
A Decidable Class of Planar Linear Hybrid Systems

Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Viswanathan,
and Geir E. Dullerud

University of Illinois at Urbana-Champaign

Abstract. The paper shows the decidability of the reachability problem for pla-
nar, monotonic, linear hybrid automata without resets. These automata are a spe-
cial class of linear hybrid automata with only two variables, whose flows in all
states is monotonic along some direction in the plane, and in which the continu-
ous variables are not reset on a discrete transition.

1 Introduction

The use of embedded devices in safety critical systems, has prompted extensive re-
search in the formal modeling and analysis of hybrid systems. Hybrid automata [1] are
a widely used formalism for modeling such systems. These are machines with finitely
many control states and finitely many real-valued variables that evolve continuously
with time. The transitions depend on the values of the continuous variables and they
change both the discrete control state as well as the values of the variables. The safety
of systems modelled by such automata can often be reduced to the question of whether
a certain state or region of the state space can be reached during an execution. This is
called the reachability problem.

Due to its importance, the reachability problem for hybrid automata has been care-
fully investigated in the past couple of decades. The problem has been shown to be
decidable for special kinds of hybrid automata including timed automata [2], certain
special classes of rectangular hybrid automata [6], and o-minimal hybrid automata [8].
These decidability results often rely on demonstrating the existence of a finite, com-
putable partition of the state space that is bisimilar to the original system.

However, such decidability results are the exception rather than the norm. The reach-
ability problem remains stubbornly undecidable even for very simple and special classes
of hybrid automata, not just in the general case. One such special class is that of linear
hybrid automata. In these automata each variable is constrained to evolve along a con-
stant slope (with time), and despite such simple dynamics, have been unamenable to
algorithmic analysis even in low dimension (i.e., with very few continuous variables).
Timed automata, where each variable evolves synchronously with a global clock, but
where the machine is allowed to compare clock values at the time of discrete transi-
tions1, is undecidable even for systems with 6 clocks [2]. The case of general linear
hybrid automata in which variables are constrained to be compared only to constants,

1 The decidability result for timed automata holds when clocks are only compared with
constants.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 401–414, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

402 P. Prabhakar et al.

remains undecidable even for just 3 variables [1]. Undecidability results for dynamical
systems with piecewise constant derivative in 3 dimensions, and piecewise affine maps
in 2 dimensions [5] provide further evidence.

In this paper, we prove the decidability for a special class of linear hybrid automata
that are planar, monotonic and don’t have resets. Planar refers to the fact that the au-
tomata has only two variables. Monotonic refers to the fact that we require the existence
of a vector ρ such that the derivatives of the variables (viewed as a vector in the plane) in
all states have a positive projection along ρ; note, this does not mean that both variables
have positive derivatives in each state. Finally, the automaton does not reset/change the
values of the variables when taking a discrete transition.

The automaton model that we consider here is more general in some aspects, and
at the same time more restrictive in some aspects, when compared with other hybrid
automata models for which decidability results are known. First variables are not re-
stricted to clocks, like timed automata. Second, variables are not required to have the
same slope in all states, or for them to be reset when the flow is changed, as in some
rectangular hybrid automata. Next, transitions don’t have strong resets that decouple the
continuous dynamics from the discrete, as in o-minimal systems. Finally, the guards and
invariants are not required to be disjoint, as in dynamical systems with piecewise con-
stant derivatives [3] or polygonal hybrid systems [4]. On the other hand, our automata
only have 2 variables, no resets, and monotonic flows.

Despite the restrictive dynamics and planarity, the decidability proof is very chal-
lenging. Like many decidability proofs in this area, we first partition the plane into
regions, which in our case are convex polygons formed by considering lines associated
with the constraints appearing in the automaton description, and lines perpendicular to
the direction along which the flow is monotonic. Such regions have a very special geo-
metric structure in that they are bounded by 2 to 4 line segments, at least one of which
is a line segment perpendicular to the monotonic direction. The first key idea in the
proof is to observe the existence of a line �, perpendicular to the monotonic direction,
such that the behavior of the automaton beyond � is bisimilar to a finite state system.
Then reachability computation is broken up into two phases: the first phase computes
all points before � that are reachable, and the second phase constructs the finite bisimu-
lation for the points beyond � and does the search in the bisimilar transition system.

