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Abstract. This paper presents a compositional framework for the modeling of
interactive continuous-time Markov chains with time-dependent rates, a subclass
of communicating piecewise deterministic Markov processes. A poly-time algo-
rithm is presented for computing the coarsest quotient under strong bisimulation
for rate functions that are either piecewise uniform or (piecewise) polynomial.
Strong as well as weak bisimulation are shown to be congruence relations for the
compositional framework, thus allowing component-wise minimization. In ad-
dition, a new characterization of transient probabilities in time-inhomogeneous
Markov chains with piecewise uniform rates is provided.

1 Introduction

Modeling large stochastic discrete-event dynamic systems is a difficult task that typi-
cally requires human intelligence and ingenuity. To facilitate this process, formalisms
are needed that allow for the modeling of such systems in a compositional manner. This
allows to construct models of simpler components—usually from first principles—that
can be combined by appropriate composition operators to yield complete system mod-
els. In concurrency theory, process algebra [20,16] has emerged as an important frame-
work to achieve compositionality: it provides a formal apparatus for compositional rea-
soning about structure and behavior of systems, and features abstraction mechanisms
allowing system components to be treated as black boxes.

Although originally aimed at purely functional behavior, process algebras for
stochastic systems have been investigated thoroughly, see e.g., [15,14]. In all these ap-
proaches, the dynamics of the stochastic models is assumed to be time-homogeneous,
i.e., the probabilistic nature of mode transitions as well as the time-driven behavior
are independent of the global time. This is, however, a serious drawback to adequately
model random phenomena that occur in practice such as failure rates of hardware com-
ponents (a bath-tub curve), software reliability (which reduces due to memory leaks
and increases after a restart), and battery depletion (where the power extraction rate
non-linearly depends on the remaining amount of energy [5]), to mention a few. This
paper attempts to overcome this deficiency by providing a process algebra for time-
inhomogeneous continuous-time Markov chains (ICTMCs). This is a very versatile
class of models and is a natural stepping-stone towards more full-fledged stochastic
hybrid system models such as piecewise deterministic Markov processes (PDPs [6]).
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We show that ICTMCs can be compositionally modeled by using a time-dependent
adaptation of the framework of interactive Markov chains (IMCs) [14]. To facilitate
this, ICTMCs are equipped with the potential for interaction, i.e., synchronization. In-
strumental to this approach is the memoryless property of ICTMCs.

More importantly though, notions of strong and weak bisimulation are defined and
shown to be congruences. Together with efficient quotienting algorithms this allows for
the component-wise minimization of hierarchical ICTMC models. Finally, we present
an axiomatization for strong and weak bisimulation which allows to simplify models
by pure syntactic manipulations as opposed to performing minimization on the model
level. As a generalization of results on ordinary lumpability on Markov chains [3], we
show that strong bisimulation preserves transient and long-run state probabilities in
ICTMCs. This allows to minimize symbolically ICTMCs prior to their analysis.

We present a bisimulation minimization algorithm to obtain the coarsest (and thus
smallest) strong bisimulation quotient of a large class of interactive ICTMCs, viz.
those that have piecewise uniform—rate Rk(t) on piece k is of the form fk(t)·R
for integrable function R—polynomial, or piecewise polynomial—where each poly-
nomial is of degree three—rate functions. The worst-case time and space complexity is
O (ma lg(n) + Mmr lg(n)) and O (ma + mr), respectively, where M+1 is the num-
ber of pieces (or degrees of the polynomial), ma is the number of action-labeled transi-
tions and mr the number of rate-labeled transitions in the ICTMC under consideration.
This algorithm is based on the partition-refinement bisimulation algorithm for Markov
chains by Derisavi et al. [7] and Paige-Tarjan’s algorithm for labeled transition systems
(LTS) [21].

Related work. ICTMCs are related to piecewise deterministic Markov processes (PDPs),
a more general class of continuous-time stochastic discrete-event dynamic systems pro-
posed by Davis [6]. The probabilistic nature of mode transitions in PDPs is as for
ICTMCs; in fact, ICTMCs are a subclass of PDPs when the global time t has a clock
dynamics i.e., ṫ = 1. The notion of parallel composition of ICTMCs corresponds to that
for communicating PDPs (CPDPs) as introduced by Strubbe and van der Schaft [24,23].
Alternative modeling formalisms for PDPs are, e.g., variants of colored Petri nets [9]
but they lack a clear notion of compositionality. Compositional modeling formalisms
for hybrid systems have been considered by, e.g., [2,1]. Strong bisimulation has been
proposed for several classes of (stochastic) hybrid systems, see e.g., [4,12,25]. Our no-
tion of bisimulation is closely related to that for CPDPs [25] but differs in the fact that
the maximal progress assumption—a race between one or more rates and a transition
that is not subject to interaction with the environment is resolved in favor of the internal
transition—is not considered in [25]. Proofs of the major results are contained in [13].

