

Lecture Notes in Computer Science 4981
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Magnus Egerstedt Bud Mishra (Eds.)

Hybrid Systems:
Computation
and Control

11th International Workshop, HSCC 2008
St. Louis, MO, USA, April 22-24, 2008
Proceedings

13

Volume Editors

Magnus Egerstedt
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332, USA
E-mail: magnus@ece.gatech.edu

Bud Mishra
Courant Institute of Mathematical Sciences
New York, NY 10012, USA
E-mail: mishra@nyu.edu

Library of Congress Control Number: 2008924197

CR Subject Classification (1998): C.3, C.1.3, F.3, D.2, F.1.2, J.2, I.6

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78928-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78928-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12250455 06/3180 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 11th Workshop on Hybrid Systems:
Computation and Control (HSCC 2008) held in St. Louis, Missouri during April
22–24, 2008. The annual workshop on hybrid systems focuses on research in em-
bedded, reactive systems involving the interplay between symbolic/switching and
continuous dynamical behaviors. HSCC attracts academic as well as industrial
researchers to exchange information on the latest developments of applications
and theoretical advancements in the design, analysis, control, optimization, and
implementation of hybrid systems, with particular attention to embedded and
networked control systems.

New for this year was that HSCC was part of the inaugural CPSWEEK
(Cyber-Physical Systems Week) – a co-located cluster of three conferences:
HSCC, RTAS (Real-Time and Embedded Technology and Applications Sympo-
sium), and IPSN (International Conference on Information Processing in Sensor
Networks).

The previous workshops in the series of HSCC were held in Berkeley, USA
(1998), Nijmegen, The Netherlands (1999), Pittsburgh, USA (2000), Rome, Italy
(2001), Palo Alto, USA (2002), Prague, Czech Republic (2003), Philadelphia,
USA (2004), Zurich, Switzerland (2005) , Santa Barbara, USA (2006), and Pisa,
Italy (2007).

We would like to thank the Program Committee members and the reviewers
for an excellent job of evaluating the submissions and participating in the online
Program Committee discussions. We are grateful to the Steering Committee for
their helpful guidance and support. We would also like to thank Patrick Martin
for putting together these proceedings, and Jiuguang Wang for developing and
maintaining the HSCC 2008 website.

January 2008 Magnus Egerstedt
Bud Mishra

Organization

HSCC 2008 was technically co-sponsored by the IEEE Control Systems Society
and organized in cooperation with ACM/SIGBED.

General Chairs

Magnus Egerstedt (Georgia Tech, USA)
Bud Mishra (NYU, USA)

Steering Committee

Rajeev Alur (University of Pennsylvania, USA)
Bruce Krogh (Carnegie Mellon University, USA)
Oded Maler (VERIMAG, France)
Manfred Morari (ETH, Switzerland)
George Pappas (University Pennsylvania, USA)
John Rushby (SRI Int., USA)

Program Committee

Karl-Erik Arzen (Lund University, Sweden)
Shun-ichi Azuma (Kyoto University, Japan)
Alexandre Bayen (University of California Berkeley, USA)
Calin Belta (Boston University, USA)
Alberto Bemporad (University of Siena, Italy)
Michael Branicky (Case Western Reserve University, USA)
Jen Davoren (University of Melbourne, Australia)
Bart De Schutter (Delft University, The Netherlands)
Emilio Frazzoli (MIT, USA)
Antoine Girard (University of Grenoble, France)
Alessandro Giua (Università di Cagliari, Italy)
Radu Grosu (S.U.N.Y. at Stony Brook, USA)
Maurice Heemels (Technical University of Eindhoven, The Netherlands)
Joao Hespanha (University of California Santa Barbara, USA)
Jun-ichi Imura (Tokyo Inst. of Technology, Japan)
Karl Henrik Johansson (Royal Inst. of Technology, Sweden)
Eric Klavins (University of Washington, USA)
Daniel Liberzon (University of Illinois Urbana Champaign, USA)
John Lygeros (ETH, Switzerland)
Rupak Majumdar (UCLA, USA)
Ian Mitchell (University of British Columbia, Canada)

VIII Organization

Todd Murphey (University of Colorado Boulder, USA)
Carla Piazza (Università degli Studi di Udine, Italy)
Maria Prandini (Politecnico di Milano, Italy)
Jacob Roll (Linkoping University, Sweden)
Olaf Stursberg (Technical University of Munich, Germany)
Paulo Tabuada (UCLA, USA)
Claire Tomlin (University of California Berkeley, USA)
Yorai Wardi (Georgia Tech, USA)

Referees

A. Abate
A. Alessio
M. Althoff
S. Amin
A. Anta
M. Antoniotti
A. Arsie
K.E. Arzen
J. van Ast
S. Azuma
G. Batt
A. Bayen
C. Belta
A. Bemporad
M. Bernadsky
D. Bernardini
A. Bhatia
J. Bishop
M. Boccadoro
L. Bortolussi
M. Branicky
D. Bresolin
B. Brogliatio
M. Bujorianu
M.P. Cabasino
M. Capiluppi
A. Casagrande
G. Chaloulos
D. Chaterjee
E. Cinquemani
P. Collins
J. Davoren
E. De Santis
B. De Schutter

B. Djeridane
J. Enright
G. Fainekos
P. Fiorini
M. Franceschelli
E. Frazzoli
A. Girard
A. Giua
R. Goebel
R. Grosu
J. Habibi
M. Heemels
H. Herencia-Zapana
J. Hespanha
M. Hofbaur
J. Imura
K.H. Johansson
A. Julius
S. Karaman
E. Klavins
I. Klein
M. Kloetzer
K. Kobayshi
M. Lazar
C. Le Guernic
D. Liberzon
J. Lofberg
J. Lygeros
I. Lymperopoulos
C. Lyzell
C. Mahulea
R. Majumdar
M. Mazo
A. Mesquita

A. Milias-Argeitis
I. Mitchell
T. Murphey
N. Napp
H. Ohlsson
M. Pavone
S. Perk
C. Piazza
G. Pola
M. Prandini
G. Puppis
J. Richter
O. Riganelli
J. Roll
A. Rondepierre
S. Samii
R. Sanfelice
C. Seatzu
Y. Sharon
A. Singh
M. Sobotka
O. Stursberg
P. Tabuada
A. Tanwani
Y. Tazaki
D. Thorsley
C. Tomlin
R. Vidal
Y. Wardi
P. Ye
B. Yordanov

Organization IX

Sponsoring Institutions

Georgia Institute of Technology
US National Science Foundation

Table of Contents

Regular Papers

Markov Set-Chains as Abstractions of Stochastic Hybrid Systems 1
Alessandro Abate, Alessandro D’Innocenzo,
Maria D. Di Benedetto, and Shankar S. Sastry

Co-simulation Tools for Networked Control Systems 16
Ahmad T. Al-Hammouri, Michael S. Branicky, and
Vincenzo Liberatore

On the Maximum Principle for Impulsive Hybrid Systems 30
Vadim Azhmyakov, Sid Ahmed Attia, and Jörg Raisch

Algebraic Identification of MIMO SARX Models . 43
Laurent Bako and René Vidal

Contract-Based Design for Computation and Verification of a
Closed-Loop Hybrid System . 58

L. Benvenuti, A. Ferrari, E. Mazzi, and A.L. Sangiovanni Vincentelli

Controller Synthesis with Budget Constraints . 72
Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger

Trading Infinite Memory for Uniform Randomness in Timed Games . . . 87
Krishnendu Chatterjee, Thomas A. Henzinger, and
Vinayak S. Prabhu

Solutions to Switched Hamilton-Jacobi Equations and Conservation
Laws Using Hybrid Components . 101

Christian G. Claudel and Alexandre M. Bayen

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 116
P.J.L. Cuijpers and M.A. Reniers

A Control Lyapunov Approach to Predictive Control of Hybrid
Systems . 130

S. Di Cairano, M. Lazar, A. Bemporad, and W.P.M.H. Heemels

Discrete and Hybrid Stochastic State Estimation Algorithms for
Networked Control Systems . 144

S. Di Cairano, K.H. Johansson, A. Bemporad, and R.M. Murray

Anytime Control Algorithms for Embedded Real-Time Systems 158
Daniele Fontanelli, Luca Greco, and Antonio Bicchi

XII Table of Contents

Stochastic Satisfiability Modulo Theory: A Novel Technique for the
Analysis of Probabilistic Hybrid Systems . 172

Martin Fränzle, Holger Hermanns, and Tino Teige

A Counterexample-Guided Approach to Parameter Synthesis for Linear
Hybrid Automata . 187

Goran Frehse, Sumit Kumar Jha, and Bruce H. Krogh

Approximately Bisimilar Symbolic Models for Incrementally Stable
Switched Systems . 201

Antoine Girard, Giordano Pola, and Paulo Tabuada

Zonotope/Hyperplane Intersection for Hybrid Systems Reachability
Analysis . 215

Antoine Girard and Colas Le Guernic

Learning and Detecting Emergent Behavior in Networks of Cardiac
Myocytes . 229

R. Grosu, E. Bartocci, F. Corradini, E. Entcheva,
S.A. Smolka, and A. Wasilewska

Compositional Modeling and Minimization of Time-Inhomogeneous
Markov Chains . 244

Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre

Observer-Based Control of Linear Complementarity Systems 259
W.P.M.H. Heemels, M.K. Camlibel, B. Brogliato, and
J.M. Schumacher

Complementarity Systems in Constrained Steady-State Optimal
Control . 273

A. Jokic, M. Lazar, and P.P.J. van den Bosch

Dealing with Nondeterminism in Symbolic Control 287
Marius Kloetzer and Calin Belta

Safety and Liveness in Intelligent Intersections . 301
Hemant Kowshik, Derek Caveney, and P.R. Kumar

LTLC: Linear Temporal Logic for Control . 316
YoungMin Kwon and Gul Agha

Switched and PieceWise Nonlinear Hybrid System Identification 330
Fabien Lauer and Gérard Bloch

Verification of Supervisory Control Software Using State Proximity and
Merging . 344

Flavio Lerda, James Kapinski, Edmund M. Clarke, and
Bruce H. Krogh

Table of Contents XIII

Optimotaxis: A Stochastic Multi-agent Optimization Procedure with
Point Measurements . 358

Alexandre R. Mesquita, João P. Hespanha, and Karl Åström

Noncausal Optimal Tracking of Linear Switched Systems 372
Gou Nakura

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems . . . 386
Mihály Petreczky and René Vidal

A Decidable Class of Planar Linear Hybrid Systems 401
Pavithra Prabhakar, Vladimeros Vladimerou,
Mahesh Viswanathan, and Geir E. Dullerud

Reachability of Uncertain Nonlinear Systems Using a Nonlinear
Hybridization . 415

Nacim Ramdani, Nacim Meslem, and Yves Candau

Modeling and Simulation of Biochemical Processes Using Stochastic
Hybrid Systems: The Sugar Cataract Development Process 429

Derek Riley, Xenofon Koutsoukos, and Kasandra Riley

Distributed Lyapunov Functions in Analysis of Graph Models of
Software . 443

Mardavij Roozbehani, Alexandre Megretski, Emilio Frazzoli, and
Eric Feron

On the Optimality of Dubins Paths across Heterogeneous Terrain 457
Ricardo G. Sanfelice and Emilio Frazzoli

Switching Surface Design for Periodically Operated Discretely
Controlled Continuous Systems . 471

Axel Schild and Jan Lunze

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata . . . 486
Lorenzo Sella and Pieter Collins

Input-to-State Stabilization with Quantized Output Feedback 500
Yoav Sharon and Daniel Liberzon

Bisimilar Finite Abstractions of Interconnected Systems 514
Yuichi Tazaki and Jun-ichi Imura

On Controllability of Timed Continuous Petri Nets 528
C. Renato Vázquez, Antonio Ramı́rez, Laura Recalde, and
Manuel Silva

Parameter Synthesis for Piecewise Affine Systems from Temporal Logic
Specifications . 542

Boyan Yordanov and Calin Belta

XIV Table of Contents

Necessary Conditions for the Impulsive Time-Optimal Control of
Finite-Dimensional Lagrangian Systems . 556

Kerim Yunt

Composition of Motion Description Languages . 570
Wenqi Zhang and Herbert G. Tanner

On Optimal Quadratic Regulation for Discrete-Time Switched Linear
Systems . 584

Wei Zhang and Jianghai Hu

Short Papers

Approximation of General Stochastic Hybrid Systems by Switching
Diffusions with Random Hybrid Jumps . 598

Alessandro Abate, Maria Prandini, John Lygeros, and
Shankar Sastry

On Stability of Switched Linear Hyperbolic Conservation Laws with
Reflecting Boundaries . 602

Saurabh Amin, Falk M. Hante, and Alexandre M. Bayen

Sampling-Based Resolution-Complete Algorithms for Safety
Falsification of Linear Systems . 606

Amit Bhatia and Emilio Frazzoli

Reachability Analysis of Stochastic Hybrid Systems by Optimal
Control . 610

Manuela L. Bujorianu, John Lygeros, and Rom Langerak

An Integrated Approach to Parametric and Discrete Fault Diagnosis in
Hybrid Systems . 614

Matthew Daigle, Xenofon Koutsoukos, and Gautam Biswas

d-IRA: A Distributed Reachability Algorithm for Analysis of Linear
Hybrid Automata . 618

Sumit Kumar Jha

Sufficient Conditions for Zeno Behavior in Lagrangian Hybrid
Systems . 622

Andrew Lamperski and Aaron D. Ames

Separation in Stability Analysis of Piecewise Linear Systems in Discrete
Time . 626

Ji-Woong Lee

Level Set Methods for Computing Reachable Sets of Hybrid Systems
with Differential Algebraic Equation Dynamics . 630

Ian M. Mitchell and Yoshihiko Susuki

Table of Contents XV

Approximate Control Design for Solar Driven Sensor Nodes 634
Clemens Moser, Lothar Thiele, Davide Brunelli, and Luca Benini

Modular Development of Hybrid Systems for Verification in Coq 638
Milad Niqui and Olga Tveretina

Steering a Leader-Follower Team Via Linear Consensus 642
Fabio Pasqualetti, Simone Martini, and Antonio Bicchi

Logical Verification and Systematic Parametric Analysis in Train
Control . 646

André Platzer and Jan-David Quesel

Information Theoretical Approach to Identification of Hybrid
Systems . 650

Li Pu, Jinchun Hu, and Badong Chen

A Policy Iteration Technique for Time Elapse over Template
Polyhedra (Extended Abstract) . 654

Sriram Sankaranarayanan, Thao Dang, and Franjo Ivančić

Generating Box Invariants . 658
Ashish Tiwari

Qualitative Stability Patterns for Lotka-Volterra Systems on
Rectangles . 662

Laurent Tournier and Jean-Luc Gouzé

Sampled-Data Event Control of Hybrid Systems for Control
Specifications Given by Predicates . 666

Yoshiyuki Tsuchie and Toshimitsu Ushio

On the Timing of Discrete Events in Event-Driven Control Systems 670
Manel Velasco, Pau Mart́ı, and Camilo Lozoya

Decentralized Event-Triggered Broadcasts over Networked Control
Systems . 674

Xiaofeng Wang and Michael D. Lemmon

Author Index . 679

Markov Set-Chains as Abstractions

of Stochastic Hybrid Systems�

Alessandro Abate1, Alessandro D’Innocenzo2,
Maria D. Di Benedetto2, and Shankar S. Sastry3

1 Department of Aeronautics and Astronautics, Stanford University - USA
aabate@stanford.edu

2 Department of Electrical Engineering and Computer Science,
Center of Excellence DEWS, University of L’Aquila - Italy

{adinnoce,dibenede}@ing.univaq.it
3 Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley - USA
sastry@eecs.berkeley.edu

Abstract. The objective of this study is to introduce an abstraction
procedure that applies to a general class of dynamical systems, that is
to discrete-time stochastic hybrid systems (dt-SHS). The procedure ab-
stracts the original dt-SHS into a Markov set-chain (MSC) in two steps.
First, a Markov chain (MC) is obtained by partitioning the hybrid state
space, according to a controllable parameter, into non-overlapping do-
mains and computing transition probabilities for these domains accord-
ing to the dynamics of the dt-SHS. Second, explicit error bounds for the
abstraction that depend on the above parameter are derived, and are
associated to the computed transition probabilities of the MC, thus ob-
taining a MSC. We show that one can arbitrarily increase the accuracy
of the abstraction by tuning the controllable parameter, albeit at an in-
crease of the cardinality of the MSC. Resorting to a number of results
from the MSC literature allows the analysis of the dynamics of the orig-
inal dt-SHS. In the present work, the asymptotic behavior of the dt-SHS
dynamics is assessed within the abstracted framework.

1 Introduction and Objectives

Hybrid Systems (HS) are dynamical systems with interleaved continuous and
discrete behaviors. Their great expressive power is offset by two main issues.
The first is the subtlety of their theoretical investigation: much research has been
directed to further the understanding of their system-theoretical properties. The
second is the problem of scalability, in particular with respect to computational
complexity. For instance, the formal verification of properties of the system (e.g.
model checking techniques [4]) is complicated by the continuity of the state-space
and by the interaction between continuous and discrete dynamics.

� This work was partially supported by European Commission under Project IST
NoE HYCON contract n. 511368, STREP project n. TREN/07/FP6AE/S07.71574/
037180 IFLY, and by the NSF grant CCR-0225610.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 A. Abate et al.

A technique which is often employed to cope with system complexity and di-
mensionality is abstraction. According to this approach, a system with a smaller
state space (possibly finite) is obtained, which is equivalent to the system under
study. Systems equivalence is usually defined via the notions of language equiva-
lence and bisimulation [2]. Recently, approximate notions of system equivalence
[7] have been developed, where a metric is introduced to quantify the distance
between the original system and the abstraction. The contribution in [6] pro-
poses an algorithm to construct an approximate abstraction of a HS by means
of a timed automaton. In [9] a notion of approximate bisimilarity is proposed
for a class of Stochastic Hybrid Systems (SHS), that is HS which are endowed
with probabilistic terms.

The present contribution introduces a formal abstraction procedure for a gen-
eral class of SHS. This work refers to a discrete time framework and intro-
duces the explicit presence of spatial guards in a class of SHS (named dt-SHS),
and shows that it is possible to express the transition probability function in a
compact way by employing the concept of probabilistic reachability. After intro-
ducing a partitioning procedure on the hybrid state space, the transition prob-
abilities between these partitions are approximately computed, thus generating
a Markov chain (MC). By raising some continuity assumptions on the entities
that characterize the dynamics of the dt-SHS, explicit error bounds are associ-
ated to the transition probabilities. These error bounds depend on the diameter
of the introduced partitions and can then be refined by this parameter. This al-
lows to formally set up a Markov set-chain (MSC) associated to the partitioning
procedure. The asymptotic behavior of the MSC is then related to that of the
dt-SHS.

The present technique is analogous to the line of work presented in [10], which
proposes a discretization of the continuous dynamics of a Markov process into
that of a MC, defined on a grid on the state-space. The contribution shows weak
convergence of the MC process to the original one, but no error bounds are ex-
plicitly derived. Both this work and [10] approximate the original process with a
probabilistic discrete structure. This provides a connection to model checking of
stochastic timed automata (which is a subclass of SHS), that has been investi-
gated in [3]. A general understanding of the area of probabilistic model checking
for SHS is however still far. As a first result towards this goal, we have shown the
ability to construct a finite state abstraction that possibly allows us to efficiently
compute the steady state of the original system with arbitrary precision.

2 The dt-SHS Model

This section formalizes the dt-SHS model first mentioned in section 1. The math-
ematical framework is inspired by that in [1], but we model the presence of a
physical forcing guard set rather than introducing state-dependent transition
probabilities. The use of a discrete time framework is motivated by the simplic-
ity in dealing with measurability issues for events on the underlying probability
space, as well as by the direct computability of transition probabilities.

Markov Set-Chains as Abstractions 3

Definition 1 (dt-SHS). A discrete time stochastic hybrid system is a tuple
H = (Q,S∗,G, T, R), where

– Q := {q1, q2, . . . , qm}, for some finite m ∈ N, is the discrete component of
the state space;

– S∗ := ∪i∈Q{i}×D∗
i , is the hybrid state space, made up by a set of continuous

“domains” for each mode i ∈ Q, each of which is defined to be a compact
subset D∗

i ⊂ R
n(i). The function n : Q → N assigns to each i ∈ Q the

dimension of the continuous state space R
n(i);

– G := ∪i∈Q{i} × Gi,Gi = {gij; j ∈ Q, j �= i, gij ⊆ D∗
i } is the set of spatial

guards. We assume that ∀i, j, k ∈ Q, i �= j �= k, gij ∩ gik = ∅, and that the
guards have non-trivial volume: L(gij) �= 0, ∀i, j ∈ Q, j �= i, where L(A)
denotes the Lebesgue measure associated to any Borel subset A ⊂ B(D∗

i). Let

us further introduce the set Di := D∗
i \

{
∪j∈Q

j �=i
gij

}
, the “invariant” of mode

i, and S := ∪i∈Q{i} × Di;
– T : B(D∗

(·)) × S → [0, 1] is a Borel-measurable stochastic kernel (the “tran-
sition kernel”) on D∗

(·) given S, which assigns to each s = (q, x) ∈ S a
probability measure on the Borel space (D∗

q ,B(D∗
q)): T (dx|(q, x));

– R : B(D∗
(·)) × G × Q → [0, 1] is a Borel-measurable stochastic kernel (the

“reset kernel”) on D∗
(·), given G×Q, that assigns to each s = (q, x) ∈ G, and

q′ ∈ Q, q′ �= q, a probability measure on the Borel space (D∗
(q′),B(D∗

(q′))):
R(dx|(q, x), q′).
�

The system initialization at the initial time (say k = 0) is specified by some
probability measure π0 : B(S∗) → [0, 1] on the Borel space (S∗,B(S∗)). Here
again B(S∗) is the σ-field generated by the subsets of S∗ of the form ∪q{q}×Bq,
with Bq denoting a Borel set in D∗

q . For details on the measurability and metric
properties of H, the reader is invited to refer to [1,5]. Notice that the transition
and reset kernels (respectively T and R) have different domains of definition (S
and G ×Q), but the same support (D∗). Next, we define the notion of execution
for the above model (throughout the paper, random processes will be denoted
in bold fonts, while random variables in normal typesets).

Definition 2 (Execution). Consider a dt-SHS H = (Q, n,G, T, R). An
execution for H, associated with an initial distribution π0, is a stochastic process
{s(k), k ∈ [0, N], N ∈ N} with values in S∗, whose sample paths are obtained
according to the following algorithm:

extract from S∗ a value s0 = (q0, x0) for s(0), according to the distribution π0;

for k = 0 to N − 1,

if there is a j �= qk, j ∈ Q, such that xk ∈ gqk,j,

then extract a value sk+1 ∈ S∗ for s(k + 1), according to R(· |sk, j);

else extract a value sk+1 ∈ S∗ for s(k + 1), according to T (· |sk);

end.
�

4 A. Abate et al.

As mentioned, the introduced (autonomous) dt-SHS is related to the (controlled)
SHS in [1], where the additional presence of a stochastic kernel allows for the
presence of spontaneous jumps within the invariants. The theory developed in
this work can be extended to account for similar terms.

3 Markov Set-Chains

We define here the concept of Markov set-chain, which will be used as an abstrac-
tion framework for dt-SHS. We also recall some useful results from [8], which
contains a compendium of literature on the subject.

Definition 3 (Transition Set). Let P, Q ∈ R
n×n, with P, Q ≥ 0(that is

component-wise nonnegative matrices, not necessarily stochastic), with P ≤ Q.
We define a “transition set” as:

[P, Q] = {A ∈ R
n×n : A is a stochastic matrix and P ≤ A ≤ Q}. �

In the proceeding, we assume that the transition set [P, Q] �= ∅. When the
“bounding matrices” P, Q will be clear from the context, we will use the notation
[Π] to denote such compact (possibly infinite) set of stochastic matrices. We can
define a Markov set-chain as a non-homogeneous, discrete-time Markov chain,
where the transition probabilities vary non-deterministically within a compact
transition set [Π]. More formally,

Definition 4 (Markov set-chain). Let [Π] be a transition set, i.e. a compact
set of n×n stochastic matrices. Consider the set of all non-homogeneous Markov
chains having all their transition matrices in [Π]. We call the sequence

[Π], [Π]2, · · ·

a Markov set-chain, where [Π]k is defined by induction as the compact set of all
possible products A1, · · · , Ak, such that, ∀i = 1, · · · , k, Ai ∈ [Π].

Similarly, let [π0] be a compact set of 1 × n stochastic vectors, introduced as
in Def. 3. We call [π0] the initial distribution set.
�

The compact set [πk] = [π0][Π]k is the k-th distribution set and

[π0], [π0][Π], · · ·

is the Markov set-chain with initial distribution set [π0].
It can be shown that each element [πk] is a convex polytope if [π0] is a convex

polytope and [Π] is a transition set. It should be noticed that the number of
vertices of [πk] increases with k, thus the computational burden to obtain [πk] for
large values of k should be accounted for. However, it is possible to compute tight
(see [8]) upper and lower bounding matrices Lk, Hk for [πk] in a very efficient
way, in particular the computation of Lk, Hk can be recursively obtained from
Lk−1, Hk−1.

Markov Set-Chains as Abstractions 5

Definition 5 (Coefficient of Ergodicity). For any stochastic matrix A, its
coefficient of ergodicity is defined as follows:

T (A) =
1
2

max
i,j

||ai − aj ||,

where ai is the i–th row of A and || · || on a vector is the standard 1–norm. If
T (A) < 1, A is said to be scrambling.
�

The above definition can be directly extended to Markov set-chains:

Definition 6. For any transition set [Π], its coefficient of ergodicity is defined
as follows:

T ([Π]) = max
A∈[Π]

T (A). �

Notice that since T (·) is a continuous function and [Π] a compact set, the maxi-
mum argument of T ([Π]) exists. Also notice that T ([Π]) ∈ [0, 1], asT (A) ∈ [0, 1].
This value provides a measure of the “contractive” nature of the Markov set-
chain: the smaller T ([Π]), the more contractive the MSC. This will become clear
when studying the asymptotic properties of the MSC, and is related to the reg-
ularity properties of the matrices that build up the MSC [8]. The exact value of
T ([Π]) can be hard to compute, but it can be upper bounded as follows:

Theorem 1. Let [Π] be the interval [P, Q] and A ∈ [Π], then:

|T ([Π]) − T (A)| ≤ ||Q − P ||

The above matrix norm is taken from [8] and is a modification of the induced
1-norm. The following notion connects to Definition 5:

Definition 7 (Scrambling Integer). Suppose r ≥ 1 is such that
T (A1 · · ·Ar) < 1, ∀A1, · · · , Ar ∈ [Π]. Then [Π] is said to be product scram-
bling and r its scrambling integer.
�

We now illustrate some results on the convergence of MSC.

Theorem 2. Given a product scrambling MSC with transition set [Π] and ini-
tial distribution set [π0], then there exists a unique limit set [π∞] such that
[π∞][Π] = [π∞]. Moreover, let r be the scrambling integer of [Π]. Then for
any positive integer h, and according to the Hausdorff metric d(·) on compact
sets:

d([πh], [π∞]) ≤ Kβh (1)

where K = [T ([Π]r)]−1d([π0], [π∞]) and β = T ([Π]r)
1
r < 1. Thus

lim
h→∞

[πh] = lim
h→∞

[π0][Π]h = [π∞].

�

6 A. Abate et al.

As we argued before, the exact computation of [π∞] can be expensive. However, it
is possible to use the upper and lower bounding matrices Lk, Hk mentioned above
to obtain an accurate estimate of [π∞] with a reasonable computational com-
plexity. In fact, Lk, Hk converge to a value L∞, H∞ such that [π∞] ⊆ [L∞, H∞].
Define the diameter of a compact set (referred to either matrices or vectors) as

Δ([Π]) = max
A,A′∈[Π]

||A − A′||.

The following result provides an efficient procedure to compute an upper bound
for the diameter of the limit set [π∞].

Theorem 3. Given a product scrambling Markov set-chain with transition set
[Π] = [P, Q] and such that T ([Π]) < 1, then

Δ([π∞]) ≤ Δ([Π])
1 − T ([Π])

≤ ||Q − P ||
1 − T (A) − ||Q − P || ,

for any A ∈ [Π]. The second inequality holds only if T (A) + ||Q − P || ≤ 1. �

4 Probabilistic Dynamics

The model described in Definition 1 is quite general and allows for a wealth
of possible behaviors. However, even in the case of further knowledge of the
structure of the dynamics (beyond the general stochastic kernels T, R that char-
acterize it), is in general not translatable into a closed-form expression for the
solution process of H. Thus, in order to study the dynamical properties of H, two
directions can be pursued. The first looks at the ensemble of possible realizations
that originate from the initial distribution, according to the steps in Definition
2. Monte Carlo simulations are a known example of this approach. The second,
instead, characterizes probabilistically the presence of the solution process in
certain regions of S∗, as time progresses. More precisely, it is of interest to de-
fine the following likelihood: given a point s0 ∈ S∗, what is the probability that
the solution process s(·) of H, starting from s0, is located in the set A ∈ B(S∗)
at time k > 0? Similarly, given a point s0 ∈ S∗, what is the probability that the
solution process s(·) of H stays within the set A ∈ B(S∗), if s0 ∈ A, for all the
time k ∈ [0, N], N < ∞?

These and similar quantities leverage the ability of defining and computing
the concept of probabilistic reachability [1]. Interestingly, these stochastic reach-
ability problems are related to the two analogous deterministic approaches taken
in [6] for constructing finite abstractions of (deterministic) HS. The two prob-
abilistic kernels T and R depend on, respectively, the invariant and the guard
sets. We are thus particularly interested in computing the transition probabilities
between these subsets of the hybrid state space. For instance, considering two
modes q, q′ ∈ Q, we call pq,q′(x) the probability that a trajectory, starting from
a point (q, x) ∈ S, has to transition in a time step (according to T (·|(q, x))) into

Markov Set-Chains as Abstractions 7

any other domain q′ �= q by intersecting the corresponding guard, or possibly to
continue evolving in q′ = q:

pq,q′(x) �
∫

gq,q′
T (dy|(q, x)), if q′ �= q, (2)

pq,q(x) �
∫
Dq

T (dy|(q, x)) = 1 −
∑
q′∈Q
q′ �=q

∫
gq,q′

T (dy|(q, x)).

The case where (q, x) ∈ S∗\S, which is associated to the probability that the
trajectory is reset, according to R(·|(q, x), q′), into an invariant q′ �= q, is similar.
Let us denote this probability p(q,q′),q′(x):

p(q,q′),q′(x) �
∫
Dq′

R(dy|(q, x), q′). (3)

Notice that, as the support of T and of R coincides, the contribution of both
terms is similar, except for the fact that T is associated with a one time-step
continuous motion, while R to an instantaneous reset.

Investigating similar quantities for dynamics over a longer time interval in-
volves conditioning the probability backwards in time and referring to the “tem-
plate quantities” discussed above. For instance, we may be interested in the
following transition, for q, r, s ∈ Q, q �= r, r �= s: x ∈ gq,r

R→ Dr
T→ gr,s; and the

associated probability p(q,r),r(x)pr,s(·). This is computed by:

P (s(1) ∈ gr,s|s(0) = (q, x) ∈ gq,r) =
∫
Dr

∫
gr,s

R(dy|(q, x), r)T (dz|(r, y))

=
∫
Dr

R(dy|(q, x), r)pr,s(y) (4)

This quantity shows that the contributions of the one-step probabilities over time
have to be necessarily “averaged” over the influence of the stochastic kernels
that precede them. This will also hold with reference to a particular initial
distribution π0. As already mentioned, the interplay between transition and reset
probabilities is a characteristic feature of SHS.

The terms in (2)-(3), and their multiplications, are then characteristic of the
computations we want to perform to study the dynamics of the dt-SHS H. In
principle, we may be able to associate a transition probability to each couple
of elements taken from the set of invariants and guards. This would allow to
abstract the dynamics of H into those of a discrete m2-dimensional MC (where
m = card(Q)). However, by closely looking at the quantity in (2) [resp. (3)], it
becomes clear that it is necessary to compute the transition probabilities over
the whole invariant Dq [over the whole guard gq,q′], averaged over the contri-
bution of the incoming reset maps R(·|(·, ·), q) [the transition kernel T (·|(q, ·))].
To fully make sense, these last quantities would have to depend on other proba-
bilities, and so on backwards, until integrating over an initial distribution. This

8 A. Abate et al.

computation is rather unfeasible, and its bottleneck hinges on the dependence
of T and R on the continuous component of the hybrid state space.

Rather than aiming, as just proposed, at abstracting the dynamics of the dt-
SHS H into an m2-dimensional MC, we may instead allow an abstraction into
a higher dimensional structure, while improving the precision of the approxima-
tion. The technique to achieve this, described in the following section, is based
on a continuity assumption on the dynamics, and a state-partitioning procedure.

5 Abstraction Procedure

This section describes the abstraction procedure for the dt-SHS model H of
section 2. The dt-SHS H will be abstracted into a Markov set-chain M, described
by a one-step transition set [Π] = [P, Q]. The computations involved in obtaining
the abstraction are reduced to integrations over the continuous part of the hybrid
state space. The procedure introduces some necessary approximations in order to
perform the computations feasibly. However, explicit bounds on these errors will
be obtained, provided some continuity assumptions are raised. The association
of these bounds to the computed transition probabilities allows a connection
with the theory of MSC, as it provides a direct definition of the transition set
[Π] of M. The precision of the abstraction will depend on a parameter δ. It is
desirable for the abstraction to be endowed, in the limit as δ → 0, with some
convergence properties to the original dt-SHS H.

Approximation of State-Dependent Transitions and Resets

As discussed in section 4, the dependence of transition and reset kernels on,
respectively, the invariant and the guard set, and their continuous supports,
renders the computation of transition probabilities via nested integrals of prod-
uct terms as in (4) computationally unattractive. Introducing some “regularity
assumptions” on the probabilistic kernels, it is possible to achieve a “state-
memoryless” approximation for these transition probabilities, whereby their cal-
culation does not depend on the continuous part of the hybrid state-space S.

Let us suppose that the stochastic kernels T and R, which depend on the
continuous component of the hybrid state in Definition 1 of H, admit densities
respectively t and r. Similarly, let us assume the initial probability distribution
π0 has a density p0. It is supposed that p0, t, and r satisfy the following Lipschitz
condition.

Assumption 1 (Lipschitz Continuity of the Stochastic Kernels)

1. |p0(s) − p0(s′)| ≤ k0‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗
q ;

2. |t(x̄|s) − t(x̄|s′)| ≤ kT ‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ Dq, and
(q, x̄) ∈ D∗

q ;
3. |r(x̄|s, q̄) − r(x̄|s′, q̄)| ≤ kR‖x − x′‖, for all s = (q, x), s′ = (q, x′) ∈ D∗

q\Dq,
(q̄, x̄) ∈ D∗̄

q , and q̄ ∈ Q, q̄ �= q,

where k0, kT , and kR are finite positive constants.
�

Markov Set-Chains as Abstractions 9

Let us also recall the implicit assumption, raised for computations’ sake in Defi-
nition 1, that for each q ∈ Q, the continuous domain D∗

q associated to such mode
is a bounded subset of R

n(q).
Let us introduce the following quantities (see Table 1 for a compendium

of them), describing the (finite) volume measures of particular subsets of the
domains: λ∗

q = L(D∗
q), λq = L(Dq), λq,r = L(gq,r), λ =

∑
q∈Q L(Dq), λ∗ =∑

q∈Q L(D∗
q), where L is the Lebesgue measure of a bounded subset of a Eu-

clidean space. Since D∗
q = Dq ∪ Gq, it follows that ∀q ∈ Q, λq = λ∗

q −
∑

r∈Q
r �=q

λq,r .

Let us now focus on the computation of the transition probabilities. Consider
a mode q ∈ Q, and any two points (q, x), (q, x′) ∈ Dq. Then, with reference to the
quantity in (2) and according to Assumption 1, let us compute, ∀r ∈ Q, r �= q,

|pq,r(x) − pq,r(x′)| =

∣∣∣∣∣
∫

gq,r

T (dz|(q, x)) −
∫

gq,r

T (dz|(q, x′))

∣∣∣∣∣
≤

∫
gq,r

|T (dz|(q, x)) − T (dz|(q, x′))| ≤ λq,rkT ‖x − x′‖.

A similar bound is obtained for the case r = q, which now depends on the
quantity λq. Furthermore, a similar bound can be found for the quantity in (3):
selecting any two points (q, x), (q, x′) ∈ gq,r ⊂ D∗

q , r �= q, we have:

|p(q,r),r(x) − p(q,r),r(x′)| =
∣∣∣∣
∫
Dr

R(dz|(q, x), r) −
∫
Dr

R(dz|(q, x′), r)
∣∣∣∣

≤
∫
Dr

|R(dz|(q, x), r) − R(dz|(q, x′), r)| ≤ λqkR‖x − x′‖.

Likewise, it is possible to derive error bounds for more complicated expressions,
such as (4).

Hybrid State Space Partition

Let us now introduce a partition of the hybrid state space S∗ (see Table 1). Recall
that S∗ can be written as S∗ = ∪q∈Q{q} × D∗

q = ∪q∈Q{q} × {∪r∈Q
r �=q

gq,r ∪ Dq}.
With regards to a particular mode q ∈ Q, let us introduce a partition of

D∗
q of cardinality cδ

q = dδ
q +

∑
r∈Q
r �=q

eδ
q,r, where the first term dδ

q refers to the

number of sections of the invariant Dq, while the other terms eδ
q,r refer to the

cardinality of the partition of the corresponding guard set gq,r. These terms are
clearly all greater than or equal to one. Let us introduce their respective measures

λj
q and λk

q,r , which make up the quantities λq =
∑dδ

q

j=1 λj
q , and λq,r =

∑eδ
q,r

k=1

λk
q,r introduced above. This dependence on the parameter δ will be made clear

shortly.
We do not impose any structure on the partition, but only require it, within

each domain, to respect (that is, not to intersect) the boundaries between in-
variant and guards, and those between each couple of adjacent guards. It is then

10 A. Abate et al.

possible to express the domain D∗
q , associated to mode q ∈ Q, as the union of

the following disjoint sets:

D∗
q = {∪r∈Q

r �=q
{∪eδ

q,r

j=1g
j
q,r}} ∪ {∪dδ

q

j=1Dj
q}.

Let us now associate a discrete state of M to each of these partitions, by in-
troducing mode qj for Dj

q, and mode qj
r for gj

q,r. The parameter δ is defined to
be

δ = maxq∈Q{max{εq, γq}}, where
εq = maxr∈Q

r �=q
j=1,...,eδ

q,r
sup{‖x − x′‖ : x, x′ ∈ gj

q,r} = maxr∈Q
r �=q

j=1,...,eδ
q,r

εj
q,r,

γq = maxj=1,...,dδ
q
sup{‖x − x′‖ : x, x′ ∈ Dj

q} = maxj=1,...,dδ
q
γj

q .

In other words, δ represents the largest diameter of the partitions defined on S∗.
Let us choose a representative point within each single mode introduced

through the partition: ∀q ∈ Q, ∀j = 1, . . . , dδ
q, let us select a point x̄j

q ∈ Dj
q ;

∀q ∈ Q, r �= q, ∀j = 1, . . . , eδ
q,r, let us select a point x̄j

q,r ∈ gj
q,r.

We will now revisit the computation of the probabilistic quantities in (2)-(3)
with the additional knowledge of the derived error bounds, in order to define the
elements of the MSC M that abstracts the original dt-SHS H. Toward this aim,
we associate to each discrete state of the above partition a distinct state of the
MSC. The values of the error bounds depend on the partition diameter δ, and
on the structure of the dynamics of H. To be more precise, we shall approximate
the quantities in (2)-(3) with ones that will be based on computations performed
on the representative points. The new transition probabilities will be intuitively
denoted in a similar fashion as the relations in (2)-(3). Let us start from the
relation in (2):

∀x ∈ Dj
q, pqj ,rk(x) =

∫
gk

q,r

T (dy|(q, x)) ≈ pqj ,rk(x̄j
q), (5)

More precisely, |pqj ,qk
r
(x) − pqj ,qk

r
(x̄j

q)| ≤ λk
q,rkT γj

q ≤ λ∗kT δ. Notice that, if x ∈
Dj

q ⊆ Dq, T (dy|(q, x)) = T (dy|(qj, x)).
Now, focusing on equation (3), we have:

∀x ∈ gj
q,r, p(q,r)j ,rk(x) =

∫
Dk

r

R(dy|(q, x), r) ≈ p(q,r)j,rk(x̄j
q,r), (6)

where |p(q,r)j ,rk(x) − p(q,r)j ,rk(x̄j
q,r)| ≤ λk

rkRεj
q,r ≤ λ∗kRδ. Notice that, if x ∈

gj
q,r ⊆ D∗

q , R(dy|(q, x), r) = T (dy|(gj
q,r, x), Dk

r).
Similar transition probabilities and bounds can be referred to the initial distri-

bution π0. Moreover, it is possible to compute analogous bounds for quantities,
such as (4), which involve more than a single step of computation. However,
it will become clear in the next section that these bounds can be equivalently
derived from direct matrix computations on the MSC M.

Markov Set-Chains as Abstractions 11

Table 1. Relationship between the components of the dt-SHS and the elements of the
partition that yields the MSC, with corresponding quantities of interest

component form parts partitions cardinality size diameter

hybrid space
of H S∗ =

�

q∈Q
{q} × D∗

q D∗
q cδ λ∗ =

�

q∈Q
λ∗

q δ

domain D∗
q = Dq ∪ Gq Dq ,Gq cδ

q λ∗
q γq ∨ εq

invariant Dq Dj
q dδ

q λq γq

invariant
sections

Dj
q 1 λj

q γj
q

guards Gq =
�

r∈Q
r �=q

{gq,r} gq,r gj
q,r

�

r∈Q
r �=q

eδ
q,r λ∗

q − λq εq

guard
sections

gj
q,r 1 λj

q,r εj
q,r

6 Steady State Computation Using the MSC Abstraction

In this section we show that it is possible to infer the asymptotic behavior
of the dt-SHS H using the introduced Markov set-chain abstraction M. We
start by providing an intuitive justification of why the MSC M may yield some
conclusions about the asymptotic dynamics of the original dt-SHS H.

The values of the MSC, i.e. the explicit bounds for the errors associated to the
approximate computations of the transition probabilities of the dt-SHS, allow to
introduce a “conservative estimate” of the actual transition probabilities between
regions of the state space of the original dt-SHS. By selecting a small enough
diameter δ of the partition, the possibly contractive nature of M may dominate
over the approximation errors. The contractivity of M depends on the dynamics
and on the structure of H. By tuning the parameter δ, we may derive conclusions
on the asymptotic behavior of H.

We now make the above discussion more quantitative. Given a desired preci-
sion ε > 0 on the approximation, we integrate the procedure for the partition
of H into an algorithm to compute the steady state of the MSC abstraction M.
The precision ε is related to the partition parameter δ. As discussed above, the
steady state vector [π∞] for M is an estimate of the invariant measure of H, with
a confidence bound given by the diameter Δ([π∞]). Let us initialize a partition
of H according to a value δ = δ(ε), which guarantees a precision ε for the steady
state computation of [π∞]. The transition set [Π] = [P, Q], as constructed in the
previous section, has the following property:

Δ([Π]) ≤ ||Q − P || = λ∗k̄δ(ε), (7)

with k̄ = kT ∨ kR ∨ k0. The inequality can be drawn by directly employing the
definition of matrix norm, and the bounds derived for equations (5)-(6). Then,
by Theorem 3, a sufficient condition to achieve Δ([π∞]) ≤ ε is the following:

λ∗k̄δ(ε) ≤ ε (1 − T ([Π])) . (8)

12 A. Abate et al.

It is clear that if T ([Π]) < 1 there always exists a value of δ(ε) that satisfies
this inequality, since the LHS expression goes to zero as δ(ε) goes to zero. Notice
however that, without an idea of the transition probabilities that define [Π], one
cannot estimate T ([Π]). Since in general 0 ≤ T ([Π]) ≤ 1, the set of feasible
values for δ(ε) that satisfy equation (8) ranges from a finite upper bound δ0

(when T ([Π]) = 0) to 0 (when T ([Π]) = 1). This makes sense: until we have
no information about the contractive nature of [Π], there is no possibility to
estimate the limit set behavior. For this reason, it is impossible to establish a
priori a value for δ(ε) that guarantees a desired precision ε in the steady state
computation using the abstraction M.

However, we can choose an “optimistic” initial value δ0. In the following it-
erative algorithm, given a partition diameter β(k), we define Π(k) the transi-
tion probabilities computed by the abstraction algorithm described in the pre-
vious section from an initial distribution π0. Moreover, we define [Π(k)] =
[P (k), Q(k)], the associated MSC. The parameter α(k) represents an upper
bound for T ([Π(k)]).

Algorithm 1 (Compute steady state of H with precision ε)

input: (H, ε);

set integer k = 0, real α(0) = 0, and real β(0) such that λ∗k̄β(0) ≤ ε;

for k ≥ 0

compute Π(k), [Π(k)] = [P (k), Q(k)] according to β(k);

set α(k) = T (Π (k)) + ||Q(k) − P (k)||;
if α(k) ≥ 1 or α(k) ≥ α(k − 1) then set β(k + 1) = aβ(k), a < 1;

else if ||Q(k)−P (k)||
1−α(k) > ε then set β(k + 1) s.t. λ∗k̄β(k + 1) ≤ ε(1 − α(k));

else exit;

set k = k + 1;

end

compute the steady state π∞ of Π(k);

output: (π∞).
�

Notice that, ∀k ≥ 0, β(k + 1) < β(k), thus lim
k→+∞

Δ([Π]) = lim
k→+∞

||Q(k) −
P (k)|| = 0. Let T∞ = lim

k→+∞
T ([Π(k)]) < 1: by Theorem 1 it follows that

lim
k→+∞

α(k) = T ([Π(k)]) = T∞. Namely, if T∞ < 1 we can arbitrarily increase

the accuracy δ of our abstraction until, by equation (8), λ∗k̄δ ≤ ε (1 − T∞).
When this happens the algorithm terminates, and we compute the steady state
π∞, or compute [π∞] using the upper and lower bounding matrices L∞, H∞, as
described in section 3.

We now discuss the computational burden of our procedure. It is clear that
the main bottlenecks are (1) the abstraction procedure for the partitioning of the

Markov Set-Chains as Abstractions 13

hybrid state space; and (2) the limit set computation on the abstraction MSC.
The first computation directly depends on the parameter δ, which is related to
T∞ by (8). The second computation depends on two parameters: the cardinality
of the MSC and the convergence speed. The state cardinality is cδ, and depends
on δ, while the convergence speed can be related to T∞ by (1). The main weight
in the computational complexity of our abstraction procedure is T∞.

For the above arguments, it can be interesting to interpret T∞ as the coefficient
of ergodicity T (H) of the dt-SHS H, and possibly compare this value with other
convergence bounds directly derived on the structure and the dynamics of H.

7 Numerical Study

We implement the proposed abstraction procedure on a simple one-dimensional
dynamical system, whose dynamics is described by the following SDE, defined
for t ≥ 0:

dXt = f(Xt)dt + dBt, with X0 ∼ U(A). (9)

The drift depends on a function f : R → R, assumed to be continuous and
bounded. The term Bt denotes a standard Wiener process. U(A) is the uniform
distribution, over some compact set A ⊂ R.

The SDE in (9) is discretized in time according to a first-order Euler-
Maruyama scheme, with discretization step Δ > 0, which yields the following,
for any n ≥ 0: X(n+1)Δ ∼ N (XnΔ + Δf(XnΔ), Δ), where N (m, σ2) is a normal
random variable with mean m and variance σ2.

For computational necessity, we shall introduce some approximation outside
the compact interval K = [−K, K]. Let us partition this interval K into 2l
sections of length 2δ, where δ = K/l, and centered at the representative points
x̄k = −K + (2k − 1)δ, k = 1, 2, . . . , l. Call these partitions Dk = [−K + 2(k −
1)δ,−K + 2kδ].

Additionally, consider two regions for the open intervals Dlb =
(−∞,−K],Dub = [K, +∞), “centered” at the points x̄lb,ub = {±(K + δ)}. Con-
sider for convenience the extended index set Q = {1, 2, . . . , l, lb, ub}. Conditional
on XnΔ = x̄k, for any k ∈ Q, the process at time (n + 1)Δ is distributed
according to T (·|x̄k) � N (·; mk, Δ), where mk = x̄k + Δf(x̄k).

This discretization procedure induces a dt-SHS, where the l+2 domains make
up the state space as S =

⋃
k∈Q{k} × Dk. Let us compute the approximate

Fig. 1. Abstraction procedure for the one-dimensional system in (9)

14 A. Abate et al.

MSC state space cardinality 30 50 100 200

Steady state estimation error 0.06 0.05 0.04 0.03

Fig. 2. Simulation outputs

transition probabilities between the different modes of the introduced dt-SHS
based on the representative points, and associate bounds on the errors.

In the following, we implement some computations for the very special linear-
drift case, i.e. where f(x) = −μx, μ > 0. The knowledge of a closed form distri-
bution for this process [11] enables a comparison of it with the outcome of the
simulations. We have chosen the following parameters: K = 15, Δ = 1, m =
0, σ = 1. Choosing a μ = 0.5, the solution process of (9) is trivially distributed
as N (0, 1). We have implemented our abstraction procedure and the MSC ba-
sic algorithms on Matlab. Figure 2 illustrates that, to obtain a precision (say
ε = 0.05) in the steady state computation, we need a MSC abstraction with 50
states. The table below Figure 2 shows that by augmenting the state space of
the MSC abstraction, the error bounds for the steady state converge to zero.

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica (accepted,
2007)

2. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid
systems. Proceedings of the IEEE 88(2), 971–984 (2000)

3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous time
markov chains. ACM Trans. on Comp. Logic 1(1), 162–170 (2000)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (2002)

5. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall/CRC Press,
London (1993)

6. D’Innocenzo, A., Julius, A.A., Di Benedetto, M.D., Pappas, G.J.: Approximate
timed abstractions of hybrid automata. In: Proceedings of the 46th IEEE Con-
ference on Decision and Control. New Orleans, Louisiana, USA, 12–14 December
(2007)

7. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Transactions on Automatic Control 52(5), 782–798 (2007)

Markov Set-Chains as Abstractions 15

8. Hartfiel, H.J.: Markov Set-Chains. Lecture Notes in Mathematics, vol. 1695.
Springer, Heidelberg (1998)

9. Julius, A.A., Pappas, G.J.: Approximate abstraction of stochastic hybrid systems.
IEEE Trans. Automatic Control (provisionally accepted)

10. Kushner, H.J.: Approximation and Weak Convergence Methods for Random Pro-
cesses with Applications to Stochastic Systems Theory. MIT Press, Cambridge
(1984)

11. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applica-
tions, 6th edn. Springer, Heidelberg (2003)

Co-simulation Tools for

Networked Control Systems

Ahmad T. Al-Hammouri1,2, Michael S. Branicky1, and Vincenzo Liberatore1

1 Case Western Reserve University
Electrical Engineering and Computer Science Dept.

Cleveland, Ohio 44106 USA
{ata5,mb,vl}@case.edu

2 Jordan University of Science and Technology,
Computer Engineering Dept.,

Irbid 22110 Jordan
hammouri@just.edu.jo

Abstract. In this paper, we argue that simulation of Networked Con-
trol Systems (NCSs) needs to be carried out through co-simulation,
which requires the joint and simultaneous simulation of both physical
and communication networks dynamics. Co-simulation enables construc-
tion of synthetic large-scale networks and workloads, replay of collected
traces, and obtaining a complete snapshot of both the network behav-
ior and the physical systems states. Therefore, co-simulation provides
in-depth understanding of the interaction between communication net-
works and physical systems dynamics. In this paper, we overview three
co-simulation tools that we have developed for NCS co-simulation. The
first two tools are extensions to ns-2 called Agent/Plant and NSCSPlant;
the third tool integrates Modelica and ns-2. For each tool, we present
demonstrative case studies that highlight its capabilities.

1 Introduction

We are witnessing technological advances in VLSI, in MEMS, and in communica-
tion networks that have brought devices with sensing, processing, actuating, and
communication capabilities. These devices have contributed to the formation of
Networked Control Systems (NCSs) [1]. The fundamental motivation of NCSs is
that they extend the distributed control of the physical world beyond distance
barriers [2]; see Fig. 1. Representative applications include industrial automa-
tion, distributed instrumentation, unmanned vehicles, home robotics, distributed
virtual environments, power distribution, and building structure control [3].

Successful design and implementation of NCSs necessitate the existence of
simulation tools that allow verification, validation, and evaluation of different
control and network algorithms. In this paper, we argue that simulation of NCSs
needs to be carried out through co-simulation, which requires the joint and si-
multaneous simulation of both physical and communication networks dynamics.

The need for co-simulation originates from the fact that the NCS field is an in-
terdisciplinary one that combines the study of control theory and communication

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 16–29, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Co-simulation Tools for Networked Control Systems 17

Controller

Controller

Physical world

Sensoractuator
Sensor+

Actuator

Sensor

Network

+

−
Controller

(Controlled System)
Sensors

Plantu yr
Actuators

Network

Fig. 1. (left) NCSs integrate sensing, processing, and actuation tasks that enable re-
mote monitoring and control of the physical world. (right) A networked control system
with one controlled system (a.k.a. plant) and one controller; both the sensor and the
actuator are co-located at the plant site. Figures reproduced from [3].

networks. In its simplest form, a NCS consists of a single physical system and
a remote controller such as the one in Fig. 1 (right). The sensor samples the
values of physical quantities, writes them in a packet, and sends the packet over
the network to the controller. The controller examines the received sample to
generate a control signal that is then sent over the network to the actuator.
Although more complex scenarios are possible, the most fundamental concern is
to understand how the communication network and the NCS affect each other
as a function of network traffic and topology, and in terms of NCS stability and
performance. For example, NCS packets transmitted over the network will incur
delays that are often time varying. A central concern is then to understand how
these time-varying delays affect the performance or the stability of the NCS.
On the other hand, a NCS would sample and transmit sensed data at a rate
that is appropriate to achieve some performance levels. However, if this rate is
higher than the network bandwidth capacity, the network becomes congested,
thus leading to additional packet delays, losses, and jitter [2]. In a nutshell, the
study of NCSs necessitates an integrated approach that combines the disciplines
of networking and feedback control.

Pursuing a pure analytical approach is likely to be intricate especially when
considering multiple NCSs in a wide-area setting, e.g., the Internet. Mathemat-
ical formulation and analysis based on fixed delays and on regular sampling
intervals may no longer be applicable when packets carrying sensed and control
data are subject to long and time-varying delays or the possibility of being lost.
Since co-simulation will at least lead to a numerically tractable analysis of the
overall system, we believe that co-simulation will be critical to the study of com-
plex systems and of scalable control algorithms in such wide-area settings. In
these cases, co-simulation enables us to construct synthetic large-scale networks
and workloads, to replay collected traces, and to obtain a complete snapshot
of both the network behavior and the physical systems states. For these facts,
co-simulation is a key step in NCS co-design, whereby network issues such as
bandwidth, quantization, survivability, reliability, scalability, and message delay
are considered simultaneously with controlled system issues such as stability,
performance, fault tolerance, and adaptability [4].

A common feature for any co-simulation tool is that it needs to capture both
the physical and the communication dynamics. For the simple example in Fig. 1

18 A.T. Al-Hammouri, M.S. Branicky, and V. Liberatore

(right), the tool simulates the physical system and derives the system output that
is captured by the sensor at the sampling instances. Then, packets are simulated
to traverse the network links from sensor to controller, incurring latencies and
subject to the possibility of being lost. The simulated controller computes the
control signal and inscribes it into a packet that is delivered over the simulated
network to the actuator. Finally, the tool simulates the action taken by the
actuator. The effectiveness of co-simulation relies on how well a tool describes the
dynamics of both the physical systems and communication networks involved.
For network dynamics, the tool needs to simulate detailed per-packet events,
such as packet forwarding and transmission over communication links, as well as
packet enqueueing and dequeueing at different network nodes. As for physical
dynamics, the tool should allow the expression of differential algebraic equations
(DAEs), be able to solve DAEs, and have the capability of catching events,
e.g., zero crossing. In short, it should be capable of simulating general hybrid
dynamical systems [5,6].

In this paper, after reviewing the related work (Sect. 2), we present our ap-
proach for the NCS co-simulation in Sect. 3. Sections 4 through 6 elaborate
on our approach by overviewing three tools we have developed for NCS co-
simulation. For each tool, we highlight its capabilities and present demonstrative
case studies. Finally, Sect. 7 concludes the paper.

2 Background and Related Work

There have been well-developed simulation tools that target the simulation of
either networks or physical systems separately. For example, networks simulators
include ns-2 [7] and OMNet++ [8]. On the other hand, simulations of physical
and embedded systems utilize hybrid systems tools, which allow the construc-
tion and the simulation of systems involving continuous and discrete dynamics.
Examples of hybrid systems simulation tools include Modelica simulation envi-
ronments [6], Simulink [9], Ptolemy [10], and adevs [11].

Simulation of NCSs, which involve the interaction between communication
networks and physical systems dynamics, can leverage on the previously men-
tioned tools. One direction is to utilize and to extend hybrid systems simulation
tools to also simulate the events and dynamics of communication networks. An
example of a tool that follows this approach is TrueTime [12]. However, True-
Time has support for only local-area networks simulations. Specifically, it al-
lows the simulation of only the physical and the medium-access layers [12]. This
limitation inhibits its applicability to more general networks that incorporate
higher-layer network protocols, e.g., routing, transport, and application proto-
cols, and geographically distributed networks, such as WANs. Providing support
for general network settings in TrueTime can be a formidable task because such
higher-protocols in general utilize complex algorithms that are distributed in na-
ture and encompass multi-hop nodes. This same discussion applies to other tools
that try to extend hybrid systems simulation tools to support network-side sim-
ulations; see for example [13], where Ptolemy was extended to simulate wireless

Co-simulation Tools for Networked Control Systems 19

sensor networks. An alternative direction is to extend a network simulator, such
as ns-2, to include the capability for physical systems simulations. In Sect. 4
of this paper, we review one such tool, which is an extension of ns-2 called
Agent/Plant. With Agent/Plant, physical dynamics of an environment and
control algorithms can be modeled by ordinary differential equations (ODEs)
and then solved within the simulation script or via a call to an outside util-
ity, e.g., the Ode UNIX utility or Matlab. The same approach was also used in
the ns-2 agents NSCSPlant and NSCSController (see Sect. 5 and [2]). A third
direction is to marry a full-fledged network simulator and a full-fledged physi-
cal dynamics simulator. The integration of the two domain-specific simulators
would then furnish a tool that combines the best features of the individual sim-
ulators. Such a methodology was sought in [14], where ns-2 was integrated with
adevs. Although the tool was developed specifically to simulate power systems
and networks, it can be applied to NCSs in general because the discrete-event
simulator, adevs, can be used to simulate general hybrid systems. In Sect. 6
of this paper, we present a tool that is similar in spirit to [14], where we com-
bine ns-2 with Modelica. However, in contrast to [14], our tool does not require
deriving mathematical modeling equations for system states nor the formula-
tion of input/output and state transition automata. Since Modelica’s simulation
environments, e.g., Dymola, have the nice features of drag-and-drop and ease-
of-use in building physical systems models, our tool can be accessible to a wide
spectrum of investigators, especially those with little background in hybrid and
physical systems modeling.

Independent of our research, [15] integrates ns-2 with the MoCoNet platform.

3 Our Approach

Our approach is to rely on and to combine well-established simulation tools for
networks and for physical systems as much as possible. For example, for the
network-side simulations, we employ ns-2 [7], which is a widespread discrete-
event simulator developed to facilitate the simulation of network protocols at
different layers of the Internet stack, including the MAC, network, transport,
and application layers [16]. ns-2 simulates the exact dynamics and events of
individual packets while traversing network elements, e.g., communication links
and routers. With ns-2, different network topologies can be constructed, and
several network technologies can be simulated, such as wireline, wireless, local-
or wide-area networks; or a hybrid of these.

Although ns-2 supports some real-time applications, such as multimedia
streaming protocols, it still lacks support for applications that involve real-time
sensing, actuation, and control. Specifically, ns-2 lacks the ability of simulating
continuous-time dynamics, supporting event-catching, and constructing models
for physical systems. However, a nice feature of ns-2 is that it is evolvable in the
sense that new protocols and algorithms can be added to the already existing
ones. In particular, ns-2 exposes well-defined APIs that greatly facilitate devel-
oping new traffic sources, traffic destinations, and router queueing algorithms.

20 A.T. Al-Hammouri, M.S. Branicky, and V. Liberatore

0 1 3

Controller Router

2

Plant1

Plant0

.....

L1 : c1/d1
L2

: c2
/d2

L3 : c3/d3

L
n

: c
k /d

k

k

Plantj

Fig. 2. A network topology consisting of several end-hosts (plants or controllers) con-
nected via a router. Each communication link Li is characterized by the bandwidth ci

and the propagation delay di. The number of plants, j, ci, and di may be varied across
experiments.

we discuss how to exploit this to extend ns-2 and combine it with other tools
to provide the ability of simulating physical systems dynamics.

For illustration, we next present a short example of setting up a network
topology in ns-2. A Tcl simulation script can be written to define the network
topology, to define traffic sources and destinations, and to schedule events. For
example, the following Tcl snippet defines the network in Fig. 2.

Create nodes and label them

set n0 [$ns node]

$n0 label "Controller"

set n1 [$ns node]

$n1 label "Router"

set n2 [$ns node]

$n2 label "Plant0"

n3-nk are defined similarly here (code suppressed)

Connect the nodes with a star topology

$ns duplex-link $n0 $n1 1Mb 1ms DropTail

$ns duplex-link $n1 $n2 1Mb 1ms DropTail

Links connecting nodes n3-nk to n1 are

defined similarly here (code suppressed)

To simulate network traffic, one can then attach, say, a TCP traffic source at
node 0 and a TCP traffic sink at node 2, and then simulate the transfer of a
virtual file from node 0 to node 1 using FTP. In the next three sections, we show
how to use our contributed packages to simulate the flow of sensory and control
packets to accomplish feedback control over a network simulated via ns-2.

4 The Agent/Plant Extension

To support NCS co-simulation in ns-2, we have implemented an extension of
ns-2 to simulate physical dynamics and control laws, and the transmission of

Co-simulation Tools for Networked Control Systems 21

sensor and control packets between plants and controllers. The extension sup-
ports a new type of ns-2 agent, called Agent/Plant, that represents the interface
between the physical and the network dynamics. An Agent/Plant can take the
role of a sensor, a controller interface, or an actuator depending on its usage in
the simulation script. Pairs of plants are connected to each other, after which
they can exchange sampled data and control instructions.

4.1 Agent/Plant Usage

Agent/Plant is a generic ns-2 agent, which allows simulation of different con-
figurations of NCSs. For example, it can be used to simulate any combination
of time-driven and event-driven plants and controllers. Also, it allows simula-
tion of various plant dynamics (e.g., continuous, discrete, linear, or nonlinear)
and various corresponding controllers (e.g., P or PI). To achieve such flexibility,
Agent/Plant requires two functions to be defined in the Tcl code, which are
sysphy and smplschd; see [17] for fuller details.

sysphy: The function sysphy is used by plants to simulate the physical dynamics
of the controlled system and to apply control signals arriving from controllers
(with actuators). Likewise, it is used by controllers upon receiving sensed data
packets and when computing the control signals. Physical dynamics and control
algorithms can be modeled by ODEs that are solved directly inside sysphy or
via a call made to external utility, e.g., the Ode UNIX utility or Matlab.

smplschd: The function smplschd schedules a future invocation to sample the
system (sensor or controller) output. The function is especially helpful in the
case of sensors to implement fixed or variable sampling-rate policies. It is also
used at the controller site to trigger the transmission of control messages.

4.2 Example

A pair consisting of a plant (including a time-driven sensor and an event-driven
actuator) and a corresponding event-driven controller can be instantiated and
attached to nodes 2 and 0 of Fig. 2, respectively, as follows:

The two functions, sysphy and smplschd, are defined

here to include dynamical equations that simulate

the plant dynamics and the controller algorithm;

see [17] for examples how to accomplish this.

Create a controller agent and attach it to node n0

set c0 [new Agent/Plant]

$ns attach-agent $n0 $c0

Create a plant and attach it to node n2

set p0 [new Agent/Plant]

$ns attach-agent $n2 $p0

22 A.T. Al-Hammouri, M.S. Branicky, and V. Liberatore

Connect the two agents

$ns connect $c0 $p0

Schedule events

$ns at 0.1 "$p0 sample"

$ns at 16.0 "finish"

4.3 Case Studies

To demonstrate the capabilities of Agent/Plant, we study the influence of the
configuration and the time-dependent dynamics of a network on NCSs. Other
experimental results using Agent/Plant appeared in [4,18].

The Impact of Buffer Size. We start by considering several linear scalar
plants that are connected via the network in Fig. 2 (i.e., the plants are attached
to nodes 2, 3, . . ., k). Each plant is controlled by a proportional controller that is
attached to node 0 (see also the sample code in Section 4.2). The plant dynamics
and controller law are defined as follows:

ẋ(t) = ax(t) + u(t) , y(t) = x(t) , u = K(R(t) − y(t)) , (1)

where x(t) is the plant’s state; y(t) is the plant’s output; u(t) is the plant’s
input that is sent by the controller; a is the plant constant; K is the controller
proportional gain; R(t) is the reference trajectory the plant is required to follow.

Now, we study the impact of router buffer size on the number of NCSs that can
be accommodated by a given network topology. Large buffer sizes lead to long
queueing delays but less packet loss; whereas small buffers sizes lead to relatively
shorter queueing delays and higher packet loss rates. Because both delays and
losses affect the NCSs performance and stability, buffer sizes is expected to be a
critical factor on the number of NCSs that can be accommodated in particular
network configurations. For the network in Fig. 2, we investigate the impact of
the router’s buffer size on the number of NCSs for two cases: when the buffer
size is four and when it is two. For each buffer size, we vary the number of NCSs
from 1 to 39 and for each experiment, we report the packet drop rate at the
router. The parameters of each NCS are as follows: a = 100; K = 101; R(t) = 1
(i.e., unit step response); the initial plant state is x(0) = 0; and the sampling
interval is constant and is drawn from a uniform distribution between 5ms and
15ms. The network parameters are as follows: c1 = 1.544Mbps; d1 = 1ms. For
each link Li, where i > 1, ci = 100Mbps and di = 120μs. Finally, all packet
sizes are 48B. The results depicted in Figs. 3 and 4 obviously show the striking
difference between the performance when using different buffer sizes.

Experimental Sampling Period and Delay Stability Region. Agent/
Plant provides the flexibility for simulating arbitrarily complicated plant dy-
namics and networks beyond the previous settings. In particular, Agent/Plant
can be used to simulate nonlinear plant dynamics. In [19,18], we demon-
strated the strength of co-simulation by using Agent/Plant to characterize an

Co-simulation Tools for Networked Control Systems 23

 0

 4

 8

 12

 16

 0 10 20 30 40

A
vg

. D
ro

p
R

at
e

(%
)

of Plants

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

P
la

nt
 #

 3
9

O
ut

pu
t

Time (seconds)

Fig. 3. Buffer of size 4: drop rate for n = 1, . . . , 39; plant response for n = 39. Figure
is reproduced from [4].

 0
 5

 10
 15
 20
 25
 30

 0 10 20 30 40

A
vg

. D
ro

p
R

at
e

(%
)

of Plants

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
la

nt
 #

 2
0

O
ut

pu
t

Time (seconds)

-1.2e+33
-8e+32
-4e+32

 0
 4e+32
 8e+32

 1.2e+33
 1.6e+33

 0 2 4 6 8 10
P

la
nt

 #
 3

9
O

ut
pu

t

Time (seconds)

Fig. 4. Buffer of size 2: drop rate for n = 1, . . . , 39; plant response for n = 20 and for
n = 39. Figure is reproduced from [4].

empirical Sampling Period and Delay Stability Region (SPDSR) for a 4-
dimensional pendulum-cart system. The empirical SPDSR was compared to the
analytical SPDSR, which assumes fixed sampling periods, fixed delays, and no
data losses.

5 The NSCSPlant and NSCSController Extensions

We developed two new ns-2 agents that are based on the Agent/Plant frame-
work. These two agents are referred to by NSCSPlant and NSCSController,
which stand for networked-sensing-and-control-systems plant and controller, re-
spectively. NSCSPlant is an abstract agent class, which can be used to instan-
tiate several controlled systems, each of which simulates a physical system;
NSCSController can be used to instantiate controllers. NSCSPlant supports
adaptive sampling policies, whereby the sampling rate is adjusted based on a
utility (performance) function associated with a particular plant.

The two new agents were used to study the bandwidth allocation problem
in NCSs; see [2]. According to the proposed scheme in [2], routers monitor the
congestion level on links and convey this information back to plants via a spe-
cial header in the sensor and controller packets. NSCSPlant then regulates its
sampling rate based on the associated utility function and using the conges-
tion information fed back from network routers. The proposed scheme of [2]
achieves a fair allocation by ensuring that the aggregate utility of all NCSs is
maximized.

24 A.T. Al-Hammouri, M.S. Branicky, and V. Liberatore

5.1 Case Study

Consider two NCSs sharing the bottleneck link L1 of Fig. 2. The two plants and
their respective controllers are governed by (1). The first NCS, ncs0, is param-
eterized by a0 = 0.1, K0 = 2.0. It starts sampling (i.e., acquires the network)
at time 50s, and stops at time 150s. The second NCS, nsc1, is parameterized
by a1 = 1.0, K1 = 5.0, starting time = 0s, and ending time = 100s. Each NCS
transmits packets based on the following utility function

Ui(ri) =
ai − Ki

ai
eai/ri , i ∈ {0, 1} ,

where ri is the sampling (transmission) rate for ncsi (see [2] for more details).
The network parameters are c1 = 1.0Mbps, d1 = 5.0ms, c2 = c3 = 10.0Mbps,
d2 = d3 = 1.0ms. All packets are 100B. Both plants are required to follow R(t)
shown in Fig. 5(a). Figure 5(b) shows how ncs1 adapts its transmission rate by
reducing its sampling rate when ncs0 starts operating; and how ncs0 increases
its sampling rate when ncs1 stops operating. The two NCSs share the bottleneck
bandwidth according to their utility functions. Moreover, the allocation scheme
retains 100% network utilization during all time intervals (this can be inferred by
adding transmission rates of ncs0 and ncs1 during each interval). Both NCSs stay
stable and track the reference signal accurately (Figs. 5(c) and 5(d)). For more
experimental results utilizing the two agents NSCSPlant and NSCSController,
see [20,2,21], where we experimented with a larger number of NCSs.

-0.75
-0.5

-0.25
 0

 0.25
 0.5

 0.75

 0 50 100 150

In
pu

t R
(t

)

Time (seconds)
(a)

 0

 400

 800

 1200

 1600

 2000

 0 50 100 150

T
x

ra
te

 (
pk

t/s
ec

)

Time (seconds)

r1 r0

(b)

-0.75
-0.5

-0.25
 0

 0.25
 0.5

 0.75

 0 50 100

P
la

nt
1

st
at

e,
 x

1(
t)

Time (seconds)
(c)

-0.75
-0.5

-0.25
 0

 0.25
 0.5

 0.75

 50 100 150

P
la

nt
0

st
at

e,
 x

0(
t)

Time (seconds)
(d)

Fig. 5. (a) The input signal, R(t), the two plants are instructed to follow. (b) The
transmission/sampling rates r0 and r1 for ncs0 and ncs1. (c) and (d) The plants states
x1(t) and x0(t), respectively, while tracking the input signal R(t) in (a).

Co-simulation Tools for Networked Control Systems 25

6 Modelica/ns-2 Integration

Although the Agent/Plant has much flexibility, modeling of large physical sys-
tems, especially those incorporating systems of subsystems and those including
hybrid dynamics, becomes a tedious, and perhaps an error prone, task. There-
fore, it would be rational to exploit any of the tools that facilitate the con-
struction and simulation of physical systems models, and combine it with the
Agent/Plant. One such tool is Modelica. Modelica is a modeling language for
large-scale physical systems. It supports model construction and model reusabil-
ity; supports acausal modeling; has numerous available libraries, e.g., power
systems, hydraulics, pneumatics, and power train; and has available commercial
and open source simulation environments [6].

Since both Modelica and ns-2 are not readily interoperable, we integrate them
by creating interprocess communication interfaces in ns-2 and in Modelica. We
have created a new ns-2 application that is responsible for communicating to
a corresponding Modelica model. For example, the ns-2 application can receive
packets in the ns-2 simulation and use their payload to set a control signal
in a corresponding Modelica actuator. On the Modelica side, we have written
inter-simulator communication routines that we can link to generic sensor and
actuator models. As a result, simulator communication is achieved by pairs of
corresponding modules, one in each of the two simulators [22]. The Modeli-
ca/ns-2 intercommunication mechanics guarantees the synchronization between

t0simulation time
Start at

t0simulation time
Start at

Yes

No

Run until application

needs to communicate Instructed by ns−2
to progress?

ns−2 Modelica

Write to or
Read from pipe

Read from or
Write to pipe

(at simulation time t)

Run until

simulation time t

Instruct Modelica to
run until

simulation time t

Fig. 6. The Modelica/ns-2 intercommunication mechanics. ns-2 runs first and Model-
ica is paused. When the ns-2 application is slated by ns-2’s event scheduler to receive
(deliver) data from (to) a Modelica model at time t, it instructs Modelica to run until
time t, and to exchange data at that point. After the data exchange, Modelica sim-
ulation time is suspended until the ns-2 application is scheduled again. Dashed lines
represents communication via UNIX named pipes.

26 A.T. Al-Hammouri, M.S. Branicky, and V. Liberatore

the two simulators such that events from one simulator propagate to the other at
the appropriate time [22]. The intercommunication relies on UNIX named pipes
and is explained in Fig. 6.

In [22], this combined tool was used to simulate a NCS consisting of a power
transmission system that is controlled over a wide-area network. In that scenario,
the power system involved typical power grid elements, including a permanent-
magnet generator, a transmission line, and time-varying loads. The scenario also
included a PID controller to regulate the generator’s output voltage under vary-
ing load, using output measurements sent over the network. Our co-simulation
tool enabled us to investigate the influence of network cross-traffic on the NCS’s
ability to stabilize the voltage.

6.1 Case Study

In this paper, we apply our Modelica/ns-2 co-simulation tool to a NCS involv-
ing a drive train that is controlled by a PI controller (see Fig. 7). The model
is constructed using blocks from the Modelica standard library plus our new
Network block that communicates with ns-2.

For the scenario in Fig. 7, the objective is to control the motor inertia
(Inertia1) to follow the reference speed signal shown in Fig. 8. The reference
speed is generated by the two blocks KinematicPTP and Integrator. The output
of the controller is a torque that drives Inertia1. The load inertia, Inertia2,

Fig. 7. A drive train NCS created by inserting our Network block into an example
system that is part of the Modelica standard library [6]. The plant is a cascade of
five mechanical elements: Torque, Inertia1, Spring, Inertia2, and LoadTorque. The
Plant is controlled by a PI controller, PI, to follow the reference speed generated by
the two blocks KinematicPTP and Integrator. The SpeedSensor measures the speed
of Inertia1 at fixed sampling intervals. Network is responsible for communicating back
and forth with ns-2 to relay and receive packets.

Co-simulation Tools for Networked Control Systems 27

-0.25
 0

 0.25
 0.5

 0.75
 1

 1.25

 0 1 2 3 4

Time (seconds)

Fig. 8. The reference speed that Inertia1 is required to follow

is attached to Inertia1 via a compliant spring-damper component. Also, there
is a constant external torque of 10Nm acting on the load inertia. The speed
measurements from Inertia1 are transported to the PI controller over a com-
munication link that is shared with other traffic flows. Finally, Network is our
newly developed Modelica block that contains the inter-simulator routines to
allow Modelica models to communicate with ns-2.

Now, assume that the packets carrying the speed measurements flow from
node 2 to node 0 of the network in Fig. 2. In this example, the network exists
only in the feedback path that connects the plant to the controller but not in
the forward path that connects the controller to the plant. Furthermore, we
assume that the link L1 is also traversed by cross-traffic corresponding to a
multimedia application whose source and destination are attached to nodes 3
and 0, respectively. The network parameters are the same as those in Sect. 5.
The speed is sampled at constant intervals of 2ms, and the samples are inscribed
into packets of size 100B. The multimedia source starts injecting packets in the
network at time 2sec and lasts for only 1sec. The multimedia packets are 1000B.
We consider the effect of cross-traffic on the drive train NCS for two cases: when
the multimedia source transmits at a constant rates of 625Kbps and 715Kbps.
Figure 9 shows the speed of Inertia1, i.e., ω in Fig. 7, for these two cases.
Obviously, the multimedia rate of 715Kbps leads to more contention between
multimedia and NCS packets than that of 625Kbps. When the aggregate rate
of both the NCS and of the multimedia traffic exceeds c1, packets are enqueued

 0

 0.3

 0.6

 0.9

 1.2

 0 1 2 3 4

ω
 (

ra
d/

se
c)

Time (seconds)

 625Kbps

-2

-1

 0

 1

 0 1 2 3 4

 715Kbps

Fig. 9. The speed of Inertia1, i.e., ω in Fig. 7, when the multimedia application sends
packets at a constant rate of 625Kbps and 715Kbps

28 A.T. Al-Hammouri, M.S. Branicky, and V. Liberatore

 0
 3
 6
 9

 12
 15
 18

 0 1 2 3 4

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

Time (seconds)

 625Kbps

 0
 12
 24
 36
 48
 60
 72

 0 1 2 3 4

 715Kbps

Fig. 10. The queue length at the router of Fig. 2 for the two cases when the multimedia
application sends packets at a constant rate of 625Kbps and 715Kbps

in the router buffer (see Fig. 10). As a result, queueing delays deteriorate the
control performance and jeopardize the NCS’s stability.

7 Conclusions

We overviewed three tools that we have developed for the co-simulation of Net-
worked Control Systems (NCSs). All of our tools use ns-2 to simulate the com-
munication networks side. The first two tools require modeling of and deriving
equations for physical dynamics. Our newly developed tool integrates Modelica
with ns-2 so it reduces physics modeling time, effort, and errors. We argued that
co-simulation is indispensable to the study and further progress of NCSs because
NCSs, in general, involve hybrid and time-varying dynamics, thus making pure
analytical approaches intractable in large scale configurations.

That said, we have not examined the scalability or optimality of our proposed
co-simulation paradigm. Specifically, one should examine how the computation
time and memory usage of co-simulation scale as the number of plant models
and their complexity increase. These matters are the subject of future research.

Acknowledgments

Research supported in part by NSF CCR-0329910, Department of Commerce
TOP 39-60-04003, and Department of Energy DE-FC26-06NT42853.

References

1. Zhang, W., Branicky, M., Phillips, S.: Stability of networked control systems. IEEE
Control Systems Magazine 21(1), 84–99 (2001)

2. Al-Hammouri, A.T., Branicky, M.S., Liberatore, V., Phillips, S.M.: Decentralized
and dynamic bandwidth allocation in networked control systems. In: Proc. Intl.
Workshop Parallel and Distributed Real-Time Systems, Rhodes, Greece (2006)

3. Liberatore, V.: Integrated play-back, sensing, and networked control. In: Proc. of
IEEE INFOCOM (2006)

4. Branicky, M.S., Liberatore, V., Phillips, S.M.: Networked control system co-
simulation for co-design. In: Proc. American Control Conf., Denver (2003)

Co-simulation Tools for Networked Control Systems 29

5. Branicky, M.S., Mattsson, S.E.: Simulation of hybrid systems. In: Antsaklis, P.J.,
Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 31–56.
Springer, Heidelberg (1997)

6. Modelica and Modelica Association, http://www.modelica.org
7. Network Simulator—ns-2, http://www.isi.edu/nsnam/ns
8. OMNeT++: Discrete Event Simulation System, http://www.omnetpp.org
9. Simulink R© version 6.1. The MathWorks Inc. (2004)

10. The Ptolemy Project, http://ptolemy.eecs.berkeley.edu
11. ADEVS: A Discrete EVent System simulator,

http://www.ornl.gov/∼1qn/adevs/index.html
12. Cervin, A., Ohlin, M., Henriksson, D.: Simulation of networked control systems

using TrueTime. In: Proc. International Workshop on Networked Control Systems:
Tolerant to Faults, Nancy, France (2007)

13. Baldwin, P., Kohli, S., Lee, E.A., Liu, X., Zhao, Y.: Modeling of sensor nets in
Ptolemy II. In: Proc. Info. Processing in Sensor Networks, Berkeley, CA (2004)

14. Nutaro, J., Kuruganti, P.T., Miller, L., Mullen, S., Shankar, M.: Integrated hybrid-
simulation of electric power and communications systems. IEEE Power Engineering
Society General Meeting, 1–8 (2007)

15. Nethi, S., Pohjola, M., Eriksson, L., Jantti, R.: Platform for emulating networked
control systems in laboratory environments. In: IEEE Intl. Symp. World of Wire-
less, Mobile and Multimedia Networks, Espoo, Finland (2007)

16. Kurose, J.F., Ross, K.W.: Computer Networking: A Top-Down Approach Featuring
the Internet. Addison Wesley Longman, Inc., Amsterdam (2001)

17. Liberatore, V.: Agent/Plant extension,
http://vorlon.case.edu/∼vxl11/NetBots

18. Hartman, J.R., Branicky, M.S., Liberatore, V.: Time-dependent dynamics in net-
worked sensing and control. In: Proc. American Control Conf., Portland (2005)

19. Hartman, J.: Networked control system co-simulation for co-design: Theory and
experiments. Master’s thesis, Case Western Reserve Univ., Cleveland, Ohio (2004)

20. Al-Hammouri, A.T., Liberatore, V.: Optimization congestion control for Networked
Control Systems . In: Proc. of IEEE INFOCOM Student Workshop, Miami, FL
(abstract) (2005)

21. Al-Hammouri, A.T.: Internet Congestion Control: Complete Stability Region for PI
AQM and Bandwidth Allocation in Networked Control. PhD thesis, Case Western
Reserve Univ., Cleveland, Ohio (2008)

22. Al-Hammouri, A.T., Liberatore, V., Al-Omari, H., Al-Qudah, Z., Branicky, M.S.,
Agrawal, D.: A co-simulation platform for actuator networks. In: Proc. ACM Con-
ference on Embedded Networked Sensor Systems, Sydney (demonstration) (2007)

http://www.modelica.org
http://www.isi.edu/nsnam/ns
http://www.omnetpp.org
http://ptolemy.eecs.berkeley.edu
http://www.ornl.gov/~1qn/adevs/index.html
http://vorlon.case.edu/~vxl11/NetBots

On the Maximum Principle for Impulsive

Hybrid Systems

Vadim Azhmyakov1, Sid Ahmed Attia2, and Jörg Raisch2,3

1 Departamento de Control Automatico, CINVESTAV, A.P. 14-740, Av. Instituto
Politecnico Nacional No. 2508, C.P. 07360, Mexico D.F., Mexico

vazhmyakov@ctrl.cinvestav.mx
2 Fachgebiet Regelungssysteme, Technische Universität Berlin, Einsteinufer 17,

D-10587 Berlin, Germany
attia@ieee.org

3 Systems and Control Theory Group, MPI for Dynamics of Complex Technical
Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany

raisch@control.tu-berlin.de

Abstract. In this contribution, we consider a class of hybrid systems
with continuous dynamics and jumps in the continuous state (impulsive
hybrid systems). By using a newly elaborated version of the Pontryagin-
type Maximum Principle (MP) for optimal control processes governed
by hybrid dynamics with autonomous location transitions, we extend the
necessary optimality conditions to a class of Impulsive Hybrid Optimal
Control Problems (IHOCPs). For these problems, we obtain a concise
characterization of the Impulsive Hybrid MP (IHMP), namely, the cor-
responding boundary-value problem and some additional relations. As in
the classical case, the proposed IHMP provides a basis for diverse com-
putational algorithms for the treatment of IHOCPs.

Keywords: impulsive hybrid control systems, optimal control, necessary
conditions of optimality, Maximum principle.

1 Introduction

During the last two decades, there has been considerable effort to develop theo-
retical and computational frameworks for hybrid systems. Of particular impor-
tance is the ability to operate such systems in an optimal manner. With the
exception of certain special cases, the solution to the optimal problem remains
a challenging task. This is due to the fact that the two aspects of system be-
haviour, i.e., discrete and continuous, are tightly linked, to such an extent that
they cannot be decoupled in an effective and simple way. One of the most con-
venient ways to deal with the problem is to formulate it as a sequential problem,
i.e., for a particular execution the time axis is partitioned into intervals, and
in each interval, the dynamics are characterized by a set of ODEs, with transi-
tions being triggered internally (autonomous switches) or externally (controlled
switches). This is the approach that has been considered since the initial for-
mulation of the corresponding optimal control problem [15,16], [32] and can be

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 30–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Maximum Principle for Impulsive Hybrid Systems 31

seen as a natural way to tackle the problem. For a deeper discussion on the main
theoretical questions see e.g., [2,3,6,7,12,13,14,17,18,21,27,28,32,35].

The class of hybrid systems considered in this contribution involves systems
driven by continuous control inputs where switching is accompanied by a jump
in the state. A similar class has been considered in [33], where the authors focus
attention on state delayed systems with controlled switches and where useful gra-
dient formulas have been derived, for an application see [34]. See also [35] and [36]
for related problems. In contrast, we consider the case where switches are being
triggered by the continuous dynamics but the magnitudes of the corresponding
state jumps are part of the optimization variables; see also [3] for a gradient-
based approach. This family of systems captures phenomena arising in, e.g.,
cyclically operated batch processes and certain epidemic propagation models.

A simple transfomation relates the optimal control problem for the aforemen-
tioned class of systems to another optimal control problems, for which necessary
conditions of optimality have been previously derived by the authors [6]. These
results make it possible to use conceptual algorithms and their corresponding
convergence results, see e.g., [5]. Note that using transformations is a standard
approach in optimal control theory and has been used extensively in the past to
formulate different results (see e.g., [11], see also [17], where a transformation is
used to derive a version of the Maximum principle for a class of hybrid systems).

The outline of the paper is as follows. In Section 2, we formally describe the
IHOCP investigated in this contribution. Section 3 contains an equivalent rep-
resentation of the impulsive hybrid system under consideration and includes an
auxiliary optimal control problem for the given IHOCP. In Section 4, we pro-
pose a new variant of the hybrid MP for impulsive hybrid systems, namely the
Impulsive Hybrid MP. This principle is derived from the MP for hybrid systems
with autonomous location transitions and is closely related to the version of
the MP proposed in, e.g., [12,13] and to the gradient-based approach to hybrid
optimal control problems proposed in [3,4,5]. In Section 5, we discuss some com-
putational issues of the proposed necessary optimality conditions for IHOCPs.
Section 6 summarizes the paper.

2 Modeling Framework and Problem Formulation

Let us formally introduce the class of hybrid systems investigated in this paper:

Definition 1. An impulsive hybrid system is a 7-tuple

IHS = {Q,X , U,U , F,Θ,S},

where

– Q is a finite set of locations;
– X = {Xq}q∈Q is a collection of state sets with Xq ⊆ R

n;
– U ⊆ R

m is a control set;

32 V. Azhmyakov, S.A. Attia, and J. Raisch

– U is a set of admissible control functions;
– F = {fq}q∈Q is a family of vector fields fq : [0, tf] × Xq × U → R

n;
– Θ = {Θq}q∈Q is a collection of maximal constant amplitudes (state jumps);
– S is a subset of Ξ, where

Ξ := {(q, x, q′, x′) , q, q′ ∈ Q, x ∈ Xq, x
′ ∈ Xq′}.

In the following, we consider only impulsive hybrid systems IHS that satisfy
the following assumptions:

A1. The functions fq(t, ·, ·), where q ∈ Q, are continuously differentiable
A2. There exists a constant K < ∞ such that ||∂fq(t, x, u)/∂x|| < K for all

(t, x, u) ∈ [0, tf] ×Xq × U for all q ∈ Q
A3. The control set U is compact and convex

Moreover, we assume that smooth functions mq,q′ : R
n → R, q, q′ ∈ Q with

nonzero gradients are given such that the hypersurfaces

Mq,q′ := {x ∈ R
n : mq,q′(x) = 0}

are pairwise disjoint. Note that in this case a hypersurfaceMq,q′ characterizes the
set S at which a switch from location q to location q′ can take place. Evidently,
Mq,q′ is the projection of S on the product space Xq ×Xq′ . The set of admissible
control functions from Definition 1 is taken as

U := {u(·) ∈ L
m
∞(0, tf) : u(t) ∈ Uq, a.e. on[0, tf]}.

By L
m
∞(0, tf) we denote the standard Lebesque space of measurable and essen-

tially bounded functions. Note that the pair (q, x(t)) represents the hybrid state
at time t, where q is a location q ∈ Q and x(t) ∈ R

n. Let us introduce some
standard spaces, namely, the space C

∞
0 (0, tf) of all C

∞ functions that vanish
outside a compact subset of (0, tf) and the space D′(0, tf) of generalized func-
tions (Schwartz distributions). Recall that D′(0, tf) can be considered as a space
of linear, sequentially continuous functionals with respect to the convergence on
the space C

∞
0 (0, tf). In the following, we define the notion of a hybrid trajectory

of an impulsive hybrid system (see e.g., [4],[5]).

Definition 2. A hybrid trajectory of IHS is a triple X = (x(·), {qi}, τ),
where x(·) ∈ D′(0, tf) is a discontinuous trajectory, {qi}i=1,...,r is a finite se-
quence of locations and τ is the corresponding sequence of switching times

0 = t0 < · · · < ti < · · · < tr = tf

such that for each i = 1, . . . , r there exists u(·) ∈ U such that:

– x(0) = x0 /∈
⋃

q,q′∈QMq,q′ and xi(·) = x(·)|(ti−1,ti)
is an absolutely continu-

ous function on (ti−1, ti);
– x(ti) ∈Mqi,qi+1 for i = 1, ..., r − 1;

On the Maximum Principle for Impulsive Hybrid Systems 33

– ẋi(t) = fqi(t, xi(t), u(t)) + θqiδ(t− ti) for almost all t ∈ [ti−1, ti], where δ is
the Dirac function and ||θqi || ≤ Θqi .

The derivative ẋi(·) in Definition 2 is considered as a weak derivative of the
generalized function xi(·) defined on the full interval [ti−1, ti]. It is also evident
that a function x(·) from Definition 2 consists of absolutely continuous parts
defined on the open intervals (ti−1, ti) and involves jumps of magnitude θqi at
the switching times ti, see Figure 1 for an example of the execution. Note that
the evolution equation for the trajectory x(·) of a given impulsive hybrid system
IHS can also be represented as follows

ẋ(t) =
r∑

i=1

β[ti−1,ti)(t)fqi(t, x(t), u(t)) +
r∑

i=1

θqiδ(t− ti) a.e. on [0, tf]

x(0) = x0

(1)

where β[ti−1,ti)(·) is the characteristic function of the interval [ti−1, ti)

β[ti−1,ti)(t) =

{
1 if t ∈ [ti−1, ti)
0 otherwise

for i = 1, ..., r. Note that the initial value problem in Equation (1) is also consid-
ered in the sense of weak derivatives on the space D′(0, tf). Under the assump-
tions presented above, for each u(·) ∈ U and all ||θqi || ≤ Θqi , i = 1, ..., r, the
initial value problem (1) has a unique solution in D′(0, tf).

Let f0 : R×R
n×R

m → R be a continuously differentiable function. Given an
impulsive hybrid system IHS we now formulate a corresponding optimization
problem, the following Impulsive Hybrid Optimal Control Problem (IHOCP):

minimize
r∑

i=1

∫ ti

ti−1

f0(t, x(t), u(t))dt

over all trajectories X of IHS.
(2)

Fig. 1. An example of execution with 4 switches (r = 5)

34 V. Azhmyakov, S.A. Attia, and J. Raisch

Throughout the paper we assume that the IHOCP (2) has an optimal solution

(uopt(·), θopt,Xopt(·)) ∈ C := U × R
n×r ×D′(0, tf) ×Qr × [0, tf]r

where θopt := (θopt
q1
...θopt

qr
) is a matrix representing the optimal jumps.

3 Optimization of Impulsive Hybrid Systems

The optimal control problem (2) is an optimization problem formulated on the
space C which involves the space of generalized functions D′(0, tf). Our aim is
to introduce an auxiliary hybrid optimal control problem governed by a hybrid
system with autonomous location transitions without jumps in the continuous
state see e.g., [12,13,5,6,7] for further details. For this, consider the following
auxiliary initial value problem

ẏ(t) =
r∑

i=1

β[ti−1,ti)(t)fqi

(
t, y(t) +

r∑

i=1

θqiη(t− ti), u(t)
)

a.e. on [0, tf],

y(0) = x0

(3)

where i = 1, ..., r and η(·) is the Heaviside step-function. Note that η(·) can also
be considered as an element of the space D′(0, tf). Under the assumptions stated
in the previous section, the initial value problem (3) has a unique absolutely
continuous solution for each u(·) ∈ U (see, e.g., [9,22]). Next we consider y(·) as
an element of the Sobolev space x(·) ∈ W

1,∞
n (0, tf), i.e., the space of absolutely

continuous functions with essentially bounded derivatives. We are now able to
formulate our first equivalence result.

Theorem 1. Under the above-mentioned assumptions A1 − A3, the (unique)
solution x(·) ∈ D′(0, tf) of the initial value problem (1) can be represented in the
following form:

x(t) = y(t) +
r∑

i=1

θqiη(t− ti), (4)

where y(·) ∈ W
1,∞
n (0, tf) is a (unique) solution to the initial value problem (3).

Proof. Since the weak derivative of the Heaviside step-function η(t− ti) is equal
to the Dirac function δ(t− ti), the weak derivative of the right-hand side of (4)
is

ẏ(t) +
r∑

i=1

θqiδ(t− ti).

For an absolutely continuous function y(·) the weak derivative of y(·) coincides
with the classical derivative. Using equation (4), the initial value problem (1)

On the Maximum Principle for Impulsive Hybrid Systems 35

can be written in the following form

ẋ(t) = ẏ(t) +
r∑

i=1

θqiδ(t− ti) =
r∑

i=1

β[ti−1,ti)(t)fqi

(
t, y(t)

+
r∑

i=1

θqiη(t− ti), u(t)
)

+
r∑

i=1

θqiδ(t− ti)

=
r∑

i=1

β[ti−1,ti)(t)fqi(t, x(t), u(t)) +
r∑

i=1

θqiδ(t− ti)

Moreover, for t = 0 we obtain x(0) = y(0). The uniqueness arguments for solu-
tions of the initial value problems (1) and (3) complete the proof. ��
It is necessary to stress that the proposed representation (4) can also be consid-
ered as a transformation of values. This transformation eliminates state jumps at
the switching times ti ∈ τ from the original system (1). From the affine structure
of (4) we can deduce the following simple characterization of (4) with respect to
solutions of the above initial value problems.

Theorem 2. The transformation (4) from Theorem 1 is a bijective mapping
D′(0, tf) → W

1,∞
n (0, tf) and the solutions x(·) ∈ D′(0, tf) and y(·) ∈ W

1,∞
n (0, tf)

of the initial value problems (1) and (3) are related by equation (4).

Our results, namely, Theorem 1 and Theorem 2, give rise to the study of an
auxiliary hybrid system with autonomous location transitions. Recall the corre-
sponding definition.

Definition 3. A hybrid system with autonomous location transitions is a 6-
tuple

H = {Q,X , U,U , F,Sa},
where

– Q is a finite set of locations;
– X = {Xq}q∈Q is a collection of state sets with Xq ⊆ R

n;
– U ⊆ R

m is a control set;
– U is a set of admissible control functions;
– F = {fq}q∈Q is a family of vector fields fq : [0, tf] × Xq × U → R

n;
– Sa is a subset of Ξa, where

Ξa := {(q, y, q′, y′) , q, q′ ∈ Q, y ∈ Xq, y
′ ∈ Xq′}.

Moreover, a hybrid trajectory of H is a triple Y = (y(·), {qi}a, τa), where
y(·) : [0, T] → R

n and for each i = 1, . . . , r, there exists u(·) ∈ U such that:

– y(0) = x0 and yi(·) = y(·)|(ti−1,ti)
is an absolutely continuous function on

(ti−1, ti) continuously prolongable to [ti−1, ti], i = 1, ..., r;

36 V. Azhmyakov, S.A. Attia, and J. Raisch

– ẏi(t) = fqi(t, yi(t), u(t)) for almost all t ∈ [ti−1, ti], i = 1, ..., r;
– the following switching condition (yi(ti), yi+1(ti)) ∈ Sa

qi,qi+1
holds for each

value i = 1, ..., r − 1, where

Sa
q,q′ := {(y, y′) ∈ Xq ×Xq′ : (q, y, q′y′) ∈ Sa}

is a switching set from location q ∈ Q to location q′ ∈ Q with y = y′ meaning
the absence of jumps in the continuous state.

Under assumptions of Section 2, the switching sets Sa
qi,qi+1

can be characterized
by the following constructive conditions

mqi,qi+1(y(t) +
r∑

i=1

θqiη(t− ti)) = 0, i = 1, ..., r − 1,

where functions mqi,qi+1 defines the manifolds Mqi,qi+1 from Definition 2.
For the system described by the initial value problem (3), we now formulate

the following optimal control problem (see also [5,6,7])

minimize
r∑

i=1

∫ ti

ti−1

f0
(
t, y(t) +

r∑

i=1

θqiη(t− ti), u(t)
)
dt

over all trajectories Y of H.
(5)

We assume that the optimal control problem (5) has a solution

(uopt(·), θopt,Yopt(·)) ∈ U × R
n×r × W

1,∞
n (0, tf) ×Qr × [0, tf]r.

The following result establishes the relations between the two optimization prob-
lems (2) and (5).

Theorem 3. Suppose that problems (2) and (5) have both optimal solutions.
Under the assumptions A1 − A3, every optimal solution (uopt(·), θopt,Yopt) of
problem (5) defines the corresponding optimal solution (uopt(·), θopt,Xopt(·)) for
problem (2), where

{qi}a = {qi}, τa = τ,

xopt(t) = yopt(t) +
r∑

i=1

θopt
qi
η(t− topt

i)

Here topt
i is an element of the optimal sequence τopt and θopt

qi
are optimal jumps

in the original IHOCP (2).

Note that Theorem 3 is an immediate consequence of Theorem 2.
As evident from the main Definitions 1 and 3, the class of hybrid control

systems with autonomous location transitions is a subclass of impulsive hybrid
systems. Definition 1 describes hybrid dynamical systems with discontinuous

On the Maximum Principle for Impulsive Hybrid Systems 37

state trajectories. Moreover, the control variable of an impulsive hybrid system
IHS includes external inputs and magnitudes of the jumps in the state. On the
other hand, the proposed transformation (4) and the obtained results, namely,
Theorems 1-3 make it possible to reduce the general sophisticated IHOCP (2)
to the auxiliary optimal control problem of the type (5).

4 The Impulsive Hybrid Maximum Principle

For both hybrid systems (1) and (3) we introduce the extended control vector
v(·) := (u(·), θ), where θ := (θq1 , ..., θqr). An admissible extended control vector
v(·) satisfies the conditions

u(·) ∈ U , ||θqi || ≤ Θqi , i = 1, ..., r.

An optimal extended control vector is denoted by vopt(·) and the corresponding
elements of this vector are denoted by uopt(·) and θopt. Now we apply the known
MP [6,7].

Theorem 4. Let the functions f0, fqi be continuously differentiable and the
optimal control problem (5) be regular. Then there exist a function ψi(·) from
W

1,∞
n (0, tf) and a non-zero vector a = (a1 . . . ar−1)T ∈ R

r−1 such that

ψ̇i(t) = −∂Hqi(y
opt
i (t), vopt(t), ψ(t))

∂(y +
∑r

j=i θqj)
a. e. on (topt

i−1, t
opt
i),

ψr(tf) = 0,

(6)

and

ψi(t
opt
i) = ψi+1(t

opt
i) +

(

ai

∂mqi,qi+1(yopt(topt
i) +

∑r
j=i θ

opt
qj

)

∂(y +
∑r

j=i θqj)

)

,

i = 1, ..., r − 1,

(7)

Moreover, for every admissible control v(·) the following inequality is satisfied
(
∂Hqi(y

opt(t), vopt(t), ψ(t))
∂v

, (v(t) − vopt(t))
)

≤ 0

a.e. on [topt
i−1, t

opt
i], i = 1, ..., r

(8)

where

Hqi(y, v, ψ) :=
(
ψi, fqi

(
t, y +

r∑

i=1

θqiη(t− ti), u
)) − f0

qi

(
t, y +

r∑

i=1

θqiη(t− ti), u
)

is a ”partial” Hamiltonian for the location qi ∈ Q, ψ is an adjoint vector and
(·, ·) denotes the corresponding scalar product.

38 V. Azhmyakov, S.A. Attia, and J. Raisch

Using the one-to-one correspondence between the solutions xopt(·) and yopt(·)
of the initial value problems (1) and (3) established by Theorem 2 and the
transformation from Theorem 1, we are now able to formulate the necessary
optimality conditions for the original problem (2), namely the IHMP.

Theorem 5. Let functions f0, fqi be continuously differentiable and the optimal
control problem (2) be regular. Then there exist a function pi(·) from W

1,∞
n (0, tf)

and a non-zero vector b = (b1 . . . br−1)T ∈ R
r−1 such that

ṗi(t) = −∂Hqi(x
opt
i (t), vopt(t), p(t))

∂x
a. e. on (topt

i−1, t
opt
i),

pr(tf) = 0,
(9)

and

pi(t
opt
i) = pi+1(t

opt
i) +

(

bi
∂mqi,qi+1(xopt(topt

i))
∂x

)

, i = 1, ..., r − 1. (10)

Moreover, for every admissible control v(·) the following inequalities are satisfied
(
∂Hqi(xopt(t), vopt(t), p(t))

∂u
, (u(t) − uopt(t))

)

≤ 0
(
∂Hqi(xopt(t), vopt(t), p(t))

∂θ
, (θ − θopt)

)

≤ 0

a.e. on [topt
i−1, t

opt
i], i = 1, ..., r

(11)

where Hqi(y, v, p) :=
(
pi, fqi

(
t, x, u

)
+ θqiδ(t − ti)

) − f0
qi

(
t, x, u

)
is a ”partial”

Hamiltonian for the location qi ∈ Q, p is an adjoint vector and (·, ·) denotes the
corresponding scalar product.

Note that Theorem 5 is an immediate consequence of Theorem 4 and the above-
mentioned ono-to-one correspondence between the solutions of the two initial
value problems under consideration. Using the equivalence results from Section 3,
we obtain the necessary optimality conditions for the general IHOCP (2) as a
consequence of the MP for the auxiliary problem (5). The presented approach
allows to avoid the consideration of generalized functions, weak derivatives and
some related sophisticated mathematical techniques, which would be necessary
for a direct proof of the above IHMP.

When solving constrained optimal control problems based on some neces-
sary conditions for optimality one can obtain singular solutions. There are two
possible scenarios for a singularity: the irregularity of the Lagrange multiplier
associated with the cost functional [9,22] and the irregularity of the Hamilto-
nian. In the latter case the Hamiltonian is not an explicit function of the control
function during a time interval. Various supplementary conditions (constraint
qualifications) have been proposed under which it is possible to assert that the
Lagrange Multiplier Rule (and the corresponding Maximum Principle) holds in

On the Maximum Principle for Impulsive Hybrid Systems 39

”normal” form, i.e., that the first Lagrange multiplier is nonequal to zero. In
this case the corresponding minimization problem is called regular. We refer to
[1,19,23] for theoretical details. Note that some regularity conditions for gen-
eral constrained optimal control problems can be formulated as controllability
conditions for the linearized system [23].

Let us now simplify the Hamiltonian minimization condition (11). Using the
given formula for Hqi , we compute

∂Hqi(x
opt(t), vopt(t), p(t))

∂θ
= pi(t)δ(t− topt

i),

where t ∈ [topt
i−1, t

opt
i]. Then, the second inequality from Theorem 5 can be writen

in the following form
(
pi(t), θqi − θopt

qi

)
δ(t− topt

i) ≤ 0, t ∈ [topt
i−1, t

opt
i]. (12)

Integrating (12) over [topt
i−1, t

opt
i], we obtain
(
pi(t

opt
i), θqi − θopt

qi

) ≤ 0. (13)

Evidently, in the case pi(t
opt
i) = 0 for any index i = 1, ..., r, the optimal vector of

state jumps θopt cannot be found directly by globally minimizing Hqi . Note that
the partial Hamiltonian Hqi is an affine function of θqi . From this it is inferred
that in the case of an IHOCP we can have a new kind of singularity, namely, the
irregularity of the Hamiltonian with respect to the state jumps. On the other
hand, the presented inequality (13) is a condition for a ”bang-bang” control with
respect to the second part of the extended control vector v.

5 Numerical Aspects

In the previous section we derived a necessary optimality condition (Theorem 4
and Theorem 5) and formulated the Hamiltonian minimization condition in the
form of variational inequalities (8) and (11). It is well known that variational
inequalities play an important role in optimization theory. We refer to [8] for
details. For the numerical treatment of variational inequality see also [24]. It is
also well known that the variational inequality (11) is equivalent to the following
equation

vopt(t) = ΠW

(

vopt(t) − α
∂Hqi(xopt(t), vopt(t), p(t))

∂v
vopt(t)

)

, (14)

where α > 0 and ΠW is a projection operator on the set U ×Uθ. Here Uθ is the
set of admissible jumps defined by the inequalities ||θqi || ≤ Θqi , i = 1, ..., r. To
solve (14) one can use a variety of gradient-type algorithms with a projection
procedure. Let N be a sufficiently large positive integer number and

GN := {t0 = 0, t1, . . . , tN = T }

40 V. Azhmyakov, S.A. Attia, and J. Raisch

be a (possibly nonequidistant) partition of [0, T] with

max
0≤k≤N−1

|tk+1 − tk| ≤ ε

for a given accuracy constant ε. For every control function u(·) ∈ U we introduce
the piecewise constant control signals uN(·) such that

un(t) :=
N−1∑

k=0

ηk(t)uk, uk = u(tk), k = 0, . . . , N − 1, t ∈ [0, tf]

ηk(t) =

{
1, if t ∈ [tk, tk+1]

0, otherwise

Then for an approximate solution of the equation (14) we can consider the
following finite-dimensional gradient method

uN,0 ∈ U, θN,0 ∈ Uθ,

uN,(s+1) = Π1
U

(

uN,s − α1
∂Hqi(x

N,s(t), (uN,s(t), θN,s), pN,s(t))
∂u

uN,s

)

,

θN,s+1 = Π2
Uθ

(

θN,s − α2
∂Hqi(xN,s(t), (uN,s(t), θN,s), pN,s(t))

∂θ
θN,s

)

,

(15)

where α1, α2 are some positive constants, s = 0, . . . , xN,s(·) and pN,s(·) are solu-
tions of the corresponding initial and boundary value problems (1) and (9)-(11)
in the actual location qi ∈ Q. Here Π1 and Π2 are partial projection operators
on the set U and Uθ respectively. Moreover, the iteration of the extended control
vector is denoted as (uN,s(·), θN,s). Evidently, U and Uθ are convex sets. Note
that in every step of the gradient algorithm (15) we need to solve the corre-
sponding boundary-value problem from Theorem 5. Using inequalities (12) and
(13), we can rewrite the second inequality in (15) in the following (integrated)
form

θN,s+1tf = Π2
Uθ

(
θN,stf − α2p

N,s
i (topt

i)θN,s
)
. (16)

Clearly, the presented inequality (16) must be combined with an effective pro-
cedure for estimating the optimal switching time topt

i for all i = 1, ..., r. One can
use the iterative algorithm described in [5] for this purpose.

We refer to [29] for convergence properties of the general gradient-type algo-
rithms. Clearly, instead of piecewise constant control signals one can also use
possible approximations of higher order (piecewise linear and so on). Finally,
note that the gradient technique (15) is analogous to the gradient-based com-
putational approach proposed in [3,4,5,6,7] for optimization of hybrid systems
with autonomous transitions.

6 Concluding Remarks

The Hamilton minimization conditions from Theorem 4 and Theorem 5 are pre-
sented in the form of variational inequalities. This form is closely related to the

On the Maximum Principle for Impulsive Hybrid Systems 41

Weierstraß conditions for a strong minimum (see, e.g.,[22]) and to the gradient-
based computational approach studied in [3,4,5,6,7]. Finally note that the inequal-
ities conditions (11) from Theorem 5 make it possible to take into consideration
some effective methods for numerical treatment of variational inequalities.

Acknowledgements. The authors thank anonymous referees for valuable re-
marks and suggestions from which the final version of the paper greatly benefited.

References

1. Arutyunov, A.V., Aseev, S.M.: Investigation of the degeneracy phenomenon in the
maximum principle for optimal control with state constraints. SIAM Journal on
Control and Optimization 35, 930–952 (1997)

2. Attia, S.A., Alamir, M., Canudas de Wit, C.: Suboptimal control of switched non-
linear systems unde location and switching constraints. In: Proceedings of the 16th
IFAC World Congress, Prague (2005)

3. Attia, S.A., Azhmyakov, V., Raisch, J.: State jump optimization for a class of
hybrid autonomous systems. In: Proceedings of the 2007 IEEE Multi-conference
on Systems and Control, Singapore, pp. 1408–1413 (2007)

4. Attia, S.A., Azhmyakov, V., Raisch, J.: On gradient methods for hybrid systems
optimization (submitted, 2007)

5. Azhmyakov, V., Raisch, J.: A gradient-based approach to a class of hybrid optimal
control problems. In: Proceedings of the 2nd IFAC Conference on Analysis and
Design of Hybrid Systems, Alghero, pp. 89–94 (2006)

6. Azhmyakov, V., Attia, S.A., Gromov, D., Raisch, J.: Necessary optimality condi-
tions for a class of hybrid optimal control problems. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 637–640. Springer, Heidel-
berg (2007)

7. Azhmyakov, V.: Optimal control of hybrid and switched systems. In: Proceedings
of the IX Chetaev Conference ”Analytical Mechanics, Stability and Control of
Motion”, Irkutsk, pp. 308–317 (2007)

8. Baiocchi, C., Capello, A.: Variational and Quasivariational Inequalities: Applica-
tion to Free Boundary Problems. Wiley, New York (1984)

9. Berkovitz, L.D.: Optimal Control Theory. Springer, New York (1974)
10. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unifed framework for hybrid control:

model and optimal control theory. IEEE Transactions on Automatic Control 43,
31–45 (1998)

11. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Blaisdell Publishing Company,
Waltham (1969)

12. Caines, P., Shaikh, M.S.: Optimality zone algorithms for hybrid systems computa-
tion and control: From exponential to linear complexity. In: Proceedings of the 13th
Mediterranean Conference on Control and Automation, Limassol, pp. 1292–1297
(2005)

13. Caines, P., Shaikh, M.S.: Convergence analysis of Hybrid Maximum Principle
(HMP) optimal control algorithms. In: Proceedings of the 17th International Sym-
posium on Mathematical Theory of Networks and Systems, Kyoto, pp. 2083–2088
(2006)

14. Cassandras, C., Pepyne, D.L., Wardi, Y.: Optimal control of a class of hybrid
systems. IEEE Transactions on Automatic Control 46, 398–415 (2001)

42 V. Azhmyakov, S.A. Attia, and J. Raisch

15. Clarke, F., Vinter, R.: Optimal multiprocesses. SIAM Journal on Control and Op-
timization 27, 1072–1090 (1989)

16. Clarke, F.H., Vinter, R.B.: Applications of optimal multiprocesses. SIAM Journal
on Control and Optimization 27, 1048–1071 (1989)

17. Dmitruk, A.V., Kaganovivh, A.M.: The Hybrid Maximum Principle is a Conse-
quence of Pontryagin Maximum Principle,
http://www.optimization-online.org/

18. Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-time optimization for switched-
mode dynamical systems. IEEE Transactions on Automatic Control 51, 110–115
(2006)

19. Ferreira, M.M.A., Fontes, F.A.C.C., Vinter, R.B.: Nondegenerate necessary con-
ditions for nonconvex optimal control problems with state constraints. Journal of
Mathematical Analysis and Applications 233, 116–129 (1999)

20. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides.
Kluwer Academic Publishers, Dordrecht (1988)

21. Garavello, M., Piccoli, B.: Hybrid necessary priniple. SIAM Journal on Control
and Optimization 43, 1867–1887 (2005)

22. Ioffe, A.D., Tichomirov, V.M.: Theory of Extremal Problems. North Holland, Am-
sterdam (1979)

23. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin
(2007)

24. Kaplan, A., Tichatschke, R.: Stable Methods for Ill-Posed Variational Problems.
Akademie Verlag, Berlin (1994)

25. Lygeros, J.: Lecture Notes on Hyrid Systems. University of Cambridge, Cambridge
(2003)

26. Lygeros, J., Quincampoix, M., Rzezuchowski, T.: Impulse differential inclusions
driven by discrete measures. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.)
HSCC 2007. LNCS, vol. 4416, pp. 385–398. Springer, Heidelberg (2007)

27. Piccoli, B.: Hybrid systems and optimal control. In: Proceedings of the 37th IEEE
Conference on Decision and Control, Tampa, pp. 13–18 (1998)

28. Piccoli, B.: Necessary conditions for hybrid optimization. In: Proceedings of the
38th IEEE Conference on Decision and Control, Phoenix, pp. 410–415 (1999)

29. Polak, E.: Optimization. Springer, New York (1997)
30. Rantzer, A.: On relaxed dynamic programming in switching systems. In: IEE Pro-

ceedings on Control Theory and Applications, vol. 153, pp. 567–574 (2006)
31. Shaikh, M.S., Caines, P.E.: On the Hybrid Optimal Control Problem: Theory and

Algorithms. IEEE Trans. On Aut. Control 52, 1587–1603 (2007)
32. Sussmann, H.J.: A maximum principle for hybrid optimization. In: Proceedings of

the 38th IEEE Conference on Decision and Control, Phoenix, pp. 425–430 (1999)
33. Verriest, E., Delmotte, F., Egerstedt, M.: Optimal impulsive control of point delay

systems with refractory period. In: Proceedings of the 5th IFAC workshop on Time
Delay Systems, Leuven, Belgium (2004)

34. Verriest, E., Delmotte, F., Egerstedt, M.: Control of epidemics by vaccination. In:
Proceedings of the American Control Conference, Portland, pp. 985–990 (2005)

35. Xu, X., Antsaklis, P.J.: Optimal Control of Hybrid autonomous Systems with State
Jumps. In: Proceedings of the American Control Conference, Denver, pp. 5191–
5196 (2003)

36. Xu, X., Antsaklis, P.J.: Results and Perspectives on Computational Methods for
Optimal Control of Switched Systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003.
LNCS, vol. 2623, pp. 540–555. Springer, Heidelberg (2003)

http://www.optimization-online.org/

Algebraic Identification of MIMO SARX Models

Laurent Bako1,2 and René Vidal2

1 Ecole des Mines de Douai, Département Informatique et Automatique, 59508, Douai, France
2 Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21218, USA

Abstract. We consider the problem of identifying the parameters of a multiple-
input multiple-output switched ARX model with unknown number of submodels
of unknown and possibly different orders. This is a very challenging problem
because of the strong coupling between the unknown discrete state and the un-
known model parameters. We address this challenge by algebraically eliminating
the discrete state from the switched system equations. This algebraic procedure
leads to a set of hybrid decoupling polynomials on the input-output data, whose
coefficients can be identified using linear techniques. The parameters of each
subsystem can then be identified from the derivatives of these polynomials. This
exact analytical solution, however, comes with an important price in complexity:
The number of coefficients to be identified grows exponentially with the number
of outputs and the number of submodels. We address this issue with an alternative
scheme in which the input-output data is first projected onto a low-dimensional
linear subspace. The projected data is then fit with a single hybrid decoupling
polynomial, from which the classification of the data according to the generating
submodels can be obtained. The parameters of each submodel are then identified
from the input-output data associated with each submodel.

1 Introduction

Hybrid systems are mathematical models of physical processes which exhibit both con-
tinuous and discrete behaviors. Such systems can be thought of as a collection of dy-
namical submodels with interacting behavior resulting from switching among all the
submodels. The switches can be exogenous, deterministic, state-driven, event-driven,
time-driven or totally random. Given input-output data generated by such a system, the
identification problem consists of determining the parameters of each dynamical sub-
model as well as those of the switching mechanism (if any).

Prior Work. Most of the existing hybrid system identification methods have been
developed for the class of piecewise auto-regressive exogenous (PWARX) systems
[1,2,3,4,5,6], for which the regressor space is partitioned into polyhedral regions with
one ARX submodel associated with each polyhedron. For a comprehensive review of
hybrid system identification techniques, we refer the readers to the survey paper [7]. The
optimization based method [1] solves the identification problem as a linear or quadratic
mixed integer programming problem. The clustering based procedures [2,3,4] use clus-
tering to separate the data into different groups, linear regression to find the boundaries
of the polyhedral regions, and linear identification to determine a submodel for each
region. Other methods alternate between assigning the data to submodels and estimat-
ing simultaneously their parameters by performing a weights learning technique on a

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 43–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

44 L. Bako and R. Vidal

fuzzy parameterized model [8], solving a Minimum Partition into Feasible Subsystems
(MinPFS) problem [6] or resorting to Bayesian inference [5]. The algebraic approach
[9,10] is applicable to the class of Switched ARX (SARX) models, where the switching
mechanism can be arbitrary. This approach uses a single decoupling polynomial that
vanishes on all the data regardless of their generating submodel. Once this polynomial
is computed, the problem reduces to that of recovering the system parameters from the
derivatives of the polynomial evaluated at a subset of the regressors.

Unfortunately, most of the aforementioned identification methods can only deal
with single-input single-output (SISO) systems. While a few identification methods for
multiple-input multiple-output (MIMO) switched linear [11,12,13] and piecewise affine
[14,15,16] systems in state-space form do exist, they generally require the restrictive as-
sumption of a minimum dwell time in each discrete state. In addition, they often iterate
between data clustering and model estimation, which is quite sensitive to initialization.

Paper Contributions. We present an algebraic solution to the problem of identifying
MIMO SARX models. The orders of the submodels are unknown and possibly differ-
ent and the number of submodels is not available. Our method is based on a technique
called Generalized Principal Component Analysis (GPCA) [17], which can cluster data
into multiple subspaces by polynomial fitting and differentiation. In contrast to the iden-
tification of SISO SARX models [10], where only one vanishing polynomial is used to
embed the data lying in a mixture of hyperplanes, the identification of MIMO SARX
models involves a potentially unknown number nh ≥ 1 of independent homogeneous
polynomials that vanish on subspaces of co-dimension higher than one. In order to con-
veniently construct the regressors to which the embedding is applied, we first estimate
the orders of the submodels and the number of discrete states from a rank constraint on
the input-output data. Then, given the number of submodels, we compute the number
of vanishing polynomials nh and subsequently identify the ARX parameters from the
derivatives of these polynomials. However, the number of coefficients to be estimated
grows exponentially with the number of outputs and the number of submodels, thereby
making the method computationally expensive. We thus propose an alternative method
that first partitions the data according to each submodel using a single vanishing poly-
nomial. Given the classification of the data according to each submodel, the parameters
of each submodel are then identified using linear techniques.

2 Problem Statement

We consider a MIMO SARX model of the form

y(t) =
nλt∑

i=1

Ai
λt

y(t− i) +
nλt∑

i=0

Bi
λt

u(t− i) + e(t), (1)

where y(t) ∈ R
ny is the output vector, u(t) ∈ R

nu is the input vector, λt ∈ {1, . . . , s}
is the discrete state, nλt is the order of the j-th submodel for λt = j, s is the number

of submodels of the SARX system and
{
Ai

j

}i=1,··· ,nj

j=1,··· ,s ∈ R
ny×ny and

{
Bi

j

}i=1,··· ,nj

j=1,··· ,s ∈
R

ny×nu are the associated parameter matrices. The modeling error or process noise is

Algebraic Identification of MIMO SARX Models 45

represented by e(t) ∈ R
ny . In this representation, there may exist for certain models j

an integer δj < nj such that Bi
j = 0 for i > δj but we require that A

nj

j �= 0 for all j.

Given input-output data {u(t), y(t)}Nt=1 generated by an SARX system of the form
(1), and upper bounds on the system orders n̄ ≥ max(nj) and on the number of sub-
models s̄ ≥ s, the identification problem can be formulated as follows: identify the
number of submodels s, their orders {nj}sj=1 and their parameters

{
Ai

j , B
i
j

}i=1,··· ,nj

j=1,··· ,s .

3 Algebraic Identification of MIMO Switched ARX Systems

To begin with the identification procedure, let us define the parameter matrices

Γj =
[
B

nj

j A
nj

j · · · B1
j A1

j B0
j A0

j

] ∈ R
ny×(nj+1)(nu+ny),

Pj =
[
0ny×qj Γj

] ∈ R
ny×K , j = 1, · · · , s, (2)

and the regressor vector

xn(t) =
[
u(t− n)� y(t− n)� · · · u(t− 1)� y(t− 1)� u(t)� −y(t)�

]�∈ R
K , (3)

with n = maxj(nj), A0
j = Iny , qj = (n− nj)(nu + ny) and K = (n + 1) (nu + ny).

For now, assume that the data is not corrupted by noise i.e. e(t) = 0 in (1). Then, the
equations defining an SARX system of the form (1) may be re-written as

(P1xn(t) = 0) ∨ · · · ∨ (Psxn(t) = 0) , (4)

where ∨ refers to the logical or operator. To eliminate the discrete state from this set of
sny equations, similarly to the case of SISO SARX models [9], we take the product of
one equation per submodel. The advantage of doing so is that we obtain a set of poly-

nomial constraints
∏s

j=1

(
θ�ij

xn(t)
)

= 0, with θ�ij
= Pj(i, :) for i = 1, . . . , ny and

j = 1, . . . , s, that are satisfied by all the data regardless of their generating submodel.
Consequently, the equations in (4) are equivalent to a set of up to ns

y (not necessarily
independent) homogeneous polynomials pi1,··· ,is on xn(t) of the form

pi1,··· ,is

(
z
)

=
s∏

j=1

(
θ�ij

z
)

=
∑

hn1,··· ,nK

i1,··· ,is
zn1
1 · · · znK

K = h�
i1,··· ,is

νs

(
z
)
. (5)

Here, νs : R
K → R

Ms(K), with Ms(K) =
(
K+s−1

s

)
, is the Veronese map which

associates to z ∈ R
K the vector of all monomials of degree s, zs1

1 · · · zsK

K , s1 + · · · +
sK = s, organized in a descending lexicographic order. Therefore, each pi1,··· ,is is a
homogeneous polynomial of degree s with coefficient vector hi1,··· ,is ∈ R

Ms(K) and
all monomials of degree s in K variables stacked as a vector in νs(z) ∈ R

Ms(K).

3.1 Known Number of Submodels of Known and Equal Orders

In this subsection, we assume that the number of submodels s is known, and that the
orders of all the submodels are also known and equal to n. Note that the regressor

46 L. Bako and R. Vidal

vectors xn(t) generated by the hybrid model (1) lie in the union of the s subspaces
{null(Pj)}sj=1. A basis for each one of these subspaces can be estimated using the

GPCA algorithm [17] as follows. From the entire set {u(t), y(t)}Nt=1 of input-output
data available, construct the matrix of embedded regressor vectors

L(n, s) =
[
νs

(
xn(n + 1)

) · · · νs

(
xn(N)

)]� ∈ R
(N−n)×Ms(K). (6)

Then the coefficient vectors hi1,··· ,is of the vanishing polynomials must satisfy

L(n, s)hi1,··· ,is = 0. (7)

In order to solve for the parameters hi1,··· ,is from (7), one needs to compute the
null space of the embedded data matrix L(n, s). Note that hi1,··· ,is is the symmetric
part of the tensor product of an indexed set of rows

{
θij

}s

j=1
taken from {Pj}sj=1, i.e.

hi1,··· ,is = Sym (θi1 ⊗ · · · ⊗ θis) ∈ R
Ms(K), where⊗ denotes the Kronecker product.

The linear span of all these coefficient vectors gives a subspace of R
Ms(K) that we will

refer to as the space of homogeneous polynomials of degree s vanishing on the data.
By computing the null space of L(n, s), we obtain a basis for this subspace. In what
follows, we will denote such a basis of dimension nh as H =

[
h1 · · · hnh

]
. Notice that

the elements of this basis need not have the structure of a symmetric tensor product.
When the data are perfect and rich enough so that the dimension of the null space of

L(n, s) is exactly equal to nh, the matrix of polynomial coefficients H can be computed
as a basis for null(L(n, s)) using the Singular Value Decomposition (SVD) of L(n, s).
A basis for span(P�

λt
) can then be computed by differentiating the polynomials defined

by H at xn(t). The parameter matrix Pλt of the submodel generating xn(t) can then
be computed as the basis of span(P�

λt
) with an identity matrix at the end, as defined in

(2). As we do not need to compute the parameter matrices at each time instant, we can
alternatively choose s regressors zj ∈ null(Pj) (see §4.1) and obtain the s parameter
matrices {Pj}sj=1 from the derivatives of the vanishing polynomials at {zj}sj=1. Algo-
rithm 1. gives a basic version of the GPCA algorithm [17] for computing the system
parameter matrices {Pj}sj=1 from input-output data in a deterministic framework.

In practice the input-output data may be affected by noise. In this case, even with
the assumption that the orders and the number of submodels are known, the matrix
L(n, s) is likely to be full rank and so, one may not be able to get the right basis H

Algorithm 1. (Identification of MIMO SARX systems using the GPCA algorithm)
Step 1: Compute a basis H for the null space of L(n, s) by SVD and let the corresponding basis

of vanishing polynomials of degree s be Q(z) =
[
p1(z) · · · pnh(z)

]
= νs(z)�H .

Step 2: Let
∇Q(z) =

[
∂p1(z)

∂z
· · · ∂pnh

(z)

∂z

]
=

(
∂νs(z)

∂z

)�
H.

Step 3: Obtain by SVD a basis Tj ∈ R
K×ny for span(P�

j) as the range space of ∇Q(zj),
j = 1, · · · , s, where zj ∈ null(Pj) but is not in null(Pi), for all i �= j.

Step 4: Let T�
j =

[
T 1

j T 2
j

]
be a partition of T�

j such that T 2
j ∈ R

ny×ny . T 2
j is necessarily

invertible and we can get Pj =
(
T 2

j

)−1
T�

j ∈ R
ny×K , j = 1, · · · , s.

Algebraic Identification of MIMO SARX Models 47

of polynomials. Therefore, it is desirable to know in advance the dimension nh of this
basis. In this way, H could be approximated by the right singular vectors of L(n, s) that
correspond to its nh smallest singular values. But since the matrices Pj are not known, it
is not easy to compute nh in a general framework. However, under certain assumptions
on the intersection between the null spaces of the matrices Pj , we can derive a closed
form formula for nh as outlined in Proposition 1.

Proposition 1. Let H be the symmetric tensor product of a set of matrices B1, . . . , Bs

in R
K×m. That is, H is the matrix whose columns are all vectors in R

Ms(K) of the form
Sym (bi1 ⊗ · · · ⊗ bis), where bi1 , . . . , bis are, respectively, columns of B1, · · · , Bs. If∑s

i=1 rank(Bi)− s < K and for all {i1, · · · , iq} ⊂ {1, · · · , s}, q ≤ s,

rank(
[
Bi1 , · · · , Biq

]
) = min

(
K,

q∑

j=1

rank(Bij)
)
, (8)

then rank(H) =
∏s

j=1 rank(Bj).

Assumption (8) of Proposition 1 corresponds to an important property of the sub-
space arrangement ∪s

j=1 null(B�
j) that is known as transversality. This property states

that the dimension of the intersection of any subset of subspaces in the arrangement
∪s

j=1 null(B�
j) is as small as possible [18]. Under this assumption, the number of inde-

pendent homogeneous polynomials that vanish on ∪s
j=1 null(B�

j) is equal to rank(H).
If the same property holds for ∪s

j=1 null(Pj) and if (n + 1) (nu + ny) > (s− 1)ny ,
then it follows from Proposition 1 that nh is given by nh =

∏s
j=1 rank(Pj) = ns

y since
rank(Pj) = ny for all j. Although our formula is less general than the one derived in
[19], it is much easier to compute. In the rest of the section, we will assume that the
conditions of Proposition 1 hold, unless stated otherwise.

To summarize, given n and s, the parameter matrices Pj follow directly from Al-
gorithm 1.. If noise is present in the data, the same algorithm still applies but with the
difference that the basis H is approximated by the singular vectors of L(n, s) that are
associated with its nh = ns

y smallest singular values.

3.2 Unknown Number of Submodels of Unknown and Possibly Different Orders

Consider now the more challenging case where neither the orders nor the number of
submodels are known and the orders are possibly different. Consequently, nh is also
unknown. This means that we need to derive all the parameters of the SARX model
(1) directly from the data. In order to properly estimate these parameters, we shall first
identify the orders and the number of submodels. Once this task is accomplished, Al-
gorithm 1. can be applied to a certain submatrix of L(n, s) that will be defined later.

Before proceeding further, we need to introduce some notations. For r and l, positive
integers, we use the same definitions for xr(t) and L(r, l) as before. Without loss of
generality, we denote by n = n1 ≥ n2 ≥ · · · ≥ ns the orders of the different submodels
that constitute the SARX system and let ρ =

[
n1 · · · ns

] ∈ N
s be a vector consisting

of all the orders enumerated in a non-increasing order. It follows from (2) and (3) that
the equations defining the SARX model (1) may be re-written as

48 L. Bako and R. Vidal

(Γ1xn1(t) = 0) ∨ · · · ∨ (Γsxns(t) = 0) , (9)

where xnj (t) ∈ R
Kj , Kj = (nj + 1)(nu +ny) and Γj ∈ R

ny×Kj for j = 1, . . . , s. As
before, we may eliminate ∨ in (9) by taking the product of one equation per submodel.
This leads to a set of polynomial equations on the input-output data of the form

(
θ�1 xn1(t)

) · · · (θ�s xns(t)
)

= h�ηρ

(
xn(t)

)
, (10)

where θ�j ∈ R
1×Kj is a row of Γj , for j = 1, . . . , s, and ηρ

(
xn(t)

)
is a vector obtained

from νs (xn(t)) after removing some of the monomials. ηρ

(
xn(t)

)
does not contain all

the monomials, because nj ≤ n for all j = 1, . . . , s, hence xnj (t) is a sub-vector of
xn(t), and so the product in (10) does not give rise to all the monomials in νs (xn(t)).

In order to define the set of monomials that are to be removed, let z = xn(t) and
consider a monomial zα1

1 · · · zαK

K , α1 + · · · + αK = s. From the definition of xn(t)
in (3), it can be seen that the element z

αj

j is contained in a monomial of ηρ

(
xn(t)

)
if

the number of regressors xni(t) with length Ki ≥ K1 − j + 1 (that is the number of
regressors where zj shows up) is greater or equal to αj . Therefore, in order for the whole
monomial zα1

1 · · · zαK

K to be included in ηρ

(
xn(t)

)
, we must have that kj ≥ αj for all

j = 1, · · · , K , where kj = card ({i : Ki ≥ K1 − j + 1}). In view of this analysis, it
can shown that the set of monomials to be removed can be indexed by the set Iρ of
exponents (α1, · · · , αK) satisfying α1 + · · ·+ αj > kj for j ≤ K1 −Ks.

With this notation, we define a new embedded data matrix in R
(N−n)×(Ms(K1)−|Iρ|)

Vρ :=
[
ηρ

(
xn(n + 1)

)
, · · · , ηρ

(
xn(N)

)]�
(11)

that is simply the matrix L(n, s) with |Iρ| missing columns (n = ρ(1)). As before, the
null space of Vρ contains the coefficients of the set of vanishing polynomials. However,
we may not compute such coefficients directly, because we neither know the system
orders ρ nor the number of models s. As it turns out, both ρ and s can be computed
from the data under the assumption that the data are rich enough. More specifically:

Definition 1. We say that the data {u(t), y(t)}Nt=1 are sufficiently exciting for the SARX
system (1) if the null space of Vρ in in (11) is of dimension exactly equal to nh, i.e.

rank(Vρ) = Ms(K1)− nh − |Iρ| . (12)

Notice that Definition 1 assumes implicitly that all the discrete states have been suf-
ficiently visited. If we denote the matrix of data vectors related to the discrete state j by

X̄j =
[
xn(tj1) · · · xn(tjNj

)
]
, where the tjk, k = 1, . . . , Nj , are the time instants t such

that λt = j, then X̄j must span completely null(Pj). Otherwise, null(Pj) may not be
identifiable from ∪s

j=1 null(Pj). We have the following result.

Theorem 1. Let s̄ ≥ s be an upper bound on the number of submodels and let r be an
integer. Assume that the data are sufficiently exciting in the sense of Definition 1. Assume
further that Nj � Ms̄(K1) for all j = 1, . . . , s. Then dim

(
null(L(r, s̄))

)
= 0 if and

only if r < max (nj).

Algebraic Identification of MIMO SARX Models 49

Proof. Assume r < n1 and let q be the number of submodels whose orders are less than
or equal to r. LetX =

[
xr(to1), · · · , xr(toNo

)
] ∈ R

f×No , with f = (r+1)(nu +ny), be
a matrix whose columns are regressor vectors formed by data generated by the (s− q)
submodels of orders nj > r. Since the data are sufficiently exciting,X must be full row
rank. It follows from Lemma 5 in [20] that rank(νs̄(X)) = min(No, Ms̄(f)) = Ms̄(f),
where νs̄ (X) =

[
νs̄(xr(to1)), · · · , νs̄

(
xr(toNo

)]
. Consequently, L(r, s̄) is full column

rank, because it is equal to a row permutation of
[
νs̄(X), νs̄(Xs−q+1), · · · , νs̄(Xs)

]�
.

Assume now that r ≥ max(nj). Then the row nullity of each data matrix Xj is at
least one. This means that, for all j = 1, . . . , s, there exists a nonzero bj ∈ R

f satisfying
b�j Xj = 0. One can then verify that Sym(b1⊗· · ·⊗bs⊗as+1⊗· · ·⊗as̄) ∈ null(L(r, s̄))
for some ai ∈ R

f . Hence, dim(null(L(r, s̄))) ≥ 1. �
Let s̄ ≥ s and n̄ ≥ max(nj) be upper bounds on the number of submodels and their
orders respectively. Thanks to Theorem 1, we can estimate both the number of sub-
models s and the orders {nj} from the rank of the embedded data matrix L(r, s̄). The
basic idea is that, whenever r is less than one of the orders, there is no polynomial of
degree s̄ ≥ s vanishing on the entire data set, provided that N � s and that the data is
sufficiently exciting. Therefore, as shown in Algorithm 2., we can obtain the first order
n1 by setting ρ̄ =

[
r · · · r

] ∈ N
s̄, so that Vρ̄ = L(r, s̄), and then start decreasing r

from r = n̄ to r = 0 until null(Vρ̄) = {0} for some r∗. We then have n1 = r∗ + 1.
Given n1, we can set ρ̄ =

[
n1 r · · · r

] ∈ N
s̄ and repeat the procedure starting from

r = n1 and so on, until all the orders of all the s submodels are identified. Notice that,
once all the orders of the s submodels have been correctly estimated, r will go to zero
for the s̄ − s remaining presumed submodels. Therefore, if one assumes that nj > 0
for all j = 1, . . . , s, then the number of submodels can be estimated as the number of
orders nj strictly greater than zero.

One advantage of Algorithm 2. is that it does not require prior knowledge of the di-
mension nh of the space of vanishing polynomials. This is because, if all the orders are
correctly identified, then the sufficiency of excitation condition in Definition 1 guaran-
tees that the dimension of the null space of Vρ is exactly equal to nh. Given nh, we can
use Algorithm 1. to compute a basis Hρ of null(Vρ). We can then complete that basis
with zeros to form a matrix H ∈ R

Ms(K1)×nh such that the rows indexed by Iρ are
null. The remaining steps of Algorithm 1. are then performed without additional change.

3.3 Implementation of Algorithm 2 with Noisy Data

The algorithm proposed in the previous subsection will operate correctly in the absence
of noise. When dealing with noisy data, however, the multiple rank tests required may
cause Algorithm 2. to fail, because the involved matrices may always be full rank. In
this subsection, we discuss some possible improvements of the algorithm in order to
enhance its ability to deal with noisy data.

Recall first that the purpose of the rank test is to check whether or not the dimension
of the null space of Vρ̄ is zero for a given vector of orders ρ̄. Therefore, we do not need
to know the rank of Vρ̄ exactly. We just need a measure of how likely it is that there
exists a nonzero vector hρ̄ satisfying Vρ̄hρ̄ = 0.

One possible way of approaching this problem is to inspect the smallest singular
value of Vρ̄ for different vectors ρ̄. For example, to compute n1, let ρ̄1,l =

[
l · · · l

] ∈

50 L. Bako and R. Vidal

Algorithm 2. (Identification of the orders and the number of submodels)
Set jo ← 1, nj ← n̄ for j = 1, . . . , s̄,
K ← (n̄ + 1) (nu + ny), V ← L(n̄, s̄),

1. Determine the maximum order n1 using Theorem 1
– While rank(V) < Ms̄(K), do
• nj ← n1 − 1 for j = 1, . . . , s̄
• K ← (n1 + 1) (nu + ny)
• V ← last Ms̄(K) columns of V

– EndWhile
– Obtain the maximum order as n1 ← n1 + 1 and then set nj ← n1 for j = 1, . . . , s̄
– Set V ← L(n1, s̄) and K ← (n1 + 1) (nu + ny)

2. Find the remaining orders nj , j = 2, . . . , s̄ using Theorem 1
– jo ← jo + 1
– While rank(V) < Ms̄(K)− |Iρ̄|
• nj ← njo − 1 for j = jo, . . . , s̄
• ρ̄← [

n1 · · · ns̄

]

• Compute Iρ̄ and remove the corresponding columns of V
– EndWhile
– Obtain the order njo : nj ← njo + 1 for j = jo, . . . , s̄
– Set V ← L(n1, s̄)

3. Go to step 2 until jo = s̄ or until one gets njo = 0
4. Determine the number of submodels s = card ({j : nj > 0})

N
1×s̄, l = 0, . . . , n̄, and define Wρ̄1,l

.= 1
N−n̄Vρ̄1,l

V �
ρ̄1,l

as the matrix obtained from
1

N−n̄L(n̄, s̄)�L(n̄, s̄) by removing its columns and rows indexed by Iρ̄1,l
. Denote by

σ1,l, the smallest eigenvalue of the matrix Wρ̄1,l
for l = 0, · · · , n̄. According to Theo-

rem 1, Wρ̄1,l
has at least one nonzero vector in its null space for all l ≥ n1 and hence,

σ1,n1 ≈ · · · ≈ σ1,n̄ ≈ ε1,n1

.= 1
n̄−n1

(σ1,n1+1 + · · ·+ σ1,n̄) and are small compared
to σ1,0, · · · , σ1,n1−1. Therefore, to determine n1, one needs to look for the smallest
integer l ∈ {0, · · · , n̄} for which σ1,l ≈ ε1,l in a certain sense.

Following this procedure, Algorithm 2. can be implemented in a more efficient way
for determining the orders. With n̂0 = n̄, and given a user-defined decision threshold
ε0, the following algorithm directly computes the orders starting from j = 1 through
j = s̄, by avoiding the rank tests required in Algorithm 2..

ρ̄j,l =
[
n̂1 · · · n̂j−1 l · · · l

]
, l = 0, · · · , n̂j−1,

σj,l = min λ
(
Wρ̄j,l

)
, l = 0, · · · , n̂j−1,

εj,l =
1

n̂j−1 − l

(
σj,l+1 + · · ·+ σj,n̂j−1

)
, l = 0, · · · , n̂j−1,

Sj = {l = 0, · · · , n̂j−1 : |σj,l − εj,l| < εo} ,

n̂j =
{

min {l : l ∈ Sj} , if Sj �= ∅
n̂j−1 otherwise,

j ← j + 1,

Algebraic Identification of MIMO SARX Models 51

where λ(Wρ̄j,l
) is the set of all eigenvalues of the matrix Wρ̄j,l

. In the notation such
as ρ̄j,l, the index j indicates which submodel’s order is being estimated while l is a
possible value of the order sought.

4 Complexity Reduction Using a Projection Approach

The algebraic algorithm proposed in the previous section becomes computationally
prohibitive when the dimensions of the SARX system are large. This is because the
regressor xn(t) ∈ R

K1 constructed from all ny outputs is large, and so it induces an
exponential increase in Ms(K1), the dimension of the space of homogeneous polyno-
mials space of degree s in K1 variables. Moreover, the number nh of polynomials to be
estimated is unknown, even when the orders and the number of submodels are given,
unless one makes certain assumptions.

In this section, instead of attempting to compute a potentially large and unknown
number of polynomials, we propose a computationally simpler method to identify the
model parameters. The idea is to transform the MIMO system into a multiple-input
single-output (MISO) system, and hence use only one decoupling polynomial to parti-
tion the data according to the different ARX submodels. Once all the data are correctly
partitioned, the SARX system identification problem reduces to a standard regression
problem for each discrete state.

To that end, notice that, without loss of generality, system (1) can transformed into
the MISO system1

y(t) =
nλt∑

i=1

ai
λt

y(t− i) +
nλt∑

i=0

F i
λt

u(t− i) + e(t), (13)

where the
{
ai

j

}j=1,··· ,s
i=1,··· ,nj

are the coefficients of the polynomial znj−a1
jz

nj−1−· · ·−a
nj

j

that encodes the poles of the jth submodel as its roots.

Let γ =
[
γ1 · · · γny

]�
be a vector of real nonzero numbers and let yo(t) =

γ�y(t) ∈ R be a weighted combination of all the system outputs. Then, (13) can be
transformed into the following single output system

yo(t) =
nλt∑

i=1

ai
λt

yo(t− i) +
nλt∑

i=0

γ�F i
λt

u(t− i) + γ�e(t). (14)

Remark 1. To the purpose of separating the data according to their generating sub-
models, one may be tempted to consider a single output yj(t) from (13) instead of a
combination of all the ny outputs. The problem with proceeding in this way is that, af-
ter pole-zero cancellation, the MISO system with output yj(t) may be common to many
different modes and so, we may not be able to differentiate between those modes. By
choosing a random linear combination of the outputs, such degenerate situations can
be avoided almost surely.

1 Note that the orders nj in (13) may be larger than the ones in (1). By an abuse of notation, we
will keep using the same notation for the orders.

52 L. Bako and R. Vidal

By introducing the blended output yo(t), we obtain only one hybrid decoupling poly-
nomial g(z) that is easier to deal with. However, at the same time the parameters of
different submodels are combined. This raises the question of whether this combination
of outputs preserves the distinguishability of the different submodels that constitute the
SARX system. In fact, depending on the weights vector γ, two submodels which were
initially distinct may reduce to the same submodel in (14). To analyze this risk, let

Fj =
[
F

nj

j · · · F 1
j F 0

j

] ∈ R
ny×(nj+1)nu and aj =

[
a

nj

j · · · a1
j

]� ∈ R
nj . (15)

It follows from (14) that two different modes i and j become indistinguishable after
the previous transformation by γ, if they have the same order (ni = nj), the same
dynamics (ai = aj) and

(
F�

i − F�
j

)
γ = 0, i.e. when γ lies in null(F�

i − F�
j). If the

Fj were known one could readily select a γ which does not satisfy this condition. But
these matrices are precisely what we are looking for. The question is, without knowing
the Fj , how can we choose γ in such a way that for any i �= j, γ /∈ null(F�

i − F�
j).

In fact, it is not hard to show that when γ is drawn randomly, this condition is satisfied
with probability one. Therefore, two submodels that are distinct in the original system
(1) remain so after the transformation. However, the separability of the modes, which
is a measure of how close the different submodels are, may be affected.

From (14), let us redefine the parameter vector θ̄j and the regressor x̄n(t) as

θ̄j =
[
0�qj

γ�F
nj

j a
nj

j · · · γ�F 1
j a1

j γ�F 0
j 1

]� ∈ R
K , j = 1, · · · , s (16)

x̄n(t) =
[
u(t− n)� yo(t− n) · · · u(t)� −yo(t)

]� ∈ R
K , (17)

where K = (n + 1)(nu + 1). One can view the smallest singular value σ0(X(γ)) of
X(γ) =

[
x̄n̄(n̄ + 1) · · · x̄n̄(N)

]
, as a certain measure of how likely the data can be

fitted to one subspace of R
K̄ . It is in fact intuitive that the more distinguishable the

subspaces are, the larger σ0(X(γ)) should be. Therefore, to preserve the separability of
the modes, we suggest to choose γ for example as γ∗ = argmaxγ:‖γ‖≤1

σ0(X(γ))
σmax(X(γ)) ,

where σmax(X(γ)) is the largest singular value of X(γ). Since this could be a hard
optimization problem, an alternative is to choose several candidate γs in such a way
that σ0(X(γ)) is in a certain proportion of σmax(X(γ)).

Once γ has been chosen, we can proceed with the identification procedure. As before,
we eliminate the dependency of the system equation on the switches by considering the
following decoupling polynomial which vanishes on the data independently of their
generating submodel:

g
(
x̄n(t)

)
=

s∏

j=1

(
θ̄�j x̄n(t)

)
= h�νs

(
x̄n(t)

)
= 0. (18)

Solving (18) is a particular and simpler case (ny = 1) of the case studied in section 3.
The procedure for the determination of θ̄j is roughly the same:

1. Solve for the orders and number of submodels using Algorithm 2..
2. Obtain hρ as any nonzero element in null(Vρ) (which is expected to be one dimen-

sional when the data are sufficiently exciting), and

Algebraic Identification of MIMO SARX Models 53

3. Complete hρ with zeros to form a h ∈ R
Ms(K) so that the entries of h defined by

Iρ are zero.

Given h, the parameters may be obtained from the derivative of g as shown in [9]:

θ̄j =
∇g(zj)

e�̄
K
∇g(zj)

, j = 1, . . . , s, (19)

where zj is a point in Sj \∪s
i�=jSi, Sj =

{
x ∈ R

K : θ̄�j x = 0
}

, eK is a vector of length
K with 1 in its last entry and 0 everywhere else.

4.1 Classification of the Data

The computation of θ̄j for each submodel, involves finding a point lying in Sj but not
in any other Si, i �= j = 1, . . . , s. We find a point in Sj as zj = x̄n(τj), where

τj = arg min
t∈Dj

∣∣∣∣∣
∇g (x̄n(t))� x̄n(t)

e�K∇g (x̄n(t))

∣∣∣∣∣ , (20)

D1 = {t :∇g(x̄n(t)) �=0} andDj = {t :∇g(x̄n(t)) �=0, θ̄�i x̄n(t) �= 0, i = 1, ..., j−1},
for j > 1. Then one can compute the parameters by (19) using zj = x̄n(τj).

Recall that recovering the vectors
{
θ̄j

}s

j=1
associated with the blended output yo(t)

is only an intermediate step in achieving the goal of computing the parameters aj and
Fj that define each subsystem of the original system (1). Now, from the parameters θ̄j

obtained, we can determine the discrete state of (14) which is the same as that of (1)
and then, compute finally the system sought. In order to discard possible outliers in the
data we set up a performance bound ε < 1 to define the following decision rules:

If min
j

Δ(θ̄j , x̄n(t)) > ε ‖x̄n(t)‖ , then λt is undecidable.

If min
j

Δ(θ̄j , x̄n(t)) ≤ ε ‖x̄n(t)‖ , then λt = arg min
j

Δ
(
θ̄j , x̄n(t)

)
.

Here Δ(θ̄j , x̄n(t)) =

∣∣θ̄�j x̄n(t)
∣∣

∥∥θ̄j

∥∥ is the distance from the point x̄n(t) to the linear

hyperplane Sj defined by its normal vector θ̄j . We define Xj = {t > n̄ : λt = j}
=

{
tj1, · · · , tjNj

}
, j = 1, . . . , s as the set of time instances in which the regressors

are generated by the submodel j.

4.2 Estimation of the Submodel Parameters

Based on the results of the previous classification, we know which data correspond to
each generating mode. Therefore, we are left with determining the parameters of each
mode j from the data indexed by Xj . To begin with, consider a single linear submodel
j of order nj from (1). For any t ∈Xj , let us define

Φy
j (t) :=

[
y(t− 1) · · · y(t− nj)

] ∈ R
ny×nj , (21)

φu
j (t) :=

[
u(t)� · · · u(t− nj)�

]� ∈ R
(nj+1)nu . (22)

54 L. Bako and R. Vidal

The parameters of the submodels of system (13) can be computed as the solution to the
following linear regression problem

y(t) =
[
Φy

j (t) φu
j (t)� ⊗ Iny

][aj

vec(Fj)

]
+ e(t), t ∈ Xj . (23)

This equation is obtained by making use of the identity vec(AXB) = (B� ⊗
A)vec(X), where the symbol ⊗ refers to the Kronecker product and vec(·) is the vec-
torization operator. Notice that in the whole procedure, the vectors aj , j = 1, . . . , s, are
estimated twice. The first estimate (obtained from θ̄j) is considered as a raw estimate
that is required here just to be able to discriminate among the different modes. The
second estimate from (23) is expected to be more accurate.

5 Numerical Results

We test the performance of the proposed approach on an SARX system composed of
two submodels of orders 2 and 1, with nu = 1 input and ny = 2 outputs. The system
equations are given by

y(t) = a1
jIny y(t− 1) + a2

jInyy(t− 2) + b0
ju(t) + b1

ju(t− 1) + b2
ju(t− 2), (24)

where a1
j and a2

j , j = 1, 2, are scalar coefficients and b0
j , b1

j , b2
j are vectors of dimension

ny = 2. The coefficients a2
j and b2

j are zero for the second submodel.
The system is driven by a zero-mean white Gaussian noise input with unit standard

deviation and switches periodically from one discrete state to another every 10 samples.
The output is corrupted with additive noise with a signal-to-noise ratio (SNR) of 30 dB.

The parameters of the two ARX models are given by the matrices

P1 =

[
1.3561, 0

0, 1.3561
0.6913, 0,

0, 0.6913,
0

1.3001
0.3793
1.8145

0.2639
0.7768

]
, (25)

P2 =
[
0.9485, 0

0, 0.9485
0, 0
0, 0

1.7661
0

2.9830
0.9106

0
0

]
, (26)

which are defined with respect to the regressor vector

[
y(t− 1)� y(t− 2)� u(t) u(t− 1) u(t− 2)

]�
.

Given input-output data generated by this system on a time window of size 1500,
we are interested in extracting the number of constituent submodels, the orders of these
submodels and the parameters that describe them. To demonstrate the performance of
our algorithm we carried out a Monte-Carlo simulation of size 1000 with the following
user-defined set of parameters: n̄ = 3 and s̄ = 3. For a threshold of ε0 = 10−3 in the
algorithm of §3.3, the estimation of the orders of both submodels is realized with 100%

Algebraic Identification of MIMO SARX Models 55

0.995 0.996 0.997 0.998 0.999 1
0

100

200

300

400

500

600

700

800

900

1000

maximum subspace angle (cosine)

N
um

be
r o

f s
im

ul
at

io
ns

(a) MIMO GPCA method

0.995 0.996 0.997 0.998 0.999 1
0

100

200

300

400

500

600

700

800

900

1000

maximum subspace angle (cosine)

N
um

be
r o

f s
im

ul
at

io
ns

(b) MISO GPCA method

Fig. 1. Histograms of the maximum subspace angle between span(H) and span(Ĥ)

of successes. Since we provided s̄ = 3, the vector of orders is obtained as ρ̂ =
[
2 1 0

]
.

The means of the estimates P̂1 and P̂2 obtained across all the simulations are given by:

P̂1 =

[
1.3558, 0.0043
−0.0012, , 1.3558

0.6897, 0.0036
−0.0021, 0.6907

0.0056
1.3031

0.3937,
1.8208

0.2639
0.7753

]
, (27)

P̂2 =
[

0.9480, 0.0045
−0.0003, 0.9479

−0.0005, 0.0050
−0.0001, −0.0006

1.7710,
−0.0012

2.9869,
0.9081

0.0050
−0.0018

]
. (28)

Figure 1 shows a histogram with the maximum angle between the column space of
the hybrid parameter matrix H and that of its estimate Ĥ . Notice that for all simulations

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

Errors: 1st submodel

N
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
s

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

Errors: 2nd submodel

N
u
m

b
e
r

o
f
s
im

u
la

ti
o
n
s

(a) MIMO GPCA method

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

Errors: 1st submodel

N
um

be
r o

f s
im

ul
at

io
ns

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

Errors: 2nd submodel

N
um

be
r o

f s
im

ul
at

io
ns

(b) MISO GPCA method

Fig. 2. Histograms of the errors
∥∥P1 − P̂1

∥∥
2
/
∥∥P1

∥∥
2

and
∥∥∥P2 − P̂2

∥∥∥
2
/ ‖P2‖2

56 L. Bako and R. Vidal

the cosine of this angle is larger than 0.99, implying a strong correlation between H
and its estimate. For the second identification method, the result is much better since H
consists of only one vector.

Figure 2 shows the relative errors between the true parameter matrices Pj and the
estimates P̂j obtained by our algorithm. Observe that the percentage of simulations that
give errors less than 0.05 is about 66% for the first submodel and about 85% for the
second submodel. These percentages improve significantly (86% and 93%) when we
use the classification approach described in Section 4.

6 Conclusions

We have presented an algebraic approach to the identification of MIMO SARX models
with unknown number of submodels of unknown and possibly different orders. The
number of submodels and their orders are estimated from a rank constraint on the input-
output data, and the model parameters using a subspace clustering technique called
GPCA. As the complexity of the method is exponential on the number of outputs and
submodels, we proposed a simpler approach that applies GPCA to a MISO system built
by projecting the original data. Future work includes developing recursive identification
algorithms for MIMO SARX systems, such as the one in [20] for SISO systems.

Acknowledgements. The authors thank Mr. Dheeraj Singaraju for his help in proof-
reading this paper. This work has been funded by BOURSE-MOBILITE from the Re-
gional Council of Nord-Pas-de-Calais (France), by Johns Hopkins startup funds, and by
grants NSF EHS-05-09101, NSF CAREER IIS-04-47739 and ONR N00014-05-1083.

References

1. Roll, J., Bemporad, A., Ljung, L.: Identification of piecewise affine systems via mixed-
integer programming. Automatica 40(1), 37–50 (2004)

2. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique for the
identification of piecewise affine systems. Automatica 39(2), 205–217 (2003)

3. Ferrari-Trecate, G., Muselli, M.: Single-linkage clustering for optimal classification in piece-
wise affine regression. In: IFAC Conference on the Analysis and Design of Hybrid Systems
(2003)

4. Nakada, H., Takaba, K., Katayama, T.: Identification of piecewise affine systems based on
statistical clustering technique. Automatica 41(5), 905–913 (2005)

5. Juloski, A., Weiland, S., Heemels, M.: A Bayesian approach to identification of hybrid sys-
tems. IEEE Transactions on Automatic Control 50(10), 1520–1533 (2005)

6. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to piecewise
affine system identification. IEEE Transactions on Automatic Control 50(10), 1567–1580
(2005)

7. Paoletti, S., Juloski, A., Ferrari-Trecate, G., Vidal, R.: Identification of hybrid systems: A
tutorial. European Control Journal (2007)

8. Ragot, J., Mourot, G., Maquin, D.: Parameter estimation of switching piecewise linear sys-
tems. In: Conference on Decision and Control (2003)

Algebraic Identification of MIMO SARX Models 57

9. Vidal, R., Soatto, S., Ma, Y., Sastry, S.: An algebraic geometric approach to the identification
of a class of linear hybrid systems. In: Conference on Decision and Control, pp. 167–172
(2003)

10. Ma, Y., Vidal, R.: Identification of deterministic switched ARX systems via identification
of algebraic varieties. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp.
449–465. Springer, Heidelberg (2005)

11. Bako, L., Mercere, G., Lecoeuche, S.: Online subspace identification of switching systems
with possibly varying orders. In: European Control Conference (2007)

12. Huang, K., Wagner, A., Ma, Y.: Identification of hybrid linear time-invariant systems via
subspace embedding and segmentation. Conference on Decision and Control 3, 3227–3234
(2004)

13. Verdult, V., Verhaegen, M.: Subspace identification of piecewise linear systems. In: Proceed-
ings of the 43rd IEEE Conference on Decision and Control, pp. 3838–3843 (2004)

14. Münz, E., Krebs, V.: Identification of hybrid systems using a priori knowledge. In: IFAC
World Congress (2002)

15. Verdult, V., Verhaegen, M.: Subspace identification of piecewise linear systems. In: IEEE
Conference on Decision & Control, pp. 3838–3843 (2004)

16. Münz, E., Krebs, V.: Continuous optimization approaches to the identification of piecewise
affine systems. In: IFAC World Congress (2005)

17. Vidal, R., Ma, Y., Sastry, S.: Generalized Principal Component Analysis (GPCA). IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(12), 1–15 (2005)

18. Ma, Y., Yang, A., Derksen, H., Fossum, R.: Estimation of subspace arrangements with appli-
cations in modeling and segmenting mixed data. In: SIAM Review (to appear, 2008)

19. Derksen, H.: Hilbert series of subspaces arrangements. Journal of Pure and Applied Alge-
bra 209(1), 91–98 (2007)

20. Vidal, R.: Recursive identification of switched ARX systems. Automatica (to appear, 2008)

Contract-Based Design for Computation and
Verification of a Closed-Loop Hybrid System

L. Benvenuti1,2, A. Ferrari2, E. Mazzi2,3, and A.L. Sangiovanni Vincentelli2,4

1 Università di Roma “La Sapienza”, Roma, Italy
luca.benvenuti@uniroma1.it

2 PARADES, Via di S.Pantaleo, 66, 00186 Roma, Italy
{aferrari, emazzi}@parades.rm.cnr.it

3 Centro di Ricerca Interdipartimentale “E. Piaggio”, Università di Pisa, Pisa, Italy
4 Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, Berkeley, CA 94720, USA

alberto@eecs.berkeley.edu

Abstract. Contract-based design is an approach where the design process is seen
as a successive assembly of components where a component is represented in
terms of assumptions about its environment and guarantees about its behavior. In
the composition, if assumptions of each component are contained in guarantees
offered by the others, then the composition is well formed. In this paper, we focus
on contract-based design and the use of Heterogeneous Rich Component models
for embedded controllers where the plant, sensors and actuators are described
by hybrid systems. We assume that the components are assembled in a feedback
configuration. The problem is to show that this composition satisfies requirements
using the assumptions-guarantees of the plant, sensors, actuators and controller.
To do so, we give rules on how to compose assumptions and promises for compo-
nents in cascade and feedback configurations. We then apply these rules to expose
the actual calculation involved on a test case, a water-level control problem. We
also show how to check that the requirements on the closed-loop configuration are
satisfied, i.e, that they are contained in the promises of this configuration using a
formal verification tool (Ariadne) for hybrid systems.

1 Introduction

In safety critical applications such as transportation systems, the electronic control sys-
tem is often a networked system with interacting embedded controllers dedicated to
each sub-system. Due to the lack of an overall understanding of the interplay of sub-
systems and of the difficulties encountered in integrating very complex parts mostly
coming by different Tier-1 suppliers, who give scant information about the inner work-
ings of their products, system integration has become a design bottleneck for the lead-
ing Original Equipment Manufacturers (OEMs). The source of these problems resides
in the complexity of the embedded controllers due to the ever increasing demands on
functionality, and in the presence of critical constraints on reliability, cost and time-to-
market and on power consumption. As a consequence, a successful design, in which
costly and time consuming re-design cycles are avoided, can only be achieved using

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 58–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Contract-Based Design for Computation and Verification 59

efficient design methodologies that allow for component reuse and for evaluation of
platform requirements at the early stages of the design flow.

The platform-based design methodology proposed in [1] provides concepts and tech-
niques to achieve an efficient design, aimed at maximizing reuse at each design step and
early verification with abstracted information from possible implementation platforms.
In this context, a platform is a layer of abstraction that hides the unnecessary details
of the underlying implementation and yet carries enough information about the layers
below to prevent design iterations. The choice of the layers of abstraction and of the
corresponding parameters are essential in the quality of the final solution of the design
problem. In this framework, the SPEEDS project proposes to describe each subsystem
at each abstraction layer by means of common meta-model, called Heterogeneous Rich
Component (HRC), with a rigorous formal semantics supporting integration of models
[2,3]. The meta-model supports inter-layer relationship (mapping items of one layer
to the next layer) and allows splitting and distributing responsibilities between the dif-
ferent actors of the OEM/supplier chain. In particular, a design task called guarantee
or promise is given to each supplier. This goal involves only entities the supplier is
responsible for while those other may be subject to constraints that are given to this
supplier as assumption. Assumptions are under the responsibility of other actors of the
OEM/supplier chain but can be used by this supplier for achieving its own promises.
This mechanism of assumption and promises is structured into contracts which define
the desired behavior of each component of the system at a given layer of abstraction and
supports design across several layers. Integration, reuse and early verification are sup-
ported by defining contracts composition, consistency of contract composition, domi-
nance and substitutability relation between contracts [2,4]. The process is general in that
no assumption is made on the structure of the composition nor on the type of contracts
being considered. This generality is paid in terms of heavy notational complexity and
difficulties in implementation. To use contracts efficiently, we need to describe how con-
tracts compose when the corresponding IPs are connected to form a larger system and
we also need to identify methods to verify whether the guarantee of the system is valid.

In this paper, we consider the case in which some of the required functionalities for
the components call for contracts described by means of hybrid systems. This case is
very important when considering embedded controllers where the plant to be controlled
is described by Ordinary Differential Equations (ODEs). We assume that the compo-
nents of the control system are connected in a rather conventional feedback architecture
(see figure 5). We give the specific contract composition rules for this architecture. We
then examine a case study, a water-level control system, to illustrate how to work with
contracts and how to verify that the closed-loop system satisfy the requirements. This
is the first step towards an overall contract-based methodology for hybrid systems. We
expect to extend the methodology so that the requirements can be decomposed into
a set of simpler requirements that if satisfied, guarantees that the overall requirement
is satisfied. This step allows to consider then “local” contracts that must be satisfied
to guarantee that the overall contract is met. The paper is organized as follows: in
Section 2 we describe the HRC formalism and present two different compositions of
contracts that are used in the control architecture considered here. In Section 3 we ap-
ply the contract-based design approach to the case study of water level control and we

60 L. Benvenuti et al.

demonstrate how to use a formal verification tool to verify that the requirements on the
closed-loop configuration are satisfied. Conclusions are offered in Section 4.

2 Heterogeneous Rich Component Formalism

System models expressed in the Heterogeneous Rich Component (HRC) formalism
consist of networks of hierarchical components. Each component consists of a set of
events and variables and its expected behavior is described by means of some assump-
tions A and promises G over these events and variables. Assumptions and promises are
identified by the set of admissible runs for some events and/or variables describing the
component. The pair (A,G) is referred to as the contract C of the component.

The HRC formalism allows to distribute responsibilities regarding the implemen-
tation of a complex system among different component providers during the design
process. To do that, a methodology to manage contracts composition, its consistency
verification (compatibility) and relations among contracts is needed [2,5].

In this paper, we consider the control configuration of figure 5 where components
are cascaded and a feedback connection closes the loop. Contract composition formal-
izes how contracts related to different components have to be combined to represent
the composition of the components [2,4]. First, consider two components connected in
cascade composition as shown in figure 1. Let C1 = (A1,G1) and C2 = (A2,G2) be the
contracts of the two components. The assumptions A1 can be written as

C1

C2

Gj
1

Ad
1

G2

Gd
1

Aj,i
2

Ad
2

Aj
1

Aj,o
2

Fig. 1. Cascade composition of two components
sharing some events/variables in the interface

Fig. 2. Feedback composition

A1 = Ad
1 ×A j

1

where Ad
1 are the assumptions related to the signals (events and variables) acting as

inputs only for the first component, and A j
1 are the assumptions on the input signals

shared by the two components. Similarly, the assumptions A2 can be written as

A2 = Ad
2 ×A j,o

2 ×A j,i
2

where Ad
2 are the assumptions related to the signals acting as inputs only for the second

component, A j,o
2 are the assumptions on the output signals of the first component acting

as inputs for the second one, and A j,i
2 are the assumptions on the input signals shared by

the two components.

Contract-Based Design for Computation and Verification 61

The promises G1 can be written as

G1 = Gd
1 ×G j

1

where G j
1 are the promises related to the output signals acting as input for the second

component and Gd
1 those related to the remaining output signals.

The cascade composition is compatible if

G j
1 ⊂ A j,o

2

that is the promises on the output signals of the first component acting as inputs of the
second component define only runs admissible for the second component. In this case,
the assumption A2 can be relaxed neglecting the assumption A j,o

2 . On the other hand,
the assumptions on the disjoint input signals are the conjunction of Ad

1 and Ad
2, while

as regards those on the shared input signals, one has to consider the tighter ones. In
conclusion, the assumption A on the cascade composition are

A = Ad
1 × (A j

1 ∩A j,i
2)×Ad

2.

The promise G of a compatible cascade composition is in general not the pure con-
junction of promises Gd

1 and G2. In fact, since the cascade composition modifies the
assumptions on the input signals of the second component, then the promises G2 can be
refined. Let us denote as G′

2 the refinement of promises G2 under the assumptions

Ad
2 ×G j

1 × (A j
1 ∩A j,i

2)

imposed on the second component by the environment and by the first component.
Then, the promise G is given by

G = Gd
1 ×G′

2

Consider now the feedback composition shown in figure 2 where the contract C
defining the open loop behavior of the component may obviously be the result of cas-
cade compositions. The assumption A can be written as

A = Ae ×A f

where Ae are the assumptions on the events and variables from the environment and A f

are those on the signals feed back from the output. Similarly, the promises G can be
written as

G = Ge ×G f

where Ae,A f ,Ge and G f are assumptions and promises of the open loop system.
A sufficient condition for compatibility of the feedback composition is that

G f ⊂ A f

and in this case, the assumptions of the closed–loop system are only the assumptions
from the environment Ae. Also in this case, the promises of the feedback composi-
tion are a refinement of the promises G of the open loop component. In particular, the
promises of the closed loop system are given by

G′
e × (A f ∩G f)

62 L. Benvenuti et al.

where A f ∩G f are the promises on the signals used to close the loop and G′
e is the

refinement of promises Ge under the assumptions

Ae × (A f ∩G f)

imposed on the component by the environment and by the feedback signals.
Finally, a contract C1 = (A1,G1) is said to satisfy a contract C2 = (A2,G2) if and

only if A1 ⊃ A2 and the refinement G′
1 of promises G1 under the assumptions A2 are

such that G′
1 ⊂ G2.

3 Contracts Composition and Verification of Contracts
Satisfaction

To show how to perform the actual computation for contract composition, we consider
a simple hybrid system control problem where we have to control the water level in a
cylindric tank (see figure 3), with height H = 8 m and section S = 16,62 m2, equipped
with an inlet pipe at the top and an outlet pipe at the bottom. The outlet flow is assumed
to be proportional to the water level, i.e.

Fout(t) = kx(t) (1)

where x(t) denotes the water level in the tank and k = 1/3 m2/s is the outlet flow
constant. The inlet flow depends on the supply inlet pressure p(t), that is Fin(t) =
Sin

√
2p(t)/ρ where Sin = 0,5 m2 is the inlet pipe cross section and ρ = 1000 Kg/m3

is the water density.

Fig. 3. The tank system

u ≤ λH

q0 q1

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)

0 ≤ x ≤ H

y(t) = kH

x = H

x = H ∧ u > λH

Fig. 4. Tank promise Gtank

The behavior of the system can be described by a contract Ctank = (Atank,Gtank)
which defines all the possible inlet and outlet flow behaviors. In particular, the evolution
of the output flow, that is the promise Gtank, can be described by the hybrid system
shown in figure 4 where the continuous state variable x(t) represents the water level
in the tank, the continuous input variable u(t) is equal to Fin(t)/S, and the continuous
output variable y(t) is the outlet flow Fout(t). Location q0, which is the initial location,
represents the situation in which there is no water overflow; in this case, the water
level x(t) evolves according to the differential equation associated to the location where

Contract-Based Design for Computation and Verification 63

λ = k/S = 0,02s−1. Location q1describes the water overflow situation in which the
water level remains constant and equal to H.

The assumptions Atank define the assumption on the system and on the input behavior.
In particular, the inlet flow is assumed to be nonnegative and the initial value of the
water level an admissible one:

- u(t) ≥ 0;
- x(0) ∈ [0,H].

3.1 Contract Specifications

The desired behavior of the system can be described by a contract Cdes which defines all
the admissible inlet and outlet flow behaviors. The aim of the tank, that is the promise
Gdes, is that of providing an outlet flow Fout(t) bounded in a given interval

y(t) = Fout(t) ∈ [Y m , Y M] = [2/3 , 2] m3/s

at least after a settling time t̄ = 10 s from startup when the inlet pressure p(t) is bounded
in the interval

p(t) ∈ [Pm , PM] = [5000 , 6000] Pa

and the tank is empty at startup. In addition, no water overflow is allowed.
The assumptions Ades on the desired behavior can be stated as:

- u(t) ∈ [Um,UM]
- x(0) = 0.

where the first assumption is due to the assumption on the inlet pressure p(t)∈ [Pm,PM],
so that

Um =
Sin

S

√
2Pm

ρ
= f (Pm) , UM =

Sin

S

√
2PM

ρ
= f

(
PM)

To verify whether the tank satisfies the specifications, one has to check if the contract
defining tank behavior satisfies the contract defining system specifications. This relation
is true if and only if:

- Atank ⊃ Ades;
- G′

tank ⊂ Gdes

where G′
tank describes all the possible behaviors of the tank under the assumption Ades.

As a consequence, as defined by Ades, one has to analyze the behavior of the tank in the
case in which u(t) ∈ [Um,UM] and the container is empty at startup. To show that the
behavior of the tank under the assumption Ades does not meet the specification promise
Gdes, it is sufficient to consider the evolution of the outlet flow corresponding to the
minimum admissible inlet flow Fin(t), that is u(t) = Um for all t. Since the outlet flow
not only goes eventually over the Y M threshold but even produces water spillage, then
one can conclude that to assure contract satisfaction for the Ctank with respect to the
Cdes contract, it is necessary to control the outlet flow by regulating the water level x(t).
This can be done, for example, using a feedback controller which regulates the water
level x(t) acting on the inlet flow by means of a flow rate valve.

64 L. Benvenuti et al.

3.2 Closed Loop Composition

The controller scheme considered in this section is shown in figure 5. The closed loop
includes: (i) the water tank; (ii) an actuator consisting of a flow rate valve; (iii) a water
level sensor; (iv) a controller that on the basis of sensor readings and reference signal,
actuates the valve. We now introduce the contracts of each element of the configuration
and compute the contract of the overall scheme.

Controller
Actuator:
valve

Plant:
tank

Sensor

command u(t)

x(t)xs(t)

y(t)

x(0)α(0) T p(t)

δ

Fig. 5. Feedback composition of the contracts

Valve contract. The inlet flow to the container is controlled by a valve that may get
a position command from a controller. It is assumed that, in response to a position
command (open or close), the valve aperture changes linearly in time at rate 1/T where
T ∈ [T m , T M] = [2 , 4] s.

The inlet flow is assumed to be proportional to the valve aperture α(t), where 0 ≤
α ≤ 1. As a consequence, the input u(t) to the tank is equal to

u(t) = α(t)
Sin

S

√
2p(t)

ρ
= α(t) f (p(t)) (2)

As shown in figure 5 the valve inputs are the command signal and the supply inlet
pressure p(t) while the output u(t) is given by equation (2).

The assumption of the valve contract is

Ad
valve = {p(t) ≥ 0}×{T ∈ [T m , T M]}×{α(0) ∈ [0 , 1]}

while the promise Gvalve is defined on the output u(t) of the valve and can be represented
by the hybrid system depicted in figure 6 where the initial location can be either p1 or
p3. Location p0 corresponds to the situation in which the valve is closed and the output
u(t) toward the container is constantly zero, independently from the value assumed by
the inlet pressure p(t). Locations p1 and p3 correspond to the situations in which the
valve is opening and closing, respectively. In these locations the output u(t) depends on
the inlet pressure p(t) and the aperture of the valve α(t). Location p2 corresponds to
the situation in which the valve is open. In this case, the supply outlet flow u(t) depends
only on the inlet pressure p(t).

Contract-Based Design for Computation and Verification 65

p0 p1

p2p3

α = 0 0 ≤ α ≤ 1

α = 10 ≤ α ≤ 1

open

close

α = 0 α = 1

close

open

u(t) = 0 α̇(t) = 1/T

u(t) = α(t)f(p(t))

α̇(t) = −1/T

u(t) = α(t)f(p(t))
u(t) = f(p(t))

open

open

close

close

Fig. 6. Valve promise Gvalve

Sensor contract. As depicted in figure 5 the sensor input is the water level x(t) in the
tank, and the output is the measured signal xs(t) subjected to the sensor error δ . In
particular the sensor error δ is assumed to be bounded in a given interval [−Δ ,Δ] with
Δ = 0.05 m. The assumptions Asensor are the following:

- Ad
sensor = {δ ∈ [−Δ ,Δ]};

- A j,o
sensor = {x(t) ∈ [0,H]}.

The promise Gsensor of the sensor contract is defined as follows:

xs(t) = x(t)+ δ

Controller contract. As shown in figure 5 the controller input is the measured water
level xs(t) provided by the sensor, and the output is the command signal open or close
for the regulation of the valve position. The control law is based on the hysteresis loop
shown in figure 7. In this case, when the valve is closed and the water level is decreasing,
the controller produces the open command only for xs(t)≤ l = 2.25m. On the contrary,
when the valve is open and the water level is increasing, the controller produces the
close command only for xs(t) ≥ h = 5.5m, with Δ < l < h < H − Δ . There are no
assumptions Acontr on the controller behavior, that is any value for xs(t) is admissible.

The controller promise Gcontr can be described by the hybrid system shown in fig-
ure 8 where c0 is the initial location.

Contracts composition. We now compose the contracts defining the four blocks of
figure 5 to compute the contract of the closed–loop system. First of all consider the
cascade composition of the four elements of figure 5 and note that the assumption on
the tank behavior can be written as

66 L. Benvenuti et al.

Fig. 7. Hysteresis control law

xs(t) ≥ lxs(t) ≤ h

xs ≥ h/close

xs ≤ l/openc1 c2

c0

l ≤ xs(t) ≤ h

x s
≤ l/

op
en x

s ≥
h/close

Fig. 8. Controller promise Gcontr

- Ad
tank = {x(0) ∈ [0,H]};

- A j,o
tank = {u(t)≥ 0}.

Compatibility of the cascade composition can be verified considering as a first step the
composition of the controller and the valve which is compatible since the valve has no
assumptions on the command signal. Moreover, in this case, using Gcontr as assumptions
on the valve produces no refinement on Gvalve.

As a second step, consider the composition of the three components controller–
valve–tank by adding the tank component to the previous cascade composition. Since
assumption Ad

valve ensures p(t) ≥ 0 and α(t) ∈ [0,1], then the hybrid system describing
Gvalve is such that u(t) ≥ 0. As a consequence,

Gvalve = G j
valve ⊂ A j,o

tank

so that the composition results to be compatible. In this case, the promise Gtank can
be refined using Gvalve as assumption on u(t) thus obtaining a new promise G′

tank ⊂
Gtank. Consider now the four components cascade composition. Also in this case, it is
immediate to check that the hybrid system describing the tank behavior is such that
x(t) ∈ [0,H]. As a consequence, the following holds:

G′
tank ⊂ Gtank ⊂ A j,o

sensor

This concludes compatibility verification of the cascade composition.
As a final step, consider the composition obtained by closing the loop. Since there

are no assumption Acontr on the behavior of xs(t) as an input to the controller, then

G f = Gsensor ⊂ Acontr = A f

and the feedback composition is compatible.
In conclusion, the assumptions on the overall system are the following:

Ae = Ad
valve ×Ad

tank ×Ad
sensor =

{p(t) ≥ 0}×{T ∈ [T m , T M]}×{α(0) ∈ [0 , 1]}×{x(0)∈ [0,H]}×{δ ∈ [−Δ ,Δ]}
(3)

Contract-Based Design for Computation and Verification 67

while the promise are given by G′
e ×Gsensor where G′

e can be obtained by composing
the hybrid systems describing the promises of each component. In fact, the promise of a
component can be refined using the promise of the previous1 component as assumption.

As a first step, consider the composition of the sensor, the controller and the tank.
Composing Gsensor, Gcontr and Gtank produces a hybrid system with locations belong-
ing to the cartesian product of the location set of the hybrid systems defining Gcontr,
Gtank, i.e.

{c0,c1,c2}×{q0,q1}
as shown in figure 9. Since there are no continuous dynamics associated to sensor and
controller promises, then the continuous dynamics associated to locations (qi,c j) are
just those associated to qi. The situation for the invariant conditions is more subtle: the
conditions related to xs(t) in locations c j can be transformed in conditions on x(t) by
using the promise Gsensor so that the invariant conditions associated to locations qi and
c j are related to the same variable x(t). The invariant conditions associated to locations
(qi,c j) are then the intersection of the conditions associated to locations qi and c j. As a
consequence, as shown in figure 9, locations (q1,c0) and (q1,c1) can be neglected since
the invariant conditions result to be the an empty set.

As a second step, the hybrid system describing the promise of the tank, sensor and
controller cascade composition has to be composed with the hybrid system describing
Gvalve in order to compute the closed–loop promise G′

e. As a consequence, the hybrid
system describing G′

e has locations belonging to the cartesian product

{(q0,c0),(q0,c1),(q0,c2),(q1,c2)}×{p0, p1, p2, p3}
and that will be denoted by a triple (pi,q j,ck). Since the continuous dynamics and the
invariant conditions associated to locations pi and (q j,ck) are related to different vari-
ables, then the continuous dynamics and the invariant conditions associated to location
(pi,q j,ck) are just the union of the dynamics and the invariant conditions associated to
pi, and (q j,ck) . The hybrid system G′

e is depicted in figure 10. Some locations have
been neglected since they cannot be reached from the initial set of locations, i.e. from
locations (p1,q0,c0) and (p3,q0,c0).

The resulting hybrid system in figure 10 can be further minimized computing the
equivalent minimal realization of the discrete behavior according the methodology il-
lustrated in [6]. First, the hybrid system model is projected into the discrete domain, by
abstracting away continuous dynamics and associating to it a finite state machine F .
After that, a minimal equivalent realization of F is computed according to the well-
known Paull-Unger recursive rule [7,8]. In particular, the pairs of locations [(p3,q0,c0),
(p3,q0,c2)], [(p0,q0,c0), (p0,q0,c2)], [(p2,q0,c0), (p2,q0,c1)] and [(p1,q0,c0),
(p1,q0,c1)] are equivalent. In figure 10 is represented the minimal equivalent hybrid
model describing the contract G′

e.

3.3 Verification of Contracts Satisfaction Relation by Reachability Analysis

In this section, we verify whether the contract defining the behavior of the closed–
loop system, (Ae,Ge), satisfies the contract (Ades,G′

e × Gsensor) defining system

1 Previous in the cascade composition.

68 L. Benvenuti et al.

l − δ ≤ x(t) ≤ h − δ

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)

0 ≤ x(t) ≤ h − δ

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)

l − δ ≤ x(t) ≤ H

y(t) = kH

x(t) = H
l − δ ≤ x(t) ≤ h − δ

y(t) = kH

x(t) = H

y(t) = kH

x(t) = H

x(t) ≤ h − δ

q0, c0

q0, c1 q0, c2

q1, c0

q1, c1

q1, c2

x ≥ h − δ/close

x ≤ l − δ/open

x ≤ l − δ/open

x ≥ h − δ/close

u ≤ λH

x = H ∧ u > λH

Fig. 9. Tank, sensor and controller cascade composition

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
α̇(t) = 1/T

u(t) = α(t)f(p(t))

0 ≤ x(t) ≤ h − δ

0 ≤ α(t) ≤ 1

p1, q0, c1

p2, q0, c1

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
u(t) = f(p(t))

0 ≤ x(t) ≤ h − δ

α(t) = 1

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
u(t) = 0

p0, q0, c2

l − δ ≤ x(t) ≤ H

α(t) = 0

p3, q0, c2

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
α̇(t) = −1/T

u(t) = α(t)f(p(t))

l − δ ≤ x(t) ≤ H

0 ≤ α(t) ≤ 1

y(t) = kH

α̇(t) = −1/T

u(t) = α(t)f(p(t))

x(t) = H

0 ≤ α(t) ≤ 1
p3, q1, c2

α = 0 α = 1

x ≤ l − δ

x ≤ l − δ

x ≥ h − δ

x ≥ h − δ

u ≤ λH x = H ∧ u > λH

p1, q0, c0

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
α̇(t) = 1/T

u(t) = α(t)f(p(t))

l − δ ≤ x(t) ≤ h − δ

0 ≤ α(t) ≤ 1

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
u(t) = f(p(t))

l − δ ≤ x(t) ≤ h − δ

α(t) = 1

p2, q0, c0

p0, q0, c0

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
u(t) = 0

l − δ ≤ x(t) ≤ h − δ

α(t) = 0

l − δ ≤ x(t) ≤ h − δ

0 ≤ α(t) ≤ 1

p3, q0, c0

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
α̇(t) = −1/T

u(t) = α(t)f(p(t))α = 1

x ≥ h − δ

x ≥ h − δ

x ≤ l − δ

x ≤ l − δ
α = 0

x ≤ l − δ

x ≤ l − δ

x ≥ h − δ

x ≥ h − δ

Fig. 10. Closed loop promise G′
e

specifications. To this end, recall that the assumption Ae are given in (3) and the
promises G′

e are described by means of the hybrid system shown in figure 10. First,
note that Ae ⊃ Ades so that the satisfaction relation is verified if and only if the behavior
of the closed–loop system under the assumption Ades meets the specification Gdes. To
verify this, an over approximation R of the infinite–time reachable set of the hybrid

Contract-Based Design for Computation and Verification 69

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
α̇(t) = 1/T

u(t) = α(t)f(p(t))

0 ≤ x(t) ≤ h − δ

0 ≤ α(t) ≤ 1

p1, q0, c1

p2, q0, c1

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
u(t) = f(p(t))

0 ≤ x(t) ≤ h − δ

α(t) = 1

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
u(t) = 0

p0, q0, c2

l − δ ≤ x(t) ≤ H

α(t) = 0

p3, q0, c2

ẋ(t) = −λx(t) + u(t)
y(t) = kx(t)
α̇(t) = −1/T

u(t) = α(t)f(p(t))

l − δ ≤ x(t) ≤ H

0 ≤ α(t) ≤ 1

y(t) = kH

α̇(t) = −1/T

u(t) = α(t)f(p(t))

x(t) = H

0 ≤ α(t) ≤ 1
p3, q1, c2

α = 0 α = 1

x ≤ l − δ

x ≤ l − δ

x ≥ h − δ

x ≥ h − δ

u ≤ λH

x = H ∧
u > λH

Fig. 11. Closed loop promise G′
e with minimum number of locations

Fig. 12. Over–approximated reachable set

70 L. Benvenuti et al.

Fig. 13. Over–approximated reachable set against time

system describing G′
e is computed using the formal verification tool ARIADNE [9,10].

More in detail, the set R is computed under the following assumptions

{p(t)∈ [Pm,PM]}×{T ∈ [T m , T M]}×{α(0)∈ [0 , 1]}×{x(0) = 0}×{δ ∈ [−Δ ,Δ]}

and it is depicted in figure 12 in the space x−α . More in detail, the regions indicated as
B and D are reached when the valve is constantly open and closed respectively and only
the water level x(t) is evolving in time (discrete locations (p2,q0,c1) and (p0,q0,c2) of
the hybrid model in figure 10). Regions E and C are reached after an open and close
controller command, respectively, while region A is reached just after startup from the
initial condition x(0)= 0, α(0)∈ [0 , 1]. As the figure makes clear, the water level x(t) is
always bounded in the interval [Xm,XM] = [2 , 6] m. This means that ∀p(t) ∈ [Pm,PM],
∀T ∈ [T m,T M] and ∀δ ∈ [−Δ ,Δ] the constraint on the outlet flow (eq. 1) is satisfied. An
over approximation of all the possible evolutions of the water tank w.r.t. time is shown in
figure 13 for t ∈ [0, t̄]. The figure shows how requirements on the minimum admissible
level of water in the tank x(t̄) > Xm are satisfied. In summary, the use of ARIADNE
made it possible to verify that the closed-loop control system satisfies the specifications,
i.e., the contract defining closed-loop system behavior satisfies the contract defining
system specifications.

4 Conclusion

We presented the use of the SPEEDS Heterogeneous Rich Components formalism
to design embedded controllers with continuous plants. The rules for composing

Contract-Based Design for Computation and Verification 71

assumptions-promises that form the basis for HRC for components connected in a
generic feedback configuration were described. We then applied these rules to a specific
control problem: a water level control problem that, albeit simple, exposes a variety of
interesting effects. We showed how to compose hybrid contracts for all the subsystems
connected in the closed–loop structure. The verification of closed–loop contracts satis-
faction was carried out with ARIADNE, a formal verification tool for hybrid systems.

Acknowledgments

We wish to thank the reviewers for their remarks, which helped in improving the quality
of the paper. This research has been supported by the European SPEEDS integrated
project number 033471.

References

1. Sangiovanni-Vincentelli, A.: Defining platform-based design. EEdesign (February 2002),
http://www.eedesign.com/

2. Bozga, M., Constant, O., Skipper, M., Ma, Q.: SPEEDS meta-model syntax and static se-
mantics. SPEEDS deliverable D2.1b (January 2007)

3. Gössler, G., Graf, S., Cederbaum, M., Martens, M., Sifakis, J.: An approach to modeling
and verification of component based systems. In: van Leeuwen, J., Italiano, G.F., van der
Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, Springer,
Heidelberg (2007)

4. Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Heterogeneous rich component defi-
nition, mathematical semantics. SPEEDS deliverable D2.1b/sem, annex of deliverable D2.1b
(December 2006)

5. Goessler, G., Sifakis, J.: Composition for component-based modeling. Science of Computer
Programming, 161–183 (March 2005)

6. Balluchi, A., Mazzi, E., Sangiovanni-Vincentelli, A.: Complexity reduction for the design of
interacting controllers. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 46–60. Springer, Heidelberg (2007)

7. Micheli, G.D.: Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York
(2001)

8. Katz, R.: Contemporary Logic Design, ch. 1–10. The Benjamin/Cummings Publishing Com-
pany (1994)

9. Collins, P.: Continuity and computability of reachable sets. Theoretical Computer Sci-
ence 341, 162–195 (2005)

10. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.:
Ariadne: a framework for reachability analysis of hybrid automata. In: Proceedings of the
17th International Symposium on Mathematical Theory of Networks and Systems (MTNS
2006), Kyoto, Japan (July 2006)

http://www.eedesign.com/

Controller Synthesis with Budget Constraints

Krishnendu Chatterjee1, Rupak Majumdar3, and Thomas A. Henzinger1,2

1 EECS, UC Berkeley
2 CCS, EPFL

3 CS, UC Los Angeles

Abstract. We study the controller synthesis problem under budget con-
straints. In this problem, there is a cost associated with making an obser-
vation, and a controller can make only a limited number of observations
in each round so that the total cost of the observations does not ex-
ceed a given fixed budget. The controller must ensure some ω-regular
requirement subject to the budget constraint. Budget constraints arise
in designing and implementing controllers for resource-constrained em-
bedded systems, where a controller may not have enough power, time, or
bandwidth to obtain data from all sensors in each round. They lead to
games of imperfect information, where the unknown information is not
fixed a priori, but can vary from round to round, based on the choices
made by the controller how to allocate its budget.

We show that the budget-constrained synthesis problem for ω-regular
objectives is complete for exponential time. In addition to studying syn-
thesis under a fixed budget constraint, we study the budget optimiza-
tion problem, where given a plant, an objective, and observation costs,
we have to find a controller that achieves the objective with minimal
average accumulated cost (or minimal peak cost). We show that this
problem is reducible to a game of imperfect information where the win-
ning objective is a conjunction of an ω-regular condition and a long-run
average condition (or a least max-cost condition), and this again leads
to an exponential-time algorithm.

Finally, we extend our results to games over infinite state spaces,
and show that the budget-constrained synthesis problem is decidable for
infinite state games with stable quotients of finite index. Consequently,
the discrete time budget-constrained synthesis problem is decidable for
rectangular hybrid automata.

1 Introduction

The controller synthesis problem asks, given a model for a plant, to construct a
controller that observes the states of the plant and provides inputs to the plant
such that the parallel composition of the plant and the controller is guaranteed
to satisfy a given specification, provided, e.g., as an ω-regular set [4, 1, 14, 13].
Controller synthesis reduces to solving two-player games on graphs between a
controller and the plant [1, 13, 5], where a winning strategy of the controller
player for the specification gives a controller.

In constructing the controller, the usual assumption is that the controller can
observe the system state completely. This assumption, called perfect information,

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 72–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Controller Synthesis with Budget Constraints 73

may not hold in many settings of practical interest. For example, an embedded
controller may only observe signals up to a finite precision, and a discrete control
process may only observe the global state of other processes, not their private
variables. Under such observability restrictions, a more relevant model is a game
of imperfect information, where the controller only observes a part of the state
space, and must construct a winning strategy based only on the observed state.

Games with imperfect information have been studied extensively [15, 13, 10,
11, 2]. Usually, the solution to a game of imperfect information proceeds with
a subset construction that reduces the imperfect-information game to a game
with perfect information (although on an exponentially larger state space). How-
ever, so far, most algorithms make the assumption of fixed partial information.
Roughly, it is assumed that of n state bits, the controller can only observe the
first k < n bits, and must come up with a strategy that makes its decisions based
on this limited observation. In the context of embedded control systems, espe-
cially in low-power settings such as embedded sensor and actuator networks [16],
there is often a different kind of partial information. Instead of a fixed set of bits
that are visible to the controller in every round of interaction, the partial infor-
mation can be due to a cost in sensing each bit, and global constraints on the
budget available to the controller. For example, in an embedded control system,
the controller is free to sense any signal from the system, however, the act of
sensing carries a cost (e.g., cost incurred by the energy consumed to sense, or
time taken to run the sensing task, or bandwidth required to transmit the sensed
value). Thus, in each round, the controller has to make a choice in allocating its
resources (energy, time, or bandwidth) to sensing the most crucial data. More-
over, the controller is allowed to select which bits to sense in each round, so the
set of bits sensed in one round may be different from the set sensed in the next.

We introduce and study a model of controller synthesis under budget con-
straints to study imperfect information of this kind. Our model adds a notion
of cost associated with controller moves, and the winning conditions constrain
possible controls by imposing budgets on the moves either in each round (model-
ing, e.g., upper bounds on available resources) or in the long run (modeling, e.g.,
the desire to minimize average cost, or maximize lifetime). In the first model, in
each round, the controller may choose to sense a set I of state signals, as long
as the total cost of sensing all the signals in I is bounded by B. Practically, the
budget represents, e.g., bounds on available energy or bandwidth limitations of
the system. Given a two player game with a cost for every state signal, a budget
constraint B, and an ω-regular control objective, we construct a B-restricted
control strategy that satisfies the control objective while always using at most
B cost units at any round, if possible. In the second model, we construct a
B-long-run control strategy that satisfies the control objective while maintain-
ing the long-run average cost of sensing below B. Practically, this represents,
e.g., control subject to available battery power. With embedded resource-scarce
control problems becoming more and more common, our model presents a real-
istic generalization of classically studied supervisory control problems.

74 K. Chatterjee, R. Majumdar, and T.A. Henzinger

Dually, we study the budget optimization problem, where given the sensing
costs for each state signal, we want to find out the minimum budget with which a
controller can achieve its goals. Here, we study two different optimization criteria:
the first aims to minimize the maximum sensing cost at any single round, the sec-
ond aims to minimize the long-run average cost of the controller. Optimizations
of the first type may be required to find out minimal power or bandwidth require-
ments for the system: the battery must be able to provide at least this power in
order for the controller to effectively satisfy the control objective. Optimizations
of the second type are required to maximize the lifetime of the controller.

Technically, there are two steps in our algorithms. For the budget constrained
synthesis problem, we construct, from the budget-constrained game, a game of
perfect information by a subset construction such that the controller has a win-
ning strategy in the game of perfect information iff it has a winning strategy in
the original game. For the budget optimization problem, we perform a similar sub-
set construction, however, the winning objectives on the transformed games are a
combination of ω-regular objectives (from the original game) as well as a quantita-
tive requirement to reduce either the maximum cost along the path (correspond-
ing to the first optimization criterion) or the long-run average cost along the path
(corresponding to the second optimization criterion). From our reduction and so-
lutions of games of perfect information we obtain that both the budget synthesis
and the optimization problem are EXPTIME-complete for ω-regular objectives
specified as parity conditions (a canonical form to express ω-regular objectives).

We develop the theory both for finite-state, discrete control problems, as well
as for discrete time control for rectangular hybrid automata. In the latter, infinite
state case, we show that the control problem can be solved by reducing the
system to its stable (bisimulation) quotient. Using known results about stable
partitions of rectangular automata [6], it follows that the budget constrained
synthesis problem is decidable for rectangular automata, and indeed, for any
infinite state control problem with a stable quotient of finite index.

2 Definitions

A game structure (of imperfect information) is a tuple G = 〈L, l0, Σ, Δ,O, γ〉,
where L is a finite set of states, l0 ∈ L is the initial state, Σ is a finite alphabet,
Δ ⊆ L×Σ×L is a set of labeled transitions, O is a finite set of observations, and
γ : O → 2L\∅ maps each observation to the set of states that it represents. We
require the following two properties on G: (i) for all � ∈ L and all σ ∈ Σ, there
exists �′ ∈ L such that (�, σ, �′) ∈ Δ; and (ii) the set {γ(o) | o ∈ O} partitions L.
We say that G is a game structure of perfect information if O = L and γ(�) = {�}
for all � ∈ L. We omit (O, γ) in the description of games of perfect information.
For σ ∈ Σ and s ⊆ L, let PostGσ (s) = {�′ ∈ L | ∃� ∈ s : (�, σ, �′) ∈ Δ}.

In a game structure, in each turn, Player 1 chooses a letter in Σ, and Player 2
resolves nondeterminism by choosing the successor state. A play in G is an
infinite sequence π = �0σ0�1 . . . σn−1�nσn . . . such that (i) �0 = l0, and (ii)
for all i ≥ 0, we have (�i, σi, �i+1) ∈ Δ. The prefix up to �n of the play π is

Controller Synthesis with Budget Constraints 75

denoted by π(n); its length is |π(n)| = n+1; and its last element is Last(π(n)) =
�n. The observation sequence of π is the unique infinite sequence γ−1(π) =
o0σ0o1 . . . σn−1onσn . . . such that for all i ≥ 0, we have �i ∈ γ(oi). Similarly,
the observation sequence of π(n) is the prefix up to on of γ−1(π). The set of
infinite plays in G is denoted Plays(G), and the set of corresponding finite prefixes
is denoted Prefs(G). A state � ∈ L is reachable in G if there exists a prefix
ρ ∈ Prefs(G) such that Last(ρ) = �. The knowledge associated with a finite
observation sequence τ = o0σ0o1σ1 . . . σn−1on is the set K(τ) of states in which
a play can be after this sequence of observations, that is, K(τ) = {Last(ρ) | ρ ∈
Prefs(G) and γ−1(ρ) = τ}.
Lemma 1. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure. For σ ∈ Σ, � ∈ L,
and ρ, ρ′ ∈ Prefs(G) with ρ′ = ρ · σ · �, let o� ∈ O be the unique observation such
that � ∈ γ(o�). Then K(γ−1(ρ′)) = PostGσ (K(γ−1(ρ))) ∩ γ(o�).

Strategies. A strategy in G for Player 1 is a function α : Prefs(G) → Σ. A
strategy α for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈ Prefs(G),
if γ−1(ρ) = γ−1(ρ′), then α(ρ) = α(ρ′). In games of imperfect information we
are interested in the existence of observation-based strategies for Player 1. A
strategy in G for Player 2 is a function β : Prefs(G) × Σ → L such that for all
ρ ∈ Prefs(G) and all σ ∈ Σ, we have (Last(ρ), σ, β(ρ, σ)) ∈ Δ. We denote by AG,
AO

G, and BG the set of all Player-1 strategies, the set of all observation-based
Player-1 strategies, and the set of all Player-2 strategies in G, respectively.

The outcome of two strategies α (for Player 1) and β (for Player 2) in G is
the play π = �0σ0�1 . . . σn−1�nσn . . . ∈ Plays(G) such that for all i ≥ 0, we have
σi = α(π(i)) and �i+1 = β(π(i), σi). This play is denoted outcome(G, α, β). The
outcome of a strategy α for Player 1 in G is the set Outcome1(G, α) of plays π
such that there exists a strategy β for Player 2 with π = outcome(G, α, β). The
outcome sets for Player 2 are defined symmetrically.
Qualitative objectives. A qualitative objective for G is a set φ of infinite se-
quences of observations and input letters, that is, φ ⊆ (O × Σ)ω. A play
π = �0σ0�1 . . . σn−1�nσn . . . ∈ Plays(G) satisfies the objective φ, denoted π |= φ,
if γ−1(π) ∈ φ. We assume objectives are Borel measurable, that is, a qualitative
objective is a Borel set in the Cantor topology on (O×Σ)ω [9]. Observe that by
definition, for all objectives φ, if π |= φ and γ−1(π) = γ−1(π′), then π′ |= φ.

We specifically consider parity objectives [5,17]. Parity objectives are a canon-
ical form to express all ω-regular objectives [17] and lie in the intersection
Σ3 ∩ Π3 of the third levels of the Borel hierarchy. For a play π = �0σ0�1 . . . , we
write Inf(π) for the set of observations that appear infinitely often in γ−1(π),
that is, Inf(π) = {o ∈ O | �i ∈ γ(o) for infinitely many i’s}. For d ∈ N, let
p : O → { 0, 1, . . . , d } be a priority function, which maps each observation to
a nonnegative integer priority. The parity objective Parity(p) requires that the
minimum priority that appears infinitely often be even. Formally, Parity(p) =
{ π | min{ p(o) | o ∈ Inf(π) } is even }.
Quantitative objectives. In addition to parity (ω-regular) objectives, our algo-
rithms will require solving games with quantitative objectives. A quantitative

76 K. Chatterjee, R. Majumdar, and T.A. Henzinger

objective for G is a Borel measurable function f on infinite sequences of obser-
vations and input letters to reals, that is, f : (O × Σ)ω → R ∪ { ∞,−∞ }. We
specifically consider mean-payoff, mean-payoff parity and min-parity objectives.
Let r : Σ → R be a reward-function that maps every input letter σ to a real-
valued reward r(σ), and let p : O → { 0, 1, . . . , d } be a priority function. We
define the mean-payoff, mean-payoff parity and min-parity objectives as follows.

1. Mean-payoff objectives. For a play π = �0σ0�1 . . . σn−1�nσn . . . the mean-
payoff objective is the long-run average of the rewards of the input let-
ters [19]. Formally, for a reward function r : Σ → R, the mean-payoff
objective is a function M(r) from plays to reals that maps the play π =
�0σ0�1 . . . σn−1�nσn . . . to M(r)(π) = lim supn→∞

1
n

∑n−1
i=0 r(σi).

2. Mean-payoff parity objectives. For a play π = �0σ0�1 . . . σn−1�nσn . . . the
mean-payoff parity objective is the long-run average of the rewards of the
input letters if the parity objective is satisfied and −∞ otherwise. Formally,
for a reward function r : Σ → R and a priority function p, the mean-payoff
parity objective is a function MP(r, p) defined on plays as follows: for a play
π = �0σ0�1 . . . σn−1�nσn . . . we have MP(p, r)(π) = M(π) if π ∈ Parity(p),
and MP(p, r)(π) = −∞ otherwise.

3. Min-parity objectives. For a play π = �0σ0�1 . . . σn−1�nσn . . . the min-parity
objective is the minimum of the rewards of the input letters if the parity ob-
jective is satisfied and −∞ otherwise. Formally, for a reward function r : Σ →
R and a priority function p, the min-parity objective is a function MinP(r, p)
defined on plays as follows: for a play π = �0σ0�1 . . . σn−1�nσn . . . we have
MinP(p, r)(π) = min{r(σi) | i ≥ 0} if π ∈ Parity(p), and MinP(p, r)(π) = −∞
otherwise.

Sure winning and optimal winning. A strategy λi for Player i in G is sure winning
for a qualitative objective φ if for all π ∈ Outcomei(G, λi), we have π |= φ. A
strategy λi for Player i in G is optimal for a quantitative objective f if for all
strategies λ for Player i we have infπ∈Outcomei(G,λi) f(π) ≥ infπ∈Outcomei(G,λ) f(π).
The following theorem from Martin [12] states that perfect-information games
with (qualitative or quantitative) Borel objectives are determined: from each
state, either Player 1 or Player 2 wins (for qualitative objectives), or a value can
be defined (for quantitative objectives).

Theorem 1 (Determinacy). [12] (1) For all perfect-information game struc-
tures G and all qualitative Borel objectives φ, either there exists a sure-winning
strategy for Player 1 for the objective φ, or there exists a sure-winning strategy
for Player 2 for the complementary objective Plays(G) \ φ. (2) For all perfect-
information game structures G and all quantitative Borel objectives f , we have
supα∈A infπ∈Outcome(G,α) f(π) = infβ∈B supπ∈Outcome(G,β) f(π).

3 Imperfect-Information to Perfect-Information Games

First, we use the results of [2] to show that a game structure G of imperfect
information can be encoded by a game structure GK of perfect information such

Controller Synthesis with Budget Constraints 77

that for every qualitative Borel objective φ, there is an observation-based sure-
winning strategy for Player 1 in G for φ if and only if there is a sure-winning
strategy for Player 1 in GK for φ. We then show that the same construction works
for quantitative Borel objectives. We obtain GK using a subset construction. Each
state in GK is a set of states of G representing the knowledge of Player 1. In the
worst case, the size of GK is exponentially larger than the size of G.

Given a game structure of imperfect information G = 〈L, l0, Σ, Δ,O, γ〉,
we define the knowledge-based subset construction of G as the following game
structure of perfect information: GK = 〈L, {l0}, Σ, ΔK〉, where L = 2L\{∅},
and (s1, σ, s2) ∈ ΔK iff there exists an observation o ∈ O such that s2 =
PostGσ (s1) ∩ γ(o) and s2 = ∅. Notice that for all s ∈ L and all σ ∈ Σ, there
exists a set s′ ∈ L such that (s, σ, s′) ∈ ΔK. Given a game structure of imperfect
information G we refer to the game structure GK as Pft(G).

Lemma 2 ([2]). For all sets s ∈ L that are reachable in GK, and all observa-
tions o ∈ O, either s ⊆ γ(o) or s ∩ γ(o) = ∅.
By an abuse of notation, we define the observation sequence of a play π =
s0σ0s1 . . . σn−1snσn . . . ∈ Plays(GK) as the infinite sequence γ−1(π) =
o0σ0o1 . . . σn−1onσn . . . of observations such that for all i ≥ 0, we have si ⊆ γ(oi).
Since the observations partition the states, and by Lemma 2, this sequence is
unique. The play π satisfies an objective φ ⊆ (O×Σ)ω if γ−1(π) ∈ φ. As above,
we say that a play π = s0σ0s1 . . . σn−1snσn · · · ∈ Plays(GK) satisfies an objective
φ iff the sequence of observations o0o1 . . . on . . . such that for all i ≥ 0, �i ∈ γ(oi)
belongs to φ. The following lemma follows from the results of [2].

Lemma 3 ([2]). If Player 1 has a sure-winning strategy in GK for an objective
φ, then Player 1 has an observation-based sure-winning strategy in G for φ.
If Player 1 does not have a deterministic sure-winning strategy in GK for a
Borel objective φ, then Player 1 does not have an observation-based sure-winning
strategy in G for φ.

Together with Theorem 1, Lemma 3 implies the first part of the following the-
orem, also used in [2]. The second part of the theorem generalizes the result to
quantitative Borel objectives.

Theorem 2 (Sure-winning reduction). Let G be a game structure, and
GK = Pft(G). The following assertions hold. (1) Player 1 has an observation-
based sure-winning strategy in G for a qualitative Borel objective φ if and only if
Player 1 has a sure-winning strategy in GK for φ [2]. (2) supα∈AO

G

infπ∈Outcome(G,α) f(π) = supα∈A
GK

infπ∈Outcome(G,α) f(π).

For the second part, let v = supα∈A
GK

infπ∈Outcome(G,α) f(π). Given ε > 0, con-
sider the qualitative objective φ = { π | f(π) ≥ v − ε }. By the first part of the
theorem, there is a sure-winning strategy in GK iff there is an observation-based
sure-winning strategy in G for the qualitative objective φ. Since ε is arbitrary,
the result follows. It follows from Theorem 2 that to solve a game structure G of
imperfect information it suffices to construct the game structure GK of perfect
information and solve the corresponding objective on GK.

78 K. Chatterjee, R. Majumdar, and T.A. Henzinger

4 Games with Variables

We now consider game structures whose states are determined by valuations to
a set of state variables, and formulate several games of imperfect information by
restricting the variables that can be observed.

Games with Variables. A game with variables consists of: (1) a finite set
X = { x1, x2, . . . , xn } of n boolean variables; a valuation v is a truth value
assignment to all the variables, and we write V to denote the set of all valuations;
(2) a finite set Γ of input letters; and (3) a non-deterministic transition function
δ : V × Γ → 2V \ ∅ given a current valuation and an input letter gives the
non-empty possible set of next valuations. We specify the games with variables
as a tuple G = (V, Γ, δ). We introduce some notation. Given a natural number
n we denote by [n] the set { 1, 2, . . . , n }. For I ⊆ [n] and v ∈ V , we denote
by v � I the restriction of the valuation on the set I of variables. Similarly, for
I ⊆ [n] we denote by V � I the restriction of the set of valuations on the set I
of variables. In games with variables we have two players: the controller and the
system. The controller chooses the input letter and the system resolves the non-
determinism in the transition function. We will consider several ways to restrict
the knowledge of the controller by limiting what variables it can observe.

Games with Fixed-partial-information. To begin with, we consider games
with variables where the information of the controller is restricted to a fixed
set of size k ≤ n of variables. Without loss of generality, we consider the case
when the controller can only observe the variables x1, x2, . . . , xk. Such games
with variables have fixed partial-information.

Reduction. Let G=(V, Γ, δ) be a game with variables. A strategy for the controller
in G is [k]-restricted if the strategy only observes the variables { x1, x2, . . . , xk }.
We present a reduction of games with variables with fixed-partial-information
to the class of imperfect information games of Section 2. The reduction to a
game with imperfect information Ĝ�[k] = 〈L, l0, Σ, Δ,O, γ〉 is as follows: (1) the
set of states L = V , the set of valuations; (2) the input letters Σ = Γ ; (3) the
set of observations is the set of restrictions of the valuations to { x1, . . . , xk }:
O = V � { 1, 2, . . . , k }; (4) γ(o) = { l ∈ L | l � { 1, 2, . . . , k } = o }; and (5)
(l, σ, l′) ∈ Δ iff l′ ∈ δ(l, σ).

Theorem 3.Let G=(V, Γ, δ) be a game with variables, and p : V → {0, 1, . . . , d}
be a priority function on V . Let p̂ : 2V \ ∅ → { 0, 1, . . . , d } be a priority func-
tion derived from p as follows: for a non-empty set Y ⊆ V we have p̂(Y) =
max{ p(v) | v ∈ Y } if p(v) is even for all v ∈ Y ; otherwise p̂(Y) = min{ p(v) |
v ∈ Y, p(v) is odd }. There is a [k]-restricted strategy for the controller in G to
satisfy the objective Parity(p) iff there is a strategy in ĜK = Pft(Ĝ�[k]) to satisfy
Parity(p̂).

Example 1. Consider a plant with variables { x1, x2, . . . , xn } such that the set
{ x1, x2, . . . , xk }, for k ≤ n, is the set of public variables that can be accessed
by the controller and all the other variables are private, i.e., cannot be accessed

Controller Synthesis with Budget Constraints 79

by the controller. Games with fixed-partial-information provide an appropriate
framework to model the interaction of the controller and the plant.

Games with Budget Constraints. We now consider games with variables
where the set of variables that the controller can observe is not fixed, but there is
a hard constraint on the amount of information that the controller can observe at
any round. We will again present a reduction to games of imperfect information,
but the reduction is more involved than the case of fixed partial-information.
Games with hard constraints. Let G = (V, Γ, δ) be a game with variables, and
let c be a cost function that assigns a cost c(i) > 0 to variable xi, i.e., there is a
cost c(i) for the controller to know the value of the variable xi. The controller
can choose to know the truth values of a subset of variables and then choose
the input letter. For a budget B > 0, a strategy of the controller is B-restricted
if at each round the controller can ask for the truth values of a subset I of
variables such that the sum of the costs of the variables does not exceed B, that
is,

∑
i∈I c(i) ≤ B. Observe that the choice of the set of variables is not fixed and

can vary in each round. For a set I ⊆ [n] we denote by c(I) =
∑

i∈I c(i) the sum
of the cost of the variables in I. We present a reduction of games with variables
and a budget B to imperfect-information games of Section 2. The reduction to
an imperfect-information game G�B = 〈L, l0, Σ, Δ,O, γ〉 is as follows:

(1) States. The set of states is L = V × { I ⊆ [n] | c(I) ≤ B } ∪ V , where V is
a copy of the valuations. That is the set of states consists of a pair of valuation
and a subset I such that c(I) does not exceed the budget B, and copy V of V .
(2) Input letters. The set of input letters is Σ = Γ ∪ { I ⊆ [n] | c(I) ≤ B }. The
set of input letters is the set of input letters Γ of the game G and also consists
of subsets I ⊆ [n] such that c(I) ≤ B.
(3) Observations. The set of observations is O = { (o, I) | I ⊆ [n], c(I) ≤ B, o ∈
V � I } ∪ { o }. The set of observations consists of pairs (o, I) where I ⊆ [n] and
o is a valuation restricted to I, and there is a special observation o.
(4) Observation map. The observation map is as follows: γ(o, I) = { (l, I) ∈ L |
l � I = o } and γ(o) = V . Observe that each state in V has the observation o.
(5)Transition function. The transition function is as follows: for σ ∈ Γ , ((l, I), σ,

l̂′) ∈ Δ iff l′ ∈ δ(l, σ) and (l, σ, (l, σ)) ∈ Δ for σ = I ⊆ [n] such that c(I) ≤ B. For
a state (l, I) if an input letter σ from Γ is chosen, then a next state l

′
is possible

iff l′ ∈ δ(l, σ). For a state l ∈ V the input letter can be chosen as a subset I such
that c(I) ≤ B, and the next state is (l, I). Observe that we assumed that input
letters from Γ can be chosen at states (l, I), and at states from V a subset I of
[n] can be chosen. However, this can be easily transformed to a game where at
every state all input letters are available as follows: we add an auxiliary state
that is losing for the controller, and at a state if an input letter is not available,
we make it available and add a transition to the losing state. For simplicity, we
ignore the details of this reduction.

