We answer this open prob-
lem and reduce the required computational assumptions. Our contributions in
this regard are as follows:

– We demonstrate that computational assumptions are not necessary in order
to realize the ideal functionality FCOM (this functionality allows a single
commitment for each hardware token) if we assume the existence of tamper-
proof hardware tokens. That is, our protocols that realize FCOM do not rely
on any computational assumptions. These protocols are also secure against
adaptive adversaries (although the proof for the adaptive case is deferred to
the full version of the paper).

– We demonstrate that the existence of one-way functions suffices in order to
realize the ideal functionality FMCOM (this functionality allows a polynomial
number of concurrent commitments using the same hardware token) if we
also assume the existence of tamper-proof hardware tokens.

– In keeping with the David and Goliath theme, even the protocols based on
one-way functions do not make assumptions about Goliath’s computational
power.

“Bare-Handed” Protocols. The protocols presented in this paper are highly
efficient, and in particular require David to perform only a few (elementary
and simple) operations, such as comparing two bit-strings or computing the
exclusive-or of two bit-strings (even in the protocol based on one-way functions).
When David is the receiver, these operations can be performed by “bare-handed”
humans without the aid of computers (when David is the sender, he may require a
calculator). Such a property is useful in many situations where computers cannot
be trusted or where “transparency” to humans is essential (which is the case,
for example, when designing voting protocols). In addition, the same efficiency
guarantees hold for the hardware tokens in the protocols that are secure against
computationally unbounded adversaries; such tokens may be constructed using
extremely constrained devices.

1.2 Related Work

Basing cryptographic protocols on physical assumptions. Basing cryp-
tographic protocols on physical assumptions is a common practice. Perhaps the
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most striking example is the field of quantum cryptography, where the physics of
quantum mechanics are used to implement cryptographic operations – some of
which are impossible in the “bare” model. For example, Bennett and Brassard
[2] achieved information-theoretically secure key agreement over public channels
based only on assumptions about the physics of quantum mechanics.

Much work has been done on basing commitment schemes and oblivious trans-
fer protocols on the physical properties of communication channels, using the
random noise in a communication channel as the basis for security. Both com-
mitment schemes and oblivious transfer protocols were shown to be realizable in
the Binary Symmetric Channel model [13,14], in which random noise is added to
the channel in both directions with some known probability. Later works show
that they can also be implemented, under certain conditions, in the weaker (but
more convincing) Unfair Noisy Channel model [15,16], where the error probabil-
ity is not known exactly to the honest parties, and furthermore can be influenced
by the adversary.

The work of Katz [20] was inspired by works of Chaum and Pedersen [11],
Brands [4], and Cramer and Pedersen [12] that proposed the use of smartcards
in the context of e-cash. The reader is referred to [20] for a brief description of
their approach. More recently, Moran and Naor [21] demonstrated the possibil-
ity of implementing oblivious transfer, bit-commitment and coin flipping based
on “tamper-evident seals” that model very intuitive physical models: sealed en-
velopes and locked boxes.

Concurrent Independent Work. Independent of this paper, Chandran, Goyal
and Sahai [10] and Damg̊ard, Nielsen and Wichs [17] address the problem of bas-
ing universally composable computations on tamper-proof hardware, and con-
struct protocols realizing the ideal multiple commitment functionality FMCOM.

Chandran et al. [10] show that FMCOM can be realized based on tamper-proof
hardware tokens and one-way functions. The main advantage of their approach
is that their security proof does not rely on the simulator’s ability to rewind
hardware tokens. This gives their protocol security against reset attacks (where
the adversary can rewind the tokens). In particular, their protocol does not
require hardware tokens to keep state between invocations. In addition, their
protocol does away with the requirement that the parties know the code of the
token which they distribute (we note that this assumption is essential both to
Katz’s construction and to ours).

Damg̊ard et al. [17] focus on relaxing the “isolation” requirement and allow
the hardware tokens to communicate with the outside world as long as the
number of communicated bits in both direction is below some pre-determined
threshold (which is polynomial in the security parameter). With this relaxation
in mind, they realize FMCOM assuming the existence of one-way permutations and
a semantically-secure dense public-key encryption scheme with pseudorandom
ciphertexts.

The main advantage of our work over those of Chandran et al. [10] and
Damg̊ard et al. [17] is that in our constructions only one of the parties is re-
quired to create its own hardware token. As argued above, this is desirable and
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often essential in many scenarios. The constructions of Chandran et al. and
Damg̊ard et al. require that each party creates its own hardware token. That is,
it is assumed that both parties have the resources required to create hardware
tokens.

1.3 Paper Organization

The remainder of this paper is organized as follows. For those not familiar with
the UC framework, we give some background in Section 2, as well as formal
definitions of the different commitment functionalities. In Section 3, we briefly
review the formal model for tamper-proof hardware tokens. In Section 4, we
describe our protocols for UC commitment where Goliath is the sender, and
sketch their proof of security. Section 5 does the same for the protocol in which
David is the sender. Finally, Section 6 contains a discussion and some open
problems.

2 The UC Commitment Functionalities

Many two-party functionalities can be easily implemented in a natural “secure”
manner using a trusted third party that follows pre-agreed rules. In proving that
a two-party protocol is secure, it is highly desirable to argue that the protocol
behaves “as if it was performed using the trusted third party”. The Univer-
sally Composability (UC) framework is a formalization of this idea. In the UC
framework, the trusted third party is called the ideal functionality. The ideal
functionality is described by an interactive Turing machine that can communi-
cate by authenticated, private channels with the participants of the protocol.
We refer the reader to [5] for a more detailed exposition.

In the UC framework two ideal commitment functionalities are considered:
functionality FCOM that handles a single commitment-decommitment process,
and functionality FMCOM that handles multiple such processes. The advantage
of FMCOM over FCOM in our setting is that protocols that securely realize FMCOM

may use the same hardware token for multiple commitments.
In this paper we consider an additional ideal commitment functionality, one

that handles a bounded number of commitment-decommitment processes. We
refer to this functionality as the ideal bounded commitment functionality FBCOM .
Formal descriptions of FCOM, FBCOM and FMCOM are provided in Figures 1, 2
and 3, respectively.

3 Modeling Tamper-Proof Hardware

Our formulation of tamper-proof hardware tokens is based on the one provided
by Katz [20]. Katz defined an ideal “wrapper” functionality, FWRAP, which cap-
tures the intuitive idea that an honest party can construct a hardware token TF

implementing any polynomial-time functionality F , but an adversary given the
token TF can do no more than observe the input/output characteristics of this
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Functionality FCOM

1. Upon receiving (commit, sid, P, P ′, b) from P , where b ∈ {0, 1}, record the value
b and send (receipt, sid, P, P ′) to P ′ and the adversary. Ignore any subsequent
commit messages.

2. Upon receiving (open, sid, P, P ′) from P , if some value b was previously recorded
then send (open, sid, P, P ′, b) to P ′ and the adversary and halt. Otherwise halt.

Fig. 1. The ideal commitment functionality

Functionality FBCOM

FBCOM is parameterized by a bound n on the number of allowed commitment-
decommitment processes and an implicit security parameter k, and stores an internal
counter j initialized to 0.

1. Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1}, if j < n then
set j ← j + 1, record (cid, P, P ′, b) and send (receipt, sid, cid, P, P ′) to P ′ and the
adversary. Ignore any subsequent (commit, sid, cid, P, P ′, �) messages.

2. Upon receiving (open, sid, cid, P, P ′) from P , if some tuple (cid, P, P ′, b) was previ-
ously recorded then send (open, sid, cid, P, P ′, b) to P ′ and the adversary. Otherwise
halt.

Fig. 2. The ideal bounded commitment functionality

Functionality FMCOM

1. Upon receiving (commit, sid, cid, P, P ′, b) from P , where b ∈ {0, 1}, record
(cid, P, P ′, b) and send (receipt, sid, cid, P, P ′) to P ′ and the adversary. Ignore any
subsequent (commit, sid, cid, P, P ′, �) messages.

2. Upon receiving (open, sid, cid, P, P ′) from P , if some tuple (cid, P, P ′, b) was previ-
ously recorded then send (open, sid, cid, P, P ′, b) to P ′ and the adversary. Otherwise
halt.

Fig. 3. The ideal multiple commitment functionality

token. An honest party, given a token T ′F ′ by an adversary, has no guarantee
regarding the function F ′ that this token implements (other than what the hon-
est user can deduce from the input/output of this device).

Figure 4 describes our formulation of the ideal functionality FWRAP. Infor-
mally, a party P is allowed to create a hardware token, which is then delivered
to P ′. We refer to P as the creator of the token, and to P ′ as the user of the
token. The hardware token encapsulates a Turing machine M which is provided
by the creator P . At this point, the functionality allows the user P ′ to interact
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with the Turing machine M in a black-box manner. That is, P ′ is allowed to
send messages of its choice to M via the wrapper functionality, and receive the
corresponding answers.

As in Katz’s formulation, we assume that the tokens are partially isolated, in
the sense that a token cannot communicate with its creator. Our formulation
also allows the tokens to maintain state between invocations. Although tokens
created by honest parties are only required to maintain a limited state (such as
the current round number), we allow tokens created by adversarial parties to
maintain arbitrary state across invocations.

Functionality FWRAP

FWRAP is parametrized by a polynomial p(·) and an implicit security parameter k.

1. Upon receiving (create, sid, P, P ′, M) from P , where M is a description of a Turing
machine, do:
(a) Send (create, sid, P, P ′) to P ′.
(b) If no tuple of the form (P, P ′, �, �) is stored, then store (P, P ′, M, ⊥).

2. Upon receiving (run, sid, P, msg) from P ′, do:
(a) If no tuple of the form (P, P ′, �, �) is stored, then halt. Otherwise, retrieve the

unique stored tuple (P, P ′, M, state).
(b) Run M(msg, state) for at most p(k) steps, and denote the result by

(out, state′). If M does not respond in the allotted time then set out = ⊥
and state′ = state.