2 Inhomogeneous Continuous Time Markov Chains

Definition 1 (ICTMC). An inhomogeneous continuous-time Markov chain is a tuple
C = (S,R) where: S = {1, 2, . . . , n} is a finite set of states, and R(t) = [Ri,j(t) ≥
0] ∈ IRn×n is a time-dependent rate matrix, where Ri,j(t) is the rate between states
i, j ∈ S at time t ∈ IR≥0.
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Let diagonal matrix E(t) = diag [Ei(t)] ∈ IRn×n, where Ei(t) =
∑

j∈S
Ri,j(t) for

all i, j ∈ S, i �= j i.e., Ei(t) is the total exit rate of state i at time t. Consider a
non-homogeneous Poisson process {Z(t)|t ≥ 0} with rate R(t). The probability of k
arrivals in the interval [t, t + Δt] is:

Pr{Z(t + Δt) − Z(t) = k} =

[∫ t+Δt

t R(�)d�
]k

k!
e−
�

t+Δt
t

R(�)d�, k = 0, 1, . . . .

The probability that there will be no arrivals in the interval [t, t + Δt] is:

Pr{Z(t + Δt) − Z(t) = 0} = e−
� t+Δt

t
R(�)d� = e−

�Δt
0 R(t+�)d�. (1)

Let the random variable Wi,j(t) be the firing time of transition i → j (i, j ∈ S) with
rate Ri,j(t) at time t. From (1) we obtain the cumulative probability distribution of the
firing time of transition i → j:

Pr{Wi,j(t) ≤ Δt} = 1 − Pr{Z(t + Δt) − Z(t) = 0} = 1 − e−
�Δt
0 Ri,j(t+�)d�. (2)

Probability measures. For every ICTMC one can specify measures of interest. These
measures are either related to the states or to the transitions of an ICTMC. Consider a
random variable Wi(t) which denotes the waiting time in state i.

Property 1

Pr {Wi(t) ≤ Δt} = 1 − e−
�

Δt
0 Ei(t+�)d�. (3)

An intuitive explanation of (3) is that the waiting time Wi(t) in state i is determined
by the minimal firing time of all k outgoing transitions from state i, i.e., Wi(t) =
min {Wi,1(t), . . . , Wi,k(t)}. When Ri,j(t) = Ri,j and Ei(t) = Ei for all t ∈ IR≥0,
i.e., the ICTMC is a CTMC, Wi(t) has the distribution 1 − e−EiΔt. An interesting
property is that the waiting time in any state i is memoryless, i.e.:

Pr {Wi(t) ≤ t′ + Δt|Wi(t) > t′} = Pr{Wi(t + t′) ≤ Δt} . (4)

This can be shown as follows:

Pr {Wi(t) ≤ t′ + Δt|Wi(t) > t′} =
e−
�

t′
0 Ei(t+�)d� − e−

�
t′+Δt
0 Ei(t+�)d�

e−
� t′
0 Ei(t+�)d�

= 1 − e−
� t′+Δt
0 Ei(t+�)d�+

� t′
0 Ei(t+�)d� = Pr{Wi(t + t′) ≤ Δt} .

Equation (4) will be of importance when we later define a calculus for ICTMCs.

Property 2. The probability Pri,j(t) to select transition i → j (i �= j, i, j ∈ S) with
rate Ri,j(t) at time t is:

Pri,j(t) =
∫ ∞

0

Ri,j(t + τ)e−
� τ
0 Ei(t+�)d�dτ. (5)
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When rates are constant, the measure (5) takes the form Pri,j = Ri,j

Ei
(Pri,j(t) = Pri,j

for all t ∈ IR≥0), which corresponds to transition probability in CTMCs.

Property 3. The cumulative probability distribution Pri,j(t, Δt) to move from state i
to state j (i �= j) with rate Ri,j(t) in Δt time units starting at time t:

Pri,j(t, Δt) =
∫ Δt

0

Ri,j(t + τ)e−
�

τ
0 Ei(t+�)d�dτ. (6)

Notice that (6) is the same as (5) except that the range of the outer-most integral is
[0, Δt]. For CTMCs (Pri,j(t, Δt) = Pri,j(Δt) for all t ∈ IR≥0), equation (6) results in
Pri,j(Δt) = Ri,j

Ei

(
1 − e−EiΔt

)
.