The computation of the reachable regions before � itself relies on observing that any
execution of the automaton can be seen as a concatenation of a series of almost-inside
executions. An almost-inside execution is an execution that starts at the boundary of
a region R, enters R, and then leaves to another boundary of R, all the while staying
inside R, while taking both discrete and time steps. The first lemma we prove is that
the effect of such almost-inside executions is computable for all regions. However, in
order for the decidability proof to go through we need a stronger result for certain
special regions that we call right pinched triangles; we need to show that the effect
of concatenating finitely many almost-inside executions can be computed. We do this
through a tree construction reminiscent of the Karp-Miller tree [7] for vector addition
systems. Finally, we solve the reachability result for regions before � by another tree
construction. A carefully counting argument coupled with the monotonicity of flows
ensures that this tree will be finite and hence effectively constructable. Space constraints

A Decidable Class of Planar Linear Hybrid Systems 403

prevent us from giving detailed proofs of the decidablity result here; complete proofs
can be found in [9].

2 An Example

We will first illustrate our algorithm for deciding reachability on an example. Con-
sider the hybrid system H given in Figure 1. It has five locations s1, · · · , s5, with flows
f1, · · · , f5, respectively, associated with them. The locations are labelled by their in-
variants. For example, the invariant associated with location s1 is y < 1, and this says
that the control of the system can be in s1 only if the value of the variable y is less than
1. When in a certain location the values of the variables change according to their flow.
If the system starts with x = 0 and y = 0 at location s1, and spends a unit time, then
the values of the variables would be x = 1 and y = 2. However in this case the system
is forced by the invariant to leave the location before half time unit. We note that H is a
monotone linear hybrid system, where by linear we mean that the flows associated with
the locations are constants, and by monotone that the flows have a positive projection
along some direction, in this case the x-axis as shown in Figure 2.

s1 s2 s3

y < 1 x < 1

x > 1

s5 s4

f1 = (1, 2) f2 = (2, 3/2) f3 = (2, 7/4)

f5 = (2, 7/4) f4 = (1, −1)

∧x > 2

x < 2y

x < 2y

Fig. 1. Linear hybrid system H

f1
f3 = f5

f2

f4

x

y

Fig. 2. Flows of the hybrid system H

We will consider the following reachability problem: Is the location s5 reachable
starting from s1 with x = 0 and y = 0? As shown in Figure 3, this translates to
checking if starting in s1 at point O, we can reach the shaded region in location s5.

We first divide the plane into regions depending on the constraints in H. Correspond-
ing to each constraint of H, there is a straight line, as shown by the solid lines in Fig-
ure 3. We also add lines parallel to the y-axis passing through the points of intersections
of these lines, if one does not already exist. As is easily seen, the interior of a region is
invariant with respect to the locations in that either it is contained in the invariant of a
location or is disjoint from it. Hence with each element of a region which is its interior,
its edge without the end-points or its vertex, we can associate a set of locations whose
invariants contain the element. For example, the set of locations corresponding to the
interior of region 1 is {s1, s2, s3}.

The idea of the algorithm is to compute successors for the regions. Given a part of an
edge, called a subedge, and a location, the successor with respect to a region is the set

404 P. Prabhakar et al.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

O

A

C

K

I

B

D

F

G

E

J

H

L

y

x

1

3 4

5
2

6

Fig. 3. Regions of the hybrid system H

of all points on the boundary of the region reachable by moving only in its interior, and
leaving and entering the boundary at most once. For example, starting from point A in
location s3, we can reach J by following flow f3 of s3 and moving only in the interior
of region 3. Hence (s3, J) is in the successor of (s3, A). As a slightly more interesting
example, consider the problem of finding the successors of point O in region 1. These
are exactly the points between A and B in locations s2 and s3, the points between B
and C in locations s1 and s3 and the point B in location s3. We will represent this
succinctly as (s1, B

′C′), (s2, A
′B′), (s3, BC′) and (s3, A

′B), where A′ indicates that
point A itself is excluded. The above subedges are computed in the following way. The
locations corresponding to region 1 are s1, s2 and s3. Let us consider the underlying
graph of H restricted to locations and guards which contain region 1. The same is shown
in Figure 4. We observe that any path from O in location s1 spends time alternately in s1

s1 s2 s3

f1 f2 f3

Fig. 4. Underlying graph of H restricted to region 1

and s2, and then possibly makes a transition to s3 where it spends additional time before
reaching the boundary. We will show that the set of all points reachable by alternating
between s1 and s2 is exactly the set of point in the cone generated by f1 and f2 which
are also in the interior of region 1, namely, the points inside the parallelogram OABC
in the figure. This is true only because s1 and s2 belong to the same strongly connected
component of the underlying graph corresponding to region 1. We then show how to
compute the set of points reachable starting from these points with respect to the next
maximal strongly connected component, in this case s3. In this example it turns out that
the points reachable by moving along f3 from points in the parallelogram OABC is
OABC itself.