(c) Send (sid, P, out) to P ′, store (P, P ′, M, state′) and erase (P, P ′, M, state).

Fig. 4. The ideal FWRAP functionality

4 Constructing Goliath Commitments

In this section we describe protocols that realize the ideal bounded commitment
functionality, FBCOM (see Figure 2), and the ideal multiple commitment func-
tionality, FMCOM (see Figure 3). In these protocols, only the sender creates a
hardware token (i.e., the sender is the powerful Goliath). Our protocol for real-
izing FBCOM does not rely on any computational assumptions, and our protocol
for realizing FMCOM relies on the existence of any one-way function. In specifying
the protocols we treat the hardware token as one of the parties in the protocol.
The code executed by the token (i.e., the description of the Turing machine M
sent to FWRAP) is implicitly described by the token’s role in the protocol.

Notation. For a bit m, we denote m
def
= m ◦ · · · ◦ m ∈ {0, 1}k the k-bit string

consisting of k copies of m. We denote the bitwise complement of a string m by
m̄. The bitwise xor of two strings, a and b is denoted a ⊕ b, while the bitwise
and of a and b is denoted a � b.
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Protocol BCOMGoliath

Joint input: a security parameter k, and a bound n on the number of allowed
commitment-decommitment processes.

Setup phase. The sender chooses n random pairs (ai, bi)
R← {0, 1}k × {0, 1}k and

creates a token with these parameters. The token also contains state in the form of a
counter j initialized to 0. The sender sends the token to the receiver.

Commit phase. Denote the sender’s input by (cid, m), and denote by i the number of
invocations of the commit phase so far between the sender and the receiver. We assume
w.l.o.g. that cid = i (otherwise, both sides can maintain a database that translates
between the two).

1. The sender computes xi ← ai ⊕ bi ⊕ m, and sends (i, xi) to the receiver.

2. The receiver chooses a random challenge ci
R← {0, 1}k and sends (i, ci) to the token.

3. The token verifies that its internal counter j = i and j < n (otherwise it sends
⊥ to the receiver and halts). It increments the counter j ← j + 1. The token
computes yi ← ai � ci ⊕ bi � c̄i and sends (i, yi) to the receiver (this is equivalent
to letting each bit of ci choose whether to send the corresponding bit of ai or the
corresponding bit of bi).

Opening phase.

1. The sender sends m and (i, ai, bi) to the receiver.
2. The receiver computes zi ← ai ⊕ bi and verifies that zi ⊕ xi = m and that ai �

ci ⊕ bi � c̄i = yi. If not, it outputs ⊥ and halts. Otherwise, it outputs m.

Fig. 5. Protocol BCOMGoliath

4.1 Realizing the Ideal FBCOM Functionality

The intuition underlying our commitment protocol is that the hardware token
is already a form of commitment — the sender is committing to a program that
is hidden by the wrapping functionality, and cannot be changed once it is sent.
The sender “hides” the comitted value in the program. The problem is that the
receiver should not be able to extract the value before the opening phase. We
solve this by using the fact that the token cannot communicate with the sender;
the receiver sends the token a random challenge whose response depends on
the hidden value, but does not reveal it. Because the sender does not know the
challenge, he will be caught with high probability if he attempts to equivocate
in the opening phase.

A formal description of the protocol is provided in Figure 5, which is followed
by a sketch of its security proof.

Security intuition. To see why the protocol is hiding, note that after the
commit phase the value a ⊕ b remains uniformly distributed from the receiver’s
point of view, regardless of the value of m (since, for every index �, the receiver
can choose to learn either the �th bit of a or the �th bit of b, but not both).
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The protocol is binding because in order to equivocate, the sender must change
at least 1

2k bits of a and b in the opening phase. Because the sender does not
know the challenge sent to the token, and hence does not know which bits of
a and b the receiver has already seen, if it tries to equivocate it will be caught
with overwhelming probability.

Proof sketch. For simplicity we sketch the proof of security only for the case
of a static adversary, as this case already captures the important ideas in the
proof. A complete proof for the case of an adaptive adversary will be provided
in the full version of this paper. In order to prove that the protocol realizes
FBCOM we need to construct a polynomial-time simulator S (an ideal adversary)
such that for any polynomial-time environment machine Z and real-world A, it
holds that Z cannot distinguish between the ideal world and the real world with
non-negligible advantage. In this sketch we focus on the two cases in which only
one of the parties is corrupted. The cases in which both parties are corrupted or
both parties are honest are dealt with in a straightforward manner.

The ideal-world adversary, S, begins by setting up an internal simulation of
all the real-world parties and functionalities: the sender, the receiver and FWRAP

(this includes a simulation of the hardware token). Unless explicitly specified by
the simulation protocols below, the simulated honest parties and FWRAP follow
the honest protocol exactly. S keeps a “simulated view” for each honest party,
consisting of the party’s input (in the sender’s case), its random coins, and the
transcript of messages that party received throughout the simulation. At some
points in the simulation, S may “rewrite” the simulated view of an honest party.
It makes sure the new simulated view is consistent with any messages previously
sent by that party to a corrupt party (note that FWRAP can never be corrupted,
so messages sent to FWRAP may be changed as well).

Corrupted receiver. In the setup phase S simulates the interaction between
FWRAP, the honest sender and the corrupt receiver. That is, it chooses n random
pairs (ai, bi) and sends to the simulated copy of FWRAP a description of the
Turing machine which was specified by the protocol.

Whenever S receives a message (receipt, i) from FBCOM , it chooses a random
bit m′i and simulates the honest sender with input (i, m′i) interacting with the
receiver and with the token. In this case it may be that S is simulating the honest
sender with the wrong input, that is, in the ideal world the sender committed to
mi which is different from m′i. We claim, however, that the view of the simulated
receiver is independent of the committed bit and thus the view of A is identically
distributed in both cases. The view of the simulated receiver consists of xi =
ai⊕bi⊕m′i and yi ← ai�ci⊕bi�c̄i. Each bit of yi reveals either the corresponding
bit of ai or the corresponding bit of bi. This implies that the value ai ⊕ bi

is uniformly distributed from the receiver’s point of view, and therefore xi is
uniformly distributed as well.

Whenever S receives a message (open, i, mi) from FBCOM there are two possi-
ble cases. In the first case, it holds that m′i (the bit with which S simulated the
i-th commit stage) is the same as the revealed bit mi. In this case S simulates
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the honest sender following the opening phase of the protocol. The simulation is
clearly perfect in this case. In the second case, it holds that m′i �= mi. If the simu-
lated receiver sent some ci to the token in the i-th commit phase, then S rewrites
the history of the simulated sender by replacing ai and bi with âi ← ai ⊕ c̄i and
b̂i ← bi ⊕ ci, and simulates the sender in the opening phase. Note that the new
values satisfy yi = ci � âi ⊕ c̄i � b̂i and âi ⊕ b̂i ⊕ xi = mi (and are uniformly dis-
tributed given this view), and therefore the simulation matches the real world.
If the receiver did not send ci to the token in the i-th commit phase, then S
internally rewinds the token to the point in which commit(i, m′i) was invoked
and reruns the simulation from that point, replacing m′i with mi and leaving
all other inputs and random coins without change. Since the token is just part
of the simulation of FWRAP, and S knows the code it is executing, it can effi-
ciently rewind it. Note that the messages seen by the receiver do not change and
therefore the simulation is correct.

Corrupted sender. In the setup phase S simulates FWRAP to A who sends a
description of a Turing machine M to FWRAP. S now has a description of M and
this will be used to rewind the simulated token at a later stage.

Whenever A initiates a new commit phase (say, the i-th commit phase), S
simulates the honest receiver in this execution. If the commit phase was suc-
cessful, then S needs to “extract” the bit mi to which the corrupted sender
committed to in order to instruct the sender in the ideal world to send this bit
to FBCOM . S rewinds the simulated token to the point in time before the honest
receiver sent the challenge ci to the token. S instead simulates sending (i, c̄i)
as the challenge. Denote the response y′i. Now S “guesses” the values ai and bi

using the original response yi and the new response y′i as follows: if the first bit
of ci was 1, then S sets the first bit of the guess for ai to be the first bit of yi,
otherwise it sets the first bit of the guess for bi to be the first bit of y′i. Similarly
S “guesses” all the bits of ai and bi. Denote by a′i and b′i these guesses. S sets m′i
as the majority of the bit-string a′i ⊕ b′i ⊕ xi. S then instructs the ideal sender
to send (commit, i, m′i) to FBCOM .

Whenever A initiates a new opening phase by sending (i, ai, bi) to the sim-
ulated receiver, S simulates the honest receiver in the opening phase. If yi =
ci � ai ⊕ c̄i � bi and xi ⊕ ai ⊕ bi = mi, where mi is the bit that S instructed
the ideal sender to send to FBCOM in the i-th commit phase, then S instructs
the ideal sender to send (open, i) to FBCOM . In this case we have that mi = m′i
and therefore the simulation is perfect. If the latter verification step fails, then S
halts. The key point is that this happens only with negligible probability. That
is, the probability that the corrupted sender manages to reveal its commitment
to a bit different than m′i is negligible.

In order to prove that the latter probability is indeed negligible, we consider
the following game between two provers and a verifier: The verifier chooses a
random bit c and sends it to the first prover. The first prover sends a bit y,
and the second prover sends the bits (a, b, a′, b′). The verifier accepts if a ⊕ b =
¬(a′⊕b′) and y = a�c⊕b� c̄ = a′�c⊕b′� c̄. If the provers cannot communicate,
the verifier will accept with probability at most 1/2 since for a ⊕ b = ¬(a′ ⊕ b′)
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to hold, either a �= a′ (in which case when c = 1 the verifier does not accept) or
b �= b′ (in which case when c = 0 the verifier does not accept).