The set of observation-based strategies of G�B represents the set of B-restricted
strategies. Let G

K
be the perfect-information game obtained from the subset

construction of G�B, i.e., G
K

= Pft(G�B).

80 K. Chatterjee, R. Majumdar, and T.A. Henzinger

Theorem 4. Let G = (V, Γ, δ) be a game with variables with a cost function
c on variables and p : V → { 0, 1, . . . , d } be a priority function on V . For
B > 0, consider the perfect-information game structure G

K
= Pft(G�B). Let p be

a priority function on G
K

defined as follows: for s ⊆ V we have p(s) = d; and for
s ⊆ L\V we have p(s) = max{p(v) | (v, I) ∈ Y } if p(v) is even for all (v, I) ∈ s;
otherwise p(s) = min{ p(v) | (v, I) ∈ Y, p(v) is odd }. There is a B-restricted
strategy for the controller in G to satisfy the objective Parity(p) iff there is a
strategy in G

K
to satisfy Parity(p).

Example 2. Consider the interaction of a controller with a plant with variables
{x1, x2, . . . , xn } where all the variables are public. Assume the variables are ac-
cessed through a network with a bandwidth constraint B. Let c be a cost function
that associates with a variable xi the cost c(i) that specifies the bandwidth re-
quirement to access variable xi. The games with hard-constraints provide the
right framework to model such interactions.

Budget Optimization Problems. We now consider games with soft-
constraints. These are games with variables with a cost function on variables. In
contrast to games with hard-constraints where the budget B is a hard-constraint,
in games with soft-constraints the controller can choose to know the value of a
subset I of variables and incur a cost c(I), and the goal is to either minimize the
long-run average of the cost, or minimize the maximum cost, along with satisfy-
ing a given parity objective. A strategy in such games is called soft-constrained
if whenever it asks for the valuation of a set I of variables, then it only observes
the valuation of the set I of variables.
Reduction. Let G = (V, Γ, δ) be a game with variables, and let c be a cost
function that assigns cost c(i) > 0 to variable xi. We present a reduction of
games with variables with soft-constraints to an imperfect-information game
G̃soft = 〈L, l0, Σ, Δ,O, γ〉 as follows:

(1) States. The set of states is L = V ×{ I ⊆ [n] } ∪ Ṽ , where Ṽ is a copy of the
valuations. That is the set of states consists of a pair of valuation and a subset
I ⊆ [n] and copy of the valuations.
(2) Input letters. The set of input letters is Σ = Γ ∪{ I ⊆ [n] }. The set of input
letters is the set of input letters Γ of the game G and consists of subsets I ⊆ [n].
(3) Observations. The set of observations is O = {(o, I) | I ⊆ [n], o ∈ V � I}∪{õ}.
The set of observations consists of pairs (o, I) where I ⊆ [n] and o is a valuation
restricted to I, and there is a special observation õ.
(4) Observation map. The observation map is as follows: γ(o, I) = { (l, I) ∈ L |
l � I = o } and γ(õ) = Ṽ . Observe that each state in Ṽ has the observation õ.
(5) Transition function. The transition function is as follows: for σ ∈ Γ , ((l, I), σ,

l̂′) ∈ Δ iff l′ ∈ δ(l, σ) and (l̃, σ, (l, σ)) ∈ Δ for σ = I ⊆ [n]. For a state (l, I) if
an input letter σ from Γ is chosen, then a next state l̃′ is possible iff l′ ∈ δ(l, σ).
For a state l̃ ∈ Ṽ the input letter can be chosen as a subset I ⊆ [n]. Observe
that we assumed that input letters from Γ can be chosen at states (l, I), and at
states from Ṽ a subset I of [n] can be chosen.

Controller Synthesis with Budget Constraints 81

(6) Reward function. The reward function r on input letters is as follows: for
input letters σ ∈ Γ we have r(σ) = 0 and for I ⊆ [n] we have r(I) = −c(I), i.e.,
the reward collected is the negative of the cost.

The set of observation-based strategies of G̃soft represents the set of soft-
constrained strategies. Let G̃K be the perfect-information game obtained from
the subset construction of G̃soft, i.e., G̃K = Pft(G̃soft).

Theorem 5. Let G = (V, Γ, δ) be a game with variables with a cost function
c on variables and p : V → {0, . . . , d} be a priority function on V . Consider
the perfect-information game structure G̃K = Pft(G̃soft). Let p̃ be a priority
function on G̃K defined as: for s ⊆ V , let p̃(s) = d; and for s ⊆ L \ Ṽ ,
let p̃(s) = max{ p(v) | (v, I) ∈ Y } if p(v) is even for all (v, I) ∈ s; oth-
erwise p̃(s) = min{ p(v) | (v, I) ∈ Y, p(v) is odd }. The following assertions
hold: (1) there is a soft-constrained strategy for the controller in G to sat-
isfy Parity(p) and ensure the long-run average of the costs is at most λ iff
supα∈G̃K infπ∈Outcome(G̃K,π) MP(p̃, r)) ≥ −λ

2 ; and (2) there is a soft-constrained
strategy for the controller in G to satisfy Parity(p) and ensure the maximum of
the costs is at most λ iff supα∈G̃K infπ∈Outcome(G̃K,π) MinP(p̃, r)) ≥ −λ.

Observe that in item 1 of Theorem 5 the right-hand side is −λ
2 instead of −λ.

This is because in the modeling of a game with variables with soft-constraints,
each step of the original game is simulated in two-steps rather than one, and
hence we need a factor of 2 in the result.

Example 3. Consider the interaction of a plant with variables { x1, x2, . . . , xn }
and a controller where all the variables are public. The values of the variables
can be obtained through sensors, and the value of variable xi can be obtained
through a sensor by consuming c(i) units of power. Games with soft-constraints
provide suitable framework for such games. If the goal is to minimize the average-
power consumption, then the long-run average criterion is appropriate, and if the
goal is to minimize the peak-power consumption, then the appropriate objective
is to minimize the maximum cost.

Solution of perfection-information games. The results of [3] present solutions
of perfect-information games with mean-payoff parity objectives. The result of
Theorem 5 present a reduction of games with variables with soft-constraints to
minimize long run average of the costs along with satisfying a parity objective to
perfect-information games with mean-payoff parity objectives. Theorem 5 also
presents the reduction of games with variables with soft-constraints to minimize
the maximum cost along with satisfying a parity objective to perfect-information
games with min-parity objectives. We now briefly describe how to use solutions
of perfect-information parity games to obtain solutions of perfect-information
min-parity games. The solution of perfect-information games with min-parity
objectives can be obtained as follows: (a) sort the rewards on the edges; (b) with
a binary search on the range of rewards, keep only edges above a certain reward
value and solve the resulting qualitative parity game. The solution of perfect-
information games with parity objectives is widely studied in literature, see [8,18,

82 K. Chatterjee, R. Majumdar, and T.A. Henzinger

7] for algorithmic solution of perfect-information parity games. Hence perfect-
information min-parity games with n states and m edges can be solved with
log(m) calls to perfect-information parity games. It may be noted that from the
above solution we can find the the minimum budget B that is required to satisfy
games with variables with hard-constraints to satisfy a given parity objective.

Computational complexity. It follows from the results of [2, 15] that games with
fixed-partial information are EXPTIME-hard even for reachability objectives.
The games with fixed-partial information can be obtained as a special case of
games with budget constraints as follows: set the budget as B = k, and the
cost for bits 1, 2, . . . , k as 1, and k + 1 for all other bits. Hence it follows that
games with budget constraints are EXPTIME-hard; and it also follows that the
budget optimization problem is EXPTIME-hard for reachability objectives (and
also for the more general parity objectives). From Theorem 4, Theorem 5, and
the solution of perfect-information games we obtain an EXPTIME upper bound
for the solution of games with budget constraints and the budget optimization
problem. Thus we have the following result.

Theorem 6. Let G = (V, Γ, δ) be a game with variables with a cost function c
on variables and p : V → {0, 1, . . . , d} be a priority function on V . For B > 0, it
is EXPTIME-complete to decide whether there is a B-restricted strategy for the
controller in G to satisfy the objective Parity(p); and the problem is EXPTIME-
hard even for reachability objectives.

5 Discrete Time Control of Rectangular Automata

We now apply the theory of controller synthesis with budget constraints to the
discrete time control problem for rectangular automata [6]. We obtain our results
using a general decidability result about imperfect-information games on infinite
state spaces that have a stable partition with a finite quotient.

R-stable games. In this section we drop the assumption of finite state space of
games. Let G = 〈L, l0, Σ, Δ,O, γ〉 be a game structure of imperfect-information
such that L is infinite. Let R = { r1, r2, . . . , rl } be a finite partition of L. A set
Q ⊆ L is R-definable if Q =

⋃
r∈Z r, for some Z ⊆ R. The game G is R-stable if

the following conditions hold for all σ ∈ Σ: (a) the set { l ∈ L | ∃l′ ∈ L.(l, σ, l′) ∈
Δ } is R-definable; (b) for all r ∈ R, the set PostGσ (r) is R-definable; (c) for all
r, r′ ∈ R, if for some x ∈ r we have PostGσ ({ x }) ∩ r′ = ∅, then for all x′ ∈ r we
have PostGσ ({ x′ }) ∩ r′ = ∅; and (d) for all o ∈ O, the set γ(o) is R-definable.

Lemma 4. The following assertions hold. (1) Let G be a game structure of
imperfect information, and let R be a finite partition of the state space of G such
that the game G is R-stable. Then the perfect-information game Pft(G) is 2R-
stable. (2) Let G be a perfect-information game structure with a parity objective
with d-priorities. If G is R-stable, for a given finite partition R, then the sure
winning sets in G can be computed in time O(|R|d).

Controller Synthesis with Budget Constraints 83

We present the definition of rectangular automata with budget constraints and
then reduce the problem to a game of imperfect information. Using a result of [6]
we establish the game of imperfect information is R-stable for a finite set R.
Rectangular constraints. Let Y = { y1, y2, . . . , yk } be a set of real-valued vari-
ables. A rectangular inequality over Y is of the form xi ∼ d, where d is an
integer constant, and ∼∈ { ≤, <,≥, > }. A rectangular predicate over Y is a
conjunction of rectangular inequalities. We denote the set of rectangular predi-
cates over Y as Rect(Y). The rectangular predicate φ defines the set of vectors
[[φ]] = { y ∈ R

k | φ[Y := y] is true }. For 1 ≤ i ≤ k, let [[φ]]i be the projection on
variable yi of the set [[φ]]. A set of the form [[φ]], where φ is a rectangular predicate,
is called a rectangle. Given a non-negative integer m ∈ N, the rectangular pred-
icate φ is m-bounded if |d| ≤ m, for every conjunct yi ∼ d of φ. Let us denote
by Rectm(Y) the set of m-bounded rectangular predicates on Y .
Rectangular automata with budget constraints. Let X = {x1, x2, . . . , xn} be a set
of boolean variables and V the set of all valuations. A rectangular automaton with
budget constraints H is a tuple 〈V,Lab,Edg , Y, Init , Inv ,Flow , Jump, c〉 where
(a) Lab is a finite set of labels ; (b) Edg ⊆ V × Lab × V is a finite set of edges ;
(c) Y = { y1, y2, . . . , yk } is a finite set of variables ; (d) Init : V → Rect(Y) gives
the initial condition Init(v) of a valuation v; (e) Inv : V → Rect(Y) gives the
invariant condition Inv(v) of valuation v (i.e., the automaton can stay in v as
long as the values of variables lie in [[Inv(v)]]); (f) Flow : V → Rect(Ẏ) governs the
evolution of the variables in each valuation; (g) c is a cost function that assigns
cost c(i) to variable xi, for 1 ≤ i ≤ n; and (h) Jump maps each edge e to a
predicate Jump(e) of the form φ∧φ′∧∧

i�∈Update(e)(y
′
i = yi), where φ ∈ Rect(Y),

φ′ ∈ Rect(Y ′), and Update(e) ⊆ { 1, 2, . . . , k }. The variables in Y ′ refer to
the updated values of the variables after the edge has been traversed. Each
variable yi with i ∈ Update(e) is updated nondeterministically to a new value
in [[φ′]]i. A rectangular automaton is m-bounded if all rectangular constraints are
m-bounded.
Nondecreasing and bounded variables. Let H be a rectangular automaton, and
let i ∈ { 1, 2, . . . , k }. The variable yi of H is nondecreasing if for all v ∈ V ,
the invariant interval [[Inv(v)]]i and the flow interval [[Flow (v)]]i are subsets of
the nonnegative reals. The variable yi of H is bounded if for all v ∈ V , the
invariant interval [[Inv(v)]]i is a bounded set. The automaton H is bounded (resp.
nondecreasing) if all the variables are bounded (resp. nondecreasing). In sequel
we consider automata that are bounded or nondecreasing.
Game semantics. The rectangular automaton game with a budget constraint
B is played as follows: the game starts with a valuation v and values for the
continuous variables y ∈ [[Init(v)]]. At each round the controller can choose to
observe a subset I of the boolean variables such that c(I) ≤ B; and then the
controller decides to take one of the enabled edges (if one exists). Then the
environment nondeterministically updates the continuous variables according to
the flow predicates by letting time pass for 1 time unit. Then the new round
of the game starts. We now present a reduction to imperfect-information game,
and then show that the game is stable with respect to a finite partition.

84 K. Chatterjee, R. Majumdar, and T.A. Henzinger

Reduction. A rectangular automaton H with a budget constraint B reduces to
an imperfect-information game H�B = 〈L, l0, Σ, Δ,O, γ〉 as follows:

(1) States. The set of states is L = V × R
k × { I ⊆ [n] | c(I) ≤ B } ∪ V × R

k,
where V is a copy of the valuations. That is the set of states consists of a tuple
of valuation, values of variables and a subset I such that c(I) does not exceed
the budget B, and copy of the valuations and the values of variables.
(2) Input letters. The set of input letters is Σ = Lab∪{1}∪{I ⊆ [n] | c(I) ≤ B}.
The set of input letters is the set of labels Lab of H , unit time 1 and subsets
I ⊆ [n] such that c(I) ≤ B.
(3) Observations. The set of observations is O = { (o, I) | I ⊆ [n], c(I) ≤
B, o is a valuation from V � I } ∪ { o }. The set of observations consists of pairs
(o, I) where I ⊆ [n] and o is a valuation restricted to I, and there is a special
observation o.
(4) Observation map. The observation map is as follows: γ(o, I) = { (l, y, I) ∈
L | l � I = o } and γ(o) = V × R

k. Observe that each state in V × R
k has the

same observation o.
(5) Transition function. The transition function is as follows: (a) ((v, y), σ, (v, y,
σ)) ∈ Δ, for σ = I ⊆ [n] such that c(I) ≤ B; (b) ((v, y, I), σ, v′, y′) ∈ Δ,
such that there exists e = (v, σ, v′) ∈ Edg with (y, y′) ∈ [[Jump(e)]]; and (c)
((v, y, I), 1, (v, y′, I)) ∈ Δ such that there exists a continuously differentiable
function f : [0, 1] → Inv(v) such that f(0) = y, f(1) = y′ and for all t ∈ (0, 1)
we have ḟ(t) ∈ [[Flow (v)]].

The set of observation-based strategies of H�B represents the set of B-restricted
strategies.
Equivalence relation. Let H be a m-bounded rectangular automaton with a bud-
get constraint B, and let H�B be the game of imperfect information obtained by
the reduction. We define the equivalence relation ≡m on the state space as fol-
lows: (v, y, I) ≡m (v′, y′, I) (resp. (v, y) ≡m (v′, y′)) iff (a) v = v′ (resp. v = v′);
and (b) for all 1 ≤ i ≤ k, either �yi� = �y′

i� and �yi� = �y′
i�, or both yi and y′

i

are greater than m. We denote by R≡m the set of equivalence classes of ≡m. It
is easy to observe that R≡m is finite (in fact exponential in the size of H). An
extension of the result of [6] gives us the following result.

Lemma 5. Let H be a m-bounded rectangular automaton game with a budget
constraint B. The imperfect-information game H�B is R≡m-stable.

Theorem 7. Let H be a rectangular automaton with a budget constraint B and
let p : V → { 0, 1, . . . , d } be a priority function on V . Consider the perfect-
information game structure H

K
= Pft(H�B). Let p be a priority function on

H
K

defined as follows: for s ⊆ V we have p(s) = d; and for s ⊆ L \ V we
have p(s) = max{ p(v) | (v, I) ∈ Y } if p(v) is even for all (v, I) ∈ s; otherwise
p(s) = min{ p(v) | (v, I) ∈ Y, p(v) is odd }. There is a B-restricted strategy for
the controller in H to satisfy the objective Parity(p) iff there is a strategy in H

K

to satisfy Parity(p).

From Lemma 4, Lemma 5, and Theorem 7 we obtain the following corollary.

Controller Synthesis with Budget Constraints 85

Corollary 1. Let H be a rectangular automaton with a budget constraint B and
let p : V → { 0, 1, . . . , d } be a priority function on V . Whether there is a B-
restricted strategy for the controller in H to satisfy the objective Parity(p) can be
decided in 2EXPTIME.

Acknowledgments. This research was supported in part by the NSF grants
CCF-0702743, CNS-0720881, CCR-0225610, and CCR-0234690, the Swiss Na-
tional Science Foundation (NCCR MICS and Indo-Swiss Research Programme),
and the ARTIST2 European Network of Excellence.

References

1. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transactions of the AMS 138, 295–311 (1969)

2. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for omega-
regular games with imperfect information. In: Ésik, Z. (ed.) CSL 2006. LNCS,
vol. 4207, pp. 287–302. Springer, Heidelberg (2006)

3. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Mean-payoff parity games. In:
LICS 2005, pp. 178–187. IEEE, Los Alamitos (2005)

4. Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International
Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)

5. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS
1991, pp. 368–377. IEEE, Los Alamitos (1991)

6. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid au-
tomata. In: Theoretical Computer Science, vol. (221), pp. 369–392. Elsevier, Am-
sterdam (1999)

7. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. In: SODA 2006, pp. 117–123. ACM-SIAM, New York
(2006)

8. Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

9. Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)
10. Kumar, R., Shayman, M.: Supervisory control of nondeterministic systems under

partial observation and decentralization. SIAM Journal of Control and Optimiza-
tion (1995)

11. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Advances
in Temporal Logic, pp. 109–127. Kluwer Academic Publishers, Dordrecht (January
2000)

12. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
13. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp.

179–190. ACM, New York (1989)
14. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. IEEE

Transactions on Control Theory 77, 81–98 (1989)
15. Reif, J.H.: The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences 29, 274–301 (1984)

86 K. Chatterjee, R. Majumdar, and T.A. Henzinger

16. Sharp, C., Schenato, L., Schaffert, S., Sinopoli, B., Sastry, S.: Distributed control
applications within sensor networks. In: Proceeding of the IEEE, Special Issue on
Sensor Networks and Applications (2003)

17. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages.
Vol. 3, Beyond Words, ch. 7, pp. 389–455. Springer, Heidelberg (1997)

18. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

19. Zwick, U., Paterson, M.S.: The complexity of mean payoff games on graphs. The-
oretical Computer Science 158, 343–359 (1996)

Trading Infinite Memory for

Uniform Randomness in Timed Games�

Krishnendu Chatterjee1, Thomas A. Henzinger1,2, and Vinayak S. Prabhu1

1 EECS, UC Berkeley
2 CCS, EPFL

{c krish,vinayak}@eecs.berkeley.edu, tah@epfl.ch

Abstract. We consider concurrent two-player timed automaton games
with ω-regular objectives specified as parity conditions. These games
offer an appropriate model for the synthesis of real-time controllers. Ear-
lier works on timed games focused on pure strategies for each player. We
study, for the first time, the use of randomized strategies in such games.
While pure (i.e., nonrandomized) strategies in timed games require in-
finite memory for winning even with respect to reachability objectives,
we show that randomized strategies can win with finite memory with
respect to all parity objectives. Also, the synthesized randomized real-
time controllers are much simpler in structure than the corresponding
pure controllers, and therefore easier to implement. For safety objectives
we prove the existence of pure finite-memory winning strategies. Finally,
while randomization helps in simplifying the strategies required for win-
ning timed parity games, we prove that randomization does not help in
winning at more states.

1 Introduction

Timed automata [2] are models of real-time systems in which states consist of dis-
crete locations and values for real-time clocks. The transitions between locations
are dependent on the clock values. Timed automaton games [9,1,7,13,12] are used
to distinguish between the actions of several players (typically a “controller” and
a “plant”). We shall consider two-player timed automaton games with ω-regular
objectives specified as parity conditions. The class of ω-regular objectives can
express all safety and liveness specifications that arise in the synthesis and veri-
fication of reactive systems, and parity conditions are a canonical form to express
ω-regular objectives [19]. The construction of a winning strategy for player 1 in
such games corresponds to the controller synthesis problem for real-time systems
[11,16,17,20] with respect to achieving a desired ω-regular objective.

The issue of time divergence is crucial in timed games, as a naive control
strategy might simply block time, leading to “zeno” runs. Such invalid solutions
have often been avoided by putting strong syntactic constraints on the cycles
� This research was supported in part by the NSF grants CCR-0208875, CCR-0225610,

CCR-0234690, by the Swiss National Science Foundation, and by the Artist2 Euro-
pean Network of Excellence.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 87–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

88 K. Chatterjee, T.A. Henzinger, and V.S. Prabhu

of timed automaton games [17,4,13,5], or by semantic conditions that discretize
time [14]. Other works [16,11,6,7] have required that time divergence be ensured
by the controller —a one-sided, unfair view in settings where the player modeling
the plant is allowed to block time. We use the more general, semantic and fully
symmetric formalism of [9,15] for dealing with the issue of time divergence. This
setting places no syntactic restriction on the game structure, and gives both
players equally powerful options for advancing time, but for a player to win, she
must not be responsible for causing time to converge. It has been shown in [15]
that this is equivalent to requiring that the players are restricted to the use of
receptive strategies [3,18], which, while being required to not prevent time from
diverging, are not required to ensure time divergence. More formally, our timed
games proceed in an infinite sequence of rounds. In each round, both players
simultaneously propose moves, with each move consisting of an action and a
time delay after which the player wants the proposed action to take place. Of
the two proposed moves, the move with the shorter time delay “wins” the round
and determines the next state of the game. Let a set Φ of runs be the desired
objective for player 1. Then player 1 has a winning strategy for Φ if she has a
strategy to ensure that, no matter what player 2 does, one of the following two
conditions hold: (1) time diverges and the resulting run belongs to Φ, or (2) time
does not diverge but player-1’s moves are chosen only finitely often (and thus
she is not to be blamed for the convergence of time).

The winning strategies constructed in [9] for such timed automaton games as-
sume the presence of an infinitely precise global clock to measure the progress of
time, and the strategies crucially depend on the value of this global clock. Since
the value of this clock needs to be kept in memory, the constructed strategies
require infinite memory. In fact, the following example (Example 2) shows that
infinite memory is necessary for winning with respect to reachability objectives.
Besides the infinite-memory requirement, the strategies constructed in [9] are
structurally complicated, and it would be difficult to implement the synthesized
controllers in practice. Before offering a novel solution to this problem, we il-
lustrate the problem with an example of a simple timed game whose solution
requires infinite memory.

Example 1 (Signaling hub). Consider a signaling hub that both sends and re-
ceives signals at the same port. At any time the port can either receive or send
a signal, but it cannot do both. Moreover, the hub must accept all signals sent
to it. If both the input and the output signals arrive at the same time, then the
output signal of the hub is discarded. The input signals are generated by other
processes, and infinitely many signals cannot be generated in a finite amount of
time. The time between input signals is not known a priori. The system may be
modeled by the timed automaton game shown in Figure 1. The actions b1 and
b2 correspond to input signals, and a1 and a2 to output signals. The actions bi

are controlled by the environment and denote input signals; the actions ai are
controlled by the hub and denote signals sent by the hub. The clock x models
the time delay between signals: all signals reset this clock, and signals can arrive
or be sent provided the value of x is greater than 0, ensuring that there is a

Trading Infinite Memory for Uniform Randomness in Timed Games 89

p q
b2b1

a2, x > 0 → x := 0

a1, x > 0 → x := 0

x > 0 → x := 0 x > 0 →
x := 0

Fig. 1. A timed automaton game

positive delay between signals. The objective of the hub controller is to keep
sending its own signals, which can be modeled as the generalized Büchi condi-
tion of switching infinitely often between the locations p and q (ie., the LTL
objective �(�p ∧ �q)). ��
Example 2 (Winning requires infinite memory). Consider the timed game of Fig-
ure 1. We let κ denote the valuation of the clock x. We let the special “action” ⊥
denote a time move (representing time passage without an action). The objective
of player 1 is to reach q starting from s0 = 〈p, x = 0〉 (and similarly, to reach p
from q). We let π1 denote the strategy of player 1 which prescribes moves based
on the history r[0..k] of the game at stage k. Suppose player 1 uses only finite
memory. Then player 1 can propose only moves from a finite set when at s0.
Since a zero time move keeps the game at p, we may assume that player 1 does
not choose such moves. Let Δ > 0 be the least time delay of these finitely many
moves of player 1. Then player 2 can always propose a move 〈Δ/2, b〉 when at
s0. This strategy will prevent player 1 from reaching q, and yet time diverges.
Hence player 1 cannot win with finite memory; that is, there is no hub con-
troller that uses only finite memory. However, player 1 has a winning strategy
with infinite memory. For example, consider the player 1 strategy π2 such that
π2(r[0..k]) = 〈1/2k+2, a1〉 if r[k] = 〈p, κ〉. and π2(r[0..k]) = 〈1,⊥〉 otherwise. ��
In this paper we observe that the infinite-memory requirement of Example 1 is
due to the determinism of the permissible strategies: a strategy is deterministic
(or pure) if in each round of the game, it proposes a unique move (i.e., action and
time delay). A more general class of strategies are the randomized strategies: a
randomized strategy may propose, in each round, a probability distribution of
moves. We now show that in the game of Example 2 finite-memory randomized
winning strategies do exist. Indeed, the needed randomization has a particularly
simple form: player 1 proposes a unique action together with a time interval
from which the time delay is chosen uniformly at random. Such a strategy can
be implemented as a controller that has the ability to wait for a randomly chosen
amount of time.

Example 3 (Randomization instead of infinite memory). Recall the game in
Figure 1. Player 1 can play a randomized memoryless strategy π3 such that
π3(〈p, κ〉) = 〈Uniform((0, 1−κ(x))), ai〉; that is, the action ai is proposed to take
place at a time chosen uniformly at random in the interval (0, 1−κ(x)). Suppose
player 2 always proposes the action bi with varying time delays Δj at round j.

90 K. Chatterjee, T.A. Henzinger, and V.S. Prabhu

Then the probability of player-1’s move being never chosen is
∏∞

j=1(1 − Δj),
which is 0 if

∑∞
j=1 Δj = ∞ (see [8] for the proof). Interrupting moves with pure

time moves does not help player 2, as 1 − Δj

1−κ(x) < 1 − Δj . Thus the simple
randomized strategy π3 is winning for player 1 with probability 1. ��
Previously, only deterministic strategies were studied for timed games; here,
for the first time, we study randomized strategies. We show that randomized
strategies are not more powerful than deterministic strategies in the sense that
if player 1 can win with a randomized strategy, then she can also win with a
deterministic strategy. However, as the example illustrated, randomization can
lead to a reduction in the memory required for winning, and to a significant sim-
plification in the structure of winning strategies. Randomization is therefore not
only of theoretical interest, but can improve the implementability of synthesized
controllers. It is for this reason that we set out, in this paper, to systematically
analyze the trade-off between randomization requirements (no randomization;
uniform randomization; general randomization), memory requirements (finite
memory and infinite memory) and the presence of extra “controller clocks” for
various classes of ω-regular objectives (safety; reachability; parity objectives).

Our results are as follows. First, we show that for safety objectives pure (no
randomization) finite-memory winning strategies exist. Next, for reachability ob-
jectives, we show that pure (no randomization) strategies require infinite memory
for winning, whereas uniform randomized finite-memory winning strategies ex-
ist. We then use the results for reachability and safety objectives in an inductive
argument to show that uniform randomized finite-memory strategies suffice for
all parity objectives, for which pure strategies require infinite memory (because
reachability is a special case of parity). In all our uses of randomization, we only
use uniform randomization over time, and more general forms of randomization
(nonuniform distributions; randomized actions) are not required. This shows that
in timed games, infinite memory can be traded against uniform randomness. Fi-
nally, we show that while randomization helps in simplifying winning strategies,
and thus allows the construction of simpler controllers, randomization does not
help a player in winning at more states, and thus does not allow the construction
of more powerful controllers. In other words, the case for randomness rests in the
simplicity of the synthesized real-time controllers, not in their expressiveness.

We note that in our setting, player 1 (i.e., the controller) can trade infinite
memory also against finite memory together with an extra clock. We assume that
the values of all clocks of the plant are observable. For an ω-regular objective Φ,
we define the following winning sets depending on the power given to player 1:
let [[Φ]]1 be the set of states from which player 1 can win using any strategy
(finite or infinite memory; pure or randomized) and any number of infinitely
precise clocks; in [[Φ]]2 player 1 can win using a pure finite-memory strategy
and only one extra clock; in [[Φ]]3 player 1 can win using a pure finite-memory
strategy and no extra clock; and in [[Φ]]4 player 1 can win using a randomized
finite-memory strategy and no extra clock. Then, for every timed automaton
game, we have [[Φ]]1 = [[Φ]]2 = [[Φ]]4. We also have [[Φ]]3 ⊆ [[Φ]]1, with the subset
inclusion being in general strict. It can be shown that at least one bit of memory

Trading Infinite Memory for Uniform Randomness in Timed Games 91

is required for winning of reachability objectives despite player 1 being allowed
randomized strategies. We do not know whether memory is required for winning
safety objectives (even in the case of pure strategies).

2 Timed Games

In this section we present the definitions of timed game structures, runs, objec-
tives, strategies and the notions of sure and almost-sure winning in timed game
structures.
Timed game structures. A timed game structure is a tuple G = 〈S,A1,A2, Γ1,
Γ2, δ〉 with the following components.

– S is a set of states.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.

We assume that ⊥ �∈ Ai, and write A⊥
i for Ai ∪{⊥}. The set of moves for

player i is Mi = IR≥0 ×A⊥
i . Intuitively, a move 〈Δ, ai〉 by player i indicates

a waiting period of Δ time units followed by a discrete transition labeled
with action ai.

– Γi : S �→ 2Mi \ ∅ are two move assignments. At every state s, the set Γi(s)
contains the moves that are available to player i. We require that 〈0,⊥〉 ∈
Γi(s) for all states s ∈ S and i ∈ {1, 2}. Intuitively, 〈0,⊥〉 is a time-blocking
stutter move.

– δ : S × (M1 ∪ M2) �→ S is the transition function. We require that for
all time delays Δ, Δ′ ∈ IR≥0 with Δ′ ≤ Δ, and all actions ai ∈ A⊥

i ,
we have (1) 〈Δ, ai〉 ∈ Γi(s) iff both 〈Δ′,⊥〉 ∈ Γi(s) and 〈Δ − Δ′, ai〉 ∈
Γi(δ(s, 〈Δ′,⊥〉)); and (2) if δ(s, 〈Δ′,⊥〉) = s′ and δ(s′, 〈Δ − Δ′, ai〉) = s′′,
then δ(s, 〈Δ, ai〉) = s′′.

The game proceeds as follows. If the current state of the game is s, then both
players simultaneously propose moves 〈Δ1, a1〉 ∈ Γ1(s) and 〈Δ2, a2〉 ∈ Γ2(s).
The move with the shorter duration “wins” in determining the next state of
the game. If both moves have the same duration, then the move of player 2
determines the next state.1 We use this setting as our goal is to compute the
winning set for player 1 against all possible strategies of player 2. Formally, we
define the joint destination function δjd : S × M1 × M2 �→ S by

δjd(s, 〈Δ1, a1〉, 〈Δ2, a2〉) =
{

δ(s, 〈Δ1, a1〉) if Δ1 < Δ2;
δ(s, 〈Δ2, a2〉) if Δ2 ≤ Δ1.

The time elapsed when the moves m1 = 〈Δ1, a1〉 and m2 = 〈Δ2, a2〉 are proposed
is given by delay(m1, m2) = min(Δ1, Δ2). The boolean predicate blamei(s, m1,
m2, s

′) indicates whether player i is “responsible” for the state change from s to
s′ when the moves m1 and m2 are proposed. Denoting the opponent of player i
by ∼i = 3 − i, for i ∈ {1, 2}, we define
1 Alternatively, we can define the next state to be determined nondeterministically in

the case of ties, without changing our results. We give the player-2 move priority
only to simplify the presentation.

92 K. Chatterjee, T.A. Henzinger, and V.S. Prabhu

blamei(s, 〈Δ1, a1〉, 〈Δ2, a2〉, s′) =
(
Δi ≤ Δ∼i ∧ δ(s, 〈Δi, ai〉) = s′

)
.

Runs. A run of the timed game structure G is an infinite sequence r =
s0, 〈m0

1, m
0
2〉, s1, 〈m1

1, m
1
2〉, . . . such that sk ∈ S and mk

i ∈ Γi(sk) and sk+1 =
δjd(sk, mk

1 , mk
2) for all k ≥ 0 and i ∈ {1, 2}. For k ≥ 0, let time(r, k) denote the

“time” at position k of the run, namely, time(r, k) =
∑k−1

j=0 delay(mj
1, m

j
2) (we

let time(r, 0) = 0). By r[k] we denote the (k + 1)-th state sk of r. The run prefix
r[0..k] is the finite prefix of the run r that ends in the state sk. Let Runs be the
set of all runs of G, and let FinRuns be the set of run prefixes.

Objectives. An objective for the timed game structure G is a set Φ ⊆ Runs
of runs. We will be interested in the classical reachability, safety and parity
objectives. Parity objectives are canonical forms for ω-regular properties that
can express all commonly used specifications that arise in verification.

– Given a set of states Y , the reachability objective Reach(Y) is defined as the
set of runs that visit Y , formally, Reach(Y) = {r | there exists i such that
r[i] ∈ Y }.

– Given a set of states Y , the safety objective consists of the set of runs that
stay within Y , formally, Safe(Y) = {r | for all i we have r[i] ∈ Y }.

– Let Ω : S �→ {0, . . . , k−1} be a parity index function. The parity objective for
Ω requires that the maximal index visited infinitely often is even. Formally,
let InfOften(Ω(r)) denote the set of indices visited infinitely often along a run
r. Then the parity objective defines the following set of runs: Parity(Ω) =
{r | max(InfOften(Ω(r))) is even }.

A timed game structure G together with the index function Ω constitute a
parity timed game (of index k) in which the objective of player 1 is Parity(Ω).
We use similar notations for reachability and safety timed games.

Strategies. A strategy for a player is a recipe that specifies how to extend a run.
Formally, a probabilistic strategy πi for player i ∈ {1, 2} is a function πi that as-
signs to every run prefix r[0..k] a probability distribution Di(r[k]) over Γi(r[k]),
the set of moves available to player i at the state r[k]. Pure strategies are strategies
for which the state space of the probability distribution of Di(r[k]) is a singleton
set for every run r and all k. We let Πpure

i denote the set of pure strategies for
player i, with i ∈ {1, 2}. For i ∈ {1, 2}, let Πi be the set of strategies for player i.
Given two strategies π1 ∈ Π1 and π2 ∈ Π2, the set of possible outcomes of the
game starting from a state s ∈ S is denoted Outcomes(s, π1, π2). Given strategies
π1 and π2, for player 1 and player 2, respectively, and a starting state s we denote
by Prπ1,π2

s (·) the probability space given the strategies and the initial state s.

Receptive strategies. We will be interested in strategies that are meaningful
(in the sense that they do not block time). To define them formally we first
present the following two sets of runs.

– A run r is time-divergent if limk→∞ time(r, k) = ∞. We denote by Timediv
the set of all time-divergent runs.

Trading Infinite Memory for Uniform Randomness in Timed Games 93

– The set Blamelessi ⊆ Runs consists of the set of runs in which player i is re-
sponsible only for finitely many transitions. A run s0, 〈m0

1, m
0
2〉, s1, 〈m1

1, m
1
2〉,

. . . belongs to the set Blamelessi, for i = {1, 2}, if there exists a k ≥ 0 such
that for all j ≥ k, we have ¬ blamei(sj , m

j
1, m

j
2, sj+1).

A strategy πi is receptive if for all strategies π∼i, all states s ∈ S, and all runs r ∈
Outcomes(s, π1, π2), either r ∈ Timediv or r ∈ Blamelessi. Thus, no what matter
what the opponent does, a receptive strategy of player i cannot be responsible for
blocking time. Strategies that are not receptive are not physically meaningful. A
timed game structure G is well-formed if both players have receptive strategies.
We restrict our attention to well-formed timed game structures. We denote ΠR

i

to be the set of receptive strategies for player i. Note that for π1 ∈ ΠR
1 , π2 ∈ ΠR

2 ,
we have Outcomes(s, π1, π2) ⊆ Timediv.

Sure and almost-sure winning modes. Let SureG
1 (Φ) (resp. AlmostSureG

1 (Φ))
be the set of states s in G such that player 1 has a receptive strategy π1 ∈ ΠR

1 such
that for all receptive strategies π2 ∈ ΠR

2 , we have Outcomes(s, π1, π2) ⊆ Φ (resp.
Prπ1,π2

s (Φ) = 1). Such a winning strategy is said to be a sure (resp. almost sure)
winning receptive strategy. In computing the winning sets, we shall quantify over
all strategies, but modify the objective to take care of time divergence. Given
an objective Φ, let TimeDivBl1(Φ) = (Timediv∩ Φ)∪ (Blameless1 \Timediv), i.e.,
TimeDivBl1(Φ) denotes the set of paths such that either time diverges and Φ
holds, or else time converges and player 1 is not responsible for time to converge.
Let SureG

1 (Φ) (resp. AlmostSureG
1 (Φ)) be the set of states in G such that for all

s ∈ SureG
1 (Φ) (resp. AlmostSureG

1 (Φ)), player 1 has a strategy π1 ∈ Π1 such that
for all strategies π2 ∈ Π2, we have Outcomes(s, π1, π2) ⊆ Φ (resp. Prπ1,π2

s (Φ) =
1). Such a winning strategy is said to be a sure (resp. almost sure) winning for
the non-receptive game. The following result establishes the connection between
Sure and Sure sets.

Theorem 1. [15] For all well-formed timed game structures G, and for all ω-
regular objectives Φ, we have SureG

1 (TimeDivBl1(Φ)) = SureG
1 (Φ).

We now define a special class of timed game structures, namely, timed automaton
games.

Timed automaton games. Timed automata [2] suggest a finite syntax for
specifying infinite-state timed game structures. A timed automaton game is a
tuple T = 〈L, C,A1,A2, E, γ〉 with the following components:

– L is a finite set of locations.
– C is a finite set of clocks.
– A1 and A2 are two disjoint sets of actions for players 1 and 2, respectively.
– E ⊆ L × (A1 ∪A2) × Constr(C) × L × 2C is the edge relation, where the

set Constr(C) of clock constraints is generated by the grammar: θ ::= x ≤
d | d ≤ x | ¬θ | θ1 ∧ θ2, for clock variables x ∈ C and nonnegative integer
constants d. For an edge e = 〈l, ai, θ, l

′, λ〉, the clock constraint θ acts as
a guard on the clock values which specifies when the edge e can be taken,

94 K. Chatterjee, T.A. Henzinger, and V.S. Prabhu

and by taking the edge e, the clocks in the set λ ⊆ C are reset to 0. We
require that for all edges 〈l, ai, θ

′, l′, λ′〉, 〈l, ai, θ
′′, l′′, λ′′〉 ∈ E with l′ �= l′′,

the conjunction θ′∧θ′′ is unsatisfiable. This requirement ensures that a state
and a move together uniquely determine a successor state.

– γ : L �→ Constr(C) is a function that assigns to every location an invariant
for both players. All clocks increase uniformly at the same rate. When at
location l, each player i must propose a move out of l before the invariant γ(l)
expires. Thus, the game can stay at a location only as long as the invariant
is satisfied by the clock values.

A clock valuation is a function κ : C �→ IR≥0 that maps every clock to a non-
negative real. The set of all clock valuations for C is denoted by K(C). A state
s = 〈l, κ〉 of the timed automaton game T is a location l ∈ L together with a
clock valuation κ ∈ K(C) such that the invariant at the location is satisfied,
that is, κ |= γ(l). We let S be the set of all states of T. Given a timed automaton
game T, the definition of an associated timed game structure [[T]] is standard [9].
We shall restrict our attention to randomization over time — a random move
of a player will consist of a distribution over time over some interval I, denoted
DI , together with a discrete action ai.

Clock region equivalence. We use the standard clock-region equivalence re-
lation from the theory of timed automata [2] (the formal definition is being
ommited here as it is fairly standard). We denote two clock-region equivalent
clock valuations κ1, κ2 by κ1

∼= κ2. Two states 〈l1, κ1〉, 〈l2, κ2〉 ∈ S are clock-
region equivalent, denoted 〈l1, κ1〉 ∼= 〈l2, κ2〉, iff l1 = l2 and κ1

∼= κ2. A clock
region is an equivalence class of states with respect to ∼=. There are finitely
many clock regions; more precisely, the number of clock regions is bounded by
|L| · ∏x∈C(cx + 1) · |C|! · 2|C|.

For a state s ∈ S, we write Reg(s) ⊆ S for the clock region containing s. For a
run r, we let the region sequence Reg(r) = Reg(r[0]), Reg(r[1]), · · · . Two runs r, r′

are region equivalent if their region sequences are the same. Given a distribution
Dstates over states, we obtain a corresponding distribution Dreg = Regd(Dstates)
over regions as follows: for a region R we have Dreg(R) = Dstates({s | s ∈ R}).
An ω-regular objective Φ is a region objective if for all region-equivalent runs
r, r′, we have r ∈ Φ iff r′ ∈ Φ. A strategy π1 is a region strategy, if for all prefixes
r1 and r2 such that Reg(r1) = Reg(r2), we have Regd(π1(r1)) = Regd(π1(r2)).
The definition for player 2 strategies is analogous. Two region strategies π1 and
π′

1 are region-equivalent if for all prefixes r we have Regd(π1(r)) = Regd(π′
1(r)).

A parity index function Ω is a region parity index function if Ω(s1) = Ω(s2)
whenever s1

∼= s2. Henceforth, we shall restrict our attention to region objectives.

Encoding time divergence by enlarging the game structure. Given a
timed automaton game T, consider the enlarged game structure T̂ with the state
space Ŝ ⊆ S × IR[0,1) × {true, false}2, and an augmented transition relation
δ̂ : Ŝ×(M1∪M2) �→ Ŝ. In an augmented state 〈s, z, tick , bl1〉 ∈ Ŝ, the component
s ∈ S is a state of the original game structure [[T]], z is value of a fictitious clock
z which gets reset to 0 every time it hits 1, or if a move of player 1 is chosen,

Trading Infinite Memory for Uniform Randomness in Timed Games 95

tick is true iff z hit 1 at last transition and bl1 is true if player 1 is to blame
for the last transition. Note that any strategy πi in [[T]], can be considered a
strategy in T̂. The values of the clock z, tick and bl1 correspond to the values
each player keeps in memory in constructing his strategy. Any run r in T has
a corresponding unique run r̂ in T̂ with r̂[0] = 〈r[0], 0, false, false〉 such that
r is a projection of r̂ onto T. For an objective Φ, we can now encode time-
divergence as: TimeDivBl(Φ) = (�� tick → Φ) ∧ (¬�� tick → ��¬ bl1). Let
κ̂ be a valuation for the clocks in C ∪ {z}. A state of T̂ can then be considered
as 〈〈l, κ̂〉, tick , bl1〉. We extend the clock equivalence relation to these expanded
states: 〈〈l, κ̂〉 tick , bl1〉 ∼= 〈〈l′, κ̂′〉, tick ′, bl ′1〉 iff l = l′, tick = tick ′, bl1 = bl ′1 and
κ̂ ∼= κ̂′. For every ω-regular region objective Φ of T, we have TimeDivBl(Φ) to be
an ω-regular region objective of T̂.

We now present a lemma that states for region ω-regular objectives region
winning strategies exist, and all strategies region-equivalent to a region winning
strategy are also winning.

Lemma 1. Let T be a timed automaton game and T̂ be the corresponding en-
larged game structure. Let Φ̂ be an ω-regular region objective of T̂. Then the
following assertions hold.

– There is a pure finite-memory region strategy π1 that is sure winning for Φ̂

from the states in SureT̂
1 (Φ̂).

– If π1 is a pure region strategy that is sure winning for Φ̂ from SureT̂
1 (Φ̂) and

π′
1 is a pure strategy that is region-equivalent to π1, then π′

1 is a sure winning
strategy for Φ̂ from SureT̂

1 (Φ̂).

Note that there is an infinitely precise global clock z in the enlarged game struc-
ture T̂. If T does not have such a global clock, then strategies in T̂ correspond to
strategies in T where player 1 (and player 2) maintain the value of the infinitely
precise global clock in memory (requiring infinite memory).

3 Safety: Pure Finite-Memory Strategies

In this section we show the existence of pure finite-memory sure winning strate-
gies for safety objectives in timed automaton games. Given a timed automa-
ton game T, we define two functions P>0 : C �→ {true, false} and P≥1 :
C �→ {true, false}. For a clock x, the values of P>0(x) and P≥1(x) indi-
cate if the clock x was greater than 0 or greater than or equal to 1 respec-
tively, during the last transition (excluding the originating state). Consider the
enlarged game structure T̃ with the state space S̃ = S × {true, false} ×
{true, false}C × {true, false}C and an augmented transition relation δ̃. A
state of T̃ is a tuple 〈s, bl1, P>0, P≥1〉, where s is a state of T, the component
bl1 is true iff player 1 is to be blamed for the last transition, and P>0, P≥1

are as defined earlier. The clock equivalence relation can be lifted to states of
T̃ : 〈s, bl1, P>0, P≥1〉 ∼=Ã 〈s′, bl ′1, P ′

>0, P
′
≥1〉 iff s ∼=T s′, bl1 = bl ′1, P>0 = P ′

>0 and
P≥1 = P ′

≥1.

96 K. Chatterjee, T.A. Henzinger, and V.S. Prabhu

Lemma 2. Let T be a timed automaton game, and T̃ be the corresponding en-
larged game. Then player 1 has a receptive strategy from a state s iff 〈s, ·〉 ∈
SureT̃

1 (Φ∗), where Φ∗ = ��(bl1 = true) → ∨
X⊆C

(∧
x∈X ��(x > cx) ∧ φX

)
,

and

φX =(
∧

x∈C\X

��(x=0))∧

⎛

⎜
⎜
⎝

(∨
x∈C\X ��((P>0(x)=true)∧(bl1 =true))

)

∨(∨
x∈C\X ��((P≥1(x)=true)∧(bl1 =false))

)

⎞

⎟
⎟
⎠ .

The clause
∧

x∈X ��(x > cx) specifies which clocks escape beyond their max-
imum values (and are never reset). The rest of the clocks hence thus be reset
infinitely often in a time diverging run, this is specified by the clause

∧
x∈C\X ��

(x = 0). Suppose we have (
∨

x∈C\X ��((P≥1(x) = true)∧(bl1 = false)). Then
clearly time diverges as some clock x goes from 0 to 1 infinitely often. Suppose
we have (

∨
x∈C\X ��((P>0(x) = true) ∧ (bl1 = true)). We note that if a

player can take a move from s̃ to a region R̃ where the value of some clock x is
such that 0 < x ≤ cx, then there is some clock y ∈ C (possibly different from
x) such that the player can take a move from s̃ to the region R̃ such that the
value of y will be more than 1/2 (and less than or equal to cy). Thus, in this
case, some clock goes from 0 to 1/2 infinitely often and time diverges. It turns
out that these conditions are also required. The full proof can be found in [8].

Theorem 2. Let T be a timed automaton game and T̃ be the corresponding
enlarged game. Let Y be a union of regions of T. Then the following assertions
hold.

1. SureT̃
1 (�Y) = SureT̃

1 ((�Y) ∧ Φ∗), where Φ∗ is as defined in Lemma 2.
2. Player 1 has a pure, finite-memory, receptive, region strategy that is sure

winning for the safety objective Safe(Y) at every state in SureT̃
1 (�Y).

4 Reachability: Randomized Finite-Memory Strategies

We have seen in Example 2 that pure sure winning strategies require infinite
memory in general for reachability objectives. In this section, we shall show that
uniform randomized almost-sure winning strategies with finite memory exist.
This shows that we can trade-off infinite memory with uniform randomness.

Let SR be the destination set of states that player 1 wants to reach. We
only consider SR such that SR is a union of regions of T. For the timed au-
tomaton T, consider the enlarged game structure of T. We let ŜR = SR ×
IR[0,1] × {true, false}2. From the reachability objective (denoted Reach(SR))
we obtain the reachability parity objective with index function ΩR as follows:
ΩR(〈s, z, tick , bl1〉) = 1 if tick ∨ bl1 = true and s �∈ SR (0 otherwise). We assume
the states in SR are absorbing. We let ŜR = SR × IR[0,1] × {true, false}2. We
now present a μ-calculus characterization for the sure winning set (using only
pure strategies) for player 1 for reachability objectives. We first translate the

Trading Infinite Memory for Uniform Randomness in Timed Games 97

reachability objective to a parity objective of index 2 (the μ-calculus expression
will use the parity index function).

Lemma 3. For a timed automaton game T, with the reachability objective SR, con-
sider the enlarged game structure T̂, and the corresponding reachability parity func-
tion ΩR. Then we have that Sure1(TimeDivBl(Reach(SR)))=Sure1(Parity(ΩR)).

The controllable predecessor operator for player 1, CPre1 : 2Ŝ �→ 2Ŝ, defined
formally by s̃ ∈ CPre1(Z) iff ∃m1 ∈ Γ̂1(ŝ) ∀m2 ∈ Γ̂2(ŝ) . δ̂jd(ŝ, m1, m2) ⊆ Z.
Informally, CPre1(Z) consists of the set of states from which player 1 can ensure
that the next state will be in Z, no matter what player 2 does. From Lemma 3
it follows that the sure winning set can be described as the μ-calculus formula:
μY νX

[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. The winning set can then

be computed as a fixpoint iteration on regions of T̂. We can also obtain a pure
winning strategy πpure of player 1 as in [10]. Note that this strategy πpure corre-
sponds to an infinite-memory strategy of player 1 in the timed automaton game
T, as she needs to maintain the value of the clock z in memory.

To compute randomized finite-memory almost-sure winning strategies,
we will use the structure of the μ-calculus formula. Let Y ∗ = μY νX[
(Ω−1(1) ∩ CPre1(Y)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. The iterative fixpoint

procedure computes Y0 = ∅ ⊆ Y1 ⊆ · · · ⊆ Yn = Y ∗, where Yi+1 = νX[
(Ω−1(1) ∩ CPre1(Yi)) ∪ (Ω−1(0) ∩ CPre1(X))

]
. We can consider the states in

Yi \ Yi−1 as being added in two steps, T2i−1 and T2i(= Yi) as follows:

1. T2i−1 = Ω−1(1) ∩ CPre1(Yi−1). T2i−1 is clearly a subset of Yi.
2. T2i = νX

[
T2i−1 ∪ (Ω−1(0) ∩ CPre1(X))

]
. Note (T2i \ T2i−1) ∩ Ω−1(1) = ∅.

Thus, in odd stages we add states with index 1, and in even stages we add states
with index 0. The rank of a state ŝ ∈ Y ∗ is j if ŝ ∈ Tj \ ∪j−1

k=0Tk. The set SR is a
union of regions of T. T0 = T1 = ∅, and T2 contains the states in ŜR together with
the states where tick = bl1 = false, and from where player 1 can ensure that the
next state is either in ŜR, or the next state continues to have tick = bl1 = false;
formally T2 = νX(Ω−1(0) ∩ CPre1(X)). Henceforth, when we refer to a region
R of T, we shall mean the states R × IR[0,1] × {true, false}2 of T̂.

Lemma 4. Let T2 = νX(Ω−1(0)∩CPre1(X)). Then player 1 has a (randomized)
memoryless strategy πrand such that she can ensure reaching ŜR ⊆ Ω−1(0) with
probability 1 against all receptive strategies of player 2 from all states ŝ of a
region R such that R ∩ T2 �= ∅. Moreover, πrand is independent of the values of
the global clock, tick and bl1.

We now present the main proof ideas for Lemma 4. For a set T of states, we
shall denote by Reg(T) the set of states that are region equivalent in T to some
state in T . The proof first shows that from every state ŝ in Reg(T2 \ ŜR), either
a) player 1 has a move to ŜR, or b) the invariant of the location of ŝ is closed,
such that time can progress from ŝ to the endpoint without the clock z crossing
1, and with player 2 having no moves outside of Reg(T2 \ ŜR). From every state
in Reg(T2 \ ŜR), the strategy πpure prescribes a move to either ŜR, or to the

98 K. Chatterjee, T.A. Henzinger, and V.S. Prabhu

right endpoint of the invariant of the location if it is right closed (effectively
relinquishing the move to player 2). If player 1 relinquishes the move in such a
manner, then so does πrand. If πpure prescribes a move to ŜR, there is an earliest
destination region R̂′ for player 1 to come to ŜR, and a corresponding interval
I of times which takes her to R̂′. If this interval is left closed, then πrand chooses
this leftmost endpoint. If I is not left closed, then πrand proposes a randomized
move, with the time being distributed uniformly at random over (αl, αl + 1/2]
where αl is the leftmost endpoint of I. We then show that if player 2 plays
with a receptive strategy, then if player 1 plays a randomized move infinitely
often, then a randomized move with αl = 0 must occur infinitely often. Finally,
we demonstrate that for this randomized move (of αl = 0) that player 1 plays
infinitely often, the probability of it not being chosen against a receptive strategy
of player 2 is 0. The full proof can be found in [8].

The following lemma states that if for some state s ∈ T, we have (s, z, tick , bl1)
∈ T2i+1, for some i, then for some z′, tick ′, bl ′1 we have (s, z′, tick ′, bl ′1) ∈ T2i.
Then in Lemma 6 we present the inductive case of Lemma 4. The proof of
Lemma 6 is similar to the base case i.e., Lemma 4.

Lemma 5. Let R be a region of T such that R ∩ T2i+1 �= ∅. Then R ∩ T2i �= ∅.
Lemma 6. Let R be a region of T such that R ∩ T2i �= ∅, and R ∩ Tj = ∅ for
all 2 ≤ j < 2i. Then player 1 has a (randomized) memoryless strategy πrand to
go from R to some R′ such that R′ ∩ Tj �= ∅ for some j < 2i with probability 1
against all receptive strategies of player 2. Moreover, πrand is independent of the
values of the global clock, tick and bl1.

Once player 1 reaches the target set, she can switch over to the finite-memory
receptive strategy of Lemma 2. Thus, using Lemmas 2, 4, 5, and 6 we have the
following theorem.

Theorem 3. Let T be a timed automaton game, and let SR be a union of regions
of T. Player 1 has a randomized, finite-memory, receptive, region strategy π1 such
that for all states s ∈ Sure1(Reach(SR)), the following assertions hold: (a) for all
receptive strategies π2 of player 2 we have Prπ1,π2

s (Reach(SR)) = 1; and (b) for
all strategies π2 of player 2 we have Prπ1,π2

s (TimeDivBl1(Reach(SR))) = 1.

5 Parity: Randomized Finite-Memory Strategies

In this section we show that randomized finite-memory almost-sure strategies
exist for parity objectives. Let Ω : S �→ {0, . . . , k} be the parity index function.
We consider the case when k = 2d for some d, and the case when k = 2d− 1, for
some d can be proved using similar arguments. Given a timed game structure
T, a set X � S, and a parity function Ω : S �→ {0, . . . , 2d}, with d > 0,
let 〈T′, Ω′〉 = ModifyEven(T, Ω, X) be defined as follows: (a) the state space
S′ of T′ is {s⊥} ∪ S \ X , where s⊥ /∈ S; (b) Ω′(s⊥) = 2d − 2, and Ω′ = Ω
otherwise; (c) Γ ′

i (s) = Γi(s) for s ∈ S \ X , and Γ ′
i (s

⊥) = Γi(s⊥) = IR≥0 × ⊥;
and (d) δ′(s, m) = δ(s, m) if δ(s, m) /∈ S \ X , and δ′(s, m) = s⊥ otherwise. We

Trading Infinite Memory for Uniform Randomness in Timed Games 99

will use the function ModifyEven to play timed games on a subset of the original
structure. The extra state, and the modified transition function are to ensure
well-formedness of the reduced structure. We will now obtain receptive strategies
for player 1 for the objective Parity(Ω) using winning strategies for reachability
and safety objectives. We consider the following procedure.

1. T0 = T, and i := 0;
2. Compute Xi = SureTi

1 (�(Ω−1(2d))).
3. Let 〈T′

i, Ω
′〉 = ModifyEven(Ti, Ω, Xi); and let Yi = Sure

T′
i

1 (Parity(Ω′)). Let
Li = Si \ Yi, where Si is the set of states of Ti.

4. Compute Zi = SureTi
1 (�(Si \ Li)).

5. Let (Ti+1, Ω) = ModifyEven(T, Ω, S \ Zi) and i := i + 1.
6. Go to step 2, unless Zi−1 = Si.

It can be shown that (a) when the above procedure terminates, then we have
(S \ Zi) ∩ SureT

1 (Parity(Ω)) = ∅, and (b) there is a randomized, finite-memory,
receptive, region almost-sure winning strategy for every state in Zi, provided
that player 1 has access to imprecise clock events such that between any two
events, some time more than Δ passes for a fixed real Δ > 0. Player 1 only uses
the clock events to observe the passage of some amount of time greater than Δ
(it does not have access to the exact amount of time that passes). The details
of the winning strategy can be found in [8].

Theorem 4. Let T be a timed automaton game, and let Ω be a region parity
index function. Suppose that player 1 has access to imprecise clock events such
that between any two events, some time more than Δ passes for a fixed real Δ >
0. Then, player 1 has a randomized, finite-memory, receptive, region strategy
π1 such that for all states s ∈ Sure1(Parity(Ω)), the following assertions hold:
(a) for all receptive strategies π2 of player 2 we have Prπ1,π2

s (Parity(Ω)) = 1; and
(b) for all strategies π2 of player 2 we have Prπ1,π2

s (TimeDivBl1(Parity(Ω))) = 1.

Finally, the following theorem shows that though randomization can get rid of
infinite memory with respect to almost-sure winning, it does not help to win
in more states, and hence that the set of sure and almost-sure winning states
coincide for ω-regular objectives.

Theorem 5. Consider a timed automaton game and an ω-regular objective Φ.
For every state s �∈ SureT

1 (Φ), every real ε > 0, and every randomized strategy
π1 ∈ Π1 for player 1, there is a pure strategy πε

2 ∈ Πpure
2 for player 2 such that

Prπ1,πε
2

s (TimeDivBl1(Φ)) ≤ ε.

References

1. Adler, B., de Alfaro, L., Faella, M.: Average reward timed games. In: Pettersson, P.,
Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 65–80. Springer, Heidelberg
(2005)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

100 K. Chatterjee, T.A. Henzinger, and V.S. Prabhu

3. Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In:
Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–
88. Springer, Heidelberg (1997)

4. Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed au-
tomata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS,
vol. 1569, pp. 19–30. Springer, Heidelberg (1999)

5. Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced
timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS,
vol. 3328, pp. 148–160. Springer, Heidelberg (2004)

6. Bouyer, P., D’Souza, D., Madhusudan, P., Petit, A.: Timed control with partial
observability. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725,
pp. 180–192. Springer, Heidelberg (2003)

7. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

8. Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Trading infinite memory for uni-
form randomness in timed games. Technical Report UCB/EECS-2008-4, EECS
Department, University of California, Berkeley (January 2008)

9. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The el-
ement of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR
2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)

10. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-
state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 536–550. Springer, Heidelberg (2001)

11. D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer,
Heidelberg (2002)

12. Faella, M., La Torre, S., Murano, A.: Automata-theoretic decision of timed games.
In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 94–108. Springer, Heidel-
berg (2002)

13. Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: LICS 2002, pp.
167–176. IEEE Computer Society, Los Alamitos (2002)

14. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid au-
tomata. Theoretical Computer Science 221, 369–392 (1999)

15. Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Hei-
delberg (2006)

16. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: Mayr, E.W., Puech, C. (eds.) STACS 1995.
LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)

17. Pnueli, A., Asarin, E., Maler, O., Sifakis, J.: Controller synthesis for timed au-
tomata. In: Proc. System Structure and Control, Elsevier, Amsterdam (1998)

18. Segala, R., Gawlick, R., Søgaard-Andersen, J.F., Lynch, N.A.: Liveness in timed
and untimed systems. Inf. Comput. 141(2), 119–171 (1998)

19. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages.
Vol. 3, Beyond Words, ch. 7, pp. 389–455. Springer, Heidelberg (1997)

20. Wong-Toi, H., Hoffmann, G.: The control of dense real-time discrete event systems.
In: Proc. of 30th Conf. Decision and Control, pp. 1527–1528 (1991)

Solutions to Switched Hamilton-Jacobi

Equations and Conservation Laws Using Hybrid
Components

Christian G. Claudel1,� and Alexandre M. Bayen2

1 Electrical Engineering and Computer Sciences
2 Systems Engineering, Civil and Environmental Engineering

University of California, Berkeley
Berkeley, CA, 94720-1710

claudel@eecs.berkeley.edu

Abstract. We investigate a class of hybrid systems driven by partial
differential equations for which the infinite dimensional state can switch
in time and in space at the same time. We consider a particular class of
such problems (switched Hamilton-Jacobi equations) and define hybrid
components as building blocks of hybrid solutions to such problems, us-
ing viability theory. We derive sufficient conditions for well-posedness of
such problems, and use a generalized Lax-Hopf formula to compute these
solutions. We illustrate the results with three examples: the computation
of the hybrid components of a Lighthill-Whitham-Richards equation; a
velocity control policy for a highway system; a data assimilation problem
using Lagrangian measurements generated from NGSIM traffic data.

1 Introduction

This article investigates a particular class of hybrid systems in which modes
are not governed by ordinary differential equations (ODEs) as in classical hy-
brid systems theory [20] but by partial differential equations (PDEs). Unlike
for ODEs for which modes evolve in finite dimensional spaces, functions solving
PDEs evolve in “infinite” dimensional spaces (functional spaces). The frame-
work developed for hybrid systems governed by ODEs [20] can be extended to
systems governed by PDEs, though to our best knowledge, no general formalism
has been developed to this day to characterize such systems in a unifying way.
This is due in part to the fact that for systems driven by PDEs, the switching
structure is more complex than in the case of ODEs. Indeed, hybrideness can
occur in different ways. We outline three specific structures of interest to us:

• Switching the PDE in time on the full spatial domain. This situation is il-
lustrated in Figure 1 (left) and is the PDE counterpart of hybrid systems as
defined by [20]. The PDEs – and/or boundary conditions (BCs) – are switched
sequentially in time. Switching of boundary conditions has been investigated
in the context of highway traffic [19,6] and canal systems [2]. Switching PDEs

� Corresponding author.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 101–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

102 C.G. Claudel and A.M. Bayen

in time sequentially appears in general form in [10] and in the context of
highway transportation systems in [6].

• Switching the PDE on parts of the spatial domain. This is illustrated in Fig-
ure 1 (center). This situation is typical of shape optimization problems, or
fluid structure interactions problems [12]. Note that the variable y has been
used along the vertical axis instead of t to emphasize that this type of switch-
ing is also valid for PDEs not modeling phenomena not depending on time
(for example elliptic PDEs depending on space variables only).

• Switching the PDE on parts of the time-space domain. This is illustrated in
Figure 1 (right). Examples include the Lighthill-Whitham-Richards (LWR)
PDE with triangular flux function, which can be decomposed into two modes
(two one-dimensional wave equations) resulting in a partition of the (x, t) space
in regions with forward traveling waves, and regions with backward travelling
waves [13,16,1]. This last case is particularly challenging because the switching
surfaces are in general not known a priori and must be computed while solving
the PDE. If they are known (or if they are derived), additional consistency
conditions are needed in order the problem to be well posed, which is the
object of the present article.

Not all switched PDE problems fit in one of the three categories above. In par-
ticular, the work [18] in the context of biological systems exhibits a source term
which is distributed in space and time and can switch modes at every point in
the space/time domain. The present article is mostly concerned with the last

Fig. 1. BC denotes boundary conditions; IC denotes initial conditions. Left: PDEs
(and BCs) switched in time. Middle: PDEs (and ICs) switched in space; Right:
PDEs switched in space and time.

case in the list above, in which the switching structure can happen concurrently
in space and time. It corresponds to a situation fundamentally different than in
the case of hybrid systems driven by ODEs: the infinite dimensional state can
be partially switched, based on the (x, t) location in time and space of the point
of interest. We develop a method to decompose the (x, t) domain of definition of
a solution to a hybrid system problem driven by PDEs into hybrid components,
which are subsets of the (x, t) space in which a different PDE applies (in Figure 1
right, there would be three hybrid components). The definition of these hybrid
components is not trivial, as in general, sufficient conditions for existence and
well posedness of such solutions are difficult to find. The contributions of this

Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws 103

article is the derivation of sufficient conditions for the use of hybrid components
for a class of Hamilton-Jacobi (HJ) PDEs. We construct the general solution
(denoted M(t, x)) to a class of HJ PDEs (sections 2, 3 and 4), and define hy-
brid components as parts of the (x, t) solution domain in which we would like
another PDE to apply, for which we assume we know a solution M(t, x). We
use an inf morphism property to construct the solution M(t, x) of the HJ PDE,
first without hybrid components (section 4), and then with hybrid components
(section 5). We compute a sufficient condition for compatibility of the initial and
boundary conditions of the HJ PDE problem with the hybrid components added
by M(t, x). In section 6, we illustrate the result with three examples. First, we
compute the hybrid components of a LWR PDE. Second, we use the method
to solve a speed control problem on the highway. Finally, we apply it to data
assimilation with NGSIM data.

2 Problem Definition

We consider the class of first order scalar hyperbolic conservation laws with
concave flux functions. For illustrative purposes, we will derive the results in the
context of highway traffic, which can be modeled by such conservation laws.

Definition 1 [13,16] [First order scalar hyperbolic conservation laws].
We consider a density function ρ(t, x) (representing the number of vehicles per
unit length located at x, at time t) governed by the following PDE:

∂ρ(t, x)
∂t

+
∂ψ(ρ(t, x))

∂x
= 0 (1)

where ψ is a concave flux function ranging in the interval [0, ω].

In the context of traffic flow, the function ψ is referred to as fundamental diagram,
and depends on several empirical parameters, such as number of lanes, road
geometry and vehicle capabilities. We define X := [ξ, χ] as the domain in which
equation (1) applies (in physical terms, the extent of the highway section of
interest). In the case of the highway, if consecutive integer labels are assigned
to vehicles entering the highway at location x = ξ, one can define a function
M tracking the vehicles on the highway: the Moskowitz function M(·, ·). The
Moskowitz function is a continuous function satisfying �M(t, x)� = n where n
is the label of the vehicle located in x at time t. It was first introduced in [14],
appeared later in the famous Newell trilogy [15], and was formally defined by
Daganzo in [8,9].

Definition 2 [Moskowitz function]. The Moskowitz function solves the fol-
lowing HJ PDE [8,9]:

∂M(t, x)
∂t

− ψ

(
−∂M(t, x)

∂x

)
= 0 (2)

104 C.G. Claudel and A.M. Bayen

Whenever M is differentiable, the definition of the Moskowitz function implies
that ρ(t, x) = −∂M(t,x)

∂x , where ρ(t, x) is the density at location x and time t, as
defined by [15]. By definition of the Moskowitz function, the iso-level sets of M
represent the vehicles trajectories [9].

Definition 3 [Capture basin]. [3,4] Given a dynamical system S, two sets K
(called the environment) and C (called the target) satisfying C ⊂ K, the capture
basin CaptS(K, C) is the subset of states of K from which there exists at least
one evolution solution of S reaching the target C in finite time while remaining
in K.

The capture basin CaptS(K, C) can be numerically computed using the capture
basin algorithm [7,17].

Definition 4 [Auxiliary dynamical system]. The auxiliary system (3) as-
sociated to the Moskowitz HJ PDE is defined by:

S :=

⎧⎨
⎩
τ ′(t) = −1
x′(t) = u(t)
y′(t) = −ϕ∗(u(t))

(3)

where u(t) ∈ Dom(ϕ∗), and where the function ϕ∗ is defined by:

ϕ∗(u) := sup
p∈Dom(ψ)

[p · u+ ψ(p)] (4)

Definition 5 [Epigraphical target]. For any function f(t, x) defined on a sub-
set F of R+ ×X, the associated target function c is defined as follows:

c(t, x) :=
{

f(t, x) if (t, x) ∈ F
+∞ otherwise

The target C corresponding to the function c(·, ·) is defined as follows:

C := Epi(c) (5)

Definition 6 [Viability episolution]. Let us consider K := R+ × [ξ, χ] × R

and C defined by (5). The viability episolution M is defined by

M(t, x) := inf
(t,x,y)∈Capt

S
(K,C)

y (6)

Proposition 1 [Barron-Jensen/Frankowska property]. [5] Given an en-
vironment K and a target C defined by (5), the corresponding viability episolution
M(t, x) is a Barron-Jensen/Frankowska (BJ/F) solution to the Hamilton-Jacobi
PDE (2).

Proof. See [5] for a proof of this property for the CVN function N, and operate
the variable change M(t, x) = −N(t, x) +

∫ t
0 ψ(v(u))du. �

Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws 105

3 Properties of the Viability Episolution

Proposition 2 [Generalized Lax Hopf formula]. The viability episolution
defined by equation (6) can be expressed as:

M(t, x) = inf
(u,T)∈Dom(ϕ∗)×R+

[c(t− T, x+ Tu) + Tϕ∗(u)] (7)

It is well known [3,4,5] that for a given environment K, the capture basin of a
finite union of targets is the union of the capture basins of these targets:

CaptS

(
K,
⋃
i∈I

Ci
)

=
⋃
i∈I

CaptS(K, Ci) (8)

where I is a finite set. This property can be translated in epigraphical form:

Proposition 3 [Inf-morphism property]. Let ci (i belongs to a finite set I)
be a family of functions whose epigraphs are the targets Ci. Since the epigraph
of the infimum of the functions ci is the union of the epigraphs of the functions
ci, the target C :=

⋃
i∈I Ci is the epigraph of the function c := infi∈I ci. We thus

have the following property:

∀ t ≥ 0, x ∈ X, Mc(t, x) = inf
i∈I

Mci(t, x) (9)

where Mc and Mci are the episolutions (6) associated to the targets C and Ci
respectively.

The inf-morphism property enables us to compute the Moskowitz function using
the concept of hybrid components.

Definition 7 [Components of the Moskowitz function]. The component
Mc associated to a target function c is defined by:

Mc(t, x) := inf
(t,x,y)∈CaptS(K,Epi(c))

y (10)

Definition 8 [Hybrid, initial and boundary components]. Let D be a
given set. We consider through the article three functions M(·, ·), M0(·, ·) and
γ(·, ·) satisfying the following properties:

M(t, x) =
{

Mhybrid(t, x) (given) for (t, x) ∈ D
+∞ for (t, x) /∈ D

M0(t, x) :=
{

Minitial(x) (given) for t = 0 and x ∈ [ξ, χ]
+∞ ∀t 	= 0 or ∀x /∈ [ξ, χ]

γ(t, x) :=
{

Mboundary(t) (given) for x = ξ and t ≥ 0
+∞ ∀x 	= ξ or ∀t < 0

106 C.G. Claudel and A.M. Bayen

The hybrid component MM, initial condition component MM0 and boundary
condition component Mγ respectively associated to M, M0, and γ are defined
by:

⎧⎪⎨
⎪⎩

MM(t, x) := inf(t,x,y)∈CaptS(K,Epi(M)) y

MM0(t, x) := inf(t,x,y)∈CaptS(K,Epi(M0))
y

Mγ(t, x) := inf(t,x,y)∈CaptS(K,Epi(γ)) y

(11)

Proposition 4 [Domain of influence]. The domain of Mc, also called do-
main of influence of component c, is defined by the following formula:

Dom(Mc) =
⋃

(t,x)∈Dom(c)

⎛
⎝ ⋃
T∈R+

{t+ T } × [x− ν�T, x+ ν�T]

⎞
⎠ (12)

Proof. The generalized Lax Hopf formula (2) implies that

Dom(Mc) = {(t, x) ∈ R+ ×X such that ∃(T, u) ∈ R+ × Dom(ϕ∗)
and (t− T, x+ Tu) ∈ Dom)(c)}

Equation (12) is obtained from the previous formula, observing that u ranges in
Dom(ϕ∗) := [−ν�, ν�]. �

4 The Mixed Initial-Boundary Conditions Problem

Definition 9 [Mixed initial boundary condition problem]. The mixed
initial boundary condition problem is defined as:⎧⎪⎨
⎪⎩

∂M(t,x)
∂t − ψ

(
−∂M(t,x)

∂x

)
= 0 ∀(t, x) ∈ R

∗
+×]ξ, χ[s.t. M is differentiable

M(0, x) = M0(0, x) ∀x ∈ X
M(t, ξ) = γ(t, ξ) ∀t ∈ R+

(13)

Remark. The first line of equation (13) has to be understood in the BJ/F sense.
�

The initial and boundary condition components of the Moskowitz function can
be computed as follows:

MM0(t, x) = infu∈Dom (ϕ∗) (M0(0, x+ tu) + tϕ∗(u))

Mγ(t, x) = infu∈Dom (ϕ∗)

(
γ
(
t− ξ−x

u , ξ
)

+ ξ−x
u ϕ∗(u)

) (14)

The initial and boundary condition components satisfy the following properties
{

MM0(0, x) = M0(0, x) ∀x ∈ X
Mγ(t, ξ) = γ(t, ξ) ∀t ∈ R+

(15)

Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws 107

provided that the growth condition ∀τ ∈ [0, t], 0 ≤ γ(t, ξ) ≤ γ(t− τ, ξ)+ τϕ∗(0)
is satisfied. We assume in the rest of the article that this condition and the
following consistency condition are satisfied:

infu∈Dom (ϕ∗) (M0(0, ξ + tu) + tϕ∗(u)) ≥ γ(t, ξ) ∀t ∈ R+ (16)

Definition 10 [Mixed initial-boundary conditions target]. In the specific
case of mixed initial-boundary conditions, we define the target function c(t, x)
by c(t, x) = min (M0(t, x), γ(t, x))

Theorem 4.1 [Solution to the mixed initial-boundary conditions prob-
lem]. Given this definition, we can express the solution to the mixed initial-
boundary conditions problem (13) as:

M(t, x) = min (MM0(t, x),Mγ(t, x)) (17)

The solution M to the mixed initial-boundary conditions problem is thus ex-
pressed in terms of its initial condition component MM0 and its boundary con-
dition component Mγ.

Proof. The function M(·, ·) defined by equation (17) is a BJ/F solution to the
Moskowitz HJ PDE. Equation (15) in conjunction with consistency condition
(16) also implies the following properties:

{
M(0, x) = M0(0, x) ∀x ∈ X
M(t, ξ) = γ(t, ξ) ∀t ∈ R+

(18)

M(t, x) is thus solution to problem (13). �

5 Hybrid Components in the Moskowitz Function

Definition 11 [Hybrid problem]. Let a C1 function M(·, ·) be defined on a
given set D ⊂ R+×X. Our objective is to compute the function M(·, ·), solution
to the following hybrid problem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂M(t,x)
∂t − ψ

(
∂M(t,x)
∂x

)
= 0 ∀(t, x) ∈ R

∗
+×]ξ, χ[\D s. t. M is differentiable

M(0, x) = M0(0, x) ∀x ∈ X
M(t, ξ) = γ(t, ξ) ∀t ∈ R+

M(t, x) = M(t, x) ∀(t, x) ∈ D
(19)

The function M(t, x) is solution to the HJ PDE when (t, x) ∈ R
∗
+×]ξ, χ[\D, and

satisfies the set of conditions (19).

The hybrid problem (19) contains an additional hybrid constraint when com-
pared with the mixed initial-boundary conditions problem. Since the mixed
initial-boundary is well posed if the consistency condition (16) is satisfied, the

108 C.G. Claudel and A.M. Bayen

hybrid problem is a priori overconstrained. We seek necessary and sufficient
conditions on M for the following inequality to hold:

MM(t, x) ≥ M(t, x) ∀(t, x) ∈ D (20)

Note that the converse inequality is always satisfied by definition of the cap-
ture basin since C ⊆ CaptS(K, C). When inequality (20) is satisfied, we have
MM(t, x) = M(t, x) ∀(t, x) ∈ D. This condition, similar to conditions (15), is
required for the construction of the solution to the hybrid problem. Using the
generalized Lax-Hopf formula, we can rewrite condition (20) as:

inf
(u,T)∈Dom(ϕ∗)×R+

[
M(t− T, x+ Tu) + Tϕ∗(u)

] ≥ M(t, x) ∀(t, x) ∈ D (21)

Since equation (21) involves a minimization over two variables, it is difficult in
general to assess a priori that a C1 function M will satisfy this condition.

Proposition 5 [Necessary condition for equation (21) to be satisfied].
Since M(·, ·) is differentiable in a neighborhood of (t, x), condition (21) implies
the following necessary condition:

∂M(t, x)
∂t

≤ ψ

(
−∂M(t, x)

∂x

)
(22)

Proof. Using the generalized Lax Hopf formula, one can rewrite condition (21)
as: inf

(u,T)∈Dom(ϕ∗)×R+

[
M(t− T, x+ Tu)− M(t, x) + Tϕ∗(u)

] ≥ 0 ∀(t, x) ∈ D
(23)

which in turn implies ∀(t, x) ∈ D and ∀(T, u) ∈ R+ × Dom(ϕ∗)

[
M(t− T, x+ Tu)− M(t, x) + Tϕ∗(u)

] ≥ 0 (24)

Dividing equation (24) by T > 0, and taking the limit of the resulting expression
when T → 0 enables us to write:

inf
u∈Dom(ϕ∗)

[
−∂M(t, x)

∂t
+ u

∂M(t, x)
∂x

+ ϕ∗(u)
]
≥ 0 ∀(t, x) ∈ D (25)

By definition of the inverse Fenchel transform, we have ψ(ρ) =
inf

u∈Dom(ϕ∗)
(−ρu+ ϕ∗(u)). Equation (25) thus implies −∂M(t,x)

∂t +ψ(−∂M(t,x)
∂x) ≥

0, which in turn implies formula (22). �

Remark. In terms of traffic, this necessary condition states that it is not pos-
sible to set a traffic state function M which prescribes a flow q higher than the
equilibrium flow ψ(ρ) associated to the prescribed density ρ. �

Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws 109

Proposition 6 [Sufficient condition for equation (21) to be satisfied].
If D is convex and condition (22) is valid for all (t, x) ∈ Dom(M) such that M
is differentiable, then condition (21) is satisfied.

Proof. Assume that D is convex and M(·, ·) is C1, and satisfies equation (22).
Condition (21) can be written as:

inf
(u,T)∈Dom(ϕ∗)×R+

[
M(t− T, x+ Tu)− M(t, x) + Tϕ∗(u)

] ≥ 0 ∀(t, x) ∈ D
(26)

Since D is convex, the set {(t− τ, x+ τu), τ ∈ [0, T]} is included in D, provided
that (t − T, x + Tu) belongs to D. Since M(·, ·) is integrable, we can rewrite
condition (26) as: ∀(t, x) ∈ D,

inf
(u,T)∈Dom(ϕ∗)×R+

[∫ T

0

(
−∂M(t − τ, x + τu)

∂t
+u

∂M(t − τ, x + τu)

∂x
+ϕ∗(u)

)
dτ

]
≥0

(27)

We now prove that condition (22) implies condition (27). Indeed, condition
(22) implies that ∀τ ∈ [0, T], ∂M(t−τ,x+τu)

∂t ≤ ψ
(
−∂M(t−τ,x+τu)

∂x

)
. Thus

−
∫ T

0

ψ

(
−∂M(t− τ, x+ τu)

∂x

)
dτ ≤

∫ T

0

−∂M(t− τ, x+ τu)
∂t

dτ (28)

Since ψ(·) is concave and lower semicontinuous, Jensen inequality implies:

−ψ
(

1
T

∫ T

0

−∂M(t− τ, x+ τu)
∂x

)
dτ ≤ − 1

T

∫ T

0

ψ

(
−∂M(t− τ, x+ τu)

∂x

)
dτ

(29)
We set f(·, ·) as f(T, u) := 1

T

∫ T
0
−∂M(t−τ,x+τu)

∂x dτ . Equation (22) implicitly

implies that ∀(T, u) ∈ R+ × Dom(ϕ∗), −∂M(t−τ,x+τu)
∂x ∈ Dom(ψ) and thus,

by integration, that f(T, u) ∈ Dom(ψ). We can write the general inequality
ψ(ρ) ≤ −ρu+ ϕ∗(u) as:

∀(u, T) ∈ Dom(ϕ∗) × R+, 0 ≤ −ψ(f(T, u)) + uf(T, u) + ϕ∗(u) (30)

Equations (28) and (29) imply:

−ψ(f(T, u))+uf(T, u) ≤
∫ T

0

(
−∂M(t− τ, x+ τu)

∂t
+ u

∂M(t− τ, x+ τu)
∂x

)
dτ

(31)
Since u is constant, equation (30) implies:

0 ≤
∫ T

0

(
−∂M(t− τ, x+ τu)

∂t
+ u

∂M(t− τ, x+ τu)
∂x

+ ϕ∗(u)
)
dτ (32)

Equation (27) is finally obtained from equation (32) by taking the infimum over
the parameters (T, u) ∈ R+ × Dom(ϕ∗), and by observing that equation (32) is
valid for all (t, x) ∈ D. �

110 C.G. Claudel and A.M. Bayen

Definition 12 [Construction of the hybrid solutions]. In the specific case
of mixed initial-boundary-hybrid conditions, we define the target function c(t, x)
as follows:

c(t, x) = min
(
M0(t, x), γ(t, x),M(t, x)

)
(33)

The function defined by equation

M(t, x) = min (MM0(t, x),Mγ(t, x),MM (t, x)) (34)

is associated to the target C := Epi(M0)∪Epi(γ)∪Epi(M). This function is thus
a solution to the Moskowitz HJ PDE in the BJ/F sense.

Proposition 7. We assume that D is a convex subset belonging to the interior
of R+×X, and that condition (22) is valid for all (t, x) ∈ Dom(M). The function
M defined by equation (34) satisfies conditions (19) if and only if the following
set of conditions is satisfied:

{
MM0(t, x) ≥ M(t, x) and Mγ(t, x) ≥ M(t, x) ∀(t, x) ∈ D
MM(t, ξ) ≥ γ(t, ξ) and MM0(t, ξ) ≥ γ(t, ξ) ∀t ∈ R+

(35)

Proof. Equation (15) implies that the function M defined by equation (34)
satisfies: {

M(0, x) = min
(
M0(0, x),Mγ(0, x),MM(0, x)

) ∀x ∈ X
M(t, ξ) = min

(
γ(t, ξ),MM0(t, ξ),MM(0, x)

) ∀t ∈ R+
(36)

Note that we always have ∀x ∈ X, MM(0, x) ≥ M0(0, x) and Mγ(0, x) ≥
M0(0, x), since Mγ(0, x) = +∞ if x 	= 0 and MM(0, x) = +∞ if D ⊂ Int(R+ ×
X). This consideration and equation (36) imply that M is solution to equation
(19) if and only if equation (35),(2) is satisfied.

The inclusion C ⊆ CaptS(K, C) (valid for any capture basin) also implies ∀(t, x) ∈
D,M(t, x) ≤ M(t, x). Hence, M satisfies equation (19) if and only if equation
(35) is satisfied. �

6 Applications

We now illustrate the previous results with three numerical applications com-
puted using the generalized Lax Hopf formula, or the viability algorithm [7].

6.1 Switching Solutions of the LWR PDE

In this section, we compute the solution to the LWR PDE (1) with the triangular
flux function as the solution to a switched PDE problem. The triangular flux
function ψ is defined by:

ψ(ρ) =
{
ν�ρ if ρ ≤ ρc
ν�(ω − ρ) if ρ ≥ ρc

(37)

Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws 111

where ω = 4 is the jam density, ν� = 3 is the free flow speed, ν� = 1 is the
congestion speed, and ρc = 1 is the critical density. The two corresponding
PDEs are associated to the two modes of propagation of traffic (free flow or
congestion): {

∂ρ
∂t + ν� ∂ρ∂x = 0 ρ ∈ [0, ρc] (free flow)
∂ρ
∂t − ν� ∂ρ∂x = 0 ρ ∈ [ρc, ω] (congestion)

where ν� is the free flow speed and ν� the speed of back propagating waves. In
Figure 2, we show a numerical example of computation (using the generalized
Lax Hopf formula (7)) of the partition of the space time domain on which the free
flow and the congested PDE apply, for given initial and boundary conditions.
The techniques developed earlier are thus illustrated in this Figure, in which one
can see the existence of three modes: highway in free flow (white), highway at
maximum capacity (gray) and highway congested (black).

Fig. 2. Illustration of space and time switched PDEs. The solution to the corresponding
LWR PDE (1) with triangular flux function (37) leads to three modes: two hybrid
components PDE 1 and PDE 2, and a degenerate mode.

6.2 Hybrid Solutions Associated to a Speed Control Policy

We now illustrate the previous results with a variable speed control problem.
Variable speed limits are speed limits that are changed by highway operators
based on traffic or weather conditions. These speed limits are set for safety or
traffic flow management purposes. In this section, we compute the effects of
a speed limit set on domain D ⊂ R+ × X . We consider the following mixed
initial-boundary conditions problem:

M0(0, x) =

⎧⎨
⎩

−0.7x if 0 ≤ x ≤ 5
−0.4x− 5.5 if 5 ≤ x ≤ 14
41.9 − 3.5x if 14 ≤ x ≤ 20

γ(t, ξ) =

⎧⎨
⎩
t if 0 ≤ t ≤ 4
2t− 4 if 4 ≤ t ≤ 8
1.5t if 8 ≤ t ≤ 10

We use the triangular flux function defined in the previous section. This set of
initial and boundary conditions satisfy condition (16). We now augment this
problem using a hybrid component corresponding to a speed control policy. The
hybrid solution satisfies the HJ PDE outside of a domain D defined by

112 C.G. Claudel and A.M. Bayen

D =
⋃

t∈[2,6]

[1 + v(t− 2), 7 + v(t− 2)] (38)

where v = 1.3 is the limited speed at which all the vehicles in set D are running
(by effect of the speed control policy). Since the trajectories of the vehicles are
the level sets of M, we must define M(t, x) as:

∀(t, x) ∈ D, M(t, x) := MMIB(2, x− v(t− 2)) (39)

where MMIB is the solution to the associated mixed initial boundary conditions
problem.

We compute the solution to the mixed initial boundary conditions problem,
as well as the solution to the hybrid problem. The resulting surface for M(t, x)
is shown in Figure 3.

Fig. 3. Solution of the Moskowitz HJ PDE. Left: Moskowitz function M(t, x) corre-
sponding to the mixed initial boundary conditions problem. Right: Moskowitz func-
tion M(t, x) solution to the hybrid problem corresponding to a speed control policy for
vehicles located in the set D.

The effects of the speed control policy can also be seen in Figure 4, which shows
the level sets of the Moskowitz functions associated to the mixed initial bound-
ary condition problem (left) and to the hybrid problem (right). We recall that
the integer-level sets of the Moskowitz function correspond by definition to the
trajectories of the vehicles.

6.3 Data Assimilation Using Hybrid Components

In this section, we use NGSIM data which contains video extracted trajectories
of all vehicles traversing a 0.4 mile section of highway I80 in Emeryville, CA.
Since the trajectories of vehicles are the level sets of the Moskowitz function, we
can use this data to illustrate the benefits of data assimilation using Lagrangian
measurements measurements [11]. We first solve the problem (13) from NGSIM
extracted M0(0, x) and γ(t, ξ). This produces the prediction of shown in Fig-
ure 5 (left)1 and the corresponding error plot of Figure 6 (left). We then add
1 Note that only a subset of the trajectories is shown on this plot for clarity.

Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws 113

Fig. 4. Vehicle trajectories due to speed control policy. Left: trajectories corresponding
to the mixed initial boundary conditions problem. Right: trajectories corresponding
to the hybrid problem. Note the modification of speed of the vehicles in the set D
(shaded), as well as the influence of the speed control policy on D on the upstream
traffic.

Fig. 5. Trajectories simulated using NGSIM data. Left: trajectories simulated using
the initial and boundary conditions only and solving (13). Right: trajectories obtained
by adding the hybrid component D = [70, 80]× [650, 700] and solving the hybrid prob-
lem (19).

Fig. 6. Simulation using NGSIM data. Left: error in the predictions provided by the
Moskowitz function simulated using the initial and boundary condition5s only and
solving (13). Right: error obtained by adding the hybrid component D = [70, 80] ×
[650, 700] and solving the hybrid problem (19). The color scale represents the magnitude
of the absolute error. The black color represents a null error, whereas the white color
represents an absolute error greater than 10 vehicles.

114 C.G. Claudel and A.M. Bayen

a subset of data (hybrid component) depicted by the black square in Figure 5
(right), which leads to locally more accurate estimate of the trajectories, and
a significant reduction of error in our predictions in the domain of influence of
the hybrid component. This additional information is representative of informa-
tion available from lagrangian measurements (for example using GPS equipped
cell phones traveling onboard vehicles) in the near future [11]. As can be seen,
the introduction of the hybrid component creates a discontinuity of M at the
boundary of the domain of influence, which a “relabelling” of the vehicles due
to additional information provided by the hybrid component. The correspond-
ing reduction of error can be seen in Figure 6 (right). In Figures 5 and 6, the
position is given in units of 2.4 ft (between posts 80 ft and 2000 ft), and the
time is given in units of 1.2 s (this corresponds to the two first minutes of the
NGSIM experiment).

7 Conclusion

This article presented a construction method for solutions of systems driven by
switched scalar hyperbolic conservation laws, using a Hamilton-Jacobi formula-
tion of the problem. Using an inf morphism property of the solutions to these
equations, we constructed hybrid components for the problem, which can be as-
sembled into a solution to the original problem. The solutions can be computed
semi-analytically using a generalized Lax-Hopf formula which we presented, or
using the capture basin algorithm. We derived sufficient conditions for the prob-
lem to be well posed. We illustrated the results with three numerical examples.
In the first example, we showed how the method can be used to compute hybrid
components of the LWR PDE with a triangular flux function. The second exam-
ple showed how to compute the effects of control on traffic using the Hamilton-
Jacobi equation. Finally, the last example used NGSIM data to demonstrate data
assimilation capabilities of the method: “internal” boundary conditions which
can be added to an original partial differential equation problem in the form of
a hybrid component, which “corrects” the model where information was previ-
ously not available. This last application is the most promising, and is currently
in implementation with Nokia to integrate Lagrangian (mobile) traffic measure-
ments from GPS equipped cellular phones traveling onboard cars inside existing
highway traffic monitoring systems such as the PeMS system in California.

Acknowledgments. The authors wish to thank Ryan Herring and Juan Carlos
Herrera for computing the aggregated NGSIM data.

References

1. Alvarez-Icaza, L., Munoz, L., Sun, X., Horowitz, R.: Adaptive observer for traffic
density estimation. In: American Control Conference, Boston, MA, pp. 2705–2710
(June 2004)

2. Amin, S., Hante, F., Bayen, A.: On stability of switched linear hyperbolic conser-
vation laws with reflecting boundaries. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008, LNCS, vol. 4981, pp. 602–605. Springer, Heidelberg (2008)

Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws 115

3. Aubin, J.-P.: Viability Theory. In: Systems and Control: Foundations and Appli-
cations, Birkhäuser, Boston, MA (1991)

4. Aubin, J.-P.: Viability kernels and capture basins of sets under differential inclu-
sions. SIAM Journal of Control and Optimization 40, 853–881 (2001)

5. Aubin, J.-P., Bayen, A.M., Saint-Pierre, P.: Dirichlet problems for some Hamilton-
Jacobi equations with inequality constraints. Technical report, Preprint di Matem-
atica - n. 4, Scuola Normale Superiore, Pisa, Italy (May 2006)

6. Bayen, A.M., Raffard, R.L., Tomlin, C.: Network congestion alleviation using ad-
joint hybrid control: Application to highways. In: Lynch, N.A., Krogh, B.H. (eds.)
HSCC 2000. LNCS, vol. 1790, pp. 95–110. Springer, Heidelberg (2000)

7. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Set-valued numerical analy-
sis for optimal control and differential games. In: Bardi, M., Raghavan, T.E.S.,
Parthasarathy, T. (eds.) Stochastic and Differential Games: Theory and Numeri-
cal Methods. Annals of the International Society of Dynamic Games, pp. 177–247.
Birkhäuser, Basel (1999)

8. Daganzo, C.F.: A variational formulation of kinematic waves: basic theory and
complex boundary conditions. Transporation Research B 39B(2), 187–196 (2005)

9. Daganzo, C.F.: On the variational theory of traffic flow: well-posedness, duality
and applications. Networks and Heterogeneous Media 1, 601–619 (2006)

10. Hante, F., Leugering, G., Seidman, T.: Modeling and analysis of modal switching
in networked transport systems (submitted, 2007)

11. Herrera, J.C., Bayen, A.M.: Traffic flow reconstruction using mobile sensors and
loop detector data. In: The 87th Annual Meeting of TRB (to appear, 2007)

12. Koch, H., zuazua, E.: A hybrid system of PDE’s arising in multi-structure inter-
action: coupling of wave equations in n and n-1 space dimensions. Recent Trends
in Partial Differential Equations: UIMP-RSME Santaló Summer School, Recent
Trends in Partial Differential Equations, Universidad Internacional Menéndez
Pelayo, Santander, Spain, 4 (2006)

13. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow
on long crowded roads. Proceedings of the Royal Society of London 229(1178),
317–345 (1956)

14. Moskowitz, K.: Discussion of freeway level of service as influenced by volume and
capacity characteristics. In: Drew, D.R., Keese, C.J., Highway Research Record,
vol. 99, pp. 43–44 (1965)

15. Newell, G.F.: A simplified theory of kinematic waves in highway traffic. Transpo-
ration Research B 27B(4), 281–303 (1993)

16. Richards, P.I.: Shock waves on the highway. Operations Research 4(1), 42–51 (1956)
17. Saint-Pierre, P.: Approximation of the viability kernel. Applied Mathematics and

Optimization 29, 187–209 (1994)
18. Seidman, T.I.: A convection/reaction/switching system. Nonlinear Analysis: The-

ory, Methods & Applications 67(7), 2060–2071 (2007)
19. Strub, I.S., Bayen, A.M.: Weak formulation of boundary conditions for scalar con-

servation laws 16, 733–748 (2006)
20. Tomlin, C., Lygeros, J., Sastry, S.: A game theoretic approach to controller design

for hybrid systems. Proceedings of the IEEE 88(7), 949–970 (2000)

Lost in Translation:

Hybrid-Time Flows vs. Real-Time Transitions

P.J.L. Cuijpers and M.A. Reniers

Technische Universiteit Eindhoven (TU/e),
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

{P.J.L.Cuijpers, M.A.Reniers}@tue.nl

Abstract. Recently, hybrid-time flow systems have been introduced as
an extension to timed transition systems, hybrid automata, continuous
time evolutions of differential equations etc. Furthermore, a number of
notions of bisimulation have been defined on these flow systems reflecting
abstraction from certain timing properties. In this paper, we research the
difference in abstraction level between this new semantic model of flow
systems, and the more traditional model of real-time transition systems.
We explore translations between the old and new semantic models, and
we give a necessary and sufficient condition, called finite-set refutabil-
ity, for these translations to be without loss of information. Finally, we
show that differential inclusions with an upper-semicontinuous, closed
and convex right-hand side, are finite-set refutable, and easily extend
this result to impuls differential inclusions and hybrid automata.

1 Introduction

In the literature on hybrid systems, a variety of semantic models is used to
describe the combined discrete and continuous behavior of these systems. In
Henzinger’s early paper on hybrid automata [1], a real-time transition system
semantics was used. Later, the timing on the transitions was replaced by flows,
resulting in hybrid transition systems. This has enabled the definition of all
kinds of compositions of hybrid systems in a more operational way by means
of Hybrid I/O automata [2] and a wide range of hybrid process algebras and
calculi [3,4,5,6]. Finally, following the behavioral approach of Polderman and
Willems [7] and the evolutionary model of Aubin and Dordan [8], flow systems
over hybrid time-lines have been proposed [9,10,11], which constitute a semantic
formalism that is closer to the classical semantics of control theory.

Apart from a difference in ease of use depending on the application area, there
is a difference in abstraction level that one should be concerned about when
choosing between these semantic models. Perhaps not surprisingly, a hybrid-
time flow model contains more detailed information regarding the behavior of
a system than a real-time transition model. Furthermore, within the formalism
of hybrid-time flow systems, three notions of bisimulation can be distinguished
(see [12]) corresponding to different levels of abstraction at which timing can be

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 116–129, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 117

regarded. The question arises what the exact difference in level of abstraction is
when different formalisms and different notions of equivalence are used.

In this paper, we study the difference in abstraction level between hybrid-
time flow systems and real-time transition systems. We start, in section 2, with
some formal preliminaries on time, transitions and flows. In section 3, we discuss
translations from hybrid-time flow systems to real-time transition systems and
back. In the translation from transition systems to flow systems, which creates
flows by ‘pasting’ transitions together, no information is lost. The translation
in the other direction, which creates transitions based on the presence of a wit-
nessing flow (as in hybrid automata theory [1]), turns out to be lossless if and
only if the original hybrid-time flows are finite-set refutable. I.e. if and only if
any flow that is not a valid behavior of the system can be refuted on the basis
of observations at only a finite (but well-chosen) set of time-points. The notion
of finite-set refutability seems to be connected to the physical intuition that a
system can only be observed at a finite number of times, but we are not aware
of any previous literature about it. It is likely that finite-set refutability has
never been considered in isolation before, since it will usually be replaced by the
stronger (topological) notion of compactness (see section 5).

In section 4, we recall three notions of bisimulation equivalence on hybrid-time
flow systems [12], and give their corresponding notions on real-time transition
systems (one of which is especially introduced in this paper for the purpose). We
proceed by proving that the translations preserve these bisimulations. Further-
more, we prove that in case of finite-set refutable flow systems, bisimulation on
the real-time transition system resulting from the translation implies bisimula-
tion of the original flow systems. Finally, in section 5, we show that hybrid-time
flow systems in which the continuous paths are generated through differential
inclusions with an upper-semicontinuous, closed and convex, right-hand side, are
finite-set refutable. In section 6, we conclude that the difference in abstraction
level between hybrid-time flow systems and real-time transition systems is ir-
relevant for a very broad class of hybrid systems. We give some suggestions for
further research and, amongst others, discuss how hybrid transition systems may
come of use if the differential inclusions are not autonomous.

2 Time, Transitions and Flows

Two semantic approaches to the description of dynamical systems are still gain-
ing popularity: (timed) transition system semantics, and flow system semantics.
Both make use of a formal notion of time.

A time-line is usually defined to be a linear order that, depending on the
theory to be developed, has certain additional properties. One of those prop-
erties, is that it is an Abelian group, i.e. it has an addition operator + defined
on it. In this paper, it also has a zero element 0, such that x + 0 = x, and for
notational convenience it has an inverse − such that x + (−x) = 0. To denote
the passage of time, only the positive numbers are used, which are also referred
to as the future time-line. The most often used future time-line in control theory

118 P.J.L. Cuijpers and M.A. Reniers

is, arguably, that of the non-negative real numbers R
≥0, with the natural num-

bers N = Z
≥0 at second place. Recently in [9,10], a merge between those two

time-lines has arisen known as hybrid time H = Z × R, in which the ordering of
time-points is lexicographical, i.e. for (z, r), (z′, r′) ∈ H we have (z, r) < (z′, r′)
if and only if z < z′ or both z = z′ and r < r′, and the addition is pointwise, i.e.
(z, r) + (z′, r′) = (z + z′, r + r′). The future hybrid-time1 line then consists of
the positive quadrant H

≥0 = N×R
≥0. Paths over this time-line are alternations

of continuous changes, i.e. intervals over the ‘real’ part where the ‘discrete’ part
stays constant, and discrete changes, i.e. changes in the ‘discrete’ part where
the ‘real’ part stays constant. Thus, hybrid-time provides us with a mechanism
to describe hybrid behavior efficiently. For the sake of completeness we mention
that the general time-line theory of [10] allows flow systems over even more exotic
time-lines, in order to support constructs like meta hybrid-automata (automata
with hybrid-automata in their states) [13].

The earliest hybrid semantics did not make use of a mechanism like hybrid-
time, but rather allowed discontinuous changes in the state of a system that take
0 time. Amongst others, the early hybrid automata frameworks used real-time
transition systems [1] as their semantics. Note, that in certain hybrid process
algebras and hybrid automata frameworks, the discontinuous changes are not
directly associated with a 0-time transition, but rather with an action transition.
Such an approach would not fundamentally change the results of this paper,
except that the hybrid-time flows would somehow have to accommodate for
such actions as well.

Definition 1. A real-time transition system is a tuple T = 〈X,R≥0,→〉, with
X a valuation space, R

≥0 the future real-time line, and →⊆ X × R
≥0 ×X the

time transition relation. A transition (x, t, x′) ∈→ will be denoted by x t→ x′.

– T is non-zero prefix-closed if every transition x
t→ x′′, with t > 0, can be

split into transitions x t′→ x′ and x′ t
′′
→ x′′ with t = t′ + t′′, and t′, t′′ > 0;

– T is non-zero concatenation-closed if for every two transitions x t→ x′ and

x′ t′→ x′′, with t, t′ > 0, there is also a transition x
t+t′→ x′′.

From here on, we will always assume real-time transition systems to be non-zero
prefix closed and non-zero concatenation closed.

The latest hybrid semantics use flows over hybrid-time to describe system be-
haviors [9,10]. This gives a more expressive semantics than obtained by using
real-time transition systems, as we will see further on. However, in hybrid time,
the usual model of a path being a function from some time-interval to a valu-
ation space no longer applies. An interval [t0, t1] = {r | t0 ≤ r ≤ t1} in future
hybrid-time is a ’square’ containing all possible ways in which time can proceed
from t0 = (n0, r0) to t1 = (n1, r1). An interval does not yet specify in which
order the discrete and continuous time-steps are taken. As a result, a path over

1 For ease of notation, we will write 0 in stead of (0, 0) whenever this is convenient.

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 119

hybrid-time has a more complicated domain than the interval-domain used in
classical control theory. A formal definition is given below.

Definition 2. A hybrid-time path2 through a valuation space X is a partial
function φ : H

≥0 → X such that dom(φ) =
⋃
i≤N{i} × [ri, r′i] with r′i = ri+1 for

all i < N . The set of all hybrid-time paths over X is denoted Path(H≥0, X).

Definition 3. On a hybrid-time path φ ∈ Path(H≥0, X) we define the post-fix
operation

φ≥t(τ) � φ(τ + t) for τ + t ∈ dom(φ),

and the prefix-operation

φ≤t(τ) � φ(τ) for τ ≤ t ∈ dom(φ).

On hybrid-time paths φ and φ′, with t ∈ dom(φ) and φ(t) = φ′(0), we define the
concatenation

(φ ·t φ′)(τ) �
{
φ(τ) ; for τ ≤ t
φ′(τ − t) ; for τ ≥ t

Finally, we define the progress operator which returns the domain of φ up to the
first time instance at which a discrete step is taken:

Pro(φ) = {t ∈ dom(φ) | t > (0, 0) ∧ t ≤ min{(1, r) | (1, r) ∈ dom(φ)}}.

Definition 4. A hybrid-time flow system is a tuple F = 〈X,H≥0, Φ〉, with X

a valuation space, H
≥0 the future hybrid-time line, and Φ : X → 2Path(H≥0,X) a

map from valuations to sets of hybrid-time paths.

– F has initialization if the flows associated with a state actually start in that
state i.e. φ(0) = x for all x ∈ dom(Φ) and φ ∈ Φ(x);

– F is time-invariant if the allowed flows do not depend on the current time,
i.e. φ≥t ∈ Φ(φ(t)) for all x ∈ dom(Φ), φ ∈ Φ(x) and t ∈ dom(φ);

– F is prefix-closed if breaking off a flow is allowed, i.e. φ≤t ∈ Φ(x) for all
x ∈ dom(Φ), φ ∈ Φ(x) and t ∈ dom(φ);

– F has property of state if future flows only depend on the current valuation,
and not on the past of the flow, i.e. φ ·t φ′ ∈ Φ(x) for all x ∈ dom(Φ),
φ ∈ Φ(x), t ∈ dom(φ) and φ′ ∈ Φ(φ(t));

From here on, we will always assume hybrid-time flow systems to have initial-
ization, to be time-invariant and prefix-closed, and to have the property of state.

3 Translations

To obtain insight in the difference in abstraction level between real-time tran-
sition systems and hybrid-time flow systems, we define straightforward trans-
lations between the two. We verify that these translations preserve the desired
2 The definitions in [10,12] are more general. They start from a more general notion

of time-line, of which H
≥0 is a particular instance.

120 P.J.L. Cuijpers and M.A. Reniers

closure properties, and at the end of the section we study the information that
is lost in these translations.

We start out with a translation from hybrid-time flow systems to real-time
transition systems, which creates a transition whenever there is a hybrid-time
flow witnessing this transition. Note that in the definition below, only witnesses
starting in (0, 0) are considered. Furthermore, we only consider witnesses for a
single discrete change and for a single continuous flow. Due to the assumptions of
time-invariance and property of state, any witness can be reduced to a sequence
of such ‘elementary’ witnesses. An alternative translation using ‘full’ witnesses
would not change the theorems obtained in this paper, but would complicate
their proofs.

Definition 5. Given a hybrid-time flow system F = 〈X,H≥0, Φ〉 we define the
associated real-time transition system T(F) = 〈X,R≥0,→〉 such that there is a
transition x

t→ x′ of duration t from state x ∈ X to state x′ ∈ X if and only if:

– t = 0 and there is a φ ∈ Φ(x) such that x′ = φ((1, 0)), or
– t > 0 and there is a φ ∈ Φ(x) such that x′ = φ((0, t)).

Naturally, we must verify that the standard closure properties on real-time tran-
sition systems are preserved.

Theorem 1. T(F) is non-zero prefix closed and non-zero concatenation closed.

Proof. Straightforward, but using the general assumptions that F has initializa-
tion, is time-invariant and prefix-closed and has the property of state.

Next, we give a translation from real-time transition systems to hybrid-time flow
systems, which creates a hybrid-time flow by pasting real-time transitions in a
suitable manner. A hybrid-time flow is only constructed (i.e. extracted from the
real-time transition system) if every change of state that appears in the flow is
mimicked by some real-time transition.

Definition 6. Given a real-time transition system T = 〈X,R≥0,→〉, a hybrid-
time path φ ∈ Path(H≥0, X) is an extracted path of T if

– for every (n, r), (n, r′) ∈ dom(φ) with r < r′ there is a transition φ(n, r) r
′−r→

φ(n, r′),
– for every (n, r) ∈ dom(φ) with also (n+1, r) ∈ dom(φ), there is a transition
φ(n, r) 0→ φ(n+ 1, r).

Definition 7. Given a real-time transition system T = 〈X,R≥0,→〉 we define
the associated hybrid-time flow system F(T) = 〈X,H≥0, Φ〉 as the set of all
extracted paths of T . More precisely, for an initial valuation x ∈ X we have
φ ∈ Φ(x) if and only if φ is an extracted path of T with φ(0) = x.

Of course, we verify that the standard closure properties of hybrid-time flow
systems are preserved.

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 121

Theorem 2. F(T) has initialization, is time-invariant and prefix-closed and
has the property of state.

Proof. Straightforward, but using the general assumptions that T is non-zero
prefix closed and non-zero concatenation closed.

In the translation from real-time transition system to hybrid-time flow system
no abstraction is applied; the translation is without loss of information. For the
translation in the other direction this is not the case. Next, we prove that the
abstraction resulting from translating a hybrid-time flow system into a real-
time transition system, is that we only observe the behavior of the system at a
finite number of points in time. In other words, if a proposed hybrid-time path
φ ∈ Path(H≥0, X) cannot be refuted on the basis of a finite set of time-points,
then a real-time transition system cannot distinguish it from an actual behavior
of the system.

As an example, consider the differential inclusion ẋ ∈ [−1, 1] and the differen-
tial inclusion ẋ ∈ {−1, 1} which switches between slope −1 and 1 arbitrarily fast.
As we prove further on in section 5, the set of solutions of the first inclusion is
finite-set refutable, while the set of solutions of the second is not. Furthermore,
the behavior defined by the second inclusion is a strict subset of the behavior
defined by the first. In particular, the function x(t) = 0 is a solution of the first
inclusion, but not of the second. Still, given any finite set of time points D, there
is a solution y(t) of ẏ ∈ {−1, 1} such that y(d) = x(d) = 0 for all d ∈ D (just
find an appropriate zig-zag line). In fact, any solution of the first inclusion can
be approximated by the second in this way. As a result, the real-time transition
systems generated by the two differential inclusions are identical.

Definition 8. A hybrid-time flow system F = 〈X,H≥0, Φ〉 is finite-set refutable
if for every path ψ ∈ Path(H≥0, X) such that ψ
∈ Φ(ψ(0)), there is a finite set
Tψ ⊆ dom(ψ) such that for every φ ∈ Φ(ψ(0)) with dom(φ) = dom(ψ) there is
a t ∈ Tψ with φ(t)
= ψ(t).

Theorem 3. For any real-time transition system T , F(T) is finite-set refutable.

Proof. Let T = 〈X,R≥0,→〉. Let x ∈ X , and assume that we have a hybrid-
time path φ
∈ Φ(x), with φ(0) = x. Then, by construction of F(T), φ is not an
extracted path of T . Hence, there exist t1, t2 ∈ dom(φ) with t1 = (n1, r1) and
t2 = (n2, r2) such that the transition φ(t1)

r2−r1→ φ(t2) is not in T . But then, no
extracted path of T can coincide with φ at both t1 and t2, and hence the finite
set {t1, t2} is a witness on the basis of which φ can be refuted3.

Theorem 4. For finite-set refutable hybrid-time flow system F , F(T(F)) = F .

Proof. Let F = 〈X,H≥0, Φ〉. We use F(T(F)) = 〈X,H≥0, Φ′〉 to denote the
result of the translation forwards and backwards. It is trivial to see, for any
3 Indeed, F(T) is even 2-point refutable. But, 2-point refutability and finite-set

refutability coincide for flow-systems with property of state [14].

122 P.J.L. Cuijpers and M.A. Reniers

x ∈ X , that φ ∈ Φ(x) implies φ ∈ Φ′(x). Hence, we focus on the other direction.
Assume that φ ∈ Φ′(x) and that dom(φ) =

⋃
i≤N{i} × [ri, r′i], for some N ∈ N.

Let tj = (mj , sj) ∈ dom(φ), with 0 ≤ j ≤ M ≤ 2N , be any (finite) sequence
of times including, at least, all the beginning and end-points of the real-time
intervals. I.e. let tj be a sequence such that for every i ≤ N there are j, k ≤ M
with tj = (i, ri) and tk = (i, r′i). Now, by construction of F(T(F)), there are

transitions tj
sj+1−sj→ tj+1 in T(F), for each 0 ≤ j < M − 1. Hence, by construc-

tion of T(F), there is a path ψj ∈ Φ(φ(tj)) with ψj(0, sj+1) = φ(tj+1) when
mj = mj+1, and with ψj(1, 0) = φ(tj+1) when rj = rj+1. The concatenation of
these paths ψj gives a path ψ ∈ Φ(φ(0)) = Φ(x) with dom(ψ) = dom(φ) that
furthermore coincides with φ at every tj . In conclusion, for every finite set of
times D, we can find a sequence tj visiting all points in D and all switching
points of φ. Furthermore, we can construct a path ψ ∈ Φ(x) that coincides with
φ at every tj , and hence at every d ∈ D. Since F is assumed to be finite-set
refutable, we conclude φ ∈ Φ(x).

Corollary 1. For any hybrid-time flow system F , F(T(F)) = F if and only if
F is finite-set refutable.

Proof. Straightforward from the previous two theorems.

Finally, we observe that indeed no information is lost if we start from a real-time
transition system.

Theorem 5. For any real-time transition system T , T(F(T)) = T .

Proof. Straightforward, using the prefix-closure of real-time transition systems
to ensure that each transition of T is represented by some flow in F(T).

4 Bisimulation Equivalence

In [12], Davoren and Tabuada introduced three notions of bisimulation equiva-
lence on hybrid-time flow systems, in an attempt to preserve properties in the
temporal logic GFL� [10]. In this paper, we discuss the relation between these
three notions, and three similar notions of bisimulation defined on real-time tran-
sition systems (one of which is especially introduced in this paper for the purpose
of comparison). The most important topic we adres in this section, is that finite-
set refutability as a necessary and sufficient condition for lossless translation, is
no guarantee that the notions of bisimulation on real-time transition systems will
not abstract from more information than the respective notions of bisimulation
on hybrid-time flow systems. Below, we prove that finite-set refutability indeed
guarantees that bisimulations on hybrid-time flow systems correspond to their
companion bisimulations on real-time transition systems.

The intuition on the definitions give below, is that t-bisimulation preserves
the exact timing properties of paths, while p-bisimulation allows paths to be
‘compressed’, ‘stretched’, or in some other way cast to a different time-line. The
notion of r-bisimulation is not concerned with timing at all, and only preserves
the order in which states are reached.

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 123

Definition 9. Given hybrid-time flow systems F1 = 〈X1,H
≥0, Φ1〉 and F2 =

〈X2,H
≥0, Φ2〉, a relation R ⊆ X1 ×X2 is called a

– timed simulation or t-simulation4 if for every x1 ∈ X1, x2 ∈ X2 and φ1 ∈
Φ1(x1) with x1 Rx2 there exists φ2 ∈ Φ2(x2) with dom(φ1) = dom(φ2) such
that for every t ∈ dom(φ1) we have φ1(t)Rφ2(t);

– progress simulation or p-simulation if for every x1 ∈ X1, x2 ∈ X2, φ1 ∈
Φ1(x1) and t1 ∈ Pro(φ1) with x1 Rx2 there exists φ2 ∈ Φ2(x2) with t2 ∈
Pro(φ2) such that φ1(t1)Rφ2(t2) and for every s2 ∈ dom(φ2) with 0 < s2 ≤
t2 there is a s1 ∈ dom(φ1) with 0 < s1 ≤ t1 such that φ1(s1)Rφ2(s2);

– reachable simulation or r-simulation if for every x1 ∈ X1, x2 ∈ X2, φ1 ∈
Φ1(x1) and 0 < t1 ∈ dom(φ1) with x1 Rx2 there exists φ2 ∈ Φ2(x2) and
0 < t2 ∈ dom(φ2) such that φ1(t1)Rφ2(t2).

In general, a relation R is called a bisimulation if R and R−1 are simulations.

Next, we give the companion bisimulations defined on (relative-time) real-time
transition systems, and show the relation with their hybrid-time flow system
originals. As was already pointed out in [12] the notion of t-simulation is, in
fact, the usual notion of simulation on real-time transition systems as used, for
example, in timed process algebras [15].

Definition 10. Given real-time transition systems T1 = 〈X1,R
≥0,→1〉 and

T2 = 〈X2,R
≥0,→2〉, a relation R ⊆ X1 ×X2 is called a

– timed simulation or t-simulation if for every x1, x
′
1 ∈ X1, x2 ∈ X2 and t ∈ R

with x1
t→1 x

′
1 and x1 Rx2 there exists x′2 ∈ X2 such that x2

t→2 x
′
2 and

x′1 Rx′2;
– progress simulation, or p-simulation if for every x1 ∈ X1, x2 ∈ X2 and

extracted hybrid-time path φ1 from T1 with t1 ∈ Pro(dom(φ1)), φ1(0) = x1

and x1 Rx2, there exists an extracted hybrid-time path φ2 from T2 with t2 ∈
Pro(dom(φ2)), φ2(0) = x2, φ(t1)Rφ(t2) and for every s2 ∈ dom(φ2) with
0 < s2 ≤ t2 there is a s1 ∈ dom(φ1) with 0 < s1 ≤ t1 such that φ(s1)Rφ(s2).

– reachable simulation or r-simulation if for every x1, x
′
1 ∈ X1, x2 ∈ X2 and

t ∈ R with x1
t→1 x

′
1 and x1 Rx2 there exists x′2 ∈ X2 and t′ ∈ R such that

x2
t′→2 x

′
2 and x′1 Rx′2;

As before, a relation R is called a bisimulation if R and R−1 are simulations.

One should note, that in the literature the bisimulation relationR is also required
to preserve other observable aspects of a system, such as the atomic propositions
on the state-space in logic [16], and the result of the observation function y :
X → Y in control theory [17]. The proofs below are robust against adding such
observables.

The following theorem shows that the translation from real-time transitions to
hybrid-time flows preserves simulations, and consequently preserves bisimulation
equivalence.
4 Despite the more compact formulation we use here, the notions of t- and p- simulation

coincide with those of [12].

124 P.J.L. Cuijpers and M.A. Reniers

Theorem 6. Given real-time transition systems T1 = 〈X1,R
≥0,→1〉 and T2 =

〈X2,R
≥0,→2〉, a relation R ⊆ X1 ×X2

– is a t-simulation of T1 by T2 if and only if it is a t-simulation of the translated
hybrid-time flow system F(T1) by F(T2),

– is a p-simulation of T1 by T2 if and only if it is a p-simulation of the translated
hybrid-time flow system F(T1) by F(T2),

– is a r-simulation of T1 by T2 if and only if it is a r-simulation of the translated
hybrid-time flow system F(T1) by F(T2).

Proof. The ‘only if’ direction in the above theorems is trivial, since having a
path φ in the translation implies having all transitions φ(n1, r1)

r2−r1→ φ(n2, r2)
for (n1, r1), (n2, r2) ∈ dom(φ). The ‘if’ direction becomes straightforward after
observing that with each transition x

t→ x′ with t > 0 there is also a path
φ ∈ Φ(x) such that φ(0, t) = x′, due to the non-zero prefix closedness of T .

For the translation from hybrid-time flows to real-time transition systems we
have only the ‘only if’ direction. The reason for not having the ‘if’ direction is
that simulating a transition in T(F1) by a transition in T(F2) does not guarantee
that these transitions were generated by similar paths in F1 and F2. For r-
simulation, only the actual states that are reached are of importance, not the
paths leading to them, which is why we have both directions for r-simulation.

Theorem 7. For any hybrid-time flow systems F1 = 〈X1,H
≥0, Φ1〉 and F2 =

〈X2,H
≥0, Φ2〉, and a relation R ⊆ X1 ×X2

– is a t-simulation of F1 by F2, only if it is a t-simulation of the real-time
transition system T(F1) by T(F2),

– is a p-simulation of F1 by F2, only if it is a p-simulation of the real-time
transition system T(F1) by T(F2),

– is a r-simulation of F1 by F2, if and only if it is a r-simulation of the real-
time transition system T(F1) by T(F2).

Proof. By construction of the translation.

For the other direction in t-simulation and p-simulation, we need finite-set
refutability.

Theorem 8. For any hybrid-time flow systems F1 = 〈X1,H
≥0, Φ1〉 and F2 =

〈X2,H
≥0, Φ2〉, with F2 finite-set refutable, and given a relation R ⊆ X1 ×X2

– R is a t-simulation of the hybrid time flow system F1 by F2, if it is a t-
simulation of the real-time transition system T(F1) by T(F2),

– R is a p-simulation of the hybrid time flow system F1 by F2, if it is a p-
simulation of the real-time transition system T(F1) by T(F2).

Proof. The proof for the notion of p-simulation is rather straightforward, since
by theorem 4 we know for finite-set refutable systems that every extracted path
of T(F2) is in fact a path of F2. In our definition of t-simulation on real-time

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 125

transition systems we did not make use of the notion of paths, hence we must
reconstruct them. This is done in a similar fashion as in theorem 4. Assume that
R is a t-simulation for T(F1) and T(F2). Furthermore, let x1 ∈ X1, x2 ∈ X2

and φ1 ∈ Φ1(x1) with x1 Rx2. Now, like in the proof of theorem 4, we create
a sequence tj = (mj , sj) ⊆ dom(φ1) of length M + 1 that at least contains
all the discrete steps in φ1. Then, using the simulation relation R we mimic
the transitions φ1(tj)

sj+1−sj→ 1 φ1(tj+1) by transitions xj
sj+1−sj→ 2 xj+1 such

that φ1(tj)Rxj for all j ≤ M . By construction of T(F2) we find paths ψj ∈
Φ2(φ1(tj)), and concatenating these gives us a path φD ∈ Φ2(x2) such that for
every t ∈ dom(φ1) ∩ D we have φ1(t)RφD(t). The fact that Φ2 is finite-set
refutable then leads to the conclusion that there is also a φ2 ∈ Φ2(x2) such that
for every t ∈ dom(φ1) = dom(φ2) we have φ1(t)Rφ2(t).

5 Impuls Differential Inclusions

Now that we have shown that finite-set refutability captures the loss of infor-
mation between hybrid-time flow systems and real-time transition systems, we
should ask ourselves which systems are finite-set refutable. Our first intuition
is that most physical systems should have a finite-set refutable representation,
because finite-set refutability is a consequence of the physical principle that
we can only distinguish systems on the basis of a well-chosen but finite set
of observations. Below, we find mathematical confirmation of this intuition,
because the long-standing modeling of physical behavior through continuous
differential equations (and more generally, differential inclusions with an upper-
semicontinuous, closed and convex, right-hand side) leads to compact, and hence
finite-set refutable, real-time flow systems (i.e. hybrid-time flow systems with-
out discrete behavior). The definitions below are taken from [11] and require
some formal background in topology and in the theory of (impuls) differential
inclusions to understand. See for example also [18].

Definition 11. An impulse differential inclusion is a tuple H = 〈X,F,R, J〉,
consisting of a finite dimensional vector space X, a set valued map F : X → 2X,
regarded as a differential inclusion ẋ ∈ F (x), a set valued map R : X → 2X,
regarded as a reset map, and a set J ⊆ X, regarded as a forced transition set.

Definition 12. A hybrid-time flow system FH = 〈X,H≥0, ΦF 〉 is the solution
of an impulse differential inclusion, H = 〈X,F,R, J〉 when for all x ∈ X and
all paths φ ∈ Path(H≥0, X) we find φ ∈ ΦF (x) if and only if

– φ(0, 0) = x,
– for all (n, r) ∈ dom(φ) with (n + 1, r) ∈ dom(φ) we have φ(n + 1, r) ∈
R(φ(n, r)),

– for all (n, r), (n, r′) ∈ dom(φ) we have that φ(·) is a solution of the differen-
tial inclusion ẋ ∈ F (x) over the interval [(n, r), (n, r′)], in the sense of [18]5,
and φ(t)
∈ J for (n, r) ≤ t < (n, r′).

5 To explain the complete solution concept on differential inclusions would be out of
the scope of this paper.

126 P.J.L. Cuijpers and M.A. Reniers

The solutions of impuls differential inclusions indeed satisfy the properties we
require of hybrid-time flow systems in this paper.

Theorem 9. A hybrid-time flow system FH that is the solution of an impuls
differential inclusion H = 〈X,F,R, J〉 has initialization, is time-invariant and
prefix-closed and has the property of state.

Proof. That FH has initialization follows from its construction above. Time-
invariant, prefix-closedness and the property of state are well-known properties
of differential inclusions which, amongst others, follows straightforwardly from
the theory explained in [18]. The extension with discontinuous behavior using
a reset map R, and the restriction using a forced jump-set J do not influence
these properties. The full proof of this claim is omitted for reasons of space.

Next, we show that compactness of the solution to an impuls differential inclu-
sion, is sufficient to guarantee finite-set refutability.

Theorem 10. Let FH = 〈X,H≥0, Φ〉 be the solution to an impuls differential
inclusion H = 〈X,F,R, J〉, and furthermore let Φ(x) be a compact set for every
x ∈ X. Then FH is finite-set refutable.

Proof. Assume that a path ψ ∈ Path(H≥0, X) cannot be refuted on the basis
of any finite set of time points, then we must prove ψ ∈ Φ(ψ(0)). We will first
prove that ψ can be approximated by a continuous solution φω ∈ Φ(ψ(0)), and
secondly, we prove that ψ is in fact continuous itself (hence equal to φω).

We start out by observing that the hybrid-time axis has a countable topol-
ogy. Therefore, we can construct a sequence Di ⊆ dom(ψ) of finite sets, which
converges to a set Dω, that is dense in dom(ψ). Also assume that 0 ∈ Di for
each i. Because ψ cannot be refuted on the basis of any of the sets Di, there
exists an associated sequence φi ∈ Φ(ψ(0)) such that φi(d) = ψ(d) for each i
and each d ∈ Di. Using the assumed compactness of Φ(ψ(0)), we know that
this sequence φi has a subsequence converging in a solution φω ∈ Φ(ψ(0)). This
solution coincides with ψ on the dense set Dω, and furthermore φω ∈ Φ(ψ(0)).
Hence we have the promised approximation.

Finally, as the solutions to impuls differential inclusions are continuous (be-
tween the countably many jumps due to resets), we know in particular that the
approximation φω is continuous, regardless of the initial choice of Dω. This is
sufficient to prove by contradiction that ψ is also continuous. Namely, should ψ
poses a discontinuity at t0, then we can start out with t0 ∈ Dω, and we would
have found the same discontinuity in φω . In conclusion, φω and ψ are both found
to be continuous, and to coincide on a dense set. Hence, ψ = φω ∈ Φ(ψ(0)).

It is a classical result, that compactness is obtained for differential inclusions
(without reset maps) of which the function F is upper-semicontinuous and has
a closed and convex right-hand side. (In [11], the strictly stronger condition of
F being Marchaud is used throughout the whole paper.)

Definition 13. A function F : X → 2X is upper-semicontinuous at x0 ∈ X
if for any open set U containing F (x0) there exists an open set V containing

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 127

x0 such that F (V) ⊆ U . The function F is upper-semicontinuous if it is upper-
semicontinuous at every x0 ∈ X.

Theorem 11. Let FH = 〈X,H≥0, Φ〉 be the solution to an impuls differential
inclusion H = 〈X,F, ∅, ∅〉, with F upper-semicontinuous, and F (x) closed and
convex for every x ∈ X. Under these conditions Φ(x) is a compact set of paths
for every x.

Proof. Transliterate corollary 4.5 of [18].

Adding a reset map R of forced transition set J to a finite-set refutable differ-
ential inclusion will not render it finite-set irrefutable.

Theorem 12. Let FH = 〈X,H≥0, ΦH〉 be the solution to an impuls differential
inclusion H = 〈X,F,R, J〉, with F upper-semicontinuous, and F (x) closed and
convex for every x ∈ X. Under these conditions FH is finite-set refutable (but
not necessarily compact).

Proof. The proof of this theorem is too long to be presented here completely,
but it relies on the observation that FH can be constructed by first building the
solution FG of G = 〈X,F, ∅, ∅〉. We build FG and translate this solution to a
real-time transition system T(FG), which is a lossless translation according to
theorems 4, 10 and 11. Then we add transitions x 0→ x′ to T(FG) whenever
(x, x′) ∈ R, and we remove transitions x r→ x′ whenever r > 0 and x ∈ J .
Thus we obtain a real-time transition system TH , which we translate back to
the hybrid-time flow system F(TH). The omitted part of the proof consists of
showing that indeed F(TH) = FH . Finally, it follows from theorem 3 that this
hybrid-time flow system is finite-set refutable.

As a corollary, we now see that the behavior of hybrid automata is indeed finite-
set refutable.

Corollary 2. A hybrid-time flow system F generated by a hybrid automaton
with differential inclusions that satisfy the conditions of the previous theorem, is
finite-set refutable.

6 Conclusions

We have compared the semantic frameworks of hybrid-time flow systems and
real-time transition systems in order to obtain insight in the difference in ab-
straction level between the two. We have captured this difference in the notion
of finite-set refutability, which captures a necessary and sufficient condition for
lossless translation, even in the context of bisimulations. We have argued that
finite-set refutability is a very reasonable condition to impose on models, since it
is a result of the physical intuition that we can only distinguish systems on the
basis of a finite number of observations. Finally, we have proven that a broad
class of differential equations and (impuls) differential inclusions, namely those

128 P.J.L. Cuijpers and M.A. Reniers

that are upper-semicontinuous and closed and convex, have a finite-set refutable
set of solutions.

These results suggest that the use of real-time transition systems as a model
for autonomous physical systems does not introduce additional abstractions com-
pared to hybrid-time flows. But, when the model is still ‘open’ to inputs and other
types of compositions, hybrid-time flow systems may lead to more precise mod-
els. In this latter case, however, another alternative is to use hybrid transition
systems, with real-time paths as transition-labels. As we show in an earlier tech-
nical report [14] on this subject, the definition of finite-set refutability can be
adapted to suit the translation to such hybrid transition systems, which means
that no unwanted abstractions arise in the hybrid automaton theory of [2] and
in the hybrid process algebras of [4,3,5].

A natural question that arises for future research, is whether a given hybrid-
time flow system can be made finite-set refutable. In other words, whether there
is a convenient operator that closes a system under finite-set refutability. In our
counter-example of section 3, we used a non-finite-set refutable differential inclu-
sion ẋ ∈ {−1, 1} and its finite-set refutable closure ẋ ∈ [−1, 1]. Here, the closure
was obtained by taking the convex hull, but in general this approach is likely
to add spurious solutions as well. Note, that the given conditions on differential
inclusions are only sufficient conditions. Upper-semicontinuity and closedness
may not be necessary. As an example, the solutions of the differential inclusion
ẋ ∈ (−1, 1), with its right-hand side upper-semicontinuous and convex, but not
closed, are not compact, but are still finite-set refutable. It is a consequence of
theorem 7, that reachability will not be affected by finite-set refutable closure.

Based on the results in [14], we claimed that the notion of finite-set refutabil-
ity is still a necessary and sufficient condition for lossless translation when the
hybrid-time flow systems are not time-invariant and the real-time transition sys-
tems use absolute rather than relative timing. Naturally, the actual translations
are different in that case. Note, however, that the conditions for compactness of
time-variant differential inclusions are rather complex, as some of the theorems
in [18] show.

Acknowledgements. The initial attempts in the direction of this paper were made
as part of the Progress/STW project EES5173, and we would like to thank Paul
van den Bosch, Jan Friso Groote, Maurice Heemels and Aleksander Juloski, who
were a valued source of reflection during this period. We would also like to thank
the anonymous reviewers of HSCC, who’s comments greatly improved the final
version of this paper.

References

1. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th An-
nual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 278–292.
IEEE Computer Society Press, Los Alamitos (1996)

2. Lynch, N., Segala, R., Vaandrager, F.: Hybrid I/O automata. Information and
Computation 185(1), 105–157 (2003)

Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions 129

3. Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theoretical
Computer Science 335, 215–280 (2005)

4. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Journal of Logic and Al-
gebraic Programming 62, 191–245 (2005)

5. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax
and consistent equation semantics of hybrid chi. Journal of Logic and Algebraic
Programming 68, 129–210 (2006)

6. Rounds, W.C., Song, H.: The φ-calculus: A language for distributed control of
reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003.
LNCS, vol. 2623, pp. 435–449. Springer, Heidelberg (2003)

7. Polderman, J., Willems, J.: Introduction to Mathematical Systems Theory: A Be-
havioural Approach. In: Texts in Applied Mathematics, vol. 26, Springer, Heidel-
berg (1998)

8. Aubin, J.P., Dordan, O.: Dynamical qualitative analysis of evolutionary systems.
In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 62–75.
Springer, Heidelberg (2002)

9. van der Schaft, A.J., Schumacher, J.M. (eds.): An Introduction to Hybrid Dy-
namical Systems. Lecture Notes in Control and Information Sciences, vol. 251.
Springer-Verlag, London (2000)

10. Davoren, J., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal
logics for general flow systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 280–295. Springer, Heidelberg (2004)

11. Aubin, J.P., Lygeros, J., Quincampoix, M., Sastry, S., Seube, N.: Impulse differ-
ential inclusions: A viability approach to hybrid systems. IEEE Transactions on
Automatic Control 47, 2–20 (2002)

12. Davoren, J.M., Tabuada, P.: On simulations and bisimulation of general flow
systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 145–158. Springer, Heidelberg (2007)

13. Davoren, J.M.: On hybrid systems and the modal μ-calculus. In: Antsaklis, P.J.,
Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS 1997. LNCS,
vol. 1567, pp. 38–69. Springer, Heidelberg (1999)

14. Cuijpers, P., Reniers, M., Heemels, W.: Hybrid transition systems. Technical Re-
port CS-Report 02-12, TU/e, Eindhoven, Netherlands (2002)

15. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in
Theoretical Computer Science. Springer, Heidelberg (2002)

16. Hennessy, M.C.B., Milner, R.: On observing nondeterminism and concurrency. In:
de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980)

17. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical,
control, and hybrid systems. Theoretical Computer Science 342, 229–261 (2005)

18. Smirnov, G.: Introduction to the Theory of Differential Inclusions. Graduate Stud-
ies in Mathematics. American Mathematical Society 41 (2002)

A Control Lyapunov Approach to

Predictive Control of Hybrid Systems

S. Di Cairano1, M. Lazar2, A. Bemporad1, and W.P.M.H. Heemels3,�

1 Dip. Ingegneria dell’Informazione, Università di Siena,
Via Roma 56, 53100 Siena, Italy

{dicairano, bemporad}@dii.unisi.it
2 Dept. of Electrical Eng.,

3 Dept. of Mechanical Eng.,
Eindhoven Univ. of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{m.lazar, m.heemels}@tue.nl

Abstract. In this paper we consider the stabilization of hybrid systems
with both continuous and discrete dynamics via predictive control. To
deal with the presence of discrete dynamics we adopt a “hybrid” control
Lyapunov function approach, which consists of using two different func-
tions. A Lyapunov-like function is designed to ensure finite-time conver-
gence of the discrete state to a target value, while asymptotic stability of
the continuous state is guaranteed via a classical local control Lyapunov
function. We show that by combining these two functions in a proper
manner it is no longer necessary that the control Lyapunov function for
the continuous dynamics decreases at each time step. This leads to a sig-
nificant reduction of conservativeness in contrast with classical Lyapunov
based predictive control. Furthermore, the proposed approach also leads
to a reduction of the horizon length needed for recursive feasibility with
respect to standard predictive control approaches.

1 Introduction

One of the central problems in hybrid systems is the regulation to a desired
operating point along with the optimization of a performance criterion. A solu-
tion to this problem that can successfully deal with the combination of discrete
and continuous dynamics is provided by the model predictive control (MPC)
methodology, as illustrated in [1]. One of the major challenges signaled in [1] is
constrained stabilization of both continuous and discrete dynamics (in terms of
convergence to a desired equilibrium). The solution to this problem presented
in [1] consisted in using a terminal equality constraint for both continuous and
� The work by the authors was supported by the European Commission through the

HYCON Network of Excellence, contract number FP6-IST-511368. The work by
S. Di Cairano and A. Bemporad was also supported by the Italian Ministry for
University and Research (MIUR) under project “Advanced control methodologies
for hybrid dynamical systems” (PRIN’2005).

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 130–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Control Lyapunov Approach to Predictive Control of Hybrid Systems 131

discrete states. This result was further relaxed in [2, 3] towards using a termi-
nal inequality constraint on the continuous states. However, such relaxations
were achieved in the absence of discrete states. In addition, a relatively long
prediction horizon was still required for feasibility of the terminal constraints,
which resulted in a high computational burden. This is a drawback, as discrete
dynamics are indeed one of the fundamental features of hybrid dynamical sys-
tems (see e.g. [4, 5, 6]). Discrete dynamics can be used to represent robot tasks
and sequences of operations in industrial batch processes, or computer program
executions in embedded and software-enabled control systems. Therefore, predic-
tive controllers that stabilize hybrid systems with both continuous and discrete
dynamics, preferably in a numerically efficient way, are needed. While we con-
sider stabilization of hybrid systems with discrete dynamics, stability analysis
for the autonomous case was considered among the others in [6] (continuous
time) and [4] (discrete time).

In this paper we build a framework for predictive control of hybrid systems
with discrete dynamics (HSDD, for short), as opposed to piecewise affine systems
used in [2, 3], where there are no discrete dynamics, but only a discrete static
mapping. Rather than using a terminal constraint setup [7], we employ a hybrid
version of the classical control Lyapunov function (CLF) notion [8] to ensure
convergence and stability. For the synthesis of CLFs via optimization (including
predictive control) we refer to [9, 10, 11]. However, for a general hybrid system
it may be too restrictive to enforce a global control Lyapunov function defined
over the continuous state only. Instead of using a global CLF defined over the
continuous state only, we adopt a “hybrid” CLF defined over the whole hybrid
system state and constituted of two functions. A control Lyapunov-like function
for the discrete state (discrete state CLF) ensures finite-time convergence of the
discrete state to the desired value, while asymptotic stability of the continuous
state when the discrete state is reached is guaranteed by a standard local CLF
(continuous state CLF). The main innovations are the combination of the global
discrete state CLF and of the local continuous state CLF to address stabilization
of hybrid systems, and the construction of the function related to the discrete
dynamics, that is defined in terms of the graph distance from the current to
the target discrete state over the graph associated with the finite state machine
that describes the discrete dynamics. This function is required to decrease over
a finite horizon, which is lower bounded by the horizon needed to perform a
single transition to a discrete state “closer” to the target, and that is shorter
than the horizon needed to reach the target state. Thus, the proposed strategy
requires in general a shorter horizon for feasibility with respect to the approach
of [1]. In contrast, the CLF associated with the continuous state is allowed not
to decrease at each time step, until the target discrete state is reached.

The remainder of the paper is organized as follows. Section 2 presents basic
definitions and notations, and the system model is defined in Section 3. Section 4
deals with the construction of the hybrid CLF, while Section 5 presents an
algorithm that implements the hybrid CLF in a receding horizon control strategy.
Conclusions are summarized in Section 6.

132 S. Di Cairano et al.

2 Preliminaries and Notation

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative
reals, the set of integers and the set of non-negative integers, respectively. We
use the notation Z≥c1 and Z(c1,c2] (and similarly with R) to denote the sets
{k ∈ Z+ | k ≥ c1} and {k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1, c2 ∈ Z,
c1 < c2. For a set S ⊆ R

n, we denote by int(S) its interior. By 0 and 1 we
denote vectors/matrices of appropriate dimensions entirely composed of 0 and
1, respectively. The domains of the discrete state and of the discrete input are
the symbolic sets E = {ε1, . . . , εnb

} and Eu = {εu1 , . . . , εumb
}, respectively. The

Hölder p-norm of a vector x ∈ R
n is defined as ‖x‖p � (|[x]1|p + . . .+ |[x]n|p)

1
p ,

if p ∈ Z[1,∞) and ‖x‖∞ � maxi=1,...,n |[x]i|, where [x]i, i = 1, . . . , n, is the i-th
component of x and |·| is the absolute value. Let ‖·‖ denote an arbitrary p-norm.

Given a system x(k + 1) = φ(x(k), u(k)), an initial state x(0) and an input
sequence uN = {u(0), . . . , u(N − 1)}, N ∈ Z≥1, we use x = {x(0), . . . , x(N)} to
denote the sequence of states obtained by applying from the initial state x(0)
the input sequence uN . Furthermore, let φi(x(0),ui) � x(i), with φ0(x(0),u0) �
x(0). With some abuse of notation, when useful for clarity, we will separate the
discrete and the continuous arguments of a function f(x, u), i.e., given x =
[xT

c xT
b]T , u = [uT

c uT
b]T , where xc, uc are the continuous components of state

and input, respectively, and xb, ub are the discrete components of state and
input, respectively, f(xc, xb, uc, ub) � f(x, u).

A function ϕ : R+ → R+ belongs to class K if it is continuous, strictly increas-
ing and ϕ(0) = 0. It belongs to class K∞ if ϕ ∈ K and ϕ(s)→∞ when s→∞.
A function β : R+×R+ → R+ belongs to class KL if for each k ∈ R+, β(·, k) ∈ K
and for each s ∈ R+, β(s, ·) is non-increasing and limk→∞ β(s, k) = 0.

2.1 Stability Notions

Consider the discrete-time nonlinear system described by the difference inclusion

x(k + 1) ∈ Φc(x(k)), k ∈ Z+, (1)

where x(k) ∈ R
n is the state at the discrete-time instant k. The mapping Φc :

R
n ⇒ R

n is an arbitrary nonlinear, possibly discontinuous, set-valued function.
We assume that the origin is an equilibrium in (1), i.e. Φc(0) = {0}.

Definition 1. We call a set P ⊆ R
n positively invariant (PI) for system (1) if

for all x ∈ P it holds that Φc(x) ⊆ P.

Next, we state a regional version of the global asymptotic stability property
presented in [12, Chapter 4] along with sufficient stabilization conditions.

Definition 2. Let X with 0 ∈ int(X) be a subset of R
n. We call system (1)

asymptotically stable (AS) in X if there exists a KL-function β(·, ·) such that,
for each x(0) ∈ X, it holds that all corresponding state trajectories of (1) satisfy
‖x(k)‖ ≤ β(‖x(0)‖, k), ∀k ∈ Z≥1.

A Control Lyapunov Approach to Predictive Control of Hybrid Systems 133

Theorem 1. Let X be a PI set for (1), with 0 ∈ int(X). Furthermore, let
α1, α2 ∈ K∞, ρ ∈ R[0,1) and let V : R

n → R+ be a function such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (2a)

V (x+) ≤ ρV (x) (2b)

for all x ∈ X and all x+ ∈ Φc(x). Then the system (1) is AS in X.

The proof of Theorem 1 is similar in nature to the proof given in [12, 11] by
replacing the difference equation with the difference inclusion as in (1) and is
omitted here for brevity. We call a function V (·) that satisfies the hypothesis of
Theorem 1 a Lyapunov function.

Consider the system with discrete dynamics

x(k + 1) = Φb(x(k)), k ∈ Z+, (3)

where E = {ε1, . . . , εnb
} is a symbolic set, x(k) ∈ E is the state and Φb : E → E

is an arbitrary function.

Definition 3. Let xe ∈ E denote a desired target state. We call system (3)
convergent (with respect to xe) if for all x(0) ∈ E there exists a k̄(x(0)) ∈ Z≥1

such that Φb(x(k)) = xe for all k ∈ Z≥k̄(x(0)).

Consider now the discrete-time system described by the difference equation

x(k + 1) = φc(x(k), u(k)), (4)

where x(k) ∈ X ⊆ R
n is the state, u(k) ∈ U ⊆ R

m is the control input at the
discrete-time instant k, and φc : X×U→ R

n is an arbitrary nonlinear function,
possibly discontinuous. We assume 0 ∈ int(X), 0 ∈ int(U), and φc(0, 0) = 0.

Definition 4. A function V : R
n → R+ that satisfies (2a) and for which there

exists ρ ∈ R[0,1) such that ∀x ∈ X, there exists a control input u ∈ U for which

V (φc(x, u)) ≤ ρV (x),

is called a Control Lyapunov function (CLF) for system (4).

2.2 Graph Notions

We consider systems with discrete state dynamics defined by a finite state ma-
chine, and we employ a directed graph representation for the finite state machine.
We introduce here some graph theory notions, that will be used to define the
CLF-like function related to the discrete dynamics.

Let G = (V,E,C) be a labelled directed graph, where V = {v1, . . . , vs} is the
set of nodes, and E ⊆ (V × V) is the set of edges. We indicate by eij = (vi, vj)
the edge from node vi to node vj , and the label function C associates a positive
value to each existing edge, i.e. C : E → R+, C(eij) = cij , and cii = 0, for
i ∈ Z[1,s]. An often employed definition of distance between elements of discrete

134 S. Di Cairano et al.

sets is the discrete distance [6], that is d(vi, vj) = 0 if i = j, and d(vi, vj) = 1,
otherwise. Even though this is a proper distance function definition1, it is not
very useful for control problems, since all the discrete states (except the target
state itself) appear to be equally far from the target discrete state, and there is
no concept of progress with respect to getting “closer” to the target. Thus, we
consider a different notion of distance, the graph distance.

Definition 5. Given a directed graph G = (V,E,C), the one-step distance from
vi to vj, dvivj ∈ Z+, is dvivj = cij, if eij ∈ E, and dvivj =∞, otherwise.

Definition 6. Given a directed graph G = (V,E,C), a graph path that starts at
vr and ends at vs is a sequence of vertices τ = {ν(1), . . . , ν(�)}, where ν(j) ∈ V ,
for j ∈ Z[1,�], (ν(j), ν(j+1)) ∈ E, for j ∈ Z[1,�−1], and ν(1) = vr, ν(�) = vs. The
length of the path is L(τ) �

∑�−1
j=1 dν(j)ν(j+1) .

Definition 7. Given a directed graph G = (V,E,C), the graph distance be-
tween vr, vs ∈ V , is the length of the shortest path between them, d(vr , vs) �
minτ∈Tr,s L(τ), where Tr,s is the set of graph paths from vr to vs. In the case
there is no path between vr and vs, d(vr , vs) �∞.

The graph distance is a proper distance function on undirected graphs, but it
lacks the symmetry property on directed graphs, since in general d(vi, vj)
=
d(vj , vi). Hence, it is a pseudo-distance. However, as we will see, this does not
affect the problem we consider. In this paper we use cij = 1, ∀(vi, vj) ∈ E,
that recovers the distance on unlabelled graphs. Once the one-step distances are
known, the graph distance d(vi, vj), for all vi, vj ∈ V can be computed offline,
for instance through a graph search based on Dijkstra’s algorithm [13].

3 Reference Model and Problem Formulation

We consider a hybrid dynamical system, with both continuous and discrete states
and inputs. The system dynamics are defined by

x(k + 1) =
[
xc(k + 1)
xb(k + 1)

]

=
[
φc(x(k), u(k))
φb(x(k), u(k))

]

= φ(x(k), u(k)), (5)

where φ : X×U→ X, X ⊆ R
n × E , U ⊆ R

m × Eu is an arbitrary mapping, φc(·)
is the continuous state update function, and φb(·) is the discrete state update
function. The sets X and U represent physical constraints on state and input
vectors, and are assumed to be bounded. Here, the state and input constraints
are independent from each other.

Remark 1. X =
⋃

εi∈E Xh(εi) where Xh(εi) � {x ∈ X : xb = εi}. The set Xc(εi) �
{xc ∈ R

n : [xc
εi] ∈ X} is the set of continuous states compatible with discrete

state εi. In [6], Xc(εi) is referred to as the domain of discrete state εi.

1 Such a definition has nonnegativity, symmetry, and triangle inequality properties.

A Control Lyapunov Approach to Predictive Control of Hybrid Systems 135

We assume that the discrete state update function can be represented in the
form of a finite state machine, with states {ε1, . . . , εnb

} and with transitions
T ⊆ E × E . Such a finite state machine can be represented as a directed graph
where V ≡ E and E ≡ T . The discrete state transitions are affected by the
system input and by the continuous state. At time k ∈ Z+, if (i) xb(k) = εi and
(ii) Gij(xc, u) = 1, where the functions Gij : Xc(εi)×U→ {0, 1}, i, j = 1, . . . , nb,
are called transition guards, then xb(k + 1) = εj . In (5), the transition guards
are embedded in φb(·). The discrete state affects the continuous dynamics, since
xb modifies the vector field φc(·). We assume that (5) is well posed, i.e., for any
(x, u) ∈ X× U, φ(x, u) is uniquely defined.

An example of a fairly general class of hybrid systems that can be modeled
by (5) is the class of discrete hybrid automata [14]. Consider now an autonomous
version of system (5), i.e.

x(k + 1) =
[
xc(k + 1)
xb(k + 1)

]

=
[
Φc(x(k))
Φb(x(k))

]

= Φ(x(k)). (6)

Let xe = [xe
c
T xe

b
T]T be an equilibrium for (6) (i.e. Φ(xe) = xe) and for any

X ⊆ Xh(xe
b) define X̄c � {xc ∈ R

n :
[xc

xe
b

]
∈ X}, X̄c ⊆ Xc(xe

b).

Definition 8. The hybrid system (6) is called globally asymptotically stable if
there exists a positively invariant set X ⊆ Xh(xe

b) for (6) with xe ∈ X such
that for any initial state, the system state converges to X in finite time, and the
continuous state dynamics xc(k + 1) = Φc(xc(k), xe

b) is asymptotically stable in
X̄c (with respect to xe

c ∈ int(X̄c)).

Definition 8 combines global convergence of the discrete dynamics with local AS
in X̄c of the continuous dynamics, to obtain a stability-like property for HSDD.
This property includes global convergence to xe

c. The problem considered in this
paper can be formulated as follows.

Problem 1. Feedback Control Design Problem: Given a desired equilibrium xe ∈
X for system (5) with steady-state input ue ∈ U (i.e, φ(xe, ue) = xe), synthesize
a control law u(k) = π(x(k)) such that u(k) ∈ U, x(k) ∈ X, ∀k ∈ Z+ and HSDD
in closed-loop with u(k) = π(x(k)) is globally asymptotically stable in the sense
of Definition 8.

In this paper we employ the CLF framework in combination with predictive con-
trol to obtain a solution to Problem 1. Let V (·) be a CLF for the continuous dy-
namics xc(k+ 1) = φc(xc(k), xb, uc(k), ub(k)), for all xb ∈ E . Then, according to
Theorem 1 and Definition 8, it is sufficient to have a feasible control input u(k) at
each time k ∈ Z+ such that the discrete dynamics φb(xc(k), xb(k), uc(k), ub(k))
converge in finite time to xe

b and remains there. However, asking the CLF for
the continuous dynamics to decrease at each time step k ∈ Z+ for all the values
of xb can be overconservative in the hybrid system setting, and it may collide
with the objective of steering the discrete state to the target value. This is what
may happen for instance in a system with hysteresis such as the one in [5, Ex-
ample 3.1].

136 S. Di Cairano et al.

Even for simple hybrid systems it may be impossible to obtain a continuous
state CLF on the whole hybrid state space. Rather, to achieve stability, it would
be sufficient to keep the continuous state trajectory bounded while the discrete
state converges, and have a local continuous state CLF only for the dynamics
associated to the target discrete state. To design a control law that yields such
a closed-loop behavior, we propose a “hybrid” CLF consisting of two CLF-like
functions that depend on each other. More precisely, instead of using a single
standard CLF, we exploit the hybrid structure of the problem which consists
of two objectives: (i) the convergence to the target discrete state; (ii) the sta-
bilization of the continuous state while keeping the discrete state at its target
value. These objectives are consistent with the existence of two functions, namely
ψ : X× U

N → Z+ and V : R
n → R+, that satisfy

{
ψ(x(k),uN (k)) < ψ(x(k − 1),uN(k − 1)),
V (φc(x(k), u(k))) ≤ ρV (xc(k)) +Mc

if xb(k)
= xe
b (7a)

{
ψ(x(k),uN (k)) ≤ ψ(x(k − 1),uN(k − 1)),
V (φc(x(k), u(k))) ≤ ρV (xc(k)),

if xb(k) = xe
b (7b)

where ρ ∈ R[0,1), Mc ∈ R+, V (·) is a control Lyapunov function only on the set
P(xe

b) = {xc ∈ R
n :

[xc

xe
b

]
∈ X, ∃u ∈ U, φb(x, u) = xb}, and ψ(·) is a CLF-like

function that enforces convergence of the discrete state.

4 Synthesis and Properties of the Hybrid CLF

In what follows we show how to synthesize the functions in (7).

4.1 Control Lyapunov Function on the Continuous State

We first design the local CLF on the continuous state according to (7). Let
V : R

n → R+ be a CLF for dynamics x(k + 1) = φc(xc(k), uc(k), xe
b , u

e
b) in

the set Xc(xe
b) accordingly to Definition 4. Such a CLF is a relaxed version of a

global CLF, since (2b) must hold only in Xc(xe
b).

Assumption 1. For all x ∈ Xh(xe) there exists an input u ∈ U such that
V (φc(x, u)) ≤ ρV (xc), and φ(x, u) ∈ Xh(xe).

Assumption 1 states that there exists a feasible control law according to the CLF
which makes the set Xh(xe) positively invariant for the closed-loop dynamics.
This only requires that when the discrete state reaches the target, it remains
there, which is in general less conservative than requiring the invariance of a
generic set X ⊆ X =

⋃
εi∈E Xh(εi) containing different dynamics and different

discrete states. Assumption 1 can be guaranteed a priori by constraining the
continuous state to lie in a pre-defined set of the state space. The tools developed
in [11] can be used for this purpose.

A Control Lyapunov Approach to Predictive Control of Hybrid Systems 137

4.2 Control Lyapunov-Like Function on the Discrete State

Given the finite state machine representation of function φb(·), we can associate
to it a directed graph, where the node vj is associated to the state εj . Hence,
the distance from εj to xe

b can be computed as the distance from vj to the node
corresponding to xe

b, as defined in Section 2.2. Given a state x, an input sequence
uN , and a target discrete state xe

b define

ψ(x,uN) �
N∑

j=1

d(φj
b(x,uj), xe

b). (8)

Let hxe
b
(·) be the indicator function of the target discrete state, i.e., hxe

b
(xe

b) = 1,
and hxe

b
(xb) = 0, for xb
= xe

b. For any k ∈ Z+ define the cumulative discrete
distance contraction (CDDC)

ψ(x(k),uN (k))− ψ(x(k − 1),uN (k − 1)) ≤ −1 + hxe
b
(xb(k)). (9)

Constraint (9) is obtained as a relaxation of the discrete distance contraction
constraint d(φb(x(k), u), xe

b) < d(xb(k), xe
b), that requires that at each step the

distance to the target discrete state decreases. In general, this constraint will gen-
erate infeasibility, because it is not possible that the discrete distance decreases
at every step. CDDC (9) relaxes the discrete distance contraction constraint
requiring that the sum of the discrete distances along the predicted trajectory
at time k is smaller than the one along the predicted trajectory at time k − 1.
The effect of the indicator function hxe

b
(·) is to further relax the constraint

when xb(k) = xe
b . Constraint (9) forces the cumulative discrete distance to de-

crease until xb(k) = xe
b implementing the first inequality of (7a), after which

ψ(x(k),uN (k)) is kept constant. The value ψ(x(−1),uN (−1)) initializes (9). To
achieve feasibility it can be set to a large number, while a more efficient ini-
tialization value is proposed later in this section. In what follows we use the
shorthand notation ψ(i) � ψ(x(i),uN (i)), for i ∈ Z+. We show that under suit-
able assumptions this constraint is feasible and steers the discrete state to the
target value in finite time.

Assumption 2. Given a target state xe ∈ X and given any discrete initial state
xb = εi
= xe

b, there exists a finite value ni ∈ Z+ such that for any initial state
x ∈ Xh(εi), there exists εj ∈ E and an input sequence u�i ∈ U

�i , such that
i ≤ ni, φh(x,uh) ∈ X, φh

b (x,uh) = εi, h ∈ Z[1,�i−1], and φ�i

b (x,u�i) = εj, where
d(εj , xe

b) < d(εi, xe
b).

Definition 9. Given xb = εi
= xe
b, the minimum discrete distance progress hori-

zon n̄i ∈ Z+ for discrete state εi is the minimum value for which Assumption 2
holds for discrete state εi. For xe

b = εı̄, define n̄ı̄ � 1.

Assumption 2 requires that given any valid discrete state different from the tar-
get, for any continuous state in its domain, there exists a feasible trajectory that
brings the discrete state closer to the target discrete state in ni time steps, which

138 S. Di Cairano et al.

is a sort of finite-time discrete reachability property. The minimum length of in-
put sequences that guarantees such a property is the minimum discrete progress
horizon, the minimum horizon needed to see the discrete state approaching the
target. A (possibly over-approximated) value of n̄i can be computed by offline
reachability analysis.

Note that Assumption 2 requires the existence of a horizon such that the
discrete state gets closer to the target discrete state. This is in general less
conservative (and requires a shorter horizon) than the condition in [1], which
requires the existence of a (finite) horizon such that the target state is reached.

Assumption 3. For any x ∈ Xh(xe
b), the set {u ∈ Uf (x) : φb(x, u) = xe

b} is
non-empty, where Uf (x) = {u ∈ U : φ(x, u) ∈ X}.

Assumption 2 and 3 are reachability assumptions. Assumption 2 is a finite-time
discrete reachability. Assumption 3 requires that for any state value in which
the discrete state is at the target, there exists a feasible input that keeps the
discrete state constant.

Lemma 1. Under Assumptions 2 and 3, given x(k) ∈ X and a target discrete
state xe

b, for any M ∈ Z+, there exists uM ∈ U
M , such that φi(x(k),ui) ∈ X, for

i ∈ Z[1,M], and d(φi+1
b (x(k),ui+1), xe

b) ≤ d(φi
b(x(k),ui), xe

b), for i ∈ Z[0,M−1].

Proof. Consider the case x(k) ∈ Xh(xe
b). By Assumption 3 there exists u ∈ Uf (x)

such that xb(k+ 1) = φb(x(k), u(k)) = xe
b, hence d(xb(k+ 1), xe

b) = d(xb(k), xe
b).

Consider the case x(k) /∈ Xh(xe
b). By Definition 7 and Assumption 2 there exists

an input sequence u� ∈ U
� such that φi

b(x(k),ui) = xb(k), for i ∈ Z[0,�−1], and
d(φ�

b(x(k),u�), xe
b) < d(xb(k), xe

b). In the case φ�
b(x(k),u�)
= xe

b the procedure
can be repeated. In the case φ�

b(x(k),u�) = xe
b, we have already proven that

there exists u ∈ Uf (x) that keeps the discrete state at the target. �

Consider now the system formed by (5) in closed loop with a control law obtained
by solving a finite horizon (N) optimization problem (e.g., as done in predictive
control) with the constraint (9) added. Suppose that at each time step a sequence
of N inputs is computed and only the first element of the sequence is applied
to system (5). We show next that constraint (9) is initially feasible and remains
feasible at all future time instants under suitable assumptions. The complete
control algorithm will be defined later in Section 5, as the following result does
not depend on it.

Theorem 2. Suppose Assumptions 2 and 3 hold. Given a target discrete state xe
b

and any initial state x(0) ∈ X, let the prediction horizon be N ≥ max{i:εi∈E} n̄i,
and ψ(−1) � Nd(xb(0), xe

b). Then, (i) constraint (9) is feasible for all k ∈ Z+,
and (ii) there exists a finite k̄ ∈ Z+ such that xb(k) = xe

b, ∀k ∈ Z≥k̄.

Proof. (i). Assumption 3 guarantees the constraint feasibility for xb(k) = xe
b.

Due to N ≥ maxi:εi∈E n̄i and by Assumption 2, we have that at k = 0 there
exists a feasible input sequence uN (0) and an index j̄ ∈ Z[1,N] such that for
j ∈ Z[0,j̄−1], φ

j
b(x(0),uj(0)) = xb(0), d(φj̄

b(x(0),uj(0)), xe
b) < d(xb(0), xe

b) and

A Control Lyapunov Approach to Predictive Control of Hybrid Systems 139

for j ∈ Z[j̄+1,N], d(φ
j
b(x(0),uj(0)), xe

b) ≤ d(φj̄
b(x(0),uj(0)), xe

b), by Lemma 1.
Hence, constraint (9) is feasible at k = 0.

For k ≥ 1, we have ψ(k − 1) =
∑N

j=1 d(φ
j
b(x(k − 1),uj(k − 1)), xe

b) and
xb(k) = φ1

b(x(k − 1),u1(k − 1)). By Lemma 1, there exists uN (k) such that

ψ(k) ≤ ψ(k − 1)− d(xb(k), xe
b) + d(φN

b (x(k − 1),uN (k − 1)), xe
b).

If d(φb(x(k − 1),uN(k − 1)), xe
b) < d(φ1

b(x(k − 1),u1(k − 1)), xe
b), (9) is feasible.

If for all j ∈ Z[1,N], φ
j
b(x(k− 1),uj(k− 1)) = xb(k− 1), then by the choice of N ,

there exists uj̄(k) ∈ U
j̄, j̄ ≤ N , such that, d(φj̄

b(x(k),uj̄(k)), xe
b) < d(φ1

b(x(k −
1),u1(k − 1)), xe

b). If needed, the input sequence can be extended to length
N enforcing d(φj

b(x(k),uj(k)), xe
b) ≤ d(φj̄

b(x(k),uj̄(k)), xe
b), for j ∈ Z[j̄+1,N], as

guaranteed by Lemma 1. Such an input sequence is feasible with respect to (9).
(ii). We prove that there exists k̄ such that xb(k̄) = xe

b by contradiction.
Suppose xb(k)
= xe

b, for k ∈ Z+ and note that by definition ψ(·) ≥ 0. From (i),
for all k such that xb(k)
= xe

b, Δψ(k) � ψ(k)− ψ(k − 1) ≤ −1. Hence,

ψ(k) = ψ(0) +
k∑

j=1

Δψ(j) ≤ ψ(0)− k.

Thus, 0 ≤ limk→∞ ψ(k) ≤ limk→∞ ψ(0) − k. Since ψ(0) is finite, we reached a
contradiction. For k ≥ k̄, (9) guarantees that xb(k) = xb(k̄). �

5 Stabilizing Predictive Control of HSDD

We propose now a mixed integer linear formulation of the hybrid CLF con-
straints (7) which can be included in an optimization problem. For computa-
tional purposes, we model the discrete state and input of the hybrid system by
Boolean vectors. In detail, ub ∈ {0, 1}mb , and we model the discrete state by
one-hot encoding, i.e., [xb]i ∈ {0, 1} and

∑
i[xb]i = 1. In this way, the symbolic

variable εj is represented by the jth unitary vector of R
nb , the vector entirely

composed of 0, except for the jth coordinate, which is 1. As a consequence E is
the set of the unitary vectors on R

nb , where nb is the cardinality of E .
Consider first the function ψ(·). For a given xe

b, for all xb ∈ E , we have

d(xb, x
e
b) = DT

xe
b
xb, (10)

where Dxe
b
∈ Z

nb
+ is a vector whose ith component is equal to the graph distance

from xb = εi to xe
b. The indicator function hxe

b
(·) can be expressed by

hxe
b
(xb) =

(

1− 1
2
HT · (xb − xe

b)
)

, (11)

where2 H =
(∑nb

j=1,j �=i εj

)
− εi. Since HT · (xb − xe

b) = 0, if xb = xe
b, and

HT · (xb − xe
b) = 2, otherwise, (11) implements the desired indicator function.

2 There are several other definitions of H that obtain the desired behavior. However,
we find (11) the most intuitive one.

140 S. Di Cairano et al.

As a result, via (10) and (11) constraint (9) can be formulated as a set of mixed-
integer linear inequalities.

In order to also implement the constraints involving the local CLF on the
continuous state via mixed-integer linear inequalities we consider a Lyapunov
function defined using the infinity norm, i.e. V (xc) = ‖Pxc‖∞ for some P ∈
R

p×n with full column rank. The constraint on the CLF can be expressed as

V (φ1
c(x(k)),u1) ≤ ρV (xc(k)) +

Mc

2
HT (xb(k)− xe

b) (12)

where ρ ∈ R[0,1), Mc ∈ R>0 and the rightmost term is responsible for relaxing
the constraint when xb
= xe

b. Note that, since X is bounded, we can set Mc =
maxx∈X V (xc). In this way, constraint (12) can be formulated as a set of mixed-
integer linear constraints that ensure that xc remains bounded when xb
= xe

b,
while, when xb = xe

b, ensure that V (·) is a CLF restricted to Xc(xe
b).

Given x(k), let Γ (x(k)) = {uN ∈ U
N : φi(x(k),ui) ∈ X, i ∈ Z[1,N], (9), (12)}

be the set of feasible input sequences, and γ(x(k)) = {u(0) ∈ U : uN ∈ Γ (x(k))}.
The system obtained by (5) in closed-loop with γ(x(k)) is described, with some
abuse of notation, by the difference inclusion

x(k + 1) ∈ φ(x(k), γ(x(k))) � {φ(x(k), u) : u ∈ γ(x(k))}. (13)

Theorem 3. Suppose Assumption 1 and the assumptions of Theorem 2 hold,
and set Mc = maxx∈X V (xc). Then, the closed-loop system described by (13) is
asymptotically stable in the sense of Definition 8.

Proof. By Theorem 2 for any sequence {u(k)}∞k=0, where u(k) ∈ γ(x(k)) for all
k ∈ Z+, there exists k̄ ∈ Z+ such that for all k ≥ k̄, xb(k) = xe

b. By assumption
X is bounded, hence Mc = maxx∈X V (x) is finite. Thus, during the time interval
k ∈ Z[0,k̄−1], since xc(k) ∈ X, constraint (12) is satisfied. For k ≥ k̄ constraint (9)
is still feasible by Theorem 2 and it ensures that the discrete state remains at the
target. In this case, recursive feasibility of (12) is guaranteed by Assumption 1
and thus, V (·) satisfies inequality (2b) for all k ≥ k̄. Hence, from Theorem 1 we
obtain asymptotic stability of the continuous dynamics in the set Xc(xe

b), and
the result follows from Definition 8, with X = Xh(xe

b). �

As a consequence of Definition 8, Theorem 3 guarantees convergence to the
desired equilibrium for any initial state. Even though the stabilizing properties
established in Theorem 3 are guaranteed for any feasible control input, not just
for the optimal one, a cost function can be considered to select a u(k) ∈ γ(x(k))
that optimizes performance. We introduce now an optimization-based receding
horizon control strategy for system (5). Notice that there is no need to keep ρ
and Mc fixed in (12). Instead, we will optimize over these two variables which
results in improved convergence of the continuous state, when allowed by the
condition on the discrete state. Let ρ be the constant that satisfies (12), choose
ρ̄ ∈ R[ρ,1) and let η ∈ R[0,ρ̄] and M ∈ R+ be two additional variables that play
the role of ρ and Mc, respectively. Consider the cost function

J(x,uN ,M, η) � wηη + wMM + F (φN (x,uN)) +
N−1∑

i=0

L(φi(x,ui), u(i)), (14)

A Control Lyapunov Approach to Predictive Control of Hybrid Systems 141

where F (·) and L(·) denote suitable terminal and stage costs, respectively, as
in standard MPC [7]. The term wηη, where wη ∈ R+, optimizes the reduction
of the CLF, while wMM , where wM ∈ R>0 penalizes the relaxation of (12) for
xb(k)
= xe

b. Whenever M = 0 the continuous state evolves satisfying (2b).

Algorithm 1. (Receding Horizon Control of HSDD)
Initialization. Set k = 0, measure x(0) ∈ X and set ψ(k − 1) = N DT

xe
b
xb(0).

Step 1. Solve the optimization problem

min
uN ,M,η

J(x(k),uN ,M, η) (15a)

s.t. : uN ∈ U
N , φi(x,ui) ∈ X, i ∈ Z[1,N] (15b)

M ≥ 0, η ∈ R[0,ρ̄] (15c)

V (φ1
c(x(k)),u1) ≤ ηV (xc(k)) +

M

2
HT (xb(k)− xe

b) (15d)

N∑

i=1

DT
xe

b
φi(x,ui) ≤ ψ(k − 1)− 1 +

(

1− 1
2
HT (xb − xe

b)
)

. (15e)

Step 2. Let ūN = {ū(0), . . . , ū(N)} be a feasible solution of problem (15) ob-
tained by minimizing with respect to (15a) (possibly, but not necessarily, the
optimal one). Set u(k) = ū(0), and ψ(k) =

∑N
i=1D

T
xe

b
φi(x, ūi).

Step 3. Set k ← k + 1, measure x(k) and go to Step 1.

Algorithm 1 implements the constraints on the hybrid CLF and minimizes the
performance criterion (14). Minimization of the cost (14) ensures finite values of
M , and η ≤ ρ̄ < 1. Thus, the result of Theorem 3 still applies.

From a computational point of view, constraint (15d) can be formulated as a
set of mixed integer linear inequalities as shown in [11]. Furthermore, as (14) is
linear in M and η, since x(k) is known (measured) at each step k ∈ Z+, if the
system dynamics (5) can be described by mixed-integer linear inequalities (e.g.,
DHA [14]) and L(·), F (·) are linear (quadratic) functions of their arguments,
then (15) can be formulated as a mixed integer linear (quadratic) program.

It is worth to point out that, according to Theorem 3, it is not necessary
to attain the globally optimal solution in the optimization problem defined in
Step 1 of Algorithm 1 to guarantee stability of the resulting closed-loop system.
Rather, stability is ensured for any feasible solution.

5.1 Simulation Example

We present a simple example that illustrates the proposed control strategy.
Consider a system with: one continuous state, xc ∈ [−5, 35], four discrete states
xb ∈ {ε1, ε2, ε3, ε4}, one continuous input uc ∈ [−2.2, 2.2] and one discrete input
ub ∈ {0, 1}. As a consequence, U = [−2.2, 2.2], and X ⊆ [−5, 35]×{ε1, ε2, ε3, ε4},
where in particular Xc(ε4) = [−5, 6]. The automaton describing the discrete
dynamics of the example system is reported in Figure 1. The continuous dy-
namics are x(k + 1) = Aix(k) + Biu(k), if xb = εi, where (A1, B1) = (1.09, 1),
(A2, B2) = (0.75, 0.8), (A3, B3) = (0.92, 0.75), and (A4, B4) = (1.1, 0.7).

142 S. Di Cairano et al.

1

2

3

420 < xc < 30

xc ≥ 30

xc ≤ 20

xc > 5, ub = 0

xc > 5

xc > 5, ub = 1

xc ≤ 5

xc ≤ 5

xc ≥ 6 or ub = 0 xc < 6, ub = 1

Fig. 1. Automaton describing the discrete dynamics of the example system

The desired equilibrium is xe
c = 0, xe

b = ε4 for a steady state input ue
c = 0, ue

b =
1. We implemented problem (15) where L(x, u) = ‖Q(x−xe)‖∞+‖R(u−ue)‖∞,
Q = [1 0

0 1], R = [0.1 0
0 0.1], ρ̄ = 0.85, N = 7 accordingly to Assumption 2, and

V (xc) = ‖xc‖∞ as the CLF for the continuous state. The HSDD was imple-
mented as a discrete hybrid automaton using the tools in [14], and problem (15)
was formulated as a mixed-integer linear program.

Figure 2 reports the simulation results. The dashed line reports the simulation
for the case x(0) = [22 ε1]T . Note that in this simulation the CLF inequality (2b)
holds at every step. The case for x(0) = [23 ε1]T is reported as solid lines. Note
that there is a discontinuity with respect to the initial conditions, and that in
this case the CLF is not monotonically decreasing along the whole trajectory.
This is accordingly to (12), since we require the continuous state CLF to decrease
only on the set Xc(ε1). Moreover, for the same setup the optimization problem
formulated as in [1] is infeasible (i.e., it requires a longer horizon).

0 2 4 6 8 10 12 14 16
−5

0
5

10
15
20
25
30
35

0 2 4 6 8 10 12 14 16
1

2

3

4

k

k

x
c

x
b

(a) State Evolution

0 2 4 6 8 10 12 14 16
−2.5

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

0 2 4 6 8 10 12 14 16

0

1

k

k

u
c

u
b

(b) Input Evolution

Fig. 2. Simulation results for xc(0) = 23 (solid lines) and xc(0) = 22 (dashed lines)

A Control Lyapunov Approach to Predictive Control of Hybrid Systems 143

6 Conclusions

We have studied the stabilization of hybrid systems with both discrete and con-
tinuous dynamics using predictive control based on control Lyapunov functions.
We have introduced a hybrid control Lyapunov function constituted of a control
Lyapunov-like function that guarantees convergence of the discrete dynamics and
of a local control Lyapunov function on the continuous dynamics. The proposed
controller is less conservative and less computationally demanding compared to
standard predictive control, and it guarantees stability for all the feasible solu-
tions of the optimization problem, not just for the optimal one.

References

1. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and
constraints. Automatica 35(3), 407–427 (1999)

2. Kerrigan, E.C., Mayne, D.Q.: Optimal control of constrained, piecewise affine sys-
tems with bounded disturbances. In: Proc. 41th IEEE Conf. on Decision and Con-
trol, Las Vegas, Nevada, pp. 1552–1557 (2002)

3. Lazar, M., Heemels, W.P.M.H., Weiland, S., Bemporad, A.: Stabilizing model pre-
dictive control of hybrid systems. IEEE Trans. Aut. Control 51(11), 1813–1818
(2006)

4. Ferrari-Trecate, G., Cuzzola, F.A., Morari, M.: Lagrange stability and performance
analysis of discrete-time piecewise affine systems with logic states. Int. J. Con-
trol 76(16), 1585–1598 (2003)

5. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control:
model and optimal control theory. IEEE Trans. Aut. Control 43(1), 31–45 (1998)

6. Lygeros, J., Johansson, K.H., Simic, S.N., Zhang, J., Sastry, S.S.: Dynamical prop-
erties of hybrid automata. IEEE Trans. Aut. Control 48, 2–17 (2003)

7. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model
predictive control: Stability and optimality. Automatica 36(6), 789–814 (2000)

8. Sontag, E.D.: A “universal” construction of Artstein’s theorem on nonlinear sta-
bilization. Systems & Control Letters 13, 117–123 (1989)

9. Primbs, J.A., Nevistić, V., Doyle, J.C.: A receding horizon generalization of point-
wise min-norm controllers. IEEE Trans. Aut. Control 45(5), 898–909 (2000)

10. Scokaert, P.O.M., Mayne, D.Q., Rawlings, J.B.: Suboptimal model predictive con-
trol (feasibility implies stability). IEEE Trans. Aut. Control 44(3), 648–654 (1999)

11. Lazar, M.: Model predictive control of hybrid systems: Stability and robustness.
PhD thesis, Eindhoven University of Technology, The Netherlands (2006)

12. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)
13. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische

Mathematik 1(1), 269–271 (1959)
14. Torrisi, F.D., Bemporad, A.: HYSDEL — A tool for generating computational

hybrid models. IEEE Trans. Contr. Systems Technology 12(2), 235–249 (2004)

Discrete and Hybrid

Stochastic State Estimation Algorithms
for Networked Control Systems

S. Di Cairano1, K.H. Johansson2,
A. Bemporad1, and R.M. Murray3,�

1 Dip. Ingegneria dell’Informazione, Università di Siena, Italy
{dicairano,bemporad}@dii.unisi.it

2 School of Electrical Engineering, Royal Institute of Technology, Sweden
kallej@ee.kth.se

3 Division of Engineering and Applied Science, California Institute of Technology
murray@caltech.edu

Abstract. Networked control systems enable for flexible systems oper-
ation and reduce cost of installation and maintenance, potentially at the
price of increasing the uncertainty due to information exchange over the
network. We focus on the problem of information loss in terms of packet
drops, which are modelled as stochastic events that depend on the cur-
rent state of the network. To design reliable control systems the state
of the network must be estimated online, together with the state of the
controlled process. This paper proposes various approaches to discrete
and hybrid stochastic estimation of network and process states, where
the network is modelled as a Markov chain and the packet drop probabil-
ity depends on the states of the Markov chain. The proposed techniques
are evaluated on simulations and experimental data.

1 Introduction

Advances in network technology increase the flexibility of modern control sys-
tems. Networked control systems[1], in which the controller is remotely located
with respect to the plant, are becoming more and more tested and used in
industrial applications [2,3]. The advantages of such architectures are in the

� The work by S. Di Cairano and A. Bemporad was supported by the European Com-
mission through the HYCON Network of Excellence (contract FP6-IST-511368),
and by the Italian Ministry for University and Research (MIUR) under project “Ad-
vanced control methodologies for hybrid dynamical systems” (PRIN’2005). The work
by K. H. Johansson was supported by the European Commission through the Net-
work of Excellence HYCON and the Integrated Project SOCRADES, the KTH AC-
CESS Linnaeus Center, the Swedish Research Council and the Swedish Foundation
for Strategic Research. The work by S. Di Cairano and R.M. Murray was partially
supported by Boeing through the project Model-Based Design and Qualification of
Complex Systems.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 144–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Estimation Algorithms for Networked Control Systems 145

costs, since a single shared network is less expensive than many point-to-point
connections, in the flexibility, since networks are usually capable of automatic
reconfiguration, and in the control system maintenance, since the control unit
can be deployed far from the plant, that often operates in extreme environmental
conditions. Such advantages are further increased when one considers wireless
networked control systems, since the absence of wiring further reduces mainte-
nance and deployment costs and increases flexibility. However, when designing
a networked control system new issues must be taken into account. The com-
munication network introduces information losses, bandwidth limitations and
time-varying delays [4]. These problems are more important in wireless net-
works [5,6] than in wired networks, as the radio channel performance is affected
by many environmental factors and changes rapidly.

When controlling a system over a network, the performance of the network
may drastically affect the performance of the system. Several studies have been
developed for the particular case in which the network behavior is time invari-
ant, for both, controller and estimator design (see [1,4] for extensive surveys).
However, the network characteristics often changes dynamically depending on
several factors including network load, number of active users, and environmen-
tal conditions [7]. An estimator for a network with piecewise constant statistical
properties has been proposed in [8], while a Markov chain model of the network
channel has been used for instance in [9,10,11].

When the network is time varying, the overall system state is constituted by
the states of the process, of the controller, and of the network. Henceforth, when
performing the estimation, it is important to estimate also the current network
state. As an example, consider a control system that is composed of a local con-
troller, enforcing stability, and of a remote optimal planner, that communicates
via a wireless network, see [12] for a particular example. When the network is
reliable, aggressive plans leading to high tracking performances can be safely ex-
ecuted. On the other hand, when the network is unreliable, more cautious plans
should be chosen. As another example, consider Alice, the autonomous vehicle
of Team Caltech in the 2007 Urban Challenge. Alice’s architecture is based on a
complex network of sensors, actuators, and computational units. The estimation
of the network characteristics can help in revealing whether missing sensor data,
such as the localization system data, are not received due to network overload
or because the hardware failed, so that the appropriate fault-handling actions
can be taken.

This paper analyzes the problem of jointly estimating the network state and
the process state under various conditions. Since the physical network models are
in general too complicated for control design purposes, we use an abstract model
which is simple enough to be analyzable, and still capture the main character-
istics of the network phenomena [6]. We focus on networks affected by packet
drops, where some of the packets never reach the receiver. The packet drop is
an abstract phenomenon representing the loss of information, either physical or
logical, in the transmission of a data packet from a sender to a receiver. Many
network protocols already provide reliable message delivery through services such

146 S. Di Cairano et al.

as ARQ (automatic repeat request), but these operations introduce delays, and
when used in real-time control systems delayed packets can have major influence
on closed-loop performance.

We model a discrete-valued network state. Hence, the joint estimation of the
continuous-valued process state and of the network state reduces to the estima-
tion of a particular type of hybrid system. We also aim at understanding when
the performance of the process state estimation does not affect the network
state estimation. In Section 2 we propose the system model and we formulate
the estimation problems. In Section 3 we consider the cases in which the network
state estimate can be separated from the process estimate. In Section 4 we con-
sider the joint network state and process state estimation. These problems are
first analyzed for a networked control system where the network is connecting
the controller to the process, and in Section 5 we extend to the different cases
involving an additional network between the sensor and the estimator. Simula-
tions of the estimation algorithms are presented in Section 6 together with some
experimental results, and the conclusions are summarized in Section 7.

2 Modelling and Problem Formulation

Consider the networked system shown in Figure 1. A discrete-time signal u(·)
is transmitted through network N1 and the received signal ũ(·) is the input to
a dynamical process Σ(x, ũ, y), where x is the process state. The output (or
measurement) y(·) is transmitted through network N2, and the received signal
ỹ(·) reaches an estimator Θ(u, ỹ) that knows the signal u(·). The estimator solves
a hybrid estimation problem: it provides an estimate x̂ of the continuous process
state x, and, at the same time, it estimates the discrete states of the networks
N1 and N2, N1 and N2, respectively. Note that the signals u, ỹ available to the
estimator may be different from the actual system input ũ and output y. We
call N1 the actuation network and N2 the sensing network, ũ(·) and ỹ(·) the
network filtered input and measurement, and the packets containing u and y are
the command packet and the measurement packet, respectively.

Let Σ(x, ũ, y) be a linear discrete-time process subject to disturbances

x(k + 1) = Ax(k) + Bũ(k) + w(k), (1a)
y(k) = Cx(k) + Dũ(k) + v(k), k ∈ Z0+ (1b)

where Z0+ is the set of nonnegative integers, x(k) ∈ R
n is the process state,

y(k) ∈ R
p is the process output, ũ(k) ∈ R

m is the commanded input, and
w(k) and v(k) are the process noise and the measurement noise, respectively.
We assume w(·) and v(·) to be white Gaussian random processes with zero
mean and covariance matrices Q and R, respectively: for all k ≥ 0, w(k) ∼
N(0, Q), v(k) ∼ N(0, R). Hence, the state and output dynamics of Σ(x, u, y)
are Gaussian distributed stochastic processes.

We model the dropping of the packets by a stochastic discrete signal (event)
e(k) ∈ {0, 1}, where 0 means that the packet at time k has been dropped, while

Estimation Algorithms for Networked Control Systems 147

N1

N2

Σ(x, ũ, y)

Θ(u, ỹ)

u

k ũ

sensing network

actuation network

yx̂ ỹ

process

output feedback
controller

Fig. 1. Process and networked control architecture

1 means that the packet has been received. Consider a discrete-time signal a(·)
with domain Da. In our context a(·) can be either u(·) or y(·). The relation
between a(·) and the corresponding network filtered signal ã(·) is given by

ã(k) =
{

a(k) if e(k) = 1
ε if e(k) = 0,

(2)

where ε is a special symbol indicating the lack of information, and the domain
of ã(·) is Dã = Da∪ε. When the loss occurs in N1 at time step k, we assume the
process applies a backup input ũ(k) = ubu(k). Common choices for the backup
input are ubu(k) = 0, ubu(k) = ũ(k−1), and ubu(k) = ũ(k−1)+(ũ(k−1)−ũ(k−
2)). The backup input choice depends on the control strategy. In this paper, we
consider the strategy as given, and known by the estimator.

We propose a stochastic network model with discrete state N(k)∈{0, 1, . . . , s}.
The network dynamics are modelled as a Markov chain,

π(k + 1) = MT π(k), (3)

where π ∈ R
s is the vector of state probabilities at time k, i.e. πi(k) = P[N(k) =

i], i ∈ {0, 1, . . . , S}, the superscript T indicates transposition, and M ∈ R
s×s is

the transition matrix of the Markov chain. The packet drop probability is state
dependent, i.e. p(k) = p(N(k)), to represent different operating conditions of the
network corresponding to different packet reception rates (PRR).

The proposed network model incorporates common models in the literature.
The Poisson process model of packet drops with parameter p, P[e(k) = 0] = p,
P[e(k) = 1] = 1 − p, ∀k ∈ Z0+, that results in a constant drop probability,
is a particular case of model (3), where i ∈ {0}. Gilbert model [7] is another
particular case of model (3), obtained for i ∈ {0, 1}, p(0) = 0, and p(1) = 1.

Two network states can model appropriately behaviors such as network over-
load and quality of service degradation [7]. We will focus on a two states Markov
chain for notational simplicity; the presented approaches can be straightfor-
wardly extended to the case where the Markov chain has a larger number of

148 S. Di Cairano et al.

states. The dynamics of N(k) and the packet drop probability are described by

π(k + 1) = MT π(k), P[e(k) = 0|N(k) = R] = pr, P[e(k) = 0|N(k) = U] = pu,
(4)

where M =
[pR,R pR,U

pU,R pU,U

]
, and π(k) =

[
πR(k)
πU (k)

]
, πi(k) = P[N(k) = i], i ∈ {R, U}

is the vector containing the state probabilities, and we assume pu > pr. When
N(k) = R the network is operating in normal (Reliable) state, ensuring a certain
performance. In the case N(k) = U the network is in degraded (Unreliable) state,
and the performance decreases. We assume that the communications are instan-
taneous, meaning that u(k) sent through N1 is received at step k by Σ(x, ũ, y),
and that y(k) sent through N2 is received at step k by Θ(u, ỹ). This is reasonable
because in general communications are much faster than the process dynamics.

In general the state of the network is not directly observable since it depends
on the interferences among network users sharing the same channel. We can only
observe its effects, the packet drops, either by direct knowledge or by inference
based on the process measurements. We model this estimation problem as a
hidden Markov model (HMM) estimation problem [13]. Let Ni = I indicate the
situation in which the ith communication link is a perfect link, ã(k) = a(k) , ∀k ≥
0. Hence, there is no estimation of Ni. Moreover, let Ni = Nj , i �= j indicate
that two logical communication links correspond to the same physical network,
hence Ni = Nj. For the system described in Figure 1 we analyze the problems:

P1. Estimate N1 and x, when N2 = I .
P2. Estimate N2 and x, when N1 = I .
P3. Estimate N1, N2 and x when N1,N2 �= I, for (a), N1 �= N2, (b), N1 = N2.

The case where both links are perfect, N2 = I and N1 = I, reduces to the
well known problem of estimating the state of a stochastic linear process, easily
addressed by Kalman filtering. We first solve Problem P1, where we assume to
know e(k) (e.g., by an acknowledge signal). Then, we extend the approach to the
case where e(k) must be inferred from the process output, so that the estimation
of the process state and the estimation of the network sate are treated as a single
hybrid estimation problem. We show that Problem P2 can be solved by the
approach proposed for Problem P1, where the packet behavior for N2 is always
known. Finally we combine the approaches to solve Problem P3.

3 Estimation of Sensing Network State

First, we propose a solution to Problem P1, the state estimation of a single
network N , assuming to have direct knowledge about the drop events e(k).
In this case no process information is used for network state estimation hence
process and network state estimation are separated.

Let πs|t(k) = P[N(k) = s|e(k) = t], s ∈ {R, U}, t ∈ {0, 1}. By Bayes’ rule,

πs|t(k) =
P[e(k) = t|N(k) = s] πs(k)

P[e(k) = t]
,

Estimation Algorithms for Networked Control Systems 149

and then by the total probability theorem

πs|t(k) =
P[e(k) = t|N(k) = s] πs(k)∑

j∈{R,U} P[e(k) = t|N(k) = j]πj(k)
, (5)

where P[e(k) = t|N(k) = j], j ∈ {R, U} is defined by (4). If e(k) is measured,
the estimation of the network state is independent from the estimation of the
process state. Moreover, if pr = 1 − αε, pu = βε, where α, β > 0, if ε → 0, then
πR|1 = 1, πU|0 = 1. Hence, estimation (5) applied to the Gilbert model in [7]
results in a state with probability 1, and the other with probability 0, because
the packet behavior is a perfect indicator of the network state.

In (5) we need to compute π(k). We present two estimators that differ on the
way such a computation is performed: a static estimator that at each step uses
only the current measurement, and a dynamic estimator.

Assumption 1. Markov chain (4) has reached its steady state.

The stationary probability distribution of the Markov chain states
limk→∞ P[N(k) = U] = π∞

U , limk→∞ P[N(k) = R] = π∞
R can be computed

from the equilibrium [
π∞

R

π∞
U

]
= MT

[
π∞

R

π∞
U

]
, (6)

that has a unique solution for an irreducible Markov chain. The static estimator
is obtained by plugging the solution of (6) in (5):

πs|t =
P[e(k) = t|N(k) = s] π∞

s∑
j∈{R,U} P[e(k) = t|N(k) = j]π∞

j

, s ∈ {R, U}, t ∈ {0, 1}. (7)

The maximum likelihood estimate is

N̂(k) = argmaxj∈{R,U}πj|t if e(k) = t, t ∈ {0, 1}. (8)

The stationary estimator is simple, since the estimate can be statically com-
puted by evaluating (7) and (8) at every step. In particular, since all the terms
in (7) are constant, a lookup table mapping the packet event into the most likely
network state can be precomputed and no memory is required. However, such
an estimation scheme often leads to poor performance, because only the cur-
rent measurement is considered, and this information is not used to update the
probability of the network state.

We develop a dynamic estimator that uses memory to maintain an estimate
of the probability of each network state value and uses the measurements on the
packet drop to update such an estimate. We can perform estimation by using (3)
to compute the predicted state probability to be used in (5), then using the
result of (5) as the state probability estimate. This procedure is summarized in
Algorithm 3.1, where πs(k|k) = P[N(k) = s|e(k)], s ∈ {R, U}.

The main advantage of Algorithm 3.1 is that the measurements of e(k) are
used not only in the decision of the current state, but also to update the state

150 S. Di Cairano et al.

1. set k = 0 and let the initial probability vector be π(k|k − 1) =
[

πR(k)
πU (k)

]
;

2. while (true)

2.1. given e(k) ∈ {0, 1} perform measurement update π(k|k) =
[

πR(k|k)
πU (k|k)

]
;

2.2. if (πR(k|k) ≥ πU (k|k)) then N̂(k) = R else N̂(k) = U ;

2.3. perform prediction by flowing the Markov chain π(k + 1|k) = MT π(k|k);

2.4. set k← k + 1 and π(k|k − 1)← π(k + 1|k);

end

Algorithm 3.1. Dynamic network estimation algorithm

probability, which will affect the future estimation steps. From another point of
view, the estimate at time k is directly affected by e(k) and indirectly by e(j),
j = 0, . . . , k − 1, whose effects are stored in the current state probability. Algo-
rithm 3.1 is the discrete-state version of the Kalman estimator. The algorithm
can be initialized by setting π(0| − 1) to the solution of (6).

Proposition 1. The network state estimate N̂ obtained by Algorithm 3.1 is
asymptotically independent of the algorithm initialization value.

Proposition 1 states that when k → ∞ the value N̂ does not depend on the
value of π(0| − 1). This property follows straightforwardly from the exponential
forgetting property of the HMM filter, that states that for k → ∞, π(k|k) is
independent of π(0| − 1). The exponential forgetting property of HMM filters,
which include Algorithm 3.1 was proven in [14], where upper bounds on the
exponential forgetting rate are also given.

4 Estimation of Sensing Network and Process States

We give now a solution to Problem P1, relaxing the hypothesis that e(k) is
measured. We modify the estimation algorithm to infer the value of e(k) from
the measurement ỹ(k), where ỹ(k) = y(k), since N2 = I. A simple way to obtain
information about e(k) is to add one bit in the measurement packet. The same
logic that activates the backup input will also set such a bit to 1 if the command
packet has been received, to 0 otherwise. When this strategy is applied, the
results of Section 3 hold, and the network state estimation is separated from the
process estimation. However, we develop here an estimation approach that is not
based on such an additional information, which is useful when the measurement
packet cannot be modified, and when N2 �= I.

Let ρt|y(k) = P[e(k) = t|y(k)], t ∈ {0, 1}. Then P[N(k) = s|y(k)] =
∑

t∈{0,1}
P[N(k) = s|y(k), e(k) = t]ρt|y(k), s ∈ {R, U}, t ∈ {0, 1}. The information
given by y(k) about N(k) is entirely contained in the packet event, hence

Estimation Algorithms for Networked Control Systems 151

P[N(k) = s|y(k), e(k) = t] = πs|t(k), and

P[N(k) = s|y(k)] =
∑

t∈{0,1}
πs|t(k)ρt|y(k). (9)

In this case the disturbances acting on the process affect also the estimation
of the network state. We introduce the joint hybrid-space probability density
function f (k)(e, y)1, where e ∈ {0, 1}, and y is the process measurement. At a
given time k ∈ Z0+, f

(k)
y|t is the probability density function of y(k) assuming the

event e(k) = t. The function f
(k)
e|y is

f
(k)
e|y =

∑
t∈{0,1}

fy|t(y(k))∑
j∈{0,1} fy|j(y(k))

δ(e(k) − t), (10)

where δ(·) is Dirac’s distribution. As a consequence

ρt|y(k) =
fy|t(y(k))∑

j∈{0,1} fy|j(y(k))
, (11)

to be used in (9). Note that the additional uncertainty given by the process noise
is contained in the factors ρt|y(k), t ∈ {0, 1}. If the noise vectors in (1) are null
and the state is known, there exists t̄ ∈ {0, 1} such that ρt̄|y(k)=1, and hence
ρ1−t̄|y(k) = 0, since the inference on packet behavior is deterministic. Let x̂(k|k)
be the estimate of the process state at step k, based on measurements available
up to step k, and f

(k)
x be the process state distribution function. Algorithm 3.1

is modified into Algorithm 4.1, where x̂(k|k, t) is the estimate of the process
state at time k using measurements until time k and assuming e(k) = t, f

(k)
x|i ,

i ∈ {0, 1} is the process state probability density under the assumption the
packet has been dropped or received, respectively, and f

(k)
y|i , i ∈ {0, 1} is the

corresponding output probability density. In order to compute f
(k)
y|i which is used

in (10), we need to estimate the probability density function of the process state
f

(k)
x|i , i ∈ {0, 1}, under the assumption the packet has been dropped or received,

respectively. Since we consider linear systems subject to Gaussian noise, the
obvious choice for the process state estimation is the Kalman filter. The values
ρi|y(k), i ∈ {0, 1} are computed from the output error densities f

(k)
εy|i, i ∈ {0, 1},

that are a shifted version of f
(k)
y|i , i ∈ {0, 1}. At each step of the process state

estimation: (i), compute ŷ(k|k, i), i ∈ {0, 1}, the estimated output under the
assumption that the packet has been dropped or received, respectively; (ii),
compute εy(k|k, i) = y(k) − ŷ(k|k, i), i ∈ {0, 1}, the output estimation errors in
the above cases; (iii), compute the probabilities in (11) by the Kalman Filter
output error densities estimation f

(k)
εy|i, i ∈ {0, 1}. Since only a deterministic

1 For simplicity, we will drop the superscript (k) when clear from the context.

152 S. Di Cairano et al.

1. set k = 0 and let the initial probability vector be π(k|k − 1) =
[

πR(k)
πU (k)

]
;

2. while (true)

2.1. compute x̂(k|k, t), f
(k)
x|t , f

(k)
y|t , t ∈ {0, 1} ;

2.2. compute ρt|y(k), and τ = argmaxj∈{0,1}ρj|y(k);

2.3. compute πs|t(k) using (5) for t ∈ {0, 1}, s ∈ {R, U} ;

2.4. compute πs(k|k) = P[N(k) = s|y(k)], s ∈ {R, U}, by (9);

2.5. if (πR(k|k) ≥ πU (k|k)) then N̂(k) = R else N̂(k) = U ;

2.6. perform prediction π(k + 1|k) = MT π(k|k);

2.7. update the process state probability density to fx(k) = f
(k)

x|τ ;

2.8. set k← k + 1 and π(k|k − 1)← π(k + 1|k);

end

Algorithm 4.1. Network estimation algorithm with packet behavior inference

value in the process state is affected by e(k), f
(k)
y|0 and f

(k)
y|1 have the same shape

(same covariance), but they are shifted (different average).
By construction, Algorithm 4.1 is the one-step maximum likelihood estimate

of the network and process states. The performance of the continuous state
estimate affects the discrete estimation by the terms ρi|y, i ∈ {0, 1}, hence the
process and network estimation performances are related.

Remark 1. Algorithm 4.1 assumes that the distribution functions f
(k)
y|e=1 and

f
(k)
y|e=0 are different. If this is not the case, y(k) does not give any information

about N(k), because the effects of the input on the measurement are delayed.
Hence, the estimation must be delayed as well, performing the measurement
update to obtain N(k − δ|k), where δ ∈ Z0+ are the steps of delay, followed by
δ steps of prediction. Furthermore, when the current input u(k) and the backup
input ubu(k) are the same, it is not possible to distinguish the packet drop
and the packet reception from the measurement, similarly to what discussed
in [15]. However, this does not degrade the estimation of the process state, since
u(k) = ubu(k).

5 Estimation of Sensing and Actuation Network States

We analyze now Problem P2, where packet drops occur in the sensing network,
i.e., N2 �= I, and all the command packets reach the process, i.e., N1 = I. The
process state can be estimated by applying a Kalman filter modified as in [16],
where the authors perform the measurement update only if the measurement
packet is received. However, in [16] the network model is static, hence there is
no network state estimation. In the case of model (4), the estimation of N2(k)

Estimation Algorithms for Networked Control Systems 153

can be performed by Algorithm 3.1, since the value of e2(k) is always available
to the estimator (it knows whether the measurement packet has been received
or not), and the process state estimation does not affect the system state, thus
the separation between network state estimation and process state estimation
holds. On the other hand, the estimation of the process state is affected by the
behavior of the network, since when the measurement packet is dropped, the
process state estimate has to be updated in open-loop [16].

Consider now Problem P3a, where packet losses occur both in the actuation
network and in the sensing network, Ni �= I, i = 1, 2. The uncertainties intro-
duced by N1 and N2 are different: a packet loss in N1 causes the process to
evolve in a different way from the commanded one. However, such a drop do
not affect the measurements, and the estimation can still be performed by Algo-
rithm 3.1, or by Algorithm 4.1. On the other hand, when packet losses occur in
N2, the measurement is not available, and the only way to update the process
state estimate (and the estimate of N1 if Algorithm 4.1 is used) is by prediction.
Thus, losses in N2 are more critical than losses in N1 for the estimation problem.

Algorithm 5.1, where ei is the packet event in Ni, i = 1, 2, can be applied
for estimation in the case N1,N2 �= I, N1 �= N2. We consider the case where
e1(k) is not measured, hence if e2(k) = 0 no measurement is received, and the
estimate of x(k) and N1(k) is updated by prediction. If e1(k) is measured, the
measurement update is always performed also on N1 (Algorithm 3.1 is used).

1. set k = 0 and for Ni, i = 1, 2, set π(i)(k|k − 1) =

[
π
(i)
R

(k)

π
(i)
U

(k)

]
, respectively;

2. while (true)

2.1. compute π2(k|k) and N̂2(k) by Algorithm 3.1;

2.2. if (π
(2)
R (k|k) ≥ πU (k|k)) then N̂2(k) = R else N̂2(k) = U ;

2.3. if (e2(k) = 1)

2.3.1. compute x̂(k|k);

2.3.2. compute π(1)(k|k) and N̂1(k) by Algorithm 3.1 or by Algorithm 4.1;

2.4. else

2.4.1. set x̂(k|k) = x̂(k|k − 1) (open-loop prediction);

2.4.2. set π(1)(k|k) = π(1)(k|k − 1) (open-loop prediction on (4)).

2.5. if (π
(1)
R (k|k) ≥ πU (k|k)) then N̂2(k) = R else N̂2(k) = U ;

end

Algorithm 5.1. Estimation algorithm for the case N1 �= I , N2 �= I , and N1 �= N2

We finally consider Problem P3b, where the actuation and sensing networks
correspond to the same physical network, hence N1 = N2 and N1 = N2 = N .
Since all the packet events refer to the same network, at each step we have up
to two measurements that we can use to update the network state estimate.

154 S. Di Cairano et al.

In (4) the drop probability depends on the state of the network, and not on
the behavior of the other packets, hence P[ei(k)|ej(k), N(k)] = P[ei(k)|N(k)],
i, j ∈ {1, 2}, i �= j, and P[e1(k), e2(k)|N(k)] = P[e1(k)|N(k)]P[e2(k)|N(k)]. The
measurement update of the network state estimate with two data is

P[N(k)|e1(k), e2(k)] =
P[e1(k)|N(k)]P[e2(k)|N(k)]P[N(k)]∑
N(k)={U,R} P[e1(k)|N(k)]P[e2(k)|N(k)]

. (12)

If the measurement packet is dropped, a single-measurement update (5) is per-
formed, hence packet drops in N2 results again to be more critical for estimation.

6 Simulations and Experiments

We consider N2 = I, and N1 defined by M1 = [0.98 0.02
0.06 0.94], p

(1)
r = 0.15, p

(1)
u = 0.80.

The process is a linear system with transfer function G(s) = 2.44
s2+2.4s+2.44 , sam-

pled at 2 Hz to obtain a discrete-time representation (1), where A =
[

0.96 −0.60
0.5 0

]
,

B = [0.5
0], C = [0.40 0.54], D = 0. We have used as backup strategy ubu(k) = 0,

and the noise terms are v(k) ∼ N(0, 0.6), w(k) ∼ N (0, [2 0
0 2]). All the simulations

have been run for 500 steps and the packet drop events e1(k) and the random
signal that generates the transitions of N1(k) are always the same. An extended
discussion on the simulations is available in [17].

Table 1. Results of the simulations of the proposed estimation strategies

N(k) Estimator e1(·) v(k) �= 0 w(k) �= 0 x(k) Estimator N2 EN

Static meas - - - I 79
Dynamic meas - - - I 39
Dynamic inf yes yes yes I 48
Dynamic emb no no no N2 �= N1 �= I N1 : 63, N2 : 31
Dynamic emb no no no N2 = N1 �= I 27

The simulation results are summarized in Table 1, where EN =
∑

k εN(k) is
the cumulative network state estimation error, (εN(k) = |N(k)−N̂(k)|). Column
e1(·) refers to the knowledge about e1(k), where meas stands for measured, inf for
inference, and emb means that the information on the reception of the command
packet is embedded in the measurement packet. First we have simulated the
strategies described in Section 3 based on measured e(k). Table 1 shows that
the performance of the dynamic estimator is clearly higher than the one of
the static estimator. Next, we have simulated Algorithm 4.1 that is based on
inference on the process measurements, and we have used a Kalman filter for
hypothesis test, as described in Section 4. Table 1 shows that the network state
estimate performance is degraded because of the effects of the process noise.
The estimation of the process state is shown in Figure 2(a), where the estimated
state components x̂i(k), i = 1, 2, are plotted in black, the real state components

Estimation Algorithms for Networked Control Systems 155

0 50 100 150 200 250 300 350 400 450 500
−10

0

10

20

0 50 100 150 200 250 300 350 400 450 500
−5

0
5

10

0 50 100 150 200 250 300 350 400 450 500
−5

0

5

0 50 100 150 200 250 300 350 400 450 500

−2

0

2

k

k

k

k

x
2

,
x̂
2

x
1

,
x̂
1

ε
x
1

ε
x
2

(a) Process state estimation

0 50 100 150 200 250 300 350 400 450 500
U

R

0 50 100 150 200 250 300 350 400 450 500
0

1

0 50 100 150 200 250 300 350 400 450 500
0

1

N̂
,

N
ε

N

k

k

k

P
[N

]

(b) Network state estimation

Fig. 2. Joint actuation network and process states estimation with inference on e(k)

0 50 100 150 200 250 300 350 400 450 500
U

R

0 50 100 150 200 250 300 350 400 450 500
0

1

0 50 100 150 200 250 300 350 400 450 500
0

1

N̂
,

N
ε

N

k

k

k

P
[N

]

(a) Actuation network (N1)

0 50 100 150 200 250 300 350 400 450 500
U

R

0 50 100 150 200 250 300 350 400 450 500
0

1

0 50 100 150 200 250 300 350 400 450 500
0

1

N̂
,

N
ε

N

k

k

k

P
[N

]

(b) Sensing network (N2)

Fig. 3. Actuation and sencing network states estimation N1,N2 �= I , N1 �= N2. The
measurement packet contains information on command packet reception.

xi(k), i = 1, 2, in gray, and εxi(k) is the estimation error on the ith component of
the process state vector at time k. The estimation of the network state is shown
in Figure 2(b), where in the upper plot N is the dashed line, and N̂ is the solid
line, and in the lower plot P[N(k) = R] is in gray, P[N(k) = U] is in black.

Finally, we have introduced another network N2 �= N1 between the process
and the estimator. The model of N2 is described by M2 = [0.97 0.03

0.09 0.91], p
(2)
r = 0.05,

p
(2)
u = 0.87. We have simulated Algorithm 5.1, in the case where the information

about the command packet reception is embedded in the measurement packet. As
a consequence, when this is dropped the estimate of N1 is updated by open-loop
prediction. Figure 3 reports the results of the simulation, with the same format as
Figure 2(b). Table 1 confirms that the estimation of N2 is more precise than the
estimation of N1, because it is always known whether the measurement packet
has been received or not. The last line of Table 1 refers to a simulation where
N2 = N1, which results in the most precise estimation, because at each step at
least one data (and at most two) for the network state estimate is available.

156 S. Di Cairano et al.

0 1000 2000 3000 4000 5000 6000

N̂
,

P
R

R

packets

R,1

U,0

(a) Estimated network state for
pr = 0.10, pu = 0.75

0 1000 2000 3000 4000 5000 6000

N̂
,

P
R

R

packets

R,1

U,0

(b) Estimated network state for
pr = 0.20, pu = 0.60

Fig. 4. Application of the Algorithm 3.1 to a wireless sensor network with intermittent
shadowing

As experimental validation, we have run Algorithm 3.1 on a dataset obtained
from a real wireless sensor network composed of Telos T-mote Sky nodes where
an object was sometimes shadowing the receiver node, similarly to what dis-
cussed in [6]. Part of the dataset was used to estimate the transition proba-
bilities of the Markov chain, and the packet drops probabilities in each state,
obtaining pR,U = 10−3, pU,U = 1.5 · 10−3, pr = 0.10, pu = 0.75. We have run
Algorithm 3.1 on the remaining data using the sequential packet ID to identify
the occurrence of packet drops. The results are shown in Figure 4(a) where the
estimated network state is plotted as a black line while the packet reception
rate (PRR) obtained by averaging over a symmetric window of 30 packets is
plotted as a gray line. The tracking is good, except for some false positives in
which nonexistent state switches are detected. These can be removed by tun-
ing the prediction model of the estimator. The behavior obtained by setting
pr = 0.20, pu = 0.60 is shown in Figure 4(b), where the false positives are
eliminated.

7 Conclusions

This paper has proposed different approaches to estimate the state of a net-
worked control system, composed of the process state and the network state.
We have shown the approaches in which the network state estimation can be be
separated from the process state estimation and we have shown how the infor-
mation losses in different places of the networked system affect the estimate. As
shown in comparative simulations, the performance of the different approaches
varies, and the choice of the one to be applied mainly depends on the overall
networked system architecture.

The authors want to thank Pan Gun Park for performing the experiments on
the wireless sensor network.

Estimation Algorithms for Networked Control Systems 157

References

1. Zhang, W., Branicky, M.S., Phillips, S.M.: Stability of networked control systems.
IEEE Control Systems Magazine 21(1), 84–99 (2001)

2. Årzén, K.E., Bicchi, A., Dini, G., Hailes, S., Johansson, K.H., Lygeros, J., Tzes, A.:
A component-based approach to the design of networked control systems. Europ.
J. Control 2-3 (2007)

3. Samad, T., McLaughlin, P., Lu, J.: System architecture for process automation:
Review and trends. J. Proc. Control 17, 191–201

4. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: A survey of recent results in networked
control systems. Proc. of IEEE, Special Issue on Technology of Networked Control
Systems 95(1), 138–162 (2007)

5. Goldsmith, A.: Wireless Communications. Cambridge Univ. Press, Cambridge, U.K
(2004)

6. Willig, A., Kubisch, M., Hoene, C., Wolisz, A.: Measurements of a wireless link in
an industrial environment using an IEEE 802.11-compliant physical layer. IEEE
Trans. Ind. Electr. 49(6), 191–201

7. Yu, X., Modestino, J., Tian, X.: The accuracy of Gilbert models in predicting
packet-loss statistics for a single-multiplexer network model. In: INFOCOM. 24th
Conf. of IEEE Computer and Communications Societies, pp. 2602–2612 (2005)

8. Jacobsson, K., Hjalmarsson, H., Möller, N., Johansson, K.H.: Some modeling and
estimation issues in control of heterogeneous networks. estimation of RTT and
bandwidth for congestion control applications in communication networks. In:
Proc. 16th Intl. Symposium MTNS (2004)

9. Nilsson, J., Bernhardsson, B.: LQG control over a Markov communication network.
In: Proc. 36th IEEE Conf. on Decision and Control., vol. 5, pp. 4586–4591 (1997)

10. Gupta, V., Hassibi, B., Murray, R.M.: On the control of jump linear Markov sys-
tems with Markov state estimation. In: American Control Conf., pp. 2893–2898
(2003)

11. Seiler, P., Sengupta, R.: An h∞ approach to networked control. IEEE Trans. Aut.
Control 50(3), 356–364 (2005)

12. Bemporad, A., Di Cairano, S., Henriksson, E., Johansson, K.H.: Hybrid model
predictive control based on wireless sensor feedback: An experimental study. In:
Proc. 46th IEEE Conf. on Decision and Control., pp. 5062–5067 (2007)

13. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE
Acoustic, Speech, Signal Proc. Mag. 3(1), 4–16 (1986)

14. Shue, L., Anderson, B.D.O., Dey, S.P.: Exponential stability of filters and
smoothers for hidden Markov models. IEEE Trans. Signal Proc. 46(8), 2180–2194
(1998)

15. Epstein, M., Shi, L., Murray, R.M.: An estimation algorithm for a class of net-
worked control systems using udp-like communication schemes. In: Proc. 45th
IEEE Conf. on Decision and Control., pp. 5597–5603 (2006)

16. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.:
Kalman filtering with intermittent observations. IEEE Trans. Aut. Control 49(9),
1453–1464 (2004)

17. Di Cairano, S., Johansson, K.H., Bemporad, A., Murray, R.M.: Dynamic network
state estimation in networked control systems. Tech. Report 2007-5 University of
Siena (2007), www.dii.unisi.it/∼dicairano/papers/tr07ntwEstim.pdf

www.dii.unisi.it/~dicairano/papers/tr07ntwEstim.pdf

Anytime Control Algorithms for Embedded

Real-Time Systems

Daniele Fontanelli1, Luca Greco1,2, and Antonio Bicchi1,�

1 Interdepartmental Research Center “E. Piaggio”, University of Pisa
{daniele.fontanelli,bicchi}@ing.unipi.it

2 University of Salerno
greco@dsea.unipi.it

Abstract. In this paper we consider the problem of designing controllers
for linear plants to be implemented in embedded platforms under strin-
gent real-time constraints. These include preemptive scheduling schemes,
under which the maximum execution time allowed for control software
tasks is uncertain. We propose an “anytime control” design approach,
consisting in a hierarchy of controllers for the same plant. Higher con-
trollers in the hierarchy provide better closed-loop performance, while
typically requiring a larger worst-case execution time. We provide a pro-
cedure for the design of controllers which, together with a conditioning
process of the stochastic scheduling, provides better performance than
prevailing worst case-based design, while guaranteeing almost sure sta-
bility of the resulting switching system.