A Decidable Class of Planar Linear Hybrid Systems 405

Now coming back to our original problem of finding if there is an execution of H

starting at point O in location s1 to some point in the shaded region in location s5, we
will build a rooted tree, called the reachability tree. Its nodes are labelled with pairs
of locations and subedges and the root is labelled (s1, 0). The children of any node are
labelled with the elements of the successors of the label of the current node with respect
to every region it is adjacent to. The above computation is carried out with respect to
every region to the left of the line x = 2. This gives us the set of all pairs of locations
and points reachable on this line. Figure 5 shows some part of this tree.

(s3, BC′)

(s4, DE′)

(s3, IE) (s4, IE) (s4, LE′)(s4, F H)(s4, HE′)

(s3, BJ)

(s3, BE′)(s3, KE′)(s4, BE) (s4, KE)

(s1, O)

(s4, HG)

(s1, B′C′) (s2, A′B′) (s3, A′B)

(s3, BE′)(s4, BE′)

Fig. 5. Reachability tree

Our next goal is to show that this tree is finite. As a first step to achieve this, we prune
some branches of the tree. The node (s4, LE′) is removed from the tree as its parent
(s4, BE′) contains all the required information. The finiteness of the tree follows from
two observations, namely, the number of children of any node is finite and every path
in the tree is bounded. We can then apply Konig’s Lemma to conclude that the tree is
finite. To show that a path is finite, we have from the monotonicity of the flows that the
leftmost point of any child of a node is to the right of the leftmost point of the node. For
example, the x-coordinate of the left-most point of O which is O itself is less than that
of A which is the leftmost point of A′B, which is in its successor. However, there is a
priori no minimum distance by which this shift to the right occurs. Such a bound exists
if the successor is with respect to a region which is a trapezium, like region 1. It is not
clear for a “left-pinched triangle” like region 6. However for this case we argue that
though a global minimum does not exist, given any path of the tree such a minimum
exists. In case of a “right-pinched triangle” like region 2, even such a local minimum
does not exist. Hence, instead, in this case we compute the “transitive closure” of the
successor with respect to the region, which is the set of all points reachable on the
boundary by moving within R and touching the boundary any number of times. We
show that this is computable when the constraints corresponding to the boundary are
strict. We then use the assumption that there are no adjacent right-pinched triangles, to
argue that the paths of the tree are finite.

We cannot continue with the construction of the tree beyond the line x = 2, because
all regions to the right of this line are unbounded. This might potentially lead to infinite
paths in the tree. So we stop building the tree at the line l which passes through the

406 P. Prabhakar et al.

leftmost vertex, and show that there is a finite bisimulation of the states corresponding
to the regions to the right of this line. This bisimulation can be computed. Hence we
can decide the reachability.

3 Preliminaries

3.1 Linear Hybrid Systems

A linear hybrid system (LHS) H is a tuple (S, S0, E, X,flow , inv , guard) where

– S is a finite set of locations,
– S0 ⊆ S is the set of initial locations,
– E ⊆ S × S is the set of edges,
– X = {y1, · · · , yn} is a finite set of variables,
– flow : S → Q

n associates a flow with every state,
– inv : S → Guards is a function associating an invariant with each state, and
– guard : E → Guards is a function associating a guard with each edge,

where Guards = 2C and C is a finite subset of {∑n
i=1 aiyi ∼ bi | ai, bi ∈ Q,∼∈ {<, >

}}. We call the elements of C which occur in the codomain of inv and guard , the set
of constraints associated with H. The size of X is called the dimension of H.

We note that the definition of the hybrid system above deviates from the standard
definition in that we do not allow resets and the constraints are restricted to be strict.

We define the semantics of an LHS in terms of a transition system. The transition
system of H is a triple (X, X0,→), where X = S×R

n is the set of states of H, X0 ⊆ X
called the set of initial states consists of state (s, v) such that s ∈ S0 and v ∈ inv (s),
and the transition relation → is a binary relation on the set of states X . The transition
relation → is defined as the union of discrete transitions →d and continuous transitions
→c, which are defined as:

– (s, v) →d (s′, v′) if v = v′ and there exists e = (s, s′) ∈ E such that v ∈
inv(s) ∩ inv(s′) ∩ guard(e).

– (s, v) →c (s′, v′) if s = s′ and there exists t ∈ R such that t ≥ 0 and v′ =
v + flow(s)t, and for all t′ ∈ [0, t], v + flow (s)t′ ∈ inv(s).