In our protocol, if we consider only a single bit from each of the strings
ai, bi, ci, xi and yi, we can think of the sender and receiver as playing this game:
the receiver is the verifier, and the sender and token are the two provers. The
sender “wins” (causes the receiver to accept) if it opens that bit of the commit-
ment to a different value than that “extracted” by the simulator in the commit
phase. In the real protocol’s commit phase, the game is played k times in par-
allel. Since the actual bit extracted by the simulator is the majority of the bits
extracted from each of the games, in order for the sender to successfully open
the commitment to a different bit, it must win in at least k/2 games. By the
Parallel Repetition Theorem [22], the probability that the verifier accepts is
exponentially small in the number of parallel repetitions.

4.2 Realizing the Ideal FMCOM Functionality

We show a simple variation of protocol BCOMGoliath that realizes the ideal FMCOM

functionality. In the setup phase of BCOMGoliath, the sender chooses several ran-
dom pairs (ai, bi) and creates a token with these parameters. The number of
commitments the protocol supports is therefore limited to the number of such
pairs. However, if we are willing to rely on computational assumptions, the pairs
(ai, bi) can be obtained as the output of a pseudorandom function on input i.

In the setup phase of the new protocol MCOMGoliath the sender chooses ran-
dom seeds a and b for a family of pseudorandom functions F = {fs}. The
protocol then proceeds exactly as BCOMGoliath with the pairs (fa(i), fb(i)). A
formal description of the protocol is provided in Figure 6.

In order to argue that protocol MCOMGoliath realizes FMCOM we first con-
sider the protocol BCOMGoliath when parametrized with n = 2k (recall that k
is the security parameter and n is the number of allowed commitments). With
these parameters, the setup phase of the protocol consists of the sender choosing
n = 2k random pairs (ai, bi), and the protocol allows the sender and the receiver
to perform 2k commitments – in particular it realizes FMCOM in the computa-
tional setting (ignoring the fact that the setup phase and the storage required
by the token are exponential). Now, we claim that no polynomial-time adver-
sary can distinguish between this protocol and the protocol MCOMGoliath with
non-negligible probability, as any such adversary can be used in a straightfor-
ward manner to distinguish a random function chosen from the family F from a
completely random function with non-negligible probability. Therefore, protocol
MCOMGoliath realizes the ideal FMCOM functionality.

Since this proof relies on the seeds of the pseudorandom functions remaining
secret from the adversary, it cannot be used to prove security against an adaptive
adversary. In particular, the token’s response in step 3 of the Commit phase may
form a commitment to the seeds (a, b), in which case MCOMGoliath is not secure
against an adaptive adversary.
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Protocol MCOMGoliath

Joint input: a security parameter k, and a family F of pseudorandom functions
fs : {0, 1}k → {0, 1}k.

Setup phase. The sender chooses random seeds a and b for the family F and creates
a token with these parameters. The token also contains state in the form of a counter
j initialized to 0. The sender sends the token to the receiver.

Commit phase. Denote the sender’s input by (cid, m), and denote by i the number of
invocations of the commit phase so far between the sender and the receiver. We assume
w.l.o.g. that cid = i (otherwise, both sides can maintain a database that translates
between the two).

1. The sender computes xi ← fa(i) ⊕ fb(i) ⊕ m, and sends (i, xi) to the receiver.

2. The receiver chooses a random challenge ci
R← {0, 1}k and sends (i, ci) to the token.

3. The token verifies that its internal counter j = i and j < n (otherwise it sends ⊥ to
the receiver and halts). It increments the counter j ← j + 1. The token computes
yi ← fa(i) � ci ⊕ fb(i) � c̄i and sends (i, yi) to the receiver (this is equivalent to
letting each bit of ci choose whether to send the corresponding bit of fa(i) or the
corresponding bit of fb(i)).

Opening phase.

1. The sender sends m and (i, fa(i), fb(i)) to the receiver.
2. The receiver computes zi ← fa(i) ⊕ fb(i) and verifies that zi ⊕ xi = m and that

fb(i)� ci ⊕ fa(i)� c̄i = yi. If not, it outputs ⊥ and halts. Otherwise, it outputs m.

Fig. 6. Protocol BCOMGoliath

5 Constructing David Commitments

In this section we describe a protocol that realizes the ideal commitment func-
tionality FCOM (see Figure 1) without any computational assumptions, where
only the receiver creates a hardware token (i.e., the sender is the limited David).
In specifying the protocol we again treat the hardware token as one of the pro-
tocol participants. The code executed by the token (i.e., the description of the
Turing machine M sent to FWRAP) is implicitly described by the token’s role in
the protocol.

The intuition behind the protocol is that David can perform a commitment
protocol with the token. Since there is no communication at all with Goliath,
the commitment would be perfectly hiding. In such a case, however, David could
postpone the interaction with the token to the opening phase (thus enabling him
to equivocate). To overcome this problem, David must prove to Goliath during
the commit phase that he has already interacted with the token. David does
this by giving Goliath a “password” that was contained in the token. However,
to prevent the token from using the password to give information about his
commitment, David first “tests” Goliath to ensure that he already knows the
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Protocol COMDavid

Joint input: a security parameter k.

Setup phase. The receiver chooses four random values s, t
R← {0, 1}k, u, v

R← {0, 1}k/2,
and creates a token with these parameters. The token contains a flag j initialized to 0.
The receiver sends the token to the sender.

Commit phase. Denote the sender’s input by m ∈ {0, 1}.

1. The sender chooses two random values a, b
R← {0, 1}k/2 and sends a to the token.

2. The token verifies that the internal flag j = 0 (otherwise it sends ⊥ to the sender
and halts). It sets j ← 1. The token computes x ← u · a + v (the computation is
in GF [2k/2]) and sends s, t and x to the sender.

3. The sender chooses a random challenge c
R← {0, 1}k and sends it the receiver, who

replies with y = s · c + t (the computation is in GF [2k]).
4. The sender verifies that y = s · c + t, and in this case the sender sends to the

receiver s, t, z = 〈a, b〉 ⊕ m and b. If the verification fails then the sender halts.

Opening phase.

1. The sender sends m, a and x to the receiver.
2. The receiver verifies that x = u · a + v and that z ⊕ 〈a, b〉 = m. If not, it outputs

⊥ and halts. Otherwise, it outputs m.

Fig. 7. Protocol COMDavid

password. In the opening phase, David sends Goliath a second password (that
does depend on the committed bit), which Goliath can verify.

A formal description of the protocol is provided in Figure 7, which is followed
by a sketch of its security proof. A complete proof will be provided in the full
version of the paper.

Proof sketch. We sketch the proof of security for the case of a static adversary.
In order to prove that the protocol realizes FCOM we need to construct simulator
S (an ideal adversary) such that for any polynomial-time environment machine
Z and real-world adversary A, it holds that Z cannot distinguish between the
ideal world and the real world with a non-negligible advantage. We note that our
simulator in this proof runs in expected polynomial time (whereas the simulators
in the previous section run in strict polynomial time). In this sketch we focus
on the two cases in which only one of the parties is corrupted. The cases in
which both parties are corrupted or both parties are honest are dealt with in a
straightforward manner.

The ideal-world adversary, S, begins by setting up an internal simulation of
all the real-world parties and functionalities: the sender, the receiver and FWRAP.
Unless explicitly specified by the simulation protocols below, the simulated hon-
est parties and FWRAP follow the honest protocol exactly. S keeps a “simulated
view” for each honest party, consisting of the party’s input (in the sender’s case),
its random coins, and the transcript of messages that party received throughout
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the simulation. At some points in the simulation, S may “rewrite” the simulated
view of an honest party. It makes sure the new simulated view is consistent with
any messages previously sent by that party to a corrupt party (note that FWRAP

can never be corrupted, so messages sent to FWRAP may be changed as well).

Corrupted receiver. In the setup phase S simulates FWRAP to A who sends (on
behalf of the simulated receiver) a description of a Turing machine M to FWRAP.
S now has a description of M and this will be used to rewind the simulated
token at a later stage.

When S receives a message (receipt) from FCOM, it chooses a random bit m′

and simulates the honest sender with input m′ interacting with the receiver and
with the token. In this case it may be that S is simulating the honest sender with
the wrong input, that is, in the ideal world the sender committed to m which is
different from m′. We claim however, that the view of the simulated receiver is
statistically-close to be independent of the committed bit.

The view of the simulated receiver consists of the challenge c, and of s, t, z =
〈a, b〉 ⊕ m′ and b. First, note that if the sender halts before sending the last
message of the commit phase, the receiver’s view is completely independent of
the input bit (since it only affects the last message). So we only need to show
that the view is statistically close to independent of m′ conditioned on the sender
completing the commitment phase successfully.

Since b is only sent in the last message, we can think of it being chosen
then. Informally speaking, if there are many values of a for which the token
returns some specific s and t, then by choosing b at random, with overwhelming
probability 〈a, b〉 = 0 for approximately half of them. Therefore z = 〈a, b〉 ⊕ m′

will be almost uniformly distributed, and hence almost independent of m′. If, on
the other hand, there are only a few values of a for which the token returns some
specific s and t, then the probability that the receiver given a random challenge
c can predict s · c + t (and thus allow the sender to complete the commit phase)
is negligible.

Whenever S receives a message (open, m) from FBCOM there are two possible
cases. In the first case, it holds that m′ (the bit with which S simulated the commit
stage) is the same as the revealed bit m. In this case S simulates the honest sender
following the opening phase of the protocol. The simulation is clearly perfect in
this case. In the second case, it holds that m′ �= m. Denote by a the value that
the simulated sender sent to the token in the simulated commit stage. The goal of
the simulator is to rewind the simulated token and feed it with random values a′

satisfying 〈a′, b〉⊕ z = m′ until either 2k iterations have passed or until the token
outputs (s′, t′, x′) where s′ and t′ are the same s and t that the token output when
it was given a. If more than 2k iterations have passed, then S fails and halts. Oth-
erwise, S simulates the honest sender in the opening phase by sending a′, x′ and
m′. Clearly, if S does not halt and manages to find such a′, then the simulation is
correct. In what follows we argue that the expected running time of the simulator
is polynomial in the security parameter k.