Transient probability distribution. One important measure which quantifies the proba-
bility to be in a specific state at some time point is the transient probability distribution.
Consider an ICTMC described by the stochastic process {X(t)|t ≥ 0}. The transient
probability distribution Pr {X(t + Δt) = j}, denoted by πj (t + Δt), is the probability
to be in state j at time t + Δt, and is described by the equation:

πj (t + Δt) =
∑

i∈S

Pr {X(t) = i} · Pr{X(t + Δt) = j|X(t) = i} . (7)

Equation (7) can be expressed in matrix form as: π(t + Δt) = π(t)Φ(t + Δt, t),
where π(t) = [π1 (t) , . . . , πn (t)] and Φ(t+Δt, t) represents the transition probability
matrix. This equation represents the solution of a system of ODEs:

dπ(t)
dt

= lim
Δt→0

π(t + Δt) − π(t)
Δt

= lim
Δt→0

π(t)
[Φ(t + Δt, t) − I]

Δt
. (8)

For the diagonal elements qi,i(t) of the matrix limΔt→0
[Φ(t+Δt,t)−I]

Δt from (8), we

obtain qi,i(t) = limΔt→0
Pr{X(t+Δt)=i|X(t)=i}−1

Δt . As Pr {X(t + Δt) = i|X(t) = i}
denotes the probability to stay in state i for at least Δt units of time or the probability
to return to state i in two or more steps, it follows:

qi,i(t) = lim
Δt→0

e−
�

Δt
0 Ei(t+�)d� − 1 + o (Δt)

Δt
= −Ei(t),

where o (Δt) denotes the probability to make two or more transitions in Δt units of
time. Notice that limΔt→0

o(Δt)
Δt = 0. For the off-diagonal elements qi,j(t) (i �= j) of

matrix limΔt→0
[Φ(t+Δt,t)−I]

Δt , the relation is similar:

qi,j(t) = lim
Δt→0

Pr{X(t + Δt) = j|X(t) = i}
Δt

= lim
Δt→0

Pri,j(t, Δt) + o (Δt)
Δt

,

which can be reduced using (6) to:

qi,j(t) = lim
Δt→0

∫ Δt

0
Ri,j(t + τ)e−

� τ
0 Ei(t+�)d�dτ + o (Δt)
Δt

= Ri,j(t).
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The resulting infinitesimal generator matrix Q(t) has the form:

Q(t) = lim
Δt→0

[Φ(t + Δt, t) − I]
Δt

= R′(t) − E(t),

where R′ equals R except that R
′
i,i(t) = 0. Plugging Q(t) into equation (8) yields the

system of ODEs which describe the evolution of transient probability distribution over
time (Chapman-Kolmogorov equations):

dπ(t)
dt

= π(t)Q(t),
n∑

i=1

πi(t0) = 1, (9)

where π(t0) is the initial condition. From the literature (see [17, pages 594–631]) it is
known that the solution π(t) of (9), written as:

π(t) = π(t0)Φ(t, t0) (10)

has the transition probability matrix given by the Peano-Baker series:

Φ(t, t0) = I +
∫ t

t0

Q(τ1)dτ1 +
∫ t

t0

Q(τ1)
∫ τ1

t0

Q(τ2)dτ2dτ1 + . . . . (11)

Note that if Q(τ1)
∫ τ1

t0
Q(τ2)dτ2 =

∫ τ1

t0
Q(τ2)dτ2Q(τ1) then Φ(t, t0) = e

�
t
t0

Q(τ)dτ .
If the rate matrix R(t) is piecewise constant i.e., R(t) = Rk or Q(t) = Qk for all
t ∈ [tk, tk+1) and k ≤ M ∈ IN (M + 1 is the total number of constant pieces),
equation (10) can also be rewritten as (see [22]):

π(t) =

⎧
⎪⎨

⎪⎩

π(t0)eQ0(t−t0) if t ∈ [t0, t1)
...

...
π(tM )eQM (t−tM ) if t ∈ [tM ,∞)

and π(tk) = π(tk−1)eQk−1(tk−tk−1).

The general case is when the rate matrix is piecewise uniform i.e., R(t) = Rk(t) =
fk(t)Rk or Q(t) = Qk(t) = fk(t)Qk for any integrable function fk(t) : IR≥0 → IR≥0

on time interval [tk, tk+1), constant matrices Rk and Qk.

Theorem 1. The transient probability distribution π(t) of an ICTMC C = (S,R) with
a piecewise uniform rate matrix R(t) and M+1 pieces is given by:

π(t) =

⎧
⎪⎪⎨

⎪⎪⎩

π(t0)e
Q0
� t

t0
f0(τ)dτ if t ∈ [t0, t1)

...
...

π(tM )eQM

�
t
tM

fM (τ)dτ if t ∈ [tM ,∞)

where π(tk) = π(tk−1)e
Qk−1

� tk
tk−1

fk−1(τ)dτ
.
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3 Inhomogeneous Interactive Markov Chains

In order to facilitate the compositional modeling of ICTMCs, we equip these processes
with the capability to allow for their mutual interaction. This is established by adding
actions to ICTMCs. Let Act be the countable universe of actions. The aim of these
actions is that certain actions can only be performed together with other processes.

Definition 2 (I2MC). An inhomogeneous interactive Markov chain (I2MC) is a tuple
I = (S, Act,→,R, s0) where S and R are as before, →⊆ S ×Act × S is a transition
relation and s0 ∈ S is the initial state.