1 Introduction

A general tendency can be observed in embedded systems towards implemen-
tation of a great variety of concurrent real-time tasks on the same platform,
thus reducing the overall HW cost and development time. Among such tasks,
those implementing control algorithms are usually highly time critical, and have
traditionally imposed very conservative scheduling approaches, whereby execu-
tion time is allotted statically, which makes the overall architecture extremely
rigid, hardly reconfigurable for additions or changes of components, and often
underperforming.

Modern multitasking Real-Time Operating System (RTOS), running e.g. on
embedded ECUs in the automotive domain, schedule their tasks dynamically,
adapting to varying load conditions and Quality of Service requirements. Real-
time preemptive algorithms, such as e.g. Rate Monotonic (RM) and EarliestDead-
line First (EDF) [1,2,3] can suspend the execution of a task in the presence of
requests by other, higher priority tasks. Guarantees of schedulability can be pro-
vided based on estimates of the Worst-Case Execution Time (WCET) of tasks.
� This work was supported by the EC under contract IST 511368 (NoE) ”HYCON

- Hybrid Control: Taming Heterogeneity and Complexity of Networked Embedded
Systems” and contract IST 045359 ”PHRIENDS” - Physical Human-Robot Interac-
tion: Dependability and Safety”.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 158–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Anytime Control Algorithms for Embedded Real-Time Systems 159

However, to make a given set of tasks schedulable and to limit the number
of deadline misses, conservative assumptions are typically made which entail
underexploitation of the computational platform and, ultimately, cost inefficien-
cies: for instance, a famous result of [1] shows that RM scheduling can meet all
deadlines if the CPU utilization is not larger than 69.3%. On the other hand,
when the computational power budget is given and fixed (which is often the
case in industrial practice), then control algorithms may have to be drastically
simplified to be computable within the allotted time. This clearly reflects in a
degradation of the overall performance of the ensuing closed-loop system.

Substantial performance improvement would be gained if less conservative
assumptions could be made on the CPU utilization. In particular, it is often the
case that, for most of the CPU cycles, a time τ could be made available for a
control task which is substantially longer than τmin, although only the latter
can be guaranteed in the worst case.

In this paper we propose a strategy to design control algorithms and to sched-
ule their execution, so that the limits of current practice are overcome and better
performance could be obtained with the same resources.

2 Anytime Control Algorithms

The key idea is to design controllers which can be implemented so that a useful
result is guaranteed whenever the algorithm is run for at least τmin; however,
better results can be provided if longer times are allowed.

The idea is borrowed from so-called anytime algorithms, that have been pro-
posed in real-time computation [4,5]. The characteristic of anytime algorithms
(or of imprecise computation, as they are sometimes referred to) is to always
return an answer on demand; however, the longer they are allowed to compute,
the better (e.g. more precise) an answer they will return. Thus, an anytime
algorithm can be interrupted prematurely, still providing a valid result and im-
proving the output accuracy as the available time increases. A periodic task is
split in a mandatory part and one or more optional parts. The criticality of
hard RT tasks is preserved ensuring only that the mandatory parts satisfy the
time constraints. If all mandatory parts of a set of tasks are schedulable, feasible
mandatory constraint is satisfied [4].

In digital filter design [6], this philosophy has been pursued by decomposing
the full-order filter in a cascade of lower order filters whose execution is pri-
oritized. Execution of code implementing the first block is always guaranteed
within τmin; code for blocks in the cascade is then executed sequentially, until
a preemption event takes over. The latest computed block output is used as the
anytime filter output. The overall performance of the filter was shown in [6] to be
superior the the conservative solution of always using only the first filter block.

To adopt the anytime approach in the control domain, a classical monolithic
control task should be replaced by a hierarchy of control tasks of increasing
complexity, each providing a correspondingly increasing performance of the con-
trolled system. For instance, the simplest control task in the hierarchy, which

160 D. Fontanelli, L. Greco, and A. Bicchi

must be executable within τmin, could be designed to guarantee only stability of
the closed loop system, while whenever the scheduler provides “surplus” time,
other more sophisticated control algorithms could be executed to obtain better
“quality of control”.

However, application of the anytime algorithm idea to control is much more
challenging than it may superficially appear. The main conceptual roadblock is
that, as opposed to most anytime computation and filtering algorithms, anytime
controllers interact in feedback with dynamic systems, which fact entails issues
such as

Hierarchical Design: The design of a set of controllers as progressive approx-
imations towards a given target design does not typically provide the desired
performance hierarchy. Indeed, performances of closed-loop systems are not
trivially related to how close approximations are to the target, as it is e.g.
in filter design;

Switched System Performance: Unpredictable preemption events introduce
stochastic switching among different closed-loop systems, which can sub-
vert näıve expectations — e.g., switching between stabilizing controllers may
well result in overall instability. More generally, closed-loop performance is
strongly influenced by switching;

Practicality: Implementation of both control and scheduling algorithms must
be numerically accurate, yet very simple and non-invasive, not to contradict
the very nature of the limited-resource, embedded control problem.

Composability: The computational structure of control algorithms should be
inherited through the hierarchy levels, so that the computation of higher con-
trollers in the hierarchy exploits results of computations executed for lower
controllers. Although this property is not strictly required, it can greatly
enhance effectiveness of anytime control.

3 Prior Work

We will illustrate the relevance of the above issues with reference to prior work
in the field. A first attempt to use the anytime control idea is reported in
[7,8], where standard system reduction methods (balanced truncation or modal
decomposition) are used to decompose a target controller in simpler ones. Un-
fortunately, these methods do not provide any guarantee on closed-loop perfor-
mance of the simplified controllers (not even stability, indeed). Even if ad-hoc
choices are made that provide stabilizing controllers, stability under switching
is not guaranteed by the method in [7,8], unless a substantial dwelling time is
assumed between switches, during which the constant use of the same controller
is possible.

On the other hand, the substantial literature on switching system stability (see
e.g. [9,10,11,12] and references therein) provides much inspiration and ideas for
the problem at hand, but few results can be used directly. For instance, appli-
cation of the important results of [13] would provide state-space realizations of
different stabilizing controllers such that the overall closed-loop systems would

Anytime Control Algorithms for Embedded Real-Time Systems 161

remain stable under any switching law. Unfortunately, however, the method is
thought for a different application, and assumes all controllers are designed by
the internal-model approach, and have the same (rather heavy) computational
complexity; most importantly, at each switching instant, a state-space transfor-
mation has to be applied, which is of comparable complexity as the controllers
themselves. By the same practicality argument, algorithms for switched system
stabilization (such as e.g. [14,15,16]) requiring the computation of complex func-
tions of the state to ascertain which subsystem can be activated next time, are
not applicable to anytime control.

In [17], the authors proposed a framework for the stability analysis of any-
time control algorithms, based on a stochastic model for the scheduler. A set of
controllers forming a hierarchy in complexity and performance was assumed to
be given. Under these hypotheses, a switching policy capable of conditioning the
stochastic properties of the scheduler was designed, such that overall stability (in
the probabilistic sense of “almost sure” stability [18,19]) of the resulting Markov
Jump Linear System (MJLS) can be guaranteed. This paper complements [17]
by providing a constructive design procedure for anytime controllers, and by
illustrating the application of the complete methodology to two examples. The
modelling framework and the main results of [17] are succinctly reported for the
reader’s convenience.

4 Scheduling Problem Formulation and Solution

Let Σ � (A, B, C) be the given strictly proper linear, discrete time, invariant
plant to be controlled, and let Γi � (Fi, Gi, Hi, Li), i ∈ I � {1, 2, . . . , n} be
a family of feedback controllers for Σ. Assume that all controllers Γi stabilize
Σ and are ordered by increasing computational time complexity, i.e. WCETi >
WCETj if i > j. Let the closed-loop systems thus obtained be Σi � (̂Ai, ̂Bi, ̂Ci),
where

̂Ai =
[

A + BLiC BHi

GiC Fi

]

; ̂B =
[

Bi

0

]

; ̂Ci =
[

Ci 0
]

.

Problems related to jitter and delay are not considered in this work since they can
be tackled in the design of the single controllers ([20]). Therefore, we assume that
measurements are acquired and control inputs are released at every sampling
instant tTg, t ∈ N, where Tg is a fixed sampling time. Let γt ∈ [τmin, τmax],
τmax < Tg, denote the time allotted to the control task during the t-th sampling
interval. By hypothesis, WCET1 ≤ τmin and WCETn ≤ τmax.

Define an event set Lτ � {τ1, . . . , τn}, and a map

T : [τmin, τmax] → Lτ

γt �→ τ(t)

where

162 D. Fontanelli, L. Greco, and A. Bicchi

τ(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

τ1, if γt ∈ [τmin, WCET2)
τ2, if γt ∈ [WCET2, WCET3)
... if

...
τn, if γt ∈ [WCETn, τmax]

Assume a stochastic description of the scheduling process to be given by

Pr {τ(t) = τi} = π̄τi , 0 < π̄τi < 1,
∑

i∈I

π̄τi = 1,

where π̄τi denotes the probability associated to the event that the time slot
γt is such that all controllers Γj , j ≤ i, but no controller Γk, k > i, can be
executed. The distribution π̄τ = [π̄τ1 , π̄τ2 , · · · , π̄τn]T can be regarded simply as
an i.i.d. process, or, in a slightly more complex but general way, as the invariant
probability distribution of a finite state discrete-time homogeneous irreducible
aperiodic Markov chain given by

π(t + 1) = PT π(t), π(0) = π0.

where P = (pij)n×n is the transition probability matrix and pij is the transition
probability from state i to state j of the Markov chain (e.g. from controller Γi

to Γj).
Under these hypotheses, the switching process generates a discrete-time

Markov Jump Linear System (MJLS)

xt+1 = ̂Aτtxt (1)

Definition 1. [19] The MJLS (1) is said almost surely stable (AS-stable) if
there exists μ > 0 such that, for any x0 ∈ R

N and any initial distribution π0,
the following condition holds

Pr
{

lim sup
t→∞

1
t

ln ‖xt‖ ≤ −μ

}

= 1.

Let ‖ ·‖ be a matrix norm induced by some vector norm. The following sufficient
condition for AS-stability was proved in [18]:

Theorem 1 (1–step average contractivity). [18] If

ξ1 =
∏

i∈I

‖ ̂Aτi‖πτi < 1 (2)

then the MJLS (1) is AS-stable.

4.1 Stochastic Schedule Conditioning

We define a switching policy to be a map s : N → I, t �→ s(t), which deter-
mines an upper bound to the index i of the controller to be executed at time t,

Anytime Control Algorithms for Embedded Real-Time Systems 163

i.e. i ≤ s(t). In other terms, at time tTg, the system starts computing the con-
troller algorithm until it can provide the output of Γs(t), unless a preemption
event occurs forcing it to provide only Γτ(t), i.e. the highest controller computed
before preemption. Application of a switching policy s to a set of feedback sys-
tems Σi, i ∈ I under a scheduler τ generates a switching linear system (Σi, τ, s)
which, under suitable hypotheses, is also a MJLS. The stochastic characteri-
zation of the chain τ is assumed to be a-priori known. Furthermore, in a real
application (e.g. automotive domain) different working conditions lead to differ-
ent stochastic descriptions, thus different Markov chains for the scheduler can
be considered.

As an example, the most conservative policy is to set s(t) ≡ 1, i.e. forcing
always the execution of the simplest controller Γ1, regardless of the probable
availability of more computational time. By assumption, this (non-switching)
policy guarantees stability of the resulting closed loop system.

On the opposite, a “greedy” strategy would set s(t) ≡ n, which leads to provid-
ing Γτ(t) for all t. Although this policy attempts at maximizing the utilization of
the most performing controller, it is well known that switching arbitrarily among
asymptotically stable systems Σi may easily result in an unstable behavior [21].

A sufficient condition for the greedy switching policy to provide an AS-stable
system is provided by Theorem 1. This condition however is rarely satisfied.
Indeed, the fact that each matrix ̂Aτi is Schur guarantees the existence of a
specific norm ‖ · ‖wi such that ‖ ̂Aτi‖wi < 1, but no single norm ‖ · ‖w exist
in general such that ‖ ̂Aτi‖w < 1 ∀τi

1. The AS stability condition of theorem 1
would require that, for a chosen norm, for all controllers with ‖ ̂Aτi‖w > 1 π̄τi is
sufficiently small, i.e. they are scheduled by the OS sufficiently rarely.

A switching policy that suitably conditions the scheduler to provide AS-
stability was studied in [17], which is illustrated below. Introduce a homoge-
neous irreducible aperiodic Markov chain σ with the same number n of states
as the scheduler chain τ . The states are labelled as σi, with the meaning that
if the associated process form σ(t) is equal to σi, then s(t) = i, i.e. in the next
sampling interval tTg at most the i–th controller is computed (this will actually
happen if no preemption occurs). We will refer to σ as the conditioning Markov
chain. The synthesis of such a conditioning Markov chain can be formulated as
the following Linear Programming problem:

Find a vector πσ =
[

πσ1 · · · πσn

]T such that

1)
n

∑

i=1

ciπσi < 0

2) 0 < πσi < 1

3)
n

∑

i=1

πσi = 1,

(3)

1 When this happens, such norm is a common Lyapunov function and the system
remains stable for all switching sequences. It is well known that this is rarely the
case.

164 D. Fontanelli, L. Greco, and A. Bicchi

Table 1. Computational complexity (considered as the number of multiplications ex-
cept by 0 or 1) and numerical reliability of different state-space realizations of a strictly
proper transfer function G(z) with N poles. The generic case assumes no particular
structure in the systems matrices.

Comp. Compl. Num. Reliab.

Generic N (N + 2) –
Companion 2N bad
Jordan 2N to 3N good

where

ci =
n

∑

h=1

πτh
ln

(∥

∥

∥

̂Amin(τh,σi)

∥

∥

∥

)

.

Should this problem not have a feasible solution, multi–step switching policies
can be considered, whereby the conditioning Markov chain suggests the sequence
of controllers to be executed in the next m steps (see [17] for details). This way,
some control patterns, i.e. substrings of symbols in I, are preferentially used
with respect to others.

5 Design of a Control Algorithm Hierarchy

In this section we address the problem of designing an ordered set of control
algorithms providing increasing closed-loop performance. A top-down design
approach to this problem would start with the design of a complex, high-
performance controller Γn (by e.g. a H∞ technique); progressively simpler con-
trollers Γi, n − 1 ≥ i ≥ 1 may then be obtained by e.g. model reduction
techniques. As already remarked, however, this approach does not systemati-
cally guarantee closed-loop performance under switching. Moreover, most model
reduction techniques require state-space realizations with full dynamic matrices
Fi, which makes them impractical in real-time embedded applications.

Indeed, practicality requirements imply careful consideration of algorithmic
implementations of control laws [22]. Table 1 reports a comparison among three
different state space representations for SISO systems.

We propose here a simple, bottom-up design technique which is suitable for
addressing the main requirements of anytime control algorithms. The method is
based on classical cascade design. Consider the two design stages illustrated in
fig. 1, in which controllers are designed to ensure increasing performance by any
classical synthesis technique. The scheme in fig. 1 cannot be implemented as a
composable anytime control, because after computation of the a) scheme, the
input to the F1(z) block needs to be recomputed completely if the b) scheme is
to be applied. However, by simple block manipulations, the scheme in fig. 2 can
be obtained, where we set

Ĉ2(z) = F1(z)C2(z).

Anytime Control Algorithms for Embedded Real-Time Systems 165

yr +

)(1 zC

)(1 zF
-

)(zG

yr +

)(1 zC

)(1 zF
-

)(zG

)(2 zC

)(2 zF
-

+

a) b)

Fig. 1. Two stages of a classical cascade design procedure

The scheme in fig. 2 is suitable for anytime implementation. Indeed the se-
ries of F1(z) and F2(z) is in open-loop (hence equivalent to an anytime filter),
while the parallel connection in the feedback loop is simply obtained by sum-
ming the new result by Ĉ2(z) to the previous one by C1(z). Using Jordan form
realizations of the blocks provides good numerical accuracy as well as low com-
putational complexity. The cascade design method can be applied iteratively to
provide a complete hierarchy of controllers, satisfactorily addressing the issues
of hierarchical design, practicality, and composability.

)(1 zΓ

)(2 zΓ

)(1 zΦ
y+

)(1 zC

-
)(zG

)(ˆ
2 zC

)(2 zF
r

)(1 zF

)(2 zΦ

2=i

2=i 2=i

1=i 1=i +

+

Fig. 2. A switched control scheme suitable for anytime control implementation. The
scheme is equivalent to fig. 1-a when the switches are in the i = 1 position, and to
fig. 1-b for i = 2.

6 Tracking Control and Bumpless Transfer

The schedule conditioning technique of section 4.1 is able to address the switched
system performance issue satisfactorily when a regulation problem is considered.
However, in reference tracking tasks, the performance can be severely impaired
by switching between different controllers. This section is devoted to analyze this
problem and propose a simple technique to assist in making smooth transitions
for the system switching between controllers.

Consider the problem of tracking a constant or slowly-varying set-point r.
With reference to the design scheme in fig. 2, the problem can be solved by scaling
the reference input r by the steady state gain of each controller Γi, 1 ≤ i ≤ n. Let
xs denote the state of the controlled plant, and xci the state of the i–th controller

166 D. Fontanelli, L. Greco, and A. Bicchi

component Ci(z), and let x̄s, x̄ci denote the corresponding equilibrium values
reached when the reference r is applied. Suppose now that, at some instant in
time tTg, the i–th level controller is active and the system components are at the
equilibrium state x̄s, x̄c1 , · · · , x̄ci ; and that, at time (t+1)Tg, the execution of the
j–th level controller is imposed by a preemption event or a conditioned schedule.
If j ≤ i, it can be easily verified that the active part of the system state remains
at an equilibrium x̄s, x̄c1 , · · · , x̄cj . If instead j > i (low-to-high level switching),
the state is perturbed from the equilibrium. Indeed, the activation of a higher
level controller abruptly introduces the dynamics of the re-activated (sleeping)
states.

Sleeping states can be managed such that they are kept constant during their
idle period, or they can be zeroed instantaneously or progressively with a simple
and computationally inexpensive dynamics. No matter on how they are managed,
their re-activation can produce a jump in the state value. Notice that keeping
constant their values results in no jumps only if also the reference does not
change. These jumps produce an undesirable behavior from a performance point
of view. The use of a bumpless-like technique is advisable to cope with this issue.
According to this approach, the idle states are re-set to suitable values before
re-activation to avoid jumps and to leave the system at its equilibrium, if such
was the case before the switching occurs. The sleeping state initialization value
is computed as

xsleepingj
= ucj (I − Acj)

−1Bcj = ucjW

where ucj is the current input to the j–th part of the controller. Notice that
the switching logic introduces negligible overhead, since the vector W can be
computed off–line.

7 Examples

The control of the two mechanical systems depicted in fig. 3 will be used to
illustrate the application of the proposed technique. We report in table 2 the
sampled-time linearized dynamics of the two systems (continuous-time models
are readily available in the literature, see e.g. [23,24]).

In both examples, the first controller C1(z) is designed to ensure the stability
requirement. The controllers C2(z) and C3(z) for the Furuta pendulum example
are obtained applying twice in cascade an LQG design technique. For the TORA
example, the controllers are instead carefully designed by hand to achieve per-
formance enhancement with minimal complexity increase, i.e more practical in
the sense of section 2). Prefilters Fi(z) (depicted in fig. 2) are constants used
to adapt the steady-state gain and ensure static requirements. The scheduler
process is modeled simply by its steady-state probability distribution, which is
assumed equal in the two examples and given by π̄τ = [1/20, 5/20, 14/20].

For the Furuta pendulum example in fig. 3-a, solving the LP problem 3 leads
to a steady state conditioning probability distribution π̄σ = [0.017, 0.98, 0.003].
The resulting conditioned distribution π̄d = [0.058, 0.94, 0.002] thus satisfies the
1-step average contractivity condition (2), hence AS-stability is guaranteed.

Anytime Control Algorithms for Embedded Real-Time Systems 167

a) b)

Fig. 3. Mechanical systems adopted for the anytime controller simulations: a Furuta
pendulum with zero offset ([23] - a) and a Translational Oscillator/Rotational Actuator
(TORA) system ([24] - b)

Table 2. Sampled-time transfer functions for systems in fig. 3 and hierarchical con-
trollers used in simulations

Furuta Pendulum System

G(z) = 1.2 10−3(z+3.7)(z+0.3)

(z−1)(z2−1.7z+1)

C1(z) = 31.6(z2−1.8z+1.1)
(z−0.1)(z−0.5)

F1(z) = 21.28

C2(z) = 117.7(z−1.3)(z−4.7 10−3)(z2−1.4z+0.7)

(z−0.5)(z+0.2)(z−0.1)(z2+0.4z+0.9)
F2(z) = 0.54

C3(z) = 1370.9(z−0.4)(z−0.6)(z−0.2)(z+0.2)(z−4.7 10−3)(z2−0.7z+0.2)(z2−0.4z+0.3)

(z−0.5)2(z+0.3)2(z−0.1)2(z2+0.6z+0.8)(z2+3.4z+4.7)
F3(z) = 2.73

Tora System

G(z) = 0.27266(z+1)(z2−1.967z+1)

(z−1)2(z2−1.964z+1)

C1(z) = 2.0895(z−0.75)
(z+0.3761)

F1(z) = 0.38

C2(z) = 0.8(z−0.4)
(z+0.6)

F2(z) = 1.79

C3(z) = 0.73(z2−0.76z+0.2228)

(z+0.3)2
F3(z) = 1.29

In fig. 4-a, the Root Mean Squares (RMS) of the regulation error for dif-
ferent controllers is shown, corresponding to perturbed initial conditions x0 =
[0, π/10, 0]T . Plots labeled Controller 1, 2, and 3, corresponding to results ob-
tained without switching, are reported for reference. Notice the performance
increase obtained by more complex controllers. Fig. 4-b shows a sample real-
ization of the stochastic process used to model the OS scheduler. The RMS
obtained by the greedy switching policy applied to this schedule shows instabil-
ity. Notice that the axis labels on the right apply to this plot in fig. 4-a. On the
same figure 4-a, the plot labeled “Markov” shows the RMS error obtained by
the stochastically conditioned scheduler. Sample realizations of the conditioning
and conditioned stochastic schedules used in simulations are reported in fig. 4-b.

168 D. Fontanelli, L. Greco, and A. Bicchi

0 1 2 3 4 5
0

0.05

0.1

sec

R
M

S

RMS comparison

0 1 2 3 4 5
0

5

10
x 10

5

Markov
Controller 1
Controller 2
Controller 3
Greedy

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

sec

T
im

e

Scheduled, conditioning and conditioned execution time for Markov policy

Scheduled
Conditioning
Conditioned

a) b)

Fig. 4. Regulation results for the Furuta pendulum example: a) RMS error of the closed
loop system with different control schedulings b) allowable execution times provided
by the OS scheduler, and the conditioning and conditioned processes

The example shows how the proposed stochastic switching policy ensures the
AS-stability of the closed loop system (which is not guaranteed by the greedy
policy), while it obtains a definite performance increase (of the order of 50%) with
respect to the conservative scheduler (corresponding to using only Controller 1,
see fig. 4-a).

Fig. 5 reports similar plots to illustrate application of the proposed methodol-
ogy to the TORA example (fig. 3-b), with controllers chosen according to table 2.
No solution to the 1-step average contractivity condition could be found in this
case. A four-steps lifted version of the problem admits a solution, according
to which the conditioning sequence of controllers is a concatenation of the 34

possible combinations of length 4 of the three controllers. The steady state con-
ditioning probability distribution π̄σ ∈ (0, 1)3

4
is not reported here; it is however

worth noticing that the particular controller sequence Γ2 − Γ2 − Γ2 − Γ3 is by
far the most likely, being used in the 89, 204% of cases (except for preemptions).
In figure 5-b, the scheduled and the conditioned controllers are depicted: the
prevalence of the preferred pattern is apparent.

Results of simulations of the different controllers and scheduling policies are
reported in fig. 5-a, for a regulation problem from perturbed initial conditions
X0 = [0, 0, 0.1, 0]T .

The RMS performance plots in fig. 5-a show that the greedy policy (in this
particular case) does not lead to divergence. However, it is quite remarkable that
our proposed policy performs better than both the greedy and the conservative
policies (indeed, slightly better than even using always Controller 2, which is not
a feasible choice).

Finally, results of application of the proposed technique for a tracking con-
trol problem for the TORA example are reported in fig. 6. The reference to
be tracked is a piecewise constant signal of amplitude π/4, period 10 seconds
and pulse width of 30%. The comparison of RMS performance shows that direct

Anytime Control Algorithms for Embedded Real-Time Systems 169

0 1 2 3 4 5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

sec

R
M

S

RMS comparison

Markov
Controller 1
Controller 2
Controller 3
Greedy

0 1 2 3 4 5

1

1.5

2

2.5

3

3.5

sec

T
im

e

Scheduled, conditioning and conditioned execution time for Markov policy

Scheduled
Conditioning
Conditioned

a) b)

Fig. 5. Regulation results for the TORA example: a) RMS error of the closed loop
system with different control schedulings b) allowable execution times provided by the
OS scheduler, and the conditioning and conditioned processes

0 5 10 15 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

sec

O
ut

pu
t

Output comparisons

Markov
Controller 1
Controller 2
Controller 3
Greedy
Markov
Bumpless

0 5 10 15 20
0

2

4

6

8

10

12

14

sec

R
M

S

RMS comparison

Markov
Controller 1
Controller 2
Controller 3
Greedy
Markov
Bumpless

a) b)

Fig. 6. Tracking results for the Tora system: a) output signals; b) RMS errors

application of the conditioned switching policy performs poorly in the tracking
case. This is due to the re-activation issues pointed out earlier. Using the simple
bumpless switching technique proposed in Section 6, a significant performance
improvement is achieved, as shown in both figures 6-a,b. The RMS performance
of the bumpless conditioned switching policy is better than both the greedy and
the conservative approaches.

8 Conclusions

We have shown that underexploitation of CPU time caused by conservative
control scheduling policies can be effectively reduced, and control performance
can be significatively enhanced, by adopting a schedule conditioning algorithm
that uses a stochastic model of a preemptive RTOS scheduler.

170 D. Fontanelli, L. Greco, and A. Bicchi

We also discussed ideas for the design of controllers which, together with
a conditioning process of the stochastic scheduling, provide better performance
than prevailing worst case-based design, while guaranteeing almost sure stability
of the resulting switching system. A practical and effective technique for bump-
less switching has been introduced, to reduce the negative effects of switching in
tracking problems.

Much work remains to be done on a systematic design procedure for arriving
at a hierarchical, composable, practical design of controllers for anytime imple-
mentation, and on numerical apects involved in the solution of the (multi-step)
average contractivity equation.

References

1. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. Journal of the Association for Computing Machinery 20(1)
(1973)

2. Liu, J.W.S.: Real–Time Systems. Prentice Hall Inc., Upper Saddle River, NJ (2000)

3. Buttazzo, G.: Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Kluwer Academic Publishers, Boston (1997)

4. Liu, J.W.S., Lin, K.J., Shih, W.K., Bettati, R., Chung, J.Y.: Imprecise computa-
tion. Proceedings of the IEEE 82(1), 83–93 (1994)

5. Liu, J.W.S., Lin, K.J., Shih, W.K., Yu, A.C.S., Chung, J.Y., Zhao, W.: Algorithms
for scheduling imprecise computations. Computer 24(5), 58–68 (1991)

6. Perrin, N., Ferri, B.: Digital filters with adaptive length for real–time applications.
In: Le Royal Meridien, K.E., (ed.) Proc. IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium, Toronto, Canada (May 2004)

7. Bhattacharya, R., Balas, G.J.: Implementation of control algorithms in an envi-
ronment of dynamically scheduled CPU time using balanced truncation. In: AIAA
Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA (August
2002)

8. Bhattacharya, R., Balas, G.J.: Anytime control algorithm: Model reduction ap-
proach. Journal of Guidance, Control, and Dynamics 27(5), 767–776 (2004)

9. Branicky, M.S.: Stability of hybrid systems: State of the art. In: Proc. 36th IEEE
Conf. On Decision and Control, San Diego, California, USA, pp. 120–125 (Decem-
ber 1997)

10. DeCarlo, R.A., Branicky, M.S., Pettersson, S., Lennartson, B.: Perspectives and re-
sults on the stability and stabilizability of hybrid systems. IEEE Proceedings 88(7),
1069–1082 (2000)

11. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched sys-
tems. IEEE Contr. Syst. Mag. 19(5), 59–70 (1999)

12. Ye, H., Michel, A.N., Hou, L.: Stability theory for hybrid dynamical systems. IEEE
Trans. Automat. Contr. 43(4), 461–474 (1998)

13. Hespanha, J.P., Morse, A.S.: Switching between stabilizing controllers. Automat-
ica 38(11), 1905–1917 (2002)

14. Wicks, M.A., Peleties, P., DeCarlo, R.: Construction of piecewise Lyapunov func-
tions for stabilizing switched systems. In: Proc. 33rd IEEE Conf. On Decision and
Control, Lake Buena Vista, FL, pp. 3492–3497 (December 1994)

Anytime Control Algorithms for Embedded Real-Time Systems 171

15. Wicks, M., DeCarlo, R.: Solution of coupled Lyapunov equations for the stabiliza-
tion of multimodal linear systems. In: Proc. American Control Conf., Albuquerque,
NM, pp. 1709–1713 (June 1997)

16. Pettersson, S., Lennartson, B.: Stabilization of hybrid systems using a min-
projection strategy. In: Proc. American Control Conf., Arlington, Virginia, pp.
223–228 (June 2001)

17. Greco, L., Fontanelli, D., Bicchi, A.: Almost sure stability of anytime controllers
via stochastic scheduling. In: Proc. IEEE Int. Conf. on Decision and Control, New
Orleans, LO (December 2007)

18. Fang, Y., Loparo, K.A., Feng, X.: Almost sure and δ-moment stability of jump
linear systems. Int. J. Control 59(5), 1281–1307 (1994)

19. Bolzern, P., Colaneri, P., De Nicolao, G.: On almost sure stability of discrete-time
Markov jump linear systems. In: Proc. 43rd IEEE Conf. On Decision and Control,
vol. 3, pp. 3204–3208 (2004)

20. Cervin, A., Lincoln, B., Eker, J., Årzén, K.E., Buttazzo, G.: The jitter margin and
its application in the design of real-time control systems. In: Proc. 10th Int. Conf.
on Real-Time and Embedded Computing Systems and Applications, Gothenburg,
Sweden (August 2004)

21. Liberzon, D., Hespanha, J.P., Morse, A.S.: Stability of switched systems: A Lie-
algebraic condition. Systems & Control Letters 37(3), 117–122 (1999)

22. Åström, K.J., Wittenmark, B.: Computer Controlled Systems. Prentice-Hall, En-
glewood Cliffs (1996)

23. Furuta, K., Yamakita, M., Kobayashi, S.: Swing-up control of inverted pendulum
using pseudo-state feedback. Proceedings of the Institution of Mechanical Engi-
neers. Pt.I. Journal of Systems and Control Engineering 206(I4), 263–269 (1992)

24. Bupp, R., Bernstein, D., Coppola, V.: A benchmark problem for nonlinear control
design: Problem statement, experimental testbed and passive, nonlinear compen-
sation. In: Proc. Amer. Contr. Conf, pp. 4363–4367 (1995)

Stochastic Satisfiability Modulo Theory:

A Novel Technique for the Analysis of
Probabilistic Hybrid Systems�

Martin Fränzle1, Holger Hermanns2, and Tino Teige1

1 Carl von Ossietzky Universität, Oldenburg, Germany
{fraenzle,teige}@informatik.uni-oldenburg.de

2 Saarland University, Saarbrücken, Germany
hermanns@cs.uni-sb.de

Abstract. The analysis of hybrid systems exhibiting probabilistic be-
haviour is notoriously difficult. To enable mechanised analysis of such sys-
tems, we extend the reasoning power of arithmetic satisfiability-modulo-
theory solving (SMT) by a comprehensive treatment of randomized
(a.k.a. stochastic) quantification over discrete variables within the mixed
Boolean-arithmetic constraint system. This provides the technological
basis for a fully symbolic analysis of probabilistic hybrid automata.
Generalizing SMT-based bounded model-checking of hybrid automata
[2,11], stochastic SMT permits the direct and fully symbolic analysis of
probabilistic bounded reachability problems of probabilistic hybrid au-
tomata without resorting to approximation by intermediate finite-state
abstractions.

1 Introduction

Over the last decade, formal verification of digital systems has evolved from
an academic subject to an approach accepted by industry, with dozens of com-
mercial tools now available. Among the most successful verification methods for
finite-state systems is bounded model checking (BMC), as suggested by Groote et
al. in [13] and by Biere et al. in [3]. The idea of BMC is to encode the next-state
relation of a system as a propositional formula, to unroll this to some given finite
depth k, and to augment it with a corresponding finite unravelling of the tableau
of (the negation of) a temporal formula in order to obtain a propositional SAT
problem which is satisfiable if and only if an error trace of length k exists. En-
abled by the impressive gains in performance of propositional SAT checkers in
recent years, BMC can now be applied to very large finite-state designs.

Though originally formulated for discrete transition systems, the concept of
BMC also applies to hybrid discrete-continuous systems. The BMC formulae
arising from such systems comprise complex Boolean combinations of arithmetic
� This work has been partially supported by the German Research Council (DFG)

as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 172–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Stochastic Satisfiability Modulo Theory 173

constraints over real-valued variables, thus entailing the need for satisfiability-
modulo-theory (SMT) solvers over arithmetic theories to solve them. Such SMT
procedures are thus currently in the focus of the SAT-solving community (e.g.,
[10]), as is their application to and tailoring for BMC of hybrid system (e.g., [2]).

The scope of these procedures, however, is confined to purely Boolean queries
of the form “can the system ever exhibit an undesirable behavior?”, whereas
requirements for safety-critical systems frequently take the form of bounds on
error probability, requiring the residual probability of engaging into undesir-
able behavior to be below an acceptable threshold. Automatically answering
such queries requires, first, models of hybrid behavior that are able to represent
probabilistic effects like component breakdown and, second, algorithms for state
space traversal of such hybrid models.

In the context of hybrid systems augmented with probabilities, a wealth of
models has been suggested by various authors. These models vary with respect
to the degree of continuous dynamics, the support for random phenomena, and
the degree to which they support non-determinism and compositionality. The
cornerstones are formed by probabilistic hybrid automata, where state changes
forced by continuous dynamics may involve discrete random experiments [20],
piecewise deterministic Markov processes [8], where state changes may happen
spontaneously in a manner similar to continuous-time Markov processes, and
stochastic differential equations [1], where, like in Brownian motion, the ran-
dom perturbation affects the dynamics continuously. In full generality, stochas-
tic hybrid system (SHS) models can cover all such ingredients [16,6]. While such
models have a vast potential of application, results related to their analysis and
verification are limited, and often based on Monte-Carlo simulation [4,15]. For
certain subclasses of piecewise deterministic Markov processes, of probabilistic
hybrid automata, and of stochastic hybrid systems, reachability probabilities can
be approximated (e.g. [20,7,17]).

In this paper, we present a technology that saves the virtues of SMT-based
BMC, namely the fully symbolic treatment of hybrid state spaces, while advanc-
ing the reasoning power to probabilistic models and requirements. While the
technique is more general, the current paper focuses on depth-bounded reachabil-
ity of discrete-time probabilistic hybrid automata. With respect to the stochastic
dynamics considered this model is very simple and thus constitutes a good at-
tack point to pioneer effective model checking techniques for probabilistic hybrid
systems, harvesting recent advances in depth-bounded reachability analysis for
ordinary hybrid systems. Albeit being simple, the model of probabilistic hybrid
automata has interesting practical applications [20].

In order to achieve this goal, we first define stochastic satisfiability modulo
theory (SSMT) as the unification of stochastic propositional satisfiability [18]
and satisfiability modulo theory. We proceed in Section 3 by defining discrete-
time probabilistic hybrid automata. Section 4 formalizes the SSMT encoding of
their probabilistic bounded reachability properties. Together with an extension
of SMT solving to SSMT solving explained in Section 5, this symbolic encoding
provides fully symbolic analysis of probabilistic bounded reachability problems

174 M. Fränzle, H. Hermanns, and T. Teige

of probabilistic hybrid automata without resorting to approximation by inter-
mediate finite-state abstractions.

2 Stochastic Satisfiability Modulo Theories

The satisfiability modulo theories (SMT) problem is a decision problem for logical
formulae wrt. combinations of background theories. In this section we extend the
SMT problem for arithmetic theories over the real numbers to support random-
ized quantification over discrete variables as known from stochastic satisfiability
(SSAT) [18] and stochastic constraint programming (SCP) [5].

Let ϕ be an SMT formula in conjunctive normal form (CNF) over some
quantifier-free arithmetic theory T . I.e., ϕ is a logical conjunction of clauses,
and a clause is a logical disjunction of (atomic) arithmetic predicates from T ,
as in ϕ = (x > 0 ∨ 2a+ 4b ≥ 3) ∧ (y > 0 ∨ 2a+ 4b < 1). An SSMT problem

Φ = Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) : ϕ

is specified by a prefix Q1x1 ∈ dom(x1) . . .Qnxn ∈ dom(xn) binding the vari-
ables xi to the quantifier Qi,1 and an SMT formula ϕ, also called matrix. We
require that the domains dom(x) of quantified variables x are finite (and thus
discrete). A quantifier Qi, associated with variable xi, is either existential, de-
noted as ∃, or randomized, denoted as

R

di where di is a discrete probability
distribution over dom(xi). The value of a variable xi bound by a random-
ized quantifier (randomized variable for short) is determined stochastically by
the corresponding distribution di, while the value of an existentially quantified
variable can be set arbitrarily. We usually denote such a probability distribu-
tion di by a list 〈(v1, p1), . . . , (vm, pm)〉 of value pairs, where pj is understood
as the probability of setting variable xi to vj . The list satisfies vj 	= vk for
j 	= k, ∀j : pj > 0,

∑m
j=1 pj = 1, and dom(xi) = {v1, . . . , vm}. For instance,R

{(0,0.2),(1,0.5),(2,0.3)}x ∈ {0, 1, 2} means that the variable x is assigned the value
0, 1, or 2 with probability 0.2, 0.5, and 0.3, respectively.

The semantics of an SSMT problem is defined by the maximum probability
of satisfaction. Intuitively, for an SSMT formula Φ = ∃x1 ∈ dom(x1)

R

d2x2 ∈
dom(x2) ∃x3 ∈ dom(x3)

R

d4x4 ∈ dom(x4) : ϕ determine the maximum proba-
bility s.t. there is a value for x1 s.t. for random values of x2 there is a value for
x3 s.t. for random values of x4 the SMT formula ϕ is satisfiable. (As standard,
an SMT formula ϕ (in CNF) is satisfiable iff there exists a valuation σ of the
variables in ϕ s.t. each clause is satisfied under σ, i.e., iff at least one atom in
each clause is satisfied under σ. Otherwise, ϕ is unsatisfiable.) More formally,
the maximum probability of satisfaction Pr(Φ) of an SSMT formula Φ is defined
recursively by the following rules where ϕ denotes the matrix.

1. P r(ϕ) = 0 if ϕ is unsatisfiable, and 1 otherwise.
2. P r(∃xi ∈ dom(xi) . . . Qnxn ∈ dom(xn) : ϕ)

= maxv∈dom(xi) Pr(Qi+1xi+1 ∈ dom(xi+1) . . . Qnxn ∈ dom(xn) : ϕ[v/xi]).

1 Not all variables occurring in the formula ϕ need to be bound by a quantifier.

176 M. Fränzle, H. Hermanns, and T. Teige

refers to the state immediately thereafter. We demand that assignments are
uniquely defined for each state satisfying the guard, i.e. require

1. Definedness: gt ⇒ ∃x′1, . . . , x′n : asgnt,σ′ and
2. Determinacy:
gt ⇒ ∀x′1, . . . , x′n, y′1, . . . , y′n :

(
asgnt,σ′ ∧ asgnt,σ′ [y′

1, . . . , y
′
n/x′

1, . . . , x
′
n]

⇒ ∀i ≤ n : x′
i = y′

i

)

to be valid for each t ∈ Trans and σ′ ∈ Σ.
– a family init = (initσ)σ∈Σ of initial state predicates, where each initσ is a
T -predicate over R which constrains the valuations of the continuous state
components when control resides initially in the discrete location σ.3 For
technical reasons, we demand that for each σ ∈ Σ, there is at most one
x ∈ R → R which satisfies the predicate initσ.

The automaton engages in a sequence of steps coinciding to its transitions,
thereby selecting among the enabled transitions and assigning a sequence of
valuations to the continuous variables which is consistent with the transition
effects. A step can be represented by a tuple (σ,x, t, σ′,x′) consisting of a source
location σ ∈ Σ and a target location σ′, a continuous source state x ∈ (R → R)
and a continuous target state x′ ∈ (R → R), plus a transition t ∈ Trans . Such a
tuple is a step of automaton A iff there is a transition t ∈ Trans with s(t) = σ
such that x satisfies gt and such that asgnt,σ′ is satisfied if x is substituted for
the variables in R and x′ is substituted for the variables in R′. Slightly abus-
ing notation, we will denote the latter fact by x,x′ |= asgnt,σ′ in the sequel. A

run of A is an alternating sequence r = (σ0,x0)
t0→, . . . ,

tn−1→ (σn,xn) of hybrid
states (σi, xi) ∈ Σ × (R → R) and transitions ti ∈ Trans , built from steps of A
grounded in a viable initial state. I.e., x0 satisfies initσ0 and for all i < n, the
tuple (σi,xi, ti, σi+1,xi+1) is a step of A.

In the sequel, we will be interested in the probability of reaching a given
set of undesirable locations within a given number of steps. Owed to the pres-
ence of nondeterminism, this probability measure is well-defined only if consider-
ing a particular policy (scheduler, adversary) that resolves the nondeterminism.
We are interested in the worst-case, i.e., maximum probability of reaching the
undesirable states achieved if ranging over arbitrary policies that may resolve
nondeterminism using randomization, the history, etc. Since we are considering
step-bounded probabilities, we can avoid the explicit introduction of policies,
and instead define the probability of reaching some target state in a set TL of
discrete locations within k steps directly as follows.

Definition 1 (Probabilistic bounded reachability). Given a probabilistic
hybrid automaton A = (Σ,Trans , R, s, p, g, asgn, init), a set of target locations
TL ⊂ Σ, a depth k ∈ N, and a hybrid state (σ,x) ∈ Σ×(R → R), the maximum
probability of reaching the target TL from (σ,x) in at most k steps is denoted
P k

A(σ,x,TL). It is defined recursively over the depth k as follows:

3 A discrete location σ not to be taken initially takes the predicate initσ = false.

Stochastic Satisfiability Modulo Theory 177

P k
A(σ,x,TL) =

⎧
⎪⎨

⎪⎩

1 if σ ∈ TL,

0 if σ �∈ TL ∧ k = 0,

maxt∈Enabled

∑
σ′∈Σ

(
p(t)(σ′) · P k−1

t,σ′

)
if σ �∈ TL ∧ k > 0,

where Enabled = {t ∈ Trans , s(t) = σ,x |= g(t)} and P k
t,σ′ = P k

A(σ′,x′,TL) for
the unique x′ with x,x′ |= asgnt,σ′ .

For an illustration of probabilistic bounded reachability consider the probabilistic
hybrid automaton A from Fig. 2 with TL = {s2}. Then P 0

A(s1, y �→ 1.0,TL) =
0.0, P 1

A(s1, y �→ 1.0,TL) = 0.1, P 2
A(s1, y �→ 1.0,TL) = 0.1 + 0.9 · 0.3 = 0.37,

P 3
A(s1, y �→ 1.0,TL) = 0.1 + 0.9 · (0.3 + 0.7 · 0.3) = 0.559.
Based on the worst-case probability of reaching TL, we define the probabilistic

bounded model checking problem (PBMC, for short) to be the problem of deciding
whether the maximum probability of reaching the undesirable states from an
initial state within a given number of steps lies below a given threshold:

Definition 2 (Probabilistic bounded model checking). Given a proba-
bilistic hybrid automaton A = (Σ,Trans , R, s, p, g, asgn, init), a set of target
locations TL ⊂ Σ, a depth k ∈ N, and a probability threshold x ∈ [0, 1], the
probabilistic bounded model checking problem wrt. target states TL and depth
k is to determine whether max{P k

A(σ,x,TL) | σ ∈ Σ,x |= initσ} ≤ x.

4 Reducing PBMC to SSMT

In order to perform probabilistic bounded model checking (PBMC) we employ
a reduction to stochastic satisfiability modulo theory (SSMT) which general-
izes the propositional SAT encodings for bounded model checking of finite-state
systems [3] and the SMT encodings for BMC of hybrid automata [2,11]. Our
construction proceeds in two phases: First, we generate the matrix of the SSMT
formula. This matrix is an SMT formula encoding all runs of A of the given
length k ∈ N, akin to [2,11]. Thereafter, we add the quantifier prefix encod-
ing the probabilistic and the non-deterministic choices, whereby a probabilistic
choice reduces to a randomized quantifier while a non-deterministic choice yields
an existential quantifier.

Phase 1: Constructing the matrix. Let A = (Σ,Trans, R, s, p, g, asgn, init) be a
discrete-time probabilistic hybrid automaton. In order to encode the runs of A
of some given length k ∈ N by a matrix formula, we proceed as follows:

1. For encoding the discrete state σ ∈ Σ, we take k+1 variables σi, for 0 ≤ i ≤ k,
each with domain Σ. The value of σi coincides with the discrete location which
automaton A resides in during step i.
2. For representing transitions t ∈ Trans , we take k variables ti with domain
Trans , for 1 ≤ i ≤ k. The value of ti encodes the ith move in the run of A.
3. For each continuous state component x ∈ R we take k+1 real-valued variables
xi. The value of xi−1 encodes the value of x before the ith transition in the run
(and thus xi the value thereafter).

178 M. Fränzle, H. Hermanns, and T. Teige

4. The interplay between discrete states and transitions requires that ti implies
σi−1 = s(ti). This can be expressed by the k · |Trans| SSMT clauses in

k∧

i=1

∧

t∈Trans

(
ti = t ⇒ σi−1 = s(t)

)
,

where ϕ ⇒ ψ abbreviates ¬ϕ ∨ ψ.
5. Similarly, enabledness of the transition, i.e. validity of the transition guard
in the pre-state, is enforced through the constraint system

k∧

i=1

∧

t∈Trans

(
ti = t ⇒ gt[xi−1

1 , . . . , xi−1
n /x1, . . . , xn]

)
,

where {x1, . . . , xn} = R. Since gt need not be a simple T -constraint, the above
formula is not necessarily in conjunctive normal form and thus not an SSMT
matrix formula. An equisatisfiable CNF can, however, always be obtained by
introduction of auxiliary variables as in [12].
6. Likewise, assignments are dealt with by

k∧

i=1

∧

t∈Trans

∧

σ′∈Σ

(
(ti = t ∧ σi = σ′) ⇒
asgnt,σ′ [xi

1, . . . , x
i
n/x′

1, . . . , x
′
n][xi−1

1 , . . . , xi−1
n /x1, . . . , xn]

)

Due to the probabilistic choice between variants of the selected transition, the
assignment depends on both the transition ti and the actual target location σi.
7. Finally, we complete the matrix by adding constraints describing the allowable
initial states through the SSMT constraint system

∧
σ∈Σ

(
σ0 = σ ⇒ initσ

)
.

The conjunction of the above formulae yields the matrix of our SSMT formula
encoding the PBMC problem. Satisfying valuations of the matrix thus obtained
are in one-to-one correspondence to the runs of A of length k [11]. As in BMC [3],
satisfaction of temporal properties on all runs of depth k can thus be checked
by adding to the formula the k-fold unrolling of a tableaux of the (negated)
property, then checking the resulting formula for unsatisfiability. Using standard
techniques from predicative semantics [14], the translation scheme can be ex-
tended to both shared variable and synchronous message-passing parallelism,
thereby yielding formulae of size linear in the number of parallel components.

Phase 2: Encoding choices. Let ϕ be the matrix corresponding to the conjunction
of the above formulae. As each non-deterministic choice corresponds to selecting
a transition while each probabilistic choice amounts to selecting an actual target
location, we generate the following SSMT formula:

8. An SSMT formula ψ = ψ1 encoding the probabilitsic and non-deterministic
choices along the run is obtained by alternating the quantifiers consistently with
the alternation of choices. To permit a homogeneous randomized quantification
over all transitions, we first select a finite set O = {o1, . . . , on} of choice options
for randomized choices, a probability distribution pO : O → (0, 1] over O, and a
function pd : Trans ×Σ → 2O such that these together satisfy

∀t ∈ Trans , σ ∈ Σ :
∑

pc∈pd(t,σ) pO(pc) = p(t)(σ) and

∀t ∈ Trans , σ1, σ2 ∈ Σ : pd(t, σ1) ∩ pd(t, σ2) = ∅ .

Stochastic Satisfiability Modulo Theory 179

Such a set O and probability distribution pO do always exist. The worst-case
cardinality of O is the number |{p(t)(σ) | t ∈ Trans , σ ∈ Σ}| of different tran-
sition probabilities, but can be considerably smaller due to different probability
constants being the sums of each other.

Now, we encode the non-deterministic choices by existential quantification
over the transitions in Trans and the probabilistic choices by randomized quan-
tification over O. The latter quantifiers choose an auxiliary variable pci in each
step which in turn is mapped to the target location σi by means of the mapping
pd. Therefore, ψi is defined recursively as follows: for 1 ≤ i < k,

ψi = ∃ti ∈ Trans :

R

〈(o1,pO(o1)),...,(on,pO(on))〉pci ∈ O : ψi+1 , and

ψk = ϕ ∧
n∧

k=1

∧

t∈Trans

∧

σ∈Σ

[(ti = t ∧ σi = σ) ⇒
∨

o∈pd(t,σ)

pci = o] .

9. In order to solve the PBMC problem, it remains to choose the initial state
maximizing the probability. This can be accomplished by existential quantifica-
tion, yielding the formula PBMC k

A,TL = ∃σ0 ∈ Σ : ψ. Given the structural sim-
ilarity between probabilistic bounded reachability and quantification in SSMT,
this reduction is correct in the following sense:

Proposition 1 (Correctness of reduction). Pr(PBMC k
A,TL) ≤ x iff A sat-

isfies the PBMC problem wrt. threshold x, depth k, and target states TL.

5 Algorithm for SSMT

In this section we present our algorithm for calculating the maximum probability
of satisfaction of an SSMT formula. More precisely, for a given SSMT formula
Φ and a lower and upper threshold tl, tu ∈ [0, 1] with tl ≤ tu, the algorithm
returns a witness value p ≤ Pr(Φ) s.t. p > tu iff Pr(Φ) > tu, a value p < tl iff
Pr(Φ) < tl, or otherwise (i.e., tl ≤ Pr(Φ) ≤ tu) the value p = Pr(Φ). It computes
the exact value of Pr(Φ) when taking tl = 0 and tu = 1, but whenever we are
interested in a particular target probability x, it saves computational effort by
not being forced to be exact about probabilities different from x = tl = tu. As a
proof procedure, we generalize to SSMT the extended Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [9] for SSAT described in [18].

Our SSMT algorithm consists of three layers. The lowermost layer is a theory
solver TS for reasoning about a conjunctive system over theory T . As the middle
layer, an SMT solver for disjunctive systems over T employs the theory solver
TS. Finally, the SSMT solver is an extension of the SMT layer to deal with
existential and randomized quantification.

Theory layer. As in SAT-modulo-theory solving, the theory solver TS decides
whether a conjunctive system M of atomic predicates from T is satisfiable over
T . Furthermore, we support theory solvers which can deduce new information
from the given facts in the form of forward inference, but do not require this

180 M. Fränzle, H. Hermanns, and T. Teige

functionality to be present or even complete. We denote these capabilities of the
theory solver, which following the SMT tradition we assume as given, by three
deduction rules:

M −→TS sat iff M is satisfiable.
M −→TS unsat iff M is unsatisfiable.
M −→TS M · 〈a〉 only if M is satisfiable and M |= a.

SMT layer. The SMT layer is described by the following rules. For more details
we refer the reader to, e.g., the survey in [19]. In the sequel, let ϕ be an SMT
formula over T in CNF. A choice asserts a theory atom occurring in ϕ or its
negation to enforce progress in the backtracking search (rule (1)).

a ∈ c ∈ ϕ, b = a or b = ¬a, b /∈ M

(ϕ, M) −→SMT (ϕ, M · 〈|, b〉) (1)

Here, M denotes the list of all asserted atoms and a ∈ c ∈ ϕ means that there
is a theory atom a occurring in some clause c of ϕ. In order to facilitate (non-
chronological) backtracking, in addition, we intersperse a special marker symbol
| into M . When we consider M as a conjunctive system (for the theory solver
TS) we neglect the marker symbols | in M .

The rules (2) (unit propagation) and (3) (theory propagation) are applied if
new facts can be deduced. The deduced atoms are added to M .

(a1 ∨ . . . ∨ am) ∈ ϕ, ai /∈ M,¬ai /∈ M,∀j ∈ N≤m with j �= i : ¬aj ∈ M

(ϕ, M) −→SMT (ϕ, M · 〈ai〉) (2)

M −→TS M · 〈a〉, a /∈ M,∃c ∈ ϕ : a ∈ c or ¬a ∈ c

(ϕ, M) −→SMT (ϕ, M · 〈a〉) (3)

If a conflict occurs, i.e. the list of asserted atoms has become infeasible, an (small
or even minimal) reason for this conflicting situation can be extracted. To prevent
the solver from revisiting the same or a similar conflict, this information can be
encoded as an additional, implied clause, a.k.a. conflict clause, and added to the
formula. This is referred to as conflict-driven clause learning (rule (4)).

M = M ′ · 〈|〉 · M ′′, a1, . . . , ak−1 ∈ M ′, ak ∈ M ′′, 〈a1, . . . , ak〉 −→TS unsat

(ϕ, M) −→SMT (ϕ ∧ (¬a1 ∨ . . . ∨ ¬ak), M)
(4)

Note that there are many different techniques for (efficient) generation of such an
infeasible subsystem a1, . . . , ak of M . In rule (4), we use the unique implication
point technique in order to enforce progress upon non-chronological backtracking
in rule (5) (cf., e.g., [19]).

To resolve the conflict, the solver non-chronologically backtracks to a previous
node in the search tree while often skipping multiple nodes in the tree. The
backtrack node can be computed by means of the conflict clause as given by
rule (5). Due to the use of unique implication points in conflict clauses, we can
enforce a conflict clause to become unit upon backtracking and do directly assert
the propagated atom.

Stochastic Satisfiability Modulo Theory 181

M = M ′ · 〈|〉 · M ′′, c ∈ ϕ, a ∈ c,¬a ∈ M ′′,∀a′ ∈ c with a′ �= a : ¬a′ ∈ M ′

(ϕ, M) −→SMT (ϕ, M ′ · 〈a〉) (5)

If each clause in ϕ contains at least one asserted atom and the conjunction of
all asserted atoms is satisfiable then the SMT formula is satisfiable.

M −→TS sat,∀c ∈ ϕ ∃a ∈ c : a ∈ M

(ϕ, M) −→SMT sat
(6)

If a conflict cannot be resolved, i.e. there is no choice point to be revoked, the
formula is unsatisfiable.

|/∈ M, M −→TS unsat

(ϕ, M) −→SMT unsat
(7)

SSMT layer. Given the rules of the SMT layer, we construct the SSMT algo-
rithm. Let Φ = Pre : ϕ be an SSMT formula. W.l.o.g., we assume that all possi-
ble value assignments for quantified variables of the SSMT formula Φ are encoded
as clauses in the matrix of Φ. More formally, forall (Qx ∈ {v1, . . . , vk}) ∈ Pre
there is a clause (x = v1 ∨ . . . ∨ x = vk) ∈ ϕ. By this information, the domain
emptiness of a quantified variable will be detected by the SMT solver. An SSMT
deduction starts from a state (Pre, ϕ,M, tl, tu), where Φ := Pre : ϕ is an SSMT
formula, M is a list of asserted atoms, and tl, tu are the lower and upper target
thresholds. The deduction yields either a new proof state of the same structure
or a pair (p, ϕ′) of a satisfaction probability and a new matrix, in which case
the deduction terminates. If (Pre, ϕ,M, tl, tu) −→∗

SSMT (p, ϕ′) then p > tu iff
Pr(Φ) > tu under M , i.e. iff Pr(Pre : (ϕ ∧M)) > tu, and analogously p < tl
iff Pr(Φ) < tl under M , and otherwise p = Pr(Φ) under M . The new matrix
ϕ′ ⊇ ϕ potentially contains learned clauses, i.e. ∀c ∈ ϕ′ − ϕ : (ϕ |= c).

The SSMT layer consists of the following rules. To deal with quantified vari-
ables, we branch the search by assigning values and combine the results according
to the semantics of Section 2 (rules (8) and (9)). For the branching SSMT calls
we update the target thresholds correspondingly. I.e., in case of an existentially
quantified variable we transmit tl, tu for the branch x = v and max(tl, p1), tu for
the remaining subtree, since we can neglect probabilities of the remaining sub-
tree less than the already computed value p1 for branch x = v. For randomized
variables, we take the probability pv for the value v and the maximum possible
remaining probability pr =

∑
v′∈D−{v},(v′,pv′)∈d pv′ for all other values v′ 	= v

into account. I.e., the lower and upper target thresholds for the call where x is
assigned to v are (tl − pr)/pv and tu/pv, resp., since if tl − pr cannot be reached
by branch x = v then tl cannot be reached at all. If tu is already exceeded by
branch x = v then we already exceeded the upper target threshold, which we
later will exploit within pruning rules wrt. the threshold parameters. The tar-
get thresholds for all remaining branches decrease by the computed probability
pv · p1 for x = v.

|D| ≥ 2, v ∈ D,
(Pre,ϕ, M · 〈x = v〉, tl, tu) −→∗

SSMT (p1, ϕ1), consistent(ϕ1, M),
(∃x ∈ D \ {v} · Pre,ϕ1, M · 〈x �= v〉, max(tl, p1), tu) −→∗

SSMT (p2, ϕ2)

(∃x ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (max(p1, p2), ϕ2)
(8)

182 M. Fränzle, H. Hermanns, and T. Teige

where consistent(ϕ1,M) := (¬∃c ∈ ϕ1 : ∀a ∈ c : M · 〈a〉 −→TS unsat) indicates
whether the new matrix ϕ1 is consistent with the list M of asserted atoms.

|D| ≥ 2, v ∈ D, (v, pv) ∈ d, pr =
∑

v′∈D−{v},(v′,pv′)∈d pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p1, ϕ1), consistent(ϕ1, M),

(

R

dx ∈ D \ {v} · Pre,ϕ1, M · 〈x �= v〉, tl − pv · p1, tu − pv · p1) −→∗
SSMT (p2, ϕ2)

(

R

dx ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (pv · p1 + p2, ϕ2)
(9)

If it turns out that the upper target threshold tu is already reached by the branch
under investigation, then we can save visiting any other branch and instead
return the positive result immediately via rules (10) and (11). If the remaining
branches have insufficient probability mass to reach the lower target threshold
tl then we return the negative result by rule (12) without further exploration.
These pruning rules generalize the thresholding rules for the propositional case
from [18].

v ∈ D, (Pre,ϕ, M · 〈x = v〉, tl, tu) −→∗
SSMT (p, ϕ′),

consistent(ϕ′, M), p > tu or |D| = 1

(∃x ∈ D · Pre,ϕ, M, tl, tu) −→SSMT (p,ϕ′)
(10)

v ∈ D, (v, pv) ∈ d, pr = 0 +
∑

v′∈D−{v},(v′,pv′)∈d pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p,ϕ′),

consistent(ϕ′, M), pv · p > tu or |D| = 1

(
R

dx ∈ D · Pre,ϕ, M, tl, tu) −→SSMT (pv · p, ϕ′)
(11)

|D| ≥ 2, v ∈ D, (v, pv) ∈ d, pr =
∑

v′∈D−{v},(v′,pv′)∈d pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p,ϕ′),

consistent(ϕ′, M), tl − pv · p > pr

(

R

dx ∈ D · Pre,ϕ, M, tl, tu) −→SSMT (pv · p, ϕ′)
(12)

It could also happen that after the first SSMT call (for x = v), all remaining
branches for x lead to probability 0. This is indicated by the returned new matrix
ϕ′, in particular by some learned conflict clause in ϕ′, which is inconsistent under
the list M of asserted atoms (without assignment x = v). In this case, rules (13)
and (14) save unnecessary visits of the remaining branches.

v ∈ D, (Pre, ϕ, M · 〈x = v〉, tl, tu) −→∗
SSMT (p,ϕ′), inconsistent(ϕ′, M)

(∃x ∈ D · Pre, ϕ, M, tl, tu) −→SSMT (p,ϕ′)
(13)

v ∈ D, (v, pv) ∈ d, pr = 0 +
∑

v′∈D−{v},(v′,pv′)∈d pv′ ,

(Pre,ϕ, M · 〈x = v〉, (tl − pr)/pv, tu/pv) −→∗
SSMT (p,ϕ′),

inconsistent(ϕ′, M)

(

R

dx ∈ D · Pre,ϕ, M, tl, tu) −→SSMT (pv · p, ϕ′)
(14)

where inconsistent(ϕ′,M) := ¬consistent(ϕ′,M) means that at least one clause
in the new matrix ϕ′ is inconsistent with M which forces the solver to backtrack
to a previous level (thereby avoiding computation of all other possible branches of
x) while keeping the already calculated probability. Note that chained executions

Stochastic Satisfiability Modulo Theory 183

of that rule, which occur if the returned matrix ϕ′ is also inconsistent on some
previous levels, correspond to non-chronological backtracking.

All of the aforementioned SSMT rules are designed to deal with existential
and randomized quantification. The following rules embed the SMT layer into
the SSMT algorithm. If all quantified variables have a definite value, i.e. the
current prefix is empty, we can execute the choice rule (15).

(ϕ, M) −→SMT (ϕ, M · 〈|, a〉)
(∅, ϕ, M, tl, tu) −→SSMT (∅, ϕ, M · 〈|, a〉, tl, tu)

(15)

If the SMT solver can propagate new facts from the matrix ϕ and the list M of
asserted atoms, we can do the same in the SSMT layer. I.e., both unit propagation
and theory propagation are lifted to SSMT by rule (16).

(ϕ, M) −→SMT (ϕ, M · 〈a〉)
(Pre,ϕ, M, tl, tu) −→SSMT (update(Pre,a), ϕ, M · 〈a〉, tl, tu)

(16)

where update(Pre, a) prunes the domains dom(x) in the prefix Pre of the quan-
tified variables x corresponding to the theory atom a. We do not require that
update is a complete (yet a sound) pruning procedure, i.e., potentially not all
but only some non-solutions are removed from dom(x). E.g., if a = x > 3 then
the updated domain of x is {vx ∈ dom(x) : vx > 3} or a superset thereof in case
of incomplete pruning.

A conflict clause learned by the SMT solver is also valid within the SSMT
framework, i.e. conflict-driven clause learning is supported by rule (17). Note
that implied clauses can be added at any point in the search, in particular even
if the current prefix is non-empty.

(ϕ, M) −→SMT (ϕ ∧ c, M)

(Pre,ϕ, M, tl, tu) −→SSMT (Pre,ϕ ∧ c, M, tl, tu)
(17)

Rule (18) enables the SSMT solver to backjump within the theory part of the
search tree.

(ϕ, M · 〈|〉 · M ′) −→SMT (ϕ, M)

(∅, ϕ, M · 〈|〉 · M ′, tl, tu) −→SSMT (∅, ϕ, M, tl, tu)
(18)

Since a marker symbol | is added to the list of asserted atoms only if there is
an empty prefix (cf. rule 15), i.e. if all quantified variables are assigned to a
value, rule (18) guarantees that value assignments of quantified variables will
not be removed from the list of asserted atoms (i.e., M ′ does not contain such
assignments).

If a solution of the matrix ϕ is found by the SMT layer and the prefix Pre
does not contain randomized quantifiers then the probability 1 is returned by
rule (19), since for the remaining existentially quantified variables in Pre there
is at least one satisfying branch. However, if some randomized quantifiers are
included in Pre, we may not return the probability 1 for the entire subtree, since

184 M. Fränzle, H. Hermanns, and T. Teige

the initial domain for some randomized variables could be pruned (by rule (16)),
and potentially the probability of satisfaction for that subtree could be less 1.

(ϕ, M) −→SMT sat, (

R

dx ∈ D) /∈ Pre

(Pre,ϕ, M, tl, tu) −→SSMT (1, ϕ)
(19)

If the SMT solver finds out that the matrix ϕ is unsatisfiable under M then
rule (20) may return the satisfaction probability 0 even if the prefix Pre is
non-empty, since no assignment to the quantified variables could counterfeit the
unsatisfiability of ϕ under M .

(ϕ, M) −→SMT unsat

(Pre,ϕ, M, tl, tu) −→SSMT (0, ϕ)
(20)

The above unification of DPLL-based SSAT solving with of SMT is sound and
complete in the following sense.

Proposition 2 (Completeness and soundness). Given an SSMT formula
Φ = Pre : ϕ and the lower and upper probability thresholds tl, tu, we have:

1. The deduction relation −→SSMT is terminating when iteratively applied to
(Pre, ϕ, ∅, tl, tu) as start of the deduction sequence. Each terminal state x
has the form x = (p, ϕ′) with p ∈ [0, 1] and ϕ′ being an SMT formula.

2. If (Pre, ϕ, ∅, tl, tu) −→∗
SSMT (p, ϕ′) then p > tu if Pr(Φ) > tu, and p < tl if

Pr(Φ) < tl, and p = Pr(Φ) if tl ≤ Pr(Φ) ≤ tu.

Example of the SSMT algorithm. Consider target thresholds tl = 0.45 and
tu = 0.52 and formula Φ = ∃x ∈ {0, 1} R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1} : (x >
0 ∨ 2a + 4b ≥ 3) ∧ (y > 0 ∨ 2a + 4b < 1) from Fig. 1. The initial proof
state is (∃x ∈ {0, 1} R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, ∅, 0.45, 0.52), where ϕ = (x >
0 ∨ 2a + 4b ≥ 3) ∧ (y > 0 ∨ 2a + 4b < 1). Only rules (8), (10), or (13)
are applicable, each involving a choice over the domain of the leading quan-
tifier. To determine the rule to apply, we choose the value 0 for x and obtain
(

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, 〈x = 0〉, 0.45, 0.52). Then, (16) gives us the theory
atom 2a + 4b ≥ 3, i.e. we go to (

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, 〈x = 0, 2a + 4b ≥
3〉, 0.45, 0.52). Here, we select value 0 with probability 0.6 for the randomized
variable y whence the maximum possible remaining probability is 0.4. This gives
state (∅, ϕ,M = 〈x = 0, 2a+4b ≥ 3, y = 0〉, t′l, t′u) where t′l = (0.45−0.4)/0.6 and
t′u = 0.52/0.6. This triggers the deduction of 2a+ 4b < 1 again by rule (16). We
thus encounter a conflict since the two theory atoms are inconsistent, and learn,
e.g., the conflict clause (x 	= 0 ∨ y 	= 0). Hence, (∅, ϕ,M, t′l, t

′
u)−→∗

SSMT (0, ϕ′)
where ϕ′ = ϕ ∧ (x 	= 0 ∨ y 	= 0). By rule (12), this yields (

R

〈(0,0.6),(1,0.4)〉y ∈
{0, 1}, ϕ, 〈x = 0〉, 0.45, 0.52)−→SSMT (0, ϕ′) since tl can no longer be attained
due to 0.45 − (0.6 · 0) > 0.4. Therefore, neither rule (10) nor rule (13) are ap-
plicable wrt. the initial situation. We thus try to establish the preconditions
of the remaining rule (8), i.e. we investigate the other branch for x, continu-
ing from proof state (∃x ∈ {1} R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ′, 〈x 	= 0〉, 0.45, 0.52).
Selecting value 1 for x by rule (10) and value 0 for y by the choices open-
ing rules (11) and (12) leads to a satisfying branch, i.e. (∅, ϕ′, 〈x 	= 0, x = 1, y =

Stochastic Satisfiability Modulo Theory 185

0, 2a+4b < 1〉, (0.45−0.4)/0.6, 0.52/0.6)−→SSMT (1, ϕ′). Then, rule (11) matches
and we obtain (

R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ′, 〈x 	= 0〉, 0.45, 0.52)−→SSMT (0.6, ϕ′)
since the computed satisfaction probability 0.6 exceeds tu = 0.52. Finally, ap-
plication of rule (8) yields (∃x ∈ {0, 1} R

〈(0,0.6),(1,0.4)〉y ∈ {0, 1}, ϕ, ∅, 0.45, 0.52)
−→SSMT (0.6, ϕ′). Since the computed probability bound p = 0.6 is greater than
tu = 0.52, the maximum probability of satisfying Φ must exceed threshold 0.52.
The thus computed value p is just a lower bound of Pr(Φ) (which is 1, cf. Fig. 1),
but sufficient as a witness of probabilitistic satisfaction.

6 Conclusion and Future Work

This paper has given a detailed account of a fully symbolic encoding of proba-
bilistic bounded reachability problems of discrete-time probabilistic hybrid au-
tomata, together with a generalized SMT procedure permitting the symbolic
analysis of that encoding. Together, the two provide the germs of fully sym-
bolic techniques for analyzing probabilistic hybrid systems without resorting to
approximation by intermediate finite-state abstractions, thus potentially enhanc-
ing accuracy and scalability of the analysis algorithms. Implementation of these
algorithms by means of an extension of the iSAT solver [12] with randomized
quantifiers and the pertinent deduction rules has recently commenced, with a
first prototype being operational, see http://sisat.gforge.avacs.org/.

References

1. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley -
Interscience (1974)

2. Audemard, G., Bozzano, M., Cimatti, A., Sebastiani, R.: Verifying industrial hy-
brid systems with MathSAT. BMC, ENTCS 119, 17–32 (2004)

3. Biere, A., Cimatti, A., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

4. Blom, H.A.P., Krystul, J., Bakker, G.J.: A particle system for safety verification
of free flight in air traffic. In: Decision and Control, pp. 1574–1579. IEEE, Los
Alamitos (2006)

5. Bordeaux, L., Samulowitz, H.: On the stochastic constraint satisfaction framework.
In: SAC, pp. 316–320. ACM Press, New York (2007)

6. Bujorianu, L., Lygeros, J.: Toward a general theory of stochastic hybrid systems.
In: Stochastic Hybrid Systems: Theory and Safety Critical Applications, LNCIS,
vol. 337, pp. 3–30 (2006)

7. Bujorianu, M.L., Lygeros, J.: Reachability questions in piecewise deterministic
Markov processes. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623,
pp. 126–140. Springer, Heidelberg (2003)

8. Davis, M.: Markov Models and Optimization. Chapman & Hall, London (1993)
9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.

Comm. of the ACM 5, 394–397 (1962)
10. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,

T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

186 M. Fränzle, H. Hermanns, and T. Teige

11. Fränzle, M., Herde, C.: HySAT: An efficient proof engine for bounded model check-
ing of hybrid systems. Formal Methods in System Design 30, 179–198 (2007)

12. Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient Solving of
Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure.
Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)

13. Groote, J.F., Koorn, J.W.C., van Vlijmen, S.F.M.: The Safety Guaranteeing Sys-
tem at Station Hoorn-Kersenboogerd. In: Conference on Computer Assurance, pp.
57–68. National Institute of Standards and Technology (1995)

14. Hehner, E.C.R.: Predicative programming. Comm. of the ACM 27, 134–151 (1984)
15. Hespanha, J.P.: Polynomial stochastic hybrid systems. In: Morari, M., Thiele, L.

(eds.) HSCC 2005. LNCS, vol. 3414, pp. 322–338. Springer, Heidelberg (2005)
16. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems.

In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173.
Springer, Heidelberg (2000)

17. Koutsoukos, X.D., Riley, D.: Computational methods for reachability analysis of
stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 377–391. Springer, Heidelberg (2006)

18. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean satisfiability. Jour-
nal of Automated Reasoning 27(3), 251–296 (2001)

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theo-
ries: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

20. Sproston, J.: Model Checking of Probabilistic Timed and Hybrid Systems. PhD
thesis, University of Birmingham (2000)

A Counterexample-Guided Approach to

Parameter Synthesis
for Linear Hybrid Automata

Goran Frehse1, Sumit Kumar Jha2, and Bruce H. Krogh3

1 Verimag (UJF-CNRS-INPG), 2, av. de Vignate, 38610 Gières, France
goran.frehse@imag.fr

2 Computer Science Department, Carnegie Mellon University
3 ECE Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

jha@cs.cmu.edu, krogh@ece.cmu.edu

Abstract. Our goal is to find the set of parameters for which a given
linear hybrid automaton does not reach a given set of bad states. The
problem is known to be semi-solvable (if the algorithm terminates the
result is correct) by introducing the parameters as state variables and
computing the set of reachable states. This is usually too expensive, how-
ever, and in our experiments only possible for very simple systems with
few parameters. We propose an adaptation of counterexample-guided
abstraction refinement (CEGAR) with which one can obtain an under-
approximation of the set of good parameters using linear programming.
The adaptation is generic and can be applied on top of any CEGAR
method where the counterexamples correspond to paths in the concrete
system. For each counterexample, the cost incurred by underapproximat-
ing the parameters is polynomial in the number of variables, parameters,
and the length of counterexample. We identify a syntactic condition for
which the approach is complete in the sense that the underapproxima-
tion is empty only if the problem has no solution. Experimental results
are provided for two CEGAR methods, a simple discrete version and
iterative relaxation abstraction (IRA), both of which show a drastic im-
provement in performance compared to standard reachability.

1 Introduction

The admissible behaviors of linear hybrid automata (LHA) are determined by
sets of linear constraints. The parameters in these constraints represent either
physical constants or values chosen by the designer. When the LHA does not
satisfy the design specifications, the latter constraints can be adjusted to elimi-
nate the undesirable behaviors. This paper concerns this design problem in the
context of reachability specifications: Given a parameterized LHA, determine
the set of design parameters, called good parameters, for which no bad locations
can be reached.

The parameter design problem for LHA was formulated and solved by Hen-
zinger et al. [1], but the proposed solution is tractable for only very simple

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 187–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

188 G. Frehse, S.K. Jha, and B.H. Krogh

systems with few parameters. This paper concerns the extension of verification
techniques to solve the LHA parameter design problem. Our approach leverages
the fact that the feasibility of a given counterexample path corresponds to the
satisfiability of a set of linear constraints over instantiations of the initial and
final values of the continuous variables in each location along the path, along
with variables representing the duration of the continuous state trajectory in
each location. Although this observation does not make the parameter design
problem tractable, because projection of these constraints into the parameter
space is computationally complex and there can be in general an infinite number
of counterexample paths, it does lead to a set of heuristics that make it possible
to efficiently compute underapproximations of the set of good parameters.

The heuristics we propose are integrated into counterexample guided abstrac-
tion refinement (CEGAR) [2]. In a standard CEGAR loop, a discrete abstraction
of the system is used to find a counterexample, which is a path from the initial
states to states considered bad. In a feasibility check, it is then verified whether
this path corresponds to a behavior of the concrete hybrid system or whether
it was a spurious product of the abstraction. If it is spurious, the abstraction is
refined and the loop repeats. If the counterexample corresponds to a concrete
behavior, the system is unsafe. Our adaptation consists of replacing the feasibil-
ity check with an operator that obtains constraints on the parameters that make
the counterexample infeasible. If all counterexamples have been eliminated, the
resulting constraints describe a set of parameters for which the system is safe.
The make-infeasible operator can be implemented approximatively using linear
programming, e.g., obtaining rectangular or octagonal underapproximations of
the good parameters. Its complexity for each counterexample is polynomial in
the number of variables, parameters and the length of the counterexample, com-
pared to exponential complexity of an exact solution. Depending on whether the
number of counterexamples or the number of parameters is the dominating cost
factor, we apply the underapproximation to each path individually or collectively
on sets of paths.

In the general case, the underapproximation may produce an empty set
even though good parameters exist. We identify a condition we call parameter-
monotonicity (intuitively, when parameters function either as lower or upper
bounds but not both), under which octagonal approximations are sufficient to
prevent this from happening.

The entire approach is generic in the sense that it can be applied to any
CEGAR loop in which the counterexamples correspond to paths in the concrete
system (as opposed to sets of paths or transitions). It suffices to replace the
feasibility check with the make-infeasible operator. We provide experimental
results for two different CEGAR implementations: a simple variant of standard
discrete CEGAR, and iterative relaxation abstraction (IRA) [3]. Compared to
the traditional way of synthesizing parameters using reachability as in [1], we
observe a dramatic improvement in speed.

The following section defines the class of LHA with parameters studied in
this paper. Section 3 describes the role of counterexamples in defining the set

A Counterexample-Guided Approach to Parameter Synthesis for LHA 189

of good parameters. Section 4 discusses the special case when the parameters
are monotonic, which means each parameter serves as either an upper or lower
bound throughout the LHA. Section 5 presents a general counterexample-guided
procedure for computing sets of good parameters and Section 6 presents experi-
mental results for two implementations of the procedure. The concluding section
discusses directions for further research.

2 Linear Hybrid Automata with Parameters

We consider linear hybrid automata (LHA) [4] with explicit parameter variables.
An LHA H = (Var , Lab, Loc, Inv, F low,Trans, ini) consists of:

– A finite set of real-valued variables Var = X ∪ P, where X = {x1, . . . , xn} are
the continuous state variables and P = {p1, . . . , pm} are the parameters, which
remain constant. We denote the values of variables with x = (x1, . . . , xn)T

and p = (p1, . . . , pm)T.
– A finite set of labels Lab.
– A finite set of locations Loc. A state (l, x, p) of the automaton consists of a

location l ∈ Loc and real values (x, p) ∈ R
n+m for each of the variables.

– For each location l, Inv(l) ⊆ R
n+m is the set of admissible values of the

variables in the location.
– Flow(l) ⊆ R

n is the set of possible time derivatives (ẋ1, . . . , ẋn)T; the deriva-
tives of the parameters are implicitly zero.

– A finite set of transitions Trans ⊆ Loc × Lab × 2R
2n+m × Loc. A transition

indicates that the system state may jump instantaneously from the transition
source state (l, x, p) to the transition target state (l′, x′, p) if (x, p, x′) ∈ μ,
where μ ⊆ R

2n+m is the transition’s jump relation. We desire a unique
correspondence between sequences of transitions and sequences of labels, so
we require that any location l has at most one outgoing transition for each
label (the general case can be brought to this form by adding labels and
renaming).

– A location ini ∈ Loc is designated as initial location from which all behaviors
must start.

The sets Inv(l) and Flow(l) are specified by conjunctions of linear constraints

aTx + eTp ≤ b, respectively aTẋ ≤ b, (1)

where a, e are vectors of integer coefficients and b is an integer. The jump relation
μ of a transition is specified by a conjunction of linear constraints of the form

aTx + eTp + a′Tx′ ≤ b, (2)

where x denotes the values of the variables before the jump, and x′ denotes the
values after; the values of the parameters do not change. Given a conjunction
C of linear constraints over X and P, we write [[C]] to denote the set of values
of (x, p) (a polyhedron) for which all of the constraints are satisfied. We write

190 G. Frehse, S.K. Jha, and B.H. Krogh

C(p′) to denote the constraints obtained by substituting p with the values in p′,
and call C(p′) infeasible if [[C(p′)]] = ∅.

We define the semantics of a LHA in terms of feasible paths for a given pa-
rameter value p. This is consistent with the semantics in [4] but reformulated
to simplify the use of linear programming. A path π = α0α1 . . . αz−1 is a finite
sequence of labels αi such that the sequence of transitions (li, αi, μi, l

′
i) satisfies

l0 = ini and l′i = li+1 for i = 0, . . . , z − 1 (this defines lz to be the target state
of the last transition). The path is feasible for a given p if there exist vectors
xin

j , xout
j ∈ R

n and scalars δj ∈ R for j = 0, . . . , z such that

– (xin
j , p), (xout

j , p) ∈ Inv(lj),
– (xout

j − xin
j)/δj ∈ Flow(lj),

– for j < z, (xout
j , p, xin

j+1) ∈ μj .

In the above sequence, (lj , xin
j , p) is the state in which the automaton enters

location lj , and (lj , xout
j , p) is the state after letting time elapse for δj units. If

j < z, the automaton leaves lj via the transition identified by αj , and jumps to
the state (lj+1, x

in
j+1, p). For a given path the above constraints can be written as

linear constraints over the 2z(n+1)+m variables of xin
j , xout

j , δj and p. We call
these path constraints and denote them by PathCon(π, p). Expressed in terms of
the path constraints, a counterexample is feasible if [[PathCon(π, p)]] �= ∅, which
can be decided using efficient linear programming techniques [5].

In this paper, we consider reachability problems for LHA. A location l is said
to be reachable if there is a feasible path π = α0α1 . . . αz−1 with lz = l. An LHA
H is said to be safe if none of the locations in a given set of bad locations LB is
reachable. We call a path to a bad location a counterexample, and write CE(H, p)
for the (possibly infinite) set of counterexamples in H for the parameter value
p. Let FCE (H, p) denote the set of feasible counterexamples in H . The system
is safe if and only if FCE (H, p) is empty, i.e., there are no counterexamples
or none of the existing counterexamples is feasible. The extension of CE(H, p)
and FCE (H, p) to sets of parameter values is straightforward. While we have
made some restrictions to our LHA (unique labels) and the reachability problem
(unsafe locations), it is straightforward to bring the general problem (unsafe
states) to this form by relabeling transitions and introducing an error location
reachable by transitions from the unsafe states. We will use the following example
throughout the paper:

Example 1. Consider a buffer tank with steady inflow and with a controllable
outlet valve resulting in a net level increase ẋ = r if the valve is closed, and a net
decrease ẋ = −r if it is open. A controller is supposed to keep the level between
xmin and xmax. The controller never waits longer than time T to check the level
x, and opens (closes) the valve when x > M (x < m).

The LHA model Htank of the controlled system is shown in Fig. 1, where for
simplicity jump constraints of the form x′ = x have been omitted. Htank has
the parameters m, M, T, xmin, and xmax. We assume r to be a given constant
(parameters are not allowed in the flows). The forbidden location is error.

A Counterexample-Guided Approach to Parameter Synthesis for LHA 191

filling
ẋ = r
ṫ = 1
t ≤ T

draining
ẋ = −r
ṫ = 1
t ≤ T

errorini
close

x < m

open
x > M

err
x ≤ xmin

err
x ≥ xmax

start2
m ≤ x ≤ M

t := 0

start1
m ≤ x ≤ M

t := 0

wait
x ≤ M
t := 0

wait
x ≥ m
t := 0

Fig. 1. LHA Htank for the controlled tank example with parameters m, M , T , xmin,
and xmax; r is a given constant since LHA-parameters cannot bound derivatives

Htank has infinitely many counterexamples, a shortest of them being π =
start1 , err , which covers the locations ini, filling and error, and has the fol-
lowing path constraints (some irrelevant ones are omitted):

m ≤ xout
0 ≤ M, xout

0 = xin
1 , tin1 = 0, (jump relation)

xout
1 − xin

1 = rδ0, tout
1 − tin1 = δ0, (flow)

tout
1 ≤ T, (invariant)

xout
1 ≥ xmax. (jump relation)

(3)

�

3 Parameter Synthesis Using Counterexamples

We consider the following good parameters problem: Given an LHA H and a
rectangular parameter domain P0 ⊆ R

m, what is the largest set of parameter
values PG ⊆ P0 for which the hybrid automaton is safe? Recalling that for
a given parameter value p′, the set of feasible counterexamples FCE (H, p′) is
empty exactly if the system is safe, the goal is to compute

PG = {p′ ∈ P0 | FCE(H, p′) = ∅}. (4)

We refer to PG as the good parameters and to PB := P0 \ PG as the bad pa-
rameters. A straightforward solution to (4) is via reachability [1]. The set of
reachable states Reach(H) is obtained by computing successor states until a
fixpoint is reached. Denoting projection onto the parameters (existential quan-
tification over X) with ↓P, the set of good parameters is

PG = P0 \
(
Reach(H) ∩ LB × R

n+m
)↓P . (5)

If Reach(H) is obtained as a finite boolean combination of linear constraints for
each location, PG can be computed exactly using Fourier-Motzkin elimination.

192 G. Frehse, S.K. Jha, and B.H. Krogh

(a) good and bad values (b) underapproximations

Fig. 2. Parameters m and M with feasible paths (for fixed xmax and T)

In all but the most simple cases, however, this is prohibitively expensive for
three reasons. Firstly, the reachability computation taking into account all pa-
rameter values is relatively expensive, since it includes behaviors that will later
be excluded in the final solution. Secondly, the projection operation can be very
expensive if there are many variables. Thirdly, the difference operation is very
expensive if the projection operation produces a disjunction consisting of a large
number of convex sets. In this paper, we try to find good parameters by checking
individual counterexamples and removing from P0 those parameters for which
the counterexamples are feasible. Using projection (Fourier-Motzkin elimination)
onto the parameters, and recalling the definition of FCE , (4) becomes

PG = P0 \ {p′ | ∃π ∈ CE (H, P0) : [[PathCon(π, p′)]] �= ∅}
= P0 \

⋃
π∈CE(H,P0) [[PathCon(π, p)]]↓P .

(6)

Example 2. Recall the buffer tank from Fig. 1 and the counterexample π =
start1 , err with path constraints (3). We can eliminate xin

i , xout
i , tini , tout

i from
the path constraints to obtain m ≤ M ∧ M + rT ≥ xmax. For values of m,
M , T , and xmax that satisfy these inequalities, shown as the shaded region P ′

in Fig. 2(a), the path constraints are feasible and the path is feasible. If we
want the system to be safe, we must choose parameter values that violate these
inequalities, i.e., make the path constraints infeasible, for the above as well as all
other counterexamples (there are infinitely many). For π = start2 , err the path
constraints yield m ≤ M ∧m− rT ≤ xmin, shown as P ′′ in Fig. 2(a). We finally
obtain PG = [[m > M ∨ (M + rT < xmax ∧ m − rT > xmin)]], shown as a solid
outline in Fig. 2(a), when taking into account all counterexamples. �

The method for computing PG suggested by (6) is conceptually similar to (5),
and shares its problems: there may be lots of paths in CE(H, P0) (possibly
infinitely many) and projection is very expensive when there are more than
a few variables. Recall that the dimension of the linear program as well as the
number of constraints of PathCon(π, p) increase linearly with the length of the

A Counterexample-Guided Approach to Parameter Synthesis for LHA 193

counterexample. So the projection entails a cost that is exponential in the num-
ber of variables and the length of the counterexample. The difference operation
also incurs a cost exponential in the number of parameters.

The exact solution being clearly too expensive, we use rectangular or octag-
onal overapproximations of the bad parameters, and carry out the difference
operation on the overapproximation. For a set S of values for the variables of
the path constraints, we write OverAppr P(S) to denote one of the following
overapproximations of S↓P:

Box P(S) =
⋂

i=1,...,m

{p | min
(x,p′)∈S

p′i ≤ pi ≤ max
(x,p′′)∈S

p′′i }, (7)

OctP(S) =
⋂

i,j=1,...,m

{p | min
(x,p′)∈S

p′i−p′j ≤ pi−pj ≤ max
(x,p′′)∈S

p′′i −p′′j } ∩
⋂

i,j=1,...,m

{p | min
(x,p′)∈S

p′i+p′j ≤ pi+pj ≤ max
(x,p′′)∈S

p′′i +p′′j } (8)

These overapproximations are obtained by solving a linear program for each
constraint: in total 2m programs for rectangular, and 2m2 for octagonal overap-
proximations, where m is the number of parameters. The cost of linear program-
ming is polynomial in the number of variables of the path constraints, which is
2(|π|+1)n+m. In total, the cost for obtaining an overapproximation for a single
counterexample is still polynomial.

How these overapproximations should be applied in (6) depends on the dom-
inating cost factor: lots of counterexamples to be checked, or lots of parameters.
If we expect few counterexamples, we overapproximate the projection operation,
but carry out the difference operation faithfully. We refer to this as individual
overapproximation:

P̂G = P0 \
⋃

π∈CE(H,P0)

OverAppr P([[PathCon(π, p)]]). (9)

For each counterexample, the cost of obtaining the overapproximation is poly-
nomial in the number of parameters, since one linear program needs to be solved
for each constraint in the overapproximation. The difference operation incurrs a
cost that is exponential in the number of counterexamples, although we did not
encounter such a worst case in practice. Consequently, this variant is suitable
mainly when a small number of counterexamples is checked.

If the number of counterexamples is excessive, we overapproximate the union
operation, which we refer to as collective overapproximation:

P̂G = P0 \ OverAppr P(
⋃

π∈CE(H,P0)

[[PathCon(π, p)]]). (10)

Here OverApprP is extended to unions of convex sets as follows. For each coun-
terexample, we compute the bounds of the rectangular or octagonal overapprox-
imation and take the worst case, so there is no explicit union operation. Again,
we need to solve a low number of linear programs, but here the complexity of the

194 G. Frehse, S.K. Jha, and B.H. Krogh

difference operation depends only on the number of parameters, not the number
of counterexamples.

Example 3. Applying rectangular individual overapproximation to our buffer
tank example, we obtain P̂G as shown in Fig. 2(b). For rectangular collective
overapproximation we get P̂G = ∅, i.e., we fail to find any good parameter at all.
With octagonal individual overapproximation we incidentally obtain PG exactly,
for collective overapproximation P̂ ′

G as shown in Fig. 2(b).

In the general case, neither (9) nor (10) is complete, that is, (9) or (10) may
return empty sets even though PG is not empty. This makes the chances of find-
ing a sufficiently good set of parameters look pretty slim. But in practice, many
systems do not have an arbitrarily complex set of good parameters, but one with
a particularly simple structure, where octagonal overapproximations turn out to
be complete. We examine this special case closer in the following section.

4 Monotonic Parameters

It turns out that the set of parameters for which a given counterexample is
feasible has a special form if the parameters occur only with one sign (either
positive or negative) in the linear constraints defining the automaton. We show
that the good parameters have a point that is most restrictive, and that any
good point in the parameter space can be relaxed (tightened) toward that point.
As a consequence, octagonal constraints are complete when counterexamples are
overapproximated individually or collectively.

We call a constraint of the form (1) or (2) positive in pi if ei > 0, negative in
pi if ei < 0, and independent of pi if ei = 0, where ei is the coefficient of pi from
the vector e . We call a parameter pi positive (negative) if for all π ∈ CE (H, P0)
with [[PathCon(π, p)]]↓P �= ∅, all active constraints in PathCon(π, p) that are not
independent of the parameter are positive (negative) in the parameter.1 Intu-
itively, a parameter is negative if it is only relevant as an upper bound, and a
positive parameter only as a lower bound. Let psgn be a function over the pa-
rameters with psgn(pi) = 1 (−1) if the LHA is positive (negative) in pi. We call
the parameters monotonic and the LHA parameter-monotonic if all parameters
are positive or negative. A syntactic sufficient condition for a parameter pi be-
ing positive (negative) is that all constraints of invariants and jump relations are
positive (negative) in pi. This is easy to see since the path constraints are made
up of simple instantiations of the constraints of invariants, flows and jump rela-
tions, with the same coefficients for the parameters. Often, a parameter can be
monotonic even though the syntactic condition for monotonicity is not fulfilled
because, although the signs of the coefficients differ for some constraints, they are
the same for all of the active constraints. In general, we may assume parameter-
monotonicity and check for each counterexample whether this assumption is
true. If it is not, we are no longer guaranteed to find a good parameter using
overapproximations, although we may of course still try.
1 We call a constraint active if removing the constraint leads to a strictly larger set.

A Counterexample-Guided Approach to Parameter Synthesis for LHA 195

Example 4. In our buffer tank example, the parameters xmax, T are syntacti-
cally positive, xmin is syntactically negative, and m and M are neither. In the
counterexample π = start1 , err , whose path constraints are given in (3), m is
positive and M is negative. It turns out that this is a useful assumption, even
though m and M also occur with opposite sign on the transitions switching
between filling and draining. �
The following results formalize our discussion of parameter-monotonicity.
Let InfeasibleConeC(p′) be defined for a set of constraints C as the set of p′′

with p′′i ≥ p′i if C is positive in pi, and p′′i ≤ p′i if C is negative in pi. Let
FeasibleConeC(p′) be the set of p′′ with p′′i ≤ p′i if C is positive in pi, and
p′′i ≥ p′i if C is negative in pi.

Lemma 1. Given a set of linear constraints C monotonic in all parameters,
[[C(p′)]] = ∅ implies [[C(p′′)]] = ∅ for all p′′ ∈ InfeasibleConeC(p′). Symmetrically,
[[C(p′)]] �= ∅ implies [[C(p′′)]] �= ∅ for all p′′ ∈ FeasibleConeC(p′).

Proof. We give the proof for InfeasibleConeC(p′); the proof for FeasibleCone(p′)
is symmetric. Assume [[C(p′)]] = ∅, and the constraints in C are negative in pi,
i.e., of the form aTx+eTp ≤ b with ei ≤ 0. Consider any p′′ ∈ InfeasibleConeC(p′).
If [[C(p′′)]] �= ∅, there exists some x′ such that aTx′ + eTp′′ ≤ b for all constraints
in C. We show that this contradicts the hypothesis. According to the definition
of InfeasibleConeC(p′), eTp′ ≤ eTp′′, since p′′i ≤ p′i and ei ≤ 0. Therefore aTx′ +
eTp′ ≤ aTx′ + eTp′′ ≤ b, and (x′, p′) satisfies all constraints in C, which means
[[C(p′)]] �= ∅. ��
Under the assumption that the LHA H is parameter-monotonic, a parameter
pi has the same sign, psgn(pi), in all path constraints that may occur in (6).
Since InfeasibleConeC(p′) is identical for all C with the same parameter sign,
we may simply define InfeasibleConeH(p′) over H using psgn(pi), and similarly
with FeasibleConeH(p′). Using the above result, we now show that if the LHA
is parameter-monotonic, there is a most restrictive and a least restrictive combi-
nation of parameters out of any rectangular domain P , defined component-wise
for parameter pi as

p∗MR,i(P) = max
p′∈P

psgn(pi)p′i, p∗LR,i(P) = min
p′∈P

psgn(pi)p′i. (11)

Example 5. Assuming that in the buffer tank example m is a positive and M a
negative parameter, we get p∗MR(P0) and p∗LR(P0) shown in Fig. 2(b). �

Proposition 1. If an LHA H is parameter-monotonic, then for any p ∈ P0

FCE (H, p∗MR(P0)) ⊆ FCE (H, p) ⊆ FCE (H, p∗LR(P0)).

Proof. Consider any π ∈ FCE (H, p∗MR(P0)). By definition of FCE , π is a coun-
terexample for which [[PathCon(π, p∗MR(P0))]] �= ∅. According to the definition
of p∗MR(P0), any p ∈ P0 is in FeasibleConeH(p∗MR(P0)). With Lemma 1 we get
[[PathCon(π, p)]] �= ∅, and consequently π ∈ FCE (H, p). The argument for p∗LR

is dual. ��

196 G. Frehse, S.K. Jha, and B.H. Krogh

It immediately follows from Prop. 1 that if we substitute the parameters in H
with the value p∗LR(P) to obtain H ′, an LHA without parameters, FCE (H, P) ⊆
FCE (H ′), i.e., H ′ is an overapproximation of H . Working with H ′ may be
cheaper since it has less variables than H ′.

Proposition 2. If the parameters are monotonic and p′ ∈ PG, p′′ ∈ PB, then

InfeasibleConeH(p′) ∩ P0 ⊆ PG and FeasibleConeH(p′′) ∩ P0 ⊆ PB.

Proof. Since p′ ∈ PG, [[PathCon(π, p′)]] = ∅ for all π ∈ CE (H, P0). Accord-
ing to Lemma 1, the same holds for any p′′ ∈ InfeasibleConeH(p′). Therefore
InfeasibleConeH(p′) ∩ P0 ⊆ PG. The argument for FeasibleCone is symmetric.

��
As a straightforward application of Prop. 2, we can use any feasible counterexam-
ples to obtain an overapproximation of PG. Similarly, we can use any infeasible
counterexamples to obtain an underapproximation of PG:

Proposition 3. Given a parameter-monotonic LHA H, a set of zfeas param-
eter valuations p1, . . . , pzfeas such that there exists a πi ∈ FCE(H, pi) for i =
1, . . . , zfeas , and a set of zinfeas parameter valuations p̄1, . . . , p̄zinfeas such that
FCE (H, p̄j) = ∅ for j = 1, . . ., zinfeas , then

P0 ∩
⋃

j

InfeasibleConeH(p̄j) ⊆ PG ⊆ P0 \
⋃

i

FeasibleConeH(pi).

We now show that for a parameter-monotonic LHA with rectangular P0 and
a finite number of counterexamples, collective (and therefore also individual)
overapproximation with octagonal constraints is complete, i.e., the overapprox-
imation is empty iff PG = ∅. This observation follows from the following:

Proposition 4. If H is parameter-monotonic, |CE(H)| is finite and P0 is rect-
angular, p∗MR(P0) ∈ OctP(

⋃
π∈CE(H,P0) [[PathCon(π, p) ∧ p ∈ P0]]) iff p∗MR(P0) ∈

PB.

Proof. (Sketch) If p∗MR(P0) ∈ PB, it follows from Lemma 1, the definition of
p∗MR and Prop. 2 that PB = P0. Since P0 is rectangular, the octagonal overap-
proximation of PB is identical to P0 and therefore to PB , and contains p∗MR(P0).
If p∗MR(P0) �∈ PB and there is a finite number of refining counterexamples, there
exists at least one pair of parameters pi, pj such that for all π ∈ CE (H, P0)

maxp′∈[[PathCon(π,p)]]↓P∩P0psgn(pi)p′i + psgn(pj)p′j < p∗MR,i(P0) + p∗MR,j(P0),

since otherwise p∗MR(P0) would be feasible for some path π. From (8) it follows
that p∗MR(P0) �∈ OctP(

⋃
π∈CE(H,P0)

[[PathCon(π) ∧ π ∈ CE (H, P0))]]. ��

5 Counterexample-Guided Parameter Synthesis

We adapt the familiar counterexample guided abstraction refinement (CEGAR)
loop [2] to parameter synthesis based on the results in the previous section. We
define a CEGAR loop with the following operators:

A Counterexample-Guided Approach to Parameter Synthesis for LHA 197

– Π ′ := IniAbstr(H, P) constructs a set of paths Π ′ with FCE (H, P) ⊆ Π ′,
– π := SelectCE (Π) selects a path in Π , given Π �= ∅,
– Π ′ := RefineWithSpuriousCE(Π, H, P, π) refines the set of paths Π using

the system H and the spurious counterexample π, i.e., it produces a set of
paths Π ′ such that Π ′ ⊆ Π \ {π}, and FCE (H, P) ⊆ Π ′ (ensuring that the
refinement never removes feasible counterexamples).

A number of CEGAR algorithms, including iterative relaxation abstraction [3],
can be brought to this form. Note in general CEGAR constructs and refines a
finite abstraction, which may take on various forms. We represent this abstrac-
tion as a set of paths Π to simplify and generalize the theoretical discussion,
but assume that implementations model this set implicitly, say with an LHA or
finite state machine. Algorithm 1 shows our adapted CEGAR loop. Its inputs
are the system H and the initial parameter domain P̂0, from which the resulting
good parameters are chosen. If it terminates, it outputs an underapproximation
of the good parameters P̂G. A conventional CEGAR loop would terminate as
soon as the feasibility test in line 6 evaluates to true, reporting πi as a feasi-
ble counterexample. In our adaptation, we instead restrict the parameters such
that the counterexample is infeasible and continue to search for other feasible
counterexamples. This is accomplished by two additional operators:

– P ′ := MakeInfeasible(C, P) returns a set P ′ ⊆ P such that [[C]]↓P ∩P ′ = ∅.
Note that the only such set might be P ′ = ∅,

– P ′ := AnalysisParameters(P) returns a set of parameter values P ′ such that
FCE (H, P) ⊆ FCE (H, P ′).

The exact implementation of MakeInfeasible(C, P) is P \ [[C]] ↓P, but as dis-
cussed in the previous sections, underapproximations similar to (9) and (10)
may be advisable. The operator AnalysisParameters is used to simplify the
set of parameters used in the analysis of H . The condition is that this sim-
plification does not drop any feasible counterexamples. As shown in Sect. 4,
one may select a single point in P if the parameters are monotonic, i.e., use
AnalysisParameters(P) := p∗LR(P). In that case, the parameters in H can be
substituted by constants, thus reducing the number of variables in H . For the
general case, a valid implementation is simply AnalysisParameters(P) := P.

On the basis of (6) it is straightforward to show that when Alg. 1 terminates,
H(p) is safe for any p ∈ P̂G:

Proposition 5. If P̂0 ⊇ P0 and Alg. 1 terminates, P̂G ⊆ PG.

If the initial abstraction contains all counterexamples and the implementation
of MakeInfeasible(C, P) is exact, P̂G is exact as well:

Proposition 6. If P̂0 ⊇ P0, Alg. 1 terminates, IniAbstr(H, P0) = CE (H, P0),
and MakeInfeasible(C, P) = P \ [[C]]↓P, P̂G = PG.

We now briefly present a way to check less paths for parameter-monotonic LHA.
According to Prop. 1, we may substitute the parameters with the value p∗LR(P0)

198 G. Frehse, S.K. Jha, and B.H. Krogh

Algorithm 1. Counterexample-Guided Parameter Synthesis
Input: LHA H with bad locations LB , parameter domain P̂0

Output: P̂G such that P̂G ⊆ PG

i := 0;1

P̃0 := AnalysisParameters(P̂0);2

Π̂0 := IniAbstr(H, P̃0);3

while Π̂i �= ∅ ∧ P̂i �= ∅ do4

πi := SelectCE (Π̂i);5

if [[PathCon(πi, p) ∧ p ∈ P̂i]] �= ∅ then6

P̂i+1 := MakeInfeasible(PathCon(πi, p), P̂i);7

P̃i+1 := AnalysisParameters(P̂i+1);8

else9

P̂i+1 := P̂i; P̃i+1 := P̃i;10

end11

Π̂i+1 := RefineWithSpuriousCE (Π̂i, H, P̃i+1, πi);12

i := i + 1;13

end14

P̂G := P̂i;15

to produce an overapproximation of CE(H, P0). Usually, there is a prohibitively
large number of such paths. Instead, we wish to start with a small set of paths,
and iteratively add further paths only when necessary. We run Alg. 1 with P̂0 =
P0 and AnalysisParameters(P) := p∗MR(P), to obtain with P̂G an initial set of
parameters checking the least number of paths possible. To check the remaining
paths, we run Alg. 1 with P̂0 = P̂G and AnalysisParameters(P) := p∗LR(P).
Note that we can skip the initialization of Π̂0 in line 3 when in running Alg. 1
in step 2 above, and instead continue with Π̂i from step 1.

We use the following two CEGAR implementations, and show experimental
results in the next section. Simple Discrete CEGAR is a straightforward CE-
GAR algorithm based on a discrete abstraction of the hybrid system, some-
what similar to [6]. A set of paths is represented by a finite state machine
(FSM). IniAbstr(H, P) constructs a FSM A0 = (Locs, Σ,→, ini, final), where
Σ = Locs×Lab, and →= {(l, (l, α), l′) | ∃μ : (l, α, μ, l′) ∈ Trans}. SelectCE(Ai)
returns a shortest word in the language of Ai. RefineWithSpurious works as fol-
lows. First, it reduces the counterexample π = α0, . . . , αz−1 by finding the largest
k and the smallest j such that the path constraints for αk, . . . , αj are infeasible
(starting in the location lk reached by α0, . . . , αk−1). For FSM A and language
L let A − L denote removing the language L from the language of A. This is a
standard automaton operation, implemented by first coding L by an automaton.
Let Lpre = ε if k = 0 and Lpre = Σ∗ otherwise, and Lpost = ε if j = z − 1 and
Lpost = Σ∗ otherwise, Then Ai+1 = Ai − Lpre(lk, αk) . . . (lj , αj)Lpost.

Iterative Relaxation Abstraction[3] is similar to Simple Discrete CEGAR, with
Ai+1 = RefineWithSpurious(Ai, H, P, π) constructed as follows: First, find an
irreducible infeasible subset (IIS) of PathCon(π, p), say C. Let V be the variables

A Counterexample-Guided Approach to Parameter Synthesis for LHA 199

Computation
time in
seconds

Number of cars

Fig. 3. Parameter synthesis for automated highway controller using standard reacha-
bility (wide dashed), simple discrete CEGAR with projection as in (6) (dotted) and
with individual octagonal overapproximations as in (9) (solid), and IRA with individual
octagonal overapproximations as in (9) (fine dashed)

(including parameters) with nonzero coefficients in C. Let localize(H, V) be the
automaton obtained from H by removing all constraints involving variables not
in V . Let A′ be the language of localize(H, V), which is semi-computable using
reachability techniques. Then Ai+1 = Ai ∩ A′ \ π.

6 Experimental Results

We consider the model of a central arbiter for an automated highway, roughly
similar to the one in [7], and verify that no two vehicles on the automated
highway collide with each other. The arbiter provides an allowed range [a, b] for
the velocity for each vehicle. When two vehicles come within a distance dstd of
each other, the arbiter asks the faster car and all behind it to reduce the speed to
a′ and the slower car and all in front of it to increase the speed to b′. When the
distance between the two vehicles involved exceeds dnormal , the arbiter goes back
to normal. The cars are considered to have crashed if their distance is below c.
The LHA model for n cars has n continuous state variables and the parameters
dstd and dnormal . The number of counterexamples is infinite, since the controller
can cycle infinitely between normal and recovery mode before a crash occurs.

We consider the constants a = 40, b = 60, a′ = 41, b′ = 80, c = 0.002.
Using CEGAR and octagonal overapproximations, we synthesize the solution
dstd ≤ dnormal ≤ 10∧ dstd > 0.002. The plot of the log of the time taken vs. the
number of cars in Fig. 3 shows that the cost of standard reachability is double-
exponential, while using CEGAR (simple discrete or IRA) it is exponential with
a low factor (actually due to the time it takes to compose the system, not the
analysis itself). For illustration, we also include the time it takes to obtain the ex-
act solution as in (6) using CEGAR and Fourier-Motzkin elimination – it is also
double exponential. These results were obtained on a 1.8 GHz AMD Opteron

200 G. Frehse, S.K. Jha, and B.H. Krogh

processor with 16 GB RAM running 32 bit code under Linux. For linear pro-
gramming we use GLPK [8] with exact arithmetic for simple discrete CEGAR,
and CPLEX [9] with floating point arithmetic for IRA.

7 Conclusions

This paper proposes a method for using counterexamples to guide the construc-
tion of a set of good parameters for parameterized LHA. The proposed procedure
extends the philosophy of CEGAR for verification to a class of design problems.
The method is complete when the parameters are monotonic. The effectiveness
of the approach is illustrated for an example of an automatic highway controller.

The implications of parameter-monotonicity merit further investigation. If an
LHA is not monotonic in the parameters, it can be brought to monotonic form
by replacing each parameter pi that occurs with both signs with p+

i where it
occurs with positive sign and p−i where it occurs with negative sign. If P ′

G is the
set of good parameters for the modified LHA, the set of good parameters for the
original system is given by PG = P ′

G ∩ [[p+
i = p−i]]. Further research is needed to

determine whether or not this leads to any computational advantage for LHA
that are not parameter-monotonic.

References

1. Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters
for a steam boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Dagstuhl
Seminar 1995. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1996)

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

3. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hy-
brid automata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, Springer, Heidelberg (2007)

4. Henzinger, T.A.: The theory of hybrid automata. In: Proc. 11th Annual IEEE
Symposium on Logic in Computer Science, LICS 1996, New Brunswick, New Jersey,
July 27-30, 1996, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)

5. Li, X., Jha, S.K., Bu, L.: Towards an Efficient Path-Oriented Tool for Bounded
Reachability analysis of Linear Hybrid Systems using Linear Programming. In:
BMC 2006: Proceedings of the Workshop on Bounded Model Checking (2006)

6. Segelken, M.: Abstraction and counterexample-guided construction of ω-automata
for model checking of step-discrete linear hybrid models. In: Damm, W., Hermanns,
H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)

7. Horowitz, R., Varaiya, P.: Control design of an automated highway system. Proc.
IEEE 88, 913–925 (2000)

8. GNU Linear Programming Kit, v.4.17 (2007),
http://www.gnu.org/software/glpk

9. ILOG (2007), http://www.ilog.com/products/cplex/product/simplex.cfm

http://www.gnu.org/software/glpk
http://www.ilog.com/products/cplex/product/simplex.cfm

Approximately Bisimilar Symbolic Models

for Incrementally Stable Switched Systems�

Antoine Girard1, Giordano Pola2,3, and Paulo Tabuada2

1 Laboratoire Jean Kuntzmann, Université Joseph Fourier
B.P. 53, 38041 Grenoble, France

Antoine.Girard@imag.fr
2 Department of Electrical Engineering, University of California at Los Angeles

Los Angeles, CA 90095-1594
{pola,tabuada}@ee.ucla.edu

3 Department of Electrical and Information Engineering, University of L’Aquila
Poggio di Roio, 67040 L’Aquila, Italy

pola@ing.univaq.it

Abstract. Switched systems constitute an important modeling para-
digm faithfully describing many engineering systems in which software
interacts with the physical world. Despite considerable progress on sta-
bility and stabilization of switched systems, the constant evolution of
technology demands that we make similar progress with respect to dif-
ferent, and perhaps more complex, objectives. This paper describes one
particular approach to address these different objectives based on the
construction of approximately equivalent (bisimilar) symbolic models for
a switched system. The main contribution of this paper consists in show-
ing that under standard assumptions ensuring incremental stability of a
switched system (i.e. existence of common or multiple Lyapunov func-
tions), it is possible to construct a symbolic model that is approximately
bisimilar to the original switched system with a precision that can be
chosen a priori. To support the computational merits of the proposed
approach we present a realistic example of a boost dc-dc converter and
show how to synthesize a switched controller that regulates the output
voltage at a desired level.

1 Introduction

Switched systems constitute an important modeling paradigm faithfully describ-
ing many engineering systems in which software interacts with the physical
world. Although this fact already amply justifies its study, switched systems
are also quite intriguing from a theoretical point of view. It is well known that
by judiciously switching between stable subsystems one can render the overall
system unstable. This motivated several researchers over the years to understand
which classes of switching strategies or switching signals preserve stability (see

� This work was partially supported by the ANR SETIN project VAL-AMS and by
the NSF CAREER award 0717188.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 201–214, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

202 A. Girard, G. Pola, and P. Tabuada

e.g. [1]). Despite considerable progress on stability and stabilization of switched
systems, the constant evolution of technology demands that we make similar
progress with respect to different, and perhaps more complex, objectives. These
comprise the synthesis of control strategies guiding the switched systems through
predetermined operating points while avoiding certain regions in the state space,
enforcing limit cycles and oscillatory behavior, reconfiguration upon the occur-
rence of faults, etc.

This paper describes one particular approach to address these different objec-
tives based on the construction of symbolic models in which sets of states in the
switched system are represented by abstract states. When the symbolic models
are finite, controller synthesis problems can be efficiently solved by resorting to
mature techniques developed in the areas of supervisory control of discrete-event
systems [2] and algorithmic game theory [3]. The crucial step is therefore the
construction of symbolic models that are detailed enough to capture all the be-
havior of the original system, but not so detailed that their use for synthesis is
as difficult as the original model. This is accomplished, at the technical level,
by using the notion of approximate bisimulation. Approximate bisimulation has
been introduced in [4] as an approximate version of the usual bisimulation rela-
tion [5,6]. It generalizes the notion of bisimulation by requiring the outputs of
two systems to be close instead of being strictly equal. This relaxed requirement
makes it possible to compute symbolic models for larger classes of systems as
shown recently for incrementally stable continuous control systems [7].

The main contribution of this paper consists in showing that under stan-
dard assumptions ensuring incremental stability of a switched system (i.e. exis-
tence of common or multiple Lyapunov functions), it is possible to construct a
symbolic model that is approximately bisimilar to the original switched system
with a precision that can be chosen a priori. The proof is constructive and it
is straightforward to derive a procedure for the computation of these symbolic
models. Since in problems of practical interest the state space can be assumed
to be bounded, the resulting symbolic model is guaranteed to have finitely many
states and can thus be used for algorithmic controller synthesis. The technical
contribution extends previous work by the authors that considered only purely
continuous systems [7]. To support the computational merits of the proposed
approach, we present a realistic example of a boost DC-DC converter and show
how to synthesize a switched controller that regulates the output voltage at a
desired level.

In the following, the symbols N, Z, R, R
+ and R

+
0 denote the set of natural,

integer, real, positive and nonnegative real numbers respectively. Given a vector
x ∈ R

n, we denote by xi its i-th coordinate and by ‖x‖ its Euclidean norm.

2 Switched Systems and Incremental Stability

2.1 Switched Systems

We shall consider the class of switched systems formalized in the following
definition.

Approximately Bisimilar Symbolic Models 203

Definition 1. A switched system is a quadruple Σ = (Rn, P,P , F), where:

– R
n is the state space;

– P = {1, . . . , m} is the finite set of modes;
– P is a subset of S(R+

0 , P) which denotes the set of piecewise constant func-
tions from R

+
0 to P , continuous from the right and with a finite number of

discontinuities on every bounded interval of R
+
0 ;

– F = {f1, . . . , fm} is a collection of vector fields indexed by P . For all p ∈ P ,
fp : R

n → R
n is a locally Lipschitz continuous map.

For all p ∈ P , we denote by Σp the continuous subsystem of Σ defined by the
differential equation:

ẋ(t) = fp(x(t)). (1)

We make the assumption that the vector field fp is such that the solutions of
the differential equation (1) are defined on an interval of the form]a, +∞[with
a < 0. Sufficient conditions includes linear growth or compact support of the
vector field fp.

A switching signal of Σ is a function p ∈ P , the discontinuities of p are called
switching times. A piecewise C1 function x : R

+
0 → R

n is said to be a trajectory
of Σ if it is continuous and there exists a switching signal p ∈ P such that, at
each t ∈ R

+
0 where the function p is continuous, x is continuously differentiable

and satisfies:
ẋ(t) = fp(t)(x(t)).

We will use x(t, x,p) to denote the point reached at time t ∈ R
+
0 from the initial

condition x under the switching signal p. The assumptions on the vector fields
f1, . . . , fm and the fact that the switching signals have only a finite number of
discontinuities on every bounded interval, thus ruling out Zeno behaviors, ensure
for all initial conditions and switching signals, existence and uniqueness of the
trajectory of Σ. Let us remark that a trajectory of Σp is a trajectory of Σ
associated with the constant switching signal p(t) = p, for all t ∈ R

+
0 . Then, we

will use x(t, x, p) to denote the point reached by Σp at time t ∈ R
+
0 from the

initial condition x.

2.2 Incremental Stability

The results presented in this paper rely on some stability notions. A continuous
function γ : R

+
0 → R

+
0 is said to belong to class K if it is strictly increasing

and γ(0) = 0. Function γ is said to belong to class K∞ if it is a K function and
γ(r) → ∞ when r → ∞. A continuous function β : R

+
0 × R

+
0 → R

+
0 is said to

belong to class KL if for all fixed s, the map r �→ β(r, s) belongs to class K∞
and for all fixed r, the map s �→ β(r, s) is strictly decreasing and β(r, s) → 0
when s → ∞.

Definition 2. [8] The subsystem Σp is incrementally globally asymptotically
stable (δ-GAS) if there exists a KL function βp such that for all t ∈ R

+
0 , for all

x, y ∈ R
n, the following condition is satisfied:

‖x(t, x, p) − x(t, y, p)‖ ≤ βp(‖x − y‖, t).

204 A. Girard, G. Pola, and P. Tabuada

Intuitively, incremental stability means that all the trajectories of the subsystem
Σp converge to the same reference trajectory independently of their initial con-
dition. This is an incremental version of the notion of global asymptotic stability
(GAS) [9]. Let us remark that when fp satisfies fp(0) = 0 then δ-GAS implies
GAS, as all the trajectories of Σp converge to the trajectory x(t, 0, p) = 0. Fur-
ther, if fp is linear then δ-GAS and GAS are equivalent. Similarly to GAS, δ-GAS
can be characterized by dissipation inequalities.

Definition 3. A smooth function Vp : R
n × R

n → R
+
0 is a δ-GAS Lyapunov

function1 for Σp if there exist K∞ functions αp, αp and κp ∈ R
+ such that:

∀x, y ∈ R
n, αp(‖x − y‖) ≤ Vp(x, y) ≤ αp(‖x − y‖); (2)

∀x, y ∈ R
n,

∂Vp

∂x (x, y)fp(x) + ∂Vp

∂y (x, y)fp(y) ≤ −κpVp(x, y). (3)

The following result completely characterizes δ-GAS in terms of existence of a
δ-GAS Lyapunov function.

Theorem 1. [8] Σp is δ-GAS iff it admits a δ-GAS Lyapunov function.

For the purpose of this paper, we extend the notion of incremental stability to
switched systems as follows:

Definition 4. A switched system Σ = (Rn, P,P , F) is incrementally globally
uniformly asymptotically stable (δ-GUAS) if there exists a KL function β such
that for all t ∈ R

+
0 , for all x, y ∈ R

n, for all switching signals p ∈ P, the
following condition is satisfied:

‖x(t, x,p) − x(t, y,p)‖ ≤ β(‖x − y‖, t).

Let us remark that the speed of convergence specified by the function β is in-
dependent of the switching signal p. Thus, the stability property is uniform
over the set of switching signals; hence the notion of incremental global uni-
form asymptotic stability. Incremental stability of a switched system means that
all the trajectories associated with the same switching signal converge to the
same reference trajectory independently of their initial condition. This is an in-
cremental version of global uniform asymptotic stability (GUAS) for switched
systems [1]. If for all p ∈ P , fp(0) = 0, then δ-GUAS implies GUAS as all the
trajectories of Σ converge to the constant trajectory x(t, 0,p) = 0.

It is well known that a switched system whose subsystems are all GAS may
exhibit some unstable behaviors under fast switching signals. The same kind
of phenomenon can be observed for switched systems with δ-GAS subsystems.
Similarly, the results on common or multiple Lyapunov functions for proving
GUAS of switched systems (see e.g. [1]) can be extended to prove δ-GUAS.

1 In [8], (3) is replaced by
∂Vp

∂x
(x, y)fp(x)+

∂Vp

∂y
(x, y)fp(y) ≤ −ρp(‖x−y‖), where ρp is

a positive definite function. It is known (see e.g. [1]) that there is no loss of generality
in considering ρp(‖x − y‖) = κpVp(x, y), modifying the δ-GAS Lyapunov function
Vp if necessary.

Approximately Bisimilar Symbolic Models 205

Because of the lack of space, we omit the proofs of the following theorems. Let
the K∞ functions α, α and the real number κ be given by α = min(α1, . . . , αm),
α = max(α1, . . . , αm) and κ = min(κ1, . . . , κm).

Theorem 2. Consider a switched system Σ = (Rn, P,P , F). Let us assume that
there exists V : R

n × R
n → R

+
0 which is a common δ-GAS Lyapunov function

for subsystems Σ1, . . . , Σm. Then, Σ is δ-GUAS.

When a common δ-GAS Lyapunov function fails to exist, δ-GUAS of the switched
system can be ensured by using multiple δ-GAS Lyapunov functions and a re-
strained set of switching signals. Let Sτd

(R+
0 , P) denote the set of switching

signals with dwell time τd ∈ R
+
0 so that p ∈ S(R+

0 , P) has dwell time τd if the
switching times t1, t2, . . . satisfy t1 ≥ τd and ti − ti−1 ≥ τd, for all i ≥ 2.

Theorem 3. Let τd ∈ R
+
0 , consider a switched system Στd

= (Rn, P,P , F)
with P ⊆ Sτd

(R+
0 , P). Let us assume that for all p ∈ P , there exists a δ-GAS

Lyapunov function Vp for subsystem Στd,p and that in addition there exists μ ≥ 1
such that:

∀x, y ∈ R
n, ∀p, p′ ∈ P, Vp(x, y) ≤ μVp′(x, y). (4)

If τd > log μ
κ , then Στd

is δ-GUAS.

In the following, we show that under the assumptions of Theorems 2 or 3, it
is possible to compute approximately equivalent symbolic models of switched
systems. We will make the following supplementary assumption on the δ-GAS
Lyapunov functions: for all p ∈ P , there exists a K∞ function γp such that

∀x, y, z ∈ R
n, |Vp(x, y) − Vp(x, z)| ≤ γp(‖y − z‖). (5)

Note that γp is not a function of the variable x; let the K∞ function γ be given
by γ = max(γ1, . . . , γm). We will discuss this assumption later in the paper and
we will show that it is not restrictive provided we are interested in the dynamics
of the switched system on a compact subset of the state space R

n.

3 Approximate Bisimulation

In this section, we present a notion of approximate equivalence which will relate
a switched system to the symbolic models that we construct. We start by in-
troducing the class of transition systems which allows us to model switched and
symbolic systems in a common framework.

Definition 5. A transition system is a sextuple T = (Q, L, � , O, H, I)
consisting of:

– a set of states Q;
– a set of labels L;
– a transition relation � ⊆ Q × L × Q;
– an output set O;

206 A. Girard, G. Pola, and P. Tabuada

– an output function H : Q → O;
– a set of initial states I ⊆ Q.

T is said to be metric if the output set O is equipped with a metric d, countable
if Q and L are countable sets, finite, if Q and L are finite sets.

The transition (q, l, q′) ∈ � will be denoted q
l� q′. The transition relation

captures the dynamics of the transition system: q
l� q′ means that the system

can evolve from state q to state q′ under the action labelled by l.
Transition systems can serve as abstract models for describing switched sys-

tems. Given a switched system Σ = (Rn, P,P , F) where P = S(R+
0 , P), we

define the associated transition system T (Σ) = (Q, L, � , O, H, I), where
the set of states is Q = R

n; the set of labels is L = P ; the transition relation is
given by q

l� q′ iff there exists a trajectory x of the subsystem Σl such that
x(τ, q, l) = q′ for some τ ∈ R

+; the set of outputs is O = R
n; the observation

map H is the identity map over R
n; the set of initial states is I = R

n. The
transition system T (Σ) is metric when the set of outputs O = R

n is equipped
with the metric d(q, q′) = ‖q− q′‖. Note that the state space of T (Σ) is infinite.

Usual equivalence relationships between transition systems rely on the equal-
ity of the languages. In this paper, we are mostly interested in bisimulation
equivalence [5,6]. Intuitively, a bisimulation relation between two transition sys-
tems T1 and T2 is a relation between their set of states explaining how a trajec-
tory of T1 can be transformed into a trajectory of T2 with the same associated
sequence of outputs, and vice versa. The requirement of equality of output se-
quences, as in the classical formulation of bisimulation [5,6] is quite strong for
metric transition systems. We shall relax this, by requiring output sequences to
be close where closeness is measured with respect to the metric on the output
space. This relaxation leads to the notion of approximate bisimulation relation
introduced in [4].

Definition 6. Let T1 =(Q1, L,
1
� , O, H1, I1), T2 = (Q2, L,

2
� , O, H2, I2)

be metric transition systems with the same sets of labels L and outputs O equipped
with the metric d. Let ε ∈ R

+
0 be a given precision, a relation R ⊆ Q1 × Q2 is

said to be an ε-approximate bisimulation relation between T1 and T2 if for all
(q1, q2) ∈ R:

– d(H1(q1), H2(q2)) ≤ ε;

– for all q1
l

1
� q′1, there exists q2

l

2
� q′2, such that (q′1, q′2) ∈ R;

– for all q2
l

2
� q′2, there exists q1

l

1
� q′1, such that (q′1, q

′
2) ∈ R.

The transition systems T1 and T2 are said to be approximately bisimilar with
precision ε (denoted T1 ∼ε T2) if:

– for all q1 ∈ I1, there exists q2 ∈ I2, such that (q1, q2) ∈ R;
– for all q2 ∈ I2, there exists q1 ∈ I1, such that (q1, q2) ∈ R.

Approximately Bisimilar Symbolic Models 207

4 Approximately Bisimilar Symbolic Models

In the following, we will work with a sub-transition system of T (Σ) obtained by
selecting the transitions of T (Σ) that describe trajectories of duration τs for some
chosen τs ∈ R

+. This can be seen as a sampling process. Moreover, we suppose
that switching instants can only occur at times of the form iτs with i ∈ N.
This is a natural constraint when the switching in Σ has to be controlled by a
microprocessor with clock period τs. Given a switched system Σ = (Rn, P,P , F)
where P = S(R+

0 , P), and a time sampling parameter τs ∈ R
+, we define the

associated transition system Tτs(Σ) = (Q1, L1,
1
� , O1, H1, I1) where the set

of states is Q1 = R
n; the set of labels is L1 = P ; the transition relation is given

by q
l

1
� q′ iff x(τs, q, l) = q′; the set of outputs is O1 = R

n; the observation
map H1 is the identity map over R

n; the set of initial states is I1 = R
n. The

transition system Tτs(Σ) is metric when the set of outputs O1 = R
n is equipped

with the metric d(q, q′) = ‖q − q′‖.

4.1 Common Lyapunov Function

We first examinate the case when there exists a common δ-GAS Lyapunov func-
tion V for subsystems Σ1, . . . , Σm. We start by approximating the set of states
Q1 = R

n by the lattice:

[Rn]η =
{

q ∈ R
n

∣∣∣∣ qi = ki
2η√
n

, ki ∈ Z, i = 1, ..., n

}
,

where η ∈ R
+ is a state space discretization parameter. By simple geometrical

considerations, we can see that for all x ∈ R
n, there exists q ∈ [Rn]η such that

‖x − q‖ ≤ η.
Let us define the transition system Tτs,η(Σ) = (Q2, L2,

2
� , O2, H2, I2),

where the set of states is Q2 = [Rn]η; the set of labels remains the same L2 =

L1 = P ; the transition relation is given by q
l

2
� q′ iff ‖x(τs, q, l) − q′‖ ≤ η;

the set of outputs remains the same O2 = O1 = R
n; the observation map H2

is the natural inclusion map from [Rn]η to R
n, i.e. H2(q) = q; the set of initial

states is I2 = [Rn]η. Note that the transition system Tτs,η(Σ) is countable.
Moreover, it is metric when the set of outputs O2 = R

n is equipped with the
metric d(q, q′) = ‖q − q′‖.

We now give the result that relates the existence of a common δ-GAS Lya-
punov function for the subsystems Σ1, . . . , Σm to the existence of approximately
bisimilar symbolic models for the transition system Tτs(Σ).

Theorem 4. Consider a switched system Σ=(Rn, P,P , F) with P = S(R+
0 , P),

time and state space sampling parameters τs, η ∈ R
+ and a desired precision

ε ∈ R
+. Let us assume that there exists V : R

n × R
n → R

+
0 which is a common

δ-GAS Lyapunov function for subsystems Σ1, . . . , Σm and such that equation (5)
holds for some K∞ function γ. If

η ≤ min
{
γ−1

(
(1 − e−κτs)α(ε)

)
, α−1 (α(ε))

}
(6)

208 A. Girard, G. Pola, and P. Tabuada

then, the transition systems Tτs(Σ) and Tτs,η(Σ) are approximately bisimilar
with precision ε.

Proof. We start by showing that the relation R ⊆ Q1×Q2 defined by (q1, q2) ∈ R
iff V (q1, q2) ≤ α(ε), is an ε-approximate bisimulation relation. Let (q1, q2) ∈ R,
then ‖q1 − q2‖ ≤ α−1 (V (q1, q2)) ≤ ε. Thus, the first condition of Definition 6
holds. Let q1

l

1
� q′1, then q′1 = x(τs, q1, l). There exists q′2 ∈ [Rn]η such that

‖x(τs, q2, l)− q′2‖ ≤ η. Then, we have q2
l

2
� q′2. Let us check that (q′1, q′2) ∈ R.

From equation (5), |V (q′1, q
′
2)−V (q′1,x(τs, q2, l))| ≤ γ(‖q′2−x(τs, q2, l))‖) ≤ γ(η).

It follows that

V (q′1, q
′
2) ≤ V (q′1,x(τs, q2, l)) + γ(η) = V (x(τs, q1, l),x(τs, q2, l)) + γ(η)

≤ e−κτsV (q1, q2) + γ(η) (7)

because V is a δ-GAS Lyapunov function for subsystem Σl. Then, from equa-
tion (6) and since γ is a K∞ function, V (q′1, q

′
2) ≤ e−κτsα(ε) + γ(η) ≤ α(ε).

Hence, (q′1, q
′
2) ∈ R. In a similar way, we can prove that, for all q2

l

2
� q′2, there

is q1
l

1
� q′1 such that (q′1, q

′
2) ∈ R. Hence R is an ε-approximate bisimulation

relation between Tτ (Σ) and Tτ,η(Σ).
By definition of I2 = [Rn]η, for all q1 ∈ I1 = R

n, there exists q2 ∈ I2 such
that ‖q1 − q2‖ ≤ η. Then, V (q1, q2) ≤ α(‖q1 − q2‖) ≤ α(η) ≤ α(ε) because of
equation (6) and α is a K∞ function. Hence, (q1, q2) ∈ R. Conversely, for all
q2 ∈ I2, q1 = q2 ∈ R

n = I1, then V (q1, q2) = 0 and (q1, q2) ∈ R. Therefore,
Tτs(Σ) and Tτs,η(Σ) are approximately bisimilar with precision ε. �

Let us remark that, for a given time sampling parameter τs and a desired preci-
sion ε ∈ R

+, there always exists η ∈ R
+ sufficiently small such that equation (6)

holds. This means that for switched systems admitting a common δ-GAS Lya-
punov function there exists approximately bisimilar symbolic models and any
precision can be reached for all sampling rates.

4.2 Multiple Lyapunov Functions

If a common δ-GAS Lyapunov function does not exist, it remains possible to
compute approximately bisimilar symbolic models provided we restrict the set
of switching signals using a dwell time τd. In this section, we consider a switched
system Στd

= (Rn, P,P , F) where P = Sτd
(R+

0 , P). Let τs be a time sam-
pling parameter; for simplicity, we will assume that the dwell time τd is an
integer multiple of τs: there exists N ∈ N such that τd = Nτs. Representing
Στd

using a transition system is a bit less trivial than previously as we need
to record inside the state of the transition system the time elapsed since the
latest switching occured. Thus, the transition system associated with Στd

is
Tτs(Στd

) = (Q1, L1,
1
� , O1, H1, I1) where:

Approximately Bisimilar Symbolic Models 209

– the set of states is Q1 = R
n×P ×{0, . . . , N −1}, a state (x, p, i) ∈ Q1 means

that the current state of Στd
is x, the current value of the switching signal is

p and the time elapsed since the latest switching is exactly iτs if i < N − 1
or at least (N − 1)τs if i = N − 1.

– the set of labels is L1 = P ;
– the transition relation is given by (x, p, i)

l

1
� (x′, p′, i′) iff l = p and one

the following holds:
• i < N −1, x′ = x(τs, x, p), p′ = p and i′ = i+1: switching is not allowed

because the time elapsed since the latest switch is strictly smaller than
the dwell time;

• i = N − 1, x′ = x(τs, x, p), p′ = p and i′ = N − 1: switching is allowed
but no switch occurs;

• i = N − 1, x′ = x(τs, x, p), p′ = p and i′ = 0: switching is allowed and a
switch occurs.

– the set of outputs is O1 = R
n;

– the observation map H1 is given by H1((x, p, i)) = x;
– the set of initial states is I1 = R

n × P × {0}.
One can verify that the output trajectories of Tτs(Στd

) are the output trajectories
of Tτs(Σ) associated with switching signals with dwell time τd = Nτs. The
approximation of the set of states of Tτs(Στd

) by a symbolic model is done using
a lattice, as previously. Let η ∈ R

+ be a state space discretization parameter,
we define the transition system Tτs,η(Στd

) = (Q2, L2,
2
� , O2, H2, I2) where:

– the set of states is Q2 = [Rn]η × P × {0, . . . , N − 1}.
– the set of labels remains the same L2 = L1 = P ;
– the transition relation is given by (x, p, i)

l

1
� (x′, p′, i′) iff l = p and one of

the following holds:
• i < N − 1, ‖x(τs, x, p) − x′‖ ≤ η, p′ = p and i′ = i + 1;
• i = N − 1, ‖x(τs, x, p) − x′‖ ≤ η, p′ = p and i′ = N − 1;
• i = N − 1, ‖x(τs, x, p) − x′‖ ≤ η, p′ = p and i′ = 0;

– the set of outputs remains the same O2 = O1 = R
n;

– the observation map H2 is given by H2((x, p, i)) = x;
– the set of initial states is I2 = [Rn]η × P × {0}.

Note that the transition system Tτs,η(Στd
) is countable. Moreover, Tτs(Στd

) and
Tτs,η(Στd

) are metric when the set of outputs O1 = O2 = R
n is equipped with

the metric d(x, x′) = ‖x−x′‖. The following theorem establishes the approximate
equivalence of Tτs(Στd

) and Tτs,η(Στd
).

Theorem 5. Consider τd ∈ R
+
0 , a switched system Στd

= (Rn, P,P , F) with
P = Sτd

(R+
0 , P), time and state space sampling parameters τs, η ∈ R

+ and a
desired precision ε ∈ R

+. Let us assume that for all p ∈ P , there exists a δ-GAS
Lyapunov function Vp for subsystem Στd,p and that equations (4) and (5) hold
for some μ ≥ 1 and K∞ functions γ1, . . . , γm. If τd > log μ

κ and

η ≤ min

{
γ−1

(
1
μ − e−κτd

1 − e−κτd
(1 − e−κτs)α(ε)

)
, α−1 (α(ε))

}
(8)

210 A. Girard, G. Pola, and P. Tabuada

then, the transition systems Tτs(Στd
) and Tτs,η(Στd

) are approximately bisimilar
with precision ε.

Proof. Let us define the relation R ⊆ Q1 × Q2 by

R = {(x1, p1, i1, x2, p2, i2) ∈ Q1 × Q2| p1 = p2 = p, i1 = i2 = i, Vp(x1, x2) ≤ δi}
where δ0, . . . , δN are given recursively by δ0 = α(ε), δi+1 = e−κτsδi + γ(η). Let
us remark that:

δi = e−iκτsα(ε)+γ(η)
1 − e−iκτs

1 − e−κτs
=

γ(η)
1 − e−κτs

+e−iκτs

(
α(ε) − γ(η)

1 − e−κτs

)
(9)

From equation (4), μ ≥ 1; then, from equation (8) and since γ is a K∞ function,
γ(η) ≤ (1 − e−κτs)α(ε). It follows from (9) that δ0 ≥ δ1 ≥ · · · ≥ δN−1 ≥ δN .
From equation (8), and since γ is a K∞ function and τd = Nτs,

δN = e−κτdα(ε) + γ(η)
1 − e−κτd

1 − e−κτs
≤ e−κτdα(ε) +

(
1
μ
− e−κτd

)
α(ε) =

α(ε)
μ

.

We can now prove that R is an ε-approximate bisimulation relation between
Tτs(Στd

) and Tτs,η(Στd
). Let (x1, p, i, x2, p, i) ∈ R, then

‖H1(x1, p, i)− H2(x2, p, i)‖ = ‖x1 − x2‖ ≤ α−1 (Vp(x1, x2))
≤ α−1(δi) ≤ α−1(δ0) = ε.

Hence, the first condition of Definition 6 holds. Let us prove that the second
condition holds as well. Let (x1, p, i)

p

1
� (x′

1, p
′, i′), then x′

1 = x(τs, x1, p).

There exists a transition (x2, p, i)
p

2
� (x′

2, p
′, i′) with ‖x′

2 − x(τs, x2, p)‖ ≤ η.

From equation (5) and since Vp is a δ-GAS Lyapunov function for subsystem Σp

we can show, similarly to equation (7), that

Vp(x′
1, x

′
2) ≤ e−κτsVp(x1, x2) + γ(η) ≤ e−κτsδi + γ(η) = δi+1. (10)

We now examinate three separate cases:

– i < N − 1, then p′ = p and i′ = i + 1; since Vp(x′
1, x

′
2) ≤ δi+1, it follows that

(x′
1, p, i + 1, x′

2, p, i + 1) ∈ R.
– i = N − 1 and p′ = p then i′ = N − 1; from (10), Vp(x′

1, x
′
2) ≤ δN ≤ δN−1,

it follows that (x′
1, p, N − 1, x′

2, p, N − 1) ∈ R.
– i = N − 1 and p′ = p then i′ = 0; from (10), Vp(x′

1, x
′
2) ≤ δN ≤ δ0/μ.

From equation (5), it follows that Vp′(x′
1, x

′
2) ≤ μVp(x′

1, x
′
2) ≤ δ0. Therefore,

(x′
1, p

′, 0, x′
2, p

′, 0) ∈ R.

Similarly, we can show that for any transition (x2, p, i)
l

2
� (x′

2, p
′, i′), there

exists a transition (x1, p, i)
l

1
� (x′

1, p
′, i′) such that (x′

1, p
′, i′, x′

2, p
′, i′) ∈ R.

Hence, R is an ε-approximate bisimulation relation.

Approximately Bisimilar Symbolic Models 211

For all initial states (x1, p, 0) ∈ I1, there exists (x2, p, 0) ∈ I2 such that ‖x1 −
x2‖ ≤ η. Then, Vp(x1, x2) ≤ α(η) ≤ α(ε) because of equation (8) and α is
K∞ function. Hence, Vp(x1, x2) ≤ δ0 and (x1, p, 0, x2, p, 0) ∈ R. Conversely,
for all (x2, p, 0) ∈ I2, (x1, p, 0) = (x2, p, 0) ∈ I1. Then, Vp(x1, x2) = 0 ≤ δ0 and
(x1, p, 0, x2, p, 0) ∈ R. Thus, Tτs(Στd

) and Tτs,η(Στd
) are approximately bisimilar

with precision ε. �

Provided that τd > log μ
κ , for a given time sampling parameter and a desired

precision, there always exists η ∈ R
+ sufficiently small such that equation (8)

holds. Thus, if the dwell time is large enough, we can compute symbolic models
of arbitrary precision of the switched system. Let us remark that the lower
bound we obtain on the dwell time is the same than the one in Theorem 3
ensuring incremental stability of the switched system. Theorem 4 can be seen
as a corollary of Theorem 5. Indeed, existence of a common δ-GAS Lyapunov
function is equivalent to equation (4) with μ = 1. Then, no constraint is necessary
on the dwell time and equation (8) becomes equivalent to (6).

The previous Theorems also give indications on the practical computation of
these symbolic models. The sets of states of Tτs,η(Σ) or Tτs,η(Στd

) are countable
but infinite. However, if we are interested in the dynamics of the switched system
only on a compact subset C ⊆ R

n, then we can restrict the set of states of
Tτs,η(Σ) or Tτs,η(Στd

) to the sets [Rn]μ ∩C or ([Rn]μ ∩C)×P ×{0, . . . , N − 1}
which are finite. The computation of the transition relations is then relatively
simple since it mainly involves the numerical computation of the points x(τs, x, p)
with x ∈ [Rn]μ∩C and p ∈ P . This can be done by simulation of the subsystems
Σ1, . . . , Σm. Numerical errors in the computation of these points can be taken
into account: it is sufficient to replace η by η + e, where e is an evaluation of the
error, in Theorems 4 and 5.

Finally, we would like to discuss the assumption made in equation (5). This
assumption is quite strong because the inequality has to hold for any triple in
R

n, and the function γp must be independent of x. However, if we are interested
in the dynamics of the switched system on the compact subset C ⊆ R

n, we only
need this assumption to hold for all x, y, z ∈ C. Then, it is sufficient to assume
that Vp is C1 on C. Indeed, for all x, y, z ∈ C,

|Vp(x, y) − Vp(x, z)| ≤
(

max
x,y∈C

∥∥∥∥∂Vp

∂y
(x, y)

∥∥∥∥
)
‖y − z‖ = γp(‖y − z‖).

In this case, equation (5) holds. This means that the existence of approximately
bisimilar symbolic models on an arbitrary compact subset of R

n does not need
more assumptions than existence of common or multiple Lyapunov functions
ensuring incremental stability of the switched system.

5 Symbolic Models for the Boost DC-DC Converter

In this section, we use our methodology to compute symbolic models of a concrete
switched system: the boost DC-DC converter (see Figure 1). This is an example

212 A. Girard, G. Pola, and P. Tabuada

il

s1

vs

rl
xl

s2

xc

rc

vc

r0 v0

Fig. 1. boost DC-DC converter

of electrical power convertor that has been studied from the point of view of
hybrid control in [10,11,12,13].

The boost converter has two operation modes depending on the position of
the switch. The state of the system is x(t) = [il(t) vc(t)]T where il(t) is the
inductor current and vc(t) the capacitor voltage. The dynamics associated with
both modes are affine of the form ẋ(t) = Apx(t) + b (p = 1, 2) with

A1 =
[
− rl

xl
0

0 − 1
xc

1
r0+rc

]
, A2 =

[
− 1

xl
(rl+

r0rc
r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

]
, b =

[
vs
xl
0

]
.

It is clear that the boost DC-DC converter is an example of a switched system.
In the following, we use the numerical values from [11], that is, in the per unit
system, xc = 70 p.u., xl = 3 p.u., rc = 0.005 p.u., rl = 0.05 p.u., r0 = 1 p.u. and
vs = 1 p.u.. The goal of the boost DC-DC converter is to regulate the output
voltage across the load r0. This control problem is usually reformulated as a
current reference scheme. Then, the goal is to keep the inductor current il(t)
around a reference value irefl . This can be done, for instance, by synthesizing
a controller that keeps the state of the switched system in an invariant set I
centered around the reference value.

It can be shown by solving a set of 2 linear matrix inequalities that the
subsystems associated with the two operation modes are both incrementally
stable and that they share a common δ-GAS Lyapunov function of the form
V (x, y) =

√
(x − y)T M(x − y), where M is positive definite symmetric. For a

better numerical conditioning, we rescale the second variable of the system (i.e.
the state of the system becomes x(t) = [il(t) 5vc(t)]T ; the matrices A1, A2

and vector b are modified accordingly). The δ-GAS Lyapunov function that we
obtain has the following characteristics: α(s) = s, α(s) = γ(s) = 1.0127s, κ =
0.014, and we set the sampling period to τs = 0.5. Then, a symbolic model can
be computed for the boost DC-DC converter using the procedure described in
Section 4. According to Theorem 4, a desired precision ε can be achieved by
choosing a state space discretization parameter η satisfying η ≤ ε/145. In this
example, the ratio between the precision of the symbolic approximation and the
state space discretization parameter is quite large. This is explained by the fact
that the subsystems are quite weakly stable since the value of κ is small.

We consider two different values of the precision parameter ε. We first choose
a precision ε = 2.6 which can be achieved by choosing η = 1

40
√

2
. This precision is

Approximately Bisimilar Symbolic Models 213

Fig. 2. Symbolic model of the DC-DC converter for η = 1

40
√

2
(left); Controller for the

symbolic model (right) (dark gray: mode 1, light gray: mode 2, medium gray: both modes
are acceptable, white: the invariance property cannot be ensured from these states)

Fig. 3. Controller for a symbolic model of the DC-DC converter for η = 1

4000
√

2
(left);

Trajectory of the boost DC-DC converter using the previous controller (right)

quite poor and makes the computed symbolic model of no practical use. However,
it helps to understand the second experiment related further. On Figure 2, the
symbolic model of the boost DC-DC converter is shown on the left, red and blue
arrows represent the transitions associated with mode 1 and 2, respectively. We
only represented the transitions that keep the state of the symbolic model in
the set I ′ = [1.3, 1.7]× [5.7, 5.8]. Using supervisory control [2], we synthesized a
controller that keeps the state of the symbolic model inside I ′. It is shown on
the right figure: dark and light gray means that for these states of the symbolic
model the controller has to use mode 1 and 2, respectively; medium gray means
that for these states the controller can use either mode 1 or mode 2; white means
that from these states there does not exist any switching sequence that keeps
the state of the symbolic model in I′. From this controller, using the approach
presented in [14], one could derive a controller for the boost DC-DC converter
that keeps the state of the switched system in I = [1.3−ε, 1.7+ε]×[5.7−ε, 5.8+ε]
which is not useful in practice.

The second value we consider for the precision parameter is ε = 0.026. This
precision can be achieved by choosing η = 1

4000
√

2
. We do not show the symbolic

214 A. Girard, G. Pola, and P. Tabuada

model as it has too many states (642001) to be represented graphically. We
repeat the same experiment with this model, the supervisory controller that
keeps the state of the symbolic model in I ′ is shown in Figure 3, on the left.
The computation of the symbolic model and the synthesis of the supervisory
controller, implemented in MATLAB, takes overall around 80 seconds. From the
controller of the symbolic model, we derive a controller for the boost DC-DC
converter that keeps the state of the switched system in I = [1.3 − ε, 1.7 + ε] ×
[5.7−ε, 5.8+ε]. We apply a lazy control strategy, when the controller can choose
both modes 1 and 2, it just keeps the current operation mode unchanged. A state
trajectory of the controlled boost DC-DC converter is shown in Figure 3, on the
right. We can see that the trajectory remains in the invariant set.

6 Conclusion

In this paper, we showed, under standard assumptions ensuring incremental sta-
bility, the existence of approximately bisimilar symbolic abstractions for switched
systems. The abstractions are effectively computable and any precision can be
achieved. An example of application has been showed on the DC-DC converter.

References

1. Liberzon, D.: Switching in Systems and Control. Birkhauser (2003)
2. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event

systems. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)
3. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with

partial observation. Theoretical Computer Science 28(1), 7–34 (2003)
4. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-

tems. IEEE Trans. Automatic Control 52(5), 782–798 (2007)
5. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs

(1989)
6. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)

GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
7. Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for

nonlinear control systems. In: IEEE Conf. on Decision and Control (2007)
8. Angeli, D.: A Lyapunov approach to incremental stability properties. IEEE Trans.

Automatic Control 47(3), 410–421 (2002)
9. Khalil, H.: Nonlinear Systems. Prentice-Hall, Englewood Cliffs (1996)

10. Senesky, M., Eirea, G., Koo, T.: Hybrid modelling and control of power electronics.
In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 450–465. Springer,
Heidelberg (2003)

11. Beccuti, A., Papafotiou, G., Morari, M.: Optimal control of the boost dc-dc con-
verter. In: IEEE Conf. on Decision and Control, pp. 4457–4462 (2005)

12. Buisson, J., Richard, P., Cormerais, H.: On the stabilisation of switching electrical
power converters. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414,
pp. 184–197. Springer, Heidelberg (2005)

13. Beccuti, A., Papafotiou, G., Morari, M.: Explicit model predictive control of the
boost dc-dc converter. In: Analysis and design of hybrid systems, pp. 315–320 (2006)

14. Tabuada, P.: An approximate simulation approach to symbolic control. IEEE
Trans. Automatic Control (to appear, 2007)

Zonotope/Hyperplane Intersection

for Hybrid Systems Reachability Analysis

Antoine Girard1 and Colas Le Guernic2

1 Laboratoire Jean Kuntzmann, Université Joseph Fourier
Antoine.Girard@imag.fr

2 VERIMAG, Université Joseph Fourier
Colas.Le-Guernic@imag.fr

Abstract. In this paper, we are concerned with the problem of comput-
ing the reachable sets of hybrid systems with (possibly high dimensional)
linear continuous dynamics and guards defined by switching hyperplanes.
For the reachability analysis of the continuous dynamics, we use an effi-
cient approximation algorithm based on zonotopes. In order to use this
technique for the analysis of hybrid systems, we must also deal with
the discrete transitions in a satisfactory (i.e. scalable and accurate) way.
For that purpose, we need to approximate the intersection of the con-
tinuous reachable sets with the guards enabling the discrete transitions.
The main contribution of this paper is a novel algorithm for comput-
ing efficiently a tight over-approximation of the intersection of (possibly
high-order) zonotopes with a hyperplane. We show the accuracy and the
scalability of our approach by considering two examples of reachability
analysis of hybrid systems.

1 Introduction

Reachability analysis has been a major research issue in hybrid systems over
the past decade [1,2,3,4,5,6,7,8,9]. This research has been motivated by the fact
that a successful reachability analysis makes it possible to extend approaches,
initially developed in the field of computer science for discrete systems, for anal-
ysis and control of hybrid systems [10,11,12,13]. This work resulted in several
methods for computing approximations of the reachable sets using, for instance,
polytopes [2,3], ellipsoids [4,9] or level sets [5]. The next step was to improve
the scalability of these approaches in order to be able to handle larger hybrid
systems. Various scalable approaches have been proposed for the reachability
analysis of continuous (essentially linear) systems based on classes of polytopes
such as hyper-rectangles [6] and zonotopes [7,8], or on ellipsoids [9]. However, in
order to use these techniques for the analysis of hybrid systems, we must also
deal with the discrete transitions in a satisfactory (i.e. scalable and accurate)
way. For that purpose, we need to approximate the intersection of the continuous
reachable sets with the guards enabling the discrete transitions.

In this paper, we present a new technique for reachability analysis of hybrid
systems with (possibly high dimensional) linear continuous dynamics and guards

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 215–228, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

216 A. Girard and C. Le Guernic

defined by switching hyperplanes. The reachable set is approximated using zono-
topes. The reachability analysis of the continuous dynamics is processed using
the algorithm presented in [8]. We handle discrete transitions of the hybrid sys-
tems by proposing two new algorithms for computing tight over-approximations
of the intersection of a zonotope with a hyperplane. The paper is organized as
follows. In section 2, we present briefly the algorithm for reachability analysis
of linear systems proposed in [8] and discuss the needs for its extension to hy-
brid systems reachability. Section 3 is the main contribution of the paper, we
first show that the problem of computing a tight over-approximation of the in-
tersection of a zonotope with a hyperplane can be reduced to the problem of
computing the intersection of a two dimensional zonotope with a line. Then, we
present two efficient algorithms that solve this problem. In section 4, we show
the accuracy and the scalability of our approach by considering two examples of
reachability analysis of hybrid systems.

2 Reachability of Hybrid Systems

We define informally the class of hybrid systems we consider. The system has
several discrete modes; in each mode q, the continuous dynamics of the system
is given by a linear differential equation of the form:

ẋ(t) = Aqx(t) + Bqu(t), u(t) ∈ Uq,

where x(t) ∈ R
d is the continuous state and u(t) ∈ R

p is the continuous input of
the system. The system switches from a mode q to mode q′ when the continuous
state reaches a guard Ge ⊆ R

d where e = (q, q′). We shall assume that the
guards are given by switching planes:

Ge = {x ∈ R
d : x · ne = γe} where ne ∈ R

d and γe ∈ R.

For simplicity we assume that the reset maps are the identity map, and that
there are no Zeno behaviours. In the following, we discuss the over-approximation
of the reachable set of the hybrid system by the union of zonotopes.

2.1 Zonotopes

A zonotope is a polytope which can be defined as the Minkowski sum of a finite
set of segments. Equivalently it can be seen as the image of a cube by an affine
transformation. Formally, a zonotope is a subset of R

d represented by a center
c ∈ R

d and a list of generators g1, . . . , gr ∈ R
d:

Z = 〈c; g1, . . . , gr〉 =

{
c +

r∑
i=1

αigi : ∀i, −1 ≤ αi ≤ 1

}
.

Each zonotope is a centrally-symmetric convex polytope. Hyper-rectangles and
parallelotopes are zonotopes with d generators. The class of zonotopes is closed

Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis 217

under arbitrary linear transformations and under the Minkowski sum. The image
of a zonotope Z = 〈c; g1, . . . , gr〉 under a linear transformation Φ is the zonotope

ΦZ = 〈Φc; Φg1, . . . , Φgr〉.

The Minkowski sum of two zonotopes Z = 〈c; g1, . . . , gr〉 and Z ′ = 〈c′; g′1, . . . , g′r′〉
is the zonotope

Z ⊕ Z ′ = 〈c + c′; g1, . . . , gr, g
′
1, . . . , g

′
r′〉.

Further, it is to be noted that these two operations can be implemented effi-
ciently even in high dimension. This makes the class of zonotopes suitable for
reachability analysis.

2.2 Continuous Reachability

We first explain how we handle the continuous dynamics of the hybrid systems.
In the following, the results on reachability analysis of linear systems are very
briefly described. Details on our approach can be found in [7,8]. Let us consider
a linear system of the form:

ẋ(t) = Ax(t) + Bu(t), x(0) ∈ I, u(t) ∈ U.

We want to over-approximate the set of states that are reachable by the linear
system within a time interval [0; T] for some initial state in I and admissible
input function u : [0; T] → U . We assume that the sets I and U are given by
zonotopes. We choose an integration step τ = T/(N +1) and compute a sequence
of zonotopes Ω0, . . . , ΩN such that Ωi contains all the states reachable within
the time interval [iτ, (i + 1)τ]. We do not detail how the first zonotope of the
sequence, Ω0, is computed (see [7]). Then, the other elements of the sequence
can be computed from a recurrence relation of the form:

Ωi+1 = ΦΩi ⊕ V, i = 0, . . . , N − 1 (1)

where the matrix Φ = eτA and V is a zonotope that depends on τ , A, B and
U (see again [7]). Algorithm 1 is taken from [8] and implements efficiently the
computation of the zonotopes Ω1, . . . , ΩN . The time and memory complexities
of Algorithm 1 are O(Nd3) and O(Nd2) respectively.

2.3 Hybrid Reachability

We now discuss the use of Algorithm 1 for reachability analysis of a hybrid
system. Again, we keep the discussion informal; our algorithm is similar to the
algorithms for reachability analysis of hybrid systems using polytopes [11,2]. Let
us assume that the initial discrete mode is q and that the set of initial continuous
states is Iq . We start by computing an over-approximation of the reachable set
by the continuous dynamics associated with mode q using Algorithm 1; we stop
after a zonotope Ωi has completely crossed a switching plane Ge with e = (q, q′)

218 A. Girard and C. Le Guernic

Algorithm 1. Reachability of linear time-invariant systems
Input: The matrix Φ, the sets Ω0 and U , a positive integer N .
Output: The first N terms of the sequence defined in equation (1).
1: X0 ← Ω0

2: V0 ← U
3: S0 ← {0}
4: for i from 0 to N − 1 do
5: Xi+1 ← ΦXi � Xi+1 = Φi+1Ω0

6: Si+1 ← Si ⊕ Vi � Si+1 = ΦiU ⊕ · · · ⊕ U
7: Vi+1 ← ΦVi � Vi+1 = Φi+1U
8: Ωi+1 ← Xi+1 ⊕ Si+1 � Ωi+1 = Φi+1Ω0 ⊕ ΦiU ⊕ · · · ⊕ U
9: end for

10: return {Ω1, . . . , ΩN}

or after a specified number of steps is reached. Then, for all transition e of the
form e = (q, q′) we need to compute a zonotope Iq′ which over-approximates the
intersection of the reachable set with the hyperplane Ge:

(Ω0 ∪ · · · ∪ ΩN) ∩ Ge ⊆ Iq′ .

Then, we start over with the discrete mode q′ and the set of initial continuous
states Iq′ . Hence, we can see that the computation of a good over-approximation
of the intersection of a zonotope with a hyperplane is required in order to extend
Algorithm 1 for reachability analysis of a hybrid system.

3 Intersection of a Zonotope and a Hyperplane

It is known that detecting the intersection between a zonotope and a hyperplane
is an easy problem [7]. Given a zonotope Z = 〈c; g1, . . . , gr〉 and a hyperplane
G = {x ∈ R

d : x · n = γ}, we have

Z ∩ G �= ∅ ⇐⇒ c · n −
r∑

i=1

|gi · n| ≤ γ ≤ c · n +
r∑

i=1

|gi · n|.

Furthermore, in the context of reachability analysis, this can be done efficiently
while computing the reachable sets [8]. However, computing this intersection
(when it is not empty) is actually a much more complicated problem.

This intersection might not be a zonotope, thus a larger class of sets needs
to be considered for this computation. Obviously, we can express the zonotope
Z as a polytope, and then compute the intersection between the polytope and
the hyperplane G. The good news is that computing a H-representation [14] of
a zonotope can be done polynomially in the number of its facets [15], the bad
news is that a zonotope with r generators in dimension d might have up to
2
(

r
d−1

)
facets [16]. Even for relatively small zonotopes, this can be prohibitively

large. Further, the zonotope Ωk computed by Algorithm 1 typically has about

Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis 219

kd generators. Thus, it is clear that this approach is untractable. Another ap-
proach is to over-approximate the zonotope before computing the intersection.
However, even if the over-approximation of the zonotope is tight (i.e. the over-
approximation touches the zonotope in several points), the over-approximation
of the intersection is generally not. We propose a third approach which allows
to compute a tight over-approximation of the intersection of a zonotope and a
hyperplane. Most of the operations are done in two dimensional spaces, thus
leading to efficient computations.

3.1 From Dimension d to Dimension 2

Finding a tight polyhedral over-approximation P of a set X can be done by
bounding this set using several hyperplanes with normal vectors in a given finite
set D = {�1, . . . , �p}. The computation involves determining, for each � ∈ D,
the infimum m� and supremum M� of the sets {x · � : x ∈ X}. Then, the over-
approximation P is given by

P = {x ∈ R
d : ∀� ∈ D, m� ≤ x · � ≤ M�}.

In our case1, X is the intersection of the zonotope Z and the hyperplane G. For
the reasons we already explained, we can not expect to solve this problem in
the full dimensional state-space R

d. The following proposition will allow us to
reduce this problem to a two-dimensional problem.

Proposition 1. Let G be a hyperplane, G = {x ∈ R
d : x · n = γ}, Z a set, and

� a vector. Let Πn,� be the following linear transformation:

Πn,� : R
d → R

2

x �→ (x · n, x · �)
Then, we have the following equality

{x · � : x ∈ Z ∩ G} = {y : (γ, y) ∈ Πn,�(Z)}
Proof. Let y belongs to {x ·� : x ∈ Z∩G}, then there exists x in Z∩G such that
x · � = y. Since x ∈ G, we have x · n = γ. Therefore (γ, y) = Πn,�(x) ∈ Πn,�(Z)
because x ∈ Z. Thus, y ∈ {y : (γ, y) ∈ Πn,�(Z)}. Conversely, if y ∈ {y : (γ, y) ∈
Πn,�(Z)}, then (γ, y) ∈ Πn,�(Z). It follows that there exists x ∈ Z such that
x ·n = γ and x · � = y. Since x ·n = γ, it follows that x ∈ G. Thus, y = x · � with
x ∈ Z ∩ G and it follows that y ∈ {x · � : x ∈ Z ∩ G}. �

This proposition states that we can reduce the problem of computing a tight
polyhedral over-approximation of the intersection of a set Z and a hyperplane G
to the problem of projecting Z on a plane and then computing the intersection
of the 2-dimensional set Πn,�(Z) and the line Lγ = {(x, y) ∈ R

2 : x = γ}. This
must be done for each vector � ∈ D. Algorithm 2 implements this idea.
1 The results presented in section 3.1 hold for an arbitrary set Z (not only a zonotope).

220 A. Girard and C. Le Guernic

Algorithm 2. Dimension reduction
Input: A set Z, a hyperplane G = {x ∈ R

d : x ·n = γ} and a finite set D of directions.
Output: A polytope approximating tightly Z ∩G in directions given by D.
1: for � in D do
2: Sπ

n,� ← Πn,�(Z)
3: [m�; M�]← BOUND INTERSECT 2D(Sπ

n,�, Lγ)
4: end for
5: return {x ∈ R

d : ∀� ∈ D, m� ≤ x · � ≤M�}

In our case, the set Z is a zonotope, then the projection Πn,�(Z) is a two-
dimensional zonotope which can be computed efficiently:

Πn,�(〈c; g1, . . . , gr〉) = 〈Πn,�(c); Πn,�(g1), . . . , Πn,�(gr)〉.

Remark 1. For each generator g of the zonotope Z, one has to compute Πn,�(g)
for all � in D, but instead of computing these projections independently, which
would lead to 2|D| scalar products, one can observe that all the Πn,�(g) involves
computing the scalar product n·g, thus only |D|+1 scalar products are necessary
for each generator of Z. The projections can thus be done by computing the
product of a (|D| + 1) × d matrix by a d × (r + 1) matrix.

The computation of the intersection of Πn,�(Z) and the line Lγ is investigated
in the next subsection where two algorithms are proposed to solve this problem.

3.2 Intersection of a Zonogon and a Line

Algorithm 2 requires the computation of the intersection of a two dimensional
zonotope, with a line. In a two dimensional space, a zonotope is called a zono-
gon and its number of vertices, as its number of edges, is two times its num-
ber of generators. Thus, it is possible to express a zonogon as a polygon (two
dimensional polytope) which can easily be intersected with a line. For the sim-
plicity of the notations, we now denote by Z = 〈c; g1, . . . , gr〉 the zonogon that
we want to intersect with Lγ = {(x, y) : x = γ}. An extremely naive way of
determining the list of vertices of a zonogon is to generate the list of points
{c +

∑r
i=1 αigi : ∀i, αi = −1 or αi = 1} and then to take the convex hull of this

set. This is clearly not a good approach since we need to compute a list of 2r

points.

Scanning the vertices. It is known that the facets of a zonotope 〈c; g1, . . . , gr〉
are zonotopes whose generators are taken from the list {g1, . . . , gr}. Then, we can
deduce that the edges of a zonogon are segments of the form [P ; P + 2g] where
P is a vertex of the zonogon and g a generator. Therefore, it is sufficient to scan
the generators in trigonometric (or anti-trigonometric) order to scan the vertices
of the zonogon in a way that is similar to the gift wrapping algorithm [17]. This
idea is implemented in Algorithm 3.

Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis 221

Algorithm 3. BOUND INTERSECT 2D
Input: A zonogon Z = 〈c; g1, . . . , gr〉 and a line Lγ = {(x, y) : x = γ}
Output: A segment [m; M] such that {γ} × [m; M] = Z ∩ Lγ .
1: P ← c � current position
2: m←∞, M ← −∞
3: for i from 1 to r do
4: if ygi < 0 or (ygi = 0 and xgi < 0) then � gi = (xgi , ygi)
5: gi ← −gi � Ensure all generators are pointing upward
6: end if
7: P ← P − gi � Drives P toward the lowest vertex of Z
8: end for
9: gi1 , . . . , gir ← SORT(g1, . . . , gr) � Sort the generators in trigonometric order

10: for j from 1 to r do
11: if [P ; P + 2gij] intersects Lγ then
12: (x, y)← [P ; P + 2gij] ∩ Lγ

13: m← min(m, y)
14: M ← max(M, y)
15: end if
16: P ← P + 2gij

17: end for � Only half of the vertices of the zonogon have been scanned
18: for j from 1 to r do
19: if [P ; P − 2gij] intersects Lγ then
20: (x, y)← [P ; P − 2gij] ∩ Lγ

21: m← min(m, y)
22: M ← max(M, y)
23: end if
24: P ← P − 2gij

25: end for � we are back in P = e
26: return [m; M]

All the generators are taken poiting upward for simplicity, this does not change
the zonogon since replacing a generator g by it opposite −g does not modify the
shape of a zonogon. Then, we compute the lowest vertex of Z, and sort the
generators according to the trigonometric order. Scanning the generators in that
order allows us to scan the vertices of Z. While scanning these vertices, we
check for the intersection with the line Lγ . This leads to an algorithm for the
intersection between a line and a zonogon with r generators whose complexity
is O(r log r). The most time consuming part is to sort the generators.

In practice, the number of generators r can be very large (remember that
the zonogon we want to intersect comes from the reachable set Ωk computed by
algorithm 1; Ωk has about kd generators). Further, each time a discrete transition
occurs, this procedure is called several times by algorithm 2 (one call for each
direction of approximation). Thus, we need it to be as fast as possible. Hence,
instead of scanning all the vertices of Z, we look directly for the two edges that
intersect the line Lγ with a dichotomic search.

222 A. Girard and C. Le Guernic

Dichotomic search of the intersecting edges. We start again from the low-
est vertex of Z. At each step of the algorithm, P is a vertex of the zonogon repre-
senting the current position and G is a set of generators. We know that the seg-
ment [P ; P +

∑
g∈G 2g] intersects the line Lγ . We choose a pivot vector s and split

the generators in G into two sets G< and G>, the set of generators respectively
smaller and bigger (according to the trigonometric order) than s. Then, it is clear
that Lγ intersects either [P ; P +

∑
g∈G<

2g] or [P +
∑

g∈G<
2g; P +

∑
g∈G 2g].

We continue either with P and G< or P +
∑

g∈G<
2g and G>. When the lowest

vertex of the intersection is found, we start again from the highest vertex of Z
in order to find the highest vertex of the intersection. Algorithm 4 implements
this approach. Figure 1 illustrates the execution of the algorithm, both from the
lowest and the highest point at the same time.

Algorithm 4. BOUND INTERSECT 2D
Input: A zonogon Z = 〈c; g1, . . . , gr〉 and a line Lγ = {(x, y) : x = γ}
Output: A segment [m; M] such that {γ} × [m; M] = Z ∩ Lγ .
1: P ← c � current position P = (xP , yP)
2: m←∞, M ← −∞
3: for i from 1 to r do
4: if ygi < 0 or (ygi = 0 and xgi < 0) then � gi = (xgi , ygi)
5: gi ← −gi � Ensure all generators are pointing upward
6: end if
7: P ← P − gi � Drives P toward the lowest vertex of Z
8: end for
9: if xp < γ then

10: G← {g1, . . . , gr} ∩ (R+ × R) � We should look right
11: else
12: G← {g1, . . . , gr} ∩ (R− × R) � or left
13: end if
14: s←�g∈G 2g
15: while |G| > 1 do
16: (G1, G2)← SPLIT PIVOT(G, s)
17: s1 ←�g∈G1

2g
18: if [P ; P + s1] intersects Lγ then
19: G← G1

20: s← s1

21: else
22: G← G2

23: s← s− s1

24: P ← P + s1

25: end if
26: end while � Only one generator remains
27: (x, y)← [P ; P + s] ∩ Lγ

28: m← y
29: . . . � Same thing for M , starting from the upper vertex of Z
30: return [m; M]

Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis 223

M

m

Fig. 1. Dichotomic search of the intersecting edges

P

Q

P + s

s

Fig. 2. A good choice for the pivot allows a smart enclosure of the intersection point

With a good pivot selection algorithm [18], the dichotomic search has a linear
complexity. For our problem, we choose the sum of the remaining generators as
the pivot. Even though this leads to a quadratic theoretical worst case complex-
ity, it improves the practical behavior. Indeed, the sum of the remaining genera-
tors is already available and it has a nice geometric interpretation, as illustrated
in Figure 2. At each step, P and P +

∑
g∈G 2g are both the closest computed

vertex to the line {(x, y) : x = γ}, each on a different side of this line, thus defin-
ing the best computed under-approximation of the interval [m; M] at this step.
A pivot s defines a vertex Q = P +

∑
g∈G<

2g between P and P +
∑

g∈G 2g. The
line of direction s going through Q is “tangent” to Z and its intersection with
Lγ defines an over-approximation of the interval [m; M]. Choosing s =

∑
g∈G g

as the pivot ensures that the distance between the over-approximation and the
under-approximation of the interval [m; M] is not correlated with γ, the position
of the intersecting line.

Remark 2. Algorithm 4 is similar to Bamas and Zemel’s algorithm for the frac-
tional Knapsack problem [19]. Eppstein2 suggested in a talk [20] that one could

2 The authors wish to thank an anonymous reviewer for pointing out this reference.

224 A. Girard and C. Le Guernic

maximize a linear function on the intersection of a zonotope and a hyperplane
by adapting the greedy algorithm for the fractional Knapsack problem. This is
actually what algorithm 3 does.

3.3 Intersection of the Reachable Set and a Guard

Now that we know how to intersect a zonogon with a line, we can approximate the
intersection of a zonotope with a hyperplane, using Algorithm 2. In the context
of reachability analysis, the intersection between the reachable sets Ω0, . . . , ΩN

with a guard G generally occurs at several steps. Let IG be the set of indices i for
which Ωi intersects the guard G. One can approximate the intersection between
each Ωi and G independently, and then compute the union of these intersections
in order to get an approximation of the intersection of the reachable set with
the guard G. Using this approach, we do not exploit the fact that the reachable
sets Ωi have a special structure. They actually share a lot of generators. Let us
assume that IG is a set of k + 1 consecutive integers i, i + 1, . . ., i + k. With the
notations of Algorithm 1, the zonotopes intersecting the guards are:

Ωi = Xi ⊕ Si,

Ωi+1 = Xi+1 ⊕ Vi+1 ⊕ Si,

...
Ωi+k = Xi+k ⊕ Vi+k ⊕ . . . ⊕ Vi+1 ⊕ Si

They all share the generators in Si. Actually each zonotope Ωj shares all its gen-
erators but the ones in Xj with the zonotopes of greater index. Consequently,
when approximating the intersection at step j in IG, it is possible to reuse most
of the computations already done for smaller indices. Not only the projections
of most of the generators of Ωj have already been computed, but they are also
partially sorted. Moreover, at each step of Algorithm 4, one can easily compute
an under-approximation and an over-approximation of the intersection, as ex-
plained at the end of the previous subsection and on Figure 2. It is then possible
to modify Algorithm 4 in order to compute all the intersection concurrently.
Since we are interested in (∪i∈IGΩi)∩G and not in each Ωi ∩G, we can, at each
step, drop the computation of the Ωi ∩G whose over-approximation is included
in the under-approximation of (∪i∈IGΩi) ∩ G.

3.4 From Polytopes to Zonotopes

Let us remark that the tight over-approximation of the intersection between the
reachable set and the guard G which is computed using Algorithm 2 is a polytope.
In order to process the continuous reachability analysis using Algorithm 1 in
the next discrete mode, we need this over-approximation to be expressed as
a zonotope. To the best of the authors knowledge, there is no known efficient
algorithm for the approximation of a general polytope by a zonotope (except in
small dimension [21]). In Algorithm 2, we have the choice of the normal vectors
to the facets of the approximating polytope. Then, we can choose these vectors

Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis 225

such that the resulting polytope can be easily approximated by a zonotope. Even
better, we can choose these vectors such that the approximating polytope is a
zonotope. Indeed, some polytopes are easily expressed as zonotopes; this is the
case for the class of parallelotopes and particularly for hyper-rectangles. Hence,
we choose the normal vectors to the facets such that the over-approximation of
the intersection of the reachable set with the the guard is a hyper-rectangle.

Initially, we do not have much information on the intersection, so we generate
at random (in a way similar to [22]) a set of directions, and only keep the direction
�0 that induces the thinner approximation. Then, we randomly generate a set of
directions orthogonal to the directions already chosen, and again we only keep the
one for which M�−m� is minimal, until we get a hyper-rectangle, after d−2 steps.

4 Examples

The algorithms presented in this paper have been implemented in Ocaml [23].
In this section, we show the effectiveness of our approach on some examples. All
computations were performed on a Pentium IV 3.2GHz with 1GB RAM.

4.1 5-Dimensional Benchmark

To evaluate the error introduced by our method, and its usability in a hybrid
reachability toolchain, we would like to compare the computed reachable set
with the exact one. As explained before, the computation of the exact intersec-
tion is untractable. This is why we artificially add a switching hyperplane to a
continuous linear system. This guard will allow a transition between two states
with the same dynamic (see figure 3).

ẋ = Ax + Bu ẋ = Ax + Bu

x ∈ G

Fig. 3. A (not so) hybrid system on which approximate reachable sets can be compared
to the exact reachable sets (computed with a non-hybrid view of the system)

The exact (up to initial time discretization errors) reachability analysis of
this hybrid system can be done with algorithm 1, by removing the guard. This
analysis can then be compared to the one done using our algorithm for approx-
imating the intersection with the guard on the hybrid view of the system. We
applied our methods on such a hybrid system contructed on a five dimensional
linear system [7,8]. The projection on the first two variables of the computed
reachables sets can be seen on figure 4.

The exact reachable set, computed by algorithm 1 on the non-hybrid system,
has been plotted in black. After the intersection the error introduced by the

226 A. Girard and C. Le Guernic

Fig. 4. Error introduced by approximating the intersection (in red)

approximation appears in red. The directions of approximation were chosen as ex-
plained in section 3.4, 16 at each step. We only kept 4 out of the 49 computed con-
straints on the intersection, in order to be able to express it as a zonotope. This first
approximation was improved by adding 4 generators, introducing 8 new facets.
The whole computation, including intersection and reachability, took 0.2 seconds
and 1.4 MB. If we try to compute exactly the intersection, by expressing the in-
tersecting zonotopes as polytopes, we have to deal with more than 1011 vertices.
Only storing these vertices would require more than 1.8 terabyte, more than one
million times what we need for approximate intersection and reachability.

4.2 Thermostat

As a second example, we consider a high dimensional hybrid system with two dis-
crete states. A heat source can be switched on or off at one end of a metal rod of
length 1, the switching is driven by a sensor placed at the middle of the rod. The
temperature at each point x of the rod, T (x, t) is driven by the Heat equation:

∂T

∂t
= k

∂2T

∂x2
.

When the heat source is ON, we have T (0, t) = 1, and when it is OFF, T (0, t) = 0.
We approximate this partial differential equation by a linear ordinary differential
equation using a finite difference scheme on a grid of size 1

90 .

ON OFF

T (0.5, t) > 0.2

T (0.5, t) < 0.15

Fig. 5. Hybrid model of a thermostat

Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis 227

Fig. 6. Reachable set at three different times. The x-axis represents the position in the
metal rod, and the y-axis the temperature. The dot on the middle of the x-axis specify
the position of the sensor, and the two horizontal line the switching temperatures. The
heat source is on the left.

The resulting hybrid system has 89 continuous variables and 2 discrete states
(see figure 5). We computed the reachable sets of this system for 1000 times step,
during which 10 discrete transitions occured, in 71.6s using 406MB of memory.
Figure 6 shows the reachable sets at three different time, each after a discrete
transition.

5 Conclusion

In this paper, we presented an efficient algorithm for computing a tight over-
approximation of the intersection between a zonotope and a hyperplane. We
showed that it can be used in conjunction with a reachability analysis algorithm
for continuous linear systems to effectively analyze hybrid systems with high
dimensional linear continuous dynamic.

The use of the zonotope representation can be seen as a trick allowing us
not to compute the full dimensional Minkowski sum, this trick can in fact be
applied to more complex objects and it is possible to adapt our algorithm so
that it can handle intersection between a hyperplane and the Minkowski sum of
a set of ellipsoids and zonotopes. An other extension should allow us to compute
an under-approximation of the intersection. This under-approximation might be
useful for the choice of the directions of approximation.

Future work also includes the approximation of a polytope by a zonotope, to
avoid loosing most of the computed constraints (in the 5-dimensional example,
we only kept 8 out of the 53 computed constraints).

References

1. Varaiya, P.: Reach set computation using optimal control. In: Proc. KIT Workshop
on Verification of Hybrid Systems, Verimag, Grenoble (1998)

2. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata
using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen,
J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)

228 A. Girard and C. Le Guernic

3. Asarin, E., Dang, T., Maler, O., Bournez, O.: Approximate reachability analysis
of piecewise-linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC
2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

4. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214.
Springer, Heidelberg (2000)

5. Mitchell, I., Tomlin, C.: Level set methods for computation in hybrid systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323.
Springer, Heidelberg (2000)

6. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reach-
able sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 482–497. Springer, Heidelberg (2003)

7. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

8. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of
linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)

9. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of
discrete-time linear systems. IEEE Trans. Automatic Control 52, 26–38 (2007)

10. Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective synthesis of
switching controllers for linear systems. Proc. of the IEEE 88(7), 1011–1025 (2000)

11. Dang, T.: Vérification et Synthèse des Systèmes Hybrides. PhD thesis, Institut
National Polytechnique de Grenoble (2000)

12. Maler, O.: Control from computer science. IFAC Annual Reviews in Control (2003)
13. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the

verification and control of hybrid systems. Proc. of the IEEE 91(7), 986–1001 (2003)
14. Ziegler, G.M.: Lectures on Polytopes. In: Graduate Texts in Mathematics, vol. 152,

Springer, Heidelberg (1995)
15. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1-

3), 21–46 (1996)
16. Zaslavsky, T.: Facing Up to Arrangements: Face-Count Formulas for Partitions

of Space by Hyperplanes. In: Memoirs of the American Mathematical Society.
American Mathematical Society, vol. 154 (1975)

17. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the
plane. Inf. Process. Lett. 2(1), 18–21 (1973)

18. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

19. Balas, E., Zemel, E.: An algorithm for large zero-one knapsack problems. Opera-
tions Research 28(5), 1130–1154 (1980)

20. Bern, M.W., Eppstein, D.: Optimization over zonotopes and training support vec-
tor machines (2001) Talk given at WADS

21. Guibas, L.J., Nguyen, A., Zhang, L.: Zonotopes as bounding volumes. In: SODA
2003: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, pp. 803–812 (2003)

22. Muller, M.E.: A note on a method for generating points uniformly on n-dimensional
spheres. Commun. ACM 2(4), 19–20 (1959)

23. Leroy, X.: The Objective Caml system. In: INRIA (2007)

Learning and Detecting Emergent Behavior

in Networks of Cardiac Myocytes

R. Grosu1, E. Bartocci1,2, F. Corradini2,
E. Entcheva3, S.A. Smolka1, and A. Wasilewska1

1 Department of Computer Science, Stony Brook University
Stony Brook, NY 11794-4400, USA

2 Department of Mathematics and Computer Science, University of Camerino
Camerino (MC), I-62032, Italy

3 Department of Biomedical Engineering, Stony Brook University
Stony Brook, NY 11794-8181, USA

Abstract. We address the problem of specifying and detecting emer-
gent behavior in networks of cardiac myocytes, spiral electric waves in
particular, a precursor to atrial and ventricular fibrillation. To solve this
problem we: (1) Apply discrete mode-abstraction to the cycle-linear hy-
brid automata (CLHA) we have recently developed for modeling the
behavior of myocyte networks; (2) Introduce the new concept of spatial-
superposition of CLHA modes; (3) Develop a new spatial logic, based
on spatial-superposition, for specifying emergent behavior; (4) Devise
a new method for learning the formulae of this logic from the spatial
patterns under investigation; and (5) Apply bounded model checking to
detect (within milliseconds) the onset of spiral waves. We have imple-
mented our methodology as the Emerald tool-suite, a component of
our EHA framework for specification, simulation, analysis and control
of excitable hybrid automata. We illustrate the effectiveness of our ap-
proach by applying Emerald to the scalar electrical fields produced by
our CellExcite simulator.

1 Introduction

One of the most important and intriguing questions in systems biology is how
to formally specify emergent behavior in biological tissue, and how to efficiently
predict and detect its onset. A prominent example of such behavior is electrical
spiral waves in spatial networks of cardiac myocytes (heart cells). Spiral waves
of this kind are a precursor to a variety of cardiac disturbances, including atrial
fibrillation (AF), an abnormal rhythm originating in the upper chambers of the
heart. AF afflicts 2-3 million Americans alone, putting them at risk for clots and
strokes. Moreover, the likelihood of developing AF increases with age.

In this paper, we address this question by proposing a simple and efficient
method for learning, and automatically detecting the onset of, spiral waves in car-
diac tissue. See Figure 1 for an overview of our approach. Underlying our method
is a linear spatial-superposition logic (LSSL) we have developed for specifying
properties of spatial networks. LSSL is discussed in greater detail below. Our

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 229–243, 2008.
© Springer-Verlag Berlin Heidelberg 2008

230 R. Grosu et al.

CX−Simulation Superposition QTPSelection

ClassificationBMChecking

DSEF SQT
SQTP

SQTP
SQTCLHAN

LSSLF

LSSLF: LSSL Formula

SQTP: SQT Path

CLHAN: CLHA Network

CX: CellExcite Tool

DSEF: Discrete SE Field

Fig. 1. Overview of our method for learning and detecting spiral waves

method also builds upon hybrid-automata, image-processing, machine-learning,
and model-checking techniques to first learn an LSSL formula that character-
izes such spirals. The formula is then automatically checked against a quadtree
representation [15] of the scalar electrical field (SEF), produced by simulating
a hybrid automata network modeling the myocytes, at each discrete time step.
The quadtree representation is obtained via discrete mode-abstraction and hier-
archical superposition of the elementary units within the SEF.

The electrical behavior of cardiac myocytes is hybrid in nature: they exhibit
an all-or-nothing electrical response, the so-called action potential, to an external
excitation. Despite their hybrid nature, networks of myocytes have traditionally
been modeled using nonlinear partial differential equations. While highly accu-
rate in describing the molecular processes underlying cell behavior, these models
are not particularly amenable to formal analysis and typically do not scale well
for the simulation of complex cell networks.

In [11], we showed that it is possible to automatically learn a much simpler
Cycle-Linear Hybrid Automaton (CLHA) for cardiac myocytes, which describes
their action potential up to a specified error margin. Moreover, as we have shown
in [2], one can use a variant of this model [19,20] to efficiently (up to an order
of magnitude faster) and accurately simulate the behavior of myocyte networks,
and, in particular, induce spirals and fibrillation.

A key observation concerning our simulations (see Figure 2) is that mode-
abstraction, in which the action-potential value of each CLHA in the network
is discretely abstracted to its corresponding mode, faithfully preserves the net-
work’s waveform and other spatial characteristics. Hence, for the purpose of
learning, and detecting the onset of, spirals within CLHA networks, we can ex-
ploit mode-abstraction to dramatically reduce the system state space. A similar
mode-abstraction is possible for voltage recordings in live cell networks.

The state space of a 400×400 CLHA network is still prohibitively large, even
after applying the above-described abstraction: it contains 4160,000 modes, as
each CLHA has four mode values. To combat this state explosion, we use a spa-
tial abstraction inspired by [12]: we regard the mode of each automaton as a
probability distribution and define the superposition of a set of CLHAs-mode
as the probability that an arbitrary CLHA’s-mode in this set has a particu-
lar value. By successively applying superposition to the network, we obtain a
tree structure, the root of which is the mode-superposition of the entire CLHA

network, and the leaves of which are the modes of the individual CLHA. The par-
ticular superposition tree structure we employ, quadtrees, is inspired by image-
processing techniques [15]. We shall refer to quadtrees obtained in this manner
as superposition-quadtrees (SQT).

Learning and Detecting Emergent Behavior 231

Our LSSL logic is an appropriate logic for reasoning about paths in SQTs, and
the spatial properties of CLHA networks in which we are interested, including
spirals, can be cast in LSSL. For example, we have observed that the presence
of a spiral can be formulated in LSSL as follows: Given an SQT, is there a
path from its root leading to the core of a spiral? Based on this observation, we
build a machine-learning classifier, the training-set records for which correspond
to the probability distributions associated to the nodes along such paths. Each
distribution, for mode value stimulated, corresponds to an attribute of a training-
set record, with the number of attributes bounded by the depth of the SQT. An
additional attribute is used to classify the record as either spiral or non-spiral.
For spiral-free SQTs, we simply record the path of maximum distribution.

For training purposes, we use the CellExcite simulator [2] to generate, upon
successive time steps, snapshots of a 400×400 CLHA network and their mode-
abstraction; see Figures 1,2. Training data for the classifier is then generated
by converting the hybrid-abstracted snapshots into SQTs and selecting paths
leading to the core of a spiral (if present). The resulting table is input to the
decision-tree algorithm of the Weka machine-learning tool suite [8], which pro-
duces a classifier in the form of a predicate over the node-distribution attributes.

The syntax of LSSL is similar to that of linear temporal logic, with LSSL’s
Next operator corresponding to concretization (anti-superposition). Moreover, a
(finite) sequence of LSSL Next operators corresponds to a path through an SQT.
The classifier produced by Weka can therefore be regarded as an LSSL formula.
An SQT path can be thought of as a magnifying glass, which starting from the
root, produces an increasingly detailed but more focused view of the image. This
effect is analogous to concept hierarchy in data mining [13] and arguably similar
to the way the brain organizes knowledge: a human can recognize a word or a
picture without having to look at all of the characters in the word or all of the
details in the picture, respectively.

We are now in a position to view spiral detection as a bounded-model-checking
problem [3]: Given the SQT Q generated from the discrete SEF of a CLHA net-
work and an LSSL formula ϕ learned through classification, is there a finite path
π in Q satisfying ϕ? We use this observation to check every second during simula-
tion, whether or not a spiral has been created. More precisely, the LSSL formula
we use states that no spiral is present, and we thus obtain as a counterexample
one or all the paths leading to the core of a spiral. In the latter case, we can
identify the number of spirals in the SEF and their actual position.

The above-described method (including user-guided path selection) has been
fully implemented as the Emerald tool suite for automated spiral learning and
detection. Emerald is written in Java, and it is a new component of our EHA

environment for the specification, simulation, analysis and control of networks
of Excitable Hybrid Automata. It is freely available from [10].

The rest of the paper is organized as follows. Section 2 reviews excitable-cell
networks and their modeling with CLHA. Section 3 defines superposition and
quadtrees, the essential ideas underlying linear spatial-superposition logic, the
topic of Section 4. Section 5 describes our learning and bounded-model-checking

232 R. Grosu et al.

techniques; their implementation is considered in Section 6, along with our exper-
imental results. Section 7 discusses related work. Section 8 offers our concluding
remarks and directions for future research.

2 Biological Background

An excitable cell has the ability to propagate an electrical signal, known at
the cellular level as the Action Potential (AP), to neighboring cells. An AP

corresponds to a change of potential across the cell membrane, and is caused by
the flow of ions between the inside and outside of the cell through ion channels.
Generally, an AP is an externally triggered event: a cell fires an action potential
as an all-or-nothing response to a supra-threshold stimulus, and each AP follows
the same sequence of phases and maintains the same magnitude regardless of
the applied stimulus. During an AP, generally no re-excitation can occur.

Despite differences in AP duration, morphology and underlying ion currents,
the following major AP phases can be identified across different species and
different excitable-cell types: resting, stimulated, upstroke, early repolarization,
plateau and final repolarization. We shall subsequently use the following abbre-
viations for these phases: r (resting and final repolarization), s (stimulated), u
(upstroke), and p (plateau and early repolarization).

Using these AP phases as a guide, we have developed, for several represen-
tative excitable-cell types, Cycle-Linear Hybrid Automata (CLHA) models that
approximates their AP and other bio-electrical properties with reasonable accu-
racy [19,20,11]. This derivation was first performed manually [19,20]. We subse-
quently showed in [11] how to fully automate this process by learning various
biological aspects of the AP of the different cell types. The CLHA we obtained are
fairly compact in nature, employing two or three continuous state variables and
four to six modes. The term Cycle-Linear is used to highlight the cyclic struc-
ture of CLHA, and the fact that while in each cycle they exhibit linear dynamics,
the coefficients of the corresponding linear equations and mode-transition guards
may vary in interesting ways from cycle to cycle.

The dynamics of excitable-cell networks play an important role in the phys-
iology of many biological processes. For cardiac cells, on each heart beat, an
electrical control signal is generated by the sinoatrial node, the heart’s internal
pacemaking region. Electrical waves then travel along a prescribed path, exciting
cells in atria and ventricles and assuring synchronous contractions. Of special in-
terest are cardiac arrhythmias: disruptions of the normal excitation process due
to faulty processes at the cellular level, single ion-channel level, or at the level of
cell-to-cell communication. The clinical manifestation is a rhythm with altered
frequency, tachycardia or bradycardia, or the appearance of multiple frequen-
cies, polymorphic Atrial Tachycardia (AT), with subsequent deterioration to a
chaotic signal, Atrial Fibrillation (AF). AF is a serious condition in which there
is uncoordinated contraction of the cardiac muscle of the atria in the heart. As a
result, the heart fails to adequately pump blood, putting 2-3 million Americans
alone at risk for clots and strokes. Moreover, AF likelihood increases with age.

Learning and Detecting Emergent Behavior 233

Fig. 2. Simulation of continuous and discrete behavior of CLHA network

In order to simulate the emergent behavior of cardiac tissue, we have devel-
oped CellExcite [2], a CLHA-based simulation environment for excitable-cell
networks. CellExcite allows the user to sketch a tissue of excitable cells, plan
the stimuli to be applied during simulation, and customize the arrangement of
cells by selecting the appropriate lattice. Figure 2 presents our simulation results
for a 400×400 CLHA network. The network was stimulated twice during simu-
lation, at different regions. The results we obtain demonstrate the feasibility of
using CLHA networks to capture and mimic different spatiotemporal behavior of
wave propagation in 2D isotropic cardiac tissue, including normal wave propaga-
tion (1-150 ms); the creation of spirals, a precursor to fibrillation (200-250 ms);
and the break-up of such spirals into more complex spatiotemporal patterns,
signaling the transition to ventricular fibrillation (250-400 ms).

As can be clearly seen in Figure 2, a particular form of discrete abstraction,
in which the action-potential value of each CLHA in the network is discretely ab-
stracted to its corresponding mode, faithfully preserves the network’s waveform
and other spatial characteristics. Hence, for the purpose of learning and detect-
ing spirals within CLHA networks, we can exploit discrete mode-abstraction to
dramatically reduce the system state space.

3 Superposition and Quadtrees

A key benefit of hybrid automata compared to nonlinear ODEs is their explicit
support for finite mode abstraction: the infinite range of values of a hybrid
automaton’s continuous state variables can be abstracted to the automaton’s

234 R. Grosu et al.

2

v8v7v6v5

v6 v5

v8v7 v
41

1 432

32

d=2

d=1

d=0

(b)(a)

v4v3

v

v0

v1

v1

v0
2

v4v3

Fig. 3. Quadtree representation

discrete finite set of modes. As discussed in Sections 1,2, abstracting the AP

(voltage) of the constituent CLHA in a CLHA network to their corresponding
mode (s, u, p or r) turns out to faithfully preserve the network’s waveform and
other spatial characteristics. This allows us to reduce the spiral-onset verification
problem to a finite-state verification problem.

Unfortunately, the state space of a 400×400 CLHA network, which would be
necessary to simulate the behavior of a tissue of about 16 cm2 in size, is still
too large for analysis purposes: it has 4160,000 mode values! To combat state
explosion, we use a spatial abstraction inspired by [12]: we regard the mode of
a CLHA as a degenerate probability distribution and define the superposition
of a set of (possibly superposed) modes as the mean of their distributions. By
successively applying superposition, we obtain a tree whose root is the mode-
superposition of the entire CLHA network, and whose leaves are the individual
mode of the component CLHA. The particular superposition tree structure we
employ, the quadtree, was inspired by image-processing techniques [15].

Let A be a 2k ∗ 2k matrix of CLHA modes. A quadtree Q = (V,R) repre-
sentation of A is a quaternary tree, such that each vertex v ∈ V represents a
sub-matrix of A. For example, the root v0 of the quadtree in Figure 3 represents
the entire matrix; child v1 represents the matrix {2k−1, . . . , 2k} × {0, . . . , 2k−1};
child v6 represents the matrix {2k−1, . . . , 3 ∗ 2k−2} × {0, . . . , 2k−2}; etc.

Definition 1 (Leaf distribution). Let N be a CLHA network whose con-
stituent CLHA have modes M = {s, u, p, r}, and let Q be the quadtree represen-
tation of N . Then each leaf node l ∈ Q has an associated degenerate leaf distri-
bution Dl, whose probability mass function (PMF) satisfies: ∃m∈M. pl(m) = 1.

The intuition is as follows. If the leaf occurs at the maximum depth of the
quadtree, then it corresponds to the mode of a CLHA. As CLHA are determin-
istic, their states assume one of the values in M with probability 1.1 If the leaf
does not occur at the maximum depth of the quadtree, then it corresponds to the
superposition of identical degenerate distributions, and no additional informa-
tion is obtained by decomposing the leaf into its four superposition components.
The visual interpretation is that a pixel has one definite color, and that nothing
is learned by decomposing an area in which all pixels have the same color.

Definition 2 (Interior-node distribution). Let N be a CLHA network whose
constituent CLHA have modes M = {s, u, p, r}, and let Q be the quadtree
1 We will weaken this restriction at the end of the section.

Learning and Detecting Emergent Behavior 235

representation of N . Furthermore, let i ∈ Q be an interior node with children
i1, . . . , i4. Then i has an associated superposition distribution Di whose PMF

satisfies: ∀m∈M. pi(m) = 1/4
∑4

j=1 pij(m).

If all of i’s children are leaves, then, for each mode value m, i’s superposition is
the mean of the occurrences of m. Hence, the probability that the mode of the
parent is m is the probability that the mode of an arbitrary child is m. If i’s
children are interior nodes, it still holds that the probability that i’s mode is m
is the probability that the mode of an arbitrary leaf below i’s children is m.

We call a quadtree whose nodes are labeled with leaf and interior-node dis-
tributions a superposition quadtree (SQT). The distributions in an SQT are not
known in advance. The task of our learning algorithm is to determine these dis-
tributions for what we perceive to be spirals. The use of probability distributions
is justified by the fact that different spirals might have slightly different shapes;
i.e., slightly different values for the leaf nodes of their associated quadtrees.

1

(b) (d)(c)

1

(a)

1

y
4

y
3

1

1

2 43

1

4

1 2 3

4

1 4

2 3

0

4

x
2

x x
2 3

1,3
2

1

x

1

0

1 0

1 0

0

1

0

Fig. 4. Fractals as finite SQGs: (a) x = 2/3, (b) x = 5/11, y = 4/11, (c) x = 1/2

The SQTs presented so far were constructed over a finite matrix A contain-
ing 2k ∗ 2k elements. In general, however, SQTs can be obtained via the finite
unfolding of a superposition quad-graph. Let 4= {1, . . ., 4}.
Definition 3 (Superposition quad-graph (SQG)). A superposition quad-
graph is a 4-tuple G = (V, v0, R, L) consisting of:

– A finite set of vertices V with initial vertex v0 ∈V ,
– A transition relation R⊆V ×4×V s.t. ∀v ∈V, i∈4 ∃u∈V. (v, i, u)∈R,
– A probability-distribution labeling L s.t. ∀v ∈V. L(v)= 1/4

∑
u∈R(v) L(u).

The condition on R ensures that each vertex in V has precisely four successors
in R. The condition on L ensures that the probability distributions are related
through superposition. Constructing SQTs as finite unfoldings of SQGs is more
powerful as it also supports the definition of infinite SQTs generated by recursion.
That is, it supports the definition of fractals.

Figure 4 gives the specification of three fractals and the unfolding of their
SQGs up to depth 3. Recursive nodes are labeled by distribution variables, the
values for which can be computed by solving a linear system. For example, x and
y in Figure 4(b) are computed by solving the linear system x=1/4 (x+ 1 + y)
and y=1/4 (1 + x). In the pictures on the right, gray areas represent recursive
nodes. The four self-loops of the leaves are not shown for simplicity. Note that
leaves may now be associated with any constant distribution. Also note that
graphs (a) and (d) yield equivalent infinite SQTs.

236 R. Grosu et al.

4 Linear Spatial-Superposition Logic

Every finite SQT can be transformed into an SQG by adding to each leaf a
self-loop labeled by i, for i∈4. Moreover, an SQG can be transformed into a
Kripke structure by erasing (forgetting) the transition labeling, collapsing iden-
tical transitions, and assuming nondeterminism among transitions emanating
from the same node. For example, applying this forgetful transformation to the
SQGs of Figure 4 yields the Kripke structures of Figure 5, where the self-loops
are made explicit. The Kripke structure of Figure 5(d) can be seen as a minimal-
state equivalent of the one of Figure 5(b).

(a) (b)

1

(c) (d)

1

y

1

x

x

0 1

y x

x

1

10

001

1 0 0

Fig. 5. Kripke structures for SQGs of Figure 4

Definition 4 (Kripke structure (KS)). A Kripke structure over a set of
atomic propositions AP is a four-tuple M = (S, I,R, L) consisting of:

– A countable set of states S, with initial states I ⊆S,
– A transition relation R∈S×S with ∀s∈S ∃ t∈S. (s, t)∈R,
– A labeling (or interpretation) function L : S→ 2AP .

The condition associated with the transition relation R ensures that every state
has a successor in R. Consequently, it is always possible to construct an infinite
path through the KS, an important property when dealing with reactive systems.
In our case, it means that we can reason about recursive SQTs, i.e. fractals.

The labeling function L defines for each state s∈S the set L(s) of atomic
propositions that are valid in s. Our atomic propositions are inequalities over
distributions. Syntactically, they are written as follows: P (D=m)∼ d, where D
is a distribution function, m∈M for M ⊂R is a discrete value (e.g. a mode),
d∈ [0..1], and ∼ is one of <, ≤, =, ≥, or >.

In order to verify properties of a reactive system modeled as a KS K, it is
customary to use either a linear-time or a branching-time temporal logic. A
model for a linear-time logic (LTL) formula is an infinite path π in K. A model
for a branching-time logic formula is K itself; given a state s of K, this allows
one to quantify over the paths originating from s. For our current purposes of
specifying, and detecting the onset of, spirals, LTL suffices.

Strictly speaking, our logic is a linear spatial-superposition logic (LSSL), as
a path π in K represents a sequence of concretizations (anti-superpositions).
Syntactically, however, our temporal-logic operators are the same as in LTL:
the next operator X with Xϕ meaning that ϕ holds in a concretization of the
current state; its inverse operator B; the until operator U , with ϕUψ meaning

Learning and Detecting Emergent Behavior 237

that ϕ holds along a path until ψ holds; and the release operator R, with ψRϕ
meaning that ϕ holds along a path unless released by ψ.

Definition 5 (LSSL Syntax). The syntax of linear space-superposition logic
is defined inductively as follows:

ϕ ::= � | ⊥ | P [D = m] ∼ d | ¬φ | ϕ ∨ ψ | Xϕ | Bϕ | ϕUϕ | ϕRϕ
∼ ::= < | ≤ | = | ≥ | >

Although Kripke structures and the LSSL logic allow us to reason about infinite
paths, physical considerations—such as the number of myocytes in a cardiac
tissue or the screen resolution—impose a maximum length k on such paths. The
length k, however, is maintained as a parameter in LSSL’s semantic definition,
permitting us to accommodate any number of myocytes or any screen resolution.
Defining LSSL’s semantics in this manner places us within the framework of
bounded-model-checking [3].

Definition 6 (LSSL Semantics). Let K be a KS and π a path in K. Then,
for k≥ 0, π satisfies an LSSL formula ϕ with bound k, written π |=k ϕ, if and
only if π |=0

k ϕ, where:

π |=i
k � and π �|=i

k ⊥
π |=i

k p ⇔ p ∈ L(π[i])
π |=i

k ¬ϕ ⇔ π �|=i
k ϕ

π |=i
k ϕ ∨ ψ ⇔ π |=i

k ϕ or π |=i
k ψ

π |=i
k Xϕ ⇔ i < k and π |=i+1

k ϕ

π |=i
k Bϕ ⇔ 0 < i ≤ k and π |=i−1

k ϕ

π |=i
k ϕUψ ⇔ ∃j. i ≤ j ≤ k. π |=j

k ψ and ∀n. i ≤ n < j. π |=n
k ϕ

π |=i
k ψRϕ ⇔ ∀j. i ≤ j ≤ k. π |=j

k ϕ or ∃n. i ≤ n < j. π |=n
k ψ

We say that K |=k ϕ if for all paths π in K, π |=k ϕ.

Our release operator R is a bounded version of the LTL’s R operator. Similarly,
the globally operator G, defined as Gϕ ≡ ⊥Rϕ, is a bounded version of LTL’s G
operator. The finally operator F is defined as usual as Fϕ ≡ �U ϕ. In general,
the unbounded LTL version of G is assumed to not hold. For example, Gϕ does
not hold as ϕ could be violated at k+ 1; to decide Gϕ in LTL wrt. a bound k,
one needs a more sophisticated analysis of the KS K, as discussed in [3].

As an example, consider an unfolding depth k of the KS in Figure 5(a), and
assume the distributions correspond to mode s. This KS has a path π such
that π |=k G (P [D= s] = 2/3) holds: the path that always returns to x. To
automatically find π we will model-check the negation of the above formula.
This will return π as a counterexample. By using the techniques in [3], one can
show that π also satisfies the unbounded LTL version of the formula.

238 R. Grosu et al.

5 Model Checking and Learning

Bounded model checking. Given a Kripke structure K, an LSSL formula ϕ, and
a bound k, a bounded model checker (BMC) efficiently verifies if K |=k ¬ϕ. If so,
it returns one or more paths π in K that violate ϕ; otherwise, it returns true.
Intuitively, a BMC applies the LSSL semantics inductively defined in Section 4
to each path π in K. We have implemented a simple prototype BMC for Kripke
structures K derived from SQTs and LSSL formulae. The BMC first enumerates
all paths in K, and then for each path, it applies the LSSL semantics. This
BMC is efficient enough to check within milliseconds the onset of spirals. We are
currently improving the BMC for safety formulae (formulae without F operator),
by traversing the SQT and pruning all subtrees of a vertex as soon as we detect
that the current path violates ¬ϕ. A more ambitious SAT-based BMC is also
under development.

Machine learning. Writing the LTL formulae that a reactive system should sat-
isfy is a nontrivial task. Developers often find it difficult to specify the system
properties of interest. The classification of LTL formulae into safety (something
bad should never happen) and liveness properties (something good should even-
tually happen) provides some guidance, but the task remains difficult.

Writing LSSL formulae describing emerging properties of CLHA networks is
even more difficult. For example, what is the LSSL formula for spiral onset? In the
following, we describe a surprisingly simple, machine-learning-based approach
that we have successfully applied to spiral detection. The main idea is to cast
the onset property as follows: Is there a path in the given SQT leading to the
core of a spiral? The implementation is simple as well. For an SEF produced by
the CellExcite simulator (see Figure 1), our Emerald tool set allows the user
to select a path through the SEF’s corresponding SQT simply by clicking on a
point in the SEF (e.g. in the core of a spiral). If no spiral is present, the SQT

path with maximum PMF (probability mass function) is returned. Note that this
method is not restricted to spirals: path selection via clicking on a representative
point can be applied to normal wave propagation, wave collision, etc.

The paths so obtained are then used to learn the LSSL formula for the property
we are interested in, such as spiral onset. The learning algorithm works as follows:
(1) For each path of length k, where k is the height of the SQT, we define k
attributes a1, . . ., ak such that each ai holds the PMF value of vertex vi, for the
mode we are interested in (for spirals, mode s); (2) Each path is classified by
Emerald as spiral or non-spiral, depending on whether or not the user clicked
on a point (core); the classification is stored as an additional classifier attribute
c; (3) All records (ai, . . ., ak, c) are stored in a table, which is provided to the
data classification phase; (4) At the end of this phase we obtain a path classifier
which we translate into an LSSL formula.

Data classification [17] is generally a two-step process: training and testing.
For training, we choose a classification algorithm that learns a set of descriptions
of our training data set. The form of these descriptions depends on the type of
classification algorithm employed. For testing, we use a test data set, disjoint

Learning and Detecting Emergent Behavior 239

from the training set, and containing the class attribute with a known value.
The accuracy of the classifier on a given test set is the percentage of the test
records that are correctly classified. Various techniques can be used to obtain test
and training sets from an initial set of records, such as X-Cross Validation [8].

Classification algorithms also come in various flavors. We used a descriptive
classifier, as this returns a set of if-then rules called discriminant rules. Under-
lying descriptive classifiers are either decision trees, rough sets, classification-by-
association analysis, etc. A rule r has the form (

∧
i∈ I ai = vi)⇒ (c= v), where

I is a subset of k. Usually, each class c has an associated set of rules r1, . . ., rn;
i.e. c is characterized by

∧n
i=1 ri. Using boolean arithmetic, this is equivalent to

(
∨n

i=1

∧
j ∈ Ii

aij = vij)⇒ (c= v). The antecedent formula
∨n

i=1

∧
j ∈ Ii

aij = vij is
called the class description formula of the class c.

As is customary, we built a classifier for one class only (the class c), called the
target class, using all other classes as one contrasting class. Hence the classifier
consists of only one class-description formula, describing the target class. We say
that we learned that formula. We have used Weka’s decision-tree algorithm, but
any other rule-based algorithm could have been used as well. The classifier we
have learned for spirals, is as follows:

if a7 <= 0.875 then {if a2 <= 0.04895 then ∼c else c}

else if a3 <= 0.078359 then {if a0 <= 0.025021 then ∼c else c} else ∼c

Its translation into linear spatial-superposition generated the following formula:

XX (P(D=s)> 0.04895∧ XXXXX P(D=s)≤ 0.875) ∨
P(D= s)> 0.025021∧ XXX (P(D=s)≤ 0.078359∧ XXXX P(D=s)> 0.875)

This formula is an approximate description of a spiral which we used together
with Emerald’s BMC to detect spiral onset within milliseconds. In case the BMC

returned a false positive, we add the corresponding record to the classification
table as part of a retraining phase; see Figure 1.

6 Implementation and Experimental Results

Our techniques of Sections 2-5 have been implemented as the Emerald tool suite
of the EHA environment. Emerald is a Java application that can be used to
learn an LSSL formula for a particular spatial pattern, and to check the formula
against a set of images that reproduce the discrete behavior of a CLHA network.
For ease of use, Emerald provides two graphical panels, one for Preprocessing
(classification) and the other for Bounded Model Checking.

The Preprocessing panel (Figure 6(a)) enables users to browse the various
collections of images they have assembled for machine-learning purposes, and
to view their SQT representation. It comprises three graphical components: an
image viewer on the right, a quadtree viewer on the top-left, and a data-table
viewer on the bottom-left, where user-selected paths are displayed. In the image
viewer, the user selects a path leading to a spiral core by clicking on an appro-
priate stimulated point (in yellow) of the image. If the image does not contain
a spiral, the user can choose the maximum PMF path or a generic stimulated

240 R. Grosu et al.

Fig. 6. (a) Top: Preprocessing Panel. (b) Bottom: Bounded Model Checking Panel.

point. Each path selected is stored in a data table in the form of the PMF se-
quence of stimulated modes in each node of the traversed SQT. All such paths
are subsequently exported to Weka in a common format. Presently, we have cus-
tomized Emerald for spiral detection, but we plan to extend the tool with the
capability to classify any generic spatial pattern.

The BMC panel (Figure 6(b)) enables the user to check an LSSL formula
against the SQT representation of a specific image. As discussed in Section 5, the
LSSL formula encodes the classifier for the spatial pattern under investigation. If
the SQT in question fails to satisfy the formula, the resulting counter-examples
(spirals) are reported to the user both as rows in the counter-example table and
as red points marking the core of the spiral contained in the image.

Table 1 contains our preliminary experimental results. For training and testing
purposes, we used two different sets of images, each containing spirals and normal
wave propagation. The first set of images was used to train the classifier; we
supervised the training by discriminating between paths leading to a spiral core

Learning and Detecting Emergent Behavior 241

Table 1. Experimental Results

Path Classifier Test Set 550 Test Set 600 Test Set 650

Trained (512 Paths) 87.00% 88.83% 88.23%

Retrained (512 Paths + 67 Counter-Examples) 97.10% 97.33% 93.07%

versus those (of maximum PMF) belonging to images that did not contain a
spiral. From this first set we extracted 512 possible paths, and used Weka to
build a ruled-based classifier with a very high prediction accuracy (99.25%).

The test set was divided into increasingly larger sets of images: 500, 550,
600 and 650 images. Applying the rule-based classifier on the first 500 images
produced 67 wrongly classified paths. We used these paths to obtain a new,
retrained classifier. We then used both classifiers on the remaining sets of images,
and for each classifier and test set we computed the LSSL formula accuracy, as an
estimate of how well the formula specifies the spatial pattern. As Table 1 shows,
retraining considerably improves accuracy, and can be repeated each time a false
classification is returned. Weka’s decision-tree algorithm took no more than 9s to
construct a rule-based classifier from the training (512 records) and retraining
(579 records) tables, respectively. Our model checker took between 1.67s and
7.09s, with an average of 4.72s to model check an SQT for a 400×400 SEF if
no spiral was present, and between 1ms and 4.64s, with an average of 230ms if a
spiral was present. All results were produced on a PC equipped with a Centrino
2GHz processor with 1.5GB RAM.

7 Related Work

The use of hybrid automata to model and analyze spatial networks is a relatively
new subject area, and includes application to Delta-Notch signaling networks [9],
coordinated control of autonomous underwater vehicles [14], and aircraft trajec-
tories and landing protocols [7,16]. In contrast, our focus is on emergent behavior
(in the form of spiral waves) in networks of cardiac myocytes, and the use of
spatial superposition as an abstraction mechanism. Predicting spirals [4] in pure
continuous models [18] is a more complicated process than what is implemented
in Emerald, where discrete SQT structures, obtained via mode-abstraction and
superposition, are used. Several logics have recently been proposed for describing
the behavior and spatial structure of concurrent systems [5,6], and for reasoning
about the topological aspects of modal logics and Kripke structures [1]. Un-
like LSSL, these logics are not based on an abstraction mechanism like spatial-
superposition that can be used to alleviate state explosion during model checking.