We show that for any set of random coins of the corrupted receiver, the ex-
pected running time of S is upper bounded by a (fixed) polynomial. Fix the
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random coins of the receiver, then the receiver and the token define two func-
tions: the token defines the function T (a) = (s, t, x) and the receiver defines
the function y(c). Then the expected number of iterations performed by S is
given by

E [Iterations] =
∑
s,t,c

Pra [s, t] · Prc [c] · E [Iterations|s, t, c] .

Notice that if the tuple (s, t, c) is not consistent, in the sense that s · c+ t �= y(c),
then the simulator halts. In addition, conditioned on s and t, the expected num-
ber of iterations is independent of c and is equal 1/Pra [s, t] (here we ignore the
requirement that 〈a′, b〉 ⊕ z = m′, since b was chosen after s and t were deter-
mined, and therefore this requirement will only multiply the expected running
time by some constant). Therefore,

E [Iterations] = 2−k ·
∑

consistent (s,t,c)
s.t. Pr[s,t]>0

Pra [s, t] · 1
Pra [s, t]

= 2−k ·
∑

c

|{(s, t) : Pra [s, t] > 0 and (s, t, c) is consistent}| .

We conclude the argument by showing that the above sum is at most O(2k) which
implies that E [Iterations] is constant. Consider the bipartite graph G = (L, R, E)
defined as follows. The left set L is the set of all pairs (s, t) for which Pra [s, t] > 0.
Notice that since a ∈ {0, 1}k/2 then |L| ≤ 2k/2. The right set R is the set of
all possible c values, i.e., the set {0, 1}k. Finally, an edge ((s, t), c) exists if the
tuple (s, t, c) is consistent, i.e., satisfies s · c+ t = y(c). The above sum is exactly
the number of edges in the graph: for every c ∈ R we count the number of
incoming edges ((s, t), c). The useful property of this graph is that it does not
contain any cycles of length 4: it is straightforward to verify that there cannot
be two different left-side vertices (s1, t1) and (s2, t2), and two different right-side
vertices c1 and c2 that form a cycle of length 4). We can thus use the following
theorem to conclude that the number of edges in the graph is at most O(2k):

Theorem 1 ([3], Chapter 6, Theorem 2.2). Let Z(m, n; s, t) be the minimal
number such that any bipartite graph with vertex parts of orders m and n and
Z(m, n; s, t) edges must contain as a subgraph Ks,t (the complete bipartite graph
with vertex parts of orders s and t). Then

Z(m, n; s, t) < (s − 1)1/t(n − t + 1)m1−1/t + (t − 1)m .

Note that K2,2 is a cycle of length 4, hence the number of edges in the graph is
bounded by Z(2k, 2k/2; 2, 2) < (2k/2 − 1)(2k)1/2 + 2k < 2k+1.

Corrupted sender. In the setup phase S simulates the interaction between
FWRAP, the corrupted sender and the honest receiver. That is, it chooses (on
behalf of the receiver) random values s, t, u and v, and sends to the simulated
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copy of FWRAP a description of the Turing machine which was specified by the
protocol.

Whenever A initiates a commit phase, S simulates the honest receiver in this
execution. If the commit phase was successful, then S needs to “extract” the bit
m to which the corrupted sender is committed in order to instruct the sender in
the ideal world to send this bit to FCOM. If the corrupted sender sent a value a
to the simulated token, then S computes m′ = 〈a, b〉⊕z and instructs the sender
in the ideal world to send (commit, m′) to FCOM. if the sender did not send any
value to the token, S chooses a random bit m′ and instructs the sender in the
ideal world to send (commit, m′) to FCOM.

Whenever A initiates a new opening phase by sending (a, x, m) to the sim-
ulated receiver, then S simulates the honest receiver in the opening phase. If
x = u · a + v and z ⊕ 〈a, b〉 = m, where u, v, z and b are the values from the
commit phase, and m = m′ where m′ is the bit that the ideal sender sent to
FCOM in the commit phase, then S instructs the ideal sender to send (open) to
FCOM. In this case the simulation is perfect. If the latter verification step fails,
then S halts. The key point is that this happens only with negligible proba-
bility. That is, the probability that the corrupted sender manages to reveal its
commitment to a bit different than m′ is negligible. This is because in order to
open his commitment to a different bit, the sender must send some a′ �= a in the
opening phase. However, to successfully pass verification, the sender must guess
the value for u · a′ + v (having seen, at most, u · a + v). Since these values are
independent, the sender guesses correctly with negligible probability.

6 Discussion and Open Problems

Multiple commitment functionality for David. Our protocol for commit-
ment when David is the sender only realizes the FCOM functionality. Unfortu-
nately, this is an inherent limitation in the protocol rather than an artifact of the
proof; when commit is invoked multiple times using the same hardware token,
the token’s messages when opening a commitment can reveal information about
other commitments (that have not yet been opened). Constructing an FMCOM

functionality for David is an interesting open problem.
We note that the protocol can be composed serially using a single token (as

long as every commitment is opened before the next one is invoked). Using the
same idea as we did in Goliath’s commitment protocol, we can then replace the
random values with a pseudorandom function to extend the functionality to any
polynomial number of serial invocations (this means that the actual number of
hardware tokens needed depends only on the maximum number of concurrent
commitments).
Human-compatible commitment for David. David’s commitment protocol
(cf. Figure 7) requires David to perform a multiplication and an addition oper-
ation in a large finite field. While this may be possible to do on paper (or with
a calculator), it would be useful to find a protocol that can be performed using
simpler operations (as is the case with Goliath’s commitment protocols).
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Strict polynomial-time simulation for David’s commitment. The simu-
lator for David’s commitment protocol, unlike Goliath’s, runs in expected poly-
nomial time when Goliath is corrupted (rather than strict polynomial time).
Although we prove this protocol is secure even for a computationally unbounded
Goliath, it is still an interesting question whether a protocol can be constructed
with a strict polynomial-time simulator.

Relaxing the physical assumption to tamper-evident hardware. Katz’s
protocol can be implemented using tamper-evident, rather than tamper-proof
hardware, if the tokens are returned to their creators after the setup phase.
Our bounded commitment protocol can also use this relaxed assumption; since
the queries to the token do not depend on the bit to be committed, they can
be made ahead of time and the token returned to its owner. This method will
not work if the number of commitments is not known ahead of time. Finding a
David/Goliath protocol for FMCOM based on tamper-evident rather than tamper-
proof hardware is an interesting problem.
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14. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions. In: Proceedings of the 29th Annual Symposium on Foundations of Com-
puter Science, pp. 42–52 (1988)

15. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Proceedings of the 1st Theory of Cryptography Conference, pp. 355–
373 (2004)

16. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: Stern, J. (ed.) EU-
ROCRYPT 1999. LNCS, vol. 1592, pp. 56–73. Springer, Heidelberg (1999)

17. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty compu-
tation with partially isolated parties. Cryptology ePrint Archive, Report 2007/332
(2007)

18. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)

19. Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-knowledge
arguments and commitments from signature cards. In: Proceedings of the 5th Cen-
tral European Conference on Cryptology (2005)

20. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

21. Moran, T., Naor, M.: Basing cryptographic protocols on tamper-evident seals. In:
Proceedings of the 32nd International Colloquium on Automata, Languages and
Programming, pp. 285–297 (2005)

22. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing 27(3), 763–803
(1998)



New Constructions for UC Secure Computation

Using Tamper-Proof Hardware

Nishanth Chandran�, Vipul Goyal��, and Amit Sahai���

Department of Computer Science, UCLA
{nishanth, vipul, sahai}@cs.ucla.edu

Abstract. The Universal Composability framework was introduced by
Canetti to study the security of protocols which are concurrently ex-
ecuted with other protocols in a network environment. Unfortunately
it was shown that in the so called plain model, a large class of func-
tionalities cannot be securely realized. These severe impossibility results
motivated the study of other models involving some sort of setup assump-
tions, where general positive results can be obtained. Until recently, all
the setup assumptions which were proposed required some trusted third
party (or parties).

Katz recently proposed using a physical setup to avoid such trusted
setup assumptions. In his model, the physical setup phase includes the
parties exchanging tamper proof hardware tokens implementing some
functionality. The tamper proof hardware is modeled so as to assume
that the receiver of the token can do nothing more than observe its
input/output characteristics. It is further assumed that the sender knows
the program code of the hardware token which it distributed. Based on
the DDH assumption, Katz gave general positive results for universally
composable multi-party computation tolerating any number of dishonest
parties making this model quite attractive.

In this paper, we present new constructions for UC secure compu-
tation using tamper proof hardware (in a stronger model). Our results
represent an improvement over the results of Katz in several directions
using substantially different techniques. Interestingly, our security proofs
do not rely on being able to rewind the hardware tokens created by ma-
licious parties. This means that we are able to relax the assumptions
that the parties know the code of the hardware token which they dis-
tributed. This allows us to model real life attacks where, for example,
a party may simply pass on the token obtained from one party to the
other without actually knowing its functionality. Furthermore, our con-
struction models the interaction with the tamper-resistant hardware as
a simple request-reply protocol. Thus, we show that the hardware tokens
used in our construction can be resettable. In fact, it suffices to use token
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which are completely stateless (and thus cannot execute a multi-round
protocol). Our protocol is also based on general assumptions (namely
enhanced trapdoor permutations).