The semantic model of I2MC represents the time-dependent variant of IMC [14].

Process algebra for I2MC. Originally developed by Hoare and Milner (see [20,16]),
process algebras have been developed as a compositional framework for describing
the functional behavior of the system. It allows for modeling complex systems in a
component-wise manner by offering a set of operators to combine component models.
Actions are the most elementary notions. The combination of several actions using the
operators forms a process. We extend this framework by stochastic timing facilities.

Definition 3. Let X be a process variable, λ(t) ∈ IR≥0 with t ∈ IR≥0, A ⊆ Act
and a ∈ Act. The syntax of inhomogeneous interactive Markov language (I2ML) for
I2MCs is defined as follows:

P ::= 0 | a.P | λ(t).P | P + P | P‖AP | P \ A | X.

Process variables are assumed to be defined by recursive equations of the form X := P ,
where P is an I2ML term. The null process 0 is the deadlock process and cannot perform
any action. The prefix operators are a.P and λ(t).P for actions and rates, respectively.
The choice operator P +Q chooses between processes P or Q. Process P‖AQ denotes
the parallel composition of processes P and Q where synchronization is required only
for actions in A; actions not in A are performed autonomously. The process P \ A
behaves like P except that all actions in A become unobservable to other processes;
this is established by relabeling a by the distinguished action τ ∈ Act. The operational
semantics of I2ML terms is defined by the inference rules in Table 1 where for the sake
of conciseness symmetric rules are not shown.

A few remarks concerning time-prefix and choice are in order. The process λ(t).P
evolves into P within Δt time units with probability:

Prλ(t).P,P (t, Δt) =
∫ Δt

0

λ(t + τ)e−
� τ
0 λ(t+�)d�dτ = 1 − e−

�Δt
0 λ(t+�)d�,

given that λ(t).P is enabled at the global time t. The above relation can be easily proven
from (6) by taking i = λ(t).P , j = P , Ri,j(t + τ) = λ(t + τ) and Es(t + �) =
λ(t + �). The process λ(t).P + μ(t).Q can evolve into P if the time delay gener-
ated by a stochastic process with rate λ(t) is smaller than that generated by a differ-
ent stochastic process with rate μ(t). By a symmetric argument it may evolve into Q.
Therefore, from (3) it follows that the distribution of time until a choice is made is
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Table 1. Inference rules for the operational semantics of I2ML

a.P
a−→P

P
a−→P ′ and Q

a−→Q′

P‖AQ
a−→P ′‖AQ′ (a ∈ A)

λ(t).P
λ(t)−→P

P
λ(t)−→P ′

P\Aλ(t)−→P ′\A

P
a−→P ′

P+Q
a−→P ′

P
a−→P ′

P‖AQ
a−→P ′‖AQ

(a /∈ A)
P

λ(t)−→P ′

P+Q
λ(t)−→P ′

E[X:=E/X]
λ(t)−→E′

X:=E
λ(t)−→E′

P
a−→P ′

P\A a−→P ′\A (a /∈ A)
P

a−→P ′

P\A τ−→P ′\A (a ∈ A)
P

λ(t)−→P ′

P‖AQ
λ(t)−→P ′‖AQ

E[X:=E/X]
a−→E′

X:=E
a−→E′

Pr{W (t) ≤ Δt} = 1− e−
�Δt
0 λ(t+τ)+μ(t+τ)dτ . For a choice between |J | processes (J

is a finite index set), the distribution of the waiting time becomes Pr{W (t) ≤ Δt} =
1 − e−

�
Δt
0

�
i∈J λi(t+τ)dτ . If the rates λi(t) in the process

∑
i∈J λi(t).Pi are constant

(λi(t) = λi), then the waiting time is exponentially distributed with the sum of the rates
λi i.e. Pr{W (t) ≤ Δt} = 1 − e−

�
i∈J λiΔt. This corresponds to the interpretation of

choice in Markovian process algebras [15]. It is important to note that when Pi = P
for all i ∈ J , the process

∑
i∈J λi(t).P will evolve into P with rate

∑
i∈J λi(t).

Parallel composition. When considering just actions the asynchronous parallel com-
position has the same functionality as that from basic process calculi. On the other
hand when considering stochastic delays the composition is more involved. Consider
P := λ(t).P ′ and Q := μ(t).Q′. They can evolve into P ′ and Q′ after a time delay
governed by a distribution with rate λ(t) and μ(t), respectively. Since the waiting time
in any state is memoryless (4), we can show the way by which processes P and Q are
composed (see diagram below).