An execution of H from a state (s1, v1) is a sequence of states (s1, v1) · · · (sn, vn) such
that for all 1 ≤ i < n, (si, vi) → (si+1, vi+1). We then say that (sn, vn) is reachable
from (s1, v1), and denote it by (s1, v1) →∗ (sn, vn). We can represent an execution
(s1, v1)(s2, v2) · · · (sn, vn) as a function σ : [0, t] → S+ × R

n. We define σ as a
pair of functions (σ1, σ2), where σ1 : [0, t] → S+ gives the sequence of locations
at any time point and σ2 : [0, t] → R

n gives the values of the variables. With each
(si, vi) → (si+1, vi+1) we associate a delay di, where di = 0 if vi = vi+1, and
di = (vi+1 − vi)/flow(si) otherwise. Let ti =

∑i
j=1 dj . We set t = tn−1. We define

σ1(t′) = si if t′ ∈ (ti−1, ti), otherwise σ1(t′) = si · · · sj , where t′ = ti and ti−1 	=
ti = ti+1 = · · · = tj 	= tj+1. We define σ2(t′) for t′ ∈ [ti−1, ti] inductively. We set
σ2(0) = v1 and σ2(t′) = σ2(ti−1) + flow(si)(t′ − ti−1) for t′ ∈ [ti−1, ti]. A run of H

is an execution starting from an initial state.

A Decidable Class of Planar Linear Hybrid Systems 407

3.2 Elements of the Two Dimensional Plane

We define some elements of the two dimensional plane formed by straight lines. A
convex closed polygonal set P is the intersection of finitely many closed half-planes.
We simply call P a convex polygon. The interior of P , denoted interior(P), is the
intersection of finitely many open half-planes corresponding to the closed half-planes
of P . The boundary of P , denoted boundary(P), is P − interior(P). An edge of P
is a maximal convex subset of boundary(P). We denote the set of all edges of P by
edges(P). A vertex of P is a point of intersection of two distinct edges of P . The set of
all vertices of P will be denoted by vertices(P).

We call a convex subset of an edge, a subedge. The end-points of a subedge e are
points a and b such that e consists of all points on the line segment joining a and b,
except possibly a and b themselves. We denote this by end-points(e) = {a} ∪ {b}. The
subset of e without the end-points will be denoted open(e), which is e− end-points(e).
The elements of the subedge e are then its end-points which are contained in e and the
open(e). This is denoted by elements(e) = {open(e)}∪{a | a ∈ end-points(e), a ∈ e}.
From now on, by a convex set, we mean a polygon, interior of a polygon, or a subedge
of a polygon.

3.3 Restricted Hybrid Systems

We call an LHS H monotone if there exists an f ∈ R
n such that for all locations s

of H, flow (s).f > 0, where . is the standard dot product. We call such an f a direction
of H.

We will call a linear hybrid system planar, if its dimension is two. A planar lin-
ear hybrid system is said to be simple if no three distinct lines corresponding to its
constraints intersect at a common point, where the line corresponding to a constraint∑n

i=1 aiyi ∼ bi is the set of points satisfying
∑n

i=1 aiyi = bi.

3.4 Notations for Planar Hybrid Systems

Let us fix a simple monotone planar linear hybrid system H = (S, S0, E, X,flow , inv ,
guard) for the rest of the paper. Let X = {x, y} and fH be a direction of H. Let
us fix our coordinate system such that the x-axis is parallel to fH and the y-axis is
perpendicular to it. Given a subedge e we define left(e) to be the infimum of the x-
coordinates of the points in e and right(e) to be the supremum of the x-coordinates of
the points in e.

Let V be the set consisting of the points of intersections of the lines corresponding
to the constraints in H. Let us associate with H a set of lines which are parallel to the
y-axis and contain some point in V . We denote this by lines(H). We can order the lines
of H as l1, l2, · · · , lk such that for any 1 ≤ i < j ≤ k, if vi and vj are the points in V
which are contained in li and lj respectively, then left(vi) < left(vj).

Let L be a set of lines which contains lines(H) and the lines corresponding to the
constraints in H. We associate a set of regions with H which consists of polygons whose
interiors are non-empty and which are formed by choosing exactly one closed half-plane
corresponding to each line in L. We denote this by regions(H). We use regions(H, i, j)

408 P. Prabhakar et al.

to denote the regions of H which are contained in the set of points between lines li and
lj of lines(H). Also regions(H, 0, j) and regions(H, i, k + 1) denote the set of regions
contained in the set of points which occur to the left of lj and the set of points which
occur to the right of li, respectively. Note that two distinct regions in regions(H) have
non-intersecting interiors, and the union of all the regions gives us the whole plane R

2.
Following are a few observations about the regions of H:

1. The regions in regions(H, 0, 1) are unbounded and have two or three edges.
2. The regions in regions(H, 1, k) are either triangles, or trapeziums, or unbounded

regions with three edges. For the triangles, one of the edges is contained in some
li and its vertex not on that edge is contained in either li+1 or li−1. If the vertex is
contained in li+1, then we call the triangle a right-pinched triangle otherwise we
call it a left-pinched triangle. For the trapeziums in this region, we will call its edge
a parallel edge if it lies on one of the li’s.