1 Introduction

The universal composability (UC) framework of security, introduced by Canetti
[Can01], provides a model for security when protocols are executed multiple
times in a network where other protocols may also be simultaneously executed.
Canetti showed that any polynomial time computable multi-party functional-
ity can be realized in this setting when a strict majority of the players are
honest. Canetti and Fischlin [CF01] then showed that without an honest ma-
jority of players, there exists functionalities that cannot be securely realized in
this framework. Canetti, Kushilevitz and Lindell [CKL06] later characterized the
two-party functionalities that cannot be securely realized in the UC model ruling
out almost all non-trivial functions. These impossibility results are in a model
without any setup assumptions (referred to as the “plain” model). These results
can be bypassed if one assumes a setup in the network. Canetti and Fischilin
suggest the use of common reference string (CRS) and this turns out to be a
sufficient condition for UC-secure multi-party computation for any polynomial
time functionality, for any number of dishonest parties [CLOS02]. Some other
“setup” assumptions suggested have been trusted “public-key registration ser-
vices” [BCNP04,CDPW07a], government issued signature cards [HMQU05] and
so on.

UC Secure Computation based on Tamper Proof Hardware. Recently, Katz
[Kat07] introduced the model of tamper resistant hardware as a setup assump-
tion for universally composable multi-party computation. An important attrac-
tion of this model is that it eliminates the need to trust a party, and instead
relies on a physical assumption. In this model, a party P creates a hardware
token implementing a functionality and sends this token to party P ′. Given this
token, P ′ can do nothing more than observe the input/output characteristics
of the functionality. Based on the DDH assumption, Katz gave general feasibil-
ity results for universally composable multi-party computation tolerating any
number of dishonest parties.

Our Contributions. In this paper, we improve the results of Katz in several
directions using completely different techniques. Our results can be summarized
as follows:

– Knowing the Code: A central assumption made by Katz [Kat07] is that all
parties (including the malicious ones) know the program code of the hard-
ware token which they distributed. This assumption is precisely the source
of extra power which the simulator gets in the security proofs [Kat07]. The
simulator gets the power of rewinding the hardware token which is vital for
the security proofs to go through. However we argue that this assumption
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might be undesirable in practice. For example, it does not capture real life
adversaries who may simply pass on hardware tokens obtained from one
party to another. As noted by Katz [Kat07], such attacks may potentially
be prevented by making the creator of a token easily identifiable (e.g., the
token could output the identity of the creator on certain fixed input). How-
ever, we note that a non-sophisticated fix of this type might to susceptible
to attacks where a malicious party builds a wrapper around the received to-
ken to create a new token and passes it on to other parties. Such a wrapper
would use the token inside it in a black-box way while trying to answer the
user queries. Secondly, one can imagine more sophisticated attacks where
tokens of one type received as part of one protocols may be used as tokens of
some other type in other protocols. Thus, while it may be possible to design
constructions based on this assumption, it seems like significant additional
analysis might be needed to show that this assumption holds.

We relax this assumption in this work. In other words, we make no
assumptions on how malicious parties create the hardware token which they
distribute.

– Resettability of the Token: The security of the construction in [Kat07] also
relies on the ability of the tamper-resistant hardware to maintain state
(even when, for example, the power supply is cut off)1. In particular, the
parties need to execute a two-round interactive protocol with the tamper-
resistant hardware. It is explicitly assumed that the hardware cannot be
reset [CGGM00]. In contrast, our construction models the interaction with
the tamper-resistant hardware as a simple one round request-reply protocol.
Thus, we are able to show that the hardware tokens used in our construc-
tion can be resettable. In fact, it suffices to use token which are completely
stateless (and thus cannot even execute a multi-round protocol). We argue
that relaxing this assumption about the capability of the tamper resistant
tokens is desirable and may bring down their cost considerably.

– Cryptographic Assumptions: An open problem left in [Kat07] was to construct
a protocol in this model which is based on general assumptions. We settle this
problem by presenting a construction which is based on enhanced trapdoor
permutations previously used in CLOS [CLOS02] and other works.

Our communication model for the token also has an interesting technical
difference from the one in [Kat07]. In [Kat07], it is assumed that once P creates
a hardware token and hands it over to P ′, then P cannot send any messages to the
token (but can receives messages from it). We require the opposite assumption;
once the token has been handed to P ′, it cannot send any messages to P (but can
potentially receive messages from it). It is easy to see that if the communication
1 As Katz [Kat07] noted, this assumption can be relaxed if the token has an inbuilt

source of randomness and thus messages sent by the token in the protocol are different
in different execution (even if the other party is sending the same messages). Note
that a true randomness source is needed to relax this assumption and cryptographic
techniques such as pseudo random functions do not suffice.
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is allowed in both directions, then this model degenerates to the plain model
which is the subject of severe impossibility results [CF01,CKL06].

Our Techniques. Recall that all the participating parties exchange tamper proof
hardware tokens with each other before the protocols starts. To execute the
protocol, the parties will presumably make queries to the tokens received from
other parties. We observe that the simulator (in the proof of security) can be
given access to all the queries which any dishonest party makes to a token de-
signed by an honest party. Our first idea to exploit this extra power (and make
the simulator non-rewinding) is to extract the inputs of the dishonest parties as
follows. If party P1 wants to commit to its input to party P2, it will first have
to feed the opening to the commitment to the token provided by P2 which will
output a signature on the commitment (certifying that it indeed saw the open-
ing). One may observe that this is very close in spirit to how proofs are done in
the Random Oracle model. One problem which we face is that P1 cannot give a
signature obtained from the token directly to P2 (since these signatures can po-
tentially help establish a covert communication channel between the token and
P2). Thus, the party P1 instead gives a commitment to the signature obtained
(and will later prove that this commitment is a commitment to valid signature).

While the above basic idea is simple and elegant, significant more work is
required to turn it into a construction that achieves our main goals (in a way
that the construction relies only on general assumptions). The first issue we
face is: how to prove that the commitment given is a commitment of a valid
signature? While executing a UC commitment scheme, P1 might be interacting
with multiple parties at the same time. We use concurrent zero-knowledge (ZK)
proofs [DNS98,PRS02] for this purpose. Although concurrent ZK proofs are not
directly usable as building blocks in larger protocols (since they are secure only
under concurrent self composition rather than general composition), we show
that they can be used as a building block in our case by presenting a direct
analysis of the resulting scheme to prove its security (under concurrent attacks).

The most difficult issue which we face is: how to prove that a dishonest P1

cannot commit to a valid signature without actually making a query to P2’s
token. This is because if P1 commits to a valid signature (and even gives a
proof of knowledge of the commitment) without making a query to the token,
the UC-simulator cannot rewind P1 to extract this signature (and contradict
security of the underlying signature scheme). We get around this issue by showing
that the analysis of this case can be separated from the UC-Simulator. In a
separate extraction abort lemma proven “outside the UC framework”, we show
that if this case happens, the Environment has the capability to forge signatures
(in other words, we rewind the environment and extract a forged signature).
Thus, we reduce the failure probability of our simulator to the probability with
which the signatures can be forged. Similarly, we have a decommitment abort
lemma proven outside the UC framework where we reduce the success probability
of an adversary opening to a different string than the one committed to (in
a UC commitment scheme we construct) to the soundness of an underlying
(sequentially secure) zero knowledge proof. Other problems that we deal with are:



New Constructions for UC Secure Computation 549

the issue of selective abort by the hardware token (where the token refuses to give
a valid signature for some particular inputs only) and the issue of equivocating
the commitment while keeping the UC-Simulator straightline.

We are able to incorporate all the above ideas into a construction that achieves
the multiple commitment functionality in the UC framework. We remark that
in the end, the analysis of our construction is admittedly somewhat complex.
While one can consider alternative approaches to how a device would extract,
several problems like the issue of selective abort (which was simpler to deal with
in our approach) again seem to imply that the final solution (which would take
care of all these problems) will be no simpler.

Concurrent Independent Work. Independent of our work, Damgard et al
[DNW07] proposed a new construction for UC secure computation in the tam-
per proof hardware model. The main thrust of their work seems to obtain a
scheme where the hardware tokens only need to be partially isolated. In other
words, there exists a pre-defined threshold on the number of bits that the token
can exchange with the outside world (potentially in both directions). Their con-
struction is also based on general assumptions (albeit their assumptions are still
stronger than ours).

Damgard et al [DNW07] however do not solve the main problems addressed
by this work. In particular, their work is in the same rewinding based simula-
tor paradigm as Katz [Kat07] and thus requires the same assumption that the
sender is aware of the program code of the hardware token which it distributed.
Furthermore, the security of their construction relies upon the assumption that
the hardware token is able to keep state (i.e., is not resettable).

2 Our Model

Our model is a modification of the model in [Kat07]. The central modifications we
need are to allow for adversaries who may supply hardware tokens to other par-
ties without knowing the code of the functionality implemented by the hardware
token. To model adversaries who give out tokens without actually “knowing” the
code of the functionality of the tokens, we consider an ideal functionality FAdv

that models the adversarial procedure used to create these tokens. The security
of our protocol will be defined over all probabilistic polynomial time (PPT) ad-
versaries FAdv. The ideal functionality Fwrap implements the tamper-resistant
hardware as in [Kat07].

We first formally define the Fwrap functionality which is a modification of the
Fwrap functionality of [Kat07]. This functionality formalizes the intuition that
an honest user can create a hardware token TF implementing any polynomial
time functionality, but an adversary given the token TF can do no more than
observe its input/output characteristics. Fwrap models the hardware token (sent
by Pi to Pj) encapsulating a functionality Mij . The only changes from [Kat07]
we make is that Mij is now an Oracle machine (instead of a 2-round interac-
tive Turing machine) and does not require any externally supplied randomness.
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Fwrap models the following sequence of events: (1) a party Pi (also known as
creator) takes software implementing a particular functionality Mij and seals
this software into a tamper-resistant hardware token, (2) The creator then gives
this token to another party Pj (also known as the receiver) who can use the
hardware token as a black-box implementing Mij . Figure 1 shows the formal de-
scription of Fwrap based on an algorithm Mij (modified from [Kat07]). Note that
Mij could make black box calls to other tokens implementing Mxy (to model the
tokens created by an adversarial party) in a way that the circularity problems
are avoided.