8 Conclusions

In this paper, we have presented a framework for specifying and detecting emer-
gent behavior in networks of cardiac myocytes. Our approach, which uses hybrid

242 R. Grosu et al.

automata, discrete mode-abstraction, and bounded model checking, is based on
a novel notion of spatial-superposition and its related logic LSSL, and a new
method for the automated learning of formulae in this logic from the spatial
patterns under investigation. Our framework has been fully implemented in the
Emerald tool suite. Our preliminary experimental results are very encouraging,
with a prediction accuracy of over 93% on a test set comprising 650 images. As
future work, we plan to extend our framework to the learning of branching-time
spatial-superposition properties, and the more intricate problem of specifying
and detecting spatiotemporal emergent behavior.

References

1. Aiello, M., Benthem, J., Bezhanishvili, G.: Reasoning about space: The modal way.
J. Log. Comput. 13(6), 889–920 (2003)

2. Bartocci, E., Corradini, F., Entcheva, E., Grosu, R., Smolka, S.A.: CellExcite: A
tool for simulating in-silico excitable cells. BMC Bioinformatics (to appear, 2007)

3. Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
In: Adv. in Comp., Highly Depend. Software, vol. 58, Academic Press, London
(2003)

4. Bray, M.A., Lin, S.F., Aliev, R.R., Roth, B.J., Wikswo, J.P.J.: Experimental and
theoretical analysis of phase singularity dynamics in cardiac tissue. J Cardiovasc
Electrophysiol 12(6), 716–722 (2001)

5. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2),
194–235 (2003)

6. Caires, L., Cardelli, L.: A spatial logic for concurrency (part II. Theor. Comput.
Sci. 322(3), 517–565 (2004)

7. deOliveira, I., Cugnasca, P.: Checking safe trajectories of aircraft using hybrid
automata. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002. LNCS,
vol. 2434, Springer, Heidelberg (2002)

8. Frank, E., Hall, M.A., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I.H., Trigg,
L.: WEKA – a machine learning workbench for data mining. In: The Data Mining
and Knowledge Discovery Handbook, pp. 1305–1314. Springer, Heidelberg (2005)

9. Ghosh, R., Tiwari, A., Tomlin, C.: Automated symbolic reachability analysis; with
application to delta-notch signaling automata. In: Maler, O., Pnueli, A. (eds.)
HSCC 2003. LNCS, vol. 2623, pp. 233–248. Springer, Heidelberg (2003)

10. Grosu, R., Bartocci, E., Corradini, F., Entcheva, E., Smolka, S., True, M.,
Wasilewska, A., Ye, P.: EHA: An environment for the specification, simula-
tion, analysis and control of networks of excitable hybrid automata (2007),
http://www.cs.sunysb.edu/~eha

11. Grosu, R., Mitra, S., Ye, P., Entcheva, E., Ramakrishnan, I.V., Smolka, S.A.: Learn-
ing cycle-linear hybrid automata for excitable cells. In: Bemporad, A., Bicchi, A.,
Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 245–258. Springer, Heidel-
berg (2007)

12. Kwon, Y., Agha, G.: Scalable modeling and performance evaluation of wireless
sensor networks. In: IEEE RT Tech. and App. Symp., pp. 49–58 (2006)

13. Lu, Y.: Concept hierarchy in data mining: Specification, generation and implemen-
tation. Master’s thesis, Simon Fraser University (December 1997)

14. Pereira, F.L., deSousa, J.B.: Coordinated control of networked vehicles: An au-
tonomous underwater system. Aut. and Remote Ctrl. 65(7), 1037–1045 (2004)

http://www.cs.sunysb.edu/~eha

Learning and Detecting Emergent Behavior 243

15. Shusterman, E., Feder, M.: Image compression via improved quadtree decomposi-
tion algorithms. IEEE Trans. on Image Processing 3(2), 207–215 (1994)

16. Umeno, S., Lynch, N.: Safety verification of an aircraft landing protocol: A re-
finement approach. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, Springer, Heidelberg (2007)

17. Wasilewska, A., Ruiz, E.M.: A classification model: Syntax and semantics for clas-
sification. In: Śl ↪ezak, D., Yao, J., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC
2005. LNCS (LNAI), vol. 3642, pp. 59–68. Springer, Heidelberg (2005)

18. Wedge, N.A., Branicky, M.S., Cavusoglu, M.C.: Computationally efficient cardiac
biolectricity models toward whole-heart simulation. In: Proc.of Intl. Conf. IEEE
Engineering in Medicine and Biology Society, pp. 1–4 (2004)

19. Ye, P., Entcheva, E., Grosu, R., Smolka, S.: Efficient modeling of excitable cells us-
ing hybrid automata. In: Proc. of CMSB 2005, the 3rd Workshop on Computational
Methods in Systems Biology, Edinburgh, Scotland, pp. 216–227 (April 2005)

20. Ye, P., Entcheva, E., Smolka, S., Grosu, R.: A cycle-linear hybrid-automata model
for excitable cells. The IET J. of Systems Biology (SYB) (accepted, 2007)

Compositional Modeling and Minimization
of Time-Inhomogeneous Markov Chains

Tingting Han1,2, Joost-Pieter Katoen1,2, and Alexandru Mereacre1,3

1 RWTH Aachen University, Software Modeling and Verification Group, Germany
{tingting.han,katoen,mereacre}@cs.rwth-aachen.de

2 University of Twente, Formal Methods and Tools Group, The Netherlands
3 University of Trento, Dept. of Information and Communication Technology, Italy

Abstract. This paper presents a compositional framework for the modeling of
interactive continuous-time Markov chains with time-dependent rates, a subclass
of communicating piecewise deterministic Markov processes. A poly-time algo-
rithm is presented for computing the coarsest quotient under strong bisimulation
for rate functions that are either piecewise uniform or (piecewise) polynomial.
Strong as well as weak bisimulation are shown to be congruence relations for the
compositional framework, thus allowing component-wise minimization. In ad-
dition, a new characterization of transient probabilities in time-inhomogeneous
Markov chains with piecewise uniform rates is provided.

1 Introduction

Modeling large stochastic discrete-event dynamic systems is a difficult task that typi-
cally requires human intelligence and ingenuity. To facilitate this process, formalisms
are needed that allow for the modeling of such systems in a compositional manner. This
allows to construct models of simpler components—usually from first principles—that
can be combined by appropriate composition operators to yield complete system mod-
els. In concurrency theory, process algebra [20,16] has emerged as an important frame-
work to achieve compositionality: it provides a formal apparatus for compositional rea-
soning about structure and behavior of systems, and features abstraction mechanisms
allowing system components to be treated as black boxes.

Although originally aimed at purely functional behavior, process algebras for
stochastic systems have been investigated thoroughly, see e.g., [15,14]. In all these ap-
proaches, the dynamics of the stochastic models is assumed to be time-homogeneous,
i.e., the probabilistic nature of mode transitions as well as the time-driven behavior
are independent of the global time. This is, however, a serious drawback to adequately
model random phenomena that occur in practice such as failure rates of hardware com-
ponents (a bath-tub curve), software reliability (which reduces due to memory leaks
and increases after a restart), and battery depletion (where the power extraction rate
non-linearly depends on the remaining amount of energy [5]), to mention a few. This
paper attempts to overcome this deficiency by providing a process algebra for time-
inhomogeneous continuous-time Markov chains (ICTMCs). This is a very versatile
class of models and is a natural stepping-stone towards more full-fledged stochastic
hybrid system models such as piecewise deterministic Markov processes (PDPs [6]).

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 244–258, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 245

We show that ICTMCs can be compositionally modeled by using a time-dependent
adaptation of the framework of interactive Markov chains (IMCs) [14]. To facilitate
this, ICTMCs are equipped with the potential for interaction, i.e., synchronization. In-
strumental to this approach is the memoryless property of ICTMCs.

More importantly though, notions of strong and weak bisimulation are defined and
shown to be congruences. Together with efficient quotienting algorithms this allows for
the component-wise minimization of hierarchical ICTMC models. Finally, we present
an axiomatization for strong and weak bisimulation which allows to simplify models
by pure syntactic manipulations as opposed to performing minimization on the model
level. As a generalization of results on ordinary lumpability on Markov chains [3], we
show that strong bisimulation preserves transient and long-run state probabilities in
ICTMCs. This allows to minimize symbolically ICTMCs prior to their analysis.

We present a bisimulation minimization algorithm to obtain the coarsest (and thus
smallest) strong bisimulation quotient of a large class of interactive ICTMCs, viz.
those that have piecewise uniform—rate Rk(t) on piece k is of the form fk(t)·R
for integrable function R—polynomial, or piecewise polynomial—where each poly-
nomial is of degree three—rate functions. The worst-case time and space complexity is
O (ma lg(n) + Mmr lg(n)) and O (ma + mr), respectively, where M+1 is the num-
ber of pieces (or degrees of the polynomial), ma is the number of action-labeled transi-
tions and mr the number of rate-labeled transitions in the ICTMC under consideration.
This algorithm is based on the partition-refinement bisimulation algorithm for Markov
chains by Derisavi et al. [7] and Paige-Tarjan’s algorithm for labeled transition systems
(LTS) [21].

Related work. ICTMCs are related to piecewise deterministic Markov processes (PDPs),
a more general class of continuous-time stochastic discrete-event dynamic systems pro-
posed by Davis [6]. The probabilistic nature of mode transitions in PDPs is as for
ICTMCs; in fact, ICTMCs are a subclass of PDPs when the global time t has a clock
dynamics i.e., ṫ = 1. The notion of parallel composition of ICTMCs corresponds to that
for communicating PDPs (CPDPs) as introduced by Strubbe and van der Schaft [24,23].
Alternative modeling formalisms for PDPs are, e.g., variants of colored Petri nets [9]
but they lack a clear notion of compositionality. Compositional modeling formalisms
for hybrid systems have been considered by, e.g., [2,1]. Strong bisimulation has been
proposed for several classes of (stochastic) hybrid systems, see e.g., [4,12,25]. Our no-
tion of bisimulation is closely related to that for CPDPs [25] but differs in the fact that
the maximal progress assumption—a race between one or more rates and a transition
that is not subject to interaction with the environment is resolved in favor of the internal
transition—is not considered in [25]. Proofs of the major results are contained in [13].

2 Inhomogeneous Continuous Time Markov Chains

Definition 1 (ICTMC). An inhomogeneous continuous-time Markov chain is a tuple
C = (S,R) where: S = {1, 2, . . . , n} is a finite set of states, and R(t) = [Ri,j(t) ≥
0] ∈ IRn×n is a time-dependent rate matrix, where Ri,j(t) is the rate between states
i, j ∈ S at time t ∈ IR≥0.

246 T. Han, J.-P. Katoen, and A. Mereacre

Let diagonal matrix E(t) = diag [Ei(t)] ∈ IRn×n, where Ei(t) =
∑

j∈S
Ri,j(t) for

all i, j ∈ S, i �= j i.e., Ei(t) is the total exit rate of state i at time t. Consider a
non-homogeneous Poisson process {Z(t)|t ≥ 0} with rate R(t). The probability of k
arrivals in the interval [t, t + Δt] is:

Pr{Z(t + Δt) − Z(t) = k} =

[∫ t+Δt

t R(�)d�
]k

k!
e−
�

t+Δt
t

R(�)d�, k = 0, 1,

The probability that there will be no arrivals in the interval [t, t + Δt] is:

Pr{Z(t + Δt) − Z(t) = 0} = e−
� t+Δt

t
R(�)d� = e−

�Δt
0 R(t+�)d�. (1)

Let the random variable Wi,j(t) be the firing time of transition i → j (i, j ∈ S) with
rate Ri,j(t) at time t. From (1) we obtain the cumulative probability distribution of the
firing time of transition i → j:

Pr{Wi,j(t) ≤ Δt} = 1 − Pr{Z(t + Δt) − Z(t) = 0} = 1 − e−
�Δt
0 Ri,j(t+�)d�. (2)

Probability measures. For every ICTMC one can specify measures of interest. These
measures are either related to the states or to the transitions of an ICTMC. Consider a
random variable Wi(t) which denotes the waiting time in state i.

Property 1

Pr {Wi(t) ≤ Δt} = 1 − e−
�

Δt
0 Ei(t+�)d�. (3)

An intuitive explanation of (3) is that the waiting time Wi(t) in state i is determined
by the minimal firing time of all k outgoing transitions from state i, i.e., Wi(t) =
min {Wi,1(t), . . . , Wi,k(t)}. When Ri,j(t) = Ri,j and Ei(t) = Ei for all t ∈ IR≥0,
i.e., the ICTMC is a CTMC, Wi(t) has the distribution 1 − e−EiΔt. An interesting
property is that the waiting time in any state i is memoryless, i.e.:

Pr {Wi(t) ≤ t′ + Δt|Wi(t) > t′} = Pr{Wi(t + t′) ≤ Δt} . (4)

This can be shown as follows:

Pr {Wi(t) ≤ t′ + Δt|Wi(t) > t′} =
e−
�

t′
0 Ei(t+�)d� − e−

�
t′+Δt
0 Ei(t+�)d�

e−
� t′
0 Ei(t+�)d�

= 1 − e−
� t′+Δt
0 Ei(t+�)d�+

� t′
0 Ei(t+�)d� = Pr{Wi(t + t′) ≤ Δt} .

Equation (4) will be of importance when we later define a calculus for ICTMCs.

Property 2. The probability Pri,j(t) to select transition i → j (i �= j, i, j ∈ S) with
rate Ri,j(t) at time t is:

Pri,j(t) =
∫ ∞

0

Ri,j(t + τ)e−
� τ
0 Ei(t+�)d�dτ. (5)

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 247

When rates are constant, the measure (5) takes the form Pri,j = Ri,j

Ei
(Pri,j(t) = Pri,j

for all t ∈ IR≥0), which corresponds to transition probability in CTMCs.

Property 3. The cumulative probability distribution Pri,j(t, Δt) to move from state i
to state j (i �= j) with rate Ri,j(t) in Δt time units starting at time t:

Pri,j(t, Δt) =
∫ Δt

0

Ri,j(t + τ)e−
�

τ
0 Ei(t+�)d�dτ. (6)

Notice that (6) is the same as (5) except that the range of the outer-most integral is
[0, Δt]. For CTMCs (Pri,j(t, Δt) = Pri,j(Δt) for all t ∈ IR≥0), equation (6) results in
Pri,j(Δt) = Ri,j

Ei

(
1 − e−EiΔt

)
.

Transient probability distribution. One important measure which quantifies the proba-
bility to be in a specific state at some time point is the transient probability distribution.
Consider an ICTMC described by the stochastic process {X(t)|t ≥ 0}. The transient
probability distribution Pr {X(t + Δt) = j}, denoted by πj (t + Δt), is the probability
to be in state j at time t + Δt, and is described by the equation:

πj (t + Δt) =
∑

i∈S

Pr {X(t) = i} · Pr{X(t + Δt) = j|X(t) = i} . (7)

Equation (7) can be expressed in matrix form as: π(t + Δt) = π(t)Φ(t + Δt, t),
where π(t) = [π1 (t) , . . . , πn (t)] and Φ(t+Δt, t) represents the transition probability
matrix. This equation represents the solution of a system of ODEs:

dπ(t)
dt

= lim
Δt→0

π(t + Δt) − π(t)
Δt

= lim
Δt→0

π(t)
[Φ(t + Δt, t) − I]

Δt
. (8)

For the diagonal elements qi,i(t) of the matrix limΔt→0
[Φ(t+Δt,t)−I]

Δt from (8), we

obtain qi,i(t) = limΔt→0
Pr{X(t+Δt)=i|X(t)=i}−1

Δt . As Pr {X(t + Δt) = i|X(t) = i}
denotes the probability to stay in state i for at least Δt units of time or the probability
to return to state i in two or more steps, it follows:

qi,i(t) = lim
Δt→0

e−
�

Δt
0 Ei(t+�)d� − 1 + o (Δt)

Δt
= −Ei(t),

where o (Δt) denotes the probability to make two or more transitions in Δt units of
time. Notice that limΔt→0

o(Δt)
Δt = 0. For the off-diagonal elements qi,j(t) (i �= j) of

matrix limΔt→0
[Φ(t+Δt,t)−I]

Δt , the relation is similar:

qi,j(t) = lim
Δt→0

Pr{X(t + Δt) = j|X(t) = i}
Δt

= lim
Δt→0

Pri,j(t, Δt) + o (Δt)
Δt

,

which can be reduced using (6) to:

qi,j(t) = lim
Δt→0

∫ Δt

0
Ri,j(t + τ)e−

� τ
0 Ei(t+�)d�dτ + o (Δt)
Δt

= Ri,j(t).

248 T. Han, J.-P. Katoen, and A. Mereacre

The resulting infinitesimal generator matrix Q(t) has the form:

Q(t) = lim
Δt→0

[Φ(t + Δt, t) − I]
Δt

= R′(t) − E(t),

where R′ equals R except that R
′
i,i(t) = 0. Plugging Q(t) into equation (8) yields the

system of ODEs which describe the evolution of transient probability distribution over
time (Chapman-Kolmogorov equations):

dπ(t)
dt

= π(t)Q(t),
n∑

i=1

πi(t0) = 1, (9)

where π(t0) is the initial condition. From the literature (see [17, pages 594–631]) it is
known that the solution π(t) of (9), written as:

π(t) = π(t0)Φ(t, t0) (10)

has the transition probability matrix given by the Peano-Baker series:

Φ(t, t0) = I +
∫ t

t0

Q(τ1)dτ1 +
∫ t

t0

Q(τ1)
∫ τ1

t0

Q(τ2)dτ2dτ1 + (11)

Note that if Q(τ1)
∫ τ1

t0
Q(τ2)dτ2 =

∫ τ1

t0
Q(τ2)dτ2Q(τ1) then Φ(t, t0) = e

�
t
t0

Q(τ)dτ .
If the rate matrix R(t) is piecewise constant i.e., R(t) = Rk or Q(t) = Qk for all
t ∈ [tk, tk+1) and k ≤ M ∈ IN (M + 1 is the total number of constant pieces),
equation (10) can also be rewritten as (see [22]):

π(t) =

⎧
⎪⎨

⎪⎩

π(t0)eQ0(t−t0) if t ∈ [t0, t1)
...

...
π(tM)eQM (t−tM) if t ∈ [tM ,∞)

and π(tk) = π(tk−1)eQk−1(tk−tk−1).

The general case is when the rate matrix is piecewise uniform i.e., R(t) = Rk(t) =
fk(t)Rk or Q(t) = Qk(t) = fk(t)Qk for any integrable function fk(t) : IR≥0 → IR≥0

on time interval [tk, tk+1), constant matrices Rk and Qk.

Theorem 1. The transient probability distribution π(t) of an ICTMC C = (S,R) with
a piecewise uniform rate matrix R(t) and M+1 pieces is given by:

π(t) =

⎧
⎪⎪⎨

⎪⎪⎩

π(t0)e
Q0
� t

t0
f0(τ)dτ if t ∈ [t0, t1)

...
...

π(tM)eQM

�
t
tM

fM (τ)dτ if t ∈ [tM ,∞)

where π(tk) = π(tk−1)e
Qk−1

� tk
tk−1

fk−1(τ)dτ
.

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 249

3 Inhomogeneous Interactive Markov Chains

In order to facilitate the compositional modeling of ICTMCs, we equip these processes
with the capability to allow for their mutual interaction. This is established by adding
actions to ICTMCs. Let Act be the countable universe of actions. The aim of these
actions is that certain actions can only be performed together with other processes.

Definition 2 (I2MC). An inhomogeneous interactive Markov chain (I2MC) is a tuple
I = (S, Act,→,R, s0) where S and R are as before, →⊆ S ×Act × S is a transition
relation and s0 ∈ S is the initial state.

The semantic model of I2MC represents the time-dependent variant of IMC [14].

Process algebra for I2MC. Originally developed by Hoare and Milner (see [20,16]),
process algebras have been developed as a compositional framework for describing
the functional behavior of the system. It allows for modeling complex systems in a
component-wise manner by offering a set of operators to combine component models.
Actions are the most elementary notions. The combination of several actions using the
operators forms a process. We extend this framework by stochastic timing facilities.

Definition 3. Let X be a process variable, λ(t) ∈ IR≥0 with t ∈ IR≥0, A ⊆ Act
and a ∈ Act. The syntax of inhomogeneous interactive Markov language (I2ML) for
I2MCs is defined as follows:

P ::= 0 | a.P | λ(t).P | P + P | P‖AP | P \ A | X.

Process variables are assumed to be defined by recursive equations of the form X := P ,
where P is an I2ML term. The null process 0 is the deadlock process and cannot perform
any action. The prefix operators are a.P and λ(t).P for actions and rates, respectively.
The choice operator P +Q chooses between processes P or Q. Process P‖AQ denotes
the parallel composition of processes P and Q where synchronization is required only
for actions in A; actions not in A are performed autonomously. The process P \ A
behaves like P except that all actions in A become unobservable to other processes;
this is established by relabeling a by the distinguished action τ ∈ Act. The operational
semantics of I2ML terms is defined by the inference rules in Table 1 where for the sake
of conciseness symmetric rules are not shown.

A few remarks concerning time-prefix and choice are in order. The process λ(t).P
evolves into P within Δt time units with probability:

Prλ(t).P,P (t, Δt) =
∫ Δt

0

λ(t + τ)e−
� τ
0 λ(t+�)d�dτ = 1 − e−

�Δt
0 λ(t+�)d�,

given that λ(t).P is enabled at the global time t. The above relation can be easily proven
from (6) by taking i = λ(t).P , j = P , Ri,j(t + τ) = λ(t + τ) and Es(t + �) =
λ(t + �). The process λ(t).P + μ(t).Q can evolve into P if the time delay gener-
ated by a stochastic process with rate λ(t) is smaller than that generated by a differ-
ent stochastic process with rate μ(t). By a symmetric argument it may evolve into Q.
Therefore, from (3) it follows that the distribution of time until a choice is made is

250 T. Han, J.-P. Katoen, and A. Mereacre

Table 1. Inference rules for the operational semantics of I2ML

a.P
a−→P

P
a−→P ′ and Q

a−→Q′

P‖AQ
a−→P ′‖AQ′ (a ∈ A)

λ(t).P
λ(t)−→P

P
λ(t)−→P ′

P\Aλ(t)−→P ′\A

P
a−→P ′

P+Q
a−→P ′

P
a−→P ′

P‖AQ
a−→P ′‖AQ

(a /∈ A)
P

λ(t)−→P ′

P+Q
λ(t)−→P ′

E[X:=E/X]
λ(t)−→E′

X:=E
λ(t)−→E′

P
a−→P ′

P\A a−→P ′\A (a /∈ A)
P

a−→P ′

P\A τ−→P ′\A (a ∈ A)
P

λ(t)−→P ′

P‖AQ
λ(t)−→P ′‖AQ

E[X:=E/X]
a−→E′

X:=E
a−→E′

Pr{W (t) ≤ Δt} = 1− e−
�Δt
0 λ(t+τ)+μ(t+τ)dτ . For a choice between |J | processes (J

is a finite index set), the distribution of the waiting time becomes Pr{W (t) ≤ Δt} =
1 − e−

�
Δt
0

�
i∈J λi(t+τ)dτ . If the rates λi(t) in the process

∑
i∈J λi(t).Pi are constant

(λi(t) = λi), then the waiting time is exponentially distributed with the sum of the rates
λi i.e. Pr{W (t) ≤ Δt} = 1 − e−

�
i∈J λiΔt. This corresponds to the interpretation of

choice in Markovian process algebras [15]. It is important to note that when Pi = P
for all i ∈ J , the process

∑
i∈J λi(t).P will evolve into P with rate

∑
i∈J λi(t).

Parallel composition. When considering just actions the asynchronous parallel com-
position has the same functionality as that from basic process calculi. On the other
hand when considering stochastic delays the composition is more involved. Consider
P := λ(t).P ′ and Q := μ(t).Q′. They can evolve into P ′ and Q′ after a time delay
governed by a distribution with rate λ(t) and μ(t), respectively. Since the waiting time
in any state is memoryless (4), we can show the way by which processes P and Q are
composed (see diagram below).

P‖Q

P ′‖Q P‖Q′

P ′‖Q′

λ(t)

μ(t)

μ(t)

λ(t)

First consider that when both processes start their execution in
initial state P‖Q (the shadowed state) they probabilistically select
a time delay, say, Δtλ for P and Δtμ for Q. If Δtλ < Δtμ then
P finishes its execution first and evolves into P ′. The same applies
to Q when Δtμ < Δtλ. By intuition we could think that when it
is already in P ′‖Q, Δtλ = 0 and the remaining delay for process
Q until it finishes its execution is Δtμ −Δtλ. What really happens

is that on entering state P ′‖Q both delays are set to zero i.e., Δtλ = Δtμ = 0. As
P ′ has no transitions, Δtλ remains 0 but for Q its delay is initialized to a new value
which might be different from Δtμ − Δtλ due to a probabilistic selection. Due to the
memoryless property, however, the remaining delay for Q is fully determined by μ only.

Example 1. Consider two hardware components described by the equations P := λ1(t)
.0+λ2(t).use.P and Q := μ1(t).0+μ2(t).use.Q, respectively. Each of the components
may fail with rate λ1(t) and μ1(t), respectively. As a result of the failure they evolve
into process 0. On the other hand, the components may move to the working state with
the rate λ2(t) and μ2(t), respectively, where they can use some resources. If one of
them fails then the entire system fails. Both components can use the resources at the
same time if the system is working properly. Figure 1 depicts the I2MC of P‖{use}Q.

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 251

4 Strong and Weak Bisimulation

In order to compare the behavior of ICTMCs (and their interactive variants) we ex-
ploit the well-studied and widely accepted notion of bisimulation [3,20,14]. A classical

P‖{use}Q

0‖{use}Q P‖{use}use.Q P‖{use}0

λ1(t)

μ2(t)

μ1(t)

use.P‖{use}use.Q

0‖{use}0

0‖{use}use.Q use.P‖{use}0

use

μ2(t) λ2(t) λ2(t)

use.P‖{use}Q

μ2(t)
μ1(t)

λ2(t)

λ1(t)

μ1(t) λ1(t)

Fig. 1. P‖{use}Q

bisimulation relation re-
quires equivalent states
to be able to mutu-
ally mimic their step-
wise behavior. In the
probabilistic setting this
is interpreted as requir-
ing equivalent states to
have equal cumulative
rates to move to any
equivalence class.
Bisimulation is consid-
ered as a natural notion
of equivalent behavior,

is equipped with quotienting algorithms, and has a clear correspondence to equivalence
in terms of logical behavioral specifications. In this section, we will define strong bisim-
ulation for I2MC starting from a similar notion on ICTMCs. Some algebraic and prob-
abilistic properties of bisimulation are investigated. The same applies to weak bisimu-
lation that allows for the abstraction of internal, i.e., τ actions.

Bisimulation for ICTMCs.

Definition 4 (ICTMC strong bisimulation). An equivalence R ⊆ S × S is a strong
bisimulation whenever for all (P, Q) ∈ R, t ∈ IR≥0 and C ∈ S/R:

R(P, C, t) = R(Q, C, t),

where R(P, C, t) =
∑

i{|λ(t)|P λ(t)→i P ′, P ′ ∈ C|}. P and Q are strongly bisimilar,
denoted P ∼ Q, if (P, Q) is contained in some strong bisimulation R.

Here, {| . . . |} denotes a multiset. It follows that ∼ is the largest strong bisimulation, i.e.,
it contains any strong bisimulation. To be able to compare ICTMCs by bisimulation, let
us equip an ICTMC with an initial state s0 ∈ S. Two ICTMCs CP = (SP ,RP , s0

P) and
CQ = (SQ,RQ, s0

Q) are bisimilar, denoted CP ∼ CQ, iff their initial states are bisimilar,
i.e., s0

P ∼ s0
Q. The quotient of an ICTMC under ∼ is defined in the following way.

Definition 5 (Bisimulation quotient). For the ICTMC C = (S,R, s0) and ∼, the
quotient C/∼ is defined by C/∼= (S/∼,R∼, s0∼) where s0∼ = [s0]∼ and R∼ is defined
by: R∼([P]∼, [P ′]∼, t) = R(P, [P ′]∼, t) for all t ∈ IR≥0.

Note that C is strongly bisimilar to C/∼. An important property of strong bisimulation
is that it preserves transient probabilities; in particular, this means that there is a strong
relationship between the transient probabilities in an ICTMC and its quotient.

252 T. Han, J.-P. Katoen, and A. Mereacre

Theorem 2. Let C = (S,R, s0) be an ICTMC. For every C ∈ S/∼, the transient
probability distribution πC(t) of the state C in the quotient chain C/∼ is:

πC(t) =
∑

s∈C

πs(t) for all t ∈ IR≥0,

where πs(t) is the transient probability distribution of state s ∈ S in C.

From Theorem 2 we may conclude that the steady state probability distribution (if it
exists) is also preserved.

Corollary 1. Let C = (S,R, s0) be an ICTMC. For every C ∈ S/∼, the steady-state
probability distribution πC of the state C in the quotient chain C/∼ is:

πC = lim
t→∞πC(t) = lim

t→∞

∑

s∈C

πs(t) =
∑

s∈C

πs,

where πs is the steady-state probability distribution of state s ∈ S.

In many cases it is reasonable to assume that two processes P and Q are equal up to
time T . For this case we propose the finite-horizon bisimulation.

Definition 6. An equivalence R ⊆ S × S is a finite-horizon bisimulation whenever for
all (P, Q) ∈ R, t ∈ [0, T] (T ∈ IR≥0) and C ∈ S/R: R(P, C, t) = R(Q, C, t). P
and Q are finitely-horizon bisimilar, denoted P ∼T Q, if (P, Q) is contained in some
finite-horizon bisimulation R.

Notice that the definition of finite-horizon bisimulation ∼T is the same except that the
time t lies in the interval [0, T]. It is easy to see that finite-horizon bisimulation preserves
the transient distribution up to time T .

Proposition 1. For 0 < · · · < T < · · · < ∞ it holds: ∼0⊆ · · · ⊆ ∼T · · · ⊆ ∼ .

Thus , P ∼ti Q implies P ∼tj Q for every tj < ti. It follows that for tj < ti, the
quotient under ∼tj is coarser than under ∼ti .

Bisimulation for I2MCs. So far, we have presented bisimulation for ICTMCs. In order
to define bisimulation for I2MCs, unobservable actions (i.e., τ) require special care.
Consider four states such that P1 ∼ P2 ∼ Q1 ∼ Q2 (see diagram below).

P0 P1

P2

2λ(t)

∼τ

Q0 Q1

Q2

λ(t)

∼
λ(t)

At first sight, it seems natural that P0 ∼ Q0 as
R(P0, C, t) = R(Q0, C, t) = 2λ(t). But, state P0 can do
something more. There is a transition P0

τ→ P2 which con-
sumes no time since a τ -action is an internal one and is
not prevented by the environment (maximal progress as-

sumption). The probability that transition P0
2λ(t)−→ P1 will be taken in 0 time units

is PrP0,P1(t, 0) =
∫ 0

0 2λ(t + τ)e−
�

τ
0 2λ(t+�)d�dτ = 0. Thus, we may conclude that

P0 � Q0. When specifying the definition of bisimilarity we have to treat immediate
actions (τ) in a special way. Let S be the state-space of an I2MC.

Definition 7 (I2MC strong bisimulation). An equivalence R ⊆ S × S is a strong
bisimulation whenever for all (P, Q) ∈ R, t ∈ IR≥0, a ∈ Act and C ∈ S/R:

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 253

Table 2. Sound and complete axioms for ∼ on the I2ML sequential fragment

P + 0 = P a.P + a.P = a.P (P + Q) + R = P + (Q + R)

P + Q = Q + P λ(t).P + τ.Q = τ.Q λ(t).P + μ(t).P = (λ(t) + μ(t)).P

– P
a−→ P ′ implies Q

a−→ Q′ for some Q′ and (P ′, Q′) ∈ R.
– Q

a−→ Q′ implies P
a−→ P ′ for some P ′ and (P ′, Q′) ∈ R.

– P
τ
� (or Q

τ
�) implies R(P, C, t) = R(Q, C, t).

P and Q are strongly bisimilar, denoted P ∼ Q, if (P, Q) is contained in some strong
bisimulation R.

Example 2. Consider the I2MC from Fig. 1 (c) and λ1(t) = μ1(t), λ2(t) = μ2(t). Its
quotient under bisimulation is depicted in Fig. 2. The equivalence classes C1, C2 and
C3 contain the following states C1 =

{
0‖{use}Q, P‖{use}0

}
, C2 =

{
P‖{use}use.Q,

use.P‖{use}Q
}

and C3 =
{
0‖{use}use.Q, use.P‖{use}0, 0‖{use}0

}
.

P‖{use}QC1

2λ1(t)

use.P‖{use}use.QC3

use

C2

λ2(t)

2λ2(t)

λ1(t) + λ2(t)

Fig. 2. Bisimulation quotient

In a similar way as for ICTMCs, one can consider
the quotient of an I2MC. The compositional na-
ture of I2MC, however, allows in principle for
obtaining such quotient in a component-wise
manner, e.g., the quotient of P‖AQ can be ob-
tained by first constructing the quotients of P and
Q, then combine them, and quotienting the com-
position. The necessary requirement that ∼ needs
to fulfill is that it is a congruence relation. The

relation ∼ is a congruence whenever for processes P and Q it holds: P ∼ Q implies
C[P] ∼ C[Q] where C[·] is any context. (A context is basically a process term con-
taining a hole that may be filled with any process.)

Theorem 3. ∼ is a congruence with respect to all operators in I2ML.

Finite-horizon bisimulation is a congruence with one additional property.

Proposition 2. For any processes P , P ′, Q, Q′ and intervals [0, T1] and [0, T2] with
T1, T2 ∈ R≥0 we have:

P ∼T1 P ′ and Q ∼T2 Q′ implies P‖AQ ∼min(T1,T2) P ′‖AQ′ for all A ⊆ Act.

As a next step, we consider the possibility to establish bisimulation symbolically, i.e.,
on the level of the syntax of the earlier introduced language I2ML. This is facilitated
by an axiomatization for ∼. The soundness of these axioms ensures that any two terms
that are syntactically equal (denoted =) are bisimilar; formally, P = Q ⇒ P ∼ Q.
Whenever the axioms are complete, in addition, any strongly bisimilar processes can be
represented by the same expressions in I2ML, i.e., P ∼ Q ⇒ P = Q. Summarizing,
any bisimulation can be established syntactically, i.e., by just manipulating terms rather

254 T. Han, J.-P. Katoen, and A. Mereacre

than I2MCs, provided the axiom system is sound and complete. Let A∼ be the set of
axioms listed in Table 2 extended with the expansion law:

P‖AQ =
∑

i∈J1

λi(t). (Pi‖AQ) +
∑

k∈J3

μk(t). (P‖AQk) +
∑

aj=bl∈A

aj. (Pj‖AQl)+

+
∑

aj /∈A∧aj∈J2

aj . (Pj‖AQ) +
∑

bl /∈A∧bl∈J4

bl. (P‖AQl)

where P :=
∑

i∈J1
λi(t).Pi +

∑
j∈J2

aj .Pj and Q :=
∑

k∈J3
μk(t).Qk +

∑
l∈J4

bl.Ql

with the finite index sets J1, J2, J3 and J4. Then the following holds:

Theorem 4. For any P, Q ∈ RG, A∼ � P = Q if and only if P ∼ Q.

The term RG denotes the set of all regular (no parallel composition inside recursion)
and guarded (by actions or rates) expressions. While A∼ � P = Q means that P = Q
can be deduced from the set of sound and complete axiom system A∼. The axiom
λ(t).P + μ(t).P = (λ(t) + μ(t)).P is due to the fact that the sum of two Poisson
processes with rates λ(t) and μ(t) is a Poisson process with the rate λ(t)+μ(t), whereas
the axiom λ(t).P + τ.Q = τ.Q is due to the maximal progress assumption. Notice that
A∼ also contains all standard axioms which involve hiding and recursion operators
which are standard and omitted here.

Bisimulation minimization. The previous sections have set the stage for bisimulation
minimization. Experiments have shown that in the traditional [11] as well as in the
stochastic setting [19] exponential state space savings can be achieved. Given that ∼
is a congruence, individual processes can be replaced by their bisimilar quotient (un-
der ∼) and the peak memory requirements can be reduced significantly. This all, how-
ever, requires an efficient bisimulation minimization algorithm. We adopt the partition-
refinement paradigm to obtain a minimization algorithm for I2MCs. As the problem
for arbitrary rate functions is undecidable, we restrict to three classes of rate matrices
R(t): piecewise uniform, polynomial (R(t) = tM+1RM+1 + · · · + tR2 + R1, where
Ri with i ≤ M +1 ∈ IN are constant matrices) and piecewise polynomial (each piece is
a polynomial of degree three). The same classes have been considered for the transient
probability distribution, cf. Theorem 1. Rate comparisons and summations can easily
be realized for these classes of functions. For rate matrix R, let M + 1 denote the total
number of intervals for piecewise uniform R(t), the polynomial degree when R(t) is
polynomial, and the number of polynomial pieces when R(t) is piecewise polynomial.

Our bisimulation minimization algorithm for I2MCs is based on a generalization of
the algorithm for obtaining the coarsest quotient of a Markov chain under bisimula-
tion by Derisavi et al. [7], and Paige-Tarjan’s algorithm for LTS. The basic idea is to
minimize iteratively over all pieces (or degrees of the polynomials). The bisimulation
algorithm exploits an efficient data structure which groups all states with the same out-
going rate. This is in fact a binary tree where each node has four parameters: node.left
and node.right - pointers to the left and right child, respectively, node.sum - stores the
sum of the rates and node.S - stores all states with the same node.sum. Using such
data structures, the time- and space complexity of bisimulation minimization for I2MCs
reduces to:

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 255

Theorem 5. The coarsest quotient under ∼ of any I2MC can be obtained in a worst-
case time complexity O (ma lg(n) + Mmr lg(n)) and space complexity O (ma + mr),
where ma and mr is the number of action-labeled and rate-labeled transitions,
respectively.

Recall that ICTMCs are I2MCs that contain no action-labeled transitions. As a
side result, the above theorem yields that the coarsest bisimulation quotient of a time-
inhomogeneous CTMC can be obtained with time and space complexityO (Mmr lg(n))
and O (mr), respectively. (The time complexity for homogeneous Markov chains is
O (mr lg(n)) [7]). Given the results in this paper that ∼ preserves transient and steady
state distributions, our algorithm can be used to minimize prior to any such analysis.

Weak bisimulation for I2MCs. Strong bisimulation requires equivalent states to sim-
ulate their mutual stepwise behavior. While preserving the branching structure, strong
bisimulation also requires mimicking of immediate actions (τ). As immediate actions
consume no time it seems reasonable that two states will be equivalent regardless of the
number of τ -steps in a sequence that they make. Therefore, the equivalence which will
allow for the abstraction of sequences of immediate actions will be denoted as weak
bisimulation. Let the transition

τ=⇒ be the reflexive and transitive closure of
τ−→∗

and
a=⇒ a shorthand for

τ=⇒ a−→ τ=⇒ (a �= τ).

Definition 8 (I2MC weak bisimulation). An equivalence R ⊆ S × S is a weak bisim-
ulation whenever for all (P, Q) ∈ R, t ∈ IR≥0, a ∈ Act and C ∈ S/R:

– P
a−→ P ′ implies Q

a=⇒ Q′ for some Q′ and (P ′, Q′) ∈ R.

– P
τ
� implies R(P, C, t) = R(Q′′, C, t) for some Q′′ τ

� such that Q
τ=⇒ Q′′ and

(P, Q′′) ∈ R.

For Q symmetric rules apply. P and Q are weakly bisimilar, denoted P ≈ Q, if (P, Q)
is contained in some weak bisimulation R.

It seems intuitive that for the sequence Q
τ=⇒ Q′′ the rates R(P, C, t) and R(Q′′, C, t)

have to be compared starting from time t′ = t + Δt where Δt is the time needed to
make all τ in the sequence Q

τ=⇒ Q′′. As τ transitions take no time the result will be
the same even when the rates are compared from time t.

Example 3. Consider the I2MC from Fig. 2 and its abstraction i.e. all actions are trans-
formed into immediate ones (τ). The quotient under ≈ is depicted in Fig. 3, with C1,
C2 and C3 as in Fig. 2 and C0 = {P‖{use}Q, use.P‖{use}use.Q}. It is important to
note that after abstraction the transition labeled with use results in an immediate tran-
sition which gives the possibility to put the states P‖{use}Q and use.P‖{use}use.Q in
the same equivalence class. Also note that the obtained I2MC has no transitions labeled
with actions, i.e., it is an ICTMC. This shows that weak bisimulation may be an effec-
tive mechanism to turn an I2MC into an ICTMC, which may be subject to analysis as
discussed in Section 2.

256 T. Han, J.-P. Katoen, and A. Mereacre

Table 3. Sound and complete axioms for � on the I2ML sequential fragment

a.τ.P = a.P P + τ.P = τ.P λ(t).τ.P = λ(t).P a.(P + τ.Q) + a.Q = a.(P + τ.Q)

C0C1

2λ1(t)

C3 C2

λ1(t) + λ2(t) 2λ2(t)λ2(t)

Fig. 3. Weak bisimulation quotient

As in the case of strong bisimulation, weak
bisimulation is also a congruence with re-
spect to I2ML operators. But there is an
exception. Weak bisimulation is not a congru-
ence with respect to the choice (P + Q) op-
erator [20]. This is due to the fact that weak
bisimulation will equate two processes when-
ever one can do

τ=⇒ and the other one can do
nothing. In order to cope with the choice operator one has to differentiate between

a=⇒
and

τ=⇒ a−→ τ=⇒ when a = τ as follows:

Definition 9 (Weak congruence). Pand Q are weakly congruent, denoted by P � Q,
whenever for all a ∈ Act, t ∈ IR≥0 and C ∈ RG/≈:

– P
a−→ P ′ implies Q

τ=⇒ a−→ τ=⇒ Q′ for some Q′ and P ′ ≈ Q′.
– Q

a−→ Q′ implies P
τ=⇒ a−→ τ=⇒ P ′ for some P ′ and P ′ ≈ Q′.

– P
τ
� (or Q

τ
�) implies R(P, C, t) = R(Q, C, t).

Theorem 6. � is a congruence with respect to all operators in I2ML.

Consider the set of axioms from Table 2 and 3 together with axioms related to hiding
and recursion operators as A�. As for strong bisimulation the following also holds for
weak congruence:

Theorem 7. For any P, Q ∈ RG, A� � P = Q if and only if P � Q.

Recall that P and Q are regular and guarded process terms.

5 Concluding Remarks and Future Work

This paper presented a compositional formalism for time-inhomogeneous continuous-
time Markov chains (ICTMCs), a subclass of piecewise deterministic Markov pro-
cesses (PDPs). The main contributions are a full-fledged process algebra for interactive
ICTMCs, congruence results for weak and strong bisimulation, and a polynomial-time
quotienting algorithm. In addition, a new characterization of transient probabilities is
provided for rate functions that are piecewise uniform. In contrast to works on commu-
nicating PDPs [24,23,25], this paper considers weak bisimulation, congruence results
and axiomatization, and, more importantly a notion of bisimulation which respects max-
imal progress. Current work consists of investigating improvements to the quotienting
algorithm akin to [8], model-checking algorithms [18], and simulation relations for
ICTMCs.

Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains 257

Acknowledgment. This research has been performed as part of QUPES project that is financed
by the Netherlands Organization for Scientific Research (NWO).

References

1. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid systems in
CHARON. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 6–19.
Springer, Heidelberg (2000)

2. Alur, R., Grosu, R., Sokolsky, O., Lee, I.: Compositional modeling and refinement for hier-
archical hybrid systems. J. Log. Algebr. Program. 68(1-2), 105–128 (2006)

3. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. of Applied Proba-
bility 31, 59–75 (1994)

4. Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 198–214.
Springer, Heidelberg (2005)

5. Cloth, L., Haverkort, B.R., Jongerden, M.: Computing battery lifetime distributions. In: DSN,
pp. 780–789. IEEE Computer Society Press, Los Alamitos (2007)

6. Davis, M.H.A.: Markov Models and Optimization. Chapman and Hall, Boca Raton (1993)
7. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains.

Inf. Processing Letters 87(6), 309–315 (2003)
8. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimulation equiv-

alence. Theor. Comput. Sci. 311(1-3), 221–256 (2004)
9. Everdij, M., Blom, H.: Piecewise deterministic Markov processes represented by dynami-

cally coloured Petri nets. Stochastics 77(1), 1–29 (2005)
10. Fernandez, J.C.: An implementation of an efficient algorithm for bisimulation equivalence.

Science of Computer Programming 13, 219–236 (1989)
11. Fisler, K., Vardi, M.Y.: Bisimulation minimization in an automata-theoretic verification

framework. In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522,
pp. 115–132. Springer, Heidelberg (1998)

12. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and
hybrid systems. Theor. Comput. Sci. 342(2-3), 229–261 (2005)

13. Han, T., Katoen, J.-P., Mereacre, A.: Compositional Modeling and Minimization of Time-
Inhomogeneous Markov Chains. Technical report AIB200721, RWTH Aachen, Germany
(2007)

14. Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)
15. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theor.

Comput. Sci. 274(1-2), 43–87 (2002)
16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs

(1985)
17. Kailath, T.: Linear Systems. Prentice-Hall, Englewood Cliffs (1980)
18. Katoen, J.-P.: Stochastic model checking. In: Stochastic Hybrid Systems, pp. 79–106. CRC

Press, Boca Raton (2006)
19. Katoen, J.-P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation mostly

speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 76–92. Springer, Heidelberg (2007)

20. Milner, R.J.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
21. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM J. of Computing 16(6),

973–989 (1987)

258 T. Han, J.-P. Katoen, and A. Mereacre

22. Rindos, A., Woolet, S., Viniotis, I., Trivedi, K.S.: Exact methods for the transient analysis
of non-homogeneous continuous-time Markov chains. In: Numerical Solution of Markov
Chains (NSMC), pp. 121–134. Kluwer, Dordrecht (1995)

23. Strubbe, S.N., Julius, A.A., van der Schaft, A.J.: Communicating piecewise deterministic
Markov processes. In: ADHS, pp. 349–354 (2003)

24. Strubbe, S.N., van der Schaft, A.J.: Compositional modelling of stochastic hybrid systems.
In: Stochastic Hybrid Systems, pp. 47–77. CRC Press, Boca Raton (2006)

25. Strubbe, S.N., van der Schaft, A.J.: Bisimulation for communicating piecewise deterministic
Markov processes (CPDPs). In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414,
pp. 623–639. Springer, Heidelberg (2005)

Observer-Based Control of

Linear Complementarity Systems

W.P.M.H. Heemels1, M.K. Camlibel2, B. Brogliato3, and J.M. Schumacher4

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

2 University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
3 INRIA, ZIRST Montbonnot, 655 avenue de l’Europe, 38334 Saint Ismier, France

4 Tilburg University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands

Abstract. In this paper, we will present observer and output-based con-
troller design methods for linear complementarity systems (LCS) employ-
ing a passivity approach. Given various inherent properties of LCS, such
as the presence of state jumps, mode dynamics described by DAEs, and
regions (“invariants”) for certain modes being lower dimensional, several
proposed observers and controllers for other classes of hybrid dynamical
systems do not apply. We will provide sufficient conditions for the ob-
server design for a LCS, which is effective also in the presence of state
jumps. Using the certainty equivalence approach we obtain output-based
controllers for which we will derive a separation principle.

1 Introduction

Complementarity systems form a class of hybrid dynamical systems that re-
ceived considerable attention in recent years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The linear
complementarity system LCS(A, B, C, D, E, F) is given by

ẋ(t) = Ax(t) + Bw(t) + Eu(t) (1a)

z(t) = Cx(t) + Dw(t) + Fu(t) (1b)

0 ≤ z(t) ⊥ w(t) ≥ 0, (1c)

where the inequalities are interpreted componentwise and ⊥ indicates the orthog-
onality between the vectors z(t) and w(t), i.e, z�(t)w(t) = 0. The complemen-
tarity conditions (1c) constitute a particular set of equalities and inequalities,
which are related to the well-known relations between the constraint variables
and Lagrange multipliers in the Karush-Kuhn-Tucker conditions for optimality,
the voltage-current relationship of ideal diodes, the conditions between unilateral
constraints and reaction forces in constrained mechanics, etc. As such, the com-
plementarity framework includes mechanical systems with unilateral constraints,
constrained optimal control problems, switched electrical circuits, etc.

Although LCS has its own peculiarities, it has connections to other classes of
hybrid systems. Indeed, observe that (1c) implies that wi(t) = 0 or zi(t) = 0
for all i ∈ m̄ := {1, . . . , m}. As a consequence, the system (1) has 2m modes.
Each mode can be characterized by the active index set J ⊆ m̄, which indicates

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 259–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

260 W.P.M.H. Heemels et al.

zi = 0, i ∈ J, and wi = 0, i ∈ Jc, where Jc := {i ∈ m̄ | i �∈ J}. For mode J the
dynamics is given by the linear differential and algebraic equations (DAEs)

ẋ(t) = Ax(t) + Bw(t) + Eu(t), (2a)

z(t) = Cx(t) + Dw(t) + Fu(t), (2b)

zi(t) = 0, i ∈ J, and wi(t) = 0, i ∈ Jc, (2c)

The evolution of system (1) will be governed by (2) for mode J as long as the
remaining inequalities (“the invariant” in the terminology of hybrid automata
[11, 12, 13]) in (1c)

zi(t) ≥ 0, i ∈ Jc and wi(t) ≥ 0, i ∈ J (3)

are satisfied. Impending violation of (3) will trigger a mode change. As a conse-
quence, during the evolution in time of the system several mode dynamics will
be active successively. This indicates that LCS might be recast within the hy-
brid automaton framework [11,12,13]. However, with exception only of the very
simplest cases, the reformulation of LCS dynamics into the hybrid automaton
framework leads to voluminous and opaque system descriptions. This effect is
already evident in the example worked out in [14], which concerns an electrical
circuit with two diodes. Alternatively one can rewrite LCS in the formulation
ẋ ∈ F (x) for x ∈ C and x+ ∈ G(x) for x ∈ D, as used for instance in [15]. Again,
the transformation is in general cumbersome, and the resulting system data F ,
G, C and D do generally not satisfy the assumptions adopted in [15] (cf. the
example below). Structural properties become harder to study and compactness
of descriptions is lost when LCS are translated to such generic frameworks.

To show further links between LCS and other (sub)classes of hybrid dynamical
systems, let us consider an LCS with one complementarity pair and F = 0:

ẋ = Ax + bw + eu; z = c�x + dw; 0 ≤ z ⊥ w ≥ 0 (4)

where A ∈ R
n×n, b ∈ R

n×1, c ∈ R
n×1, d ∈ R, and 0 �= e ∈ R

n×1. As either z = 0
or w = 0, this system has two modes. When d > 0, one can rewrite (4) as

ẋ =

�
Ax + eu if c�x ≥ 0,

(A − bd−1c�)x + eu if c�x ≤ 0,
(5)

which is a piecewise linear (PWL) system [16]. When d = 0 and c�b > 0, we
have

ẋ =

�
Ax + eu if (c�x > 0) or (c�x = 0 and c�Ax + c�eu ≥ 0),

P (Ax + eu) if c�x = 0 and c�Ax + c�eu < 0.
(6)

where P = I−b(c�b)−1c�. In this case one has also a bimodal PWL system, but
the second subsystem ‘lives’ on a lower dimensional subspace given by c�x = 0,
which is a situation hardly studied within the realm of PWL systems. Note also
that for c�x < 0, there is no smooth evolution possible and state jumps will
occur. In this situation, LCS can also be considered as differential inclusions
(DIs) with normal cones as their set values (see e.g. [7]). These DIs do in general

Observer-Based Control of Linear Complementarity Systems 261

not satisfy the boundedness conditions of its values nor the upper semicontinuity
properties as often used within the context of DIs. In the case when d = c�b = 0,
c�ab > 0 and e = 0 (no external inputs) the flow set, i.e. the set of states from
which the system can continue with a smooth solution temporarily [15], is given
by all x0 such that (c�x0, c

�Ax0) � 0 (see [2, Thm. 6.8]), where � denotes the
lexicographic ordering. This indicates that the flow set has no simple closedness
properties. This indicates that although LCS have connections to PWL systems
and other classes of hybrid systems, they also have their own peculiarities. For
instance, the presence of state jumps (think of impacts in constrained mechanical
systems) in continuous-time LCS, differentiates them from much of the work
done for continuous-time PWL systems. Although for discrete-time LCS strong
equivalence links have been established in [17] with piecewise affine systems [16]
and other classes of hybrid models such as min-max-plus-scaling systems [18]
and mixed logic dynamic systems [19], in the continuous-time framework, which
is the natural habitat for most of the LCS applications, such broad equivalence
relations are out of the question. There are relations though of LCS to other
specific classes of nonsmooth systems such as the mentioned “normal cone DIs”
and projected dynamical systems [7, 8].

The attention that LCS received recently is not surprising given the broad
range of interesting applications. The research [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] focussed
on several fundamental system-theoretic issues like well-posedness, discretiza-
tion (simulation), controllability, observability, stabilizability and stability. In
this paper the emphasis will be on observer-based controller design, a topic that
is hardly touched upon for LCS. We will adopt a “certainty equivalence con-
trol” approach, where one designs output feedback controllers that generate the
control input via a state feedback law using an estimate of the state, which is
obtained from an observer. For linear systems, the separation principle gives a
formal justification of this approach. Due to the absence of a general controller-
observer separation principle for nonlinear systems and certainly hybrid systems,
the observer-based controller may not result in a stable closed-loop system.

Several interesting papers are available on observer design for hybrid systems,
especially in the context of switched and piecewise linear systems, e.g. [20, 21,
22, 23, 24]. Unfortunately, these results do not apply to LCS as LCS typically
exhibit lower dimensional regions and state jumps. Observer and observer-based
controller design methods for Lur’e type systems as studied in [25, 26, 27, 28]
are also related to LCS. Indeed, one can consider LCS as a kind of Lur’e type
systems in which the linear system (1a)-(1b) is interconnected with the non-
smooth and unbounded complementarity relations in (1c). Typically, the results
in [25,26,27,28] study locally Lipschitz slope restricted nonlinearities in the feed-
back path. As such their conditions do not allow for the non-smoothness and set-
valued nonlinearities (and even state jumps) as induced by the complementarity
relations. Observer designs for differential inclusions with bounded set-values are
treated in [29]. Since complementarity conditions are unbounded, [29] does not
cover LCS.In summary, although there are various interesting approaches for
hybrid observer design, none of them includes (all) the peculiarities of LCS.

262 W.P.M.H. Heemels et al.

Before focussing on controller and observer design for LCS, we will explain the
solution concepts for LCS and also extend available well-posedness (existence
and uniqueness of solutions) results for LCS to include external inputs. This
will result in global existence results thereby excluding the Zeno phenomenon of
livelock (an infinite number of discrete actions on one time instant) and providing
continuations beyond accumulation points of mode switching times. Next, we will
present passivity conditions for state feedback design and observer design for
LCS. Interestingly, this means that we will present methods for observer design
for systems without knowing the mode and allowing for state resets. Next we
will present a separation principle for this class of hybrid dynamical systems.

2 Preliminaries

R denotes the real numbers, R+ := [0,∞) the nonnegative real numbers, L2(T)
the square integrable functions on a time-interval T ⊆ R, and B the Bohl func-
tions (i.e. functions having strictly proper rational Laplace transforms) defined
on R+. Note that sines, cosines, exponentials, polynomials and their sums and
products are all Bohl functions. The distribution δ

(i)
t stands for the i-th dis-

tributional derivative of the Dirac impulse supported at t. The dual cone of
a set Q ⊆ R

n is defined by Q∗ = {x ∈ R
n|x�y ≥ 0 for all y ∈ Q}. For a

positive integer m, the set m̄ is defined as {1, 2, . . . , m} and 2m̄ denotes the
collection of all subsets of m̄. A vector u ∈ R

k is called nonnegative, denoted
by u ≥ 0, if ui ≥ 0 for all i ∈ k̄. This means that inequalities for vectors are
interpreted componentwise. The orthogonality u�y = 0 between two vectors
u ∈ R

k and y ∈ R
k is denoted by u ⊥ y. As usual, we say that (A, B, C)

(or sometimes (A, B, C, D)) is minimal, when the matrices [B AB . . . An−1B]
and [C� A�C� . . . (A�)n−1C�] have full rank. A matrix M ∈ R

k×k is called
positive definite (not necessarily symmetric), if x�Mx > 0 for all x �= 0. It
is called nonnegative definite, if x�Mx ≥ 0 for all x ∈ R

k. For a matrix
M ∈ R

k×l we denote its kernel by kerM := {x ∈ R
l | Mx = 0} and its im-

age by imM := {Mx | x ∈ R
l}. Finally, for two linear subspaces V1 and V2

we write V1 ⊕ V2 = V , if V = V1 + V2 = {v1 + v2 | v1 ∈ V1, v2 ∈ V2} and
V1 ∩ V2 = {0}.

2.1 Linear Complementarity Problem

We define the linear complementarity problem LCP(q, M) (see [30] for a survey)
with data q ∈ R

k and M ∈ R
k×k by the problem of finding z ∈ R

k such that
0 ≤ z ⊥ q + Mz ≥ 0. The solution set of LCP(q, M) will be denoted by
SOL(q, M). The notation K(M) will denote the set {q | LCP(q, M) is solvable}.

Let a matrix M of size k×k and two subsets I and J of k̄ of the same cardinal-
ity be given. The (I, J)-submatrix of M is the submatrix MIJ := (Mij)i∈I,j∈J .
The (I, J)-minor is defined as the determinant of MIJ . The (I, I)-submatrices
and -minors are also known as the principal submatrices and the principals mi-
nors. M is called a P-matrix if all its principal minors are positive. P-matrices

Observer-Based Control of Linear Complementarity Systems 263

play an important role in linear complementarity problems, as the following
result is well known (cf. [30, thm. 3.3.7]).

Theorem 1. For a given matrix M ∈ R
k×k, the problem LCP(q, M) has a

unique solution for all vectors q ∈ R
k if and only if M is a P-matrix.

2.2 Passivity of a Linear System

We will recall the notion of passivity as it is defined in [31] for a linear system

Σ(A, B, C, D) : ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t) + Du(t). (7)

Definition 1. [31] The system Σ(A, B, C, D) given by (7) is said to be passive
if there exists a function V : R

n → R+ (called a storage function), such that

V (x(t0)) +

� t1

t0

u�(t)y(t)dt ≥ V (x(t1))

holds for all t1 ≥ t0, and for all solutions (u, x, y) ∈ Lm+n+m
2 (t0, t1) of (7).

Next, we quote a very well-known characterization of passivity.

Theorem 2. [31] Assume that (A, B, C) is minimal. Then the following state-
ments are equivalent:

1. Σ(A, B, C, D) is passive.
2. The following matrix inequalities have a solution

P = P� > 0 and

�
A�P + PA PB − C�

B�P − C −(D + D�)

�
≤ 0. (8)

Moreover, V (x) = 1
2x�Px defines a quadratic storage function if and only if P

satisfies the linear matrix inequalities (8).

Next we will define strict passivity of (7).

Definition 2. Σ(A, B, C, D) is called strictly passive, if there are P and ε > 0
with

P = P� > 0 and

�
A�P + PA + εP PB − C�

B�P − C −(D + D�)

�
≤ 0. (9)

The following technical assumption will be used below. Its former part is stan-
dard in the literature on dissipative systems, see e.g. [31]. Both conditions are
related to removing specific kinds of redundancy in the system description.

Assumption 3. (A, B, C) is minimal and
�

B

D + D�

�
has full column rank.

264 W.P.M.H. Heemels et al.

3 Linear Complementarity Systems and Initial Solution

We now are going to study the behaviour of the LCS given in (1). Before present-
ing a global solution concept that incorporates the switching of modes, we will
first concentrate on what we call “initial solutions,” which are trajectories that
satisfy the dynamics of one mode only and that satisfy the inequality conditions
possibly only in their beginning. We will employ the theory of distributions in
formalizing the solution concept, since the abrupt changes in the trajectories
(e.g. impacts in mechanics) can be modeled adequately by Dirac impulses (see
also Example 1 below). To do so, we recall the concepts of Bohl distribution and
initial solution [2].

Definition 3. We call w a Bohl distribution, if w = wimp + wreg with wimp =
∑l

i=0 w−iδ
(i)
0 for w−i ∈ R and wreg ∈ B. We call wimp the impulsive part of w

and wreg the regular part of w. The space of all Bohl distributions is denoted by
Bimp.

Note that Bohl distributions have rational Laplace transforms. It seems natural
to call a (smooth) Bohl function w ∈ B initially nonnegative if there exists an
ε > 0 such that w(t) ≥ 0 for all t ∈ [0, ε). Note that a Bohl function w is initially
nonnegative if and only if there exists a σ0 ∈ R such that its Laplace transform
satisfies ŵ(σ) ≥ 0 for all σ ≥ σ0. Hence, there is a connection between small time
values for time functions and large values for the indeterminate s in the Laplace
transform. This fact is closely related to the well-known initial value theorem.
The definition of initial nonnegativity for Bohl distributions will be based on
this observation (see also [2]).

Definition 4. We call a Bohl distribution w initially nonnegative, if its Laplace
transform ŵ(s) satisfies ŵ(σ) ≥ 0 for all sufficiently large real σ.

To relate the definition to the time domain, note that a scalar-valued Bohl
distribution w without derivatives of the Dirac impulse (i.e. wimp = w0δ for some
w0 ∈ R) is initially nonnegative if and only if either w0 > 0, or w0 = 0 and there
exists an ε > 0 such that wreg(t) ≥ 0 for all t ∈ [0, ε). With these notions we can
recall the concept of an initial solution [2]. Loosely speaking, an initial solution
to (1) with initial state x0 and Bohl input u ∈ Bk is a triple (w, x, z) ∈ Bm+n+m

imp

satisfying (2) for some mode I and satisfying (3) either on a time interval of
positive length or on a time instant at which Dirac distributions are active.

At this point we only allow Bohl functions (combinations of sines, cosines,
exponentials and polynomials) as inputs. In the global solution concept we will
allow the inputs to be concatenations of Bohl functions (i.e., piecewise Bohl),
which may be discontinuous.

Definition 5. The distribution (w, x, z) ∈ Bm+n+m
imp is said to be an initial solu-

tion to (1) with initial state x0 and input u ∈ Bk if

1. ẋ = Ax+Bw+Eu+x0δ0 and z = Cx+Dw+Fu as equalities of distributions.

Observer-Based Control of Linear Complementarity Systems 265

2. there exists an J ⊆ m such that wi = 0, i ∈ Ic and zi = 0, i ∈ J as equalities
of distributions.

3. w and z are initially nonnegative.

The statements 1 and 2 in the definition above express that an initial solution
satisfies the dynamics (2) for mode J on the time-interval R+ and the initial
condition x(0) = x0.

Example 1. Consider the system ẋ(t) = w(t), z(t) = x(t) together with (1c).
This represents an electrical network consisting of a capacitor connected to a
diode. The current is equal to w and the voltage across the capacitor is equal
to z = x. For initial state x(0) = 1, (w, x, z) with w = 0 and z(t) = x(t) = 1
for all t ∈ R is an initial solution. This corresponds to the case that the diode
is blocking and there is no (nonzero) current in the network. To show that the
distributional framework is convenient, consider the initial state x(0) = −1, for
which (w, x, z) with w = δ, x(t) = z(t) = 0, t > 0 is the unique initial solution.
This corresponds to an instantaneous discharge of the capacitor at time instant 0
resulting in a state jump from x(0) = −1 to 0 at time 0 induced by the impulse.

This circuit example indicates that there is a clear physical interpretation of
the impulses in initial solutions to model the abrupt changes in trajectories of
electrical circuits (see also [3, 14]). Also for mechanical systems, these initial
solutions induce state jumps with a clear physical meaning (related to inelastic
restitution laws) as shown in [2].

4 Initial and Local Well-Posedness

In this section, we are interested in existence and uniqueness of initial solutions,
and we will provide an extension to a local well-posedness result.

Definition 6. A rational matrix H(s) ∈ R
l×l(s) is said to be of index r, if it is

invertible as a rational matrix and s−rH−1(s) is proper. It is said to be totally
of index r, if all its principal submatrices HJJ (s) for J ⊂ l̄ are of index r.

The theorem below is an extension of a result proven in [5] that used F = 0.

Theorem 4. Consider an LCS with external inputs given by (1) such that
G(s) = C(sI − A)−1B + D is totally of index 1 and G(σ) is a P-matrix for
sufficiently large σ. Define QD := SOL(0, D) = {v ∈ R

m | 0 ≤ v ⊥ Dv ≥ 0}
and let K(D) be the set {q ∈ R

m | LCP (q, D) solvable}.
1. For arbitrary initial state x0 ∈ R

n and any input u ∈ Bk, there exists exactly
one initial solution, which will be denoted by (wx0,u, xx0,u, zx0,u).

2. No initial solution contains derivatives of the Dirac distribution. Moreover,

wx0,u
imp = w0δ0; xx0,u

imp = 0; zx0,u
imp = Dw0δ0 for some w0 ∈ QD.

3. For all x0 ∈ R
n and u ∈ Bk it holds that Cx0 + Fu(0) + CBw0 ∈ K(D).

266 W.P.M.H. Heemels et al.

4. The initial solution (wx0,u, xx0,u, zx0,u) is smooth (i.e., has a zero impulsive
part) if and only if Cx0 + Fu(0) ∈ K(D).

The impulsive part wx0,u
imp = w0δ0 of the initial solution induces a state jump

from x0 to x0 + Bw0, which in circuits might correspond to infinitely large
currents related to instantaneous discharges of capacitors (see Example 1) and
in mechanical systems to infinite reaction forces that cause resets in the velocities
of impacting bodies.

Theorem 5. Consider an LCS with (A, B, C, D) is passive and Assumption 3
holds. Then G(s) = C(sI − A)−1B + D is totally of index 1 and both G(σ) and
D + s−1CB are P-matrices for sufficiently large σ. In this case the results of
Theorem 4 hold for (1) with K(D) = Q∗

D.

For brevity we skip the proof (see e.g. [3] for the case F = 0.) Theorem 4 gives
explicit conditions for existence and uniqueness of solutions.The second state-
ment indicates that derivatives of Dirac distributions are absent in the behaviour
of LCS of index 1. The fourth statement gives necessary and sufficient condition
for an initial solution to be smooth. In particular, a LCS satisfying the condi-
tions of Theorem 5 is “impulse-free” (no state jumps), if QD =SOL(0, D) = {0}
(or, in terms of [30], if D is an R0-matrix). Note that in this case Q∗

D = R
m. In

case the matrix [C F] has full row rank, this condition is also necessary. Other
sufficient conditions, that are more easy to verify, are D being a positive definite
matrix, or Ker(D + D�) ∩ R

m
+ = {0}. For the general case of (not necessarily

passive) systems with transfer functions totally of index 1, Theorem 4 implies
that K(D) = R

m (in terms of [30] this means that the matrix D should be a
so-called Q-matrix) is sufficient for the system being impulse-free. One condition
that guarantees this is that wT Dw > 0 for all w ∈ R

m
+ and w �= 0.

Note that the first statement in Theorem 4 by itself does not immediately
guarantee the existence of a solution on a time interval with positive length. The
reason is that an initial solution with a non-zero impulsive part may only be valid
at the time instant on which the Dirac distribution is active. If the impulsive part
of the (unique) initial solution is equal to w0δ0, the state after re-initialization is
equal to x0+Bw0. From this “next” initial state again an initial solution has to be
determined, which might in principle also have a non-zero impulsive part, which
results in another state jump. As a consequence, the occurrence of infinitely
many jumps at t = 0 without any smooth continuation on a positive length
time interval is not immediately excluded (sometimes called “livelock” in hybrid
systems theory). However, Theorem 4 excludes this kind of Zeno phenomenon:
if smooth continuation is not directly possible from x0, it is possible after one
re-initialization. Indeed, since C(x0 + Bw0) + Fu(0) = Cx0 + Fu(0) + CBw0 ∈
K(D), it follows from the fourth claim that the initial solution corresponding to
x0 + Bw0 and input u is smooth. This initial solution satisfies the (in)equalities
in (1) on an interval of the form (0, ε) with ε > 0 by definition and hence, we
proved a local existence and uniqueness result. However, we still have to show
global existence of solutions as other kinds of Zeno behaviour (accumulation of
mode switching times) might prevent this.

Observer-Based Control of Linear Complementarity Systems 267

5 Global Well-Posedness

Before we can formulate a global well-posedness theorem, we need to define a
class of allowable input functions and the global solution concept.

Definition 7. A function u : R+ → R is called a piecewise Bohl function, if

– u is right-continuous, i.e. limt↓τ u(t) = u(τ) for all τ ∈ R+

– for all τ ∈ R+ there are ε > 0 and v ∈ B such that u(t) = v(t) for all
t ∈ (τ, τ + ε)

– u is locally bounded in the sense that for any interval [0, T] there is a constant
M such that |u(t)| ≤ M for all t ∈ [0, T].

We denote this function space as PB. A distribution u : R+ → R is called
piecewise Bohl with first order impulses, if u is the sum of a piecewise Bohl
function ureg and the distribution uimp =

∑
θ∈Γ wθδθ, where Γ = {τi}i is a

finite or countable subset of R+, which is isolated 1. We denote this distribution
space by PB0.

Definition 8. Let (w, x, z) ∈ PBm+n+m
0 be given with

wimp =
∑

θ∈Γ

wθδθ, ximp =
∑

θ∈Γ

xθδθ, zimp =
∑

θ∈Γ

zθδθ

for wθ ∈ R
m, xθ ∈ R

n and wθ ∈ R
m for θ ∈ Γ and some Γ . Then we call

(w, x, z) a (global) solution to LCS (1) with input function u ∈ PB and initial
state x0, if the following properties hold.

1. For any interval (a, b) such that (a, b) ∩ Γ = ∅ the restriction xreg |(a,b) is
(absolutely) continuous and satisfies (1) for almost all t ∈ (a, b)

2. For each θ ∈ Γ the corresponding impulse (wθδθ, x
θδθ, z

θδθ) is equal to
the impulsive part of the unique initial solution2 to (1) with initial state
xreg(θ−) := limt↑θ xreg(t) (taken equal to x0 for θ = 0) and input t �→
u(t − θ).

3. For times θ ∈ Γ it holds that xreg(θ+) = xreg(θ−) + Bwθ with wθ the
multiplier of Dirac pulse supported at θ.

Theorem 6. Consider an LCS with external inputs given by (1) such that
G(s) = C(sI −A)−1B +D is totally of index 1 and G(σ) is a P-matrix for suffi-
ciently large σ. The LCS (1) has a unique (global) solution (w, x, z) ∈ PBk+n+k

0

for any initial state x0 and input u ∈ PBk. Moreover, ximp = 0 and impulses in
(w, z) can only show up at the initial time and times for which Fu is discontin-
uous (i.e. Γ in Definition 8 can be taken as a subset of {0} ∪ Γ d

Fu).

1 The set Γ ⊆ R is called isolated, if for all τ ∈ Γ there is an ε > 0 such that
Γ ∩ (τ − ε, τ + ε) = {τ}.

2 Note that we shift time over θ to be able to use the definition of an initial solution,
which is given for an initial condition at t = 0.

268 W.P.M.H. Heemels et al.

Proof. The proof follows along similar lines as the proof of the case F = 0 as
given in the thesis [5] by carefully incorporating the presence of impulses (see
also [3] for the passive case). ��
This theorem implies that if Fu is continuous, jumps of the state can only occur
at the initial time instant 0.

6 Stability and State Feedback Design for LCS

Let us first define formally what we mean by stability of LCS.

Definition 9. The LCS (1) without inputs (i.e. E = F = 0) is called globally
asymptotically stable (GAS), if

Global existence: for each x0 there exists a global solution to (1) and more-
over, for each T ≥ 0 all solutions (w, x, z) ∈ PBm+n+m

0 to (1) for initial
state x0 defined on [0, T) can be continued to a global solution on [0,∞);

Lyapunov stability: for each ε > 0 there exists a δ > 0 such that ‖xreg(t)‖ <
ε, for all t ≥ 0 when ‖x0‖ < δ, where (w, x, z) ∈ PBm+n+m

0 is a global
solution in the sense of Definition 8 to (1) for initial state x0;

Attractiveness: limt→∞ xreg(t) = 0 for any global solution (w, x, z) ∈ PB0.

In this section we aim at designing a state feedback controller

u(t) = Kx(t) (10)

that renders the system (1) GAS.

Assumption 7. (A + EK, B, C + FK, D) is strictly passive and minimal.

For necessary and sufficient conditions of “passifiability” for the case D = 0
(i.e. finding K such that (A + EK, B, C + FK, 0) is strictly passive), see [25].

Theorem 8. Consider the LCS (1) and the state feedback (10) and suppose that
Assumptions 3 and 7 hold. Then the closed-loop system (1)-(10) is GAS.

In [3] it was shown that a sufficient condition for GAS is the strict passivity of the
underlying system. The above theorem on state feedback design is a consequence
of that result. After these preparatory steps, we continue with the main results
of this paper related to observer design and output-based controller design.

7 Observer Design

Consider the LCS (1) and assume that only

y(t) = Gx(t) ∈ R
p (11)

is measured instead of the complete state being available for feedback. Based on
this output measurement, we aim at estimating the continuous state x(t) of (1)
using an observer. For the observer design to be meaningful, we have to assume
some conditions of the existence of solutions to the observed system (1).

Observer-Based Control of Linear Complementarity Systems 269

Assumption 9. For any initial state x0 and for any input function u ∈ PBk

there exists a global solution (w, x, z) ∈ PBm+n+m
0 to system (1) in the sense of

Definition 8.

The well-posedness theory derived before can be used to guarantee this property.
For instance, Theorem 6 shows that under the assumption that G(s) = C(sI −
A)−1B + D is totally of index 1 and G(σ) is a P-matrix for sufficiently large σ,
Assumption 9 is indeed satisfied.

We propose the following observer for LCS (1) with measured output (11):

˙̂x(t) = Ax̂(t) + Bŵ(t) + Eu(t) + L(y(t) − ŷ(t)) (12a)
ẑ(t) = Cx̂(t) + Dŵ(t) + Fu(t) + M(y(t) − ŷ(t)) (12b)

0 ≤ ẑ(t) ⊥ ŵ(t) ≥ 0. (12c)
ŷ(t) = Gx̂(t), (12d)

where we have two observer gains (L and M).

Assumption 10. (A − LG, B, C − MG, D) is strictly passive and minimal.

First of all, one has to show that the observer structure (12) produces estimates
x̂ of the state x, i.e. that existence of global solutions to (12) is guaranteed
given an initial estimate x̂0 and external inputs u ∈ PBk and y ∈ PBp. Using
Theorem 5 the following result can be proven.

Theorem 11. Consider the observer (12) with external inputs u ∈ PBk and
y ∈ PBp, where y is obtained from the LCS given by (1) and (11) for some
initial state x0 and input u. If Assumption 3 and Assumption 10 are satisfied,
then for any initial state x̂0 there exists a unique global solution (ŵ, x̂, ẑ) to (12).

Since we proved global existence of x̂, we can consider the observation error
e := x − x̂, which evolves according to the following dynamics

ė(t) = (A − LG)e(t) + Bw(t) − Bŵ(t) (13a)
z(t) = Cx(t) + Dw(t) + Fu(t) (13b)
ẑ(t) = Cx̂(t) + Dŵ(t) + Fu(t) + M(y(t) − ŷ(t)) (13c)
0 ≤z(t) ⊥ w(t) ≥ 0, and 0 ≤ ẑ(t) ⊥ ŵ(t) ≥ 0 (13d)

Theorem 12. Consider the error dynamics (13) such that Assumption 3, As-
sumption 9 and Assumption 10 hold. Then the error dynamics is GAS3.

Proof. See the report [32]. �	
The theorem shows (under the given hypothesis) that the observer (12) recovers
asymptotically the state of the LCS (1) based on the output (11), even when
the state of the system or observer exhibits state jumps. Since the jumps in
3 Note that the definition of GAS has to be slightly generalized to allow for exogenous

signals.

270 W.P.M.H. Heemels et al.

both the observer and the observed plant are triggered by discontinuities in the
external signal (due to the low index of the underlying linear system), the time
instants of the jumps coincide for the observer and controller, which is exploited
in the proof. For higher index systems (e.g. mechanical systems with unilateral
constraints) this property is lost, which complicates observer design significantly.

8 Separation Principle: Observer-Based Controller

To design an output-based controller for (1) with (11), we will employ a “cer-
tainty equivalence” approach by using the estimate x̂ obtained from the designed
observer in the state feedback controller, i.e. u(t) = Kx̂(t) = Kx(t)−Ke(t). The
closed-loop system consisting of the system (1), the observer (12) and the con-
troller u(t) = Kx̂(t) becomes�

ẋ
ė

�
=

�
(A + EK) −EK

0 A − LG

�
� �� �

=:Acl

�
x
e

�
+

�
B 0
B −B

�
� �� �

=:Bcl

�
w
ŵ

�
(14a)

�
z
ẑ

�
=

�
C + FK −FK
C + FK −(C + FK − MG)

�
� �� �

=:Ccl

�
x
e

�
+

�
D 0
0 D

�
� �� �

=:Dcl

�
w
ŵ

�
(14b)

0 ≤
�

z
ẑ

�
⊥
�

w
ŵ

�
≥ 0 (14c)

We focus on the so-called basic observer, which is the observer (12) with M = 0
implying that there is only an innovation (output injection) term in the differ-
ential equation (12a) and not in the complementarity relation (12b). We will
return to the extended observer with M �= 0 in Remark 1. We will start by
proving closed-loop well-posedness.

Theorem 13. Consider the system (14) such that Assumptions 3, 7 and 10
with M = 0 are satisfied. The system (14) has for each initial condition x0 and
e0 a unique global solution in the sense of Definition 8. Moreover, only on time
0, there can be a discontinuity in the state trajectory x.

Proof. See the report [32]. �	

Now we can state a separation principle for LCS.

Theorem 14. [Separation principle] Consider the closed-loop LCS (14). If
Assumptions 3, 7 and 10 with M = 0 are satisfied, then the LCS (14) is GAS.

Proof. See the report [32].

Once the observer (12) is included in an observer-based control configuration for
the LCS (1), jumps in the state variable of (14) can only take place at the initial
time (under the given hypothesis of the theorem above). The reason is that for
the ‘open’ LCS (1) the state jumps are triggered by the external signal u, while
the closed-loop system (14) is a ‘closed’ system without external inputs. Note,

Observer-Based Control of Linear Complementarity Systems 271

however, that when the observer is applied to an ‘open’ LCS (1), the state of
(1) is still recovered asymptotically (under the hypothesis of Theorem 12) even
when state jumps (triggered by discontinuities in u) remain to be persistently
present. The fact that jumps only occur at the initial time is related to the low
index of the underlying linear system of the LCS (14). In general for systems of
higher index (like constrained mechanical systems) discontinuities are not only
externally triggered by exogenous signals, but also by internal events (impacts).

Remark 1. The extended observer case (i.e. M �= 0) can be covered in a similar
manner as above under the assumption that F = 0.

9 Conclusion

We presented observer and output-based controller design methods for linear
complementarity systems (LCS) employing a passivity approach. We provided
sufficient conditions for the observer design for a LCS, which is effective also
in the presence of state jumps. Using the certainty equivalence approach we
obtained output-based controllers for which we provided a separation principle
in case the basic observer (“M = 0”) is used or there is no direct feedthrough
of the input in the complementarity conditions (“F = 0”). Future work will
involve the study of the full separation principe for both F and M nonzero.
Another important line of future research is the observer and observer-based
control design of LCS for which the underlying linear system is of higher index
(such as constrained mechanical systems.)

References

1. van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid sys-
tems. IEEE Transactions on Automatic Control 43, 483 (1998)

2. Heemels, W., Schumacher, J., Weiland, S.: Linear complementarity systems. SIAM
Journal on Applied Mathematics, 1234–1269 (2000)

3. Camlibel, M., Heemels, W., Schumacher, J.: On linear passive complementarity
systems. European Journal of Control 8, 220–237 (2002)

4. Shen, J., Pang, J.: Semicopositive lineaer complementarity systems. Intern. J. Ro-
bust and Nonlinear Control 17(15), 1367–1386 (2007)

5. Camlibel, M.: Complementarity methods in the analysis of piecewise linear dynam-
ical systems. PhD thesis Tilburg University (2001)

6. Brogliato, B.: Some perspectives on the analysis and control of complementarity
systems. IEEE Trans Automatic Control 48, 918–935 (2003)

7. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between
complementarity systems, projected systems and differential inclusions. System
and Control Letters 55, 45–51 (2006)

8. Heemels, W., Schumacher, J., Weiland, S.: Projected dynamical systems in a com-
plementarity formalism. Operations Research Letters 27(2), 83–91 (2000)

9. Camlibel, M., Heemels, W., van der Schaft, A., Schumacher, J.: Switched networks
and complementarity. IEEE Trans. Circuits Systems-I 50, 1036–1046 (2003)

272 W.P.M.H. Heemels et al.

10. Camlibel, M., Heemels, W., Schumacher, J.: Consistency of a time-stepping method
for a class of piecewise-linear networks. IEEE Trans. Circuits Systems-I 49(3), 349–
357 (2002)

11. Lynch, N., Segala, R., Vaandrager, F., Weinberg, H.: Hybrid I/O automata. In:
Proc. Workshop Verification and Control of Hybrid Systems, pp. 496–510 (1996)

12. Branicky, M., Borkar, V., Mitter, S.: A unified framework for hybrid control: model
and optimal control theory. IEEE Trans. Automatic Control 43(1), 31–45 (1998)

13. Lygeros, J., Johansson, K., Simic, S., Zhang, J., Sastry, S.: Dynamical properties
of hybrid automata. IEEE Trans. Aut. Control 48(1) (2003)

14. Heemels, W., Camlibel, M., van der Schaft, A., Schumacher, J.: Modelling, well-
posedness, and stability of switched electrical networks. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 249–266. Springer, Heidelberg (2003)

15. Cai, C., Teel, A., Goebel, R.: Smooth Lyapunov functions for hybrid systems. Part
I: Existence is equivalent to robustness. IEEE Trans. Automatic Control 52(7),
1264–1277 (2007)

16. Sontag, E.: Nonlinear regulation: The piecewise linear approach. IEEE Trans. Au-
tomatic Control 26(2), 346–358 (1981)

17. Heemels, W., De Schutter, B., Bemporad, A.: Equivalence of hybrid dynamical
models. Automatica 37(7) (2001)

18. De Schutter, B., van den Boom, T.: On model predictive control for max-min-plus-
scaling discrete event systems. Automatica 37(7), 1049–1056 (2001)

19. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and
constraints. Automatica 35, 407–427 (1999)

20. Alessandri, A., Coletta, P.: Design of Luenberger observers for a class of hybrid
linear systems. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC
2001. LNCS, vol. 2034, pp. 7–18. Springer, Heidelberg (2001)

21. Iulia Bara, G., Daafouz, J., Kratz, F., Iung, C.: State estimation for a class of
hybrid systems. In: Int. Conf. Automation of Mixed Processes, pp. 313–316 (2000)

22. Petterson, S.: Switched state jump observers for switched systems. In: Proceedings
of the IFAC World Congress, Prague, Czech Republic (2005)

23. Juloski, A., Heemels, W., Weiland, S.: Observer design for a class of piecewise
linear systems. Intern. J. Robust and Nonlinear Control 17(15), 1387–1404 (2007)

24. Pavlov, A., van de Wouw, N., Nijmeijer, H.: Convergent piecewise affine systems:
analysis and design. In: Proc. CDC/ECC, Sevilla, Spain (2005)

25. Arcak, M., Kokotović, P.: Observer based control of systems with slope-restricted
nonlinearities. IEEE Trans. Automatic Control 46(7), 1146–1150 (2001)

26. Arcak, M.: Certainty-equivalence output-feedback design with circle-criterion ob-
servers. IEEE Trans. Automatic Control 50, 905–909 (2005)

27. Fan, X., Arcak, M.: Observer design for systems with multivariable monotone non-
linearities. Systems and Control Letters 50, 319–330 (2003)

28. Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Aut. Con-
trol 43, 397–401 (1998)

29. Osorio, M., Moreno, J.: Dissipative design of observers for multivalued nonlinear
systems. In: Proc. CDC, pp. 5400–5405 (2006)

30. Cottle, R., Pang, J.S., Stone, R.: The Linear Complementarity Problem. Academic
Press, Boston (1992)

31. Willems, J.: Dissipative dynamical systems. Archive for Rational Mechanics and
Analysis 45, 321–393 (1972)

32. Heemels, W., Camlibel, M., Brogliato, B., Schumacher, J.: Observer-based control
of linear complementarity systems. Technical report, Eindhoven University of Tech-
nology, Department of Mechanical Engineering, DCT report DCT 2008.002 (2008)

Complementarity Systems in

Constrained Steady-State Optimal Control

A. Jokic, M. Lazar, and P.P.J. van den Bosch

Dept. of Electrical Eng., Eindhoven Univ. of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{a.jokic, m.lazar, p.p.j.v.d.bosch}@tue.nl

Abstract. This paper presents a solution to the problem of regulating a
general nonlinear dynamical system to a time-varying economically op-
timal operating point. The system is characterized by a set of exogenous
inputs as an abstraction of time-varying loads and disturbances. The
economically optimal operating point is implicitly defined as a solution
to a given constrained convex optimization problem, which is related to
steady-state operation. The system outputs and the exogenous inputs
represent respectively the decision variables and the parameters in the
optimization problem. Complementarity systems are employed as build-
ing blocks to construct a dynamic controller that solves the considered
regulation problem. The complementarity solution arises naturally via a
dynamic extension of the Karush-Kuhn-Tucker optimality conditions for
the steady-state related optimization problem.

1 Introduction

Although there has been earlier substantial work in specific research areas where
combinations of differential equations are coupled with complementarity condi-
tions, it is since their formal introduction in 1996 by Van der Scahft and Schu-
macher [1], see also [2], that complementarity systems (CS) have become an
extensive topic of research in the hybrid systems community. This particular
class of systems has certain structural properties that have already been suc-
cessfully exploited in answering some of the fundamental theoretical questions
like well-posedness [2, 3], certain control synthesis problems [4], and recently
also Lyapunov stability analysis [5]. Complementarity systems naturally arise in
many application areas, such as constrained mechanical systems, electrical cir-
cuit theory, dynamic optimization problems, oligopolistic markets and Leontiev
economy. For a more detailed presentation see the excellent overview given in [6].
In this paper we present a new application, namely constrained steady-state op-
timal control, where complementarity systems provide an attractive solution.
In contrast to the vast majority of previously considered applications where CS
come in as a natural modeling framework, here CS arise as a suitable control syn-
thesis framework. More precisely, we propose a specific dynamic extension of the
Karush-Kuhn-Tucker (KKT) optimality conditions to obtain a novel feedback
control structure as a solution to the problem of regulating a general nonlinear

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 273–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

274 A. Jokic, M. Lazar, and P.P.J. van den Bosch

dynamical system to a time-varying economically optimal operating point. The
considered dynamical system is characterized with a set of exogenous inputs as
an abstraction of time-varying loads and disturbances acting on the system. Eco-
nomic optimality is defined through a convex constrained optimization problem
with system outputs as decision variables, and with the values of exogenous in-
puts as parameters in the optimization problem. In the following paragraph we
give a flavor of possible regulation problems that motivate the results presented
in this paper.

In many production facilities, the optimization problem reflecting economical
benefits of production is associated with a steady-state operation of the sys-
tem. The control action is required to maintain the production in an optimal
regime in spite of various disturbances, and to efficiently and rapidly respond
to changes in demand. Furthermore, it is desirable that the system settles in a
steady-state that is optimal for novel operating conditions. The vast majority of
control literature is focused on regulation and tracking with respect to known
setpoints or trajectories, while coping with different types of uncertainties and
disturbances in both the plant and its environment. Typically, setpoints are de-
termined off-line by solving an appropriate optimization problem and they are
updated in an open-loop manner. The optimization problem typically reflects
variable costs of production and economical benefits under the current market
conditions, e.g. fuel or electricity prices, and accounts for physical and security
limits of the plant. If a production system is required to follow a time-varying
demand in real-time, e.g., if produced commodities cannot be efficiently stored
in large amounts, it becomes crucial to perform economic optimization on-line.
A typical example of such a system are electrical power systems. Increase of the
frequency with which the economically optimal setpoints are updated can result
in a significant increase of economic benefits accumulated in time. If the time-
scale on which economic optimization is performed approaches the time-scale of
the underlying physical system, i.e. of the plant dynamics, dynamic interaction
in between the two has to be considered. Economic optimization then becomes
a challenging control problem, especially since it has to cope with inequality
constraints that reflect the physical and security limits of the plant.

1.1 Nomenclature

For a matrix A ∈ R
m×n, [A]ij denotes the element in the i-th row and j-th

column of A. For a vector x ∈ R
n, [x]i denotes the i-th element of x. A vector

x ∈ R
n is said to be nonnegative (nonpositive) if [x]i ≥ 0 ([x]i ≤ 0) for all

i ∈ {1, . . . n}, and in that case we write x ≥ 0 (x ≤ 0). The nonnegative orthant
of R

n is defined by R
n
+ := {x ∈ R

n | x ≥ 0 }. The operator col(·, . . . , ·) stacks
its operands into a column vector. For u, v ∈ R

k we write u ⊥ v if u�v = 0. We
use the compact notational form 0 ≤ u ⊥ v ≥ 0 to denote the complementarity
conditions u ≥ 0, v ≥ 0, u ⊥ v. The matrix inequalities A � B and A � B mean
A and B are Hermitian and A−B is positive definite and positive semi-definite,
respectively. For a scalar-valued differentiable function f : R

n → R, ∇f(x)
denotes its gradient at x = col(x1, . . . , xn) and is defined as a column vector,

Complementarity Systems in Constrained Steady-State Optimal Control 275

i.e. ∇f(x) ∈ R
n, [∇f(x)]i = ∂f

∂xi
. For a vector-valued differentiable function

f : R
n → R

m, f(x) = col(f1(x), . . . , fm(x)), the Jacobian at x = col(x1, . . . , xn)
is the matrix Df(x) ∈ R

m×n and is defined by [Df(x)]ij = ∂fi(x)
∂xj

. For a vector
valued function f : R

n → R
m, we will use ∇f(x) to denote the transpose of the

Jacobian, i.e. ∇f(x) ∈ R
n×m, ∇f(x) � Df(x)�, which is consistent with the

gradient notation ∇f when f is a scalar-valued function. With a slight abuse of
notation we will often use the same symbol to denote a signal, i.e. a function of
time, as well as possible values that the signal may take at any time instant.

2 Problem Formulation

In this section we formally present the constrained steady-state optimal control
problem considered in this paper. Furthermore, we list several standing assump-
tions, which will be instrumental in the subsequent sections.

Consider a dynamical system

ẋ = f(x, w, u), (1a)
y = g(x, w), (1b)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, w(t) ∈ R
nw is an

exogenous input, y(t) ∈ R
m is the measured output, f : R

n × R
nw × R

m → R
n

and g : R
n × R

nw → R
m are arbitrary nonlinear functions.

For a constant w ∈ W , with W ⊂ R
nw denoting a known bounded set,

consider the following convex optimization problem associated with the output
y of the dynamical system (1):

min
y

J(y) (2a)

subject to
Ly = h(w), (2b)
qi(y) ≤ ri(w), i = 1, . . . , k, (2c)

where J : R
m → R is a strictly convex and continuously differentiable function,

L ∈ R
l×m is a constant matrix, h : R

nw → R
l and ri : R

nw → R, i = 1, . . . , k are
continuous functions, while qi : R

m → R, i = 1, . . . , k are convex, continuously
differentiable functions. For the matrix L we require rankL = l < m.

For a constant exogenous signal w(t) = w ∈ W , the optimization problem (2)
implicitly defines the optimal operating point in terms of the steady-state value
of the output vector y in (1). The constraints in (2) represent the security-type
“soft” constraints for which some degree of transient violation may be accepted,
but whose feasibility is required in steady-state. Note that in general not all of
the elements of y that appear in the constraints (2b), (2c) need to appear in the
objective function J(·), and vice versa. The objective of the control input u is
to drive the output y to the optimal steady-state operating point given by (2).

We continue by listing several assumptions concerning the dynamics (1) and
the optimization problem (2). Let Il denote the set of indices i for which the

276 A. Jokic, M. Lazar, and P.P.J. van den Bosch

function qi in (2c) is a linear function, and let In denote the set of indices cor-
responding to nonlinear qi.

Assumption 1. For each w ∈ W the set

{y | Ly = h(w), qi(y) < ri(w) for i ∈ In, qi(y) ≤ ri(w) for i ∈ Il}

is nonempty. �

Assumption 1 states that the convex optimization problem (2) satisfies Slater’s
constraint qualification [7] for each w ∈ W , implying that strong duality holds
for the considered problem. Note also that due to strict convexity of the objec-
tive function in (2), the optimization problem has an unique minimizer ỹ(w) for
each w ∈ W .

Assumption 2. For each w ∈ W , in the optimization problem (2) the mini-
mum is attained. �

Assumption 3. For each w ∈ W , there is a unique pair (x̃(w), ũ(w)) such that

0 = f(x̃(w), w, ũ(w)), (3a)
ỹ(w) = g(x̃(w), w), (3b)

where ỹ(w) denotes the corresponding minimizer in (2). �

Assumption 3 guarantees that for all constant w(t) = w ∈ W , the output vector
y can be driven to the corresponding optimal steady-state point, which is then
characterized by a unique, constant value of the input signal u. In other words,
Assumption 3 implies that the steady-state relations from (1) do not pose any
additional constraints to the optimization problem (2), i.e. any constraint on the
steady-state imposed by (1) is already included in (2).

Assumption 4. The values of all components of w that appear in (2) are available
at all time instants. �

Assumption 4 implies that violations of the constraints (2b) and (2c) can be
measured. Hence, they can be used for control purposes.

With the definitions and assumptions made so far, we are now ready to for-
mally state the control problem considered in this paper.

Problem 1. Constrained steady-state optimal control.
For a dynamical system given by (1), design a feedback controller that has y
as input signal and u as output signal, such that the following objective is met
for any constant-valued exogenous signal w(t) = w ∈ W : the closed-loop system
globally converges to an equilibrium point with y = ỹ(w), where ỹ(w) denotes
the corresponding minimizer of the optimization problem (2). �

Complementarity Systems in Constrained Steady-State Optimal Control 277

Note that Problem 1 includes the standard regulation problem, see e.g. Chap-
ter 12 in [8], as a special case. More precisely, if (2) is modified to include
only equality constraints and J(y) = 0, then Problem 1 reduces to the problem
of regulating the output ŷ := Ly to the constant reference signal r̂ := h(w).
Furthermore, note that for a dynamical system (1) we have assumed the same
dimension of the output signal y and the control input signal u. However, this
assumption can be relaxed. A typical example of such a relaxation is presented
in the illustrative example in Section 5.

3 Dynamic KKT Controllers

In this section we present a controller that guarantees the existence of an equi-
librium point with y = ỹ(w) as described in Problem 1. This is done using an
appropriate dynamic extension of the Karush-Kuhn-Tucker optimality condi-
tions for the optimization problem (2).

Assumption 1 implies that for each w ∈ W , the first order Karush-Kuhn-
Tucker (KKT) conditions are necessary and sufficient conditions for optimality.
For the optimization problem (2) these conditions are given by the following set
of equalities and inequalities:

∇J(y) + L�λ + ∇q(y)μ = 0, (4a)
Ly − h(w) = 0, (4b)

0 ≤ −q(y) + r(w) ⊥ μ ≥ 0, (4c)

where q(y) := col(q1(y), . . . , qk(y)), r(w) := col(r1(w), . . . , rk(w)) and λ ∈ R
l,

μ ∈ R
k are Lagrange multipliers. Since the above conditions are necessary and

sufficient conditions for optimality, it is apparent that the existence of an equilib-
rium point with y = ỹ(w) is implied if for each w ∈ W the controller guarantees
the existence of the vectors λ and μ, such that that the conditions (4) are fulfilled
in a steady-state of the closed-loop system.

In what follows, we present two controllers that achieve this goal. Later in
this section it will be shown that there are certain insightful differences as well
as similarities between these two control structures.

Max-based KKT controller. Let Kλ ∈ R
l×l, Kμ ∈ R

k×k, Kc ∈ R
m×m and

Ko ∈ R
k×k be diagonal matrices with non-zero elements on the main diagonal

and Kμ � 0, Ko � 0. Consider a dynamic controller with the following structure:

ẋλ = Kλ(Ly − h(w)), (5a)
ẋμ = Kμ(q(y) − r(w)) + v, (5b)

ẋc = Kc(L�xλ + ∇q(y)xμ + ∇J(y)), (5c)
0 ≤ v ⊥ Ko xμ + Kμ(q(y) − r(w)) + v ≥ 0, (5d)

u = xc, (5e)

278 A. Jokic, M. Lazar, and P.P.J. van den Bosch

where xλ, xμ and xc denote the controller states and the matrices Kλ, Kμ, Kc

and Ko represent the controller gains. Note that the input vector v(t) ∈ R
k in

(5b) is at any time instant required to be a solution to a finite-dimensional linear
complementarity problem (5d). �

Saturation-based KKT controller. Let Kλ ∈ R
l×l, Kμ ∈ R

k×k and Kc ∈
R

m×m be diagonal matrices with non-zero elements on the main diagonal and
Kμ � 0. Consider a dynamic controller with the following structure:

ẋλ = Kλ(Ly − h(w)), (6a)
ẋμ = Kμ(q(y) − r(w)) + v, (6b)

ẋc = Kc(L�xλ + ∇q(y)xμ + ∇J(y)), (6c)
0 ≤ v ⊥ xμ ≥ 0, (6d)

u = xc, (6e)
xμ(0) ≥ 0, (6f)

where xλ, xμ and xc denote the controller states and the matrices Kλ, Kμ and
Kc represent the controller gains. Note that the input vector v(t) ∈ R

k in (6b)
is at any time instant required to be a solution to a finite-dimensional linear
complementarity problem (6d). The initialization constraint (6f) is required as a
necessary condition for well-posedness, conform with the inequality in the com-
plementarity condition (6d). �

The choice of names max-based KKT controller and saturation-based KKT con-
troller will become clear later in this section. Notice that both controllers belong
to the class of complementarity systems [1, 2].

Theorem 1. Let w(t) = w ∈ W be a constant-valued signal, and suppose that
Assumption 1 and Assumption 3 hold. Then the closed-loop system, i.e. the
system obtained from the system (1) connected with controller (5) or (6) in
a feedback loop, has an equilibrium point with y = ỹ(w), where ỹ(w) denotes the
corresponding minimizer of the optimization problem (2).

Proof. We first consider the closed-loop system with the max-based KKT con-
troller, i.e. controller (5). By setting the time derivatives of the closed-loop sys-
tem states to zero and by exploiting the non-singularity of the matrices Kλ, and
Kc, we obtain the following complementarity problem:

0 = f(x, w, xc), (7a)
y = g(x, w), (7b)
0 = Ly − h(w), (7c)
0 = Kμ(q(y) − r(w)) + v, (7d)

0 = L�xλ + ∇q(y)xμ + ∇J(y), (7e)
0 ≤ v ⊥ Ko xμ + Kμ(q(y) − r(w)) + v ≥ 0, (7f)

Complementarity Systems in Constrained Steady-State Optimal Control 279

with the closed-loop system state vector xcl := col(x, xλ, xμ, xc) and the vector
v as variables. Any solution xcl to (7) is an equilibrium point of the closed-loop
system. By substituting v = −Kμ(q(y) − r(w)) from (7d) and utilizing Kμ � 0
and Ko � 0, the complementarity condition (7f) reads as 0 ≤ −q(y) + r(w) ⊥
xμ ≥ 0. With λ := xλ and μ := xμ, the conditions (7c),(7d),(7e),(7f) therefore
correspond to the KKT conditions (4) and, under Assumption 1, they necessarily
have a solution. Furthermore, for any solution (y, xλ, xμ, v) to (7c),(7d),(7e),(7f),
it necessarily holds that y = ỹ(w). It remains to show that (7a), (7b) admit a
solution in (x, xc) for y = ỹ(w). This is, however, the hypothesis of Assumption 3.
Moreover, Assumption 3 implies uniqueness of x and xc in an equilibrium.

Now, consider the closed-loop system with the saturation-based KKT con-
troller, i.e. controller (6). The difference in this case comes only through (6b)
and (6d). It is therefore sufficient to show that (6b) and (6d) imply 0 ≤ −q(y)+
r(w) ⊥ xμ ≥ 0. This implication is obvious since Kμ � 0. �

In the following subsection we concentrate on those parts of the KKT con-
trollers that are directly affected by the algebraic complementarity conditions
(5d) and (6d). We present a systematic procedure for implementing these con-
ditions, which involves the definition of complementary integrators as the basic
building blocks for imposing steady-state complementarity conditions. In turn,
complementarity integrators form the basic building blocks of the developed
dynamic KKT controllers.

3.1 Complementarity Integrators

The main distinguishing feature between the max-based KKT controller (5) and
the saturation-based KKT controller (6) is in the way the steady-state comple-
mentarity slackness condition (4c) is enforced. Although characterized by the
same steady-state relations, the two controllers, and therefore the corresponding
closed-loop systems, have some significantly different dynamical features which
will be discussed further in this section. In the following two paragraphs our
attention is on the equations (5b),(5d) and (6b),(6d), and the goal is to show
the following:

• The max-based KKT controller, i.e. controller (5), can be represented as a
dynamical system in which certain variables are coupled by means of static,
continuous, piecewise linear characteristics;
• The saturation-based KKT controller, i.e. controller (6), can be represented as
a dynamical system with state saturations.

Max-based complementarity integrator. Let η = [q(y) − r(w)]i, ξ = [xμ]i,
ν = [v]i, ko = [Ko]ii and kμ = [Kμ]ii, for some i ∈ {1, . . . , k}. Then the i-th row
in (5b) and (5d) is respectively given by

ξ̇ = kμη + ν, (8a)
0 ≤ ν ⊥ koξ + kμη + ν ≥ 0, (8b)

280 A. Jokic, M. Lazar, and P.P.J. van den Bosch

Fig. 1. Complementarity integrators. (a) Max-based complementarity integrator.
(b) Saturation-based complementarity integrator.

where ko > 0 and kμ > 0. Let a, b and c be real scalars related through the
complementarity condition 0 ≤ c ⊥ a + b + c ≥ 0. It is easily verified, e.g.
by checking all possible combinations, that this complementarity condition is
equivalent to b + c = max(a + b, 0) − a. Now, by taking c = ν, a = koξ and
b = kμη, it follows that (8) can be equivalently described by

ξ̇ = max(ko ξ + kμη, 0) − ko ξ. (9)

Figure 1a presents a block diagram representation of (9). The block labeled
“Max” in the figure, represents the scalar max relation as a static piecewise
linear characteristic.

With ko > 0 and kμ > 0, it is easy to verify that, if the system in Figure 1a
is in steady-state, then the value of its input signal η and the value of its output
signal ξ necessarily satisfy the complementarity condition 0 ≤ ξ ⊥ −η ≥ 0. �

Saturation-based complementarity integrator. Let η = [q(y) − r(w)]i,
ξ = [xμ]i, ν = [v]i and kμ = [Kμ]ii, for some i ∈ {1, . . . , k}. Then the i-th
row in (6b),(6d) and (6f) is respectively given by

ξ̇ = kμη + ν, (10a)
0 ≤ ν ⊥ ξ ≥ 0, (10b)
ξ(0) ≥ 0, (10c)

where kμ > 0. The dynamical system (10) can equivalently be described by

ξ̇ = φSCI(ξ, η) :=

⎧
⎪⎨

⎪⎩

0 if ξ = 0 and kμη < 0,

kμη if ξ = 0 and kμη ≥ 0,

kμη if ξ > 0.

(11)

Figure 1b presents a block diagram representation of (11), which is a saturated
integrator with the lower saturation point equal to zero. The equivalence of the
dynamics (10) and the saturated integrator defined by (11) directly follows from
the equivalence of gradient-type complementarity systems (GTCS) ((10) belongs
to the GTCS class) and projected dynamical systems (PDS) ((11) belongs to the
PDS class). For the precise definitions of GTCS and PDS system classes and for
the equivalence results see [9] and [10].

Complementarity Systems in Constrained Steady-State Optimal Control 281

With kμ > 0, it is easy to verify that if the system in Figure 1b is in steady-
state, the value of the input signal η and the value of its output signal ξ neces-
sarily satisfy the complementarity condition 0 ≤ ξ ⊥ −η ≥ 0. �

The above presented complementarity integrators provide the basic building
blocks for imposing steady-state complementarity conditions. We will use the
term max-based complementarity integrator (MCI) to refer to the system (8),
i.e. the system with the structure as depicted in Figure 1a, and we will use
the term saturation-based complementarity integrator (SCI) for the system (10),
i.e. the system in Figure 1b. Together with a pure integrator, complementarity
integrators form the basic building block of a KKT controller.

Remark 1. For the MCI given by (8) the following holds:

(i) If ξ(0) < 0 then ξ(t) → 0 as t → ∞. Indeed for ξ(t) < 0, from (8) it follows
that ξ̇(t) > 0, irrespective of the value of the input signal η(t).
(ii) If ξ(0) ≥ 0, then ξ(t) ≥ 0 for all t ∈ R+. Indeed for ξ(t) = 0, from (8) it
follows that ξ̇(t) ≥ 0, irrespective of the value of the input signal η(t). Therefore,
similarly to the behavior of the saturation-based KKT controller, if xμ(0) ≥ 0
in the max-based KKT controller (5), then xμ(t) ≥ 0 for all t ∈ R+.

In what follows, we point out an interesting relation between the dynamical
behavior of the two types of complementarity integrators. Consider the MCI (8)
and let ξ(0) ≥ 0. Note that according to Remark 1 it follows that ξ(t) ≥ 0 for
all t ∈ R+. For ξ(t) ≥ 0, the dynamics (8) can be equivalently represented in a
piecewise-linear form as follows:

ξ̇ = φMCI(ξ, η) :=

{
kμη if ξ ≥ −kµ

ko
η,

−koξ if ξ < −kµ

ko
η.

(12)

Now, suppose that the gain kμ has the same value in (11) and (12). For a
given η(t) < ∞, we define the set D := {ξ | ξ ≥ 0, φSCI(ξ, η) �= φMCI(ξ, η)}.
By inspection it can easily be observed that for any η(t) < ∞, the Lebesgue
measure of the set D tends to zero as ko tends to ∞. This implies that the SCI
can be considered as a special case of the MCI when the gain ko is set to infinity.
In the same sense, the saturation-based KKT controller can be considered as a
special case of the max-based KKT controller.

4 Well-Posedness and Stability of the Closed-Loop
System

In this subsection we shortly present some results concerning the well-posedness
and stability analysis problems of the closed-loop system, i.e. of the system (1)
interconnected with a dynamic KKT controller in a feedback loop. We refer
to [11] for a more detailed treatment of these topics.

282 A. Jokic, M. Lazar, and P.P.J. van den Bosch

4.1 Well-Posedness

Since the function max(·, 0) is globally Lipschitz continuous, for checking well-
posedness of the closed-loop system with max-based KKT controller one can
resort on standard Lipschitz continuity conditions.

Notice that the system (1) in closed loop with a saturation-based KKT con-
troller belongs to a specific class of gradient-type complementarity systems for
which sufficient conditions for well-posedness have been presented in [9] and [10].
More precisely, it was shown that the hypermonotonicity property plays a crucial
role in establishing well-posedness, see [9] and [10] for details.

It can be easily verified, see [11] for details, that Lipschitz continuity implies
hypermonotonicity, and therefore we can state the following unified condition for
well-posedness of the system (1) in closed loop with a dynamic KKT controller
(irrespective of the KKT controller type):

Proposition 1. Suppose that the functions q, ∇J and all entries in ∇q are
globally Lipschitz. Then the system (1) in closed loop with a dynamic KKT
controller of the form (5) or (6) is globally well-posed.

4.2 Stability Analysis

Stability analysis for a fixed w ∈ W . Theorem 1 states that for any
constant-valued exogenous signal w(t) ∈ W , the closed-loop system necessarily
has an equilibrium. Furthermore, from the proof of this theorem it follows that
for all corresponding equilibrium points the values of the state vectors (x, xc)
are unique. For a given w(t) = w ∈ W , the necessary and sufficient condition
for uniqueness of the remaining closed-loop system state vectors (xλ, xμ), and
therefore a necessary and sufficient condition for uniqueness of the closed-loop
system equilibrium, corresponds to the condition for uniqueness of the Lagrange
multipliers in (4). This condition is known as the strict Mangasarian-Fromovitz
constraint qualification (SMFCQ) and is presented in [12].

Since both types of complementarity integrators can be presented in a piece-
wise affine framework [13], for a given w(t) = w ∈ W characterized by a unique
equilibrium, one can perform a global asymptotic stability analysis based on: i)
the analysis procedures from [14, 15] in case when (2) is a quadratic program
and (1) is a linear system; ii) the analysis procedure from [16] in case when (2)
is given by a (higher order) polynomial objective function and (higher order)
polynomial inequality constraints, while (1) is a general polynomial system.

In the case when w(t) = w ∈ W is such that the SMFCQ does not hold, the
closed-loop system is characterized by a set of equilibria (not a singleton), which
is then an invariant set for the closed-loop system. Each equilibrium in this set is
characterized by different values of the state vectors (xλ, xμ), but unique values
of the remaining states. Under additional generalized Slater constraint qualifi-
cation, see [17] for details, the set of equilibria is guaranteed to be bounded. For
stability analysis with respect to this set, one could invoke a suitable extension
of LaSalle’s invariance theorem [18].

Complementarity Systems in Constrained Steady-State Optimal Control 283

Stability analysis for all w ∈ W . A possibility to perform stability analysis
for all possible constant values of the exogenous signal w(t), i.e. for all w(t) = w
where w is any constant in W , is to formulate a corresponding robust stability
analysis problem. For instance, consider the max-based KKT control structure,
which is particulary suitable for this approach. Let M denote the set of au-
tonomous systems that contains all the closed-loop systems that correspond to
one fixed w ∈ W . Furthermore, suppose that each system in M has the origin
as equilibrium, after an appropriate state transformation. Then, it can be shown
that for any closed-loop system in M the static nonlinearity of the MCI, see
Figure 1a, fulfills certain sector bound conditions. Therefore, stability of all the
closed-loop systems in the set M can be established using the integral quadratic
constraint approach [19]. See [11] for a complete description that also deals with
non-unique equilibria.

5 Illustrative Example

To illustrate the theory, in this section we present the following example that
includes nonlinear constraints on the steady-state operating point. Consider a
third-order system of the form (1) given by

⎛

⎝
ẋ1

ẋ2

ẋ3

⎞

⎠ =

⎛

⎝
−2.5 0 −5

0 −5 −15
0.1 0.1 −0.2

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ +

⎛

⎝
0
0

−0.1

⎞

⎠w +

⎛

⎝
2.5 0
0 5
0 0

⎞

⎠

(
u1

u2

)

, (13a)

y = col(x1, x2, x3), (13b)

and let u := col(u1, u2) collect the control inputs.
With xp := col(x1, x2), the associated steady-state related optimization prob-

lem is defined as follows:

min
xp

1
2
x�

p Hxp + a�xp (14a)

subject to
x1 + x2 = w, (14b)

(x1 − 4.7)2 + (x2 − 4)2 ≤ 3.52, (14c)

where H = diag(6, 2), a = col(−4,−4), and the value of the exogenous signal
w is limited in the interval W = [4, 11.5]. It can be verified that for this W
and the constraints (14b) and (14c), Assumption 1 holds. Furthermore, it can
easily be verified that Assumption 3 holds. From the dynamics of the state x3, it
follows that in steady-state the equality x1 + x2 − 2x3 = w holds. Therefore, in
steady-state, x3 = 0 implies fulfilment of the constraint (14b). This implies that
for control purposes we can directly use the value of the state x3 as a measure
of violation of this constraint. Hence, explicit knowledge of w is not required.

Simulations of the closed-loop system response to stepwise changes in the
exogenous input w(t), which is presented in Figure 2a, have been performed.

284 A. Jokic, M. Lazar, and P.P.J. van den Bosch

0 100 200 300 400 500 600 700 800 900
3

4

5

6

7

8

9

10

11

12

13

t

x 1
(t

)+
x 2

(t
)

w(t)

w
1

w
2

w
3

w
4

x
1
(t)+x

2
(t)

saturation−based

max−based

(a)

0 100 200 300 400 500 600 700 800 900
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

t

(x
1
(t

)−
4

.7
)2

+
(x

2
(t

)−
4

)2
−

3
.5

2

w
1
 w

2
 w

3
 w

4

(x
1
(t)−4.7)2+(x

2
(t)−4)2−3.52

saturation−based

max−based

K
o
=0.5

K
o
=1

(b)

Fig. 2. (a) The values of w and x1 + x2, i.e. the right hand and the left hand side
of the equality constraint (14b), as a function of time. (b) Violation of the inequality
constraint (14c) as a function of time. When the curves are above zero (horizontal
dashed line), the constraint is violated.

Figure 2 and Figure 3 present the results of the simulation when the system is
controlled with both a saturation-based and a max-based KKT controller with
different values of the gain Ko. Both controllers were implemented with the
gains Kλ = 0.15, Kμ = 0.1, Kc = −0.7I2, and the gain Ko in the max-based
controller was set to 0.5 and 1. In each figure, a legend is included to indicate
which trajectory belongs to each controller.

Figure 2a and Figure 2b clearly illustrate that the controllers continuously
drive the closed-loop system towards the steady-state where the constraints
(14b), (14c) are satisfied. Figures 2b and 3a show fulfilment of the complemen-
tarity slackness condition (4c) in steady-state.

Finally, Figure 3b illustrates that the controllers drive the system towards
the correspondent optimal operating point as defined by (14). In this figure the
straight dashed lines labeled wi, i = 1, . . . , 4, represent the equality constraint
x1 +x2 = wi where the values of wi, i = 1, . . . , 4 are the ones given in Figure 2a.
The dashed circle represents the inequality constraint (14c), i.e. the steady-state
feasible region for xp is within this circle. Thin dotted lines represent the contour
lines of the objective function (14a), while the dash-dot line represents the locus
of the optimal point x̃p(w) for the whole range of values w in the case when the
inequality constraint (14c) would be left out from the optimization problem.

From the simulations we can observe that by increasing the gain Ko in the
max-based controller, the trajectory of the closed-loop system with the max-
based KKT controller approaches the trajectory of the closed-loop system with
saturation-based KKT controller.

Remark 2. The presented KKT control methodology has a great potential for
application in real-time, price-based power balance and network congestion

Complementarity Systems in Constrained Steady-State Optimal Control 285

0 100 200 300 400 500 600 700 800 900
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t

x μ(t
)

w
1
 w

2
 w

3
 w

4

sat.−based

max−based

xμ(t)
K

o
=0.5

K
o
=1

(a)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

x
1

x 2 w
1

w
2

w
3

w
4

x
p
(0)

sat.−based

max−based

K
o
=0.5

K
o
=1

(b)

Fig. 3. (a) Simulated trajectory of the controller state xµ. (b) Simulated trajectory of
the state vector xp for the close-loop system.

control of electrical energy transmission systems. This is considered to be one
of the toughest problems in operation and control of market-based power sys-
tems [20]. This topic has recently gained a significant attention in power systems
community, following the large restructuring processes occurring in this sector.
Specifically, the KKT control structure is suitable for this particular application
since it explicitly manipulates with the Lagrange multipliers, which, in power
systems, have the interpretation of nodal prices for electricity. The interested
reader is refereed to [11] for more details on this topic.

6 Conclusions

In this paper we have considered the problem of regulating a general nonlinear
dynamical system to a time-varying economically optimal operating point. The
economically optimal operating point was implicitly defined as a solution to a
given constrained convex optimization problem, which is related to steady-state
operation. We have shown that complementarity systems arise naturally as a
solution to this problem. More precisely, the solution that we proposed in this
paper is based on the specific dynamic extension of the Karush-Kuhn-Tucker
optimality conditions for the steady-state related optimization problem. An ad-
vantageous feature of the proposed solution is that it offers an explicit control
law, i.e. the implementation of the controller does not require solving on-line the
corresponding optimization problem. Some results and tools that can be used
for well-posedness and stability analysis of the resulting closed-loop system have
also been discussed.

Acknowledgments. The authors would like to thank Dr. Maurice Heemels for
valuable discussions.

286 A. Jokic, M. Lazar, and P.P.J. van den Bosch

References

1. van der Schaft, A.J., Schumacher, J.M.: The complementarity-slackness class of
hybrid systems. Mathematics of Control, Signals, and Systems 9, 266–301 (1996)

2. van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid sys-
tems. IEEE Transactions on Automatic Control 43(3), 483–490 (1998)

3. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Linear complementarity sys-
tems. SIAM Journal on Applied Mathematics 60(4), 1234–1269 (2000)

4. Brogliato, B.: Some perspectives on analysis and control of complementarity sys-
tems. IEEE Transactions on Automatic Control 48, 918–935 (2003)

5. Çamlibel, M.K., Pang, J.S., Shen, J.: Lyapunov stability of complementarity and
extended systems. SIAM Journal on Optimization 17(4), 1056–1101 (2006)

6. Schumacher, J.M.: Complementarity systems in optimization. Mathematical pro-
gramming B 101, 263–296 (2004)

7. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press,
Cambridge (2004)

8. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Englewood Cliffs (2002)
9. Heemels, W.P.M.H., Schumacher, J.M., Weiland, S.: Projected dynamical systems

in a complementarity formalism. Operations Research Letters 27(2), 83–91 (2000)
10. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between

complementarity systems, projected systems and differential inclusions. Systems
and Control Letters 55, 45–51 (2006)

11. Jokic, A.: Price-based optimal control of electrical power systems. PhD thesis,
Eindhoven University of Technology, The Netherlands (2007)

12. Kyparisis, J.: On uniqueness of Kuhn-Tucker multipliers in nonlinear programming.
Mathematical Programming 32, 242–246 (1985)

13. Sontag, E.D.: Nonlinear regulation: the piecewise linear approach. IEEE Transac-
tions on Automatic Control 26(2), 346–357 (1981)

14. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov func-
tions for hybrid systems. IEEE Transactions on Automatic Control 43(4), 555–559
(1998)

15. Gonçalves, J.M., Megretski, A., Dahleh, M.A.: Global analysis of piecewise linear
systems using impact maps and surface Lyapunov functions. IEEE Transactions
on Automatic Control 48(12), 2089–2106 (2003)

16. Prajna, S., Papachristodoulou, A.: Analysis of swiched and hybrid systems - beyond
piecewise quadratic methods. In: American Control Conference, USA (2003)

17. Pomerol, J.C.: The boundedness of the Lagrange multipliers set and duality
in mathematical programming. Zeitschrift für Operations Research 25, 191–204
(1981)

18. LaSalle, J.P.: The stability of dynamical systems. In: SIAM, (ed.) Regional Con-
ference Series in Applied Mathematics. Philadelphia, vol. 25 (1976)

19. Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints.
IEEE Transactions on Automatic Control 42(6), 819–830 (1997)

20. Stoft, S.: Power System Economics: Designing Markets for Electricity. Kluwer Aca-
demic Publishers, Dordrecht (2002)

Dealing with Nondeterminism in Symbolic Control�

Marius Kloetzer and Calin Belta

Center for Information and Systems Engineering
Boston University

15 Saint Mary’s Street, Boston, MA 02446
{kmarius,cbelta}@bu.edu

Abstract. Abstractions (also called symbolic models) are simple descriptions of
continuous and hybrid systems that can be used in analysis and control. They are
usually constructed in the form of transition systems with finitely many states.
Such abstractions offer a very attractive approach to deal with complexity, while
at the same time allowing for rich specification languages. Recent results show
that, through the abstraction process, the resulting transition systems can be non-
deterministic (i.e., if an input is applied in a state, several next states are possible).
However, the problem of controlling a nondeterministic transition system from a
rich specification such as a temporal logic formula is not well understood. In this
paper, we develop a control strategy for a nondeterministic transition system from
a specification given as a Linear Temporal Logic formula with a deterministic
Büchi generator. Our solution is inspired by LTL games on graphs, is complete,
and scales polynomially with the size of the Büchi automaton. An example of
controlling a linear system from a specification given as a temporal logic formula
over the regions of its triangulated state space is included for illustration.

1 Introduction

In control problems, trajectories of “complex” mathematical models, such as systems
of differential equations, are usually checked against “simple” specifications, such as
stability of equilibria and set invariance. In formal verification, “rich” specifications,
such as formulas of temporal logics, are checked against “simple” models of software
programs and digital circuits, such as (finite) transition graphs. There has been a lot of
interest lately in developing theoretical frameworks and computational tools for bridg-
ing in this gap, and therefore allowing for specifying the properties of continuous and
hybrid systems in a rich language, with automatic verification and controller synthe-
sis. Most of the existing approaches are centered at the concept of abstraction, i.e., the
process through which a system with infinitely many states (such as a control system
in continuous space and time) is mapped to a system with finitely many states, called
symbolic, or abstract model. Roughly, the abstract model can be seen as a transition
graph, whose states label “equivalent” sets of states of the initial system.

� This work is partially supported by NSF CAREER 0447721 and NSF 0410514 at Boston
University.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 287–300, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

288 M. Kloetzer and C. Belta

The abstract model can be either equivalent with the initial system with respect
to the satisfaction of the specification, or it can provide an approximation, with the
guarantee that the satisfaction of the specification for the abstract model is sufficient
for the satisfaction of the specification by the initial system. Equivalent abstractions are
based on the notion of bisimulation [1], while sufficient abstractions can be derived us-
ing simulation relations. The class of systems for which equivalent finite models exist
include systems with very simple continuous dynamics, such as timed automata [2],
multirate automata [3], rectangular automata [4], or systems with more complex con-
tinuous dynamics but simpler discrete dynamics, such as o-minimal hybrid systems [5].
More recent results provide conditions for the existence of equivalent abstractions for
discrete-time continuous-space linear systems [6] and for more general systems through
a relaxed notion of approximate bisimulation [7,8]. Recent works on constructing suf-
ficient abstractions focus on systems with linear dynamics and polyhedral partitions
[9] and systems with polynomial dynamics and partitions given by semi-algebraic sets
[10]. In these works, the construction of sufficient or equivalent abstractions (if they
exist) is expensive, and involves either the integration of vector fields [9] or quantifier
elimination for real closed fields and theorem proving [10].

There are two classes of systems for which checking the existence of equivalent ab-
stractions and the construction of sufficient abstractions can be reduced to polyhedral
operations only [11]: affine systems with simplicial partitions (e.g., triangulations in
the 2D case) and multi-affine systems with rectangular partitions. Roughly, such con-
structions are possible because necessary and sufficient conditions for the existence of
controllers driving all initial states of an affine (multi-affine) system in a simplex (rect-
angle) through a facet in finite time and for making a simplex (rectangle) an invariant
can be reduced to checking the non-emptiness of polyhedral sets [12,13]. If in a sim-
plicial (rectangular) partition of the state space of an affine (multi-affine) system, feed-
back controllers can be designed such that all states either stay inside or leave through
a facet (to a neighbor region), then the corresponding quotient transition system is an
equivalent abstraction (bisimulation quotient). Moreover, this finite transition system is
deterministic, since an applied control uniquely determines the next state. If the control
specification for the initial system is given as a Linear Temporal Logic (LTL) formula
over the regions of the partitioned state space, then the problem reduces to controlling a
deterministic transition system from an LTL formula over its states. This problem is rel-
atively easy, since it can be solved by adapting standard tools from LTL model checking
[14]. We proposed a solution in [15], and used it to develop a fully automated procedure
for control of linear systems from specifications given as arbitrary LTL formulas over
arbitrary linear predicates in the state variables.

This paper is motivated by recent results [16,17] extending the work from [12,13].
Specifically, in [16], the authors showed that, for an affine system in a simplex, even
though a controller driving all states through a facet (i.e., to a neighbor) might fail to
exist, controllers driving the system through a set of facets (i.e., to a set of neighbors)
might be found. Similar results were proved for multi-affine systems and rectangles in
[17]. While reducing the conservativeness introduced through the abstraction process,
these results raise a new problem: since a controller does not guarantee a transition to
exactly one neighbor, the abstract transition system is non-deterministic. On the other

Dealing with Nondeterminism in Symbolic Control 289

hand, the problem of controlling a non-deterministic transition system from a rich spec-
ification such as an LTL formula over its states is currently not solved.

In this paper, we focus on specifications given as formulas of a fragment of LTL
[14] for which the corresponding languages are generated by deterministic Büchi au-
tomata. We propose a solution inspired from (infinite) LTL games [18,19,20], which
are played by two players on a graph. Roughly said, we generalize this problem to
transition systems with inputs, and treat non-determinism as an adversary. The so-
lution is presented in the form of a feedback automaton, which at each step reads
the current state of the transition system and generates the applied control. We ap-
proached this problem in our previous work [21], where we mapped it to a classical
LTL game played on a modified transition system by assigning its states to the two
players. As opposed to [21], the solution that we propose here is complete, in the sense
that we find a solution if one exists. The algorithms proposed in this paper were im-
plemented as a user-friendly software tool under Matlab, which is freely downloadable
from http://iasi.bu.edu/∼software/nondet.htm.

2 Case Study

To motivate the problem and illustrate our approach, we consider an example of con-
trolling an affine system from a specification given as a temporal logic statement about
the reachability of simplices in a triangulation of its state space. Consider the following
affine system:

ẋ =
[−0.4 0.2

0.5 −0.8

]
x +

[
1 0
0 1

]
u +

[
0.7
0.5

]
, (1)

where the state and controls are restricted to rectangular sets x ∈ [2, 10] × [1, 7] and
u ∈ [−1, 1] × [−1, 1], respectively. Assume the (planar) state space of the system is
triangulated as shown in Fig. 1 (a).

2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
10

q
11

q
12

q
13

q
14

x
1

x 2

1q
8q 2q

6q
9q 5q

4q

7q
11q

10q
3q

12q

13q

14q

3
12

4
10

5
55

9

5
11

6
6

6
7

6
8

7
7

7
6

7
9

8
8

8
6

8
9

9
5

9
9

9
7

9
8

10
1010

11 10
1211

10

11
11

11
5

12
12

12
10

13
14

(a) (b)

Fig. 1. (a) Triangular partition of the planar state space of system (1) and the vector field cor-
responding to the uncontrolled system. (b) The deterministic transition system modelling con-
trollers driving all states in a simplex through a facet or making a simplex an invariant (σi

j with
i �= j is a feedback controller for qi guaranteeing exit to qj in finite time; σi

i is a feedback
controller making qi an invariant.

http://iasi.bu.edu/~software/nondet.htm

290 M. Kloetzer and C. Belta

Assume we want to find initial states and control strategies for system (1) such that
all the trajectories of the closed loop system satisfy the following specification:

“eventually visit q6 and q12, in any order” (2)

In other words, it is desired that the trajectories of the closed loop system evolve in
the triangulated environment such that, at some point in the future, the regions labelled
by q6 and q12 (not necessarily in this order), are reached. Note that this specification
contains temporal (“eventually”) and logical (“and”) information. Temporal logics [14]
offer formal frameworks for such temporal and logical statements. Specifically, in our
case, the specification translates to the following Linear Temporal Logic (LTL) formula
over the set of symbols {q1, . . . , q14}:

φ = ♦q6 ∧ ♦q12, (3)

where “♦” means “eventually” and “∧” is the well known notation for “and”. Therefore,
the problem translates to controlling the affine system (1) from a specification given as
the temporal logic formula (3) over triangles in its partitioned state space.

This problem can be seen as a particular case of the framework we developed in
[15], where an arbitrary linear system was controlled from LTL formulas over arbitrary
linear predicates in its state variables. In short, the computational tool developed in
[15] consists of the following steps: (i) construct a polyhedral partition of the state
space using the linear predicates in the specification, (ii) for each of the polytopes in the
partition, find feedback controllers making the polytope an invariant, and, for each of its
facets, find feedback controllers driving all the initial states in the polytope through the
facet (to a neighbor polytope) in finite time, (iii) arrange the results of the previous two
steps in the form of a transition system (or transition graph), where the states (nodes)
label the polytopes, and the transitions (included in the adjacency relations between
polytopes) are labelled by the corresponding controllers designed in the previous step
(a self transition corresponds to a controller making the corresponding polytope an
invariant set), (iv) design a control strategy for the transition system constructed in the
previous step, in the form of a hybrid system. For our example, the transition system
obtained in step (iii) is shown in Figure 1 (b).

Since an applied control uniquely determines the next state, the transition system
constructed above is deterministic (e.g., the transition system in Figure 1 (b)). There-
fore, step (iv) of the above procedure reduces to the problem of controlling a determin-
istic transition system from a specification given as an LTL formula over its states. One
can find a solution to this problem by model checking the transition system with the
negation of the formula using (off-the-shelf tools, such as SPIN and NuSMV). How-
ever, there is no control over the produced counterexample, which might be too long,
or simply not implementable by the initial continuous system. To overcome this, in
[15], we proposed another solution for the problem, which will be also briefly reviewed
in Remark 3. The solution consists of the following steps: (a) construction of a Büchi
automaton accepting the language satisfying the formula, (b) synchronization of the
transition system with the Büchi automaton by taking their product, (c) finding a run
in the product automaton that is implementable by the initial continuous system and
is optimal with respect to a cost imposed by the particular application, and (d) finding

Dealing with Nondeterminism in Symbolic Control 291

the control strategy in the form of the sequence of controls producing the run from the
previous step. Step (d) is possible because, in a deterministic transition system, a run is
uniquely determined by a sequence of applied controls.

By applying the procedure from [15] to our example, we find that the set of ini-
tial states for which control strategies can be designed such that all trajectories of the
closed loop system satisfy the formula is given by the union of all triangles except for
q1, q2, q13, q14. The solution is of course conservative, in the sense that, even though
we label some triangles as not containing initial states for trajectories satisfying the for-
mula, there might exist states in these triangles such that trajectories originating there
satisfy the formula. There are two sources of conservativeness in this approach: (1) the
initial states are treated as whole sets given by the initial triangles (no subpartition is
performed), and (2) only controllers either driving all initial states to a facet or making
a triangle an invariant are allowed. Related to the latter source of conservativeness, one
can imagine that, even though controllers driving all initial states to a facet might fail to
exist, controllers guaranteeing exiting through a set of facets might be found. For exam-
ple, by using the techniques from [12], no feedback controllers can be found to drive the
states in triangle q1 through the separating facet with q8, or through the separating facet
with q2. However, by using the more general conditions from [16], a feedback controller
can be found which guarantees that all initial states in q1 will eventually reach either q8

or q2. However, if such controllers are allowed, the quotient transition system becomes
nondeterministic. For our example, the resulting transition system is shown in Figure 2
(b). By applying the general method for controlling nondeterministic transition systems
proposed in this paper, coupled with feedback controllers as in [16], we show in Section
6 that control strategies producing trajectories satisfying the formula can be found for
all initial states in q1, q2, . . . , q14. In other words, the conservatism from our previous
method is considerably reduced.

3 Preliminaries

Throughout the paper, for a finite set A, we will use the notations |A|, Aω, and 2A to
denote its cardinality, the set of all infinite words over A, and its power set (the set of
all its subsets), respectively.

Definition 1 (Transition system). A finite (nondeterministic) transition system is a tu-
ple T = (Q, Σ, δ), where:

– Q is a finite set of states,
– Σ is a finite input alphabet,
– δ : Q × Σ → 2Q is a (nondeterministic) transition function.

For a given state q ∈ Q, the set of available (feasible) inputs is denoted by Σq (i.e., Σq

is the set of σi ∈ Σ for which |δ(q, σi)| ≥ 1). An input word σ ∈ Σω is denoted by
σ = σ1σ2σ3 . . . A trajectory or run of T produced by an input word σ starting from q
is an infinite sequence w ∈ Qω, w = w1w2w3 . . . with the property that w1 = q and
∀i ≥ 1, wi+1 ∈ δ(wi, σi).

A formal definition of the syntax and semantics of Linear Temporal Logic (LTL)
formulas is beyond the scope of this paper. Intuitively, an LTL formula over the set Q

292 M. Kloetzer and C. Belta

is any “sensible” combination of elements from Q, logical operators ¬ (negation), ∧
(conjunction), ∨ (disjunction), ⇒ (implication), ⇔ (equivalence), and temporal oper-
ators © (next), U (until), ♦ (eventually), � (always). The semantics of LTL formulas
are given over runs of transition system T . For example, if the states Q of T are labels
for regions in a partitioned state space of a control system, then the control specifica-
tion “visit region q1, then region q2, and then go to final target q3, while avoiding q1”
translates to formula

♦(q1 ∧ ♦(q2 ∧ (¬q1)Uq3)) (4)

which is true for any run in which q1 appears at some position, then q2 appears, and
then eventually q3 appears, while q1 does not appear before this happens.

For every LTL formula over Q, there exists a Büchi automaton (also called a gener-
ator of the LTL formula) accepting all and only the words satisfying it [22].

Definition 2 (Büchi automaton). A Büchi automaton is a tuple B=(S, S0, Q, δB, F),
where:

– S is a finite set of states,
– S0 ⊆ S is the set of initial states,
– Q is the input alphabet,
– δB : S × Q → 2S is a nondeterministic transition function,
– F ⊆ S is the set of accepting (final) states.

The semantics of a Büchi automaton is defined over infinite input words. Let w =
w1w2w3..., w ∈ Qω, be an infinite input word of automaton B. We denote by RB(w)
the set of all initialized runs of B that can be produced by w:

RB(w) = {r = s1s2s3...| s1 ∈ S0, si+1 ∈ δB(si, wi), ∀i ≥ 1} (5)

Definition 3 (Büchi acceptance). A word w ∈ Qω is accepted by the Büchi automaton
B if and only if ∃r ∈ RB(w) so that inf(r) ∩ F �= ∅, where inf(r) denotes the set of
states appearing infinitely often in the run r.

In words, an input word w is accepted by B if and only if there exists at least a run
induced by w that visits F infinitely often.

Remark 1. Motivated by the particular control application, we use simplified definitions
of transition system, Büchi automaton, and Büchi acceptance. We refer to [14] for more
general definitions.

4 Problem Formulation and Approach

Problem 1. Given a transition system T = (Q, Σ, δ) and a Büchi automaton B =
(S, S0, Q, δB, F), find a set of initial states Q0 ⊆ Q and a control strategy for T such
that all runs of T are accepted by B.

Dealing with Nondeterminism in Symbolic Control 293

The Büchi automaton B from the above problem should be seen as a generator for an
LTL formula φ over Q, which is the high-level control specification. Due to some com-
plexity issues that go beyond the scope of this paper, in this work we assume that the
Büchi automaton B from Problem 1 is deterministic (i.e., S0 = {s0} is a singleton, and
δB : S × Q → S is a partial function). Intuitively, the current state of a deterministic
Büchi automaton shows the progress towards the satisfaction of the LTL formula, and
this information is used in developing the strategy from that point on. If a deterministic
Büchi automaton does not exist for a given formula, the nondeterministic Büchi gener-
ator has to be translated into a more complicated type of deterministic automaton, like
Muller or Rabin.

Remark 2. It is important to note at this point that, although for any LTL formula a
generator Büchi automaton can be constructed, this automaton is in general nondeter-
ministic, and cannot be always determinized [23]. However, the assumption that the
Büchi generator is deterministic does not seem restrictive from an expressivity point
of view [24], since most LTL formulas capturing control tasks (including the formulas
in Eqn. (3), (4), as well as specifications like safety and liveness) belong to some iso-
lated fragments of LTL, for which (partially-ordered) deterministic generators can be
constructed [25].

Remark 3. If the transition system T were deterministic (i.e. δ : Q × Σ → Q), then
a solution to Problem 1 could be found by using an idea similar to model checking
[14,15]: the product automaton T × B is computed and in this product automaton an
accepting run with a specific structure is found and projected to a run of T . Since T is
deterministic, a control strategy implementing the desired run can be constructed. This
approach also works in the case of nondeterministic Büchi automata.

Problem 1 is related to the problem of controlling a discrete event system modelled as
a transition system with inputs [26]. However, in this latter case, the specification is
given as an ω-regular expression over inputs (rather than an LTL formula over states).
In this paper, we propose a method inspired by the theory of LTL games. An LTL game
is defined on a graph G = (V, E) and it is played by two players: a protagonist and
an adversary. The set of nodes (states) V is partitioned into a set of protagonist’s states
Vp, from which the protagonist can choose the next state, and a set of adversary’s states
Va, from which the adversary chooses the next state [18]. A play consists of an infinite
sequence of states resulted from an infinite sequence of transitions (edges) chosen by
the two players. The specification for an LTL game is an LTL formula over the set of
states V . A play is won by the protagonist if the produced run satisfies the LTL formula.

The protagonist has a winning strategy if, whenever the current state is in Vp, she
manages to choose transitions such that she wins the current game, no matter what
transitions the adversary chooses when the current state is in Va. The goal of an LTL
game is to find the set of initial states from where the protagonist has winning strategies
and a winning strategy for plays starting in those initial states. The existing algorithms
for solving LTL games are complete, in the following sense: when starting from the
found set of initial states, the winning strategy guarantees that the protagonist wins the
game, no matter how smart the adversary is, and when starting from any other state,
the adversary has a strategy prohibiting the protagonist’s winning [19].

294 M. Kloetzer and C. Belta

Intuitively, we can think of control Problem 1 as an LTL game in which the adversary
uses the non-determinism in the problem in the smartest way possible to prevent us
from producing runs of T satisfying the formula. More precisely, while we have full
control in choosing the current input of the transition system T in every state from Q,
the adversary can choose the next state in the case when the chosen input produces
nondeterministic transitions.

Maybe the simplest way of transforming our problem into a standard LTL game
would be to partition the set of states Q in two sets: a protagonist’s set Qp, with each
state having only deterministic outgoing transitions, and an adversary’s set Qa, with
each state having at least one input producing non-deterministic transitions. Then, a
graph with vertices Q can be easily constructed, where the adversary has full control in
choosing any existing transition from states in Qa. An algorithm for solving LTL games
can be applied to this graph, and the resulting winning strategy (if any) can be adapted
for the initial T as follows: in states from Qp, the winning strategy (giving the next state
to be reached) is easily mapped to the input producing the deterministic transition to the
desired next state, and in states from Qa any feasible input can be applied (since we gave
full control to the adversary). Obviously, this strategy is conservative because we don’t
use our power of choosing inputs in every state, but instead we give all the transitions
(inputs) from some states to the adversary. An attempt to reduce this conservatism can
be as follows: first, place all states from Q in Qp. Then, for each non-deterministic
input in a node, replace the non-deterministic transitions with a deterministic one to a
newly added state in Qa, and assign the removed non-deterministic transitions to this
new state. The solution is correct only for some LTL fragments, it is more complex, and
it still cannot be proved to be complete.

In [21], Problem 1 was mapped to an LTL game for an augmented transition sys-
tem obtained by splitting the states of T and by assigning them to the protagonist
and the adversary. However, this procedure led to a conservative, incomplete solution.
In the next section, we present a different approach, which is based on an adaptation of
the LTL game algorithms, and which leads to a complete solution to Problem 1.

5 Solution to Problem 1

In this section, we show how the main steps involved in solving an LTL game [19] can
be adapted to our problem. We first construct a product automaton P between the tran-
sition system T and the Büchi automaton B (Sect. 5.1). We then solve a Büchi game
on P and find a set of initial states, together with a memoryless (positional) winning
strategy (Sect. 5.2). Finally, the set of initial states and the winning strategy for T are
obtained by projecting the initial states of P into Q and by adapting the winning strat-
egy of P for T , respectively (Sect. 5.3). Unlike the winning strategy for P , the one
corresponding to T will have memory.

5.1 Constructing the Product Automaton

Definition 4 (Product automaton). The product automaton P = T × B between the
nondeterministic transition system T = (Q, Σ, δ) and the deterministic Büchi automa-
ton B = (S, S0, Q, δB, F) is defined as the tuple P = (SP , SP0, Σ, δP , FP), where:

Dealing with Nondeterminism in Symbolic Control 295

– SP = Q × S is the finite set of states,
– SP0 = Q × S0 is the set of initial states,
– Σ is the input alphabet,
– δP : SP ×Σ → 2SP is the transition function, defined as δP ((q, s), σ)={(q′, s′) ∈

SP | q′ ∈ δ(q, σ) and s′ = δB(s, q)}, where (q, s) ∈ SP and σ ∈ Σ,
– FP = Q × F is the set of accepting (final) states.

The product automaton P is in fact a nondeterministic Büchi automaton with input
alphabet Σ. Its acceptance condition is formulated as in Definition 3, but with respect to
input words from Σω. The product automaton in Definition 4 can be regarded as a match
between the states and transitions of T and B. The transition function of P captures
both the nondeterministic behavior of T and the way of deterministically tracking the
progress towards the satisfaction on the LTL formula corresponding to B (infinitely
visiting set F of B).

Let wP ∈ Σω be an accepted input of automaton P and let rP = (qi1, sj1) (qi2, sj2)
(qi3, sj3)... be a resulted run such that inf(rP) ∩ FP �= ∅. Then, a result from the
model checking theory states that the projection of rP to states in Q is a run rT =
qi1, qi2, qi3... of T accepted by B. Furthermore, a run of T accepted by B exists if
and only if P has an accepted run. However, since T is nondeterministic, we cannot
make sure that a certain run will be followed, as we could for the deterministic case
mentioned in Remark 3. Therefore, our goal becomes to design a controller that applies
to T inputs guaranteeing that any possible run will be accepted by B. Looking at P , this
goal translates to designing a strategy of applying inputs to P such that any possible run
rP satisfies inf(rP) ∩ FP �= ∅.

This problem resembles a Büchi game, which is an intermediate step in solving a
classical LTL game. The results from the next section can be seen as an extension of
the solution to the Büchi game from partitioned graphs [18] to transition systems with
inputs, where the protagonist can choose inputs and the adversary can choose the next
state in nondeterministic transitions.

5.2 Solving a Büchi Game

As stated in the previous subsection, we want to apply inputs to P such that the subset
of states FP will be visited infinitely often. Whenever a nondeterministic transition is
encountered, even though we are able to choose the input, the adversary will decide the
next state, and we have to make sure that we will be able to accomplish the goal, no
matter what state the adversary chooses. Eventually, by using a fixed-point strategy, we
will be able to isolate a set of states WP ⊆ SP (the winning region), from where we
can guarantee infinitely many visits to FP . An immediate adaptation of a result from
the theory of LTL games [18] states that if a nonempty set WP together with winning
strategy of applying inputs exist, then there also exists a memoryless (positional) strat-
egy, which applies a certain input in each state from WP . In other words, a memoryless
strategy will be a map πP : WP → Σ.

In the following three definitions, which are adapted from [19], A is an arbitrary
subset of the set of states SP .

296 M. Kloetzer and C. Belta

Definition 5 (Recurrent set). The recurrent set of A, denoted by R(A), is defined as
the set of all s ∈ A from which there can be enforced infinitely many revisits to set A.

The recurrent set will be recursively computed by starting with R0(A) = A and by
finding, at each step i ≥ 1, the set Ri(A), which is the set of all s ∈ A from which
there can be enforced at least i revisits to set A. Then, because A is finite, the decreasing
sequence A ⊇ R1(A) ⊇ R2(A) . . . will reach a stationary value (which can be the
empty set) for some i ≤ |A|, and that value is R(A). The actual details of computing
Ri(A) will be given after Definition 7.

Definition 6 (Attractor set). The attractor set of A, denoted by A(A), is the set of all
s ∈ SP from which there can be enforced a visit to set A in zero or more steps.

Enforcing a visit in zero steps is equivalent to starting from A and applying no in-
put. The attractor set will be the stationary value of an increasing sequence: A0(A) ⊆
A1(A) ⊆ A2(A) . . ., where Ai(A) is the set of all s ∈ SP from which there can be
enforced a visit to set A in at most i steps. It is easy to see that the recursion starts with
A0(A) = A and, at each step, Ai+1(A) is computed as the union of Ai(A) with the
set of all s ∈ SP \ Ai(A) from which there can be enforced a visit to set Ai(A) in one
step, for i ≥ 0. The stationary set (Ai+1(A) = Ai(A)) will again be reached in a finite
number of steps i ≤ |SP |.

The winning region WP is given by WP = A (R(FP)): once R(FP) is reached,
we are certain that we can revisit states from FP infinitely often. However, in order
to effectively compute the recurrent set of a given subset of states, we need one more
definition.

Definition 7 (Proper attractor). The proper attractor of A, denoted by A+(A), is
defined as the set of all s ∈ SP from which there can be enforced a visit to set A in one
or more steps.

The proper attractor is computed similarly to the attractor set, but the following differ-
ences appear: we start with A+

0 (A) = ∅ and, at each iteration, we compute A+
i+1(A)

as the union of A+
i (A) with the set of all s ∈ SP \ A+

i (A) from which there can
be enforced a visit to set Ai(A) ∪ A in one step. This comes from the fact that the
proper attractor set requires at least one step to be taken (one input to be applied) in
order to visit set A, while the regular attractor from Definition 6 consider as a visit the
situation of starting from set A and taking no transition. Because of this difference,
the proper attractor is suitable for computing the recurrent set, by using the recurrence
Ri+1(A) = Ri(A) ∩ A+(Ri(A)): at each step, keep only states from Ri(A) from
where a revisit to Ri(A) can be enforced in a strictly positive number of steps.

We now have all the tools for solving the Büchi game on the product automaton P .
Due to space constraints, we do not include the corresponding algorithm here, and we
refer to the technical report from http://iasi.bu.edu/˜software/nondet.
htm. The idea of solving the Büchi game on P is to first compute R(FP) (using the
recurrence given after Definition 7), and then, if the resulting set is nonempty, the set
WP = A (R(FP)) is computed (as described after Definition 6). The winning strategy
πP is constructed during the computation of these sets, by searching inputs from Σ

http://iasi.bu.edu/~software/nondet.htm
http://iasi.bu.edu/~software/nondet.htm

Dealing with Nondeterminism in Symbolic Control 297

guaranteeing the satisfaction of definitions for recurrent and attractor sets, respectively.
The obtained solution is the set WP and the memoryless strategy πP : WP → Σ. If the
set WP0 = SP0 ∩ WP is nonempty, then there exist initial states of P from where FP

will be visited infinitely often. Otherwise, our Büchi game with inputs has no solution,
and correspondingly Problem 1 is infeasible. The solution from this section is complete,
and its correctness is guaranteed by construction.

5.3 Constructing the Control Strategy for T

If there is a solution for winning the Büchi game on the product automaton P (set WP0

is nonempty), we have to adapt this solution to our initial transition system T . First, the
set of initial states of T from where the LTL formula can be satisfied is Q0 = α(WP0),
where map α : SP → Q is just the projection of states from P to Q. Second, the control
strategy for T will be an automaton C obtained from the memoryless strategy πP in the
winning region WP . The input applied to C will be the current state of T , and the output
of C will give the next input to be applied to T .

The control automaton C is the tuple C = (S, Q, s0, τ, π, Σ), where:

– S is the set of states of B,
– Q is the input set, equal with the set of states of T ,
– s0 is the initial state of the deterministic Büchi automaton B,
– τ : S × Q → S is the memory update function, τ(s, q) = δB(s, q) if (q, s) ∈ WP ,

and τ(s, q) undefined otherwise,
– π : S × Q → Σ is the output function, π(s, q) = πP ((q, s)) if (q, s) ∈ WP , and

π(s, q) undefined otherwise.

The correctness of the control automaton C can be verified as follows: if we equip
C with the set of final states F , then the product automaton T × C will have the same
states as P , its transitions will be the subset of transitions of P that can appear during
the winning of a Büchi game, and the strategy for applying inputs is exactly πP .

To summarize, the solution to Problem 1 is given by the set of initial states Q0 =
α(WP0) and the feedback control automaton C. Whenever T starts from an initial state
in set Q0, the satisfaction of the LTL formula corresponding to the Büchi automaton B
is guaranteed by the controller C, which, at each step, reads the current state of T , uses
map π to determine the next input to be applied to T , and updates its own internal state
by using the map τ .

Since the solution from section 5.2 is complete, the overall procedure proposed in
this paper for solving Problem 1 is complete. On complexity, the running time of the
overall three-step procedure is O(|Q|2 · |S|2 · |Σ|) (proofs are omitted due to space
constraints). If the specification is given as an LTL formula, to this we need to add
the running time for the conversion of the formula to a Büchi generator, which is at
most double exponential in the length of the formula [25]. If smaller fragments of LTL
are considered, then the construction of the Büchi generator can be more efficient. For
example, for the LTL fragment which includes the example in Eqn. (4), exponential
complexity can be achieved [25]. Moreover, note that this upper bounds for complexity
are very rarely attained in practice.

298 M. Kloetzer and C. Belta

The three-step procedure proposed in this paper has been implemented in Matlab.
The user-friendly interface takes as input the transition system T and the Büchi au-
tomaton B, and returns the control automaton C. The software package is freely down-
loadable from http://iasi.bu.edu/∼software/nondet.htm.

6 Case Study Revisited

Let us now revisit the case study from Section 2, which requires to find initial states
and feedback controllers for system (1) such that all trajectories of the corresponding
closed loop system satisfy specification (2), i.e., LTL formula (3). The deterministic
Büchi automaton corresponding to the formula (not shown due to space constraints)
has 4 states, one final state, and 56 transitions, out of which 52 are self transitions.

We start by constructing a transition system T with states Q = {q1, . . . , q14} corre-
sponding to the partition elements and with transitions capturing the ability of design-
ing affine feedback controllers such that a triangle either becomes an invariant for the
closed loop system, or it is left in finite time to one or several neighbors. To compute
such controllers, we used the method developed in [16], which consists of polyhedral
operations only. We first check transitions to one neighbor. Then, if some neighbor(s)
cannot be reached, we check transitions to the possible pairs of neighbors that include
the non-reachable one(s). We stop either when every neighbor can be reached (through
deterministic or non-deterministic transitions), or when all combinations of exit facets
were checked (including the set of all three facets). The resulting transition system
(shown in Figure 2 (b)) has 38 transitions, out of which 27 are deterministic.

2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
10

q
11

q
12

q
13

q
14

x
1

x 2

1q
8q 2q

6q
9q 5q

4q

7q
11q

10q
3q

12q

13q

14q

1
2,8

2
4,5

3
12

3
4,12

4
10

4
2,10

4
3,105

55
9

5
11

6
6

6
7

6
8

7
7

7
6

7
9

7
9,14

8
8

8
6

8
9

8
1,6

9
5

9
9

9
7

9
8

10
1010

11 10
1211

10

11
11

11
5

11
5,14

12
12

12
10

12
10,13

13
14

13
12,14

14
7,11

(a) (b)

Fig. 2. (a) Two continuous trajectories of the controlled system, starting from the points marked
with ”�” (x = (4, 1.5) and x = (8, 1.1), respectively) and asymptotically converging to the
points marked with ”X”. (b) The nondeterministic transition system modelling feedback con-
trollers making a triangle an invariant and driving all states to one or several neighbors. De-
terministic transitions are shown in solid line, while non-deterministic transitions are shown in
dashed line. σi

j,k labels a controller driving all initial states in qi to qj or qk.

By using the three-step approach from Sect. 5, we conclude that formula φ can
be satisfied by trajectories starting from any triangle qi, i = 1, . . . , 14. The product

http://iasi.bu.edu/~software/nondet.htm

Dealing with Nondeterminism in Symbolic Control 299

automaton has 56 states, which appear all in the winning region WP . The control au-
tomaton C has 4 states. The computation for all three steps took less than one second.
We skip the exact details on how this discrete control strategy is applied to the continu-
ous system (1). Roughly, a discrete transition in T takes place when the current triangle
is left. Each input to be applied to T is mapped to an affine feedback controller, and
applied as long as the continuous trajectory evolves in the current triangle.

In Fig. 2 (a), we show two continuous trajectories starting in region q1 and corre-
sponding to the strategy imposed by the control automaton C. Even though the contin-
uous trajectories reach different sequences of triangles, they both satisfy the formula.
Each trajectory converges to a point marked by ”X”, inside q6 and q12, respectively.
Note that the solution presented here is less conservative than the one shown in Sec-
tion 2, which was based on control-to-facet problems and deterministic transition sys-
tems. We also solved the (discrete part of the) problem by using two other (conservative)
approaches: (1) direct translation to an LTL game on a graph (see Sect. 4), and (2) LTL
game played on an augmented transition system (see [21]). Notably, as in Section 2,
these two methods returned that the formula can be satisfied by starting from any trian-
gle except q1, q2, q13, q14.

7 Conclusion

We developed a method for control of a nondeterministic transition system from a spec-
ification given as a temporal logic formula generated by a deterministic Büchi automa-
ton. The method is complete and scales polynomially with the size of the Büchi gener-
ator. We illustrated the application of the method to the control of a continuous planar
affine system from a specification given as an LTL formula over regions in a triangu-
lated environment.

The method proposed here is quite general, and can be used whenever a finite tran-
sition system representation of a control problem can be constructed (e.g., multi-affine
dynamics and rectangular partitions). Therefore, it provides the first steps towards the
construction of expressive specification languages for symbolic control. An immediate
application is automatic planning and control of robot motion, where triangulation and
rectangular grids are the most used partitioning schemes, and task specifications are
naturally given as temporal and logic statements about the reachability of regions of
interest in the robot environment.

References

1. Milner, R.: Communication and concurrency. Prentice-Hall, Englewood CliDs, NJ (1989)
2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–

235 (1994)
3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic ap-

proach to the specification and verification of hybrid systems. In: Grossman, R.L., Ravn,
A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229.
Springer, Heidelberg (1993)

4. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What is decidable about hybrid automata?
J. Comput. Syst. Sci. 57, 94–124 (1998)

300 M. Kloetzer and C. Belta

5. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control, Signals,
Syst 13(1), 1–21 (2000)

6. Tabuada, P., Pappas, G.J.: Linear time logic control of discrete-time linear systems. IEEE
Transactions on Automatic Control 51(12), 1862–1877 (2006)

7. Tabuada, P.: Symbolic control of linear systems based on symbolic subsystems. IEEE Trans-
actions on Automatic Control 51(6), 1003–1013 (2006)

8. Girard, A.: Approximately bisimilar finite abstractions of stable linear systems. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 231–244. Springer,
Heidelberg (2007)

9. Alur, R., Dang, T., Ivancic, F.: Reachability analysis of hybrid systems via predicate ab-
straction. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, Springer,
Heidelberg (2002)

10. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C.J., Green-
street, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, Springer, Heidelberg (2002)

11. Belta, C., Habets, L.: Constructing decidable hybrid systems with velocity bounds. In: 43rd
IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004)

12. Habets, L., van Schuppen, J.: A control problem for affine dynamical systems on a full-
dimensional polytope. Automatica 40, 21–35 (2004)

13. Belta, C., Habets, L.: Control of a class of nonlinear systems on rectangles. IEEE Transac-
tions on Automatic Control 51(11), 1749–1759 (2006)

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
15. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from

LTL specifications. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp.
333–347. Springer, Heidelberg (2006)

16. Habets, L., Collins, P., van Schuppen, J.: Reachability and control synthesis for piecewise-
affine hybrid systems on simplices. IEEE Trans. Aut. Control 51, 938–948 (2006)

17. Kloetzer, M., Habets, L., Belta, C.: Control of rectangular multi-affine hybrid systems. In:
45th IEEE Conference on Decision and Control, San Diego, CA (2006)

18. Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002.
LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)

19. Wallmeier, N., Hütten, P., Thomas, W.: Symbolic synthesis of finite-state controllers for
request-response specifications. In: H. Ibarra, O., Dang, Z. (eds.) CIAA 2003. LNCS,
vol. 2759, pp. 113–127. Springer, Heidelberg (2003)

20. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg
(2005)

21. Kloetzer, M., Belta, C.: Managing non-determinism in symbolic robot motion planning and
control. In: IEEE International Conference on Robotics and Automation, Rome, Italy (2007)

22. Wolper, P., Vardi, M., Sistla, A.: Reasoning about infinite computation paths. In: Nagel, E.,
et al. (eds.) Proceedings of the 24th IEEE Symposium on Foundations of Computer Science,
Tucson, AZ, pp. 185–194 (1983)

23. Safra, S.: Complexity of automata on infinite objects. PhD thesis, The Weizman Institute of
Science, Rehovot, Israel (1989)

24. Fainekos, G.E., Loizou, S.G., Pappas, G.J.: Translating temporal logic to controller specifi-
cations. In: 45th IEEE Conference on Decision and Control, San Diego, CA (2006)

25. Alur, R., Torre, S.L.: Deterministic generators and games for LTL fragments. In: 16th IEEE
Symposium on Logic in Computer Science, LICS 2001, pp. 291–300 (2001)

26. Kumar, R., Garg, V.K.: Modeling and Control of Logical Discrete Event Systems. Kluwer,
Boston, MA (1995)

Safety and Liveness in Intelligent Intersections�

Hemant Kowshik1, Derek Caveney2, and P.R. Kumar1

1 CSL and ECE, University of Illinois, Urbana-Champaign
1308, West Main Street, Urbana, IL-61801, USA

2 The Toyota Technical Center,
2350 Green Road, Ann Arbor, MI-48105, USA

kowshik2@uiuc.edu,derek.caveney@tema.toyota.com,prkumar@uiuc.edu

Abstract. Automation of driving tasks is becoming of increasing inter-
est for highway traffic management. Technologies for on-board sensing,
combined with global positioning and inter-vehicular wireless communi-
cations, can potentially provide remarkable improvements in safety and
efficiency. We address the problem of designing intelligent intersections
where traffic lights and stop signs are removed, and cars negotiate the
intersection through a combination of centralized and distributed deci-
sion making. Such intelligent intersections are representative of complex
distributed hybrid systems which need architectures and algorithms with
provable safety and liveness.

We propose a hybrid architecture which involves an appropriate in-
terplay between centralized coordination and distributed freedom for the
cars. Our approach is based on each car having an open-loop infinite
horizon contingency plan, which is updated at each sampling time in a
distributed fashion. We also define a partial order relation between cars
which specifies to each car a set of cars whose worst case behaviors it
should guard against. We prove the safety and liveness of the overall
scheme. Concerning performance, we conduct a simulation study that
shows the benefits over stop signs and traffic lights.

1 Introduction

In the near future, cars will have access to a wide range of information from
GPS and onboard sensors such as radar, lidar, camera, gyroscopes, etc. Further,
vehicle to vehicle wireless communication enabled by Dedicated Short Range
Communication (DSRC) radios will enable the exchange of this information
with other cars. This has opened up a plethora of opportunities in the area
of Intelligent Transportation systems [5]. In this paper, we will focus on safety
applications. Accidents currently account for 42,000 fatalities every year and an
estimated 18 percent of the healthcare expenditure in the U.S. [3]. Developing

� This material is based upon work partially supported by the Toyota Technical Cen-
ter, Ann Arbor, MI, under Contract Number 2006-06246, NSF under Contract Nos.
NSF ECCS-0701604, CNS-07-21992, NSF CNS 05-19535, and CCR-0325716, and
USARO under Contract No. W-911-NF-0710287.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 301–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

302 H. Kowshik, D. Caveney, and P.R. Kumar

technologies to enhance vehicular and passenger safety is of great interest, and an
important application vis-a-vis safety is collision avoidance. Collision avoidance
technologies today are passive, and depend on the human driver to respond
accurately. Automation of driving tasks is becoming increasingly prominent,
with the introduction of Adaptive Cruise Control (ACC), Lane Keeping Assist
(LKA) and Advanced Parking Guidance (APG). Such automated systems which
improve safety, comfort and efficiency are the motivation for this paper.

Our focus in this paper is on intelligent intersections. An intelligent inter-
section is one in which conventional traffic control devices are removed. Vehi-
cles coordinate their movement across the intersection through a combination
of centralized and distributed real-time decision making, that leverages global
positioning, wireless communications and in-vehicle sensing and computation.
Smooth coordination of vehicles through intersections will provide overall im-
provements in fuel efficiency, vehicle wear and travel time. Most importantly,
intelligent intersections can provide guaranteed safety.

Intelligent intersections are representative of complex distributed hybrid sys-
tems which require architectures and algorithms that guarantee safety and live-
ness, as a prerequisite for their acceptance. For safety, we pose the problem
of collision avoidance in a worst case setting. One needs to safeguard not only
against the worst-case behaviors of the other agents, but also against uncer-
tainties in sensing and communication. Systemwide safety requires coordination
between vehicles. This raises the issue of what is the appropriate division of
functionalities between distributed agents and centralized coordination.

We consider the design of a time-slot based architecture for intersection colli-
sion avoidance. Our approach to distributed safety is built on each car possess-
ing, at each time step, an infinite horizon contingency plan called the “failsafe
maneuver.” At any time, if the car chooses to ignore all future information up-
dates and simply executes the failsafe maneuver, this maneuver still ensures
safety with respect to some subset of cars in the system. Alternatively, given
updated state information, each car can modify its infinite horizon contingency
plan while still preserving the safety property. This is reminiscent of receding
horizon control [14] except that we are computing infinite horizon plans at each
time step. Systemwide safety is guaranteed by inducing an ordering on the set
of cars, which clearly defines the subset of cars to which a given car must defer.
We provide a precise description of the hybrid architecture and algorithms for
distributed agents, culminating in a proof of systemwide safety and liveness. For
the last challenge of performance evaluation, we test our overall solution by sim-
ulation and compare it with stop signs and traffic lights. A precise mathematical
evaluation of performance may be impracticable.

2 Related Work

We first provide a brief flavor of the vast literature in this area. In the collision
warning approach, various warning and overriding algorithms decide thresholds
to raise an alarm, or apply the brakes. These algorithms are mostly ad hoc and

Safety and Liveness in Intelligent Intersections 303

are designed to take into account brake system delay and driver reaction time;
see [15] and [2]. In the driver assistance domain, cooperative collision warning
systems [9] and cooperative ACC [4] have been studied. These technologies al-
ready represent a move towards automatic control of vehicles. However, they do
not provide any safety guarantees and are only expected to aid the human.

Reference [13] helps to put the larger problem in perspective, decoupling the
various technical, technological and policy issues. In [6], a cooperative collision
warning system was designed based on future trajectory prediction and con-
flict detection. This approach closely resembles the approach taken in aircraft
collision avoidance [7], where the state of the system is estimated and propa-
gated through a model which could be deterministic, probabilistic or worst case,
and conflicts are detected. In the automotive domain, however, prediction based
approaches could lead to unacceptable false alarm rates.

In the area of safety verification of multi agent systems, [11] proposes a method
to design controllers for safety specifications in hybrid systems. In [12], a game-
theoretic approach is used to design provably safe conflict resolution maneuvers
in air traffic management. In this approach, we need to compute solutions to
Hamilton-Jacobi-Isaacs partial differential equations, which could be computa-
tionally complex. In [10], the problem of systemwide safety is addressed using
a cooperative avoidance control approach. Strategies which minimize worst case
performance are studied in [1] where the authors use a dynamic programming
like recursion can be used to arrive at the min-max strategy.

3 Perpetual Collision Avoidance

Consider two agents A and B, with state spaces XA and XB respectively. Their
states xA ∈ XA and xB ∈ XB could be vectors containing various elements of
interest like position, velocity, etc. We adopt a discrete time perspective and
describe their dynamics through One-step reachability set mappings.

Definition 1 (One-step reachability set mapping). The one-step reacha-
bility set for A is specified by RA : XA → 2XA , which specifies the set of points
RA(xA) ⊆ XA reachable from a state xA in one discrete time step. Similarly,
the reachability set for B is specified by RB : XB → 2XB .

We can extend this to the set of states reachable from a set of initial states in
one time step. Thus, RA(ΓA) is the set of states which can be reached from some
point in ΓA. RA(ΓA) :=

⋃
xA∈ΓA

RA(xA), RB(ΓB) :=
⋃

xB∈ΓB
RB(xB).

We define a “collision relation” between points in the sets XA and XB, cor-
responding to some notion such as “being within K meters of each other.”

Definition 2 (Collision relation). Let CAB be a subset of XA × XB. We
say that agents A and B have collided if their states xA and xB are such that
(xA, xB) ∈ CAB. Alternatively, we can simply define a “collision set” CA(xA) :=
{xB : (xA, xB) ∈ CAB}.

304 H. Kowshik, D. Caveney, and P.R. Kumar

3.1 Perpetually Maintainable Relations

In the sequel, we address a scenario where A is free to move around, while B
has to make worst case assumptions about A’s behaviour and is responsible
for perpetual collision avoidance. We suppose that we are given a “desirable
relation,” i.e., a set valued mapping PA : XA → 2XB between states xA and xB

in the sense that we want xB ∈ PA(xA) maintained at all times. We extend this
mapping to sets by taking an intersection: PA(ΓA) :=

⋂
xA∈ΓA

PA(xA) for any
ΓA ⊆ XA. This is the set of points in XB that forms a desirable relationship
with every point in ΓA.

Given a desirable relationship PA, the question that arises is whether it can
be indefinitely maintained by Agent B if one were to start with initial states that
satisfied the relationship. This is to be guaranteed under worst case assumptions
on Agent A, provided only that xA(t + 1) ∈ RA(xA(t)), and that Agent B
gets to observe (xA(t), xB(t)) at each time t before picking xB(t + 1), which is
constrained to lie in RB(xB(t)). If this is so, then we will say that the relation
PA is perpetually maintainable by Agent B.

Theorem 1. A relation PA is perpetually maintainable by Agent B if and only
if RB(xB) ∩ PA(RA(xA)) �= φ for all xA ∈ XA and xB ∈ PA(xA).1

3.2 Perpetually Avoiding Collisions

We would like to ensure that there are never any collisions, i.e., xB(t) /∈CA(xA(t))
for all t. Hence we would like to determine a perpetually maintainable relation
PA with the additional property that PA(xA) ∩ CA(xA) = φ for all xA ∈ XA.
Given, xA ∈ XA, we can try to compute such a PA(xA) as follows:

(i) We create a first iterate for PA(xA): P(0)
A (xA) := {xB ∈ XB : xACxB}c.

(ii) Given P(k)
A (xA), calculate P(k+1)

A (xA) := R−1
B (P(k)

A (RA(xA)))
⋂P(k)

A (xA).
(iii) PA(xA) := limk→∞ P(k)

A (xA).

Theorem 2. (i) P(k+1)
A (xA) ⊆ P(k)

A (xA) for all xA ∈ XA.
(ii) Hence limk→∞ P(k)

A =: PA(xA) exists for each xA ∈ XA.
(iii) If PA : XA → 2XB is also perpetually maintainable and it satisfies PA(xA)∩

CA(xA) = φ for all xA ∈ XA, then PA(xA) ⊇ PA(xA) for all xA ∈ XA.

Definition 3 (Safety relation). We shall call a relation PA satisfying:
(i) PA is perpetually maintainable,
(ii) PA(xA) ∩ CA(xA) = φ for all xA ∈ XA,
a safety relation, and such a set PA(xA) a safety set for xA ∈ XA.

4 Cars on a Lane

Consider two point cars A and B on a single lane, where the rear car B, makes
worst case assumptions about the front car A, and is responsible for perpetual
1 For details of all proofs, we refer the reader to [8].

Safety and Liveness in Intelligent Intersections 305

safety. Each car is restricted to non-negative velocity, i.e., it cannot travel back-
wards. Each car also has both an upper bound as well as a lower bound on its
acceleration, where the latter is a negative quantity. Let xA ≡ (

sA

vA

)
be the state

vector for the front car with position sA and velocity vA; similarly for xB ≡ (
sB

vB

)
.

Note that sB < sA, vA ≥ 0 and vB ≥ 0. Let aA, aB be the minimum acceleration
that A and B are capable of applying, respectively.

We declare a collision if the two cars are separated by less than K meters.

Theorem 3 (Perpetual safety for two cars on a lane). The necessary and
sufficient condition for perpetual collision avoidance (perpetual safety) of two
cars A and B, with sA > sB, is

K + sB +
∫ t

0

(vB + aBτ)+dτ ≤ sA +
∫ t

0

(vA + aAτ)+dτ ∀t ≥ 0.

Less conservatively, it is easy to see that we can choose any open-loop input
{aB(t) : t ≥ 0} resulting in velocity trajectory {vB(t) : t ≥ 0} which satisfies:

K + sB +
∫ t

0

vB(τ)dτ ≤ sA +
∫ t

0

(vA + aAτ)+dτ ∀t ≥ 0. (1)

Note that the above theorem only guarantees safety. However, there is also the
issue of whether traffic will actually flow on a street where cars follow such
safe behaviour. This is the issue of liveness. Liveness will be guaranteed by an
aggressive choice of the rear car strategy aB(·), as described in Section 4.2.

4.1 Sampling with Intermediate Safety

Suppose the acceleration of A is constrained to lie in the interval [aA, aA] and
that of B in [aB, aB], and that the rear car B receives updates on the state of
the front car every T seconds, the sampling interval. Based on the information
about the lead car A at time nT , B chooses an acceleration input {aB(t) : t ∈
[nT, (n + 1)T)}. For simplicity, let us restrict ourselves to T-horizon strategies,
where if the current time is 0, aB(·) is chosen identically equal to aB, except on
the interval [0, T].

4.2 Maximally Aggressive but Safe Strategies

Definition 4 (Maximally aggressive strategy). A maximally aggressive
strategy a∗

B(·) is one which maximizes the distance travelled in each interval
[nT, (n + 1)T), while still satisfying the safety condition (1) at each time nT .

Let a∗
B denote the constant accleration in [0,T] for the maximally aggressive

constant control input strategy. The condition (1) yields that a∗
B is the maximal

acceleration in [aB, aB] which satisfies the following two conditions:

K + sB +
∫ t

0 (vB + a∗
Bτ)+dτ ≤ sA +

∫ t

0 (vA + aAτ)+dτ 0 ≤ t ≤ T,

K + sB +
∫ T

0 (vB + a∗
Bτ)+dτ +

∫ t

0 ((vB + a∗
BT)+ + aBτ)+dτ

≤ sA +
∫ T+t

0
(vA + aAτ)+dτ for 0 ≤ t ≤ vB+a∗

B ·T
−aB

.

306 H. Kowshik, D. Caveney, and P.R. Kumar

Note that all accelerations in the interval [aB, a∗
B] yield perpetual safety. When

car B receives fresh information at time T , it can simply repeat the same proce-
dure, as in receding horizon control [14]. We thus arrive at a piecewise constant
input, a∗

B(t) = aB,n for nT ≤ t < (n + 1)T , with aB,n ∈ [aB, a∗
B,n] ⊆ [aB , aB].

Remark 1. The above approach can be easily extended to multiple cars on a
lane by simply following the rule that each car makes worst case assumptions
about the car immediately in front of it ; see [8].

Remark 2. We can handle noisy information, random delays and packet loss,
with minor modifications to the scheme described above; see [8].

5 Collision Avoidance at Intersections

Now we turn to the more general problem where there are two or more streams
of cars crossing at an intersection. We need to devise a scheme which achieves
two objectives. First, all cars cross the intersection without collisions and second,
once cars are on their destination lanes, the perpetual safety condition continues
to be satisfied for any pair of adjacent cars. Another issue of interest is liveness,
in terms of avoiding deadlock. To solve these problems, we introduce a “hybrid”
architecture. It is based on an interaction between cars and the intersection
infrastructure based on time slot assignment by the intersection infrastructure,
with the cars responsible for distributed safety with respect to collisions.

5.1 Description of System

We consider a four road intersection, with four incoming and four outgoing
roads as shown in Figure 1(a). The incoming and outgoing roads are indexed by
the directions N, W, E and S, as shown. Consider a system of m cars indexed
{1, 2, 3 . . .m}. Car i’s acceleration is constrained to lie in an interval [ai, ai] where

INTERSECTION

STREAM STREAM
(incoming)(outgoing)

N

E

K/2 K/2

K/2

K/2

K
W

S

(a) Intersection

O(i) = SOUTH

S

N

W E

(S, W) and (W,E)

R(j)

D(i) = WEST

R(i) = (S,W)

TWO INTERSECTING ROUTES

(b) Intersecting routes

Fig. 1. Description of system

Safety and Liveness in Intelligent Intersections 307

ai < 0 and ai > 0. We assume that each car employs a piecewise constant input.
We also assume that all cars have a maximum speed limit vM . The following
vocabulary will be useful.

By intersection we refer to the square consisting of the intersection proper
as well as K/2 meters along each incoming and outgoing lane; see Figure 1(a).
The route taken by a car i is described by an ordered pair R(i) = (O(i), D(i)),
consisting of origin and destination respectively. Two routes are said to be in-
tersecting if they cross each other; see Figure 1(b). For clarity, we add that two
routes R(i) and R(j) are considered to be non-intersecting if O(i) = O(j) or
D(i) = D(j). Thus, we have an “intersection relation” I defined on the set of
routes. If two routes R(i) and R(j) are intersecting, we say R(i) I R(j).

We associate with each route a one-dimensional coordinate system, assuming
that the position coordinate increases in the direction of traffic flow along the
route. Hence each car i has its own coordinate system associated with its route
R(i). Let si(t) and vi(t) denote the position and velocity of car i at time t in
i’s coordinate system. Further, along R(i), let sα

i and sβ
i denote the position

coordinates of the beginning and end of the intersection, respectively.

5.2 Hybrid Architecture

We propose a hybrid architecture for collision avoidance at intersections. The
intersection infrastructure functions as a scheduler which assigns a time slot
to a car when it comes within communication range of the intersection, with
the instruction that the car should be strictly outside the area covered by the
intersection during all times other than its time-slot. This is done by the Time
Slot Allocation Algorithm implemented at the intersection. Note that this does
not mean that the car is required to be in the intersection during its time slot.
Given a time slot, the car has to determine if it can safely get through the
intersection and onto its destination lane in the allotted time slot, and compute
acceleration inputs appropriately. If the car cannot get through the intersection
in its time slot, or cannot safely get onto the destination lane, then it prepares
to come to a halt before the intersection and receives a new slot. All this is done
by the Intersection Crossing Algorithm implemented by each car in the system.

Time slot assignment policy. The time slot assignment is a mapping σ which
maps each car i in {1, 2, . . .m} to an interval of time σ(i) = [tstart(i), tend(i)),
called the time slot allocated to i. We will also allow for a new (or “revised”)
slot to be assigned to a car that has missed its earlier assigned time slot. This
corresponds to modifying the time slot assignment. Hence we are interested in a
sequence of time slot assignments {σ(0)(·), σ(1)(·), . . .}, with the understanding
that σ(n)(·) : i → [t(n)

start(i), t
(n)
end(i)) is the time slot assignment applicable during

the time interval [nT, (n + 1)T). We will say that a car i conforms to the slot
σ(i) if it never occupies the intersection at any time outside σ(i).

Suppose that we have a strict partial ordering relation “≺” on the set of slots,
established by comparing slot start times, that is, we say, σ(i) ≺ σ(j) if and only
if tstart(i) < tstart(j).

308 H. Kowshik, D. Caveney, and P.R. Kumar

Definition 5 (Admissible Time Slot Assignment sequence). We say that
a time slot assignment sequence {σ(0)(·), σ(1)(·), . . .} is admissible if it satisfies
the following properties.

(a) For any two cars i and j, if R(i) I R(j), then σ(n)(j)∩σ(n)(i) = φ for all n.
This ensures that two cars with intersecting routes have non-intersecting slots.
(b) For any car i, define I(i) := {j : D(j) = D(i), O(j) �= O(i)}. Then we must
have σ(n)(i) ≺ σ(n)(i) or σ(n)(i) ≺ σ(n)(i), for all n, for all i and for all i ∈ I(i).

In the sequel, for each car i at time nT , we will have an available open loop
sequence of inputs called the failsafe maneuver, denoted by {aF,n

i (k)}k≥n. This
determines an open-loop future trajectory for car i, which it can thereafter follow
and stay perpetually safe.

Reallocation Policy: Suppose car i gets a “revised” slot at time nT , i.e.,
σ(n−1)(i) �= σ(n)(i). Then the following conditions must be satisfied:

(i) The reallocated slot must be in the future, i.e., t
(n)
start(i) ≥ nT .

(ii) Under the available failsafe maneuver at time nT , if it is implemented at
time nT , then car i will come to a stop before the intersection.
(iii) Reallocation cannot be done too early; reallocation is permitted at time nT

only if nT ≥ t
(n−1)
end (i) − τmax + T , where τmax is the length of time enough for

any car starting from rest to get through the intersection.
(iv) Consider the set of cars {j : R(j) = R(i), t(n−1)

end (j) > nT }; let ζ be the car
in this set which is highest in the ordering ≺ (this need not be unique). Then
we must have, σ(n−1)(k) ≺ σ(n)(i) for all {k ∈ I(i) : σ(n−1)(k) ≺ σ(n−1)(ζ)}. If
such a ζ does not exist, we must have σ(n−1)(k) ≺ σ(n)(i) for all k ∈ I(i).

Three Maneuvers. We now define three maneuvers, a “braking” maneuver, a
“parking” maneuver and a “tailing” maneuver. These maneuvers will be used in
what follows to compose more complex behavior that ensures safety.

We adopt a discrete-time viewpoint and suppose that information about other
cars in the system refreshes periodically every T seconds. We denote by {si(n)},
{vi(n)} the sampled position and velocity in car i’s coordinate system, and by
{ai(n)} the piecewise constant input, all of car i, in the time interval [nT, (n +
1)T). We say that a car j is on i’s route at time nT , if either

(i) O(j) = O(i) and car j is located < K meters from a point on R(i), or
(ii) D(j) = D(i) and car j is located at a point on R(i) and t

(n)
end(j) ≤ nT .

Given a car i, consider any other car j with O(j) = O(i) or D(j) = D(i).
We can project the position and velocity of car j onto i’s coordinate system as
follows. If car j is not on i’s route at time nT , we set sji(n) := sα

i + K and
vji(n) := 0. If car j is on i’s route at time t, we have two cases. If O(j) = O(i),
we set sji(n) := sα

i + sj(n) − sα
j and vji(n) := vj(n); if D(j) = D(i), we set

sji(n) := sβ
i + sj(n) − sβ

j and vji(n) := vj(n).
For a car i at time nT , we define its lead car l(i, nT) as the car immediately in

front of car i on i’s route at time t. If there is no such lead car in front of car i on

Safety and Liveness in Intelligent Intersections 309

i’s route, a virtual lead car is assumed to be situated at +∞ along i’s route. We
declare a collision between two cars i and j if they are less than K meters apart.
Consider two cars i and j with O(j) = O(i) or D(j) = D(i). If sji(n) > si(n),
the minimum value of sji(n)−si(n) required to ensure a “physical” separation of
K meters between car i and car j at time nT , is denoted by Kji. If O(j) = O(i)
and D(j) �= D(i), Kji is the distance along R(j) beyond sα

j , after which j is no
longer on i’s route, or Kji = K otherwise.

Maximum braking maneuver. A car i is said to execute the maximum braking
(MB) maneuver at time nT , if ai(k) = ai ∀k ≥ n.

Parking maneuver. For car i at time nT , a parking maneuver stopping at spark

consists of a choice of {ai(k)}k≥n and an n∗ ≥ n, such that si(k) = spark for all
k ≥ n∗. Applying this sequence of inputs will result in car i parking (i.e., coming
to a standstill) at spark and staying there for all further time. We note that such
a maneuver may be infeasible for certain values of spark. The minimum-time
parking maneuver is the parking maneuver with the smallest value of n∗.

Tailing maneuver. Consider two cars i and j with R(i) = R(j). A tailing
maneuver for car i behind car j at time nT is a sequence of acceleration inputs
{ai(k)}k≥n which guarantees sj(t) − si(t) ≥ K for all t ≥ nT under worst case
assumptions (viz., maximum braking) on car j, and results in car i parking
at sj(n) + vj(n)2

−2aj
− K. A specific extremal tailing maneuver of interest is the

minimum-time tailing maneuver which stops in minimum time.

Downstream cars: Real and Virtual. It is necessary for cars to take respon-
sibility to avoid collisions with the other cars that are “ahead” of them.

Potential Downstream Cars. The set of potential downstream cars D(i, nT)
for car i at time nT , is defined as the set of cars that consists of:

(i) All cars j �= i on i’s route at time nT , with sji(n) ≥ si(n).
(ii) All cars j not on i’s route at time nT , with D(j) = D(i), nT < t

(n)
end(j) and

σ(n)(j) ≺ σ(n)(i).
(iii) A virtual car 0 with {s0(·)} ≡ ∞, {v0(·)} ≡ ∞ and a0 = 0.

The above is a set of cars. We now define one car, the immediate downstream
car, that car i will need to take responsibility for avoiding.

Immediate Downstream Car. The immediate downstream car d(i) for a car
i is a virtual car with location and velocity given as follows:

sd(i)(n) = minj∈D(i,nT) sji(n), ad(i)(n) = ai,

sd(i)(n) +
v2

d(i)(n)

−2ai
− K = minj∈D(i,nT)

{
sji(n) +

v2
ji(n)

−2a − Kji

}
,

where a = min1≤j≤m aj . Now we show that it is enough to make worst case
assumptions on the virtual car d(i) instead of all cars in D(i, nT).

310 H. Kowshik, D. Caveney, and P.R. Kumar

Lemma 1. Given a car i at time nT , the continuous time evolution of the state
(sj(t), vj(t)) of any car j ∈ D(i, nT) satisfies

(

sd(i)(nT) +
∫ τ

0

(vd(i)(nT) + ais)
+ds − K

)

≤ sji(nT + τ) − Kji ∀τ ≥ 0.

Outline of Algorithm for Perpetual Safety. Let us suppose that the fol-
lowing two properties hold for each car i. In the sequel we will show how to
maintain them.

Property P1: Each car i conforms to its slot sequence {σ(0)(i), σ(1)(i), . . .}.
Property P2: Each car i does not collide with any car in D(i, nT) in the interval
[nT, (n + 1)T) for all n.

Lemma 2. Given an admissible time slot assignment sequence, if the two prop-
erties P1 and P2 are satisfied by each car i, then there is perpetual collision
avoidance for all cars in the system.

Failsafe maneuver update algorithm. Our scheme for perpetual collision
avoidance is predicated upon each car having a so called failsafe maneuver at
every time, which it can apply from that time forward in an open-loop fashion,
and guarantee safety. The algorithm to ensure perpetual collision avoidance for
all cars in the system is based on the iterative update of the available failsafe
maneuver at each time nT . Given a failsafe maneuver {aF,n

i (k)}k≥n, for car i at
time nT , and information about other cars at time nT , we prescribe the current
input ai(n) and the failsafe maneuver {aF,n+1

i (k)}k≥n+1 at time (n + 1)T .

Step 1. (Determine if car i will stop before the intersection if it executes the
one-step Modified Maximum Braking maneuver ≡ {ai, ai, ai, . . .} at time nT).

Suppose car i executes the one step Modified Maximum Braking (MMB)
maneuver at time nT . This will result in car i stopping at sMMB

i (∞).
If sMMB

i (∞) < sα
i , then

Car i chooses any ai(n) which ensures that car i stays in the safety set of the lead
car l(i, nT) (as described in Section 4), and sets aF,n+1

i (k) = ai ∀k ≥ n + 1.
Else, go to Step 2.

Step 2. (Ensure that car i does not enter the intersection before the start of the
assigned slot. In particular, if, even under maximum braking, car i is inside the
intersection at the start of its slot, it must execute the failsafe maneuver).

Let {sMB
i (k)}k≥n, {vMB

i (k)}k≥n and {aMB
i (k)}k≥n denote the resulting po-

sition, velocity and acceleration profiles of car i if car i were to execute the
Maximum Braking (MB) maneuver at time nT .

If sMB
i (t

(n)
start(i)

T) > sα
i , then

Car i does go ahead and execute the current failsafe maneuver, i.e., car i chooses
ai(n) = aF,n

i (n) and sets aF,n+1
i (k) = aF,n

i (k) ∀k ≥ n + 1.
Else, go to Step 3.

Safety and Liveness in Intelligent Intersections 311

Step 3. (Ensure that car i exits the intersection before t
(n)
end(i), and is in the

safety set of its lead car upon exit. This is done by checking if car i can safely
tail the immediate downstream car).

Construct the Minimum-Time Tailing (MTT) maneuver behind the immediate
downstream car d(i), for car i at time nT . For convenience, let {sMTT

i (k)}k≥n,
{vMTT

i (k)}k≥n and {aMTT
i (k)}k≥n denote the resulting position, velocity and

acceleration profiles of car i, if car i were to execute the MTT maneuver.

If the tailing maneuver behind d(i) is infeasible, or if sMTT
i

(
t
(n)
end(i)

T

)

≤ sβ
i ,

then Car i goes ahead and does execute the current failsafe maneuver, i.e., car
i chooses ai(n) = aF,n

i (n) and sets aF,n+1
i (k) = aF,n

i (k) ∀k ≥ n + 1.
Else, go to Step 4.

Step 4. (Given that the MTT maneuver behind d(i) is feasible, check if, under
this maneuver, car i conforms to its time slot).

If sMTT
i (t

(n)
start(i)

T) ≤ sα
i , then

Car i goes ahead and executes the MTT maneuver, i.e., car i chooses ai(n) =
aMTT

i (n) and sets aF,n+1
i (k) = aMTT

i (k) ∀k ≥ n + 1.
Else, go to Step 5.

Step 5. (Synthesize a failsafe maneuver using the MB maneuver and the MTT
maneuver behind d(i). Check that, under this synthesized maneuver, car i con-
forms to its time slot).

Define a sequence of acceleration inputs {a∗
i (k)}k≥n as follows. First, de-

fine a∗
i (k) := λ.aMTT

i (k) + (1 − λ).ai for all k ∈ {n, . . . ,
t
(n)
start(i)

T − 1} where

λ = sα
i −sMB

i (
t
(n)
start(i)

T)

sMT T
i (

t
(n)
start(i)

T)−sMB
i (

t
(n)
start(i)

T)

. For k ≥ t
(n)
start(i)

T , a∗
i (k) is the sequence of ac-

celeration inputs corresponding to the Minimum-Time Parking maneuver be-

hind sd(i)(n) +
v2

d(i)(n)

−2ad(i)
for car i, with initial time set to t

(n)
start(i)

T , initial position

s∗i (
t
(n)
start(i)

T) and initial velocity v∗i (t
(n)
start(i)

T).
If s∗i (

tend(i)
T) ≤ sβ

i , then
Car i goes ahead and executes the current failsafe maneuver, i.e., car i chooses
ai(n) = aF,n

i (n) and sets aF,n+1
i (k) = aF,n

i (k) ∀k ≥ n + 1.
Else, go to Step 6.

Step 6
Car i simply chooses ai(n) = a∗

i (n) and sets aF,n+1
i (k) = a∗

i (k) ∀k ≥ n + 1.

The Intersection Crossing Algorithm. Now we are ready to specify the
algorithm that cars use in the hybrid architecture.

At time zero, each car i sets the failsafe maneuver {aF,0
i (k)}k≥0 to be the max-

imum braking maneuver. At every time step nT , car i has two choices. It can

(i) Choose the current input ai(n) and update the failsafe maneuver by running
the update algorithm using information from other cars at time nT ,
(ii) Or, it can simply execute the failsafemaneuver at timenT , i.e.,ai(n) = aF,n

i (n)

312 H. Kowshik, D. Caveney, and P.R. Kumar

and set {aF,n+1
i (k)}k≥n+1 = {aF,n

i (k)}k≥n+1. This corresponds to following the
“contingency plan” at time nT , possibly due to lost packets.

Once car i exits the intersection, it sets sα
i , sβ

i = +∞, and continues the failsafe
maneuver update. This will simply amount to repeatedly executing Step 1 of the
update algorithm.2

Safety of the Intersection Crossing Algorithm. In order to establish safety,
we need to analyze the evolution of positions of the cars, their failsafe maneuvers,
and the time slots allocated to them. Let x(n) ∈ X represent the “physical state”
of the system at time nT , which includes position, velocity, etc., of all cars in the
system. Let πn|x(n−1) ∈ Π be the “planning state” at time nT , which is the set of
failsafe maneuvers at time nT ; πn|x(n−1) = {pn|x(n−1)

1 , p
n|x(n−1)
2 , . . . , p

n|x(n−1)
m }.

Finally, let σ(n) ∈ Σ be the time slot assignment during [nT, (n + 1)T).
The superstate of the system at time nT is given by (x(n), πn|x(n−1), σ(n)) ∈

X ×Π ×Σ, where the underlining of x(n) is to indicate that this information is
private. The superstate evolves in four steps as follows:

(x(n), πn|x(n−1), σ(n))
StepA−→ (x(n), U(n) × πn+1|x(n), σ(n))

StepB−→ (x(n), u(n) ∈ U(n), πn+1|x(n), σ(n))
StepC−→ (x(n + 1), πn+1|x(n), σ(n))

StepD−→ (x(n + 1), πn+1|x(n), σ(n+1)).

Step A: When the cars exchange physical state information at time nT , each car
i can run the Intersection Crossing Algorithm, which prescribes a set of feasible
current inputs Ui(n) and the updated failsafe maneuver p

n+1|x(n)
i for car i. This

results in a set of feasible inputs U(n) = U1(n)×U2(n) . . . Um(n) for the system
and an updated planning state πn+1|x(n).
Step B: Each car i can then choose a particular input ai(n) ∈ Ui(n), which
results in the system choosing u(n) ∈ U(n).
Step C: The physical state of the system evolves from x(n) to x(n + 1).
Step D: Finally, the time slot assignment is updated from σ(n) to σ(n+1).

We prove the safety property of the intersection crossing algorithm by show-
ing that there is an invariant set A ⊂ X × Π × Σ for the superstate. A will
comprise of all those superstates (x(n), πn|x(n−1), σ(n)) for which, under the ma-
neuver p

n|x(n−1)
i for each car i at time nT , it results that

(C1(n)): Car i conforms at all future times to the slot σ(n)(i), i.e., if the time
slot σ(n)(i) is never changed in the future and is kept “frozen.”
(C2(n)): Car i does not collide with any car in D(i, nT) under worst case as-
sumptions on cars in D(i, nT).

Theorem 4. Suppose we have an admissible Time Slot Assignment Sequence
and that all cars are following the intersection crossing algorithm described above.
Let us suppose that (x(n), πn|x(n−1), σ(n)) ∈ A at time nT . Then,

2 In a road network, set the values of sα
i and sβ

i to correspond to the next intersection.

Safety and Liveness in Intelligent Intersections 313

(a) The set of superstates (x(n), U(n) × πn+1|x(n), σ(n)) ⊆ A.
(b) If each car i chooses the current input ai(n) as described, then there are no
collisions in [nT, (n + 1)T). Further (x(n + 1), πn+1|x(n), σ(n)) ∈ A.
(c) Under the slot reallocation policy, we have (x(n + 1), πn+1|x(n), σ(n+1)) ∈ A.

Perpetual Systemwide safety. It remains to prove perpetual systemwide
safety of the hybrid architecture. We make the following assumptions:

(A1) We have an admissible time slot assignment sequence.
(A2) At time zero, all cars are at least a braking distance away from the inter-
section. Further, each car i is in the safety set of its lead car at time zero.

Theorem 5. Systemwide Safety of the Intersection Crossing Algorithm
Under conditions (A1) and (A2), if each car follows the Intersection Crossing
Algorithm, there is perpetual collision avoidance for the whole system of cars.

Liveness of the Intersection Crossing algorithm. As noted earlier, in
addition to safety, it is also important to ensure that any finite system of cars
does not fall into deadlock, i.e., every car must cross the intersection in finite
time. We can ensure liveness under the following additional conditions:

(A3) Suppose that all cars in the system are α-aggressive, i.e., in Step 1 of the
failsafe maneuver update algorithm, if the maximum permissible acceleration
(amax

i (n)) for a car i at time nT is positive, then the chosen input must be at
least α · amax

i (n) where 0 < α ≤ 1.
(A4) The partial ordering relation “≺” satisfies the condition:
σ(i) ≺ σ(j) ⇒ l(σ(j) ∩ σc(i)) ≥ τmax, where l(A) is the maximum length of an
interval contained in A, and τmax is a length of time enough for any car starting
from rest to traverse through the intersection.
(A5) A new slot is reallocated within Δ seconds of missing an earlier slot.

Theorem 6. Liveness of the Intersection Crossing Algorithm.
Under conditions (A1) through (A5), if each car follows the Intersection Crossing
Algorithm, then there is guaranteed liveness for the whole system of cars.

6 Performance Evaluation

The algorithm and architecture described above ensure systemwide safety and
liveness, while still providing freedom in the design space. We would like to find
time slot assignments which satisfy conditions (A1)-(A2), and locally maximize
an appropriate performance metric. In order to find such efficient slot assign-
ments, we use a local improvement heuristic, specifically a gradient approach
based on forward simulation. We run the simulation with an arbitrary initial
slot assignment and record the average travel time and the final slot assignment.
We systematically tweak this to obtain modified time slot assignments, which
we again evaluate by forward simulation. When we obtain an assignment which
entails lower average travel time, we switch to it, and continue this procedure

314 H. Kowshik, D. Caveney, and P.R. Kumar

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
16

18

20

22

24

26

28

30

32

34

LOAD (CARS/SEC)

A
V

E
R

A
G

E
 T

R
A

V
E

L
 T

IM
E

 (
S

E
C

O
N

D
S

)
STOP SIGN

TRAFFIC LIGHT

INTELL. INTX

LOWER BOUND

(a) Clearing 10 cars

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
15

20

25

30

35

40

45

50

55

60

A
V

E
R

A
G

E
 T

R
A

V
E

L
 T

IM
E

 (
S

E
C

O
N

D
S

)

LOAD (CARS/SEC)

TRAFFIC LIGHT

STOP SIGN

INTELL. INTX

LOWER BOUND

(b) Clearing 30 cars

Fig. 2. Average travel time comparison

recursively. The algorithm terminates when we obtain a slot assignment, all of
whose modifications result in higher average travel time.

We have built a simulator of the entire system. We consider a system of m
cars which desire to get through the intersection. The performance metric under
consideration is the average time taken to travel from 200m away from the start
of the intersection to 200m beyond the end of the intersection. The routes of all
cars are independent and identically distributed according to a probability mass
function which assigns a mass of 1/6 to each of the four straight line routes, and
a mass of 1/24 to each of the eight turning routes. All cars start from at least
200m away from the start of the intersection, with each subsequent car being
positioned at a distance of (K+ exp(λ)RV) behind its lead car with K = 5m.
The parameter λ of the exponential distribution is a measure of the load on
the intersection. All cars start at maximum velocity equal to 25m/s, and are
assumed to have braking power equal to −3.5m/s2.

Using this simulation framework, we can compare the performance of our
scheduler against traffic regualation mechanisms such as stop signs and traffic
lights; see Figure 2. We see that our intelligent intersection outperforms both
traffic lights and stop signs at low and moderate loads by fairly good margins. It
even appears to perform comparably or better at high loads. However, we should
note that these conclusions deserve a much more thorough simulation study.

7 Concluding Remarks

This paper has examined an important safety application, intelligent intersec-
tions, that can provide provable safety with improved efficiency. We have pro-
posed a design based on distributed updates of infinite horizon contingency plans
by distributed agents, with centralized coordination. We have also demonstrated
by a simulation study the performance benefit of our approach over stop signs
and traffic lights. It is hoped that this approach may be useful in the design of
other tractable complex, distributed, hybrid systems.

Safety and Liveness in Intelligent Intersections 315

References

1. Başar, T., Kumar, P.R.: On worst case design strategies. Computers and Mathe-
matics with Applications 13(1-3), 239–245 (1987)

2. Doi, A., Butsuen, T., Niibe, T., Yakagi, T., Yamamoto, Y., Seni, H.: Development
of a rear-end collision avoidance system with automatic braking control. JSAE
Review 15, 335–340 (1994)

3. National Center for Statistics and Analysis. In: 2006 Traffic Safety Annual Assess-
ment - A Preview, DOT HS 810 791 (July 2007)

4. Girard, A.R., de Sousa, J.B., Misener, J.A., Hedrick, J.K.: A control architecture for
integrated cooperative cruise control and collision warning systems. In: Proceedings
of the 40th Conference on Decision and Control, vol. 2, pp. 1491–1496.

5. Intelligent transportation systems, California Center for Innovative Transportation
(August 2007), [Online], http://www.calccit.org/itsdecision

6. Huang, J., Tan, H.S.: Design and implementation of a cooperative collision warning
system. In: Proceedings of the IEEE Intelligent Transportation Systems Confer-
ence, Toronto, Canada, pp. 1017–1022 (2006)

7. Kuchar, J.K., Yang, L.C.: A review of conflict detection and resolution modeling
methods. IEEE Transactions on Intelligent Transportation Systems 1, 179–189
(2000)

8. Kowshik, H., Caveney, D., Kumar, P.R.: Provable Systemwide Safety in Intelligent
Intersections. IEEE Transactions Automatic Control (submitted, 2007)

9. Misener, J.A., Sengupta, R., Krishnan, H.: Cooperative collision warning: Enabling
crash avoidance with wireless technology. In: 12th World Congress on Intelligent
Transportation Systems, San Francisco, p. 1960 (2005)

10. Stipanovic, D.M., Hokayem, P.F., Spong, M.W., Siljak, D.D.: Avoidance control
for multi-agent systems. ASME Journal of Dynamic Systems, Measurement and
Control 129(5), 699–707 (2007)

11. Tomlin, C., Lygeros, J., Sastry, S.: A game theoretic approach to controller design
for hybrid systems. Proceedings of the IEEE 88(7), 949–970 (2000)

12. Tomlin, C., Pappas, G., Sastry, S.: Conflict resolution of air traffic management:
A study in multiagent hybrid systems. IEEE Transactions on Automatic Con-
trol 43(4), 509–521 (1998)

13. Varaiya, P.: Smart cars on smart roads: Problems of control. IEEE Transactions
on Automatic Control 38, 195–207 (1993)

14. Ydstie, B.E., Liu, L.K.: Single- and multi-variable control with extended prediction
horizons. In: American Control Conference, vol. 21, pp. 1303–1308.

15. Zhang, Y., Antonsson, E.K., Grote, K.: A new threat assessment measure for col-
lision avoidance systems. In: Proceedings of the IEEE Intelligent Transportation
Systems Conference, Toronto, Canada, pp. 968–975 (2006)

http://www.calccit.org/itsdecision

LTLC: Linear Temporal Logic for Control

YoungMin Kwon and Gul Agha�

1 Microsoft Corporation
ykwon4@cs.uiuc.edu

2 Department of Computer Science
University of Illinois at Urbana Champaign

agha@cs.uiuc.edu

Abstract. Linear systems are one of the most commonly used models to rep-
resent physical systems. Yet, only few automated tools have been developed to
check their behaviors over time. In this paper, we propose a linear temporal logic
for specifying complex properties of discrete time linear systems. The proposed
logic can also be used in a control system to generate control input in the pro-
cess of model checking. Although, developing a full feedback control system is
beyond the scope of this paper, authors believe that a feedback loop can be easily
introduced by adopting the receding horizon scheme of predictive controllers. In
this paper we explain the syntax, the semantics, a model checking algorithm, and
an example application of our proposed logic.

1 Introduction

Linear systems have been widely used as mathematical models for physical systems
because they can accurately represent the actual systems despite their simple structure.
Thus, not surprisingly, many control systems are developed based on this simple math-
ematical model. In designing a control system, one of the fundamental questions about
the system is the controllability of the system: whether we can drive the system from
any state to any state [1]. Nowadays, with the popular use of versatile digital controllers,
control systems can perform ever complex tasks and so become the requirements. In
this challenging environment, one may want to know more than the traditional notion
of controllability. For example, in a vehicle control system, we want to know, whether
the vehicle can maintain certain speed even though we cannot keep accelerate it for
longer than a duration to prevent overheating. The traditional controllability does not
address this type of problem. Also, this seemingly simple problem has too many cases
to be checked by hand: feasible set of state at each step depends on its past computa-
tional path – whether we accelerate or not at the current step affects the feasible set of
state after the duration.

One obvious problem here is that we need a way to describe the complex require-
ments. Combinations of linear constraints can be a building block for the description:
conjunctions of linear constraints define a convex region in the state space of the system

� The authors thank Eunhee Kim for revising the paper. This research has been supported in part
by the DARPA IXO NEST program under contract F33615-01-C-1907, by NSF under grant
CNS 05-09321 and by ONR under DoD MURI award N0014-02-1-0715.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 316–329, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

LTLC: Linear Temporal Logic for Control 317

and any arbitrary regions can be described by union or complements of them. However,
these combinations of constraints can be too complex to generate or to modify by hand
for nontrivial requirements. In this paper, we propose a logic, called Linear Temporal
Logic for Control (LTLC) on linear systems to describe the requirements in a highly
abstract manner. LTLC uses logical and temporal operators to combine the constraints
so that the complex path-dependent behaviors can be easily expressed. The usefulness
of LTLC is not limited to checking the refined notion of controllability: it can also be
used to compute a sequence of control input that can obtain control objectives.

Temporal logics like LTL, CTL, and CTL* are initially developed to specify be-
haviors of concurrent systems and later they are introduced to model checking [2,3,4].
Because their reasoning process is automated, model checking has been widely used in
verifying complex hardware and software systems. However, the models of these log-
ics are finite state machines whereas the model of LTLC is a linear system which has
uncountably many states. Thus, in order to introduce these logics to linear systems we
need different ways of expressing the states and different model checking algorithms.
There has been approaches to address the problems of specifying and model checking
in infinite state spaces. For example, Alur and Dill developed timed automaton, which
is a finite state automaton with finite number of real valued clocks associated with the
states, to model hybrid systems [5]. A decidability result for LTL model checking on
controllable linear systems has been reported where a control system defined on a space
of grid blocks bisimilar to the original linear system is built to divide the uncountable
state space into finite partitions [6]. This result is extended to build a framework for de-
signing controllers [7]. In iLTL, properties of Discrete Time Markov Chains (DTMC)
are specified in the form of inequalities about expected rewards [8]. In iLTL the set of
atomic propositions partitions the uncountable probability mass function (pmf) space
into a finite number of equivalent classes. Although these approaches address the un-
countable state space problem, none of these approaches address the question: “Given a
system and a requirement, is there an initial state and a sequence of input that can drive
the system to satisfy the specification?”

From the perspective of automatic control, Model Predictive Control (MPC) has sim-
ilarity with our approach. MPC is an optimal control method minimizing a cost function
of the error between the predicted output and the reference and of the energy to change
the system state [9,10]. One of the merits of MPC is that because it computes the pre-
dicted output it can follow non-constant references while satisfying other physical con-
straints. The key idea in the success of MPC is the use of finite input/output horizons
where the input and output to and from the system become constant. These finite hori-
zons enable us to express the output of the system in terms of a finite sequence of input.
This conversion removes the dependency between input and output defined by the sys-
tem dynamics equation during the optimization process. In LTLC model checking we
adopt the key idea of MPC: adopt the input/output horizons and remove the input/output
dependencies from the model checking process. However, unlike MPC where always
enforced constraints are hard coded in the controller in the form of quadratic program-
ming, LTLC provides a high level abstraction logic to generate complex sets of con-
straints. Note that this hard coded control objectives are difficult generate or modify
because of the lack of the abstractions. Note that LTLC model checking can also be

318 Y. Kwon and G. Agha

used to compute a sequence of control input to satisfy a complex control objective de-
scribed in LTLC: a counter example of the negated control objective is a sequence of
input that will satisfy the original goal.

2 Discrete Linear Time Invariant System Model

Our system model is a Discrete Linear Time Invariant System which can be represented
by a seven-tupleM = (U, Y, X, A, B, C, D), where U = {u1, . . . , unu} is a set
of inputs, Y = {y1, . . . , yny} is a set of outputs, X = {x1, . . . , xnx} is a set of states, and
A ∈ IRnx×nx, B ∈ IRnx×nu, C ∈ IRny×nx, and D ∈ IRny×nu are system matrices that describe
the difference equations for the dynamics of the system. Our model describes a Multiple
Input and Multiple Output (MIMO) system which has nu inputs and ny outputs.

In this paper, we overload the definitions of ui, yi, and xi with the functions ui : IN→
IR, yi : IN → IR, and xi : IN → IR that map discrete time t to the value of input, output,
and state at that time. We also define the following vector functions:

u : IN→ IRnu×1 such that u(t)i = ui(t), for i = 1, . . . , nu,
y : IN→ IRny×1 such that y(t)i = yi(t), for i = 1, . . . , ny,
x : IN→ IRnx×1 such that x(t)i = xi(t), for i = 1, . . . , nx,

where the subscript i of a vector is the ith element of the vector.
The relations among input, output, and state functions are given by the following

difference equations.

x(t + 1) = A · x(t) + B · u(t), (1)

y(t) = C · x(t) + D · u(t).

Note that in the first difference equation, the next state x(t + 1) is solely determined by
the current state x(t) and the current input u(t). Thus, while inputs do not change, if two
consecutive states remains the same, then the system is in a steady state from then on.
That is, if x(t + 1) = x(t) and u(t + i) = u(t) for i ≥ 0 then x(t + j) = x(t) for j ≥ 0.

Given an input u and an initial state x(0), we can compute the state and the output of
the system at time t as follows by recursively applying the equation (1).

x(t) = At · x(0) +
t−1∑

i=0

At−i−1 · B · u(i), (2)

y(t) = C · x(t) + D · u(t).

3 Linear Temporal Logic for Control (LTLC)

In this section, we describe the syntax and the semantics of LTLC. LTLC has the same
temporal and logical operators as Linear Temporal Logic (LTL). However, LTLC has
different ways of describing atomic propositions than conventional LTL. A commonly
used model for LTL is a Kripke structure [11] which is a finite state automaton with
a set of atomic propositions associated with each state. In LTLC, with its uncountable

LTLC: Linear Temporal Logic for Control 319

state model, atomic propositions are given as a predicate function of states: equalities
or inequalities about linear combinations of input, output, and state variables. With this
form of atomic propositions, we can easily describe many useful properties of physical
systems.

3.1 Syntax

The syntax of an LTLC formula ψ is as follows:

ψ : : = T | F | ap

¬ψ | ψ ∨ φ | ψ ∧ φ | ψ→ φ | ψ↔ φ

X ψ | ψ U φ | ψ R φ | � ψ | � ψ,
ap(t) : : = c1 · v1(texp1) + · · · + cn · vn(texpn) � d,

where ap is an atomic proposition, texpi is a polynomial of variable t, c1, . . . , cn, and d
are real numbers, v ∈ U∪Y∪X is one of input, output, or state variables, and � is one
of { <, ≤, >, ≥, = }.

As MPC enforces input and output horizon constraints, LTLC also enforces them.
Note that they are not just constraints but an important control objective as well: drive
the system to a steady state in finite time horizon. These constraints may restrict the
scope of LTLC model checking but they play crucial roles in deriving the decidability
result of Theorem 2. Also those computational paths pruned by these constraints are less
interesting from an automatic control perspective: we are interested in those sequences
of input that will drive the system to a steady state rather than arbitrary sequences of
input. Let Hy be an output horizon when the system arrives a steady state and Hu be
an input horizon (Hu ≤ Hy) from which the inputs to the system do not change. This
horizon constraint can be expressed as follows:

nx∧

i=1

xi(Hy + 1) = xi(Hy) ∧
nu∧

i=1

ui(Hu + j) = ui(Hu) for j > 0. (3)

The texp of LTLC is a polynomial of time variable t. The use of texp enriches the
expressiveness of LTLC such that some formula cannot be expressed otherwise. For
example, in Pharmacokinetics, an instruction like take medicine at every three hours
can be easily expressed in LTLC as: always (dose(3 · t + 0) > 0 and dose(3 · t + 1) =
0) and dose(3 · t + 2) = 0). However, improper use of texp can hamper the steady
state constraints (3). Thus, we assume that all non-constant texp for state and output
variables, texp(t) ≥ Hy for t ≥ Hy and that all non-constant texp for input variables,
texp(t) ≥ Hu for t ≥ Hu, where texp(t) is the value of texp at time t.

3.2 Semantics

An LTLC formula has atomic propositions, logical connectives, ¬, ∨, ∧, →, and ↔,
and temporal connectives X , U , R , � , and � . An atomic proposition of LTLC is a
linear constraint on time-indexed variables (input, output, and state variables) with a

320 Y. Kwon and G. Agha

M,u, x(0), t |= T
M,u, x(0), t �|= F
M,u, x(0), t |= ∑

i ci · vi(texpi) � d ⇔ ∑
i ci · vi(texpi(t)) � d

M,u, x(0), t |= ¬ψ ⇔ M,u, x(0), t �|= ψ
M,u, x(0), t |= ψ ∧ φ ⇔ M,u, x(0), t |= ψ andM,u, x(0), t |= φ
M,u, x(0), t |= ψ ∨ φ ⇔ M,u, x(0), t |= ψ orM,u, x(0), t |= φ
M,u, x(0), t |= X ψ ⇔ M,u, x(0), t + 1 |= ψ
M,u, x(0), t |= ψ U φ ⇔ there is j ≥ 0 such that M,u, x(0), t + j |= φ and

M,u, x(0), t + i |= ψ for i = 0, . . . , j − 1
M,u, x(0), t |= ψ R φ ⇔ for all i ≥ 0 if M,u, x(0), t + j �|= ψ for 0 ≤ j < i then

M,u, x(0), t + i |= φ.

Fig. 1. Quintuple satisfaction relation |=

comparator�. The meaning of an atomic proposition at any given time t is whether the
linear constraint at time texp(t) satisfies the usual meaning of �. Note that the value of
state variables and the output variables can be rewritten in terms of an initial state and
a sequence of inputs as can be seen in equation (2).

The meaning of logical operators ¬, ∨, and ∧ are: ¬ψ is true if and only if ψ is false,
ψ∨φ is true if and only if ψ or φ is true, and ψ∧φ is true if and only if ψ and φ are both
true. The meaning of implies (→) is ψ → φ ⇔ ¬ψ ∨ φ and that of equivalent (↔) is
ψ↔ φ ⇔ ψ→ φ ∧ φ→ ψ.

The meaning of temporal operators X , U , and R are: X ψ is true if and only if ψ is
true at the next step, ψ U φ is true if and only if φ eventually becomes true and before
φ becomes true ψ is true, and ψ R φ is true if and only if φ is true while ψ is false and
if ψ becomes true then φ is true until that moment. The meaning of � ψ is always ψ is
true which is equivalent to F R ψ and the meaning of � ψ is eventually ψ becomes true
which is equivalent to T U ψ.