3. The regions in regions(H, k, k + 1) are unbounded with two or three edges.

From now on by a subedge we mean a subedge of the edge of some region in
regions(H). We abuse notation and call a pair (s, e) where s ∈ S is a location and
e a subedge, also a subedge. However it will be clear from the context which one we
mean. The subedge (s, e) is said to contain the state (s, v) where v ∈ e. Two subedges
(s, e) and (s′, e′) are said to be disjoint if the do not contain any common state. By
a state (s, v) or a subedge (s, e) being on a subedge e′ or a line l we mean v or e is
contained in e′ or l. Similarly we use regions also for pairs of states and regions.

We will focus on the following problems in the rest of the paper: the point-to-
point reachability and the region-to-region reachability. The point-to-point reachabil-
ity problem is to decide given two states (s1, v1) and (s2, v2), if (s1, v1) →∗ (s2, v2).
The region-to-region reachability problem is to decide given two location-region pairs
(s1, R1) and (s2, R2), if there exist points v1 ∈ R1 and v2 ∈ R2 such that (s1, v1) →∗

(s2, v2).

4 Decidability of the Reachability Problem

In this section we show that the point-to-point and region-to-region reachability prob-
lems for simple monotone planar linear hybrid systems is decidable. We will continue
to use the notations introduced in the previous section. We first present a sketch of the
proof of decidability.

1. We first show that the edge-to-edge reachability problem is decidable: given a
subedge (s, e) of a region R ∈ regions(H, 0, k), we can compute the set of all
states on lk which are reachable from the states on the subedge.

2. We then show that there exists a computable finite bisimulation of the transition
system of H restricted to the states on and after lk which respects the partition
created by the elements of the regions in regions(H, k, k + 1).

3. We then use the above results to decide the point-to-point and region-to-region
reachability.

A Decidable Class of Planar Linear Hybrid Systems 409

4.1 Edge-to-Edge Reachability

In this section we solve the problem of finding the set of all states on the line lk reach-
able from a subedge (s, e) of some region R ∈ regions(H, 0, k). Any execution from
a state in (s, e) to a state on lk can be broken up into a sequence of executions each
of which is such that they move within a single region and leave or enter its boundary
at most once. Our approach is to build a tree whose nodes represent subedges, and the
states corresponding to the nodes of the children of a node give the set of all points
reachable from the states in the parent node by executions which move within a region.
Then any path in the tree would correspond to executions starting from states in the
root. We call this the reachability tree. We show that the tree is computable and finite.
Then the set of all states in the tree which correspond to the states on lk will give us the
required.

We first compute the set of all states reachable from a subedge by moving only
within a region. We define an almost-inside execution with respect to a region to be an
execution which leaves the boundary of the region at most once and enters the boundary
of the region at most once, and at all times during the execution is in the region. An
almost-inside execution (AI-execution) from a state (s, v) to a state (s′, v′) with respect
to a region R is an execution σ : [0, t] such that σ1(0) contains s and σ2(0) = v,
σ1(t) contains s′ and σ2(t) = v′, and there exist t1, t2 ∈ [0, t] such that for all t′ ∈
(0, t1]∪[t2, t), σ2(t′) ∈ boundary(R), and for all t′ ∈ (t1, t2), σ2(t′) ∈ interior(R). We
say that a subedge (s′, e′) is reachable from a subedge (s, e) by almost-inside executions
with respect to a region R, if for every v′ ∈ e′, there exists a v ∈ e and an AI-execution
from (s, v) to (s′, v′). The successor of a subedge (s, e) with respect to a region R is a
subedge of R reachable from (s, e) by AI-executions with respect to R. We denote by
succ((s, e), R) the maximal successors of (s, e) with respect to R, where a successor
(s′, e′) is maximal if for every successor (s′, e′′), e′′ ⊆ e′.

In the next lemma, we show that succ((s, e), R) is computable. A notion that we
use is that of the underlying graph of the hybrid system restricted to those locations
and edges whose invariants and guards respectively are satisfied by the elements of
a region. Given a set of points V , we define the underlying graph of H with respect
to V to be graph(H, V) = (VH, EH,) such that VH = {s ∈ S |V ⊆ inv (s)} and
EH = {e ∈ E |V ⊆ guard(e)}.

Lemma 1. Given a region R ∈ regions(H) and a subedge (s, e) of R, succ((s, e), R)
is computable.

Proof. We consider the maximal strongly connected components of the underlying
graph graph(H, interior(R)), and first compute the set of all states on the boundary
reachable by moving in a single component. Then we show how this can be used to
compute all the states reachable.

Given a graph G, let us call the graph with these strongly connected components
as vertices, the component graph of G, and denote it as SCC(G). There is an edge
between two vertices in SCC(G) if there is one between two states of the components
in the original graph. Note that maximality of the components gives us that SCC(G) is
a directed acyclic graph.