Fwrap is parameterized by a polynomial p and an implicit security parameter k.
There are 2 main procedures:

Creation. Upon receiving (create, sid, Pi, Pj , Mij) from Pi or from FAdv,
where Pj is another user in the system and Mij is an Oracle machine, do:

1. Send (create, sid, Pi, Pj) to Pj .
2. If there is no tuple of the form (Pi, Pj , �) stored, then store (Pi, Pj , Mij).

Execution. Upon receiving (run, sid, Pi, msg) from Pj , find the unique stored
tuple (Pi, Pj , Mij) (if no such tuple exists, then do nothing). Run Mij with input
msg for at most p(k) steps and let out be the response (set out = ⊥ if Mij does
not respond in the allotted time). Send (sid, Pi, out) to Pj .

Fig. 1. The Fwrap functionality

We now formally describe the Ideal/Real world for multi-party computation
in the tamper-proof hardware model. Let there be n parties P = {P1, P2, ...., Pn}
(Pi holding input xi) who wish to compute a function f(x1, x2, · · · , xn). Let the
adversarial parties be denoted by M ⊂ P and the honest parties be denoted
by H = P − M. We consider only static adversaries. As noted before, to model
adversaries who give out tokens without actually “knowing” the code of the
functionality of the tokens, we consider an ideal functionality FAdv that models
the adversarial procedure used to create these tokens. F is the ideal functionality
that computes the function f that the parties P = {P1, P2, ...., Pn} wish to
compute, while Fwrap (as discussed earlier) models the tamper-resistant device.

Real World. Our real world is the (FAdv, Fwrap)-hybrid world. In the real
world, when a party Pi begins a protocol with another party Pj it exchanges a
hardware token with Pj . We note that this exchange of token need be done only
once in the protocol. This is modeled as follows. If Pi is malicious, then Pi sends
arbitrary messages to FAdv functionality (FAdv could use this information for
the code creation of the adversarial token to be sent to Pj). At the end of this
interaction, FAdv sends a program code (corresponding to the token that is to
be given to Pj) to Fwrap. This program code can make black box calls to tokens
of other (possibly honest) parties. If Pi is honest, then Pi sends a program code
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directly to Fwrap that will serve as the code for the hardware token to be sent
to Pj . During protocol execution, all queries made to tamper-resistant hardware
tokens are made to the Fwrap functionality. The parties execute the protocol
and compute the function f(x1, x2, · · · , xn).

Ideal World. The ideal world is the (FAdv, Fwrap, F)-hybrid world. The sim-
ulator S simulates the view of the adversarial parties. As in the real world, when
a party Pi begins a protocol with party Pj it has to specify the code for the
hardware token to be sent to Pj . If Pi is adversarial, then Pi initially sends arbi-
trary messages to FAdv. FAdv sends a program code (corresponding to the token
that is to be given to Pj) to Fwrap. This program code can make black box calls
to tokens of other parties. If Pi is honest, then the simulator S generates the
program code for the token to be sent to Pj (S does this honestly according to
the protocol specifications for creating the program code). S sends this program
code to Fwrap. When an adversarial party queries a token created by another
adversarial party, the simulator S forwards the query to Fwrap and then upon
receiving the response from Fwrap, forwards it to the querying party. When an
adversarial party queries a token created by an honest party, the simulator S
replies with the response to the querying party on its own. Honest parties send
their inputs to the trusted functionality F . Simulator extracts inputs from ad-
versarial parties and sends them to F . The ideal functionality F returns the
output to all honest parties and to the simulator S who then uses it to complete
the simulation for the malicious parties.

Remark. To be able to model an adversary which takes honest party tokens
received in one protocols and uses them as subroutines for creating its tokens in
some other protocol, we consider the GUC framework introduced by Canetti et
al [CDPW07b]. The proofs in this paper can be modified so as to prove that our
protocol for a functionality F Fwrap − EUC-realizes F . This ensures that Fwrap

has tokens created by honest parties even as part of other protocols.

3 Preliminaries

As in [Kat07], we will show how to securely realize the multiple commitment
functionality Fmcom in the (FAdv, Fwrap)− hybrid model for static adversaries.
This will imply the feasibility of UC-secure multi-party computation for any
well formed functionality ([CF01,CLOS02]). The primitives we need for the
construction of the commitment functionality are non-interactive perfectly bind-
ing commitments, a secure signature scheme, pseudorandom function and con-
current zero knowledge proofs (that are all implied by one-way permutations
[GL89,NY89,HILL99,Gol01,Gol04,DNS98,PRS02]).

Non-Interactive Perfectly Binding Bit Commitment. We denote the non-
interactive perfectly binding commitment to a string or bit a (from [GL89]) by
Com(a). Open(Com(a)) denotes the opening to the commitment Com(a) (which
includes a as well as the randomness used to create Com(a)).
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Secure signature scheme. We use a secure signature scheme (security as
defined in [GMR88]) with public key secret key pair (PK, SK) that can be con-
structed from one-way permutations ([NY89]). By σPK(m) we denote a signature
on message m under the public key PK. We denote the verification algorithm by
Verify(PK, m, σ) that takes as input a public key PK, message m and purported
signature σ on message m. It returns 1 if and only if σ is a valid signature of m
under PK.

Concurrent Zero knowledge. Informally, concurrent zero knowledge proofs
(introduced by [DNS98]) are zero-knowledge proofs that remain zero knowledge
even when executed in the concurrent setting. In the concurrent setting, several
protocols may be executed at the same time, with many verifiers talking simulta-
neously with one or more provers. Adversarial verifiers may interleave executions
of different protocols and may base their messages on partial executions of other
protocols. We shall use the concurrent zero knowledge protocol of Prabhakaran,
Rosen and Sahai [PRS02]. For further details we refer the reader to [PRS02].

4 The Construction

We show how to securely realize the multiple commitment functionality Fmcom

in the (FAdv, Fwrap)− hybrid model for all PPT static adversaries and for all
PPT FAdv. We will first give a construction that realizes the single commitment
functionality in the (FAdv, Fwrap)− hybrid model for static adversaries and then
note that this can be extended to realize Fmcom. P1 wishes to commit to a string
a (of length n bits) to P2.

Token Exchange phase. P2 generates a public-key/secret-key pair (PK, SK)
for a secure signature scheme, a seed s for a pseudorandom function Fs(·) and
sends a token to P1 encapsulating the following functionality M21:

– Wait for message I = (Com(b), Open(Com(b))). Check that the opening is a
valid opening to the commitment. If so, generate signature σ = σPK(Com(b))
and output the signature. The randomness used to create these signatures
is obtained from Fs(I).

We note that the token exchange phase can take place any time before P2

begins a protocol with P1 and needs to take place only once.

Commitment phase. We denote the protocol in which P1 commits to a string
a (of length n bits) to P2 by UC-Com(P1, P2, a). The parties perform the follow-
ing steps:

1. For every commitment to a string a of length n, P1 generates n commitments
to 0 and n commitments to 1. P1 interacts with the token sent to it by P2

and obtains signatures on these 2n commitments. In order to commit to the
ith bit of a string a (denoted by ai), P1 selects a commitment to either 0 or
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1 whose signature it had obtained from the device sent by P2 (depending on
what ai is).

- We note that P1 cannot give the hardware token commitments to the bits
of a alone and obtain the signatures on these commitments. Doing this
would allow P2’s hardware token to perform a selective failure attack. In
other words, P2’s hardware could be programmed to respond and output
signatures only if some condition is satisfied by the input string a (e.g.,
all its bits are 0). Thus if P1 still continues with the protocol, P2 gains
some non-trivial information about a. Hence, P1 obtains signatures on
n commitments to 0 and n commitments to 1 and then selects commit-
ments (and their signatures) according to the string a. This makes sure
that the interaction of P1 with the hardware token is independent of the
actual input a.

Let Bi = Com(ai) and let the signature obtained by P1 from the device on
this commitment be σi = σPK(Bi). P1 now computes a commitment to σi

for all 1 ≤ i ≤ n denoted by Ci = Com(σi).
Let Comi = (Bi, Ci). Now A = COM(a) = {Com1, Com2, ...., Comn}

(in other words, A is the collection of commitments to the bits of a and
commitments to the obtained signatures on these commitments). P1 sends
A to P2.

- Note here that P1 does not send the obtained signatures directly to P2,
but instead sends a commitment to these signatures. This is because the
signatures could have been maliciously generated by the hardware token
created by P2 to leak some information about a.

2. Let w be a witness to the NP statement that for all i, Ci is a commitment
to a valid signature of Bi under P2’s public key PK and that Bi is a valid
commitment to a bit. More formally, w is a witness to the following NP
statement: “L: For all i,
– There exists a valid opening of Bi to a bit ai under the commitment

scheme Com(·)
– There exists a valid opening of Ci to a string σi under the commitment

scheme Com(·) such that Verify(PK, Bi, σi) = 1.”
P1 picks l(k) random pairs {(w1

0 , w
1
1), (w2

0 , w
2
1), · · · , (wl(k)

0 , w
l(k)
1 )} (l(k) is a

super-logarithmic function in security parameter k) such that for all 1 ≤ t ≤
l(k), wt

0 ⊕wt
1 = w. P1 sends commitments to these l(k) pairs. In other words,

P1 sends Com(wt
0), Com(wt

1) for all t.
3. P2 picks l(k) random bits {q1, q2, · · · , ql(k)} and sends it to P1.
4. P1 opens the commitment Com(wt

qt
) for all t by sending Open(Com(wt

qt
)).

5. P1 now gives a concurrent zero-knowledge proof ([PRS02]) that w is a witness
to statement L being true and that wt

0 ⊕ wt
1 = w for all t.