P‖Q

P ′‖Q P‖Q′

P ′‖Q′

λ(t)

μ(t)

μ(t)

λ(t)

First consider that when both processes start their execution in
initial state P‖Q (the shadowed state) they probabilistically select
a time delay, say, Δtλ for P and Δtμ for Q. If Δtλ < Δtμ then
P finishes its execution first and evolves into P ′. The same applies
to Q when Δtμ < Δtλ. By intuition we could think that when it
is already in P ′‖Q, Δtλ = 0 and the remaining delay for process
Q until it finishes its execution is Δtμ −Δtλ. What really happens

is that on entering state P ′‖Q both delays are set to zero i.e., Δtλ = Δtμ = 0. As
P ′ has no transitions, Δtλ remains 0 but for Q its delay is initialized to a new value
which might be different from Δtμ − Δtλ due to a probabilistic selection. Due to the
memoryless property, however, the remaining delay for Q is fully determined by μ only.

Example 1. Consider two hardware components described by the equations P := λ1(t)
.0+λ2(t).use.P and Q := μ1(t).0+μ2(t).use.Q, respectively. Each of the components
may fail with rate λ1(t) and μ1(t), respectively. As a result of the failure they evolve
into process 0. On the other hand, the components may move to the working state with
the rate λ2(t) and μ2(t), respectively, where they can use some resources. If one of
them fails then the entire system fails. Both components can use the resources at the
same time if the system is working properly. Figure 1 depicts the I2MC of P‖{use}Q.



Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 251

4 Strong and Weak Bisimulation

In order to compare the behavior of ICTMCs (and their interactive variants) we ex-
ploit the well-studied and widely accepted notion of bisimulation [3,20,14]. A classical

P‖{use}Q

0‖{use}Q P‖{use}use.Q P‖{use}0

λ1(t)

μ2(t)

μ1(t)

use.P‖{use}use.Q

0‖{use}0

0‖{use}use.Q use.P‖{use}0

use

μ2(t) λ2(t) λ2(t)

use.P‖{use}Q

μ2(t)
μ1(t)

λ2(t)

λ1(t)

μ1(t) λ1(t)

Fig. 1. P‖{use}Q

bisimulation relation re-
quires equivalent states
to be able to mutu-
ally mimic their step-
wise behavior. In the
probabilistic setting this
is interpreted as requir-
ing equivalent states to
have equal cumulative
rates to move to any
equivalence class.
Bisimulation is consid-
ered as a natural notion
of equivalent behavior,

is equipped with quotienting algorithms, and has a clear correspondence to equivalence
in terms of logical behavioral specifications. In this section, we will define strong bisim-
ulation for I2MC starting from a similar notion on ICTMCs. Some algebraic and prob-
abilistic properties of bisimulation are investigated. The same applies to weak bisimu-
lation that allows for the abstraction of internal, i.e., τ actions.

Bisimulation for ICTMCs.

Definition 4 (ICTMC strong bisimulation). An equivalence R ⊆ S × S is a strong
bisimulation whenever for all (P, Q) ∈ R, t ∈ IR≥0 and C ∈ S/R:

R(P, C, t) = R(Q, C, t),

where R(P, C, t) =
∑

i{|λ(t)|P λ(t)→i P ′, P ′ ∈ C|}. P and Q are strongly bisimilar,
denoted P ∼ Q, if (P, Q) is contained in some strong bisimulation R.

Here, {| . . . |} denotes a multiset. It follows that ∼ is the largest strong bisimulation, i.e.,
it contains any strong bisimulation. To be able to compare ICTMCs by bisimulation, let
us equip an ICTMC with an initial state s0 ∈ S. Two ICTMCs CP = (SP ,RP , s0

P ) and
CQ = (SQ,RQ, s0

Q) are bisimilar, denoted CP ∼ CQ, iff their initial states are bisimilar,
i.e., s0

P ∼ s0
Q. The quotient of an ICTMC under ∼ is defined in the following way.

Definition 5 (Bisimulation quotient). For the ICTMC C = (S,R, s0) and ∼, the
quotient C/∼ is defined by C/∼= (S/∼,R∼, s0∼) where s0∼ = [s0]∼ and R∼ is defined
by: R∼([P ]∼, [P ′]∼, t) = R(P, [P ′]∼, t) for all t ∈ IR≥0.

Note that C is strongly bisimilar to C/∼. An important property of strong bisimulation
is that it preserves transient probabilities; in particular, this means that there is a strong
relationship between the transient probabilities in an ICTMC and its quotient.
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Theorem 2. Let C = (S,R, s0) be an ICTMC. For every C ∈ S/∼, the transient
probability distribution πC(t) of the state C in the quotient chain C/∼ is:

πC(t) =
∑

s∈C

πs(t) for all t ∈ IR≥0,

where πs(t) is the transient probability distribution of state s ∈ S in C.

From Theorem 2 we may conclude that the steady state probability distribution (if it
exists) is also preserved.

Corollary 1. Let C = (S,R, s0) be an ICTMC. For every C ∈ S/∼, the steady-state
probability distribution πC of the state C in the quotient chain C/∼ is:

πC = lim
t→∞πC(t) = lim

t→∞

∑

s∈C

πs(t) =
∑

s∈C

πs,

where πs is the steady-state probability distribution of state s ∈ S.