410 P. Prabhakar et al.

We observe that any AI-execution from a state in (s, e) to a state on the boundary of
R would correspond to a path in SCC(G). For each such path π = C1C2 · · ·Cn where
Ci’s are the strongly connected components, we compute the states on the boundary of
R reachable by AI-executions which follow this path. We do the computation iteratively.
We first find the states reachable by moving only in the component C1.

To compute the above, we need a notion of post of a convex subset of a region
with respect to a set of flows, which is the set of all points in the region reachable by
following the flows and always remaining in the interior of the region except possibly
at the end-points. We can show that post(P, F, R) is computable, where P is a convex
subset of region R and F is a set of at most two flows, and that it can be expressed
as a finite union of convex subsets. A crucial observation is that corresponding to a
trajectory following F from a point in P to any point in R, there is one which moves
only within R. The only exceptions are the vertices of R, but it can be tested separately
if they can be reached. It turns out that the set of all points in R reachable from a point
in P are those in the cone generated by the flows in F . This can also be extended to any
convex subset by taking the convex hull of the sets corresponding to the vertices of P .
The details of the computation of post(P, F, R) are given in [9].

Now the set of all points reachable on the boundary by following flows in the com-
ponent C1 is given by post(e, F, R), where F contains those flows associated with the
locations in C1 which make a maximum or a minimum angle with fH. Further the points
in post(e, F, R) which are in the interior of R can be reached in any location of C1. A
points p in post(e, F, R) which is on the boundary and is reached from some point in
e by moving in R for some non-zero time, can only be reached if there is a location
which is in both C1 and graph(H, e), that is, there is an execution which can move into
the interior, and there is a location which is in both C1 and graph(H, p), that is, there
is an execution which moves from the interior to the boundary. We then compute the
set of all states on an edge reached by moving along the boundary from points on the
boundary given by post(e, F, R). Suppose that we have found the set of all states on the
interior and boundary reachable by the prefix of the path π till Ci. We can then compute
the post of the interior points with respect to the flows of Ci+1, and compute the states
reached when in Ci+1 similar to above. Again the details can be found in [9].

Once we have found the set of states reachable along π, we can take the union of all
the states over all the π’s to get the set of all states on the boundary reachable. Since
at each point in the procedure above we get a representation of the set of states on the
boundary reachable as a finite union of subedges, and the number of paths π is finite,
we can compute succ((s, e), R). ��

Now that we have shown that succ((s, e), R) is computable, we can construct the reach-
ability tree. However we also want to show that the tree is finite, and we will show this
by ensuring that the paths in the tree are finite. We will do this by showing that along
any path the successors move to the right by at least some minimum distance. In the
case of a right-pinched triangle such a minimum does not exist. Hence we will compute
the transitive closure of succ, called succ∗ where we consider points reachable by a se-
quence of AI-executions such that the last state of an execution is same as the first state
of the next execution. The intuition behind this is that if we compute succ∗ instead of
succ for a subedge with respect to a region then we will not need to consider the succ

A Decidable Class of Planar Linear Hybrid Systems 411

of the elements in succ∗ with respect to the region, as those states are already included
in succ∗. We will see that the simplicity of the system can then be used to argue that the
paths in the reachability tree are finite. Next lemma says that succ∗ is computable.

Lemma 2. Given a right-pinched triangle R in regions(H, 1, k) and a subedge (s, e)
of R, succ∗((s, e), R) is computable.

Proof. Let the right-pinched triangle R be abc with the edge ab on some li and c on li+1

as shown in Figure 6. Let (s, e) be a subedge of ac. We first compute the set of all states

c

b

a

li li+1

Fig. 6. Right-pinched triangle abc

on ac reachable by a sequence of one or more AI -executions. For this, we build a tree
T∗(s, e) rooted at node (s, e). We will need the following new notion of successor. Let
us denote by succ1((s1, e1), R) the set of states reachable on ac by executions which
touch bc at most once in the following sense: succ1((s1, e1), R) = {(s2, e2) | (s2, e2) ∈
succ((s1, e1), R), e2 ⊆ ac} ∪ {(s3, e3) | (s3, e3) ∈ succ(s2, e2), e3 ⊆ ac, (s2, e2) ∈
succ((s1, e1), R), e2 ⊆ bc}.

We now define how the tree is constructed. We will simultaneously mark nodes in
the partial tree constructed. The children of a node (s1, e1) are the elements (s2, e2) in
succ1((s1, e1), R) such that there is no node (s2,−) along the path from the root to the
node (s1, e1). For every element (s2, e2) in succ1((s1, e1), R) such that there is a node
(s2, e

′
2) along the path from the root to the node (s1, e1), we mark the node (s2, e

′
2).