- We use the specific concurrent zero knowledge protocol of [PRS02] as we
require indistinguishability of simulated proof from real proof when the
NP statement being proven is not fixed, but publicly predictable given
the history of the protocol (as noted in [BPS06]).
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Decommitment phase. The parties perform the following steps:

1. P1 sends P2 the string that was initially committed to. In particular, P1

sends a to P2.
- Note that P1 does not send the actual opening to the commitment. P1

will later prove in zero knowledge that a was the string committed to in
the commitment phase. This is to allow equivocation of the commitment
by the simulator during protocol simulation.

2. We denote the following steps by the protocol HardwareZK(P1, P2, a):
(a) P2 picks a string R uniformly at random from {0, 1}p(k) and executes

the commitment protocol UC-Com(P2, P1, R).
- P1 will prove in zero knowledge that a was the string committed to

in the commitment phase. Since we require straight-line simulation,
the simulator would have to know in advance the challenge queries
made by P2 in this zero knowledge proof. Hence before this zero
knowledge proof is given, P2 commits to his randomness R using the
UC-secure commitment protocol.

- We note that the decommitment to R need not be equivocable by
the UC-simulator and hence we avoid having to use the UC-secure
decommitment protocol itself, which would have lead to circularity!

(b) P1 gives a standard zero knowledge proof that a is the string that was
committed to in the commitment phase of the protocol. The random-
ness used by P2 in this zero knowledge proof is R and along with every
message sent in the zero knowledge protocol, P2 proves using a standard
zero knowledge proof that the message uses randomness according to the
string R.

Denote by Ri and ai the ith bits of R and a respectively. More for-
mally, the statement P1 proves to P2 is “There exists randomness such
that for all i, Bi = Com(ai), where Bi is as sent in the commitment
phase.” Let the value COM(R) sent during UC-Com(P2, P1, R) be de-
noted by Z. Note that Z is of the form {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)}
where Xi = Com(Ri) and Yi is a commitment to the signature of Xi un-
der P1’s public key. The statement P2 proves to P1 is “There exists string
R, such that
– For all i, there exists an opening of Xi to Ri under the commitment

scheme Com(·)
– R was the randomness used to compute this message.”

(c) P2 accepts the decommitment if and only if the proof given by P1 was
accepted.

5 Security Proofs

5.1 Description of Simulator

In order to prove UC security of the commitment functionality, we will need
to construct a straight-line simulator that extracts the committed value in the
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commitment phase of the protocol and that can equivocate a commitment to a
given value in the decommitment phase of the protocol. Below, we describe such
a simulator that runs straight-line both while extracting the committed string
when interacting with a committer P1, as well as when equivocating a commit-
ment to a receiver P2.

Token Exchange phase. In this phase, before a party Pi begins a proto-
col with Pj , if Pi is honest then the UC-simulator S creates the program code
for the token to be created by Pi and sent to Pj (according to the honest to-
ken creation protocol) and sends a copy of the program code to Fwrap. If Pi is
malicious, it creates the token by interacting with FAdv as described before. We
again note that the token creation can be done at any point before Pi begins a
protocol with Pj .

Handling token queries. Whenever an adversarial party queries a token
created by another adversarial party, the simulator S forwards the request to
Fwrap. When simulating the view during the adversary’s interaction with a token
created by an honest party, S generates the response according to the request
by the adversarial party and the program code of the token.

For every pair of parties (Pi, Pj) such that Pi ∈ M and Pj ∈ H, S creates a
table Tij . When a malicious party Pi queries the token of an honest party Pj , S
stores the query in table Tij . In other words, the simulator S builds a list of all
the commitments (along with their openings) that the malicious party queries to
a token created by an honest party (for getting a signature). We shall show below
that no matter how the tokens of malicious parties are created, the malicious
parties cannot obtain any information about the inputs of honest parties.

When a malicious party Pi queries the token of a malicious party Pj , S sim-
ply forwards the query to Fwrap and forwards the response received from Fwrap

back to Pi. We note that these queries can only make black box calls to tokens
of honest parties (as malicious tokens can be created only with black box calls
to tokens of honest parties). Hence whatever information an adversary can ob-
tain from this query, the adversary could have obtained itself by making a black
box query to the token of an honest party. Hence querying this token gives no
additional information to an adversary.

Case 1: Committer is corrupted

Commitment Phase: In this case, the simulator S executes the protocol hon-
estly as a receiver in the commitment phase. In more detail:

1. Let A = COM(a) = {Com1, Com2, ...., Comn} according to the commitment
protocol described earlier. P1 sends A to S (Of course, P1 may not follow
the protocol).

2. Let w be a witness to the NP statement that for all i, Ci is a commitment
to a valid signature of Bi under P2’s public key PK and that Bi is a valid
commitment to a bit.
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P1 picks l(k) random pairs {(w1
0 , w

1
1), (w

2
0 , w

2
1), · · · , (wl(k)

0 , w
l(k)
1 )} (l(k) is a

super-logarithmic function in security parameter k) such that for all 1 ≤ t ≤
l(k), wt

0 ⊕wt
1 = w. P1 sends commitments to these l(k) pairs. In other words,

P1 sends Com(wt
0), Com(wt

1) for all t.
3. S picks l(k) random bits {q1, q2, · · · , ql(k)} and sends it to P1.
4. P1 opens the commitment Com(wt

qt
) for all t by sending Open(Com(wt

qt
)).

5. P1 now gives a concurrent zero-knowledge proof (from [PRS02]) that w is a
witness to statement L being true and that wt

0 ⊕ wt
1 = w for all t.

The simulator S accepts the commitment if it accepts the zero-knowledge
proof. If the zero knowledge proof was accepted, S looks up the commitments
to the bits of a (i.e., Bi) in the table T12. Note that T12 contains a list of all
commitments that were queried by P1 to the token created by honest party P2.
If any of the commitments are not found, then the simulator aborts the simu-
lation. We call this an Extraction Abort. By a reduction to the security of the
underlying signature scheme, we prove in Lemma 1 that Extraction Abort oc-
curs with negligible probability. If the simulator did not abort, this means that
the commitments to the bits of a were queried by P1 to the device. Hence, the
simulator S has already recorded the openings to these commitments and can ex-
tract a by looking up the opening of all these commitments Bi’s in the table T12.

Decommitment Phase: S follows the decommitment protocol honestly as a re-
ceiver. In more detail:

1. P1 sends S the string a that was initially committed to. Dishonest P1 may
cheat and send a′ �= a to S.

2. S picks a string R uniformly at random from {0, 1}p(k) and executes the
commitment protocol UC-Com(S, P1, R) honestly.

3. P1 gives a zero knowledge proof that a′ is the string that was committed
to in the commitment phase of the protocol. The randomness used by S in
this zero knowledge proof is R and along with every message sent in the
zero knowledge protocol, S proves in zero knowledge that the message uses
randomness according to the string R.

4. S accepts the decommitment if the proof given by P1 was accepted. Upon
accepting the decommitment, S checks if a′ was the string that was initially
committed to in the UC-commitment protocol. If this is not the case, then S
aborts. We call this a Decommit Abort. We show in Lemma 2 that Decommit
Abort occurs with negligible probability.

We note that when the committer is corrupted, the simulator (as the receiver)
follows the protocol honestly during protocol simulation and hence the simulated
protocol is identical to the real protocol.

Case 2: Receiver is corrupted

Commitment Phase: The UC-simulator does as follows:
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1. S sets the string a to be a string whose all the bits are 0 and then sends
A = COM(a) = {Com1, Com2, ...., Comn} according to the commitment
protocol described earlier.

2. Let w be a witness to the NP statement that for all i, Ci is a commitment
to a valid signature of Bi under P2’s public key PK and that Bi is a valid
commitment to a bit.
S picks l(k) random pairs {(w1

0 , w
1
1), (w

2
0 , w

2
1), · · · , (wl(k)

0 , w
l(k)
1 )} (l(k) is a

super-logarithmic function in security parameter k) such that for all 1 ≤ t ≤
l(k), wt

0 ⊕ wt
1 = w. S sends commitments to these l(k) pairs. In other words,

S sends Com(wt
0), Com(wt

1) for all t.
3. P2 sends challenge bits {q1, q2, · · · , ql(k)} to S.
4. S opens the commitment Com(wt

qt
) for all t by sending Open(Com(wt

qt
)).

5. S now gives a concurrent zero-knowledge proof that w is a witness to state-
ment L being true and that wt

0 ⊕ wt
1 = w for all t.

Decommitment Phase: The UC-simulator has to equivocate the commitment to
some value a′ in the decommitment phase. The simulator proceeds as follows:

1. S sends a′ to P2.
2. P2 picks a string R of length p(k) and executes the commitment protocol

UC-Com(P2, S, R). Again, P2 may not execute the protocol honestly. If this
commitment is accepted, the simulator looks up the commitments to the bits
of R in the table T21. If any of the commitments are not found, then the sim-
ulator does an extraction abort. Otherwise, the simulator has obtained R.

3. The simulator S now has to give a zero knowledge proof that a′ is the
string that was committed to in the commitment phase of the protocol.
Now given R, all of P2’s messages in this zero knowledge proof protocol are
deterministic.

S internally runs the simulation of this zero knowledge protocol (using
the simulator Szk for the underlying zero knowledge protocol). It runs the
simulation as the verifier in the protocol (using the messages according to
randomness R). Note that S can do this by interacting with prover Szk and
generating all messages of the verifier using randomness R. S obtains the
simulated transcript of this protocol. Let the messages sent by S in this
transcript be denoted by mV

1 , mV
2 , · · · , mV

d and let the messages sent by Szk

(as the prover) in this simulated transcript be mP
1 , mP

2 , · · · , mP
d .

4. S will “force” this transcript upon P2. That is, S sends messages to the party
P2 according to the simulated zero knowledge protocol transcript. At step t
of the zero knowledge protocol, it sends the message mP

t to P2 and expects
to receive mV

t as response .
Party P2 is forced to use the randomness R because P2, along with

every message sent in the zero knowledge protocol, has to prove in zero
knowledge that the message uses randomness according to the string R. By
the soundness property of this zero knowledge proof (given by P2), if P2

sends a message that is not according to randomness R, it will fail in the
zero knowledge proof.
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We show in the full version of the paper [CGS07] that the view of the adversary
in the simulation and in the real protocol are computationally indistinguishable
in the commitment as well as decommitment phase.