Formally, the semantics of LTLC formula is defined by a binary satisfaction relation
|= ⊂ M× ψ. In order to help explain the binary satisfaction relation |=, we overload the
symbol and define a quintuple satisfaction relation |=⊂ M× (IN→ IRnu)× IRnx × IN×ψ
which is described in Figure 1. For simplicity we write M |= ψ for (M, ψ) ∈ |= and
M, u, x(0), t |= ψ for (M, u, x(0), t, ψ) ∈ |=.

The quintuple satisfaction relation is about a single path: whether a sequence of
transitions from an initial state by a sequence of input satisfies the given LTLC formula.
Using the definition of the quintuple satisfaction relation, the binary satisfaction relation
|= is defined as:

M |= ψ⇔M, u, x(0), 0 |= ψ for all u, x(0).

The binary satisfaction relation is about all paths: whether the transitions from all initial
states by all sequences of input satisfy the quintuple satisfaction relation.

In order to bring more insight into the syntax, the semantics, and usages of LTLC we
explain the following example about drug administration. In Pharmacokinetics, drug
concentrations in our body is often modeled as linear systems.

Example 1. Suppose that there is a patient who has disease in his lung. In order to cure
the disease certain level of drug concentration (say, 5 mg/l) should be maintained in the

LTLC: Linear Temporal Logic for Control 321

lung for certain period of time (say, 3 hour). However, because this drug is toxic to liver,
its concentration at the liver should not exceed certain level (say, 3 mg/l). Also, in order
to increase absorption of the drug, it should be taken after dining, or say, every 4 hours.
As a final condition, the drug should be cleared from the body eventually.

Let dose be the dose of medicine, liver is the concentration of the drug at the liver,
and lung is the concentration of the drug at the lung.

The constraint that the drug should be taken at every 4 hours can be written as
� (dose(4 · t + 1) = 0 ∧ dose(4 · t + 2) = 0 ∧ dose(4 · t + 3) = 0). In this formula
the always operator � provides t from 0 to infinity. A similar but different formula is:
� (dose(t) > 0 → (dose(t + 1) = 0 ∧ dose(t + 2) = 0 ∧ dose(t + 3) = 0)). This for-
mula can be read as, once he took the medicine he shouldn’t take it again within 4 hours.
Similarly, the drug concentration constraint in the liver can be written as �(liver(t) < 3).

The goal, the condition about the drug concentration in the lung can be written as
� (lung(t) > 5 ∧ X lung(t) > 5 ∧ X X lung(t) > 5). Note that the eventually operator �
ensures that the condition should happen.

The last clearance condition can be written as: � � (lung(t) = 0 ∧ liver(t) = 0). Note
that the combined operators� � specify properties at a steady state.

Finally, we can express the whole problem in LTLC as follows:

� (dose(4 · t + 1) = 0 ∧ dose(4 · t + 2) = 0 ∧ dose(4 · t + 3) = 0)

∧ � (liver(t) < 3)

∧ � (lung(t) > 5 ∧ X lung(t) > 5 ∧ X X lung(t) > 5)

∧ � � (lung(t) = 0 ∧ liver(t) = 0).

4 Model Checking

In this section, we describe an LTLC model checking algorithm. We first transform vari-
ables at different times into normal form, which is a fixed length coefficient vector. We
then remove all temporal operators from the specification using the horizon constraints.
Finally, we prove the decidability of LTLC model checking.

4.1 Converting Timed Variables to a Normal Form

The atomic propositions of LTLC are equality or inequality constraints about linear
combinations of input, output, or state variables. These variables are related to others
by the system dynamics equation (1). In this section we convert these timed variables
into a normal form so that the dependencies among variables are eliminated during the
model checking process. This is a standard technique in MPC to compute an optimal
solution [9,10]. In Section 3.1 we described the steady state constraint of LTLC. This
constraint not only is a useful control objective but also makes LTLC model checking
decidable. The constraint also plays a key role in defining the normal form explained
below.

322 Y. Kwon and G. Agha

For a constant c:

c(c, t) j =

{
c if j = 1
0 otherwise

For an input variable ui(t):

c(u, t) j =

{
1 if j = 1 + nx + nu · tu + i
0 otherwise

For a state variable xi(t):

c(x, t)1 = 0
c(x, t)1+ j =

(
Aty

)
i j for 1 ≤ j ≤ nx

c(x, t)1+nx+ j·nu+k =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if j > ty − 1(
Aty− j−1 · B

)
ik

else if j < Hu(
Σ

ty−1
j′= j A

j′ · B
)

ik
else if j = Hu

for 0 ≤ j ≤ Hu, 1 ≤ k ≤ nu

For an output variable yi(t):

c(y, t)1 = 0
c(y, t)1+ j =

(
C · Aty

)
i j for 1 ≤ j ≤ nx

c(y, t)1+nx+ j·nu+k ={
c′(y, t) j·nu+k + Dik if j = min(Hu, ty)
c′(y, t) j·nu+k otherwise

for 0 ≤ j ≤ Hu, 1 ≤ k ≤ nu, where
c′(y, t) j·nu+k =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if j > ty − 1(
C · Aty− j−1 · B

)
ik

else if j < Hu(
Σ

ty−1
j′= jC · Aj′ · B

)
ik

else if j = Hu

Fig. 2. The conversion function c

Let ty be min(t,Hy) and let tu and iu be min(t,Hu) and min(i,Hu) respectively. If
the steady state constraint (3) is satisfied then the system dynamics equation (2) can be
rewritten as:

x(t) = Aty · x(0) +
ty−1∑

i=0

Aty−i−1 · B · u(iu), (4)

y(t) = C · x(t) + D · u(tu).

Note that in equation (4), x(t) or y(t) at any time t can be expressed in terms of x(0) and
u(i) for i = 0, . . . ,Hu. Let v be a vector of these variables defined as:

v = [1, x1(0), . . . , xnx(0), u1(0), . . . , unu(0), . . . , u1(Hu), . . . , unu(Hu)]T .

Then, the normal form for a variable z(t) is a coefficient vector, say z, such that z(t) =
z · v, where z is one of input, output, or state variables. The conversion function c:
(U ∪ Y ∪ X ∪ IR) × IN → IR1+nx+nu·(Hu+1) is defined in Figure 2. For simplicity, we
overload the function c : (U∪Y∪X∪IR)×IN→ IR1+nx+nu·(Hu+1) with c : AP×IN→ AP
as follows.

c(c1 · v1(texp1) + · · · + cn · vn(texpn) � d, t) =

(c1 · c(v1, texp1(t)) + · · · + cn · c(vn, texpn(t)) − c(d, 0)) · v � 0.

With the normal form

c1 · v1(texp1(t)) + · · · + cn · vn(texpn(t)) � d ⇔
c(c1 · v1(texp1) + · · · + cn · vn(texpn) � d, t).

LTLC: Linear Temporal Logic for Control 323

The horizon constraint (3) can be written in LTLC formula as follows:

H :
nx∧

i=1

(xi(Hy + 1) = xi(Hy)) ∧
nu∧

i=1

� (ui(Hu + t) = ui(Hu))

Thus, given an LTLC formula ψ we implicitly mean H → ψ.

4.2 Model Checking as a Feasibility Checking

Before we explain the details of model checking algorithm, we first show an exam-
ple that illustrates how to convert an LTLC model checking problem into a feasibility
checking problem.

Example 2. Let a linear systemM be

(
{u}, {y}, {x1, x2},

[
1 1
2 1

]
,

[
2
1

]
, [1 1] , 0

)
, an atomic

proposition a(t) be y(t) < 3, horizon constraints be Hu = 2 and Hy = 2, and suppose
that we want to find an initial state and a sequence of input such that H ∧ X a ∧ X X a.

For this problem, we do LTLC model checking for the systemM against a specifi-
cation ψ : H → ¬(X a ∧ X X a). Note that any counter example ofM |= ψ satisfies the
original goal. In practice, we search for u(t) and x(0) such thatM, u, x(0), 0 |= ¬ψ. That
is,

M, u, x(0), 0 |= H ∧ X a ∧ X X a

⇔
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u(t + 2) = u(2) for t ≥ 0∧ (input horizon constraint)
x1(2) = x1(3) ∧ x2(2) = x2(3)∧ (output horizon constraint)
y(1) < 3 ∧ y(2) < 3 (X a ∧ X X a)

⇔ [0, 4, 3, 4, 3, 2] · v = 0 ∧ [0, 6, 2, 6, 3, 1] · v = 0 ∧
[−3, 3, 2, 3, 0, 0] · v < 0 ∧ [−3, 7, 5, 7, 3, 0] · v < 0 ,

where v is [1, x1(0), x2(0), u(0), u(1), u(2)]. Thus,

M �|= ψ⇔
{

v :
[0, 4, 3, 4, 3, 2] · v = 0 ∧ [0, 6, 2, 6, 3, 1] · v = 0 ∧

[−3, 3, 2, 3, 0, 0] · v < 0 ∧ [−3, 7, 5, 7, 3, 0] · v < 0

}
� ∅.

Note that the emptiness of v can be checked by linear programming and any feasible v
is the counter example that we are seeking.

We now show how to transform an LTLC model checking problem into a feasibility
checking problem and use it to prove the decidability of LTLC model checking. If the
horizon constraint H is satisfied then the system arrives at a steady state from Hy step
onward and the atomic propositions of the specification become constants. Otherwise,
the system simply is not a model of the specification. If H is satisfied, then for t ≥ Hy,

M, u, x(0), t |= X ψ⇔M, u, x(0), t |= ψ, (5)

M, u, x(0), t |= ψ U φ⇔M, u, x(0), t |= φ,
M, u, x(0), t |= ψ R φ⇔M, u, x(0), t |= φ.

324 Y. Kwon and G. Agha

f(ψ,t) {
if(ψ is T) return T

if(ψ is F) return F

if(ψ is an AP) return c(ψ, t)
if(ψ is ¬φ) return ¬f(φ,t)
if(ψ is φ ∨ η) return f(φ,t) ∨ f(η,t)
if(ψ is φ ∧ η) return f(φ,t) ∧ f(η,t)
if(ψ is X φ)
if(t ≥ Hy) return f(φ,t)
else return f(φ,t+1)

if(ψ is φ U η)
if(t ≥ Hy) return f(η,t)
else return f(η,t) ∨ (f(φ,t) ∧ f(ψ,t+1))

if(ψ is φ R η)
if(t ≥ Hy) return f(η,t)
else return (f(φ,t) ∧ f(η,t)) ∨ (f(η,t) ∧ f(ψ,t+1))

}

Fig. 3. Function f removes all temporal operators from an LTLC formula ψ

The use of normal form for timed variables and the fact that the system arrives at a
steady state enable us to remove all the temporal operators from LTLC specifications.
Figure 3 shows an algorithm to remove all temporal operators of an LTLC formula that
is equivalent to the original formula if H is satisfied.

Theorem 1. M |= H → ψ ⇔ M |= H → f(ψ, 0).

Outline of proof: We prove the equivalence by induction on the structural tree of LTLC
formula ψ. The induction base are T , F , and the atomic propositions which can easily
proved. Induction steps on the logical connectives can be proved by the definitions of
f and the quintuple satisfaction relation |=. Induction steps on the temporal connectives
can be proved using the equivalence relations

ψ U φ ≡ φ ∨ (ψ ∧ X (ψ U φ)), (6)

ψ R φ ≡ (ψ ∧ φ) ∨ (φ ∧ X (ψ R φ)),

the steady state relation of equation (5), and the definition of f about the X formula.
We divide the induction step on temporal operators in two cases: before time t reaches
the steady state horizon, where we use the equivalence relation (6), and after the steady
state, where we use the equation (5).

Theorem 2. Model checking LTLC formulas H → ψ is decidable .

Proof. Given an LTLC formula ψ with an implicit output horizon Hy, we can get a
formula φ = f(ψ, 0), which is equivalent to ψ, for the runs where H is true. Because
φ does not have any temporal operators, we can transform it to Disjunctive Normal
Form (DNF) whose satisfiability can be checked by checking the satisfiability of each

LTLC: Linear Temporal Logic for Control 325

rotor

horizontal axis

ve
rt

ic
al

 a
xi

s

pitch angle

rotor angle

v

System dynamics

x(t + 1) = A · x(t) + B · u(t)

y(t) = C · x(t) + D · u(t),

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9680 −0.0005 −0.0010
0.0980 1 0
−0.0888 0.9790 0.9981

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.6171
0.0311
0.9457

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , C =
[

0 0 1
]
, D = 0.

Fig. 4. A helicopter diagram and its discrete time dynamics

conjunctive subformula. The subformula is a conjunction of linear equalities and in-
equalities in the normal form. Thus, the satisfiability of each subformula is equivalent
to the feasibility of linear constraints which can be checked by linear programming.
Because φ has only finite number of conjunctive subformulas and linear programming
can be done in finite number of steps, LTLC model checking is decidable.

Note that in LTLC model checking we do not make transitions of states explicitly.
Instead, we transform the atomic propositions at different times into normal form. In
model checking hybrid systems, one of the difficulties is the uncountably large state
space. LTLC model checking addresses the difficulty in this framework. Thus, at any
moment we can partition the state space into at most |2AP| equivalent classes which are
not further distinguishable by AP.

Although the method described in this section is intuitive, when converted to a DNF,
the number of conjunctive subformulas of an LTLC formula can grow exponentially in
terms of the output horizon Hy. For example, the conjunctive subformulas of � (a ∨ b)
have

∧Hy
t=0 (a(t) | b(t)), where | is a choice operator. Thus, the number of conjunctive

terms is 2Hy+1 and with large Hy model checking becomes practically impossible. For-
tunately, however, there are many common terms in the conjunctive subformulas. If
infeasibility is found in the common terms then we can skip checking all of the terms
with the common infeasible terms. To leverage this computational benefit, we build a
Büchi automaton [12] which can be thought as a generator of the conjunctive subterms.
Each path of length Hy of the Büchi automaton is a conjunctive subformula. We can
check the feasibility of common prefixes together and skip large number of redundant
checks.

5 Experiment

In this section we illustrate how LTLC model checking can be used in controlling linear
systems. The example system is a helicopter at near hover speed. Figure 4 shows a dia-
gram of the example helicopter and its dynamics equations. The helicopter is composed
of a body (fuselage) and a main rotor whose angle to the body is our control variable.

326 Y. Kwon and G. Agha

#######################################

System description

system:

const pi = 3.141592;

const rmin = -pi*20/180, rmax = -rmin,

rrmax = pi*10/180;

const A = [0.9608, -0.0005, -0.0010;

0.0980, 1, 0;

-0.0888, 0.9790, 0.9981],

B = [0.6171; 0.0311; 0.9457];

System variables

x: pitch rate, pitch angle, speed

dr: rotor angle

v: speed

var x[3]: state,

dr: input,

v: output;

System dynamics equation

x = A * x + B * dr;

v = [0, 0, 1] * x;

#######################################

Control objective description

specification:

when to bring the system to a steady state

and when to stop changing input

output horizon: 25;

input horizon: 24;

rotor angle constraints

rp0(t): dr(t) >= rmin;

rp1(t): dr(t) <= rmax;

rotor angular rate constraints

rr0(t): dr(t+1) - dr(t) <= rrmax;

rr1(t): dr(t+1) - dr(t) >= -rrmax;

initial state

pitch rate and angle are both 0

x0(t): x[0](t) = 0;

x1(t): x[1](t) = 0;

initial and finial vehicle speed

vi(t): v(t) = 2; #initial speed

vs(t): v(t+16) = 0; #stop at 1.6 sec

vr(t): v(t) >= 5; #finial speed

negated control objective

! ([] (rp0 /\ rp1 /\ rr0 /\ rr1)

physical constraints

/\ x0 /\ x1 # initial state

/\ vi # initial speed

/\ ([] vs \/ <> [] vr)

either stop or speedup

);

Fig. 5. LTLC specification for the experiment

The angle between the body and the horizontal plane is called pitch angle (nose down
is positive). The speed of the helicopter (v in Figure 4) is defined at the center of mass.
In this example we consider only the horizontal component of the velocity vector. The
angle between the rotor plane and the direction of body is called rotor angle. The atti-
tude (pitch angle pa, and pitch rate pr = ṗa) and the speed (v) of a helicopter can be
controlled by changing the rotor angle (dr).

Our system model for the helicopter isM = (U,Y,X,A,B,C,D), whereU = {dr},
Y = {v}, X = {pr, pa, v}, and the system dynamics equation is given in Figure 4. We
obtain the discrete time dynamics by sampling a continuous time dynamics equations
in [1] at a sampling rate of 10 samples per sec. We also consider physical constraints to
the control variable (the rotor angle) to make the system more realistic: its maximum
and minimum angles are +20 ◦ and -20 ◦ respectively, and its maximum and minimum
angular rates are +100 ◦/sec and -100 ◦/sec respectively.

Figure 5 shows a model and specification description written in our LTLC checker
[13]. It has two main components: a system description block that begins with system:
tag and a specification block that begins with specification: tag. One can define

LTLC: Linear Temporal Logic for Control 327

scalar or matrix constants and type annotated variables in this block. Using the constants
and the variables system dynamics equations are finally defined in this block. Note that
the LHS of the dynamics equations are a state variable or an output variable.

The specification block begins with the implicit horizon constraints. The output hori-
zon Hy and the input horizon Hu are first defined in this block as can be seen in Figure 5.
Optional definitions of atomic propositions follow the horizon constraints. A definition
of an atomic proposition has its name with a time variable and a linear constraint. A
constraint is a comparison between linear combinations of input, output, and state vari-
ables. Also, each variable is associated with a time expression. In Figure 5, rp0 and rp1
describe the physical limits of the rotor angle, and rr0 and rr1 describe the limits of
the rotor angular rate. The next two constraints x0 and x1 are about the state variable
x (pitch rate and pitch angle). We use these equalities to specify an initial condition.
The last part of LTLC checker description is an LTLC formula using the previously
defined atomic propositions. Usually, the topmost operator of the LTLC specification
is the negation operator because we want to model check the negation of our control
objective.

Now, suppose that the helicopter is flying at the speed of 2 m/sec and there is another
vehicle approaching to it. In order to avoid collision we need to stop the helicopter
within 1.6 sec or accelerate it to a speed faster than 5 m/sec within 2.5 sec. We want to
know whether this control objective is achievable and if it is possible we want to know
the input sequence also.

The subformula x0 ∧ x1 is about the initial state condition: the helicopter’s initial
pitch rate and pitch angle are both zero. Note that an LTLC formula without any tempo-
ral operator is about the initial step (at time 0). The subformula �(rp0∧ rp1∧ rr0∧ rr1)
means that the physical constraints on the rotor control are always imposed. The always
operator � ensures the binding of the time variable of inequalities and actual time dur-
ing the process of model checking. Note the time expression t+16 in vs(t). Because the
first time index of vs(t) is 16, the formula �vs means that the helicopter stops from 1.6
sec onward. The formula vi ∧ (�vs ∨ ��vr) specifies that a vehicle initially flying at 2
m/sec speed stops within 1.6 sec or speeds up to a speed faster than 5 m/sec within 2.5
sec. Note how easily and intuitively the goal is expressed in LTLC. Even this simple
disjunctive form of goal would be very difficult to write by hand.

The model checking result is:

result: F

state= [-0.000 0.000 2.000]ˆT

input[0]=[-0.349 -0.349 -0.237 -0.063 0.112 0.286 0.349 0.349 0.175 0.287

0.113 0.000 0.000 -0.157 -0.332 -0.157 0 0 0 0 0 0 0 0 0]

In the model checking result ‘result: F’ means that the helicopter is not the model of
the negated specification. In other words, there is an initial state and a sequence of input
that drive the system to meet the original control objective. As a counter example the
model checker prints out the initial state and the sequence of input. Thus, by applying
the input sequence in that order, the system will arrive at a steady state with all the
control objectives satisfied.

Figure 6 shows the result of applying the computed input to the system from the
computed initial state. In the second graph of Figure 6, the solid line is the control
input, the dashed line is the resulting pitch rate, and the dot-dashed line is the resulting

328 Y. Kwon and G. Agha

0 2 4 6 8 10 12 14 16 18
−2

−1

0

1

2

3

4

sp
ee

d
(m

/s
ec

)

time (0.1xsec)

0 2 4 6 8 10 12 14 16 18

−50

0

50

time (0.1xsec)

input (deg)
pitch rate (deg/sec)
pitch angle (deg)

Fig. 6. Transitions of the model system driven by the computed input

pitch angle of the helicopter. Notice the difference that the input sequence in the counter
example is in radian whereas the graph is plotted in degree. From this graph we can see
that the physical constraints on the rotor angle and its angular rate are always satisfied.
The first graph of Figure 6 shows the helicopter’s speed. This graph also shows the
vehicle’s pitch attitude and the rotor angle at the same time in order to give more insight
into the dynamics of the system. Note that the vertical axis is the speed of the vehicle
not the elevation. This graph shows how the vehicle comes to stop within 1.6 sec and
the input also becomes constant from that moment.

6 Discussions

We developed a temporal logic called LTLC for specifying properties of linear systems
and its model checking algorithm. LTLC model checking is decidable if we control
the system to arrive at a steady state within a specified horizon. Although the implicit
steady state constraints prevent LTLC model checking from using arbitrary input, many
practical interest for the system require these constraints. LTLC can also be used to
explicitly describe complex control objectives. A sequence of control input that can
achieve the control objective can be computed in the process of model checking.

The use of texp in atomic propositions makes writing specification easy and intuitive.
Also, texp extends the expressiveness of LTLC such that some properties cannot be ex-
pressed without it. Thus, texp can be regarded as a special temporal operator. However,
on the other hand, its use can obscure the definition of state and requires a refinement
in semantics. An interpretation of texp can be done in two layers: the first layer is a
path determined by the choice of initial state and input; the second layer consists of
the parallel compositions of reordered sequences of the path for each texp sampled at
texp(t).

LTLC: Linear Temporal Logic for Control 329

The implicit horizon constraints could be removed if we adopt the semantics of
bounded model checking [14]. In this case, we can still enforce the constraints by ex-
plicitly specifying them. As far as assuring system stability goes, the bounds for input
horizon Hu and output horizon Hy are well known in predictive control literature [9].
A general guideline from [9] is, set Hu less than the number of states and set Hy larger
than twice the number of states. Also, the LTLC model checking for control described
in this paper is for an ideal open loop control. The closed loop feedback control can be
achieved by adopting the Receding Horizon Scheme [9].

We believe, LTLC can be used as a high level abstraction tool that can hide the
complexities of the underlying physical systems. We also believe that composing the
abstractions to define higher level abstractions will be an important technique for han-
dling the scalability problem in large systems.

References

1. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: Feedback Control of Dynamic Systems, 3rd
edn. Addison Wesley, Reading (1994)

2. Lichtenstein, O., Pnueli, A.: Checking that finite state concurrent programs satisfy their linear
specification. In: Proc of 12th ACM Symposium on Principles of Programming Languages,
pp. 97–107 (1985)

3. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching
time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, Springer,
Heidelberg (1982)

4. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logics specification: A practical approach. In: Proc. 10th Int. ACM
Symposium on Principles of Programming Languages, pp. 117–126 (1983)

5. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235
(1994)

6. Tabuada, P., Papas, G.J.: Model checking LTL over controllable linear systems is decidable.
In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 498–513. Springer, Hei-
delberg (2003)

7. Tabuada, P., Papas, G.J.: Linear time logic control of discrete-time linear systems. IEEE
Transictions on Automatic Control 51, 1862–1877 (2006)

8. Kwon, Y., Agha, G.: Linear inequality LTL (iLTL): A model checker for discrete time
markov chains. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308,
pp. 194–208. Springer, Heidelberg (2004)

9. Clarke, D., Mohtai, C.: Properties of generalized predictive control. Automatica 25, 859–875
(1989)

10. Clarke, D., Scattolini, R.: Constrained receding-horizon predictive control. IEE Proc. Part
D 138, 347–354 (1991)

11. Hughes, G., Creswell, M.: Introduction to Modal Logic. Methuen (1997)
12. Büchi, J.: On a decision method in restricted second order arthmetic. In: Proc. of the Int.

Conf. on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University
Press (1960)

13. LTLC Checker: (2007), http://osl.cs.uiuc.edu/∼ykwon4/cgi/LTLC.html
14. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds. In:

Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

http://osl.cs.uiuc.edu/~ykwon4/cgi/LTLC.html

Switched and PieceWise Nonlinear Hybrid

System Identification

Fabien Lauer and Gérard Bloch

Centre de Recherche en Automatique de Nancy (CRAN UMR 7039),
Nancy–University, CNRS, France

fabien.lauer@esstin.uhp-nancy.fr, gerard.bloch@esstin.uhp-nancy.fr

Abstract. Hybrid system identification aims at both estimating the dis-
crete state or mode for each data point, and the submodel governing the
dynamics of the continuous state for each mode. The paper proposes
a new method based on kernel regression and Support Vector Machines
(SVM) to tackle this problem. The resulting algorithm is able to compute
both the discrete state and the submodels in a single step, independently
of the discrete state sequence that generated the data. In addition to
previous works, nonlinear submodels are also considered, thus extending
the class of systems on which the method can be applied from Piece-
Wise Affine (PWA) and switched linear to PieceWise Smooth (PWS)
and switched nonlinear systems with unknown nonlinearities. Piecewise
systems with nonlinear boundaries between the modes are also consid-
ered with some preliminary results on this issue.

1 Introduction

Context. Hybrid systems are usually described by both a continuous state and
a discrete state, where the vector field defining the evolution of the continuous
state depends on the discrete state. In this framework, a system can be seen as
switching between n different subsystems, which are usually modeled by AutoRe-
gressive with eXogenuous inputs (ARX) models in the discrete-time case. Two
types of identification problems may arise in this setting depending on whether
the discrete state sequence that generated the data is known or not. If it is, then
the problem can be simply recast as n common identification problems, each
one using only the data for a given discrete state. However, in most cases this
sequence is unknown and the problem becomes nontrivial.

Models of hybrid systems. The predicted output yt of a hybrid model
in ARX form is given as a function of the continuous state xt =
[ut−nc . . . ut−1, yt−na . . . yt−1]T , containing the lagged inputs ut−j and outputs
yt−j , and the discrete state λt. Considering n submodels fj, the hybrid model
is written as

yt = fλt(xt) + et, (1)

where et is a noise term. Hybrid models can be classified with respect to the na-
ture of the submodels fj and of the evolution of the discrete state λt ∈ {1, . . . , n}.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 330–343, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Switched and PieceWise Nonlinear Hybrid System Identification 331

Table 1. Nomenclature of the hybrid models in ARX form

ARX model abbr. models fj discrete state λt domains Sj

PieceWise PWARX affine function of x polyhedral
PieceWise Nonlinear PWNARX nonlinear function of x polyhedral
Nonlinearly PieceWise NPWARX affine function of x arbitrary
Nonlinearly PieceWise Nonlinear NPWNARX nonlinear function of x arbitrary
Switched SARX affine arbitrary
Switched Nonlinear SNARX nonlinear arbitrary

Table 1 defines the nomenclature that will be used in the paper. SARX and
SNARX models assume that the system is arbitrarily switched. On the other
hand, PWARX models consider a dependency between the discrete state and
the continuous state. They can thus be defined by PieceWise Affine (PWA)
maps of the type f(x) = fj(x), if x ∈ Sj = {x : Hj [xT 1]T ≤ 0}, j = 1, . . . , n,
where the matrices Hj represent a set of hyperplanes that define the polyhe-
dral domains Sj partitioning the continuous state space. Similarly, PWNARX
models can be defined by PieceWise Smooth (PWS) maps, where fj are smooth
nonlinear functions instead of affine functions. Extensions of the PWARX and
PWNARX models to ”nonlinearly piecewise” models, where the domains Sj are
no more constrained to be polyhedral, will be denoted NPWARX and NPW-
NARX.

Related work. Five main approaches have been devised for hybrid system identi-
fication: the clustering-based approach [1], the mixed integer programming based
approach [2], the Bayesian approach [3], the bounded error approach [4] and the
algebraic approach [5,6]. The first four focus on the problem of PieceWise Affine
(PWA) system identification, where the discrete state depends on the continuous
state. However, both the bounded error and Bayesian approaches can also be
used to identify a broader class of systems, known as switched linear systems,
where the discrete state evolves independently of the continuous state. The al-
gebraic approach [5] focuses on this latter problem, but without taking the noise
into account in its development. This leads to an algorithm very sensitive to
noise, compared to the clustering-based or bounded error methods, as shown by
[7]. Besides, the bounded error method [4] provides a convenient way of dealing
with noisy data by looking for a model with a predefined accuracy. However, the
hyperparameters of the method, such as the model accuracy that determines the
number of modes, may be difficult to tune to get a prescribed structure, e.g. if
prior knowledge on the number of modes is available [7].

Tools and proposed method. The paper proposes a new method for hybrid system
identification based on kernel regression and Support Vector Machines (SVMs).
Stemming from statistical learning theory, Support Vector Machines (SVMs) [8]
quickly became a state-of-the-art tool for classification and are already com-
monly used, either in their original form or through closely related methods
[9], in hybrid system identification to estimate the switching boundary between

332 F. Lauer and G. Bloch

modes [1,4]. Based on the same theoretical concepts, Support Vector Regres-
sion (SVR) retains properties of SVMs, such as a good generalization ability
from few samples, and offers an interesting alternative both for regression and
system identification [10,11,12]. SVR uses an ε-insensitive loss function which
does not take into account errors that are less than ε [13]. This loss function
ignoring errors below a predefined threshold is close in spirit to the bounded
error approach. However, the origin is different. In learning theory, this effect is
justified in order to minimize the generalization error of the model, whereas the
bounded error approach was developed to allow the automatic determination of
the number of linear submodels required to approximate a non-linear function
with a given accuracy.

In the past decade, kernel methods have attracted much attention in a large
variety of fields and applications: classification and pattern recognition, regres-
sion, density estimation, etc. Indeed, using kernel functions, many linear meth-
ods can be extended to the nonlinear case in an almost straightforward manner,
while avoiding the curse of dimensionality by transposing the focus from the
data dimension to the number of data.

The proposed method uses the SVR framework to estimate hybrid models
with submodels in kernel expansion form. The resulting algorithm is able to com-
pute both the discrete state and the submodels in a single step, independently of
the discrete state sequence that generated the data. Nonlinear submodels with
unknown types of nonlinearities can be easily treated, thus extending the class
of systems on which the method can be applied from switched linear to switched
nonlinear systems and from piecewise affine to piecewise smooth systems by
considering models in SARX, SNARX, PWARX or PWNARX form. Nonlin-
early PWA and PWS maps with nonlinear mode boundaries are also considered
in the paper with some preliminary results using nonlinear SVM classifiers. The
idea is that since the method estimates the discrete state without any assump-
tion on the switching sequence, labeling data points generated from nonlinearly
separable modes is possible.

Contribution. The paper proposes solutions for two problems that have not yet
been extensively studied and solved in the literature: identification of hybrid
systems switching between unknown nonlinear dynamics and identification of
nonlinearly piecewise systems with nonlinear boundaries between the modes in
the continuous state space.

Paper organization. The paper starts by some preliminaries on kernel functions
and Support Vector Regression (Sect. 2.1) before using these to develop a hybrid
system identification algorithm in Sect. 2.2. The problem of estimating nonlinear
boundaries between modes is then discussed in Sect. 2.3 and Section 3 provides
an interpretation of the method based on previous approaches from the litera-
ture. Finally, Section 4 gives some numerical examples of application.

Notations. All vectors are column vectors written in boldface and lowercase
letters whereas matrices are boldface and uppercase. The vectors 0 and 1 are

Switched and PieceWise Nonlinear Hybrid System Identification 333

vectors of appropriate dimensions with all their components respectively equal
to 0 and 1. For A ∈ IRd×m and B ∈ IRd×n containing d-dimensional sample
vectors and the kernel function k : IRd × IRd → IR, the “kernel” K(A, B) maps
IRd×m × IRd×n in IRm×n with K(A, B)i,j = k(Ai, Bj), where Ai and Bj are
the ith and jth columns of A and B. In particular, if x ∈ IRd is a column vector
then K(x, B) is a row vector in IR1×n. The matrix X ∈ IRN×d contains all
the training samples xi, i = 1, . . . , N , as rows. The vector y ∈ IRN gathers all
the target values yi for these samples. The kernel matrix K(XT , XT) will be
written K for short.

2 Nonlinear Hybrid System Identification

This section presents a new method based on kernel regression and support
vector machines (SVMs) for hybrid system identification. The basics of nonlinear
function approximation by kernel methods are first recalled, before describing
the proposed method itself. The section ends with a discussion on piecewise
systems with nonlinear boundaries between modes.

2.1 Kernels and Support Vector Regression

A simple method to approximate a nonlinear function is to first map the data
to a higher dimensional feature space and then perform linear regression in that
space. This approach usually suffers from the so-called curse of dimensionality,
which can however be avoided thanks to the ”kernel trick” depicted below.

First, consider the nonlinear mapping Φ that maps the data x from the input
space X ⊂ IRp to a vector Φ(x) in a feature space F . Assume now that the
function f is given by an expansion based on the N training samples xi ∈ IRp

in that feature space, i.e. f(x) =
∑N

i=1 αiΦ(x)T Φ(xi)+ b. Clearly, though being
a nonlinear function in the input space, f is a linear function in F . Note that
in order to compute f(x), it is not necessary to explicitly compute the images
Φ(xi) of the points but only the result of their inner product. This is the ”kernel
trick” which replaces the inner products between images of points by a kernel
function k(x, xi) = Φ(x)T Φ(xi). In kernel regression, the training data (xi, yi),
i = 1, . . . , N , stacked in the matrix X and the vector y, are thus approximated
by a kernel expansion

f(x) =
N∑

i=1

αik(x, xi) + b = K(x, XT)α + b , (2)

where α = [α1 . . . αi . . . αN]T and b are the parameters of the model and k(., .)
is the kernel function. Typical kernel functions are the linear (k(x, xi) = xT xi),
Gaussian RBF (k(x, xi) = exp(−‖x − xi‖2

2/2σ2) and polynomial (k(x, xi) =
(xT xi + 1)d) kernels. The kernel function defines the feature space F in which
the data are implicitly mapped. The higher the dimension of F is, the higher the
approximation capacity of the function f is, up to the universal approximation

334 F. Lauer and G. Bloch

capacity obtained for an infinite feature space, as with Gaussian RBF kernels.
It is also possible to build kernel functions from prior knowledge on the task at
hand, see for instance [14] for the properties of kernel functions and the construc-
tion of new kernels or [15] for examples of application in pattern recognition. In
the hybrid system identification framework, this can be useful for instance when
the type of nonlinearity of a particular mode is known beforehand.

In kernel regression via linear programming (LP), the �1-norm of the param-
eters α of the kernel expansion is minimized together with the �1-norm of the
errors yi − f(xi) by

min
(α,b)

‖α‖1 + C

N∑

i=1

|f(xi) − yi| , (3)

where a hyperparameter C is introduced to tune the trade-off between the min-
imization of the model complexity (measured by ‖α‖1) and the error on the
data (measured by

∑N
i=1 |f(xi) − yi|). Minimizing the complexity of the model

allows to control its generalization capacity. In practice, this amounts to penalize
non-smooth functions and implements the general smoothness assumption that
two samples close in input space tend to give the same output.

Instead of the �1-norm of the errors, the ε-insensitive loss function, defined by
[8] as

l(e) = |e|ε =

{
0 if |e| ≤ ε ,

|e| − ε otherwise ,
(4)

can also be used to yield Linear Programming Support Vector Regression (LP-
SVR). This loss function builds a tube of insensitivity in which the errors are
meaningless. Errors larger than the tube width1 ε are penalized linearly.

A possible formulation of the LP-SVR problem involves 4N + 1 design vari-
ables [16]. In the remaining of the paper, we will follow the approach of [17] that
involves only 3N + 1 variables. Introducing two sets of optimization variables,
in two positive slack vectors a and ξ, this problem can be implemented as a lin-
ear program solvable by standard optimization softwares such as the MATLAB
linprog function. In this scheme, the LP-SVR problem may be written as

min
(α,b,ξ≥0,a≥0)

1T a + C1T ξ

s.t. −ξ − ε1 ≤ Kα + b1− y ≤ ε1 + ξ
−a ≤ α ≤ a .

(5)

The last set of constraints ensures that 1T a, which is minimized, bounds ‖α‖1.
In practice, sparsity is obtained as a certain number of parameters αi will tend
to zero. The input vectors xi for which the corresponding αi are non-zero are
called support vectors.

1 Actually, ε does not stand for the tube width but for half of the tube section with
respect to y.

Switched and PieceWise Nonlinear Hybrid System Identification 335

2.2 Hybrid System Identification with Kernels

The bounded error approach, developed by [4] for the identification PWARX
models, aims at finding a model with a predefined accuracy, i.e. that allows the
error on all the training points (xi, yi) to be bounded by

|yi − fλi(xi)| = |ei| ≤ δ, i = 1, . . . , N . (6)

The following presents a new method based on kernel regression to achieve this
goal. As a direct benefit, nonlinear submodels fj are easily handled by the choice
of the kernel functions, thus providing a method for the estimation of both
piecewise and switched nonlinear ARX models.

Following the SVR approach, submodels in kernel expansion form

fj(x) =
N∑

i=1

αijkj(x, xi) + bj = Kj(x, XT)αj − bj, (7)

are trained by minimizing the �1-norm of the parameters αj . As indicated by the
subscript j, various kernel functions kj can be associated to the different models
fj. This leads to vectors Kj(x, XT) and kernel matrices Kj = Kj(XT , XT),
as defined in the notations at end of the introduction. It is thus possible to take
prior information into account such as the number of modes governed by linear
dynamics or knowledge on the type of a particular nonlinearity. In this setting,
the problem of training n models under the bounded error constraint may be
written as

min
αj ,bj ,aj≥0

n∑

j=1

1T aj (8)

−δ1 ≤ y − Kjαj − bj1 ≤ δ1, ∀xi ∈ Sj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n .

where y = [y1 y2 . . . yN]T and the absolute error |eij | = |fj(xi) − yi| is con-
strained to be less than δ only for the model j corresponding to the discrete
state λi of the point xi. However, without further information on the classifi-
cation of the data into modes, Sj are unknown and the problem is intractable.
To circumvent this issue, consider the equivalent problem using the ε-insensitive
loss function (4) for ε = δ implemented with slack variables ξij , i = 1, . . . , N ,
j = 1, . . . , n, stacked in the n vectors ξj ∈ IRN as in (5):

min
αj ,bj ,aj≥0,ξj≥0

n∑

j=1

1T aj (9)

−ξj − δ1 ≤ y − Kjαj − bj1 ≤ δ1 + ξj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n,
n∏

j=1

ξij = 0, i = 1, . . . , N .

336 F. Lauer and G. Bloch

The last equalities stand for the fact that all points must be estimated with
accuracy δ by at least one submodel fj. In other words, for a given sample
(xi, yi), there is at least one j for which ξij = 0. As nonlinear equalities are not
easy to deal with from an optimization point of view, these are approximated
by

min
αj ,bj ,aj≥0,ξj≥0

n∑

j=1

1T aj + C

N∑

i=1

n∏

j=1

ξij (10)

−ξj − δ1 ≤ y − Kjαj − bj1 ≤ δ1 + ξj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n .

Solving this problem with a sufficiently large constant C leads to functions fj

solutions of the former problem (8). Moreover, the discrete state λi, in which
the system was for each data point xi is readily available from the variables
ξij vanishing to zero as λ̂i = j, for ξij = 0. The cases where the bounded
error constraint is not satisfied, i.e. no ξij is zero, can be further discriminated
by letting λ̂i = arg minj(ξij). On the other hand, for cases where more than
one ξij is zero, the absolute error is considered and λ̂i = argminj |eij |, with
eij = yi − fj(xi).

In the case of PWARX or PWNARX models where the modes are linearly
separable in the continuous state space, undetermined points can be reclassified
after the training of separating hyperplanes (the boundaries between the sets Sj)
based on the determined cases only. The linear classification issue is not discussed
here due to size constraints and the reader is referred to [8] and [9] for an
introduction to state-of-the-art methods, whereas multi-class pattern recognition
is considered for instance by [18]. In the next Section, extensions of the PWARX
and PWNARX models to nonlinearly piecewise models, where the domains Sj

are no more constrained to be polyhedral, will be discussed.
An advantage of the proposed approach is the possibility to deal easily with a

noise level that also switches with the model. In order to do so, multiple loss func-
tions with different parameters δj for each mode can be used and implemented
in the following final problem

min
αj ,bj ,aj≥0,ξj≥0

n∑

j=1

1T aj + C

N∑

i=1

n∏

j=1

ξij (11)

−ξj − δj1 ≤ y − Kjαj − bj1 ≤ δj1 + ξj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n .

Another possible formulation with n×N less variables and constraints involves
the minimization of the squares of the parameters αij as

min
αj ,bj ,ξj≥0

n∑

j=1

αT
j αj + C

N∑

i=1

n∏

j=1

ξij (12)

−ξj − δj1 ≤ y − Kjαj − bj1 ≤ δj1 + ξj , j = 1, . . . , n .

Switched and PieceWise Nonlinear Hybrid System Identification 337

The solution of this problem is not sparse as the one of (11) but can usually be
computed in less time.

Remark 1. In the case of a linear kernel kj(x, xi) = xT xi, the parameters of the
linear model fj(x) = wT

j x + bj can be explicitly recovered by wj = XT αj .

Remark 2. The hyperparameters of the method are the kernel types, the number
n of modes, the bounds δj , the regularization parameter C and the number of
lagged inputs and outputs (dynamic order). They can be tuned on a subset of the
data put aside for validation. When too few data are available, cross-validation
techniques can be used. Moreover, the algorithms (11) and (12) can be extended
to automatically tune the bounds δj to the noise level by using a trick similar to
the one introduced in ν-SVR [16,17]. This is studied in [19] for linear submodels
and directly applicable to the problems above. Besides, the proposed method
is well adapted when some basic prior knowledge on the system is available
such as the number n of modes. However, due to the universal approximation
capability of kernel models, the tuning of n is less crucial than when using linear
or affine submodels. For piecewise maps, a good fit can be obtained with an
underestimated n.

Remark 3. Problems (11) and (12) are linearly constrained nonlinear programs.
They involve the minimization of a criterion composed of a linear (11) or
quadratic (12) term and a product of nonnegative variables subject to linear
constraints. These problems are not convex and have multiple minima. This
can be seen from their symmetric structure, leading to multiple solutions for
simple permutations of models. All these solutions are acceptable and yield the
same objective function value corresponding to a global optimum. However, care
must be taken when using different kernels for different models, in which case
permuting models is no more without effect and may lead to local minima.

A possible initialization of the optimization can be obtained by solving the
feasibility problems corresponding to the constraints of (11) and (12), which are
simple linear programs.

2.3 Nonlinear Boundaries between Modes

A direct extension of the PWARX and PWNARX models, in which the discrete
state is determined by a set of separating hyperplanes in the continuous state
space, is obtained by introducing nonlinear boundaries or arbitrary regions (also
pointed out in the conclusion of [4]). In these ”nonlinearly piecewise” models
(denoted by NPWARX and NPWNARX, see Table 1 in the introduction), the
discrete state is still a function of the continuous state, but the separating sur-
faces are no more restricted to hyperplanes. This can lead to a decrease of the
number of submodels if the true system corresponds to this description. Indeed,
in this case, the linear separability assumption may require to build multiple
identical submodels for different regions of the continuous state space that are
however governed by the same dynamics. Moreover, regrouping the data avail-
able in several regions of the continuous state space into one submodel may help
to get better estimates for regions with few samples.

338 F. Lauer and G. Bloch

Nonlinear classification methods have to be used in this case and are readily
available in number (KPCA, KFD, SVM...) [14] thanks to the kernel trick used
above. In particular, SVMs are similarly very easily extended to nonlinear classi-
fication by an appropriate choice of kernel function. Moreover, the final classifier
is given as a sparse kernel expansion allowing for relatively fast estimation of
the mode for a new sample. For the binary case (only 2 modes), the nonlinear
separating surface S is given by

h(x) =
N∑

i=1

βikc(x, xi) + bc = 0 , (13)

where kc(., .) is a kernel function and the βi, bc are the trainable parameters
of the classifier. Simply taking the sign of the function h yields the class of a
pattern x, i.e. +1 if h(x) ≥ 0 and −1 otherwise.

The method proposed in Sect. 2 can deal with nonlinearly piecewise maps
(themselves either affine or nonlinear) without any modification and provide the
labeling of the data, required to train a classifier, through λ̂i. Indeed, any method
(including the bounded-error, Bayesian or algebraic approaches) that estimates
the discrete state without dependency on the continuous state, and thus without
any assumption regarding the linear separability of the data in the continuous
state space, can deal with nonlinearly piecewise maps. In practice, the procedure
is as follows.

1. Train a hybrid model on the input-output data (xi, yi), i = 1, . . . , N , by
solving (11) or (12),

2. Estimate the discrete states, e.g. by λ̂i = argminj |eij |, i = 1, . . . , N ,
3. Train a classifier on the labeled data (xi, λ̂i), i = 1, . . . , N .

Additionally, in a refinement step, the training points could be re-assigned to
the different modes by the classifier and the submodels fj retrained one by one
on the relevant data only.

An illustrative example of this procedure is given in Sect. 4.2, where the
method is applied to estimate a Nonlinearly PieceWise Affine (NPWA) map.

3 Interpretation and Links with other Approaches

The proposed method can be interpreted as a bridge between the bounded error
approach [4], that can deal easily with noise, and the algebraic procedure [5], that
can deal with arbitrarily switched systems, while providing nonlinear extensions
to these. More precisely, it amounts to a bounded error relaxation of the hybrid
decoupling constraint used in the algebraic procedure as follows.

The hybrid decoupling constraint of the algebraic procedure can be expressed
as a function of the submodel errors, eij = yi − fj(xi), by

n∏

j=1

eij = 0, i = 1, . . . , N. (14)

Switched and PieceWise Nonlinear Hybrid System Identification 339

These constraints account for the fact that there must be at least one of the
submodels fj that can estimate the ith point with zero error. In the case of noisy
data, these constraints cannot be satisfied for all the N points. Considering the
bounded error approach, ”decoupling” can be however enforced. The bounded
error constraints (6) act similarly to (14), though being less restrictive on the
estimation error (with a threshold δ). Combining these two approaches results
in constraints of the form

n∏

j=1

[|eij | ≥ δ] = 0, i = 1, . . . , N , (15)

where [·] = 1, if the bracketed expression is true, and 0 otherwise. Using these
constraints, the absolute value of the error |ei| = minj |eij | (assuming that λ̂i =
argminj |eij |) of the hybrid model is bounded by the threshold δ. Approximating
[|eij | ≥ δ] for all j by an ε-insensitive loss function and minimizing their product
leads to the algorithm (11).

4 Numerical Examples

The following presents three examples of application. The first one shows the
simultaneous estimation of two functions, one linear and one nonlinear, from
datasets overlapping in the input space, while the second one is concerned with
the estimation of a nonlinearly piecewise affine (NPWA) map. The last exam-
ple shows the identification of a SNARX model of a hybrid system arbitrarily
switching between linear and nonlinear dynamics. For examples 1 and 3, the
discrete state is arbitrarily switched and the type of nonlinearity is unknown. In
all the examples, the problems are formulated as the optimization program (11)
and solved by the MATLAB function fmincon.

4.1 Switching Function with Unknown Nonlinearity

In this one-dimensional example, the data are generated by two models: a linear
submodel y1(x) = ax + b + e = 2x − 1 + e and a polynomial submodel y2(x) =
0.5x2 + e, where e is a zero-mean Gaussian noise of standard deviation 0.5. The
discrete state λ, determining which submodel is active, is independent of the
variable x. Two data points, (x, y1(x)) and (x, y2(x)), are generated for 30 values
of x in the interval]−5, 1[. Beside these 60 data, the only prior knowledge is that
one submodel is linear and the other is nonlinear. The aim of this example is
to show that the proposed method can discriminate between the two submodels
and correctly approximate each one without further knowledge on the type of
nonlinearity. Figure 1 shows the results obtained for δ1 = δ2 = 0.5, C = 100,
a linear kernel k1 and a Gaussian RBF kernel k2 with σ = 2. The estimated
parameters for the linear submodel are â = 1.999 and b̂ = −0.863. The overall
Mean Square Error (MSE) is MSE = 1

N

∑N
i=1(yi − fλ̂i

(xi))2 = 0.205, which is
rather good compared to the noise variance σ2

b = 0.25.

340 F. Lauer and G. Bloch

−5 −4 −3 −2 −1 0 1
−15

−10

−5

0

5

10

15

Fig. 1. One-dimensional example of the simultaneous estimation of two functions on
noisy data. Points associated to the linear and RBF models are respectively represented
by crosses (+) and diamonds (�).

4.2 Nonlinearly Piecewise Affine Map Estimation

In this illustrative example, the problem is to estimate a Nonlinearly PieceWise
Affine (NPWA) map defined as y = x + 0.5 + e, for x ∈] − ∞,−1]

⋃
[1,∞[,

and y = −0.5x − 1 + e, for x ∈] − 1, 1[, where e is a zero-mean Gaussian noise
of standard deviation 0.1. This problem could be solved by considering a PWA
map with 3 modes linearly separable in the x variable, or, as proposed in this
example, by considering only 2 modes with a nonlinear boundary between mode
1 and mode 2. Thus, two models with linear kernels are trained on N = 60 data
points for δ1 = δ2 = 0.1 and C = 100. The resulting models, shown on Fig.
2, are y = 1.01x + 0.53 and y = −0.48x − 1.02. All the points are associated
to the correct model except for one point, (xi, yi) = (−0.9,−0.31), close to the
mode boundary. The training of a SVM classifier, with a polynomial kernel kc =
(xxi + 1)3, on the data labeled by λ̂i, i = 1, . . . , N, yields a nonlinear boundary
S between the modes given by 2 support vectors x1 = −3 and x60 = 2.9. As
the data xi are in IR, this nonlinear separating surface is a set of points defined
as S = {x : h(x) = −0.24(−3x + 1)3 − 0.22(2.9x + 1)3 + 10.3 = 0}, as shown
on the right hand side of Fig. 2. This classifier yields no classification error with
respect to the target labels λ̂i.

4.3 Simulated Hybrid System Identification

Consider the hybrid system switching between mode 1: yt = −0.905yt−1 +
0.9ut−1 + et, and mode 2: yt = −0.4y2

t−1 + 0.5ut−1 + et, where et is a zero-
mean Gaussian noise of standard deviation σb = 0.1. An output trajectory of
N = 100 points of this system is generated with a random initial condition
y0, a random input sequence ut uniformly distributed in the interval [0, 1] and

Switched and PieceWise Nonlinear Hybrid System Identification 341

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

−3 −2 −1 0 1 2

0

2

4

6

8

10

Fig. 2. Nonlinear boundary between 2 modes. Left: Hybrid model (—) with its insen-
sitivity tube (- -) approximating the data points represented by ’×’ for λ̂i = 1 and ”◦’
for λ̂i = 2. The estimated mode λ̂i also appears on the x-axis as ’×’ for mode 1 and
’◦’ for mode 2 to highlight the partition of the input space X . Right: Class labels λ̂i

(.) for each data point xi used to learn the nonlinear boundary S (◦), defined as the
zeros of h(x) (—).

a mode switch from mode 1 to mode 2 at time t = 41. The signal-to-noise
ratio of this trajectory is 12 dB corresponding to a variance of the noise free
trajectory of 0.20 and a noise variance of 0.012. These data are then used to
train a SNARX model with C = 1000, δ1 = δ2 = 0.1, a linear kernel k1 and

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

1.5

10 20 30 40 50 60 70 80 90 100
0

1

2

3

Fig. 3. Simulated hybrid system identification. Top: Trajectory of the system (blue
plain line) and of the model (red dash line) in simulation mode (only the initial condi-
tion and the input is given to the model). Bottom: Estimated discrete state λ̂t.

342 F. Lauer and G. Bloch

a RBF kernel k2 with σ = 1. Thus, the only prior knowledge is that one sub-
model is linear and the other is nonlinear. The trajectory of the resulting model
ŷt = fλ̂t

(ŷt−1, ut−1) is shown on Figure 3. The estimated parameters of the linear
mode 1 are −0.929 and 0.960, to be compared to −0.905 and 0.9. The discrete
state is estimated by λ̂t = argminj(ξtj). As shown at the bottom of Fig. 3, 22
classification errors occur on the whole trajectory. The effect of these errors is
limited and their origin can be explained. Most of them occur on ambiguous
points for which f1(yt−1, ut−1) = f2(yt−1, ut−1) ± (δ1 + δ2). Here, a switched
system is identified, but note that in case of a piecewise system, these ambi-
guities could be removed by classifying the points with respect to a separating
boundary in the continuous state space. The overall simulation error is RMSEsim

=
√

1/N
∑N

t=1(yt − ŷt)2 = 0.154, which is slightly more than the noise standard
deviation σb = 0.1. Only 8 support vectors with nonzero αij are selected from
the 100 training samples to build the kernel expansion f2.

5 Conclusion

In this paper, a new system identification method has been proposed to deal
with nonlinear hybrid systems. In particular, this method is applicable to sys-
tems switching between unknown nonlinear dynamics and nonlinearly piecewise
systems with arbitrary nonlinear boundaries between the modes. It also bridges
the gap between the bounded error approach and the algebraic procedure by
making use of the ε-insensitive loss function proposed in the machine learning
community for Support Vector Regression. Since no assumption on the discrete
sequence that generates the data is required, arbitrarily switched systems can
be treated as well as piecewise systems.

Future work will focus on the tuning of the hyperparameters and optimization
issues as well as experiments with real life applications. Among other perspec-
tives, the simultaneous estimation of the submodels and the boundaries between
the modes for piecewise systems could be investigated.

References

1. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique
for the identification of piecewise affine systems. Automatica 39(2), 205–217 (2003)

2. Roll, J., Bemporad, A., Ljung, L.: Identification of piecewise affine systems via
mixed-integer programming. Automatica 40(1), 37–50 (2004)

3. Juloski, A.L., Weiland, S., Heemels, W.: A Bayesian approach to identification of
hybrid systems. IEEE Trans. on Automatic Control 50(10), 1520–1533 (2005)

4. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-error approach to
piecewise affine system identification. IEEE Trans. on Automatic Control 50(10),
1567–1580 (2005)

5. Vidal, R., Soatto, S., Ma, Y., Sastry, S.: An algebraic geometric approach to the
identification of a class of linear hybrid systems. In: Proc. of the 42nd IEEE Conf.
on Decision and Control, Maui, Hawäı, USA, pp. 167–172 (2003)

Switched and PieceWise Nonlinear Hybrid System Identification 343

6. Ma, Y., Vidal, R.: Identification of deterministic switched ARX systems via identi-
fication of algebraic varieties. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS,
vol. 3414, pp. 449–465. Springer, Heidelberg (2005)

7. Juloski, A., Heemels, W., Ferrari-Trecate, G., Vidal, R., Paoletti, S., Niessen,
J.H.G.: Comparison of four procedures for the identification of hybrid systems. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 354–369. Springer,
Heidelberg (2005)

8. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)
9. Mangasarian, O.: Generalized support vector machines. In: Smola, A., Bartlett,

P., Schölkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers, pp.
135–146. MIT Press, Cambridge (2000)

10. Drezet, P., Harrison, R.: Support vector machines for system identification. In:
Proc. of the UKACC Int. Conf. on Control, Swansea, UK, vol. 1, pp. 688–692
(1998)

11. Mattera, D., Haykin, S.: Support vector machines for dynamic reconstruction of
a chaotic system. In: Schölkopf, B., Burges, C.J., Smola, A.J. (eds.) Advances
in kernel methods: support vector learning, pp. 211–241. MIT Press, Cambridge
(1999)

12. Zhang, L., Xi, Y.: Nonlinear system identification based on an improved support
vector regression estimator. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004.
LNCS, vol. 3173, pp. 586–591. Springer, Heidelberg (2004)

13. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and
Computing 14(3), 199–222 (2004)

14. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

15. Lauer, F., Bloch, G.: Incorporating prior knowledge in support vector machines for
classification: a review. Neurocomputing (2007)

16. Smola, A.J., Schölkopf, B., Rätsch, G.: Linear programs for automatic accuracy
control in regression. In: Proc. of the 9th Int. Conf. on Artificial Neural Networks,
Edinburgh, UK, vol. 2, pp. 575–580 (1999)

17. Mangasarian, O.L., Musicant, D.R.: Large scale kernel regression via linear pro-
gramming. Machine Learning 46(1-3), 255–269 (2002)

18. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)

19. Lauer, F., Bloch, G.: A new hybrid system identification algorithm with automatic
tuning. In: Proc. of the 17th IFAC World Congress, Seoul, Korea (2008)

Verification of Supervisory Control Software

Using State Proximity and Merging�

Flavio Lerda1,��, James Kapinski2, Edmund M. Clarke1, and Bruce H. Krogh2

1 School of Computer Science
flerda@cs.cmu.edu, emc@cs.cmu.edu

2 Department of Electrical and Computer Engineering
jpk3@ece.cmu.edu, krogh@ece.cmu.edu

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract. This paper describes an approach for bounded-time verifica-
tion of safety properties of supervisory control software interacting with
a continuous-time plant. A combination of software Model Checking and
numerical simulation is used to compute a conservative approximation of
the reachable states. The technique verifies system properties in the pres-
ence of nondeterministic behavior in the software due to, for instance,
interleaving of tasks. A notion of program equivalence is used to char-
acterize the behaviors of the controller, and the bisimulation functions
of Girard and Pappas are employed to characterize the behaviors of the
plant. The approach can conservatively merge traces that reach states
that are in proximity to each other. The technique has been implemented
for the case of affine plant dynamics, which allows efficient operations on
ellipsoidal sets based on convex optimization involving linear matrix in-
equalities (LMIs). We present an illustrative example for a model of the
position controller of an unmanned aerial vehicle (UAV).

1 Introduction

Model-based design of embedded control systems is becoming standard practice.
Applying formal methods to embedded control design is important for reducing
time to market and for meeting safety and performance requirements, but for-
mal methods are difficult to apply to systems that interact with a continuous
dynamic environment. We present a formal verification technique based on the
combination of software Model Checking and numerical simulation of a contin-
uous dynamic plant. We use level sets of bisimulation functions [1] to represent
sets of plant trajectories and a notion of program equivalence for the controller
� This research was sponsored by the Air Force Research Office (AFRO) under contract

no. FA9550-06-1-0312, and by the National Science Foundation (NSF) under grant
no. CCR-0411152. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either
expressed or implied, of AFRO, NSF, or the U.S. government.

�� The first author was supported by General Motors under grant no. GM9100096UMA.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 344–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Verification of Supervisory Control Software 345

to guarantee safety bounds and provide an efficient and exhaustive search of the
system behaviors. The approach narrows the gap between simulation and Model
Checking of control systems.

A nonconservative approach that combines Model Checking [2,3] and simu-
lation was first proposed in [4]. That approach provides a means of efficiently
searching for counterexamples, but since it is not conservative, it cannot guaran-
tee safety. The approach presented here formalizes and extends that technique by
employing conservative approximations of the set of reachable states. Reachable
set estimation is a central problem in performing verification of safety proper-
ties. Other techniques compute the reachable set of states forward in time and
merge the reachable trajectories that are in proximity to each other in the state
space [5,6]. In the approach proposed here, the safety requirements are used
to construct sets of states that are guaranteed to be safe and these sets are
propagated backwards in time.

The work by Julius et al. provides a means for determining maximum safety
bounds for simulation traces [7], but the technique does not handle nondeter-
minism in the discrete transitions and it does not consider the semantics of the
control software. The work presented here deals efficiently with the prolifera-
tion of reachable paths that occurs due to nondeterministic behaviors in the
controller.

2 System Model

We consider supervisory controllers, by which we mean feedback controllers that
select operating modes for continuous dynamic systems. The supervisor may se-
lect plant operating modes directly or manage lower-level feedback control loops.
Lower-level control loops are modeled as part of the plant. This is appropriate
if the lower-level controller has a significantly higher sampling rate than the su-
pervisor. A sampled-data supervisor observes the state of the plant only at fixed
times, called sample instants. We assume that the sample instants are multiples
of a fixed sampling period, ts > 0. We model systems where the supervisor is
implemented by a set of tasks, and the plant is described by a set of differential
equations. We assume that the code of the supervisor executes instantaneously,
which is a reasonable assumption if the sampling period of the supervisor is
large compared to the actual execution time of the code. Also, we assume that
all tasks share the same clock. This assumption is appropriate for analyzing con-
trol software implemented as a set of concurrent tasks on one processor or on
multiple processors if the clock skew and jitter are small relative to the sampling
period of the tasks.

Consider a set of m supervisor variables taking values from a finite set V, and
a set of n real-valued plant variables. Let v ∈ V m be the value of the supervisor
variables, and x ∈ R

n be the value of the plant variables, called the plant state.

Definition 1 (Supervisor Task). Given a set of m supervisor variables with
domain V m and a set of plant states R

n, a supervisor task is a tuple Ti =
〈Loci, li,initial , li,final , δi〉 where:

346 F. Lerda et al.

– Loci is a finite set of control locations;
– li,initial , li,final ∈ Loci are two specially designated locations, called the initial

and final control locations of Ti; and
– δi : R

n → 2Loci×V m×Loci×V m

is the transition relation of Ti. We assume
that there are no transitions from the final control location li,final .

At each sample instant, the task starts executing at the initial control location
li,initial and executes until it reaches the final control location li,final . We assume
that every sequence of task transitions is finite and eventually reaches the control
location li,final , i.e., the code has no deadlock or livelock. A Model Checker can
be used to detect deadlocks and livelocks, but these aspects have been omitted
from the presentation for the sake of clarity. An approach that takes into account
these aspects is described in [4]. Notice that the transition relation δi depends
on the current plant state x. Given li, l̂i ∈ Loci, v, v̂ ∈ V m, and x ∈ R

n, there
exists a transition from (li,v) to (l̂i, v̂) when the plant state is equal to x if and
only if (li,v, l̂i, v̂) ∈ δi(x).

Definition 2 (Sampled-Data Control System). A sampled-data control
system is a tuple SDCS = 〈{T1, . . . , Tp}, V, fv, ts, Init〉 where:

– {T1, . . . , Tp} is a finite set of supervisor tasks;
– V is a finite domain for the supervisor variables;
– For each v ∈ V m, fv : R

n → R
n is a Lipschitz continuous function that

describes the flow of the plant and depends on the value of the supervisor
variables;

– ts is the sampling period; and
– Init ⊆ Loc1 × . . . × Locp × V m × R

n is a set of initial states.

Let Loc denote the set Loc1 × . . . × Locp of the control locations for all of the
tasks. A state of an SDCS is a tuple (q,x) where: q = (L,v) is the supervisor
state, L ∈ Loc specifies the control locations of each task, v ∈ V m is the value
of the supervisor variables, and x ∈ R

n is the plant state. Given a value v for
the supervisor variables and a plant state y, let ξy

v : R → R
n denote a solution

to the initial value problem ẋ(t) = fv(x(t)),x(0) = y. Since we assumed that
fv(·) is Lipschitz continuous, there exists a unique ξy

v(·) for every y ∈ R
n.

Definition 3 (Transitions). Given two states s = (q,x) and ŝ = (q̂, x̂) of an
SDCS, there exists a transition from s to ŝ, denoted by s −→ ŝ, if either:

– q = ((l1, . . . , lp),v), q̂ = ((l̂1, . . . , l̂p), v̂), and there exists a task Tj such that
x = x̂, (lj ,v, l̂j , v̂) ∈ δj(x) and, for every task Ti not equal to Tj , li = l̂i.
This is called a supervisor transition.

– q = (Lfinal ,v), q̂ = (Linitial ,v), and x̂ = ξx
v(ts). This is called a plant

transition.

A trace of an SDCS is a finite sequence of states σ = s0 . . . sK , for some K, such
that sk −→ sk+1 for all 0 ≤ k < K. Figure 1 provides an illustration of traces
of an SDCS. In the figure, the plant states have two dimensions, corresponding

Verification of Supervisory Control Software 347

Fig. 1. An illustration of traces of an SDCS. Solid arrows connecting points represent
plant transitions. Dotted lines connecting points represent supervisor transitions.

to the axes labeled x1 and x2. The vertical axis represents the value of the
supervisor variables: each plane corresponds to a different value of the supervisor
variables, namely va,vb, and vc. The initial state is s0 = (Lfinal,va,xinit), and
the first transition is a plant transition, s0 −→ s1, where s1 = (Linitial,va, x̂)
for some x̂. From s1, nondeterminism in the supervisor leads to two separate
states, s2 = (Lfinal,vb, x̂) and s4 = (Lfinal,vc, x̂). From each of these states a
plant transition is taken, s2 −→ s3, where s3 = (Linitial,vb,y) for some y, and
s4 −→ s5, where s5 = (Linitial,vc, z) for some z.

Definition 4 (Duration). The duration of a trace σ is the amount of time
elapsed between its first state and its last state, and it is defined inductively as
follows:

– If σ = s0, duration(σ) = 0.
– If σ = s0 . . . sK and sK−1 −→ sK is a supervisor transition then

duration(σ) = duration(s0, . . . sK−1), since we assume that supervisor tran-
sitions execute instantaneously.

– If σ = s0 . . . sK and sK−1 −→ sK is a plant transition then duration(σ) =
duration(s0, . . . sK−1) + ts.

A state s of an SDCS is reachable within a time bound T if and only if there
exists a trace σ = s0 . . . sK , for some K, such that s0 ∈ Init , sK = s and
duration(σ) ≤ T . Given a time bound T and a set of states Fail ⊂ Loc×V m×R

n,
a state s is safe for time bound T if and only if for every trace σ = s0 . . . sK ,
of arbitrary length K, such that s0 = s and duration(σ) ≤ T, we have that
sK /∈ Fail . For example, state s0 in Figure 1 is safe for time bound 2ts.

Definition 5 (Bounded-Time Safety). Given an SDCS, a set Fail ⊂ Loc ×
V m ×R

n of fail states, and a time bound T, the SDCS is safe for time bound T
if and only if all initial states are safe for time bound T .

348 F. Lerda et al.

3 Conservative Verification Using Merging

In [4], we presented an approach that combines Model Checking and simulation
to check bounded-time safety of an SDCS with a finite set of initial states. That
work also introduces a notion of approximate equivalence that is used to prune
the state space and, therefore, reduces the size of the state space that needs to
be explored. The approach is not conservative, however; it can be used to search
for counterexamples, but it is unable to prove safety.

Our approach for proving bounded-time safety of an SDCS is able to prune
parts of the state space by merging traces, which corresponds to merging a state
with a previously visited one. In Model Checking, merging can be done only
when a state on one trace is identical to a state on another trace. Our approach
is able to perform a merge when two states are in proximity to each other if the
pruned parts of the state space are guaranteed to be safe. In the following, we
show how to determine safe sets of plant states around the points in a trace.
These sets correspond to a set of traces that are in proximity of the visited trace
and are guaranteed to be safe. When a state that is within a safe set is reached,
the trace can be merged conservatively and the successors of such a state do not
need to be explored further.

In general, given a dynamical system and two initial states that are in prox-
imity to each other, the trajectories starting at those initial states may diverge.
This paper uses bisimulation functions to bound the distance between future
evolutions. Bisimulation functions were introduced by Girard and Pappas as a
way to determine the relation between states of a dynamical system [1]. In this
work, we use bisimulation functions to approximate conservatively the plant
transitions.

Definition 6 (Bisimulation Function). [1] Given an autonomous dynamical
system Σ described by ẋ(t) = fv(x(t)) where x : R → R

n and f : R
n → R

n, a
differentiable function ϕv : R

n × R
n → R is a bisimulation function of Σ if and

only if

– ϕv(y, z) ≥ 0, for all y, z ∈ R
n; and

– ∇yϕv(y, z) · fv(y) + ∇zϕv(y, z) · fv(z) ≤ 0, for all y, z ∈ R
n.

Definition 7 (Sublevel Sets). Given x ∈ R
n, a bisimulation function ϕ of

ẋ(t) = f(x(t)), and a real value r ≥ 0, the sublevel set of the bisimulation
function ϕ centered at x and of size r, denoted by Nϕ(x, r), is defined as

Nϕ(x, r) = {z ∈ R
n |ϕ(x, z) ≤ r}.

In the following, we assume that the bisimulation functions are symmetric, i.e.,
ϕ(y, z) = ϕ(z,y) for every y, z ∈ R

n. If a bisimulation function ϕ(·, ·) is a metric
on R

n, then it is called a contraction metric [8]. We assume that for every value
of the supervisor variables v, a bisimulation function ϕv of the autonomous
dynamical system ẋ(t) = fv(x(t)) is given. We can now state the following
theorem about bisimulation functions and plant transitions, based on a theorem
from Julius et al. [7].

Verification of Supervisory Control Software 349

Theorem 1 (Plant Approximation). Given two states s = ((Lfinal ,v),y)
and ŝ = ((Linitial ,v), ŷ) such that s −→ ŝ is a plant transition, and a bisimu-
lation function ϕv for the differential equation ẋ(t) = fv(x(t)), for every r ≥ 0
and for every z ∈ Nϕv(y, r), if ((Lfinal ,v), z) −→ ((Linitial ,v), ẑ) is a plant
transition, then ẑ ∈ Nϕv(ŷ, r).

Proof. The theorem is a direct consequence of Corollary 1 of [7].

Given a program state q and a time bound T, a set X ⊆ R
n of plant states

is safe for T at q if and only if, for every x ∈ X, s = (q,x) is safe for time
bound T . Given a program state q, the set of fail plant states at q is defined as
Failq = {x ∈ R

n | (q,x) ∈ Fail}.

Theorem 2 (Plant Transition Approximation). Given two states (q,y)
and (q̂, ŷ) such that q = (Lfinal ,v), q̂ = (Linitial ,v), and (q,y) −→ (q̂, ŷ) is a
plant transition, if X̂ ⊆ R

n is safe for T at q̂, then for all r ≥ 0, if Nϕv(ŷ, r) ⊆ X̂
and Nϕv(y, r) ⊆ Failq then Nϕv(y, r) is safe for (T + ts) at q.

Proof. We prove this theorem by contradiction. Assume that Nϕv(y, r) is not
safe for (T + ts) at q. This means that there exists a plant state z ∈ Nϕv(y, r)
and a trace σ = s0s1 . . . sK , for some K, such that s0 = (q, z), sK ∈ Fail , and
duration(σ) ≤ T + ts. Since z ∈ Nϕv(y, r) ⊆ Failq, we have that s0 /∈ Fail
and therefore the trace must contain at least two states (K ≥ 1). Let σ̂ denote
s1 . . . sK . By Definition 4 we have that duration(σ̂) = duration(σ) − ts ≤ T . By
Definition 3, s1 = (q̂, ẑ) for some ẑ ∈ R

n. By Theorem 1 we can deduce that
ẑ ∈ Nϕv(ŷ, r). But, by hypothesis, Nϕv(ŷ, r) ⊆ X̂ and therefore ẑ ∈ X̂ . Since X̂
is safe for T at q̂, there does not exists any trace starting at (q̂, ẑ) that reaches a
state in Fail and whose duration is less than or equal to T . However, σ̂ is such
a trace, which is a contradiction. Therefore Nϕv (y, r) must be safe for (T + ts)
at q. ��

Figure 2-(a) illustrates the notion of safe plant states and plant transition ap-
proximations. On each plane, the areas marked by Fail correspond to the parts of
the plant state space that are unsafe for the corresponding value of the supervisor
variables. Plant transitions correspond to continuous lines within a given plane;
supervisor transitions correspond to dotted lines from one plane to another. The
two sets N3 and N5 are safe for time bound zero as they do not intersect the
Fail plant states in the corresponding planes. By Theorem 2, the sets N2 and
N4 are safe for time bound ts, the sampling period, as they are guaranteed to
avoid the Fail region if the system evolves for one sampling period.

Theorem 2 allows us to determine a set of plant states that are safe for (T +ts)
at a given supervisor state q given a set of plant states that are safe for T at
the supervisor state q̂ obtained by performing a plant transition. Below we show
how to compute a set of plant states that is safe for T at a supervisor state
q for the case of discrete transitions. While continuous transitions are always
deterministic, supervisor transitions may lead from one state to a number of
successor states. In order to deal with this, we define a notion of equivalence
between continuous states with respect to a supervisor state.

350 F. Lerda et al.

(a) (b)

Fig. 2. (a) An illustration of sets safe for a time bound T . N3 and N5 are safe for time
bound zero. N1, N2, and N4 are safe for ts; (b) An illustration of merging. N6 is safe
for ts since all of its states make transitions into the set N2, which is safe for ts.

Definition 8 (Program Equivalence). Given a supervisor state q and a pair
of plant states y, z ∈ R

n, we say that y is program equivalent to z at q, denoted
by y ≈q z, if the set of successors of q at plant state y is the same as the set of
successors of q at plant state z, i.e., Q̂q(y) = Q̂q(z) where, given a supervisor
state q and a plant state x, Q̂q(x) = {q̂ | (q,x) −→ (q̂,x)} .

The relation ≈q defined above is an equivalence relation. Therefore, for every
supervisor state q, ≈q defines a set of equivalence classes. Given a supervisor
state q and a plant state y, let [y]≈q

denote the equivalence class of y defined
by ≈q, that is [y]≈q

= {z ∈ R
n |y ≈q z}.

Theorem 3 (Supervisor Transition Approximation). Given a state (q,y)
with q = (L,v) and L �= Lfinal , for each q̂ ∈ Q̂q(y), let X̂q̂ ⊆ R

n be a set of
plant states safe for some time bound Tq̂ at q̂. Let T = minq̂∈Q̂q(y) Tq̂ denote the
minimum of the time bounds for each q̂. The set

X = [y]≈q
∩ Fail q ∩

⋂

q̂∈Q̂q(y)

X̂q̂

is safe for time bound T at q.

Proof. We prove this theorem by contradiction. Assume X is not safe for T at
q. This means that there exists a plant state z ∈ X and a trace σ = s0s1 . . . sK ,
for some K, such that s0 = (q, z), sK ∈ Fail , and duration(σ) ≤ T . Since
z ∈ X ⊆ Fail q, we know that s0 /∈ Fail and therefore the trace must contain at
least two states (K ≥ 1). The first transition of σ must be a discrete transition
because L �= Lfinal by hypothesis. Let s1 = (q̂, z) and σ̂ = s1 . . . sK . Since

Verification of Supervisory Control Software 351

z ∈ X ⊆ [y]≈q
, by hypothesis, we know that there exists a discrete transition

(q,y) −→ (q̂,y). Therefore, by hypothesis, q̂ ∈ Q̂q(y). Since we assumed that
z ∈ X and, by hypothesis, X ⊆ X̂q̂, we have that z ∈ X̂q̂. But, by hypothesis, X̂q̂

is safe for time bound Tq̂ at q̂. This means that there does not exist any trace
starting at (q̂, z) that reaches a state in Fail and whose duration is less than
or equal to Tq̂. But σ̂ is such a trace because duration(σ̂) ≤ Tq̂. This is true
since duration(σ̂) = duration(σ) ≤ Tq̂, by assumption, and T ≤ Tq̂. This is a
contradiction and therefore X must be safe for T at q. ��

Figure 2-(a) shows an application of the theorem above. In this case, the state
s1 = (q,y) has two successors, states s2 and s4. We assume that the sets N2 and
N4 are safe for time bound ts. The set X1 in the figure denotes the equivalence
class [y]≈q

corresponding to s1. Then N1 is safe for ts, because N1 does not
intersect the fail states of q, every state of N1 is program equivalent to y, and
N1 is contained within both N2 and N4.

The conservative merging occurs when a trace reaches a state within a safe
set of plant states. State s7 in Figure 2-(b) is within N2, which we assume to be
safe for time bound ts. The state s6 has a single successor, namely s7. The set
X6 in the figure denotes the equivalence class corresponding to state s6. The set
N6 does not intersect the fail region, N6 is a subset of N2, and N6 is a subset
of the equivalence class X6. Therefore, by Theorem 3, we can deduce that N6

is safe for ts: any trace starting from a plant state within N6 leads to a state
within N2.

3.1 Bounded-Time Safety Verification Algorithm

This section gives an algorithm to check bounded-time safety of an SDCS . This
algorithm is based on the explicit-state Model Checking algorithm [3], but uses
level sets of a bisimulation function and the notion of program equivalence to
determine sets of plant states that are safe. The standard explicit-state Model
Checking algorithm is a depth first search of the set of reachable states for each
of the initial states. By using bisimulation functions and the notion of program
equivalence, the algorithm presented here is able to determine, without looking
at every trace, if a certain state encountered during the analysis is guaranteed
not to lead to a fail state.

The procedures main and explore in Figure 3 implement the depth first
search. For each initial state (q,x), the procedure explore is invoked to perform
a depth first search up to the time bound T (lines 5-10). If the initial state is
safe, a set of states that are safe for T at q is returned: this set is added to the set
of initial states that are guaranteed to be safe (SafeInit on line 8). Otherwise, if
an error was detected, it is returned immediately (line 10). After analyzing each
initial state, the set of safe initial states is returned on line 11. The procedure
explore takes as arguments a state (q,x), a time bound τ, and a trace σ which
leads to (q,x). The time bound τ represents the amount of time remaining from
the given state; that is, τ = T − duration(σ). It performs the actual depth first

352 F. Lerda et al.

1: global SDCS, Fail , T;
2: global safe sets ← ∅; Sets of safe plant states, initially empty.

3: main: Check bounded-time safety of SDCS
4: SafeInit ← ∅ Set of safe initial states.
5: foreach ((q, x) ∈ Init) Depth-first search for each initial state.
6: result ← explore(q, x, T, [(q, x)]);
7: if(result = (SAFE , X))
8: SafeInit ← SafeInit ∪ {(q, x) | x ∈ X} Add to safe initial states.
9: else
10: return result; An error was detected.
11: return (SAFE , SafeInit); Return the set of safe initial states.

12: function explore(q, x, τ , σ) Depth-first search from (q, x) up to time τ .
13: if ((q, x) ∈ Fail) return (UNSAFE , σ); Check for fail states.

14: if (∃ (q̂, X̂ , τ̂) ∈ safe sets: q = q̂ ∧ x ∈ X̂ ∧ τ ≤ τ̂)

15: return (SAFE , X̂); Merge traces if within a safe set.
16: if (q.L = Lfinal)
17: result = plant transition(q, x, τ , σ); Plant transition
18: else
19: result = supervisor transitions(q, x, τ , σ); Supervisor transitions
20: if (result = (SAFE , X))
21: safe sets ← safe sets ∪ {(q, X , τ)}; Plant states safe for τ at q.
22: return result;

23: function plant transition(q, x, τ , σ)
24: if (τ < ts) Stop if time bound is less than sampling time
25: return (SAFE , {x | (q,x) /∈ Fail});
26: x̂ ← sim(x, fq.v); Numerical simulation
27: q̂ ← (Linitial , q.v);
28: result = explore(q̂, x̂, τ - ts, σ · (q̂, x̂));

29: if (result = (SAFE , X̂))

30: rmax ← max
{

r | Nϕq.v (x̂, r) ⊆ X̂
}
; Safe set of plant states

31: return (SAFE , Nϕq.v (x, rmax));
32: else
33: return result;

34: function supervisor transitions(q, x, τ , σ)

35: Q̂ ← {q̂ | ∃i: (q, q̂) ∈ δi(x)}; Explore each successor

36: X ← [x]≈q ∩ Fail ;

37: foreach (q̂ ∈ Q̂)
38: result ← explore(q̂, x, τ , σ · (q̂, x));

39: if (result = (SAFE , X̂))

40: X = X ∩ X̂ ;
41: else
42: return result;
43: return (SAFE , X);

Fig. 3. The conservative merging verification algorithm

Verification of Supervisory Control Software 353

search starting from the given state up to the time bound. The trace σ is used
to generate a counterexample if a fail state is reached (line 13). The current
state is compared with the sets of safe states that have been determined so far
(lines 14-15). If there exists a set of plant states X̂ that is safe for the current
supervisor state q and a longer time bound τ̂ ≥ τ, the search of this branch can
terminate and the set of plant states X̂ is returned to the caller as safe.

Two ways of computing the successor states are possible. If the current control
state is equal to Lfinal , then a plant transition is performed by calling the function
plant transition (line 17). Otherwise, the transitions of the supervisor are
explored by calling the function supervisor transitions (line 19). In either
case, if the result is that the current state is safe, the set X of plant states that
are computed to be safe for state q and time bound τ is added to the list of safe
sets (line 21).

The result of a plant transition is computed by the function plant transition
in Figure 3. Line 25 is executed if the time bound has been reached, i.e., there is
not enough time left to complete an additional plant transition. The set of plant
states that are safe for time bound τ at q is simply the set of plant states that are
not fail states at supervisor state q, since τ < ts (line 24). Otherwise, the successor
state (q̂, x̂) of the current state (q,x) is computed using numerical simulation (line
26) and by setting the current control location to Linitial (line 27). The search
continues from the new state by calling explore. The recursive call uses a smaller
time bound and adds one state to the trace being constructed (line 28). If the
result at line 28 is that state (q̂, x̂) is safe, the set of states X̂ that are safe for
time bound τ − ts at q̂ is used to determine the maximum size of a sublevel set of
the bisimulation function centered around x that is safe for time bound τ at q by
solving the optimization problem:

rmax = max
{
r ∈ R | Nϕv(x̂, r) ⊆ X̂

}
,

where v is the current value of the supervisor variables and ϕv is the bisimulation
function for ẋ = fv(x) (line 30). The set Nϕv(x, rmax) is returned to the caller
since it is safe for time bound τ at q.

The function supervisor transitions in Figure 3 computes and explores
the successors of a state (q,x) that originate from transitions of the supervisor.
The set of successors Q̂ is generated by using the transition relations δ1, . . . , δp

of the tasks that make up the supervisor (line 35). Each successor q̂ is visited
by calling the function explore over (q̂,x) with the same time bound τ (since
supervisor transitions are instantaneous) and with a trace that adds the new
state (q̂,x) to σ (line 38). If the state (q̂,x) is safe, a set of safe plant states X̂
is returned by the recursive call. The set of safe plant states that is returned to
the caller by this call (line 43), computed by lines 36 and 40, is

X = [x]≈q
∩ Fail q ∩

⋂

q̂∈Q̂

X̂q̂.

354 F. Lerda et al.

This concludes the description of the algorithm. The following theorems es-
tablish correctness and termination of the procedure. The proofs are omitted for
the sake of brevity.

Theorem 4 (Correctness). Consider an SDCS, a set of fail states Fail , and a
time bound T . If the algorithm of Figure 3 returns (SAFE, SafeInit) then the SDCS
is safe for time bound T, Init ⊆ SafeInit , and all states in SafeInit are safe for time
bound T . If the algorithm returns (UNSAFE, σ) then SDCS is not safe for time
bound T and σ is a trace of duration less than T that ends at a state in Fail .

Theorem 5 (Termination). Given an SDCS = 〈{T1, . . . , Tp}, V, fv, ts, Init〉
such that Init is finite, the algorithm of Figure 3 always terminates.

3.2 Ellipsoidal Sets for Affine Dynamics

In this subsection, we discuss properties related to our technique for the case of
stable affine plant dynamics and sets of fail states defined by linear inequalities

Bisimulation Functions. For the special case of stable, affine plant dynamics,
fv(x) = Avx + Bv, a bisimulation function is given by

ϕv(y, z) = (z − y)T Pv(z − y),

where Pv satisfies the Lyapunov inequality Av
T Pv +PvAv ≤ 0. The level sets

are given by Nϕv(x, r) = {z ∈ R
n | (z−x)T Pv(z−x) ≤ r}, which are ellipsoidal.

Maximum Ellipsoid Within an Ellipsoid. In the case of affine dynamics,
one operation required in line 30 of the procedure given in Figure 3 is the com-
putation of the maximum sized ellipsoid contained in a second ellipsoid. Given
a set Nϕv(z, rz) and a point y ∈ R

n, we want to find the maximum ry such
that Nϕv(y, ry) ⊆ Nϕv (z, rz). It is shown in [9] that this is equivalent to the
following:

max
λ,c

c

s.t.

⎡

⎣
−rzQv (z − y) c

√
Qv

(z − y)T λ − 1 0
c
√

Qv 0 −λI

⎤

⎦ ≤ 0, λ ≥ 0, c ≥ 0,

where c = √
ry, Qv = Pv

−1, I is the identity matrix, and
√

Qv is the matrix that
satisfies Qv =

√
Qv

√
Qv, which exists since Qv is positive semidefinite. This is

a convex problem with LMI constraints. Numerical tools exists for solving such
problems in polynomial time.

Maximum Ellipsoid Within a Set of Linear Constraints. Another oper-
ation required in line 30 of the procedure given in Figure 3 for the case of affine
dynamics is the computation of an ellipsoid of maximum size that satisfies a
conjunction of linear constraints. We want to maximize r subject to constraints

Verification of Supervisory Control Software 355

of the form
∧imax

i=1 cT
i y ≤ bi for all y ∈ Nϕv(x, r) = {z ∈ R

n | (z−x)T Pv(z−x) ≤
r}, where bi ∈ R, ci ∈ R

n for each i. Let Qv = Pv
−1. The maximum r that

satisfies the linear constraints is then given by [10]

r∗ = min
i∈{1,...,imax}

(bi − cT
i x)2

cT
i Qvci

.

4 Experimental Results

The technique presented in the previous section was implemented using an
existing explicit-state source-code Model Checker. The tool we chose is Java
PathFinder [11]. The main purpose of the tool is to verify Java programs, but it
also handles the subset of C that is common to the two languages. This proto-
type implementation handles systems where the plant dynamics are affine. We
use the LMI tool CVX with the semidefinite program solver SDPT3 [12,13] to
solve the optimization problems that arise during the verification.

Java PathFinder was extended as follows. The state of a system was enhanced
to include the plant state x, represented by a set of floating-point variables.
Our extension stores sets of plant states that are safe with respect to a given
supervisor state and time bound. Safe sets are represented as ellipsoidal sets, and
program equivalence classes and system requirements are represented as sets of
linear constraints. Ellipsoidal sets are represented by their size parameter r and
their center, while the shape and orientation are determined by the bisimulation
function given for each set of plant dynamics. The set of constraints used to
express the set of fail states as well as the program equivalence classes are given
as annotations. Moreover, since the plant dynamics are affine, it is possible to
convert the continuous-time dynamics into discrete-time difference equations
over the fixed sampling period ts.

We applied our technique to an example based on the Stanford Testbed of
Autonomous Rotorcraft for Multi-Agent Control (STARMAC), a quadrotor un-
manned aerial vehicle (UAV) under development at Stanford University [14].
The vehicle is a square frame with four rotors mounted on its corners and a
computer controller and power supply at its center. The controller sends thrust
commands to the four rotors. The supervisor makes its decisions based on mea-
surements of the state of the vehicle. We consider a model of the STARMAC
system with six plant state variables: the horizontal position and velocity (x and
ẋ), the vertical position and velocity (z and ż), and the rotation about the y-axis
and the corresponding rotational velocity (θ and θ̇). The y position and rotation
around the x-axis and z-axis are not included in this model. Motors 1 and 3
provide lift and torque around the y-axis, while motors 2 and 4 only provide
lift. The forces applied by motors 2 and 4 lie on the y-axis. Equivalent force is
applied by motors 2 and 4 at all times.

The equations of motion are nonlinear. We linearized the equations and de-
signed a linear quadratic regulator (LQR) to drive the system to a given set point.

356 F. Lerda et al.

Model-Checking-Guided Model Checking
Simulation without Merging with Safe Sets and Merging

Visited states 43,134 25,493
Running time 17 sec 107 sec
Memory usage 90.2MB 77.0MB

Fig. 4. Visited states, running time, and memory usage for the time bound T = 90 sec
with and without merging of safe states. The number of state merges was 282.

The LQR controller is modeled as part of the plant. The system we obtained is of
the form ẋ = Ax + Bx∗, where x∗ is the set point we want to reach and

A = −B =

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.6 0.0 0.0 0.0 0.0 9.8
1.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 −1.1 −0.4 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0

−35.4 −22.1 0.0 0.0 −70.2 −2221.7
0.0 0.0 0.0 0.0 1.0 0.0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The supervisory controller for this system is implemented by two concurrent
tasks: one task determines the target position based on a given list of waypoints;
the other sends position commands to the plant. Due to the interleaving of the
two tasks, the plant might receive the updated target position with a sampling
period delay, and the system will follow slightly different traces every time a new
waypoint is generated.

We performed the analysis both with and without state merging. The results,
presented in Figure 4 show a significant reduction in number of visited states
and memory usage. The space overhead due to the ellipsoidal sets that need
to be associated with each visited state was limited and it was offset by the
reduction in memory consumption due to the drastic reduction in number of
visited states. Such a reduction was obtained with just a handful of conservative
state merges: even a single merge can lead to a large reduction because every state
reachable from the merged state no longer needs to be visited. The approach as
implemented showed a significant overhead in terms of running time, however,
which could be reduced by further optimizing the operations involving storing
and lookup of ellipsoids.

5 Conclusions

This paper presents a formal verification technique for embedded control systems
based on the combination of software Model Checking and numerical simulation
of a continuous dynamic plant. The technique can provide a guarantee that a
continuous dynamic plant controlled by a supervisor implemented in software
satisfies safety requirements over a given time bound.

The algorithm presented in this work can be applied to system with nonlinear
plant dynamics; however, the process of identifying bisimulation functions for

Verification of Supervisory Control Software 357

nonlinear systems is difficult, in general. The work by Parrilo et al. on iden-
tifying Lyapunov functions for a class of nonlinear systems is related to the
work presented here [15]. Due to the similarity between Lyapunov functions and
bisimulation functions, similar techniques can be used to compute bisimulation
functions for nonlinear systems.

References

1. Girard, A., Pappas, G.J.: Approximation Metrics for Discrete and Continuous Sys-
tems. Technical Report MS-CIS-05-10, University of Pennsylvania (2005)

2. Clarke, E.M., Emerson, E.A.: Synthesis of Synchronization Skeletons for Branching
Time Temporal Logic. In: Proc. of Workshop on Logic of Programs (1981)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

4. Lerda, F., Kapinski, J., Maka, H., Clarke, E.M., Krogh, B.H.: Model Checking
In-The-Loop. In: The 27th American Control Conference (submitted, 2007)

5. Kapinski, J., Krogh, B.H., Maler, O., Stursberg, O.: On Systematic Simulation of
Open Continuous Systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 283–297. Springer, Heidelberg (2003)

6. Donzé, A., Maler, O.: Systematic Simulation using Sensitivity Analysis. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189.
Springer, Heidelberg (2007)

7. Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust Test Gen-
eration and Coverage for Hybrid Systems. In: Bemporad, A., Bicchi, A., Buttazzo,
G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)

8. Aylward, E., Parrilo, P.A., Slotine, J.J.E.: Algorithmic Search for Contraction Met-
rics via SOS Programming. In: Proc. of the 2006 American Control Conference
(2006)

9. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in
System and Control Theory. In: SIAM Studies in Applied Mathematics, vol. 15.
SIAM, Philadelphia (1994)

10. Kurzhanski, A.B., Vályi, I.: Ellipsoidal Calculus for Estimation and Control.
Birkhäuser, Boston (1997)

11. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model Checking Programs.
Automated Software Engineering 10(2), 203–232 (2003)

12. Grant, M., Boyd, S., Ye, Y.: CVX User’s Guide (2007)
13. Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3 4.0. MIT Press, Cambridge (2006)
14. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor Helicopter

Flight Dynamics and Control: Theory and Experiment. In: Proc. of the AIAA
Guidance, Navigation, and Control Conference (2007)

15. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry
Methods in Robustness and Optimization. PhD thesis, California Institute of Tech-
nology (2000)

Optimotaxis: A Stochastic Multi-agent

Optimization Procedure with Point
Measurements�

Alexandre R. Mesquita, João P. Hespanha, and Karl Åström

Center for Control, Dynamical Systems and Computation
University of California, Santa Barbara, CA 93106

Abstract. We consider the problem of seeking the maximum of a scalar
signal using a swarm of autonomous vehicles equipped with sensors that
can take point measurements of the signal. Vehicles are not able to mea-
sure their current position or to communicate with each other. Our ap-
proach induces the vehicles to perform a biased random walk inspired
by bacterial chemotaxis and controlled by a stochastic hybrid automa-
ton. With such a controller, it is shown that the positions of the vehicles
evolve towards a probability density that is a specified function of the
spatial profile of the measured signal, granting higher vehicle densities
near the signal maxima.

1 Introduction

This paper addresses the problem of controlling a team of autonomous vehicles so
as to find the maximum of a scalar function defined over a region of interest, with-
out position and gradient measurements. In the stochastic framework adopted,
our goal is to enforce a probability density for the vehicles’ positions whose
maximum coincides with the maximum of the scalar function. This is achieved
by inducing the vehicles into a random motion that mimicks the chemotactic
behavior observed in the bacterium Escherichia coli. Being unable to directly
sense chemical gradients because of its reduced dimensions, this organism is still
able to follow the gradient of a chemical attractant, despite the rotational dif-
fusion that constantly changes the bacterium orientation. This is accomplished
by switching between two alternate behaviors known as run and tumble [1,2].

The problem of finding the maximum of a spatially defined function by moving
agents (that we also call vehicles) is often called source-seeking. This terminology
refers to a specific application of this problem, which consists of finding the
source of a chemical substance that is being produced at one particular location,
but spreads over a region through a diffusion process. Potential applications for
source-seeking include chemical plant safety, hydrothermal vent prospecting and
pollution and environmental monitoring.
� This material is based upon work supported by the Inst. for Collaborative Biotech-

nologies through grant DAAD19-03-D-0004 from the U.S. Army Research Office.
The first author was partially funded by CAPES (Brazil) grant BEX 2316/05-6.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 358–371, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Optimotaxis: A Stochastic Multi-agent Optimization Procedure 359

We are interested in source-seeking under very limited sensing by the vehi-
cles. Gradient information is often not directly available, either because of noisy
and turbulent environments or because the vehicle size is too small to provide
accurate gradient measurements, challenges also faced by E. coli. In addition,
dispensing position measurements is necessary in applications for which inertial
navigation systems are expensive, GPS is not available or not sufficiently accu-
rate (as in underwater navigation or cave exploration), or the vehicles are too
small or weight-constrained to carry this type of equipment.

Classical techniques from numerical optimization have been adapted for
single- and multi-vehicle search strategies when gradients are not explicitly
available [3,4,5]. In [3], the local gradient is estimated by means of a circular
movement. The simplex method is implemented with a network of autonomous
vehicles in [4]. However, this approach requires the ability to measure the vehi-
cles relative position. Mayhew et al. [5] proposed a hybrid control algorithm to
perform a conjugate directions method without position measurements. Control
algorithms for networks of vehicles inspired by collective behavior such as fish
schooling and chemotaxis are designed in [6,7]. An extremum seeking strategy
is adopted in [8]. Statistical approaches have also been proposed for the case of
turbulent environments, but assuming the availability of vehicle’s position mea-
surements [9,10]. In general, when convergence is proven in the above mentioned
references, this is done exclusively under the assumption that the signal spatial
profile is quadratic-like. Bio-inspired techniques have a strong appeal in opti-
mization. Examples are the well-known genetic algorithms and the solutions for
the traveling salesman problem inspired by ant colonies [11]. Mimicking chemo-
taxis is not a new approach to the source-seeking problem, see e.g. [6,10,12,13].

In the E. coli, chemotaxis consists of an alternation of two modes of motion
called the run and tumble phases. In the run phase the bacterium swims with
constant velocity by rotating its flagella in the counter-clockwise direction. In the
tumble phase, by rotating its flagella in the clockwise direction, the bacterium
spins around without change in its position and in such a way that it enters
the next run phase with arbitrary orientation. Berg and Brown [1] observed
that the only parameter that is affected by the concentration of a chemical
attractant is the duration of runs. Roughly speaking, the less improvement the
bacterium senses in the concentration of the attractant during the run phase,
the more probable a direction change (tumble) becomes. Such a motion leads
to a distribution whose peak usually coincides with the optimum of the sensed
quantity. Whereas the previous works on chemotaxis-based source-seeking rely
on a heuristic approach, we present a technique that allows one to control the
probability density of the vehicle’s position to permit the estimation of not only
the peak of the sensed signal, but also the whole spatial profile of that signal.
In fact, with the algorithm proposed, the probability density of the vehicle’s
position converges to a pre-specified function of the signal spatial profile. We
adopt the suggestive name of optimotaxis to designate this search procedure.
An important feature of optimotaxis is that it can be used with a broad class

360 A.R. Mesquita, J.P. Hespanha, and K. Åström

of signal profiles, including the ones with multiple maxima, a feature that is
shared with a few other stochastic optimization algorithms which are not con-
strained by vehicle kinematics [14,15].

Optimotaxis is motivated by scenarios in which source-seeking is to be solved
by a team of autonomous agents. Since the probability density of the agents’ po-
sition is guaranteed to converge to a pre-specified function of the sensed signal,
a supervisor that can sense the positions of the individual agents will be able to
monitor the profile of the sensed signal and discern the location of its optimum.
Our convergence results (cf. Theorems 1–2) show that by averaging the obser-
vations of the position of a single agent over time one recovers the signal profile.
In fact, optimotaxis can be performed effectively by a single vehicle. However,
given that optimotaxis was specially designed for use with small and cheap ve-
hicles, one should take advantage of the more accurate estimates obtained with
multiple vehicles, as we explain in Section 4.

2 Problem Description and Controllers

We consider vehicles with position x ∈ Ω := R
d and velocity v ∈ V := ρS

d−1,
where ρ > 0, d ∈ {2, 3}, and S is the unit sphere equipped with the Lebesgue
measure dμ. We denote by F (x) the scalar function describing the intensity of
the sensed signal at position x ∈ Ω. We define p(x, v, t) as the probability density
of finding a vehicle at position x with velocity v at time t. For each fixed time
t, p(x, v, t) ∈ L1(Ω × V), where Ω × V is equipped with the product measure
dx � dμ.

The objective of optimotaxis is to design a control law to select the velocity
v(t) as a function of the measurements {F (x(τ)); 0 ≤ τ ≤ t} collected up to time
t such that the marginal

∫
V p(x, v, t)dμ(v) converges to some density Q(F (x)).

The function Q(·) is a design parameter called the shaping function which is
used to guarantee that Q(F) is a valid probability density function and perhaps
to accentuate the maxima of the sensed signal. For example, if F (x) = 1−‖x‖2,
a valid nonnegative shape would be attained with

Q(F) =
{

cF , if F > δ
cδeF−δ , if F ≤ δ

, (1)

where δ > 0 and c is a normalizing constant. Alternatively, if one is mainly
interested in the position of the maxima of F (x), a possible choice would be
Q(F) equal to some power of F , which would make maxima more distinct.

Two different controllers inspired by bacterial chemotaxis are presented below.

2.1 Run and Tumble Controller

The jump-diffusion framework that we adopt for optimotaxis was introduced for
bacterial chemotaxis in [16,17]. We consider here a vehicle moving with constant
velocity between tumbles. The conditional probability that a tumble does not

Optimotaxis: A Stochastic Multi-agent Optimization Procedure 361

ẋ = v
v̇ = 0

λ(x,v)

v ∼ Tv− (·)

Fig. 1. Hybrid automaton for optimotaxis

occur between the time instants t and s, given that the vehicle was at position
x with velocity v at time s is given by

exp
(

−
∫ t

s

λ(x + τv, v)dτ

)

, (2)

where the positive function λ(·, ·) ∈ L∞(Ω × V) is the tumbling rate. At each
tumble, the velocity jumps to a random value v ∈ V with probability density
Tv− that may depend on the velocity v− just before the tumble. In the bacterial
case, the quantities λ and Tv were characterized by Alt [2]. In our work, these
should be viewed as control parameters which we will select and that may depend
on x and v through the measurements {F (x(τ)); 0 ≤ τ ≤ t}.

This controller for optimotaxis is captured by several stochastic hybrid sys-
tem models that appeared in the literature, including Piecewise-Deterministic
Markov Processes (PDPs) [18], our stochastic hybrid models discussed in [19],
or the hybrid models initially proposed in [20] by Hu, Lygeros, and co-workers
and further expanded in a series of subsequent papers. Fig. 1 depicts a schematic
representation of our hybrid model for optimotaxis.

The probability density p(x, v, t) was shown to satisfy the following integro-
differential equation [16,17]:

∂p

∂t
(x, v, t) + v· ∇xp(x, v, t) = −λp(x, v, t) +

∫

V

Tv′(v)λ(x, v′)p(x, v′, t)dμ(v′) .

(3)
We note that (3) has been indifferently used in the literature for p as a probability
density or simply the density of individuals. When p is regarded as the density
of individuals, (3) has a simple intuitive interpretation. On the left-hand side
we find a drift term v · ∇xp corresponding to the vehicles straight runs, on the
right-hand side we find an absorption term −λ(x, v)p(x, v), that corresponds
to vehicles leaving the state (x, v), and an integral term corresponding to the
vehicles jumping to the state (x, v). Equation (3) is also known in linear transport
theory, where it models the particular case of pure scattering [21,22]. In that
framework, the absorption and the integral terms account for elastic collisions
between particles.

2.2 Diffusion Controller

In the limit as the tumbling rate and the velocity approach infinity the jump-
diffusion process may approach a pure diffusion process [17]. Inspired by this

362 A.R. Mesquita, J.P. Hespanha, and K. Åström

observation, we present in this section an alternative controller for optimotaxis
that requires the vehicle to turn constantly. This could be applied when the
vehicles are capable of relatively high tumbling rates. We do not claim that the
model in this section is the diffusion approximation for the model in the run and
tumble controller, though it seems to have the same desirable properties of the
diffusion approximation. For simplicity we adopt d = 2. Let x = [x1 x2]′ ∈ Ω
be the position vector in the plane and θ be such that v = [ρ cos θ ρ sin θ]′ ∈ V .
We propose a controller given by the following stochastic differential equation:

dx1 = ρ cos θdt

dx2 = ρ sin θdt (4)
dθ = σ(x, θ)dw ,

where w(t) is a continuous Wiener process with Edw2 = 1 and σ(x, θ) is the
turning intensity, which we select to attain the desired behavior. The rationale
for this controller involves the same original idea of having a turning intensity
proportional to the improvement in the measurements. This model with contin-
uous turning allows us to write the Fokker-Planck equation for the probability
density of agents p(x, v, t) [23]:

∂p

∂t
(x, v, t) + v · ∇xp(x, v, t) =

1
2

∂2

∂θ2

(
σ2p(x, v, t)

)
. (5)

3 Control Law

To obtain the control law we substitute the desired stationary density in equa-
tions (3) or (5) for the evolution of the density and then solve for λ and Tv

or σ. We will subsequently verify convergence to the desired density. For sim-
plicity, we set the desired stationary density to be independent of v such that
p(x, v, t) = Q(F (x)). In the following we write Q(F (x)) simply as Q(x).

3.1 Run and Tumble Controller

As we substitute p(x, v, t) = Q(x) in the steady state version of (3), we obtain

v· ∇xQ(x) = −λ(x, v)Q(x) + Q(x)
∫

V

Tv′(v)λ(x, v′)dμ(v′) . (6)

At this point we need to make the assumption that Q(x) > 0 for all x ∈ Ω.
This important assumption will be made throughout this paper. Dividing (6) by
Q(x) and rearranging the terms we conclude that we must have

λ(x, v) =
∫

V

Tv′(v)λ(x, v′)dμ(v′) − v· ∇x ln Q(x) . (7)

In the case of a uniformly distributed velocity jump, namely,

Tv′(v) =
1

μ(V)
, (8)

Optimotaxis: A Stochastic Multi-agent Optimization Procedure 363

it is straightforward to solve for λ(x, v):

λ(x, v) = η(x) − v· ∇x ln Q(x) , (9)

where η(x) =
∫

V
Tv′(v)λ(x, v′)dμ(v′) is some function chosen by the designer to

depend on x only through F (x).
This control law is implementable using the past measurements {F (x(τ)); 0 ≤

τ ≤ t} since the tumbling rate depends only on the projection of the gradient in
the direction of motion. In fact,

v(t) · ∇xQ(x(t)) =
dQ(x(t))

dt
. (10)

Notice that η(x) is the average tumbling rate at the position x and it must
be chosen larger than or equal to ρ sup ‖∇x ln Q(x)‖ to make sure that the tum-
bling rate λ is positive. In this paper we only consider finite tumbling rates.
Thus, here comes a second important restriction on Q(x): ‖∇x ln Q(x)‖ must be
uniformly bounded. When this happens, we can take η to be independent of x
and, according to (2), the probability of an agent maintaining a run with the
same direction during the interval [0, t] is given by

exp
(

−
∫ t

0

λ(x(τ),v(τ))dτ

)

= exp
(

−
∫ t

0

η − d

dτ
(ln Q(x(τ)))dτ

)

= e−ηt Q(x(t))
Q(x(0))

. (11)

This provides a simple and useful expression for the practical implementation
of the search procedure: Suppose that an agent tumbled at time tk, at that time
pick a random variable P uniformly distributed in the interval [0, 1] and tumble
when the following condition holds

Q(x(t)) ≤ Peη(t−tk)Q(x(tk)), t ≥ tk . (12)

As opposed to what (10) seems to imply, one does not need to take derivatives
to implement (9). Also, the control law is not changed if a constant scaling factor
is applied to Q(x). It is important to remark that η may be adjusted online. An
agent may begin a search with η = ε > 0 and if at some time t it observes that
η < η̄ = t−1 ln Q(x(t))/Q(x(0)), then it updates η to η̄ + ε. The use of a small
residue ε grants a positive λ. In this case, one can prove that the probability
to have the vehicle visiting any neighborhood in space is positive. Hence, η will
eventually converge to ρ sup ‖∇x ln Q(x)‖ + ε. A more elaborate adaptation can
be obtained by having η(x) as a function of the measurements F (x), which would
reduce the number of unnecessary tumbles.

We note that most physical quantities propagate with spatial decay not faster
than exponential, which allows for the uniform boundedness of ‖∇x ln Q(x)‖.
If, however, F (x) has a faster decay rate, it may still be possible to achieve
boundedness of ‖∇x ln Q(x)‖ via reshaping (i.e. selecting an appropriate Q) as
long as F (x) > 0 for all x ∈ Ω and one knows its maximum decay rate.

364 A.R. Mesquita, J.P. Hespanha, and K. Åström

3.2 Diffusion Controller

Substituting p(x, v, t) = Q(x) in (5) and integrating twice in θ one obtains:

v · ∇xQ(x) +
1
2
σ2(x, θ)Q(x) = θc1(x) + c2(x) . (13)

Solving for σ2(x, θ) we have

σ2(x, θ) = θd1(x) + d2(x) − 2v · ∇x ln Q(x) . (14)

We set d1(x) = 0 since there is no advantage in having σ2(x, θ) growing linearly
with θ. Thus, we can rewrite (14) as

σ2(x, v) = η(x) − 2v · ∇x ln Q(x) . (15)

Again, the only information needed to implement σ2(x, v) is the measure-
ments F (x(t)) collected along the vehicle’s trajectory. As before, boundedness
of ‖∇x ln Q(x)‖ is an important condition and η(x) may be adjusted online. A
simple implementation of (4) with σ(x, v) given by (15) can be done using Euler’s
approximation.

The addition of exogenous white Gaussian noise to θ̇ in (4) leads to the addi-
tion of a positive constant to σ2(x, v) in (5), which is equivalent to an increased
η. Thus, this kind of disturbance does not change the stationary density. The
same conclusion is true if we consider white Gaussian noise added to ρ̇ in (5).
Therefore, an important property of this controller is that the stationary density
is robust to additive white Gaussian noise applied in the vehicle’s bodyframe.

4 Convergence to the Steady-State

In this section we analyze the convergence of solutions to the desired stationary
density Q(x). We consider mild solutions [24] to the initial value problem defined
by (3) and an initial density p(x, v, 0) ∈ D :=

{
f ∈ L1(Ω × V); f ≥ 0, ‖f‖ = 1

}
.

The main result is stated in Theorem 1, which implies that Q(x) can be estimated
through the time average of the observed vehicles’ position. In particular, with a
proper choice of Q(x), the maximum of F (x) will be located in the neighborhood
that is most often visited by the vehicle.

Theorem 1. Assume that Q(x) > 0 and ‖∇x ln Q(x)‖ ∈ L∞(Ω). If Tv and
λ are chosen according to (8) and (9), respectively, such that λ is uniformly
bounded and strictly positive, then

1. A mild solution p(x, v, t) to (3) exists and is unique for all t ≥ 0 and all
initial densities p(x, v, 0) ∈ D.

2. Q(x) is the unique stationary density for (3).
3. For any initial density p(x, v, 0) ∈ D,

lim
N→∞

∥
∥
∥
∥
∥

1
N

N−1∑

k=0

p(x, v, kτ) − Q(x)

∥
∥
∥
∥
∥

= 0 (16)

for all τ > 0.

Optimotaxis: A Stochastic Multi-agent Optimization Procedure 365

We note that the continuous time average

1
t

∫ t

0

p(x, v, t)dt (17)

also converges in norm to Q(x) as t → ∞, see e.g. [25, Cor. VIII.7.4].
Theorem 1 provides the basis for a procedure to estimate Q(x) by observing

the position of N agents: We start by partitioning the region of interest into
a family of sets {Ai ⊂ Ω} and then we sample the vehicles’ positions at times
kτ ∈ {0, τ, 2τ, . . . , (K − 1)τ}, for some τ > 0, and count the number of times
that a vehicle is observed in each set Ai. It turns out that the fraction of samples
corresponding to vehicles observed over the set Ai provides an asymptotically
correct estimate of the average value of Q(x) on the set Ai. To see why this is
the case, we define

fN,K =
1

NK

N−1∑

n=0

K−1∑

k=0

f(xn(kτ)) , (18)

for some f ∈ L∞(Ω). Assuming that the agents have mutually independent
motion, by the law of large numbers we have that fN,K converges almost surely
as N → ∞. Moreover, by the specific version of the law of large numbers in [26],
we also have that fN,K converges almost surely as K → ∞. In particular, if f is
the characteristic function of a measurable set Ai, then

fN,K →
∫

Ai

Q(x)dx a.s. (19)

as K → ∞. This shows that Q(x) can be estimated by averaging the observations
of the agents position as in (18). The use of multiple agents (N > 1) improves
the estimates according to the relation

var(fN,K) =
var(f1,K)

N
. (20)

Proof of Theorem 1 (outline). A complete proof is given in [27]. The existence and
uniqueness results rely on previous results on linear transport theory [21] using
semigroups of linear operators. To prove the uniqueness of the stationary density
we take q(x, v, t) and r(x, v, t) to be two convex combinations of a stationary
density p(x, v, t) and Q(x). We consider the Kullback-Leibler divergence between
q(x, v, t) and r(x, v, t)

H(t) =
∫

Ω

∫

V

q(x, v, t) ln
q(x, v, t)
r(x, v, t)

dxdμ(v) , (21)

and show that Ḣ(t) = 0 for all t > 0 implies p = Q. The convergence of the
Cesàro averages in part 3 of the theorem is a direct consequence of the mean
ergodic theorem provided that Q(x) > 0 is the unique invariant density. See e.g.
Theorem 5.2.2 of [28] or [29, Chap. 2].
�

366 A.R. Mesquita, J.P. Hespanha, and K. Åström

It is worthwhile to remark that p(x, v, t) actually converges to Q(x) in norm if
λ is bounded away from zero. The proof of this result is based on a result from
[30] that states that, if V (t) is a Harris operator for every t > 0 and Q(x) > 0
is its unique invariant density, then V (t)f converges to Q(x) in norm for all
f ∈ D. It turns out that one can prove that the semigroup generated by (3)
consists of Harris operators [27]. In addition, we conjecture that convergence is
exponential. The proof of this result would be possible with a generalization of
some results in the spectral theory of linear transport operators in unbounded
domains presented in [31]. However, such a generalization is not yet available.

Next, we state the corresponding result for the diffusion controller.

Theorem 2. Assume that Q(x) > 0 and ‖∇x ln Q(x)‖ ∈ L∞(Ω). If σ2 is chosen
according to (15) such that σ2 is uniformly bounded and strictly positive, then

1. A mild solution p(x, v, t) to (5) exists and is unique for all t ≥ 0 and all
initial densities p(x, v, 0) ∈ D.

2. Q(x) is the unique stationary density for (5).
3. For any initial density p(x, v, 0) ∈ D,

lim
N→∞

∥
∥
∥
∥
∥

1
N

N−1∑

k=0

p(x, v, kτ) − Q(x)

∥
∥
∥
∥
∥

= 0 (22)

for all τ > 0.

The proof of this result is also presented in [27].

5 Numerical Results and Discussion

In this section we present numerical experiments to illustrate the proposed op-
timization procedure. We adopt preferentially the run and tumble controller
with a constant function η(x). The results for the diffusion case are similar but
with slightly faster convergence. The desired stationary density is taken to be
Q(F (x)) = cFn(x), where c is a normalizing constant and n is an integer.

The main capability of optimotaxis, the localization of the global maximum,
is stressed in Fig. 2. We observe a swarm of agents that starts from the upper left
corner (1), initially clusters around a local maximum (2) and then progressively
migrates to the global maximum (3,4). When the equilibrium is reached, most
agents concentrate in a neighborhood of the global maximum. Yet, a portion of
the agents clearly indicates the existence of the local maximum. We notice that
the center of mass of the swarm goes straight through the local maximum to
the global one. This feature is not shared with most deterministic optimization
procedures and even with some stochastic ones. As a bonus, the information on
secondary sources (local maxima) is not lost.

We use the Kullback-Leibler divergence H(t) (defined in Section 4) between
p(x, v, t) and the convex combination 10Q(x)/11 + p(x, v, t)/11 to analyze the
speed of convergence to the desired stationary density. One useful property of this

Optimotaxis: A Stochastic Multi-agent Optimization Procedure 367

Fig. 2. Different stages of optimotaxis in the presence of two maxima. Black dots rep-
resent agents position whereas the background intensity represents the signal intensity.
F (x) = 0.4e−‖x‖ + 0.6e−‖x−[1.5 −1.5]′‖, Q(x) = F n(x) with n = 10, and ρ = 1.

Kullback-Leibler divergence is that H = 0 iff p = Q. Moreover, α(‖p − Q‖) ≤
H(t) ≤ β(‖p−Q‖), where α, β are class K functions [32]. Using a space grid with
resolution 0.068, we calculate H(t), which is shown to converge to zero in Fig. 3.

Also included in Fig. 3 is the evolution of H(t) when the measurements are
quantized and when exogenous noise is added. In the quantization case, we used
the quantized version of the desired density Q(x) to calculate H(t). Interestingly,
the addition of noise does not seem to affect considerably the transient response.
Nevertheless, the residual error is greater due to the fact that the stationary
density is not the one expected. On the other hand, quantization has a much more
negative impact on optimotaxis performance. Yet, we believe that convergence
to a quantized Q(x) does happen but at a low speed.

The sensitivity of the procedure with respect to the parameter n of the shaping
function is studied with Fig. 4. The mean-square error of the vehicles position with
respect to the maximum is used as a performance index. One notices that the per-
formance degrades for n too low or too high. In particular, the sensitivity to noise
and quantization increases with n. This suggests that an interesting strategy to
reduce the effect of uncertainties and quantization is to assign agents with differ-
ent values of n. In this case, the observed density would converge to an arithmetic
average of the powers Fn(x). Thus, the mean-square error would be smaller than
the error corresponding to the maximum or minimum value of the chosen n.

5.1 Chemotaxis and Optimotaxis

It is remarkable that the expression for λ in (9) has the same structure of some
biochemical models for the tumbling rate of the E. coli ; see, for instance, Alt

368 A.R. Mesquita, J.P. Hespanha, and K. Åström

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

t

H

Fig. 3. Evolution of the Kullback-Leibler divergence for: the noiseless case (solid), the
quantized measurements case (dashed), and the exogenous noise case (dash-dotted).
The number of quantization levels is 128. The noise added to v̇ is white Gaussian with
standard deviation 10−2 along each axis. 100 agents were uniformly deployed in the
rectangle [−2.5, 2.5] × [−2.5, 2.5] × V . Refer to Fig. 2 for more details.

[2, Equation 4.8]. This author essentially proposed the existence of a chemical
activator for the locomotion mechanism such that a tumble would occur each
time the concentration of this activator would become less than a certain value.
The concentration of this activator would jump to a high value at tumbles and
decrease at a rate corresponding to η in (9). A receptor-sensor-mechanism would
then regulate the additional generation of the activator (this corresponds to
v · ∇xQ(x) in (9)), which would modulate the run length. We find surprising
that our reverse engineering design resulted in an expression for λ similar to
the one in bacterial chemotaxis. In fact, though the use of tumble and run in
optimotaxis is inspired by chemotaxis, one would not necessarily expect that our
choice of the tumbling rate would lead to control laws similar to the biochemical
models in bacteria. This fact suggests that the bacteria evolutionary process
might have selected a taxis mechanism with the same desirable properties of our
model.

To understand what these desired properties might be, let us suppose that
bacteria are performing optimotaxis as it is described in this paper. Let p(x, v, t)
be the spatial density of bacteria and let Q(x) be some function related to the
concentration of nutrients. From Section 4, we know that p(x, v, t) converges in
norm, which implies that

H(t) = −
∫

Ω

∫

V

p(x, v, t) ln
(

1
2

+
1
2

Q(x)
p(x, v, t)

)

dxdμ(v) → 0 . (23)

Thus, H(t) can be regarded as a cost functional that is being minimized by opti-
motaxis/chemotaxis. More specifically, we notice that what is being maximized
is the expected value of a concave function of Q/p, which is the ratio of the

Optimotaxis: A Stochastic Multi-agent Optimization Procedure 369

5 10 15 20 25 30 35

0.4

0.8

1

n

M
ea

n−
S

qu
ar

e
E

rr
or

Fig. 4. Mean-square error with respect to the maximum of F (x) = e−‖x‖ as a func-
tion of n. Noiseless case (solid), quantized F (x) (dashed), and exogenous noise (dash-
dotted). The number of quantization levels is 128. The noise added to v̇ is white
Gaussian with standard deviation 10−3 in each axis. ρ = 1.

concentration of nutrients per the density of organisms. This is a meaningful
cost for the population of bacteria as a whole.

It is important to remark that the jump velocity probability density function
Tv is not uniform in bacteria. This supports our belief that better results for
optimotaxis might be obtained with more sophisticated choices for Tv.

6 Conclusion

A random optimization algorithm based on bacterial chemotaxis was presented.
This algorithm is mainly intended for application in a swarm of agents whose
mission is to find the maximum of a measured quantity. The most attractive fea-
tures of the procedure are its simplicity and low cost of implementation as well
as the identification of both global and local maxima. The only measurement
needed by the agents is the signal of interest and the only information that must
be known a priori is a bound on the spatial decay of the measured quantity. The
convergence of the agents probability density to a specified function was demon-
strated. Some robustness to exogenous disturbance was also demonstrated. In
addition, insight was gained on what bacterial chemotaxis might try to optimize.

We note that the proposed choice of control parameters may not be optimal.
Hence, alternative choices for the tumbling rate and for the probability density of
velocity jumps are important themes for further investigation. Future research
directions also include the study of optimotaxis in compact spatial domains
and signal spatial profiles with discontinuities. Alternatively, it may be worth to
explore the application of these ideas to solve problems in numerical optimization
by arrays of independent processors.

370 A.R. Mesquita, J.P. Hespanha, and K. Åström

Acknowledgments

The authors are thankful to Professors Mustafa Khammash, Upamanyu Mad-
how, and Prashant Mehta for valuable comments.

References

1. Berg, H., Brown, D.: Chemotaxis in Escherichia coli analysed by three-dimensional
tracking. Nature 239(5374), 500–504 (1972)

2. Alt, W.: Biased random walk models for chemotaxis and related diffusion approx-
imations. J. Math. Biol. 9(2), 147–177 (1980)

3. Burian, E., Yoerger, D., Bradley, A., Singh, H.: Gradient search with autonomous
underwater vehicles using scalar measurements. In: Proceedings of the 1996 Sym-
posium on Autonomous Underwater Vehicle Technology, 1996. AUV 1996, June
1996, pp. 86–98 (1996)

4. Sousa, J., Johansson, K., Silva, J., Speranzon, A.: A verified hierarchical con-
trol architecture for co-ordinated multi-vehicle operations. International Journal
of Adaptive Control and Signal Processing 21(2-3), 159–188 (2007)

5. Mayhew, C., Sanfelice, R., Teel, A.: Robust source-seeking hybrid controllers for
autonomous vehicles. In: Proceedings of the 2007 American Control Conference.
ACC 2007, July 2007, pp. 1185–1190 (2007)

6. Hoskins, D.A.: Least action approach to collective behavior. In: Parker, L.E. (ed.)
Proc. SPIE, vol. 2593, pp. 108–120; Microrobotics and Micromechanical Systems.
In: Parker, L.E. (ed.) The Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference. vol. 2593, pp. 108–120 (December 1995)

7. Bachmayer, R., Leonard, N.: Vehicle networks for gradient descent in a sampled
environment. In: Proceedings of the 41st IEEE Conference on Decision and Control,
pp. 112–117 (December 2002)

8. Zhang, C., Arnold, D., Ghods, N., Siranosian, A., Krstic, M.: Source seeking with
non-holonomic unicycle without position measurement and with tuning of forward
velocity. Systems & Control Letters 56(3), 245–252 (2007)

9. Pang, S., Farrell, J.: Chemical plume source localization. IEEE Transactions on
Systems, Man and Cybernetics, Part B 36(5), 1068–1080 (2006)

10. Vergassola, M., Villermaux, E., Shraiman, B.: ’infotaxis’ as a strategy for searching
without gradients. Nature 445(7126), 406–409 (2007)

11. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

12. Ferrée, T., Lockery, S.: Computational rules for chemotaxis in the nematode C.
Elegans. Journal of Computational Neuroscience 6, 263–277 (1999)

13. Dhariwal, A., Sukhatme, G.S., Requicha, A.A.: Bacterium-inspired robots for en-
vironmental monitoring. In: IEEE International Conference on Robotics and Au-
tomation, New Orleans, Louisiana, April 2004, pp. 1436–1443. IEEE, Los Alamitos
(2004)

14. Aluffipentini, F., Parisi, V., Zirilli, F.: Global optimization and stochastic
differential-equations. Journal of Optimization Theory and Applications 47(1), 1–
16 (1985)

15. Dekkers, A., Aarts, E.: Global optimization and simulated annealing. Math. Pro-
gram. 50(3), 367–393 (1991)

Optimotaxis: A Stochastic Multi-agent Optimization Procedure 371

16. Stroock, D.: Some stochastic processes which arise from a model of the motion of
a bacterium. Probability Theory and Related Fields 28(4), 305–315 (1974)

17. Papanicolaou, G.: Asymptotic analysis of transport processes. Bulletin of the
American Mathematical Society 81(2), 330–392 (1975)

18. Davis, M.H.A.: Markov models and optimization. In: Monographs on statistics and
applied probability, Chapman & Hall, London, UK (1993)

19. Hespanha, J.P.: Modeling and analysis of stochastic hybrid systems. IEE Proc —
Control Theory & Applications, Special Issue on Hybrid Systems 153(5), 520–535
(2007)

20. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems.
In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173.
Springer, Heidelberg (2000)

21. Kaper, H.G., Lekkerkerker, C.G., Hejtmanek, J.: Spectral Methods in Linear Trans-
port Theory. Birkhäuser Verlag, Basel (1982)

22. Mokhtar-Kharroubi, M.: Mathematical Topics in Neutron Transport Theory. World
Scientific, Singapore (1997)

23. Risken, H.: The Fokker-Planck Equation - Methods of Solution and Applications.
Springer Series in Synergetics. Springer, Berlin (1984)

24. Pazy, A.: Semigroup of Linear Operators and Applications to Partial Differential
Equations. Springer, New York (1983)

25. Dunford, N., Schwartz, J.: Linear Operators. In: Pure and Applied Mathematics,
vol. VII, Interscience Publishers, New York (1957)

26. Derriennic, Y., Lin, M.: Uniform ergodic convergence and averaging along markov
chain trajectories. Journal of Theoretical Probability 7(3), 483–497 (1994)

27. Mesquita, A., Hespanha, J., Åstrom, K.: Optimotaxis: A stochastic multi-
agent optimization procedure with point measurements: Extended version.
Technical report, University of California, Santa Barbara (October 2007),
http://www.ece.ucsb.edu/∼hespanha/techreps.html

28. Lasota, A., Mackey, M.: Chaos, Fractals, and Noise. Stochastic Aspects of Dynam-
ics. In: Applied Mathematical Sciences, vol. 97, Springer, New York (1994)

29. Krengel, U.: Ergodic Theorems. de Gruyer Studies in Mathematics. vol. 6, Walter
de Gruyter, Berlin, New York (1985)

30. Pichór, K., Rudnicki, R.: Continuous markov semigroups and stability of transport
equations. Journal of Mathematical Analysis and Applications 249, 668–685 (2000)

31. Mokhtar-Kharroubi, M., Sbihi, M.: Spectral mapping theorems for neutron trans-
port, l1-theory. Semigroup Forum 72, 249–282 (2006)

32. Lin, J.: Divergence measures based on shannon entropy. IEEE Transactions on
Information Theory 37(1), 145–151 (1991)

http://www.ece.ucsb.edu/~hespanha/techreps.html

Noncausal Optimal Tracking of Linear Switched

Systems

Gou Nakura

Osaka University, Department of Engineering
2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan

nakura@watt.mech.eng.osaka-u.ac.jp

Abstract. In this paper we consider the noncausal optimal tracking
problem on the finite time interval for linear switched systems. We con-
sider the problem to obtain the solution of both optimal switching se-
quences and optimal control inputs such that the tracking error is
minimized. In this paper we assume that information of reference signals
is known a priori for the whole time interval and utilize its information
so that the tracking performace becomes better. We study a computa-
tion method of the optimal performance including some information of
tracking errors and present an iterative algorithm to determine the op-
timal timing and optimal tracking performance numerically.

Keywords: Switched systems; Optimal control; GSLQ problems; Non-
causal tracking theory; Riccati equations.

1 Introduction

On optimal control problems for switched systems, the problem to obtain the
solution of both the optimal switching sequences and the optimal inputs is very
important, and so much works have been done by many researchers recently
([1,2,6,19,20,22]).

In particular, X. Xu and P. J. Antsaklis have studied the optimal timing and
control problem by the parametrization approach([19,22]). They have decom-
posed the problem into two stages. In the first stage, they have considered a
cost optimization problem over fixed switching sequences. In the second stage,
they have considered a nonlinear optimization problem to find local switching
sequences. In order to solve these two problems, they have presented an algo-
rithm based on the gradient projection method and its variations([3]). For linear
qudratic (LQ) problem, they have constructed the optimization algorithm by
using the general Riccati equation parametrized by switching instants. The em-
bedded control system theory is a more general control theory than the theory by
their time parametrization approach for the switched systems. The switched sys-
tems can be ”embedded” into a larger class of systems. Recently the relationship
between the switched and embedded systems has been researched([2]).

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 372–385, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Noncausal Optimal Tracking of Linear Switched Systems 373

It is well known that, for design of tracking control systems, preview in-
formation of reference signals is very useful for improving the performance of
the closed-loop systems, and much work has been done for preview control
systems([4,5,7,8,9,10,11,12,13,14,15,16,17,18]). U. Shaked and C. E. de Souza
have presented the H∞ tracking theory with preview by a game theoretic ap-
proach ([17]). Their theory can be restricted to optimal tracking theory and also
extended to robust H∞ tracking control theory([18]) or stochastic H∞ tracking
control theory([7,8,9]). Their theory has been applied to various types of systems,
for example, continuous-time systems([8,17,18]), discrete-time systems([4,7]), im-
pulsive systems ([13,14,15,16]) and so on. In this paper we describe that their
tracking theory can be applied to the switched systems.

There exist two structures on preview information. One is the fixed preview
type that information of reference signals is known until fixed preview time
length ahead. The other is the perfectly noncausal type that information of
reference signals is known a priori for the whole time interval. In this paper we
assume that the structure of the preview information is the perfectly noncausal
type.

In this paper we study the noncausal optimal timing and tracking control
problem for linear switched systems based on the time parametrization approach
by X. Xu and P. J. Antsaklis([19,22]). In order to design noncausal feedforward
compensators, we consider a vector and its dynamics introducing future infor-
mation of reference signals([17]). As the cases of the previous various preview or
noncausal tracking control theory([4,5,7,8,9,10,11,12,13,14,15,16,17,18]), we can
expect improvement of tracking performance by introducing future information.
We present a practical optimization algorithm, which is an extension of the time
parametrization method by X. Xu and P.J. Antsaklis([19,22]). Their algorithm
is feasible for numerical computation in the sense of not demanding more than
solving a set of ODEs (ordinary differential equations) with boundary conditions.
Compared with it, our algorithm on the tracking problem needs some numerical
integration to add to the task of solving the set of ODEs.

The organization of this paper is as follows. In section 2 we describe our
systems and problem formulation. In section 3 we present the equivalent non-
causal GSLQ(General Switched Linear Quadratic) tracking problem and, under
the assumption of the fixed switching instants, give the necessary and sufficient
conditions of the solvability and a control strategy for this problem. In sec-
tion 4 we construct the optimization algorithm of both switching instants and
tracking performance, based on the theory described in the section 3. In the
appendix we describe the proof of Proposition 1, which gives the necessary and
sufficient conditions of the solvability and a control strategy for the equivalent
noncausal GSLQ tracking problem under the assumption of the fixed switching
instants.

Notations: Throughout this paper the subscript ”′” stands for the matrix trans-
position, ‖ · ‖ denotes the Euclidian vector norm and ‖v‖2

R also denotes the
weighted norm v′Rv.

374 G. Nakura

2 Problem Formulation

Consider the following switched systems with effects of reference signal.

ẋ(t) = A1x(t) + B2,1u(t) + B3,1rc(t), t0 ≤ t < t1, x(t0) = x0,

ẋ(t) = A2x(t) + B2,2u(t) + B3,2rc(t), t1 ≤ t ≤ T (1)
zc(t) = C1x(t) + D12u(t) + D13rc(t)

where x ∈ Rn is the state, u ∈ Rm is the control input, zc ∈ Rkc is the controlled
output, rc(t) ∈ Rrc is an known or mesurable reference signal. x0 is a given initial
state. t0 and T is given initial and terminal times, and t1 is a switching time to
be sought such that the tracking performance becomes optimal. We assume that
all system matrices are constant and of compatible dimensions.

Remark 1. The generalized system with K switching instants of the system (1)
can be represented as follows:

ẋ(t) = A1x(t) + B2,1u(t) + B3,1rc(t), t0 ≤ t < t1, x(t0) = x0,

ẋ(t) = A2x(t) + B2,2u(t) + B3,2rc(t), t1 ≤ t < t2

· · · (2)
ẋ(t) = AK+1x(t) + B2,K+1u(t) + B3,K+1rc(t), tK ≤ t ≤ T

Throughout this paper, for simplification, we mainly consider the system (1),
which has only one switching instant.

For the system (1), we assume the following condition.

A1: D′
12D12 > O

We define the following performance index for the system (1)

J :=
∫ T

t0

‖zc(t)‖2dt + x′(T)Qfx(T) (3)

where Qf ≥ O. Partially, in this paper, in order to clarify the switching intants,
we denote J as J(t1) and etc.

Remark 2. On defining the performance index, U. Shaked and C.E. de Souza
([17]) have introduced the expectation ER̄s

considering the average of the per-
formance index over the statistics of the unknown part R̄s+h := {rc(l); s + h <
l ≤ T } of the reference signal rc where h is a fixed preview length. Note that,
compared with it, we do not introduce any expectation operators. As U. Shaked
and C.E. de Souza have described in [17], the expectation operator is superflu-
ous in the case of perfectly noncausal settings because we don’t have to consider
both of causal and noncausal parts on the whole time interval, i.e., we don’t
have to consider any unknown parts of reference signals at the current time on
the whole time interval [t0, T].

Noncausal Optimal Tracking of Linear Switched Systems 375

For the system (1) and the performance index (3), we consider the following
noncausal optimization problem.

Noncausal Optimal Timing and Tracking Problem
Consider the system (1) and the performance index (3), and assume the condition
A1. Assume also that the reference signal {rc(t)} is known a priori for the whole
time interval t ∈ [t0, T]. Then, find {u∗} and a switching instant t1 minimizing
the performance index (3).

In order to solve this problem, we consider the following optimization algo-
rithm as [19,22]. However, note that our performance index can include any
noncausal information of tracking signals.

– Algorithm 1
1) Set the iteration index j = 0. Choose an initial tj1.
2) By solving an optimal noncausal tracking problem, find J(tj1).
3) Compute (∂J/∂t1)(t

j
1) (and (∂2J/∂t21) if second-order method is to be used).

4) Use some feasile direction method to update to be tj+1
1 = tj1+αj (∂J/∂t1)(t

j
1)

(the stepsize αj can be chosen using some stepsize rule, e.g., Armijo’s rule
([3])). Set the iteration index j = j + 1.

5) Repeat Steps 2), 3), 4) and 5), until, for a given small number ε > 0,
|∂J/∂t1| < ε.

How can we compute this gradient of the performance index? X. Xu and P.J.
Antsaklis([19,22]) have presented how to compute the gradient for the GSLQ
problem using the generalized Riccati equation denpendent on the parameter,
but not considering any exogeneous tracking signals nor noncausal information.
We present an algorithm including how to compute the gradient with the tracking
error, considering the effects of the exogeneous and noncausal tracking error over
the whole time interval [0, T]. In order to construct the algorithm, we utilize the
dynamics which gives the noncausal information of the tracking signal with the
parametrized general Riccati equation by X. Xu and P.J. Antsaklis together.

3 Approach Based on the Parametrization of the
Switching Instants

In order to realize the algorithm for the Noncausal Optimal Timing and
Tracking Problem in the previous section, we take the following steps.

Step 1: We parameterized and reduce our problem to the equivalent GSLQ
Tracking Problem.

Step 2: We seek the solution of the equivalent GSLQ Tracking Problem for
the fixed xn+1.

Step 3: Minimize J with respect to varying xn+1.

First we introduce a state variable xn+1 corresponding to the switching instant
t1. Let xn+1 satisfy

dxn+1

dt
= 0, xn+1(0) = t1.

376 G. Nakura

Moreover, we introduce a new independent time variable τ and define a piecewise
linear relationship between t and τ as follows:

t =
{

t0 + (xn+1 − t0)τ, 0 ≤ τ ≤ 1
xn+1 + (T − xn+1)(τ − 1), 1 ≤ τ ≤ 2.

(4)

By this parametrization of the switching time, our Noncausal Optimal Tim-
ing and Tracking Problem is transcribed into the following equivalent
problem.

Equivalent Noncausal GSLQ (General Switched Linear Quadratic)
Tracking Problem
Consider the system

dx(τ)
dτ

= (xn+1 − t0)(A1x(τ) + B2,1u(τ) + B3,1rc(τ)),
dxn+1(τ)

dτ
= 0 (5)

for τ ∈ [0, 1) and

dx(τ)
dτ

= (T − xn+1)(A2x(τ) + B2,2u(τ) + B3,2rc(τ)),
dxn+1(τ)

dτ
= 0 (6)

for τ ∈ [1, 2]. t0, T and x(0) are given. Assume that the reference signal {rc(t)}
is known a priori for the whole time interval τ ∈ [0, 2]. Find an xn+1 and a u(τ)
such that the parametrized performance index

J = x′(2)Qfx(2) +
∫ 1

0

(xn+1 − t0)‖zc(τ)‖2dτ +
∫ 2

1

(T − xn+1)‖zc(τ)‖2dτ (7)

is minimized.

Note that this problem no longer includes any varying switching instants. How-
ever, it is difficult to solve this problem because of the nonlinearity of the whole
system including the variable xn+1. In order to solve this problem, first we as-
sume that xn+1 is fixed. Now we consider the following general Riccati equation
and terminal condition parametrized by xn+1.

−∂X

∂τ
= (xn+1 − t0)(A′

1X + XA1 + C′
1C1 − S̃′

1R̃
−1S̃1) for τ ∈ [0, 1), (8)

−∂X

∂τ
= (T − xn+1)(A′

2X + XA2 + C′
1C1 − S̃′

2R̃
−1S̃2) for τ ∈ [1, 2] (9)

and X(2, xn+1) = Qf where

R̃ = D′
12D12, S̃1(τ) = B′

2,1X(τ) + D′
12C1, S̃2(τ) = B′

2,2X(τ) + D′
12C1.

Remark 3. This type of Riccati equation is the same as the one for the standard
GSLQ problem by [19,22] not considering the effects of any reference signals nor
noncausal information.

Noncausal Optimal Tracking of Linear Switched Systems 377

Then we have the following proposition, which gives the solvability and an
optimal control strategy for our equivalent GSLQ tracking problem under the
assumption of the fixed xn+1. This proposition is an extension of the noncausal
tracking control theory by U. Shaked and C. E. de Souza([17]).

Proposition 1. Consider the system (5)-(6) and the performance index (7),
and suppose A1. Assume that xn+1 is fixed. Then the equivalent GSLQ track-
ing problem is solvable by state feedback if and only if there exists a matrix
X(τ, xn+1) satisfying the conditions X(τ, xn+1) = X ′(τ, xn+1) and X(2, xn+1) =
Qf such that the equation (8)-(9) holds over τ ∈ [0, 2]. Then an optimal control
strategy for our noncausal tracking problem (5)-(6) and (7) is given by

u∗
c,1(τ, xn+1) = −R̃−1S̃1x(τ, xn+1)

−Curc(τ, xn+1) − Cθu,1θ(τ, xn+1) for 0 ≤ τ < 1, (10)

u∗
c,2(τ, xn+1) = −R̃−1S̃2x(τ, xn+1)

−Curc(τ, xn+1) − Cθu,2θ(τ, xn+1) for 1 ≤ τ ≤ 2 (11)

where

Cθu,1 = R̃−1B′
2,1, Cθu,2 = R̃−1B′

2,2, Cu = R̃−1D′
12D13.

θ(t), t ∈ [0, T], satisfies the dynamics

∂

∂τ
θ(τ, xn+1) = (xn+1 − t0){−Ā′

c,1(τ, xn+1)θ(τ, xn+1)

+B̄c,1(τ, xn+1)rc(τ, xn+1)}, 0 ≤ τ < 1,(12)
∂

∂τ
θ(τ, xn+1) = (T − xn+1){−Ā′

c,2(τ, xn+1)θ(τ, xn+1)

+B̄c,2(τ, xn+1)rc(τ, xn+1)}, 1 ≤ τ ≤ 2 (13)

and the terminal condition θ(2, xn+1) = 0 where

Āc,i(τ, xn+1) = Ai − B2,iR̃
−1S̃i(τ, xn+1),

B̄c,i(τ, xn+1) = −(X(τ, xn+1)B3,i + C′
1D13) + S̃′

i(τ, xn+1)Cu for i = 1, 2.

Moreover, the parametrized value at τ = 0 of performance index by the optimal
input u∗

c,i for i = 1, 2 is

J(t1) = J(xn+1) = V (x0, 0, xn+1)

= x′
0X(0, xn+1)x0 + 2θ′(0, xn+1)x0 + (xn+1 − t0)

∫ 1

0

δJ̄c,1(rc, τ, xn+1)dτ

+(T − xn+1)
∫ 2

1

δJ̄c,2(rc, τ, xn+1)dτ (14)

where

δJ̄c,i(rc, τ, xn+1) = δJc(rc, τ, xn+1)
+2θ′(τ, xn+1)B3,irc(τ, xn+1)

−2θ′(τ, xn+1)C′
θu,iR̃

′Curc(τ, xn+1) − ‖R̃1/2Cθu,iθ(τ, xn+1)‖2, i = 1, 2

378 G. Nakura

and

δJc(rc, τ, xn+1) = ‖D13rc(τ, xn+1)‖2 − ‖R̃1/2Curc(τ, xn+1)‖2.

Proof: See appendix.

Remark 4. In the case of the causal tracking problem, in which we do not
consider any future information of tracking signals, the control strategy is

u∗
c,1(τ, xn+1) = −R̃−1S̃1x(τ, xn+1) − Curc(τ, xn+1) for 0 ≤ τ < 1, (15)

u∗
c,2(τ, xn+1) = −R̃−1S̃2x(τ, xn+1) − Curc(τ, xn+1) for 1 ≤ τ ≤ 2, (16)

using the solution of the Riccati equation (8)-(9), and the parametrized value at
τ = 0 of performance index by the optimal input u∗

c,i for i = 1, 2 is

J(t1) = J(xn+1) = V (x0, 0, xn+1)

= x′
0X(0, xn+1)x0 + (xn+1 − t0)

∫ 1

0

δJc(rc, τ, xn+1)dτ

+(T − xn+1)
∫ 2

1

δJc(rc, τ, xn+1)dτ. (17)

By comparing the value of performance index in the case of the noncausal
tracking with the one in the case of the causal numerically, we can quantitatively
verify whether or not the tracking performance becomes better by the noncausal
information of the tracking signal.

We can obtain the value of J(xn+1) at τ = 0 by solving (8)-(9) and (12)-(13) (for
a fixed xn+1) backward in τ along with the terminal conditions X(T, xn+1) = Qf

and θ(T, xn+1) = 0. Moreover how can we numerically calculate the gradi-
ent dJ(xn+1)/dxn+1? We will describe the method of calculus of the gradient
dJ(xn+1)/dxn+1 in the next section.

4 Construction of an Algorithm for Numerical
Computation

Our issue is to find the optimal point xn+1 at which the performance index
including the tracking error is minimized. For this purpose, we need calculate
the gradient dJ(xn+1)/dxn+1.

Hence, throughout in this section, we assume the following condition for the
reference signal rc(t).

A2 : rc is at least C2 class function.

We need calculate the gradient dJ(xn+1)/dxn+1 according to the optimization
algorithm. From (14), we obtain

dJ(xn+1)
dxn+1

= x′
0

∂X(0, xn+1)
∂xn+1

x0 + 2
(

∂θ′(0, xn+1)
∂xn+1

)
x0

Noncausal Optimal Tracking of Linear Switched Systems 379

+
∫ 1

0

δJ̄c,1(rc, τ, xn+1)dτ −
∫ 2

1

δJ̄c,2(rc, τ, xn+1)dτ

+(xn+1 − t0)
∫ 1

0

∂δJ̄c,1

∂xn+1
(rc, τ, xn+1)dτ

+(T − xn+1)
∫ 2

1

∂δJ̄c,2

∂xn+1
(rc, τ, xn+1)dτ. (18)

In order to obtain the value at xn+1 of this right hand side, we make calculus
as follows.

By differentiatting (8) and (9), we have the following equation.

− ∂

∂τ

(
∂X

∂xn+1

)
= A′

1X + XA1 + C′
1C1 − S̃′

1R̃
−1S̃1

+(xn+1 − t0)
(

∂X

∂xn+1
A1 + A′

1

∂X

∂xn+1

−(B′
2,1

∂X

∂xn+1
+ D′

12C1)′R̃−1(B′
2,1X + D′

12C1)

−(B′
2,1X + D′

12C1)′R̃−1(B′
2,1

∂X

∂xn+1
+ D′

12C1)
)

(19)

over the time interval τ ∈ [0, 1) and

− ∂

∂τ

(
∂X

∂xn+1

)
= −(A′

2X + XA2 + C′
1C1 − S̃′

2R̃
−1S̃2)

+(T − xn+1)
(

∂X

∂xn+1
A2 + A′

2

∂X

∂xn+1

−(B′
2,2

∂X

∂xn+1
+ D′

12C1)′R̃−1(B′
2,2X + D′

12C1)

−(B′
2,2X + D′

12C1)′R̃−1(B′
2,2

∂X

∂xn+1
+ D′

12C1)
)

(20)

over the time interval τ ∈ [1, 2]. Note that (∂/∂xn+1)(∂/∂τ) = (∂/∂τ)(∂/∂xn+1)
and we have used the general Riccati equation (8)-(9) on these calculus.

Moreover, with respect to the terms including the tracking errors, we have

∂δJ̄c,i

∂xn+1
=

∂δJc

∂xn+1

+2
(

∂θ

∂xn+1

)′
B3,irc(τ, xn+1) + 2θ′(τ, xn+1)B3,i

∂rc

∂xn+1

−
{

2
(

∂θ

∂xn+1

)′
C′

θu,iR̃
′Curc(τ, xn+1) + 2θ′(τ, xn+1)C′

θu,iR̃
′Cu

∂rc

∂xn+1

}

−2θ′(τ, xn+1)C′
θu,iR̃Cθu,i

∂θ

∂xn+1
, i = 1, 2

380 G. Nakura

and
∂δJc

∂xn+1
= 2r′c(τ, xn+1)D′

13D13
∂rc

∂xn+1
− 2r′c(τ, xn+1)C′

uR̃Cu
∂rc

∂xn+1
.

Now we need the value of ∂θ/∂xn+1 at τ ∈ [0, 2]. By differentiatting ∂θ/∂xn+1

with respect to τ ∈ [0, 2] and using the dynamics (12)-(13) of θ, we obtain the
following equality.

∂

∂τ

(
∂θ

∂xn+1

)
=

∂

∂xn+1

(
∂θ

∂τ

)

= −Ā′
c,1θ(τ, xn+1) − (xn+1 − t0)

{
Ā′

c,1

∂θ

∂xn+1
+

∂Ā′
c,1

∂xn+1
θ(τ, xn+1)

}

+B̄c,1rc(τ, xn+1) + (xn+1 − t0)
{

∂B̄c,1

∂xn+1
rc(τ, xn+1) + B̄c,1

∂rc

∂xn+1

}
, (21)

for τ ∈ [0, 1), where

∂Āc,1

∂xn+1
= −B2,1R̃

−1 ∂S̃1

∂xn+1
= −B2,1R̃

−1B′
2,1

∂X

∂xn+1
,

∂B̄c,1

∂xn+1
= − ∂X

∂xn+1
B3,1 +

∂X

∂xn+1
B2,1Cu.

Similarly, for τ ∈ [1, 2],

∂

∂τ

(
∂θ

∂xn+1

)
=

∂

∂xn+1

(
∂θ

∂τ

)

= Ā′
c,2θ(τ, xn+1) − (T − xn+1)

{
Ā′

c,2

∂θ

∂xn+1
+

∂Ā′
c,2

∂xn+1
θ(τ, xn+1)

}

−B̄c,2rc(τ, xn+1) + (T − xn+1)
{

∂B̄c,2

∂xn+1
rc(τ, xn+1) + B̄c,2

∂rc

∂xn+1

}
(22)

where

∂Āc,2

∂xn+1
= −B2,2R̃

−1 ∂S̃2

∂xn+1
= −B2,2R̃

−1B′
2,2

∂X

∂xn+1
,

∂B̄c,2

∂xn+1
= − ∂X

∂xn+1
B3,2 +

∂X

∂xn+1
B2,2Cu.

Note that these equalities (8)-(9), (12)-(13), (19)-(20) and (21)-(22) are a set of
ODEs for X(τ, xn+1), θ(τ, xn+1), ∂X/∂xn+1 and ∂θ/∂xn+1 with the boundary
conditions

X(2, xn+1) = Qf ,
∂X

∂xn+1
(2, xn+1) = O, θ(2, xn+1) = 0,

∂θ

∂xn+1
(2, xn+1) = 0

at τ = 2.
Now we obtain the following modified algorithm to obtain the values of the

gradients of the performance index and the optimal timing numerically.

Noncausal Optimal Tracking of Linear Switched Systems 381

– Algorithm 2 (Modified Algorithm)
1) Set the iteration index j = 0. Choose an initial xj

n+1(= tj1). (Then τ = 1.)
2) By solving an optimal noncausal tracking problem, find J(xj

n+1).
In order to compute J(xj

n+1) numerically,
2a) For the given xj

n+1, solve (8)-(9) with X(2, xn+1) = O.
2b) For the given xj

n+1, solve (12)-(13) with θ(2, xn+1) = 0 based on the
information of rc over the whole time interval τ ∈ [0, 2].
2c) Collectting the values over τ ∈ [0, 2] obtained in 2a) and 2b), we do a
numerical integration to obtain the value of J(xj

n+1) (cf.(14) in the non-
causal case and (17) in the causal case)

3) Compute (∂J/∂xn+1)(x
j
n+1) (and (∂2J/∂2xn+1)(x

j
n+1) if second-order

method is to be used).
In order to compute (∂J/∂xn+1)(x

j
n+1) numerically,

3a) For the given xj
n+1, solve (19)-(20) with ∂X/∂xn+1(2, xn+1) = O uti-

lizing the result of 2a).
3b) For the given xj

n+1, solve (21)-(22) with ∂θ/∂xn+1(2, xn+1) = 0 utiliz-
ing the result of 2a), 2b) and 3a)
3c) Collectting the values over τ ∈ [0, 2] obtained in 2a), 2b), 3a) and 3b),
we do a numerical integration to obtain the value of (∂J/∂xn+1)(x

j
n+1)

(cf.(18)) Or, instead of 2) and 3),
2-3) For the given xj

n+1, solve a set of ODEs (8)-(9), (12)-(13), (19)-(20) and
(21)-(22) with X(2, xn+1) = O, θ(2, xn+1) = 0, ∂X/∂xn+1(2, xn+1) = O
and ∂θ/∂xn+1(2, xn+1)=0 to obtain the value of J(xj

n+1) and (∂J/∂xn+1)
(xj

n+1) numerically. (cf.(14)(17)(18))
4) Use some feasile direction method to update to be xj+1

n+1 = xj
n+1 + αj

(∂J/∂xn+1)(x
j
n+1) (in the case of second-order method, xj+1

n+1 = xj
n+1 − αj

(∂2J/∂x2
n+1)

−1(∂J/∂xn+1)(x
j
n+1), e.g., refer to [21])

(the stepsize αj can be chosen using some stepsize rule, e.g.,Armijo’s rule[3]).
Set the iteration index j = j + 1.

5) Repeat Steps 2), 3), 4) and 5), until, for a given small number ε, |∂J/∂xn+1|
< ε.

Remark 5. In order to obtain not only the initial value but also the value of
the tracking error term numerically, we need not only the initial value but also
the intermediate value of the solutions for the set of ODEs (8)-(9), (12)-(13),
(19)-(20) and (21)-(22). For example, we set a sufficiently small sampling time
and approximately calculate the value of the integral to obtain the values of the
gradients dJ/dxn+1 at the switching instants.

Remark 6. Note that, as we have described in Remark 4, in the case of the
causal tracking problem, we do not need any information with respect to the
values of θ and ∂θ/∂xn+1, which is different from the case of the noncausal
tracking problem.

Remark 7. The Cases of More Than One Switching Times: It can be seen that
there is no difficulty in applying the previous method to GSLQ tracking problems

382 G. Nakura

in the cases with more than one switchings as GSLQ problems not considering
any tracking signals. In detail, we can construction the algorithm for the opti-
mization as follows: Assuming that there exist K switchings, we can transcribe
the original optimal tracking problem into an equivalent problem by introducing
K new state variables xn+i, i = 1, · · · , K which correspond to the switching
instants ti and satisfy

dxn+1

dt
= 0, xn+i(0) = ti.

The new independent time variable τ has the following piecewise linear relation-
ship between t and τ .

t =

⎧⎪⎪⎨
⎪⎪⎩

t0 + (xn+1 − t0)τ, 0 ≤ τ ≤ 1
xn+1 + (xn+2 − xn+1)(τ − 1), 1 ≤ τ ≤ 2

· · · · · ·
xn+K + (T − xn+K)(τ − K), K ≤ τ ≤ K + 1.

Note that τ = 0 corresponds to t = t0, τ = 1 corresponds t = t1,..., and
τ = K + 1 corresponds to t = T . Then, differentiating the Riccati equations
and the dynamics of θ parametrized by xn+1,· · ·,xn+K , we can obtain additional
equations for ∂X/∂xn+i and ∂θ/∂xn+i. Along with the boundary conditions
X(K + 1, xn+1, · · · , xn+K) = Qf , θ(K + 1, xn+1, · · · , xn+K) = 0, ∂θ/∂xn+i(K +
1, xn+1, · · · , xn+K) = 0 and ∂X/∂xn+i(K + 1, xn+1, · · · , xn+K) = O for 1 ≤ i ≤
K, we can resultant ODEs backwards in τ to find the values of X , θ and their
derivatives with respect to xn+i over τ ∈ [0, K + 1].

Remark 8. With Regard to Second-Order Derivatives: If we need the second
order derivatives of J(xn+1) (e.g., refer to [21]) on the above nonlinear opti-
mization algorithm, we can obtain the values by the following similar meth-
ods to the first order derivatives. In order to obtain the values of the sec-
ond order derivatives of J(xn+1), we need the values of ∂2X/∂x2

n+1(τ, xn+1)
and ∂2θ/∂x2

n+1(τ, xn+1) over the whole time interval τ ∈ [0, 2]. By taking
the first and second-order differentiations of (8)-(9) and (12)-(13) with respect
to xn+1, we can form a set of ODEs. Along with the terminal and bound-
ary conditions X(2, xn+1) = Qf , θ(2, xn+1) = 0, ∂X/∂xn+1(2, xn+1) = O,
∂θ/∂xn+1(2, xn+1) = O, ∂2X/∂x2

n+1(2, xn+1) = O, and ∂2θ/∂x2
n+1(2, xn+1) =

O, we can easily solve the set of ODEs for X , θ, ∂X/∂xn+1, ∂θ/∂xn+1,
∂2X/∂x2

n+1, and ∂2θ/∂x2
n+1 and obtain the value of d2J(τ, xn+1)/dx2

n+1 at each
xn+1.

5 Conclusion

In this paper, we have studied the noncausal optimal timing and tracking prob-
lem for the switched systems. We have presented an optimization algorithm
based on the time parametrization approach by X. Xu and P.J. Antsaklis
([19,22]). In order to obtain the values of the gradients of the performance index,

Noncausal Optimal Tracking of Linear Switched Systems 383

we need to do numerical integration and have assumed the appropriate smooth-
ness on the reference signals. In spite of these task of numerical integration and
assumption on the reference signals, we can expect better tracking performance
and more appropriate switching timings by the noncausal information of the
reference signals. Our noncausal tracking theory can be also applied to more
general embedded systems. To clarify relationship between switched and more
general embedded systems from the point of view of noncausal tracking control
is a very important issue to research.

References

1. Azuma, S.-i., Egerstedt, Wardi, Y.: Output-Based Optimal Timing Control of
Switched Systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 64–78. Springer, Heidelberg (2006)

2. Bengea, S.C., DeCarlo, R.A.: Optimal Control of Switching Systems. Automat-
ica 41(1), 11–27 (2005)

3. Bertsekas, D.P.: Nonlinear Programming, 2nd edn., Athena Scientific (1999)
4. Cohen, A., Shaked, U.: Linear Discrete-Time H∞-Optimal Tracking with Preview.

IEEE Trans. Automat. Contr. 42, 270–276 (1997)
5. Devasia, S., Chen, D., Paden, B.: Nonlinear Inversion-Based Output Tracking.

IEEE Trans. Automat. Contr. 41, 930–942 (1996)
6. Egerstedt, M., Azuma, S.-i., Wardi, Y.: Optimal Timing Control of Switched Linear

Systems Based on Partial Information. Nonlinear Analysis 65, 1736–1750 (2006)
7. Gershon, E., Limebeer, D.J.N., Shaked, U., Yaesh, I.: Stochastic H∞ Tracking

with Preview for State-Multiplicative Systems. IEEE Trans. Automat. Contr. 49,
2061–2068 (2004)

8. Gershon, E., Shaked, U., Yaesh, I.: H∞ Tracking of Linear Continuous-Time Sys-
tems with Stochastic Uncertainties and Preview. Int. J. Robust and Nonlinear
Control 14, 607–626 (2004)

9. Gershon, E., Shaked, U., Yaesh, I.: H∞ Control and Estimation of State-
Multiplicative Linear Systems. LNCIS, vol. 318 (2005)

10. Kojima, A., Ishijima, S.: H∞ performance of preview control systems. Automat-
ica 39, 693–701 (2003)

11. Kojima, A., Ishijima, S.: H∞ preview tracking in output feedback setting. Int. J.
Robust and Nonlinear Control 14, 627–641 (2004)

12. Kojima, A., Ishijima, S.: Formulas on Preview and Delayed H∞ Control. IEEE
Trans. Automat. Contr. 51(12), 1920–1937 (2006)

13. Nakura, G.: H∞ Tracking with Preview by State Feedback for Linear Jump
Systems. Trans. of the Society of Instrument and Control Engneers (SICE) (in
Japanese) 42(6), 628–635 (2006)

14. Nakura, G.: Stochastic H∞ Tracking with Preview by State Feedback for a Linear
Jump System. In: 35th Symposium on Control Theory in Japan, pp. 237–242 (2006)

15. Nakura, G.: H∞ Tracking with Preview for Linear Systems with Impulsive Effects
-State Feedback and Full Information Cases. In: The 17th IFAC World Congress,
Seoul (accepted, to appear, 2008)

16. Nakura, G.: H∞ Tracking with Preview by Output Feedbak for Linear Systems
with Impulsive Effects. In: The 17th IFAC World Congress, Seoul (accepted, to
appear, 2008)

384 G. Nakura

17. Shaked, U., de Souza, C.E.: Continuous-Time Tracking Problems in an H∞ Setting:
A Game Theory Approach. IEEE Trans. Automat. Contr. 40(5), 841–852 (1995)

18. de Souza, C.E., Shaked, U., Fu, M.: Robust H∞-Tracking: A Game Theory Ap-
proach. Int. J. Robust and Nonlinear Control 5, 223–238 (1995)

19. Xu, X., Antsaklis, P.J.: An Approach for Solving General Switched Linear
Quadratic Optimal Control Problems. In: Proc. 40th IEEE Conf. Decision Control,
pp. 2478–2483 (2001)

20. Xu, X., Antsaklis, P.J.: Optimal Control of Switched systems via Nonlinear Op-
timization Based on Direct Differentiations of Value Functions. Int. J. Contr. 75,
1406–1426 (2002)

21. Xu, X., Antsaklis, P.J.: Optimal Timing Control of a Class of Hybrid Autonomous
Systems. International Journal of Hybrid Systems 3(1), 33–60 (2003)

22. Xu, X., Antsaklis, P.J.: Optimal Control of Switched Systems Based on Param-
eterization of the Switching Instants. IEEE Trans. Automat. Contr. 49(1), 2–16
(2004)

Appendix: Proof of Proposition 1

In this appendix, we give the proof of Proposition 1. This is the modification of
the preview tracking control theory by U. Shaked and C.E. de Souza([17]) for
the noncausal GSLQ tracking problem.

Proof of Proposition 1
Sufficiency: For τ ∈ [0, 1), not considering any preview or noncausal information,
we can easily show

d

dτ
{x′(τ, xn+1)P (τ, xn+1)x(τ, xn+1)}

= (xn+1 − t0){−‖zc(τ, xn+1)‖2

+‖u(τ, xn+1) + R̃−1S̃1x(τ, xn+1) + Curc(τ, xn+1)‖2
R̃

−2x′(τ, xn+1)B̄c,1(τ, xn+1)rc(τ, xn+1) + δJc(rc, τ, xn+1)}
where we have used the general Riccati equation (8)-(9). Now introducing the
vector θ, which can include some preview information of the tracking signals,

d

dτ
{θ′(τ, xn+1)x(τ, xn+1)}

=
∂

∂τ
θ′(τ, xn+1)x(τ, xn+1)

+(xn+1 − t0)θ′(τ, xn+1)(Āc,1x(τ, xn+1) + B2,1ûc,1(τ, xn+1) + B3,1rc(τ, xn+1))

where ûc,1(τ, xn+1) = u(τ, xn+1) + R̃−1S̃1x(τ, xn+1). As a result,

d

dτ
{x′(τ, xn+1)X(τ, xn+1)x(τ, xn+1)} + 2

d

dτ
{θ′(τ, xn+1)x(τ, xn+1)}

= (xn+1 − t0){−‖C1x(τ, xn+1) + D12u(τ, xn+1) + D13rc(τ, xn+1)‖2

+‖ûc,1(τ, xn+1) + Curc(τ, xn+1) + Cθu,1θ(τ, xn+1)‖2
R̃

+δJ̄c,1(rc, τ, xn+1)} (23)

Noncausal Optimal Tracking of Linear Switched Systems 385

where we have used the dynamics (12). Similarly, for τ ∈ [1, 2], using the dy-
namics (13), we obtain

d

dτ
{x′(τ, xn+1)X(τ, xn+1)x(τ, xn+1)} + 2

d

dτ
{θ′(τ, xn+1)x(τ, xn+1)}

= (T − xn+1){−‖C1x(τ, xn+1) + D12u(τ, xn+1) + D13rc(τ, xn+1)‖2

+‖ûc,2(τ, xn+1) + Curc(τ, xn+1) + Cθu,2θ(τ, xn+1)‖2
R̃

+δJ̄c,2(rc, τ, xn+1)} (24)

where ûc,2(τ, xn+1) = u(τ, xn+1) + R̃−1S̃2x(τ, xn+1). Integrating (23) and (24)
from τ = 0 to τ = 2 piecewise, we obtain

x′(2, xn+1)P (2, xn+1)x(2, xn+1) − x′(0, xn+1)P (0, xn+1)x(0, xn+1)
+2θ′(2, xn+1)x(2, xn+1) − 2θ′(0, xn+1)x(0, xn+1)

= (xn+1 − t0)
∫ 1

0

{−‖zc(τ, xn+1)‖2 + δJ̄c,1(rc, τ, xn+1)

+‖ûc,1(τ, xn+1) + Curc(τ, xn+1) + Cθu,1θ(τ, xn+1)‖2
R̃
}dτ

+(T − xn+1)
∫ 2

1

{−‖zc(τ, xn+1)‖2 + δJ̄c,2(rc, τ, xn+1)

+‖ûc,2(τ, xn+1) + Curc(τ, xn+1) + Cθu,2θ(τ, xn+1)‖2
R̃
}dτ.

Including the noncausal part θ(τ, xn+1) at time τ , we adopt

û∗
c,1(τ, xn+1) = −Curc(τ, xn+1) − Cθu,1θ(τ, xn+1) for τ ∈ [0, 1),

û∗
c,2(τ, xn+1) = −Curc(τ, xn+1) − Cθu,2θ(τ, xn+1) for τ ∈ [1, 2]

as the optimal control strategy. By the terminal conditions P (2, xn+1) = QT

and θ(2, xn+1) = 0, we get the result.

Necessity: Because of arbitrality of the reference signal rc(·), by considering the
case of rc(·) ≡ 0, one can easily deduce the necessity for the solvability of our
GSLQ tracking problem. For the purpose, one can get the parametrized gen-
eral Hamiltion-Jacobi equation by applying the standard dynamic programming
method based on the principle of optimality. We can obtain the parametrized
general Riccati equation (8)-(9) by restricting the form of the value function to
be quadratic as follows:

V (x, τ, xn+1) = x′X(τ, xn+1)x

(QED.)

Realization Theory for
Discrete-Time Semi-algebraic Hybrid Systems

Mihály Petreczky1,2 and René Vidal2

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Center for Imaging Science, Johns Hopkins University, Baltimore MD 21218, USA

Abstract. We present realization theory for a class of autonomous discrete-time
hybrid systems called semi-algebraic hybrid systems. These are systems in which
the state and output equations associated with each discrete state are defined by
polynomial equalities and inequalities. We first show that these systems generate
the same output as semi-algebraic systems and implicit polynomial systems. We
then derive necessary and almost sufficient conditions for existence of an implicit
polynomial system realizing a given time-series data. We also provide a charac-
terization of the dimension of a minimal realization as well as an algorithm for
computing a realization from a given time-series data.

1 Introduction

Realization theory is one of the central topics of control and systems theory. Its goals
are to study the conditions under which the observed behavior of a system can be rep-
resented by a state-space representation of a certain type and to develop algorithms
for finding a (preferably minimal) state-space representation of the observed behavior.
Realization theory forms the theoretical foundation of model reduction and systems
identification. It also plays an important role in filtering and control design.

The goal of this paper is to develop realization theory and algorithms for the class of
autonomous discrete-time semi-algebraic hybrid systems. Semi-algebraic hybrid sys-
tems (SAHSs) are characterized by the following two properties. First, the state and
output trajectories are obtained by switching between various continuous subsystems.
Second, the state-transition and output maps of each continuous subsystem are
semi-algebraic functions, that is functions defined by polynomial equalities and inequal-
ities. Particular examples of semi-algebraic functions are polynomial maps, piecewise-
polynomial maps and piecewise-affine maps. The class of SAHSs includes important
classes of discrete-time dynamical systems, such as linear systems, polynomial systems,
and piecewise-affine hybrid systems. Furthermore, notice that semi-algebraic continu-
ous state-transition maps can be used to encode discrete-state transition maps, semi-
algebraic resets maps and guards. Hence, the class of SAHSs does implicitly allow for
guards and resets. In this paper, we will deal only with autonomous SAHSs.

Papers contributions. We present a necessary condition for existence of an SAHS real-
ization. The condition is formulated in terms of the finiteness of the (Krull) dimension
of the algebra generated by the system outputs. We call this condition the algebraic
Hankel-rank condition, as it is a natural generalization of the well-known Hankel-rank
condition for linear systems. We show that the dimension of a minimal realization is

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 386–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems 387

bounded from below by the algebraic Hankel-rank. We also present an algorithm for
computing an almost minimal SAHS realization from a given time-series data.

The results of the paper are based on the following behavioral relationships.

1. Semi-algebraic hybrid systems = semi-algebraic systems. We will show that the
output of an SAHS can be generated by a discrete-time system with semi-algebraic
state-transition and output maps. The converse is trivially true.

2. Semi-algebraic systems ⊆ implicit polynomial systems. We will show that the
output of a dynamical system with semi-algebraic equations can be expressed as the
output of a dynamical system defined by means of implicit polynomial equations.

3. Implicit polynomial systems ⊆ semi-algebraic hybrid systems. We will show
that the output of a dynamical system given by implicit polynomial equations can be
generated by an SAHS. In fact, the switching signal of the hybrid system indicates
which solution of the implicit polynomial equations should be chosen at each time.

By exploring the above relationships, we will be able to solve the realization problem
for SAHSs by solving the realization problem for implicit polynomial systems. The
solution of the latter problem is closely related to, and is inspired by, the work of Sontag
[2] on discrete-time polynomial systems. The main difference with respect to [2] is that
the algebras we work with are no longer integral domains.

The approach proposed in this paper bears a close resemblance to the algebraic-
geometric approach to identification of switched autoregressive exogenous (SARX)
systems of Vidal et al. [19,20,21]. In fact, the reduction of the realization problem for
hybrid systems to finding implicit polynomial equations is analogous to the idea of the
hybrid decoupling polynomial of [19,20,21]. The main differences lie in the classes
of systems that are investigated and in the goals. The work of [19,20,21] investigates
SARX systems and aims to obtain an SARX representation. Here we study systems
which are autonomous, but otherwise more general than SARX systems, and aim to ob-
tain a more general semi-algebraic hybrid system representation from the output data.

Prior work. The realization problem is well studied for deterministic and stochastic
linear systems thanks to the works of Kalman and others (see e.g., [29,30]). For bilinear
and smooth/analytic nonlinear systems, the realization problem is also well understood
thanks to the works of Sussmann, Jakubczyk, Sontag, Fliess, Isidori and others (see e.g.,
[1,5,6,7,2,3,4]). However, the algorithmic aspects of the theory are not fully developed
for general nonlinear systems. There are important results on realization theory of poly-
nomial and rational systems developed by Bartoszewicz, Sontag, Wang, etc., [8,2,9].
However, the study of minimality and realization algorithms is not well understood. The
work of Grossmann and Larson [10] is one of the first attempts to tackle realization of
hybrid systems. However, a formal realization theory is not presented. More recently,
several papers have dealt with realization theory of switched linear/bilinear systems
[11,12,13], linear/bilinear hybrid systems without guards and with partially observed
discrete states [14,13], nonlinear hybrid systems without guards [13,15], piecewise-
linear hybrid systems [16,13], and stochastic jump-Markov linear systems [17,18].

Paper outline. The paper is organized as follows. §2 presents the necessary algebraic
preliminaries. §3 formulates the realization problem and states the main result of the

388 M. Petreczky and R. Vidal

paper formally. §4 contains the sketch of the proofs of the main results along with the
realization algorithm. §5 presents the conclusions and directions for future work.

2 Algebraic Preliminaries

In this section we review some basic results from commutative algebra and semi-
algebraic geometry. The reader is referred to [22,23,24,25] for more details. In particu-
lar, the reader is encouraged to consult [23,22] for the definition and basic properties of
Gröbner bases and Noether normalization. In what follows the term algebra denotes a
commutative algebra over the field of real numbers R, equipped with a unit element.

Polynomials in finitely many commuting variables. LetA be an algebra. Recall from
[22,23] that A[X1, X2, . . . , Xn] is the algebra of polynomials in the commuting vari-
ables X1, . . . , Xn over the algebra A. The elements of A[X1, X2, . . . , Xn] are finite
formal sums

P =
∑

α1,...,αn∈I

aα1,...,αnX
α1
1 Xα2

2 · · ·Xαn
n ,

where aα1,...,αn ∈ A and I is a finite set of natural numbers (possibly including zero).
We will identify X0

i with the unit element 1 of A for all i = 1, . . . , n. If we want
to emphasize the dependence of P on the variables X1, X2, . . . , Xn, we will write
P (X1, X2, . . . , Xn) instead of P .

Semi-algebraic sets and maps. Recall from [24,25] that a subset S ⊆ R
n is called

semi-algebraic if it is of the form

S = {(x1, . . . , xn) ∈ R
n |

d∨

i=1

mi∧

j=1

(Pi,j(x1, . . . , xn) εi,j 0)},

where for each i = 1, . . . , d and j = 1, . . . ,mi the symbol εi,j belongs to the set of
symbols {<,>,≤,≥,=} and Pi,j is a polynomial in R[X1, . . . , Xn]. Here

∨
stands

for the logical or operator and
∧

stands for the logical and operator. Consider a subset
V of R

n and a map f : V → R
m. Recall from [24,25] that the map f is said to be a

semi-algebraic map, if the graph of f is a semi-algebraic set.

Finitely generated algebra. Let A be an algebra and let x1, . . . , xn ∈ A. Denote by
R[x1, . . . , xn] the smallest sub-algebra of A which contains x1, . . . , xn. We will call
R[x1, . . . , xn] the algebra generated by x1, . . . , xn. The algebraA is called finitely gen-
erated if there exist finitely many elements x1, . . . , xn ofA such thatA=R[x1, . . . , xn].

Krull-dimension of a finitely generated algebra. Consider a finitely generated algebra
A = R[x1, . . . , xn]. Consider elements z1, . . . , zd of A. We will say that z1, . . . , zd

are algebraically independent, if the only polynomial Q ∈ R[Z1, . . . , Zd] such that
Q(z1, . . . , zd) = 0 is the zero polynomial. Here, Q(z1, . . . , zn) is the element of A
obtained from Q by substituting for each variable Zi the element zi and evaluating the
resulting expression using the addition and multiplication operations in A. The Krull-
dimension ofA is the maximal number of algebraically independent elements of A. We
refer to the Krull-dimension ofA simply as the dimension ofA and denote it by dimA.

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems 389

Algebra of time-series. The algebra of time-series plays a crucial role in this paper.
Consider the set R

∞ of all infinite sequences of real numbers. A typical element of R
∞

is of the form (b(n))n∈N, where b(n) ∈ R for all n. We will also refer to the elements
of R

∞ as time-series, by interpreting a sequence as a sequence of measured system
outputs. We define the addition and multiplication of time-series point-wise. That is,
given two time-series (a(n))n∈N and (b(n))n∈N, their sum is defined as the time-series
(a(n))n∈N + (b(n))n∈N = (a(n) + b(n))n∈N, and their product is defined as the time-
series (a(n))n∈N ·(b(n))n∈N = (a(n)b(n))n∈N. It is easy to see that, with the operations
above, R

∞ forms an algebra. Its null element is the time-series in which every element
is zero. Its identity element is the time-series where each element is 1. Moreover, each
real number x can be identified with the time-series where each element is equal to x.

3 Problem Formulation and Statement of the Main Results

The goals of this section are to define formally the notions of semi-algebraic systems
(§3.1), semi-algebraic hybrid systems (§3.2) and implicit polynomial systems (§3.3),
and to state the main results on realization theory and minimality for these classes of
systems (§3.4). The proofs of these results together with a realization algorithm will be
presented in the next section.

Before proceeding further, let us fix some notation and terminology. Throughout the
paper we will look at discrete-time systems, i.e. our time axis will be the set of natural
numbers including zero. We will denote the time axis by N and hence 0 ∈ N. Also, we
will use (ỹ(k))k∈N ∈ R

p to denote R
p valued time-series, i.e. ỹ(k) ∈ R

p, k ∈ N. For
each i = 1, 2, . . . , p, we will denote by ỹi(k) the ith coordinate of the vector ỹ(k).

3.1 Semi-algebraic Systems

A semi-algebraic system (SAS) is a discrete-time system of the form

Sp :

{
x(k + 1) = f(x(k)), x(0) = x0,

y(k) = h(x(k)),
(1)

where for each k ∈ N, the state x(k) at time k belongs to R
n and the output y(k)

at time k belongs to R
p. The state-transition map f : R

n → R
n and the readout map

h : R
n → R

p are semi-algebraic maps. The state x0 is the initial state of the system. It is
clear that the external behavior of (1) can be characterized by the time-series (y(k))k∈N.

Definition 1 (Realization by SASs). We will say that a system Sp of the form (1) is a
realization of Y = (ỹ(k))k∈N ∈ R

p if for all time instants k ∈ N, ỹ(k) = y(k).

We define the dimension of Sp, denoted by dimSp, as the number of state variables,
i.e. dimSp = n. Assume that Sp is a realization of a time-series Y . We will say that Sp

is a minimal realization of Y if Sp is a realization of Y that has the smallest possible
dimension among all possible SASs that realize Y .

390 M. Petreczky and R. Vidal

3.2 Semi-algebraic Hybrid Systems

A semi-algebraic hybrid system (SAHS) is a discrete-time hybrid (switched) system of
the form

Hp :

{
x(k + 1) = fq(k)(x(k)), x(0) = x0,

y(k) = hq(k)(x(k)),
(2)

where x(k) ∈ R
n denotes the continuous state at time k ∈ N, x0 denotes the initial

state of the system, y(k) ∈ R
p denotes the continuous output at time k ∈ N, and

q(k) ∈ Q denotes the discrete mode at time k ∈ N. Here we assume that the set Q is
finite. The switching signal (q(k))k∈N is assumed to be arbitrary. Also, for each discrete
mode q ∈ Q, the maps fq : R

n → R
n and hq : R

n → R
p are assumed to be semi-

algebraic, hence the name semi-algebraic hybrid systems. The definition of a realization
for an SAHS is analogous to Definition 1.

Definition 2 (Realization by SAHSs). An SAHS Hp of the form (2) is a realization of
Y = (ỹ(k))k∈N ∈ R

p if for all k ∈ N, ỹ(k) = y(k).

We will call the number continuous state variables n the dimension of Hp, and we will
denote it by dimHp, i.e. dimHp = n. We will call an SAHS Hp a minimal realization
of Y if Hp is a realization of Y with the smallest dimension among all possible SAHS
realizations of Y . One may wonder whether this definition of minimality is justified,
as it does not take into the account the number of discrete modes. We think this is an
interesting direction to explore. However, we are not aware of any work in this direction.

3.3 Implicit Polynomial Systems

An implicit polynomial system (IPS) is a discrete-time dynamical system of the form

Pp :

{
Qi(xi(k + 1),x1(k), . . . ,xn(k)) = 0 for all i = 1, . . . , n

Pj(yj(k),x1(k), . . . ,xn(k)) = 0 for all j = 1, . . . , p.
(3)

In the above equation, x(k) = (x1(k), . . . ,xn(k))� ∈ R
n is the continuous state at

time k ∈ N, y(k) = (y1(k),y2(k), . . . ,yp(k))� ∈ R
p is the continuous output at

time k ∈ N, x(0) = x0 is the initial state of the system, and for each i = 1, . . . , n
and j = 1, . . . , p, Qi(Z0, Z1, . . . , Zn) and Pj(Z0, Z1, . . . , Zn) are polynomials in the
variables Z0, . . . , Zn with real coefficients. In addition, we will assume the following.

Assumption 1. For all k∈N, i=1, . . . , n, and j=1, . . . , p, Pj(Z0,x1(k), . . . ,xn(k))
and Qi(Z0,x1(k), . . . ,xn(k)) are non-zero polynomials in Z0.

If the assumption above fails for some k, then one of the components of y(k) or x(k+1)
can be chosen indepently of the statex(k).

Notice that the state and output of (3) at time k are not determined solely by the
initial state x(0) = x0. The reason for this is that the current state determines the next
state and the current output implicitly, and hence several valid choices for the output
and next state may exist. In the sequel, whenever we speak of an IPS of the form (3),
we will always assume that a specific state trajectory (x(k))k∈N and output trajectory
(y(k))k∈N is fixed, such that (x(k))k∈N and (y(k))k∈N satisfy (3).

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems 391

Definition 3 (Realization by IPSs). An IPS Pp of the form (3) with state trajectory
(x(k))k∈N ∈ R

n and output trajectory (y(k))k∈N ∈ R
p is said to be a realization of

the time-series Y = (ỹ(k))k∈N ∈ R
p if for all k ∈ N, ỹ(k) = y(k).

As before, we define the dimension of an IPS Pp of the form (3), denoted by dimPp,
to be the number of state variables, i.e. dimPp = n. An IPS Pp is said to be a minimal
realization of Y if Pp is a realization of Y that has the smallest dimension among all
possible IPSs that realize Y .

3.4 Main Results

In what follows, we state the main results of the paper on realization of SASs, SAHSs,
and IPSs. We begin with Theorem 1, which states the main result on output equiva-
lence of these systems. Then in Theorems 2–4 we state the main results on existence
and minimality of realizations. The proof of Theorem 1 (see §4.1) yields a number of
procedures for converting systems from one of these classes to the others. Before stat-
ing the theorem formally, we need to introduce some notation for each one of these
transformations.

Notation 1. The proof of Theorem 1 yields the following transformations.

Procedure for transforming SAHSs to SASs. Given an SAHS Hp, we will denote by
SA(Hp) the SAS which is the outcome of this procedure if applied to Hp.

Procedure for transforming SASs to IPSs. Given an SAS Sp, we will denote by
IP (Sp) the IPS which is the outcome of this procedure if applied to Sp.

Procedure for transforming IPSs to SAHSs. Given an IPS Pp, we will denote by
SAH(Pp) the SAH which is the outcome of this procedure if applied to Pp.

With this notation, we are ready to state the main result on equivalence of the output
behaviors generated by these systems.

Theorem 1 (Equivalence of SASs, SAHSs and IPSs). Let Sp be an SAS, Hp be an
SAHS, and Pp be an IPS satisfying Assumption 1. Let Y = (ỹ(k))k∈N ∈ R

p be a
time-series. Then the following holds.

– Hp is a realization of Y if and only if SA(Hp) is a realization of Y . In addition,
dimSA(Hp) = dimHp + 1.

– Sp is a realization of Y if and only if IP (Sp) is a realization of Y . In addition,
dim IP (Sp) = dimSp + 1 and IP (Sp) satisfies Assumption 1.

– If Pp is a realization of Y , then SAH(Pp) is a realization of Y . In addition,
dimSAH(Pp) = dimPp.

We now state the main result on existence of a realization by an IPS, and hence by
an SAHS or SAS. To that end, recall from linear systems theory the definition of the
Hankel-matrix HY associated with the time-series Y = (ỹ(k))k∈N ∈ R

p. The matrix
HY ∈ R

∞×∞ has an infinite number of rows and columns indexed by natural numbers,
and the entry ofHY indexed by ((l−1)p+ i, j) with j, l = 1, 2, 3, . . ., and i = 1, . . . , p
equals ỹi(l + j − 2). Let HY,N ∈ R

pN×∞ be the matrix formed by all rows of HY

392 M. Petreczky and R. Vidal

indexed by indices of the form k = lp+ i with l = 0, . . . , N and i = 1, . . . , p. That is,
HY,N is of the form

HY,N =

⎡

⎢⎢⎢⎢⎢⎢⎣

ỹ1(0) ỹ1(1) · · · ỹ1(j) · · ·
...

...
...

...
...

ỹi(l) ỹi(l + 1) · · · ỹi(l + j) · · ·
...

...
...

...
...

ỹp(N) ỹp(N + 1) · · · ỹp(N + j) · · ·

⎤

⎥⎥⎥⎥⎥⎥⎦
. (4)

A classical result from linear systems theory is that the time-series Y admits an au-
tonomous linear system realization if and only if the rank of the Hankel-matrix HY
is finite, or equivalently, there is an upper bound on the ranks of the set of matrices
{HY,N , N ∈ N}. Below we will extend this well-known finite Hankel-rank condition
to IPSs, by introducing the notion of algebraic rank of HY .

Definition 4 (Hankel-algebra). Define thesub-algebraAY,N ofR∞ as thesub-algebra
generated by the rows of the matrix HY,N viewed as scalar time-series. We will call the
sub-algebra AY,N the N -Hankel-algebra of ỹ.

Definition 5 (Algebraic rank of the Hankel-matrix). Define the algebraic rank of the
Hankel-matrix HY , denoted by alg-rankHY , as the supremum of the Krull-dimensions
of the N -Hankel-algebras. That is,

alg-rank HY = sup
N∈N

dimAY,N . (5)

Remark 1 (Finite rank of the Hankel-matrix implies finite algebraic rank). Notice
that if the rank of the Hankel-matrix is finite, then its algebraic rank is also finite.

Theorem 2 (Existence and minimality of an IPS realization). A time-series Y =
(ỹ(k))k∈N ∈ R

p has a realization by an IPS satisfying Assumption 1 only if the al-
gebraic rank of the Hankel-matrix HY is finite. In addition, the dimension of any
IPS realization Pp of Y satisfying Assumption 1 is at least alg-rank HY . Moreover,
if alg-rank HY = n < +∞, then we can construct an IPS realization of Y whose
dimension is n, but which does not necessarily satisfy Assumption 1.

We will say that an SAHS Hp is an almost minimal realization of Y = (ỹ(k))k∈N if
dimHp = alg-rank HY and Hp is a realization of Y . We will say that an SAS Sp is an
almost minimal realization ofY if Sp is a realization ofY and dimSp =alg-rankHY+1.
Combining Theorem 2 with Theorem 1 we get the following realization theorems.

Theorem 3 (Existence and minimality of an SAHS realization). A time-series Y =
(ỹ(k))k∈N ∈ R

p has a realization by an SAHS only if alg-rankHY < +∞. In addition,
the dimension of a minimal SAHS realization of Y is at least alg-rankHY−2. Moreover,
if Y admits an IPS realization Pp such that dimPp = alg-rank HY and Pp satisfies
Assumption 1, then SAH(Pp) is an almost minimal SAHS realization of Y .

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems 393

Theorem 4 (Existence and minimality of an SAS realization). A time-series Y =
(ỹ(k))k∈N ∈ R

p has a realization by an SAS only if alg-rank HY < +∞. In addition,
the dimension of a minimal SAS realization of Y is at least alg-rankHY − 1. Moreover,
if Y has an IPS realization Pp such that dimPp = alg-rank HY and Pp satisfies
Assumption 1, then SA(SAH(Pp)) is an almost minimal SAS realization of Y .

Theorems 2-4 establish conditions for existence and minimality of IPS, SAHS, and SAS
realizations of Y = (ỹ(k))k∈N ∈ R

p. In §4.3, we will show that under suitable assump-
tions one can actually construct a minimal IPS realization Pp from the rows of HY .
Furthermore, we will show that one can use Pp to construct an almost minimal SAHS
realization of Y and an almost minimal SAS realization of Y . Before delving into the
details of these constructions, together with the corresponding realization algorithms,
we shall provide in §4.1-§4.2 the proofs for Theorems 1-4.

4 Realization Construction

In this section, we sketch the constructions that lie at the heart of the proofs of Theo-
rems 1–4. In §4.1 we present the proof of Theorem 1. In §4.2 we present the proof of
Theorems 2–4. Finally, in §4.3 we discuss the algorithmic aspects of realization theory.

4.1 Proof of Theorem 1

The proof of Theorem 1 will be divided into the following three parts.

Definition of SA(Hp) and its properties. Consider an SAHS Hp of the form (2) and
let w = (q(k))k∈N ∈ Q be its switching signal. Since the set of discrete modes Q is
finite, we can assume without loss of generality thatQ is of the formQ = {1, 2, . . . , d}.
As shown in [16,27], this allows one to encode the switching signal w as a real number
in the interval [0, 1] by using the following procedure. Define the encoding ψ(w) of w
as ψ(w) =

∑∞
k=0

(q(k)−1)
(2d)k+1 . It is easy to see that this series is absolutely convergent

and that 0 ≤ ψ(w) < 1. Recall also from [16,27] that there exist piecewise-affine
operations H : [0, 1] → R and M : [0, 1] → [0, 1] such that H(ψ(w)) = q(0) and
M(ψ(w)) = ψ((q(k + 1))k∈N). That is, H(ψ(w)) returns the first element of the
sequence w, and M(ψ(w)) returns the encoding of the shift of w. For each z ∈ [0, 1],
these operations can be written explicitly as:

H(z) =
{
i+ 1 if i ≤ 2dz < i+ 1 for some i = 0, . . . , d− 1

d otherwise

M(z) =
{

2dz − i if i ≤ 2dz < i+ 1 for some i = 0, . . . , d− 1
z otherwise

.

(6)

Furthermore, it is easy to see that H and M can be extended to piecewise-affine maps
defined on the whole R. We can then obtain SA(Hp) from Hp by adding a new state

394 M. Petreczky and R. Vidal

variable z(k) that equals the encoding ψ((q(l + k))l∈N) of the future switching se-
quence. That is

SA(Hp) :

⎧
⎪⎨

⎪⎩

[
x(k + 1)
z(k + 1)

]
=

[
f̃(x(k), z(k))
M(z(k))

]

y(k) = h̃(x(k), z(k))

(7)

where x(0) = x0 coincides with the initial state of Hp and z(0) = z0 = ψ(w), and the
maps f̃ and h̃ are defined as

f̃(x, z) =
{
fq(x) if H(z) = q for some q ∈ Q
fd(x) otherwise

h̃(x, z) =
{
hq(x) if H(z) = q for some q ∈ Q
hd(x) otherwise

(8)

It is easy to see that f̃ and h̃ are semi-algebraic maps. It is also easy to see that y(k) and
x(k) in (7) are the same as y(k) and x(k) in (2) for all time instances k ∈ N. Hence,
the system in (7) is a well-defined SAS. Furthermore, it is a realization of (ỹ(k))k∈N if
and only if Hp is a realization of (ỹ(k))k∈N, and dimSA(Hp) = dimHp + 1.

Definition of IP (Sp) and its properties. Consider an SAS Sp of the form (1) with state
transition map f : R

n → R
n and readout map h : R

n → R
p. For all i = 1, . . . , n and

j = 1, . . . , p, denote by fi : R
n � x 	→ fi(x) ∈ R and hj : R

n � x 	→ hj(x) ∈ R the
semi-algebraic maps obtained from the ith and jth coordinates of f and h, respectively.
It follows from the proof of Proposition 8.13.7 in [24] that there exist polynomials in
R[Z0, . . . , Zn+1], {Qi(Z0, . . . , Zn, Zn+1)}n

i=1 and {Pj(Z0, . . . , Zn, Zn+1)}p
j=1, such

that the following holds: There exists a finite subset of R, D = {d1, . . . , dM} ⊆ R,
such that for all x1, . . . , xn ∈ R there exists γ = γ(x1, . . . , xn) ∈ D such that
Pj(Z0, x1, . . . , xn, γ) and Qi(Z0, x1, . . . , xn, γ) are nonzero polynomials in Z0, and

Qi(fi(x), x1, . . . , xn, γ) = 0 and Pj(hj(x), x1, . . . , xn, γ) = 0

for all i = 1, . . . , n and j = 1, . . . , p. We can then define IP (Sp) as

Qi(xi(k + 1),x1(k), . . . ,xn+1(k)) = 0 for all i = 1, . . . , n+ 1
Pj(yj(k),x1(k), . . . ,xn+1(k)) = 0 for all j = 1, . . . , p

(9)

where the polynomials Qi, Pj for i = 1, . . . , n, j = 1, . . . , p are as defined above and
Qn+1(Z0, . . . , Zn+1) = ΠM

l=1(Z0−dl). The first n state components x1(k), . . . ,xn(k)
of IP (Sp) coincide with those of Sp. The n + 1st state is defined as xn+1(k) =
γ(x1(k), . . . ,xn(k)) ∈ D. The output trajectory of IP (Sp) is the same as that of Sp. It
follows that IP (Sp) is a well defined IPS satisfying Assumption 1. Moreover,Sp is a re-
alization ofY if and only if IP (Sp) is a realization ofY , and dim IP (Sp) = dimSp+1.

Definition of SAH(Pp) and its properties. Let Pp be an IPS of the form (3) satisfy-
ing Assumption 1. Recall that by specifying Pp we fix a state-trajectory (x(k))k∈N and
an output-trajectory (y(k))k∈N satisfying the equations in (3). Let di and rj be, respec-
tively, the degrees of the polynomialsQi(Z0, Z1, . . . , Zn) andPj(Z0, Z1, . . . , Zn) with

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems 395

respect to Z0, for i = 1, . . . , n, j = 1, . . . , p. It follows from Proposition A.5 in [24]
that there are semi-algebraic functions from R

n to R,ψj,1, . . . , ψj,rj andχi,1, . . . , χi,di ,
i = 1, . . . , n, j = 1, . . . , p, such that for all x1, . . . , xn ∈ R, Qi(Z0, x1, . . . , xn) and
Pj(Z0, x1, . . . , xn) are non-zero polynomials over Z0; if Qi(z, x1, . . . , xn) = 0, then
z = χi,l(x1, . . . , xn) for a unique l = 1, . . . , di, and if Pj(z, x1, . . . , xn) = 0, then
z = ψj,k(x1, . . . , xn) for a unique k = 1, . . . , rj . We can then define SAH(Pp) as
in (2), with the system parameters defined as follows. Let the set of discrete modes
of SAH(Pp) be the set Q of all n + p tuples (α1, . . . , αp, β1, . . . , βn), where αj =
1, . . . , rj , and βi = 1, . . . , di, for all j = 1, . . . , p, i = 1, . . . , n. For each discrete
mode q ∈ Q of the form q = (α1, . . . , αp, β1, . . . , βn) define

fq(x1, . . . , xn)=
[
χ1,β1(x1, . . . , xn) χ2,β2(x1, . . . , xn) · · · χn,βn(x1, . . . , xn)

]�

hq(x1, . . . , xn)=
[
ψ1,α1(x1, . . . , xn) ψ2,α2(x1, . . . , xn) · · · ψp,αp(x1, . . . , xn)

]� (10)

It is easy to see that fq and hq are semi-algebraic functions for all discrete modes
q ∈ Q. It is left to define the initial state and the switching signal of SAH(Pp). Recall
that (x(k))k∈N and (y(k))k∈N are, respectively, the state and output trajectory of Pp.
It follows from the discussion above and Assumption 1 that for each time instant k ∈
N there exist indices βi(k) ∈ {1, . . . , di}, i = 1, . . . , n and αj(k) ∈ {1, . . . , rj},
j = 1, . . . , p, such that xi(k + 1) equals χi,βi(k)(x1(k), . . . ,xn(k)) and yj(k) equals
ψj,αj(k)(x1(k), . . . ,xn(k)). Choose the switching signal w = (q(k))k∈N as q(k) =
(α1(k), . . . , αp(k), β1(k), . . . , βn(k)) ∈ Q and the initial state as x(0) = x0. We get
that (x(k))k∈N and (y(k))k∈N are the state and output trajectories of SAH(Pp). In
particular, this implies that SAH(Pp) is a realization of (ỹ(k))k∈N. It is easy to see
from the construction of SAH(Pp) that dimSAH(Pp) = dimPp.

4.2 Proof of Theorems 2-4

Theorems 3 and 4 follow easily from Theorems 1 and 2. Therefore, it is enough to prove
Theorem 2. We divide the proof of Theorem 2 into the following three parts.

Necessity. Assume that Y = (ỹ(k))k∈N has an IPS realization Pp of the form (3) satis-
fying Assumption 1. Notice that the time-series (xi(k))k∈N ∈ R, i = 1, . . . , n, formed
by the components of the state trajectory belong to R

∞. In addition, for each j =
1, . . . , p the time-series (ỹj(k))k∈N ∈ R, coincides with the time-series (yj(k))k∈N

formed by the jth coordinates of the output trajectory of Pp. For each N denote by
BPp,N the sub-algebra of R

∞ generated by the rows of HY,N and by the time-series
(xi(k + l))k∈N, i = 1, . . . , n and l = 0, . . . , N . It is easy to see that the N -Hankel-
algebra AY,N is a sub-algebra of BPp,N . Moreover, using Corollary 3.7 of [22] we see
that for each N , dimAY,N ≤ dimBPp,N . If we can show that dimBPp,N ≤ n, then it
follows that alg-rankHY ≤ n < +∞. To that end, consider any minimal prime ideal P
of BPp,N (see [22] for the definition of a minimal prime ideal of an algebra) and the sub-
algebraAx = R[(x1(k))k∈N, . . . , (xn(k))k∈N] of BPp,N . Using Assumption 1 it can be
shown that BPp,N/P is algebraic over Ax/(Ax∩P), and hence dimBPp,N/P ≤ n for
any minimal prime P . Since dimBPp,N=max{dimBPp,N/P | P is a minimal prime}
we get that dimBPp,N ≤ n.

396 M. Petreczky and R. Vidal

Sufficiency. Assume that alg-rank HY = n < +∞. It follows that there exists N∗

such that for all k > 0, n = dimAY,N∗ = dimAY,N∗+k. Choose a Noether Nor-
malization (see [22]) (zi(k))k∈N ∈ R, i = 1, . . . , n, of AY,N∗ . Then the time-series
(z1(k))k∈N, . . . , (zn(k))k∈N are algebraically independent and AY,N∗+1 is algebraic
over the algebra R[(z1(k))k∈N, . . . , (zn(k))k∈N]. Therefore, there exist polynomials
Qi(T0, Z1, . . . , Zn) and Pj(T0, Z1, . . . , Zn), i = 1, . . . , n, j = 1, . . . , p such that

Qi(zi(k + 1), z1(k), . . . , zn(k)) = 0 for all i = 1, . . . , n, k ∈ N

Pj(ỹj(k), z1(k), . . . , zn(k)) = 0 for all j = 1, . . . , p, k ∈ N.
(11)

It is then easy to see that (11) defines an IPS realization of Y with the state trajec-
tory (z(k))k∈N, z(k) = (z1(k), . . . , zn(k)) ∈ R

n, k ∈ N, and output trajectory
(ỹ(k))k∈N ∈ R

p. We will call this IPS the free realization of Y and we will denote
it by P

�y. Notice that P
�y need not satisfy Assumption 1.

Minimality. The proof of the statement of Theorem 2 is now rather simple. First,
from the proof of necessity of the finite algebraic rank of the Hankel-matrix, it fol-
lows that if Pp is an IPS realization of (ỹ(k))k∈N and Pp satisfies Assumption 1, then
alg-rankHY ≤ dimPp. From the proof of sufficiency it follows that the free realization
P
�y is an IPS realization of (ỹ(k))k∈N and dimP

�y = alg-rank HY .

4.3 Realization Algorithms

In this section, we present realization algorithms for constructing an almost minimal
IPS, SAS and SAHS realization of a time series. We first present a realization algorithm
that returns the polynomials of an IPS realization Pp of the measured data along with
a finite portion of the state trajectory. We then discuss how to use this algorithm for
computing a minimal SAHS and SAS realization of the same series.

Throughout the section we will assume that the first 2M elements of the time series
Y = (ỹ(k))k∈N are measured for some M ∈ N.

Realization algorithm for IPSs. The main idea behind the realization algorithm we
are about to present is that each Hankel-algebra AY,N , N ∈ N, can be represented as a
quotient of a polynomial ring with a suitable ideal IN . Then, given a Gröbner basis for
IN , the computation of the polynomials defining Pp can be done using Gröbner-basis
techniques. The following paragraphs describe the algorithm in more detail.

For eachN , let R[TN] be the ring of polynomials R[T1, . . . , T(N+1)p] in the variables
T1, . . . , T(N+1)p. Also let IN be the ideal of R[TN] generated by all the polynomials
that vanish on the set

VN = {(ỹ(k)�, . . . , ỹ(k +N)�)� ∈ R
p(N+1) | k ∈ N}. (12)

Then, it is easy to see that AY,N is isomorphic to the quotient AY,N
∼= R[TN]/IN .

Denote by GN the Gröbner-basis of IN . Choose a number D > 0 representing our
guess on the maximal degree of polynomials generating the ideals IN . We are now
ready to formulate the partial realization algorithm IPPartReal(M,D) for IPSs.

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems 397

IPPartReal(M,D)
1: Set N := 0.
2: Compute the Gröbner basis of IN and IN+1

GN := ApproxIdeal(M,D,N), GN+1 := ApproxIdeal(M,D,N + 1).
3: Compute the Noether Normalization of GN and GN+1

({Y l
1 , . . . , Y

l
dl
}, dl) = NoetherNorm(l, Gl) for l = N,N + 1.

4: If (dN+1 > dN) and (N + 2 ≤M), then go back to Step 2 with N := N + 1.
5: Compute the polynomials of the free IPS realization P

�y as follows.
Let d := dN = dN+1.
For each i = 1, . . . , d, letZi(T1, . . . , T(N+2)p) := Y N

i (Tp+1, Tp+2, . . . , T(N+2)p).
For each i = 1, . . . , d, let Qi := DepPoly(N + 1, Y N

1 , . . . , Y N
d , Zi, GN+1).

For each j = 1, . . . , p, let Pj := DepPoly(N + 1, Y N
1 , . . . , Y N

d , Tj , GN+1).
For each i = 1, . . . , d, define zi(k) := Y N

i ((ỹ(k)�, . . . , ỹ(k +N)�)�).
6: Return the IPS P

�y defined as

P
�y

{
Qi(zi(k + 1), z1(k), . . . , zd(k)) = 0 for all i = 1, . . . , d

Pj(ỹj(k), z1(k), . . . , zd(k)) = 0 for all j = 1, . . . , p
(13)

Notice that the algorithm IPPartReal depends on several other algorithms, such as
ApproxIdeal, NoetherNorm and ComputeDepPoly. Each one of these algorithms
can be implemented using techniques from commutative algebra, as we describe next.

The algorithm ApproxIdeal(D,M,N) computes an approximation of the Gröbner-
basis of IN and proceeds as follows.

ApproxIdeal(D,M,N)
1: For each l = 0, . . . ,M , let Il,N be the ideal generated by the polynomials Tkp+j −

ỹj(k + l) for each k = 0, . . . , N , and j = 1, . . . , p.
2: Compute the Gröbner-basis GN,M of the ideal IN,M =

⋂
l=0,...,M Il,N using the

grlex ordering (see [23]). Return a Gröbner-basis of the ideal generated by those
elements of GN,M that are of degree less than D.

The algorithm NoetherNorm(N,GN) returns d = dimAY,N and a set of polyno-
mials Y1, . . . , Yd in R[TN] such that the substitutions

zi = Yi((ỹ1(k))k∈N, . . . , (ỹp(N + k))k∈N) ∈ R
∞ for each i = 1, . . . , d

yield a Noether Normalization z1, . . . , zd of AY,N . This algorithm is known to be com-
putable from any finite basis GN of the ideal IN , as can be seen from the proof of the
Noether Normalization Theorem (see [22]).

The algorithm DepPoly(N,Y1, . . . , Yd, Z,GN) returns a nontrivial polynomial
Q in d + 1 variables such that Q(Z, Y1, . . . , Yd) ∈ IN for polynomials Z, Y1, . . . ,
Yd ∈ R[TN], provided that such a polynomial Q exists. The algorithm proceeds as
follows.

398 M. Petreczky and R. Vidal

ComputeDepPoly(N,Y1, . . . , Yd, Z,GN)
1: Introduce new variables S0, S1, . . . , Sd and define the ideal J of the polynomial

ring R[S0, . . . , Sd, T1 . . . T(N+1)p] as the ideal generated by the elements of the
Gröbner-basis of GN and the polynomials S0 − Z and Si − Yi, i = 1, . . . , d.

2: Compute the Gröbner-basis Ĝ of the intersection J ∩ R[S0, S1, . . . , Sd], see [23]
for an algorithm. Return an element Q of Ĝ.

From the Algebraic Sampling Theorem stated in [28] it follows that if M and D are
large enough, then ApproxIdeal(D,M,N) returns a Gröbner-basis of IN . Hence, we
get the following.

Lemma 1 (Partial realization). Assume alg-rank HY < +∞. Then, if M and D
are large enough, then the IPS P

�y returned by IPPartReal(M,D) is a realization
of Y = (ỹ(k))k∈N, and the dimension of P

�y is at most alg-rank HY . If P
�y satisfies

Assumption 1, then dimP
�y = alg-rank HY .

The question that arises is how to check if the output of IPPartReal satisfies As-
sumption 1. To this end, we can assume without loss of generality that the polyno-
mials from (13) are of the form Pj =

∑K
r=0Z

r
0Pj,r and Qi =

∑K
l=0 Z

l
0Qi,l for some

K > 0, where Pj,r and Qi,l are polynomials in Z1, . . . , Zn for all i = 1, . . . , n, and
j = 1, . . . , p. Assume that the Groebner-basisGN of IN is known. Denote by Q̂i,l and
P̂j,r the polynomials in R[TN] obtained from Qi,l and Pj,r by substituting Ym for Zm,
m = 1, . . . , n. It is easy to see that the IPS Pp returned by IPPartReal satisfies As-
sumption 1 if the zero set in R

(N+1)p of the ideal Sa generated by the set of polynomials
GN ∪ {Q̂i,l, P̂j,r | i = 1, . . . , n, j = 1, . . . , p, l, r = 0, . . . ,K} is empty. Checking
emptiness of Sa can be done using techniques from algebraic geometry, for example,
by using procedures for deciding emptiness of semi-algebraic sets, see [26].

Realization algorithm for SAHSs. Assume that Pp is the IPS returned by the algo-
rithm IPPartReal. Assume that Pp satisfies Assumption 1 and it is a realization of
Y . Then, it follows that SAH(Pp) is an almost minimal SAH system realization of Y
and dimSAH(Pp) = alg-rank HY . If the equations of the IPS Pp are known, then
the equations of SAH(Pp) can be computed. However, in order to compute the initial
state and the switching sequence of SAH(Pp) the knowledge of the states of Pp is
required. Notice that IPPartReal also computes the state variables for time instances
k = 0, . . . ,M .

Realization algorithm for SASs. We can proceed as follows. Use IPPartReal an IPS
realization Pp of Y . If Pp satisfies Assumption 1, we can use the procedure above to
compute the equations and possibly the state of Hp = SAH(Pp). It is easy to see that
the knowledge of the equations of Hp allows us to compute the equations of SA(Hp).
Unfortunately, the computation of the initial state of SA(Hp) is problematic, as it re-
quires the knowledge of the whole infinite switching sequence. It follows that SA(Hp)
is a realization of Y and dimSA(Hp) = alg-rank HY + 1.

Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems 399

5 Discussion and Future Work

We have presented necessary and an almost sufficient conditions for existence of a
realization for implicit polynomial systems, semi-algebraic systems, and semi-algebraic
hybrid systems, along with a characterization of minimality and a realization algorithm.

There are several potential directions for future research. To begin with, it would
be desirable to find a sufficient condition for existence of a semi-algebraic realization.
In addition, the relationship between minimality and such important properties as ob-
servability and reachability are not well-understood for semi-algebraic hybrid systems.
Another potential research direction is to extend the results of the paper to systems with
inputs, possibly stochastic. A third research direction could be to explore further the re-
lationship between the approach presented in this paper and the works on identification
using GPCA, see [19,20,21]. Extending the results of the paper to the continuous-time
case represents a potential research direction as well. Investigating the computation
complexity of the presented realization algorithm, remains a topic of future research.

Acknowledgements. This work was supported by grants NSF EHS-05-09101, NSF
CAREER IIS-04-47739, and ONR N00014-05-1083.

References

1. Isidori, A.: Nonlinear Control Systems. Springer, Heidelberg (1989)
2. Sontag, E.D.: Polynomial Response Maps. Lecture Notes in Control and Information Sci-

ences, vol. 13. Springer, Heidelberg (1979)
3. Sontag, E.D.: Realization theory of discrete-time nonlinear systems: Part I – the bounded

case. IEEE Transaction on Circuits and Systems CAS-26(4) (1979)
4. Fliess, M.: Matrices de Hankel. J. Math. Pures Appl. (23), 197–224 (1973)
5. Sussmann, H.: Existence and uniqueness of minimal realizations of nonlinear systems. Math-

ematical Systems Theory 10, 263–284 (1977)
6. Jakubczyk, B.: Realization theory for nonlinear systems, three approaches. In: Fliess, M.,

Hazewinkel, M., (eds.) Algebraic and Geometric Methods in Nonlinear Control Theory, pp.
3–32. D. Reidel Publishing Company (1986)

7. Wang, Y., Sontag, E.: Generating series and nonlinear systems: analytic aspects, local realiz-
ability and I/O representations. Forum Mathematicum (4), 299–322 (1992)

8. Bartosiewicz, Z.: Realizations of polynomial systems. In: Algebraic and geometric methods
in nonlinear control theory., Math. Appl., vol. 29, pp. 45–54. Dordrecht, Reidel (1986)

9. Wang, Y., Sontag, E.: Algebraic differential equations and rational control systems. SIAM
Journal on Control and Optimization (30), 1126–1149 (1992)

10. Grossman, R., Larson, R.: An algebraic approach to hybrid systems. Theoretical Computer
Science 138, 101–112 (1995)

11. Petreczky, M.: Realization theory for linear switched systems: Formal power series approach.
Systems and Control Letters 56(9-10), 588–595 (2007)

12. Petreczky, M.: Realization theory for bilinear switched systems: A formal power series ap-
proach. In: Proc. of 44th IEEE Conference on Decision and Control, pp. 690–695 (2005)

13. Petreczky, M.: Realization Theory of Hybrid Systems. PhD thesis, Vrije Universiteit, Ams-
terdam (2006), http://www.cwi.nl/∼mpetrec

14. Petreczky, M.: Hybrid formal power series and their application to realization theory of hy-
brid systems. In: Proc. 17th International Symposium on Mathematical Theory of Networks
and Systems (2006)

http://www.cwi.nl/~mpetrec

400 M. Petreczky and R. Vidal

15. Petreczky, M., Pomet, J.B.: Realization theory of nonlinear hybrid systems. In: Proceedings
of CTS-HYCON Workshop on Hybrid and Nonlinear Control Systems (2006)

16. Petreczky, M.: Realization theory for discrete-time piecewise-affine hybrid systems. In: Proc
17th Internation Symposium on Mathematical Theory of Networks and Systems (2006)

17. Petreczky, M., Vidal, R.: Metrics and topology for nonlinear and hybrid systems. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 459–472. Springer,
Heidelberg (2007)

18. Petreczky, M., Vidal, R.: Realization theory of stochastic jump-Markov linear systems. In:
Proceedings 46th IEEE Conference on Decision and Control (2007)

19. Ma, Y., Vidal, R.: Identification of deterministic switched ARX systems via identification
of algebraic varieties. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp.
449–465. Springer, Heidelberg (2005)

20. Vidal, R.S.S., Sastry, S.: An algebraic geometric approach to the identification of linear hy-
brid systems. In: IEEE Conference on Decision and Control, pp. 167–172 (2003)

21. Vidal, R.: Identification of PWARX hybrid models with unknown and possibly different
orders. In: Proceedings of the IEEE American Conference on Control, pp. 547–552 (2004)

22. Kunz, E.: Introduction to commutative algebra and algebraic geometry. Birkhaeuser,
Stuttgard (1985)

23. Cox, D., Little, J., O’Shea, D.: Ideal, varieties, and algorithms. Springer, New York (1997)
24. Brumfiel, G.W.: Partialy Ordered Rings and Semi-Algebraic Geometry. Cambridge Univer-

sity Press, Cambridge (1979)
25. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Heidelberg (1998)
26. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Heidel-

berg (2003)
27. Collins, P., van Schuppen, J.H.: Observability of hybrid systems and Turing machines. In:

Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 7–12 (2004)
28. Ma, Y., Yang, A., Derksen, H., Fossum, R.: Estimation of subspace arrangements with appli-

cations in modeling and segmenting mixed data. SIAM Review (to appear, 2007)
29. Ho, B.L., Kalman, R.E.: Effective construction of linear state-variable models from in-

put/output data. In: Proc. 3rd Allerton Conf. on Circuit and System Theory, pp. 449–459
(1965)

30. Caines, P.: Linear Stochastic Systems. John Wiley and Sons, New-York (1988)

A Decidable Class of Planar Linear Hybrid Systems

Pavithra Prabhakar, Vladimeros Vladimerou, Mahesh Viswanathan,
and Geir E. Dullerud

University of Illinois at Urbana-Champaign

Abstract. The paper shows the decidability of the reachability problem for pla-
nar, monotonic, linear hybrid automata without resets. These automata are a spe-
cial class of linear hybrid automata with only two variables, whose flows in all
states is monotonic along some direction in the plane, and in which the continu-
ous variables are not reset on a discrete transition.

1 Introduction

The use of embedded devices in safety critical systems, has prompted extensive re-
search in the formal modeling and analysis of hybrid systems. Hybrid automata [1] are
a widely used formalism for modeling such systems. These are machines with finitely
many control states and finitely many real-valued variables that evolve continuously
with time. The transitions depend on the values of the continuous variables and they
change both the discrete control state as well as the values of the variables. The safety
of systems modelled by such automata can often be reduced to the question of whether
a certain state or region of the state space can be reached during an execution. This is
called the reachability problem.

Due to its importance, the reachability problem for hybrid automata has been care-
fully investigated in the past couple of decades. The problem has been shown to be
decidable for special kinds of hybrid automata including timed automata [2], certain
special classes of rectangular hybrid automata [6], and o-minimal hybrid automata [8].
These decidability results often rely on demonstrating the existence of a finite, com-
putable partition of the state space that is bisimilar to the original system.