In many cases it is reasonable to assume that two processes P and Q are equal up to
time T . For this case we propose the finite-horizon bisimulation.

Definition 6. An equivalence R ⊆ S × S is a finite-horizon bisimulation whenever for
all (P, Q) ∈ R, t ∈ [0, T ] (T ∈ IR≥0) and C ∈ S/R: R(P, C, t) = R(Q, C, t). P
and Q are finitely-horizon bisimilar, denoted P ∼T Q, if (P, Q) is contained in some
finite-horizon bisimulation R.

Notice that the definition of finite-horizon bisimulation ∼T is the same except that the
time t lies in the interval [0, T ]. It is easy to see that finite-horizon bisimulation preserves
the transient distribution up to time T .

Proposition 1. For 0 < · · · < T < · · · < ∞ it holds: ∼0⊆ · · · ⊆ ∼T · · · ⊆ ∼ .

Thus , P ∼ti Q implies P ∼tj Q for every tj < ti. It follows that for tj < ti, the
quotient under ∼tj is coarser than under ∼ti .

Bisimulation for I2MCs. So far, we have presented bisimulation for ICTMCs. In order
to define bisimulation for I2MCs, unobservable actions (i.e., τ ) require special care.
Consider four states such that P1 ∼ P2 ∼ Q1 ∼ Q2 (see diagram below).

P0 P1

P2

2λ(t)

∼τ

Q0 Q1

Q2

λ(t)

∼
λ(t)

At first sight, it seems natural that P0 ∼ Q0 as
R(P0, C, t) = R(Q0, C, t) = 2λ(t). But, state P0 can do
something more. There is a transition P0

τ→ P2 which con-
sumes no time since a τ -action is an internal one and is
not prevented by the environment (maximal progress as-

sumption). The probability that transition P0
2λ(t)−→ P1 will be taken in 0 time units

is PrP0,P1(t, 0) =
∫ 0

0 2λ(t + τ)e−
�

τ
0 2λ(t+�)d�dτ = 0. Thus, we may conclude that

P0 � Q0. When specifying the definition of bisimilarity we have to treat immediate
actions (τ ) in a special way. Let S be the state-space of an I2MC.

Definition 7 (I2MC strong bisimulation). An equivalence R ⊆ S × S is a strong
bisimulation whenever for all (P, Q) ∈ R, t ∈ IR≥0, a ∈ Act and C ∈ S/R:
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Table 2. Sound and complete axioms for ∼ on the I2ML sequential fragment

P + 0 = P a.P + a.P = a.P (P + Q) + R = P + (Q + R)

P + Q = Q + P λ(t).P + τ.Q = τ.Q λ(t).P + μ(t).P = (λ(t) + μ(t)).P

– P
a−→ P ′ implies Q

a−→ Q′ for some Q′ and (P ′, Q′) ∈ R.
– Q

a−→ Q′ implies P
a−→ P ′ for some P ′ and (P ′, Q′) ∈ R.

– P
τ
� (or Q

τ
�) implies R(P, C, t) = R(Q, C, t).

P and Q are strongly bisimilar, denoted P ∼ Q, if (P, Q) is contained in some strong
bisimulation R.

Example 2. Consider the I2MC from Fig. 1 (c) and λ1(t) = μ1(t), λ2(t) = μ2(t). Its
quotient under bisimulation is depicted in Fig. 2. The equivalence classes C1, C2 and
C3 contain the following states C1 =

{
0‖{use}Q, P‖{use}0

}
, C2 =

{
P‖{use}use.Q,

use.P‖{use}Q
}

and C3 =
{
0‖{use}use.Q, use.P‖{use}0, 0‖{use}0

}
.

P‖{use}QC1

2λ1(t)

use.P‖{use}use.QC3

use

C2

λ2(t)

2λ2(t)

λ1(t) + λ2(t)

Fig. 2. Bisimulation quotient

In a similar way as for ICTMCs, one can consider
the quotient of an I2MC. The compositional na-
ture of I2MC, however, allows in principle for
obtaining such quotient in a component-wise
manner, e.g., the quotient of P‖AQ can be ob-
tained by first constructing the quotients of P and
Q, then combine them, and quotienting the com-
position. The necessary requirement that ∼ needs
to fulfill is that it is a congruence relation. The

relation ∼ is a congruence whenever for processes P and Q it holds: P ∼ Q implies
C[P ] ∼ C[Q] where C[·] is any context. (A context is basically a process term con-
taining a hole that may be filled with any process.)

Theorem 3. ∼ is a congruence with respect to all operators in I2ML.

Finite-horizon bisimulation is a congruence with one additional property.

Proposition 2. For any processes P , P ′, Q, Q′ and intervals [0, T1] and [0, T2] with
T1, T2 ∈ R≥0 we have:

P ∼T1 P ′ and Q ∼T2 Q′ implies P‖AQ ∼min(T1,T2) P ′‖AQ′ for all A ⊆ Act.