5.2 Abort Lemmas

Lemma 1. (Extraction Abort)
Let ε denote the probability with which the simulator S aborts the simulation in
the commitment phase (say for some session t and some committer Pi ∈ M and
receiver Pj ∈ H). Then, ε is negligible in k.

Proof. Let s be the total number of commitment sessions in the protocol. Pick
at random the tth commitment session between parties Pi and Pj (with Pi ∈ M
and Pj ∈ H). We note that with probability > ε

s , during the tth session between
malicious Pi and honest Pj , the simulator for the first time in the protocol
aborted the simulation. This is the commitment session in the protocol that first
terminates in an abort by the simulator. We now focus on this particular session
between Pi and Pj .

In this commitment protocol, consider the point upto when Pi (after sending
COM(a)) gives a commitment to l(k) random pairs of the form (wt

0, w
t
1) with

wt
0 ⊕ wt

1 = w. Let this point in the protocol be denoted by λ. We note that the
probability with which the simulator aborted the simulation for the first time at
session t between Pi and Pj given the prefix of the protocol upto λ is still > ε

s
(This probability includes the probability with which this prefix happens.). Now,
S goes forward in the simulation with malicious Pi in this session. The simulator
completes the simulation of this session between Pi and Pj (The simulator might
have to simulate sessions between other parties before finishing the simulation of
this particular session.). If the simulator runs into an Extraction Abort in some
other commitment session, then the simulator simply aborts the simulation as in
that case, the tth session between Pi and Pj was not the first time the simulator
had to do an Extraction Abort. Similarly, if the simulator runs into a Decommit
Abort in some parallel session, then the simulator aborts the simulation in that
case as well. If the dishonest party aborts or does not respond in some parallel
session, the simulator aborts in that case as well. We note that the probability
with which the simulator completes this commitment session between Pi and Pj

and then has to do an extraction abort is > ε
s .

Upon aborting the tth session between Pi and Pj , the simulator rewinds the
environment back to point λ in the protocol. Now, using fresh randomness the
simulator simulates this session between Pi and Pj (once again simulating other
parallel sessions if needed). The probability with which the simulator completes
the simulation of this commitment session and then does an Extraction Abort
(using the fresh randomness) is again > ε

s . Hence, the probability with which
the simulator will abort at the end of the tth session between Pi and Pj in
both executions is > ε2

s2 . The probability with which adversary Pi commits to
random shares that do not exclusive-or to the witness and then succeeds in giving
a false zero knowledge proof is negligible. This follows from the soundness of
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the concurrent zero-knowledge proof. The probability with which the simulator
picked the same randomness in both simulations (and hence failed to extract the
witness) is 1

2l(k) . Hence with probability > [ ε2

s2 (1 − 1
2l(k) ) − g(k)] (where l(k) is

a super-logarithmic function in k and g(k) is any negligible function in k), the
simulator will extract a valid witness to the statement Pi was proving to Pj in
the tth session.

Since the simulator aborted at the end of this session, this means that there
exists a commitment Bf = Com(af ) made by Pi whose signature σPKj (Bf ) was
not queried by Pi to the device created by Pj . Note that the witness of the state-
ment (which Pi was proving to Pj) contains signatures of all commitments made
in that session and, in particular, it contains σPKj (Bf ). Hence with probability
> ε2

s2 −negl(k), we get a forgery of a signature in the existential forgery security
game with Pj ’s public verification key PKj. From the security of the signature
scheme, it follows that ε2

s2 is negligible in the security parameter and hence ε is
also negligible in k. �
Lemma 2. (Decommit Abort)
Let µ denote the probability with which the simulator S aborts the simulation in
the decommitment phase (say for some session t and some committer Pi ∈ M
and receiver Pj ∈ H). Then, µ is negligible.

Proof. We shall first show that the protocol HardwareZK(Pi, S, a) is computa-
tionally sound in the stand-alone setting. Consider the zero-knowledge proof
HardwareZK(Pi, S, a). The steps in this proof are as follows:

– S picks a string R uniformly at random from {0, 1}p(k) and executes the
commitment protocol UC-Com(S, Pi, R) honestly.

– Pi gives a standard zero knowledge proof that a′ is the string that was
committed to in the commitment phase of the protocol. The randomness
used by S in this zero knowledge proof is R and along with every message sent
in the zero knowledge protocol, S proves using a standard zero knowledge
proof that the message uses randomness according to the string R.

– S accepts the decommitment if the proof given by Pi was accepted.

Through a sequence of hybrid arguments, we will now show that this protocol
has computational soundness in the stand-alone setting.

Hybrid H0: This hybrid is exactly the same as the above protocol.

Hybrid H1: This hybrid is exactly the same as H0 except that the simulator
will give simulated zero knowledge proofs in the second step (even though it
has a witness). Since this proof is zero knowledge in the stand-alone setting, we
have that the simulated proof is computationally indistinguishable from the real
proof and hence H1 is computationally indistinguishable from H0.

Hybrid H2: Hybrid H2 to H4 deal with proving that the commitment scheme
UC-Com is computationally hiding in the stand alone setting. Hybrid H2 is ex-
actly the same as H1 except that the simulator replaces concurrent zero knowl-
edge proof given in UC-Com(S, Pi, R) by a simulated zero knowledge proof. Note
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that we do not require the concurrency property of the zero knowledge proof
here (as we are considering only the stand-alone setting). Hence, it follows from
the zero knowledge property of this proof that H2 is indistinguishable from H1.

Hybrid H3: This hybrid is exactly the same as H2 except that the simulator
replaces the commitments to input R in the first step of UC-Com(S, Pi, R) to
commitments to a value R′ (chosen independently at random). It follows from
the computational hiding property of these commitments that H3 is indistin-
guishable from H2.

Hybrid H4: In UC-Com(S, Pi, R), the simulator gave a commitment to R in the
first step of the protocol. Let wold be a witness to the NP statement that for all
i, Ci is a commitment to a valid signature of Bi under P2’s public key PK and
that Bi is a valid commitment to a bit. In this case Bi is a commitment to the
ith bit of R. The simulator then followed the rest of the protocol according to
this commitment. In particular, in the next step of the commitment phase, the
simulator committed to random shares wt

0, w
t
1 such that wt

0 ⊕ wt
1 = wold. Note

that in H3, the commitments Bi were changed to commitments to R′. Hence,
we now have a new witness wnew that proves that Ci is a commitment to a valid
signature of Bi under P2’s public key PK and that Bi is a valid commitment to
a bit.

Hybrid H4 is exactly the same as H3 except that the simulator changes the
commitments to shares of wold (i.e., commitments to wt

0, w
t
1) to shares such

that they exclusive-OR to wnew . Note that these commitments are not used
anywhere else in the protocol as the simulator uses simulated concurrent zero
knowledge proofs in the commitment phase. From the computationally hiding
property of the commitments it follows from a standard hybrid argument that
H4 is indistinguishable from H3.

Hybrid H5: This hybrid is exactly the same as H4 except that the simulator
replaces the simulated zero knowledge proof in the UC-Com(S, Pi, R) protocol
to honest concurrent zero knowledge proof. Again since we are only considering
the stand-alone setting, it follows from the zero knowledge property of this proof
that H5 is indistinguishable from H4.

We note that the difference from H0 to H5 is that the commitment UC-Com
(S, Pi, R) has been replaced by UC-Com(S, Pi, R

′). The simulator still uses sim-
ulated zero knowledge proof that messages sent as verifier in the zero knowledge
proof are according to randomness R. We shall now argue that if an adversary
P ∗ can violate the soundness of the proof system in Hybrid H5, then we can con-
struct an adversary p∗ that will violate the soundness of the underlying standard
zero knowledge proof. p∗ will act as verifier V in the above simulated protocol
with P ∗ and as prover p∗ in the underlying standard zero knowledge proof with
verifier v. p∗ as verifier V will initially commit to a random value R to P ∗ using
UC-Com(S, Pi, R). V will then forward messages that it receives from P ∗ to v
as messages of the prover p∗. Upon receiving a message from verifier v, p∗ will
send this message (as verifier V ) to P ∗ along with a simulated zero knowledge
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proof that the randomness used to construct this message is R′ (chosen inde-
pendently at random). Now, if P ∗ can violate the soundness of the proof in the
simulated protocol, then p∗ can violate the soundness of the underlying zero
knowledge proof. Thus, the proof in the simulated protocol is sound. By the
indistinguishability of Hybrid H5 from H0, it follows that the zero knowledge
protocol HardwareZK(Pi, S, a) has computational soundness in the stand-alone
setting.

Now, let s be the total number of decommitment sessions in the protocol.
Pick at random the tth session between parties Pi and Pj (with Pi ∈ M and
Pj ∈ H). We note that with probability > µ

s , during the tth session between
malicious Pi and honest Pj , the simulator for the first time in the protocol does
a decommit abort. We now focus on this particular session between Pi and Pj .
In this decommitment protocol, the decommitter Pi sends value a′ as the first
message and then executes protocol HardwareZK(Pi, S, a) with the simulator.
We showed stand-alone soundness of HardwareZK(Pi, S, a). Since soundness is
composable, this implies that HardwareZK(Pi, S, a) is computationally sound in
the concurrent setting. Hence, a dishonest decommitter can only decommit to
the value initially committed to. We note that while simulating the tth session
between Pi and Pj , the simulator might have to simulate other sessions (commit-
ment and decommitment). If the simulator runs into a Decommit Abort in some
other session, then the simulator aborts the simulation since then the tth session
between Pi and Pj will not be the first time that the simulator does a Decommit
Abort. We note that simulator (except with negligible probability) will not run
into an Extraction Abort in a parallel session (as argued in Lemma 1). Hence,
µ is negligible. �
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