Note that a node could get marked twice. The construction of tree will terminate since
it is finite, which is due to the fact that the number of children of any node is finite and
the height of the tree is bounded by the number of locations.

We now describe how to compute succ∗((s, e)) from the tree constructed above. We
form a set A which contains all the nodes of T∗(s, e), and for each node (s1, e1) which
belongs to a subtree of some marked node, it contains (s1, full(e1)), where full(e1) is the
subedge e2 of ac such that left(e2) = left(e1) and right(e2) = right(c) and e2 contains
the points left(e1) and c if and only if e1 contains them. A contains all points on ac′

reachable from (s, e) by moving only within the triangle and touching the boundary any
number of times. This is because if from a state (s, v1) we can reach a state (s, v2) by
an execution σ, where v2 is strictly to the right of v1, then we can reach any point to the
right of v1 by taking a sequence of one or more executions whose transition sequence
is same as that of σ but with possibly less time spent in each location. Similarly if
(s1, e1) can reach (s2, e2), then (s1, full(e1)) can reach (s2, full(e2)). For details, see
[9]. Hence it makes to sense to take the full of all nodes in the subtree of a marked node.

412 P. Prabhakar et al.

To compute the set of states on bc′ reachable, we observe that such a state is reachable
only from an AI -execution starting from some state on ac′. Hence the reachable states
on bc′ B can be computed by taking the succ of the maximal subedges of A. Finally, if
c is reachable then it is reachable by an AI -execution starting from a state on ac′ or bc′,
hence will be included in the succ of the subedges in A or that of B. Hence all points
in succ∗((s, e), R) can be computed. ��
We show below that the set of all states reachable on the line lk is computable. As
already said before, we construct a tree using the succ and succ∗ to compute the children
of the nodes. The nodes of the tree will correspond exactly to the states on edges of
regions in regions(H, 0, k) reachable from some subedge of some region in it for which
the tree is built.

Lemma 3. Given a subedge (s∗, e∗) of a region in regions(H, 0, k), the set of all states
on lk reachable from some state on the subedge is computable.

Proof. Construction of the reachability tree Treach((s∗, e∗)). We construct the reach-
ability tree, in which the nodes correspond to subedges, and the children of a node cap-
ture the set of all states reachable from the states of the current node by AI-executions. A
particular child of a node corresponds to AI-executions with respect to a single region.

We first define tsucc of a subedge with respect to a region which consists of states
reachable by AI-executions in this region. We break up the subedges into its elements,
because when computing tsucc, we require that all points of a subedge belong to the
same set of regions. Note that otherwise, the end-point of a subedge which is a vertex
could belong to a different set of regions than the subedge without the end-points.

For a subedge (s, e) of a region R, tsucc((s, e, R)) is given by:

– If R is not a right-pinched triangle, tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈
succ((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k)}.

– If R is a right-pinched triangle, tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈ succ∗

((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k), R 	= R′}.

The root of Treach((s∗, e∗)) is ∗. The children of ∗ are the element of the set {(s∗, e∗, R) |
e∗ ∈ R, R ∈ regions(H, 0, k)}. The children of any node (s, e, R) are the elements of
tsucc((s, e, R)) which contain at least one state which has not occurred in the current
node or any of its ancestors, that is, an element (s1, e1, R1) is present in the tsucc of
the current node (s, e, R) if for all nodes (s1, e2, R1) which is the current node or its
ancestor, there exists a v such that v ∈ e1 − e2.

We sketch below a proof of finiteness of the tree Treach((s∗, e∗)). Details are given in
[9]. First we make a few observations which are crucial in arguing the finiteness.

1. Let (s, e) and (s′, e′) be elements of subedges of a region R. Then if (s′, e′) ∈
tsucc((s, e), R), then left(e) ≤ left(e′) and right(e) ≤ right(e′). This follows from
the monotonicity of the flows in H.

2. Given any region R ∈ regions(H, 1, k), and (s, e) and (s′, e′) elements of subedges
of R which are not on the li’s such that (s′, e′) ∈ tsucc((s, e), R), we have:
(a) If R is a trapezium or an unbounded region, then either right(e′) is on some li

or there exists a dR > 0 such that right(e′) ≥ right(e) + dR.

A Decidable Class of Planar Linear Hybrid Systems 413

(b) If R is a left-pinched triangle, then either right(e′) is on some li or there exists a
d which increases monotonically with right(e) such that right(e′) ≥ right(e)+
d.