However, such decidability results are the exception rather than the norm. The reach-
ability problem remains stubbornly undecidable even for very simple and special classes
of hybrid automata, not just in the general case. One such special class is that of linear
hybrid automata. In these automata each variable is constrained to evolve along a con-
stant slope (with time), and despite such simple dynamics, have been unamenable to
algorithmic analysis even in low dimension (i.e., with very few continuous variables).
Timed automata, where each variable evolves synchronously with a global clock, but
where the machine is allowed to compare clock values at the time of discrete transi-
tions1, is undecidable even for systems with 6 clocks [2]. The case of general linear
hybrid automata in which variables are constrained to be compared only to constants,

1 The decidability result for timed automata holds when clocks are only compared with
constants.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 401–414, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

402 P. Prabhakar et al.

remains undecidable even for just 3 variables [1]. Undecidability results for dynamical
systems with piecewise constant derivative in 3 dimensions, and piecewise affine maps
in 2 dimensions [5] provide further evidence.

In this paper, we prove the decidability for a special class of linear hybrid automata
that are planar, monotonic and don’t have resets. Planar refers to the fact that the au-
tomata has only two variables. Monotonic refers to the fact that we require the existence
of a vector ρ such that the derivatives of the variables (viewed as a vector in the plane) in
all states have a positive projection along ρ; note, this does not mean that both variables
have positive derivatives in each state. Finally, the automaton does not reset/change the
values of the variables when taking a discrete transition.

The automaton model that we consider here is more general in some aspects, and
at the same time more restrictive in some aspects, when compared with other hybrid
automata models for which decidability results are known. First variables are not re-
stricted to clocks, like timed automata. Second, variables are not required to have the
same slope in all states, or for them to be reset when the flow is changed, as in some
rectangular hybrid automata. Next, transitions don’t have strong resets that decouple the
continuous dynamics from the discrete, as in o-minimal systems. Finally, the guards and
invariants are not required to be disjoint, as in dynamical systems with piecewise con-
stant derivatives [3] or polygonal hybrid systems [4]. On the other hand, our automata
only have 2 variables, no resets, and monotonic flows.

Despite the restrictive dynamics and planarity, the decidability proof is very chal-
lenging. Like many decidability proofs in this area, we first partition the plane into
regions, which in our case are convex polygons formed by considering lines associated
with the constraints appearing in the automaton description, and lines perpendicular to
the direction along which the flow is monotonic. Such regions have a very special geo-
metric structure in that they are bounded by 2 to 4 line segments, at least one of which
is a line segment perpendicular to the monotonic direction. The first key idea in the
proof is to observe the existence of a line �, perpendicular to the monotonic direction,
such that the behavior of the automaton beyond � is bisimilar to a finite state system.
Then reachability computation is broken up into two phases: the first phase computes
all points before � that are reachable, and the second phase constructs the finite bisimu-
lation for the points beyond � and does the search in the bisimilar transition system.

The computation of the reachable regions before � itself relies on observing that any
execution of the automaton can be seen as a concatenation of a series of almost-inside
executions. An almost-inside execution is an execution that starts at the boundary of
a region R, enters R, and then leaves to another boundary of R, all the while staying
inside R, while taking both discrete and time steps. The first lemma we prove is that
the effect of such almost-inside executions is computable for all regions. However, in
order for the decidability proof to go through we need a stronger result for certain
special regions that we call right pinched triangles; we need to show that the effect
of concatenating finitely many almost-inside executions can be computed. We do this
through a tree construction reminiscent of the Karp-Miller tree [7] for vector addition
systems. Finally, we solve the reachability result for regions before � by another tree
construction. A carefully counting argument coupled with the monotonicity of flows
ensures that this tree will be finite and hence effectively constructable. Space constraints

A Decidable Class of Planar Linear Hybrid Systems 403

prevent us from giving detailed proofs of the decidablity result here; complete proofs
can be found in [9].

2 An Example

We will first illustrate our algorithm for deciding reachability on an example. Con-
sider the hybrid system H given in Figure 1. It has five locations s1, · · · , s5, with flows
f1, · · · , f5, respectively, associated with them. The locations are labelled by their in-
variants. For example, the invariant associated with location s1 is y < 1, and this says
that the control of the system can be in s1 only if the value of the variable y is less than
1. When in a certain location the values of the variables change according to their flow.
If the system starts with x = 0 and y = 0 at location s1, and spends a unit time, then
the values of the variables would be x = 1 and y = 2. However in this case the system
is forced by the invariant to leave the location before half time unit. We note that H is a
monotone linear hybrid system, where by linear we mean that the flows associated with
the locations are constants, and by monotone that the flows have a positive projection
along some direction, in this case the x-axis as shown in Figure 2.

s1 s2 s3

y < 1 x < 1

x > 1

s5 s4

f1 = (1, 2) f2 = (2, 3/2) f3 = (2, 7/4)

f5 = (2, 7/4) f4 = (1, −1)

∧x > 2

x < 2y

x < 2y

Fig. 1. Linear hybrid system H

f1
f3 = f5

f2

f4

x

y

Fig. 2. Flows of the hybrid system H

We will consider the following reachability problem: Is the location s5 reachable
starting from s1 with x = 0 and y = 0? As shown in Figure 3, this translates to
checking if starting in s1 at point O, we can reach the shaded region in location s5.

We first divide the plane into regions depending on the constraints in H. Correspond-
ing to each constraint of H, there is a straight line, as shown by the solid lines in Fig-
ure 3. We also add lines parallel to the y-axis passing through the points of intersections
of these lines, if one does not already exist. As is easily seen, the interior of a region is
invariant with respect to the locations in that either it is contained in the invariant of a
location or is disjoint from it. Hence with each element of a region which is its interior,
its edge without the end-points or its vertex, we can associate a set of locations whose
invariants contain the element. For example, the set of locations corresponding to the
interior of region 1 is {s1, s2, s3}.

The idea of the algorithm is to compute successors for the regions. Given a part of an
edge, called a subedge, and a location, the successor with respect to a region is the set

404 P. Prabhakar et al.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

O

A

C

K

I

B

D

F

G

E

J

H

L

y

x

1

3 4

5
2

6

Fig. 3. Regions of the hybrid system H

of all points on the boundary of the region reachable by moving only in its interior, and
leaving and entering the boundary at most once. For example, starting from point A in
location s3, we can reach J by following flow f3 of s3 and moving only in the interior
of region 3. Hence (s3, J) is in the successor of (s3, A). As a slightly more interesting
example, consider the problem of finding the successors of point O in region 1. These
are exactly the points between A and B in locations s2 and s3, the points between B
and C in locations s1 and s3 and the point B in location s3. We will represent this
succinctly as (s1, B

′C′), (s2, A
′B′), (s3, BC′) and (s3, A

′B), where A′ indicates that
point A itself is excluded. The above subedges are computed in the following way. The
locations corresponding to region 1 are s1, s2 and s3. Let us consider the underlying
graph of H restricted to locations and guards which contain region 1. The same is shown
in Figure 4. We observe that any path from O in location s1 spends time alternately in s1

s1 s2 s3

f1 f2 f3

Fig. 4. Underlying graph of H restricted to region 1

and s2, and then possibly makes a transition to s3 where it spends additional time before
reaching the boundary. We will show that the set of all points reachable by alternating
between s1 and s2 is exactly the set of point in the cone generated by f1 and f2 which
are also in the interior of region 1, namely, the points inside the parallelogram OABC
in the figure. This is true only because s1 and s2 belong to the same strongly connected
component of the underlying graph corresponding to region 1. We then show how to
compute the set of points reachable starting from these points with respect to the next
maximal strongly connected component, in this case s3. In this example it turns out that
the points reachable by moving along f3 from points in the parallelogram OABC is
OABC itself.

A Decidable Class of Planar Linear Hybrid Systems 405

Now coming back to our original problem of finding if there is an execution of H

starting at point O in location s1 to some point in the shaded region in location s5, we
will build a rooted tree, called the reachability tree. Its nodes are labelled with pairs
of locations and subedges and the root is labelled (s1, 0). The children of any node are
labelled with the elements of the successors of the label of the current node with respect
to every region it is adjacent to. The above computation is carried out with respect to
every region to the left of the line x = 2. This gives us the set of all pairs of locations
and points reachable on this line. Figure 5 shows some part of this tree.

(s3, BC′)

(s4, DE′)

(s3, IE) (s4, IE) (s4, LE′)(s4, F H)(s4, HE′)

(s3, BJ)

(s3, BE′)(s3, KE′)(s4, BE) (s4, KE)

(s1, O)

(s4, HG)

(s1, B′C′) (s2, A′B′) (s3, A′B)

(s3, BE′)(s4, BE′)

Fig. 5. Reachability tree

Our next goal is to show that this tree is finite. As a first step to achieve this, we prune
some branches of the tree. The node (s4, LE′) is removed from the tree as its parent
(s4, BE′) contains all the required information. The finiteness of the tree follows from
two observations, namely, the number of children of any node is finite and every path
in the tree is bounded. We can then apply Konig’s Lemma to conclude that the tree is
finite. To show that a path is finite, we have from the monotonicity of the flows that the
leftmost point of any child of a node is to the right of the leftmost point of the node. For
example, the x-coordinate of the left-most point of O which is O itself is less than that
of A which is the leftmost point of A′B, which is in its successor. However, there is a
priori no minimum distance by which this shift to the right occurs. Such a bound exists
if the successor is with respect to a region which is a trapezium, like region 1. It is not
clear for a “left-pinched triangle” like region 6. However for this case we argue that
though a global minimum does not exist, given any path of the tree such a minimum
exists. In case of a “right-pinched triangle” like region 2, even such a local minimum
does not exist. Hence, instead, in this case we compute the “transitive closure” of the
successor with respect to the region, which is the set of all points reachable on the
boundary by moving within R and touching the boundary any number of times. We
show that this is computable when the constraints corresponding to the boundary are
strict. We then use the assumption that there are no adjacent right-pinched triangles, to
argue that the paths of the tree are finite.

We cannot continue with the construction of the tree beyond the line x = 2, because
all regions to the right of this line are unbounded. This might potentially lead to infinite
paths in the tree. So we stop building the tree at the line l which passes through the

406 P. Prabhakar et al.

leftmost vertex, and show that there is a finite bisimulation of the states corresponding
to the regions to the right of this line. This bisimulation can be computed. Hence we
can decide the reachability.

3 Preliminaries

3.1 Linear Hybrid Systems

A linear hybrid system (LHS) H is a tuple (S, S0, E, X,flow , inv , guard) where

– S is a finite set of locations,
– S0 ⊆ S is the set of initial locations,
– E ⊆ S × S is the set of edges,
– X = {y1, · · · , yn} is a finite set of variables,
– flow : S → Q

n associates a flow with every state,
– inv : S → Guards is a function associating an invariant with each state, and
– guard : E → Guards is a function associating a guard with each edge,

where Guards = 2C and C is a finite subset of {∑n
i=1 aiyi ∼ bi | ai, bi ∈ Q,∼∈ {<, >

}}. We call the elements of C which occur in the codomain of inv and guard , the set
of constraints associated with H. The size of X is called the dimension of H.

We note that the definition of the hybrid system above deviates from the standard
definition in that we do not allow resets and the constraints are restricted to be strict.

We define the semantics of an LHS in terms of a transition system. The transition
system of H is a triple (X, X0,→), where X = S×R

n is the set of states of H, X0 ⊆ X
called the set of initial states consists of state (s, v) such that s ∈ S0 and v ∈ inv (s),
and the transition relation → is a binary relation on the set of states X . The transition
relation → is defined as the union of discrete transitions →d and continuous transitions
→c, which are defined as:

– (s, v) →d (s′, v′) if v = v′ and there exists e = (s, s′) ∈ E such that v ∈
inv(s) ∩ inv(s′) ∩ guard(e).

– (s, v) →c (s′, v′) if s = s′ and there exists t ∈ R such that t ≥ 0 and v′ =
v + flow(s)t, and for all t′ ∈ [0, t], v + flow (s)t′ ∈ inv(s).

An execution of H from a state (s1, v1) is a sequence of states (s1, v1) · · · (sn, vn) such
that for all 1 ≤ i < n, (si, vi) → (si+1, vi+1). We then say that (sn, vn) is reachable
from (s1, v1), and denote it by (s1, v1) →∗ (sn, vn). We can represent an execution
(s1, v1)(s2, v2) · · · (sn, vn) as a function σ : [0, t] → S+ × R

n. We define σ as a
pair of functions (σ1, σ2), where σ1 : [0, t] → S+ gives the sequence of locations
at any time point and σ2 : [0, t] → R

n gives the values of the variables. With each
(si, vi) → (si+1, vi+1) we associate a delay di, where di = 0 if vi = vi+1, and
di = (vi+1 − vi)/flow(si) otherwise. Let ti =

∑i
j=1 dj . We set t = tn−1. We define

σ1(t′) = si if t′ ∈ (ti−1, ti), otherwise σ1(t′) = si · · · sj , where t′ = ti and ti−1 	=
ti = ti+1 = · · · = tj 	= tj+1. We define σ2(t′) for t′ ∈ [ti−1, ti] inductively. We set
σ2(0) = v1 and σ2(t′) = σ2(ti−1) + flow(si)(t′ − ti−1) for t′ ∈ [ti−1, ti]. A run of H

is an execution starting from an initial state.

A Decidable Class of Planar Linear Hybrid Systems 407

3.2 Elements of the Two Dimensional Plane

We define some elements of the two dimensional plane formed by straight lines. A
convex closed polygonal set P is the intersection of finitely many closed half-planes.
We simply call P a convex polygon. The interior of P , denoted interior(P), is the
intersection of finitely many open half-planes corresponding to the closed half-planes
of P . The boundary of P , denoted boundary(P), is P − interior(P). An edge of P
is a maximal convex subset of boundary(P). We denote the set of all edges of P by
edges(P). A vertex of P is a point of intersection of two distinct edges of P . The set of
all vertices of P will be denoted by vertices(P).

We call a convex subset of an edge, a subedge. The end-points of a subedge e are
points a and b such that e consists of all points on the line segment joining a and b,
except possibly a and b themselves. We denote this by end-points(e) = {a} ∪ {b}. The
subset of e without the end-points will be denoted open(e), which is e− end-points(e).
The elements of the subedge e are then its end-points which are contained in e and the
open(e). This is denoted by elements(e) = {open(e)}∪{a | a ∈ end-points(e), a ∈ e}.
From now on, by a convex set, we mean a polygon, interior of a polygon, or a subedge
of a polygon.

3.3 Restricted Hybrid Systems

We call an LHS H monotone if there exists an f ∈ R
n such that for all locations s

of H, flow (s).f > 0, where . is the standard dot product. We call such an f a direction
of H.

We will call a linear hybrid system planar, if its dimension is two. A planar lin-
ear hybrid system is said to be simple if no three distinct lines corresponding to its
constraints intersect at a common point, where the line corresponding to a constraint∑n

i=1 aiyi ∼ bi is the set of points satisfying
∑n

i=1 aiyi = bi.

3.4 Notations for Planar Hybrid Systems

Let us fix a simple monotone planar linear hybrid system H = (S, S0, E, X,flow , inv ,
guard) for the rest of the paper. Let X = {x, y} and fH be a direction of H. Let
us fix our coordinate system such that the x-axis is parallel to fH and the y-axis is
perpendicular to it. Given a subedge e we define left(e) to be the infimum of the x-
coordinates of the points in e and right(e) to be the supremum of the x-coordinates of
the points in e.

Let V be the set consisting of the points of intersections of the lines corresponding
to the constraints in H. Let us associate with H a set of lines which are parallel to the
y-axis and contain some point in V . We denote this by lines(H). We can order the lines
of H as l1, l2, · · · , lk such that for any 1 ≤ i < j ≤ k, if vi and vj are the points in V
which are contained in li and lj respectively, then left(vi) < left(vj).

Let L be a set of lines which contains lines(H) and the lines corresponding to the
constraints in H. We associate a set of regions with H which consists of polygons whose
interiors are non-empty and which are formed by choosing exactly one closed half-plane
corresponding to each line in L. We denote this by regions(H). We use regions(H, i, j)

408 P. Prabhakar et al.

to denote the regions of H which are contained in the set of points between lines li and
lj of lines(H). Also regions(H, 0, j) and regions(H, i, k + 1) denote the set of regions
contained in the set of points which occur to the left of lj and the set of points which
occur to the right of li, respectively. Note that two distinct regions in regions(H) have
non-intersecting interiors, and the union of all the regions gives us the whole plane R

2.
Following are a few observations about the regions of H:

1. The regions in regions(H, 0, 1) are unbounded and have two or three edges.
2. The regions in regions(H, 1, k) are either triangles, or trapeziums, or unbounded

regions with three edges. For the triangles, one of the edges is contained in some
li and its vertex not on that edge is contained in either li+1 or li−1. If the vertex is
contained in li+1, then we call the triangle a right-pinched triangle otherwise we
call it a left-pinched triangle. For the trapeziums in this region, we will call its edge
a parallel edge if it lies on one of the li’s.

3. The regions in regions(H, k, k + 1) are unbounded with two or three edges.

From now on by a subedge we mean a subedge of the edge of some region in
regions(H). We abuse notation and call a pair (s, e) where s ∈ S is a location and
e a subedge, also a subedge. However it will be clear from the context which one we
mean. The subedge (s, e) is said to contain the state (s, v) where v ∈ e. Two subedges
(s, e) and (s′, e′) are said to be disjoint if the do not contain any common state. By
a state (s, v) or a subedge (s, e) being on a subedge e′ or a line l we mean v or e is
contained in e′ or l. Similarly we use regions also for pairs of states and regions.

We will focus on the following problems in the rest of the paper: the point-to-
point reachability and the region-to-region reachability. The point-to-point reachabil-
ity problem is to decide given two states (s1, v1) and (s2, v2), if (s1, v1) →∗ (s2, v2).
The region-to-region reachability problem is to decide given two location-region pairs
(s1, R1) and (s2, R2), if there exist points v1 ∈ R1 and v2 ∈ R2 such that (s1, v1) →∗

(s2, v2).

4 Decidability of the Reachability Problem

In this section we show that the point-to-point and region-to-region reachability prob-
lems for simple monotone planar linear hybrid systems is decidable. We will continue
to use the notations introduced in the previous section. We first present a sketch of the
proof of decidability.

1. We first show that the edge-to-edge reachability problem is decidable: given a
subedge (s, e) of a region R ∈ regions(H, 0, k), we can compute the set of all
states on lk which are reachable from the states on the subedge.

2. We then show that there exists a computable finite bisimulation of the transition
system of H restricted to the states on and after lk which respects the partition
created by the elements of the regions in regions(H, k, k + 1).

3. We then use the above results to decide the point-to-point and region-to-region
reachability.

A Decidable Class of Planar Linear Hybrid Systems 409

4.1 Edge-to-Edge Reachability

In this section we solve the problem of finding the set of all states on the line lk reach-
able from a subedge (s, e) of some region R ∈ regions(H, 0, k). Any execution from
a state in (s, e) to a state on lk can be broken up into a sequence of executions each
of which is such that they move within a single region and leave or enter its boundary
at most once. Our approach is to build a tree whose nodes represent subedges, and the
states corresponding to the nodes of the children of a node give the set of all points
reachable from the states in the parent node by executions which move within a region.
Then any path in the tree would correspond to executions starting from states in the
root. We call this the reachability tree. We show that the tree is computable and finite.
Then the set of all states in the tree which correspond to the states on lk will give us the
required.

We first compute the set of all states reachable from a subedge by moving only
within a region. We define an almost-inside execution with respect to a region to be an
execution which leaves the boundary of the region at most once and enters the boundary
of the region at most once, and at all times during the execution is in the region. An
almost-inside execution (AI-execution) from a state (s, v) to a state (s′, v′) with respect
to a region R is an execution σ : [0, t] such that σ1(0) contains s and σ2(0) = v,
σ1(t) contains s′ and σ2(t) = v′, and there exist t1, t2 ∈ [0, t] such that for all t′ ∈
(0, t1]∪[t2, t), σ2(t′) ∈ boundary(R), and for all t′ ∈ (t1, t2), σ2(t′) ∈ interior(R). We
say that a subedge (s′, e′) is reachable from a subedge (s, e) by almost-inside executions
with respect to a region R, if for every v′ ∈ e′, there exists a v ∈ e and an AI-execution
from (s, v) to (s′, v′). The successor of a subedge (s, e) with respect to a region R is a
subedge of R reachable from (s, e) by AI-executions with respect to R. We denote by
succ((s, e), R) the maximal successors of (s, e) with respect to R, where a successor
(s′, e′) is maximal if for every successor (s′, e′′), e′′ ⊆ e′.

In the next lemma, we show that succ((s, e), R) is computable. A notion that we
use is that of the underlying graph of the hybrid system restricted to those locations
and edges whose invariants and guards respectively are satisfied by the elements of
a region. Given a set of points V , we define the underlying graph of H with respect
to V to be graph(H, V) = (VH, EH,) such that VH = {s ∈ S |V ⊆ inv (s)} and
EH = {e ∈ E |V ⊆ guard(e)}.

Lemma 1. Given a region R ∈ regions(H) and a subedge (s, e) of R, succ((s, e), R)
is computable.

Proof. We consider the maximal strongly connected components of the underlying
graph graph(H, interior(R)), and first compute the set of all states on the boundary
reachable by moving in a single component. Then we show how this can be used to
compute all the states reachable.

Given a graph G, let us call the graph with these strongly connected components
as vertices, the component graph of G, and denote it as SCC(G). There is an edge
between two vertices in SCC(G) if there is one between two states of the components
in the original graph. Note that maximality of the components gives us that SCC(G) is
a directed acyclic graph.

410 P. Prabhakar et al.

We observe that any AI-execution from a state in (s, e) to a state on the boundary of
R would correspond to a path in SCC(G). For each such path π = C1C2 · · ·Cn where
Ci’s are the strongly connected components, we compute the states on the boundary of
R reachable by AI-executions which follow this path. We do the computation iteratively.
We first find the states reachable by moving only in the component C1.

To compute the above, we need a notion of post of a convex subset of a region
with respect to a set of flows, which is the set of all points in the region reachable by
following the flows and always remaining in the interior of the region except possibly
at the end-points. We can show that post(P, F, R) is computable, where P is a convex
subset of region R and F is a set of at most two flows, and that it can be expressed
as a finite union of convex subsets. A crucial observation is that corresponding to a
trajectory following F from a point in P to any point in R, there is one which moves
only within R. The only exceptions are the vertices of R, but it can be tested separately
if they can be reached. It turns out that the set of all points in R reachable from a point
in P are those in the cone generated by the flows in F . This can also be extended to any
convex subset by taking the convex hull of the sets corresponding to the vertices of P .
The details of the computation of post(P, F, R) are given in [9].

Now the set of all points reachable on the boundary by following flows in the com-
ponent C1 is given by post(e, F, R), where F contains those flows associated with the
locations in C1 which make a maximum or a minimum angle with fH. Further the points
in post(e, F, R) which are in the interior of R can be reached in any location of C1. A
points p in post(e, F, R) which is on the boundary and is reached from some point in
e by moving in R for some non-zero time, can only be reached if there is a location
which is in both C1 and graph(H, e), that is, there is an execution which can move into
the interior, and there is a location which is in both C1 and graph(H, p), that is, there
is an execution which moves from the interior to the boundary. We then compute the
set of all states on an edge reached by moving along the boundary from points on the
boundary given by post(e, F, R). Suppose that we have found the set of all states on the
interior and boundary reachable by the prefix of the path π till Ci. We can then compute
the post of the interior points with respect to the flows of Ci+1, and compute the states
reached when in Ci+1 similar to above. Again the details can be found in [9].

Once we have found the set of states reachable along π, we can take the union of all
the states over all the π’s to get the set of all states on the boundary reachable. Since
at each point in the procedure above we get a representation of the set of states on the
boundary reachable as a finite union of subedges, and the number of paths π is finite,
we can compute succ((s, e), R). ��

Now that we have shown that succ((s, e), R) is computable, we can construct the reach-
ability tree. However we also want to show that the tree is finite, and we will show this
by ensuring that the paths in the tree are finite. We will do this by showing that along
any path the successors move to the right by at least some minimum distance. In the
case of a right-pinched triangle such a minimum does not exist. Hence we will compute
the transitive closure of succ, called succ∗ where we consider points reachable by a se-
quence of AI-executions such that the last state of an execution is same as the first state
of the next execution. The intuition behind this is that if we compute succ∗ instead of
succ for a subedge with respect to a region then we will not need to consider the succ

A Decidable Class of Planar Linear Hybrid Systems 411

of the elements in succ∗ with respect to the region, as those states are already included
in succ∗. We will see that the simplicity of the system can then be used to argue that the
paths in the reachability tree are finite. Next lemma says that succ∗ is computable.

Lemma 2. Given a right-pinched triangle R in regions(H, 1, k) and a subedge (s, e)
of R, succ∗((s, e), R) is computable.

Proof. Let the right-pinched triangle R be abc with the edge ab on some li and c on li+1

as shown in Figure 6. Let (s, e) be a subedge of ac. We first compute the set of all states

c

b

a

li li+1

Fig. 6. Right-pinched triangle abc

on ac reachable by a sequence of one or more AI -executions. For this, we build a tree
T∗(s, e) rooted at node (s, e). We will need the following new notion of successor. Let
us denote by succ1((s1, e1), R) the set of states reachable on ac by executions which
touch bc at most once in the following sense: succ1((s1, e1), R) = {(s2, e2) | (s2, e2) ∈
succ((s1, e1), R), e2 ⊆ ac} ∪ {(s3, e3) | (s3, e3) ∈ succ(s2, e2), e3 ⊆ ac, (s2, e2) ∈
succ((s1, e1), R), e2 ⊆ bc}.

We now define how the tree is constructed. We will simultaneously mark nodes in
the partial tree constructed. The children of a node (s1, e1) are the elements (s2, e2) in
succ1((s1, e1), R) such that there is no node (s2,−) along the path from the root to the
node (s1, e1). For every element (s2, e2) in succ1((s1, e1), R) such that there is a node
(s2, e

′
2) along the path from the root to the node (s1, e1), we mark the node (s2, e

′
2).

Note that a node could get marked twice. The construction of tree will terminate since
it is finite, which is due to the fact that the number of children of any node is finite and
the height of the tree is bounded by the number of locations.

We now describe how to compute succ∗((s, e)) from the tree constructed above. We
form a set A which contains all the nodes of T∗(s, e), and for each node (s1, e1) which
belongs to a subtree of some marked node, it contains (s1, full(e1)), where full(e1) is the
subedge e2 of ac such that left(e2) = left(e1) and right(e2) = right(c) and e2 contains
the points left(e1) and c if and only if e1 contains them. A contains all points on ac′

reachable from (s, e) by moving only within the triangle and touching the boundary any
number of times. This is because if from a state (s, v1) we can reach a state (s, v2) by
an execution σ, where v2 is strictly to the right of v1, then we can reach any point to the
right of v1 by taking a sequence of one or more executions whose transition sequence
is same as that of σ but with possibly less time spent in each location. Similarly if
(s1, e1) can reach (s2, e2), then (s1, full(e1)) can reach (s2, full(e2)). For details, see
[9]. Hence it makes to sense to take the full of all nodes in the subtree of a marked node.

412 P. Prabhakar et al.

To compute the set of states on bc′ reachable, we observe that such a state is reachable
only from an AI -execution starting from some state on ac′. Hence the reachable states
on bc′ B can be computed by taking the succ of the maximal subedges of A. Finally, if
c is reachable then it is reachable by an AI -execution starting from a state on ac′ or bc′,
hence will be included in the succ of the subedges in A or that of B. Hence all points
in succ∗((s, e), R) can be computed. ��
We show below that the set of all states reachable on the line lk is computable. As
already said before, we construct a tree using the succ and succ∗ to compute the children
of the nodes. The nodes of the tree will correspond exactly to the states on edges of
regions in regions(H, 0, k) reachable from some subedge of some region in it for which
the tree is built.

Lemma 3. Given a subedge (s∗, e∗) of a region in regions(H, 0, k), the set of all states
on lk reachable from some state on the subedge is computable.

Proof. Construction of the reachability tree Treach((s∗, e∗)). We construct the reach-
ability tree, in which the nodes correspond to subedges, and the children of a node cap-
ture the set of all states reachable from the states of the current node by AI-executions. A
particular child of a node corresponds to AI-executions with respect to a single region.

We first define tsucc of a subedge with respect to a region which consists of states
reachable by AI-executions in this region. We break up the subedges into its elements,
because when computing tsucc, we require that all points of a subedge belong to the
same set of regions. Note that otherwise, the end-point of a subedge which is a vertex
could belong to a different set of regions than the subedge without the end-points.

For a subedge (s, e) of a region R, tsucc((s, e, R)) is given by:

– If R is not a right-pinched triangle, tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈
succ((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k)}.

– If R is a right-pinched triangle, tsucc((s, e, R)) = {(s′, el, R′) | (s′, e′) ∈ succ∗

((s, e), R), el ∈ elements(e′), el ⊆ R′, R′ ∈ regions(H, 0, k), R 	= R′}.

The root of Treach((s∗, e∗)) is ∗. The children of ∗ are the element of the set {(s∗, e∗, R) |
e∗ ∈ R, R ∈ regions(H, 0, k)}. The children of any node (s, e, R) are the elements of
tsucc((s, e, R)) which contain at least one state which has not occurred in the current
node or any of its ancestors, that is, an element (s1, e1, R1) is present in the tsucc of
the current node (s, e, R) if for all nodes (s1, e2, R1) which is the current node or its
ancestor, there exists a v such that v ∈ e1 − e2.

We sketch below a proof of finiteness of the tree Treach((s∗, e∗)). Details are given in
[9]. First we make a few observations which are crucial in arguing the finiteness.

1. Let (s, e) and (s′, e′) be elements of subedges of a region R. Then if (s′, e′) ∈
tsucc((s, e), R), then left(e) ≤ left(e′) and right(e) ≤ right(e′). This follows from
the monotonicity of the flows in H.

2. Given any region R ∈ regions(H, 1, k), and (s, e) and (s′, e′) elements of subedges
of R which are not on the li’s such that (s′, e′) ∈ tsucc((s, e), R), we have:
(a) If R is a trapezium or an unbounded region, then either right(e′) is on some li

or there exists a dR > 0 such that right(e′) ≥ right(e) + dR.

A Decidable Class of Planar Linear Hybrid Systems 413

(b) If R is a left-pinched triangle, then either right(e′) is on some li or there exists a
d which increases monotonically with right(e) such that right(e′) ≥ right(e)+
d.

Now turning to the proof, by construction the above tree is finitely branching. To see
that every path in the tree is also finite, we can deduce from the above observations
that (a) there is a bound on the number of consecutive children whose right-end
points do not move closer to lk (the bound is the number of locations), (b) when
the successors are computed with respect to a trapezium and the right-end moves
strictly to the right, there is a minimum distance by which the shift occurs namely
the minimum of all the dR’s, (c) when the successors are computed with respect to
a left-pinched triangle the minimum distance is non-zero and depends on the right-
end point of the first occurrence on the path of one of its elements not contained
in any li. This along with the simplicity of the system which guarantees that two
right-pinched triangles are never adjacent to each other, we obtain a bound on the
length of any path. Finally, from Konig’s Lemma, we have that the tree is finite.

��

4.2 Finite Bisimulation

We show that the states of H corresponding to the regions in regions(H, k, k + 1) have
a finite bisimulation. A binary relation ∼ over a set of states is a bisimulation if it
is symmetric and for every pair of states (s1, v1) and (s2, v2), if (s1, v1) ∼ (s2, v2)
and (s1, v1) → (s′1, v′1), then there exists a state (s′2, v′2) such that (s2, v2) →
(s′2, v′2) and (s′1, v′1) ∼ (s′2, v′2). We will show that there exists a computable equiv-
alence relation ∼ of finite index on the set of states in regions(H, k, k + 1) which is a
bisimulation and which respects the partition created by the elements of the regions in
regions(H, k, k+1). By partition created by lk we mean the two parts, one consisting of
the states on lk and the other consisting of the rest of the states in regions(H, k, k + 1).

We define ∼ as follows. (s1, v1) ∼ (s2, v2) if s1 = s2 and v1, v2 belong to the
same element of a region. To see that this is a bisimulation consider (s, v1) and (s, v2)
where v1 and v2 belong to the same element of some region. If (s, v1) takes a discrete
transition to (s′, v1), then so can (s, v2) to (s′, v2) as the guards and invariants respect
the elements of the regions. Suppose (s, v1) takes a continuous transition to (s, v′1),
then there is a straight line from the v1 to v′1 which passes through a finite sequence of
infinite edges and interiors of the regions. There exists a straight line from v2 parallel
to the above which moves through the same sequence of edges and regions. Hence we
can find a point v′2 in the required region.

Since the number of regions in regions(H, k, k + 1) is finite, the number of elements
of these regions is also finite. Hence we have a finite bisimulation.

4.3 Point-to-Point and Region-to-Region Reachability

Theorem 1. Point-to-point and region-to-region reachability problems are decidable
for simple monotone linear hybrid systems.

414 P. Prabhakar et al.

Proof. To check if state (s′, v′) is reachable from (s, v), add two more lines to lines(H)
which pass through v and v′, and are parallel to y-axis. Then check if (s′, v′) corre-
sponds to any node in Treach((s, v)).

To decide if (s′, R′) is reachable from (s, R), where R, R′ ∈ regions(H), first com-
pute the set of subedges init(R) of R reachable from points in R. For each subedge
(s∗, e∗) ∈ init(R), compute the set of subedges in lk reachable, and then take their
union. If R′ ∈ regions(H, k, k + 1), then construct the finite bisimulation to decide if
R′ is reachable. Otherwise check if any state in (s′, R′) is reachable from the set of
subedges on its boundary reachable from states in init(R). ��

5 Conclusions

In this paper we identified a new class of planar linear hybrid automata that have a de-
cidable reachability problem. The key aspect in defining the class was requiring flows
to be monotonic. One can prove that the reachability problem is undecidable in 4 di-
mensions; see [9] for details. The 3 dimensional case is an interesting open problem.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer
Science 138(1), 3–34 (1995)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–
235 (1994)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science 138(1), 35–65 (1995)

4. Asarin, E., Schneider, G., Yovine, S.: Algorithmic analysis of polygonal hybrid systems, part
I: Reachability. Theor. Comput. Sci. 379(1-2), 231–265 (2007)

5. Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C.H., Tsitsiklis, J.N.: Deciding stability
and mortality of piecewise affine dynamical systems. Theoretical Computer Science 255(1–2),
687–696 (2001)

6. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
In: Proc. 27th Annual ACM Symp. on Theory of Computing (STOC), pp. 373–382 (1995)

7. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sci-
ences 3(2), 147–195 (1969)

8. Lafferriere, G., Pappas, G., Sastry, S.: O-minimal hybrid systems (1998)
9. Prabhakar, P., Vladimerou, V., Viswanathan, M., Dullerud, G.E.: A Decidable Class of Planar

Linear Hybrid Systems. Technical Report UIUCDCS-R-2008-2927, UIUC (January 2008)

Reachability of Uncertain Nonlinear Systems

Using a Nonlinear Hybridization

Nacim Ramdani1, Nacim Meslem2, and Yves Candau2

1 INRIA Sophia-Antipolis Méditerranée and LIRMM UMR 5506 CNRS UM2,
161 rue Ada, 34392 Montpellier Cedex 5, France

2 CERTES, Univ. Paris 12-Val de Marne, 61 av. Gl. de Gaulle, 94000 Créteil, France

Abstract. In this paper, we investigate nonlinear reachability compu-
tation in presence of model uncertainty, via guaranteed set integration.
We show how this can be done by using the classical Müller’s existence
theorem. The core idea developed is to no longer deal with whole sets
but to derive instead two nonlinear dynamical systems which involve
no model uncertainty and which bracket in a guaranteed way the space
reachable by the original uncertain system. We give a rule for building
the bracketing systems. In the general case, the bracketing systems ob-
tained are only piecewise Ck-continuously differential nonlinear systems
and hence can naturally be modeled with hybrid automata. We show
how to derive the hybrid model and how to address mode switching. An
example is given with a biological process.

1 Introduction

Computing reachable sets for hybrid systems is an important step when one
addresses verification or synthesis taks. A key issue then lays in the calcula-
tion of the reachable space for continuous dynamics with nonlinear models. In
this paper, we will also emphasize the presence of parameter uncertainty in the
nonlinear dynamical models used for characterizing the continuous dynamics.

Consider an uncertain dynamical system described by non-autonomous dif-
ferential equations with the following form:

{
ẋ(t) = f(x,p, t), x(t0) ∈ X0 ⊆ D, p ∈ P

}
(1)

where function f : D ×P× IR+ �→ IRn is possibly nonlinear, D ⊆ IRn, X0 is the
initial domain for state vector x at time t0 ≥ 0 and P is an uncertainty domain
for parameter vector p. The reachable space of system (1) is then defined as
follows

R([t0, t] ;X0) =
{

x(τ), t0 ≤ τ ≤ t |
(ẋ(τ) = f(x,p, τ)) ∧ (x(t0) ∈ X0) ∧ (p ∈ P)

}
(2)

Several methods have been developed recently for the explicit computation
of the reachable space, however, most of them do not address the presence of
model parameter uncertainty. When the continuous dynamics are linear, these

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 415–428, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

416 N. Ramdani, N. Meslem, and Y. Candau

methods compute over-approximations of the reachable sets by combining time
discretization, numerical integration and computational geometry. They use var-
ious representations for the reachable sets such as polytopes [1,3,6], zonotopes
[8] or ellipsoids [5,13]. Some other methods proceed with hybrid abstractions
[9,7,14]. When the continuous dynamics are modelled with a nonlinear differen-
tial equation, the computation of the reachable set becomes much harder which
forms one of the main obstacle in safety verification of hybrid systems [14]. Most
computationnal methods rely on an hybridization of the continuous-time models,
i.e. the use of piecewise simpler, possibly affine approximations of the analysed
system on cells defined on the state space [2]. Unfortunately, these reachability
computations are tractable only for systems where the dimension of the contin-
uous state component is small.

Few authors investigated the computation of reachable set by using guaran-
teed set integration. In [10], interval Tayor models [16] were used for the verifi-
cation of hybrid systems, but no parameter uncertainty were considered. They
were also used for the simulation of uncertain hybrid systems where the dimen-
sion of vectors were small [17]. Nevertheless, it is well-known that in general the
size of the reachable space derived with interval Taylor models diverges after
few computation steps when the size of initial state domain or parameter un-
certainty domain are large. This shortcoming is mainly caused by the wrapping
effect, i.e. the overestimation of the solution due to the bracketing of any set by
an axis-aligned box.

Hence, the contribution of this paper is to show how one can address nonlinear
continuous reachability computation in presence of model uncertainty, in a more
efficient way by using the classical Müller’s theorem [15,18,12] allied with interval
Taylor models. We will recall the classical Müller’s existence theorem and we will
indicate how it can be used for guaranteed set integration and hence reachability
computation.

The core idea developped in the sequel is to no longer perform set integration
with whole domains but to only compute guaranteed bounds for the reachable
spaces. To do so, we will first show how the Müller’s theorem makes it possible
to derive two dynamical systems which enclose the original uncertain dynamical
system and thus bound the flow pipe between a minimal solution, i.e. a flow
that is always lower than the solution flow pipe, and a maximal solution, i.e.
a flow that is always larger. Since the two bounding systems involve no more
uncertainty, interval Taylor models can be used for the guaranteed computation
of the minimal and maximal solutions. We will show how to build the bracketing
systems by analyzing function f partial derivatives signs. Since the latter may
change over integration time period, the bounding systems are in general defined
by continuous but only piecewise Ck-differentiable functions. We will show how
to use hybrid automata to model them and how to address mode switching.
In summary, the computation of the reachable set for an uncertain continuous
dynamical system boils down to running two hybrid dynamical systems involving
no uncertainty in neither model parameters nor initial state.

Reachability of Uncertain Nonlinear Systems 417

2 Guaranteed Set Integration with Interval Taylor
Models

In this section, we will recall how to perform guaranteed set integration with
interval Taylor models.

2.1 Interval Analysis

Interval analysis was initially developed to account for the quantification errors
introduced by the floating point representation of real numbers with computers
and was extended to validated numerics ([11] and the references therein). A real
interval [a] = [a, ā] is a connected and closed subset of IR. We have Inf[a] = a and
Sup[a] = a. The set of all real intervals of IR is denoted by IR. Real arithmetic
operations are extended to intervals. Consider an operator ◦ ∈ {+,−, ∗,÷} and
[a] and [b] two intervals. Then:

[a] ◦ [b] = [infu∈[a],v∈[b] u ◦ v, supu∈[a],v∈[b] u ◦ v] (3)

An interval vector [a] is a subset of IRn that can be defined as the Cartesian
product of n intervals. One can write [a] = [a1] × [a2] × . . . × [an] where [ai] =
[ai, ai]. Consider g : IRn �−→ IRm ; the range of this function over an interval
vector [a] is given by:

g([a]) = {g(u) | u ∈ [a]} (4)

where the inclusion u ∈ [a] means that ui ∈ [ai] for all i = 1, . . . , n. The interval
function [g] : IRn �−→ IRm is an inclusion function for g if

∀[a] ∈ IRn , g([a]) ⊆ [g]([a]) (5)

An inclusion function for g can be obtained by replacing each occurrence of a real
variable by the corresponding interval and each standard function by its interval
counterpart. The resulting function is called the natural inclusion function. The
performances of this inclusion function depend on the formal expression for g.

Given a bounded set E of complex shape, one usually defines an axis-aligned
box or a paving, i.e. a union of non-overlaping boxes, E which contains the set E :
this is known as an outer approximation of it. Likewise, one also defines an inner
approximation E which is contained in the set E . Hence, we have the following
properties

E ⊆ E ⊆ E (6)
vol(E) ≤ vol(E) ≤ vol(E) (7)

where vol(.) is the volume of a set.

2.2 Interval Taylor Models

Consider now the differential equation (1) and define a time grid t0 < t1 < t2 <
. . . < tnT which is not necessarily equally spaced. The objective is to compute

418 N. Ramdani, N. Meslem, and Y. Candau

interval vectors [xj], j = 1, . . . , nT , that are guaranteed to contain the solution
of (1) at time tj .

Effective methods for solving such a problem are based on Taylor expansions.
These methods are usually one-step methods which proceed with two phases:

1. they first verify existence and uniqueness of the solution using the fixed point
theorem and the Picard-Lindelöf operator, compute an a priori enclosure
[x̃j] such that

∀t ∈ [tj , tj+1] x(t) ∈ [x̃j] (8)

and adapt integration time step size hj = tj+1 − tj if necessary in order to
keep the width of [x̃j] and hence the global truncation error smaller than a
given threshold;

2. then they compute a tighter enclosure [xj+1] of the solution of (1) at tj+1,
i.e.

[xj+1] = [xj] +
k−1∑

i=1

hi
jf

[i]([xj], [p], tj) + hk
jf

[k]([x̃j], [p], [tj , tj+1]) (9)

which corresponds to a Taylor expansion of order k where [x̃j] is used to
compute the remainder term. The coefficients f [i] are the Taylor coefficients
of the solution x(t) which can be computed either numerically by automatic
differentiation or analytically via formal methods.

The enclosures thus obtained are said validated which is in contrast with
conventional numerical integration techniques which derive approximations with
unknown global error and where the accumulation of both truncation and round-
off errors may cause the computed solution to deviate widely from the real
one. Unfortunately, the wrapping effect makes the explicit scheme (9) width-
increasing and thus not suitable for numerical implementation. To solve such a
drawback, one can use mean value forms, matrices preconditioning and linear
transforms [16].

Remark 1. When the size of the initial domain or the parameter vector box is
too large, guaranteed numerical integration is often doomed to diverge. In such
cases, pessimism might be controled by bisection, i.e. perfoming a partition of the
initial state vector or parameter vector domains. Nevertheless, such a procedure
increases computation times very significantly. Hence, the method introduced in
this paper investigates the possibility to achieve numerical integration without
employing bisection.

3 Guaranteed Set Integration Using Müller’s Existence
Theorem

In this section, we address set integration by using the classical Müller’s existence
theorem [15,18] as reported in [12].

Reachability of Uncertain Nonlinear Systems 419

Theorem 1 ([18,12]). Consider the dynamical system (1), where function f is
continuous over a domain T defined by

T :

⎧
⎨

⎩

ω(t) ≤ x(t) ≤ Ω(t)
p ≤ p ≤ p
t0 ≤ t ≤ tnT

(10)

where a ≤ b means ai ≤ bi for all i. Assume that functions ωi(t) and Ωi(t) are
continuous over [t0, tnT] for all i and satisfy the following properties

1. ω(t0) = x0 and Ω(t0) = x0

2. the lower Dini derivatives D−ωi(t) and D−Ωi(t) and the upper Dini deriva-
tives D+ωi(t) and D+Ωi(t) of ωi(t) and Ωi(t) are such that

∀i, D±ωi(t) ≤ minT i(t)
fi(x,p, t) (11)

∀i, D±Ωi(t) ≥ maxT i(t)
fi(x,p, t) (12)

where T i(t) is the subset of T (t) defined by

T i :
{

xi = ωi(t), ωj(t) ≤ xj ≤ Ωj(t), j �= i, p ≤ p ≤ p
}

(13)

and where T i(t) is the subset of T (t) defined by

T i :
{

xi = Ωi(t), ωj(t) ≤ xj ≤ Ωj(t), j �= i, p ≤ p ≤ p
}

(14)

Then for all x0 ∈ [x0,x0], p ∈ [p,p], system (1) admits a solution x(t) that
stays in the domain

X :
{

t0 ≤ t ≤ tnT

ω(t) ≤ x(t) ≤ Ω(t) (15)

and takes the value x0 at t0. If, in addition, for all p ∈ [p,p], function f(x,p, t)
is Lipschitzian with respect to x over D then this solution is unique for any
given p.

Finally, an enclosure for the solution of (1) is given by

∀t ∈ [t0, tnT], [x](t) = [ω(t), Ω(t)] (16)

Denote [ω̃j] and [Ω̃j] a priori solutions for bracketing systems (11-12). It is easy
to prove that the enclosures

[x̃j] =
[
Inf([ω̃j]), Sup([Ω̃j])

]
, j = 1, . . . , nT − 1 (17)

satisfy (8) and hence are a priori solutions for (1).
The main difficulty now, is to obtain suitable bracketing functions ω(t) and

Ω(t) in the general case. However, when the components of f are monotonic
with respect to each parameter and each state vector component, it is quite easy
to define these systems [12].

420 N. Ramdani, N. Meslem, and Y. Candau

Rule 1. [Use of monotonicity property – Analysis of the partial derivatives
signs] Here we adapt the idea introduced in [12]. Let’s assume that the sign of
the partial derivatives ∂fi

∂pk
and ∂fi

∂xj
is constant over the time period considered.

Define δ
i
(pk) as follows

δ
i
(pk) =

{
pk if ∂fi

∂pk
≥ 0

p
k

if ∂fi

∂pk
< 0

(18)

and δ
i
(p) = [δ

i
(p1), ..., δ

i
(pk), ...]T . In a similar way, define δi(pk) as follows

δi(pk) =

{
p

k
if ∂fi

∂pk
≥ 0

pk if ∂fi

∂pk
< 0

(19)

and δi(p) = [δi(p1), ..., δi(pk), ...]T . Now define γi(xj) as follows

γi(xj) =

⎧
⎪⎨

⎪⎩

Ωi if i = j

Ωj if (i �= j) ∧ ∂fi

∂xj
≥ 0

ωj if (i �= j) ∧ ∂fi

∂xj
< 0

(20)

and γi(x) = [γi(x1), ..., γi(xj), ...]T . In a similar way, define γi(xj) as follows

γi(xj) =

⎧
⎪⎨

⎪⎩

ωi if i = j

ωj if (i �= j) ∧ ∂fi

∂xj
≥ 0

Ωj if (i �= j) ∧ ∂fi

∂xj
< 0

(21)

and γi(x) = [γi(x1), ..., γi(xk), ...]T . Now the components of the differential equa-
tions which make it possible to compute the upper and lower solutions are ob-
tained as follows

i = 1, . . . , n,

{
ω̇i(t) = fi(γi(x), δi(p), t)
Ω̇i(t) = fi(γi(x), δ

i
(p), t)

(22)

Denote

f
i
(ω, Ω,p,p, t) = fi(γi(x), δi(p), t) (23)

f i(ω, Ω,p,p, t) = fi(γi(x), δ
i
(p), t) (24)

then obviously ω(t) and Ω(t) are in general, solutions of a system of coupled
differential equations, i.e.

{
ω̇(t) = f(ω, Ω,p,p, t), ω(t0) = x0

Ω̇(t) = f(ω, Ω,p,p, t), Ω(t0) = x0
(25)

which involve no uncertain quantity. Therefore interval Taylor models such as
the one introduced in the previous section can be used for efficiently solving (25).
Indeed when these methods are used for solving differential equations with no
uncertainty, they are usually able to curb the pessimism induced by the wrapping
effect, even over long integration time.

Reachability of Uncertain Nonlinear Systems 421

Remark 2. Althoug interval Taylor models can be used for solving in an effi-
cient way the system (25), there is no guaranty that the size of the enclosure
[ω(t), Ω(t)] will not diverge.

In practice, when rule 1 is used with functions the monotonicity of which changes
along the time interval [t0, tnT], the obtained bracketing functions {f, f} are not
continuously differentiable. Therefore interval Taylor models cannot be used di-
rectly for numerical integration. In the sequel, we will show how we can overcome
this difficulty by using hybrid automata as bracketting systems. But first, let us
recall how to compute the reachable sets with set integration.

4 Computing Reachable Sets with Set Integration

For j = 0, . . . , nT − 1 and t ∈ [tj , tj+1] define

[x](t) = [xj]+
k−1∑

i=1

(t − tj)if [i]([xj], [p], tj)+(t−tj)kf [k]([ψj], [p], [tj , tj+1]) (26)

Proposition 1

If [ψj] ⊇ [x̃j] then ∀t ∈ [tj , tj+1], x(t) ∈ [x](t), j = 0, . . . , nT − 1 (27)

Proof 1. It suffices to write a Taylor series expansion at time tj and use [x̃j]
for evaluating the remainder term (see [16]).

Define R as an over-approximation of a reachable space R, as follows

∀t, t′ ∈ [t0, tNT], R([t, t′]; [x](t)) ⊇ R([t, t′]; [x](t)) (28)

Proposition 2. A conservative over-approximation of (28) is given by

∀t ∈ [tj , tj+1], R([tj , t]; [xj]) = ∪τ∈[tj,t][x](τ), j = 0, . . . , nT − 1 (29)

and satisfies

∀t ∈ [tj , tj+1], R([tj , t]; [xj]) ⊆ [x̃j], j = 0, . . . , nT − 1 (30)

Proof 2. Obvious from (27) and (8).

Define R([t0, t0]; [x0]) = [x0].

Proposition 3. An over-approximation of the reachable space 2 is given by

∀t ∈ [tj , tj+1], R([t0, t]; [x0]) = R([t0, tj]; [x0])∪R([tj , t]; [xj]), j =1, . . . , nT −1
(31)

and satisfies

∀t ∈ [tj , tj+1], R([t0, t]; [x0]) ⊆ ∪i∈{0, j}[x̃i], j = 1, . . . , nT − 1 (32)

Proof 3. Obvious from (27) and proposition (2).

As a conclusion, it is clear that thanks to (26) and (31), one can derive explicit
formulas which characterize the boundaries of the reachable space. In practice
however, one can use instead of (31) the over-approximation (32) obtained by
using the a priori solutions [x̃j] only.

422 N. Ramdani, N. Meslem, and Y. Candau

5 Computing a Reachable Set by Using Hybrid
Automata as Bounding Systems

In this section, we introduce a new approach for enclosing the reachable space
of uncertain dynamical systems, for which the signs of the partial derivatives
∂fi/∂xj and ∂fi/∂pk change along the integration time interval [t0, tnT]. In
such a case, the Müller’s theorem and rule 1 make it possible to build system
(25) over each time interval where functions fi are monotonic with respect to
both variables xj and pk. When system (1) is analysed over the whole time
interval [t0, tnT], the bounding systems given by rule 1 are only piecewise Ck-
times continuously differentiable. System (25) can then be regarded as a hybrid
dynamical system, and thus be modelled by the following hybrid automaton

H = (Q, E ,D,P ,F , T ,J) (33)

where:

1. Q is a finite set of modes. For each mode corresponds a continuous-time sys-
tem which provides the maximal and minimal solution of (1). These systems
are built using rule 1.

2. E ⊆ Q ×Q is the set of the transitions. It contains all the possible commu-
tations between the continuous systems which bracket (1).

3. D is the state space of (1).
4. P = [p] = [p,p] represents a feasible domain for model parameters for (1).
5. F = {(f

q
, fq), q ∈ Q} is the collection of bracketing systems obtained with

rule 1

∀q ∈ Q,

{
f

q
: D2 × P2 −→ D

f q : D2 × P2 −→ D
(34)

6. T = {te, e ∈ E} is the collection of switching time instants.
Define gi,r(.) = ∂fi

∂pr
(.) and hi,l(.) = ∂fi

∂xl
(.) with i ∈ {1, ..., n, }, r ∈ {1, ..., np, }

and l ∈ {1, ..., n}. The set T is defined as

T =
{

te ∈ [t0 tnT] | ∃i, ∃l, ∃r, ∃p ∈ [p], ∃x ∈ [x](te)
((gi,r(x,p, te) = 0) ∨ (hi,l(x,p, te) = 0))

}
(35)

That is to say that if the monotonicity of f with respect to a parameter or
state vector component changes at te, a transition e = (q, q′) ∈ E occurs and
the bracketing systems changes too.

7. J = {Je, e ∈ E} is the collection of reset functions. They initialize the
field vectors fq′ (resp.f

q′) after the activation of a transition e = (q, q′):
{xq′(te),xq′(te)} = Je(xq(te),xq(te)).

Now, in order to use rule 1, we will split the experiment time period [t0, tnT]
into a succession of integration time intervals [tj , tj+1] where tj+1 = tj + hj and
where integration time steps hj are either chosen a priori or adapted on-line as
in the preceding sections.

Reachability of Uncertain Nonlinear Systems 423

Denote IM , the set of time intervals [tj , tj+1] over which no switching occurs,
i.e., all the components of the field vectors of f of (1) are monotonic with respect
to each parameter and state vector

IM = {[tj, tj+1] ⊆ [t0, tnT]|∀e ∈ E , te /∈ [tj , tj+1]} (36)

Next proposition shows how to compute an inner approximation IM for IM , i.e.
a set which satisfies the property

[t, t′] ∈ IM ⇒ [t, t′] ∈ IM (37)

Proposition 4 (Inner approximation of IM) An inner approximation IM ⊆
IM is given by

IM ≡
{

[tj , tj+1] ⊆ [t0, tnT] | ∀i, ∀l, ∀k,
((0 /∈ [g]i,k([x̃j], [p]), [tj , tj+1]) ∧ (0 /∈ [h]i,l([x̃j], [p]), [tj , tj+1]))

}

(38)

Proof 4. Since the a priori solution [x̃j] of (1) as given by (8) or (17) encloses
the whole state trajectory over [tj , tj+1], we can write

∀i, ∀j, ∀x(tj) ∈ [xj], ∀p ∈ [p], ∀t ∈ [tj , tj+1]
gi,j(x,p, t) ∈ [g]i,j([x̃], [p], [tj , tj+1])

(39)

Consequently

0 /∈ [g]i,j([x̃], [p], [tj , tj+1]) ⇒ ∀t ∈ [tj , tj+1], gi,j(x,p, t) �= 0 (40)

We have similar results for function hi,l. This ends the proof.

Similarly, define the set IS of intervals where a switching occurs, i.e.,

IS = {[tj , tj+1] ⊂ [t0, tnT] | ∃e ∈ E , te ∈ [tj , tj+1]} (41)

Since we have
[t0, tnT] = IM ∪ IS (42)

then an outer approximation IS of IS , i.e. a set which satisfies the property

[t, t′] ∈ IS ⇒ [t, t′] ∈ IS (43)

can be obtained as follows

IS = [t0, tnT] \ IM (44)

Now, we can use rule (1) over each time intervals [Im] ∈ IM in order to derive
f

m
and fm to bracket all the possible solutions of the uncertain system (1)

∀[Im] ∈ IM , ∀m ∈ Q, ∀p ∈ [p], ∀x ∈ D,

∀t ∈ [Im], f
m

(ω, Ω,p,p, t) ≤ f(x,p, t) ≤ fm(ω, Ω,p,p, t) (45)

where (f
m

, fm) ∈ F .

424 N. Ramdani, N. Meslem, and Y. Candau

One difficulty remains as the actual time instant, i.e., te in (35) when the
hybrid system reaches one of its switching time instant is unknown a priori. By
using a validated interval Taylor model integration method we will be able to
solve this problem on-the-fly in an efficient and guaranteed way. By doing so,
we keep the guarantee property for the enclosures without having to derive the
actual time instant where the commutation occurs. Let us use mode 0 to denote
the original uncertain dynamical system and modes q �= 0 to denote coupled
bounding systems. The following propositions will make it possible to detect
on-the-fly the switching between modes, i.e. q �= 0 �→ q′ = 0 and q = 0 �→ q′ �= 0
and to instantiate the new mode.

Proposition 5 (Switching q �= 0 �→ q′ = 0)

If ((q �= 0)∧
(∃i, ∃l, ∃k, (0 ∈ [g]i,k([x̃j], [p], [tj , tj+1])) ∨ (0 ∈ [h]i,l([x̃j], [p], [tj , tj+1]))))

⇒ ((e = (q, q′) ∧ (q′ = 0)) ∧ ([x̃j] must be re-computed via (8))
(46)

Proof 5. When mode q �= 0 and one of the partial derivatives g(.) or h(.)
changes sign at te ∈ [tj , tj+1] then a transition occurs and the new mode is
necessarily q′ = 0. Indeed in this case, the sign of the partial derivative can-
not be ascertained for all t in [tj , tj+1]. Now, recall that [x̃j] is computed via
(17). But, since solutions ω(t) and Ω(t) computed with the bounding systems
derived for mode q are valid only over [tj , te], [x̃j] does not contain [x](t) for
t ∈]te, tj+1]. [x̃j] must be re-computed with the original uncertain system.

Proposition 6 (Switching q = 0 �→ q′ �= 0)

If ((q = 0)∧
(∀i, ∀l, ∀k, (0 /∈ [g]i,k([x̃j], [p], [tj , tj+1])) ∧ (0 /∈ [h]i,l([x̃j], [p], [tj , tj+1]))))

⇒ (e = (q, q′) ∧ (q′ �= 0))
(47)

Proof 6. When mode q = 0 and it becomes possible to ascertain the sign of
all the partial derivatives g(.) and h(.) for all t in [tj , tj+1] which is done by
using the inclusion functions, then a transition occurs and the new mode is
necessarily q′ �= 0. [x̃j] is computed with interval Taylor models and is always
valid. Numerical integration can then be taken forward from tj+1.

Finally, the algorithm for computing the reachable space of (1) is as follows

Algorithm Hybrid-Bounding
(in:t0, tnT ,f ,F , [x0], [p]; out:[x̃0], [x̃1], . . . , [x̃nT], [x1], . . . , [xnT])

1. j := 0;
2. q := Initialize(f, [x0], [p]);
3. while (j < nT) do
4. {hj, [xj+1], [x̃j]} := Integrate-one-step-ahead(q, {f},F , tj, [xj], [p]);
5. { jump , q′} := Check-Switching(q, {f}, [x̃j]);

Reachability of Uncertain Nonlinear Systems 425

6. if (jump) then
7. if (q = 0) then
8. q := q′; j := j + 1;
9. else

10. q := 0;
11. endif
12. else
13. j := j + 1;
14. endif
15. end

where algorithm Integrate-one-step-ahead computes the one-step ahead so-
lution for an uncertain differential equation. It is summarized in the following
algorithm

Algorithm Integrate-one-step-ahead
(in : q, {f},F , tj, [xj], [p]; out : hj, [xj+1], [x̃j])

1. if q := 0 then
2. {hj, [xj+1], [x̃j]} := Interval-Integrate(f, [xj], [p], tj);
3. else
4. (f

q
, fq) := Select-Boundings(q,F);

5. [ωj] := [xj];
6. [Ωj] := [xj];
7. {hj, [ωj+1], [Ωj+1], [ω̃j], [Ω̃j])} :=

Interval-Integrate(f
q
, fq, [ωj], [Ωj], [p], [p], tj);

8. [x̃j] := [Inf([ω̃j]), Sup([Ω̃j])];
9. [xj+1] := [Inf([ωj+1]), Sup([Ωj+1])];

10. end

In algorithm Hybrid-Bounding, line 2 initializes the initial mode, i.e. at
time t0. While integration time is smaller that tnT , algorithm integrates one
step ahead from t to t+h (line 4), then checks if a mode switching occurs during
the time interval [t, t + h] (line 5). This is done by cheking if the signs of the
partial derivatives gi,r and hi,l have changed. If this is the case, variable jump
is set to true, otherwise it is set to false. If there is a switching, then action
will depend on the current mode. If the current mode is q = 0 then it suffices
to switch to the new mode q′ �= 0 and carry on integration (lines 8-9) according
to proposition 6. To the contrary, if current mode is not 0, then algorithm has
to re-do computation for current time step with the uncertain model in order
to cross the switching condition in a guaranteed way (lines 11) according to
proposition 5.

In algorithm Integrate-one-step-ahead, numerical integration is done via
interval Taylor models with the original uncertain system when q = 0 (line 2).
When q �= 0, the bounding systems are selected at line 4 and bounding solutions
ω(tj) and Ω(tj) are set at line 5 and 6. The numerical integration is performed
at line 7. In order to have guaranteed results, we have choosen to use the same
interval Taylor model method as in line 2 for solving the coupled system (25),
but with intervals of zero width.

426 N. Ramdani, N. Meslem, and Y. Candau

6 Example

We consider the Haldane model to simulate the biotechnological process in a
stirred reactor. The model is taken from [4] but addresses the existence of one
specy on a chemostat with a single substrate. Consider the following equations:

{
ẋ = fx(x, s) = (μ0

s
s+ks+s2/ki

− αd)x
ṡ = fs(x, s) = −kμ0

s
s+ks+s2/ki

x + (sin − s)d (48)

where x designates the biomass density, s the substrate concentration, d the
dilution rate of the chemostat, sin the concentration of input substrate. The
coefficients k, ks, ki and α are positive constans which are defined as follows k =
42.14, ks = 9.28mmol/l, ki = 256mmol/l and α = 0.5. sin(t) = s0

in+15cos(1/5t)
and d = 2. The coefficients μ0 and s0

in are assumed uncertain : μ0 = 0.75 with
relative uncertainty ±1% and s0

in = 65 with relative uncertainty ±1.5%. Initial
state is taken uncertain and is defined as follows x(t0) × s(t0) = [9.5, 10.5] ×
[36, 44].

It easy to check that the signs of the partial derivatives needed to apply rule 1
are as follows

sign(∂fx/∂s) = sign(kski − s2) (49)

∀t > t0, (∂fx/∂μ0 > 0) ∧ (∂fs/∂x < 0) ∧ (∂fs/∂μ0 < 0) ∧ (∂fs/∂s0
in > 0) (50)

Hence, the automaton (33) which must be used with algorithm Hybrid-
Bounding contains only 3 modes:

– mode q = 0 corresponds to the original system (48) ;
– mode q = 1 is active when s >

√
ksk2, i.e. ∂fx/∂s < 0 and system (25)

writes ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = μ
0

s
s+ks+s2/ki

x − αux

ṡ = −kμ0
s

s+ks+s2/ki
x + u(sin − s)

ẋ = μ0
s

s+ks+s2/ki
x − αux

ṡ = −kμ
0

s
s+ks+s2/ki

x + u(sin − s)

(51)

– mode q = 2 is active when s <
√

ksk2 and system (25) writes
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = μ
0

s
s+ks+s2/ki

x − αux

ṡ = −kμ0
s

s+ks+s2/ki
x + u(sin − s)

ẋ = μ0
s

s+ks+s2/ki
x − αux

ṡ = −kμ
0

s
s+ks+s2/ki

x + u(sin − s)

(52)

Algorithm Interval-Integrate is implemented with the extended mean value
algorithm [16] with a constant integration time step h = 0.03s. Profil/BIAS C++
class library is used for interval computations and FADBAD++ package is used
for computing the Taylor coefficients. The reachable space as obtained, in 16.75s
CPU time, by algorithm Hybrid-Bouding for the integration time interval
[t0 = 0s, tnT = 20s] is ploted in figure 1. Note also the switching hyperplane
defined by s =

√
ksk2. To the contrary, the reachable space as obtained by a

state-of-the-art interval Taylor model based method diverges after few steps only.

Reachability of Uncertain Nonlinear Systems 427

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12

s

x

Fig. 1. Reachable space of (48) for [t0 = 0s, tnT = 20s]. CPU time = 16.75s PIV 2GHz.

7 Conclusion

In this paper we have addressed the issue of computing the reachable space for
non-autonomous uncertain nonlinear continuous dynamical systems by guaran-
teed set integration by employing the Müller’s existence theorem and hybrid au-
tomata as bounding systems. We have shown that this hybrid bounding method
is capable of computing the reachable space for non-linear systems with fairly
large uncertainty in both parameter and state vectors. Used with state-of-the-art
hybrid system verification tools, it should make it easier to solve hybrid reacha-
bility issues when the continuous dynamical systems are described via nonlinear
differential equations. Further work will address error and convergence issues, i.e.
how to ensure that the reachable space for a stable nonlinear system is tractable
with the introduced method. Also we will study how to optimize the perfor-
mance of the algorithms introduced when using a bisection strategy for crossing
switching hyperplanes. Constraint propagation shall then be of great help.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138, 3–34 (1995)

2. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Informatica 43, 451–476 (2007)

3. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theoretical Computer Science 138, 35–65 (1995)

428 N. Ramdani, N. Meslem, and Y. Candau

4. Bernard, O., Gouzé, J.-L.: Closed loop observers bundle for uncertain biotechno-
logical models. Journal of Process Control 14, 765–774 (2004)

5. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential
inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.)
HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)

6. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid systems verifica-
tion. IEEE T. Automatic Control 48 (2003)

7. Doyen, L., Henzinger, T.A., Raskin, J.F.: Automatic rectangular refinement of
affine hybrid systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS,
vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

8. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005)

9. Guéguen, H., Zaytoon, J.: On the formal verification of hybrid systems. Control
Engineering Practice 12, 1253–1267 (2004)

10. Henzinger, T.A., Horowitz, B., Majumdar, R., Wong-Toi, H.: Beyond hytech: Hy-
brids systems analysis using interval numerical methods, vol. 1790, pp. 130–144
(2000)

11. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis: with ex-
amples in parameter and state estimation, robust control and robotics. Springer,
London (2001)

12. Kieffer, M., Walter, E., Simeonov, I.: Guaranteed nonlinear parameter estimation
for continuous-time dynamical models. In: Proceedings 14th IFAC Symposium on
System Identification, Newcastle, Aus., pp. 843–848 (2006)

13. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for hybrid dynamics: The
reachability problem. In: Dayawansa, W.P., Lindquist, A., Zhou, Y. (eds.) New
Directions and Applications in Control Theory. Lecture Notes in Control and In-
formation Sciences, vol. 321, pp. 193–205. Springer, Heidelberg (2005)

14. Lefebvre, M.-A., Guéguen, H.: Hybrid abstractions of affine systems. Nonlinear
Analysis 65(6), 1150–1167 (2006)

15. Müller, M.: Uber das fundamentaltheorem in der theorie der gewöhnlichen differ-
entialgleichungen. Mathematische Zeitschrift 26, 619–645 (1927)

16. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: validated solutions of initial value
problems for ordinary differential equations. Applied Mathematics and Computa-
tion 105, 21–68 (1999)

17. Rauh, A., Kletting, M., Aschemann, H., Hofer, E.P.: Interval methods for sim-
ulation of dynamical systems with state-dependent switching characteristics. In:
Proceedings of the 2006 IEEE International Conference on Control Applications,
Munich, pp. 355–360 (2006)

18. Walter, W.: Differential inequalities and maximum principles: Theory, new meth-
ods and applications. Nonlinear Analysis, Theory, Methods & Applications 30(8),
4695–4711 (1997)

Modeling and Simulation of Biochemical

Processes Using Stochastic Hybrid Systems: The
Sugar Cataract Development Process

Derek Riley1, Xenofon Koutsoukos1, and Kasandra Riley2

ISIS/EECS
1 Vanderbilt University

Nashville, TN 37235, USA
Derek.Riley, Xenofon.Koutsoukos@vanderbilt.edu

Howard Hughes Medical Institute
2 Yale University

New Haven, CT, USA
Kasandra.Riley@yale.edu

Abstract. As biomedical research advances there is an increasing need
to model and simulate more complicated systems to better understand
them. Since biochemical processes are inherently stochastic and often
contain both continuous and discrete behavior, stochastic hybrid systems
are an ideal modeling paradigm for capturing their dynamics. In this
paper we present a framework for modeling biochemical systems and
demonstrate the approach for the sugar cataract development process
including two methods of modeling drug treatment. Further, we present a
simulation method that uses second-order Taylor approximations for the
continuous dynamics and an improved method for detecting boundary
hits. We use the sugar cataract development process to demonstrate the
results of the method.

1 Introduction

As biomedical research advances into more complicated systems, there is an
increasing need to model and simulate these systems to better understand them.
Since biochemical processes are inherently stochastic and often contain both
continuous and discrete behavior, Stochastic Hybrid Systems (SHS) are an ideal
modeling paradigm for capturing their complex dynamics. Such systems are
often too large and complex for exhaustive verification techniques, so accurate,
efficient simulation techniques are very important.

Recently, a renewed interest in the field of biochemical system modeling has
increased the quality and diversity of the models created. Biological protein reg-
ulatory networks have been modeled with hybrid systems using linear differential
equations to describe the changes in protein concentrations and discrete switches
to activate or deactivate the continuous dynamics based on protein thresholds
[1]. Biomolecular network modeling using hybrid systems is accomplished by us-
ing differential equations to model feedback mechanisms and discrete switches to

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 429–442, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

430 D. Riley, X. Koutsoukos, and K. Riley

model changes in the underlying dynamics [2]. A modeling technique that uses
polynomial SHS to construct models for chemical reactions is presented in [3]. A
SHS model of a genetic regulatory network is compared to a deterministic model
in [4]. Switching thresholds for piecewise-affine models of genetic regulatory net-
works are studied in [5]. SHS models of biochemical systems using reaction rate
analysis have been developed and simulated in [6]. A biochemical system drug
model based on physical interactions at the molecular level has been developed
in [7].

Sugar Cataract Development (SCD) has been studied previously because it
is a biomedically significant process, and the dynamics of the system are com-
plex and difficult to test experimentally [8]. After a brief description of the SCD
model presented in [6] and establishment of realistic parameters for its simula-
tion, we present two new models of medication-controlled SCD. The first model
incorporates the medication and models the effect that the medication has on
the system. The second new model adds probabilistic delays to capture both the
absorption of the drug into the system and drug metabolism.

Simulation of SHS is challenging because it must combine numerical inte-
gration methods for Stochastic Differential Equations (SDEs) and methods for
detection of boundary crossings. Numerical integration of SDEs is accurate if the
trajectory is sufficiently far from any boundaries; however, when the trajectory
is close to a boundary, large errors can be incurred. A technique for accurately
detecting absorbing boundaries has been developed for one-dimensional systems
[9], and extensions have been proposed that scale to higher dimensional systems
[10]. The boundary crossing detection algorithm presented in [11] uses analysis
of moments to improve the accuracy of the approximation.

To improve upon previous SHS simulation techniques we present the Hybrid
Milstein Method (HMM) which utilizes a second order Taylor-based approxi-
mation for the stochastic continuous dynamics in conjunction with a technique
for accurately approximating the boundary hitting times. We validate the SCD
models by comparing simulation trajectories of the SHS and the stochastic sim-
ulation algorithm (SSA), which is considered to be an accurate but computa-
tionally inefficient approximation.

The organization for the rest of the paper is as follows: Section 2 describes
the biochemical modeling framework as well as three SCD models, Section 3
describes the SHS simulation technique, Section 4 presents our simulation results,
and Section 5 concludes the work.

2 Modeling Biochemical Reactions Using SHS

2.1 Dynamics of Biochemical Reactions

Discrete models are a natural modeling paradigm for biochemical systems be-
cause they can capture the changes of the concentrations of the involved re-
actants and products based on the stoichiometry defined by the biochemical
reaction. In a discrete model, when the reaction fires, the concentrations of the
reactants and products are reset to the appropriate updated values.

Modeling and Simulation of Biochemical Processes Using SHS 431

To accurately model the reactions, the rate at which the individual reactions
fire must be calculated. The rate at which chemical reactions occur is calculated
using the stoichiometry defined by the type of reaction assuming temperature
and pressure are constant. For example, the reaction V + X → Y + Z, has a
reaction rate a = kvx where chemical species V , X , Y , and Z have concentrations
v, x, y, and z, and k is the reaction’s kinetic coefficient. The rates of other types
of reactions can be calculated similarly [3].

Chemical reactions are inherently probabilistic because of the unpredictabil-
ity of molecular motion [12]. Discrete stochastic models of reactions describe a
reaction as firing at a rate which is calculated using the chemical concentrations
and the kinetic coefficient. Slow reactions occur when reaction rates and con-
centrations are small enough and they can be modeled and simulated efficiently
using discrete stochastic techniques. However, discrete simulations become ineffi-
cient when there are large concentrations of molecules and/or fast reaction rates.
When discrete models become inefficient, reactions can be accurately modeled
as continuous stochastic models [6].

The rate of change of each chemical species in a fast reaction is calculated
using the chemical dynamics from the biochemical reactions. Suppose that we
have a system of M chemical reactions and N chemical species. We define xi

as the concentration of the ith chemical species in micro-Molarity (μM), Mfast

as the number of fast reactions, aj as the reaction rate of the jth reaction, w
as an Mfast-dimensional Wiener process, and the stoichiometric matrix v as a
(Mfast×N) matrix whose values represent the concentration of chemical species
lost or gained in each reaction. The dynamics for each of the i chemical species
are described by

dxi =
Mfast∑

j=1

vjiaj(x(t))dt +
Mfast∑

j=1

vji

√
aj(x(t))dwj . (1)

Biochemical systems can contain a mixture of both fast and slow reactions.
When fast and slow dynamics must both be considered it is most efficient to
use a combined, hybrid modeling approach to take advantage of the efficiency
of continuous modeling for the fast reactions while still keeping the accuracy
of discrete modeling for the slow reactions. Determining which reactions are
fast or slow is based on analysis of the rates using the kinetic coefficients and
chemical concentrations. To determine the slowest rate, the smallest possible
concentrations for each chemical species are used. Similarly, the fastest rate can
be determined by using the highest possible concentrations. Since the reaction
rates depend on the concentrations, reactions may be classified as either fast or
slow dynamically based on the system state.

2.2 Medication Modeling

Understanding how a biochemical system will operate under normal conditions is
important; however, in many systems, it is advantageous to understand how the

432 D. Riley, X. Koutsoukos, and K. Riley

system will act when it is perturbed by outside influences such as a medication.
The interaction of a drug with a biochemical system is important to model and
analyze because often the anticipated affect of the drug is altered by unforeseen
influences, and theoretical modeling and testing can help to demonstrate the
safety of a medication before it is tested on real subjects.

Drugs are administered to patients to improve their health by altering the
equilibrium of the reactions responsible for their symptoms. There are several
defining characteristics of drugs that are considered when modeling their behav-
ior. Drugs can generally be classified as either stimulants or inhibitors, which
respectively increase or decrease reaction rates. The efficacy of a drug is the
potential therapeutic response that it could produce. Drugs are metabolized by
the body at varying rates further complicating the system, so the decay of the
drug must be understood to accurately model its behavior.

The most direct drug modeling approach is to add the drug’s chemical species
and reactions to the original model. While this may appear to be a logical ap-
proach, it adds significant complexity to the system. A simpler technique is to
model the behavior of a drug as an inhibitor or stimulant and avoid increasing
the number of chemical reactions or chemical species considered.

Because stimulants and inhibitors alter the reaction rates of certain reactions,
modeling the effect of a drug on a given chemical reaction can be accomplished by
altering the kinetic coefficients. The amount of change of the kinetic coefficients
is determined by the efficacy and metabolism rate of the drug. For the SCD
model, discrete modes describe the system under different drug influences, and
discrete transitions model the application and metabolism of the drug.

2.3 Stochastic Hybrid Systems

We adopt the model presented in [13]. To establish the notation, we let Q be
a set of discrete states. For each q ∈ Q, we consider the Euclidean space R

d(q)

with dimension d(q) and we define an invariant as an open set Xq ⊆ R
d(q).

The hybrid state space is denoted as S =
⋃

q∈Q{q} × Xq. Let S̄ = S ∪ ∂S and
∂S =

⋃
q∈Q{q}×∂Xq denote the completion and the boundary of S respectively.

The Borel σ-field in S is denoted as B(S).
To define the execution of the system, we denote (Ω,F , P) the underly-

ing probability space, and consider an R
p-valued Wiener process w(t) and a

sequence of stopping times {t0 = 0, t1, t2, . . .}. Let the state at time ti be
s(ti) = (q(ti), x(ti)) with x(ti) ∈ Xq(ti). While the continuous state stays in
Xq(ti), x(t) evolves according to the SDE

dx = b(q, x)dt + σ(q, x)dw (2)

where the discrete state q(t) = q(ti) remains constant. A sample path of the
stochastic process is denoted by xt(ω), t > ti, ω ∈ Ω.

The next stopping time ti+1 represents the time when the system transitions to
a new discrete state. The discrete transition occurs either because the continuous

Modeling and Simulation of Biochemical Processes Using SHS 433

state x exits the invariant Xq(ti) of the discrete state q(ti) (guarded transition)
or based on an exponential distribution with nonnegative transition rate function
λ : S̄ → R+ (probabilistic transition). At time ti+1 the system will transition
to a new discrete state and the continuous state may jump according to the
transition measure R : S̄ × B(S̄) → [0, 1]. The evolution of the system is then
governed by the SDE (2) with q(t) = q(ti+1) until the next stopping time. If
ti+1 = ∞, the system continues to evolve according to (2) with q(t) = q(ti).

The following assumptions are imposed on the model. The functions b(q, x)
and σ(q, x) are bounded and Lipschitz continuous in x for every q, and thus the
SDE (2) has a unique solution for every q. The transition rate function λ is a
bounded and measurable function which is assumed to be integrable for every
xt(ω). For the transition measure, it is assumed that R(·, A) is measurable for
all A ∈ B(S) and R(s, ·) is a probability measure for all s ∈ S̄, and R((q, x), dz)
is a stochastic continuous kernel. Let Nt =

∑
i It≥ti denote the number of jumps

in the interval [0, t]. It is assumed that the expected number of jumps is finite for
every initial state s ∈ S, that is Es[Nt] < ∞. A sufficient condition for ensuring
finitely many jumps can be formulated by restricting R(s, A) [14,15].

2.4 Sugar Cataract Modeling

This section describes three SHS models of the biochemical process of SCD.
The first model describes the biochemical process of SCD. The two subsequent
models extend the first model to include the effect of medication on the system.
The first medicated model assumes that the effect of the drug on the system
is instantaneous, while the final model is designed to incorporate probabilistic
delay to model absorption and metabolization.

Sugar Cataract Development Model (SCD1). A sugar cataract distorts
the light passing through the lens of an eye by attracting water to the lens
when an excess of sorbitol is present. Often these cataracts are formed in the
eyes of diabetic patients who have highly fluctuating blood sugar levels. Several
factors affect the accumulation of sorbitol including the amount of the enzyme
SDH. SDH catalyzes the reversible oxidation of sorbitol and other polyalcohols
to the corresponding keto-sugars [8]. There are 8 chemical species involved in
the reaction: NADH(x1), E − NADH(x2), NAD+(x3), E − NAD+(x4), SDH
(x5), Fructose(x6), Sorbitol(x7), and the inactive form of SDH (Z).

A SHS model for SCD (SCD1) has been previously presented in [6,16]. The
ranges are bounded and are estimated using realistic concentration values derived
from experimental data and Michaelis-Menten constants (Km) defined as the
rate of the reaction at half-maximal velocity [8]. Table 1 describes the seven
reactions and rates involved in SCD. The rates are calculated based on the
concentrations and the kinetic coefficients presented in Table 1.

Each of the six fast reactions are modeled using the SDE (1). The inactive form
of SDH (Z) is not a reactant in any of the chemical equations, so its concentration
is not modeled. The equations describe the rates of change of the individual
chemical species and are

434 D. Riley, X. Koutsoukos, and K. Riley

Table 1. Sugar cataract reactions and kinetic coefficients

Reaction Kinetic coefficient Rate

SDH + NADH → E − NADH k1 = 6.2 31.1
E − NADH → SDH + NADH k2 = 33 151

E − NADH + F → E − NAD+ + S k3 = 0.0022 6
E − NAD+ + S → E − NADH + F k4 = 0.0079 19.5

E − NAD+ → SDH + NAD+ k5 = 227 998
SDH + NAD+ → E − NAD+ k6 = .61 3.2

SDH → Z k7 = 0.0019 0.002

dx=b(q,x)dt+
σ(q,x)dw

λ(q,x)=k7x5 / x5-=d1;

Fig. 1. SHS model of SCD1

dx1 = (−k1x1x5 + k2x2)dt −
√

k1x1x5dw1 +
√

k2x2dw2

dx2 = (k1x1x5 − k2x2 − k3x2x6 + k4x4x7)dt +
√

k1x1x5dw1

−
√

k2x2dw2 −
√

k3x2x6dw3 +
√

k4x4x7dw4

dx3 = (k5x4 − k6x3x5)dt +
√

k5x4dw5 −
√

k6x3x5dw6

dx4 = (k3x2x6 − k4x4x7 − k5x4 + k6x3x5)dt +
√

k3x2x6dw3

−
√

k4x4x7dw4 −
√

k5x4dw5 +
√

k6x3x5dw6

dx5 = (−k1x1x5 + k2x2 + k5x4 − k6x3x5)dt −
√

k1x1x5dw1

+
√

k2x2dw2 +
√

k5x4dw5 −
√

k6x3x5dw6

dx6 = (−k3x2x6 + k4x4x7)dt −
√

k3x2x6dw3 +
√

k4x4x7dw4

dx7 = (k3x2x6 − k4x4x7)dt +
√

k3x2x6dw3 −
√

k4x4x7dw4

The single slow reaction SDH → Z describes the conversion of the enzyme
(SDH) into its inactive form at a rate of k7x5. When the reaction occurs, the
number of molecules of x5 is decreased by one and the concentration is decreased
by d1 = 10−21 μM. The SHS model can be seen in Figure 1. The reset on the
transition (x5− = d1) describes the effect of the single slow reaction on the
concentration of x5. For the SCD system, the classifications of the reactions do
not change dynamically because the kinetic coefficients are significantly different
and the chemical concentrations do not fluctuate widely.

Modeling and Simulation of Biochemical Processes Using SHS 435

SCD Model with Medication Control (SCD2). Drugs can help patients
who are at high risk of developing sugar cataracts. These drugs work by inhibiting
the enzyme SDH thereby reducing the rate at which SDH reacts with other
molecules in the system. This initially results in less sorbitol production; however,
since the reversible reactions are tightly coupled, the results can have side effects
such as increasing the fructose levels.

We have created a new SHS model (SCD2), shown in Figure 2, of drug-
modulated SCD to include the effect that drug has on the system. The ap-
plication of the drug is represented as a new discrete mode that represents
drug-influenced dynamics where the reaction rates k1,k6, and k7 are reduced
by 50% to model the inhibition of the enzyme. Since the drug is metabolized
slowly and the amount that the rates are reduced is directly proportional to the
concentration of the drug, modeling a constant concentration is a reasonable
approximation.

dx=b(q1,x)dt+
σ(q1,x)dw

λ(q,x)=k7x5 / x5-=d1;

x6≥d3 / x6+=d2;

x6≤d3 / x6-=d2;

dx=b(q2,x)dt+
σ(q2,x)dw

λ(q,x)=k7x5 / x5-=d1;

Fig. 2. SHS model of medication-controlled SCD2

We have modeled the drug administration based on an elevated level of fruc-
tose. It is assumed that patients self-monitor and self-administer the medication.
When the amount of fructose in the blood rises above a threshold d3 = 250 μM,
we use a guarded transition to drive the system to a new state which introduces
the effect of the drug. When the fructose level drops back below d3, we use another
guarded transition to transition to the original state effectively removing the ef-
fect of the drug. We also include resets on the mode transitions to avoid infinitely
fast switching that arises due to the stochastic nature of the Wiener process. The
reset increases or decreases the fructose concentration by d2 = 1 μM.

SCD Model with Probabilistically-Delayed Medication Effect (SCD3).
The SCD2 model is effective for demonstrating the effect of medication on the
reactions; however, realistically the effect of the drug will not be immediate be-
cause of variable drug metabolism rates. Drugs are generally administered in
a form called a prodrug which allows the transport of the actual drug to the
appropriate cells. This prodrug is metabolized into an active form of the drug
at different rates for different people. Furthermore, once a patient discontin-
ues taking a drug, the body can metabolize the residual drug at variable rates
depending on many factors.

436 D. Riley, X. Koutsoukos, and K. Riley

q1

dx=b(q1,x)dt+
σ(q1,x)dw

λ(q,x)=k7x5 / x5-=d1;

x6≥d3 / x6+=d2;

x6≤d3 / x6-=d2;

q3

dx=b(q3,x)dt+
σ(q3,x)dw

λ(q,x)=k7x5 / x5-=d1;

q2

dx=b(q2,x)dt+
σ(q2,x)dw

λ(q,x)=k7x5 / x5-=d1;

q4

dx=b(q4,x)dt+
σ(q4,x)dw

λ(q,x)=k7x5 / x5-=d1;

λ(q,x)=d4

λ(q,x)=d5

Fig. 3. SHS model of medication-controlled SCD3 with delays

We have developed a model (SCD3), seen in Figure 3, which incorporates
two new states to model the delay of the conversion from prodrug to drug
(q2) and metabolism after dosage is discontinued (q4). We use guarded tran-
sitions to model exiting the medicated and non-medicated states and entering
the respective delay states. We then use probabilistic transitions to model the
exit from the delay states to model the stochastic nature of the conversion and
metabolism rates. The value d4 = 0.05 is the rate of an exponential distribu-
tion that models the delay incurred by the conversion of prodrug to drug, and
d5 = 0.05 is the value which models the exponential distribution corresponding
to the drug metabolism delay. These values were chosen so the average delay
is on the order of one hour which is reasonable for the SCD system, but the
values could be easily changed to model other types of medications. SHS can
also incorporate the continuous state into the transition rate if such a model is
necessary.

The continuous dynamics of the medicated (q3) and non-medicated (q1) states
are consistent with SCD2. The dynamics of the delay state q2 are the same as
those in state q1 to reflect the lack of change while the prodrug is being converted
into the drug. The dynamics in the delay state q4 model the metabolism of the
drug after the administration is removed, so the kinetic coefficients are adjusted
to reflect their half-life values. The coefficients can be adjusted to model various
drugs.

Modeling and Simulation of Biochemical Processes Using SHS 437

3 SHS Simulation

3.1 Background

Simulating SHS is an important task because it can be used to understand and
validate models. However, it is challenging because the interplay between the
stochastic continuous and discrete dynamics can cause large errors if handled
incorrectly. Errors can be decreased by reducing the step size of the approxima-
tion, but this comes at the cost of efficiency. Therefore, care must be taken to
ensure that the simulation techniques used are accurate and efficient.

For numerical integration of SDEs, the order of convergence is used to quantify
the quality of the approximation. An approximation XΔt(T) at time T with step
size Δt converges with order γ strongly to the actual trajectory x(T) if there ex-
ists c > 0 such that E

(∣∣x(T) − XΔt(T)
∣∣) ≤ cΔtγ . XΔt(T) converges with order

γ weakly to x(T) if there exists c > 0 such that E
(∣∣f(x(T)) − f(XΔt(T))

∣∣) ≤
cΔtγ for a given class of measurable functions f [17]. Strong convergence implies
that the trajectory is a possible trajectory of the system, and weak convergence
implies that the computed trajectory only preserves the moments of the actual
trajectory.

Simulation of SDEs can be performed using Taylor-based approximation tech-
niques which have strong order of convergence of γ = 0.5 to γ = 3.0 and weak
order of convergence of γ = 1.0 to γ = 6.0 depending on the number of ap-
proximating terms [17]. The computation of higher order terms requires many
more operations and can be prohibitively expensive; therefore, a tradeoff must
be reached to achieve the appropriate accuracy and efficiency.

Numerical integration methods for SDEs assume that the solution is far away
from any boundaries; however, this assumption does not hold for SHS where the
effect of the switching boundaries must be taken into account. Large errors can
be incurred if the boundary conditions are not handled properly. Let us assume a
system has an invariant Xq with a boundary ∂Xq, and the state at time t is X(t).
As shown in Figure 4, if Δt is large, it is possible that X(t), X(t+Δt) ∈ Xq, but
∃τ ∈ [t, t + Δt] where x(τ) /∈ Xq. In this case, a discrete transition will occur in
the actual execution of the SHS but not in the approximating solution, and this
discrepancy may cause a significant error.

3.2 Simulation of SDEs

Simulation of SDEs can be performed using the Euler Maruyama (EM) method
which is a first-order Taylor scheme [17]. Assuming a d-dimensional drift coeffi-
cient b and a d×m diffusion coefficient σ, the kth component of the EM scheme
is given by

Xk
n+1 = Xk

n + bkΔt +
m∑

j=1

σk,jΔW j

for k = 1, 2, ..., d where ΔW j is the normally-distributed increment of the jth
component of the m-dimensional Wiener process W . The EM method is simple

438 D. Riley, X. Koutsoukos, and K. Riley

Fig. 4. A SHS trajectory close to a boundary

to implement, but achieves a strong convergence of γ = 0.5 and weak convergence
γ = 1.0, so small time steps must be used to generate accurate approximations.

The Milstein Method (MM) is a second-order Taylor scheme and has a strong
order of convergence γ = 1.0 while maintaining an acceptable efficiency. The kth
component of the MM scheme is described by

Xk
n+1 = Xk

n + bkΔt +
m∑

j=1

σk,jΔW j +
m∑

j1,j2=1

Lj1σk,j2I(j1,j2)

where

Lj =
d∑

k=1

σk,j d

dxk
and I(j1,j2) =

∫ τn+1

τn

∫ s1

τn

dwj1
s2

dwj2
s .

A method for approximating the multiple stochastic integrals is given in [17].

3.3 Switching Boundaries

Once the execution of the SHS hits a switching boundary, the current process is
stopped (absorbed) and re-started in a new state; therefore, switching boundaries
can be treated as absorbing boundaries. It is important to accurately estimate the
time and location that the process is absorbed to minimize the error introduced
into the approximation.

The naive technique to detect that a boundary was hit is to analyze the
trajectory at each time step to determine if it has crossed the boundary or
not. This method has a strong order of convergence of γ = 0.5 [11]. The tech-
nique developed in [18] determines whether or not the trajectory has hit an
absorbing boundary with weak order γ = 1.0 assuming that the boundary is
sufficiently smooth. We assume that the switching boundaries are hyperplanes
∂Xq =

{
x ∈ R

d(q) : n.(x − Xb) = 0
}

where n is the unit vector normal to the
boundary ∂Xq, Xb is the position of the boundary, and denote Xt, Xt+Δt the

Modeling and Simulation of Biochemical Processes Using SHS 439

computed continuous state at time t and t + Δt respectively. If Xt+Δt hasn’t
crossed the boundary, but is close, the probability that the state trajectory has
hit the boundary between t and t + Δt is

P (hit) = exp

(−2(n.(Xt − Xb))(n.(Xt+Δt − Xb))
n.(σσ∗(Xt)n)Δt

)
.

For this approximation to be accurate, σσT (Xt) must be non-degenerate in the
direction normal to the boundary [18]. In between steps of the MM, the prob-
ability P (hit) is tested against a uniform random value U in [0, 1], and when
P (hit) < U , we assume that the absorbing boundary has been hit.

Firing of the probabilistic transitions (according to the transition rate λ)
occurs according the technique described in [15]. We draw a sample from a
uniform distribution and test the exponential decay at various times to determine
the jump time for each probabilistic transition. When the exponential decay is
greater than or equal to the random value, the transition is fired.

We combine the absorbing boundary version of the MM and probabilistic
firing technique to create the Hybrid Milstein Method (HMM) simulation tech-
nique for SHS. The resulting algorithm has a weak convergence of γ = 1.0. The
following algorithm describes a version of one step of the simulation method.

Algorithm 3.1: HighOrderSHSSimStep(Xk
t , SimLength)

Xk
t+Δt = Xk

t + bkΔt +
∑m

j=1 σk,jΔW j +
∑m

j1,j2=1 Lj1σk,j2I(j1,j2)

t + +

if U1 = rand(0, 1) < exp(−2(n.(Xk
t −Xb))(n.(Xk

t+Δt−Xb))

n.(σσ∗(Xt)n)Δt)
then FireGuardedT ransition

if U2 = rand(0, 1) < exp(−λ(t − T imeOfLastF ire))
then FireProbabilisticT ransition

4 Simulation Results

To better understand and validate our models, we present simulation results
using variants of the SSA, EM, and MM methods. The SSA simulates chemi-
cal reactions consuming reactants and creating products one reaction at a time.
Individual reactions in a system are assigned probabilities of occurrence, and
probability distributions are used to choose which reaction fires at each itera-
tion. Once a reaction fires, the quantities of reactants and products are updated
[19]. The SSA is very accurate, but it can be inefficient for large systems or
fast reactions because many iterations must be completed before results can be
observed. To efficiently handle practical systems, computational improvements
such as R-leaping have been devised for the SSA [20]. R-leaping increases the
number of reactants consumed and products produced in each step by a factor
of R. This increases the efficiency of the approximation, but will decrease the
accuracy. Since updates are made based on concentrations, the overall time step
can vary throughout the simulation.

440 D. Riley, X. Koutsoukos, and K. Riley

0 4 8 12 16 20 24 28 32 36 40
248

248.5

249

249.5

250

250.5

251

251.5

252

252.5

253

Time (min)

fr
uc

to
se

 (
uM

)

MM
EM
SSA

0 4 8 12 16 20 24 28 32 36 40
246

247

248

249

250

251

252

253

Time (min)

fr
uc

to
se

 (
uM

)

HSSA
HEM
HMM

Fig. 5. Simulation results for SCD1 and SCD2

0 4 8 12 16 20 24 28 32 36 40
246

247

248

249

250

251

252

253

Time (min)

fr
uc

to
se

 (
uM

)

HSSA
HEM
HMM

0 10 20 30 40 50
242

244

246

248

250

252

254

Time (min)

fr
uc

to
se

 (
uM

)

boundary

HSSA

stepsize=0.0005

stepsize=0.005

stepsize=0.002

Fig. 6. Simulation results for SCD3 and stepsize comparison

For simulation of SCD2 and SCD3, we have created a new algorithm, the
Hybrid Stochastic Simulation Algorithm (HSSA), which implements the SSA
using R-leaping and discrete transitions between modes. After each iteration of
the SSA, the guards for all valid transitions are tested, and a transition which
validates its guard conditions is fired if possible. Once the transition resets have
been executed, the SSA algorithm resumes in the new state.

The stochastic continuous dynamics of the SCD models can be simulated
using EM approximations [17]. To accurately model the discrete transitions of
the SCD models, we have developed a variant of the EM approximations called
the Hybrid EM (HEM). In HEM, discrete transitions are incorporated into the
EM approximations by analyzing transition guards between steps of the contin-
uous dynamics simulation and executing the resets when a boundary crossing
is detected. Once the state is updated, the EM algorithm continues in the new
discrete state. We use the HMM as described in the previous section to provide
a more accurate simulation result.

Since the SSA algorithm is considered to be an accurate approximation of a
well-stirred chemical system [20], we compare the results of our HSSA, HEM,

Modeling and Simulation of Biochemical Processes Using SHS 441

and HMM algorithms to demonstrate accuracy of the three SHS models and the
accuracy of the approximations in Figures 5 and 6. We also present a comparison
of the accuracy of the HMM for SCD3 at various resolutions in Figure 6. We
chose to display the concentration of fructose because it is directly correlated
with the development of cataracts, and it affects the administration of the med-
ication. The initial conditions of the system are: x1 = 5.0, x2 = 0.0, x3 = 5.0,
x4 = 0.0, x5 = 1.0, x6 = 253.0, and x7 = 0. The figures display the average
concentration at each time step for fructose for 100 runs of the three models.
These results show that the high order simulation technique results in a more
accurate simulation with a larger step size resulting in a faster simulation. The
100 HSSA simulations completed in 98 hours, the 100 HEM simulations took
approximately 6 hours (with step size Δt = 0.00001), and the HMM simulations
took approximately 3 hours (with step size Δt = 0.0005, and p = 101) on a
3GHz desktop computer.

5 Conclusions and Future Work

Accurate and efficient simulation of SHS is an important task because it is an
important tool which can expose the intricacies of the complicated dynamics
of highly-coupled systems. The interplay between the continuous and discrete
dynamics in SHS can introduce large errors into the simulations, so they must
be handled carefully. Our technique using high-order methods for simulating
SDEs combined with probabilistic boundary detection improves the accuracy
and efficiency of the simulator when compared with the naive approaches. This
work only addresses absorbing boundaries, so in the future we will also incorpo-
rate boundary conditions for reflecting boundaries that are required for practical
systems such as biochemical processes.

Acknowledgements. This research is partially supported by the National Sci-
ence Foundation (NSF) CAREER grant CNS-0347440.

References

1. Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine
hybrid automata and its application to biological modeling: Delta-notch protein
signalling. Sys. Bio. 1, 170–183 (2004)

2. Alur, R., Belta, C., Ivanicic, F., Kumar, V., Mintz, M., Pappas, G., Rubin,
H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 19–33. Springer, Heidelberg (2001)

3. Hespanha, J., Singh, A.: Stochastic models for chemically reacting systems using
polynomial stochastic hybrid systems. Int. J. on Robust Cont., Special Issue on
Control at Small Scales 15, 669–689 (2005)

1 p is a parameter used to approximate the Stratonovich integrals as described in [17].

442 D. Riley, X. Koutsoukos, and K. Riley

4. Hu, J., Wu, W., Sastry, S.: Modeling subtilin production in bacillus subtilis using
stochastic hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 417–431. Springer, Heidelberg (2004)

5. Drulhe, S., Ferrari-Trecate, G., de Jong, H., Viari, A.: Reconstruction of switching
thresholds in piecewise-affine models of genetic regulatory networks. In: Hespanha,
J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 184–199. Springer, Hei-
delberg (2006)

6. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of cou-
pled chemical or biochemical reactions. J. Chem. Phys. 122, 54–103 (2005)

7. Ramos, M., Melo, A., Henriques, E., Gomes, J., Reuter, N., Maigret, B., Floriano,
W., Nascimento, M.: Modeling enzyme-inhibitor interactions in serine proteases.
Int. J. Quant. Chem. 74(3), 299–314 (1999)

8. Marini, I., Bucchioni, L., Borella, P., Corso, A.D., Mura, U.: Sorbitol dehydrogenase
from bovine lens: Purification and properties. Arch. Biochem. and Biophy. 340,
383–391 (1997)

9. Mannella, R.: Absorbing boundaries and optimal stopping in a stochastic differen-
tial equation. Phys. Lett. A 254, 257–262 (1999)

10. Lamm, G.: Extended brownian dynamics. iii. three dimensional diffusion. J. Chem.
Phys. 80(6), 2845–2855 (1983)

11. Peters, E., Barenbrug, T.: Efficient brownian dynamics simulation of particles near
walls. i. reflecting and absorbing walls. Physical Review 66, 1–7 (2002)

12. Elowitz, M., Levine, A., Siggia, E., Swain, P.: Stochastic gene expression in a single
cell. Science 1183(297) (2002)

13. Bujorianu, M., Lygeros, J.: Theoretical foundations of general stochastic hybrid
systems: Modeling and optimal control. In: IEEE Conf. on Dec. and Cont. (2004)

14. Koutsoukos, X., Riley, D.: Computational methods for reachability analysis of
stochastic hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 377–391. Springer, Heidelberg (2006)

15. Bernadskiy, M., Sharykin, R., Alur, R.: Structured modeling of concurrent stochas-
tic hybrid systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and
FTRTFT 2004. LNCS, vol. 3253, pp. 309–324. Springer, Heidelberg (2004)

16. Riley, D., Koutsoukos, X., Riley, K.: Safety analysis of sugar cataract development
using stochastic hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.)
HSCC 2007. LNCS, vol. 4416, pp. 758–761. Springer, Heidelberg (2007)

17. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations.
Springer, Heidelberg (1999)

18. Gobet, E.: Euler schemes and half-space approximation for the simulation of dif-
fusion in a domain. ESAIM: Probability and Statistics 5, 261–297 (2001)

19. Gillespie, D.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comp. Phys. 22, 403–434 (1976)

20. Auger, A., Chatelain, P., Koumoutsakos, P.: R-leaping: Accelerating the stochastic
simulation algorithm by reaction leaps. J. Chem. Phys. 125, 84–103 (2006)

Distributed Lyapunov Functions in Analysis of

Graph Models of Software�

Mardavij Roozbehani1, Alexandre Megretski1, Emilio Frazzoli1,
and Eric Feron2

1 Laboratory for Information and Decision Systems
Massachusetts Institute of Technology (MIT), Cambridge, MA

mardavij@mit.edu, ameg@mit.edu, frazzoli@mit.edu
2 Department of Aerospace Engineering

Georgia Institute of Technology, Atlanta, GA
feron@gatech.edu

Abstract. In previous works, the authors introduced a framework for
software analysis, which is based on optimization of Lyapunov invari-
ants. These invariants prove critical software properties such as absence
of overflow and termination in finite time. In this paper, graph models
of software are introduced and the software analysis framework is fur-
ther developed and extended on graph models. A distributed Lyapunov
function is assigned to the software by assigning a Lyapunov function to
every node on its graph model. The global decremental condition is then
enforced by requiring that the Lyapunov functions on each node decrease
as transitions take place along the arcs. The concept of graph reduction
and optimality of graphs for Lyapunov analysis is briefly discussed.

1 Introduction

Verification of safety-critical software systems presents itself with many chal-
lenges, including verification of the functional requirements, line-by-line verifi-
cation of the code at the implementation level, and the need to prove absence of
run-time errors. Due to its great potential to address these issues, static analysis
has attracted computer scientists for decades. The book [13] provides an exten-
sive collection of available results and techniques developed by computer scien-
tists. Formal methods, including Abstract Interpretation [7], and Model Checking
[5,6] were developed in this endeavor to advance software verification.

While software verification has attracted little attention in the control com-
munity, recently, there have been renewed efforts at establishing properties of
software systems by the combined use of abstractions and control theoretic prin-
ciples. Much of the relevant literature in that regard may be found in the recent
field of hybrid systems [10]. See for instance [8]. In general, it was found that

� This work was supported by the National Science Foundation (NSF-0715025). Any
opinions, findings, conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the supporting organization.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 443–456, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

444 M. Roozbehani et al.

many methods developed in system and control theory for systems driven by
differential equations were in principle applicable to hybrid systems, possibly at
the price of having to re-develop some elements of theory, e.g. optimal control
theory on hybrid systems [12,4,2], computation of Lyapunov functions for hybrid
systems [9], or control of hybrid systems using bisimulations [11].

The premise of using control theoretic tools for software verification is that
such tools appear to adapt very well for analysis of software in aerospace, au-
tomotive, and many other safety-critical systems. For instance, in flight control
systems, the software provides the control law to actuators that control the posi-
tion of surfaces based on the pilot input and the current states. Our proposition
is that since the embedded software implements a control law that is designed
via system theoretic tools, such tools are best suited for verification at the im-
plementation level. The analysis relies on a discrete event dynamical systems
modeling of computer programs, and the verification method relies on numerical
optimization in searching for system invariants. This paper complements exist-
ing results on software verification by further extending a previously established
framework for transferring control theoretic tools to software analysis. This paper
focuses on graph models in analysis of software systems via distributed Lyapunov
functions.

1.1 Automated Software Analysis: Preliminaries

In this section we briefly review the principals of software analysis via dynamical
system models. Interested readers are referred to [17],[15],[16] for more details.

Computer programs as dynamical systems

Exact and abstract representations of computer programs. We will consider mod-
els defined in general by a state space set X with selected subsets X0 ⊆ X of
initial states and X∞ ⊂ X of terminal states, and by a set-valued function f :
X → 2X , such that f(x) ⊆ X∞, ∀x ∈ X∞. Thus, a computer program P , repre-
sented by the dynamical system S(X, f, X0, X∞) with parameters X, f, X0, X∞
is understood as the set of all sequences X := (x(0), x(1), . . . , x(t), . . .) of ele-
ments from X, satisfying

x (0) ∈ X0, x (t + 1) ∈ f (x (t)) ∀t ∈ Z+ (1)

Definition 1. Consider a computer program P and its dynamical system rep-
resentation S(X, f, X0, X∞). Program P is said to terminate in finite time if
every solution X ≡ x(.) of (1) satisfies x(t) ∈ X∞ for some t ∈ Z+.

Definition 2. Consider a computer program P and its dynamical system repre-
sentation S(X, f, X0, X∞). Program P is said to run without an overflow run-
time error if for every solution X ≡ x(.) of (1) and for every t ∈ Z+, x(t) does
not belong to a certain (unsafe) subset X− of X.

In addition to exact dynamical systems models of computer programs, we also de-
fine abstracted models. We say that the model S(X̂, f̂ , X̂0, X̂∞) is an abstraction

Distributed Lyapunov Functions in Analysis of Graph Models of Software 445

of S(X, f, X0, X∞) (or simply an abstraction of P), if X ⊆ X̂, X0 ⊆ X̂0,
X̂∞ ⊆ X∞, and f(x) ⊆ f̂(x) for all x ∈ X .

Proposition 1. [17] Consider a computer program P and its dynamical system
representation S(X, f, X0, X∞). Let S(X̂, f̂ , X̂0, X̂∞) be an abstraction of P . Let
X− and X̂−, representing the overflow regions of P and its abstraction respec-
tively, be such that X− ⊆ X̂−. Assume that absence of overflow has been certified
for the abstracted model of P. Then, an overflow RTE will not occur during any
execution of P . In addition, if finite-time termination has been certified for the
abstracted model, then program P will terminate in finite time.

1.2 Lyapunov Invariants as Behavior Certificates

We introduce Lyapunov-like invariants as certificates for the behavior of com-
puter programs. We then describe the conditions under which, finding these
Lyapunov-like invariants can be formulated as a convex optimization problem.

Definition 3. A rate-θ Lyapunov invariant for system S(X, f, X0, X∞) is de-
fined to be a function V : X → R such that

V (x+) − θV (x) < 0 ∀x ∈ X, x+ ∈ f (x) : x /∈ X∞. (2)

where θ > 0 is a constant. Thus, a rate-θ Lyapunov invariant satisfies an in-
variant property (V (x+) − θV (x) < 0) along the trajectories of (1) until they
reach a terminal state.

Lemma 1. [15] Consider a computer program P , and its dynamical system
model S(X, f, X0, X∞) and assume that θ > 1. If there exists a rate-θ Lyapunov
invariant V : X → R, uniformly bounded on X, satisfying

V (x) < 0 ∀x ∈ X0 (3)

then P terminates in finite time.

Theorem 1. [15] Consider a program P , and let S(X, f, X0, X∞) be its dy-
namical system model. Let θ be constant and let V denote the set of all rate-θ
Lyapunov invariants for program P . An overflow run-time error will not occur
during any execution of P , if there exists V ∈ V satisfying

inf
x∈X−

V (x) ≥ sup
x∈X0

V (x) (4)

and at least one of the following three conditions holds:

(i) θ = 1 (5)
(ii) 0 < θ < 1 , and inf

x∈X−
V (x) ≥ 0 (6)

(iii) 0 < θ , and 0 ≥ sup
x∈X0

V (x) (7)

446 M. Roozbehani et al.

2 Graph Models in Analysis of Computer Programs

In this section we further extend and develop our software analysis framework
on graph models. Practical considerations such as expressivity, convenience for
automated parsing, existence of efficient relaxation techniques and compatibility
with available numerical optimization engines render graph models an efficient
and applicable model for analysis of real-time embedded software. In addition,
graph models provide a convenient platform for mapping the proofs of correctness
and certificates of performance from the model to the actual line of code at the
implementation level. We will also see that graph models allow for trading off
computational efforts at the parsing/modeling phase for computational efforts
at the convex optimization phase and vice versa.

A graph model is essentially a generalized version of the model previously
introduced for Linear Programs with Conditional Switching (LPwCS) [16], [17].
A graph model is defined on a directed graph G (N , E) with a set of nodes
(“effective” lines of code) N := {0, 1, . . . , m} ∪ {��} , and a set of arcs E :=
{(i, j, k) | i ∈ N , j ∈ O (i)} , where O (i) is the set of all nodes to which transi-
tion from node i is possible in one time step. Multiple arcs between nodes are
allowed and the third element in the triplet (i, j, k) is the index of the k-th arc
between nodes i and j. This model, has state space X := N × R

n, with initial
and terminal subsets defined as

X0 := {0} × v0, v0 ⊆ R
n, X∞ := {��} × R

n

where v0 is a selected subset of R
n, constrained by linear, quadratic or polynomial

equalities and inequalities. On this graph, node 0 represents a (perhaps fictitious)
line containing all the available information about the initial conditions of the
continuous states. Node �� represents the terminal location and the definition of
X∞ as {��}×R

n implies that our characterization of the terminal states depends
only on the discrete component of the state space, i.e., a specific line of code,
and is not (explicitly) dependent on the analog components of the state space.
The set-valued map f : X → 2X , is defined by the transitions associated with
the arcs on this graph, subject to certain rules associated with each arc.

The only possible transition involving node 0 is a transition from node 0 to
node 1. The only possible transition from/to node �� is the identity transition to
node �� . Multiple arcs between nodes are allowed. The set A (i, j) := {1, .., κij}
denotes the set of all indices of the arcs from node i to node j, where κij denotes
the total number of arcs from node i to j. We denote the k-th arc from node
i to node j by (i, j, k) . We attribute two labels to every arc (i, j, k) on this
graph: (i) A transition label T k

ji, to be understood as an operator defined on R
n,

which represents a set-valued function mapping the state (i, v) to all possible
states (j, v), where v ∈ T k

jiv. (ii) A passport label Ik
ji, to be understood as the

indicator function of a semi-algebraic set, defined by a set of linear, quadratic,
or polynomial equalities and inequalities.

P k
ji :=

{
v | Hk

ji (v) = 0, Qk
ji (v) ≤ 0

}
, Ik

ji [v] :=
{

1 if v ∈ P k
ji

0 if v /∈ P k
ji

Distributed Lyapunov Functions in Analysis of Graph Models of Software 447

According to this definition, transition along arc (i, j, k) is possible if and only
if Ik

ji [v] = 1. A passport label I1k
ji ∧ I2k

ji is understood as I1k
ji · I2k

ji. Finally,
the state transition map f : X → 2X is given by

f (i, v) =
{(

j, T k
jiv

) | j ∈ O (i) , Ik
ji [v] = 1

}
.

We have defined all the elements of the model. In reference to the graph model
of a computer program, we will use the concise notation G (N , E), with the
convention that the nodes and arcs of G are appropriately labeled to define a
valid model S (X, f, X0, X∞) according to our previous discussion.

Remark 1. Multiple arcs between nodes enable modeling “or” or “xor” type con-
ditional transitions. The passport labels associated with multiple arcs between
nodes are not necessarily exclusive. Thus, multiple transitions along different
arcs may be possible. This allows for nondeterministic modeling.

2.1 Lyapunov Analysis of Graph Models

Consider a computer program P , and its graph model G (N , E) . We are inter-
ested in finding Lyapunov functions that prove certain properties of P . As we
described before, the state in this model is defined by x = (i, v) where i is the
discrete component and v is the continuous component of the state vector. We
define Lyapunov functions for this model in the following way:

V (x) ≡ V (i, v) := σi (v) (8)

where for every i ∈ N the function σk : R
n → R is a quadratic, polynomial or

an affine functional. This means that we assign a quadratic/linear/polynomial
Lyapunov function to every node i ∈ N on graph G (N , E) . We will refer to
Lyapunov functions defined according to (8) as node-wise Lyapunov functions.

Proposition 2. Let V (x) be defined according to (8). The Lyapunov invariance
condition

V (x+) < θV (x) ∀x ∈ X \ X∞, x+ ∈ f (x)

holds true if and only if

σj(T k
jiv) − θσi (v) < 0, ∀i ∈ N\ {��} , j ∈ O (i) , k ∈ A (i, j) , Ik

ji [v] = 1. (9)

Let Na :=
∑

(i,j)∈E
|A (i, j)| denote the total number of arcs on G (N , E), ex-

cluding the identity transformation arc (��, ��) . Then, according to proposition 2
the Lyapunov invariance condition is enforced via Na constraints. Assume for
the moment that each σi is a quadratic functional, and also that

P k
ji [v] :=

{
v | Ek

i (v) = 0, Ik
i (v) ≤ 0

}

where Ek
i and Ik

i are quadratic functionals. Each of the constraints in (9) ex-
presses that a quadratic form must be negative whenever certain quadratic con-
straints are satisfied. Various forms of convex relaxations such as the S-Procedure

448 M. Roozbehani et al.

in positivity of quadratic forms can be employed to formulate (9) as a convex
optimization problem. In this case, the resulting optimization problem will be a
semidefinite program [1]. In the presence of polynomial constraints, or if we al-
low σi (v) to be polynomial functionals of v, the resulting optimization problem
can be formulated as a sum of squares program [14]. Similarly, linear invariants
subject to linear constraints lead to linear programming [3].

Finite-time termination. In node-wise Lyapunov analysis of graph models,
we often do not impose the same invariance rate θ along all the arcs, as this may
lead to either infeasibility or to weak invariants. While computing the optimal
value of θ per arc is neither possible nor necessary, depending on the state
transitions along the arcs, certain choices of θ may be more reasonable than
others. The following theorem provides a finite-time termination criterion via
node-wise Lyapunov invariants defined on graph models.

Definition 4. A cycle Cm on a graph G (N , E) is an ordered list of m triplets
(n1, n2, k1) , (n2, n3, k2) , ..., (nm, nm+1, km) , where n1 = nm+1 and for all j ∈
{1, ..., m} we have (nj, nj+1, kj) ∈ E . A simple cycle is a cycle that does not visit
any node more than once. Thus, a simple cycle has the following property:

If (ni, ni+1, ki) ∈ Cm and (nj , nj+1, kj) ∈ Cm then
nj+1 = ni =⇒ i = 1 and j = m

Theorem 2. Consider a computer program P and its graph model G (N , E) .
Let V (i, v) := σi (v) be a variable-rate invariant defined on G, in the sense that

σ0 (v) < 0, ∀v ∈ v0 (10a)

σj(T k
jiv) < θk

jiσi(v), ∀i ∈ N\ {��} , j ∈ O (i) ,
k ∈ A (i, j) , v ∈ P k

ji [.] (10b)

In addition, assume that V is bounded from below. Then, (10) proves that P
terminates in finite time if and only if for every simple cycle C ∈ G, we have

∏

(i,j,k)∈C
θk

ij > 1, C ∈ G (11)

Proof. Proof of sufficiency proceeds by contradiction. Assume that (10) and (11)
hold, but P does not terminate in finite time. Then, there exists a sequence X ≡
(x(0), x(1), . . . , x(t), . . .) of elements from X satisfying (1) that does not reach
a terminal state in finite time. Let L : X → N be an operator mapping every
element x from X, to the discrete component of x. The sequenceLX ≡ (0, 1, . . .)
is then a sequence of infinite length that takes only finitely many different values.
Therefore, there exists at least one element which repeats infinitely often in X .
Let ω ∈ N\ {0, ��} be an element that repeats infinitely often in LX and let
C [ω] denote the set of all cycles on G (N , E) that begin and end at ω. Define

θ = min
C∈C[ω]

∏

(i,j,k)∈C
θk

ij .

Distributed Lyapunov Functions in Analysis of Graph Models of Software 449

Note that (11) implies that θ > 1. Let W be a subsequence of X consist-
ing of all the elements from X that satisfy Lx = ω, and rename the analog
component of x at the k-th appearance of ω in LX by vk to obtain the se-
quence W := ((ω, v1) , (ω, v2) , ..., (ω, vt) , ...) . Then we have Vω (v1) < 0, and
Vω (vi+1) < θVω (vi) , and θ > 1. The result follows immediately from Lemma
1. It is easy to construct counter examples to prove necessity. We do not give a
counter-example here due to space limitation.

Absence of overflow. The following result is a corollary of Theorems 1 and 2.

Corollary 1. Consider a program P and its graph model G (N , E) . Suppose
that the overflow limit is defined by a positive real number M. That is, X− :=
{x ∈ X | |xi| ≥ M} . Let V (i, v) := σi (v) be a variable-rate invariant defined
on G, as in (10a) and (10b). Assume that V (i, v) additionally satisfies

σi (v) >
∥
∥
∥

v

M

∥
∥
∥

2

− 1 ∀v ∈ �i, i ∈ N\ {0, ��} .

Then, an overflow runtime error will not occur during any execution of P . In
addition, if (11) holds, then P terminates in at most T steps, where

T =
∑

C∈G

log M − log supv∈v0
|σ0 (v)|

log θ (C)
, θ (C) :=

∏

(i,j,k)∈C
θk

ij .

2.2 Towards Optimal Graph Models

Consider now the following two programs, P1 and P2.

program P1

loc 0 : % pre: x1, x2 ∈ [−100, 100] ;

loc 1 : while True,

loc 2 : if x2
1 − x2

2 ≤ 0

loc 3 :
x1 = 0.99x1 + 0.01x2;
x2 = −0.05x1 + 0.99x2;

else

loc 5 :
x1 = 0.99x1 + 0.05x2;
x2 = −0.01x1 + 0.99x2;

end

loc ��: end

∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣

program P2

loc 0 : % pre: x1, x2 ∈ [−100, 100] ;

loc 1 : while True,

loc 2 : while x2
1 − x2

2 ≤ 0

loc 3 :
x1 = 0.99x1 + 0.01x2;
x2 = −0.05x1 + 0.99x2;

end

loc 4 : while x2
1 − x2

2 > 0

loc 5 :
x1 = 0.99x1 + 0.05x2;
x2 = −0.01x1 + 0.99x2;

end

loc ��: end

450 M. Roozbehani et al.

The two programs P1 and P2 define exactly the same evolution path for the
state variables x1 and x2. In other words the set of all sequences X (P1) :=
(x(0), x(1), . . . , x(t), . . .) of the dynamical system model S1(X, f, X0, X∞) of
program P1, and the set of all sequences X (P2) := (x(0), x(1), . . . , x(t), . . .)
of the dynamical system model S2(X, f, X0, X∞) of program P2 are identical.
Thus, program P1 is correct if and only if program P2 is correct (indeed, both
programs are correct in the sense of absence of overflow and their trajectories
converge to the origin). Below, we construct the graph models of both programs
and discuss analysis of the models via Lyapunov invariants. Let T1 and T2 be the
transformations that take place upon leaving nodes 3 and 5 respectively, that is,

T1

[
x1

x2

]
=

[
0.99x1 + 0.01x2

−0.05x1 + 0.99x2

]
, and T2

[
x1

x2

]
=

[
0.99x1 + 0.05x2x2

−0.01x1 + 0.99x2

]
.

Also, define P :=
{
x | x2

1 − x2
2 ≤ 0

}
, Q :=

{
x | x2

1 − x2
2 > 0

}
, C1�� := ∅.

�
�

�

�
�

�

�
�

�

�
�

�

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

0

2

1 ��

34

x ∈ P

x ∈ C1��

x /∈ C1��

0

2

1 ��

35

T1

x ∈ Px /∈ P

T2

x ∈ C1��

x /∈ C1��

5

T1

T2
x ∈ Q

x /∈ Q

x /∈ P

Fig. 1. Graph Models of Programs P1 (left) and P2 (right)

The graph models of programs P1 and P2 are shown in Figure 1. The graph
model of P1 is of degree 4, and the graph model of P2 is of degree 5 (nodes 0
and �� are not counted). The transition labels associated with identity transitions
along the arcs are dropped from the diagrams. As discussed before, we assign a
quadratic Lyapunov function σi (x) := xT Six to every node on the graph and
write the Lyapunov invariance condition according to Proposition (2). For these
programs we get

Distributed Lyapunov Functions in Analysis of Graph Models of Software 451

For program P1

σ0 (x) < 0, s.t. x2 ∈ [
0, 104

]

σ1 (x) < σ0 (x)

σ2 (x) < σ1 (x) s.t. x /∈ C1��

σ3 (x) < σ2 (x) s.t. x2
1 − x2

2 ≤ 0

σ5 (x) < σ2 (x) s.t. x2
1 − x2

2 > 0

σ1 (T1x) < σ3 (x)

σ1 (T2x) < σ5 (x)

σ�� (x) < σ1 (x) s.t. x ∈ C1��

∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣

For program P2

σ0 (x) < 0, s.t. x2 ∈ [
0, 104

]

σ1 (x) < σ0 (x)

σ2 (x) < σ1 (x) s.t. x /∈ C1��

σ3 (x) < σ2 (x) s.t. x2
1 − x2

2 ≤ 0

σ4 (x) < σ2 (x) s.t. x2
1 − x2

2 > 0

σ2 (T1x) < σ3 (x)

σ5 (x) < σ4 (x) s.t. x2
1 − x2

2 > 0

σ4 (T2x) < σ5 (x)

σ1 (x) < σ4 (x) s.t. x2
1 − x2

2 ≤ 0

σ�� (x) < σ1 (x) s.t. x ∈ C1��

We can then use the S-Procedure to convert the above constraints on σi :=
xT Six to semidefinite constraints and solve for the parameters of Si. The result
of this experiment is somewhat surprising. Although the two programs define
the exact same trajectories for the state variables x1 and x2, the optimization
problem arising from node-wise quadratic Lyapunov invariant analysis on graph
model of P2 is feasible, while the optimization problem turns out infeasible
for P1. Interestingly, this has nothing to do with the fact that there are more
nodes in the graph model of P2, and that the Lyapunov function defined on the
graph model of P2 has more parameters. To understand this situation better,
we introduce the notions of reduction and minimality of graph models.

Definition 5. A node i ∈ N\ {0, ��} is called a focal node, if there exists a
non-identity transition arc from node i to itself, that is,

∃k, s.t. (i, i, k) ∈ E and T k
ii �= I

A node i ∈ N\ {0, ��} is called an auxiliary node if it is not a focal node, that is,

∀k : (i, i, k) ∈ E =⇒ T k
ii = I

Informally speaking, focal nodes are nodes with nontrivial self arcs and auxiliary
nodes are nodes without nontrival self arcs. A graph model of a computer program
P is called irreducible, if every node i ∈ N\ {0, ��} is a focal node.

Consider a graph G (N , E) and let α ∈ N\ {0,∞} be an auxiliary node. A reduced
graph Gr (Nr, Er) can be obtained from G in the following way: 1. Remove the
auxiliary node α, and all the pertinent incoming and outgoing arcs 2. For every
pair of arcs {(i, α, r) , (α, j, s)} where i ∈ I (α) and j ∈ O (α), add a new arc
(i, j, k) with the transition label T k

ji := T s
jαT r

αi and passport label P k
ji := P s

jαT r
αi

∧ P r
αi. If Gr (Nr, Er) is a reduced graph model obtained from G (N , E) , we write

Gr � G. An irreducible model of G can be obtained by repeating the above

452 M. Roozbehani et al.

process until every auxiliary node is eliminated. Note that the irreducible graph
of G is not unique, neither is its degree. Among all the irreducible offspring
graphs of G, we call the one(s) with minimal degree, a minimal realization of G.
The degree of a minimal realization of G, is called the effective or minimal degree
of G. Similarly, among all the irreducible offsprings of G, we call the one(s) with
maximal degree, a maximal realization of G. The degree of a maximal realization
of G, is called the maximal degree of G, and is equal to the degree of G if and
only if G is irreducible. If G is reducible, the minimal or maximal realizations
of G are may not be unique either. Note that if Gr � G, then Nr ⊂ N , while
Er � E . Also note that the set of all reduced graphs of G do not form an ordered
set, in the sense that if Gr1 � G and Gr2 � G, neither Gr1 � Gr2 nor Gr2 � Gr1

has to hold.

��

��
3

��

��
5

��

��

��

��

��

��

��

��

��

��

��

��

��

��
0

1

T2x ∈ P

T1x ∈ Q
T1x ∈ PT2x ∈ Q

��

T2x ∈ C1��

��

x ∈ C1��

x ∈ Px ∈ Q

T2 T1 T2 T1

T2

T1

A Minimal Realization of P1 A Maximal Realization of P1

��

T1x ∈ C1��

00

Fig. 2. Minimal and Maximal realizations of program P1

The graph model of Program P1 is of minimal degree 1, and maximal degree 2.
A particular minimal and a particular maximal realization are show in Figure 2.
It can be verified that the graph model of P2 is of minimal degree 2, and maximal
degree 3. The minimal realization of P2 can be obtained via a reduction process
that eliminates nodes 3, 5, and 1, exactly in that order. The maximal realization
of P2 can be obtained via a reduction process that eliminates nodes 2, and 4,
exactly in that order.

The following theorem states that assigning node-wise Lyapunov functions to
graph models results in sufficient conditions for existence of Lyapunov invariants
within a specific class of functions, e.g. quadratic functions, that are weaker
than (i.e. always imply) the sufficient conditions imposed by assigning node-
wise Lyapunov invariants to reduced models of the same graph. In other words,
existence of node-wise Lyapunov invariants within a specific class of functions
for the reduced model is a necessary but not sufficient condition for existence
of node-wise Lyapunov invariants within the same class for the original graph
model of a computer program.

Distributed Lyapunov Functions in Analysis of Graph Models of Software 453

Theorem 3. Consider a computer program P , and its graph model G (N , E) .
Let Gr (Nr, Er) � G (N , E) be any reduced model of G. If

V (i, v) := σi (v) , i ∈ N
is a nodewise quadratic Lyapunov invariant on graph G (N , E) , then there exists
a nodewise quadratic Lyapunov invariant Vr (i, v) that is valid on Gr (Nr, Er) .
However, if

Vr (i, v) := σi (v) , i ∈ Nr

is a node-wise quadratic Lyapunov invariant on graph Gr (Nr, Er) , a node-wise
quadratic Lyapunov invariant that is valid on G (N , E) may not even exist.

Proof. If Gr � G, then there exists a sequence of reduced graph models Gi,
i = 1...q, where G1 = G, Gi+1 � Gi, and Gq = Gr with the property that
|Ni+1| = |Ni|−1, that is, Gi+1 is obtained by removing one auxiliary node from
Gi. Further, assume that Gi+1 is derived from Gi by eliminating node n, and
that V is a Lyapunov invariant for G. Then,

Vn (T r
nmv) − θVm (v) < 0, m ∈ I (n) , r ∈ A (m, n) , Ir

nm [v] = 1,

Vl (T s
lnv) − θVn (v) < 0, l ∈ O (n) , s ∈ A (n, l) , Is

ln [v] = 1.

Necessary conditions for the latter conditions to hold are that:

Vl (T s
lnT r

nmv) − θVn (T r
nmv) < 0, Is

ln [T r
nmv] = 1,

m ∈ I (n) , l ∈ O (n) , s ∈ A (n, l) , r ∈ A (m, n) .

This, and the first set of conditions imply that:

Vl (T s
lnT r

nmv) − θ2Vm (v) < 0, Ir
nm [v] = 1, Is

ln [T r
nmv] = 1,

r ∈ A (m, n) , s ∈ A (n, l) .

By definition, this implies that Vl and Vm satisfy the Lyapunov conditions along
all the arcs that were added in the reduction process. Since Vl and Vm satisfy all
Lyapunov conditions along all the existing arcs (before reduction), we conclude
that V is also a Lyapunov invariant for the reduced model. The result holds by
induction. The proof also shows that

Vr (i, v) := σi (v) , i ∈ Nr

is a valid Lyapunov invariant on Gr.

In analysis of programs via Lyapunov invariants, an important issue is to de-
termine whether a computer program admits certain type of Lyapunov invari-
ants, e.g. quadratic, piece-wise quadratic, etc. For instance, consider program P1,
which is known not to admit a quadratic Lyapunov invariant, while a piecewise
quadratic Lyapunov invariant is known to exist. Recall that the graph model of
this program is of degree 4 (not counting nodes 0, and ��), of minimal degree 1,

454 M. Roozbehani et al.

and maximal degree 2. Theorem 3 states that a Lyapunov invariant cannot be
found by assigning four different quadratic Lyapunov functions to the four nodes
on the graph. However, a Lyapunov function may be found by assigning two Lya-
punov functions to each of the two nodes on the maximal realization of P1. As
far as existence of Lyapunov functions is concerned, assigning different Lyapunov
functions to an immediate graph model of a program is only as good as assign-
ing fewer many Lyapunov functions to its minimal realization. In other words,
more Lyapunov functions assigned to auxiliary nodes do not add more flexibil-
ity/power in Lyapunov analysis. The latter statement of the theorem is even
more interesting since it states that performing analysis on reduced models may
even be beneficial. This is indeed the case for the program P1. Since P1 does not
admit a quadratic Lyapunov invariant, the optimization problem arising from
the original graph of P1 is infeasible. So is the optimization problem arising from
analysis of the minimal graph of P1. However, the optimization problem arising
from analysis of the maximal graph of P1 (which is of degree 2) is feasible and
a Lyapunov invariant was indeed found. On the other hand, since the minimal
graph of P2 is of degree 2, the optimization problem arising from the original
graph of P2 is readily feasible and a Lyapunov invariant is found. Same is true
for analysis of minimal and maximal realization of P2.

So far, we have established that, at least from a theoretical point of view,
it is beneficial to search for Lyapunov invariants on the reduced graph models
rather than the original graph models of computer programs. From an optimiza-
tion point of view, Theorem 3 compares two generally nonconvex optimization
problems. It states that if the nonconvex optimization problem associated with
the original graph model is feasible, then so is the nonconvex optimization prob-
lem associated with the reduced graph model. A natural question that arises
here is about the computational procedure that will be used to compute the
Lyapunov invariants on the two graph models. More specifically, the effects of
convex relaxations on the computation of such invariants on the original and
the reduced models must be investigated. It is interesting that the statement of
Theorem 3 remains valid even after convex relaxations are applied to these non-
convex optimization problems. More specifically, the Lyapunov invariant Vr (i, v)
can be computed using the same convex relaxations that render the computa-
tion of V (i, v) a feasible convex optimization problem. To make this concept
clearer, let us consider a specific case. Consider a graph G, and assume that Gr

is obtained by eliminating node 2, where, I (2) := {1} , O{2} := {3, 5} (this is
like the graph of program P1). Assume that each transition label Tji is a finite-
dimensional linear operator defined by the matrix of Tji, and each passport
label is defined by a single quadratic constraint: Pji [u] =

{
u | uT Qjiu ≤ 0

}
.

The Lyapunov conditions as imposed on G, are:

σ2 (T21v) − θσ1 (v) < 0, s.t. vT Q21v ≤ 0, (12a)

σ3 (T32v) − θσ2 (v) < 0, s.t. vT Q32v ≤ 0, (12b)

σ5 (T52v) − θσ2 (v) < 0, s.t. vT Q52v ≤ 0. (12c)

The Lyapunov conditions as imposed on the reduced model Gr , are:

Distributed Lyapunov Functions in Analysis of Graph Models of Software 455

σ3 (T32T21v) − θσ1 (v) < 0, s.t. vT Q21v ≤ 0, vT T T
21Q32T21v ≤ 0, (13a)

σ4 (T42T21v) − θσ1 (v) < 0, s.t. vT Q21v ≤ 0, vT T T
21Q52T21v ≤ 0. (13b)

Now, let each σi be a quadratic functional, σi (v) := vT Piv. Note that each of
the conditions in (12) express negativity of a quadratic form subject to a single
quadratic constraint, while each of the conditions in (13), express negativity of
a quadratic form subject to two quadratic constraints. It may be misleading to
think that using the S-Procedure as the convex relaxation method for (13) would
be more conservative than for (12). However, as we have already suggested, this
is not the case. Using the S-Procedure, conditions (12) are converted to LMIs
in the following way:

T T
21P2T21 − θP1 − τ21Q21 < 0, τ21 > 0, (14a)

T T
32P3T32 − θP2 − τ32Q32 < 0, τ32 > 0, (14b)

T T
52P5T52 − θP2 − τ52Q52 < 0, τ52 > 0, (14c)

while (13) becomes:

T T
21T

T
32P3T32T21 − θP1 − τ21Q21 − τ32T

T
21Q32T21 < 0, τ21 > 0, τ32 > 0, (15a)

T T
21T

T
52P5T52T21 − θP1 − τ21Q21 − τ52T

T
21Q52T21 < 0, τ21 > 0, τ52 > 0. (15b)

It is not difficult to see that if P1, P2, P3, P5, τ21, τ32, τ52 are a feasible solution
to the set of LMIs in (14), then P1, θP3, θP5, τ21, θτ32, θτ52 are a feasible
solution to the set of LMIs is (15): To obtain (15a) from (14), multiply (14b) on
both sides by T T

21/
√

θ and T21

√
θ, and add it to (14a). Inequality (15b) can be

obtained similarly. We have shown for a special case, that computation of the
Lyapunov invariants on the reduced graph is not more difficult than the original
graph. The result is true in general, and the same type of relaxations that make
convex optimization of the Lyapunov invariants feasible on the original graph,
are applicable to the reduced graph. In light of Theorem (3), the conclusion of
the above discussion is that analysis of the reduced models are always beneficial,
regardless of the convex relaxations that are used at the optimization phase.

3 Conclusions and Future Work

Concepts and tools from control and optimization can be exploited to build a
framework for software verification. This framework is particularly appealing for
analysis of safety-critical software in embedded systems. Our framework consists
of the following four procedures: 1. Model the software as a dynamical system. 2.
Given the functional and the safety specifications, formulate Lyapunov invariants
whose existence prove the desired properties of the model and hence, the program
itself. 3. Apply convex relaxations such that finding the proposed invariants can
be formulated as a convex optimization problem. 4. Use the relevant numerical

456 M. Roozbehani et al.

optimization tools, e.g. semidefinite programming, to compute these invariants.
In this paper, we focused on graph models of software and further developed
the framework on such models. Some future works include in-depth study of
optimality of graph models in the reduction process and improving scalability.
Computing the minimal and maximal degrees, and the corresponding realizations
of a computer program are interesting problems that arise in this context.

References

1. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in
Systems and Control Theory. Society for Industrial and Applied Math. (1994)

2. Bemporad, A., Mignone, D., Morari, M.: Moving horizon estimation for hybrid sys-
tems and fault detection. In: Proc. American Control Conf., pp. 2471–2475 (1999)

3. Bertsimas, D., Tsitsikilis, J.: Introduction to Linear Optimization. Athena Scien-
tific (1997)

4. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control:
Model and optimal control theory. IEEE Trans. Automatic Control 43(1), 31–45
(1998)

5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. on Program-
ming Languages and Systems 8(2), 244–263 (1986)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. 4th
Symposium on Principles of Programming Languages, pp. 238–252 (1977)

8. Prajna, S., Jadbabaie, A., Pappas, G.: A Framework for Worst-Case and Stochas-
tic Safety Verification Using Barrier Certificates. IEEE Trans. on Automatic Con-
trol 52(8), 1415–1428 (2007)

9. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov func-
tions for hybrid systems. IEEE Trans. on Automatic Control 43(4), 555–559 (1998)

10. Alur, R., Pappas, G.J. (eds.): HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg
(2004)

11. Lafferriere, G., Pappas, G.J., Sastry, S.: Hybrid systems with finite bisimulations.
In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS
1997. LNCS, vol. 1567, Springer, Heidelberg (1999)

12. Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for
hybrid systems. Automatica 35(3), 349–370 (1999)

13. Peled, D.A.: Software Reliability Methods. Springer, New York (2001)
14. Parrilo, P.A.: Minimizing Polynomial Functions. In: Algorithmic and Quantitative

Real Algebraic Geometry. DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 60, pp. 83–99. AMS

15. Roozbehani, M., Feron, É., Megrestki, A.: Modeling, Optimization and Computa-
tion for Software Verification. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS,
vol. 3414, pp. 606–622. Springer, Heidelberg (2005)

16. Roozbehani, M., Megretski, A., Feron, E.: Convex optimization proves software
correctness. In: Proc. American Control Conf., pp. 1395–1400 (2005)

17. Roozbehani, M., Megretski, A., Feron, E.: Optimization of Lyapunov Invariants
for Certification of Software Systems. IEEE Trans. Automatic Control (submitted,
2007)

On the Optimality of Dubins Paths

across Heterogeneous Terrain

Ricardo G. Sanfelice and Emilio Frazzoli

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139-4307
{sricardo,frazzoli}@mit.edu

Abstract. We derive optimality conditions for the paths of a Dubins ve-
hicle when the state space is partitioned into two patches with different ve-
hicle’s forward velocity. We recast this problem as a hybrid optimal control
problem and solve it using optimality principles for hybrid systems.Among
the optimality conditions, we derive a “refraction” law at the boundary of
the patcheswhich generalizes the so-called Snell’s law of refraction in optics
to the case of paths with bounded maximum curvature.

1 Introduction

Control algorithms that are capable of steering autonomous vehicles to satisfy
a given set of specifications, like initial and final constraints, and at the same
time, guarantee certain optimality conditions are very appealing to applications
in robotics and aerospace. This has led researchers to strive for control design
tools that adequately incorporate both trajectory constraints and measures of
optimality. As a consequence, many results from the theory of optimal control, in
particular, those that guarantee time optimality, have found wide applicability
in autonomous vehicle control problems.

Perhaps, the earliest result on time-optimal control laws for autonomous ve-
hicles modeled as a particle moving with constant, positive forward velocity and
with constrained minimum turning radius is the work by Dubins [1]. While Du-
bins used only geometric arguments to establish his results, a few years later,
the appearance of Pontryagin’s Maximum Principle in [2] enabled the authors in
[3] to systematically recover Dubins results. Moreover, building from the work
of Reeds and Shepp [4], the application of Pontryagin’s optimality principle per-
mitted the authors in [5,3] to derive similar results for a vehicle model without
forward velocity constraints.

In this paper, we consider autonomous vehicles with dynamics governed by

|u| ≤ 1 ,

⎧
⎨

⎩

ẋ = v sin θ
ẏ = v cos θ

θ̇ = u
, (1)

where (x, y) is the vehicle’s position, θ is the angle between the vehicle and the
vertical axis determining the vehicle’s orientation, u is the angular acceleration

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 457–470, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

458 R.G. Sanfelice and E. Frazzoli

input for the vehicle, and v is the vehicle’s forward velocity. This vehicle model
is usually referred to as Dubins vehicle. We consider the case of heterogeneous
velocity along the terrain where the vehicle is deployed. Two different velocities,
v1 and v2, define the constant, forward velocity of Dubins vehicle on two patches
of the plane, patch P1 and patch P2, depicted in Figure 1. We are interested in
the following problem:

Find the minimum-time path for Dubins vehicle from an initial point
and angle in patch P1 to a final point and angle in patch P2.

Figure 1 shows possible initial and final vehicle configurations, which are denoted
by (x0, y0, θ0) and (x1, y1, θ1), respectively, for which a minimum-time path is
to be found. To the best of our knowledge, the problem described above has not
been addressed in the past, perhaps due to the fact that the classical Pontryagin’s
Maximum Principle is not applicable because of the discontinuous behavior at
the common boundary between the patches.

Fig. 1. Dubins vehicle on an heterogeneous terrain. The initial configuration is given
by (x0, y0, θ0) and the final configuration by (x1, y1, θ1). The forward velocity in patch
P1 is smaller than the forward velocity in patch P2.

By recasting this problem into an optimal hybrid control problem and ap-
plying principles of optimality for hybrid systems, we establish the following
conditions that illuminate important characteristics of optimal paths:

– The portions of the paths that remain in either patch are Dubins optimal.
– Optimal paths are such that, at the boundary between the patches, their type

does not change; that is, the type of path right before and after crossing the
boundary are the same.

– Optimal paths that cross the boundary describing a straight line are orthog-
onal to the boundary.

– The angles of the path pieces before and after crossing the boundary satisfy a
“refraction” law, which consists of a generalization of Snell’s law of refraction
in optics.

On the Optimality of Dubins Paths across Heterogeneous Terrain 459

Applications of these results include optimal motion planning of autonomous
vehicles in environments with obstacles, different terrains properties, and other
topological constraints. Strategies that steer autonomous vehicles across het-
erogeneous terrain using Snell’s law of refraction have already been recognized
in the literature and applied to point-mass vehicles; see, e.g., [6,7]. Our results
extend those to the case of autonomous vehicles with Dubins dynamics.

The remainder of the paper is organized as follows. Section 2 discusses related
background to the optimal control problem outlined above and introduces gen-
eral notation. In Section 3, we present a hybrid model which, as shown in that
same section, enable us to formulate the problem of study in an optimal hybrid
control framework. In Section 4, we establish necessary conditions for optimality
of paths including a refraction law at the boundary of the patches. Due to space
constraints, the technical proofs are omitted and will be published elsewhere.

2 Background

Pontryagin’s Maximum Principle [2] is a very powerful tool to derive necessary
conditions for optimality of solutions to a dynamical system. In words, this
principle establishes the existence of an adjoint function with the property that,
along optimal system solutions, the Hamiltonian obtained by combining the
system dynamics and the cost function associated to the optimal control problem
is minimized. In its original form, this principle is applicable to optimal control
problems with dynamics governed by differential equations with continuously
differentiable right-hand sides.

The shortest path problem between two points with specific tangent direction
and bounded maximum curvature has received wide attention in the literature.
In his pioneer work in [1], by means of geometric arguments, Dubins showed that
optimal paths to this problem consist of a smooth concatenation of no more than
three pieces, each of them describing either a straight line, denoted by L, or a
circle, denoted by C (when the circle is traveled clockwise, we write C+, while
when the circle is traveled counter-clockwise, we write C−), and are either of
type CCC or CLC, that is, they are among the following six types of paths

C−C+C−, C+C−C+, C−LC−, C+LC+, C+LC−, C−LC+, (2)

in addition to any of the subpaths obtained when some of the pieces (but not
all) have zero length. More recently, the authors in [3] recovered Dubins’ result
by using Pontryagin’s Maximum Principle; see also [5]. Further investigations of
the properties of optimal paths to this problem and other related applications
of Pontryagin’s Maximum Principle include [8,9,10], to just list a few.

Optimal control problems exhibiting discontinuous/impulsive behavior, like
the heterogeneous version of Dubins’ problem outlined in Section 1, cannot be
solved using the classical Pontryagin’s Maximum Principle. Extensions of this
principle to systems with discontinuous right-hand side appeared in [11] while ex-
tensions to hybrid systems include [12], [13], and [14]. These principles establish
the existence of an adjoint function which, in addition to conditions that parallel

460 R.G. Sanfelice and E. Frazzoli

the necessary optimality conditions in the principle by Pontryagin, satisfies cer-
tain conditions at times of discontinuous/jumping behavior. The applicability of
these principles to relevant problems have been highlighted in [12,15,16]. These
will be the key tool in deriving the results in this paper.

2.1 Notation

We use the following notation throughout the paper. R
n denotes n-dimensional

Euclidean space. R denotes the real numbers. R≥0 denotes the nonnegative real
numbers, i.e., R≥0 = [0,∞). N denotes the natural numbers including 0, i.e.,
N = {0, 1, . . .}. Given k ∈ N, N≤k denotes {0, 1, . . . , k}. Given a set S, S denotes
its closure and S◦ denotes its interior. Given a vector x ∈ R

n, |x| denotes the
Euclidean vector norm. Given U := [−1, 1], U denotes the set of all piecewise-
continuous functions u from subsets of R≥0 to U .

3 Problem Statement

In this section, we formulate the problem of steering Dubins vehicle across het-
erogeneous terrain as a hybrid optimal control problem. We present a hybrid
model and introduce the optimal control problem. An alternative approach is
to treat this problem as a differential equation with discontinuous right-hand
side and use the results in [11]. However, a hybrid control systems approach is
not only more convenient from a modeling point of view as it enables the use of
a sound concept of solution but also facilitates the application of more explicit
optimality principles for hybrid systems, like the ones in [12].

3.1 Hybrid Model

We denote by Hv the hybrid system that captures the dynamics of Dubins
vehicle along the patches. Let v1, v2 ∈ R>0, v1 �= v2, be the forward velocity of
the vehicle on patch P1 and patch P2, respectively, where

P1 :=
{
[x y θ]� ∈ R

3 | y ≥ 0
}

, P2 :=
{
[x y θ]� ∈ R

3 | y ≤ 0
}

,

which share a common boundary P1 ∩ P2 =
{
[x y θ]� ∈ R

3 | y = 0
}
; see Fig-

ure 1. Let q be a discrete state taking value in Q := {1, 2} that indicates the
current patch to which the vehicle belongs to. Following the vehicle’s dynamics
in (1),

[
ξ̇
q̇

]

=
[
fq(ξ, u)

0

]

ξ ∈ Pq (3)

with

ξ :=

⎡

⎣
x
y
θ

⎤

⎦ ∈ R
3 and fq(ξ, u) :=

⎡

⎣
vq sin θ
vq cos θ

u

⎤

⎦

On the Optimality of Dubins Paths across Heterogeneous Terrain 461

define the continuous dynamics (or flows) of Hv, where ξ is the continuous
state and u ∈ U is the control input. Then, during flows, ξ captures the vehicle
dynamics on the q-th patch while q remains constant. We model the change of
patch so that it occurs when y is zero and the vehicle is moving away from the
current patch. Then, defining a function s : Q → {−1, 1} where s(1) = −1 and
s(2) = 1, the discrete dynamics (or jumps) of Hv are given by

[
ξ+

q+

]

=
[

ξ
3 − q

]

ξ ∈ P1 ∩ P2 and s(q)vq cos θ > 0 , (4)

which implies that at jumps ξ does not change while q is toggled between 1
and 2. Finally, we denote by ζ := [ξ� q]� the full state of Hv.

Following the hybrid systems framework outlined in [17] and further estab-
lished in [18,19], we can rewrite Hv as

Hv :
{

ζ̇ = f(ζ, u) ζ ∈ C
ζ+ = g(ζ) ζ ∈ D

by defining

f(ζ, u) :=
[
fq(ξ, u)

0

]

, C :=
⋃

q∈Q

(Cq × {q}), g(ζ) :=
[

ξ
3 − q

]

, D :=
⋃

q∈Q

(Dq × {q}),

where Cq := Pq and Dq :=
{
ξ ∈ R

3 | y = 0, s(q)vq cos θ > 0
}

for each q ∈ Q.
Then, Hv is determined by the data (f, C, g, D), where f is the flow map, C is
the flow set, g is the jump map, and D is the jump set. As in [17], solutions to
Hv are given by hybrid arcs on hybrid time domains. Hybrid time domains use
a variable t to indicate flow time and an index j to keep track of the number
of jumps, and hence, parametrize solutions by (t, j). A subset E of R≥0 × N

is a hybrid time domain if it is the union of infinitely many intervals of the
form [tj , tj+1] × {j}, where 0 = t0 ≤ t1 ≤ t2 ≤ . . . , or of finitely many such
intervals, with the last one possibly of the form [tj , tj+1] × {j}, [tj , tj+1) × {j},
or [tj ,∞) × {j}. (Note that the t component of elements (t, j) ∈ E does not
uniquely define the index j since, in this framework, multiple jumps at the same
t are possible.) Then, given a control input u ∈ U , solutions to Hv are given
by functions, called hybrid arcs, ζ : dom ζ → R

4, where dom ζ is a hybrid time
domain, t 	→ ξ(t, j) is a locally absolutely continuous function for each fixed
j, t 	→ q(t, j) is a piecewise constant function for each fixed j, and ζ satisfies
the flow and jump conditions mentioned above. More precisely, given an input
u ∈ U , a hybrid arc ζ is a solution to the hybrid system Hv if ζ(0, 0) ∈ C ∪ D,
dom ζ = domu, and:

(S1) For all j ∈ N and almost all t such that (t, j) ∈ dom ζ 1,

ζ(t, j) ∈ C, ζ̇(t, j) = f(ζ(t, j), u(t, j)) .

1 ζ̇(t, j) denotes the derivative of t �→ ζ(t, j) with respect to t for a fixed j, which
exists for almost every t such that (t, j) ∈ dom ζ ∩ ([tj , tj+1] × {j}).

462 R.G. Sanfelice and E. Frazzoli

(S2) For all (t, j) ∈ dom ζ such that (t, j + 1) ∈ dom ζ,

ζ(t, j) ∈ D, ζ(t, j + 1) = g(ζ(t, j)) .

Inputs u given as signals t 	→ u(t) for each t ∈ R≥0 can be rewritten on a hybrid
time domain E by defining, with some abuse of notation, u(t, j) := u(t) for each
(t, j) ∈ E. Note that solutions to Hv exist from every point in C∪D = R

3×Q. In
particular, solutions are allowed to flow in the boundary P1∩P2 with either q = 1
or q = 2; such a feature cannot be captured with a differential equation with
discontinuous right-hand side or with a (regular) differential inclusion without
adding extra solutions. Also note that since the sets Dq are not closed subsets
of R

3, the regularity property for D required in [18,19] does not hold (the flow
map, jump map, and jump set of Hv satisfy the properties therein). While such
a regularity is not required for the results in this paper to be true, it turns out
that, as shown in [19], it highlights the presence of undesirable solutions if the
sets Dq were to be closed or small noise entered through the state.

3.2 Hybrid Optimal Control Problem

We consider the following hybrid optimal control problem. Given (x0, y0, θ0) ∈
C◦

1 and (x1, y1, θ1) ∈ C◦
2 :

(�) Minimize the transfer time T ∈ R≥0 subject to:
(C1) Dynamical constraint: dynamics of Hv given in (3)-(4).
(C2) Input constraint: u ∈ U .
(C3) Initial and terminal constraints: every optimal solution (ξ, q) to Hv

satisfies the initial constraint (x(0, 0), y(0, 0), θ(0, 0)) = (x0, y0, θ0) and
the terminal constraint (x(T, J), y(T, J), θ(T, J)) = (x1, y1, θ1) for some
(T, J) ∈ dom(ξ, q).

The number of jumps required to solve (�) is finite, given by J − 1, and no
smaller than one; hence, optimal solutions to (�) are not Zeno. The initial and
final constraints are such that solutions can flow from some time before their
first jump and after their final jump (that is, the first jump is at some (t1, 0)
with t1 > 0 and the last jump is at some (tJ , J − 1) with tJ < T). This is a
technical requirement for the application of the hybrid maximum principle in
[12] in the next section.

4 Necessary Conditions for Optimality

Necessary optimality conditions for solutions to Hv solving (�) can be obtained
using the principle of optimality for hybrid systems in [12] (see also [20] and
[15]). Under further technical assumptions, Theorem 1 in [12] establishes that
there exists an adjoint pair (λ, λ◦), where λ is a function and λ◦ is a constant,
which, along optimal solutions to (�), satisfies certain Hamiltonian maximization,
nontriviality, transversality, and Hamiltonian value conditions. In particular, [12,
Theorem 1] can be applied to the optimal control problem (�) to deduce the
following optimality conditions for the paths.

On the Optimality of Dubins Paths across Heterogeneous Terrain 463

Proposition 1 (properties of (�)). For each optimal solution (ξ, q) to (�)
with optimal control u, minimum transfer time T , and J − 1 number of jumps,
there exists a function λ : dom λ → R

3, λ := [α β γ]�, dom λ = dom(ξ, q), where
t 	→ λ(t, j) is absolutely continuous for each j, (t, j) ∈ domλ, and a constant
λ◦ ∈ R defining the adjoint pair (λ, λ◦) satisfying:

a) λ◦ ≥ 0 and λ̇(t, j) = −∂Hq(t,j)

∂ξ
(ξ(t, j), λ(t, j), λ◦, u(t, j)) for almost every

t ∈ [tj , tj+1], (t, j) ∈ dom λ, where, for each q ∈ {1, 2}, Hq : R
3 × R

3 × R ×
×U → R is the Hamiltonian associated with the continuous dynamics of Hv,
which is given by

Hq(ξ, λ, λ◦, u) = αvq sin θ + βvq cos θ + γu − λ◦

for each q ∈ Q.
b) There exist α, β ∈ R and, for each j ∈ N≤J , there exists pj ∈ R such

that α(t, j) := α for all (t, j) ∈ dom(ξ, q), β(t, j) := β + pj for almost all
t ∈ [0, T], (t, j) ∈ dom(ξ, q), and γ(t, j) = γ(t, j + 1) for each (t, j) such that
(t, j), (t, j + 1) ∈ dom λ.

c) For every (t, j) ∈ dom(ξ, q) such that γ(t, j) �= 0, u(t, j) = sgn(γ(t, j)); and
for every (t, j) ∈ dom(ξ, q) such that γ(t, j) = 0, u(t, j) = 0.

d) For every (t, j) ∈ dom(ξ, q) such that γ(t, j) = 0, β(t, j) tan θ(t, j) = α(t, j).

Remark 1. The proof of Proposition 1 uses the fact that Hv can be associated
with a hybrid system H∗

v given in the framework in [12] and that every solution
to Hv solving (�) is also a solution to H∗

v (agreeing with the concept of solution
in [12]2). This property follows by construction of H∗

v. Hybrid systems in [12]
and [15] have a continuous state ξ with flows governed by ξ̇ = fq(ξ, u) when
ξ belongs to a smooth manifold Mq, where q ∈ Q is a discrete state (which
remains constant during flows). Jumps from mode q to mode q′ satisfy: 1) the
switching condition (ξ, ξ′) ∈ Sq,q′ , where ξ is the continuous state before the
jump, ξ′ is the continuous state after the jump, and Sq,q′ is the switching set;
and 2) a temporal constraint enforcing that the jump time for the current mode
is in the set Jq ⊂ R. To obtain H∗

v, the sets Cq in Hv are replaced by smooth

2 In [12], solutions to hybrid systems are given on compact time intervals by absolutely
continuous functions ξj on [tj , tj+1] such that, for each j ∈ {1, 2, . . . , ν} (with finite
ν ∈ N) and for finite sequences of logic states {qj} and control inputs {uj}, satisfy the
flow condition ξ̇j = fqj (ξj(t), uj(t)) for almost all t ∈ [tj , tj+1] and the jump condi-
tion (ξj(tj), ξj+1(tj)) ∈ Sqj ,qj+1 for each tj , where tj denotes the jump time (which is
assumed to belong to the interior of the compact time interval where solutions are de-
fined) and Sqj ,qj+1 is the switching set at the j-th jump (see [12, Definition 3] for more
details). Hence, passing from a solution ζ on a bounded hybrid time domain dom ζ
with jumps at different (tj , j)’s, first jump at (t1, 0) with t1 > t0, and last jump at
(tJ , J − 1) with tJ < T , where T := sup {t ∈ R≥0 | ∃j ∈ N such that(t, j) ∈ dom ζ }
and J := sup {j ∈ N | ∃t ∈ R≥0 such that(t, j) ∈ dom ζ }), to a solution as in [12,
Definition 3] is straightforward.

464 R.G. Sanfelice and E. Frazzoli

manifolds Mq, Cq ⊂ Mq, while the jump set and the jump map are replaced by
the switching condition given by

S1,2 = S2,1 = Ŝ :=
{
(ξ, ξ)

∣
∣ y = 0, ξ ∈ R

3
}

,

and J1 = J2 = R. Then, the properties of the adjoint pair guaranteed by [12,
Theorem 1] automatically imply item a) in Proposition 1 (see [12, Definition
9]). The condition for optimality at switches for the adjoint state λ implies
that only the second component of λ, i.e. β, has a jump while the other two
components are continuous (see Remark 2). This implies item b) in Proposition 1.
The Hamiltonian maximization condition guaranteed to hold by [12, Theorem
1] implies that

Hq(t,j)(ξ(t, j), λ(t, j), λ◦, u(t, j)) = max
w∈U

Hq(t,j)(ξ(t, j), λ(t, j), λ◦, w)

for almost every t ∈ [tj , tj+1], (t, j) ∈ dom λ (see [12, Definition 10]). It follows
that the control law in item c) in Proposition 1 maximizes Hq. By integrating
the adjoint state λ when u = 0, Proposition 1.d follows automatically. �

Remark 2. [12, Theorem 1] implies that at jumps, the optimal solution, optimal
control, and adjoint pair satisfy the switching condition (−λ(t, j), λ(t, j + 1)) ∈
K⊥

j for each j for which there exists t ∈ [0, T] such that (t, j), (t, j +1) ∈ domλ,
where K⊥

j is the polar of the Boltyanskii approximating cone to Sq(t,j),q(t,j+1)(=

Ŝ). The set Ŝ is such that K⊥
j is given by

{
w ∈ R

3 × R
3

∣
∣
∣ 〈w, v〉 ≤ 0 ∀v ∈ Ŝ

}

since the Boltyanskii approximating cone to Ŝ is the set itself. Then, since
by definition of Ŝ the second and fourth components of v in K⊥

j are zero,
(−λ(t, j), λ(t, j +1)) ∈ K⊥

j if and only if α(t, j) = α(t, j +1), γ(t, j) = γ(t, j +1),
which implies that only β can have a jump. This property can also be obtained
using the optimality principles in [14]. �

4.1 Optimality of Paths

The properties of the adjoint pair (λ, λ◦) and the control input u in Proposition 1
can be related to properties of the continuous component ξ of the solutions to (�).
These characterize the optimal paths from given initial and terminal constraints,
as the following theorem states.

Theorem 1 (optimality conditions of solutions to (�)). Each optimal so-
lution (ξ, q) to (�) with optimal control u, minimum transfer time T , and J − 1
number of jumps is such that:

a) The continuous component ξ is a smooth concatenation of finitely many
pieces from the set {C+, C−,L}.

b) The input component u is piecewise constant with finitely many pieces taking
value in {−1, 0, 1}.

On the Optimality of Dubins Paths across Heterogeneous Terrain 465

c) Each piece of the continuous component ξ contained in Cq, q ∈ Q, is Dubins
optimal between the first and last point of such piece, i.e., it is given as in
(2).

d) For each (t, j) ∈ dom(ξ, q) for which (x(t, j), y(t, j), θ(t, j)) ∈ Dq(t,j), the
solution has a jump and:

d.1) If the path before the jump is C then the path after the jump is C.
d.2) If the path before the jump is L then the path after the jump is L and

θ(t, j) is zero or any multiple of π.

Remark 3. The proof of Theorem 1 uses Proposition 1 and the fact that, since
the jump condition in Hv is time independent (that is, J1 = J2 = R), the
Hamiltonian value condition guaranteed to hold by [12, Theorem 1] implies that
there exists h∗ ∈ R such that

h∗ = Hq(t,j)(ξ(t, j), λ(t, j), λ◦, u(t, j))

for almost every t ∈ [tj , tj+1], (t, j) ∈ dom λ (see [12, Definition 13]). �

Figure 2 depicts optimal paths around the boundary of the patches. Item d.1)
in Theorem 1 implies that optimal paths that cross the boundary are of the
same type at each side of it. More precisely, if before crossing the boundary,
the optimal path is of type C (C+ or C−), then the optimal path after crossing
the boundary is also of type C (C+ or C−, respectively). Figure 2(a) depicts
an optimal path of type C+. Statement d.2) in Theorem 1 implies that L-type
paths at the boundary are optimal only if they are orthogonal to the boundary.
Figure 2(b) depicts this situation.

(a) C+-type of path at the boundary.
Path pieces C+ in patch P1 with radius
r1 = v1 and in patch P2 with radius
r2 = v2, v2 > v1.

(b) L-type of path at the boundary.
The angle between the path and the
boundary in each patch is π/2.

Fig. 2. Optimal paths nearby the boundary: paths of types C+ and L satisfying the
necessary conditions in Theorem 1

466 R.G. Sanfelice and E. Frazzoli

(a) Nonoptimal C+/C−-type path at
the boundary. Path piece C+ in patch
P1 with radius r1 = v1 and path piece
C− in patch P2 with radius r2 = v2,
v2 > v1.

(b) Nonoptimal L/C−-type path at the
boundary. Path piece C− in patch P2

with radius r2 = v2.

Fig. 3. Nonoptimal paths at the boundary: paths of type C+/C− and L/C− changing
at the boundary and hence, not satisfying the necessary conditions for optimality in
Theorem 1

Using Theorem 1, it is possible to determine optimal families of paths for a
class of solutions to (�). The following statements follow directly from Dubins’
result and Theorem 1.

Corollary 1 (optimal paths w/one jump). Every optimal solution (ξ, q) to
(�) with only one jump is such that the continuous component ξ is a smooth
concatenation of C,L paths pieces and is given by one of the following four types
of paths

C1L1C2L2C3, C1C2C3L1C4, C1C2C3C4C5, C1L1C2C3C4 , (5)

in addition to any such path obtained when some of the path pieces (but not all)
have zero length. Furthermore, if the path piece intersecting the boundary is of
type L, then the continuous component ξ describes a path of type C1L1C2 (or any
such path obtained when C1 and/or C2 have zero length).

A consequence of Theorem 1 that is useful when computing optimal paths is the
following.

Corollary 2 (nonoptimal paths). For the optimal control problem (�), so-
lutions to Hv satisfying (C1)-(C3) with the continuous component ξ describing
paths that change at the boundary are nonoptimal, that is, paths that before and
after the boundary are given by C+ and L, C− and L, L and C+, L and C−, C+

and C−, or C− and C+, respectively, are nonoptimal.

Figure 3 depicts two of the path types that Corollary 2 determines to be
nonoptimal.

On the Optimality of Dubins Paths across Heterogeneous Terrain 467

(a) Refraction for LCL-type of path
nearby the boundary. The L path pieces
define the angles θ1, θ2 and their varia-
tions Δθ1, Δθ2.

(b) Refraction for CCC-type of path
nearby the boundary. The tangents
(plotted with .− lines) at the point of
path change define the angles θ1, θ2 and
their variations Δθ1, Δθ2.

Fig. 4. Refraction law for paths at the boundary. The initial and final angles of optimal
paths intersecting the boundary given by θ1 and θ2, respectively, and their variations
(Δθ1, Δθ2) satisfy equation (6), which is a generalization of Snell’s law of refraction.

4.2 Refraction Law at Boundary

The optimal control law given in Proposition 1.c and the properties of the com-
ponent γ of the adjoint state λ given in Proposition 1.b imply that the control
law is constant at jumps of Hv (note that u is piecewise continuous for each
fixed j with discontinuities at (t, j)’s where the path type changes). While θ re-
mains constant at the boundary, the initial and final angles (and their variations)
of the paths intersecting the boundary satisfy the following algebraic condition
involving the patch velocities v1 and v2.

Theorem 2 (refraction law for (�)). Let (ξ, q) be an optimal solution to (�).
Let θ1 and θ2 denote the initial and final angle, respectively, of a path piece
intersecting the boundary P1 ∩ P2, as show in Figure 4. Let Δθ1, Δθ2 ∈ R be
given by Δθ1 := θ∗ − θ1, Δθ2 := θ2 − θ∗, where θ∗ is the angle between the path
and the boundary P1∩P2 at their intersection (with respect to the vertical axis).
If the path piece intersecting P1∩P2 is of type C, then v1, v2, θ1, θ2, Δθ1 and Δθ2

satisfy

v1

v2
=

1 + cot θ2 cot
(

Δθ1−Δθ2
2 + θ1+θ2

2

)

1 + cot θ1 cot
(

Δθ1−Δθ2
2 + θ1+θ2

2

) , (6)

and if the path piece intersecting P1 ∩ P2 is of type L, then θ1 and θ2 are equal
to π.

468 R.G. Sanfelice and E. Frazzoli

(a) (Nonoptimal) path of type
CLC

(b) Path of type CLCLC

Fig. 5. Optimal control of Dubins vehicle on patches with velocities v1 = 2v2. The path
depicted in (a) is nonoptimal since its L-type piece is not orthogonal to the boundary
P1 ∩ P2 (it is also nonoptimal since it does not exploit the fact that the maximum
velocity in patch P1 is twice faster than in patch P2). The path depicted in (b) is a
candidate for optimality as it satisfies the conditions in Theorem 1 and Corollary 1.

Remark 4. Equation (6) in Theorem 2 implies that for a path of type C in-
tersecting P1 ∩ P2 to be optimal, θ1, θ2, Δθ1 and Δθ2 shown in Figure 4 must
satisfy (6). When the path intersecting P1 ∩P2 is of type L, by Corollary 1, the
path L is orthogonal to P1 ∩ P2 and consequently, there is no “refraction” at
the boundary. This is depicted in Figure 2(b). The proof of Theorem 2 follows
from the properties of the optimal solution and adjoint state at jumps stated in
Theorem 1 and Proposition 1.d. �

Equation (6) can be interpreted as a refraction law at the boundary of the two
patches for the angles (and their variations) θ1, θ2 (and Δθ1, Δθ2). This parallels
Snell’s law of refraction in optics, which states a relationship between the angles
of rays of light when passing through the boundary of two isotropic media with
different refraction coefficients. More precisely, given two media with different
refraction indexes v1 and v2, Snell’s law of refraction states that

v1

v2
=

sin θ1

sin θ2
, (7)

where θ1 is the angle of incidence and θ2 is the angle of refraction. This law
can be derived by solving a minimum-time problem between two points, one in
each medium. Moreover, the dynamics of the rays of light can be associated to
the differential equations ẋ = vi, where vi is the velocity in the i-th medium,
i = 1, 2. Theorem 2 generalizes Snell’s law to the case when the dynamics of the
rays of light are given by (1). In fact, (6) reduces to (7) when Δθ1 = θ1 and
Δθ2 = θ2. In the context of autonomous vehicles, (6) consists of a generalization

On the Optimality of Dubins Paths across Heterogeneous Terrain 469

of the refraction law for optimal steering of a point-mass vehicle, as in [6,7], to
the Dubins vehicle case.

To further illustrate our results, consider v1 = 2v2 > 0, (x0, y0, θ0), and
(x1, y1, θ1) as depicted in Figure 5. A path corresponding to a solution to Hv

matching the initial and terminal constraints is shown in Figure 5(a). Since
the L-type path piece smoothly connecting the C-type paths at (x0, y0, θ0) and
(x1, y1, θ1) does not intersect the boundary P1 ∩ P2 orthogonally, Theorem 1.d
implies that it is nonoptimal (see also Corollary 1). Note that this path is not
taking advantage of the fact that in patch P1, the vehicle can travel twice faster
than in patch P2. Paths candidate for being optimal are like the one depicted in
Figure 5(b) as it satisfies the conditions in Theorem 1 and Corollary 1.

5 Conclusions

We have derived necessary conditions for the optimality of paths with bounded
maximum curvature. To establish our results, we formulated the problem as a hy-
brid optimal control problem and used optimality principles from the literature.
Our results provide verifiable conditions for optimality of paths. These include
conditions both in the interior of the patches and at their common boundary,
as well as a refraction law for the angles which generalizes Snell’s law of refrac-
tion in optics to the current setting. Applications of our results include optimal
motion planning tasks for autonomous vehicles with Dubins vehicle dynamics.

Acknowledgments

This research has been partially supported by ARO through grant W911NF-07-
1-0499, and by NSF through grant 0715025. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the supporting organizations.

References

1. Dubins, L.E.: On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal
of Mathematics 79, 497–516 (1957)

2. Pontryagin, L.S., Boltyanskij, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The
mathematical theory of optimal processes. Wiley, Chichester (1962)

3. Boissonnat, J.D., Cérézo, A., Leblond, J.: Shortest paths of bounded curvature in
the plane. Journal of Intelligent and Robotic Systems 11, 5–20 (1994)

4. Reeds, J.A., Shepp, L.A.: Optimal paths for a car that goes both forwards and
backwards. Pacific Journal of Mathematics 145, 367–393 (1990)

5. Sussmann, H.J., Tang, G.: Shortest paths for the Reeds-Shepp car a worked out
example of the use of geometric techniques in nonlinear optimal control. Technical
report, Rutgers Center for Systems and Control Technical Report (1991)

470 R.G. Sanfelice and E. Frazzoli

6. Alexander, R.S., Rowe, N.C.: Path planning by optimal-path-map construction for
homogeneous-cost two-dimensional regions. In: Proc. IEEE International Confer-
ence on Robotics and Automation, pp. 1924–1929 (1990)

7. Rowe, N.C., Alexander, R.S.: Finding optimal-path maps for path planning across
weighted regions. The International Journal of Robotics Research 19, 83–95 (2000)

8. Shkel, A.M., Lumelsky, V.: Classification of the Dubins’ set. Robotics and Au-
tonomous Systems 34, 179–202 (2001)

9. Balkcom, D.J., Mason, M.T.: Time optimal trajectories for bounded velocity dif-
ferential drive vehicles. The International J. Robotics Research 21, 199–217 (2002)

10. Chitsaz, H., LaValle, S.M., Balkcom, D.J., Mason, M.T.: Minimum wheel-rotation
paths for differential-drive mobile robots. In: Proceedings IEEE International Con-
ference on Robotics and Automation (2006)

11. Sussmann, H.J.: Some recent results on the maximum principle of optimal control
theory. In: Systems and Control in the Twenty-First Century, 351–372 (1997)

12. Sussmann, H.J.: A maximum principle for hybrid optimal control problems. In:
Proc. 38th IEEE Conference on Decision and Control, pp. 425–430 (1999)

13. Garavello, M., Piccoli, B.: Hybrid necessary principle. SIAM J. Control Op-
tim. 43(5), 1867–1887 (2005)

14. Shaikh, M.S., Caines, P.E.: On the hybrid optimal control problem: Theory and
algorithms. IEEE Transactions on Automatic Control 52, 1587–1603 (2007)

15. Piccoli, B.: Necessary conditions for hybrid optimization. In: Proceedings of the
38th IEEE Conference on Decision and Control, pp. 410–415 (1999)

16. D’Apice, C., Garavello, M., Manzo, R., Piccoli, B.: Hybrid optimal control: Case
study of a car with gears. International Journal of Control 76, 1272–1284 (2003)

17. Goebel, R., Hespanha, J., Teel, A., Cai, C., Sanfelice, R.: Hybrid systems: Gener-
alized solutions and robust stability. In: Proc. 6th IFAC Symposium in Nonlinear
Control Systems, pp. 1–12 (2004)

18. Goebel, R., Teel, A.: Solutions to hybrid inclusions via set and graphical conver-
gence with stability theory applications. Automatica 42(4), 573–587 (2006)

19. Sanfelice, R., Goebel, R., Teel, A.: Generalized solutions to hybrid dynamical sys-
tems. In: ESAIM: Control, Optimisation and Calculus of Variations (to appear,
2008)

20. Sussmann, H.J.: A nonsmooth hybrid maximum principle. In: Stability and Stabi-
lization of Nonlinear Systems. Lecture Notes in Control and Information Sciences,
pp. 325–354. Springer, Heidelberg (1999)

Switching Surface Design for Periodically

Operated Discretely Controlled Continuous
Systems

Axel Schild and Jan Lunze

Institute of Automation and Computer Control, Ruhr-Universitaet Bochum,
Universitaetsstrasse 150, 44780 Bochum, Germany

{Schild, Lunze}@atp.rub.de

Abstract. Discretely controlled continuous systems (DCCS) represent
an important class of hybrid systems, in which a continuous process is
regulated by a discrete controller. The paper introduces a novel model-
based design procedure for periodically operated DCCS with the objec-
tive to produce a periodic stationary operation. The method exploits
an equivalence to periodic control systems to obtain an event-driven
switching strategy that locally stabilizes a predetermined limit cycle and
enforces a desired transient behavior. In contrast to earlier results, the
controller responds to deviations without a dead time.

1 Introduction

Discretely controlled continuous systems (DCCS) have recently received much
attention throughout the hybrid systems community [1, 2, 3, 4, 5, 6, 7]. Such sys-
tems form a control loop composed of a continuous plant and a discrete-event
controller (Fig. 1(a)). This structure is found in many application domains, such
as power electronics, manufacturing systems, process engineering, mechanics and
robotics. The control task of DCCS is to switch the plant’s mode of operation
at opportune moments to meet specifications defined in terms of the continu-
ous variables at stationary operation. As a central characteristic, the working
principle of these systems demands a never ending switching action, which pre-
vents the continuous state trajectory to converge towards an equilibrium state.
Instead, a periodic or even a chaotic stationary motion is observed.

continuous
plant

controller

x()tq t()

(a)

clk(t)

q(t) e(t)

controller x(t)

g(q(k),e(k+1))D
q(k+1)

switching logic
EG

(b)

Fig. 1. Structure of a DCCS: (a) control loop, (b) discrete controller

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 471–485, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

472 A. Schild and J. Lunze

This paper presents a novel model-based design procedure for the event gener-
ator included in the discrete controller. The presented approach produces static
switching planes and allows to influence the local loop properties systemati-
cally. Compared to previously published approaches, the discrete controller is
of lower complexity and its control actions are instantaneously applied with-
out any delay. The method does not impose any restrictions on the number of
continuous states or the number of operation modes. Furthermore, it allows for
a partial design, if a subset of system-inherent switching surface must not be
altered.

The paper is organized as follows: Section 2 recalls the model of a DCCS.
Following the problem formulation (Sect. 3), all design steps are presented in
Sect. 4. The key idea is to recast the original problem into a periodic linear
control problem (Sect. 4.1). With the equivalence stated in Theorem 1, novel
results for checking the local stabilizability of a DCCS along a closed orbit are
derived (Sect. 4.2) and summarized in Theorem 3. Section 4.3 classifies modes
as effective or ineffective, which is crucial for obtaining feasible design results.
Section 4.4 summarizes the design algorithm, which is successfully applied to
a laboratory plant in Sect. 5. The experimental data demonstrate the excellent
loop performance, which is attained by this discrete controller.

Literature. In the past, research work on DCCS primarily focused on analy-
sis methods, whereas model-based design approaches have only been scarcely
developed. Recently, the optimal start-up of DCCS under known initial condi-
tions was addressed in [8, 9] and extended to unknown initial states in [10, 11].
Lyapunov-based switching with application to switching power converters was
discussed in [12, 13]. The primary objective considered in these publications is
to drive the continuous trajectory into a neighborhood of a desired terminal
state.

The problem of stabilizing limit cycles of smooth nonlinear systems, on the
other hand, has been investigated over the past two decades starting with [14].
It was extended to non-smooth dynamical systems in [15], where the authors
advocate the use of switching and state-resetting to affect the stability of re-
current motions. The question of how to systematically design the ”control
law” in case of multiple control interactions over one period remained unan-
swered, until a model-based solution was presented in [16]. The approach pro-
posed therein relies on the dynamic adjustment of nominal switching surfaces
by means of a switching surface controller (SSC). Because the resulting con-
troller responds to deviations with a potentially large delay, the loop performance
may be unsatisfactory in the presence of disturbances. Moreover, the approach
assumes the knowledge of nominal switching planes, which have a strong in-
fluence on the amplitude of the control actions issued at runtime. Therefore,
an important aspect is to determine the best possible nominal switching plane
orientations with respect to the control objective, which is addressed in this
paper.

Switching Surface Design for Periodically Operated DCCS 473

2 Modeling of Periodically Operated Discretely
Controlled Continuous Systems

2.1 Hybrid Model

The main contribution of this paper is a novel model-based design method for the
event generator of periodically operated discretely controlled continuous systems
(DCCS), i.e. systems that recurrently execute a predetermined sequence

QLC =
(
q̄�
0 q̄�

1 . . . q̄�
p−1

)
(1)

of p distinct operation modes q̄�
i �= q̄�

j . This section summarizes a model, which
reflects all relevant aspects of the closed-loop behavior and represents a tailored
version of the general hybrid model introduced in [16, 17].

The model consists of three components: a continuous plant, an event gen-
erator and a discrete switching logic (Fig. 1(b)). The continuous dynamics are
governed by the state equation

ẋ(t) = f(x(t) , q(t)) , x(0) = x0 , (2)

where x ∈ IRn is the continuous state. The plant’s sole accessible input q(t)
is restricted to the finite set Q =

{
q̄�
0 , . . . , q̄�

p−1

}
of operation modes. For each

mode q̄�
k, the continuous dynamics (2) possess a different equilibrium state.

The event generator implements a piecewise affine event function

Φ(x, q) = cT(q) x(t) − d(q) , (3)

which implicitly defines a switching hyperplane

S (q) = {x : Φ(x, q) = 0} (4)

for each mode q. The vector cT(q) and the scalar d(q) determine a plane’s orien-
tation and its location in the state space. The event generator outputs a trigger
signal

clk(t) =
{

0 , if |Φ(x(t) , q(t))| > 0
1 , if Φ(x(t) , q(t)) = 0 ,

which initiates an update of the memory (D) according to

q̄(k+1) = q
(
t̄(k+1)+

)
= q̄�

((k+1) mod p), q̄(0) = q̄�
0 (5)

at the switching time

t̄(k+1) = min
t>t̄(k)

t : clk(t) = 1 .

Here t̄(k)+ denotes the limit from above. As the DCCS is assumed to execute the
predetermined mode sequence QLC, the second output e(t) of the event generator
(Fig. 1) can be omitted. In the following, signals

x̄(k) = x(t̄(k)) , q̄(k) = q
(
t̄(k)+

)

474 A. Schild and J. Lunze

sampled at switching instants are indicated by a bar and enumerated by a counter
k. The time span

τ̄(k) = t̄(k+1)− t̄(k) > 0

is called the activation duration of mode q̄(k) and τ denotes the elapsed time
since the last switching. A DCCS execution over N switchings is denoted by

χ
(
xh

0 , t0, N
)

= (x(t) , q(t) , T (N)) , xh
0 =

(
x0 q̄�

0

)
T, t ∈ [t0, t̄(N)] (6)

with T (N) = (([t0, t̄(0)] , (t̄(0), t̄(1)] , ...) being a finite sequence of N activation
intervals. The continuous state evolution starting in

(
x0 q̄�

0

)
T is referred to as

x(τ, x0, q̄
�
0). Executions χ�(xh,�

0 , 0, N) that satisfy

q̄�(k + p) = q̄�(k)
x�(τ, x̄�(k + p), q̄�(k + p)) = x�(τ, x̄�(k), q̄�(k)) , ∀τ ∈(0, τ̄�(k)]

for all k ≤ N − p are called periodic of order p and are indicated by a star. The
corresponding closed orbit LLC traced out by χ�(xh,�

0 , 0, p) is called the limit
cycle. For notational convenience, let x̄�(q̄�

k) denote the switch point x̄�(k) ∈
LLC, at which the mode q̄�(k) = q̄�

k is activated for the next τ̄�(q̄�
k) time units.

Remark 1. Any periodic execution χ�(xh
0 , 0, p) satisfies

min
τ∈[0, τ̄�(q̄�

k))

∣
∣cT(q̄�

k)
(
x�(τ, x̄�(q̄�

k) , q̄�
k) − x̄�

(
q̄�
k+1

))∣∣ > 0 (7)

for all k = 0 . . . (p−1), since the first intersection of x�(τ, x̄�(q̄�
k) , q̄�

k) and the
planes S (q̄�

k) must occur at x̄�
(
q̄�
k+1

)
. Accordingly, (7) constitute critical con-

straints, if the event function (3) is not given but must be synthesized to enforce
a particular periodic execution.

2.2 Sampled Data Model

Sampling an execution (6) at switching instants yields the sampled execution

χ̄
(
xh

0 , t0, N
)

=
((

x̄(0) q̄(0) t̄(0)
)
T, . . . ,

(
x̄(N) q̄(N) t̄(N)

)
T
)

, (8)

which is obtained by N iterated applications of the system’s embedded map [18].
To synthesize switching planes (4) by means of a model, an analytic expression
of this map’s continuous component

x̄(k+1) = Hx(x̄(k) , q̄(k) , τ̄ (k)) (9)

is needed. Unfortunately, a closed form representation of Hx is only possible for
very simple DCCS. Concerning the vicinity of a stationary periodic execution
χ�(xh,�

0 , 0, p) that transversally intersects with all switching planes, i.e.
∣
∣cT(q̄�

k)f
(
x̄�

(
q̄�
k+1

)
, q̄�

k

)∣∣ > 0, ∀q̄�
k ∈ Q , (10)

Switching Surface Design for Periodically Operated DCCS 475

at least a linear approximation of (9) for q̄(k) = q̄�
k can be obtained as [19]

δx̄(k+1) =
dHx

dx
(x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k)) δx̄(k)

=

(

I −
f

(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
cT(q̄�

k)
cT(q̄�

k)f
(
x̄�

(
q̄�
k+1

)
, q̄�

k

)

)
∂x̄�

(
q̄�
k+1

)

∂x̄�(q̄�
k)

δx̄(k) . (11)

Here, ∂x̄�
(
q̄�
k+1

)
/∂x̄�(q̄�

k) is the fundamental matrix of (2) for q = q̄�
k and

x(0) = x̄�(q̄�
k) at t = τ̄�(q̄�

k). The difference δx̄(k) = x̄(k) − x̄�(q̄�
k) denotes the

sampled deviation of x(t) from the stationary periodic execution. Clearly, the
approximation (11) is only well defined, if the transversality condition (10) holds.

A composition of (9) over a complete cycle QLC yields a first return map

x̄(c+1) = Px(x̄(c) , q̄(c) , τ̄ (c)) = Hx ◦ . . . ◦ Hx(x̄(c) , q̄(c) , τ̄(c)) , (12)

which describes the evolution x̄(c) of the switch points in the switching plane
S (q̄(c)) associated to mode q̄(c+1) = q̄(c). The counter c is used to enumerate
the executed cycles. Similar to (12), the linearized return map

δx̄(c+1) =
dPx

dx
(x̄�(q̄�

0) , q̄�
0 , τ̄�(q̄�

0)) δx̄(c)

=

(
p−1∏

k=0

dHx

dx
(x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k))

)

δx̄(c) (13)

is obtained by composing (11) over a complete cycle QLC, in this case starting at
q̄�
0 . Note that (13) represents a linear autonomous discrete-time periodic system,

which carries information about the local orbital stability of x�(t) [17].

Remark 2. In case of a piecewise constant vector field f(x, q) = b(q), the ex-
pressions (11) and (13) describe Hx and Px exactly [5].

Remark 3. Assuming a transversal intersection of χ�(xh,�
0 , 0, p) with all switch-

ing planes S (q̄�
k), the map Hx is a local C1-diffeomorphism in a neighborhood

of all x̄�(q̄�
k) [19]. As Px results from the composition of Hx over a switching

cycle, it is a local C1-diffeomorphism in a neighborhood of x̄�(q̄�
0) as well.

3 Problem Formulation

Problem 1. Consider a continuous plant (2), a switching logic (5) that cyclically
generates the mode sequence QLC (1) and a predetermined stationary periodic
execution χ�(xh,�

0 , 0, p) starting in xh,�
0 =

(
x̄�(q̄�

0) q̄�
0

)
T. The task considered

in this paper is to find an event function (3) that renders the limit cycle LLC

associated to χ�(xh,�
0 , 0, p) locally orbitally stable [16].

According to Prob. 1, the task is to find switching planes (4) that implicitly
parameterize the activation duration τ̄ (q̄(k) , δx(τ))= τ̄�(q̄(k))+δτ̄(q̄(k) , δx(τ))

476 A. Schild and J. Lunze

in terms of the mode and the deviation δx(τ)=dist(x(τ, x̄(k) , q̄(k)) ,LLC) and
thereby assure local orbital stability of LLC. The latter implies that all multipliers

mi = λi

(
p−1∏

k=0

dHx

dx
(x̄�(q̄�

k) , q̄�
k, τ̄�(q̄�

k))

)

(14)

of the return map’s Jacobian (13) must lie inside the unit circle.

4 Switching Surface Design

4.1 Equivalent Discrete-Time Periodic Linear System

According to (11), the event generator design concentrates on finding vectors
cT(q̄�

k) that ensure orbital stability of LLC. The sequel shows that by solving
a classical linear periodic control problem, a set of feasible vectors cT(q̄�

k) for
k = 1 . . . (p− 1) is obtained, which result in multipliers (14) satisfying |mi| < 1.

In the first step, the denominator of (11) is removed, by which the normals
cT(q̄�

k) enter the linearized return map (13) nonlinearly. This nonlinear depen-
dence vanishes, iff the design procedure generates vectors cT(q̄�

k) that satisfy

cT(q̄�
k)f

(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
= 1, ∀q̄�

k ∈ Q . (15)

The following Lemma translates the constraints (15) into equivalent conditions
that can be explicitly accounted for in the design.

Lemma 1. A vector cT(q̄�
k) satisfies the constraint (15), iff

det
(
I − f

(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
cT(q̄�

k)
)

= 0 . (16)

Proof. The equivalence of (15) and (16) readily follows from the matrix deter-
minant lemma [20], which says that det

(
I − abT

)
= 1 − aTb. ��

With Lemma 1, a key result of the paper follows. Recall that two periodic lin-
ear system Σi = {Ai(k) , bi(k)} , i = 1, 2 are equivalent, if their monodromy
matrices Ψ i(p, 0) =

∏p−1
k=0 Ai(k) are similar.

Theorem 1. The p-periodic linear system Σ = {Ad(k) , bd(k)} given by

ζ(k+1) = Ad(k) ζ(k) + bd(k)u(k) with (17)

Ad(k+p) = Ad(k) = ∂x̄�
(
q̄�
k+2

)
/∂x̄�

(
q̄�
k+1

)
(18)

bd(k+p) = bd(k) = Ad(k)f
(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
(19)

under a p-periodic state feedback

u(k) = −kT(k) ζ(k) with kT(k+p) = kT(k) (20)

is equivalent to the periodic system (13), iff for all k the following is true:

1. α(k) = cT(q̄�
k)f

(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
�= 0 (21)

2. kT(k) = cT(q̄�
k) /α(k) (22)

3. det
(
Ad(k) − bd(k)kT(k)

)
= 0 . (23)

Switching Surface Design for Periodically Operated DCCS 477

Proof. First, define the scaled normal vectors

c̃T(q̄�
k) = cT(q̄�

k) /α(k) , (24)

which is only feasible, if (21) holds. Then applying the periodic equivalence
transformation

δx̄(k) = T (k) ζ(k) , T (k) =
(
∂x̄�

(
q̄�
k+1

)
/∂x̄�(q̄�

k)
)−1

to the linearized return map (13) and considering (11) and (24) yields

ζ(c+1) =
p−1∏

k=0

(
∂x̄�

(
q̄�
k+2

)

∂x̄�
(
q̄�
k+1

) −
∂x̄�

(
q̄�
k+2

)

∂x̄�
(
q̄�
k+1

)f
(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
c̃T(q̄�

k)

)

ζ(c) . (25)

To assure the identity of the loop (17), (20) and (25), Ad(k), bd(k) and kT(k)
must be equal to the expressions (18), (19) and (22). Moreover, the state tran-
sition matrix ∂x̄�

(
q̄�
k+2

)
/∂x̄�

(
q̄�
k+1

)
is regular and c̃T(q̄�

k) f
(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
= 1

holds. Hence, by Lemma 1 the last constraint (23) must be satisfied as well. ��

From (22) it follows that kT(k) and cT(q̄�
k) are colinear vectors, which can be

directly exploited for solving Problem 1.

Theorem 2. By defining the event function (3) as

Φ(x(t) , q̄�
k) = kT(k)

(
x(t) − x̄�

(
q̄�
k+1

))
, (26)

where the periodic state feedback gain kT(k) stabilizes the equivalent periodic
system Σ and (26) satisfies the condition (7), local orbital stability of the limit
cycle LLC is guaranteed.

Proof. Theorem 1 states that the eigenvalues

λp,i (Ψ cl(p, 0)) = λp,i

(
p−1∏

k=0

(
Ad(k) − bd(k)kT(k)

)
)

of the closed-loop monodromy matrix Ψ cl(p, 0) of system (17)–(20) are identical
to the characteristic multipliers mi of (14). Hence, if these eigenvalues satisfy
the condition |λp,i| < 1, then all mi are stable as well. Moreover, the event
function (26) vanishes at all switch points x̄�

(
q̄�
k+1

)
of the limit cycle, which

under the assumption (7) guarantees that any trajectory x(t) starting in a local
neighborhood of LLC actually converges to LLC. The constraints (10) are trivially
satisfied because (15) holds for all q̄�

k. ��

By Theorems 1 and 2, the event generator design amounts to solving a con-
strained pole placement problem for the periodic discrete-time linear system
(17)-(19). For the unconstrained problem, a well developed theory exists. How
to integrate the constraint sets (7) and (23) in the design procedure is explained
in Sect. 4.4. Besides ensuring stability, the equivalence stated in Theorem 1 al-
lows a goal-oriented shaping of the local loop behavior, if the target eigenvalues
λd

p,i are specified appropriately.

478 A. Schild and J. Lunze

4.2 Local Stabilizability along a Limit Cycle

A solution to the control problem only exists if the DCCS is locally stabilizable
along the orbit LLC. A definition of this property on the basis of the concept of
local controllability along a trajectory [21] is given here.

Definition 1. Let Bδ(LLC) = {x : dist(x,LLC) < δ} , δ > 0 define a local
neighborhood of the limit cycle LLC. A state x0 ∈ Bδ(LLC) is locally stabilizable
along the orbit LLC, if there exists an ε > 0, a mode sequence q(t) and a trigger
signal clk(t), such that the following holds:

1. x(t, x0, q(0)) ∈ Bε(LLC) , ∀t > 0
2. lim

t→∞ dist(x(t, x0, q(0)) ,LLC) = 0 .

Definition 2. A periodically operated DCCS is called locally stabilizable along
the orbit LLC, if all states x0 in an open neighborhood Bδ(LLC) , δ > 0 of LLC

are locally stabilizable.

From the results of Theorems 1 and 2 a sufficient condition immediately follows,
which ensures local stabilizability along a limit cycle for a DCCS.

Theorem 3. A periodically operated DCCS (2), (5) is locally stabilizable along
the orbit LLC, if the equivalent system Σ ={Ad(k) , bd(k)} is stabilizable.

Proof. To prove Theorem 3, pick any mode q̄�
k ∈ Q and assume that the equi-

valent periodic system Σ is stabilizable. Then by Theorems 1 and 2, stabilizing
gains kT(k) exists, which translate into stabilizing normal directions cT(q̄�

k). As
the return map P x is a local C1 diffeomorphism, there exists a non-empty in-
variant open region Bγ(x̄�(q̄�

k)) =
{
x | (x − x̄�(q̄�

k))TV (x − x̄�(q̄�
k)) < γ

}
with

V , γ > 0 in the plane S (q̄�
k), for which all trajectories that emanate from

Bγ(x̄�(q̄�
k)) asymptotically converge to the limit cycle. The backward reachable

set of Bγ(x̄�(q̄�
k)) then defines a non-empty neighborhood of stabilizable states

along LLC, from which the values ε > 0 and δ > 0 can be extracted (Fig. 2). Now,
for all x0 ∈ Bδ(LLC) the event generator equipped with the event function (26)
generates a trigger signal clk(t), such that x(t, x0, q(0)) converges towards LLC.
Therefore, stabilizability of Σ is sufficient for the local stabilizability of the un-
derlying DCCS along LLC. ��

� �
�
()LC

� �
�
()LC

� �
�
()LC

�LC

Fig. 2. Limit cycle LLC, backward reachable set of Bγ(LLC) and neighborhoods
Bδ(LLC), Bε(LLC) defining the region of locally stabilizable states

Switching Surface Design for Periodically Operated DCCS 479

Stabilizability of periodic systems is defined in [22] and can be checked numeri-
cally as described in [23].

4.3 Local Effectivity of Operation Modes

Regarding the design task, it is crucial to identify all effective mode transitions,
which can be employed for altering the continuous evolution.

Definition 3. A mode q̄�
k ∈ Q of a periodically operated DCCS is called locally

effective with respect to the limit cycle LLC, if it is deactivated upon a controlled
switching and a perturbation of τ̄�(q̄�

k) affects the future run of x(t).

All modes q̄�
k, which do not meet these two properties, are called ineffective.

Modes that are deactivated by an autonomous switching are ineffective, since
the corresponding switching conditions must not be altered in the design process.
As a result of the above, the periodic sequence QLC = Qeff,1

LC Qineff,1
LC . . . Qeff,j

LC can
be decomposed into effective and ineffective subsequences.

Proposition 1. A mode q̄�
k is locally effective, if it is deactivated by a controlled

switching and the mode transition causes a discontinuity in the vector field:

f
(
x̄�

(
q̄�
k+1

)
, q̄�

k

)
�= f

(
x̄�

(
q̄�
k+1

)
, q̄�

k+1

)
. (27)

Proof. While the first part of the proposition is clear, the last part can be proved
by contradiction. Assume that (27) is violated. Then, concatenating the lin-
earized embedded map (11) over two consecutively activated modes q̄�

k and q̄�
k+1

yields the expression

δx̄(k+2) =

(

I −
f

(
x̄�

(
q̄�
k+2

)
, q̄�

k+1

)
cT

(
q̄�
k+1

)

cT
(
q̄�
k+1

)
f

(
x̄�

(
q̄�
k+2

)
, q̄�

k+1

)

)
∂x̄�

(
q̄�
k+2

)

∂x̄�
(
q̄�
k+1

)
∂x̄�

(
q̄�
k+1

)

∂x̄�(q̄�
k)

δx̄(k)

and reveals that δx̄(k+2) is independent of cT(q̄�
k). Therefore, the mode q̄�

k is
ineffective with respect to the control task. ��

Identifying all ineffective modes prior to performing the design is crucial, as
ineffective modes lead to infeasible design results, which include switching planes
that violate assumption (10). To reduce computational effort, locally ineffective
subsequences Qineff,j

LC may be condensed into single modes.

4.4 Design Algorithm

Design procedure for QLC = Qeff ,1
LC . With the results of Theorems 1 and 2,

an event function that guarantees the loop properties specified in Sect. 3 can be
obtained as follows:

Algorithm 1. Determination of a stabilizing event function.

Given: a DCCS (2), (5) and an admissible sampled periodic execution
χ̄�(xh

0 , 0, p) evolving on the limit cycle LLC to be stabilized.

480 A. Schild and J. Lunze

1. Compute the periodic matrices Ad(k) , bd(k) according to (18), (19).
2. Verify stabilizability of the equivalent periodic system Σ = {Ad(k) , bd(k)}.
3. Apply periodic pole placement [24] to obtain a periodic feedback gain kT(k)

that simultaneously satisfies the conditions (23) and places the eigenvalues
at desired locations md

i in the complex plane.
4. According to (26), set the event function coefficients to cT(q̄�

k) =
kT(k) /‖kT(k) ‖ and compute d(q̄�

k) = cT(q) x̄�
(
q̄�
k+1

)
.

5. Verify the constraints (7), otherwise introduce additional ”counter modes”.

Result: Event generator (3), that guarantees local orbital stability of the limit
cycle LLC and enforces a desired local transient behavior.

The scaling of the normal vectors in Step 4 is admissible, because the Jacobian
dPx/dt is independent of the length of cT(q̄�

k). If stabilizability of (17) is given,
the existences of a periodic state feedback kT(k) that stabilizes the equivalent
periodic system is assured for the unconstrained control problem. How to cope
with the constraints introduced earlier is explained next.

Handling Constraints (23). To explicitly account for the constraints (23) in
the design procedure is easy. These conditions only reduce the space of admissible
multipliers md

i by one or more dimensions, but a stabilizing solution always
exists. The number of multipliers, which must be placed at the origin, depends
on the structure of the system (17). It is in general enough to place just one mi

at zero, while the remaining ones can be freely assigned in order to shape the
transient loop behavior as desired.

Handling Constraints (7). Constraints of type (7) are accounted for after the
pole assignment. Assume, that Step 5 of Algorithm 1 identifies a mode q̄�

k, for
which (7) is violated. Then, there exist one or more additional intersections of
x�(τ, x̄�(q̄�

k) , q̄�
k) with S (q̄�

k) in the time interval [0, τ̄�(q̄�
k)). Since the periodic

execution χ̄�(xh
0 , 0, p) requires all mode transitions q̄�

k → q̄�
k+1 to exactly occur

at τ̄�(q̄�
k), the cyclic mode sequence QLC must be extended by auxiliary counter

modes q̄�
k,j (Fig. 3). These counter modes are inserted in between q̄�

k and q̄�
k+1

and keep track of the number of previous intersections of x(t) and S (q̄�
k). They

x2

x1

x
* *()q

k

_ _

x
* *()q

k,1

_ _

x
* *()q

k+1

_ _

�()q
k -1
*

_
q

k
*

_

q
k
*

_
q

k,1
*

_

q
k+1
*

_

q
k+1
*

_

� �()= ()q q
k k,
* *

1

_ _

Fig. 3. Introduction of a counter mode into the cyclic mode sequence, due to violation
of the constraint (7)

Switching Surface Design for Periodically Operated DCCS 481

are associated to the same continuous dynamics f(x, q̄�
k,j) = f(x, q̄�

k) as q̄�
k and

require to augment the event function (3) by

Φ
(
x, q̄�

k,j

)
= cT(q̄�

k) x − d(q̄�
k) + ε(−1)j , ε � d(q̄�

k) .

Design in the Presence of Ineffective Modes. If a subset of modes is locally
ineffective, Algorithm 1 is still applicable. In this case, the system matrices (18)
and (19) of all ineffective modes become

Ad(k+p) = Ad(k) = ∂x̄�
(
q̄�
k+2

)
/∂x̄�

(
q̄�
k+1

) (
I−f

(
q̄�
k, x̄�

(
q̄�
k+1

))
cT
0 (q̄�

k)
)

bd(k+p) = bd(k) = 0 .

In this expression, cT
0 (q̄�

k) represents a nominal normal that satisfies the condi-
tion cT

0 (q̄�
k)f

(
q̄�
k, x̄�

(
q̄�
k+1

))
= 1. Its orientation is either determined from the

associated autonomous switching condition or it must be properly chosen, in
case q̄�

k is ineffective, because it violates (27).

5 Experimental Validation

To compare the performance of the novel design approach with earlier results
from [16], the new method was successfully applied to the same 2-Tank system
consisting of two coupled tanks and a controllable number of inlets and outlets
(Fig. 4(a)). For the design, the linear 2-Tank model, its parameters and the
desired stationary limit cycle listed in [16] are adopted here again. At stationary
operation, the plant recurrently executed the mode sequence QLC = (1234). For
this sequence, the matrices (18), (19) of the equivalent periodic system Σ are

Ad(1) =
(

0.5572 0
0.3544 0.6575

)
, Ad(2) =

(
0.6421 0
0.2693 0.5747

)
,

Ad(3) =
(

0.6534 0
0.2637 0.5874

)
, Ad(4) =

(
0.8004 0
0.1839 0.8525

)
,

bd(1) =
(
−0.001007 −9.117e− 005

)
T , bd(2) =

(
0.0009182 0.001224

)
T ,

bd(3) =
(
0.0006 −0.0001484

)
T , bd(4) =

(
−0.001808 −0.001525

)
T .

Since Σ turns out to be stabilizable, the underlying DCCS is locally stabilizable
along LLC. It shows that all multipliers mi can be arbitrarily assigned by only
using one of the four available feedback gains kT(k). The large surplus of design
parameters is exploited here to maximize the local convergence rate and obtain
a dead-beat behavior. Therefore, all desired eigenvalues λd

i are set to zero.
The event function coefficients resulting from the application of Algorithm 1

are listed in Tab. 1. They define the switching planes depicted in Figure 4(b)
(dashed black lines). The diamonds indicate the switch points x̄(k) of the de-
picted execution. Note that all switching planes touch the simulated limit cycle
LLC tangentially (thick grey dashed line), which is a characteristic feature of
a dead-beat switching law. For reasons of comparison, the additional thin grey

482 A. Schild and J. Lunze

Table 1. Event function parameters derived from the model-based design procedure.
These parameters maximize the convergence rate towards LLC.

q 1 2 3 4

cT(q)
�−0.3096 0.9509

�
T

�
0.7875 0.6163

�
T

�
0.1889 −0.9820

�
T

�−0.5449 −0.8385
�
T

d(q) 0.005 0.0286 0.0266 0.0058

h2,max

h2,minh2

u2V2

m21m20

min

m12

h1,max

h1,min

h1

u1

Tank 1 Tank 2

(a) (b)

Fig. 4. 2-Tank system: (a) experimental setup, (b) switching surfaces resulting in local
dead-beat behavior

dashed lines illustrate the paraxial switching planes of the heuristic switching
policy explained in [16].

Figure 5 presents a series of state space plots showing experimental data
obtained at the laboratory system. They disclose the strong influence of distur-
bances and model uncertainties, which cause orbital instability when applying
the heuristic switching policy. Under the model-based strategy, however, stabil-
ity is preserved. The experiment was conducted as follows: At runtime, the event
function coefficients cT(q̄�

k) , d(q̄�
k) were toggled every 1000 seconds between the

values listed in Tab. 1 and the values implementing the paraxial planes of the
heuristic switching policy. Afterwards, the observed behavior was plotted in a
separate figure for each switching policy. For example, the data acquired in the
first interval [0s, 1000s] until the substitution of the switching strategy, is plotted
in the top-left subplot. Likewise, the behavior observed in the second interval
[1000s, 2000s] associated to the heuristic policy is plotted in the top-middle sub-
plot and so on.

As can be concluded from every other subplot, the heuristic switching policy
does not succeed in stabilizing LLC, while the model-based switching policy
generates the expected, fast decaying transient loop behavior. The latter is best
verified from the subplot ”bottom-middle”, where the transition onto the limit
cycle is finished two switchings after toggling the switching policy. Indeed, the
desired periodic operation is preserved even under the influence of considerable
disturbances, which is crucial in practical applications.

Switching Surface Design for Periodically Operated DCCS 483

Fig. 5. State space snapshots showing experimental data obtained at the laboratory
2-Tank system. For comparison, the event-generator was toggled between a heuristic
and a model-based event-driven policy.

6 Conclusion

The main contribution of this paper is a novel model-based design methodology
for the event generator of a periodically operated discretely controlled conti-
nuous system. The approach applies to systems of arbitrary state dimension
and imposes no restrictions on the number of operation modes. It allows for
a goal-oriented shaping of the system’s local behavior, in particular to achieve
local orbital stability and a fast transient response. Compared to earlier control
concepts, the resulting controller issues its actions instantaneously instead of
postponing them to the next switching. Thus, the implemented switching strat-
egy guarantees the best possible local loop behavior in the presence of distur-
bances. As a core feature, the proposed design procedure exploits an equivalence
between the original design problem and a classical periodic linear control prob-
lem. Based on this idea, the local stabilizability of the DCCS can be investigated.
Furthermore, the design is simplified through the application of well known pole
placement algorithms for periodic systems.

Future research directions focus on ways for exploiting excessive degrees of
freedom to maximize the region of attraction of the stabilized cycle and on

484 A. Schild and J. Lunze

concepts for the dynamic adjustment of the switching planes to enable set-point
transitions and to compensate for varying parameters. Concerning the method’s
practical application, it is necessary develop approaches for the design of output-
dependent switching laws.

Acknowledgments. This research was supported by the DFG grant LU
462 |21.

References

1. di Bernardo, M., Budd, C., Champneys, A., Kowalczyk, P., Nordmark, A., Olivar,
G., Piiroinen, P.: Bifurcations in nonsmooth dynamical systems. Technical report,
Bristol Centre for Applied Nonlinear Mathematics (2005)

2. Flieller, D., Riedinger, P., Louis, J.: Computation and stability of limit cycles in
hybrid systems. Nonlinear Analysis 64, 352–367 (2006)

3. Goncalves, J.: Constructive Global Analysis of Hybrid Systems. PhD thesis, Mas-
sachusetts Institute of Technology, Pennsylvania, USA (2000)

4. Hiskens, I.A.: Stability of limit cycles in hybrid systems. In: Proc. of the 34th IEEE
Hawaii Int. Conf. on System Sciences, Hawaii (2001)

5. Matveev, A., Savkin, A.: Qualitative Theory of Hybrid Dynamical Systems.
Birkhauser, Basel (2000)

6. Nordmark, A.: Discontinuity mappings for vector fields with higher order continu-
ity. Dynamical Systems: An International Journal 17(4), 359–376 (2002)

7. Rubensson, M., Lennartson, B., Pettersson, S.: Convergence to limit cycles in hy-
brid systems: An example. In: Proc. IFAC-LSS 1998, Rio Patras, pp. 704–709
(1999)

8. Boccadoro, M., Wardi, Y., Egerstedt, M., Verriest, E.: Optimal control of switching
surfaces in hybrid systems. Discrete Event Dynamic Systems 15(4), 433–448 (2005)

9. Egerstedt, M., Wardi, Y., Axelsson, H.: Transition-time optimization for switched-
mode dynamical systems. IEEE Trans. Autom. Control 51, 110–115 (2006)

10. Axelsson, H., Boccadoro, M., Wardi, Y., Egerstedt, M.: Optimal mode-switching
for hybrid systems with unknown initial state. In: Proceedings of the 2nd IFAC
Conf. on Analysis and Design of Hybrid Systems, Alghero, Alghero, pp. 95–100
(2006)

11. Boccadoro, M., Valigi, P., Wardi, Y.: A method for the design of optimal switching
surfaces for autonomous hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo,
G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 650–655. Springer, Heidelberg (2007)

12. Buisson, J., Richard, P.Y., Comerais, H.: On the stabilisation of switching electrical
power converters. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414,
pp. 185–197. Springer, Heidelberg (2005)

13. Sanders, R., Verghese, G.: Lyapunov-based control for switched power converters.
IEEE Transactions on Power Electronics 7, 17–23 (1992)

14. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Physical Review Letters 64(11),
1196–1199 (1990)

15. Dankowicz, H., Piiroinen, P.: Exploiting discontinuities for stabilization of recur-
rent motions. Dynamical Systems 17(4), 317–342 (2002)

16. Schild, A., Lunze, J.: Stabilization of limit cycles of discretely controlled continuous
systems by controlling switching surfaces. In: Bemporad, A., Bicchi, A., Buttazzo,
G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 515–528. Springer, Heidelberg (2007)

Switching Surface Design for Periodically Operated DCCS 485

17. Krupar, J., Schild, A., Schwarz, W., Lunze, J.: Modeling and analysis of a class of
hybrid systems by return maps. In: Proc. of NOLTA, Bologna, pp. 59–62 (2006)

18. Krupar, J., Lunze, J., Schwarz, W., Schild, A.: Modelling and analysis of discretely
controlled continuous systems by means of embedded maps. IEICE Trans. on Fun-
damentals of Electronics, Communication and Computer Science 89, 2697–2705
(2006)

19. Chua, L.O., Parker, T.S.: Practical Numerical Algorithms for Chaotic Systems.
Springer, Heidelberg (1989)

20. Bernstein, D.: Matrix Mathematics. Princeton University Press, Princeton (2007)
21. Sontag, E.D.: Mathematical Control Theory. Springer, Heidelberg (1991)
22. Bittanti, S., Bolzern, P.: Stabilizability and detectability of linear periodic systems.

Syst. Control Lett. 6(2), 141–146 (1985)
23. Sreedhar, J., Dooren, P.V.: An orthogonal method for the controllable subspace of

a periodic system. In: Proc. Conf. on Inf. Sciences & Systems, Baltimore (1993)
24. Sreedhar, J., Dooren, P.V.: Pole placement via the periodic schur decomposition.

In: Proc. American Control Conference, San Fransisco (1993)

Discrete Dynamics of Two-Dimensional

Nonlinear Hybrid Automata

Lorenzo Sella and Pieter Collins

Centrum voor Wiskunde en Informatica,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

{Lorenzo.Sella,Pieter.Collins}@cwi.nl

Abstract. In this paper, we develop an algorithm to compute under-
and over-approximations to the discrete dynamics of a hybrid au-
tomaton. We represent the approximations to the dynamics as sofic
shifts, which can be generated by a discrete automaton. We restrict
to two-dimensional systems, since these give rise to one-dimensional
return maps, which are significantly easier to study. Given generic
non-degeneracy conditions, the under- and over-approximations com-
puted by our algorithm converge to the discrete dynamics of the hybrid
automaton. We apply the algorithms to two simple nonlinear hybrid
systems, an affine switching system with hysteresis, and the singularly
forced van der Pol oscillator.

Keywords: hybrid automata, symbolic dynamics, interval computation,
van der Pol equation.

1 Introduction

Hybrid automata are dynamic systems which combine both discrete and contin-
uous behaviour. Hybrid automata are frequently used to modelling systems in
which dynamics occurs on different time scales, such as a slow-moving physical
object controlled using a fast-switching digital controller. In many cases, the
exact details of the continuous dynamics is relatively unimportant, and only the
qualitative behaviour given by the discrete dynamics is of interest. It is there-
fore of interest to have numerical methods for computing approximations to the
discrete dynamics of a hybrid automaton.

Existing work on finding discrete abstractions to hybrid automata has mostly
focused on bisimulation by discrete automata [1]. However, since the class of
systems admitting nontrivial finite bisimulations is highly restricted (generali-
sations of timed automata), this approach can only be used for simple classes
of system. More complex classes of systems can only be studied by comput-
ing discrete abstractions which either simulate, or are simulated by, the exact
discrete dynamics of the hybrid automaton. Sequences of discrete abstractions
simulating the hybrid automaton were constructed in [2] for polynomial hybrid
automata using first-order logic over the reals. Discrete abstractions simulating
the hybrid automaton based on quantising the state space were given by [3] and

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 486–499, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata 487

used for reachability analysis, and by [4] and used for supervisory control. Two-
dimensional hybrid systems have been studied in [5], and the singular limit of
the van der Pol oscillator was studied in [6,7].

In this paper, we present a method for computing both over- and under ap-
proximations to the discrete dynamics. In the language of symbolic dynamics,
we construct sofic shifts over- and under approximating the exact shift of the
hybrid automaton. In the language of transition systems, we construct discrete
automata simulating of the hybrid automaton, and discrete automata simulated
by the hybrid automaton. Our method is generically optimal in the sense that
under certain nondegeneracy conditions the shift maps obtained converge to the
exact discrete dynamics as the accuracy in increased. In the current work, we
concentrate on two-dimensional hybrid systems, since these can be reduced to
one-dimensional return maps which are easier to analyse.