As a next step, we consider the possibility to establish bisimulation symbolically, i.e.,
on the level of the syntax of the earlier introduced language I2ML. This is facilitated
by an axiomatization for ∼. The soundness of these axioms ensures that any two terms
that are syntactically equal (denoted =) are bisimilar; formally, P = Q ⇒ P ∼ Q.
Whenever the axioms are complete, in addition, any strongly bisimilar processes can be
represented by the same expressions in I2ML, i.e., P ∼ Q ⇒ P = Q. Summarizing,
any bisimulation can be established syntactically, i.e., by just manipulating terms rather
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than I2MCs, provided the axiom system is sound and complete. Let A∼ be the set of
axioms listed in Table 2 extended with the expansion law:

P‖AQ =
∑

i∈J1

λi(t). (Pi‖AQ) +
∑

k∈J3

μk(t). (P‖AQk) +
∑

aj=bl∈A

aj. (Pj‖AQl)+

+
∑

aj /∈A∧aj∈J2

aj . (Pj‖AQ) +
∑

bl /∈A∧bl∈J4

bl. (P‖AQl)

where P :=
∑

i∈J1
λi(t).Pi +

∑
j∈J2

aj .Pj and Q :=
∑

k∈J3
μk(t).Qk +

∑
l∈J4

bl.Ql

with the finite index sets J1, J2, J3 and J4. Then the following holds:

Theorem 4. For any P, Q ∈ RG, A∼ � P = Q if and only if P ∼ Q.

The term RG denotes the set of all regular (no parallel composition inside recursion)
and guarded (by actions or rates) expressions. While A∼ � P = Q means that P = Q
can be deduced from the set of sound and complete axiom system A∼. The axiom
λ(t).P + μ(t).P = (λ(t) + μ(t)).P is due to the fact that the sum of two Poisson
processes with rates λ(t) and μ(t) is a Poisson process with the rate λ(t)+μ(t), whereas
the axiom λ(t).P + τ.Q = τ.Q is due to the maximal progress assumption. Notice that
A∼ also contains all standard axioms which involve hiding and recursion operators
which are standard and omitted here.

Bisimulation minimization. The previous sections have set the stage for bisimulation
minimization. Experiments have shown that in the traditional [11] as well as in the
stochastic setting [19] exponential state space savings can be achieved. Given that ∼
is a congruence, individual processes can be replaced by their bisimilar quotient (un-
der ∼) and the peak memory requirements can be reduced significantly. This all, how-
ever, requires an efficient bisimulation minimization algorithm. We adopt the partition-
refinement paradigm to obtain a minimization algorithm for I2MCs. As the problem
for arbitrary rate functions is undecidable, we restrict to three classes of rate matrices
R(t): piecewise uniform, polynomial (R(t) = tM+1RM+1 + · · · + tR2 + R1, where
Ri with i ≤ M +1 ∈ IN are constant matrices) and piecewise polynomial (each piece is
a polynomial of degree three). The same classes have been considered for the transient
probability distribution, cf. Theorem 1. Rate comparisons and summations can easily
be realized for these classes of functions. For rate matrix R, let M + 1 denote the total
number of intervals for piecewise uniform R(t), the polynomial degree when R(t) is
polynomial, and the number of polynomial pieces when R(t) is piecewise polynomial.

Our bisimulation minimization algorithm for I2MCs is based on a generalization of
the algorithm for obtaining the coarsest quotient of a Markov chain under bisimula-
tion by Derisavi et al. [7], and Paige-Tarjan’s algorithm for LTS. The basic idea is to
minimize iteratively over all pieces (or degrees of the polynomials). The bisimulation
algorithm exploits an efficient data structure which groups all states with the same out-
going rate. This is in fact a binary tree where each node has four parameters: node.left
and node.right - pointers to the left and right child, respectively, node.sum - stores the
sum of the rates and node.S - stores all states with the same node.sum. Using such
data structures, the time- and space complexity of bisimulation minimization for I2MCs
reduces to:
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Theorem 5. The coarsest quotient under ∼ of any I2MC can be obtained in a worst-
case time complexity O (ma lg(n) + Mmr lg(n)) and space complexity O (ma + mr),
where ma and mr is the number of action-labeled and rate-labeled transitions,
respectively.

Recall that ICTMCs are I2MCs that contain no action-labeled transitions. As a
side result, the above theorem yields that the coarsest bisimulation quotient of a time-
inhomogeneous CTMC can be obtained with time and space complexityO (Mmr lg(n))
and O (mr), respectively. (The time complexity for homogeneous Markov chains is
O (mr lg(n)) [7]). Given the results in this paper that ∼ preserves transient and steady
state distributions, our algorithm can be used to minimize prior to any such analysis.