Now turning to the proof, by construction the above tree is finitely branching. To see
that every path in the tree is also finite, we can deduce from the above observations
that (a) there is a bound on the number of consecutive children whose right-end
points do not move closer to lk (the bound is the number of locations), (b) when
the successors are computed with respect to a trapezium and the right-end moves
strictly to the right, there is a minimum distance by which the shift occurs namely
the minimum of all the dR’s, (c) when the successors are computed with respect to
a left-pinched triangle the minimum distance is non-zero and depends on the right-
end point of the first occurrence on the path of one of its elements not contained
in any li. This along with the simplicity of the system which guarantees that two
right-pinched triangles are never adjacent to each other, we obtain a bound on the
length of any path. Finally, from Konig’s Lemma, we have that the tree is finite.

��

4.2 Finite Bisimulation

We show that the states of H corresponding to the regions in regions(H, k, k + 1) have
a finite bisimulation. A binary relation ∼ over a set of states is a bisimulation if it
is symmetric and for every pair of states (s1, v1) and (s2, v2), if (s1, v1) ∼ (s2, v2)
and (s1, v1) → (s′1, v′1), then there exists a state (s′2, v′2) such that (s2, v2) →
(s′2, v′2) and (s′1, v′1) ∼ (s′2, v′2). We will show that there exists a computable equiv-
alence relation ∼ of finite index on the set of states in regions(H, k, k + 1) which is a
bisimulation and which respects the partition created by the elements of the regions in
regions(H, k, k+1). By partition created by lk we mean the two parts, one consisting of
the states on lk and the other consisting of the rest of the states in regions(H, k, k + 1).

We define ∼ as follows. (s1, v1) ∼ (s2, v2) if s1 = s2 and v1, v2 belong to the
same element of a region. To see that this is a bisimulation consider (s, v1) and (s, v2)
where v1 and v2 belong to the same element of some region. If (s, v1) takes a discrete
transition to (s′, v1), then so can (s, v2) to (s′, v2) as the guards and invariants respect
the elements of the regions. Suppose (s, v1) takes a continuous transition to (s, v′1),
then there is a straight line from the v1 to v′1 which passes through a finite sequence of
infinite edges and interiors of the regions. There exists a straight line from v2 parallel
to the above which moves through the same sequence of edges and regions. Hence we
can find a point v′2 in the required region.

Since the number of regions in regions(H, k, k + 1) is finite, the number of elements
of these regions is also finite. Hence we have a finite bisimulation.

4.3 Point-to-Point and Region-to-Region Reachability

Theorem 1. Point-to-point and region-to-region reachability problems are decidable
for simple monotone linear hybrid systems.

414 P. Prabhakar et al.

Proof. To check if state (s′, v′) is reachable from (s, v), add two more lines to lines(H)
which pass through v and v′, and are parallel to y-axis. Then check if (s′, v′) corre-
sponds to any node in Treach((s, v)).

To decide if (s′, R′) is reachable from (s, R), where R, R′ ∈ regions(H), first com-
pute the set of subedges init(R) of R reachable from points in R. For each subedge
(s∗, e∗) ∈ init(R), compute the set of subedges in lk reachable, and then take their
union. If R′ ∈ regions(H, k, k + 1), then construct the finite bisimulation to decide if
R′ is reachable. Otherwise check if any state in (s′, R′) is reachable from the set of
subedges on its boundary reachable from states in init(R). ��

5 Conclusions

In this paper we identified a new class of planar linear hybrid automata that have a de-
cidable reachability problem. The key aspect in defining the class was requiring flows
to be monotonic. One can prove that the reachability problem is undecidable in 4 di-
mensions; see [9] for details. The 3 dimensional case is an interesting open problem.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer
Science 138(1), 3–34 (1995)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science 138(1), 35–65 (1995)

4. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid systems, part
I: Reachability. Theor. Comput. Sci. 379(1-2), 231–265 (2007)

5. Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C.H., Tsitsiklis, J.N.: Deciding stability
and mortality of piecewise affine dynamical systems. Theoretical Computer Science 255(1–2),
687–696 (2001)

6. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
In: Proc. 27th Annual ACM Symp. on Theory of Computing (STOC), pp. 373–382 (1995)

7. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sci-
ences 3(2), 147–195 (1969)

8. Lafferriere, G., Pappas, G., Sastry, S.: O-minimal hybrid systems (1998)
9. Prabhakar, P., Vladimerou, V., Viswanathan, M., Dullerud, G.E.: A Decidable Class of Planar

Linear Hybrid Systems. Technical Report UIUCDCS-R-2008-2927, UIUC (January 2008)

	A Decidable Class of Planar Linear Hybrid Systems
	Introduction
	An Example
	Preliminaries
	Linear Hybrid Systems
	Elements of the Two Dimensional Plane
	Restricted Hybrid Systems
	Notations for Planar Hybrid Systems

	Decidability of the Reachability Problem
	Edge-to-Edge Reachability
	Finite Bisimulation
	Point-to-Point and Region-to-Region Reachability

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