The results of this paper extend the validity of existing methods by con-
structing under-approximations as well as over-approximations to the discrete
dynamics, by applying to general nonlinear systems, and by being convergent
for generic systems.

The paper is organised as follows. In Section 2, we give technical preliminaries
on hybrid systems, shift spaces symbolic dynamics and interval methods which
we need later. In Section 3, we present algorithms for computing over- and
under-approximations to the symbolic dynamics and prove their convergence.
In Section 4 we demonstrate the effectiveness of the method by computing the
discrete dynamics of an affine switching hybrid automaton and the singular limit
of the Van Der Pol oscillator. Finally, in Section 5 we give some conclusions and
suggestions for further research.

The main mathematical techniques used in this article include interval anal-
ysis and validated solution of differential equations, one-dimensional dynamical
systems and symbolic dynamics. Good references to these topics are include the
books [8,9,10,11,12,13].

2 Theoretical Preliminaries

We now introduce the basic definitions, terminology and results on hybrid au-
tomata, symbolic dynamics and interval analysis which we will need. Through-
out, we write f :⊂ X → Y to denote a function from a subset of X to Y , and
f : X ⇒ Y to denote a multivalued function from X to Y .

2.1 Hybrid Automata

A hybrid automaton is a dynamic system in which continuous-time evolution is
interspersed with discrete jumps.

Definition 1 (Hybrid Automaton). A hybrid automaton is a tuple H =
(Q, E, X, G, φ, r) where Q is a finite set of modes, E is a finite set of events,
X =

⊔{Xq | q ∈ Q} is the state space, G =
⋃{Ge ⊂ X | e ∈ E} is the guard

set, φ :⊂ X × R → X is the continuous dynamic, and r :⊂ G × E → X is the

488 L. Sella and P. Collins

reset map. We write re : Ge → X for the reset map corresponding to event e.
Typically, φq is defined by a differential equation ẋ = χq(x) for x ∈ Xq.

An execution of a hybrid automaton is an alternating sequence of continuous
and discrete transitions:

ξ : x0

φt0−→ y0

re0−→ x1

φt1−→ y1

re1−→ x2 · · · (1)

Often the quantitative behaviour of a hybrid automaton is unimportant, and
only the qualitative behaviour given by the sequence of discrete locations visited
and the sequence of discrete events which occur.

Definition 2 (Discrete Dynamics). The discrete dynamics of a hybrid au-
tomaton H is the set of all transition sequences

q0
e0−→ q1

e1−→ q2 · · · (2)

such that there exists an execution ξ given by (1) with yi ∈ Xqi for all i.

In order to compute the discrete dynamics we need only look at the state just
before each transition, giving rise to the return map.

Definition 3 (Return Map). The return map f of a hybrid automaton H is
the transition system f :⊂ G × E ⇒ G with fe :⊂ Ge ⇒ G given by

fe(x) := {y ∈ G | ∃ t ∈ R
+ s.t. y = φt(re(x))}. (3)

In other words, fe is defined by the transitions φt ◦ re, where the continuous
evolution φt proceeds until the state enters a guard set.

If we ignore the discrete-event labels, the return map is a dynamical system
f :⊂ G ⇒ G defined by

f(x) := {y ∈ G | ∃ e ∈ E, t ∈ R
+ s.t. y = φt(re(x))}. (4)

Note that the return map need not be everywhere defined since a point need not
have any further discrete transitions. As shown in Figure 1, the return map may
also be discontinuous and multivalued if the initial state starts on the boundary
of two guard sets (a) or the continuous evolution grazes the guard set and returns
to the interior of the state set X before later hitting the guard set (b).

Typically, the return map is piecewise-continuous on the guard set. We there-
fore need to develop an algorithm for computing discrete dynamics for piecewise-
continuous maps.

2.2 Shift Spaces and Finite Automata

If A is a finite alphabet of symbols, recall that the sequence space Aω is compact
under the product topology defined by the metric d(�s,�t) = 2−m where m =
min{n ∈ N | sn �= tn}. In other words, two sequences are “close” if they agree
on a long initial subword.

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata 489

Xq1

re1

Xq2

re2

φ

φ

(a) (b)

Xq0

x

φt2(x)
φt1(x)

y re

Fig. 1. Discontinuities of the return map. (a) Discontinuity at the boundary of a guard
set. (b) Discontinuity caused by tangential contact with a guard set.

Definition 4 (Shifts). Let A be a finite alphabet. The shift map σ on sequences
Aω is defined by (σ�s)i = si+1 for i ∈ N. A shift space on A is a compact subset
Σ of Aω which is invariant under σ. A shift is the restriction of the shift map
σ to a shift space Σ.

A shift σ|Σ is a subshift of σ|
�Σ if Σ ⊂ Σ̂. Since shift spaces are compact subsets of

a metric space, we can measure the difference between two shift spaces using the
Hausdorff distance. If Σ ⊂ Σ̂, an alternative measure of the difference between
Σ and Σ̂ is the difference in the topological entropies of σ|Σ and σ|

�Σ .
A shift is sofic if it is generated by a finite automaton (as the sequence. Since

the set of sofic shifts is dense in the space of all shifts on an alphabet A, sofic
shifts are a convenient way of approximating arbitrary shifts.

2.3 Symbolic Dynamics of Piecewise-Continuous Maps

Symbolic dynamics is a powerful tool to analyse discrete-time dynamical systems.
The basic idea is to compute the itineraries of orbits in terms of the regions of
state space. The main complicating factor is that there is no nontrivial partition
of a connected space M into compact pieces, so we instead use open sets whose
closures cover the space.

Definition 5 (Topological Partition). A topological partition of a space M
is a finite collection P = {P1, P2, ..., Pn} of mutually disjoint open sets such that
M =

⋃n
i=1 P i. The boundary points of P are elements of ∂P :=

⋃
P∈P ∂P .

Given topological partitions P and Q, we say that P is a refinement of Q if
for all P ∈ P, there exists Q ∈ Q such that P ⊂ Q. The join of P and Q is
defined by P ∨Q = {P ∩ Q | P ∈ P , Q ∈ Q and P ∩ Q �= ∅}.
We shall consider piecewise-continuous functions defined as follows:

Definition 6 (Piecewise-Continuous Map). Let P be a topological partition
of M . A function f : M → M is P-continuous if for all P ∈ P, f |P is continuous
and extends to a continuous function over P . system

We define f◦
P = f |P , f̄P to be the continuous extension of f |P to P , f◦ :⊂

X → X by f◦(x) =
⋃

P∈P f◦
p (x) and f̄ =

⋃
P∈P f̄p(x).

490 L. Sella and P. Collins

We can use a topological partition to define an encoding of sequences in the
space M .

Definition 7 (Itinerary). Let Q = {Qs | s ∈ S} be a topological partition of
M , and �x = (xi)i∈N a sequence in M . A sequence �s is a Q-itinerary of �x if
xi ∈ Qsi for all i ∈ N, and a Q-itinerary of �x if xi ∈ Qsi

for all i ∈ N.

Given a topological partition, we can define the symbolic dynamics of a
piecewise-continuous function f .

Definition 8 (Symbolic Dynamics). Let Q = {Qs | s ∈ S} be a topological
partition, P a refinement of Q, and f : M → M a P-continuous function.

– The lower symbolic dynamics Σ(f) of f is the closure of the set of all Q-
itineraries of orbits of f◦.

– The upper symbolic dynamics Σ(f) of f is the closure of the set of all
Q-itineraries of orbits of f̄ .

The lower symbolic dynamics is a subshift of the upper symbolic dynamics. Intu-
itively, the lower symbolic dynamics consists of itineraries which are “robustly”
present, and the upper symbolic dynamics excludes those itineraries which are
“robustly” absent.

In order to prove that an itinerary �s is not part of the upper shift, we use the
following trivial result, which is valid in any dimension.

Proposition 1. If there is an orbit �x of f̄ such that xi ∈ Psi for all i, then
f̄(Psi) ∩ Psi+1 �= ∅ for all i.

Symbolic dynamics for one-dimensional maps is substantially easier than in
higher dimensions. The partition elements P are intervals, so can easily be rep-
resented by their boundary points. The symbolic dynamics can be computed
using the kneading theory of [14] or by the following result.

Theorem 1. Suppose (R0, R1, . . .) is a sequence of compact intervals such that
f is continuous on each Ri and f(Ri) ⊃ Ri+1 for all i. Then there is an orbit
(x0, x1, . . .) of f such that xi ∈ Ri for all i.

For general piecewise-continuous functions, the lower symbolic dynamics may
differ considerably from the upper symbolic dynamics. Under certain conditions,
the lower symbolic dynamics Σ(f) and the upper symbolic dynamics Σ(f) co-
incide.

Theorem 2. let Q be a partition of M , let P be a refinement of Q, and let
f be a P-continuous map satisfying assumptions (A1-2) below. Then the lower
symbolic dynamics Σ(f) equals the upper symbolic dynamics Σ(f).

A1. The image under f◦ of every open subset of M contains an open set.
A2. The forward orbits of all boundary points of Q, all discontinuity points of

f , and all critical points of f are disjoint from the boundary points of Q.

Assumption A1 is valid for any non-constant analytic map, and assumption A2
is valid for generic continuous functions.

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata 491

2.4 Interval Arithmetic

Since we typically cannot compute the return map of a hybrid system exactly,
we resort to numerical approximation. In order to ensure that we can obtain
rigorous conclusions from approximate numerics, we compute error bounds for
all quantities. Hence a numerical approximation to a real number x is represented
by an interval �x = [x, x] such that x < x < x.

If f is a continuous function, then an interval extension [f] of f is a function
from intervals to intervals such that:

1. if x ∈ �x, then f(x) ∈ [f](�x),
2. if �x2 ⊂ �x1, then [f](�x2) ⊂ �x1, and
3. if �y is any interval containing y = f(x) in its interior, then there exists an

interval �x containing x such that [f](�x) ⊂ �y.
When computing an interval extension of f in practice, we set an a-priori nu-
merical precision ε, and perform all computations to that precision. If the results
are not sufficiently accurate, then we increase the precision and repeat the com-
putations.

If f is n-times differentiable, we also assume that an interval extension is
available for derivatives f (i)(x) for i = 1, . . . , n. If f is piecewise-continuous,
then an interval extension to f consists of:
1. interval approximations �di to the discontinuity points d, and
2. an interval extension of f̄P over all continuous branches P .

If [x, x] is an interval containing x, and �y and �z are intervals such that
[f](�y) < x and [f](�z) > x, then there is a point w in �w = [y, z] such
that f(w) = x. By using a modified version of the bisection algorithm, we can
therefore compute preimages of points under f . We have the following result.

Lemma 1. If f is strictly monotone on an interval P , then it is possible to
compute an interval extension of (f |P)−1 from an interval extension of f .

3 Algorithms for Computing the Discrete Dynamics

In this section we present a numerical algorithm for computing the discrete dy-
namics of a two-dimensional hybrid automaton with one-dimensional guard sets,
under assumptions which ensure that the return map is piecewise-continuous.
We first briefly outline how to rigorously compute the return map and its deriva-
tives arbitrarily accurately. We describe the algorithms to compute the symbolic
dynamics of the return map, and finally state some convergence results.

3.1 Numerical Computation of the Return Map

We now outline the numerical procedure to compute approximations to the
return map. We consider hybrid automata such that:

B1. The state space X is a two-dimensional manifold with piecewise-
differentiable boundary, and the guard set G is a subset of ∂X .

492 L. Sella and P. Collins

B2. The reset maps re are differentiable on their domains Ge.
B3. The continuous dynamics φ is given by a Lipschitz differential equation

ẋ = χ(x).

We will also need a mild regularity assumption on the crossings of the continuous
dynamics with the guard set. The following condition is sufficient:

B4. Whenever the continuous evolution ξ(t) hits the guard set G, it either
crosses G transversely, or touches G at a corner point or a quadratic tan-
gency and continuous within X .

Under the assumptions (B1 − 4), the return map is piecewise-differentiable,
though may not be everywhere defined on G. Locally, we can represent the
guard set G as {x ∈ X | g(x) = 0} for some differentiable function g. The
return map is then given by y = f(x) = φt(r(x)) under the constraint g(y) = 0.
Using a rigorous high order integration scheme, such as Lohner’s method or
Taylor methods [15,16,17],it is possible to compute f(x) and f ′(x) to arbitrary
accuracy away from corners of the guard set and grazing points of the flow.

We obtain a numerical discretisation of the return map f in terms of interval
arithmetic. More specifically:

Theorem 3. Let H be a hybrid system satisfying hypotheses (B1-4). Let f be
the return map of H. Then it is possible to compute an interval extension of f
and its derivative f ′.

In the subsequent analysis, we shall only use information about the numerically-
computable interval extension [f], and not assume that we have an analytic
description of the map itself.

3.2 Computing the Discrete Dynamics

In this section we show how to compute the symbolic dynamics of a map f
which is piecewise continuous on branches C relative to a partition Q. The basic
strategy is outlined in the following procedure:

Algorithm 4. Let Q be a partition of X, E be a topological partition of X and
f be a piecewise-continuous function with nondegenerate critical points.

1. Fix a numerical precision ε and a maximum number of steps n.
2. Compute an approximate topological partition C refining Q and E such that

f is continuous on each piece of C
3. Refine the partition C to obtain an approximate topological partition M such

that f is monotone on each partition element.
4. Refine the partition M by repeating the one of the following partitioning

strategies at most n times to obtain a partition R.
– Forward refinement: Refine a partition P by introducing new partition

boundary points at f(p) for boundary points p ∈ ∂P.
– Backward refinement: Refine a a partition P by introducing new partition

boundary points at f−1(p) for p ∈ ∂P

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata 493

In either strategy, do not introduce any new points �y which overlap existing
boundary points �p.

5. For each pair R, R′ ∈ R, compute whether f̄(R) ∩ R
′ �= ∅, f(R) ⊃ R′ or

f(R) ⊂ R′.
6. Define the under-approximation Λ = Λε,n and the over-approximation Υ =

Υε,n to the symbolic dynamics to consist of all sequences (Q0, Q1, . . .) for
which there exists (R0, R1, . . .) ∈ Rω with Ri ⊂ Qi and

Λ: ∃ k ∈ N ∪ {∞} s.t. f(Ri) ⊃ Ri+1 ∀i < k, and f(Ri) ⊂ Ri+1 ∀i ≥ k.
Υ : f̄(R) ∩ R

′ �= ∅ ∀i ∈ N.

The data type representing a boundary point p of a partition P has two fields, a
value field which is an interval approximation �p to p, and a image field which is
a reference or pointer to the object representing f(p). If p is a discontinuity point,
then we store two image points, namely the image of p under both branches of
f̄ at p.

To compute the critical points, we need information on the derivative f . A
point c is a critical point if f ′(c) = 0, and the zeros of f ′ can easily be computed
to arbitrary accuracy by a bisection strategy.

In certain degenerate cases, we may not be able to distinguish two disconti-
nuity points of f , or a discontinuity point and a critical point. Although it is
possible to handle these cases in a consistent way, in this paper we assume for
simplicity that these cases do not arise.

The forward refinement of a partition P can be easily computed, since we
need simply compute the images of all boundary points of P . The boundary
points of the backward refinement of P can be computed using Lemma 1. The
main advantage of the forward refinement strategy are that better results can
usually be obtained with fewer partition points, but convergence to the symbolic
dynamics using forward refinement need not be monotone.

If P is a partition with monotone branches, then the n-step backward re-
finement of P consists of sets Pi0,i1,...,in−1 defined recursively by Pi0 ∈ P
and Pi0,i1,...,in−1 = Pi0 ∩ f−1(Pi1,...,in−1). For any x ∈ Pi0,i1,...,in−1 , we have
fk(x) ∈ Pik

, so each partition element of an n-step backward refinement of P
determines the first n elements of a P-itinerary.

In order to determine whether f(R) ⊃ R′ or f̄(R) is disjoint from R
′
, we

need to know the relative ordering of the boundary points i.e. whether ri < rj ,
ri = rj or ri > rj , and the image point rk of ri under f . As long as the interval
approximations to the boundary points do not overlap, we can determine the
relative ordering. Further, since when refining we compute each �ri+1 as an
image or preimage of some pi ∈ �ri, we have exact information about the
images by construction.

3.3 Convergence to the Discrete Dynamics

We now describe how the sofic shifts computed by Algorithm 4 approximate the
symbolic dynamics of f , and give sufficient conditions under which the approx-
imations converge.

494 L. Sella and P. Collins

Theorem 5. Let Λ and Υ be the shifts obtained by Algorithm 4. Then Λ is a
subshift of Σ(f) and Σ(f) is a subshift of Υ .

The following result shows that if the upper symbolic dynamics and the lower
symbolic dynamics are equal, then the algorithm converges.

Theorem 6. Suppose f is a piecewise-continuous map satisfying assumptions
(A1-2). Then the under- and over-approximations Λε,n and Υε,n to the discrete
dynamics computed by Algorithm 4 using backwards refinement converge to the
symbolic dynamics of f as the accuracy 1/ε and maximum number of steps n
increase.

The proof is technical and will be published elsewhere. The main observation is
that under condition A2, there is essentially no difference between an algorithm
using interval arithmetic, and an algorithm using exact values. Under weaker
assumptions, it is possible to prove that lower approximations Λε,n and upper
approximations Υε,n converge to the lower shift Σ and the upper shift Σ.

3.4 Representing the Symbolic Dynamics by Discrete Automata

We can represent the discrete dynamics of the hybrid automaton by a discrete
automaton whose states are the elements of R, with two types of arrows. We
draw a solid arrow R → R′ if f(R) ⊃ R, and a dashed arrow R−→R′ if
merely f̄(R) ∩ R

′ �= ∅. Further, if there is a sequence (Rs0 , Rs0 , . . .) such that
f(Rsi) ⊂ Rsi+1 for all i, then we replace all dashed arrows Rsi−→Rsi+1 with
solid arrows Rsi → Rsi+1 . The shift Γ is generated by the solid arrows, and Υ
is generated by both dashed and solid arrows.

We can label an arrow starting in R with the event e if R ⊂ Ge. If �s is a
sequence of symbols and there is a solid path:

Rs0

e0−→ Rs1

e1−→ Rs2 · · · (5)

then there must be an orbit �x = (x0, x1, . . .) of the return map f such that
xi ∈ Ri for all i and fei(xi) = xi+1. Hence there is an exectution of the hybrid
automaton with itinerary:

q0
e0−→ q1

e1−→ q2 · · · (6)

where Rsi ⊂ Xqi for all i. From the construction of Υ and Proposition 1, we see
that if there is an orbit of the return map with xi ∈ Ri for all i, then there must
be a broken path (which may consist of both dashed and solid arrows):

Rs0

e0−→ Rs1

e1−→ Rs2

ek−→ Rs3 · · · . (7)

4 Case Studies

In this section, we present two case studies: a simple hysteresis system and the
singular limit of the van der Pol equation.

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata 495

4.1 A Hysteresis Switching System

We now consider a piecewise-affine model of a system governed by hysteresis
switching [18]. We let H(x) be the hysteresis map H(x) = 0 for x ≤ 1, the first
mode, and H(x) = 1 for x ≥ 0, the second mode, and consider the system:

ẋ = y + a1H(x/b) (8)
ẏ = −x − 2σy + a2H(x/b).

The return map is defined on the set P = {(x, y) ∈ R
2 | x = 0, y > 0} and

maps a point p ∈ P to a point q ∈ P such that q belongs to the same orbit
of p, and q is the next intersection after p in forward time of this orbit with
P in the first mode. We have computed symbolic dynamics for the return map
with parameter values a1 = −1, a2 = −1, b = 0.3 and σ = −0.2. The graph of
the return map is shown in Fig. 2. We take an initial partition Q which are the
domains of the monotone branches. The partition elements are Q0 = [p0, p1],
Q1 = [p1, p3], Q2 = [p3, p5], Q3 = [p5, p7] and Q4 = [p7, p8] where the boundary
points are

p0 = 0.0, p1 ≈ 0.20894, p3 ≈ 0.39278, p5 ≈ 0.73329, p7 ≈ 0.92580, p8 = 1.0.

The associated symbolic dynamics is in Fig. 3(a). The two points of discontinuity
are p1 and p5 and they can be proved to have the same left and right images. The
partition after one iteration of forward refinements has the following additional
endpoints:

p2 = f(p7) ≈ 0.33792, p4 = f(p+
1) = f(p+

5) ≈ 0.59890,

p6 = f(p−1) = f(p−5) ≈ 0.75340.

The symbolic dynamics generated by this partition is approximated by the
graph in Fig. 3(b).

We notice that the lower approximation of the dynamics of the refined par-
tition misses some sequences of the lower approximation of dynamics of the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 2. The return map for the hysteresis system (9)

496 L. Sella and P. Collins

(a) (b)

Fig. 3. Lower and upper approximation of symbolic dynamics for the hysteresis sys-
tem (9) for (a) the initial partition and (b) the forward refinement of the initial partition

initial partition. This is due to the fact that although region Q1 = [p1, p3] covers
Q0 = [p0, p1] under one iterate of the return map, neither of the subdivided
regions P1;0 = [p1, p2] and P1;1 = [p2, p3] cover Q0. Hence the convergence of the
lower approximations to the symbolic dynamics computed using forward refine-
ment is not monotone. With backward refinement the convergence can be shown
to be monotone, but backward refinements have the disadvantage of being slower
to compute than forward refinements.

The lower shift for the initial partition can be written as the regular expression

(q∗0q2)∗(qω
0 + qω

1) + (q∗0q2q0)∗(qω
1 + qω

2) + (q∗0q2)ω.

We can see for instance that the periodic sequence (q0q3q2q1)ω belongs to the
upper shift but not to the lower shift. From the two shifts we can show that
the topological entropy lies in the interval [0.80958, 1.27020]. The topological
entropies obtained for further refinement are shown in the table :

steps entropy
3 [0.97494,1.26249]
5 [1.02407,1.18582]
7 [1.04636,1.16493]
12 [1.06873,1.15087]

4.2 The van der Pol Equation

The forced van der Pol equation is a nonlinear ordinary differential equation
modeling oscillation in a vacuum tube triode circuit. Bifurcations in the singular
limit of the forced van der Pol oscillator have been studied in [19]. In this paper
we analyse the following version of the equation:

ẍ + μ(x2 − 1)ẋ + x = a(x2 − 1) sin(2πντ) (9)

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata 497

in the singular limit as μ → ∞. To obtain a form more convenient for analysis, we
rescale time t = τ/μ, introduce new parameters ε = 1

μ2 , ω = νμ and θ = ωt, and
define the new variable y = ẋ/μ2+x3/3−x. We obtain the following autonomous
system:

εẋ = y + x − x3/3; (10)
ẏ = −x + a(x2 − 1) sin(2πθ); (11)
θ̇ = ω.

The fast subsystem is defined by (10), since the dynamics of the fast variable x
occurs on a time scale which is fast relative to the evolution of the slow variables
y and θ.

We see that on the critical manifold y + x − x3/3 = 0 the system evolves on
a time scale of order t. However, the critical manifold is unstable for the fast
system if |x| ≤ 1, and that when this occurs, the value of x jumps instantaneously
to one of the stable fixed points of (10).

We can therefore view the singular limit as a hybrid system in which the
continuous dynamics is given by the slow flow on the stable sheet of the critical
manifold, and the reset map is given by the fast flow. By eliminating y, we obtain
the following dynamics for the slow subsystem:

ẋ = −x + a(x2 − 1) sin(2πθ) (12)
θ̇ = ω(x2 − 1)

The fast dynamics is described by the guard set and reset map

G = {(x, θ) | |x| = 1}; r(x, θ) = (−2 sgn(x), θ). (13)

In other words, when the guard condition |x| = 1 becomes satisfied the state
jumps to x = ∓2.

Since the dynamics is symmetric under the transformation T (x, θ) = (−x, θ+
1/2), we can post-compose the return map from the guard set x = 1 to the guard
set x = −1 with T to obtain the half return map f taking {(r, θ) | r = 1} into
itself. The graph of the half return map for parameter values a = 5 and ω = 3
is shown in Fig. 4. We have computed the lower and upper symbolic dynamics
with respect to the partition given by the continuous branches using forward
refinement.

In the return map there are 5 discontinuity points:

p2 ≈ 0.05816, p3 ≈ 0.25226, p5 ≈ 0.69356, p6 ≈ 0.81553, p7 ≈ 0, 98495.

and 2 critical points, a local maximum p1 ≈ 0.02183 and a local minimum
p4 ≈ 0.47872. These points with the extremes of the interval p0 = 0 and p8 = 1
generate an initial partition of 9 pieces. After one forward iteration we obtain
11 pieces.

q0 = f(p0) ≈ 0.15520, q1 = f(p1) ≈ 0.17825, q2 = f(p4) ≈ 0.29017,

498 L. Sella and P. Collins

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. The half return map for the singular limit of the forced van der Pol oscilla-
tor (12)

The lower and upper discrete automata are not included for reasons of space.
After one step of refinement, the discrete automaton representing the symbolic
dynamics separate into two strongly connected components. Both the lower and
upper shifts include the component with the highest entropy, while the lower
shift does not include the smallest.

Therefore the topological entropy of the lower and upper shifts are equal and
can be computed exactly yielding a numerical value of approximately 1.55705.
From Fig. 4 we could already infer the entropy is at least log(3) ≈ 1.09861
because there are 3 continuous pieces of the partition which map the whole in-
terval. From numerical computation we can deduce the existence of an attracting
periodic orbit close to the local minimum. This let us infer the existence of a
chaotic invariant Cantor set, every point non belonging to this set converges to
the attracting periodic orbit.

5 Conclusion

In this paper, we have presented a method for computing the discrete dynamics
of a hybrid automaton with a two-dimensional state space. We obtain sequences
of sofic shifts which approximate the actual discrete dynamics from above and
below. We have given nondegeneracy conditions under which the method is op-
timal, in the sense that the resulting shift spaces converge to the actual shift
space. In future work, we plan to remove the nondegeneracy conditions on the
method, and extend the method to hybrid automata in higher dimensions.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proc. IEEE 88, 971–984 (2000)

2. Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin,
C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 465–478. Springer,
Heidelberg (2002)

Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata 499

3. Lunze, J., Nixdorf, B.: Discrete reachability of hybrid systems. Internat. J. Con-
trol 76(14), 1453–1468 (2003)

4. Moor, T., Raisch, J., O’Young, S.: Discrete supervisory control of hybrid sys-
tems based on l-complete approximations. Discrete Event Dyn. Syst. 12(1), 83–107
(2002); WODES 1998, Cagliari

5. Guckenheimer, J., Johnson, S.: Planar hybrid systems. In: Antsaklis, P.J., Kohn,
W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999, pp. 202–225. Springer,
Heidelberg (1995)

6. Grasman, J., Nijmeijer, H., Veling, E.J.M.: Singular perturbations and a mapping
on an interval for the forced van der Pol relaxation oscillator. Phys. D 13(1–2),
195–210 (1984)

7. Bold, K., Edwards, C., Guckenheimer, J., Guharay, S., Hoffman, K., Hubbard, J.,
Oliva, R., Weckesser, W.: The forced van der Pol equation. II. Canards in the
reduced system. SIAM J. Appl. Dyn. Syst. 2(4), 570–608 (2003) (electronic)

8. Moore, R.E.: Interval analysis. Prentice-Hall Inc., Englewood Cliffs (1966)
9. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied interval analysis. Springer,

London (2001)
10. Aberth, O.: Introduction to Precise Numerical Methods. Academic Press, London

(2007)
11. Lind, D., Marcus, B.: An introduction to symbolic dynamics and coding. Cam-

bridge University Press, Cambridge (1995)
12. Kitchens, B.P.: Symbolic dynamics. In: Universitext. Springer, Berlin (1998) (one-

sided, two-sided and countable state Markov shifts)
13. Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical sys-

tems. In: Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge
University Press, Cambridge (1995)

14. Milnor, J., Thurston, W.: On iterated maps of the interval. In: Dynamical systems
(College Park, MD, 1986–1987). Lecture Notes in Math., vol. 1342, pp. 465–563.
Springer, Berlin (1988)

15. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369
(1998)

16. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value
problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68
(1999)

17. Wilczak, D., Zgliczynski, P.: Cr Lohner algorithm. oai:arXiv.org:0704.0720 (2007)
18. Newcomb, R.W., El-Leithy, N.: Chaos generation using binary hysteresis. Circuits

Systems Signal Process 5(3), 321–341 (1986)
19. Guckenheimer, J., Hoffman, K., Weckesser, W.: The forced van der Pol equation.

I. The slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst. 2(1), 1–35 (2003)
(electronic)

Input-to-State Stabilization with Quantized

Output Feedback�

Yoav Sharon and Daniel Liberzon

Coordinated Science Laboratory, Department of Electrical Engineering,
University of Illinois at Urbana Champaign, Urbana, IL, U.S.A

{ysharon,liberzon}@control.csl.uiuc.edu

Abstract. We study control systems where the output subspace is cov-
ered by a finite set of quantization regions, and the only information
available to a controller is which of the quantization regions currently
contains the system’s output. We assume the dimension of the output
subspace is strictly less than the dimension of the state space. The num-
ber of quantization regions can be as small as 3 per dimension of the
output subspace. We show how to design a controller that stabilizes such
a system, and makes the system robust to an external unknown distur-
bance in the sense that the closed-loop system has the Input-to-State
Stability property. No information about the disturbance is required
to design the controller. Achieving the ISS property for continuous-
time systems with quantized measurements requires a hybrid approach,
and indeed our controller consists of a dynamic, discrete-time observer,
a continuous-time state-feedback stabilizer, and a switching logic that
switches between several modes of operation. Except for some properties
that the observer and the stabilizer must possess, our approach is gen-
eral and not restricted to a specific observer or stabilizer. Examples of
specific observers that possess these properties are included.

1 Introduction

Many tools developed in control theory assume a system where the measure-
ment that enters the controller is either the state of the system (state-feedback)
or some linear transformation of the state (output-feedback). In many practi-
cal applications, however, the measurement available to the controller is only a
quantized version of the aforementioned signals. More specifically, the measure-
ment available to the controller is confined to a finite set of values. While the size
of this finite set of values is assumed to be fixed, we do assume that the mapping
from the output-subspace into this set depends on a few parameters that can be
changed by the controller. This is referred to as dynamic quantization. Quanti-
zation can result from the physical properties of the sensors in the system. For
example a coarse temperature sensor which can only measure “normal”, “too
hot”, or “too low”, but its threshold can be adjusted. Another example is a low
� This work was supported by NSF ECS-0134115 CAR and NSF ECCS-0701676

awards.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 500–513, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Input-to-State Stabilization with Quantized Output Feedback 501

resolution camera whose orientation and optical zoom can be adjusted. Quanti-
zation can also result from a link with a limited data rate between the sensors
and the controller. The approach in this paper is especially designed for systems
where each sensor is connected, through some limited data rate link, directly to
the controller. In particular this means there is no need for a processing unit on
the “sensor side” to collect the information from all the sensors, and generate a
state estimate from the partial output measurements, before transmitting it to
the controller. Basic references on quantized control include [1], [2] and [3].

Several different notions of stability exist in the literature. We chose the no-
tion of Input-to-State Stability (ISS), first presented in [4] for continuous-time
systems. Roughly speaking, a system is ISS if every state trajectory correspond-
ing to a bounded disturbance remains bounded, and the trajectory eventually
becomes small if the disturbance is small (no matter what the initial state is).
The notion of ISS was extended to discrete-time systems in [5]. Our choice of
ISS as the desired property is natural because we want to have a bounded re-
sponse to arbitrary bounded disturbances. This implies, in particular, that no
information about the disturbance bound is given to the controller.

Recent papers on how to achieve stabilization under quantization include:
[6], [7], [8] and [9] which assume only disturbance-free systems; [10] and [11]
which deal only with disturbances whose bound is known to the controller; [12]
which only requires the controller to know some statistical information about
the disturbance but not its bound; and [13] and [14] in which the controller
does not have any information about the disturbance. Even though in [12] and
[13] the controller does not know the disturbance bound, neither shows ISS
— [12] shows mean square stability in the stochastic setting and [13] shows
stability in probability. The paper [14] does show ISS; however, the approach
in [14] is considerably different from our approach and in particular it does not
guarantee a minimum number of quantization regions or a minimum data rate.
Of the papers that deal with disturbances, only [12] and [13] also deal with the
output-feedback case. However, in contrast to our paper, in these papers it is
assumed that the quantization is applied after a state estimate is constructed
by some observer that has direct access to the measurements. This approach is
arguably less relevant in applications since it does not address the case where
the quantization is due to physical or practical limitations of the sensors (and
not only due to a limited data rate).

The work presented in this paper is built on our recent work [15], which was
the first to show how to achieve ISS under state-quantization and minimum data
rate. In the work presented here, we show how to extend that scheme to output-
feedback systems where only the projection of the state into a lower dimen-
sional subspace is measured (and then quantized). Achieving the ISS property
for continuous-time systems with quantized measurements requires a hybrid ap-
proach, and indeed our controller consists of a dynamic, discrete-time observer,
a continuous-time state-feedback stabilizer, and a switching logic that switches
between several modes of operation.

502 Y. Sharon and D. Liberzon

The paper is organized as follows. In §2 we define the system and the quantizer.
In §3 we give an overview of and the motivation for the three modes of operation
of our controller. In §4 we define a general form of an observer, and then present
the controller that achieves the objectives listed above. Our main result is pre-
sented in that section, and it is followed by a simulation. In §5 we give examples
of specific observers that can be used with our control system. We conclude in
§6. Due to paper length limitations we are unable to include here the proof of our
result. It will appear in the journal version of this work, while in the meantime
it can be viewed in the appendix of the review version of this paper, which is
available at http://decision.csl.uiuc.edu/∼ysharon/hscc08 full.pdf

2 System Definition

The continuous-time dynamical system we are to stabilize is as follows (t ∈ R≥0,
k ∈ N ∪ {0}):

ẋ(t) = Ax(t) + Bu(t) + Dw(t)
y(k) = Cx (kTs) z(k) = Q (y(k); c(k), μ(k)) (1)

where x ∈ R
nx is the state of the system, u ∈ R

nu is the control input that
the control system will need to generate, w ∈ R

nw is an unknown disturbance
which is injected to the system and y ∈ R

ny is the projection of the state space
into the output subspace which is measured by the sensors. Finally, z ∈ R

ny

is the information available to the controller. We use Ts for the time interval
between subsequent measurement. We will refer to each instance in time when
a measurement is taken as a time sample. A, B, D, C are real matrices of
appropriate dimensions. We assume that A and B are a controllable pair and
that A and C are an observable pair.

We use N for the number of quantization regions per observed dimension. It
can be determined by the physical properties of the sensor or from the data rate.
Given N , the data rate required, in bits per time sample, is R = log2 (Nny). Our
quantizer, denoted by Q, is parameterized by c ∈ R

ny and μ ∈ R as follows (see
Figure 1 for an illustration):

Qi (x; c, μ) .= ci +

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−N + 1)μ xi − ci ≤ (−N + 2)μ
(−N + 3)μ (−N + 2)μ < xi − ci ≤ (−N + 4)μ
...

...
0 −μ < xi − ci ≤ μ
...

...
(N − 3)μ (N − 4)μ < xi − ci ≤ (N − 2)μ
(N − 1)μ (N − 2)μ < xi − ci.

(2)

We will refer to c as the center of the quantizer, and to μ as zoom factor. Note
that what will actually be transferred from the quantizer to the observer will
be an index to one of the quantization regions. The observer, which knows the

http://decision.csl.uiuc.edu/~ysharon/hscc08_full.pdf

Input-to-State Stabilization with Quantized Output Feedback 503

x1

x2

2μ

c

Fig. 1. Illustration of the quantizer for the two-dimensional output subspace, N = 5.
The dashed lines define the boundaries of the quantization regions. The black dots
define where the quantizer estimates the projection of the state to be, given the index
of the quantization region that currently contains the projection.

values of c and μ, will use this information to convert the received index to the
value of Q as given in (2). The controller sets u, c and μ, and the only signal
directly observed by the controller is z. The system model, represented by the
matrices A, B, D, C, is known to the controller.

Adopting the standard ISS notion to the class of hybrid systems that we
design here, we will say that the closed-loop system is ISS if its solution satisfies

|x(t)| ≤ βcl (|x(0)| , t) + γcl (‖w‖) , ∀t ≥ 0 (3)

for some K∞-function1 γcl and some KL-function2 βcl. See also [16] for a study
of ISS in the framework of impulsive systems.

In this paper we will use the ∞-norm unless otherwise specified: for vectors,
|x| .= |x|∞ .= maxi |xi|; for matrices, ‖M‖ .= maxx

|Mx|
|x| ≡ maxi

(∑
j |Mij |

)
; for

continuous-time signals, ‖w‖[t1,t2]
.= maxt∈[t1,t2] |w(t)|∞, ‖w‖ .= ‖w‖[0,∞); and

for discrete-time signals, ‖y‖{k1...k2}
.= maxk∈{k1...k2} |y(k)|∞, ‖y‖ .= ‖y‖{0...∞}.

3 Overview of the Controller Design

Our controller operates in three different modes of operation. The motivation
for each of these modes is given in this section.
1 A function α : [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly

increasing, and α(0) = 0. A function α : [0,∞) → [0,∞) is said to be of class K∞ if
it is of class K and also unbounded.

2 A function β : [0,∞) × [0,∞) → [0,∞) is said to be of class KL if β(·, t) is of class
K for each fixed t ≥ 0 and β(s, t) decreases to 0 as t → ∞ for each fixed s ≥ 0.

504 Y. Sharon and D. Liberzon

A general quantizer may consist of quantization regions of finite size, for which
the estimation error can be bounded, and regions of infinite size, where the es-
timation error can not be bounded. We will refer to these regions as bounded
and unbounded regions, respectively. Due to the fact that there are only a finite
number of quantization regions to cover the infinite-size R

ny output subspace,
only a region of finite size of this subspace can be covered by the bounded re-
gions. The size of this region, however, can be adjusted dynamically by changing
the parameters of the quantizer. We refer to this region which is covered by
only bounded quantization regions as the unsaturated region. Our controller fol-
lows the general framework which was introduced in several previous papers to
achieve disturbance rejection using dynamic quantization. This framework con-
sists of two main modes of operation, generally referred to as a “zoom-in” and a
“zoom-out” mode. During the zoom-out mode the unsaturated region is enlarged
until the measured output is captured in this region and a bound on the estima-
tion error can be established. This is followed by a switch to the zoom-in mode.
During the zoom-in mode the size of the quantization regions is reduced in order
to have the state estimate converge to the true state. The reduction of the size of
the quantization regions inevitably reduces the size of the unsaturated region. As
the size of this region is reduced, eventually the unknown disturbance will drive
the measured output outside the unsaturated region. To regain a bounded esti-
mation error, the controller will switch back to the zoom-out mode. By switching
repeatedly between these two modes, ISS relation can be established. In this pa-
per we use the name “capture” mode for the zoom-out mode.

In our quantizer there are 2ny unbounded quantization regions. If each sensor
measures only one dimension of the output subspace, then this setting allows for
an independent reading by each sensor. This setting also allows the use of as little
as 3 quantization regions per dimension. To achieve the minimum data-rate, how-
ever, we are required to use the unbounded regions not only to detect saturation
(as is done in previous papers), but also to reduce the estimation error. Consider
for example the case of only 3 quantization regions for each dimension. In this
case there is only one bounded region which can not be used by itself to reduce
the estimation error. This dual use is done by dividing the zoom-in mode into
two modes: a “measurement-update” mode and an “escape-detection” mode. Af-
ter receiving r successive measurements in bounded quantization regions, where
r is the observability index, and assuming there are no disturbances, we are
able to define a containment region in the state space which must contain the
state. We enlarge this region by a constant to accommodate some disturbance. In
the measurement-update mode we cover this containment region using both the
bounded and the unbounded regions of the quantizer. This way we are able to
use the smallest quantization regions, which leads to the fastest reduction in the
estimation error. The “problem” with this mode is that if a strong disturbance
comes in, we will not be able to detect it. Therefore, in the escape-detection mode
we use larger quantization regions, but cover the containment region using only
the bounded regions. Thus, if a strong disturbance does come in, we will be able
to detect it as it will drive the measured output to one of the unbounded regions.

Input-to-State Stabilization with Quantized Output Feedback 505

The precise details on how to design to controller are given in the next section.

4 Controller Design

We define the sampled-time versions of A, u and w as:

Ad
.= exp (TsA) , ud (k) .=

∫ Ts

0

exp (A (Ts − t)) Bu (kTs + t) dt,

wd (k) .=
∫ Ts

0

exp (A (Ts − t))Dw (kTs + t) dt,

so we can write x ((k + 1)Ts) = Adx (kTs)+ud(k)+wd(k). We assumed that A
and B are a controllable pair, so there exists a control gain K such that A+BK
is Hurwitz. By construction Ad is full rank, and in general (unless Ts belongs to
some set of measure zero) the observability of A and C implies that Ad and C
are an observable pair. Thus there exists r such that:

C̃
.=

⎛

⎜
⎜
⎜
⎝

CA−r+1
d

...
CA−1

d

C

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

C
CAd

...
CAr−1

d

⎞

⎟
⎟
⎟
⎠

A−r+1
d (4)

has full column rank.
Our controller consists of three elements: an observer which generates a state

estimate; a switching logic which sets the parameters for the quantizer and for the
observer; and a stabilizing control law which computes the control input based
on a state estimate. For simplicity of presentation, we assume the stabilizing
control law is a simple static gain given by K. However, any control law that
will render the closed-loop system ISS with respect to the disturbance and the
estimation error, will work with our controller. Note that it is sufficient for K to
be such that A + BK is Hurwitz in order to satisfy this ISS requirement. In the
next subsection we present a general structure for an observer, and specify the
properties it is required to satisfy. In subsection 4.2 we present the algorithm for
the switching logic and state our main theorem.

4.1 Desired Observer Properties

The first element in our control system is the observer. The observer is required
to generate an estimate of the state based on current and previous quantized
measurements. We assume that the observer is linear, and that there exists a
sequence of linear gains, G0, G1, . . ., Gd−1, d > r, where Gk ∈ R

nx×(k+r)ny ,
such that the state estimate can be written for k ∈ {0 . . . d − 1} as:

506 Y. Sharon and D. Liberzon

x̂u(k0 + k) = Gk

⎡

⎢
⎢
⎢
⎣

z(k0 − r + 1) + C
∑k+r−1

i=1 A−i
d ud(k0 − r + i)

...
z(k0 + k − 1) + CA−1

d ud(k0 + k − 1)
z(k0 + k)

⎤

⎥
⎥
⎥
⎦

.

Note that we must have at least r successive measurements to generate a state
estimate. Therefore, (5) is defined only for k0 ≥ r − 1. We use the subscript
u to indicate that x̂u(k) is our estimate of x(k) based on measurements up to
z(k). We will later also use the subscript p to indicate that x̂p(k) is our estimate
of x(k) based on measurements up to z(k − 1). The subscripts u and p stand
for update and predict, respectively, which are common notations in the Kalman
filter. We denote the quantization error by eq(k) .= z(k) − y(k) and the state
estimation error by ex(k) .= x̂u(k) − x(kTs).

The first requirement for our approach to succeed is that the linear gains
G0, G1, . . ., Gd are such that if no disturbance is injected into the system, and
eq ≡ 0, then the state estimate is exact: ex ≡ 0. In the presence of estimation
errors, eq
= 0, and bounded disturbances, the state estimate cannot be exact,
but we will need it to converge to the true state. This is achieved by having
μ(k + d) < μ(k). We cannot, however, decrease μ arbitrarily, since we need the
quantization regions to cover the projection of the containment region into the
output subspace. The containment region is the region where we expect the state
to be based on previous measurements, and given that the disturbances are small
enough. If at time sample k − 1 the gain Gp was used then at time sample k
the radius (in ∞-norm) of the projection of this containment region is given
by F (μ, k, p) + α ‖μ‖{k−p−r...k−p−1}. F (see (6) below for a precise definiton)
is the radius if there are no disturbances, and α is used as a “slack” for the
disturbance. Note that the only variable on which this radius depends is μ, and
the dependence is linear. Thus we can arbitrarily choose the initial values of μ
in order to verify if we get convergence. The requirement is thus formulated as
follows: there exist α ∈ R>0 and σ < 1 (σ ∈ R>0) such that if we set

μ′(k) = 1, k ∈ {0 . . . r − 1}

μ′(k) =
F (μ′; k; k − r) + α

N
, k ∈ {r . . . d − 1} (5)

μ′(k) =
F (μ′; k; k − r) + α

N − 2
, k ∈ {d . . . d + r − 1},

where

F (μ; k; p) .= max
i∈{1...nx}

p−1∑

l=−r

ny∑

m=1

∣
∣
∣(CAdGp)i,(l+r)ny+m

∣
∣
∣μ(k − p + l). (6)

then

‖μ′‖k∈{d...d+r−1} ≤ σ. (7)

Input-to-State Stabilization with Quantized Output Feedback 507

The first line in (5) corresponds to our arbitrary choice of initial values for μ.
The second and third lines correspond to the minimal possible value for μ in
the measurement-update mode and in the escape-detection mode, respectively.
If the observer satisfies this second requirement for some α, we say that it has
the convergence property for this α. Note that if it has this property for some
α0 then it will have it for all α < α0. Note also that it is possible to satisfy this
requirement just by increasing N sufficiently.

4.2 Switching Logic

The controller will operate in one of three modes which will be determined
by the switching logic: capture, measurement update or escape detection. The
initial mode will be capture. The current mode will be stored in the variable
mode(k) ∈ {capture, update, detect}. The controller will also use3 x̂p(k) ∈ R

nx ,
x̂u(k) ∈ R

nx , x̂(t) ∈ R
nx , p(k) ∈ Z and saturated ∈ {true, false} as auxiliary

variables. We initialize x̂p(0) = 0. The initial value of μ(0), the zoom factor
for the quantizer, can be any positive value and it will be regarded as a design
parameter. The controller will also have three other design parameters: α ∈ R>0,
s ∈ R>0, and Ωout ∈ R, Ωout > ‖A‖. With a slight abuse of notation we define:

G (z; ud; k; p) .= Gp

⎡

⎢
⎢
⎢
⎣

z(k − r − p + 1) + C
∑p+r−1

i=1 A−i
d ud(k − r − p + i)

...
z(k − 1) + CA−1

d ud(k − 1)
z(k)

⎤

⎥
⎥
⎥
⎦

.

At each time sample, k, the following switching logic will be executed:

1. Preliminaries
if mode(k) = capture then

set μk = Ωoutμk−1

else if mode(k) = update then
set

μk =
F (μ; k; p(k − 1)) + α‖μ‖{k−r−p(k−1)...k−1−p(k−1)}

N
(8)

else if mode(k) = detect then
set

μk =
F (μ; k; p(k − 1)) + α‖μ‖{k−r−p(k−1)...k−1−p(k−1)}

N − 2
(9)

end if
have the observer record z(k) = Q (y(k); Cx̂p(k), μk)
if ∃i such that zi(k) = (Cx̂p(k))i ± (N − 1)μk then

set saturated(k) = true
else

set saturated(k) = false
end if
by default the mode will not change – set mode(k + 1) = mode(k)

3 The distinction between x̂u, x̂p and x̂ is only to make the proofs easier to read. The
controller can be implemented using just one variable.

508 Y. Sharon and D. Liberzon

2. capture mode
if mode(k) = capture then

if saturated(k) then
set p(k) = 0 and use the observer to update x̂u(k) = x̂p(k)

else
set p(k) = p(k − 1) + 1
if p(k) = r then

set p(k) = 0 and use the observer to compute x̂u(k) = G (z; ud; k; 0)
switch to the measurement update mode: set mode(k + 1) = update

else
use the observer to update x̂u(k) = x̂p(k)

end if
end if

end if

3. measurement update mode
if mode(k) = update then

set p(k) = p(k− 1)+1 and use the observer to compute x̂u(k) = G (z; ud; k; p(k))
if p(k) = d − r then

switch to the escape detection mode: set mode(k + 1) = detect
end if

end if

4. escape detection mode
if mode(k) = detect then

if not saturated(k) then
set p(k) = p(k − 1) + 1
if p(k) < d then

use the observer to compute x̂u(k) = G (z; ud; k; p(k))
else

set p(k) = 0 and use the observer to compute x̂u(k) = G (z; ud; k; 0)
switch to the measurement update mode: set mode(k + 1) = update

end if
else

set p(k) = 0, μ(k) = s and use the observer to update x̂u(k) = x̂p(k)
switch to capture mode: set mode(k + 1) = capture

end if
end if

Between the time samples the following will be executed:

Input-to-State Stabilization with Quantized Output Feedback 509

5. Control input generation
use the observer to update x̂(kTs) = x̂u(k); ud(k) = 0
for t ∈ [0, Ts) do

use the stabilizing control law to set the control action u(kTs + t) = Kx̂(kTs + t)
use the observer to update:

˙̂x(kTs + t) = Ax̂(kTs + t) + Bu (kTs + t)
u̇d(k) = exp (A (Ts − t)) Bu (kTs + t)

end for
use the observer to update x̂p (k + 1) = limt↗Ts x̂ (kTs + t)

We are now ready to state our main result (see the last paragraph in §1 for a
reference to the proof):

Theorem 1. Consider the system (1). If we implement the controller with the
algorithm above, and the observer has the convergence property for the α chosen
for the implementation, then the closed-loop system will be input-to-state stable
with respect to the disturbances.

An illustrative simulation of this controller is given in figure 2.

5 Observer Examples

In §4.1 we gave a somewhat cumbersome definition for an observer. The reason
was to allow for our approach to be implemented with a wide range of observers.
In this section we give two examples of observers for which our definition is valid.

5.1 Pseudo-Inverse Observer

Perhaps the most obvious observer is the pseudo-inverse observer4:

G0 =
(
C̃T C̃

)−1

C̃T , Gi =
[
0nx×ny | Gi−1

]
, ∀i ∈ {1 . . . d − 1} (10)

where C̃ is defined in (4). Since our assumption is that C̃ has full column rank,
then G0C̃ = I, the identity matrix. Thus if no disturbance is injected into the
system, and there is no quantization error, then indeed the state estimate will
be exact. This satisfies the first requirement from §4.1. A sufficient condition for
this observer to satisfy the second requirement from §4.1 is

σpi
.=

1
N

‖CAdG0‖ < 1. (11)

To see that indeed this condition is sufficient note first that from (6):

4 0nx×ny is the zero matrix of dimension nx × ny .

510 Y. Sharon and D. Liberzon

F (μ; k; k − r) = max
i∈{1...nx}

k−r−1∑

l=k−2r

ny∑

m=1

∣
∣
∣(CAdG0)i,(l+2r−k)ny+m

∣
∣
∣μ (r + l)

≤
(

max
i∈{1...nx}

nyr∑

m=1

∣
∣
∣(CAdG0)i,m

∣
∣
∣

)

‖μ‖k−r...k−1 = ‖CAdG0‖ ‖μ‖k−r...k−1 ,

so that
F (μ′; k; k − r) + α

N
≤ σpi ‖μ′‖k−r...k−1 +

α

N
. (12)

Assume d is a multiple of r and α satisfies σpi + a
N ≤ 1 so that ∀l ∈ N: σl+1

pi +
∑l

m=0 σm
pi

α
N ≤ σl

pi +
∑l−1

m=0 σm
pi

α
N . With these assumptions, and from (12) we

have by induction that for all l ∈ {1 . . . d/r − 1}:

‖μ′‖lr...(l+1)r−1 ≤ σl
pi +

l−1∑

m=0

σm
pi

α

N

.= V (l) and

‖μ′‖d−r...d−1 ≤ max
{

N

N − 2
σpiV (d/r − 1) +

α

N − 2
,

(
N

N − 2
σpi

)r

V (d/r − 1) +
r−1∑

m=0

(
N

N − 2
σpi

)m
α

N − 2

}

It can now be easily seen that by taking d to be large enough, and α to be
small enough, we can make ‖μ′‖d−r...d−1 < 1 which satisfies the convergence
property.

5.2 Luenberger-Type Observer

Another commonly used observer for unquantized, output feedback systems is
the Luenberger observer:

x̂(k + 1) = Adx̂(k) + ud(k) + L (y(k) − Cx̂(k)) , (13)

where L ∈ R
nx×ny is chosen so that Ad − LC is Schur5. Given that Ad and C

are an observable pair, such an L is guaranteed to exist. Since the Luenberger
observer requires some initialization, we can use G0 as in the pseudo-inverse
observer (10). We can then replace in the algorithm all the computations of the
state estimate, x̂u(k) = G (z; ud; k; p), when p > 0, with

x̂u(k) = x̂p(k) + L (z(k − 1) − Cx̂u(k − 1)) .

Using this alternative is equivalent to using

Gi =
[∗ | (Ad − LC)i−2

L | . . . | L | 0nx×ny

]
, i ∈ {1 . . . d − 1} (14)

where
∗ .= (Ad − LC)i

G0 +
[

0nx×(r−1)ny
| (Ad − LC)i−1

L
]
.

5 All the eigenvalues of a Schur matrix are inside the unit ball on the complex plane.
This is the discrete counterpart to a Hurwitz matrix.

Input-to-State Stabilization with Quantized Output Feedback 511

−2 −1 0 1

−1.5

−1

−0.5

0

0.5

1

x1

x
2

x
x̂

0 5 10 15

−2

0

2

t(sec)

y

115 120 125 130

−0.5

0

0.5

t(sec)

y

y ŷ

Fig. 2. Simulation of the proposed controller. Simulated here is a two dimensional
dynamical system: ẋ(t) = [0.1,−1; 1, 0.1] x(t) + [0; 1] u(t) + [1, 0; 0, 1] w(t), where only
the first dimension is observed, y(k) = [0, 1] x (kTs), through a quantizer with N = 3.
The solid line in the left plot is the trajectory of the system (starting at x (0) = [1; 0]).
The dotted line in that plot is the state estimate. The dashed-dot lines represent the
jumps in the state estimate after a new measurement is received. The top right plot
shows the first 15 seconds of the measured output (Ts = 1s). The vertical dotted
lines depict the only one bounded quantization region. The controller is in the capture
mode where these vertical lines are bounded by arrows facing outward; in the update
mode where the arrows are facing inward; and in the detect mode where the vertical
lines are bounded by small horizontal lines. The bottom right plot shows 15 seconds of
the steady-state behavior of the simulation, where an escape of the trajectory due to
disturbances is detected at t = 119s, and then the trajectory is recaptured at t = 122s.
The pseudo-inverse observer (see §5.1) was used in this simulation. The other design
parameters were: d = 6, μ (0) = 0.25, Ωout = 2, α = 0.02, s = 0.05, K = [0.6,−1.5].
The disturbances followed the zero-mean normal distribution with standard deviation
of 0.2.

512 Y. Sharon and D. Liberzon

Remark 1. This observer will satisfy the first requirement from §4.1. However,
we have not been able yet to derive an easily verifiable sufficient condition for
the second requirement as we did for the pseudo-inverse observer with (11).
Therefore, to verify that such an observer satisfies the second requirement, one
has to generate the μ′’s according to (5) using (14), and then verify that (7)
holds.

Remark 2. The standard formulation for a Luenberger observer is (13). However,
note that when we need to construct x̂u(k+1), on which the control inputs from
t = (k + 1)Ts to t = (k + 2)Ts are based, we already have the measurement
z (k + 1). Therefore, instead of (13) it will be better to use

x̂(k + 1) = Adx̂(k) + ud(k) + L (y(k + 1) − C (Adx̂(k) + ud(k))) ,

which requires that Ad − LCAd is Schur. With these settings (14) becomes:

Gi =
[
(Ad − AdLC)i G0 | (Ad − AdLC)i−1 L | . . . | L

]
, i ∈ {1 . . . d − 1}.

6 Conclusion

In this paper we showed how to implement a stabilizing controller when only a
partial subspace of the state space is measured, and furthermore the measure-
ments are quantized with a finite number of quantization regions. The controller
is also robust, in the ISS sense, to unknown disturbance which can be injected
to the system. In our design, we allow flexibility in designing the observer and
the stabilizing control law, thus allowing further balancing between ease of im-
plementation and performance.

As mentioned in the introduction, this paper extends the results in [15] from
the state-feedback scenario to the output-feedback scenario. Future develop-
ments will be to extend the results further to systems with delays and nonlinear
systems.

Acknowledgments

We are grateful to the anonymous reviewers for their constructive comments.

References

1. Miller, R.K., Mousa, M.S., Michel, A.N.: Quantization and overflow effects in dig-
ital implementaitions of linear dynamic controllers. IEEE Trans. Automat. Con-
trol 33, 698–704 (1988)

2. Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE
Trans. Automat. Control 35(8), 916–924 (1990)

3. Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems.
IEEE Trans. Automat. Control 45(7), 1279–1280 (2000)

Input-to-State Stabilization with Quantized Output Feedback 513

4. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Au-
tomat. Control 34, 435–443 (1989)

5. Jiang, Z.P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems.
Automatica 37, 857–869 (2001)

6. Petersen, I.R., Savkin, A.V.: Multi-rate stabilization of multivariable discrete-time
linear systems via a limited capacity communication channel. In: Proc. 40th IEEE
Conf. on Decision and Control, pp. 304–309 (2001)

7. Liberzon, D.: On stabilization of linear systems with limited information. IEEE
Trans. Automat. Control 48(2), 304–307 (2003)

8. Nair, G.N., Evans, R.J., Mareels, I.M.Y., Moran, W.: Topological feedback en-
tropy and nonlinear stabilization. IEEE Trans. Automat. Control 49(9), 1585–1597
(2004)

9. Liberzon, D., Hespanha, J.P.: Stabilization of nonlinear systems with limited in-
formation feedback. IEEE Trans. Automat. Control 50(6), 910–915 (2005)

10. Hespanha, J.P., Ortega, A., Vasudevan, L.: Towards the control of linear systems
with minimum bit-rate. In: Proc. 15th Int. Symp. on Mathematical Theory of
Networks and Systems (MTNS) (2002)

11. Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Trans.
Automat. Control 49(7), 1056–1068 (2004)

12. Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feed-
back data rates. SIAM J. Control Optim. 43(2), 413–436 (2004)

13. Matveev, A.S., Savkin, A.V.: Stabilization of stochastic linear plants via limited
capacity stochasitc communication channel. In: Proc. 45th IEEE Conf. on Decision
and Control, pp. 484–489 (2006)

14. Liberzon, D., Nesic, D.: Input-to-state stabilization of linear systems with quan-
tized state measurements. IEEE Trans. Automat. Control 52(5), 767–781 (2007)

15. Sharon, Y., Liberzon, D.: Input-to-state stabilization with minimum number of
quantization regions. In: Proc. 46th IEEE Conf. on Decision and Control (2007)

16. Hespanha, J.P., Liberzon, D., Teel, A.R.: Lyapunov characterizations of input-to-
state stability for impulsive systems. Automatica (to appear)

Bisimilar Finite Abstractions of

Interconnected Systems

Yuichi Tazaki and Jun-ichi Imura

Tokyo Institute of Technology,
Ōokayama 2-12-1, Meguro, Tokyo, Japan
{tazaki, imura}@cyb.mei.titech.ac.jp

http://www.cyb.mei.titech.ac.jp

Abstract. This paper addresses the design of approximately bisimilar
finite abstractions of systems that are composed of the interconnection of
smaller subsystems. First, it is shown that the ordinary notion of approx-
imate bisimulation does not preserve the interconnection structure of the
concrete model. Next, a new definition of approximate bisimulation that
is compatible with interconnection is proposed. Based on this definition
of approximate bisimulation, the design of interconnection-compatible
finite abstractions of linear subsystems is discussed.

1 Introduction

Discrete abstractions simplify concrete continuous systems by cutting off the
details, while preserving the essential characteristics. Moreover, it reduces the
computational cost of numerical methods such as reachability analysis and con-
troller synthesis. During this decade, there have been a variety of researches
on this topic. Lafferriere et al [1] investigated a class of autonomous planar hy-
brid systems with finite bisimulations. Alur et al [2] presented algorithms for
reachability analysis of hybrid systems by combining the notion of predicate ab-
straction with polytopic approximation of reachable sets. Lunze [3] considered
continuous-time, continuous-state systems that can only be observed through
discrete events triggered when the state hits one of the boundaries placed on the
state space, and modeled the occurrence of discrete-event sequences as stochas-
tic automata. Tsumura [4] considered systems whose state is stored in a digital
memory and analyzed the relation between necessary bit-length to achieve a
certain bound on input-to-output approximation error, and systems properties
such as stability.

Recently, there has been several researches on finite-state abstractions using
the notion of approximate bisimulation [6], which is an extension of the classi-
cal bisimulation. Girard [7] derived a procedure for constructing approximately
bisimilar finite abstractions of stable discrete-time linear systems. Tabuada [8]
addressed a design of approximately similar finite abstractions of continuous-
time nonlinear dynamical systems under a certain stabilizability assumption.
Tazaki [12] discussed the application of approximate bisimilar abstractions to
optimal control problems.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 514–527, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cyb.mei.titech.ac.jp

Bisimilar Finite Abstractions of Interconnected Systems 515

To date, these approaches on discrete abstractions have been successful only to
systems of a relatively small size. This is mainly due to the fact that the number
of the state of discrete abstractions often grows exponentially with respect to the
state dimension of the concrete system. If one knows the internal interconnection
structure of a complex system, it is natural to take advantage of such knowl-
edge to reduce the complexity of the computation of the abstraction process and
that of the resultant abstraction itself. Tabuada et al [9] discussed the relation
between bisimulations and compositional operators in a general setting. They
showed that for a concrete system given by a composition of subsystems, there
exists a bisimilar abstraction that is expressed as a composition of bisimilar ab-
stractions of subsystems. Julius et al [11] addressed approximate syncronization
and showed that approximate (bi)simulation is preserved under approximate
syncronization. However, in the case of input-output interconnection, which is
a special class of composition, the interconnection structure of the concrete sys-
tem is not in general preserved in its abstraction. This means that, under the
conventional bisimulation, one cannot simply interconnect the abstractions of
subsystems to construct an abstraction of the original interconnected system.

In this research, motivated by the above background, we propose a new variant
of approximate bisimulation that is compatible with interconnected systems.
Furthermore, based on the proposed interconnection-compatible bisimulation,
the design of finite abstractions of linear subsystems is developed.

The rest of this paper is organized as follows. In Section 2, we define the basic
form of discrete-time dynamical systems treated in this paper, and the notion of
approximate simulation and approximate bisimulation on this class of systems.
In Section 3, after introducing the framework of input-output interconnected
systems, we show with a simple example that the ordinary approximate bisimu-
lation does not preserve the interconnection structure. To overcome this problem,
we propose a new notion of approximate bisimulation that is compatible with
interconnection. In Section 4 we discuss the finite abstraction problem of linear
subsystems, according to the definition of approximate bisimulation introduced
in Section 3. Section 5 concludes this paper with some remarks for future works.

Notation: The symbol [v1; v2; ...; vN] denotes the vertical concatenation of vec-
tors or that of matrices, which is equivalent to [vT

1 vT
2 . . . vT

N]T. Throughout the
paper, the symbol ‖ · ‖ denotes the 2-norm unless otherwise stated. Moreover,
the symbol ‖v‖M is defined as

√
vTMv . For matrices, ‖A‖ denotes the largest

singular value of A.

2 Approximate Simulations and Bisimulations of
Discrete-Time Dynamical Systems

In this section, we introduce the definition of approximate (bi)simulation on a
class of discrete-time dynamical systems. Let us first define the basic form of
discrete-time dynamical systems.

516 Y. Tazaki and J.-i. Imura

Definition 1. Discrete-time dynamical system
A discrete-time dynamical system (or simply a system) is a 5-tuple 〈X, U, Y, f, h〉,
where X ⊂ R

n is the set of states, U ⊂ R
m is the set of inputs, Y ⊂ R

l is the set
of outputs, f : X×U �→ X is the state transition function, and h : X×U �→ Y
is the measurement function. The state, input, and output of the system at time
t ∈ T = {0}∪N are expressed as xt ∈ X, ut ∈ U , and yt ∈ Y , respectively. The
state transition and the measurement at time t are expressed as

x(t + 1) = f(x(t), u(t)), (1)
y(t) = h(x(t), u(t)), (2)

respectively.

Throughout this paper, we use the symbol Σ〈X, U, Y, f, h〉 or simply Σ to express
a system. Let us introduce the notion of approximate simulation and approxi-
mate bisimulation on the class of systems just defined.

Definition 2. Approximate simulation of dynamical systems
Consider two systems Σ〈X, U, Y, f, h〉, Σ̂〈X̂, Û , Y, f̂ , ĥ〉 and positive constant ε.
A binary relation R ⊂ X×X̂ is called an ε-approximate simulation relation from
Σ to Σ̂ if and only if for every (x, x̂) ∈ R, the following holds:
for all u ∈ U , there exists a û ∈ Û such that

‖h(x, u) − ĥ(x̂, û)‖ ≤ ε, (3)

(f(x, u), f̂(x̂, û)) ∈ R. (4)

Moreover, if such an R exists, Σ̂ is said to be approximately similar to Σ with
respect to R and the precision ε.

Definition 3. Approximate bisimulation of dynamical systems
Consider two systems Σ〈X, U, Y, f, h〉, Σ̂〈X̂, Û , Y, f̂ , ĥ〉 and positive constant ε.
A binary relation R ⊂ X × X̂ is called an ε-approximate bisimulation relation
between Σ and Σ̂ if and only if R is an ε-approximate simulation relation from
Σ to Σ̂ and its inverse relation R−1 = {(x̂, x) | (x, x̂) ∈ R} is an ε-approximate
simulation relation from Σ̂ to Σ. Moreover, if such an R exists, Σ and Σ̂ are
said to be approximately bisimilar with respect to R and the precision ε, and this
relation is denoted by Σ ∼ε Σ̂.

The major difference between the above definitions and those introduced in the
literature (see [6], for example) is that the measurement variable of dynamical
systems depend not only on states but also on control inputs, and therefore the
definitions of approximate (bi)simulation are extended accordingly.

3 Approximate Bisimulation of Interconnected Systems

3.1 Expression of Interconnected Systems

This subsection introduces the general expression of interconnected systems
treated in this paper. Consider a complex system composed of N subsystems

Bisimilar Finite Abstractions of Interconnected Systems 517

(a) i-th subsystem of interconnected system. (b) Interconnection of two sub-systems.

Fig. 1. Schematics of interconnected system

interconnected with each other. The i-th subsystem is described as

Σi〈Xi, Ui, Yi, fi, hi〉.

Here, the input variable ui ∈ Ui and the output variable yi ∈ Yi are decomposed
into subvectors as shown below.

ui =
[
uext

i ; wi

]
, wi =

⎧
⎪⎨

⎪⎩

[
wi2; . . . ; wiN

]
(i = 1)

[
wi1; . . . ; wi,N−1

]
(i = N)

[
wi1; . . . ; wi,i−1; wi,i+1; . . . ; wiN

]
otherwise.

(5)

yi =
[
yext

i ; zi

]
, zi =

⎧
⎪⎨

⎪⎩

[
zi2; . . . ; ziN

]
(i = 1)

[
zi1; . . . ; zi,N−1

]
(i = N)

[
zi1; . . . ; zi,i−1; zi,i+1; . . . ; ziN

]
otherwise.

(6)

Each subsystem has two groups of input signals (uext
i and wi) and two groups

of output signals (yext
i and zi). The signals wi and zi are internal signals, used

to construct interconnections between other subsystems. On the other hand,
uext

i and yext
i are external signals, which compose, together with those of other

subsystems, the input/output interface of the whole interconnected system.
Here, for simplicity of discussion, we introduce the following assumption to

ensure that the interconnected system is well-posed.

Assumption 1. The internal output variables at time t, zi(t), are independent
of the internal input variables at time t, wi(t).
The measurement function is then decomposed as

yi =
[
yext

i

zi

]
=

[
hy

i (xi, u
ext
i , wi)

hz
i (xi, u

ext
i)

]
. (7)

We first define the parallel composition of two subsystems.

Definition 4. Parallel composition
Suppose two systems Σi〈Xi, Ui, Yi, fi, hi〉 (i = 1, 2) are given. The parallel com-
position of Σ1 and Σ2 is the system 〈X1 × X2, U1 × U2, Y1 × Y2, f1‖f2, h1‖h2〉

518 Y. Tazaki and J.-i. Imura

whose state transition function and measurement function are defined as follows.
[
x1

x2

]
(t + 1) = (f1‖f2)

([
x1

x2

]
(t),

[
u1

u2

]
(t)

)
=

[
f1(x1(t), u1(t))
f2(x2(t), u2(t))

]
,

y(t) = (h1‖h2)
([

x1

x2

]
(t),

[
u1

u2

]
(t)

)
=

[
h1(x1(t), u1(t))
h2(x2(t), u2(t))

]
.

(8)

We denote by Σ1‖Σ2 the parallel composition of Σ1 and Σ2. The parallel com-
position of more than two systems are defined recursively as follows.

Σ1‖Σ2‖ . . . ‖ΣN := Σ1‖(Σ2‖ . . . ‖ΣN). (9)

The interconnection of subsystems are obtained by imposing restrictions rep-
resenting the interconnections of the internal signals on their parallel com-
position.

Definition 5. Interconnection of subsystems
Suppose N subsystems Σi〈Xi, Ui, Yi, fi, hi〉 (i = 1, 2, . . . , N), whose input vec-
tors and output vectors are decomposed as in (5) and (6), respectively, are
given. Moreover, suppose the size of subvectors wij and zji matches for all
i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N}\{i}. The interconnection of Σ1, Σ2, . . . ,
and ΣN , denoted by I(Σ1, Σ2, . . . , ΣN), is defined as the parallel composition
Σ1‖Σ2‖ . . . ‖ΣN subject to the constraints

wij = zji (i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N}\{i}) (10)

and whose input and output variables are defined as

ū =
[
uext

1 ; uext
2 ; . . . ; uext

N

]
, ȳ =

[
yext

1 ; yext
2 ; . . . ; yext

N

]
. (11)

Fig. 1(a) illustrates the block diagram of the i-th subsystem, and Fig. 1(b) shows
the interconnected system with two subsystems.

3.2 Composition-Compatible Bisimulation

There are some important aspects that the abstractions of interconnected sys-
tems should be equipped with. First, it should preserve the interconnection struc-
ture of the original system. In addition, it is preferable if we could design the
abstraction separately for each subsystem. However, using the ordinary definition
of bisimulation, the interconnection of the bisimilar abstractions of subsystems
is not in general bisimilar with the original interconnected system. This can be
shown in the following simple example.

Let us consider two systems Σ1 and Σ2 connected in a cascade (Fig. 2(a)). We
denote by Σ̂i an abstraction of Σi, which is εi-approximately bisimilar to Σi with
the binary relation Ri. Our question is whether the cascade of the abstractions
(shown in Fig 2(b)) is approximately bisimilar to the cascade of the original
systems, under the notion of the conventional bisimulation.

Bisimilar Finite Abstractions of Interconnected Systems 519

(a) Cascade of subsystems. (b) Cascade of abstractions.

Fig. 2. Cascade of two subsystems

In the cascade of Σ1 and Σ2, the equality

y1 = u2 (12)

holds. In the cascade of Σ̂1 and Σ̂2, on the other hand, assuming that the inter-
connection is temporarily cut off, approximate bisimilarity implies that

‖yi − ŷi‖ ≤ εi (i = 1, 2)

hold for some ŷ1, ŷ2, û1 and û2. The equality constraint ŷ1 = û2 is in general
not met, unless ε1 = 0 (meaning that Σ̂1 is strictly similar to Σ1) and Σ̂2 = Σ2.
Thus, the conventional bisimulation is not compatible even with this simple
interconnection.

In the following, we propose a new variation of approximate bisimulation that
is compatible to interconnection operation.

Definition 6. Interconnection-compatible approximate simulation
Suppose subsystems Σi〈Xi, Ui, Yi, fi, hi〉, Σ̂i〈X̂i, Ûi, Ŷi, f̂i, ĥi〉, and a set of posi-
tive constants

εi = {εy
i , {εw

ij}j∈{1,...,N}\{i}, {εz
ij}j∈{1,...,N}\{i}} (13)

are given. A binary relation Ri ∈ Xi × X̂i is an interconnection-compatible (IC
in short) εi-approximate simulation relation from Σi to Σ̂i if and only if for
every (xi, x̂i) ∈ Ri, the following holds:
for all ui = [uext

i ; wi] (wi = [wi1; . . . ; wiN]), there exists a ûext
i that satisfies

the following two conditions.
1. For [zi1; . . . ; ziN] = hz

i (xi, u
ext
i) and [ẑi1; . . . ; ẑiN] = ĥz

i (x̂i, û
ext
i),

‖zij − ẑij‖ ≤ εz
ij (j ∈ {1, . . . , N}\{i}). (14)

2. For all ŵi = [ŵi1; . . . ; ŵiN] within the range ‖wij − ŵij‖ ≤ εw
ij,

‖hy
i (xi, u

ext
i , wi) − ĥy

i (x̂i, û
ext
i , ŵi)‖ ≤ εy

i (j ∈ {1, . . . , N}\{i}) (15)

and

(fi(xi, u
ext
i , wi), f̂i(x̂i, û

ext
i , ŵi)) ∈ Ri (16)

hold.

520 Y. Tazaki and J.-i. Imura

Definition 7. Interconnection-compatible approximate bisimulation
Suppose subsystems Σi〈Xi, Ui, Yi, fi, hi〉, Σ̂i〈X̂i, Ûi, Ŷi, f̂i, ĥi〉 and a set of posi-
tive constants εi defined as in (13) are given. A binary relation Ri ⊂ Xi × X̂i is
called an IC εi-approximate bisimulation relation between Σi and Σ̂i if and only
if Ri is an IC εi-approximate simulation relation from Σi to Σ̂i and its inverse
relation R−1

i is an IC εi-approximate simulation relation from Σ̂i to Σi. More-
over, if such an Ri exists, Σi and Σ̂i are said to be IC-approximately bisimilar
with respect to Ri and the precision εi, and this relation is denoted by Σi ∼I

εi
Σ̂i.

The major difference between the above definition and the ordinary approximate
bisimulation is that, the internal input signals ŵij are regarded as disturbances
rather than control inputs.

Remark 1. For systems without internal input signals, Definition 7 reduces to
the definition of ordinary approximate bisimulation with the output error bound
separately specified to yext

i and zijs. For systems without external input sig-
nals, Definition 7 becomes a bounded output error condition under bounded
disturbances.

The following theorem states that IC-approximately bisimilar abstractions are
actually compatible with interconnection.

Theorem 1. Suppose N subsystems Σi (i = 1, . . . , N) are given, and for each of
them, Σ̂i is an IC-approximately bisimilar abstraction with respect to the binary
relation Ri and the precision set εi. If the condition

εw
ij ≥ εz

ji (i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , N}\{i}) (17)

is satisfied, the two interconnected systems I(Σ1, . . . , ΣN) and I(Σ̂1, . . . , Σ̂N)
are approximately bisimilar (in the sense of Definition 3) with respect to the
relation

R = {((x1; x2; . . . ; xN), (x̂1; x̂2; . . . ; x̂N)) | (xi, x̂i) ∈ Ri (i = 1, 2, . . . , N)}
(18)

and the precision

ε =
∑

i

εy
i . (19)

The proof is given in Appendix A.
Now let us return to the previous cascade system example and make sure

that the cascade of abstractions based on Definition 7 is actually approximately
bisimilar to the original system. Suppose Σ1 ∼I

ε1
Σ̂1 with respect to the relation

R1 and Σ2 ∼I
ε2

Σ̂2 with respect to the relation R2, where ε1 = {εz
12}, ε2 =

{εy
2, ε

w
21}. For any uext

1 , there exists ûext
1 that satisfies ‖z12 − ẑ12‖ ≤ εz

12 (and
vice versa). Moreover, the condition ‖yext

2 − ŷext
2 ‖ ≤ εy

2 holds as long as the
condition ‖w21 − ŵ21‖ ≤ εw

21 is satisfied. Therefore, if the condition εw
21 ≥ εz

12

Bisimilar Finite Abstractions of Interconnected Systems 521

(a) Block diagram of Q(Σ) (b) State transition of Q(Σ)

Fig. 3. System with state quantizer

holds, the cascade of Σ̂1 and Σ̂2 is approximately bisimilar to the cascade of Σ1

and Σ2 with the precision ε = εy
2 .

In order to design the abstractions of subsystems that preserve approximate
bismilarity under interconnection, one should first divide the input-output sig-
nals into groups of those used for external interface and those used for inter-
connection, and then design the abstractions satisfying the conditions stated in
Theorem 1. Moreover, the precision parameter of each abstraction should be cho-
sen according to the condition (17). The proposed method enables us to design
the abstraction of each subsystem in a separate way by regarding errors on inter-
nal signals as disturbances. One should keep in mind, however, that this could
produce a conservative result compared to designing the abstraction by viewing
the original interconnected system as a whole, if such a method is available.

4 Finite Abstractions of Linear Subsystems

In the previous section, we have introduced the notion of interconnection-
compatible approximate bisimulation. As the next step, in this section we ad-
dress the design of approximately bisimilar finite abstractions of subsystems of
interconnected systems. The term finite abstraction refers to a finite state system
that approximates a continuous-state system.

4.1 Expression of Finite Abstractions Via State Quantization

One of the most important issues of the finite abstraction problem is about the
expression of finite automata. In the following, we propose a way of expressing
finite automata via state-quantization of continuous-state systems.

First of all, a quantization function is defined as follows.

Q : X �→ X . (20)

Here, the set X = {x1, . . . , xN} is a finite subset of X .
The following definition introduces the notion of finite automata induced by

the state-quantization of continuous-state systems.

522 Y. Tazaki and J.-i. Imura

Definition 8. Finite automata induced by state quantization
Consider a dynamical system Σ〈X, U, Y, f, h〉 and a quantization function Q :
X �→ X . The following system is called a finite automaton induced by the state
quantization of Σ, denoted by Q(Σ).

Q(Σ) :

{
x(t + 1) = Q(f(x(t), u(t)))
y(t) = h(x(t), u(t))

(x(0) ∈ X). (21)

The block diagram and the state transition of a Q(Σ) is illustrated in Fig. 3.
Notice that, in this state equation, the state transition is closed in X as long as
the initial state is chosen from X . To clarify this property, we define the subset
of the input set as

Uij = {u ∈ U |Q(f(xi, u)) = xj}, (22)

which refers to the set of control inputs that drives the state xi to xj . Note that
from the property of the quantization function Q, {Uij}j forms a partition of U
for each i. Using this notation, the state transition of Q(Σ) is rewritten as

x(t) = xi ∧ u(t) ∈ Uij ⇒ x(t + 1) = xj . (23)

In this way, the input set is also discretized as a class induced from the state
transition over finite states. Therefore, the partition of the input set is dependent
on the current state. This implicit fashion of the input discretization differs from
the other researches (like [7],[8]), where explicit input quantization or originally
discrete input systems are considered. Moreover, in the case that the measure-
ment function is a function of states only (written as h(x)), the state quantization
results in indirect quantization of the output set; i.e., Y �→ Y = {h(x) |x ∈ X}.

4.2 Approximate Bisimulation Condition of Finite Abstraction

In this subsection, we address the design of finite abstractions of linear subsys-
tems. Linear subsystems are expressed as follows.

Σi :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xi(t + 1) = Aixi(t) + Bu
i uext

i (t) +
∑

j∈{1,2,...,N}\{i}
Bw

ijwij ,

yext
i (t) = Cy

i xi(t) + Dyu
i uext

i (t) +
∑

j∈{1,2,...,N}\{i}
Dyw

ij wij ,

zij(t) = Cz
ijxi(t) (j ∈ {1, 2, . . . , N}\{i}).

(24)

We assume that the state set Xi of Σi is bounded. For systems of this form,
we express their abstractions as state-quantized systems Qi(Σi), defined in the
previous subsection. Then the problem of concern reduces to deriving a quanti-
zation function Qi whose resultant Qi(Σi) is IC-approximately bisimilar to Σi

with respect a binary relation Ri satisfying the condition.

For any x ∈ Xi, there exists a x̂ ∈ Xi such that (x, x̂) ∈ Ri, (25)

where Xi denotes the state set of Qi(Σi).

Bisimilar Finite Abstractions of Interconnected Systems 523

Remark 2. The condition (25) is necessary for applying bisimilar abstractions to
actual analysis and control problems, assuming that the initial state is arbitrarily
chosen from Xi. In [11], this condition is imposed in the definition of approximate
(bi)simulation.

Theorem 2. Interconnection-compatible approximately bisimilar finite abstrac-
tions of linear subsystems
Let Σi be an (Ai, B

u
i)-stabilizable discrete-time linear system defined by (24) and

let εi be a set of positive constants defined by (13). There exist a matrix Fi, a
positive definite matrix Mi and a constant λi ∈ (0, 1) satisfying the conditions

(Ai + Bu
i Fi)TMi(Ai + Bu

i Fi) ≤ λ2
i Mi, (26)

Mi ≥
1

(1 − λi)2α2
i

(Cy
i + Dyu

i Fi)T(Cy
i + Dyu

i Fi),

Mi ≥
1

(1 − λi)2εz
ij

2 (Cz
ij + Dzu

ij Fi)T(Cz
ij + Dzu

ij Fi) (j ∈ {1, 2, . . . , N}\{i})
(27)

where the constant αi is given by

αi := εy
i −

∑

j∈{1,2,...,N}\{i}
||Dyw

ij ||εw
ij . (28)

Furthermore, if αi and the constant defined as

βi := 1 −
∑

j∈{1,2,...,N}\{i}
||Bw

ij
TMiB

w
ij ||εw

ij (29)

are both positive, then for a quantization function Qi satisfying the condition

||xi − Qi(xi)||Mi ≤ βi ∀xi ∈ Xi, (30)

the systems Σi and Qi(Σi) are IC-approximately bisimilar with respect to the
precision εi and the relation

Ri = {(x, x̂) | ||x − x̂||Mi ≤ 1/(1 − λi)}, (31)

which satisfies (25).

A rough explanation of Theorem 2 is as follows: Bisimulation can be captured
as a tracking problem of two systems. If one system can track the other system’s
output trajectory with a constant error bound (say ε), then this system is simi-
lar to the other with the precision ε. Moreover, if both systems can track their
opponent’s trajectory, then they are bisimilar to each other. Therefore, in those
cases when both systems are linear, the problem can be viewed as the stabiliza-
tion problem of the error system, and in such cases, the bisimulation relation
is related to the invariant set of the error system. A detailed proof is given in
Appendix B.

524 Y. Tazaki and J.-i. Imura

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 10 20 30 40 50 60 70 80 90 100
−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

(a) Output response.

(b) Difference of the output trajectories

of I(Σ̂1, Σ2) and I(Σ1, Σ2).

Fig. 4. Output response of I(Σ̂1, Σ2) and I(Σ1, Σ2)

Finally, an explicit expression of the quantizer Qi satisfying the condition (30)
is given as follows.

Qi(x) =
(√

n

2
Ui

)−1 [(√
n

2
Ui

)
x

]
(32)

Here, the matrix Ui is given by UT
i Ui = Mi/β2

i , n is the size of x and [x] is the
rounding function, which maps each element of x to its nearest integer.

4.3 Example

This section shows a simple example. Consider an interconnected system com-
posed of two subsystems. The parameters of the subsystems are given as follows.

Σ1 :

⎧
⎪⎪⎨

⎪⎪⎩

x1(t + 1) =
[

1.0 0.1
−1.0 0.7

]
x1(t) +

[
0.0 0.0
1.0 0.1

] [
uext

1 (t)
w12

]

[
yext
1

z12

]
(t) =

[
1.0 0.0
0.0 0.1

]
x1(t)

Σ2 :

⎧
⎪⎨

⎪⎩

x2(t + 1) =
[

0.7 0.1
−1.0 0.5

]
x2(t) +

[
0.0
0.2

]
w21(t)

z21(t) =
[
0.0 0.2

]
x2(t)

Let us derive an abstraction of this system by first designing a finite abstrac-
tion of Σ1 only, and next making its interconnection with Σ2.

The following parameters are chosen to meet the conditions in Theorem 2.

εy
1 = 0.1, εz

12 = εw
21 = 0.1, εz

21 = εw
12 = 0.05

M1 =
[
2.3e3 2.2e2
2.2e2 4.3e1

]
, F1 =

[
−4.1 −1.2

]
, λ1 = 0.7

M2 =
[
1.6e3 1.6e2
1.6e2 1.9e2

]
, λ2 = 0.7

Bisimilar Finite Abstractions of Interconnected Systems 525

Substituting the above values of M1 and β1 = 0.97 to (32) we obtain the quan-
tizer Q1 and hence Σ̂1 = Q1(Σ1).

Fig. 4 shows the output response of the two systems I(Σ̂1, Σ2) and I(Σ1, Σ2).
The input signal

uext
1 (t) =

{
1.0 (t < 30)
0.0 (t ≥ 30)

is applied to I(Σ1, Σ2), and the input signal for I(Σ̂1, Σ2) is given by ûext
1 =

uext
1 (t)+F1(x̂1(t)−x1(t)). It is observed from the figure that the specified output

error bound is achieved.

5 Conclusion

In this paper we discussed the design of finite abstractions of interconnected sys-
tems. In a general setting of interconnected systems, we introduced an extended
notion of approximate bisimulation, which is compatible with interconnection.
This means that the abstractions of subsystems that are based on the presented
approximate bisimulation can be connected with each other to form an abstrac-
tions of the whole system. We have also presented a design procedure for the
finite abstraction of linear subsystems under this new notion of approximate
bisimulation. In future works, we should extend the class of subsystems whose
finite abstractions are computable.

References

1. Lafferriere, G., Pappas, G.J., Sastry, S.: Hybrid Systems with Finite Bisimulations.
In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) HS
1997. LNCS, vol. 1567, pp. 186–203. Springer, Heidelberg (1999)

2. Alur, R., Verimag, T.D., Ivančić, F.: Predicate Abstractions for Reachability Anal-
ysis of Hybrid Systems. ACM Trans. on Embedded Computing Systems 5(1), 152–
199 (2006)

3. Lunze, J.: A timed discrete-event abstraction of continuous-variable systems. In-
ternational Journal of Control 72(13), 1147–1164 (1999)

4. Tsumura, K.: Stabilization of Linear Systems by Bit-Memory Controllers under
Constraints of Bit-Length. In: 45th IEEE Conference on Decision and Control,
San Diego, CA, USA, pp. 5507–5512 (December 2006)

5. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

6. Girard, A., Pappas, G.J.: Approximation Metrics for Discrete and Continuous Sys-
tems. IEEE Transactions on Automatic Control 52(5), 782–798 (2007)

7. Girard, A.: Approximately Bisimilar Finite Abstractions of Stable Linear Systems.
In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416,
pp. 231–244. Springer, Heidelberg (2007)

8. Tabuada, P.: Approximate Simulation Relations and Finite Abstractions of Quan-
tized Control Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 529–542. Springer, Heidelberg (2007)

526 Y. Tazaki and J.-i. Imura

9. Tabuada, P., Pappas, G.J., Lima, P.: Composing Abstractions of Hybrid Systems.
In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 436–
450. Springer, Heidelberg (2002)

10. Tabuada, P., Pappas, G.J., Lima, P.: Compositional Abstractions of Hybrid Control
Systems. Discrete Event Dynamic Systems: Theory and Applications 14, 203–238
(2004)

11. Julius, A.A., Pappas, G.J.: Approximate Equivalence and Approximate Synchro-
nization of Metric Transition Systems. In: The Proc. 45th IEEE Conf. Decision
and Control, San Diego, USA (2006)

12. Tazaki, Y., Imura, J.: Finite Abstractions of Discrete-time Linear Systems and Its
Application to Optimal Control. In: 17th IFAC World Congress, Seoul, Korea (to
appear, 2008)

A Proof of Theorem 1

We only prove the approximate similarity from I(Σ1, . . . , ΣN) to I(Σ̂1, . . . , Σ̂N).
The opposite case is treated in the same manner. Suppose, for each i, the state
xi of the subsystem Σi and the state x̂i of its abstraction Σ̂i are in the relation
Ri. Moreover, suppose that the input ū = [uext

1 ; . . . ; uext
N] of I(Σ1, . . . , ΣN) is

arbitrarily chosen. Then, for each i, the internal output, internal input, external
output and state transition are subsequently determined as zi = hz

i (xi, u
ext
i),

wij = zji, yext
i = hy

i (xi, u
ext
i , wi), and x′

i = fi(xi, u
ext
i , wi). From the approxi-

mate bisimilarity of Σi and Σ̂i, there exists ¯̂u = [ûext
1 ; . . . ; ûext

N] satisfying (14)
and also, under the assumption

‖wij − ŵij‖ ≤ εw
ij , (33)

satisfying (15) and (16). From the condition (17), the assumption (33) is actually
fulfilled. Finally, it is straightforward from (15) that ‖ȳ − ˆ̄y‖ ≤ ε holds with ε
defined by (19).

�
B Proof of Theorem 2

From the stabilizability assumption, there exists a matrix Fi making the eigen-
values of (Ai +Bu

i Fi) strictly inside the unit circle and hence one can show that
Mi and λi satisfying (26),(27) exist by following the line of Proposition 3 in [6].
Let us denote the state, the input and the output of Qi(Σi) by x̂i, ûi and ŷi,
respectively. We first derive the condition for Qi(Σi) to be approximately similar
to Σi. Taking the difference of the state equations of Qi(Σi) and Σi, we obtain
the error system

ei(t + 1) = Aiei(t) + Bu
i δuext

i (t) +
∑

j∈{1,2,...,N}\{i}
Bw

ijδwij + di(t) (34)

Bisimilar Finite Abstractions of Interconnected Systems 527

where ei = x̂i − xi, δuext
i = ûext

i − uext
i , δwij = ŵij − wij and di is the

quantization error defined by di(t) = Qi(Aix̂i(t)+Biûi(t))−(Aix̂i(t)+Biûi(t)).
Here, we specify the control input ûext

i (t) as a function of xi(t), x̂i(t) and uext
i (t)

defined by ûext
i (t) = uext

i (t) + Fi(x̂i(t)−xi(t)) where Fi is a matrix making the
matrix (Ai + Bu

i Fi) asymptotically stable. Then the error dynamics is written
as

ei(t + 1) = (Ai + Bu
i Fi)ei(t) +

∑

j∈{1,2,...,N}\{i}
Bw

ijδwij(t) + di(t) (35)

and moreover, the following inequality holds.

‖ei(t + 1)‖Mi ≤ λi‖ei(t)‖Mi + 1 − βi + ‖di(t)‖Mi .

Here, Mi is the positive definite matrix satisfying (26),(27) and the constant βi

is defined by (29). From the condition ‖di(t)‖Mi ≤ βi, the set Ei defined as

Ei = {e | ‖e‖Mi ≤ 1/(1 − λi)} (36)

is an invariant set of the error system. Moreover, from (27) and (28), every
element e ∈ Ei satisfies the conditions

‖ŷext
i − yext

i ‖ ≤ ‖(Cy
i + Dyu

i Fi)e‖ +
∑

j∈{1,2,...,N}\{i}
‖Dyw

ij ‖εw
ij ≤ εy

i ,

‖ẑij − zij‖ = ‖(Cz
ij + Dz

ijFi)e‖ ≤ εz
ij (j = 1, . . . , N, j �= i).

Therefore it follows that the binary relation Ri defined as Ri = {(x, x̂) | (x̂ −
x) ∈ Ei}, which is written equivalently as (31), is an IC-approximate simulation
relation from Σi to Qi(Σi) with the precision εi.

In the opposite case, choosing the control input uext
i (t) as uext

i (t) = ûext
i (t)+

Fi(xi(t) − x̂i(t)) yields the same error system as (35). Therefore, the relation
(31) is an IC-approximate bisimulation relation between Σi and Qi(Σi).

�

On Controllability of

Timed Continuous Petri Nets

C. Renato Vázquez1, Antonio Ramı́rez2, Laura Recalde1, and Manuel Silva1,�

1 Dep. de Informática e Ingenieŕıa de Sistemas, Centro Politécnico Superior,
Universidad de Zaragoza, Maŕıa de Luna 1, E-50018 Zaragoza, Spain

{cvazquez,lrecalde,silva}@unizar.es
2 CINVESTAV-IPN Unidad Guadalajara, 45090 Guadalajara, Mexico

art@gdl.cinvestav.mx

Abstract. Continuous Petri Nets is a subclass of hybrid models repre-
senting relaxed views of discrete events systems, in which timing may
adopt different semantics. Even if no semantics is strictly superior, we
proved in [1] that for an important subclass of models infinite server
semantics provides always a better approximation of the underlying dis-
crete model than finite server. This paper then concentrates on control-
lability under this semantics. First we propose a notion of controllability
over subsets of the reachable polytope, and provide a necessary and suffi-
cient condition for markings with no null elements (interior points); later
the transformation of an arbitrary initial marking into an interior one is
done. The technically more involved part of the paper is the extension
of those results to the case in which some transitions are non control-
lable. An interesting point is that all characterizations depend only on
the structure and firing speeds of the timed continuous net.

1 Introduction

Petri Nets constitute a well-known paradigm useful to model discrete event sys-
tems. In many practical cases, an enumeration approach has to be used to verify
some properties of net models. Unfortunately, for highly marked systems, even
for bounded, the reachability graph can be so large that many properties cannot
be analyzed. This problem is known as the state explosion problem. Systems
that frequently appear in practice, for instance in manufacturing, telecommu-
nications, traffic or logistic, lead to Petri net models with many states. So, to
analyze such systems fluidification has been proposed.

Fluidification constitutes a relaxation technique to study discrete systems
through a ”similar” but continuous model. Using fluid models, more analytical
techniques can be used for the analysis of some interesting properties. In Petri
Nets, fluidification has been introduced from different perspectives ([2,3]). Here
we consider the approach adopted in [4]. In this work, timed continuous Petri net
(TCPN) models under infinite server semantics are considered. The continuous
model thus obtained is piecewise linear with bounded and nonnegative inputs.
� This work was partially supported by project CICYT and FEDER DPI2006-15390.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 528–541, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Controllability of Timed Continuous Petri Nets 529

In recent years, a lot of research has been done on controllability of switched
linear systems. For instance, [5] and [6] give sufficient and necessary conditions
for controllability of 3-dimensional systems and single switching sequence sys-
tems, respectively, but always under the assumption of unconstrained inputs.
Classic works ([7] and [8]) deal with controllability on linear systems (non piece-
wise) with bounded and nonnegative inputs, respectively. Camlibel [9] has ex-
tended the results of Brammer to a particular class of piecewise linear systems
known as linear complementary systems. In [10] optimal control of switched
piecewise affine autonomous systems is studied, assuming that the decision vari-
ables are the switching instants and the sequence of operating modes.

However, in timed continuous Petri net (TCPN) systems switching is not
controllable. Moreover, in [11] it is shown that these systems are not controllable
in the classical sense. In [12] it is proven that for Join Free Timed Continuous
Petri Nets there exists an invariant set, named Controllability Space (CS), in
which the system exhibits the controllability property, i.e. any state of CS is
reachable from any other state of CS. In that work, the set CS is characterized.

Here the study of controllability and reachability properties for general timed
continuous Petri nets under infinite server semantics is addressed. A controlla-
bility notion is presented for TCPN systems. It deals with the possibility that
the state evolves from any state, of a given set, to another; so it is an appropriate
adaptation of the classical controllability concept of linear continuous systems
(see [13]). Based on this controllability definition, a structural characterization
of controllable TCPN systems is obtained. It is worth to remark that this prop-
erty does not depend on the initial marking, but on the structure and timing of
the net as it is proved in the sequel.

This work is organized as follows: in Section 2 an overview of continuous and
timed continuous Petri nets is presented, while in Section 3, a concept of control-
lability is formally introduced. In Section 4, necessary and sufficient conditions
for controllability are given, under the hypothesis that all transitions are con-
trollable, while the controllability of systems with uncontrollable transitions is
studied in Section 5. Finally, some conclusions are presented in Section 6.

2 Basic Concepts

The structure N = 〈P, T,Pre,Post〉 of continuous Petri nets is the same as
the structure of discrete PN. That is, P is a finite set of places, T is a finite
set of transitions with P ∩ T = ∅, Pre and Post are |P | × |T | sized, natural
valued, pre- and post- incidence matrices. The main difference is in the evolu-
tion rule, since in continuous PN firing is not restricted to be done in integer
amounts, and so the marking is not forced to be integer. More precisely, a tran-
sition t is enabled at m iff for every p ∈ •t, m[p] > 0, and its enabling degree
is enab(t,m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t in a certain amount
α ≤ enab(t,m) leads to a new marking m′ = m+α ·C[P, t], where C = Post−
Pre is the token-flow matrix. Right and left rational annullers of C are called

530 C.R. Vázquez et al.

T- and P-flows, respectively. If there exists y > 0 (x > 0) such that y · C = 0
(C ·x = 0), the net is said to be conservative (consistent). A set of places Σ is a
siphon iff •Σ ⊆ Σ• (the set of input transitions is contained in the set of output
transitions). For reachability, as in [14], the limit concept is used, and a marking
reached in the limit of an infinitely long sequence is considered reachable.

For the timing interpretation we will use a first order (or deterministic) ap-
proximation of the discrete case ([4]). Hence, a Timed Continuous Petri Net
(TCPN) is a continuous PN together with a vector λ ∈ R

|T |
>0. Here infinite

server semantics is considered, thus the flow through a timed transition t is the
product of the speed, λ[t], and enab(t,m), the instantaneous enabling repre-
senting the number of active serves, i.e., f(m)[t] = λ[t] · enab(t,m) = λ[t] ·
minp∈•t{m[p]/Pre[p, t]} (see [1,4] for a more detailed study of the semantics
used in continuous PNs). For the flow to be well defined we will assume that
∀t ∈ T, |•t| ≥ 1. The “min” in the definition leads to the concept of configura-
tions : a configuration assigns to a transition one place that for some markings
will control its firing rate (i.e. it is constraining that transition). The number of
configurations is upper bounded by

∏
t∈T |•t|.

The flow through the transitions can be written in a vectorial form as f(m) =
ΛΠ(m)m (see [11]), where Λ is a diagonal matrix whose elements are those of
λ, and Π(m) is the configuration operator matrix, defined by elements as

Π(m)[i, j] =
{ 1

Pre[pj ,ti]
if pj is constrainting ti

0 otherwise

If more than one place is constrainting the flow of a transition at a given marking,
any of them can be used, but only one is taken.

Control action may only be a reduction of the flow through the transitions.
That is, transitions (machines for example) cannot work faster than their nom-
inal speed. Transitions in which a control action can be applied are called con-
trollable. The effective flow through a controllable transition can be represented
as: fi(τ) = λ(ti) · enab(τ) [ti] − u(τ)[ti], where 0 ≤ u(τ)[ti] ≤ λ(ti) · enab(τ)[ti].

The control vector u ∈ R
|T | is defined s.t. ui represents the control action on

ti. If ti is not controllable then ui = 0. The set of all controllable transitions is
denoted by Tc, and the set of uncontrollable transitions is Tnc = T − Tc.

The behavior of a TCPN forced system is described by the state equation:
•
m = CΛΠ(m)m − Cu

0 ≤ u ≤ ΛΠ(m)m
(1)

Given a marking trajectory, an input u(m) (as a function of m) such that
0 ≤ u(m) ≤ ΛΠ(m)m, and ∀ti ∈ Tnc ui = 0 along the marking trajectory, is
called suitably bounded. Notice that if an input is not suitably bounded for a
marking trajectory, then it cannot be applied in this. A marking m for which ∃u
suitably bounded such that C[ΛΠ(m)m−u] = 0 is called equilibrium marking.

Marking m2 is said to be reachable from m1 if there exists an input u that
transfers the marking from m1 to m2 in either finite or infinite time (lim-
reachable) and it is suitably bounded. A marking reachable from the initial

On Controllability of Timed Continuous Petri Nets 531

one is simply called reachable. The set of reachable markings can be defined
for autonomous continuous PN and TCPN systems [14]. In the sequel, the term
reachability always refer to timed systems.

3 Controllability Definition

If y is a P-flow, then for any reachable marking m, yT m = yT m0. So, whenever
a TCPN system has P-flows, linear dependencies between marking variables ap-
pear, introducing state invariants. So, systems with P-flows are not controllable
in the classical sense [11]. However, we are interested in the study of control-
lability “over” this invariant. In the sequel, we refer to this state invariant as
Class(m0), since it is the equivalence class of m0 under the relation β defined
as: m1βm2 iff By

T m1 = By
Tm2, where By is a basis of P-flows.

Notice that, for a general TCPN system, every reachable marking belongs
to Class(m0). The set Class(m0) can be divided into subsets of markings as-
sociated to the same configuration, which are named regions and are denoted
by �i = {m ∈ Class(m0)|Π(m) = Πi}. Notice that such regions are convex
sets, and inside each one, the state equation (1) is linear (Π(m) is constant).
In the sequel, let us denote by int(Class(m0)) and int(�i) the sets of interior
markings of Class(m0) and �i, respectively, considering the space generated by
the columns of C. Next, linear systems controllability definition is recalled [13].

Definition 1. A state equation is fully controllable if there exists an input such
that for any two states x1 and x2 of the state space, it is possible to transfer the
state from x1 to x2 in finite time.

Notice that this definition cannot be applied to TCPN systems because the set
of reachable markings never compose a vector space, as it is inside Class(m0).
Moreover, in TCPN systems the input must be suitably bounded (i.e. 0 ≤ u ≤
ΛΠ(m)m, ui = 0, ∀ti ∈ Tnc). Therefore, the following adaptation of the classical
controllability definition is proposed.

Definition 2. The TCPN system 〈N , λ,m0〉 is controllable with bounded input
(BIC) over S ⊆ Class(m0) if for any two markings m1,m2 ∈ S there exists an
input u12 that transfers the system from m1 to m2 in finite or infinite time, and
it is suitably bounded (i.e. 0 ≤ u12 ≤ ΛΠ(m)m, and ∀ti ∈ Tnc ui = 0 along the
marking trajectory). Furthermore, if S = Class(m0) then the system is said to
be fully controllable with bounded input (BIFC).

It is important to remark that controllability is a structural property. Even
when, under this definition, it is said that a system is controllable over some sub-
set of Class(m0), is the dynamical behavior of the system, which is determined
by the structure and timing, that makes the system be controllable or not.

4 The Case Where All Transitions Are Controllable

In [14] reachability is studied for untimed continuous Petri net systems. An
important result introduced in that paper is that a marking m is reachable iff

532 C.R. Vázquez et al.

∃σ ≥ 0 such that m = m0 + Cσ ≥ 0 and the transitions in the support of σ
are fireable. This result can be extended for TCPN in the following way [11]:

Proposition 1. Let 〈N , λ,m0〉 be a TCPN system in which Tc = T . A marking
m1 ∈ Class(m0) is reachable from m0 ∈ int(Class(m0)) iff ∃σ ≥ 0 such that
Cσ = (m1 − m0).

The following proposition gives a necessary and sufficient condition for control-
lability over the interior of Class(m0).

Proposition 2. Let 〈N , λ,m0〉 be a TCPN system, and let S be defined as
S = {m ∈ Class(m0)|m > 0}. The system 〈N , λ,m0〉 is BIC over S iff the net
is consistent.

Proof. Proposition 2 in [11] states that if the net is consistent then the system
is BIC over S. Now, for the other implication, consider any vector d ∈ span(C)
and a marking m1 ∈ S. Then, there exists a scalar β > 0 such that m1+βd ≥ 0.
Let m2 = m1 + βd, then m2 ∈ Class(m0). Since the system is BIC over the
interior of Class(m0), m2 is a particular solution of the fundamental equation,
so (m2 − m1) = βd = Cσ, where σ ≥ 0. Therefore, ∀d ∈ span(C), ∃σ such
that Cσ = d. Finally, it can be proved that this property implies that ∃x > 0
such that Cx = 0, i.e. the net is consistent. �
Notice that the condition for controllability (consistency) is purely structural.
Actually, the TCPN is BIC over the interior of Class(m0) iff the TCPN is BIC
over the interior of Class(m1), for every m1 ≥ 0. Next proposition gives a
condition to transfer the marking from the border of Class(m0) to its interior.

Proposition 3. Let 〈N , λ,m0〉 be a TCPN system. An input u, such that every
enabled transition is always fired, transfers the marking from m0 to some mf ,
where mf has not null elements, iff there are not empty siphons at m0.

Proof. If there exists an empty siphon then �u that transfers the marking to
some m > 0. Now, suppose that an input u such that for any enabled transition
tj , uj < [ΛΠ(m)m]j is being applied. If there exists a place pi that remains
unmarked for all time, then for each input transition tj to this place, it must
exists an input place pk to tj, which remains unmarked for all time. Repeating
this reasoning, it can be seen that pi belongs to an unmarked siphon. �
The following theorem introduces necessary and sufficient conditions for control-
lability over Class(m0). The proof is immediate from previous propositions.

Theorem 1. The TCPN system 〈N , λ,m0〉 is BIFC iff N is consistent and
there do not exist empty siphons at any marking in Class(m0).

Example 1. Consider the TCPN systems of Figure 1, where m0 = [1, 2, 3, 1]T ,
m1 = [2, 1, 3, 1]T and m2 = [1, 2, 1, 3]T . Since both systems have 2 P-semiflows,
only the marking of two places are needed to represent the whole state.

On Controllability of Timed Continuous Petri Nets 533

(a) (b)

Fig. 1. (a) TCPN that is not BIFC. (b) A BIFC TCPN system.

For the system in Figure 1(a), ∃σ ≥ 0 such that Cσ = (m1 − m0), but �σ ≥
0 such that Cσ = (m2 − m0), so, according to Proposition 1, m1 is reachable
but m2 is not. Therefore it is not BIFC. The same conclusion (i.e. the system is
not BIFC) can be obtained using Theorem 1. The shadowed area in Figure 1(a)
corresponds to the set of reachable markings, notice that it is the convex defined
by vectors C1 and C2, which represent the columns of C restricted to p1 and p3.
Now, consider the system of Figure 1(b). This system is consistent, so, according
to Proposition 2, it is BIC over the interior of Class(m0). Therefore m1 and m2

are reachable from m0. Moreover, since at the border markings of Class(m0)
there are not unmarked siphons, according to Theorem 1, the system is BIFC.

5 Controllability with Uncontrollable Transitions

The study of controllability with uncontrollable transitions is more complicated
than previous case. In this, consistency is no longer sufficient to guarantee con-
trollability over the interior of Class(m0). So, it is first necessary to define a
suitable set of markings, and then, study the controllability over it. In this work
only sets of equilibrium markings are considered, because they represent the
”stationary operating points” of the modeled system. The set of all equilibrium
markings is defined as:

EqS = {m ∈ Class(m0)|∃u suitably bounded such that C(ΛΠ(m)m−u) = 0}

Notice that if all transitions are controllable then EqS = Class(m0). The set of
all equilibrium markings in the i-th region is defined as Ei = {m|m ∈ EqS∩�i}.

In the sequel, the following notation is adopted. Let mq ∈ EqS. An equilibrium
input for mq is a vector uq such that C(ΛΠ(mq)mq −uq) = 0 and it is suitably

534 C.R. Vázquez et al.

Fig. 2. The set EqS, and subsets Ei, E
+
i and E∗

i

bounded. The equilibrium flow through the transitions for mq and uq is denoted
as wq, i.e. wq = ΛΠ(mq)mq − uq.

Example 2. Consider the system of figure 2 where Λ = I and Tc = {t1, t2}. There
exist two possible configurations: that in which t2 is constrained by p2, denoted
by C1, and the other in which t2 is constrained by p3, denoted by C2. �1 and �2

are the regions related to C1 and C2, respectively. The whole triangle with all its
edges and vertices corresponds to E1. Actually, in this example E1 = EqS and
E2 = ∅.

Since the system is linear inside each region, we will first investigate the
controllability over each Ei. For that, it is necessary to represent a given Ei in
a matrix form. The following definition introduces this representation.

Definition 3. Let 〈N , λ,m0〉 be a TCPN system. A Generator of Ei �= ∅ is a
full column rank matrix Gi with |P | rows, such that:

a) ∀m1,m2 ∈ Ei, the vector (m1 − m2) is in the range of Gi (i.e. it is a
linear combination of the columns of Gi).

b) Gi is minimal (if one of its columns is removed then a is false).

Notice that Gi is a kind of basis for Ei, but, formally speaking, Ei is not a vector
space, then, it does not have a basis.

Coming back to the system of figure 2, a generator of E1 is given by

G1 =
[

0.5, −0.5, 0.5, 0.5
−0.5, 0.5, 0.5, −0.5

]T

The restriction of the columns of G1 to the places p1 and p3 are represented in
figure 2 by vectors d1 and d2.

On Controllability of Timed Continuous Petri Nets 535

In order to deal with the variable boundedness of the input, controllability
is studied through the reachability over neighborhoods of equilibrium markings,
because the bounds of the input are almost constant in these. Let us detail this
idea. Consider again the system of figure 2. Let m1 be a marking in the interior
E1. The evolution of the system, taking m1 as the origin, is described by:

•
(m − m1) = CΛΠ(m − m1) − C(u − u1)

where (u − u1) is the new input. Since u1 is such that [ΛΠm1]j > u1j > 0 for
every tj ∈ Tc (m1 is in the interior of E1), then the entries of (u−u1), related to
the controllable transitions, can be settled as either negative or positive values, at
least at the markings in a small enough neighborhood of m1. So, the reachability
in such neighborhood can be studied through the classical Kalman’s reachability
condition (see [13]). However, the Kalman condition cannot be directly applied
for all equilibrium markings. Consider the marking mq, depicted in figure 2,
instead m1. The equilibrium input for this marking is uq = 0, so, the entries of
the input (u−uq) can only be settled as nonnegative values (to apply the Kalman
condition it is necessary that the input could take either positive or negative
values). Therefore, it is important to know at which markings and at which
entries the input can take negative values. For that, the following definitions are
introduced.

Definition 4. Let Tc be the set of controllable transitions. A transition tj ∈ Tc is
said to be fully controllable at Ei if there exists an equilibrium marking mq ∈ Ei

with an equilibrium input uq such that [ΛΠimq]j > uq
j > 0. In other case, tj is

said to be partially controllable. The set of fully (partially) controllable transitions
at Ei is denoted as T i

cf (T i
cp).

Definition 5. The subset of Ei, in which the equilibrium flow can be positive,
is defined as

E+
i = {mq ∈ Ei|∃uq such that wq > 0}

The subset of Ei, in which the equilibrium flow can be positive and the entries
of the input related to transitions T i

cf are positive, is defined as

E∗
i = {mq ∈ E+

i |∃uq such that uq
j > 0, ∀tj ∈ T i

cf}
Notice that ∀mq ∈ E+

i ∃uq such that uq
j < [ΛΠimq]j , ∀tj ∈ Tc. For all marking

mq ∈ E∗
i the input u, at a neighbor marking m, can be increased or decreased

with respect to uq, at those entries related to the transitions in T i
cf (i.e. fully

controllable transitions). On the other hand, the entries of u related to the tran-
sitions in T i

cp can only be increased with respect to uq (i.e. partially controllable).
For instance, the interior of the triangle in figure 2 corresponds to E∗

1 , while the
union of E∗

1 and the edges e1 and e2 (without the circled points) corresponds
to E+

1 . Furthermore, T 1
cf = Tc and T 1

cp = ∅. Therefore, for any marking in the
interior of the triangle (i.e. for any m1 ∈ E∗

1) the value of (u−u1) can be settled
as either positive or negative at those entries related to the transitions {t1, t2}
(i.e. T 1

cf).

536 C.R. Vázquez et al.

Remark 1. E∗
i , E+

i , Ei are convex sets, and E∗
i ⊆ E+

i ⊆ Ei. The markings of
{E+

i −E∗
i } are limit points, not interiors, of E∗

i (in the space generated by Gi).

In the sequel, let us denote as Cc, Ci
cf and Ci

cp the matrices built with the
columns of C related to the transitions that belong to Tc, T i

cf and T i
cp, respec-

tively. In the same way, denote with uc, ui
cf and ui

cp the vectors built with the
entries of u related to the transitions that belong to Tc, T i

cf and T i
cp, respectively.

In this way: Cu = Ccuc = Ci
cfu

i
cf + Ci

cpu
i
cp.

Now, we are ready to introduce the following theorem, which gives a sufficient
and necessary condition for controllability over a set E+

i .

Theorem 2. Let 〈N , λ,m0〉 be a TCPN system. Consider E+
i such that E+

i ∩
int(�i) �= ∅ and let Gi be a generator of it.

The system is BIC over E+
i , considering all marking trajectories in �i, iff

there exist an index k and a matrix b ≥ 0 such that

Contk
(
CΛΠi,

[−Ci
cf , Ci

cf , −Ci
cp

]) · b =
[
Gi, −Gi

]

where the matrix function Contk(A,B) =
[
B, AB, . . . AkB

]
.

The proof is large and to improve readability it is shown in the appendix. This
theorem also includes the result introduced in previous section, in which con-
sistency is sufficient to guarantee controllability over int(Class(m0)), where
Tc = T . This is easy to see noting that matrix

[−Ci
cf , Ci

cf , −Ci
cp

]
includes all

columns of the incidence matrix, and since the net is consistent, there always
exists b ≥ 0 that fulfills the condition (consider k = 0).

The condition of previous theorem could be difficult to check, since there is no
bound for the index k. Next corollary separates this condition into a necessary
and a sufficient conditions that can be checked in polynomial time.

Corollary 1. Let 〈N , λ,m0〉 be a TCPN system. Consider some E+
i such that

E+
i ∩ int(�i) �= ∅, as previously defined, and let Gi be a generator of it. Then:

1. If ∃b such that Cont|P |−1(CΛΠi,−Ci
cf)·b = Gi, then the system is control-

lable over E+
i . Furthermore, if T i

cf = Tc then it is also a necessary condition
for controllability over E+

i , considering all the marking trajectories in �i.
2. If �b such that Cont|P |−1(CΛΠi,−Cc) · b = Gi, then the system is not

controllable over E+
i , considering all marking trajectories in �i.

Proof. Statement 1). Suppose that ∃b such that Cont|P |−1(CΛΠi,−Ci
cf) · b =

Gi. Then, ∃b′ ≥ 0 such that Cont|P |−1(CΛΠi, [−Ci
cf ,Ci

cf])·b′ = [Gi,−Gi]. So,
according to Theorem 2, the system is BIC over E+

i . On the other hand, suppose
that Tc = T i

cf , so Ccf = Cc. If Gi is not in the range of Cont|P |−1(CΛΠi,−Ci
cf)

then it is not in the range of Cont|P |−1(CΛΠi,−Ci
c). This condition is equal to

that of statement 2).
Statement 2). Suppose that �b such that Cont|P |−1(CΛΠi,−Cc) · b = Gi,

then Gi is not in the range of Contk(CΛΠi, [−Ci
cf , Ci

cf , −Ci
cp]), for k = |P |−1,

and according to the Cayley-Hamilton theorem, Gi is not in the range for any
index k, so, the system is not BIC over E+

i (Theorem 2). �

On Controllability of Timed Continuous Petri Nets 537

Notice that previous corollary does not consider all possible cases, for that, next
proposition introduces an equivalent condition to that of Theorem 2.

Proposition 4. Suppose that all the coefficients of the characteristic polynomial
of a matrix A are nonnegative.

There exist k and Xk ≤ 0 such that Contk(A,B) · Xk = Y iff ∃X2n−1 ≤ 0
such that Cont2n−1(A,B) · X2n−1 = Y, where n is the order of A.

Proof. Let m be the number of columns of B. The sufficiency is obvious (just con-
sider k as 2n−1). Now, according to the Cayley-Hamilton theorem, Iα0+Aα1 +
... + Anαn = 0, where {α0, α1, ..., αn} are the coefficients of the characteristic
polynomial of A. Without lost of generality, suppose that αn = 1. Then, defining
â =

[
Iα0, Iα1, ..., Iαn−1

]T , it can be seen that Contn−1(A,B) · â = −AnB.

Actually, for every k ≥ 0, −An+kB = Contn+k−1(A,B) ·[0m×km, âT
]T , where

0m×km is a null matrix of order m× km. With this property, it is easy to prove
that every solution Xk for

Contk(A,B) · Xk = Y (2)

has the form

Xk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Xn−1

0
...
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Iα0 0 · · · 0
Iα1 Iα0 · · · 0
...

...
...

Iαn−1 Iαn−2 0
−I Iαn−1 · · · 0
0 −I · · · Iα0

...
...

...
0 0 · · · −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

γn

...
γk

⎤

⎥
⎦ (3)

where Xn−1 is any solution of equation (2) for k = n − 1, and
[
γ′

n · · · γ′
k

]T is
any column vector.

Now, suppose that for some k > 2n − 1 there exists X′
k ≤ 0 that fulfills

equation (2). Then, there exist X′
n−1 and

[
γ′

n · · · γ′
k

]T that fulfill equation (3)
(with Xk = X′

k). Since â ≥ 0 and X′
k ≤ 0, it is easy to see, following a backward

substitution reasoning in equation (3), that
[
γ′

n · · · γ′
k

]T ≥ 0. Then, considering

the equation (3) with k = 2n − 1, the values of X′
n−1 and

[
γ′

n · · · γ′
2n−1

]T ≥ 0
lead to a solution X′

2n−1 ≤ 0 for equation (2). �

Example 3. Consider the system of figure 3 with Tc = {t4}, λ1 = λ2 = λ3 = 1
and λ4 = 2. Four configurations are realizable in the net, those are characterized
by: C1 = {(t2, p2), (t3, p4)}, C2 = {(t2, p3), (t3, p4)}, C3 = {(t2, p2), (t3, p5)} and
C4 = {(t2, p3), (t3, p5)}, (the arcs (t1, p1) and (t4, p6) are also present in all the
configurations). Moreover, given the initial marking of this system, C2 cannot
occur. The lines inside the polytope correspond to set EqS. The markings in

538 C.R. Vázquez et al.

Fig. 3. TCPN system with its EqS. Transition t4 is the only controllable one.

the segments [m1,m2], [m2,m3] and [m3,m4] correspond to E1, E3 and E4,
respectively. For this system we have that T 1

cf = T 3
cf = T 4

cf = {t4}, and

G1 = [0, 0, 0, 0, −1/2, 1/2]T

G3 = [0, 0, −1, 1, 0, 0]T

G4 = [−1/3, 1/3, −1/3, 1/3, −1/3, 1/3]T

Since T i
cf = Tc for the three configurations, we can check for the condition

of Corollary 1 to investigate the controllability over each E+
i . In this case the

system fulfills that condition for the three E+
i , so, it is BIC over each one.

Now, consider the same system but with Λ = I. In this case, the sets E3

and E4 remain unchanged, and so G3 and G4, but E1 = {m2}. Also T 3
cf = ∅,

then we cannot apply corollary 1 in order to investigate the controllability
over E3, however, the coefficients of the characteristic polynomial of CΛΠ3 are
nonnegative, so we can use the Proposition 4, therefore the system is BIC over
E+

3 iff ∃b ≥ 0 such that Cont2|P |−1(CΛΠ3,−C3
cp) · b = [G3, −G3]. Since it

does not exists such vector, then the system is not BIC over E+
3 .

Finally, next proposition introduces sufficient conditions for controllability
over the union of sets of equilibrium markings of different regions.

Proposition 5. Let 〈N , λ,m0〉 be a TCPN system. Consider some equilibrium
sets E+

1 , E+
2 ,..., E+

j as defined above. If the system is BIC over each one and
their union (i.e.

⋃j
i=1 E+

i) is connected, then the system is BIC over the union.

Proof. Consider two of those sets E+
1 , E+

2 such that E+
1 ∩E+

2 �= ∅. Let mq be a
marking such that mq ∈ E+

1 ∩E+
2 . Since the system is controllable over E+

1 and
E+

2 , there exists a marking m2 ∈ E+
2 −E+

1 that is reachable, in finite time, from
another marking in m1 ∈ E+

1 −E+
2 , due to the fact that both are reachable from

On Controllability of Timed Continuous Petri Nets 539

mq, in finite time, and to the continuity of the flow function. Then, any marking
of E+

2 is reachable from any marking of E+
1 , via m1 and m2. Following a similar

reasoning, it can be concluded that the system is controllable over
⋃j

i=1 E+
i . �

Example 4. Consider the system of figure 3, where Tc = {t4}, λ1 = λ2 = λ3 = 1
and λ4 = 2. In the previous example it was shown that the system is controllable
over each E+

i . Now, since the union of E+
1 , E+

3 and E+
4 is connected, then,

according to Proposition 5, the system is BIC over E+
1 ∪E+

3 ∪E+
4 . Notice that,

the union of those sets is equal to EqS − {m4}.

6 Conclusions

This work addresses the controllability of timed continuous Petri Nets (TCPN)
from a structural point of view. The main contributions of this work are focused
in defining the controllability property and its characterization. For the case
where all transitions are controllable, a polynomial characterization of control-
lable TCPN systems is presented. For systems with uncontrollable transitions,
sufficient and necessary conditions for controllability, over subsets of equilibrium
markings, are introduced, and sufficient conditions for controllability, over the
union of those subsets, are given.

References

1. Mahulea, C., Recalde, L., Silva, M.: On performance monotonicity and basic servers
semantics of continuous Petri nets. In: 8th Int. Workshop on Discrete Event Sys-
tems WODES 2006, Ann Arbor, USA, pp. 345–351. IEEE Computer Society Press,
Los Alamitos (2006)

2. Alla, H., David, R.: Continuous and hybrid Petri nets. Journal of Circuits, Systems,
and Computers 8(1), 159–188 (1998)

3. Recalde, L., Teruel, E., Silva, M.: Autonomous continuous P/T systems. In: Do-
natelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 107–126. Springer,
Heidelberg (1999)

4. Silva, M., Recalde, L.: Petri nets and integrality relaxations: A view of continuous
Petri nets. IEEE Trans. on Systems, Man, and Cybernetics 32(4), 314–327 (2002)

5. Sun, Z., Zheng, D.: On stabilization of switched linear control systems. IEEE Trans.
on Automatic Control 46(2), 291–295 (2001)

6. Xie, G., Wang, L.: Controllability and stabilization of switched linear systems.
Systems and Control Letters 48(2), 135–155 (2002)

7. Sontag, E.: An algebraic approach to bounded controllability of linear systems. Int.
Journal of Control 39, 181–188 (1984)

8. Brammer, R.: Controllability in linear autonomous systems with positive con-
trollers. SIAM J. Control 10(2), 329–353 (1972)

9. Camlibel, M.: Popov-belevitch-hautus type controllability for linear complemen-
tary systems. IEEE Trans. on Software Engineering 56(5), 381–387 (2007)

10. Seatzu, C., Corona, D., Giua, A., Bemporad, A.: Optimal control of continuous-
time switched affine systems. IEEE Trans. on Automatic Control 51(5), 726–741
(2006)

540 C.R. Vázquez et al.

11. Mahulea, C., Ramirez-Trevino, A., Recalde, L., Silva, M.: Steady state control
reference and token conservation laws in continuous Petri net systems. IEEE Trans.
on Automation Science and Engineering (to appear, 2007)

12. Jiménez, E., Júlvez, J., Recalde, L., Silva, M.: On controllability of timed contin-
uous Petri net systems: the join free case. In: Proc. of the 44th IEEE Conf. on
Decision and Control (Joint CDC-ECC), Seville, Spain, pp. 7645–7650 (2005)

13. Chen, C.: Linear system theory and design. Oxford University Press, USA (1984)

14. Júlvez, J., Recalde, L., Silva, M.: On reachability in autonomous continuous Petri
net systems. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS,
vol. 2679, pp. 221–240. Springer, Heidelberg (2003)

Appendix: Proof of Theorem 2

Proof. If E∗
i = ∅ then consider the set E+

i instead of E∗
i . Consider an equilib-

rium marking (mq,uq), where mq ∈ E∗
i ∩ int(�i). The state equation for any

marking in �i can be expressed as:
•
m =

•
(m − mq) = CΛΠi(m−mq)−C(u−

uq). The solution of this state equation is given by:

m(τ) − mq = eCΛΠiτ (m0 − mq) −
∫ τ

0

eCΛΠiζC (u(τ − ζ) − uq) dζ (4)

Now, let us analyze the boundedness of the input. By definition of T i
cf , T i

cp

and mq, the input uq is such that [ΛΠimq]j > uq
j > 0 ∀tj ∈ T i

cf , uq
j = 0

∀tj ∈ T i
cp, and uj = 0 ∀tj ∈ Tnc. Then, at any marking of a small enough

neighborhood of mq the value of (u(τ − ζ) − uq)j can be settled as either pos-
itive or negative ∀tj ∈ T i

cf , as nonnegative ∀tj ∈ T i
cp, and zero ∀tj ∈ Tnc.

Furthermore, since mq ∈ E∗
i ∩ int(�i), it can be demonstrated that mq is

an interior point of this neighborhood, considering the space generated by the
columns of Contk (CΛΠi,Cc). Therefore, considering the notation previously
introduced, we can define column vectors u+ and u− such that Ci

cf (ui
cf −uqi

cf) =

[Ci
cf ,−Ci

cf]·[u+,u−]T where u+,u− ≥ 0. Then Cu = [Ci
cf ,−Ci

cf ,Ci
cp]u∗ where

u∗ = [u+,u−,
(
ui

cp − uqi
cp

)
]T ≥ 0 at any marking in a neighborhood of mq.

Considering m0 = mq and substituting previous equation into (4), we obtain:

m(τ) − mq = −
∫ τ

0

eCΛΠiζ
[
Ci

cf , −Ci
cf , Ci

cp

]
u∗(τ − ζ)dζ

Expanding the exponential matrix and reordering the terms:

m(τ) − mq =
[
I, (CΛΠi), (CΛΠi)2 ...

] ·

[−Ci
cf , Ci

cf , −Ci
cp

]

⎡

⎢
⎢
⎣

∫ τ

0 u∗(τ − ζ)dζ∫ τ

0 ζu∗(τ − ζ)dζ
∫ τ

0
ζ2

2 u∗(τ − ζ)dζ
:

⎤

⎥
⎥
⎦

(5)

On Controllability of Timed Continuous Petri Nets 541

Notice that the entries of the right side vector are linearly independent and non-
negative functions, for a small enough neighborhood of mq. Moreover, previous
equation constitutes a necessary and sufficient condition for reachability.

If the condition of this theorem is fulfilled then, by definition of Gi, for any
equilibrium marking mr in �i there exists br ≥ 0 such that

mr − mq =
[
I, (CΛΠi), (CΛΠi)2 . . .

] · [−Ci
cf , Ci

cf , −Ci
cp

]
br

The entries of br ≥ 0 could be as small as desired (just considering mr close
enough to mq), so, comparing this equation with (5), it can be concluded that
mr is reachable from mq. Then, there exists a neighborhood of mq in which
all equilibrium markings are reachable from mq. Finally, since E∗

i ∩ int(�i) is a
convex set and ∀mq ∈ E∗

i ∩ int(�i) there exists such reachable neighborhood,
in which mq is an interior point, then the set E∗

i ∩ int(�i) is covered by these
reachable neighborhoods and the system is BIC over E∗

i ∩ int(�i).
On the other hand, notice that at any marking in �i the input is such that

u∗ ≥ 0. So, if the condition asked for the theorem is not fulfilled, then ∃mr for
which �br ≥ 0 that fulfills previous equation, and according to equation (5),
there does not exist a marking trajectory from mq to mr in �i in which u∗ ≥ 0,
therefore, mr is not reachable from mq, considering all the marking trajectories
in �i and so, the system is not BIC over E∗

i .
Now, let us demonstrate that controllability over E∗

i ∩ int(�i) implies con-
trollability over E+

i . For this, suppose that the system is controllable over E∗
i ∩

int(�i). Consider any marking mr ∈ E+
i − (E∗

i ∩ int(�i)) and the markings
mq,mr′,mq′ ∈ E∗

i ∩int(�i), such that (mr−mq) = α(mr′−mq′) with α ∈ R>0.
Since the system is BIC over E∗

i ∩ int(�i), then ∃u′ that transfers the state
from mr′ to mq′. So, by linearly, an input u such that (u − uq) = α(u′ − uq′)
transfers the state from mr to mq (this is easy to prove by using equation (4)).
Actually, (m(τ) − mq) = α(m′(τ) − mq′), where m(τ) (m′(τ)) is the marking
at time τ if m0 = mq (m0 = mq′) and u (u′) is applied. So, choosing a suitable
trajectory for m′(τ) in E∗

i ∩ int(�i), we can make m(τ) stay always inside �i.
Since 0 ≤ u′ ≤ ΛΠim′ then −αuq′ ≤ α (u′ − uq′) ≤ α(ΛΠim′ − uq′). Now,
substituting u′ and m′ and arranging the terms, we obtain: (uq − αuq′) ≤ u ≤
ΛΠim− (wq −αwq′). Since wq > 0 and (uq′

j > 0 ⇒ uq
j > 0), then ∃α > 0 small

enough such that uq ≥ αuq′ and wq ≥ αwq′, so, 0 ≤ u ≤ ΛΠim, i.e. u is s.b..
Therefore, for any mr ∈ E+

i − (E∗
i ∩ int(�i)) there exists mq ∈ E∗

i ∩ int(�i)
reachable from mr. Furthermore, since the points of E+

i −(E∗
i ∩int(�i)) are limit

points of E+
i ∩int(�i), then every marking in E+

i −(E∗
i ∩int(�i)) can be reached

(at least in infinite time) from any marking in E∗
i ∩int(�i), following a trajectory

in E∗
i ∩ int(�i). So, the system is controllable over E+

i if it is controllable over
E∗

i ∩ int(�i). Finally, by definition, if the system is not controllable over E∗
i ∩

int(�i), considering all marking trajectories in �i, then it is not BIC over E+
i .

Parameter Synthesis for Piecewise Affine

Systems from Temporal Logic Specifications

Boyan Yordanov and Calin Belta�

Boston University, Boston MA
yordanov@bu.edu, cbelta@bu.edu

Abstract. In this paper, we consider discrete-time continuous-space
Piecewise Affine (PWA) systems with parameter uncertainties, and study
temporal logic properties of their trajectories. Specifically, given a PWA
system with polytopal parameter uncertainties, and a Linear Temporal
Logic (LTL) formula over linear predicates in the states of the system,
we attempt to find subsets of parameters guaranteeing the satisfaction
of the formula by all trajectories of the system. We illustrate our method
by applying it to a PWA model of a two-gene network.

Keywords: Piecewise Affine Systems, Formal Verification.

1 Introduction

Temporal logics and model checking [1] are customarily used for specifying and
verifying the correctness of digital circuits and computer programs. However, due
to their resemblance to natural language, expressivity, and existence of off-the-
shelf algorithms for model checking, temporal logics have the potential to impact
several other areas. Examples include analysis of systems with continuous dy-
namics [2], control of linear systems from temporal logic specifications [3,4], task
specification and controller synthesis in mobile robotics [5,6] and specification
and analysis of qualitative behavior of genetic circuits [7,8,9].

In this paper we focus on piecewise affine systems (PWA) that evolve along
different affine dynamics (in discrete time) in different polytopal regions of the
(continuous) state space. PWA systems are widely used as models in many areas,
including systems and synthetic biology, where they are particularly fitting for
describing gene circuits [8]. PWA systems are also attractive because of the
existence of tools for model identification [10]. Additionally, PWA systems are
quite general, since they can approximate nonlinear dynamics with arbitrary
accuracy [11], and are proven to be equivalent with several other classes of hybrid
systems [12]. Even so, a PWA system with fixed parameters might not provide
a good model of a real system. This is especially true for gene networks, where
processes depend on various, hard to control external factors such as temperature
and concentrations of chemicals not part of the system. To develop a model that
� This work is partially supported by NSF CAREER 0447721 and NSF 0410514 at

Boston University.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 542–555, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parameter Synthesis for Piecewise Affine Systems 543

can capture the rich behavior of systems under a range of conditions, a PWA
model with uncertain parameters can be used. For such models, the dynamics
in each region of the state space can take on parameters from a polytopal range.

A rich spectrum of properties of dynamical systems are naturally expressed in
Linear Temporal Logic (LTL) [1] formulas over linear predicates in the state vari-
ables. Examples include remaining within certain regions (invariance), getting to
certain target regions (reachability), or avoiding dangerous regions (safety). In
this paper, we consider a parameter synthesis problem: given a PWA system with
polytopal parameter uncertainties, and a Linear Temporal Logic (LTL) formula
over linear predicates in the states of the system, we attempt to find subsets of
parameters guaranteeing the satisfaction of the formula by all trajectories of the
system. Our approach is based on the construction of finite simulation quotients,
model checking, and use of counterexamples for determining ranges of allowed
parameters.

From a theoretical and computational point of view, this work can be seen
in the context of literature focused on the construction of finite quotients of
infinite systems (see [13] for a review), and is closely related to [14,3,4] and our
previous work on formal analysis of PWA systems with fixed parameters [15].
Unlike counterexample guided refinement [16], where violating trajectories of
the quotient are checked against the concrete model and, if spurious, removed
by refinement, we use counterexamples to remove a set of (possibly spurious)
violating transitions from the quotient. From an application point of view, this
paper relates to [8,17,18,19,9], where temporal logics are used to specify prop-
erties of biomolecular networks. These works analyze whether the trajectories
of a system satisfy a temporal logic formula. In contrast, we search parameter
sets guaranteeing the satisfaction of a formula. We implemented our method as
a software tool for parameter synthesis in PWA systems, which is freely down-
loadable from http://iasi.bu.edu/∼cbelta/software.htm.

2 Preliminaries

2.1 Transition Systems, Simulations, and Bisimulations

Definition 1. A transition system is a tuple T = (Q, Q0,→, Π, �), where Q is
a set of states, Q0 ⊆ Q is the set of initial states, →⊆ Q × Q is a transition
relation, Π is a finite set of atomic propositions, and �⊆ Q×Π is a satisfaction
relation.

A transition (q, q′) ∈→ is also denoted by q → q′. The transition system T is
called finite if its set of states Q is finite, and infinite otherwise. The transition
system T is called non-blocking if, for every state q ∈ Q, there exists q′ ∈ Q
such that (q, q′) ∈→ (i.e., the relation → is total). The transition system T is
called deterministic if, for all q ∈ Q, there exists at most one q′ ∈ Q such that
(q, q′) ∈→ (the case q = q′ is included in the definitions above).

For an arbitrary state q ∈ Q, we define Πq = {π ∈ Π | q � π}, Πq ∈ 2Π

as the set of all atomic propositions satisfied at q. A trajectory or run of T

http://iasi.bu.edu/~cbelta/software.htm

544 B. Yordanov and C. Belta

starting from q ∈ Q0 is an infinite sequence r = r(1)r(2)r(3) . . . with the property
that r(1) = q, r(i) ∈ Q, and (r(i), r(i + 1)) ∈→, for all i ≥ 1. A trajectory
r = r(1)r(2)r(3) . . . defines a word w = w(1)w(2)w(3) . . ., where w(i) = Πr(i).
The set of all words generated by the set of all trajectories starting at q ∈ Q0 is
called the language of T originating at q and is denoted by LT (q). The language
of the transition system T is defined as LT (Q0) or LT for simplicity.

A subset X of the state set Q (X ⊆ Q) is called a region of T . For an arbitrary
region X , we define the set of states Post(X) that can be reached from X in
one step as

Post(X) = {q′ ∈ Q | ∃q ∈ X, q → q′} (1)

and the set of states that can reach X in one step as

Pre(X) = {q′ ∈ Q | ∃q ∈ X, q′ → q} (2)

An equivalence relation ∼⊆ Q × Q over the state space of T is proposition
preserving if for all q1, q2 ∈ Q and all π ∈ Π , if q1 ∼ q2 and q1 � π, then q2 � π.
Among the several proposition preservation equivalence relations that can be
defined, propositional equivalence defined as q1 ∼ q2 if and only if Πq1 = Πq2

is of special interest. A proposition preserving equivalence relation naturally
induces a quotient transition system T/

∼
= (Q/

∼
, Q0/∼

,→
∼

, Π, �
∼
). Q/

∼
is the

quotient space (the set of all equivalence classes) and Q0/∼
= {X ∈ Q/

∼
| ∃q ∈

X such that q ∈ Q0} is the set of all initial equivalence classes. The transition
relation →

∼
is defined as follows: for X1, X2 ∈ Q/

∼
, X1 →

∼
X2 if and only if

there exist q1 ∈ X1 and q2 ∈ X2 such that q1 → q2. The satisfaction relation is
defined as follows: for X ∈ Q/

∼
, we have X �

∼
π if and only if there exist q ∈ X

such that q � π. It is easy to see that LT (X) ⊆ LT/
∼

(X), for any X ∈ Q0/∼

(with a slight abuse of notation, we use the same symbol X to denote both
a state of T/

∼
and the corresponding region of equivalent states of T). The

quotient transition system T/
∼

is said to simulate the original system T , which
is written as T/

∼
≥ T .

Definition 2. A proposition preserving equivalence relation ∼ is a bisimulation
of a transition system T = (Q, Q0,→, Π, �) if, for all states p, q ∈ Q, if p ∼ q
and p → p′, then there exist q′ ∈ Q such that q → q′ and p′ ∼ q′.

If ∼ is a bisimulation, then the quotient transition system T/
∼

is called a bisim-
ulation quotient of T , and the transition systems T and T/

∼
are called bisimilar,

denoted by T/
∼

∼= T . An immediate consequence of bisimulation is language
equivalence, i.e., LT (X) = LT/

∼

(X), for all X ∈ Q0/∼
.

2.2 Linear Temporal Logic and Model Checking

To specify temporal logic properties for trajectories of PWA systems, in this
paper we use Linear Temporal Logic [1]. Informally, the LTL formulas are recur-
sively defined over a set of atomic propositions Π , by using the standard Boolean
operators (e.g., ¬ (negation), ∨ (disjunction), ∧ (conjunction)) and temporal

Parameter Synthesis for Piecewise Affine Systems 545

operators, which include U (“until”), � (“always”), ♦ (“eventually”). LTL for-
mulas are interpreted over infinite words in 2Π , as are those generated by the
transition system T from Definition 1. If φ1 and φ2 are two LTL formulas over
Π , formula φ1Uφ2 intuitively means that (over some word) φ2 will eventually
become true and φ1 is true until this happens. For an LTL formula φ, formula
♦φ means that φ becomes eventually true, whereas �φ indicates that φ is true
at all positions of a word. More expressiveness can be achieved by combining the
mentioned operators. For example, ♦�φ means that φ will eventually become
true and then remain true forever, while �♦φ means that φ is true infinitely
often.

Given a finite transition system T = (Q, Q0 →, Π, �) and a formula φ over
Π , checking whether the words of T starting from a region X satisfy φ (written
as T (X) � φ) is called model checking [1]. If we denote by Lφ the set of all
words (language) satisfying φ, then model checking means deciding the language
inclusion LT (X) ⊆ Lφ. We also say that a transition system satisfies a formula
(T � φ) if and only if T (Q0) � φ.

If T/
∼

is a quotient of T , then for any equivalence class X ∈ Q0/∼
and

formula φ, we have:
T/

∼
(X) � φ ⇒ T (X) � φ. (3)

In addition, if ∼ is a bisimulation, then

T/
∼

(X) � φ ⇔ T (X) � φ (4)

Properties (3) and (4) allow one to model check finite quotients and extend
the results to the (possibly infinite) original transition system.

3 Problem Formulation

Let X ,Xl, l ∈ L be a set of open polytopes in R

N and Pl be a set of open
polytopes in R

(N2+N), where L is a finite index set, such that Xl1

⋂Xl2 = ∅ for
all l1, l2 ∈ L, l1 �= l2 and

⋃
l∈L cl(Xl) = cl(X), where cl(X) is the closure of X .

A discrete-time continuous-space piecewise affine (PWA) system Σ with poly-
topal parameter uncertainty is defined as:

Σ : xk+1 = A(p)xk +b(p), x0 ∈ Xin, xk ∈ Xl, p ∈ Pl, l ∈ L, k = 0, 1, , . . . (5)

where Xin ⊆ X is a set of initial conditions and Pl is the allowed set of parameters
in region l ∈ L. The linear functions A : R

(N2+N) → R

N×N and b : R

(N2+N) →
R

N×1 simply take the first N2 and the last N components of p ∈ R

(N2+N) and
form a N × N matrix and N × 1 vector, respectively.

X is assumed to be an invariant for the trajectories of Σ under all values of
the parameters. We are interested in studying properties of trajectories of system
(5) specified in terms of a set of linear predicates of the form

Π = {πi |πi : aT
i x + bi < 0, i = 1, . . . , K}, (6)

546 B. Yordanov and C. Belta

where x, ai ∈ R

N and bi ∈ R, i = 1, . . . , K. Without loss of generality, we assume
that the set of initial states Xin from the definition of the PWA system (5) is a
union of polytopes from the set of polytopes determined by the regions Xl and
the linear predicates from Π (if this is not the case, more linear predicates can
be added to Π in Equation (6)).

Informally, the semantics of system (5) can be understood in the following
sense: a trajectory x0x1x2 . . . of the system can be obtained by selecting an
initial condition x0 ∈ Xin, finding an l ∈ L, such that x0 ∈ Xl, selecting a
parameter p ∈ Pl, applying the affine map of Equation (5) and repeating this
procedure for each subsequent step. A trajectory produces a word w0w1w2 . . .,
where each wi ∈ 2Π lists the propositions from Π which are satisfied by xi.
Then, such words can be checked against satisfaction of LTL formula φ over
Π . A formal definition is given in Section 4 through an embedding transition
system. We consider the following problem:

Problem 1. Given a PWA system (Equation (5)) and an LTL formula φ over a
set of linear predicates Π (Equation (6)), find sets of parameters such that all the
trajectories of the system satisfy the formula, under all identified parameters.

In other words, we are interested in excluding parameters from the allowed sets
for each region, for which the formula is not satisfied. As it will become clear
later, for each region l ∈ L, the solution will be in the form of a union of disjoint
open subpolytopes of the allowed polytope Pl.

To provide a solution to Problem 1, we first embed the PWA system (5) into
an infinite transition system Te. By using the equivalence classes induced by the
predicates from (6), we then construct a finite overapproximation quotient tran-
sition system Te/∼

whose language includes the language of Te (see Section 4).
We then use model checking to cut transitions from Te/∼

(see Section 5.1) and,
correspondingly, sets of parameters from (5) (see Section 5.2), until all its tra-
jectories satisfy the formula. Alternatively, in Section 6, we propose a method
for the direct construction of a bisimulation quotient. In both approaches, our
method is conservative, as it will become clear later.

Remark 1. There are several simplifying assumptions that we make in the for-
mulation of Problem 1. First, we assume that the polytope X is an invariant
for all trajectories of (5). However, this assumption is not restrictive, since X
can be assumed large enough to contain all possible state values in a particular
process. Second, we assume that the predicates in Equation (6) are given over
strict inequalities, and only the reachability of open full dimensional polytopes
is captured in the semantics of the embedding and of the quotients1. However,
this seems to be enough for practical purposes, since only sets of measure zero
are disregarded, and it is unreasonable to assume that equality constraints can
be detected in a real world application.

1 Throughout the rest of the paper, unless clearly specified, we refer to an “open
polytope” simply as “polytope.”

Parameter Synthesis for Piecewise Affine Systems 547

4 Construction of Finite Quotients

To formally define the satisfaction of a formula φ over Π by the PWA system
(5), we embed it into a transition system:

Definition 3. An embedding transition system for (5) and the set of predicates
Π can be defined as Te = (Qe, Q0e,→e, Πe, �e), where

– Qe =
⋃

l∈L Xl,
– Q0e = Xin,
– (x, x′) ∈→e if and only if there exist l ∈ L, x ∈ Xl and p ∈ Pl such that

x′ = A(p)x + b(p),
– Πe = L

⋃
Π,

– �e is defined as follows: if π = l ∈ L, then x �e π if and only if x ∈ Xl; if
π = πi ∈ Π, then x �e π if and only if aT

i x + bi < 0,

Definition 4. Given a subset X ⊆ Q0e, we say that all trajectories of system
(5) originating in X satisfy formula φ if and only if Te(X) satisfies φ (as defined
in Section 2.1).

The embedding transition system Te has infinitely many states and cannot be
model checked directly. Given a polytopal, proposition preserving equivalence
relation ∼ on Qe, one can try to construct (and model check) the quotient
transition system Te/∼

= {Qe/∼
, Q0e/∼

,→e∼
, Πe, �e} (see Section 2.1). The

construction of the states Qe/∼
and initial states Q0e/∼

amounts to checking
the non-emptiness of polyhedral sets and intersections of polyhedral sets, respec-
tively. Satisfaction of each state is induced directly from the equivalence relation.
If the Post() (or Pre()) operator can be computed, transitions in the quotient
can be assigned as follows: (Xi, Xj) ∈→e∼

if and only if Post(Xi) ∩ Xj �= ∅ (or
Pre(Xj) ∩ Xi �= ∅).

In our previous work [15], we focused on PWA systems with fixed parameters
(i.e., Pl in Equation (5) were singletons), and showed that for the propositional
equivalence relation ∼, the quotient Te/∼

can be efficiently constructed, based
on the computation of the Pre() operator, which was a polyhedral set. Moreover,
we showed that all the steps in the “bisimulation algorithm” for the iterative
construction of simulation quotients leading to the coarsest bisimulation quotient
[20,21] (if one exists) are implementable.

Under parameter uncertainty, Te/∼
cannot always be constructed, since in

general, there are no algorithms capable of exact computations of Pre() or Post()
operators. In fact, it can be proven that when parameters are allowed to vary in
polyhedral sets, both operators might return a non-convex set even when applied
to a polyhedral set [22].

If we denote by Poste() the “Post()” operator of the embedding transition
system Te, then from Equation (1) and Definition 3, for an arbitrary polytope
X ⊆ Xl, l ∈ L we have

Poste(X) = {x′ ∈ R

N | ∃p ∈ Pl, ∃x ∈ X such that x′ = A(p)x + b(p)} (7)

548 B. Yordanov and C. Belta

Proposition 1. A polyhedral overapproximation of Poste(X) is given by

Poste(X) = Conv{A(w)v + b(w), w ∈ V(Pl), v ∈ V(X)} (8)

where V(X) and V(Pl) denote the sets of vertices of X and Pl, respectively.

Proof. See http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

Similarly to [23], we use the smallest convex set containing Poste() as an over-
approximation. Although a precise distance between the real set and its overap-
proximation has not been determined, it has been established through extensive
simulation that in general, the volume of Poste() is not significantly increased
by the approximation.

By using Poste(X) instead of the regular Poste() operator, transitions in
an overapproximation quotient can be efficiently obtained as described for the
general case.

Formally, if ∼ is the propositional equivalence relation, the overapproximation
quotient can be given as Te/∼

= {Qe/∼
, Q0e/∼

,→e∼
, Πe, �e}, where →e∼

⊆
→e∼

. This implies that
LTe ⊆ LTe/

∼

⊆ LTe/
∼

(9)

and therefore the overapproximation quotient simulates the exact quotient and
the embedding system. As a result, model checking can be performed on the
overapproximation quotient and satisfaction of a formula can be extended to the
embedding.

5 Counterexample Guided Parameter Synthesis

In Section 4 we showed that an overapproximation quotient Te/∼
can be con-

structed, and all operations involved are computable. In this section, we propose
to use LTL model checking to “cut” transitions from Te/∼

until we obtain a

transition system Te/∼

φ
satisfying the formula. Then we go back to the initial

system (5) and remove parameter values such that the language of the new em-

bedding transition system is included in the language of Te/∼

φ
, which guarantees

the satisfaction of the formula by the PWA system (5).

5.1 Construction of Satisfying Quotients

Using our LTL model checker described in [4], we start by searching for a shortest
run2 of Te/∼

satisfying the negation of the formula ¬φ. If such a run exists, then
we eliminate it by removing one of its transitions. Then we reiterate the process
until we obtain the transition system Te/∼

φ
satisfying φ.

2 A standard representation of an infinite run includes finite prefix and suffix, where
the suffix is repeated an infinite number of times. The length of a run is defined as
the sum of the lengths of the prefix and suffix.

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf

Parameter Synthesis for Piecewise Affine Systems 549

Since, in general, several different transitions are taken during the generation
of a counterexample, removing any one of them will remove the counterexample
from the language of the quotient. It is impossible to determine which transition’s
removal will lead to a solution (or to the best solution when more than one
exists). Therefore, in this paper, we exhaustively generate all solutions. This
process can be seen as generating a tree, having the initial finite quotient as
its root. Each child node in the tree represents a quotient that has the same
set of states as the parent, but only a subset of its transitions. The children for
each node are generated by removing one different transition, appearing in the
shortest counterexample, from the parent.

When transitions are removed, a state of the quotient might become blocking,
resulting in the appearance of finite words in its language. Since the semantics
of LTL are defined only over infinite ω-words, we make all blocking states un-
reachable by removing all their incoming transitions. It is also possible that one
or more of the initial states become blocking, in which case we ignore the corre-
sponding quotient (further removal of transitions will not lead to a solution).

A leaf node in the tree represents a quotient for which computation stopped,
since no additional counterexamples can be generated. The quotients represented
by such nodes satisfy the LTL formula, since their languages are nonempty (all
initial states are non-blocking), do not contain finite words (no blocking states
are reachable), and have an empty set of counterexamples.

5.2 Parameter Synthesis

The finite quotient Te/∼
is constructed so that it captures all possible transitions

of the embedding Te. By Definition 3, transitions are included in the embedding if
and only if appropriate parameters for such a transition are allowed. Therefore,
we can relate the transitions present in the finite quotient to sets of allowed
parameters for the PWA system.

Definition 5. Given two polytopes X and Y in R

N , the set of parameters
PX �→Y , for which the image of X does not have an intersection with Y , is defined
as:

PX �→Y = {p ∈ R

(N2+N) | A(p)x + b(p) �∈ Y for all x ∈ X} (10)

Proposition 2. Let X and Y be polytopes in R

N given in V-representation as
X = Conv{v1, . . . vm} and H-representation as Y = {x ∈ R

N | cT
i x+di < 0, i =

1, . . . , n}, respectively. Then,

PX �→Y =
n⋃

i=1

{p ∈ R

(N2+N) | cT
i (A(p)vj + b(p)) + di > 0, for all j = 1, . . . , m}

is an underapproximation of PX �→Y (i.e., PX �→Y ⊆ PX �→Y)

Proof. See http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf

550 B. Yordanov and C. Belta

In other words, a conservative underapproximation PX �→Y of PX �→Y can be
obtained as the union of polyhedral sets from the V-representation of X and the
H-representation of Y .

We use the underapproximation from Proposition 2 to find sets of parameters
for each region l ∈ L, such that, for each node of the tree described in Section 5.1,
the corresponding PWA system is simulated by the quotient transition system
at that node. Specifically, for two polytopes X ⊆ Xl and Y , if the parameters
in region l ∈ L are restricted to the set Pl ∩ PX �→Y , then, by Proposition 2, the
transition x →e y will not appear in the embedding Te, for any x ∈ X and y ∈ Y .
This means that, in the corresponding quotient, the transition X →e∼

Y will
not exist. As already stated, we cannot compute Te/∼

. However, by restricting
the parameters as described above, we can ensure that, at every node of the
tree constructed in Section 5.1, the PWA system with restricted parameters is
simulated by the quotient transition system at that node. As previously stated,
the leaf nodes of the computation tree contain quotients satisfying the formula
and their corresponding PWA systems provide a solution to Problem 1.

Because of the overapproximation used in the construction of the quotient,
a spurious transition might appear in place of a deleted one ((X, Y) ∈ →e∼

but (X, Y) �∈→e∼). We prevent this by enforcing that a deleted transition never
reappears in the quotient. Additionally, the structure of PWA systems allows
different polytopes (determined by the set of linear predicates) to share the same
sets of parameters, and therefore, it is possible that other transitions are removed
from the quotient besides the target one. To account for this, we reconstruct the
quotient every time parameters are cut. If, during the removal of parameters, a
set Pl becomes empty, then we embed all polytopes from region l ∈ L as blocking
states, and make them unreachable.

Given only the purely discrete problem of modifying a quotient to satisfy
a formula by taking a subset of its transitions, our approach is guaranteed to
terminate, finding a solution when one exists, as it is exhaustive and follows a tree
of size limited by the total number of transitions in the initial quotient. In the
combined problem of transition and parameter removal, computation will still
terminate but a potential solution might be missed due to the approximations.
If a solution is found, however, it is guaranteed to be correct.

Going back to the tree construction from Section 5.1, in general, our algo-
rithm will produce more than one solution (each leaf corresponds to a satisfying
transition system). Selecting the ”best” solution is a non-trivial problem, and
might depend on the application. For example, it is possible to introduce ad-
ditional constraints (such as requiring that a particular transition is present in
the solution) or compare total number of transitions of the solutions, since more
reachable states from the initial one with more transitions result in a richer
language. In the case study presented at the end of this paper, we chose the
latter.

Our solution to Problem 1 is summarized in Algorithm 1.. In order to prevent
unnecessary computation, we first check the system from each initial state. If
there exists an initial state from which the negation of the formula is satisfied,

Parameter Synthesis for Piecewise Affine Systems 551

then there are no satisfying trajectories originating there, so a solution will not
be found by refining the transitions (and corresponding parameters). As stated
earlier, the algorithm is guaranteed to terminate, as its execution follows at tree
of finite size.

Algorithm 1. Obtain subsets of parameters for a PWA system Σin such that
an LTL formula φ is satisfied.

Tsat = ∅;
Construct Te/∼

from the initial PWA system Σin;
for each X ∈ Q0e/∼

do
if Te/∼

(X) � ¬φ then
return ∅;

end if
end for
Tall = {(Σin, Te/∼

)};
while Tall �= ∅ do

for each pair (Σ, T) ∈ Tall do
Tall = Tall \ (Σ, T);
generate the shortest counter-example c for T and formula φ;
if c = ∅ and LT �= ∅ then

add (Σ, T) to Tsat;
else

for each transition X → Y of counterexample c do
Find Xl such that X ⊆ Xl;
Construct Σ′ from Σ by setting P ′

l = Pl ∩ P X �→Y ;
Reconstruct quotient T ′ from Σ′ and ensure no previously removed transi-
tions reappear;
Make blocking states of T ′ unreachable
if initial states in T ′ are non-blocking then

add (Σ′, T ′) to {Tall}
end if

end for
end if

end for
end while
return {Tsat};

Both the number of states and transitions in the embedding Te/∼
contribute

to the complexity of Algorithm 1.. A high dimensional system with many regions
of different dynamics and propositions would be embedded with a high number
of states. This, together with the complexity of the LTL formula affects the time
required to perform model checking on the system. The number of transitions
in the original embedding, on the other hand, depends on the dynamics of the
system and determines how many times model checking must be performed,
since the execution of the algorithm follows a finite tree described in Section 5.1.
As a result, Algorithm 1. can perform well even on high dimensional systems, as
long as the total number of transitions is low.

552 B. Yordanov and C. Belta

6 Construction of Bisimulation Quotients

In this section we show that if the parameters of the PWA system (Equation (5))
are restricted to appropriate subsets, an exact finite bisimulation quotient can be
constructed without extensive iterative computation. Subsequently, satisfiability
of an LTL formula by the original PWA system can be proven if model checking
this quotient with the negation of the formula produces a counterexample. Of
course, by limiting the sets of parameters, certain transitions might disappear
from the system and, therefore, the richness of its language might be diminished.

Definition 6. Given two polytopes X and Y in R

N , the set of parameters for
which the image of X is completely included in Y is defined as:

PX→Y = {p ∈ R

(N2+N) | A(p)x + b(p) ∈ Y for all x ∈ X} (11)

Proposition 3. Let X and Y be polytopes in R

N given in the V-representation
as X = Conv{v1, . . . vm} and in the H-representation as Y = {x ∈ R

N | cT
i x +

di < 0, i = 1, . . . , n}, respectively. Then

PX→Y = {p ∈ R

(N2+N) | cT
i (A(p)vj +b(p))+di < 0, i = 1, . . . , n, j = 1, . . . , m}

Proof. See http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

In other words, the polyhedral set of parameters PX→Y can be computed im-
mediately from the V-representation of X and the H-representation of Y .

Proposition 4. If in each location l ∈ L, the parameters of the PWA system
(5), are restricted to Pl∩(

⋃
i∈L PXl→Xi), then the propositional equivalence quo-

tient Te/∼
is a bisimulation quotient, and it is computable.

Proof. The proof for bisimulation follows immediately from Definitions 2, 3 and
Proposition 3. On the computation of the quotient, the equivalence classes are
computed as above, and a transition (X, Y) ∈→e∼

exists if and only if X ⊆ Xl

and Pl ∩ PX→Y �= ∅.

7 Analysis of a Genetic Toggle Switch

We illustrate the proposed method by analyzing the genetic network shown in
Figure 1 (A). The system is described by a two dimensional discrete time PWA
model, using ramp functions to represent gene regulation. A ramp function is
defined by two threshold values, which induce three regions of different dynamics.
At low concentrations of repressor (below threshold 1) the regulated gene is fully
expressed, while at high repressor concentrations (above threshold 2) expression
is only basal. For concentrations between the two thresholds expression is graded.
Since there are two repressors, two ramp functions are used and, therefore, the
system has a total of nine rectangular invariants. We use L = {1, 2, . . . , 9} as a

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf

Parameter Synthesis for Piecewise Affine Systems 553

A

B

Fig. 1. (A) A genetic switch consisting of two mutual repressors. High levels of one of
the products shut down the expression of the other gene. (B) Invariants of the system
determined by ramp functions, describing gene regulation.

set of labels and {X1, . . . ,X9} and {P1, . . . ,P9} to denote the invariants (Figure 1
(B)) and parameters of the system, respectively.

We are interested in analyzing the behavior of the system when it is initialized
with low concentrations of both genes. To specify this, we introduce two propo-
sitions Π = {π1, π2}, where π1 = {x1 − 10 < 0} and π2 = {x2 − 10 < 0} and we
set Xin as the region where both predicates are satisfied (Xin = X1 in Figure 2
(A)). We assume hyper-rectangular parameter sets and, by using Proposition 3,
we restrict the parameters for each region l ∈ L to subsets of PXl→X , ensuring
that X is an invariant. The parameter ranges of the system for all regions are
available at http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

First, we apply the method outlined in Section 6 in order to modify the pa-
rameters of the system and obtain a bisimulation quotient directly. The param-
eter ranges, computed by the algorithm, are available at http://iasi.bu.edu/
∼yordanov/papers/HSCC2008full.pdf and the resulting bisimulation quotient
is shown in Figure 2 (A). As expected, some transitions of the system are lost
when parameters are restricted to smaller sets, but a lot of its behavior is cap-
tured by the quotient. Due to the language equivalence with the initial PWA
system, inherent to the bisimulation quotient, it could provide an useful tool for
the analysis of the system.

Next, we apply the approach of Section 5.2 and find subsets of the param-
eters for each region of the system, such that the property ”eventually gene 2
is expressed in high concentrations, while gene 1 is expressed only basally” is
always satisfied. For this, we use the same initial PWA model as before. Dur-
ing the execution of Algorithm 1. a number of transitions are removed from
the quotient by removing appropriate sets of parameters of the system. The
quotient corresponding to a solution, obtained as a leaf node in the compu-
tation tree (see Section 5.2) is shown in Figure 2 (B). Regions of parame-
ters for the PWA system obtained as a solution to problem 1 are available at
http://iasi.bu.edu/∼yordanov/papers/HSCC2008full.pdf.

http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf
http://iasi.bu.edu/~yordanov/papers/HSCC2008full.pdf

554 B. Yordanov and C. Belta

A B

Fig. 2. (A) Graphical representations of the bisimulation quotient obtained from the
PWA model. (B) Satisfying simulation quotient. Only transitions for reachable states
are shown. Transitions shown in red were eliminated by the algorithm.

8 Conclusion

We showed that an iterative procedure can be used to efficiently obtain subsets of
parameters for a PWA system, such that an LTL formula is satisfied. Our method
relied on the computation of finite overapproximation simulation quotients and
generation of counterexamples. Additionally, we described an approach for the
synthesis of parameters, such that a bisimulation quotient can be constructed
for the system without extensive computation. We applied our methods to a
PWA model of a genetic switch and in the future plan to focus on models of
gene networks constructed from experimental data.

References

1. Clarke, E.M., Peled, D., Grumberg, O.: Model checking. MIT Press, Cambridge
(1999)

2. Davoren, J., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal
logics for general flow systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 280–295. Springer, Heidelberg (2004)

3. Tabuada, P., Pappas, G.: Model checking LTL over controllable linear systems is
decidable. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, Springer,
Heidelberg (2003)

4. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems
from LTL specifications. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 333–347. Springer, Heidelberg (2006)

5. Loizou, S.G., Kyriakopoulos, K.J.: Automatic synthesis of multiagent motion tasks
based on LTL specifications. In: 43rd IEEE Conference on Decision and Control
(2004)

6. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Hybrid controllers for path plan-
ning: a temporal logic approach. In: Proceedings of the 2005 IEEE Conference on
Decision and Control (2005)

Parameter Synthesis for Piecewise Affine Systems 555

7. Antoniotti, M., Park, F., Policriti, A., Ugel, N., Mishra, B.: Foundations of a query
and simulation system for the modeling of biochemical and biological processes.
In: Proceedings of the Pacific Symposium on Biocomputing, pp. 116–127 (2003)

8. Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schnei-
der, D.: Validation of qualitative models of genetic regulatory networks by model
checking: Analysis of the nutritional stress response in Escherichia coli. Bioinfor-
matics 21(Suppl. 1), i19–i28 (2005)

9. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with
parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)

10. Juloski, A.L., Heemels, W., Ferrari-Trecate, G., Vidal, R., Paoletti, S., Niessen,
J.: Comparison of four procedures for the identification of hybrid systems. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 354–369. Springer,
Heidelberg (2005)

11. Lin, J.N., Unbehauen, R.: Canonical piecewise-linear approximaions. IEEE Trans-
actions on Circuits and Systems - I: Fundamental Theory and Applications 39(8),
697–699 (1992)

12. Heemels, W.P.M.H., Schutter, B.D., Bemporad, A.: Equivalence of hybrid dynam-
ical models. Automatica 37(7), 1085–1091 (2001)

13. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proceedings of the IEEE 88, 971–984 (2000)

14. Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
15. Yordanov, B., Batt, G., Belta, C.: Model checking discrete-time piecewise affine

systems: application to gene networks. In: European Control Conference (2007)
16. Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald,

M.: Abstraction and counterexample-guided refinement in model checking of hybrid
systems. International Journal of Foundations of Computer Science 14(4), 583–604
(2003)

17. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to
biological regulatory networks: Extending Thomas’ asynchronous logical approach
with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)

18. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling
and querying biomolecular interaction networks. Theoretical Comp. Science 325(1),
25–44 (2004)

19. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway logic: Exe-
cutable models of biological networks. Electronic Notes in Theoretical Computer
Science 71 (2002)

20. Bouajjani, A., Fernandez, J.C., Halbwachs, N.: Minimal model generation. In:
Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer,
Heidelberg (1991)

21. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite-state processes, and three
problems of equivalence. Inform. Computat. 86, 43–68 (1990)

22. Habets, L.: Personal communication. Eindhoven University of Technology (2007)
23. Barmish, B.R., Sankaran, J.: The propagation of parametric uncertainty via poly-

topes. IEEE Transactions on automatic control 24, 346–349 (1979)

Necessary Conditions for the Impulsive

Time-Optimal Control of Finite-Dimensional
Lagrangian Systems

Kerim Yunt

Swiss Federal Institute of Technology, Center of Mechanics
Tannenstr. 3, 8092 Zurich, Switzerland

Abstract. In this work, necessary conditions for the impulsive time-
optimal control of finite-dimensional Lagrangian systems are stated.
The conditions are obtained by the application sub-differential calculus
techniques to extended-valued lower semi-continuous functionals. The
considered functional is a generalized Bolza functional that is evaluated
on multiple intervals. Contrary to the approach in literature so far,
the instant of possibly impulsive transition is considered as an instant
of Lebesgue measure zero. This approach is in comparison to other
impulsive necessary conditions consistent with different hybrid system
modeling methods in which transitions happen instantaneously. The
necessary conditions provide necessary criteria for the determination of
optimal transition times and locations.

Keywords: Impulsive Optimal Control, Impactive Systems, non-smooth
analysis, hybrid, variational inequalities.

1 Introduction

The optimal control of finite-dimensional Lagrangian systems with discontin-
uous states is a recently investigated area. An impact in mechanics is defined
as a discontinuity in the generalized velocities of a Lagrangian system which is
induced by impulsive forces, therefore optimal control of such impulsive systems
inevitably encompasses optimal control with discontinuous states. In this work,
necessary conditions for the impulsive time-optimal control of finite-dimensional
scleronomic Lagrangian systems is studied. The relation between time-optimal
control and impulsive control is emphasized, because in the philosophy of time-
optimal control, it is taken advantage of any excessive control action in order to
attain the goal and impulsive control action is the utmost excessive control action
that can be applied to a dynamical system, since impulsive control forces can
grow to infinity on a single time instant. The underlying Lagrangian structure
includes the important class of rigid-body multi-body systems.

An introduction to impacts in rigid-body mechanics can be found in [11], and
a literature survey on Lagrangian impactive systems is provided in [3]. The dy-
namics and modeling of discontinuities in Lagrangian dynamics is extensively

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 556–569, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Necessary Conditions for the Impulsive Time-Optimal Control 557

treated in [7], [8], [9], [10]. The control of hybrid Lagrangian systems is an active
research area and some references include [24], [26], [27], [28], [29], [30], [31] and
[32]. In this work, it is assumed that the instant of discontinuity is reduced to an
instant with Lebesgue measure zero, instead of taking an interval opening ap-
proach, which is the approach considered in literature so far. In the approaches
provided in reference such as [1], [13] and [22], the impulsive control problem is
transformed into a problem of an ordinary differential inclusion problem, which
requires to determine trajectories for the ”discontinuous” states during the ”im-
pulsive” control action. In [12], impulses arising from unilateral constraints are
considered but again in the framework of interval-opening approach and trans-
formation technique. The instantaneous transition approach is in comparison to
other impulsive necessary conditions consistent with different common hybrid
system modeling methods in which transitions happen instantaneously such as
in [2]. The smooth dynamics of a finite-dimensional Lagrangian system is char-
acterized in every interval of motion (an interval being the time period between
two transition times) by a different differential equation system, in general; de-
pending on the ”free” directions of motion, that is discretely being handled by a
structure-varying controller. Another issue therefore is the representation of the
Lagrangian dynamics in different modes and is discussed in section (3).

2 Preliminaries

2.1 Internal Boundary Variations and Discontinuous Transversality
Conditions

Impulsive optimal control requires to seek extremizing arcs in the space of
bounded variation functions BV. Every function x : [t0, t1] → R

n of bounded
variation is associated with an R

n-valued regular Borel measure dx on [t0, t1].
The atoms for dx occur only at discontinuities of x, of which there are at most
countably many. Trajectories of bounded variation in R

n are defined to be an
equivalence class, and the space of all arcs is denoted by BV. The space of abso-
lutely continuous arcs AC is a subspace of BV. There are uniquely determined
functions x+(t) and x−(t) in [t0, t1] → R

n, right and left continuous respectively,
such that x+(t) = x−(t) = x(t) at all the non-atomic points, and at the end
points x−(t0) = x(t0) and x+(tf) = x(tf) are valid. Therefore, a further classifica-
tion of x ∈ BV is to subdivide these functions into left-continuous bounded vari-
ation (LCBV) and right-continuous bounded variation (RCBV) functions. The
absolutely continuous part of the measure dx is denoted by ẋ dt. The singular
part of dx, can be represented as (dx

dσ) dσ, where dσ is some nonnegative singular
measure (a regular Borel measure), and dx

dσ is the Radon-Nikodym derivative of
dx with respect to dσ, which is also denoted as x′. A good overview on the topic
of treatment of functions of bounded variation in time is provided in [15].

A transition with a discontinuity in the state can be regarded as an internal
boundary in the domain of interest. A time instant of Lebesgue measure zero is
considered as a transition time ti ∈ IT if one of the two events occure together
or for itself:

558 K. Yunt

– Event 1. Some directions of motion of the system are opened or closed by
the control strategy, which entails a change in the degrees of freedom (DOF)
of the system.

– Event 2. An impulsive control action is exerted on the system, which may
be accompanied by a discontinuity of the generalized velocities of the La-
grangian system.

The concurrence of both events where some directions of motion are closed is
called ”blocking”. In the time-optimal control of dynamical systems one has to
consider the variations in the end time. In the classical calculus of variations
where the final state and final time are free, the variations of the final state are
composed of two parts, namely, the part that arises of the variations at a given
time and the part arising from variations due to final time. Since the transitions
times are assumed to be free, the two-part character of the variations at pre- and
post-transition states is considered. The assumptions during a possibly impactive
transition are given as follows:

Hypotheses 1

– The transitions may be impactively.
– The generalized position remain unchanged during transition.
– The impulsive control action acts on the system at a time instant ti which

is Lebesgue-negligible.
– At a possibly impactive transition, the pre-transition controller configuration

is assumed to be effective.
– There are no transitions at initial time t0 and final time tf .

The above stated assumptions are converted into requirements to the varia-
tions at the internal boundaries. At the boundaries of the time domain, the
pre-transition state variations are considered separately from the post-transition
variations. In impact mechanics, the generalized accelerations and velocities are
eligible to become discontinuous where as the generalized positions are of abso-
lutely continuous character. The absolute continuity of the generalized positions
means that the total variation of the generalized positions at the pre-transition
and post-transition instants are equal. The pre-transition and post-transition
variations are interrelated by the transition conditions which can be seen as
the bases of transversality conditions that join two trajectories discontinuously.
The transition conditions are introduced symmetrically with respect to pre-,
and post-transition states. The transition conditions are of two types, namely,
the impact equations and the constitutive impact laws. The impact equations
relate the discontinuity in the impulse of the Lagrangian system to the im-
pulsive forces/controls. The impact law (.i.e. the moreau-newton impact law),
however, is a constitutive law which is chosen depending on the modeling ap-
proach preferred. As a case study, in reference [27] the blocking of some DOF of
an underactuated manipulator by tangential fully-inelastic impact is discussed
and the necessary conditions are stated.

Necessary Conditions for the Impulsive Time-Optimal Control 559

2.2 The Generalized Problem of Bolza

By the application of subdifferential calculus techniques to extended-valued lower
semi-continuous functionals, necessary conditions are obtained. In publications
of R. T. Rockafellar such [18] and [19] a summary of the rules in subdifferential
calculus are provided, which is one of the most flourishing branches of mathe-
matics. Consider a problem in Bolza form (GPB), in which the objective is to
choose an absolutely continuous arc x ∈ AC in order to minimize

J(x) = l(x(a),x(b)) +
∫ b

a

L(t,x(t), ẋ(t)) dt . (1)

where the function L : [a, b]×R
n×R

n → R∪{+∞} is L×B measurable. Here L×B
denotes the σ-algebra of subsets of [a, b]×R

n generated by product sets M×N ,
where M is a Lebesgue measurable subset of [a, b] and N is a Borel subset of R

2n.
For each t ∈ [a, b], the function l and L are lower semi-continuous on R

n × R
n,

with values in R ∪ {+∞}. For each (t,x) in [a, b] × R
n, the function L(t,x, ·) is

convex and l represents the endpoint cost. GPB concerns the minimization of a
functional whose form is identical to that in the classical calculus of variations.
The endpoint cost l and the integrand L are allowed to take the value +∞, so that
a variety of endpoint and differential constraints can be treated. An important
class of optimal control problems constrain the derivative of an admissible arc
and they can be stated as the following Mayer problem (M):

min{l(x(a),x(b)) : ẋ(t) ∈ F(t,x(t)) a.e. t ∈ [a, b]}. (2)

The problem (M) can be seen as minimizing the Bolza functional J over all arc
x. To cover the Mayer problem, it suffices to choose:

L(t,x,v) = ΨF(t,x)(v) =
{

0, v ∈ F(t,x) ,
+∞ .

(3)

The function ΨC is the indicator function of the set C. It is evident that for any
arc x, one has

∫ b

a

L(t,x(t), ẋ(t)) dt =
{

0, ẋ(t) ∈ F(t,x) a.e. t ∈ [a, b],
+∞ .

(4)

The Mayer type variational problem can arise from a typical dynamic constraint
in controls with a control state-pair (τ ,x) such as

ẋ(t) = f(t,x(t), τ (t)), τ (t) ∈ Cτ a.e. t ∈ [a, b] . (5)

If a control state-pair (τ ,x) satisfies equation (5), then

ẋ(t) ∈ F(t,x) := {v|v = f(t,x(t), τ (t)) : τ (t) ∈ Cτ a.e. t ∈ [a, b]} (6)

certainly also does (well-known theorem of Fillipov).
In order to guarantee the well-behaving of F and l let following hypotheses

hold:

Hypotheses 2. An arc x̄ : [a, b] → R
n is given. On some relatively open subset

Ω ⊆ [a, b] × R
n containing the graph of x̄, the following statements hold:

560 K. Yunt

– The multifunction F is L×B measurable on Ω. For each (t,x) in Ω, the set
F(t,x) is nonempty, compact and convex.

– There are nonnegative integrable functions k(t) and Φ(t) on [a, b] such that
1. F(t,x) ⊆ Φ(t)B for all x in Ωt, almost everywhere, and
2. F(t,x) ⊆ F(t,x) + k(t)|y − x|cl B for all x,y ∈ Ωt, almost everywhere.

– The endpoint cost function l is Lipschitz on Ωa×Ωb, with Lipschitz constant
Kl.

where Ωt is given by Ωt = {x ∈ R
n | (t,x) ∈ Ω} for each t ∈ [a, b]\{ti} ∈ IT and

B is the unit ball. It is assumed that conditions of hypotheses (1) are fulfilled
for the Lebesgue-measurable part of the Lagrangian dynamics in the ”almost
everywhere” sense. By the way Ωt is defined, the instants of the discontinuity
are excluded. The symbols ∂f(x) and ∂f∞(x) stand for the sets of limiting
proximal subgradients and singular limiting proximal subgradients associated
with an extended-valued function f at a point x such that f(x) is finite and
the epigraph of f is locally closed near (x, f(x)). Given a closed set C, the set
of limiting proximal normals associated with C at a point s ∈ C is denoted by
NC(s). The indicator function exhibits following property:

NC(s) = ∂ΨC(s) = ∂Ψ∞
C (s) . (7)

Having set the stage, the necessary conditions for the impulsive optimal control
problem of finite-dimensional Lagrangian systems is formally derived by consid-
ering a problem in GPB, in which the objective is to choose an arc x ∈ BV in
order to minimize:

J(x) =
N∑

i=1

li(x(t−i+1),x(t+i)) +
∫ t−i+1

t+i

Li(s,x(s), ẋ(s)) sds . (8)

Here it is assumed that the control horizon is composed of N different phases,
which are separated from eachother by N −1 possibly discontinuous transitions.
The theory at hand treats optimal solutions as solutions of multipoint bound-
ary value problems (MBVP) with discontinuous transitions in the state. In this
setting, the prespecification of the mode sequence and number of intervals must
be given in advance.

3 Projected Newton-Euler Equations (PNE) in Impulsive
Control Form

The PNE equations are first treated in [7] for uncontrolled rigid-body mechanical
systems. The interaction of the mechanical system with the surroundings as well
as the control actions imposed on the system necessitates to allow discontinuity
events in the velocities and accelerations of the system. The PNE equations
have to be supplemented with some force laws that relate the external forces f
and controls τ with the system’s state (q,u). The existence of the generalized
velocities u and accelerations u̇ jointly on intervals is limited to the instants

Necessary Conditions for the Impulsive Time-Optimal Control 561

where u and τ are continuous. Because of the set of discontinuity points {ti} ∈ IT

of u and discontinuities in the controls τ , where u̇ does not exist, the PNE
equations are stated in the following form:

M(q)u̇ − h(q,u) = f + B(q) τ , a.e. . (9)

Here M is the symmetric and positive definite generalized mass matrix de-
pending smoothly on the generalized positions q, and h is a smooth function
of q,u containing the gyroscopical, coriolis, centripedal accelerations of the La-
grangian system, as well as all smooth finite forces such as spring and damping
forces. The linear operator B(q) includes the generalized directions of control
forces. In order to investigate the discontinuity points of the velocities u and
accelerations u̇ properly, equation (9) is replaced by the corresponding equality
of measures in the sense of [16]:

M(q) du − h(q,u) dt = dR + B(q) dΓ , (10)

where it has been introduced for uncontrolled rigid-body mechanical systems.
This form of representation of the projected Newton-Euler equations has wider
range of validity such that it is valid ”everywhere” instead of ” almost every-
where”. For the force measure dR following decomposition is valid:

dR = f dt + F′ dσ , (11)

such that f and F′ represent Lebesgue-measurable and Borel-measurable forces,
respectively. The Radon-Nykodym derivative of dR with respect to dσ is given
by F′. Similarly the differential measure of controls is decomposed as:

dΓ = τ dt + ζ′ dσ . (12)

Here τ and ζ′ represent the Lebesgue-measurable and Borel-measurable controls,
respectively. Here, the Radon-Nykodym derivative of dΓ with respect to dσ is
given by ζ′. The substitution of (11) into (10) along with du = u̇ dt + π′ dσ
reveals:

M(q) u̇ dt + M(q)π′ dσ − h(q,u) dt = (f + B(q) τ) dt +
(
F′ + B(q) ζ ′) dσ .

(13)
Here π′ denotes the Radon-Nykodym derivative of the differential measure of
generalized velocities w.r.t dσ. Equation (13) can be split into a Lebesgue and
Borel part as given below:

M(q)π′ dσ =
(
F′ + B(q) ζ ′) dσ , (14)

M(q) u̇ dt − h(q,u) dt = (f + B(q) τ) dt . (15)

By evaluating the Lebesgue-Stieltjes Integral over an atomic time ti ∈ IT of
equation (13) reveals the impact equation:

M(q(ti)) (π+
i − π−

i) = F+
i − F−

i + B(q(ti)) (ζ+
i − ζ−

i) , (16)

562 K. Yunt

where ti is an element of discontinuity points of the velocity u. The Lebesgue
part which remains unaffected by the points of discontinuity can be expressed
in two forms as below:

M(q+) u̇+ dt − h(q+,u+) dt =
(
f+ + B(q+) τ+

)
dt , (17)

M(q−) u̇− dt − h(q−,u−) dt =
(
f− + B(q−) τ−)

dt . (18)

Here f+ and f− are meant to be the right and left limits of f with respect to
time, respectively. As a corollary, the directional Newton-Euler equations can be
stated as follows:

M(q+) u̇+ − h(q+,u+) = f+ + B(q+) τ+, a.e. , (19)
M(q−) u̇− − h(q−,u−) = f− + B(q−) τ−, a.e. . (20)

3.1 Lagrangian Dynamics in Different Phases of Motion

After the possibly impactive transition the equations of motion on acceleration
level may differ from the pre-transition equations of motion based on the closed
directions of motion. It is assumed that the interaction of the Lagrangian sys-
tem with the surroundings (unilateral contacts, etc.) do not interfere during
the course of control action (dR = 0). A direction of interest γ, which for ex-
ample can be the relative velocity at a blockable joint, is expressed as a linear
combination of generalized velocities as in equation (21):

γb = wT(q)u . (21)

The directions, which are closed during an interval can be expressed vectorially:

γb = WT
b (q)u , (22)

where γb is such that wi ∈ col{Wb}. Here col{·} denotes the set of column
vectors of the relevant linear operator. The generalized acceleration of the finite-
dimensional Lagrangian system when some DOF are closed by τ b, is given by
(23):

u̇ = M−1(q)h(q,u) + M−1(q)Wb(q) τ b + M−1(q)B(q) τ . (23)

The controls τb represent the forces which are required to constrain the vector
field from evolving in certain directions. The linear operator Wb denotes the gen-
eralized force direction of the constraining forces, such that col{Wb} ⊂ col{B}.
The accelerations in the closed directions must be zero, as a consequence one
has:

γ̇b = WT
b u̇ + ẆT

b u = 0 . (24)

The insertion of equation (23) in equation (24) reveals:

WT
b u̇+ẆT

b u = WT
b M−1h+WT

b M−1Wb τ b+WT
b M−1B τ +ẆT

b u = 0 . (25)

The equation (25) can be solved for the blocking forces/moments as below:

τb = −(WT
b M−1Wb)−1

(
WT

b M−1h + WT
b M−1B τ + ẆT

b u
)

. (26)

Necessary Conditions for the Impulsive Time-Optimal Control 563

Defining the projector P‖ as

P‖ = Wb(WT
b M−1Wb)−1WT

b M−1 (27)

and inserting into equation (23) gives the projected dynamics:

Mu̇− h − P‖ (h + B τ) + Wb(WT
b M−1Wb)−1ẆT

b u− B τ = 0 . (28)

The equations of motion after the directions Wb are closed in the generalized
coordinates can be rearranged as below:

Mu̇− P⊥ h − P⊥ B τ + Wb(WT
b M−1Wb)−1ẆT

b u = 0 . (29)

The new vector of coriolis and gyroscopical forces as well as the linear operator
of generalized control directions can be redefined as:

hb = P⊥ h − Wb(WT
b M−1Wb)−1ẆT

b u , (30)
Bb = P⊥ B , (31)

to yield
M(q) u̇ − hb(q,u) − Bb(q) τ = 0 . (32)

Here the projector P⊥ is defined by P⊥ = I−P‖ and I is an identity matrix of
appropriate size.

4 Statement of the Optimal Control Problem

The impulsive time-optimal control of finite-dimensional Lagrangian systems is
considered, for which the transition times ti ∈ IT, final time tf and transition
locations characterized by triplets

{
q(ti),u(t+i),u(t−i)

}
are free. The goal func-

tion is to minimize the final time tf . The set of {q(t), u(t), u̇(t), τ (t)} that fulfill
the Lebesgue measurable part of the dynamics in every time-interval (t+i , t−i+1)
is denoted by Si:

Si = Mi(q(t))u̇(t) − hi(q(t),u(t)) − Bi(q(t)) τ (t) = 0 , t ∈ (t+i , t−i+1) . (33)

The measurable controls τ is constrained to a bounded closed polytopic convex
set Cτ . The set C+

Ii
denotes the set of {q(t+i), u(t+i), u(t−i), ζ+

i , ζ−
i } that fulfill

the impact equation:

M
(
q(t+i)

) (
u(t+i) − u(t−i)

) − Bi

(
q(t+i)

) (
ζ+

i − ζ−
i

)
= 0 , ∀ti ∈ IT . (34)

The set C−
Ii

denotes the set of {q(t−i), u(t+i), q(t−i), ζ+
i , ζ−

i } that fulfill the
impact equation:

M
(
q(t−i)

) (
u(t+i) − u(t−i)

) − Bi

(
q(t−i)

) (
ζ+

i − ζ−
i

)
= 0 , ∀ti ∈ IT . (35)

The equations (34) and (35) represent smooth manifolds and are smoothly
differentiable in their arguments. Further, let C+

Ti
denotes the set defined

564 K. Yunt

by the equality p+(q(t+i),u(t+i),u(t−i)) = 0, that arises from the constitu-
tive impact laws. Analogously, C−

Ti
denote the set defined by the equality

p−(q(t−i),u(t+i),u(t−i)) = 0. Both p− and p+ are at least C2 in their argu-
ments. The end state is to be in a convex set Cf(q(tf),u(tf)). The necessary
conditions are derived by making use of following hypotheses on the general
problem:

Hypotheses 3

1. The interior of the intersection of all sets involved in the problem considered
is nonempty ∀ti ∈ IT, ∀ t ∈ Ωt.

2. The dual states ν is assumed left-continuous locally bounded variation func-
tions (LCLBV), and the generalized velocities u of the Lagrangian system
is assumed right-continuous locally bounded variation functions (RCLBV),
whereas the generalized positions are in class AC.

3. The mode sequence and number of intervals for the MBVP constitute a
feasible hybrid trajectory.

Under hypotheses (1), (2) and (3) the value function possesses regularity
properties which enable the statement of sharp necessary conditions. In its full
glory the impulsive optimal control problem is stated as:

min
{ti},tf ,τ ,{ζ+

i ,ζ−
i }

J , (36)

where J is given by:

J = l0+
∑

(∀i|ti∈IT)

li(q(ti),u(t+i),u(t−i))+
N∑

i=1

∫ t−i+1

t+i

Li(q(s),u(s), u̇(s)) ds . (37)

The costs associated with boundary terms and the integrand are composed in
the following manner:

li = ΨC+
Ti

∪ C−
Ti

(q(ti),u(t+i),u(t−i)) + ΨC+
Ii
∪C−

Ii
(q(ti),u(t+i),u(t−i), ζ+

i , ζ−
i) ,

l0 = λ(t) + ΨCf (q(tf),u(tf)) ,

Li = ΨCτ (τ) + ΨS+
i
(q(t+),u(t+), u̇(t+), τ (t+)) .

5 Necessary Conditions

Theorem 1. Let Hypotheses (1), (2) and (3) be valid for the optimal control
problem. If optimal trajectories of generalized positions q∗(t+) ∈ AC[Rn], veloc-
ities u∗(t+) ∈ RCLBV[Rn] provide a minimum for the described optimal con-
trol problem, then there exist optimal controls τ ∗(t), optimal transition times
t∗i ∈ IT, dual multipliers ξ+∗

i , ξ−∗
i , α+∗

i , α−∗
i , ∀t∗i ∈ IT, transition location

triplets
{
q∗(ti), u∗(t+i), u∗(t−i)

}
, dual state ν∗(t−) ∈ LCLBV�[Rn] (where � de-

note dual space) and a scalar λ(t) ∈ {0, 1}, such that λ(t) + |ν| > 0, which
fulfill:

Necessary Conditions for the Impulsive Time-Optimal Control 565

1. the Lebesgue-measurable dynamics S+
i in every interval of motion t ∈

(t+∗
i , t−∗

i+1)

M(q∗(t+))u̇∗(t+) − hi(q∗(t+),u∗(t+)) − Bi(q∗(t+)) τ+∗ = 0, a.e., (38)

2. the Lebesgue-measurable dual dynamics

ν̈∗(t−)Di + ν̇∗(t−)Ei + ν∗(t−)Fi = 0 , a.e., t ∈ (t+∗
i , t−∗

i+1), (39)

where the coefficients in the differential equation above are given by:

Di = M(q∗(t+)),
Ei = 2Ṁ(q∗(t+)) + ∇u hi(q∗(t+),u∗(t+)),
Fi = ∇q[M(q∗(t+)) u̇∗(t+)−hi(q∗(t+),u∗(t+))−Bi(q∗(t+)) τ]+M̈(q∗(t+))

+
d

dt

(∇u[hi(q∗(t+),u(t+))]
)

,

3. the optimal control law

− ν∗(t−)∇τ S+
i ∈ NCτ (τ+∗), a.e. t ∈ (t+∗

i , t−∗
i+1) , (40)

4. the condition
(
ν∗(t−i)

(∇u h−
i u∗(t−i) − Mu̇∗(t−i)

)
+

(
ν̇∗(t−i)M + ν∗(t−i) Ṁ−

)
u∗(t−i)

)

+
(
ν∗(t+i)

(
Mu̇∗(t+i)−∇u h+

i+1u
∗(t+i)

)−(
ν̇∗(t+i)M + ν∗(t+i) Ṁ+

)
u∗(t+i)

)

= ri1 u∗(t−i)+ri2 u∗(t+i) + ri3 u̇∗(t−i) + ri4 u̇∗(t+i), ∀t∗i ∈ IT , (41)

where the vectors ri1, ri2, ri3 and ri4 are given by:

ri1 = α−∗
i ∇q p−(q∗(t−i),u∗(t+i),u∗(t−i))

+ ξ−∗
i ∇q

[
M (q∗(ti))

(
u(t+∗

i) − u(t−∗
i)

) − Bi (q∗(ti))
(
ζ+∗

i − ζ−∗
i

)]
,

ri2 = α+∗
i ∇q p+(q∗(t+i)u∗(t+i),u∗(t−i))

+ ξ+∗
i ∇q

[
M (q∗(ti))

(
u(t+∗

i) − u(t−∗
i)

) − Bi (q∗(ti))
(
ζ+∗

i − ζ−∗
i

)]
,

ri3 = α−∗
i ∇u(t−i) p

−(q∗(t−i),u∗(t+i),u∗(t−i))

− α+∗
i ∇u(t−i) p

−(q∗(t−i),u∗(t+i),u∗(t−i)) − ξ+∗
i M(q(t)) − ξ−∗

i M(q(t)) ,

ri4 = α−∗
i ∇u(t+i) p

+(q∗(t+i),u∗(t+i),u∗(t−i))

− α+∗
i ∇u(t+i) p

+(q∗(t+i),u∗(t+i),u∗(t−i)) + ξ+∗
i M(q(t)) + ξ−∗

i M(q(t)) ,

5. the impact equation and transition conditions at a transition

C∗
Ti

= C∗+
Ti

∪ C∗−
Ti

, ∀t∗i ∈ IT ,

C∗
Ii = C∗+

Ii
∪ C∗−

Ii
, ∀t∗i ∈ IT ,

566 K. Yunt

6. the variational inequalities (VI) that govern the discontinuity conditions of
the dual state ν and of its time-derivative ν̇:

(
ν∗(t+i) − ν∗(t−i)

)
M(q∗(t)) = (42)

α+∗
i ∇u(t+i)

(
p+(q∗(t+i),u∗(t+i),u∗(t−i)) + p−(q∗(t−i),u∗(t+i),u∗(t−i))

)
+ α−∗

i ∇u(t−i)

(
p+(q∗(t+i),u∗(t+i),u∗(t−i)) + p−(q∗(t−i),u∗(t+i),u∗(t−i))

)
,

∀t∗i ∈ IT ,

and
(
(ν̇∗(t+i)M + ν∗(t+i)Ṁ+) + ν∗(t+i)∇u h+

i+1

)
− (43)(

ν̇∗(t−i)M + ν∗(t−i)Ṁ− + ν∗(t−i)∇u h−
i

)
=

− ∇q

[
α+∗

i p+(q∗(t+i),u∗(t+i),u∗(t−i)) + α−∗
i p−(q∗(t−i),u∗(t+i),u∗(t−i))

]
− (

ξ+∗
i + ξ−∗

i

) ∇q

[
M

(
u∗(t+i) − u∗(t−i)

) − Bi

(
ζ+∗

i − ζ−∗
i

)]
,

∀t∗i ∈ IT ,

7. the impulsive optimal control law condition

ξ−∗
i Bi(q∗(ti)) = 0, ξ+∗

i Bi(q∗(ti)) = 0, ∀t∗i ∈ IT , (44)

8. the boundary constraints Cf ,
9. the variational inequality with respect to the variations at final time t̂f :

(
ν∗(tf) (∇u hi+1u∗(tf) − Mu̇∗(tf)) + (ν̇∗(tf)M + ν∗(tf) Ṁ)u∗(tf)

)
t̂f

+Ψ↑
Cf

(·, t̂f) ≥ 0 ,(45)

10. the normal cone inclusion condition at final state:

−
([

−(ν̇∗(tf)M + ν∗(tf)Ṁ) − ν∗(tf)∇u hi

]
ν∗(tf)M

)
∈ NCf (q∗(tf),u∗(tf)) . (46)

Since the derivatives and gradients of Ṁ, M̈, ∇uh involve the generalized veloc-
ities and accelerations of the system at pre-, and post-transition state, the right
supscripted signs denote wether the pre-transition or post-transition values of
the relevant entities are meant. The gradients and time derivatives of several
tensors in the Einstein notation convention are given as follows:

ṁij = ∇qk mijuk(t), m̈ij = ∇2
qk ql

mijuk(t)ul(t) + ∇qk miju̇k(t),
d

dt
[∇ukhp] = ∇2

uk ul
hpu̇l(t) + ∇2

uk ql
hpul(t) ,

where aij denotes the relevant element of a second-order tensor A.

Necessary Conditions for the Impulsive Time-Optimal Control 567

6 Discussion and Conclusion

In this work, necessary conditions of strong local minimizers for the impulsive
optimal control problem of finite-dimensional Lagrangian systems is presented.
The necessary conditions provide criteria for the determination of optimal transi-
tion times and locations in the presence of discontinuity of generalized velocities.
The introduced framework is capable to model and control of hybrid Lagrangian
systems with discontinuous state transitions among different system modes. In
the proposed setting concurrent discontinuity on an Lebesgue-negligible atomic
time instant of the generalized velocities u and the dual state ν is handled.
This capability is in comparison to other impulsive control necessary conditions
far more consistent with different hybrid system modeling approaches in which
transitions happen instantaneously. The crux in the derivation of these neces-
sary conditions is to handle joint discontinuity of the state and the dual state
in the framework of integration theory which has long been recognized as a
problem if state and costate should become concurrently discontinuous as has
been addressed in [15] and [20]. The proposed discontinuous transversality con-
ditions and the internal boundary variations by the author are capable, given
the assumptions in the statement of the optimal control problem, to handle this
problem properly.

The derivation of conditions benefit of the underlying Lagrangian structure.
One of the advantages of the Lagrangian dynamics is the fact, that the gen-
eralized directions of control, which are the rows of the linear operator B are
only dependent on the generalized positions q. Since the generalized positions
are of absolutely continuous character, the generalized directions of impulsive
control remain unchanged during a transition. Another fact is that in the frame-
work of finite-dimensional Lagrangian systems, impact equations and constitu-
tive impact laws are provided, that are means to ”join” two optimal trajectories
discontinuously.

The proposed necessary conditions are for strong local minimizers and are
valid in singular intervals. The optimal control law as stated in equation (40)
is valid in singular intervals, because the zero vector belongs to normal cone.
The discontinuity in the controls of bang-bang type controller are on Lebesgue
negligible intervals so the control law is valid in the ”almost everywhere” sense.

The bang-bang control law can be affected at a transition due to two effects,
which may concur:

– The change in the structure of the Lebesgue-measurable dynamics as dis-
cussed in subsection (3.1), may induce a switching of the polarity of a bang-
bang controller.

– The discontinuity of the generalized velocities and the dual state may result
in a change of the polarity after impulsive control action.

There are two sets of necessary conditions that belong to the considered opti-
mal control problem. The first set of necessary conditions are obtained by taking
the generalized positions and velocities as RCLBV functions and the dual state

568 K. Yunt

as a LCLBV function. The second set of necessary conditions is obtained inter-
changing the classes of primal states q(t),u(t) and dual state ν(t). In the case
of state-continuous transitions, these two sets of necessary conditions would co-
incide. Indeed, what distinguishes the necessary conditions stated in Theorem 1
from its counterpart if all transitions were state-continuous are the conditions
(41), (42) and (43). These conditions are derived by allowing variations in the
post-transition and pre-transition states along with impact equations and con-
stitutive impact laws. Impulsive control law in (44) takes this particular form
because the impulsive controls are unbounded in this setting.

For the underlying non-convex problem the given conditions can only propose
the candidates for minimizers, for the conditions of sufficiency further work needs
to conducted.

References

1. Arutyunov, A., Karamzin, D., Pereira, F.: A Nondegenerate Maximum Principle
for Impulse Control Problem with State Constraints. SIAM J. Control Optim. 43,
1812–1843 (2005)

2. Branicky, M.S., Borkar, V.S., Mitter, S.M.: A unified framework for hybrid control:
Model and optimal theory. IEEE Transactions on Automatic Control 43, 31–45
(1998)

3. Brogliato, B.: Non-smooth Impact Mechanics. Lecture Notes in Control and Infor-
mation Sciences. Springer, Heidelberg (1996)

4. Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between
complementarity systems, projected systems and differential inclusions. Systems
and Control Letters 55, 45–51 (2006)

5. Clarke, F.H.: Optimization and Nonsmooth Analysis. In: SIAM Classics in Applied
Mathematics, Wiley, New York (1983)

6. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem.
Academic Press, Boston (1992)

7. Glocker, C.: Set-Valued Force Laws, Dynamics of Non-Smooth Systems. Lecture
Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

8. Glocker, C.: On Frictionless Impact Models in Rigid-Body Systems. Phil. Trans.
Royal Soc. Lond. A359, 2385–2404 (2001)

9. Glocker, C., Pfeiffer, F.: Multiple Impacts with Friction in Rigid Multibody Sys-
tems. Nonlinear Dynamics 7, 471–497 (1995)

10. Glocker, C.: The Geometry of Newtonian Impacts with Global Dissipation Index
for Moving Sets. In: Proc. of the Int. Conf. on Nonsmooth/ Nonconvex Mechanics,
Thessaloniki, pp. 283–290 (2002)

11. Glocker, C.: An Introduction to Impacts. In: Haslinger, J., Stavroulakis, G. (eds.)
Nonsmooth Mechanics and Solids, CISM Courses and Lectures, vol. 485, pp. 45–
101. Springer, Heidelberg (2006)

12. Miller, B.M., Bentsman, J.: Optimal Control Problems in Hybrid Systems with
Active Singularities. Nonlinear Analysis 65, 999–1017 (2006)

13. Karamzin, D.Y.: Necessary Conditions of the Minimum in an Impulse Optimal
Control Problem. Journal of Mathematical Sciences 139 (2006)

14. Loewen, P.D., Rockafellar, R.T.: Bolza Problems with General Time Constraints.
SIAM J. Control Optim. 35, 2050–2069 (1997)

Necessary Conditions for the Impulsive Time-Optimal Control 569

15. Moreau, J.J.: Bounded Variations in time. In: Moreau, J.J., Panagiotopoulos, P.D.,
Strang, G. (eds.) Topics in Non-smooth Mechanics, pp. 1–74. Birkhäuser, Basel
(1988)

16. Moreau, J.J.: Unilateral Contact and Dry Friction in Finite Freedom Dynamics. In:
Non-smooth Mechanics and Applications, CISM Courses and Lectures, vol. 302,
Springer, Wien (1988)

17. Rockafellar, R.T.: Convex Analysis, Princeton Landmarks in Mathematics. Prince-
ton University Press, Princeton (1970)

18. Rockafellar, R.T.: Generalized Directional Derivatives and Subgradients of Non-
convex Functions. Can. J. Math. 32, 257–280 (1980)

19. Rockafellar, R.T.: Directionally Lipschitzian Functions and Subdifferential Calcu-
lus. Proc. London Math. Soc. 39, 331–355 (1979)

20. Rockafellar, R.T.: Dual Problems of Lagrange for Arcs of Bounded Variation. In:
Russell, D.L. (ed.) Calculus of Variations and Control Theory, pp. 155–192. Aca-
demic Press, London (1976)

21. Rockafellar, R.T., Loewen, P.D.: The Adjoint Arc in Nonsmooth Optimization.
Trans. Amer. Math. Soc. 325, 39–72 (1991)

22. Silva, G.N., Vinter, R.B.: Necessary Conditions for Optimal Impulsive Control
Problems. SIAM J. Control Opim. 35, 1829–1846 (1997)

23. Shahid Shaikh,M., Caines, P.E.:On the optimal control of hybrid systems: Optimiza-
tion of trajectories, switching times, and location schedules. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 466–481. Springer, Heidelberg (2003)

24. Yunt, K., Glocker, C.: Trajectory Optimization of Hybrid Mechanical Systems using
SUMT. In: IEEE Proc. of Advanced Motion Control Istanbul, pp. 665–671 (2006)

25. Pontryagin, L.S., Boltyanskii, V.S., Gamkralidze, R.V., Mischenko, E.F.: The
Mathematical Theory of Optimal Processes. In: Trirogoff, T.K.N., Neustadt, L.W.
(eds.), John Wiley, New York (1962)

26. Yunt, K., Glocker, C.: Time-Optimal Trajectories of a Differential-Drive Robot. In:
Van Campen, D.H., Lazurko, M.D., van der Oever, W.P.J.M. (eds.) Proceedings
of the Fifth Euromech Nonlinear Dynamics Conference, pp. 1589–1596.

27. Yunt, K., Glocker, C.: A Combined Continuation and Penalty Method for the
Determination of Optimal Hybrid Mechanical Trajectories. In: Yu, H.Y., Kreuzer,
E. (eds.) IUTAM Symposium on Dynamics and Control of Nonlinear Systems with
Uncertainty 2006. IUTAM Bookseries, pp. 187–196. Springer, Heidelberg (2007)

28. Yunt, K.: Optimal Trajectory Planning for Structure-Variant Mechanical Systems.
In: IEEE Proc. of Int. Workshop on Variable Structure Systems VSS 2006, pp.
298–303 (2006)

29. Yunt, K., Glocker, C.: Modeling and Optimal Control of Hybrid Rigid-Body Me-
chanical Systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007.
LNCS, vol. 4416, pp. 614–627. Springer, Heidelberg (2007)

30. Yunt, K.: Impulsive Time-Optimal Control of Underactuated Manipulators with
Impactively Blockable Degrees of Freedom. In: European Control Conference (ECC
2007), pp. 3977–3984 (2007)

31. Yunt, K., Glocker, C.: Trajectory Optimization of Mechanical Hybrid Systems
Using SUMT. In: IEEE Proc. of Advanced Motion Control AMC 2005, pp. 665–
671 (2005)

32. Yunt, K.: Impulsive Time-Optimal Control of Structure-Variant Rigid-Body Me-
chanical Systems. In: 3rd International IEEE Scientific Conference on Physics and
Control (Physcon 2007) (2007), IPACS Open Library, http://lib.physcon.ru

33. Silva, G.N., Vinter, R.B.: Necessary Conditions for Optimal Impulsive Control
Problems. SIAM J. Control Optim. 35/6, 1829–1846 (1997)

http://lib.physcon.ru

Composition of Motion Description Languages

Wenqi Zhang and Herbert G. Tanner

Mechanical Engineering Department,
University of New Mexico, Albuquerque NM 87131

Abstract. We introduce a new formalism to compose interacting heterogeneous
systems described by extended motion description languages (MDLes). The nov-
elty lies in producing a composed system whose behavior could be a superset
of the union of the behaviors of its generators. In the class of systems mod-
eled using MDLes, the composition operator is closed, and language equivalence
can be decidable. Our approach consists of representing MDLes as normed pro-
cesses, recursively defined as a guarded system of recursion equations in re-
stricted Greibach Normal Form over a basic process algebra. Basic processes
have well defined semantics for composition, which we exploit to establish the
properties of our composed MDLes.

1 Introduction

Motion Description Languages (MDLs) [1] translate collections of control algorithms
into robust and reusable software [2]. MDLes (e standing for “extended”) have been
criticized for not capturing concurrency and interaction between systems. This paper is
an attempt to address at least one of this issues, namely interaction, and set a frame-
work in which MDLes can be composed, verified, and allow automated motion and task
planning for collections of heterogeneous robotic systems.

We identify MDLes as recursive systems in some basic process algebra (BPA) written
in Greibach Normal Form (Lemma 1). We propose a simple context-free grammar that
generates MDLes and use the machinery available for BPAs to formally define a com-
position operation for MDLes at the level of grammars. The technical core of this paper
indicates how appropriately defined MDLe grammars can be composed (Definition 8),
and language equivalence (whether two such grammars generate the same finite traces),
is decidable up to bisimulation. The main difference of our composition operation is
the appearance in the composed system of events (transitions) not enabled in the gener-
ators: the composed system can behave in ways its generators cannot. In our approach,
one still needs to identify beforehand these events that can be activated after the com-
position; nonetheless, the proposed definition partially captures the fact that the whole
can be more than the sum of its parts.

Are basic process algebras the right formalism to map hybrid robotic systems to
discrete models of computation? We do not claim it is, but we believe it is an appropri-
ate one: not too complex, yet not oversimplifying. The justification for choosing BPAs
comes first from our desire to model robotic systems using MDLes. Section 3 attempts
a brief and incomplete introduction to MDLes and BPAs; the interested reader is refered
for more information to [3] and [4].

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 570–583, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Composition of Motion Description Languages 571

Alternative formulations include maneuver automata [5] and petri nets [6]. Maneu-
ver automata are finite automata that produce sequences of predetermined maneuvers
for unmanned vehicles. Admissible motion is expressed as the set of traces the automa-
ton accepts. Maneuver automata, however, generate regular languages, and MDLes are
not [3]. Thus, maneuver automata appear to have less expressive power than MDLes.

Petri nets, on the other hand, generate context-sensitive languages. They are there-
fore more expressive than BPAs but this comes at a cost: bisimulation is undecidable
for petri nets [7], which poses an obstacle for further analysis and abstraction. MDLes,
on the other hand, are context-free [8]. The equality problem for context-free languages
and push-down processes being undecidable notwithstanding [9], we show in this pa-
per that the slightly finer semantics given to an MDLe expressed in a BPA framework
allow decidability for language equivalence [10, 11]. The tools we use to arrive at this
decidability result are the properties of BPAs introduced in [12, 13, 14], and refined
in [15].

Other modeling tools may be available; however, we feel that BPAs strike a rea-
sonable balance between complexity and expressiveness when it comes to modeling
systems expressed by, and controlled through, MDLes. Showing that under the extended
notion of composition we introduce the resulting system is an MDLe (Lemma 3), and
that the decidability properties are preserved (Corollary 2), gives us hope that the re-
sulting (big) system can be abstracted to the point that some of the available model
checkers [16, 17, 18] can be used to construct admissible motion plans in the form of
“counterexamples.”

2 MDLe Preliminaries

MDLe, an extension of the early motion description languages [19], is a device-
independent programming language for hybrid motion control. It allows one to compose
complex, interrupt-driven control laws, from a set of simple primitives and a number of
syntactic rules [2, 3]. Every MDLe string consists of a control part, an interruption part,
and the special symbols “)”, “(”, and “,”. A robotic system can generically be described
as

ẋ = f(x, u), y = h(x); x ∈ R
n, u ∈ R

m, y ∈ R
p, (1)

where x is the state of the system, u the control input, and y the measurable output.
Let U be a finite set of feedback control laws (or quarks [8]) u : R

n × R → R
m, for

(1), and B a finite set of boolean functions ξ : R
p × R → {0, 1} of output y and time

t ≤ T ∈ R+ (the interrupt quarks [8]).
The basic element of an MDLe is the atom, denoted (u, ξ), in which ξ is an interrupt

selected from set B, and u is a control law selected from U . To evaluate or run an atom
(u, ξ), means to apply the input u to (1) until the interrupt function ξ evaluates true (ξ =
1). An MDLe plan is composed of a sequence of atoms. For example, evaluating the plan
a = ((u1, ξ1), (u2, ξ2)) means that the system state x, flows along ẋ = f(x, u1) until
ξ1 = 1 , and then along ẋ = f(x, u2) until ξ2 = 1. Plans can also be composed to
generate higher order strings, as in b = ((u3, ξ3), a, (u4, ξ4)).

572 W. Zhang and H.G. Tanner

3 From MDLes to Basic Process Algebras

The pumping lemma is utilized in [8] to show that an MDLe is not regular language;
it is suggested that it is context-free. Context-free languages are generated by context-
free grammars (CFGs), which can always be expressed in Chomsky normal form. A
variation of the Chomsky normal form, is the Greibach normal form.

Definition 1 ([15]). A context-free grammar in which every production rule is of the
form A → aα, where A is a variable, a is a terminal, and α is a possibly empty string
of variables, is said to be in Greibach normal form (GNF). If, moreover, the length of
α (in symbols) does not exceed 2, we say that the context-free grammar is in restricted
Greibach normal form.

3.1 The Link between BPAs and Push-Down Automata

A BPA is a mathematical structure consisted of set of constants, A = {a, b, c, . . .},
called atomic actions, a set ΣBPA of two binary operators on these constants (the alter-
native composition + and the sequential composition ·), and a set of axioms EBPA that
determine the properties of the operations on the atomic actions [15]. The set ΣBPA

is sometimes called signature, while set EBPA equation set (hence the symbols). The
theory associated to a BPA is considered to be parameterized by the set A, which is
specified according to the particular application.

Table 1. The axioms of a BPA

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5

The symbol · denoting sequential composition
is typically omitted, and we usually write xy in-
stead of x ·y. We assume that · binds stronger than
+, thus (xy)+z = xy+z (brackets omitted). The
set EBPA consists of five axioms (or equations),
appearing in Table 1. Composing atomic actions
according to Table 1, yields more complex pro-
cesses. Any such process, is an element of some
algebra satisfying the axioms of BPA, and all pro-
cesses produced in this way make up the set P . The axiom system of Table 1 is the core
of a variety of more extensive process axiomatizations:

– x · y is the process that first executes x, and upon completion of x, process y starts.
– x + y is the process that either executes x, or executes y (but not both).

Just as in the case of finite state machines, processes are identified by the set of action
sequences they admit. Some [20] prefer to include a set Atom of atomic processes or
atoms. The set Proc of processes contains all terms in the free algebra over Atom gener-
ated by sequential composition and disjunction. A process algebra is defined by a finite
set Π of productions of the form X

a→ P, where X ∈ Atom, a ∈ A, and P ∈ Proc.
The semantics of the above production is as follows: atomic process X performs action
a and evolves into process P . Let us identify a process with an automaton, in which
a transition denotes the execution of an atomic action. The states of this automaton
are all the processes derived through the set of production rules. Action relations are
presented in Table 2, in which x

a→ y, with x and y being processes and a an atomic
action, means that process x evolves into process y after the atomic action a is executed.

Composition of Motion Description Languages 573

Table 2. The operational semantics of BPA

a
a→ √

R1
a

a→ x′ ⇒ x + y
a→ x′ and y + x

a→ x′ R2
x

a→ √ ⇒ x + y
a→ √

and y + x
a→ √

R3
x

a→ x′ ⇒ xy
a→ x′y R4

x
a→ √ ⇒ xy

a→ y R5

The symbol
√

stands for successful
termination. It is said that a relation
is true iff it can be derived from the
relations of Table 2. Note the dis-
tinction between the relation opera-
tor (→) and sequential composition
(·): the fact that x

a→ y does not im-
ply that y = x · a, since a is an ac-
tion executed as x runs, not after it is

completed. The only thing that can be inferred about action a is that it is an action that
process x can execute.

3.2 Recursive and Guarded Processes

Let us focus on a special type of BPAs with finer semantics. The restrictions we im-
posed enable us to define composition more comfortably, and prove the decidability of
language equivalence for the systems produced by means of composition.

Definition 2 ([10]). A recursive equation over a BPA is an equation of the form X =
s(x), where X is a variable that can take values in P and s(x) is a term over the BPA

containing X , but no other variable.

A set of recursive equations give rise to a specification:

Definition 3 ([10]). A recursive specification E over a BPA is a set of recursion equa-
tions over the BPA.