Weak bisimulation for I2MCs. Strong bisimulation requires equivalent states to sim-
ulate their mutual stepwise behavior. While preserving the branching structure, strong
bisimulation also requires mimicking of immediate actions (τ). As immediate actions
consume no time it seems reasonable that two states will be equivalent regardless of the
number of τ -steps in a sequence that they make. Therefore, the equivalence which will
allow for the abstraction of sequences of immediate actions will be denoted as weak
bisimulation. Let the transition

τ=⇒ be the reflexive and transitive closure of
τ−→∗

and
a=⇒ a shorthand for

τ=⇒ a−→ τ=⇒ (a �= τ ).

Definition 8 (I2MC weak bisimulation). An equivalence R ⊆ S × S is a weak bisim-
ulation whenever for all (P, Q) ∈ R, t ∈ IR≥0, a ∈ Act and C ∈ S/R:

– P
a−→ P ′ implies Q

a=⇒ Q′ for some Q′ and (P ′, Q′) ∈ R.

– P
τ
� implies R(P, C, t) = R(Q′′, C, t) for some Q′′ τ

� such that Q
τ=⇒ Q′′ and

(P, Q′′) ∈ R.

For Q symmetric rules apply. P and Q are weakly bisimilar, denoted P ≈ Q, if (P, Q)
is contained in some weak bisimulation R.

It seems intuitive that for the sequence Q
τ=⇒ Q′′ the rates R(P, C, t) and R(Q′′, C, t)

have to be compared starting from time t′ = t + Δt where Δt is the time needed to
make all τ in the sequence Q

τ=⇒ Q′′. As τ transitions take no time the result will be
the same even when the rates are compared from time t.

Example 3. Consider the I2MC from Fig. 2 and its abstraction i.e. all actions are trans-
formed into immediate ones (τ ). The quotient under ≈ is depicted in Fig. 3, with C1,
C2 and C3 as in Fig. 2 and C0 = {P‖{use}Q, use.P‖{use}use.Q}. It is important to
note that after abstraction the transition labeled with use results in an immediate tran-
sition which gives the possibility to put the states P‖{use}Q and use.P‖{use}use.Q in
the same equivalence class. Also note that the obtained I2MC has no transitions labeled
with actions, i.e., it is an ICTMC. This shows that weak bisimulation may be an effec-
tive mechanism to turn an I2MC into an ICTMC, which may be subject to analysis as
discussed in Section 2.
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Table 3. Sound and complete axioms for � on the I2ML sequential fragment

a.τ.P = a.P P + τ.P = τ.P λ(t).τ.P = λ(t).P a.(P + τ.Q) + a.Q = a.(P + τ.Q)

C0C1

2λ1(t)

C3 C2

λ1(t) + λ2(t) 2λ2(t)λ2(t)

Fig. 3. Weak bisimulation quotient

As in the case of strong bisimulation, weak
bisimulation is also a congruence with re-
spect to I2ML operators. But there is an
exception. Weak bisimulation is not a congru-
ence with respect to the choice (P + Q) op-
erator [20]. This is due to the fact that weak
bisimulation will equate two processes when-
ever one can do

τ=⇒ and the other one can do
nothing. In order to cope with the choice operator one has to differentiate between

a=⇒
and

τ=⇒ a−→ τ=⇒ when a = τ as follows:

Definition 9 (Weak congruence). Pand Q are weakly congruent, denoted by P � Q,
whenever for all a ∈ Act, t ∈ IR≥0 and C ∈ RG/≈:

– P
a−→ P ′ implies Q

τ=⇒ a−→ τ=⇒ Q′ for some Q′ and P ′ ≈ Q′.
– Q

a−→ Q′ implies P
τ=⇒ a−→ τ=⇒ P ′ for some P ′ and P ′ ≈ Q′.

– P
τ
� (or Q

τ
�) implies R(P, C, t) = R(Q, C, t).

Theorem 6. � is a congruence with respect to all operators in I2ML.

Consider the set of axioms from Table 2 and 3 together with axioms related to hiding
and recursion operators as A�. As for strong bisimulation the following also holds for
weak congruence:

Theorem 7. For any P, Q ∈ RG, A� � P = Q if and only if P � Q.

Recall that P and Q are regular and guarded process terms.

5 Concluding Remarks and Future Work

This paper presented a compositional formalism for time-inhomogeneous continuous-
time Markov chains (ICTMCs), a subclass of piecewise deterministic Markov pro-
cesses (PDPs). The main contributions are a full-fledged process algebra for interactive
ICTMCs, congruence results for weak and strong bisimulation, and a polynomial-time
quotienting algorithm. In addition, a new characterization of transient probabilities is
provided for rate functions that are piecewise uniform. In contrast to works on commu-
nicating PDPs [24,23,25], this paper considers weak bisimulation, congruence results
and axiomatization, and, more importantly a notion of bisimulation which respects max-
imal progress. Current work consists of investigating improvements to the quotienting
algorithm akin to [8], model-checking algorithms [18], and simulation relations for
ICTMCs.
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