We thus have a set of variables V = {x0, · · · , xn}, and equations of the form X =
sx(V) with x ∈ V , where sx is a term over the BPA containing variables in V . Set V
contains one distinguished variable called the root variable x0. A variable in V is called
guarded in a given term, if it is preceded by an atomic action:

Definition 4 ([10]). Let s be a term over a BPA, containing variable X .

– An occurrence of X in s is said to be guarded, if s has a sub term of the form
a · t, where a is an atomic action, and t a term containing this occurrence of X;
otherwise this occurrence of X in s is said to be unguarded.

– A term s is completely guarded if all occurrences of all variables in s are guarded.
A recursive specification E is completely guarded if all right hand sides of all
equations of E are completely guarded terms.

Equations over a BPA can also be written in Greibach normal form.

Definition 5 ([10]). If a system E of recursion equations is guarded and without brack-
ets, then each recursion equation is of the form Xi =

∑
j aj ·αj , where αj is a possibly

empty product (sequential composition) of atoms and variables. Now if, in addition, αj

is exclusively a product of variables, E is said to be in Greibach normal form, analo-
gous to the same definition for context-free grammars. If each αj in E has length not
exceeding 2, E is in restricted Greibach normal form.

574 W. Zhang and H.G. Tanner

3.3 Composition of BPAs

BPAs can be equipped with a merge operator, ‖. Process x‖y is the process that executes
process x and y in parallel. The left merge operator, �, describes two processes that
occur in parallel, in a way similar to ‖, but with the restriction that the first step must
come from the process on the left of the expression. With the new operators, the BPA

axioms and action relations are expanded as shown in Tables 3 and 4, respectively.

Table 3. The BPA axioms, expanded with
the introduction of merge (‖) and left merge
(�) operators

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x‖y = x�y + y�x M1
a�x = ax M2
ax�y = a(x‖y) M3
(x + y)�z = x�z + y�z M4

Table 4. The action relations of BPA, expanded
using the composition operators

a
a→ √

R1
a

a→ x′ ⇒ x + y
a→ x′ and y + x

a→ x′ R2
x

a→ √ ⇒ x + y
a→ √

and y + x
a→ √

R3
x

a→ x′ ⇒ xy
a→ x′y R4

x
a→ √ ⇒ xy

a→ y R5
x

a→ x′ ⇒ x‖y a→ x′‖y and y‖x a→ y‖x′ R6
x

a→ √ ⇒ x‖y a→ y and y‖x a→ y R7
x

a→ x′ ⇒ x�y
a→ x′‖y R8

x
a→ √ ⇒ x�y

a→ y R9

Two BPA processes p1 and p2 are bisimilar, if whenever p1 performs a certain action,
p2 can perform the same action, and vise versa. The following definition of bisimula-
tion equivalence for processes is quoted from [11], and is chosen only because of its
conceptual association to similar definitions of bisimulation for transition systems, that
have appeared in the controls literature [21].

Definition 6 ([11]). A binary relation ≈ on the set of processes Proc is a bisimulation,
if the following conditions are satisfied:

– for all p, q, and p′ in Proc, and a ∈ A such that p ≈ q and p
a→ p′, there exists

q′ ∈ Proc such that q
a→ q′ and p′ ≈ q′.

– for all p, q, and q′ in Proc, and a ∈ A such that p ≈ q and q
a→ q′, there exists

p′ ∈ Proc such that p
a→ p′ and q′ ≈ p′.

4 Main Results

4.1 MDLes Are a Special Class of BPAs

The representation of an MDLe as a BPA requires an intermediate step, which is the
expression of the former as a context-free grammar. We define a context-free grammar
G = (V, η, R, S) which generates MDLe L = {(u, ζ) : u ∈ U, ζ ∈ B} as follows:

– V = {u1, u2, u3, . . . , un} is the finite set of variables, one for each ui ∈ U ;

Composition of Motion Description Languages 575

– η = {ν1, ν2, . . . νn} is the finite set of terminals, which are the atoms of L, ν =
(ui, ζj) with ui ∈ V , and ζj ∈ B;

– S is the start symbol in V ;
– R is the rules by which we create the strings of L:

S → U U → UU U → ν U → ∅ , (2)

where U can be any element of V , and ν an arbitrary element of η.

We define below the push-down automaton that is equivalent to the context-free
grammar described above, according to [22]. Definition 7 allows us to conveniently
switch between representations.

Definition 7. Consider a context-free grammar G defined in (2). The push-down au-
tomaton P = (V, η, Σ, Γ, δ, S, Z0) where

– V = {u1, u2, u3, . . . , un} is the set of states, identified with the variables in G;
– η = {ν1, ν2, . . . νn} is the set of enabled events, identified as the terminals in G

and associated with possible transitions in P ;
– Σ = V ∪ η is the stack alphabet;
– Γ : V → Γ (V) is the event activation function that determines which enabled

events can generate transitions at each state;
– δ : V × η → V is the transition function such that δ(x, ν) �→ R(x, ν) = y ∈ V ;
– S ∈ V is the start state in G;
– Z0 is the start symbol in stack;

The range of Γ defines all active events, the ones that correspond to transitions the
automaton can autonomously take. Note the distinction between η and Γ (V): this is
what enables us to capture actions the system cannot execute autonomously, but poten-
tially can in collaboration with another system. We allow Γ (V) �⊆ η, but the transitions
which the automaton can autonomously take are in Γ (V) ∩ η. Informally, we think of
the transitions associated with events in η as ones that the system has the “potential” of
taking (but may not know how), and the transitions associated with events in Γ (V) as
jumps that the system “knows” how to perform but may or may not have the capability
of making. The next Lemma confines MDLes to set of languages generated by a special
class of context-free grammars (CFGs).

Lemma 1. An MDLe is produced by a CFG in Greibach normal form.

Proof. We rewrite (2) in Chomsky normal form, an intermediate stage before we arriv-
ing at the Greibach normal form. Let us first combine rules (2) into a single one, using
the disjunction operator |, and arrange them on the left hand side of (3).

S0 → S|∅
S → U
U → UU |ν

S0 → ∅
S0 → UU |ν
U → UU |ν

(3)

The right hand side of (3) is obtained first by defining a new start symbol S0 to replace
S, then remove ∅ from the set of rules that involve U , and finally eliminating the new
start symbol S0.

576 W. Zhang and H.G. Tanner

Then we translate (3) into Greibach normal form, by first eliminating left-recursion.
We first add a new rule B → V |V B to eliminate the left-recursion V → V V from the
right hand side of (3). Finally, we use the rule V → ν|νB to make all the other rules
start with a terminal, and thus transform the right hand side of (3) as follows.

S0 → ∅
S0 → UU |ν
U → UU |ν

S0 → νU |νBU |ν|∅
U → ν|νB
B → νB|νBB|ν

(4)

The rule set (4) is now in Greibach normal form. ��
The next Lemma states that an MDLe can be translated into a BPA in GNF [10].

Lemma 2. The terms of an MDLe are a finite trace set of a normed process p, re-
cursively defined by means of a guarded system of recursion equations in restricted
Greibach normal form over a BPA.

Proof. Lemma 1 allows us to express an MDLe as a CFG in Greibach normal form,
which in addition satisfies the conditions of Notation 4.5 of [10]. We apply Notation
4.5 in conjunction with Proposition 5.2 of [10] to write the CFG of (4) as a BPA as
follows. According to [10], if E is the system represented as a CFG in Greibach normal
form, let us use E′ to denote the system represented in BPA by replacing | by +, and
→ by =. Now let E′ be in restricted Greibach normal form over the BPA, with unique
solution p. Then ftr(p) (the set of finite traces of p) is just the context-free language
generated by E. Applying the change of notation suggested,

S0 → νU |νBU |ν|∅
U → ν|νB
B → νB|νBB|ν

S0 = ∅
S0 = νU + νBU + ν
U = ν + νB
B = νB + νBB + ν

(5)

and thus we have a BPA in restricted Greibach normal form. Note that according to
Definition 5, each variable string in the right hand side of (5) has length of at most
two. By applying Proposition 5.2 of [10], to remove the parts of the system that do
not contribute to the generation of the finite traces, we conclude that the BPA of (5)
generates the strings of the original MDLe. ��

4.2 Composition of MDLes

In the preceding section we distinguished between events associated to transitions a
push-down automaton representing an MDLe can take autonomously, and events that
cannot initiate transitions. Among the latter, there can be events that when synchronized
with some of another push-down automaton, become active and do initiate transitions.
Given two push-down automata P1 and P2 defined according to Definition 7, let H ⊆
η1 ∪ η2 be the collection of events on which P1 and P2 should be synchronized. It
includes events that become active due to the composition and is has three components:

1. (Γ2∪η1)\ (Γ2∪η2)\ (Γ1∪η1), (part I in Figure 1), which contains enabled events
of P1 that P1 can now activate because of P2;

Composition of Motion Description Languages 577

B

BI

II

III

A A

Γ1

Γ2 η2

η1

Fig. 1. Enabled, active and common events. Set A includes private active events of P1; set B
contains private active events of P2; sets I , II , and III represent the common active events of
the composed system, the ones that make up H .

2. (Γ1 ∪ η2) \ (Γ2 ∪ η2) \ (Γ1 ∪ η1), (part III in Figure1), which contains enabled
events of P2 that now become active because of P1; and

3. (Γ1 ∪ η2) ∩ (Γ2 ∪ η1), (part II in Figure 1), which includes common active events
in both systems.

The components of H in 1 and 2 do not appear in the set of (active) events of the
composed system under the conventional definition of composition [23]. Our definition
of composition is stated as follows.

Definition 8. Consider two MDLes, expressed as context-free grammars G1 =
(V1, η1, R, S01) and G2 = (V2, η2, R, S02), both with rule sets R of the form (2). Let
E1 and E2 be their corresponding representations as a system of guarded recursive
equations, in restricted Greibach normal form over a BPA. The composition of G1 and
G2 is defined as the context-free grammar G = (V, η, R, S0), where (with reference to
Figure 1)

– V := V1 × V2;
– η := η1 ∪ η2, is the set of enabled events (also denoted η(1‖2));
– S0 := S01 × S02;

– R(V × η) = R((V1, V2) × η) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(R(V1, η), R(V2, η)) if η ∈ H,

(R(V1, η), V2) if η ∈ A,

(V1, R(V2, η)) if η ∈ B

undefined, otherwise.

The transitions of the composed system still respect the grammar rules (2), however,
the composition restricts the domain of R. The push-down automaton representing the
composed system can be defined as follows:

578 W. Zhang and H.G. Tanner

Definition 9. The automaton resulting from the composition of push-down automata
P1 and P2 that accept the strings of two different MDLes is the automaton P1‖P2 =
(V, η(1‖2), Σ, Γ(1‖2), δ, V0, Z0), where (with reference to Figure 1)

– V = V1 × V2 is the set of states;
– η = η(1‖2) = η1 ∪ η2 is the input alphabet;
– Σ = (V1 × V2) ∪ η(1‖2) is the stack alphabet;
– Γ(1‖2)((u1, u2)) = Γ1(u1) ∪ Γ2(u2) is the set of inputs that may generate transi-

tions at state (u1, u2),

– δ(V × η) = R((V1, V2) × η) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(R(V1, η), R(V2, η)) if η ∈ H,

(R(V1, η), V2) if η ∈ A,

(V1, R(V2, η)) if η ∈ B

undefined, otherwise

– V0 = (V01 × V02) is the set of initial (start) states;
– Z0 = (Z01 × Z02) is the start symbol of the stack.

The next section ensures that the composition of variables and terminals of systems in
(guarded) Greibach normal form over a BPA, conforms to the same rules.

4.3 MDLes Are Closed Under Composition

Lemma 3. An MDLe written as a system of guarded recursive equations in restricted
Greibach normal form is closed under the left merge � operator.

Proof. Assume that G is written as a system of guarded recursive equations in restricted
Greibach form, according to (4). According to Table 3,

U�B
M4,M2

= νB + (νB)�B
M3= νB + ν(B‖B)

A3,M1
= νB + ν(B�B)

U�S0
M4,M2

= νS0 + (νB)�S0
M3,M1

= νS0 + ν(B�S0 + S0�B)

B�S0
M4,M2

= νS0 + (νB)�S0 + (νBB)�S0

M3,A5
= νS0 + ν(B�S0 + S0�B) + ν(BB�S0 + S0�BB)

Note that reversing the order of variables in the above merge operations yields the same
type of expressions encountered above:

B�U = (νB + νBB + ν)�U = νU + ν(BB�U + U�BB) + ν(B�U + U�B)
S0�U = (νU + νBU + ν)�U = νU + ν(U�U) + ν(BU�U + U�BU)
S0�B = (νU + νBU + ν)�B = νB + ν(U�B + B�U) + ν(BU�B + B�BU) ��

Since the left-merge operation � is closed, it is easy to show using Lemma 3 and M1 of
Table 3 that ‖ is closed too.

Composition of Motion Description Languages 579

4.4 MDLe Equivalence Is Decidable

Systems of guarded recursive equations enjoy nice properties in the sense that verifying
the bisimulation equivalence is decidable [10].

Theorem 1 ([10]). Let E1, E2 be normed systems of guarded recursion equations
(over basic process algebras) in restricted Greibach normal form. Then the bisimulation
relation ≈, that is whether E1 ≈ E1, is decidable.

Corollary 1. If MDLes are written in the form of a system of guarded recursive equa-
tions in Greibach normal form over a BPA, the bisimulation relation is decidable.

Proof. (Sketch) Using Lemma 1, each MDLe is written as a context-free language in
Greibach Normal Form. Lemma 2 translates this representation into a system of guarded
recursive equations in restricted Greibach normal form over a BPA. By Theorem 1 of
[10], language equivalence for systems in (guarded) restricted Greibach normal form
such as the MDLes translated using Lemma 2, is decidable up to bisimilarity. ��

4.5 MDLe Composition Preserves Bisimilarity

Proposition 1. The composition operator ‖ preserves bisimilarity. That is, if P ≈ Q,
then P‖R ≈ Q‖R.

Proof. Consider a relation R over the set of processes, such that P‖R and Q‖R belong
to R whenever P ≈ Q. We show that R is a bisimulation.

Case 1. Process P (or Q) executes action a. If P ≈ Q, then (P‖R, Q‖R) ∈ R.
Assume that P

a→ P ′. Then by action relation R6 in Table 4, we have P
a→ P ′ ⇒

P‖R a→ P ′‖R. Since P ≈ Q, there exists Q′ such that Q
a→ Q′, and P ′ ≈ Q′.

By definition, (P ′‖R, Q′‖R) ∈ R. Similarly, it can be shown that if Q
a→ Q′, then

there exists a P ′, with P ′ ≈ Q′ and (P ′‖R, Q′‖R) ∈ R.
Case 2. Process R executes action a. Since bisimulation is reflexive, this case reduces

to the previous one, and (P‖R, P‖R) ∈ R.
Case 3. Process P terminates after executing action a (P

a→ √
). Relation R7 of

Table 4 implies that P
a→ √ ⇒ P‖R a→ R. Since P ≈ Q, we need to have

Q
a→ √

. Thus, by R7 of Table 4, Q‖R a→ R. By definition, R ≈ R and thus
the processes derived with the a-transition belong R. The case where Q terminates
after executing a is identical.

Case 4. Process R terminates after executing a (R
a→ √

). By R7 of Table 4, R
a→√ ⇒ P‖R a→ P. Similarly, R

a→ √ ⇒ Q‖R a→ Q. Given that P ≈ Q, the
processes derived from P‖R and Q‖R when R executes a, belong to R.

Case 5. Processes P and R are synchronously execute action a. In this case, we resort
to axiom M1 of Table 3, and treat the transitions of P and R separately according
to cases 1 and 2 above. The case where Q executes a synchronously with R is
identical.

Case 6. Processes P and R terminate synchronously by executing action a. Axiom
M1 of Table 3 allows us to treat the synchronous transition to termination as an
asynchronous one. In this case, we proceed according to cases 3 and 4.

580 W. Zhang and H.G. Tanner

Thus, for all combinations of possible transitions for P‖R and Q‖R, we have that
P‖R ≈ Q‖R if P ≈ Q. The conditions of Definition 6 are satisfied and therefore R is
a bisimulation relation. ��
From Proposition 1 it follows that

Corollary 2. The composition of MDLes is decidable up to bisimulation equivalence.

Proof. The operation ′‖′ is closed (Lemma 3) and also preserve bisimilarity (Propo-
sition 1), which means the composition of MDLes can also be written as a system of
guarded recursive equations in restricted Greibach normal form over a BPA. By Theo-
rem 1, this composition is decidable. ��

5 A Case Study: The Sliding Block Puzzle

Representing an instance of the sliding block puzzle as a multi-robot hybrid system
serves as a reality check, to ensure that our formulation captures the possible interaction
between heterogeneous robot systems. It has been shown that in general, sliding-block
puzzles are PSPACE-complete [24,25]. However, under certain simplifying assumptions
and for cases of such puzzles like the one we consider here (Figure 2), a polynomial
algorithm can be constructed to move a single block from any initial position to any
final position [25].

Fig. 2. Realization of a sliding block puz-
zle. Square blocks (tiles) cover all but one
cell of a 4 × 4 grid. A robot (round ob-
ject) is moving along the rows and columns
of the grid reconfiguring the blocks. Blocks
and robot are modeled as agents moving ac-
cording to their own MDLe.

Fig. 3. Enumeration of agent positions for
the agents in the sliding block puzzle. Po-
sitions 1 through 16 can be occupied by
blocks. (In Figure 2, position 2 is not oc-
cupied.) Positions 17 through 81 represent
possible positions for the robot agent.

In the simple instance of the sliding block puzzle depicted in Figure 2, the goal is for
the robot (initially at position 26) to move the block at position 1 to location 6. Robot
and blocks are thought to be autonomous agents, each with its own MDLe. A block can

Composition of Motion Description Languages 581

do nothing by itself; any transitions within the block’s MDLe may only be activated
after composition with the robot agent, which can push a block to a different location.
However, these potential transitions in the block’s configuration need to be encoded in
its enabled event set η.

We model the state of the block as a triplet, consisting of the state of motion
(the analogous of the controller in a robotic system), its position, and the availabil-
ity of an empty location in the immediate neighborhood. The block automaton is
B = (Vb, ηb, Vb ∪ ηb, Γb, δb, V0b, Z0b), where

1. Vb := {Vb1, Vb2, Vb3} is the set of states, where
– Vb1 ∈ {u1, . . . , u5} is a motion state: u1 (be pushed east), u2 (be pushed west),

u3 (be pushed north), u4 (be pushed south), u5 (stay at location);
– Vb2 ∈ {1, . . . , 16} is the position of the block; and
– Vb3 ∈ {b1, . . . , b5} are possible empty nearby locations: b1 (east), b2 (west), b3

(north), b4 (south), b5 (none);
2. ηb = {νb | νb = ((ui, j, bk), ξ)}, with i and k in {1, . . . 5}, and j in {1, . . . , 16},

includes all events (MDLe atoms; ξb is the block’s interrupt function) ;
3. Γb : Vb → 2ηb is the event activation function (initially mapping to ∅);
4. δb : Vb×ηb → Vb is the transition function, also mapping to ∅ since the range of Γb

is empty, suggesting that the block automaton can make no transitions on its own
(except for the case of u5).

Symbols V0b and Z0b correspond to the initial state and stack symbol, respectively.
For the robot, an atom consists of the state of motion (controller running) and its

position. The robot can move along the rows and columns of the grid, and push against
a block in order to move it. The automaton for the robot is a tuple R = (Vr , ηr, Vr ∪
ηr, Γr, δr, V0r, Z0r), where

1. Vr = {(Vr1, Vr2)} is the set of states, where
– Vr1 ∈ {w1, . . . , w9} are the available controllers for the robot: w1 (push east)

w2 (push west), w3 (push north), w4 (push south), w5 (stay at location), w6

(move east), w7 (move west), w8 (move north), w9 (move south); and
– Vr2 ∈ {17, . . . , 81} are the possible positions for the robot;

2. ηr = {νr | νr = ((wi, j), ξr)}, where i is in {1, . . . , 9}, j in {17, . . . , 81}, and
ξr is the robot’s interrupt function, includes all the events associated with possible
robot transitions;

3. Γr : Vr → 2ηr is the activation function determining which events are active at
each robot state; and

4. δr : Vr × ηr → Vr is the transition function.

Similarly, V0r and Z0r are the initial state and the start stack symbol for the robot
automaton, respectively.

The system expressing all possible transitions in the sliding block puzzle is generated
by composing the robot with the fifteen blocks. Note that traditional notions of (parallel)
composition [23] produce a system where nothing can happen (the puzzle configuration
cannot change). However, by identifying “pushing” events in both systems as common:
ui = wi, for i = 1, . . . , 5 and including them in H = {u1, . . . , u5}, the composed

582 W. Zhang and H.G. Tanner

system can take synchronised transitions on these events. Therefore, to move a block
from position 1 to position 6, starting from the configuration shown in Figure 2 we give
the composed system the following input string:

((5,27,1,1,1,1,26),2)((8,27,5,2,2,5,27),1)((8,32,2,2,2,8,27),1)((8,41,2,2,2,8,32),1)((8,46,2,2,2,8,41),1)

((5,46,2,2,2,8,46),1)((7,46,2,2,2,5,46),1)((7,50,2,2,2,7,46),1)((5,50,2,2,2,7,50),1)((8,50,2,2,2,5,50),1)

((4,50,4,5,4,5,50),2)((5,36,4,5,4,4,50),1)((6,36,5,1,3,5,36),1)((6,32,3,1,3,6,36),1)((6,37,3,1,3,6,32),1)

((6,33,3,1,3,6,37),1)((5,33,3,1,3,6,33),1)((8,33,3,1,3,5,33),1)((8,42,3,1,3,8,33),1)((5,42,3,1,3,8,42),2)

((7,42,3,1,3,5,42),1)((2,42,2,6,2,5,42),1)((5,41,2,6,2,2,42),1)((9,41,5,5,1,5,41),2)((9,32,1,5,1,9,41),1)

((9,27,1,5,1,9,32),1)((9,18,1,5,1,9,27),1)((5,18,1,5,1,9,18),1)((6,18,1,5,1,5,18),1)((6,23,1,5,1,6,18),1)

((5,23,1,5,1,6,23),1)((8,23,1,5,1,6,23),1)((3,23,3,2,3,5,23),2) ((5,37,3,2,3,3,23),1)((8,37,5,6,4,5,37),1)

where due to space restrictions, we have abbreviated the composed atoms, and included
only the components corresponding to the block (distinguished by its position) that
physically interacts with the robot.

6 Conclusion

Our approach to composition of MDLes and cooperative behavior between heteroge-
neous systems is based on allowing systems to have additional cooperative transitions,
that become active only when the systems are composed with appropriate others. We
engineered the mechanics of this interaction by identifying these related, or interdepen-
dent, transitions between systems and placing them in a set H that affects how the tran-
sitions of the composed system are synchronized. By mapping MDLes to a specific type
of basic process algebras we obtained well defined semantics to such compositions, and
established computability properties (at least when it comes to language equivalence)
for these processes and their compositions. Further steps include the construction of a
bisimulation algorithm to allow us to abstract the discrete (but big) systems resulting
from such compositions, and the subsequent use of available model checkers for motion
and task planning by negating reachability predicates and using counterexamples.

Acknowledgement. This work is supported by NSF IIS grant # 0447898.

References

1. Brockett, R.: Formal languages for motion description and map making. In: Bailleul, J.,
Brockett, R., Donald, B. (eds.) Robotics, vol. 41, pp. 181–193. ACM, New York (1990)

2. Manikonda, V., Krishnaprasad, P., Hendler, J.: Languages, behaviors, hybrid architectures
and motion control. In: Baillieul, J., Willems, J.C. (eds.) Mathematical Control Theory, pp.
200–226. Springer, Heidelberg (1998)

3. Hristu, D., Krishnaprasad, P., Anderson, S., Zhang, F., D’Anna, L., Sodre, P.: The MDLe
engine: A software tool for hybrid motion control. Technical Report 2000-54, Institute for
Systems Research, University of Maryland (2000)

Composition of Motion Description Languages 583

4. Baeten, J.: A brief history of process algebra. Technical Report CSR 04-02, Vakgroep Infor-
matica, Technische Universiteit Eindhoven (2004)

5. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear sys-
tems with symmetries. IEEE Trans. on Robotics 21, 1077–1091 (2005)

6. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77,
541–580 (1989)

7. Jancar, P.: Undecidability of bisimilarity for petri nets and some related problems. Theoretical
Computer Science 148, 281–301 (1995)

8. Hristu-Varsakelis, D., Egerstedt, M., Krishnaparsad, P.: On the structural complexity of the
motion description language MDLe. In: Proceedings of the 42nd IEEE Conference on De-
scision and Control, pp. 3360–3365 (2003)

9. Burkart, O., Steffen, B.: Composition, decomposition and model checking of pushdown pro-
cesses. Nordic Journal of Computing 158, 89–125 (1995)

10. Baeten, J., Bergstra, J., Klop, J.W.: Decidability of bisimulation equivalence for process gen-
erating context-free languages. Journal of the ACM 40, 653–683 (1993)

11. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding bisimulation
equivalence of normed basic parallel process. Theoretical Computer Science 158, 143–159
(1996)

12. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
14. Hoare, C.: Communicating Sequential Processes. Lecture Notes in Computer Sciences.

Prentice-Hall, Englewood Cliffs (1985)
15. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer

Science, vol. 18. Cambridge University Press, Cambridge (1991)
16. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL - a tool suite for auto-

matic verification of real-time systems. In: DIMACS Workshop on Verification and Control
of Hybrid Systems, Springer, Heidelberg (1995)

17. Henzinger, T., Ho, P.H., Wong-Toi, H.: A user guide to HYTECH. In: Brinksma, E., Steffen,
B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
41–71. Springer, Heidelberg (1995)

18. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The tool KRONOS. In: Alur, R., Sontag,
E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066, pp. 208–219. Springer, Heidelberg
(1996)

19. Brockett, R.W.: On the computer control of movement. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 534–540 (1988)

20. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process algebra.
Technical Report ECS-LFCS-98-386, School of Informatics at the University of Edinburgh
(1998)

21. Pappas, G.J.: Bisimilar linear systems. Automatica 39, 2035–2047 (2003)
22. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company (1997)
23. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer Academic

Publishers, Dordrecht (2001)
24. Hopcroft, J., Schwarz, J., Sharir., M.: On the complexity of motion planning for multiple

independent objects:pspace-hardness of the ’warehouseman’s problem. International Journal
of Robotics Tesearch 3, 76–88 (1984)

25. Robert, A., Hearn, E.D.D.: Pspace-completeness of sliding-block puzzles and other problems
through the nondeterministic constraint logic model of computation. Theoretical Computer
Science 343, 72–96 (2005)

On Optimal Quadratic Regulation

for Discrete-Time Switched Linear Systems�

Wei Zhang and Jianghai Hu

School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907, USA

{zhang70,jianghai@purdue.edu}

Abstract. This paper studies the discrete-time linear quadratic regu-
lation problem for switched linear systems (DLQRS) based on dynamic
programming approach. The unique contribution of this paper is the
analytical characterizations of both the value function and the opti-
mal control strategies for the DLQRS problem. Based on the particular
structures of these analytical expressions, an efficient algorithm suitable
for solving an arbitrary DLQRS problem is proposed. Simulation re-
sults indicate that the proposed algorithm can solve randomly generated
DLQRS problems with very low computational complexity. The theoret-
ical analysis in this paper can significantly simplify the computation of
the optimal strategy, making an NP hard problem numerically tractable.

1 Introduction

A switched system usually consists of a family of subsystems described by dif-
ferential or difference equations and a logical rule that orchestrates the switch-
ing among them. Such systems arise in many engineering fields, such as power
electronics [1,2], embedded systems [3,4], manufacturing [5], and communica-
tion networks [6], etc. In the last decade or so, the stability and stabilizability
of switched systems have been extensively studied [7,8,9]. Many theoretical and
numerical tools have been developed for the stability analysis of various switched
systems. These stability results have also led to some controller synthesis algo-
rithms which stabilize certain simple switched systems [10]. However, for many
engineering applications, ensuring the stability is only the first step rather than
an ultimate design goal. How to design a control strategy that not only stabi-
lizes a given switched system, but also optimizes certain design criteria is an
even more meaningful yet challenging research problem.

The focus of this paper is on the optimal discrete-time linear quadratic reg-
ulation problem for switched linear systems, hereby referred to as the DLQRS
problem. The goal is to develop a computationally appealing algorithm to con-
struct an optimal control law that minimizes the given quadratic cost function.
The problem is of fundamental importance in both theory and practice and has
� This work was partially supported by the National Science Foundation under Grant

CNS-0643805.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 584–597, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Optimal Quadratic Regulation 585

challenged researchers for many years. The bottleneck is mostly on the deter-
mination of the optimal switching strategy. Many methods have been proposed
to tackle this problem, most of which are in a divide-and-conquer manner. Al-
gorithms for optimizing the switching instants with a fixed mode sequence have
been derived for general switched systems in [11] and for autonomous switched
systems in [12]. Although an algorithm for updating the switching sequence is
discussed in [12], finding the best switching sequence is still an NP-hard problem,
even for switched linear systems.

This paper studies the DLQRS problem from the dynamic programming (DP)
perspective. The last few years have seen increasing interest in using DP to solve
various optimal control problems of switched systems. In [13], DP is used to de-
rive a search algorithm to find the optimal switching instants for fixed switching
sequences. In [14,15,16], DP-based numerical methods are proposed to compute
the optimal switching regions. More recently, Lincoln and Rantzer [17] develop
an iterative algorithm to approximate the true value functions with guaranteed
accuracy. The algorithm is also used to study switched systems in [18,19]. Com-
pared with previous studies, the contributions of this paper are the following.
First, we characterize analytically the value function and the optimal control
strategy for general DLQRS problems. More specifically, we show that the value
function at each time step of any DLQRS problem is the pointwise minimum of
a finite number of quadratic functions, and that the optimal state-feedback gain
is of a Kalman-type form with a state-dependent positive semi-definite matrix.
Although other researchers have also suggested a piecewise affine structure for
the optimal feedback control [14,15,16], few of them derive explicitly the optimal
feedback gains and identify their connections with the Kalman gain and Riccati
recursion of the traditional LQR problem as we do in this paper. Secondly, we
prove that under certain conditions of the subsystems, the value function con-
verges exponentially fast as the control horizon increases. Finally, based on the
particular structure of the value function and its convergence property, an effi-
cient algorithm is proposed to solve general DLQRS problems. Simulation results
indicate that the proposed algorithm can compute the optimal switching strategy
and the optimal control input simultaneously with very low computational com-
plexity for randomly generated DLQRS problems. It is worth mentioning that
in [17], Lincoln et al. proposes a similar structure of the value function when
they apply their general theory of relaxed dynamic programming to switched
linear systems. The approach adopted in this paper follows naturally from the
traditional LQR problem and is substantially different from the one used in [17].
Moreover, different from [17], we allow nonzero terminal cost in the objective
function, which is especially important when the time horizon is finite. More
comparisons of our result with [17] can be found in Remark 4.

This paper is organized as follows. In Section 2, the DLQRS problem is formu-
lated. The value function of the DLQRS problem is derived in a simple analytical
form in Section 3. An algorithm is developed in Sections 4 and 5 to compute
the value function in an efficient way. Numerical simulations are performed in
Section 6 to demonstrate the algorithm. Finally, some concluding remarks are
given in Section 7.

586 W. Zhang and J. Hu

2 Problem Formulation

Consider the discrete-time switched linear system defined as:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t = 0, . . . , N − 1, (1)

where x(t) ∈ R
n is the continuous state, v(t) ∈ M � {1, . . . ,M} is the discrete

control or switching strategy, and u(t) ∈ R
p is the continuous control. For each

i ∈ M, Ai and Bi are constant matrices of appropriate dimension, and the pair
(Ai, Bi) is called a subsystem of (1). This switched linear system is time invariant
in the sense that the set of available subsystems {(Ai, Bi)}M

i=1 is independent of
time t. We assume that there is no internal forced switchings, i.e., the system can
stay at or switch to any mode at any time instant. In this paper, the terminal
cost function ψ(x) and the running cost function L(x, u, v) are assumed to be in
the following quadratic forms:

ψ(x) = xTQfx, L(x, u, v) = xTQvx+ uTRvu,

where Qf = QT
f � 0 is the terminal state weight, and Qv = QT

v � 0 and
Rv = RT

v � 0 are the running weights for the state and the control for subsystem
v ∈ M, respectively. The overall objective function to be minimized over the time
horizon [0, N] can thus be defined as

J(u, v) = ψ(x(N)) +
N−1∑

j=0

L(x(j), u(j), v(j))). (2)

The goal of this paper is to solve the following discrete-time LQR problem for
the switched linear system (1) (referred to as DLQRS problem hereby).

Problem 1 (DLQRS problem). Find the u and v that minimize J(u, v) subject
to the dynamic equation (1).

3 The Value Function of the DLQRS Problem

Following the idea of dynamic programming, for each time t ∈ {0, 1, . . . , N}, we
define the value function Vt,N : R

n → R as:

Vt,N (z)= min
v(j)∈M,u(j),

t≤j≤N−1

{
ψ(x(N))+

N−1∑

j=t

L(x(j), u(j), v(j))
∣∣∣

subject to eq. (1) with x(t) = z
}
. (3)

The Vt,N (z) so defined is the minimum cost-to-go starting from state z at time
t. The minimum cost for the DLQRS problem with a given initial condition
x(0) = x0 is simply V0,N (x0). Due to the time-invariant nature of the switched

On Optimal Quadratic Regulation 587

system (1), its value function depends only on the number of remaining time
steps, i.e.,

Vt,N (z) = Vt+m,N+m(z),

for all z ∈ R
n and all integers m ≥ −t. In the rest of this paper, when no

ambiguity arises, we will denote by Vk(z) the value function at time t = N − k
when there are k time steps left, i.e., Vk(z) � VN−k,N (z).

In the special case when M = 1, the switched system consists of only one
subsystem, say, (A,B). Thus, the DLQRS problem degenerates into the classical
LQR problem. Denote by Q and R the state and control weighting matrices in
this degenerate case. Then, according to the LQR theory, the value function
defined in (3) is of the following quadratic form:

Vk(z) = zTPkz, k = 0, . . . , N, (4)

where {Pk}N
k=0 is a sequence of positive semi-definite matrices satisfying the

Difference Riccati Equation (DRE)

Pk+1 = Q+ATPkA−ATPkB(R+BTPkB)−1BTPkA, (5)

with initial condition P0 = Qf . Some important facts about the matrices Pk’s
are summarized in the following lemma.

Lemma 1 ([20,21]). Let A be the set of all positive semi-definite (p.s.d.)
matrices, then

1. If Pk ∈ A, then Pk+1 ∈ A.
2. If (A,B) is stabilizable, then the sequence {||Pk||2}∞k=0 is uniformly bounded.
3. Let C be a matrix such that Q = CTC. If (A,B) is stabilizable and (A,C) is

detectable, then limk→∞ Pk = P ∗, where P ∗ is the unique stabilizing solution
to the Algebraic Riccati Equation (ARE)

P = Q+ATPA−ATPB(R+BTPB)−1BTPA.

In general, when M ≥ 2, the value function Vk(z) is no longer a simple quadratic
form as in (4). To derive the value function for the general switched linear sys-
tem (1), define the Riccati mapping ρi : A → A for each subsystem (Ai, Bi),
i ∈ M:

ρi(P) =Qi +AT
i PAi −AT

i PBi(Ri +BT
i PBi)−1BT

i PAi. (6)

Let H0 = {Qf} be a set consisting of only one matrix Qf . Define the set Hk for
k ≥ 0 iteratively as

Hk+1 = ρM(Hk) � {P ∈ A : P = ρi(Pk), for some i ∈ M and Pk ∈ Hk}. (7)

In other words, each matrix in ρM(Hk) is obtained by taking the Riccati mapping
for some matrix in Hk through some subsystem i. Denote by |Hk| the number of
distinct matrices in Hk. Then it can be easily seen that |H0| = 1 and |Hk| ≤Mk

for any k ≥ 0.

588 W. Zhang and J. Hu

Theorem 1. The value function for the DLQRS problem at time N − k, i.e.,
with k time steps left, is

Vk(z) = min
P∈Hk

zTPz. (8)

Furthermore, for k ≥ 0, if we define

(P ∗
k (z), i∗k(z)) = argmin

(P∈Hk,i∈M)

zTρi(P)z, (9)

then the optimal mode (discrete control) and the optimal continuous control at
state z and time N − (k+ 1) are v∗(N − (k+ 1)) = i∗k(z) and u∗(N − (k+ 1)) =
−Ki∗k(z)(P ∗

k (z))z, respectively, where Ki(P) is the Kalman gain for subsystem i
with matrix P , i.e.,

Ki(P) � (Ri +BT
i PBi)−1BT

i PAi. (10)

.

Proof. The theorem can be proved through induction. It is obvious that for k = 0
the value function is Vk(z) = zTQfz, satisfying (8). Now suppose equation (8)
holds for a general integer k, i.e., Vk(z) = minP∈Hk

zTPz, we shall show that it
is also true for k+ 1. By the principle of dynamic programming and noting that
Vk(·) represents the value function at time N − k, the value function at time
N − (k + 1) can be recursively computed as

Vk+1(z) = min
i∈M,u

[
zTQiz + uTRiu+ Vk(Aiz +Biu)

]

= min
i∈M,u

[
zTQiz + uTRiu+ min

P∈Hk

(
(Aiz +Biu)TP (Aiz +Biu)

)]

= min
i∈M,P∈Hk,u

[
zTQiz + uTRiu+ (Aiz +Biu)TP (Aiz +Biu)

]

= min
i∈M,P∈Hk,u

[
zT (Qi + AT

i PAi)z + uT (Ri +BT
i PBi)u+ 2zTAT

i PBiu
]

� min
i∈M,P∈Hk,u

f(i, P, u). (11)

With a symmetric matrix P , it can be easily computed that

∂f(i, P, u)
∂u

= 2(Ri +BT
i PBi)u+ 2BT

i PAiz.

Since u is unconstrained, its optimal value u∗ must satisfy ∂f(i,P,u∗)
∂u = 0, i.e.,

u∗ = −(Ri +BT
i PBi)−1BT

i PAiz = −Ki(P)z, (12)

where Ki(P) is the matrix defined in (10). Substitute u∗ into (11), we obtain

Vk+1(z) = min
i∈M,P∈Hk

f(i, P, u∗)

= min
i∈M,P∈Hk

[
zT

(
Qi +AT

i PAi −AT
i PBiKi(P)

)
z
]

= min
i∈M,P∈Hk

zTρi(P)z.

On Optimal Quadratic Regulation 589

Let P ∗
k (z) and i∗k(z) be the matrix and the index that minimize zTρi(P)z, i.e.,

they are defined as in (9). Then the optimal continuous control and discrete
control at time N − (k + 1) and state z are u∗(N − (k + 1)) = −Ki∗k(z)(P ∗

k (z))z
and v∗(N − (k + 1)) = i∗k(z), respectively. Furthermore, observing that {ρi(P) :
i ∈ M, P ∈ Hk} = ρM(Hk) = Hk+1, we have Vk+1(z) = minP∈Hk+1 z

TPz.

According to Theorem 1, comparing to the discrete-time LQR case, the value
function of the DLQRS problem is no longer a single quadratic function; it actu-
ally becomes the pointwise minimum of a finite number of quadratic functions.
In addition, at each time step, instead of having a single Kalman gain for the
entire state space, the optimal state feedback gain becomes state dependent.
Furthermore, the minimizer (P ∗

k (z), i∗k(z)) of equation (9) is radially invariant,
indicating that at each time step all the states along the same radial direction
have the same optimal mode and optimal feedback gain.

4 Equivalent Subset of p.s.d. Matrices

According to Theorem 1, the value function Vk(·) is completely characterized
by the set Hk, which can be obtained iteratively by (7). Since the size of the
set Hk grows exponentially fast, it becomes unfeasible to compute Hk when k
gets large. However, in terms of computing the value function, we only need to
keep the matrices in Hk that give rise to the minimum of (8) for at least one
z ∈ R

n. To remove the redundant matrices in Hk and simplify the compuation,
the following definitions are introduced.

Definition 1 (Equivalent Sets of p.s.d Matrices). Let H and Ĥ be two
sets of p.s.d matrices. The set H is called equivalent to Ĥ, denoted by H ∼ Ĥ,
if minP∈H zTPz = minP̂∈Ĥ z

T P̂ z, ∀z ∈ R
n.

Therefore, any equivalent sets of p.s.d. matrices will define the same value func-
tion of the DLQRS problem. To ease the computation, we are more interested
in finding the smallest equivalent subset of Hk.

Definition 2 (Minimum Equivalent Subset (MES)). Let H and Ĥ be two
sets of symmetric p.s.d matrices. Ĥ is called an equivalent subset of H if Ĥ ⊆ H
and Ĥ ∼ H. Furthermore, Ĥ is called a minimum equivalent subset (MES) of
H if it is the equivalent subset of H with the fewest elements. Note that the MES
of H may not be unique. Denote by Γ (H) one of the MES’s of H.

Remark 1. It is also worth mentioning that due to its special structure, the value
function is homogeneous, namely, Vk(λz) = λ2Vk(z), for all z ∈ R

n and λ ∈ R
1.

Therefore, it suffices to consider only the points z on the unit sphere in checking
the conditions in the above two definitions.

The following lemma provides a test for the equivalent subsets of Hk.

Lemma 2. Ĥ is an equivalent subset of H if and only if

590 W. Zhang and J. Hu

1. Ĥ ⊆ H
2. ∀P ∈ H and ∀z ∈ R

n, there exists a P̂ ∈ Ĥ such that zT P̂ z ≤ zTPz.

Proof. (a) (sufficiency): We need to prove minP∈H zTPz = minP̂∈Ĥ z
T P̂ z, ∀z ∈

R
n. Obviously minP∈H zTPz ≤ minP̂∈Ĥ zT P̂ z, ∀z ∈ R

n because Ĥ ⊆ H. On the
other hand, by the second condition, for each z ∈ R

n and P ∈ H, there exist a P̂
such that zT P̂ z ≤ zTPz. Thus, minP̂∈Ĥ zT P̂ z ≤ minP∈H zTPz. (b) (necessity):
straightforward by a standard contradiction argument.

Remark 2. Lemma 2 can be used as an alternative definition of the equivalent
subset. Although the original definition is conceptually simpler, the conditions
given in this lemma provide a more explicit characterization of the equivalent
subset, which proves to be more beneficial in the subsequent discussions.

All the equivalent subsets of Hk define the same value function Vk(z). Thus,
in terms of computing the value function, all the matrices in Hk \ Γ (Hk) are
redundent. More rigorously, P̂ ∈ Hk is called redundent with respect to Hk if
for all z ∈ R

n, there exists a P ∈ Hk \ {P̂} such that zT P̂ z ≥ zTPz. Thus, to
simplify the computation, we shall prune away as many as possible redundant
matrices and obtain an equivalent subset of Hk as close as possible to Γ (Hk).
However, testing whether a matrix is redundant or not is itself a challenging
problem. Geometrically, any p.s.d. matrix defines uniquely an ellipsoid in R

n. It
can be easily verified that P̂ ∈ Hk is redundant if and only if its corresponding
ellipsoid is completely contained in the union of all the ellipsoids corresponding
to the matrices in Hk \ {P̂}. Since the union of ellipsoids are not convex in
general, there is in general no efficient way to verify this geometric condition or
equivalently the original mathematical condition of redundancy. Nevertheless, a
sufficient condition for a matrix to be redundant can be easily obtained and is
given in the following lemma.

Lemma 3. P̂ is redundant with respect to Hk if there exist nonnegative con-
stants α1, . . . , α|Hk|−1 such that

∑|Hk|−1
i=1 αi = 1 and P̂ � ∑|Hk|−1

i=1 αiP
(i), where

{P (j)}|Hk|−1
j=1 is an enumeration of Hk \ {P̂}.

Proof. Straightforward.

For given P̂ and Hk, the condition in Lemma 3 can be easily verified using
various existing convex optimization algorithms [22]. Lemma 3 can not guarantee
to identify all the redundent matrices, however, it usually can help to eliminate
a large portion of the redundant matrices in Hk. During the value iteration, each
matrix in Hk will be tested according to Lemma 3. If the condition in Lemma 3
is met, then the matrix under consideration will be discarded; otherwise, the
matrix will be kept and used to generate the set Hk+1. A detailed description of
this process is given in Algorithm 1. The returned set H(|Hk|)

k by Algorithm 1 is
an equivalent subset of Hk with usually a much smaller size.

On Optimal Quadratic Regulation 591

Algorithm 1

1. Denote by P (j) the j(th) matrix in Hk. Set H(1)
k = {P (1)}.

2. For each j = 2, . . . , |Hk|, if P (j) satisfies the condition in Lemma 2 with respect

to Hk, then H(j)
k = H(j−1)

k , otherwise H(j)
k = H(j−1)

k ∪ {P (j)}.
3. Return H(|Hk|)

k .

5 Computation of the Value Function

In this section, we use the equivalent-subset concept to simplify the computation
of the value function of the DLQRS problem. For each k ≤ N , let Ĥk be an
arbitrary equivalent subset of Hk. The following corollary follows immediately
from Definition 2.

Corollary 1. The result in Theorem 1 still holds if every Hk is replaced by Ĥk.

Corrollary 1 says that to compute the value function and the optimal control
strategy, it suffices to use an equivalent subset of Hk for each k. In the last
section, we have developed an algorithm to prune the redundant matrices in Hk.
However, the complexity of the algorithm still depends on |Hk|, which grows
exponentially fast as k increases. To overcome this difficulty, the following lemma
is introduced.

Lemma 4 (Self Iteration). Let the sequence of sets {Ĥk}N
k=0 be generated by

Ĥ0 = H0, and Ĥk+1 = Algo(ρM(Ĥk)) for 0 ≤ k ≤ N − 1, (13)

where Algo(H) denotes the equivalent subset of H returned by Algorithm 1. Then
Ĥk ∼ Algo(Hk).

Proof. The interested readers are refered to [23] for the proof of this lemma.

According to Lemma 4, Algo(Hk) is equivalent to Algo(ρM(Ĥk−1)). Thus, to
compute the desired equivalent subset of Hk, one can apply Algorithm 1 to
ρM(Ĥk−1) instead of the original set Hk. Denoted by |Ĥk| the size of Ĥk. The set
ρM(Ĥk−1) contains at most M · |Ĥk| matrices which is usually much smaller than
|Hk| = Mk. Therefore, Lemma 2 could significantly simplify the computation
of Algo(Hk). Although |Ĥk| grows reasonably slow, it is still possible to become
out of hand if the control horizon N is large. The following theorem allows us
to terminate the computation with guaranteed accuracy on the optimal cost at
some early stage for large time horizon N .

Theorem 2. Suppose that (i) Qf � 0 and Qi � 0 for each i ∈ M; (ii) at least
one subsystem is stabilizable. Then Vk(z) converges exponentially fast to V∞(z)
for each z ∈ R

n as k → ∞. Furthermore, the convergence is uniform on the unit

592 W. Zhang and J. Hu

sphere in R
n and the difference between the value functions at time step N − k1

and N − k2 is bounded above by

|Vk1(z) − Vk2(z)| ≤ (β + λ+
f)αγk2‖z‖2, (14)

where β, λ+
f , α and γ are all parameters depending only on the subsystem

matrices.

Remark 3. Note that the first condition in the above theorem is not restrictive
because a randomly selected p.s.d. matrix is almost surely nonsingular. The
proof of this theorem is quite involved and is beyond the scope of this paper.
The interested readers are referred to [23] for a complete proof.

Remark 4. Compared with the convergence result in [17], Theorem 2 has several
distinctive features. Firstly, it allows nonzero terminal cost, which is especially
important for finite-horizon DLQRS problem. Secondly, its conditions are much
easier to verify as they are expressed in terms of the system matrices instead
of the infinite-horizon value functions as is the case in [17]. Finally, by inequal-
ity (14), the convergence rate can be approximated using the system matrices.
Thus, for a given tolerance on the optimal cost, an upper bound of the required
number of iterations can be simply computed before the actual computation
starts. This provides an efficient means to stop the value iterations.

The exponential convergence result is crucial for the efficient computation of the
value function. Given a reasonable tolerance on the accuracy, the value function
usually converges in only a few steps. This greatly simplifies the value function
computation, especially for the case with large time horizon N . In practice the
convergence is usually tested only on a finite set of sampling points on the unit
sphere. These sampling points should be chosen dense enough to capture the
behaviors of all the value functions on the entire unit sphere. The existence of
such sampling points is guaranteed by the following corollary of Theorem 2.

Corollary 2. Under the same conditions as in Theorem 2, the sequence of value
functions {Vk(z)}∞k=0 is equicontinuous on the unit sphere.

Proof. Denote by Bu the unit sphere in R
n. Obviously, each value function Vk(z)

is continuous on Bu. By theorem 2, Vk(·) converges uniformly on Bu. Since Bu

is a compact set, the desired result follows directly from Theorem 7.24 in [24].

With all the results developed so far, a general procedure for solving the DLQRS
problem is summarized in Algorithm 2.

Table 1. |Ĥk| for Ex1

k 1 2 3 4 5 6

|Ĥk| 2 4 5 5 5 5

On Optimal Quadratic Regulation 593

Algorithm 2

1. Set Ĥ0 = Qf and specify a tolerance ε for the minimum cost. Choose a finite
set of sampling points on the unit sphere of Rn and denote it by S.

2. For each step k ≥ 1, compute Ĥk = Algo(ρM(Ĥk−1)) where Algo(·) represents
Algorithm 1.

3. Compute the value function Vk(z) for each z ∈ S using Ĥk.
4. If |Vk(z) − Vk−1(z)| > ε for some z ∈ S, then let k = k + 1 and go back to

step 2. Otherwise let kε = k and continue to step 5.
5. Define Ĥk = Ĥkε for kε ≤ k ≤ N .
6. The optimal trajectory can now be obtained by

x(t + 1) = Av∗(t)x(t) + Bv∗(t)u
∗(t), with x(0) = x0,

where v∗(t) and u∗(t) are determined using Corollary 1 based on the set
ĤN−(t+1).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

θ

V
k(z

(θ
))

k≥3

k=1

k=0

k=2

(a)

0 0.5 1 1.5 2 2.5 3

2

4

6

8

10

x 10
−5

θ

V
6(z

(θ
))

−
−

−
V

5(z
(θ

))

(b)

Fig. 1. Convergence results for Ex1. (a) Convergence of the Value function. (b) Differ-
ence between the last two iterations.

6 Examples

6.1 Example 1

First consider a simple DLQRS problem, referred to as Ex1, with control horizon
N = 100 and two second-order subsystems:

A1 =
[

2 1
0 1

]
, B1 =

[
1
1

]
, A2 =

[
2 1
0 0.5

]
, B2 =

[
1
2

]
.

Suppose that state and control weights areQ1 = Q2 = I2×2 andR1 = R2 = 1, re-
spectively. Both subsystems are unstable but controllable. Algorithm 2 is applied

594 W. Zhang and J. Hu

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Time N−1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Time N−2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Time N−3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Time N−4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Time N−5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Time N−6

Fig. 2. Switching Regions for Ex1: Gray Region – mode 1is optimal; Black Region –
mode 2 is optimal

to solve this DLQRS problem. It turns out that with the error tolerance ε = 10−3

the value function of Ex1 converges in 6 steps. Since Vk(z) is homogeneous, it
suffices to plot it at the points on the unit circle, i.e. the points of the form
z(θ) = [cos(θ), sin(θ)]T . It can be easily verified that Vk(z(θ)) = Vk(z(θ + π)),
i.e., the value function is periodic along the unit circle with period π. Therefore,
in Fig. 1-(a), the value function at each time step is plotted only at the points
z(θ) with θ ∈ [0, π]. The difference between the value functions in the last two
iterations are shown in Fig. 1-(b). The number of elements in Ĥk at each step
is listed in Table 1. It can be seen that |Ĥk| is indeed very small, and will stay
at the maximum value 5 as opposed to growing exponentially as k increases.

Furthermore, the optimal switching strategy is illustrated in Fig. 2. At each
time step, the whole state space is divided into several conic regions. The regions
with the same gray scale have the same optimal mode. However, the points with
the same optimal mode may correspond to different optimal feedback gains. The
radial lines in Fig 2 further divide the optimal-mode regions into smaller conic
regions each with a different optimal-feedback gain. In this way, the proposed
approach actually characterizes the optimal control strategies for the entire state
space.

6.2 Example 2

Consider a more complex DLQRS example, referred to as Ex2, with 4 subsys-
tems. The first two subsystems are the same as in Ex1 and the other two are

On Optimal Quadratic Regulation 595

Table 2. |Ĥk| for Ex2

k 1 2 3 4 5

|Ĥk| 3 9 15 15 15

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

|Ĥkε
|

of

 P
ro

bl
em

s

Fig. 3. Distribution of |Ĥkε | for randomly generated problems

defined as:

A3 =
[
3 1
0 0.2

]
, A4 =

[
1 1
0 0.8

]
, B3 = B1, and B4 = B2.

With the same tolerance, the value function of Ex2 converges in 5 steps. This
indicates that under the same tolerance, the speed of the convergence of the value
function may not necessarily increase with the number of subsystems. However,
with more subsystems, |Ĥk| grows more rapidly as shown in Table 2. It is worth
mentioning that the maximum |Ĥk| for this example is only 15 (as opposed to
the nominal size of HN , |HN | = 4100). Therefore, the proposed method has
dramatically simplified the problem, making an NP hard problem numerically
tractable.

6.3 Random Examples

This subsection is devoted to demonstrating the generic solvability of a gen-
eral second-order DLQRS problem using the proposed algorithm. Our goal here
is not to present a formal proof but rather to illustrate through simulations
some important observations. In this set of simulations, the proposed algorithm
is tested on 1000 randomly generated second-order DLQRS problems with a
fairly large number of subsystems (M = 10). The control horizon is the same
as in the last two examples, i.e., N = 100. All of these problems are success-
fully solved and the distribution of |Ĥkε |, namely, the maximum number of
matrices kept before convergence, is plotted in Fig. 3. It can be seen from the
figure that the number |Ĥkε | in all of these 1000 problems are smaller than 50,
and for a majority of the problems, |Ĥkε | is smaller than 15. Therefore, most

596 W. Zhang and J. Hu

second-order DLQRS problems may be efficiently solved using the proposed algo-
rithm. Formally proving the generic solvability is a focus of our future research.

7 Conclusion

This paper studies the DLQRS problem based on dynamic programming ap-
proach. Different from the traditional LQR problem, the value function of the
DLQRS problem is no longer a single quadratic function; it is the pointwise min-
imum of a finite number of quadratic functions. In addition, instead of having
a single Kalman feedback gain as in the LQR case, the optimal state-feedback
gain in the DLQRS problem becomes state dependent. Analytical expressions
have been derived for both the optimal switching strategy and optimal control
inputs. The concept of minimum equivalent subsets is introduced to simplify the
computation of the value function. An efficient algorithm is developed to com-
pute the optimal control strategy with guaranteed accuracy on the optimal cost.
Simulation results indicate that the proposed algorithm can efficiently solve any
randomly generated second-order DLQRS problems. Future research will focus
on how to compute the exact MES of Hk in a general-dimensional state space
and on proving the generic solvability of general DLQRS problems.

References

1. Geyer, T., Papafotiou, G., Morari, M.: Model Predictive Control in Power Electron-
ics: A Hybrid Systems Approach. In: IEEE Conference on Decision and Control,
Seville, Spain (December 2005)

2. Beccuti, A.G., Papafotiou, G., Morari, M.: Optimal Control of the Boost dc-dc
Converter. In: IEEE Conference on Decision and Control, Seville, Spain (December
2005)

3. Zhang, W., Hu, J., Lu, Y.-H.: Optimal Power Modes Scheduling Using Hybrid
Systems. In: Proceedings of the American Control Conference, New York City, NY
(July 2007)

4. Zhang, W., Hu, J.: Optimal Buffer Management Using Hybrid Systems. In: IEEE
Conference on Decision and Control, New Orleans, LA (December 2007)

5. Cassandras, C.G., Pepyne, D.L., Wardi, Y.: Optimal control of a class of hybrid
systems. IEEE Transactions on Automatic Control 46(3), 398–415 (2001)

6. Hespanha, J., Bohacek, S., Obraczka, K., Lee, J.: Hybrid modeling of TCP conges-
tion control. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC
2001. LNCS, vol. 2034, pp. 291–304. Springer, Heidelberg (2001)

7. Liberzon, D., Morse, A.S.: Basic problems in stability and design of switched sys-
tems. IEEE Control Systems Magazine 19(5), 59–70 (1999)

8. Liberzon, D., Hespanha, J.P., Morse, A.S.: Stability of switched systems: A lie-
algebraic condition. Systems and Control Letters 37(3), 117–122 (1999)

9. DeCarlo, R., Branicky, M., Pettersson, S., Lennartson, B.: Perspectives and results
on the stability and stabilizability of hybrid systems. Proceedings of IEEE, Special
Issue on Hybrid Systems 88(7), 1069–1082 (2000)

10. Pettersson, S.: Synthesis of switched linear systems. In: IEEE Conference on De-
cision and Control, Maui, HI, pp. 5283–5288 (December 2003)

On Optimal Quadratic Regulation 597

11. Xu, X., Antsaklis, P.J.: Optimal control of switched systems based on parameter-
ization of the switching instants. IEEE Transactions on Automatic Control 49(1),
2–16 (2004)

12. Egerstedt, M., Wardi, Y., Delmotte, F.: Optimal control of switching times in
switched dynamical systems. IEEE Transactions on Automatic Control 51(1), 110–
115 (2006)

13. Xu, X., Antsaklis, P.: A dynamic programming approach for optimal control of
switched systems. In: Proceedings of the IEEE Conference on Decision and Control,
Sydney, Australia, pp. 1822–1827 (December 2000)

14. Bemporad, A., Giua, A., Seatzu, C.: Synthesis of state-feedback optimal controllers
for continuous-time switched linear systems. In: Proceedings of the IEEE Confer-
ence on Decision and Control, pp. 3182–3187 (2002)

15. Borrelli, F., Baotic, M., Bemporad, A., Morari, M.: Dynamic programming for
constrained optimal control of discrete-time linear hybrid systems. Automatica 41,
1709–1721 (2005)

16. Seatzu, C., Corona, D., Giua, A., Bemporad, A.: Optimal control of continuous-
time switched affine systems. IEEE Transactions on Automatic Control 51, 726–741
(2006)

17. Lincoln, B., Rantzer, A.: Relaxing dynamic programming. IEEE Transactions on
Automatic Control 51(8), 1249–1260 (2006)

18. Rantzer, A.: Relaxed dynamic programming in switching systems. IEE Proceedings
- Control Theory & Applications 153(5), 567–574 (2006)

19. Rinehart, M., Dahleh, M., Kolmanovsky, I.: Optimal control of switched homo-
geneous systems. In: Proceedings of the American Control Conference, New York
City, NY, pp. 1377–1382 (July 2007)

20. Caines, P.E., Mayne, D.Q.: On the discrete time matrix riccati equation of optimal
control. Internation Journal of Control 12(5), 785–794 (1970)

21. Chan, S., Goodwin, Sin, G.K.: Convergence properties of the riccati difference
equation in optimal filtering of nonstabilizable systems. IEEE Transactions on
Automatic Control 29(2), 110–118 (1984)

22. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

23. Zhang, W., Hu, J.: Optimal quadratic regulation for linear switched systems (to
be submitted for journal publication, available upon request)

24. Walter, R.: Principles of Mathematical Analysis. International Series in Pure and
Applied Mathematics. McGraw-Hill, New York (1976)

Approximation of General Stochastic Hybrid

Systems by Switching Diffusions with Random
Hybrid Jumps

Alessandro Abate1, Maria Prandini2, John Lygeros3, and Shankar Sastry1

1 University of California, Berkeley - Berkeley, USA
{aabate,sastry}@eecs.berkeley.edu
2 Politecnico di Milano - Milano, Italy

prandini@elet.polimi.it
3 ETH Zurich - Zurich, Switzerland

lygeros@control.ee.ethz.ch

Abstract. In this work we propose an approximation scheme to trans-
form a general stochastic hybrid system (SHS) into a SHS without forced
transitions due to spatial guards. Such switching mechanisms are re-
placed by spontaneous transitions with state-dependent transition in-
tensities (jump rates). The resulting switching diffusion process with
random hybrid jumps is shown to converge in distribution to the origi-
nal stochastic hybrid system execution. The obtained approximation can
be useful for various purposes such as, on the computational side, simula-
tion and reachability analysis, as well as for the theoretical investigation
of the model. More generally, it is suggested that SHS which are en-
dowed exclusively with random jumping events are simpler than those
that present spatial forcing transitions.

In the opening of this work, the general SHS model is presented, a
few of its basic properties are discussed, and the concept of generator
is introduced. The second part of the paper describes the approxima-
tion procedure, introduces the new SHS model, and proves, under some
assumptions, its weak convergence to the original system.

We describe the general stochastic hybrid system model introduced in [1].

Definition 1 (General Stochastic Hybrid System). A General Stochastic
Hybrid System (GSHS) is a collection Sg = (Q, n, A, B, Γ, RΓ , Λ, RΛ, π), where

– Q = {q1, q2, . . . , qm}, m ∈ N, is a countable set of discrete modes;
– n : Q → N is a map such that, for q ∈ Q, the continuous state space is the

Euclidean space R
n(q). The hybrid state space is then S = ∪q∈Q{q} ×R

n(q);
– A = {a(q, ·) : R

n(q) → R
n(q), q ∈ Q} is a collection of drift terms;

– B = {b(q, ·) : R
n(q) → R

n(q)×n(q), q ∈ Q} is a collection of diffusion terms;
– Γ = ∪q∈Q{q}× Γq ⊂ S, where Γq = ∪q′ �=q∈Qγqq′ is a closed set composed of

m − 1 disjoint guard sets γqq′ causing forced transitions from q to q′ �= q;
– RΓ : B(Rn(·)) × Q × Γ → [0, 1] is the reset stochastic kernel associated

with Γ . Specifically, RΓ (·|q′, (q, x)) is a probability measure concentrated on
R

n(q′) \ Γq′ , which describes the probabilistic reset of the continuous state
when a jump from mode q to q′ occurs from x ∈ γqq′ ;

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 598–601, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximation of General Stochastic Hybrid Systems 599

– Λ : S\Γ×Q → R
+ is the transition intensity function governing spontaneous

transitions. Specifically, for any q �= q′ ∈ Q, λqq′ (x) := Λ((q, x), q′) is the
jump rate from mode q to mode q′ when x ∈ R

n(q) \ Γq;
– RΛ : B(Rn(·)) × Q × S \ Γ → [0, 1] is the reset stochastic kernel associated

with Λ. In particular, RΛ(·|q′, (q, x)) is a probability measure concentrated
on R

n(q′) \ Γq′ that describes the probabilistic reset of the continuous state
when a jump from mode q to q′ occurs from x ∈ R

n(q) \ Γq;
– π : B(S) → [0, 1] is a measure on S\Γ describing the initial distribution. ��
In the definition above, B(S) denotes the σ-field on S.

Assumption 1 (on the system dynamics).

1. The drift and diffusion terms a(q, ·) and b(q, ·), q ∈ Q, are bounded and
uniformly Lipschitz continuous.

2. The jump rate function Λ : S\Γ×Q → R
+ satisfies the following conditions:

– it is measurable and bounded;
– for any q, q′ ∈ Q, q �= q′, and any sample path ω(q,x)(t), t ≥ 0, of the

process solving the SDE in q, initialized at x ∈ R
n(q) \ Γq, there exists

εqq′(x) > 0 such that λqq′ (ω(q,x)(t)) is integrable over [0, εqq′(x)).
3. For all C ∈ B(Rn(·)), RΓ (C|·) and RΛ(C′|·) are measurable.
4. For any execution associated with π = δs, s ∈ S \Γ , the expected value of the

number of jumps within the time interval [0, t] is bounded for all t ≥ 0. ��
Intuitively, Assumption 1.1 guarantees the existence and uniqueness of the n(q)-
dimensional solution to the SDE associated with q ∈ Q, dv(t) = a(q,v(t))dt +
b(q,v(t))dwq(t), where wq is a n(q)-dimensional standard Wiener process.

The semantic definition of the GSHS Sg, given via the notion of execution
(a stochastic process {s(t) = (q(t),x(t)), t ≥ 0}, with values in S, solution of
Sg), can be done as in [1]. Note that a sample-path of a GSHS execution is a
right-continuous, S-valued function on [0,∞), with left-limits on (0,∞) (càdlàg).
Furthermore, the following property holds.

Proposition 1. Consider a GSHS Sg. Under assumptions 1.1-1.2-1.3-1.4, the
execution s(t), t ≥ 0, of Sg is a càdlàg strong Markov process. ��
It is interesting to associate to the set of real-valued functions f , acting on
Markov processes defined on a Borel space, a strong generator L, and a weaker,
yet more general, extended generator [2]. Denote with C2

b (S) the class of real-
valued, twice continuously differentiable and bounded functions on S. Let
∂f(q,x)

∂x a(q, x) =
∑n(q)

i=1
∂f(q,x)

∂xi
ai(q, x) be the Lie derivative of f(q, ·) along a(q, ·),

and Hf (q, x) =
[∂2f(q,x)

∂xi∂xj

]
i,j=1,2,...,n(q)

be the Hessian of f(q, ·).
Proposition 2 (Extended Generator of Sg). The extended generator Lg :
D(Lg) → Bb(S) associated with the executions of Sg is, for s = (q, x) ∈ S \ Γ :

Lgf(s) = Ld
gf(s) + IS\Γ (s)

∑

q′∈Q,q′ �=q

λqq′ (x)
∫

Rn(q′)

(
f((q′, z)) − f(s)

)
RΛ(dz|q′, s),

600 A. Abate et al.

where Ld
gf(s) =

∑
q∈Q

∂f(q,x)
∂x a(q, x) + 1

2Tr
(
b(q, x)b(q, x)T Hf (q, x)

)
.

The domain D(Lg) of Lg is the set of functions f ∈ C2
b (S) satisfying the

condition: f(s) =
∑

q′∈Q,q′ �=q

∫
Rn(q′) f((q′, z))RΓ (dz|q′, s), s ∈ Γ . �

Consider the GSHS system Sg in Definition 1. The guard set of Sg within mode
q ∈ Q is made up of γqq′ ⊂ R

n(q), q′ ∈ Q, q′ �= q. Assume that each set γqq′ can
be expressed as a zero sub-level set of a continuous function hqq′ : R

n(q) → R:

γqq′ = {x ∈ R
n(q) : hqq′(x) ≤ 0}.

Pick a small enough δ > 0, and by the continuity of hqq′ , introduce the sets

γ−δ
qq′ = {x ∈ R

n(q) : hqq′(x) ≤ −δ} ⊆ γqq′ ⊆ γδ
qq′ = {x ∈ R

n(q) : hqq′ (x) ≤ δ}.

For any q ∈ Q, define the set of functions λδ
qq′ : R

n(q) → R
+, q′ ∈ Q, q′ �= q,

λδ
qq′ (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎝

1
d(x, γ−δ

qq′)
− 1

sup
y:hqq′ (y)=δ

d(y, γ−δ
qq′)

⎞

⎟
⎠∧

⎛

⎜
⎝

1
sup

y:hqq′ (y)=0

d(y, γ−δ
qq′)

⎞

⎟
⎠ , x ∈ γδ

qq′

0, x ∈ R
n(q) \ γδ

qq′

where a∧ b = min{a, b}, whereas d(z, A) = infy∈A ||z − y||, z ∈ R
n(q), A ⊂ R

n(q).
We associate to Sg a new stochastic hybrid system Sδ, which is made up of

the elements of Sg, except for the following:

– The spatial guards set is empty, Γ = ∅;
– The transition intensity function Λ, whose domain of definition is S \Γ ×Q,

is replaced by Λδ : S × Q → R
+ given by Λδ((q, x), q′) := λδ

qq′ (x) + λqq′ (x)
where for any q′ �= q ∈ Q, the original jump rate λqq′ (·) is extended to R

n(q)

by setting it to zero over Γq;
– The stochastic reset kernel RΛδ

: B(Rn(·)) ×Q× S → [0, 1] associated with
Λδ is given by RΛδ

(Cq′ |q′, (q, x)) = RΛ(Cq′ |q′, (q, x)) + RΓ (Cq′ |q′, (q, x)),
for any Borel set Cq′ of R

n(q′), where the original stochastic reset kernels
RΛ(Cq′ |q′, ·) and RΛ(Cq′ |q′, ·) are extended to S by setting them to zero
outside their original domain of definition.

Notice that the conclusions in Proposition 1 hold true also for the SHS Sδ.
The extended generator Lδ of Sδ can be derived in a similar way as for that for
Sg, but has no condition on the points of the guard set. Its domain D(Lδ) is the
set of functions f ∈ C2

b (S). This implies that D(Lg) ⊆ D(Lδ), for δ > 0.
Let us formally show that, as δ → 0, the sequence of stochastic processes

{sδ(t)}δ>0 converges, in some sense, to s(t), for any t ≥ 0. The forthcoming no-
tions are found in [3].The concept of extended generator can be useful in showing
that a sequence of Markov processes converges to a given Markov process. Qual-
itatively, given a sequence of S-valued processes {Xn}n≥1 and a process X,
with extended generators (An,D(An)) and (A,D(A)) respectively, to prove that

Approximation of General Stochastic Hybrid Systems 601

Xn ⇒ X (convergence in the weak sense), it is sufficient to show that for all
functions f ∈ D(A), there exist fn ∈ D(An), such that fn → f and Anfn → Af .
The following fact, needed in Theorem 2, is verified:

Theorem 1 (Compact Containment Condition). Consider the GSHS Sg,
the SHS Sδ, and their corresponding unique global solutions s(t) and sδ(t), t ≥ 0.
The stochastic processes sδ(t) are such that, for any ε > 0, N > 0, there exists a
compact set Kε,N ⊂ S such that

lim inf
δ↓0

P [sδ(t) ∈ Kε,N , ∀ 0 ≤ t ≤ N] ≥ 1 − ε.

Similarly for the stochastic process s(t). ��
Given a sequence of entities {cn}n≥1 and a scalar c, let us denote as lim�

n cn = c
the conditions limn→∞ cn = c and (∨n‖cn‖) ∨ ‖c‖ < ∞, where ‖ · ‖ is the sup
norm. Similarly if the indexing parameter tends to zero (δ = 1/n). A process X is
said to be a solution of the local martingale problem for a linear operator (A, π)
if P ◦ X(0)−1 = π, and for each f ∈ D(A), f(X(t)) − f(X(0)) − ∫ t

0
Af(X(s))ds

is a local martingale, ∀t ≥ 0. In order to complete the proof of the following
Theorem 2, it is necessary to raise the following
Assumption 2. 1. Given a GSHS, as in Definition 1, assume that the proba-

bilistic reset kernels RΓ (·|q′, (q, x)) are continuous in x, for any q′ �= q ∈ Q.
2. The local martingale problem for (Lg,D(Lg)) is well posed, that is, it admits

a unique solution. ��
The following theorem is based on results from [4, Theorem 4.4].

Theorem 2 (Weak Convergence of Sδ to Sg). Consider the SHS model Sδ,
the GSHS model Sg under Assumption 2.1, and their associated S-valued unique
solution processes sδ(t) and s(t), t ≥ 0, where sδ(0) = s(0) = (q0, x0) ∈ S.
Consider further their extended generators (Lδ,D(Lδ)) and (Lg,D(Lg)), and
conjecture that Assumption 2.2 is valid. It holds that
– Lg ⊂ C0

b (S) × C0(S);
– For all f ∈ D(Lg), ∃fδ ∈ D(Lδ), such that lim�

δ fδ = f, limδ Lδfδ = Lf ;
– D(L) is dense in C0

b (S) with respect to lim�.

By Theorem 1, as the approximation step δ ↓ 0, the solution of the SHS Sδ

weakly converges to that of the GSHS Sg: sδ(t) ⇒ s(t), ∀t ≥ 0. ��

References

1. Bujorianu, M.L., Lygeros, J.: Toward a general theory of stochastic hybrid systems.
In: Blom, H.A.P., Lygeros, J. (eds.) Stochastic Hybrid Systems. LNCIS, vol. 337,
pp. 3–30. Springer, Heidelberg (2006)

2. Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall/CRC Press,
London (1993)

3. Ethier, S.N., Kurtz, T.G.: Markov processes: Characterization and convergence.
John Wiley & Sons, Chichester (1986)

4. Xia, A.: Weak convergence of markov processes with extended generators. The An-
nals of Probability 22, 2183–2202 (1994)

On Stability of Switched Linear Hyperbolic

Conservation Laws with Reflecting Boundaries

Saurabh Amin1, Falk M. Hante2, and Alexandre M. Bayen1

1 University of California, at Berkeley - Berkeley, CA, USA
{amins,bayen}@berkeley.edu

2 Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
hante@am.uni-erlangen.de

Abstract. We consider stability of an infinite dimensional switching
system, posed as a system of linear hyperbolic partial differential equa-
tions (PDEs) with reflecting boundaries, where the system parameters
and the boundary conditions switch in time. Asymptotic stability of the
solution for arbitrary switching is proved under commutativity of the ad-
vective velocity matrices and a joint spectral radius condition involving
the boundary data.

Problem Formulation. Motivated by applications [2], we consider hybrid dy-
namics governed by linear hyperbolic PDE systems and a discrete set of modes:

∂tu(t, s) + Aj∂su(t, s) = 0
Cj

Lu(t, a) = 0, Cj
Ru(t, b) = 0

, j ∈ Q � {1, . . . , N}, (1)

where the matrices Aj ∈ R
n×n specify the advective velocities and the matri-

ces Cj
L ∈ R

(n−mj)×n and Cj
R ∈ R

mj×n specify the boundary data for the un-
known vector function u(t, s) = (u1(t, s), . . . , un(t, s))� on the space-time strip
Ω([t1, t2]) := {(t, s) | t ∈ [t1, t2], s ∈ [a, b]}. We assume that

(H)1 the subsystems for fixed j are strictly hyperbolic, i. e. Aj has mj negative
and (n−mj) positive eigenvalues λj

i with n corresponding linearly indepen-
dent left (right) eigenvectors lji (rj

i);
(H)2 the switching signals in time T = {t ≥ 0} are piecewise constant functions

σ(·): T → Q with switching times τk (k ∈ N) such that there are only finitely
many switches j � j′ in each finite time interval of T .

We consider the switched system in the space of piecewise continuously differ-
entiable functions, denoted as PC1 = PC1([a, b], Rn), setting u(t) := u(t, ·), and
say that for an initial condition ū(·) ∈ PC1, the function u(·): T → PC1 is a
solution of the switched system (1) if

u|t=0 = ū ∧
{

u|τk+ := u|τk− for all switching times τk of σ(·),
u|(τk+,τk+1−) solves (1) with j = σ(t) = const. (2)

Under the above assumptions, it is easy to see that the system is well-posed, if
and only if it is well-posed in each mode, i. e., following [1]:

rank
[
(Cj

L)�
∣∣lj1∣∣ · · · ∣∣ljmj

]
= rank

[
(Cj

R)�
∣∣ljmj+1

∣∣ · · · ∣∣ljn]
= n for all j ∈ Q. (3)

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 602–605, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Stability of Switched Linear Hyperbolic Conservation Laws 603

For a fixed j ∈ Q, it is convenient to consider system (1) in an equivalent
diagonal form. Using the transformation SjA

jS−1
j , where Sj :=

[
lj1

∣∣ · · · ∣∣ljn]�,
the system (1) can be written in characteristic coordinates ξ := Sju

∂tξ(t, s) + diag(Λj
I , Λ

j
II)∂sξ(t, s) = 0

ξII(t, a) = Gj
LξI(t, a), ξI(t, b) = Gj

RξI(t, b)
(4)

where, ξI = (ξ1, . . . , ξm)�, ξII = (ξm+1, . . . , ξn)�, Λj
I = diag(λj

1, . . . , λ
j
mj

),
Λj

II = diag(λj
mj+1, . . . , λ

j
n) and

Gj
R=−

([
cj
n−mj+1

∣∣· · ·∣∣cj
n

]�[
rj
1

∣∣· · ·∣∣rj
mj

])−1[
cj
n−mj+1

∣∣· · ·∣∣cj
n

]�[
rj
mj+1

∣∣· · ·∣∣rj
n

]
Gj

L=−
([

cj
1

∣∣ · · · ∣∣cj
n−mj

]�[
rj
mj+1

∣∣ · · · ∣∣rj
n

])−1[
cj
1

∣∣ · · · ∣∣cj
n−mj

]�[
rj
1

∣∣ · · · ∣∣rj
mj

]
.

(5)

Thus, the solution (2) of the switched system (1) can equivalently be written as
u(·) = S−1

σ(·)ξ(·), where ξ(·) satisfies

ξ|t=0 = Sσ(0)ū ∧
{

ξ|τk+ = Sσ(τk+)S
−1
σ(τk−)ξ|τk− for all τk,

ξ|(τk+,τk+1−) solves (4) with j = σ(t) = const.
(6)

Note that if all the subsystems are simultaneously diagonalisable, i. e. Sj′ = Sj

for all j, j′ ∈ Q, then (6) shows that the solution of system (1) is constant along
its characteristic paths that change their slope at switching times.

Main Result. We consider stability of the above switching system, motivated
by a simple PDE counterpart to the well known ODE observation [3] that asymp-
totic stability of all subsystems is not sufficient, even for all subsystems in diag-
onal form (4).
Example 1. Q = {1, 2}, Aj = diag(−1, +1), [a, b] = [0, 1], Gj

L = 1.5(j − 1),
Gj

R = 1.5(2 − j). For ū(·) ≡ 1, the solution of the subsystems is 0 for all t > 2,
but alternating σ(·) at t = 0.5, 1.5, 2.5, . . . leads to limt→∞ ‖u(t)‖∞ = ∞.
�

Indeed, the non-diagonal system (1) can be shown to blow up under switching
of the advective velocity matrices, although its boundaries are un-switched and
are “dissipative” in the sense of [4]; i. e., the following spectral radius condition
holds:

‖G(GL, GR)‖min := inf
γ=diag{γi},γi>0(i=1,...,n)

∥∥∥∥
(

0 |GR|
|GL| 0

)∥∥∥∥
∞

< 1. (7)

Moreover, it is easy to see that a switched system in diagonal form even satisfying
(7) in each mode can blow up just by alternately changing mj.

Our goal here is thus to impose sufficient conditions for the switched system
to be asymptotically stable under arbitrary switching. For u(·) ∈ PC1, we use
the norm ‖u(·)‖ := maxi=1,...,n; s∈[a,b] |ui(s)| and, w. l. o. g., we consider u(·) ≡ 0
as the only equilibrium state of the switched system. We say that the switched

604 S. Amin, F.M. Hante, and A.M. Bayen

system is asymptotically stable under arbitrary switching, if for all ε > 0 suffi-
ciently small, there exists a δ(ε) > 0 such that if ‖ū(·)‖ ≤ δ, then ‖u(·)‖ ≤ ε for
all t ≥ 0 and limt→∞ ‖u(·)‖ = 0, independently of the switching signal σ(·). Our
main result is the following.

Theorem 1. Consider a system (1) under hypotheses (H)1,2 being well-posed in
the sense of (3) and suppose that the following conditions hold for all j, j′ ∈ Q

(a) mj = mj′ (b) AjAj′ = Aj′Aj (c) ‖G(Gj
L, Gj′

R)‖min < 1 (8)

where Gj
L, Gj

R are given as in (5) and ‖G(·, ·)‖min is defined as in (7). Then the
system is asymptotically stable under arbitrary switching.

Proof. Under condition (8)b, the system (1) can be simultaneously diagonalized
for all modes to (4) with Sj′ = Sj for all j, j′ ∈ Q and we can consider its
solution ξ(·) along its characteristic paths, see (6). Then we follow arguments of
Li [4] Lemma 2.1, concluding that condition (8)c implies

θ := max
j,j′∈Q

{‖|Gj
L||G

j′
R |‖∞, ‖|Gj′

R ||Gj
L|‖∞}

= max
r=1,...,m

l=m+1,...,n

j,j′∈Q

{
m∑

p=1

n∑
k=m+1

|gR,j′
rk ||gL,j

kp |,
n∑

k=m+1

m∑
p=1

|gL,j
lp ||gR,j′

pk |
}

< 1,
(9)

where Gj
L = (gL,j

pq) and Gj′
R = (gR,j′

pq). It suffices to show that for any fixed ε > 0,
there exists δ(ε) > 0 such that

|ξ(t, s)| := max
i=1,...,n

|ξi(t, s)| ≤ ε (10)

for all 0 ≤ t < ∞, a ≤ s ≤ b. Let Tmin :=
(
maxi=1,...,n;j=1,...,N |λj

i |
)−1. By

boundedness of ū and thus ξ̄ := Sσ(0)ū, by continuity of the solution along the
characteristic path and by linearity of the boundary conditions for fixed j ∈ Q,
there exists a δ(ε) ≤ ε such that

|ξ(t, s)| ≤ αε for all (t, s) ∈ Ω([0, T ◦)) (11)

for some T ◦ > 0 sufficiently small (i. e. smaller than τ1 > 0) and for some α ≤ 1
to be specified later. Thus, to show (10), it suffices to prove that for any fixed
T > 0, if (10) holds on Ω([0, T]), then it still holds on domain Ω([0, T + Tmin]).
So assume (10) holds on Ω([0, T]) and fix some (t∗, s∗) ∈ Ω([T, T + Tmin]).
Due to (8)a, let zr denote the r-th characteristic path passing through (t∗, s∗)
(r = 1, . . . , m). Backwards in time, zr either intersects t = 0 before hitting
any boundary (case 1) or it intersects the line s = b (case 2). See Figure 1 for
an illustration with an example switching configuration. For case 1: Using (2),
ξr(t∗, s∗) = ξr(0, s̃1) for some a ≤ s̃1 ≤ b. So, |ξr(t∗, s∗)| ≤ δ ≤ ε by assumption.
For case 2: Again by (2), ξr(t∗, s∗) = ξr(tr, b), where 0 ≤ tr ≤ t∗ is the time

On Stability of Switched Linear Hyperbolic Conservation Laws 605

0

τi

T

τi+1

τi+2

T+Tmin

a

t

b a

t

b a

t

b

(t∗, s∗)�

�

s̃1

(t∗, s∗)�

�

� tr

s̃2

(t∗, s∗)�
�

�

tr

tlr

Fig. 1. (a) Case 1, (b) Case 2 (i), (c) Case 2 (ii)

when the r-th characteristic path hits s = b. Thus,

|ξr(t∗, s∗)| = |
n∑

l=m+1

gR,j
rl ξl(tr, b)| ≤

n∑
l=m+1

|gR,j
rl ||ξl(tr, b)| (12)

with j = σ(tr). Now, let zl denote the l-th characteristic path passing though
(tr, b) (l = m + 1, . . . , n). Then, either zl intersects the line t = 0 before hitting
the line s = a (case 2(i)) or it hits s = a (case 2(ii)). For case 2(i), we have
|ξl(tr, b)| = |ξl(0, s̃2)| ≤ δ ≤ αε for some a ≤ s̃2 ≤ b by assumption. Substituting
this in (12), we get |ξr(t∗, s∗)| ≤ Kj

1αε with Kj
1 :=

∑n
l=m+1 |g

R,j
rl |. For case 2(ii),

we have |ξl(tr, b)| = |ξl(trl, a)| = |
∑m

p=1 gL,j′
lp ξp(trl, a)| ≤ |

∑m
p=1 gL,j′

lp ||ξp(trl, a)|
with 0 ≤ trl ≤ Tmin is the time when the characteristic path zl hits s = a
and j′ = σ(trl). Substituting this in (12), we get by assumption and using (9)
|ξr(t∗, s∗)| ≤

∑n
l=m+1

∑m
p=1 |g

R,j
rl ||gL,j′

lp ||ξp(trl, a)| ≤ θε ≤ ε.
Similar estimates can be obtained for ξl(t, s) (l = m+1, . . . , n) with constants

Kj
2 :=

∑m
p=1 |g

L,j
lp |. Define K := maxj∈Q{Kj

1 , K
j
2}. Choosing δ in (11) with

α = max{1, 1
K } we conclude (10) for all t ≥ 0 by induction. Essentially the same

arguments applied to ξ̂(t) := exp(βt)ξ(t), show that ‖ξ(t)‖ ≤ ε exp(−βt) for
β > 0 sufficiently small, (see [4], page 185). The system is thus asymptotically
stable.
�

Acknowledgments. This work is supported by the NSF awards #CCR–
0225610, #CNS–0615299 and the Elite Network of Bavaria (#K-NW-2004-143).

References

1. Frid, H.: Initial-boundary value problems for conservation laws. Journal of Differ-
ential Equations 128, 1–45 (1996)

2. Leugering, G., Schmidt, J.P.G.: On the modeling and stabilisation of flows in net-
works of open canals. SIAM Journal of Control and Optimization 41(1), 164–180
(2002)

3. Liberzon, D.: Switching in Systems and Control. In series Systems and Control:
Foundations and Applications. Birkhauser (2003)

4. Li, T.-T.: Global classical solutions for quasilinear hyperbolic systems. In: Research
in Applied Mathematics, Masson and Wiley, Paris, Milan, Barcelona (1994)

Sampling-Based Resolution-Complete

Algorithms for Safety Falsification of Linear
Systems�

Amit Bhatia1 and Emilio Frazzoli2

1 University of California at Los Angeles, Los Angeles, CA 90095
abhatia@ucla.edu

2 Massachusetts Institute of Technology, Cambridge, MA 02139
frazzoli@mit.edu

Abstract. In this paper, we describe a novel approach for checking
safety specifications of a dynamical system with exogenous inputs over
infinite time horizon. We introduce the notion of resolution completeness
for analysis of safety falsification algorithms and present sampling-based
resolution-complete algorithms for safety falsification of discrete-time lin-
ear time-invariant systems. Given a target resolution of inputs, the al-
gorithms terminate either with a reachable state that violates the safety
specification, or prove that the system does not violate the specification
at the given resolution of inputs.

1 Introduction

The problem of finding the set of all states a system can reach (called as the
reachable set) based on its dynamics and initial conditions, is known as the
reachability problem in the literature. For continuous and hybrid systems, this
problem is in general known to be undecidable [1]. For analyzing safety speci-
fications of dynamical systems, a wide variety of methods have been proposed
(for references, see [2]). However, most of these methods attempt to verify safety
of a given system by over approximating the actual reachable set over a finite
time horizon. As a result, they are liable to generate infeasible counterexamples
to safety and cannot analyze safety over infinite time horizon. Moreover, they
fail to guarantee that the procedure of refining the simulation parameters (to
conclusively certify that the system is safe) will ever terminate [3].

2 Sampling-Based Safety Falsification

To complement verification-based approaches, falsification methods using
sampling-based incremental-search algorithms have been proposed recently

� The research leading to this work was supported by the National Science Foundation
(grants number 0715025 and 0325716).

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 606–609, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sampling-Based Resolution-Complete Algorithms for Safety Falsification 607

Unsafe Set

Initial Set

Trajectories

Reachable Set
(unknown)

Resolution-complete
approximation

Unsafe Set

Reachable Set
with safe inputs

(unknown)

Initial Set

Fig. 1. Probabilistic vs resolution completeness

(e.g., [4,5]). The algorithms try to falsify safety of the system quickly by in-
cremental construction of trajectories (e.g., Fig. 1, left). However, they are only
probabilistically complete, meaning that the probability of finding a feasible coun-
terexample (if one exists) goes to 1 as the number of samples goes to infinity. As
a result, if no counterexample is found in finite number of iterations, then the
algorithms become inconclusive. To obtain stronger completeness guarantees for
the falsification problem, we have recently introduced the notion of resolution
completeness for safety falsification of dynamical systems with exogenous inputs
in [6,7]. This notion of completeness is defined on the space of exogenous inputs
and considers safety over infinite time horizon. A safety falsification algorithm is
called resolution-complete if for any given resolution of inputs, it is guaranteed
to terminate in finite time with either a feasible counterexample or else a proof
of system safety at given input resolution (e.g., Fig. 1, right).

Relation to other approaches: The proposed approach differs from other
complete approaches (e.g., [8,9]) in the following ways. The notion of resolution
completeness is defined on the space of exogenous inputs; the requirements on
discretization of state space do not depend on time length of trajectories and
the space of inputs is not discretized to obtain completeness guarantees. Further-
more, the proposed approach makes no assumption on the distance of unsafe set
to the reachable set or the number of discrete mode switches that can occur.

3 Preliminaries

Definition 1 (Hybrid System). A discrete-time LTI hybrid system H is de-
noted as a tuple, H = (Q,X ,U , Φ,Δ, I,S, T).

Q is the discrete state space and X ⊆ R
n is the continuous state space. U is

a family of admissible inputs. Each input u ∈ U is a function u : [0, tf] → U ,
where tf ∈ N and U is a compact subset of R

m. Φ : Q × X × U → X is a
function describing the evolution of the system on continuous space, governed
by a difference equation of the form x(i+1) = Φ(q, x, u) = Aqx(i)+Bqu(i), i ∈ N.
The matrices Aq, Bq are real matrices of size n×n, n×m respectively. φk(q, x, u)
denotes continuous evolution over k time steps. Δ ⊂ (Q × X) × (Q × X), is a
relation describing discrete transitions in the hybrid states. Discrete transitions
can occur on location-specific subsets G(q, q′) ⊆ X , called guards, and result in
jump relations of the form (q, x) �→ (q′, x). I,S, T ⊆ Q×X are, respectively, the

608 A. Bhatia and E. Frazzoli

invariant set, the initial set, and the unsafe set. Ω = {q̄, q̄ : [0, tf] → Q} denotes
the set of trajectories on the discrete space. ψ(z, u, q̄, i) ∈ Q×X denotes a point
reached at time i ≤ tf , starting from z ∈ Q × X and using u ∈ U , under the
discrete evolution q̄. For a given family of inputs U , the set of states reachable
by the system is denoted as R(U). A◦ denotes the interior of set A.

Definition 2 (Resolution completeness). An algorithm is resolution-
complete for safety falsification of a system H, if there exists a sequence of family
of inputs, {Uj}∞j=1, satisfying Uj ⊂ Uj+1, ∀j, and limj→∞ Uj = U , such that, for
any given j ≥ 1, the algorithm terminates in finite time, producing, either a
counterexample ψ(z0, u, q̄, t) ∈ T , using an input u ∈ U , z0 ∈ S, q̄ ∈ Ω, t ≥ 0, or
a guarantee that, R◦(Uj) ∩ T = ∅.

4 Main Ideas

To achieve completeness, we construct an approximation Rj (while searching for
counterexamples at resolution j) that satisfies the set inclusion R◦(Uj) ⊆ Rj ⊆
R(U). The inclusion Rj ⊆ R(U) guarantees feasibility of counterexamples and
the inclusion R◦(Uj) ⊆ Rj guarantees safety with respect to inputs belonging
to Uj (if no counterexample is found). The approximation Rj is constructed
using multi-resolution grids. For a discrete location q ∈ Q, G(q) denotes the
multi-resolution grid for location q that over-approximates R(U) ∩ I(q, ·). The
algorithms keep a record of the portion of G(q) that is found to be reachable
(denoted as Gf (q)), either a priori or during an execution of the algorithm.
Gu(q) denotes the rest of G(q), i.e., Gu(q) = G(q) \Gf (q).

State Space Discretization: The conditions for state-space discretization re-
late the grid resolution εj(q) to the resolution of inputs being used, i.e., Uj . More
precisely, εj(q) is chosen such that finding one feasible point φk(q, x0, u) in a grid
region ξ(εj(q)) of size εj(q), with x0 ∈ Gf (q), u ∈ Uj , k > 0, is enough to claim
that for every point x ∈ ξ, there exists u′ ∈ U such that x = φk(q, x0, u

′) (see [2]).

Algorithms: We now informally explain the main steps of our resolution-
complete algorithms for the case when card (Q) = 1 (Fig. 2) and for details refer
the reader to [2,7]. The search for counterexample begins at input resolution of
j and stops at j + 1. After initialization, the algorithm samples a grid region
ξsample from Gu and checks if ∃x1 ∈ ξsample, such that x1 = φk(q, x0, u), for some
x0 ∈ Gf , u ∈ Uj and a fixed k > 0. If the answer is yes, then Gf → Gf ∪ ξsample.
If Gf ∩ T �= ∅, the algorithm declares the system to be unsafe and terminates.
Otherwise, the search is continued by sampling a new grid region. As no coun-
terexample is found at resolution j in this example, the search is continued at
resolution level j + 1. Since no counterexample to safety is found at resolution
j + 1 either, the system is certified to be safe ∀u ∈ Uj+1.

Termination guarantees and heuristics: Under the assumption of bound-
edness of the grids in each discrete mode (using system stability or some other
arguments), the algorithms are guaranteed to terminate in finite time. To find the

Sampling-Based Resolution-Complete Algorithms for Safety Falsification 609

S

G

T

R(U)

Gf

ε0
εj

(a) Initialization

S

Gf

Gu

G

√

Tεj ,Uj

εj

R(U)

ξsample

?

(b) Sampling at j

S

Gf

Gu

G

Tεj+1,Uj+1

R(U)

?

(c) Sampling at j + 1

Gu

G

Tεj+1,Uj+1

R(U)
Gf

(d) Termination

Fig. 2. Execution of a resolution-complete algorithm for card (Q) = 1

counterexamples quickly (when they exist), heuristics like breadth-first search,
branch and bound, and incremental grid sampling are used (see [2]).

5 Conclusions

In this paper, we have proposed a novel approach for checking safety specifica-
tions of a dynamical system with exogenous inputs over infinite time horizon. We
have presented sampling-based resolution-complete algorithms for safety falsifi-
cation of linear systems. The algorithms terminate either with a feasible coun-
terexample violating the specification, or prove that the system does not violate
the specification at the given input resolution. We plan to investigate extensions
of the algorithms for nonlinear systems in the future.

References

1. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration graphs: A class of decidable
hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS
1991 and HS 1992. LNCS, vol. 736, pp. 179–208. Springer, Heidelberg (1993)

2. Bhatia, A., Frazzoli, E.: Sampling-based resolution-complete algorithms for safety
falsification of linear systems (January 2008), http://arxiv.org/abs/0801.0570

3. Silva, B.I., Stursberg, O., Krogh, B.H., Engell, S.: An assessment of the current
status of algorithmic approaches to the verification of hybrid systems. In: Conference
on Decision and Control (2001)

4. Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of
continuous and hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 142–156. Springer, Heidelberg (2004)

5. Kim, J., Esposito, J.M., Kumar, V.: An rrt-based algorithm for testing and validat-
ing multi-robot controllers. In: Robotics: Science and Systems, pp. 249–256 (2005)

6. Bhatia, A., Frazzoli, E.: Resolution complete safety falsification of continuous time
systems. In: Conference on Decision and Control (2006)

7. Bhatia, A., Frazzoli, E.: Sampling-based resolution-complete safety falsification of
linear hybrid systems. In: Conference on Decision and Control (2007)

8. Cheng, P., Kumar, V.: Sampling-based falsification and verification of controllers
for continuous dynamic systems. In: WAFR (2006)

9. Girard, A.: Approximately bisimilar finite abstractions of stable linear systems. In:
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp.
231–244. Springer, Heidelberg (2007)

http://arxiv.org/abs/0801.0570

Reachability Analysis of Stochastic Hybrid

Systems by Optimal Control

Manuela L. Bujorianu1,3, John Lygeros2, and Rom Langerak1

1 EWI, University of Twente, Enschede NL
{l.m.bujorianu,langerak)@cs.utwente.nl

2 Automatic Control Laboratory, ETH Zurich, CH
3 CICADA, University of Manchester, UK

Abstract. For stochastic hybrid systems, the reachability analysis is
an important and difficult problem. In this paper, we prove that, under
natural assumptions, reachability analysis can be characterised as an
optimal stopping problem. In this way, one can apply numerical methods
from optimal control to solve the reachability verification problems.

Keywords: Stochastic hybrid systems, Markov processes, reachability
problem, optimal stopping.

1 Introduction

The paper addresses the reachability problem for stochastic hybrid systems,
which are a class of non-linear stochastic continuous time/space hybrid dynam-
ical systems. For a stochastic hybrid system, we show that the reach set prob-
abilities coincide with the value functions of some particular optimal stopping
problems corresponding to the indicator functions of the target sets. These op-
timal stopping problems are formulated in the language of the Markov process
that describes the realizations of the given hybrid system. Our method is based
on the (Riesz) representation of the value function for the optimal stopping prob-
lem and it was successfully used for some particular classes of Markov processes
[7]. The application of this method is sketched for stochastic hybrid systems.

2 Stochastic Hybrid Systems

Stochastic Hybrid Systems can be described as an interleaving between a finite
or countable family of diffusion processes and a Markov chain. We adopt the
General Stochastic Hybrid System model presented in [2]. Let Q be a set of
discrete states. For each q ∈ Q, we consider the Euclidean space R

d(q) with
dimension d(q) and we define an invariant as an open subset Xq of R

d(q).
The hybrid state space is the set X(Q, d,X) =

⋃
i∈Q{i} × X i. The closure

of X(Q, d,X) will be X = X ∪ ∂X, where ∂X =
⋃

i∈Q{i} × ∂X i. (X,B(X)) is

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 610–613, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reachability Analysis of Stochastic Hybrid Systems 611

a Borel space, where B(X) is the Borel σ-algebra of X . Let B(X) be the Ba-
nach space of bounded positive measurable functions on X with the norm given
by the supremum. A (General) Stochastic Hybrid System (SHS) is a collection
H = ((Q, d,X), b, σ, Init, λ, R), where the full meaning of the constituents can
be find in [2]. The realization of an SHS is built as a Markov string H [2]. This
string is a Markov process. Denote by M = (Ω,F ,Ft, xt, Px) this Markov pro-
cess. Let P = (Pt)t>0 denote the semigroup of operators associated to M , which
maps B(X) into itself given by Ptf(x) = Exf(xt), ∀x ∈ X , where Ex is the
expectation w.r.t. Px. A nonnegative function f ∈ B(X) is called (α-)excessive
(α ≥ 0) if (e−αt)Ptf ≤ f for all t ≥ 0 and (e−αt)Ptf ↗ f as t ↘ 0. Let EM

be the cone of excessive functions. Suppose that M is transient1, i.e. there is
a strictly positive measurable function q such that Uq ≤ 1. The infinitesimal
generator L is the derivative of Pt at t = 0. Under the standard assumptions the
realization M of an SHS is a Borel right process with cadlag property and the
infinitesimal generator of an SHS is an integro-differential operator [2].

3 Stochastic Reachability as an Optimal Stopping
Problem

In this section, in the framework of SHS, we prove that the stochastic reachability
problem is equivalent with an optimal stopping problem.

Let us consider M = (Ω,F ,Ft, xt, Px) a (strong right) Markov process, being
the realization of an SHS. For this Markov process we address the stochas-
tic reachability problem as follows. Given a target set, the objective of the
reachability problem is to compute the probability that the system trajecto-
ries from an arbitrary initial state will reach the target set. Formally, given a
set A ∈ B(X) and a time horizon T ∈ [0, ζ] (where ζ is the life time of M),
define ReachT (A) := {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}. The reachability problem
consists of determining the probabilities of such a set, i.e. P (TA < T), where
TA is the first hitting time of A (i.e. TA = inf{t > 0|xt ∈ A}) and (Ω,F , P) is
the underlying probability space of M . P can be chosen to be Px, if we want to
consider the trajectories that start in x.

For any f : X → R+, we denote he réduite of f by Rf , i.e Rf := inf{u ∈
EM |u ≥ f}. Rf differs from f only on a negligible set. For any A ⊂ X and
v ∈ EM , the function RAv = R(1Av) is called the réduite2 of v on A. The bal-
ayage of the excessive function v on A denoted by BAv, is the U-excessive regu-
larization of RAv [3]. For any x ∈ X and A ∈ B(X), we have Px[Reach∞(A)] =
BA1(x) = Px[TA < ζ] [3]. Since RAv = BAv on X\A (see [3]), when the process
starts in x /∈ A, finding the reach set probability Px[Reach∞(A)] is equivalent to
finding the reduite R(1A)(x). The existence of the réduite for g ∈ B(X) is based
on the following equality: Rg(x) = sup{Ex[g(xS)1{S<ζ}]; S stopping time}. The
right hand side of the above equality is related with the so-called optimal stop-
ping problem (OSP) associated with a Markov process. For different classes of
1 The transience hypothesis guarantees that the cone EM is rich enough to be used.
2 We use the convention 0 · (+∞) = (+∞) · 0 = 0.

612 M.L. Bujorianu, J. Lygeros, and R. Langerak

stochastic processes3, the fact that the optimal value function coincides with the
smaller excessive majorant of the exercise payoff is a well known result. This
result has been extended for right processes in [4].

Proposition 1. If A ∈ B(X) then the reachability function wA : X → [0, 1]
associated to A, defined as wA(x) := Px[Reach∞(A)], coincides with the value
function of the reward process yt = 1A(xt), i.e. wA(x) = sup{Px(xτ ∈ A)|τ
stopping time}, ∀x ∈ X.

4 From Optimal Stopping to Stochastic Reachability

The realizations of SHS are (Borel) right processes, and therefore the general
theory of optimal stopping developed for right processes [1] can be applied.
For the OSP associated to (Borel) right processes, we propose a method based
on representations of excessive functions. This method consists in establishing
first an integral representation for excessive (super-harmonic) functions and then
deriving information about final behaviour of paths. We show that finding the
solution of such a problem is equivalent to finding the representation of the value
function of the OSP in terms of the Green kernel. The support of the measure
that appears in this representation is the stopping region for the problem.

Dealing with Optimal Stopping. For the a Markov process M and the optimal
stopping problem, one can introduce: continuation set C = {x ∈ X |v(x) >
g(x)}; and the stopping set D = {x ∈ X |v(x) = g(x)}.

Using the operator semigroup P , one can define the kernel operator U by
Uf(x) =

∫ ∞
0

Ptf(x)dt, f ∈ B(X). Uf is the solution of the equation −Lφ = f .
If in expression of U , f ranges over the indicator functions of measurable sets,
we can write U as a stochastic kernel U(x, A) =

∫ ∞
0 Px(xt ∈ A)dt. For the scope

of this section, we suppose that the assumptions from [6] are in force. The main
assumption is related to the absolute continuity of the kernel operator U w.r.t.
a σ-finite excessive measure m on (X,B), called reference measure.

Assumption 1. There exists a B × B measurable function u ≥ 0 such that
U(x, dy) = u(x, y)m(dy), x ∈ X; and x �−→ u(x, y) is excessive, y ∈ X.

The potential density u(x, y) is used to define the potential of a measure μ
by setting Uμ(x) :=

∫
X

u(x, y)μ(dy). For Borel right processes, h is harmonic
iff P−

Kch = h, m − a.e.4, for every compact K (with the complement Kc =
X\K) in an appropriate compactification of X , where P−

Kc is the hitting operator
associated to Kc5.

Theorem 1 (Riesz Decomposition). [6] Let f ∈ EM . Then there exists a
measure μ on (X,B) and an harmonic function h such that f = Uμ + h, m −
a.e.Moreover, μ is unique and h is unique m − a.e.

3 diffusions, Feller/Hunt/standard processes.
4 m − a.e. (m almost everywhere), i.e. outside of a set with m-measure zero.
5 i.e. P−

Kch = Ex[h(x
T−

Kc
)], T−

Kc = inf{t|0 < t < ζ; xt− ∈ Kc}.

Reachability Analysis of Stochastic Hybrid Systems 613

Using Ass.1 and the characterization of Uμ, in the decomposition of Th.1, if
there exists a compact set K such that the representing measure μ does not
charge Kc, then f is harmonic on Kc, i.e. μ(Kc) = 0 =⇒ f is harmonic on Kc.
Then the problem of finding the maximal payoff function is equivalent to the
problem of finding the representing measure μv of v. The continuation region C
is the biggest set not charged by the representing measure μv of v, i.e. μv(C) = 0.
So, the value function v is harmonic on C.

Proposition 2. The measure μv gives the value function v, and the support of
the representation measure gives the stopping region D, i.e. D = supp(μv).

Reach Set Probability Computation. Suppose that the target set A is an open
set of the state space X . Define F := X\A. Suppose that last exit time from
F is finite almost surely (the process is transient), i.e. SF = sup{t ≥ 0|xt ∈
F} < ∞. Then the reachability problem turns in an exit time problem, and then
computing the reach set probabilities is equivalent with the computation of a
dual probability Px[xSF ∈ F |SF > 0].

Proposition 3. [5] For all positive f ∈ B(X), we have Px[(1F f)(xSF)|SF >
0] =

∫
u(x, y)(1F f)(y)μ(dy), where μ is a measure on X.

Therefore, for f ≡ 1, the reach set probabilities are Px[xSF ∈ F |SF > 0] =∫
F u(x, y)μF (dy), where μF is the equilibrium measure of F .

5 Conclusions

In this paper, we have characterised the reachability problem of stochastic hybrid
systems as an optimal stopping problem with a discontinuous reward function.
To deal with the stochastic reachability, we consider that the method based on
representations of the value function of the equivalent optimal stopping problem
suits best in this context.

References

1. Bismut, J.-M., Skalli, B.: Temps d’arrêt Optimal, Théorie Générale des Processus
et Processus de Markov. Prob. Th. Rel. Fields 36(4), 301–313 (1977)

2. Bujorianu, M.L., Lygeros, J.: Towards Modelling of General Stochastic Hybrid Sys-
tems. LNCIS, vol. 337, pp. 3–30 (2006)

3. Bujorianu, M.L., Lygeros, J.: New Insights on Stochastic Reachability. In: Proc.
46th Conference in Decision and Control (2007)

4. El Karoui, N., Lepeltier, J.-P., Millet, A.: A Probabilistic Approach to the Reduite
in Optimal Stopping. Probab. Math. Statist. 13(1), 97–121 (1992)

5. Glover, J.: Representing last exit potentials as potentials of measures. Z. Wahrsch.
Verw. Gebiete 61(1), 17–30 (1982)

6. Graversen, S.E.: A Riesz Decomposition Theorem. Nagoya Math. J. 114, 123–133
(1989)

7. Mordecki, E., Salminen, P.: Optimal stopping of Hunt and Lévy processes. Stochas-
tics 79(3-4), 233–251 (2007)

An Integrated Approach to Parametric and

Discrete Fault Diagnosis in Hybrid Systems

Matthew Daigle, Xenofon Koutsoukos, and Gautam Biswas

EECS Department/ISIS, Vanderbilt University
Nashville, TN 37235, USA

{matthew.j.daigle,xenofon.koutsoukos,gautam.biswas}@vanderbilt.edu

1 Fault Diagnosis of Electrical Power Systems

Fault diagnosis is crucial for ensuring the safe operation of complex engineering
systems. Faults and degradations need to be quickly identified so that corrective
actions can avoid catastrophic situations. Most real-world, embedded systems
are hybrid in nature. In such systems, hybrid models have to be employed for
correct tracking and diagnosis. The majority of hybrid systems diagnosis work,
however, has focused on either discrete or parametric fault diagnosis. In contrast,
we present an integrated model-based approach to diagnosing both parametric
and discrete faults in hybrid systems. This extends our previous work in diagnosis
of parametric faults in hybrid systems [1,2] by including discrete faults, resulting
in a unified hybrid diagnosis methodology. We demonstrate our approach using
experimental results performed on a complex electrical power system.

The Advanced Diagnostics and Prognostics Testbed (ADAPT) [3], deployed
at NASA Ames Research Center, is functionally representative of a spacecraft’s
electrical power system. Over fifty relays and circuit breakers configure the sys-
tem into different modes of operation. Therefore, the system behavior is naturally
hybrid. Parametric faults, such as changes in resistance and inductance values,
can occur in the components. Discrete faults, such as relays becoming stuck, may
also occur. We consider a subset of ADAPT that involves a battery discharging
to two parallel DC loads, as shown in Fig. 1, which includes two relays (Sw1 and
Sw2) and one circuit breaker (CB). The selected sensors measure the battery
voltage, VB(t), the currents through the loads, IL1(t) and IL2(t), and the on/off
position of the circuit breaker, PCB(t).

Hybrid System Modeling. We develop component-based models of hybrid
physical systems using hybrid bond graphs (HBGs) [4]. Bond graphs define
an energy-based, multi-domain, topological modeling scheme for dynamic sys-
tems. HBGs extend bond graphs by allowing switching behavior of components,
defined through a control specification (CSPEC), modeled as a finite automa-
ton [4,2]. The state transitions may be attributed to controlled or autonomous
events, and the output of the CSPEC determines the component state.

We focus on the diagnosis of single, abrupt, persistent faults in hybrid sys-
tems, and classify these faults as either (i) parametric faults, or (ii) discrete

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 614–617, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Parametric and Discrete Fault Diagnosis in Hybrid Systems 615

Fig. 1. Electric circuit equivalent for the battery system

Fig. 2. Relay (left) and circuit breaker (right) CSPECs for ADAPT

faults. Parametric faults cover partial failures or degradations in system com-
ponents, and are modeled as an unexpected change in the value of a system
parameter in the model. For example, the load resistance RL1 may increase or
decrease. Discrete faults are modeled as a discrepancy between the actual and
expected mode of a switching element. Discrete faults in ADAPT include switch
malfunctions. For example, a switch may be commanded to close, but remain
stuck open. Also, it may unexpectedly open or close without a command. Be-
cause the switching behavior in HBGs is captured by CSPECs, we model discrete
faults as unobservable fault events in the CSPEC.

Example CSPECs for ADAPT are given in Fig. 2, with the state outputs
shown. The relay CSPEC (Fig. 2, left) includes fault events τ0 and τ1. Event
τ1, corresponding to the relay being stuck on, causes a transition to the stuck
on state, s2. If the relay was previously off, then this fault manifests in the
measurements immediately, because it switches off by itself. Otherwise, it will
only manifest when sw becomes true, i.e., it becomes stuck on. The case is
similar for the τ1 event. For the circuit breaker CSPEC (Fig. 2, right), only the
stuck off fault, τ0, is appropriate, and the behavior is similar. The circuit breaker
may switch off due to its current, iCB exceeding the limit L, which is nominal
behavior, or may switch off due to a fault.

616 M. Daigle, X. Koutsoukos, and G. Biswas

0 100 200 300 400
24.6

24.7

24.8

24.9

25

Time (s)

V
ol

ta
ge

 (
V

)
V

B
(t)

0 100 200 300 400
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

C
ur

re
nt

 (
A

)

I
L1

(t)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

C
ur

re
nt

 (
A

)

I
L2

(t)

Measured
Estimated

Fig. 3. Sw1 opens

Hybrid Diagnosis Approach. Our method for integrated diagnosis of para-
metric and discrete faults in hybrid systems extends the Hybrid Transcend [2]
approach for diagnosing single, abrupt, parametric faults in hybrid systems. The
diagnosis is based on analysis of fault transients to establish the fault and the
mode in which it occurs [1]. We extend this analysis to discrete faults, and aug-
ment the approach to handle both parametric and discrete faults. When a fault
is detected, the estimated system mode may be incorrect. We compute possible
modes of fault occurrence and use the extended diagnosis model to hypothesize
parameter deviations as well as discrete fault events that are consistent with
the observed measurements. For each possible fault, we predict future measure-
ment deviations. When a new deviation occurs, we check consistency of the
fault candidates. Because mode changes may change the predictions, we update
our candidates to the possible true system modes. Inconsistent candidates are
dropped, and consistent candidates are retained. Details may be found in [5].

Experimental Results. We demonstrate our algorithms on discrete faults in-
jected into the actual system. Our set of possible faults includes parametric faults
in the battery and loads (C−

0 , R+
1 , R+

L1, R−
L1, R+

L2A, R−
L2A), sensor faults (V +

B ,
V −

B , I+
L1, I−L1, I+

L2, I−L2, P+
CB, P−

CB), and discrete faults in the switches (Sw1.off ,
Sw1.on, Sw2.off , Sw2.on, CB.off). We denote the system mode by qijk where
i is the mode of Sw1, j is the mode of Sw2, and k is the mode of CB. We
first consider an unexpected switch fault. Within the first 100 s, both loads are
brought online. At 375.5 s, Sw1 switches off by itself. Fig. 3 shows the measured
and estimated outputs. As a result, IL1(t) goes immediately to zero, and VB(t)
increases. The fault is detected at 376.0 s, and the symbol generator reports a
decrease in IL1(t). Because PCB does not immediately change, the only possible
mode of fault occurrence is q111, so the initial fault set is {(I−L1, q111), (R+

1 , q111)),
(R+

L1, q111)), (R+
L2A, q111)), (R−

L2A, q111)), (Sw1.off, , q011)}. At 376.5 s, the sym-
bol generator reports an increase in VB(t), thus eliminating the sensor fault as a
candidate. At 378.5 s, the symbol generator reports that IL1 went to zero. Since
only Sw1.off may cause this behavior, it is correctly isolated.

Next, we consider a stuck switch fault. At 414.0 s, Sw1 is commanded off but
remains on. Fig. 4 shows the outputs. The estimated system mode is q011, but
the actual system mode is q111, and ÎL1(t) goes to zero, while IL1(t) remains

Parametric and Discrete Fault Diagnosis in Hybrid Systems 617

0 100 200 300 400 500
24.6

24.7

24.8

24.9

25

Time (s)

V
ol

ta
ge

 (
V

)
V

B
(t)

0 100 200 300 400 500
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

C
ur

re
nt

 (
A

)

I
L1

(t)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

C
ur

re
nt

 (
A

)

I
L2

(t)

Measured
Estimated

Fig. 4. Sw1 gets stuck closed

nonzero. The fault is detected at 416.0 s, and the symbol generator reports that
IL1(t) has increased. Because the expected mode is q011, the only reason for
the current to deviate is due to a discrete fault or a sensor fault, so the initial
hypothesis set is {(I−L1, q011), (Sw1.on, q111)}. At 418.5 s, the symbol generator
reports that IL1(t) became nonzero when expected to be zero. Because sensor
faults are also allowed to cause discrete behavior, both faults are retained. At
419.5 s, we observe a decrease in VB(t), and since I−L1 cannot cause this, Sw1.on
is isolated as the true fault. Additional experiments have shown correct fault
isolation, with ambiguities resulting only for certain types of sensor faults [5].

Acknowledgments

This work was supported in part by grants NSF-NASA USRA 08020-013, NASA
NRA NNX07AD12A, NSF CNS-0615214, and NSF CNS-0347440.

References

1. Mosterman, P., Biswas, G.: Diagnosis of continuous valued systems in transient op-
erating regions. IEEE Transactions on Systems, Man and Cybernetics, Part A 29(6),
554–565 (1999)

2. Narasimhan, S., Biswas, G.: Model-based diagnosis of hybrid systems. IEEE Trans-
actions on Systems, Man and Cybernetics, Part A 37(3), 348–361 (2007)

3. Poll, S., Patterson-Hine, A., Camisa, J., Nishikawa, D., Spirkovska, L., Garcia, D.,
Hall, D., Neukom, C., Sweet, A., Yentus, S., Lee, C., Ossenfort, J., Roychoudhury, I.,
Daigle, M., Biswas, G., Koutsoukos, X., Lutz, R.: Evaluation, selection, and applica-
tion of model-based diagnosis tools and approaches. In: AIAA Infotech@Aerospace
2007 Conference Proceedings (2007)

4. Mosterman, P.J., Biswas, G.: A theory of discontinuities in physical system models.
Journal of the Franklin Institute 335B(3), 401–439 (1998)

5. Daigle, M., Koutsoukos, X., Biswas, G.: An integrated approach to parametric and
discrete fault diagnosis in hybrid systems. Technical Report ISIS-07-815, Institute
for Software Integrated Systems, Vanderbilt University, Nashville, TN, USA (2007)

d-IRA: A Distributed Reachability Algorithm

for Analysis of Linear Hybrid Automata

Sumit Kumar Jha

Computer Science Department, Carnegie Mellon University, Pittsburgh PA 15213

Abstract. This paper presents the design of a novel distributed algo-
rithm d-IRA for the reachability analysis of linear hybrid automata.
Recent work on iterative relaxation abstraction (IRA) is leveraged to dis-
tribute the reachability problem among multiple computational nodes in
a non-redundant manner by performing careful infeasibility analysis of
linear programs corresponding to spurious counterexamples. The d-IRA
algorithm is resistant to failure of multiple computational nodes. The ex-
perimental results provide promising evidence for the possible successful
application of this technique.

1 Introduction

The verification of linear hybrid automata is a computationally expensive pro-
cedure and is efficient only for systems with few continuous variables. Linear
hybrid automata (LHA) are an important class of hybrid systems which can ap-
proximate nonlinear hybrid systems in an asymptotically complete fashion [3].
We extend our earlier work [5] on applying counterexample guided abstraction
refinement (CEGAR) based model checking algorithms [1] to the analysis of lin-
ear hybrid automata and present a distributed algorithm for their reachability
analysis.

This paper makes the following three novel contributions:

1. We present the first fault-tolerant distributed algorithm for the reachability
analysis of linear hybrid automata.

2. On the theoretical side, we establish a partial-order among counterexamples
and relaxations of linear hybrid automata. We find counterexamples not related
by the partial order and build relaxations to refute each of them in a distributed
manner.

3. The global state which needs to be preserved for failure-tolerance of the
distributed system is only a discrete finite state machine. We also illustrate the
potential for efficient online back-ups of the global state.

2 The Distributed Algorithm (d-IRA)

The distributed algorithm assumes one master computation node and (N-1) other
computational (slave) nodes. Initially, the master node initialises a counter i
to zero, chooses the empty set as an initial set of variables I0 and learns the
deterministic finite automata corresponding to Σ∗ (where Σ is the alphabet of the

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 618–621, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

d-IRA: A Distributed Reachability Algorithm 619

linear hybrid automata) as the initial discrete over-approximate global abstraction
of the language of the LHA H . Now, we explain the distributed algorithm.

1. During the ith iteration, the jth computational node constructs its own re-
laxation Hj

i of the linear hybrid automata H using the set of variables Ij
i . This

step could involve invoking the Fourier-Motzkin elimination routine. Each compu-
tational node then constructs a discrete abstraction Tempj corresponding to the
relaxed linear hybrid automata Hj

i . This step involves making calls to the under-
lying reachability engine like PHAVer [2]. Both the above steps are identical to the
corresponding steps in the IRA algorithm [5] and are not discussedhere for brevity.

2. Each computational node sends to the master the discrete abstraction
Tempj which it learnt from the relaxed linear hybrid automata Hj

i . The master
node updates the discrete global abstraction Ai+1

CE by taking the intersection of
the previous discrete global abstraction Ai

CE with all the newly learnt discrete
abstractions Tempj.

3. Then, the master uses partial order relation among the counter-examples
Ai+1

CE to pick a set CE of N non-redundant counterexamples. The construction
of partial order relation is detailed in Section 3.

4. The master node checks if the set of counterexamples CE is empty. If Ai+1
CE

has no counterexamples, then no bad states are reachable in the system [5] and
hence, it is declared to be safe. Otherwise, the master computational node forms
a set of linear programs C, where each linear program corresponds to one of the
counterexamples in CEi+1. This step is similar to the corresponding step in the
IRA algorithm [5] and is discussed in [6].

5. The master node checks if any of the linear programs in C is feasible. In any
of them, say C, is feasible, it stops and reports that the bad state is reachable [6]
and reports the corresponding counterexample. If none of the linear programs is
feasible, the master node finds the irreducible infeasible subsets (IIS) for each of
the linear programs. The master node uses the support of the IIS as the choice
for the next set of variables Ii+1 which will be used to construct the relaxations.
The master node communicates the set Ij

i+1 to the jth client.

3 A Partial Order for Counterexamples and Relaxations

In order to make the distributed computation effective, it is essential that the
various computational nodes do not solve equivalent reachability sub-problems.
In particular, we want to make sure that the relaxed linear hybrid automata
for the ith iteration Hj

i and Hk
i are different. We achieve this goal by making a

suitable choice of counterexamples from the global abstraction Ai+1
CE . Before we

present our algorithmic methods, we define some related notions. Our definitions
of linear hybrid automata, relaxations and counterexamples are identical to those
in literature [3,5]. Given a path ρ in a linear hybrid automata H , we can derive
a set of corresponding linear constraints Constraints(H, ρ) which is feasible if
and only if the path is feasible. This construction [5,6] is omitted here.

Definition 1. Minimal Explanation for Infeasible Counterexamples : Given a
counterexample path ρ which is infeasible in a linear hybrid automata H but

620 S.K. Jha

feasible in a relaxation H ′ of H, (i.e. H ′ � H), a set of linear constraints
IIS(ρ) is said to be an irreducible infeasible subset (IIS) for ρ if and only if:

– IIS(ρ) ⊆ Constraints(H, ρ) and IIS(ρ) is not feasible.
– for any set S s.t. S ⊂ IIS(ρ), S is feasible.

The special basis [5] V ar of the IIS of ρ is called a minimal explanation for the
infeasible counterexample and we write it as V ar(ρ, IIS(ρ)).
In the following, we assume that there exists a function IIS which maps each
counterexample to a unique IIS.

Definition 2. Dominance of Counterexamples : A counterexample ce is
said to dominate a counterexample ce′ if and only if V ar(ce, IIS(ce)) ⊆
V ar(ce′, IIS(ce′)). We write ce � ce′.

Definition 3. Two counterexamples ce and ce′ are said to be equivalent iff
V ar(ce, IIS(ce)) = V ar(ce′, IIS(ce′)). Then, we say ce ≈ ce′.

The relaxations of hybrid automata form a partial order. We summarize our
results based on this key observation in the following theorems. The proofs are
presented in [4].

Theorem 1. The dominance relation � among counterexamples is a partial
order relation.

Theorem 2. Let Hce be the relaxation of H w.r.t. V ar(ce, IIS(ce)) and Hce′ be
the relaxation of H w.r.t. V ar(ce′, IIS(ce′)). If the counterexample ce dominates
the counterexample ce′ i.e. ce � ce′, then Hce is a relaxation of Hce′ i.e. Hce � Hce′ .

The algorithm Select CE presented below for selecting N counterexamples is
based on the above results.

Algorithm Select CE
Input: Global Abstraction Automata Ai

CE , LHA H , a timer TIMEOUT.
Output: N counterexamples: CE = {ce1, . . . ceN}
1. Initialize CE to be the empty set.
2. Pick a set of m (> N) distinct counterexamples C = {ce1, ce2 . . . cem}
from Ai

CE .
3. Build a set of linear programs {lp1, lp2 . . . lpm} corresponding to each
of {ce1, ce2 . . . cem}
4. For each (infeasible) linear program lpi, obtain an IIS and remember
it as IIS(lpi)
5. For each counterexample cei ∈ C,

a. Check whether there exists a counterexample cej ∈ C such that
cej � cei (i �= j).

b. If no such counterexample cej exists, add cei to CE.
c. Remove cei from C.

6. If (|CE| < N and !TIMEOUT) , m = m × 2 ; goto step 2.
7. RETURN the first N members of CE as a set.

d-IRA: A Distributed Reachability Algorithm 621

Table 1. Distributed IRA vs IRA

Example �-Variables Time for d-IRA [s] Time for IRA [s] Speedup

ACC-4 4 11 15 1.36

ACC-8 8 100 192 1.92

ACC-16 16 1057 3839 3.63

ACC-19 19 2438 9752 4.0

4 Failure Tolerance of d-IRA

Resistance to Failures and Restarts of Slave Nodes: This is possible
because the slave nodes do not store any global state information during the
distributed computation and hence, the overall distributed reachability compu-
tation is robust to failure of slave nodes. If the ith slave node fails during the jth

iteration, then the d-IRA algorithm can still proceed by making the assumption
that L(Tempi) = Σ∗.
Tolerance to Failure of Master Node: The current state of the distributed
computation is really captured completely by the global abstraction Ai

CE after
the ith iteration. It is hence desirable to back-up the global abstraction to a
group of shadow masters during periods of low communication activity.

5 Experimental Results and Conclusion

We implemented a version of our distributed algorithm using the IRA infras-
tructure which parallelized only the relaxation step. We found up to a 4-X im-
provement runtime on our four processor machine1 with this implementation on
a set of parameterized adaptive cruise control examples [5]. .

References

1. Clarke, J.E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge,
MA, USA (1999)

2. Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

3. Ho, P.-H.: Automatic Analysis of Hybrid Systems, Ph.D. thesis, technical report
CSD-TR95-1536, Cornell University, pages 188 (August 1995)

4. Jha, S.K.: Design of a distributed reachability algorithm for analysis of linear hybrid
automata. CoRR, abs/0710.3764 (2007)

5. Jha, S.K., Krogh, B.H., Weimer, J.E., Clarke, E.M.: Reachability for linear hybrid au-
tomata using iterative relaxation abstraction. In: Bemporad, A., Bicchi, A., Buttazzo,
G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 287–300. Springer, Heidelberg (2007)

6. Li, X., Jha, S.K., Bu, L.: Towards an Efficient Path-Oriented Tool for Bounded Reach-
ability analysis of Linear Hybrid Systems using Linear Programming. In: BMC (2006)

1 We ran our experiments on a four processor 64-bit AMD Opteron(tm) 844 SMP
machine running Red Hat Linux version 2.6.19.1-001-K8.

Sufficient Conditions for Zeno Behavior in

Lagrangian Hybrid Systems

Andrew Lamperski and Aaron D. Ames

Control and Dynamical Systems
California Institute of Technology, Pasadena, CA 91125

{andyl,ames}@cds.caltech.edu

Abstract. This paper presents easily verifiable sufficient conditions for
the existence of Zeno behavior in Lagrangian hybrid systems, i.e., hybrid
systems modeling mechanical systems undergoing impacts.

1 Introduction

This paper is motivated by the lack of analytic tools for proving the existence
of Zeno behavior in nontrivial hybrid systems. In particular, mechanical systems
undgergoing impacts, modeled by Lagrangian hybrid systems [3], provide a large
class of systems that often appear to display Zeno behavior. While Zeno behavior
is often intuitively clear and supported with simulation results [2], formal proofs
of Zeno behavior have been limited to very simple systems, e.g., the bouncing
ball.

To study Zeno behavior, we consider Zeno equilibria—subsets of the continu-
ous domains of a hybrid system that are fixed points of the discrete dynamics but
not the continuous dynamics—which are defined in analogy to equilibria of dy-
namical systems. Given the success of studying isolated equilibria in dynamical
systems, a natural starting point to the study of Zeno behavior is a detailed anal-
ysis of isolated Zeno equilibria—those Zeno equilibria with no other nearby Zeno
equilibria. Recently, however, it was observed that Lagrangian hybrid systems
with isolated Zeno equilibria must have one dimensional configuration manifolds
[6]. Most Lagrangian hybrid systems of interest, however, have higher dimension
configuration manifolds. Thus a large set of systems believed to show Zeno be-
havior cannot be adequately studied with attention restricted to isolated Zeno
equilibria.

These observations motivate the main result of this paper: sufficient conditions
for Zeno behavior in Lagrangian hybrid systems with configuration spaces of
arbitrary dimension. These conditions for Lagrangian hybrid systems generalize
those in [6], but remain remarkably simple. When applied to examples, such as
a ball bouncing on a sinusoidal surface or a pendulum on a cart, the conditions
for Zeno behavior are easily verifiable and intuitively appealing.

This work complements other work on Zeno, including [7], [4] and [5].

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 622–625, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sufficient Conditions for Zeno Behavior in Lagrangian Hybrid Systems 623

yy

xx

ẋ̇x

zz

θθ

Fig. 1. Ball bouncing on a sinusoidal surface (left). Pendulum on a cart (right).

2 Simple Hybrid Mechanical Systems

Mechanical systems undergoing impacts are naturally modeled as hybrid sys-
tems. In this section, we will consider hybrid systems of this form and recall how
one obtains such systems from hybrid Lagrangians, which are the hybrid ana-
logue of Lagrangians. For more on hybrid Lagrangians and Lagrangian hybrid
systems, see [1].

Due to space constraints, we are unable to formally define hybrid systems,
executions and Zeno equilibria. We will use the definitions and notation from [6]
unchanged to avoid any confusion.

Hybrid Lagrangians and Lagrangian Hybrid Systems. In the context of
smooth mechanical systems, one begins with a Lagrangian L : TΘ → R on a
configuration space Θ and associates to this Lagrangian a dynamical system:

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ) = 0,

through the Euler-Lagrange equations. Similarly, in the context of mechanical
systems undergoing impacts, one begins with a hybrid Lagrangian and associates
to this a Lagrangian hybrid system. In particular, consider the following:

Definition 1. A hybrid Lagrangian is a tuple L = (Θ, L, h), where Θ ⊂ R
n

is the configuration space, L : TΘ → R is a Lagrangian, and h : Θ → R is a
unilateral constraint function. We assume that 0 is a regular value of h.

Given a hybrid Lagrangian L = (Θ, L, h), the Lagrangian hybrid system associ-
ated to L is the hybrid system

HL = (Γ = ({q}, {(q, q)}), DL, GL, RL, FL),

where Γ is a graph with one node and one edge, DL = {Dh} and GL = {Gh}
are given by

Dh = {(θ, θ̇) ∈ TΘ : h(θ) ≥ 0}, Gh = {(θ, θ̇) ∈ Dh : h(θ) = 0, dh(θ)θ̇ ≤ 0},
FL = {fL} is the vector field obtained from the Lagrangian L, and RL = {Rh}
with Rh(θ, θ̇) = (θ, P (θ, θ̇)), where

P (θ, θ̇) = θ̇ − (1 + e)
dh(θ)θ̇

dh(θ)M(θ)−1dh(θ)T
M(θ)−1dh(θ)T , (1)

624 A. Lamperski and A.D. Ames

with coefficient of restitution 0 ≤ e ≤ 1. Zeno equilibria of Lagrangian hybrid
systems are exactly the fixed points of Rh. More details on this construction can
be found in [6].

Examples. We now present two examples that will be considered throughout
the rest of the paper in order to illustrate the concepts involved.

Example 1 (Ball). Our first running example is a ball bouncing on a sinusoidal
surface (cf. Fig. 1). In this case B = (ΘB, LB, hB), where ΘB = R

3, and for
x = (x1, x2, x3),

LB(x, ẋ) =
1
2
m‖ẋ‖2 − mgx3, hB(x1, x2, x3) = x3 − sin(x2).

From this hybrid Lagrangian, one obtains a Lagrangian hybrid system HB.

Example 2 (Cart). Our second running example is a constrained pendulum on
a cart (cf. Fig. 1); this is a variation on the classical pendulum on a cart,
where the pendulum is not allowed to “pass through” the cart. In this case
C = (ΘC, LC, hC), where ΘC = S

1 × R, q = (θ, x), and

LC(θ, θ̇, x, ẋ) =
1
2

(
θ̇ ẋ

)
(

mR2 mR cos(θ)
mR cos(θ) M + m

) (
θ̇
ẋ

)
− mgR cos(θ).

where m is the mass of the pendulum, M is the mass of the cart and R is the
length of the pendulum. Finally, the constraint hC(θ, x) = cos(θ) ensures that
the pendulum cannot pass through the cart. One obtains a Lagrangian hybrid
system HC from the hybrid Lagrangian C.

3 Sufficient Conditions for Zeno Behavior in Lagrangian
Hybrid Systems

In this section, we present sufficient conditions for the existence of Zeno behavior
in Lagrangian hybrid systems. Before presenting this conditions, we characterize
Zeno equilibria in systems of this form.

Zeno equilibria in Lagrangian hybrid systems. If HL is a Lagrangian
hybrid system, then due to the special form of these systems we find that the
point z = {(θ∗, θ̇∗)} is a Zeno equilibria iff θ̇∗ = P (θ, θ̇∗), with P given in (1).
In particular, the special form of P implies that this holds iff dh(θ∗)θ̇∗ = 0.
Therefore the set of all Zeno equilibria for a Lagrangian hybrid system is given
by the hypersurfaces in Gh:

Z = {(θ, θ̇) ∈ Gh : dh(θ)θ̇ = 0}.

Note that if dim(Θ) > 1, the Zeno equilibria in Lagrangian hybrid systems are
always non-isolated (see [6])—this motivates the study of such equilibria.

Sufficient Conditions for Zeno Behavior in Lagrangian Hybrid Systems 625

Theorem 1. Let HL be a Lagrangian hybrid system and Let z = {(θ∗, θ̇∗)} be
a Zeno equilibria of HL. If 0 < e < 1 and

ḧ(θ∗, θ̇∗) = (θ̇∗)T H(h(θ∗))θ̇∗ + dh(θ∗)M(θ∗)−1(−C(θ∗, θ̇∗)θ̇∗ − N(θ∗)) < 0,

where H(h(θ∗)) is the Hessian of h at θ∗, then there is a neighborhood W ⊂ Dh

of (θ∗, θ̇∗) such that for every (θ, θ̇) ∈ W , there is a unique Zeno execution χ of
HL with c0(τ0) = (θ, θ̇).

Example 3 (Ball). We first demonstrate that the hybrid system HB modeling a
ball bouncing on a sinusoidal surface is Zeno. First, the Zeno equilibria of this
system are given by the set

Z = {(x, ẋ) ∈ GhB : ẋ3 − ẋ2 cos(x2) = 0}.
Now, one can easily verify that for (x∗, ẋ∗) ∈ Z

ḧB(x∗, ẋ∗) = sin(x2)ẋ2
2 − g.

Therefore, there are clearly Zeno equilibria satisfying the conditions of Theo-
rem 1, namely when ẋ2 is small, and thus HB is Zeno.

Example 4 (Cart). We now demonstrate that the hybrid system modeling a
pendulum on a cart, HC, is Zeno. First, note that the Zeno equilibria are given
by the set:

Z = {(θ, x, θ̇, ẋ) ∈ GhC : sin(θ)θ̇ = 0},
and for (θ∗, x∗, θ̇∗, ẋ∗) ∈ Z,

ḧC(θ∗, x∗, θ̇∗, ẋ∗) = − g

R
< 0.

Therefore, for every Zeno equilibria of the pendulum on a cart there a neighbor-
hood of the Zeno equilibria such that every execution with an initial condition
in that neighborhood is Zeno.

References

1. Ames, A.D.: A Categorical Theory of Hybrid Systems. PhD thesis, University of
California, Berkeley (2006)

2. Ames, A.D., Zheng, H., Gregg, R.D., Sastry, S.: Is there life after Zeno? Taking
executions past the breaking (Zeno) point. In: 25th American Control Conference,
Minneapolis, MN (2006)

3. Brogliato, B.: Nonsmooth Mechanics. Springer, Heidelberg (1999)
4. Camlibel, M.K., Schumacher, J.M.: On the Zeno behavior of linear complementarity

systems. In: 40th IEEE Conference on Decision and Control (2001)
5. Heymann, M., Lin, F., Meyer, G., Resmerita, S.: Analysis of Zeno behaviors in a

class of hybrid systems. IEEE Transactions on Automatic Control 50(3), 376–384
(2005)

6. Lamperski, A., Ames, A.D.: Lyapunov-like conditions for the existence of Zeno be-
havior in hybrid and Lagrangian hybrid systems. In: IEEE Conference on Decision
and Control (2007)

7. Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J.
Robust and Nonlinear Control 11(2), 435–451 (2001)

Separation in Stability Analysis of Piecewise

Linear Systems in Discrete Time

Ji-Woong Lee

Department of Electrical Engineering
Pennsylvania State University

University Park, PA 16802
jiwoong@psu.edu

Abstract. Stability analysis of piecewise linear systems, without affine
terms, consists of the problem of finding maximal stabilizing sets of
switching paths among possible system coefficients and that of obtaining
a sequence of state-space partitions in the order of increasing refinement.
Exploiting the fact that these two problems can be solved separately, one
can find subsets of the state space such that the piecewise linear system
restricted to these sets is uniformly exponentially stable.

1 Introduction

Successful analysis of the stability of a piecewise linear system hinges on one’s
ability to construct an appropriate Lyapunov function. Common approaches
involve piecewise quadratic Lyapunov functions [1,2,3,4] and piecewise higher-
order polynomial Lyapunov functions [5,6]. However, these approaches are con-
servative because only a subset of all asymptotically stable piecewise linear sys-
tems admits these types of Lyapunov functions.

We focus on discrete-time piecewise linear systems under a polyhedral parti-
tion of the state space but without affine terms, and propose that the problem
of determining the asymptotic stability of such a system be divided into two
separate problems. The first problem draws on the recent characterization of
all uniformly stabilizing sets of switching sequences [7]. To obtain stabilizing
switching sequences, it suffices to obtain so-called maximal admissible sets of
switching paths of length L over L = 0, 1, These sets are independent
of the switching structure imposed by the underlying state-dependent switch-
ing among different system coefficients, and associated with each of them is a
switching-path-dependent quadratic Lyapunov function. On the other hand, the
second problem is to obtain all admissible polyhedral partitions of depth L over
L = 0, 1, The task here is to explore the underlying switching structure
of the system by obtaining an increasing family of state-space partitions. This
task can be done regardless of how each state-space partition affects the form of
the Lyapunov function. Combining these two problems leads to a novel stability
analysis method for piecewise linear systems.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 626–629, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Separation in Stability Analysis of Piecewise Linear Systems 627

2 Problem Formulation

Let A = {A1, . . . ,AN} with A1, . . . , AN ∈ R
n×n. Let D = {D1, . . . , DN} be a

partition of R
n (i.e.,

⋃N
i=1 Di = R

n and Di ∩Dj = ∅ whenever i �= j). Then the
pair (A,D) defines the discrete-time piecewise linear system represented by

x(t + 1) = Aθ(t)x(t) (1)

with θ(t) = {i : x(t) ∈ Di} for t = 0, 1,

Definition 1. Let C ⊂ R
n. The pair (A,D) is said to be C-uniformly exponen-

tially stable if there exist c ≥ 1 and λ ∈ (0, 1) such that

‖x(t)‖ ≤ cλt−t0‖x(t0)‖ (2)

for all t0, t ∈ {0, 1, . . .} with t ≥ t0 and for all x(t0) ∈ C.

Given a pair (A,D), our stability analysis problem is to determine a (maximal)
set C ⊂ R

n such that the pair (A,D) is C-uniformly exponentially stable.

3 Two Separate Problems

The first problem is to find maximal admissible sets of switching paths. Let Θ ⊂
{1, . . . , N}∞ be nonempty. The pair (A, Θ) defines the discrete-time switched
linear system represented by (1) over all (θ(0), θ(1), . . .) ∈ Θ. Searching for
all Θ such that the pair (A, Θ) is uniformly exponentially stable amounts to
finding (the countable family of) all A-maximal sets [7]. We shall write X < 0
to mean that X is symmetric and negative definite. To simplify notation, set
(ij , . . . , ik) = 0 if j > k, and set {1, . . . , N}0 = {0}.
Definition 2. The pair (A, Θ) is said to be uniformly exponentially stable if
there exist c ≥ 1 and λ ∈ (0, 1) such that (2) holds for all t0, t ∈ {0, 1, . . .} with
t ≥ t0, for all x(t0) ∈ R

n, and for all (θ(0), θ(1), . . .) ∈ Θ.

Definition 3. Let L be a nonnegative integer. Elements of {1, . . . , N}L+1 are
called L-paths. A nonempty set N of L-paths is said to be A-admissible if, for
each (i0, . . . , iL) ∈ N , there exist an integer M > L and a (iL+1, . . . , iM) ∈
{1, . . . , N}M−L such that (iM−L, . . . , iM) = (i0, . . . , iL) and (it, . . . , it+L) ∈ N
for 0 ≤ t ≤ M − L, and if there exist matrices X(j1,...,jL) > 0 such that

AT
iL

X(i1,...,iL)AiL − X(i0,...,iL−1) < 0 (3)

for all L-paths (i0, . . . , iL) ∈ N . Moreover, if the only A-admissible Ñ with Ñ ⊂
N (resp. N ⊂ Ñ) is N itself, then N is called A-minimal (resp. A-maximal).

Lemma 4. [7] There exists a nonempty Θ ⊂ Ω such that the pair (A, Θ) is
uniformly exponentially stable if and only if there exist an integer L ≥ 0 and
an A-admissible N ⊂ {1, . . . , N}L+1. Associated with each A-minimal N is a
periodic θ = (θ(0), θ(1), . . .) such that (A, {θ}) is uniformly exponentially stable.

628 J.-W. Lee

The second problem is to generate a countable family of partitions of the state
space in the order of increasing refinement. Each of these partitions are made
according to the switching structure that the underlying state-dependence of the
switching sequence dictates. Define sets D(i0,...,iL) ⊂ R

n recursively by

D(i0,...,iL+1) = {x ∈ D(i0,...,iL) : Ai0x ∈ D(i1,...,iL+1)}

for L = 0, 1, . . . and for (i0, . . . , iL) ∈ {1, . . . , N}L+1. Then, for each L, the
indexed family {D(i0,...,iL) : (i0, . . . , iL) ∈ {1, . . . , N}L+1} defines a partition of
R

n, which we shall call an L-path partition of R
n.

4 Proposed Algorithm for Stability Analysis

We propose that the stability analysis formulated in Section 2 be tackled by
combining the two decoupled problems described in Section 3. Suppose we have
solved the two problems described above. Let us fix a nonnegative integer L, and
suppose that DL and DL+1 are the L-path partition and (L+1)-path partition of
the state space. Partition DL+1 is finer than DL and enables one to construct a
switching sequence as follows: given a nonempty D(i0,...,iL) ∈ DL, let θ(0) = i0,
. . . , θ(L) = iL; if there exists a nonempty D(i0,...,iL,iL+1) ∈ DL+1, then let
θ(L + 1) = iL+1; if there exists a nonempty D(i1,...,iL+1,iL+2) ∈ DL+1, then let
θ(L+2) = iL+2; and so on. Any switching sequence that can be constructed this
way generates an infinite chain of L-paths, which we shall call a chain of L-paths
generated by D(i0,...,iL) and DL+1. The following is immediate by construction:

Lemma 5. Let D(i0,...,iL) ∈ DL. If each chain of L-paths generated by D(i0,...,iL)

and DL+1 has a limit set that is contained in an A-maximal set of L-paths, then
the piecewise linear system (A,D) is D(i0,...,iL)-uniformly exponentially stable.

This lemma suggests an algorithm to generate a nested sequence C0 ⊂ C1 ⊂ · · ·
such that the pair (A,D) is Ci-uniformly exponentially stable for each i:

Step 0. Set C−1 = ∅; set L = 0.
Step 1. Obtain the partition DL+1 of the state space.
Step 2. Obtain A-maximal sets of L-paths.
Step 3. Let CL be the union of CL−1 and all D(i0,...,iL) such that each chain of

L-paths generated by D(i0,...,iL) and DL+1 has a limit set that is contained
in an A-maximal set of L-paths.

Step 4. Increment L to L + 1; go to Step 1.

For example, if N = 2 and if A and D have

A1 =
[

0 0
−1/2 3/2

]

, A2 =
[
1/2 1
−1 1/2

]

;

{
D1 =

{
[x1 x2]T ∈ R

2 : x1 ≥ x2

}
,

D2 =
{
[x1 x2]T ∈ R

2 : x1 < x2

}
,

then the algorithm gives us C0 = C1 = C2 = ∅, C3 = D1212∪D2121∪D2212, and
C4 = C5 = · · · = D1212 ∪D2121 ∪D2212 ∪D22212. In this particular example, the

Separation in Stability Analysis of Piecewise Linear Systems 629

−2 0 2
−2

0

2

D2211

D2212

D1212

D22211

D22212

D111

D211
D2121

−2 0 2
−2

0

2

x(t0)

x(t0 + 1)

(a) (b)

Fig. 1. Illustrative example. (a) the four-path partition of the state space. (b) a typical
state trajectory converging to the origin.

process of iteratively partitioning the state space terminates at the path length
of L = 4 since none of the states in R

2 \C4 converges to the origin. The stability
of the pair (A,D) can be completely assessed using the four-path partition given
by Fig. 1(a); a typical state trajectory that starts in C4 is depicted in Fig. 1(b).

5 Conclusion

A novel stability analysis method was proposed based on the fact that the task
of characterizing all stabilizing sets of switching sequences can be done indepen-
dently of that of successively refining the partition of the state space. Questions
to be answered regarding the algorithm presented in Section 4 are as follows: (a)
Is C∞ = limi→∞ Ci maximal? (b) Under what condition, do we have C∞ = R

n?
(c) Under what condition, do we have C∞ = CL for some finite L?

References

1. Hassibi, A., Boyd, S.: Quadratic stabilization and control of piecewise-linear systems.
In: Proc. IEEE Amer. Contr. Conf (1998)

2. Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions
for hybrid systems. IEEE Trans. Automat. Control 43(4), 555–559 (1998)

3. Feng, G.: Stability analysis of piecewise discrete-time linear systems. IEEE Trans.
Automat. Control 47(7), 1108–1112 (2002)

4. Ferrari-Trecate, G., Cuzzola, F.A., Mignone, D., Morari, M.: Analysis of discrete-
time piecewise affine and hybrid systems. Automatica 38(12), 2139–2146 (2002)

5. Prajna, S., Papachristodoulou, A.: Analysis of switched and hybrid systems—
beyond piecewise quadratic methods. In: Proc. IEEE Amer. Contr. Conf. (2003)

6. Biswas, P., Grieder, P., Löfberg, J., Morari, M.: A survey on stability analysis of
discrete-time piecewise affine systems. In: Proc. 16th IFAC World Congress (2005)

7. Lee, J.W., Dullerud, G.E.: Uniformly stabilizing sets of switching sequences for
switched linear systems. IEEE Trans. Automat. Control 52(5), 868–874 (2007)

Level Set Methods for Computing

Reachable Sets of Hybrid Systems with
Differential Algebraic Equation Dynamics

Ian M. Mitchell1 and Yoshihiko Susuki2

1 Department of Computer Science, University of British Columbia,
2366 Main Mall, Vancouver, BC, Canada V6T 1Z4

mitchell@cs.ubc.ca

http://www.cs.ubc.ca/∼mitchell
2 Department of Electrical Engineering, Kyoto University,

Katsura, Nishikyo, Kyoto, Japan 615–8510
susuki@dove.kuee.kyoto-u.ac.jp

http://www-lab23.kuee.kyoto-u.ac.jp/susuki

Abstract. In previous work we demonstrated that reachability algo-
rithms using level set methods and based on the Hamilton-Jacobi PDE
can be adapted to systems whose dynamics are described by differential
algebraic equations. Here we extend those results to hybrid systems. The
only significant addition required is a mechanism for handling the state
reset that occurs during discrete jumps between modes. We demonstrate
the technique on a nonlinear power system voltage safety problem.

1 Introduction

The reachable set or tube is an effective tool for verification, but it can rarely be
determined exactly for hybrid or continuous systems. Many approximate reach-
ability algorithms have been proposed, and we refer to [1] and the citations
within for further discussion of such algorithms. A central assumption of vir-
tually all algorithms has been that the continuous dynamics of the system are
modeled by ordinary differential equations (ODEs). The differential algebraic
equation (DAE) is a generalization of the ODE, and in previous work [2] we
described how to adapt reachability algorithms based on level set methods and
the Hamilton-Jacobi (HJ) partial differential equation (PDE) to approximate
the backwards reachable tube for continuous systems modeled by DAEs. Here
we demonstrate how to extend the algorithm to hybrid systems in which DAEs
drive the continuous dynamics through a hybrid version of the nonlinear power
system voltage safety scenario. We do not have room in this brief paper to pro-
vide all of the details, but code containing those details and recreating the results
below can be found at [3].

Given a system state space S and a set of known unsafe states T ⊂ S, we seek
to approximate the backwards reachable tube

B(T, [0, t]) � {x0 ∈ S | ∃x̂ ∈ T, ∃s ∈ [0, t], x(s) = x̂},

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 630–633, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reachable Sets for DAE Hybrid Systems 631

where x(·) is a trajectory of the system starting at x(0) = x0. For systems
whose continuous trajectories are specified by ODEs, we described in [4] how
the reachable tube for some fixed t can be implicitly defined as B(T, [0, t]) =
{x ∈ S | φ(x) ≤ 0}, where φ : S → R is the viscosity solution of an HJ PDE (if
t may vary, φ will depend on t). The method is extended to continuous systems
specified by index one DAEs in [2].

We will not address here the theoretical questions that arise when substituting
DAEs for ODEs in a hybrid automata (HA) model, and therefore avoid a formal
HA definition. The primary computational challenge of extending the procedure
from [2] to a hybrid setting is the implicitly defined jump that occurs in the
continuous state when a discrete mode switch causes a change in the governing
DAE. We describe below how to convert this implicit jump into an explicit reset
map, and then how to map the implicit surface representation of the reach tube
φ through this reset.

2 Mapping the Reachable Tube across Mode Jumps

In a DAE model the standard ODE ẋ(s) = f(x(s)) is replaced by a coupled set
of differential and algebraic equations. We focus on index one DAEs which can
be written in semi-explicit form as

ẏ(s) = fD(y(s), z(s); p) (1)
0 = g(y(s), z(s); p) (2)

where the state x = (y, z) is divided into differential variables y and algebraic
variables z, and p are some known parameters. In a hybrid system with modes
denoted by variable q, the parameters will depend on the mode p = p(q). Under
appropriate conditions, such DAEs can be understood as the ODE (1) evolving
on the constraint manifold C(p) = {(y, z) | g(y, z; p) = 0}. We described two
procedures for approximating the reachable tube of a continuous system modeled
by (1)–(2) in [2]. In the hybrid system extension, either procedure may be used
for the continuous evolution of the reachable tube.

Consider now the effect of a discrete jump in the HA from a mode q− with
parameters p− = p(q−) to a mode q+ with parameters p+ = p(q+). As we are
working with backwards reachability, we assume that an implicit representation
of the backwards reachable tube is available for mode q+ in the form φ+(x),
and we wish to find a representation for mode q− in the form φ−(x) (after
which continuous evolution in mode q− will begin). We seek a reset mapping
x+ = ρ(x−, p−, p+) so that we can construct φ−(x) = φ+(ρ(x, p−, p+)).

In a standard HA this reset mapping ρ is given explicitly [4], but in the DAE
model it is implicit. To determine ρ we assume that the constraint (2) arises in the
limit ε → 0 from some “fast” dynamics given by the ODE εż = g(y, z; p). When a
discrete mode switch causes a change in parameters such that g(y−, z−; p+) �= 0,
we fix y+ = y− (since y governed by (1) cannot react fast enough) and solve the
ODE ż = g(y+, z; p+) with initial condition z(0) = z− in auxiliary “fast” time
to a fixpoint limt→∞ z(t) = z+.

632 I.M. Mitchell and Y. Susuki

Fig. 1. Hybrid automaton for the example

3 Single Machine-Load Bus Example

We now demonstrate our reset mapping procedure on a concrete example. For the
continuous dynamics, we use a three dimensional DAE model of a single machine-
load bus from [5]. For lack of space we are forced to omit all of the details of the
continuous model; the discussion that follows may not make much sense without
first reading those details in [2]. All three state variables (E′, Ef , E) are voltages.
The state variables E′ and Ef appear in the differential component of the DAE
(they correspond to differential variable y), while the algebraic constraint relates
E and E′ (so E corresponds to algebraic variable z) in a manner dependent on
a parameter p = X1. Note that the prime is not a derivative—E′ is a separate
variable from E. The discrete component of the HA for the system is shown in
figure 1; it and the safety analysis problem are adapted from [6], where interested
readers can also find further discussion of related work on power system models.

In words, the HA in figure 1 describes a scenario in which the system starts
in its nominal operating mode q1 with two transmission routes and parameter
X1 = 0.1. An uncontrollable event may cause one route to fail at any time, and
the system jumps into a single route mode q2 with X1 = 0.2. The failure is
detected after a brief period (12 cycles at 60 Hertz is 0.2 seconds) and relays
switch in a backup route to restore the system to its nominal parameter X1 = 0.1
in mode q3. The unsafe behaviour of the system is that the load bus voltage E
may drop below a defined minimum value Ec = 0.7. The failure may occur due
to continuous oscillations in the voltages and/or due to discrete voltage jumps
when the number of transmission routes change.

Figure 2(a) shows samples of the reset mapping ρ for the q1 to q2 switch, as
well as the constraint surfaces for the two values of X1. The plot is in the E
vs E′ plane because the constraint does not depend on Ef . When working with
level set methods, φ is stored on a discrete grid. Consequently, we only need to
determine ρ(x, p−, p+) where x is a node of the grid—a finite number of samples.
We then use interpolation on φ+ to construct a value for φ−, since ρ(x, p−, p+)
will not generally be a node in the grid even if x is.

In [2] we approximated the set of states leading to continuous failure in the
nominal operating mode q1 without any switches (although we used a different
value of parameter Q0 in those calculations). Two algorithms were proposed: one
that works on the constraint manifold and one that works in the full dimensional
state space. We show only the former here, although the reset mapping procedure
is easily extended to the latter. For our coordinate system on the constraint
manifold we choose E and Ef , so the reachable tubes shown are essentially
projections of the full dimensional reachable tubes onto these two variables.
Figure 2(b) shows the results of the reachability analysis on the manifold.

Reachable Sets for DAE Hybrid Systems 633

0.6 0.8 1 1.2 1.4 1.6
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

E

E
‘

new 1 route(s)
old 2 route(s)

(a) The constraint surfaces C(X1) and
samples of the reset mapping ρ. The re-
set mapping goes from states labeled by
circles to states labeled by triangles.

E

E
f

0.6 0.8 1 1.2 1.4 1.6
0

1

2

3

4

5

6

7

T U
d

U
a

S
n S

i

U
c

(b) The reachability results for the exam-
ple with parameter Q0 = 0.25Pm (if Q0 =
0.5Pm from [2] were used, there would be
no safe states).

Fig. 2. Results for the example. Note that the vertical axes are different variables in
the two plots. The sets labeled in the right subplot are: known unsafe target set T ,
states unsafe in the nominal mode with no discrete switching Ua, states that become
unsafe during discrete switches Ud, states which become unsafe due to a combination
of discrete and continuous evolution Uc ∪ Si, and safe states Sn for mode q1 of the
HA from figure 1. If there was no 12 cycle delay in detecting the route failure, the
safe states would be Sn ∪Si. If there was never a route failure (the situation examined
in [2]), the safe states would be Sn ∪ Si ∪ Uc ∪ Ud.

References

1. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety
analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS,
vol. 4416, pp. 428–443. Springer, Heidelberg (2007)

2. Cross, E.A., Mitchell, I.M.: Level set methods for computing reachable sets of sys-
tems with differential algebraic equation dynamics. In: Proceedings of the American
Control Conference, Seattle, WA (2008),
http://www.cs.ubc.ca/∼mitchell/Papers/submittedReachDAE.pdf

3. [Online], http://www.cs.ubc.ca/∼mitchell/ToolboxLS
4. Tomlin, C., Mitchell, I., Bayen, A., Oishi, M.: Computational techniques for the

verification of hybrid systems. Proceedings of the IEEE 91(7), 986–1001 (2003)
5. Venkatasubramanian, V., Schättler, H., Zaborszky, J.: Voltage dynamics: Study of a

generator with voltage control, transmission, and matched MW load. IEEE Trans-
actions on Automatic Control 37(11), 1717–1733 (1992)

6. Susuki, Y., Hikihara, T.: Predicting voltage instability of power system via hybrid
system reachability analysis. In: Proceedings of the American Control Conference,
New York, NY, pp. 4166–4171 (2007)

http://www.cs.ubc.ca/~mitchell/Papers/submittedReachDAE.pdf
http://www.cs.ubc.ca/~mitchell/ToolboxLS

Approximate Control Design

for Solar Driven Sensor Nodes

Clemens Moser1, Lothar Thiele1, Davide Brunelli2, and Luca Benini2

1 Swiss Federal Institute of Technology (ETH) Zurich
2 University of Bologna

Abstract. This paper addresses power management of wireless sensor
nodes which receive their energy from solar cells. In an outdoor environ-
ment, the future available energy is estimated and used as input to a
receding horizon controller. We want to maximize the utility of the sen-
sor application given the time-varying amount of solar energy. In order
to avoid real-time optimization, we precompute off-line an explicit state
feedback solution. However, it is a well-known problem of the optimal
feedback solution that the computational complexity grows very quickly,
which is particularly unfavourable for sensor nodes. A new method to
derive approximate solutions to a multiparametric linear programming
problem is presented. The resulting control laws substantially reduce the
on-line complexity in terms of computational and storage demand. We
show that a sensor node’s performance is not necessary decreased due to
suboptimality of the control design.

1 Introduction

Wireless sensor networks (WSN) have opened up an exciting field of research
that is increasingly becoming popular nowadays. A WSN can be seen as a system
of self-powered, wireless sensors which are able to detect and transmit events to a
base station. Above all, sensor nodes are anticipated to be small and inexpensive
devices which can be unobtrusively embedded in their environment. Thus, a
sensor node’s hardware is stringently limited in terms of computation, memory,
communication as well as storable energy. These resource constraints limit the
complexity of the software executed on a sensor node.

Recently, techniques to harvest energy via photovoltaic cells have received in-
creasing attention in the sensor network community. A general approach to opti-
mize the utilization of solar energy has been presented in [1]. The authors apply
multiparametric linear programming to obtain a piecewise linear state feedback
over a polyhedral partition of the state space. The optimization problem is ba-
sically solved off-line and look-up tables are stored and evaluated in the on-line
case. For state explosions, which occur already for problems of moderate com-
plexity, the limited storage capabilities of sensor nodes are quickly exceeded. Fur-
thermore, the evaluation of the numerous states will cost considerable time as well
as energy. In this paper, a new algorithm for approximate multiparametric linear
programming is presented which generates much simpler look-up tables then the
optimal solution. Another approximation method has been proposed, e.g., in [2].

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 634–637, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Approximate Control Design for Solar Driven Sensor Nodes 635

2 System Model

We restrict ourselves to the discussion of an example application which is mod-
eled by the hierarchical control model illustrated in Fig. 1. The same control
model has been used in [3]. It is introduced here since it significantly improves
the robustness compared to a system with only one estimation and one control
unit. The linear programs underlying subcontroller 1 and 2 have to be solved re-
peatedly, yielding a receding horizon control (RHC) strategy. For a specification
of the linear programs and a detailed description of the system dynamics, the
reader is referred to [4]. Note that the capability to bypass the storage device is a
typical feature of latest prototypes. It offers the opportunity to save substantial
energy by using the solar energy directly when available.

subcontroller 2
hourly

estimation

average case [save energy]

worst-case [use energy]

application

subcontroller 1
daily

estimation

energy storageenergy source

system state

Fig. 1. Illustration of the hierarchical control model

3 Approximate Multiparametric Linear Programming

At first, we define a state vector X consisting of the actual system state, the level
of the energy storage as well as the estimation of the incoming energy over the
finite prediction horizon (cp. Fig.1). For subcontroller 1, e.g., the state vector X
can be written as

X(t) =
(
EC(t) , Ẽ1(t, 0) , . . . , Ẽ1(t, N − 1)

)T

(1)

where Ẽ1(t, 0) , . . . , Ẽ1(t, N − 1) denote the energy predictions for N time inter-
vals. Furthermore, let us define the vector of optimal control inputs U∗(X), i.e.,
the vector of optimal rates R for the N prediction intervals.

In the following, we present a new algorithm for approximative multiparamet-
ric linear programming. The basic idea is

– to take a large number of samples Xi of the state space of X,
– to solve a linear program for each sample Xi to get the optimal control U∗

i ,

636 C. Moser et al.

– to find a (preferably simple) fitting function Û∗(X) for the multidimensional
data (Xi,U∗

i),
– and finally to use Û∗(X) (which has been calculated off-line) as approxi-

mation for U∗(X) in the on-line case.

At first, a random number generator is used to generate the samples Xi, 1 ≤
i ≤ NS , where NS denotes the total number of samples. We used independent,
uniformly distributed random values as samples for the single elements of X.
As fitting algorithm, we opted for the algorithm proposed in [5]. This algorithm
attempts to fit data samples to a set of convex, piece-wise linear candidate func-
tions. The optimal control rates U∗(X) are not necessary convex over the state
space X. However, it has been shown that the optimal objective value J∗(X)
exhibits the wished convexity property. For each sample Xi, we now solve a
linear program and determine the optimal control vector U∗(Xi) as well as the
optimal objective value J∗(Xi). This can be done using common simplex-based
or interior-point solvers. Next, we implement the heuristic algorithm in [5] to fit
the objective J∗(Xi), i.e. to solve the least square fitting problem

minimize
NS∑
i=1

(
max

j=1,...,N̂CR

(T̂T
j · Xi + V̂j) − J∗(Xi)

)2

(2)

We obtain the approximated objective function Ĵ∗(X) = max
j=1,...,N̂CR

{T̂T
j ·X+V̂j}

Next, we group the samples Xi according to the region j they belong to. For
each region j, we perform a simple least square fitting of the respective samples
to compute the coefficients Âj and B̂j of the approximated control rates Û∗.
As a result, we have derived an explicit form for the control rates Û∗(X) as a
function of the current state X:

Û∗(X) = ÂjX + B̂j if ĤjX ≤ K̂j , j = 1, . . . , N̂CR (3)

Everything done so far has to be done off-line. The approximated control law
in (3) can now be used in an on-line controller instead of the exact solution.

4 Simulation Results

Table 1 displays the evaluation of an approximate control law with N̂CR = 4 re-
gions for both subcontroller 1 and subcontroller 2. In comparison, the optimal so-
lution exhibits 30 and 161 critical regions, respectively. The primary optimization
objective of regulating the sensing rate r̂1 is met almost as well as for the exact
solution. We define the average efficiency ηavg of the energy utilisation as a met-
ric to quantify the performance of the sensor node. Obviously, the approximated
algorithm manages to save even slightly more energy then its exact counterpart.
The stored energy ÊC is varying up to 11.57% from EC . However, the peak of
ÊC is just 4.03% above the one of EC . That is, the capacity of the energy storage
is required to be approximately 5% higher if the system is controlled by an ap-
proximated algorithm. Showing a comparable performance during runtime, the

Approximate Control Design for Solar Driven Sensor Nodes 637

Table 1. Comparison of multiparametric and approximate-mp control design, sc =
subcontroller, storage in real numbers, ops in the worst case

NCR

control design max
t

�
�
�

r̂1(t)
r1(t)

− 1
�
�
� max

t

�
�
�

ÊC(t)
EC(t)

− 1
�
�
� ηavg (or N̂CR) storage ops

optimal, sc1 30 1920 3689

sc2
0% 0% 93.00%

161 2898 4829

approximate, sc1 4 256 308

sc2
1.52% 11.57% 93.75%

4 108 69

approximate, sc1 4 256 308

sc2
0.82% 5.47% 92.97%

9 243 173

main advantage of the approximation becomes obvious considering the complex-
ity of the control laws. According to Table 1, the storage demand is significantly
reduced by 92.44% compared to the optimal solution. In terms of worst case com-
putation demand, the reduction even amounts 95.57%. Here, worst case refers
to the situation where the currently active region is the last region to be tested.
Table 1 also outlines the results for a second low-complexity approximation.

Acknowledgements

The work presented in this paper was partially supported by the National Com-
petence Center in Research on Mobile Information and Communication Systems
(NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant number 5005-67322. In addition, this research has been founded by
the European Network of Excellence ARTIST2.

References

1. Moser, C., Thiele, L., Brunelli, D., Benini, L.: Adaptive power management in en-
ergy harvesting systems. In: DATE 2007: Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 773–778. ACM Press, New York (2007)

2. Filippi, C.: An algorithm for approximate multiparametric linear programming.
Journal of Optimization Theory and Applications 120(1) (23), 73–95 (2004)

3. Moser, C., Thiele, L., Brunelli, D., Benini, L.: Robust and Low Complexity Rate
Control for Solar Powered Sensors. In: Design, Automation and Test in Europe
(DATE 2008), March 10-14, 2008, Munich, Germany (2008)

4. Moser, C., Thiele, L., Brunelli, D., Benini, L.: Approximate Control Design for
Solar Driven Sensor Nodes. TIK-Report 279, Computer Engineering and Networks
Laboratory, ETH Zurich (January 2008)

5. Magnani, A., Boyd, S.: Convex piecewise-linear fitting. In: Optimization and Engi-
neering (submitted) (April 2006),
http://www.stanford.edu/∼boyd/reports/cvx pwl fit.pdf

http://www.stanford.edu/~boyd/reports/cvx_pwl_fit.pdf

Modular Development of Hybrid Systems for

Verification in Coq

Milad Niqui� and Olga Tveretina��

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

{M.Niqui,O.Tveretina}@cs.ru.nl

Abstract. In this paper we present a formalization of the theory of hy-
brid automata and algorithms for building trajectory trees using module
types and functors in the Coq proof assistant.

1 Preliminaries

Hybrid systems are systems in which there is a significant interaction between
the continuous and discrete parts. Many of the applications of hybrid systems
are safety critical and require the guarantee of a safe operation. The problem
of safety verification seeks an answer to the reachability problem: is there a
potentially unsafe state reachable from an initial state?

The notion of a hybrid automaton was introduced in order to extend verifi-
cation methods towards the systems with continuous and discrete dynamics [1].
A Hybrid automaton can be defined as a tuple H = (DS, n,S0, I, φ,G,R) with
the following components: DS is a finite set of discrete locations; n ≥ 0 is
the dimension of H. The state space of H is S := DS × R

n. Each state has
thus the form (l, x), where l ∈ DS and x ∈ R

n. S0 ⊆ S is a set of initial
states. I : DS → P(Rn) assigns to each location l an invariant set I(l) ⊆ R

n.
φ : (DS × R × R≥0)n → R

n defines the flow of a system in a discrete lo-
cation with an initial condition φ(l, x0, 0) = x0. φ is a vector of n functions
fi : DS × R × R≥0 → R≥0 such that for each i exists gi : DS × R × R → R≥0

such that for all d ∈ DS, x, y ∈ R, t ∈ R≥0 if fi(d, x, t) = y then gi(d, x, y) = t.
G : DS × DS → R

n describes a guard condition. R : DS × DS × R
n → R

n is a
reset function. The semantics of a hybrid automaton is given by the transition
system [2].

Our method is based on decomposing the continuous state space according to
an n-dimensional rectangular grid. We denote by χ an abstract state, by Sa the
set of all abstract states, and by Sa

0 the set of initial abstract states.

Definition 1 (Strict Abstract Transition System – SATS). A hybrid
automaton H = (DS, n,S0, I, φ,G,R) and an abstract state space Sa generate
the strict abstract transition system T sats = {Sa, �c, �d, S

a
0} with

� Research supported by the Netherlands Organisation for Scientific Research (NWO).
�� Research supported by the BRICKS/FOCUS project 642.000.501.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 638–641, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modular Development of Hybrid Systems for Verification in Coq 639

– the set of initial abstract states Sa
0 : an abstract state (l, χ) ∈ Sa

0 if there is
(l, x) ∈ S0 such that x ∈ χ ;

– (l, χ) �c (l, χ′) ⇔ ∃t ≥ 0, x ∈ χ, x′ ∈ χ′, l′ ∈ DS, fi(l, xi, t) = x′
i ∧

(fi(l, x1, t), . . . , fi(l, xn, t)) ∈ G(l, l′) ∧
(∀t̄ ∈ [0, t] , (fi(l, x1, t̄), . . . , fi(l, xn, t̄)) ∈ I(l)) ,
where x = (x1, . . . , xn), x′ = (x′

1, . . . , x
′
n) ;

(l, χ) �d (l′, χ′) ⇔ ∃x ∈ χ, x′ ∈ χ′, (l, x) ∈ G(l, l′) ∧ x′ = R(l, l′, x) .

2 Formalization of Hybrid Automaton in Coq

Coq [3] is an interactive theorem prover based on constructive type theory.
Among the many ingredients of Coq, what is of interest in the present work
is the ability to axiomatize theories as modules. In short we have module types,
that we will use for formalizing the general theory of hybrid automata; and
the module implementations that are basically concrete hybrid automata. Im-
plementing a module then means that we should provide parameters and prove
that they satisfy the axioms.

Another characteristic aspect of Coq that is relevant for our work is the pres-
ence of dependent types. Central in our work is the dependent type of vectors to
model the n-dimensional space of continuous states.

In our formalization of H we need some basic data-types that are used in
this project. Most of these (eg. natural and real numbers, booleans) are defined
in the standard library of Coq [3] in a straightforward way. Some use inductive
types — a generalization of more familiar algebraic types— which are the main
building blocks of Coq and its logic Calculus of Inductive Constructions. We use
the inductive type of List of polymorphic finite lists and Vector of representing
the n-dimensional vectors of elements of a set A, (i.e. elements of An).

Inductive Vector (A:Set): N → Type :=

| ∅̌ : Vector A 0

| :̌: : ∀ (a:A) (n:N), Vector A n → Vector A n+1.

Thus, a 0-dimensional vector is ∅̌ (the empty vector), and an n-dimensional
vector a :̌: v is obtained by “pairing” an element a ∈ A with an n−1-dimensional
vector v. One can consider vectors as lists of length n where n is coded in their
type. The type of a vector is dependent on its dimension.

The theory of hybrid automata in Coq will be an abstract data-type defined
as the following module type.

Module Type H.

Parameter DS: FiniteSetOfNaturals.

Parameter dim : N.

Definition R
dim:= Vector R dim.

Definition S := DS×R
dim.

640 M. Niqui and O. Tveretina

Parameter S0 : S → Prop.

Parameter I: DS → R
dim → Prop.

Parameter φ: Vector (DS → R → R≥0 → R) dim.

Parameter G: DS → DS → R
dim → Prop.

Parameter R: DS → DS → R
dim → R

dim.

Axiom φ_invertible:is_true_∀_coord _ _ φ
(λf∃g, ∀d x r t, f d x t = r → g d x r = t).

End H.

The Parameters in this definition correspond to those of hybrid automaton,
while the sole axiom corresponds to the property that the flow (which is the
vector of solutions to differential equations) should contain only invertible func-
tions. In above FiniteSetOfNaturals, a type for finite subsets of N, is defined
using a combination of module types and dependent types. The type Prop, the
universe of propositions, is used to formalize subsets as predicates on a set.

The function is true ∀ coord in this axiom is the function that given a vector
of elements of some set A (in this case φ) and a property P of elements of A
checks whether P holds for all coordinates of the vector (underscore () denotes
the automatically inferable arguments of functions). In our case P is a property
of the functions DS→R→R≥0→R and states that

P (f) iff ∃g∀dxrt, ((f(d))(x))(t) = r =⇒ ((g(d))(x))(r) = t .

The above code lays the basis of the theory of hybrid automata and it can
be extended to provide the abstract data types for various transition systems.
An SATS is definable as a module type with four parameters that extends the
above module:

Declare Module H: H.

Parameter Grid: Vector Partition H.dim.

Parameter Grid_initial : List Label.

Parameter �c : Abstract_State → Abstract_State → bool.

Parameter �d : Abstract_State → Abstract_State → bool.

Here Partition is a list of elements of R that denote the grid in each dimen-
sion. Moreover, H.dim means that the dimension dim should be inherited from
the parent theory H which is declared as H. For Label we first define what a
hyperinterval is. This is formalized as a record containing a hypercube (vector
of intervals) and a property that checks whether the edges of this hypercube
correspond to consecutive intervals in the Partition. A Label is then a pair of
a discrete state and a List of hyperintervals. Finally Abstract State is a pair
containing a discrete state and a hyperinterval in that discrete state.

After defining the module type extension for SATS we can develop a theory
by defining functions and proving the lemmas that hold for every instance of
SATS. In particular we can formalize an algorithm BuildTreeOATPS that
builds the tree of trajectories in each SATS:

Modular Development of Hybrid Systems for Verification in Coq 641

Definition BuildTreeOATPS (d0:Label): MTree Label :=

gist_BuildHistoryTreeOATPS

(BuildHistoryTreeOATPS

(Build_Label_ext (fst d0) (snd d0)

(λd:H.DS, if d=(fst d0) then snd d0

else ∅)

false MAX)

).

Next we can instantiate the theory with the thermostat in [2].

Module Thermostat_as_H <: H.

Definition DS:= { 1, 2, 3}.
Definition Heat:=1.

Definition Cool:=2.

Definition Check:=3.

Definition dim :=2.

Definition clock (v:R
dim) : R := Vhead _ 1 v.

Definition temperature (v:R
dim) : R := Vhead _ 0 (Vtail _ 1 v).

Definition coordinates (v:R
dim) :=(clock v,temperature v).

Definition S0 (s:S) : Prop :=

let (d,v):=s in d = Heat ∧ clock v=0 ∧ 5≤temperature v≤10.

Definition I (d:DS) (v:R
dim):Prop:=

d=Heat∧ (clock v ≤ 3) ∧ (temperature v ≤ 10)
∨

d=Cool∧ (5 ≤ temperature v)
∨

d=Check ∧ (clock v ≤ 1).
...

Lemma φ_invertible:is_true_∀_coord _ _ φ
(λf∃g, ∀d x r t, f d x t = r → g d x r = t).

End Thermostat_as_H.

Note that this time instead of an axiom we have to prove a lemma. The proof
in this case is easy and boils down to proving simple properties of exp and ln
functions.

References

1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
Theoretical Computer Science 138(1), 3–34 (1995)

2. Alur, R., Dang, T., Ivančić, F.: Predicate abstraction for reachability analysis of
hybrid systems. ACM transactions on embedded computing systems (TECS) 5(1),
152–199 (2006)

3. The Coq Development Team. The Coq Proof Assistant Reference Manual, Version
8.1. LogiCal Project (December 2007) [cited 8 Jan. 2008],
http://coq.inria.fr/V8.1pl3/refman/index.html

http://coq.inria.fr/V8.1pl3/refman/index.html

Steering a Leader-Follower Team Via Linear

Consensus

Fabio Pasqualetti, Simone Martini, and Antonio Bicchi

Università di Pisa, Interdipartimental Research Center “E. Piaggio”, Italy,
Facoltà di Ingegneria, Università di Pisa, via Diotisalvi, 2

56126 Pisa, Italy
fabiopass@gmail.com, s.martini@ingegneria.pisa.it, bicchi@ing.unipi.it

www.piaggio.ccii.unipi.it

Abstract. The paper considers the problem of driving a formation of
autonomous mobile agents. The group of mobile devices is represented
by a leader-follower network, where the followers update their position
using a simple local consensus procedure, while the leaders, whose po-
sitions represent the control inputs of the network, are free to move.
We characterize the transient behavior of the network, and we solve the
containment problem without relying on auxiliary sensors.

1 Introduction

In an increasing number of applications in robotics, surveying, industrial au-
tomation, etc., the use of large teams of networked mobile agent systems is being
proposed to achieve effectiveness and robustness to failures of single agents. In
these schemes, teams (also referred to as formations, or flocks, etc.) coordinate
their motion based on local interactions between neighbors, without referring
to a centralized authority. An important class of decentralized motion control
strategies is that of consensus algorithms (see e.g. [1,2]), for which a rather
well established theory is available that enables a thorough analysis of conver-
gence properties. In this paper we consider the steering problem, i.e. that of
leading a team of autonomous agents using only local interactions and commu-
nications, in the accomplishment of a task where some degree of global infor-
mation (e.g. on the environment) is necessary. To this purpose, we refer to a
leader-follower structure, whereby a (small) subset of agents is assumed to have
access to global information, and to lead through local consensus interactions
the remaining agents. We adopt the team structure proposed in [3], which is
particularly suitable when the goal is to steer a group of agents while main-
taining certain geometric properties. For instance, if the agents transport some
dangerous materials, it is important to keep them inside a proper area, not
to contaminate the outer region. In [3], authors investigate properties such as
controllability, containment and optimal control of leader - follower consensus
structure for steering a group of mobile agents. Containment techniques rely on

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 642–645, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Steering a Leader-Follower Team Via Linear Consensus 643

the use of sensors to detect the movements of the driven agents, and to trigger
hybrid control actions by the team leaders. Several interesting problems remain
open in leader-follower networks, including e.g. a characterization of the equi-
librium manifold for a team with a given connectivity graph, and the minimal
number of leaders necessary to achieve a specified task. The contribution of this
short paper consists of solving the containment problem by characterizing the
convergence speed of the consensus law implemented by the followers, and hence
allows to use a containment technique without recurring to additional sensors
to test the presence of the agents in the desired region.

2 Leader - Follower Consensus Networks

Consider a set V = {1, . . . , n} of mobile agents, communicating as described by
a directed graph Gr. The digraph is defined by the triple (V, E , H), being E a set
of edges, and H an n×n weighted adjacency matrix whose entries satisfy hkj > 0
if the pair (j, k) ∈ E . The agents V are partitioned into an m dimensional leader
set L, and a follower set F , so that L ∩ F = ∅, and L ∪ F = V . Leaders and
followers differ in their motion law. Indeed, the former arbitrarily update their
positions while the latter use a linear consensus law described by the n−m× n
stochastic matrix [A B]. The equation describing the motion along the X axis of
the followers is xF (t+1) = AxF (t)+BxL(t), where xF and xL collect respectively
the followers and the leaders positions. Since analogous considerations can be
made for the motion along the Y axis, in the rest of the paper we only focus on
the X dimension. Note that, if Gr is connected, the matrix A is stable, so that,
when xL is constant, the system reaches an equilibrium configuration described
by x̄F = (I − A)−1BxL.

3 The Containment Problem

We define the containment problem as the problem of driving a collection of au-
tonomous mobile agents (followers) to a given target location, while guaranteeing
that their motion remains confined in the smallest rectangle RL containing the
positions of the leaders. It has already been shown ([3]) that, in the equilibrium,
the followers are contained in the convex hull defined by the positions of the
leaders, and hence in RL. However, if the motion of the leaders is not prop-
erly controlled, some followers could exit the region RL during the process. For
simplicity, but without loss of generality, we assume that the leaders coordinate
their motion in a way that the sequence of vertexes defining the convex hull
remains the same during the maneuver.

Let x = (xF , xL)T , and δ(t) = x(t + 1) − x(t). The vector δ(0) contains
the initial movements of the agents, which are 0 for the followers, and δ0 for
the leaders, where δ0 is the maximum leaders velocity that ensures containment.

The evolution of δ is δ(t + 1) =
[

A B
0 I

]
δ(t). When t grows, we have

644 F. Pasqualetti, S. Martini, and A. Bicchi

lim
t→∞ δ(t) = lim

t→∞

[
A B
0 I

]t

δ(0) =
[
0 (I − A)−1B
0 I

]
δ(0) = δ01,

where the last passage holds because [A B] is stochastic. It follows that, when
the leaders move at constant velocity, the group of agents behaves asymptotically
as a flock, where all the agents move at the same speed. The convergence speed
of the variable δ is dictated by the matrix A. Define ρ as the spectral radius of
A, and consider the consensus error of the follower i as εi(t) = δ0 − δi(t). Since
εi converges exponentially fast, it can be upper bounded by ρtδ0. Consequently,
it must be

∑∞
t=0 δ0 − δi(t) < d, where d is the minimum among the distances

between the followers and the leaders. We obtain
∑∞

t=0 ρtδ0 ≤ d. Because of the
stability of A, we have

∑∞
t=0 ρt = (1 − ρ)−1, and finally

δ0 ≤ d

(1 − ρ)−1
. (1)

Condition (1) characterize the maximum constant velocity of the leaders that
guarantees the containment property. We might also be interested in ensuring
that the connectivity in the network is maintained during the motion. In that
case, let r be the communication range, then

δ0 ≤ min(d, dr)
(1 − ρ)−1

, dr = r − d. (2)

For completeness, we describe an upper bound for ρ.

Theorem 1 (Leader - Follower Convergence Rate). Let G be a Leader -
Follower consensus network with matrices A and B, then ρ < (1 − wl

min)1/l,
where ρ is the spectral radius of A, and wmin, l are respectively the minimum
weight of the edges in the network and the diameter of the communication graph.

Proof. We use the same procedure as in [4]. Note that it takes at most l steps
to reach a leader state from a follower state with probability not less than wl

min.
Since ρ ≤ ∣∣∣∣Ak

∣∣∣∣1/k
, ∀ k ∈ Z>0, then ρ ≤ ∣∣∣∣Ak

∣∣∣∣1/k

∞ < (1 − wl
min)1/l.

4 A Simulation Study

As an example consider a swarm of helicopters consisting of 20 agents. For
some strategic reasons, the optimal disposition of the followers is a double-layer
pentagon, as in Fig. 1(c). The leaders have to maintain such structure while
moving among obstacles toward a target location. Moreover, they know the
trajectory to follow, and they adjust the size of their steps in order to guarantee
the containment and the connectivity properties as in (2). In Fig. 4 some steps of
the steering process are reported. Starting from the initial situation of Fig. 1(b),
leaders create the desired followers formation, and steer the swarm. Because of
the presence of some obstacles, the formation is shaped as in Fig. 1(e), and
eventually recovered (Fig. 1(f)).

Steering a Leader-Follower Team Via Linear Consensus 645

(a) (b) (c)

(d) (e) (f)

Fig. 1. Safe steering of a group of vehicles

5 Conclusions and Future Work

In this short paper, we have shown that the requirement of using sensors to
detect transitions of follower agents outside a guarded region in a leader-follower
containment problem can be removed, provided that leaders choose their ve-
locity according to bounds that depend on the consensus network convergence
properties. Future work will address the investigation of other properties of such
systems, including a characterization of the geometry of the steerable manifold
for a general leader-follower network, and the study of the minimal number of
leaders required to achieve given geometric properties.

References

1. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle forma-
tions. IEEE Transactions on Automatic Control 49(9), 1465–1476 (2004)

2. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. IEEE Proceedings 95(1), 215–233 (2007)

3. Ferrari-Trecate, G., Egerstedt, M., Buffa, A., Ji, M.: Laplacian sheep: A hybrid,
stop-go policy for leader-based containment control. In: Hespanha, J.P., Tiwari, A.
(eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)

4. Pasqualetti, F., Bicchi, A., Bullo, F.: Distributed intrusion detection for secure con-
sensus computations. IEEE Conf. on Decision and Control (2007)

Logical Verification and Systematic Parametric

Analysis in Train Control�

André Platzer and Jan-David Quesel

University of Oldenburg, Department of Computing Science, Germany
{platzer,quesel}@informatik.uni-oldenburg.de

Abstract. We formally verify hybrid safety properties of cooperation
protocols in a fully parametric version of the European Train Control
System (ETCS). We present a formal model using hybrid programs and
verify correctness using our logic-based decomposition procedure. This
procedure supports free parameters and parameter discovery, which is
required to determine correct design choices for free parameters of ETCS.

Keywords: parametric verification, logic for hybrid systems, symbolic
decomposition.

1 Introduction

Most hybrid systems contain substantial degrees of freedom including how spe-
cific parameters are instantiated or adjusted [1,2]. Yet, virtually any hybrid sys-
tem is only safe under certain constraints on these parameters. For instance, the
European Train Control System (ETCS) [3] has a wide range of different possible
configurations of trains, track layouts, and different driving circumstances. Still,
it only is safe under certain conditions on external parameters, e.g., when the
speed of each train does not exceed its specific braking power given the remain-
ing distance to the next train. Similarly, internal control design parameters for
speed control and braking triggers need to be adjusted in accordance with the
train dynamics. Moreover, parameters must be constrained such that the sys-
tem remains correct when passing from instant reaction continuous models to
sampled data discrete time controllers of hardware implementations. Yet, deter-
mining the range of external parameters and choice of internal design parameters
for which ETCS is safe, is not possible just by looking at the model.

Likewise, it is difficult to read off the parameter constraints that are required
for correctness from a failed verification attempt of model checkers [4], as these
often exploit non-structural heuristic splits of the state space, which can lead
to nonuniform parameter requirements for different states. Model checkers for
hybrid systems, e.g. HyTech [5] and PHAVer [4], verify by exploring the state
space of the system. For these model checkers concrete numbers for most of the
parameters are necessary. To discover constraints on free parameters, we use a

� This research was partly supported by the German Research Council (DFG) of the
Transregional Collaborative Research Center (SFB/TR 14 AVACS).

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 646–649, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Logical Verification and Systematic Parametric Analysis in Train Control 647

logic based approach and verify safety properties of the parametric ETCS case
study with significant automation in our new verification tool KeYmaera.

Batt et al. [2] give heuristics for splitting regions by linear constraints that
can be used to determine parameter constraints. This approach is not applicable
in ETCS, which requires nonlinear parameter constraints for correctness.

2 Differential Dynamic Logic

The logic dL [6,7] is a first-order logic with built-in correctness statements about
hybrid systems. It is designed such that parametric verification analysis can be
carried out in dL. Generalizing the principle of dynamic logic [8] to the hybrid
case, dL combines hybrid system operations and correctness statements about
system states within a single specification and verification language. For hybrid
system α, dL provides correctness statements like [α]φ, that expresses that all
traces of system α lead to states in which condition φ holds. Further, dL provides
conditional correctness statements like φ→ [α]ψ, saying that α satisfies ψ if
condition φ holds at the initial state.

As a uniform operational model, dL provides hybrid programs (HP) as a pro-
gram notation for hybrid systems that is amenable to deductive structural de-
composition in dL [6,7]. HP of dL can represent hybrid automata [5], unlike other
logics [9]. Hybrid programs are regular combinations of basic actions: the asser-
tion that φ holds is written as ?φ, x := θ to assign the value of θ to the variable
x, random real numbers can be assigned using x := ∗, and ẋ = θ is used to
express continuous evolutions along differential equations. The regular combina-
tion operators are α; β for sequential composition, α ∪ β for non-deterministic
choice and α∗ to represent the repetition of hybrid automata transitions.

3 Fully Parametric European Train Control System

The European Train Control System (ETCS) [3,10] is a standard to assure safe
operation of trains and high throughput of high speed trains. ETCS level 3
follows the moving block principle, i.e., movement authorities are not known be-
forehand but determined based on the current track situation by a Radio Block
Controller (RBC). Trains are only allowed to move within their current move-
ment authority block (denoted by m), which can be updated by the RBC using
wireless communication. Hence the train controller needs to regulate the move-
ment of a train locally such that it always remains within m. The automatic
train protection unit (atp) determines a safety envelope around the train, within
which it considers driving safe, and adjusts the train acceleration a accordingly.
Figure 1 illustrates the dynamic assignment of movement authorities. When ap-
proaching the end of its movement authority the train switches from far mode
(where speed can be regulated freely) to negotiation (neg), which, at the latest,
happens at the point indicated by ST (start talking). During negotiation the
RBC grants or denies m-extensions. Instead, the RBC can announce emergen-
cies, which force train controllers to switch to the recovery mode applying full

648 A. Platzer and J.-D. Quesel

ETCS : (train ∪ rbc)∗

train : spd; atp; move
spd : (?v ≤ r; a := ∗; ? − b ≤ a ≤ A)

∪(?v ≥ r; a := ∗; ?0 > a ≥ −b)
atp : (?(m − p ≤ SB ∨ msg = stop); a := −b)

∪(?m − p ≥ SB ∧ msg �= stop)
move : t := 0; (ṗ = v, v̇ = a, ṫ = 1& v ≥ 0 ∧ t ≤ ε)
rbc : (msg := stop)

∪ (m := ∗; ?v2 ≤ 2b(m − p); r := ∗; r > 0)

Fig. 1. ETCS train coordination protocol

emergency brakes. After the train has come to a full stop, the controller switches
to a failsafe state and awaits manual clearance. If the RBC does not grant m-
extension in time or messages are lost, the train starts immediate recovery after
passing the point SB (start braking).

4 Parametric Verification of the ETCS System

After determing a correctness constraint SB ≥ v2

2b + (A
b + 1)(A

2 ε
2 + ε v) on the

free parameters [7] we prove the following safety property of ETCS:

Proposition 1 (Safety). Assuming the train starts in a controllable state, the
following global and unbounded-horizon safety formula about the system in Fig. 1
[ETCS] p ≤ m holds.

As system invariant we choose inv ≡ v2 ≤ 2b(m− p) ∧ ε > 0 ∧ v ≥ 0, which ex-
presses that it is possible to completely stop the train within the distance left to
the end of the movement authority. This constraint describes a controllable state
of the train and therefore we choose inv as initial configuration of our system.

inv 	 [ETCS]p ≤ m

inv 	 inv
inv 	 [train ∪ rbc]inv

inv 	 [rbc]inv

m := ∗ rec
inv 	 [train]inv

v ≥ r

m− p ≥ SB

m− p ≤ SB

v ≤ r

m− p ≤ SB

m− p ≥ SB

inv 	 p ≤ m

Fig. 2. Proof graph

As an example to illustrate the proof structure
for the verification of Proposition 1 in KeYmaera
by automatic decomposition, consider the sketch
in Fig. 2. By convention, such proofs start with
the conjecture at the bottom and proceed by de-
composition to the leafs. We need to prove that
the assumption that the train is in a control-
lable state expressed by inv entails p ≤ m. As
the system consists of a global loop, we need to
prove that inv is an invariant of this loop. Us-
ing KeYmaera it can be shown easily that the
invariant is initially valid and implies the post
condition. As usual, proving that the invariant is
preserved by the loop-body is the most challeng-
ing part of the proof (lower middle branch). On
the left branch we have to show that the RBC

Logical Verification and Systematic Parametric Analysis in Train Control 649

preserves the invariant. On the right branch we have to show that the train con-
troller also preserves the invariant. The proof splits due to the choice in the spd
component depending on the relation of the current speed to the recommended
speed. The next split on both of these branches depends on the value of SB. If
the train has passed the point SB, the train applies maximal brakes and the goal
can be closed as consequence from inv. The outer branches, where the train has
not passed SB, can be closed as train behavior befor SB is not safety critical.

All correctness properties and parameter constraints of ETCS can be verified
with 95.6% to 100% automation in our deductive verification tool KeYmaera,
see Tab. 1 for experimental results.

Table 1. Experimental results for ETCS in the verification tool KeYmaera

Case study Proof steps Interactions Time Symbolic variables

Safety 190 1 4303s 15
Safety (simplified) 160 1 85s 15
Controllability 18 0 0.5s 5
RBC controllability 45 0 1.1s 13
Reactivity 150 0 8.8h 10
Liveness 112 5 21s 10
Reactivity corollary 344 14 289s 15

References

1. Damm, W., Hungar, H., Olderog, E.-R.: Verification of cooperating travel agents.
International Journal of Control 79(5), 395–421 (2006)

2. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with
parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, Springer, Heidelberg (2007)

3. ERTMS User Group, UNISIG: ERTMS/ETCS System requirements specification.
Version 2.2.2 (2002), http://www.aeif.org/ccm/default.asp

4. Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

5. Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded
systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)

6. Platzer, A.: Differential dynamic logic for verifying parametric hybrid systems.
In: Olivetti, N. (ed.) TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 216–232.
Springer, Heidelberg (2007)

7. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
(to appear, 2008)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic logic. MIT Press, Cambridge (2000)
9. Davoren, J.M., Nerode, A.: Logics for hybrid systems. Proceedings of the

IEEE 88(7), 985–1010 (2000)
10. Faber, J., Meyer, R.: Model checking data-dependent real-time properties of the

European Train Control System. In: FMCAD, pp. 76–77. IEEE Computer, Los
Alamitos (2006)

http://www.aeif.org/ccm/default.asp

Information Theoretical Approach to

Identification of Hybrid Systems

Li Pu, Jinchun Hu, and Badong Chen

Tsinghua University, Beijing 100084, China
State Key Laboratory of Intelligent Technology and Systems

{pl06,chenbd04}@mails.tsinghua.edu.cn, hujinchun@tsinghua.edu.cn

Abstract. In this paper, we present a noisy version of the algebraic
geometric approach of identifying parameters of discrete-time linear hy-
brid system. Two approximate ways of estimating hybrid parameters
are considered: one is using MSE criteria, while the other is based on
the information divergence that measures the distance between the error
probability density function (PDF) of the identified model and the de-
sired error PDF. A stochastic information divergence gradient algorithm
is derived for the identification problem of non-gaussian system.

1 Introduction

Switched Auto-Regressive system with eXogenous inputs (SARX) is widely stud-
ied in recent years. It consists of several discrete ARX models and a switching
mechanism that determines which ARX model takes effect in each period. We
will focus on the parameter identification problem of SARX system. The method
presented in this paper is a noisy version of algebraic geometric approach [1,2,3]
- an ingenious method that is able to handle the identification problem of SARX
system with all possible switching mechanism.

Definition 1. The noisy SARX system consists of a SARX system x(k) =
na∑

j=1

a
λ(k)
j x(k − j)+

nc∑

i=1

c
λ(k)
i u(k − i), and noisy measurements y(k) = x(k)+m(k),

where the switching mechanism is formulated as the mode function λ(k) : Z →
{1, 2, · · · , n} which assigns each sample to one of the ARX models (n is the
number of ARX models, and assumed known in this paper). a

λ(k)
j and c

λ(k)
i are

the parameters of each ARX model. y(k) and u(k) are the output and input of
the system respectively. m(k) is the i.i.d. measurement noise with PDF fm(m).

We have the following assumptions: 1) all the ARX models are minimal, which
means the numerator and denominator of the transfer functions are coprime
polynomials; 2) the mode function λ(k) is unknown but deterministic.

The sampling data set S = {y(k), u(k)} , (k = 1, 2, · · · , N) and the ARX pa-
rameters can be reformed as x = [u(k − nc), . . . , u(k − 1),y(k − na), . . . , y(k −
1),−y(k)]T ∈ R

K , m = [m(k − na), . . . , m(k − 1), m(k)]T ∈ R
na+1, bi =

[ci
nc

, . . . , ci
1, a

i
na

, . . . , ai
1, 1]T ∈ R

K , ai = [−ai
na

, . . . ,−ai
1, 1]T ∈ R

na+1, where
K = na + nc + 1. The noisy SARX system is rewritten as bT

λ(k)x + aT
λ(k)m = 0.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 650–653, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Information Theoretical Approach to Identification of Hybrid Systems 651

2 Noisy SARX System Identification

Let wλ(k) = aT
λ(k)m be the colored noise with PDF fw(w) that can be determined

from fm(m) at every instant k. Inspired by the hybrid decoupling polynomial in
noiseless algebraic geometric approach (AGA) [2], we have the following noisy
hybrid polynomial (NHP) and its expanded form by applying bλ(k)x+wλ(k) = 0,

n∏

i=1

(bT
i x + wλ(k)) =

n∏

i=1

(bT
i x)+wλ(k)

∏

j �=λ(k)

bT
j x = 0 (1)

The first component of (1) is in fact a homogeneous polynomial of degree n in

K variables [2], pn(x) =
n∏

i=1

(bT
i x) =

∑
hn1,...,nK xn1

1 · · ·xnK

K = hT vn(x), where

vn : R
K → R

Mn(K) is the Veronese map of degree n. h ∈ R
Mn(K) is the hybrid

parameter vector that represents the hybrid system, where Mn(K) = CK−1
n+K−1.

Theorem 1 (Noisy Hybrid Polynomial Equation). For any instant k, let
xK be the last element of x such that,

pn(x) +
n∑

d=1

(
wd

λ(k)

d!
∂dpn(x)

∂xd
K

)

= hT
n∑

d=0

(
wd

λ(k)

d!
∂dvn(x)

∂xd
K

)

= 0 (2)

Theorem 2 (Noisy Hybrid Parameter Decomposition, NHPD). For
any instant k, the parameter vector bλ(k) of ARX model can be obtained by,

bλ(k) = C

(

hT
n−1∑

d=0

(
wd−n+1

λ(k)

d!
∂d+1vn(x)

∂x∂xd
K

))T

(3)

The proper value of wλ(k) may be determined among n roots of (2) by utilizing
prior knowledge, e.g. choosing the nearest real root to the mean of wλ(k). The
coefficient C in (3) is insignificant here because we can recover bλ(k) by scaling
its last element to 1. By dropping the higher-order partial derivatives in (3), the
method used in [2] of estimating bλ(k) is obtained.

It is difficult to recover h from the nonlinear equation (2), so we have to re-
sort to some approximate methods. A straightforward approach is to ignore the
higher-order components of wλ(k) (first-order approximation, FOA). If measure-
ment noise is small and wλ(k) is zero-mean, we obtain the approximate system
hT vn(x)
hT D1(x) + wλ(k) ≈ 0, where D1(x) = ∂pn(x)

∂xK
. Thus, the nonlinear identification

model is hT vn(x)
hT D1(x) ; it is similar to the normalizing approach in [1]. The difference

between the output of system (always equals 0 in this case) and the output of
identification model is called (identification) model error with notation e.

If m(k) is zero-mean gaussian, wλ(k) is zero-mean gaussian too, but with
different variances in different modes. So it is practical to adopt LMS

652 L. Pu, J. Hu, and B. Chen

algorithm (FOA-LMS); the recursive identifier of h is ĥ(k + 1) = ĥ(k) −
η 2α(k)

(β(k))3
[β(k)vn(x(k))−α(k)D1(x(k))], where η is the step size adjusted by users,

α(k) = ĥ(k)T vn (x(k)), β(k) = ĥ(k)T D1 (x(k)). However, if m(k) is not zero-
mean gaussian, the LMS identifier usually fails to provide ideal results. In this
case, we resort to information theoretic criteria based identification algorithm.

3 Stochastic Information Divergence Gradient Algorithm

Recently, to more accurately depict higher-order statistics of signals, some in-
formation theoretic criteria have been studied [4]. Here we use the symmet-
ric information divergence (SID) to compare the model error PDF and the
true PDF. In FOA, true PDF is the PDF of wλ(k), which can be acquired
by prior knowledge. The SID is defined as D(f, g) = KL(f ||g) + KL(g||f),
where KL(.||.) is KL-divergence and f and g are two PDFs. In order to deal
with non-gaussian noise, we adopt the Parzen window method with gaussian
kernel to approximate the PDFs. The 1-dimensional Parzen window PDF es-
timator is defined as f̂(s) = 1

|Sf |σf

∑

sk∈Sf

K
(

1
σf

(s − sk)
)
, where Sf denotes

the sample set drawn from PDF f(s), K(s) = (2π)−1/2
e(−s2/2) is the kernel

function, and σf denotes the kernel width. Thus, the estimator of D(f, g) is
D̂(f, g) = D(f̂ , ĝ) = KL(f̂ ||ĝ) + KL(ĝ||f̂). It can be proven that D̂(f, g) ≥ 0
with equality i.f.f. f̂(s) = ĝ(s). By assuming D̂(f, g) = 0, f(s) and g(s) are close
enough when min {|Sf |, |Sg|} → ∞. So the estimated information divergence
could be used as an approximate measure of the distance between the actual
PDFs. Then we use gradient algorithm to minimize the SID between PDFs of
e and ed, where ed is the desired error whose PDF approximates to the true
PDF. By dropping the expectation operators of KL-divergence in D̂(f, g), the
instantaneous value of SID at instant k is,

D̂
(
pe, p

d
e, k
)

= log
p̂e (e(k))
p̂d

e (e(k))
+ log

p̂d
e

(
ed(k)

)

p̂e (ed(k))
(4)

Let Se(k) = {e(k−1), e(k−2), . . . , e(k−L1)} and Sd
e = {ēd(1), ēd(2), . . . , ēd(L2)}

be the Parzen window sequence of e and ed respectively. Sd
e and σ2 are designed

by users to approximate the true PDF; ed(k) = E(wλ(k)) (mean of wλ(k)) such

that p̂e(e(k)) = 1
L1σ1

k−L1∑

i=k−1

K
(

e(k)−e(i)
σ1

)
, p̂d

e(ed(k)) = 1
L2σ2

L2∑

i=1

K
(

ed(k)−ēd(i)
σ2

)
.

Then we obtain the SID gradient algorithm (SIDG) with respect to the hybrid

parameter vector ĥ(k + 1) = ĥ(k) − η
∂D̂(pe,pd

e ,k)
∂ĥ

, where η is the step-size.

4 Experiments

We use the system in [5], where the authors made detailed studies of effects of
noise for four different identification methods, including the similar approach as

Information Theoretical Approach to Identification of Hybrid Systems 653

FOA. The system is as following, where r(k) ∼ N (0, 0.01) denotes the normally
distributed additive noise. The sequence x(k) is generated with x(0) = −10,
uniformly distributed u(k) ∼ U([10, 11]), and m(k) with PDF fm(m).

⎧
⎨

⎩

x(k + 1) = 2x(k) + u(k) + r(k),
x(k + 1) = −1.5x(k) + u(k) + r(k),
y(k) = x(k) + m(k)

x(k) ≤ 0
x(k) > 0 (5)

We also use the following formula to measure the accuracy of the identified
parameters as in [5]: Δ = max

1≤i≤n
(min
1≤j≤n

(||b̂i − bj ||2/||bj ||2)). Figure 1 shows Δ

for zero-mean normally distributed m(k) ∼ N (0, σ2
m) with different σ2

m. We
can see that the performances of FOA-LMS and FOA-SIDG are almost the
same, and better than AGA when σ2

m increases; the value of Δ also matches
the case in [5]. Then we change the following parameters: r(k) = 0, m(k) ∼
U([−1, −0.5] ∪ [0.5, 1]), Sd

e = {−2,−1.6,−1.6,−0.3,−0.3,−0.3, 0.3, 0.3, 2, 2.2},
and σ2 = 0.5. The involved error PDFs are shown in Fig. 2; true PDF is generated
by h; designed PDF is the Parzen window approximation using Sd

e and σ2; FOA-
SIDG and FOA-LMS produced PDFs are also depicted, which show SIDG has
better PDF matching performance.

0 0.05 0.1 0.15
10

−2

10
−1

10
0

10
1

σ
m
2

Δ

AGA
FOA
SIDG

Fig. 1. Δ for different σ2
m

−4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

error

P
D

F
s

of
 e

rr
or

true PDF
FOA−SIDG
FOA−LMS
designed PDF

Fig. 2. Error PDFs

References

1. Vidal, R.: Generalized Principal Component Analysis (GPCA): an Algebraic Ge-
ometric Approach to Subspace Clustering and Motion Segmentation. PhD thesis,
University of California (2003)

2. Vidal, R., Anderson, B.: Recursive identification of switched ARX hybrid models: ex-
ponential convergence and persistence of excitation. In: 43rd CDC conference (2004)

3. Hashambhoy, Y., Vidal, R.: Recursive Identification of Switched ARX Models with
Unknown Number of Models and Unknown Orders. In: 44th CDC conference (2005)

4. Erdogmus, D., Principe, J.C.: Generalized information potential criterion for adap-
tive system training. IEEE Transactions on Neural Networks 13(5), 1035–1044
(2002)

5. Juloski, A., Heemels, W., Ferrari-Trecate, G., Vidal, R., Paoletti, S., Niessen, J.:
Comparison of four procedures for the identification of hybrid systems. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 354–369. Springer, Heidelberg
(2005)

A Policy Iteration Technique for Time Elapse

over Template Polyhedra

(Extended Abstract)

Sriram Sankaranarayanan1, Thao Dang2, and Franjo Ivančić1

1 NEC Laboratories America, Princeton, NJ, USA
2 Verimag, Grenoble, France

{srirams,ivancic}@nec-labs.com, thao.dang@imag.fr

Abstract. We present a technique to compute over-approximations of
the time trajectories of an affine hybrid system using template polyhedra.
Such polyhedra are obtained by conjoining a set of inequality templates
with varying constant coefficients. Given a set of template expressions,
we show the existence of a smallest template polyhedron that is a positive
invariant w.r.t to the dynamics of the continuous variables, and hence, an
over-approximation of the time trajectories. However, the least invariant
is hard to compute efficiently. Therefore, we propose a policy iteration
technique that iterates over the space of invariant certificates to converge
onto a solution that is close to the least solution. We incorporate our ideas
in our prototype tool TimePass for safety verification of affine hybrid
systems, with promising results on benchmarks.

1 Introduction

The time elapse operator over-approximates the continuous state evolution in-
side each discrete mode of a hybrid system. In this paper, we investigate the
computation of the time elapse over template polyhedra. A template is a set
H = {h1(x), . . . , hm(x)} of linear expressions over x, represented as an m × n
matrix H . Given a template, a family of template polyhedra is obtained by
considering conjunctions of the form

∧
i hi(x) ≤ ci.

Definition 1 (Template Polyhedron). A template polyhedron over a tem-
plate H is a polyhedron of the form Hx ≤ c, wherein c ∈ Rm

+ . Such a polyhedron
will be represented as 〈H, c〉. Further properties of template polyhedra are pre-
sented in our previous work [4].

An instance of the time elapse problem consists of an initial region 〈H, c0〉, a
location invariant 〈H, inv〉, and the vector field D : ẋi = fi(x) specifying the
dynamics of each state variable xi. We assume that D is an affine vector field.
The Lie derivative LD(f) for any affine function f : cT x + d is also affine.

If c1 ≤ c2 (the ≤ relation is applied entry-wise) then 〈H, c1〉 ⊆ 〈H, c2〉. Given
a template H , operations such as join, intersection, post-condition, emptiness
and containment checks can all be carried out efficiently.

Positive Invariant Sets. Informally, a closed region C is a positive invariant iff
at every point on its surface, the vector field “points” back inside the region [1].

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 654–657, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Policy Iteration Technique for Time Elapse over Template Polyhedra 655

The polyhedron 〈H, d〉 s.t. c0 ≤ d ≤ inv, is a positive invariant w.r.t 〈H, inv〉 iff
for each row i, either (a) 〈H, d〉 ∧ Hix = di |= LD(Hix) > 0, or (b) di = invi.
The notion of positive invariance can be relaxed using Lagrangian relaxation.
〈H, d〉 is a relaxed invariant w.r.t a scale factor μ ∈ R, iff c0 ≤ d ≤ inv, and

∀ i ∈ [1, m], if di < invi then 〈H, d〉 |= LD(Hix − di) + μ(Hix − di) ≤ 0 .

Theorem 1. If 〈H, d〉 is a relaxed invariant w.r.t some scale factor μ, then it
is a positive invariant.

2 Policy Iteration

We now sketch the salient aspects of our policy iteration technique to com-
pute relaxed invariants1. The technique presented here extends earlier work by
Gaubert et al. to continuous systems [2]. Consider the instance 〈H, c0, inv,D〉
along with a fixed value for the scale factor μ. Policy iteration starts from an
initial relaxed invariant α(0) = inv, and computes a sequence of invariants:
inv = α(0) > α(1) > · · · > α(N) = α(N + 1) ≥ c0, eventually converging to
a relaxed invariant α(N). For simplicity, we assume that the initial conditions
and the invariants are non-empty and bounded.

Dual Certificate. Let 〈H, α〉 be a relaxed invariant w.r.t a scale factor μ. We
define a certificate to verify this fact. The key requirement to be checked is that
for each row j ∈ [1, m], if αj < invj , then 〈H, α〉 |= μ(Hjx−αj) +L(Hjx) ≤ 0.
This condition is checked by verifying that the linear program Lj has a non-
positive solution:

Lj : max μ(Hjx − αj) + L(Hjx − αj) s.t. 〈H, α〉 , (1)

Note that since 〈H, α〉 is feasible and bounded (because c0 ≤ α ≤ inv), the
optimal solution to Lj exists and is bounded. A row j for which αj ≥ inv is
termed a frozen row. The value of αj is justified by the invariant for such a row.
Let H ′

jx + hj denote the Lie derivative of Hjx. Dualizing Eqn. 1, we obtain

Dj : min αT λ − μαj + hj s.t. HT λ = (μ(Hj) + H ′
j)

T ∧ λ ≥ 0 (2)

The solution to Dj certifies the validity of Eqn. 1 if its optimal value is non-
negative: αT λ−μαj +hj ≤ 0. The dual solutions can certify a relaxed invariant.

Definition 2 (Invariant Certificate). An invariant certificate is a tuple 〈F, Λ〉
wherein F ⊆ {1, . . . , m} is a set of frozen row indices, while Λ is a m × m
matrix with non-negative entries; s.t. for each index j ∈ [1, m] − F, HT Λj =
(μ(Hj) + H ′

j)
T ∧ Λj ≥ 0 (Eqn. 2), and for each index j ∈ F, Λj = 0.

An invariant 〈H, α〉 is certified by 〈F, Λ〉 iff for each j ∈ F , αj = invj and for
each j ∈ [1, m]−F , αT Λj −μαj + hj ≤ 0. Given an invariant α, we can extract
its certificate as follows: First, we solve the LP Dj for each row j. Following
1 A detailed version of this paper may be obtained by requesting the authors.

656 S. Sankaranarayanan, T. Dang, and F. Ivančić

Lj, it always has an optimum. If the optimal value is positive, then j ∈ F and
Λj = 0. Otherwise, Λj is set to the optimal solution for Dj . The certificates
obtained using this procedure will be called vertex certificates. Therefore, every
relaxed invariant 〈H, α〉 is certified by some vertex certificate π.

On the flip side, given certificate π : 〈F, Λ〉, the relaxed invariants that are
certified by it are obtained using the following constraints:

Lπ : c0 ≤ y ≤ inv ∧
∧

j∈F

yj = invj ∧
∧

j∈[1,m]−F

ΛT

j y − μyj + hj ≤ 0 (3)

A certificate π is feasible iff the constraint Lπ is feasible; i.e, it certifies at least
one relaxed invariant.

Lemma 1. If certificate π is feasible, then it has a minimal solution. I.e., ∃ c ∈
[[Lπ]], s.t. ∀d ∈ [[Lπ]], c ≤ d.

The minimal solution can be found by solving the LP: min.
∑

j yj s.t. Lπ. The
following result forms the basis of our technique:

Theorem 2. There are finitely many (O(2|H| · |H |2|H|
)) vertex certificates.

Let P = {π1, . . . , πM} be the set of all feasible vertex certificates, and C =
{ci|ci is the least solution to Lπi} be the corresponding least relaxed invariants.

Lemma 2. For every relaxed invariant c, there exists a relaxed invariant cj ∈
C, s.t. cj ≤ c.

Applying Lemma 2 repeatedly, we show that C has a minimum element. As a
result, the least relaxed invariant exists and can be computed algorithmically by
enumerating all the elements of the set C, in turn obtained by enumerating P .
However, the naive procedure is doubly exponential in the size of the template.

Therefore, we use a policy iteration algorithm to converge to a relaxed invari-
ant while exploring a tiny fraction of the set C in practice. However, this solution
is not always guaranteed to be the least solution. Starting from α(0) = inv, we
repeat the policy improvement steps (shown below) until α(j + 1) = α(j).

1. Compute the certificate π(j) for α(j) by solving Dj (Eqn. 2).
2. Compute α(j + 1) by solving the LP Lπ(j) in Eqn. 3.

Theorem 3. The policy iteration eventually converges to a relaxed invariant.

3 Implementation and Experiments

Our prototype tool TimePass implements the techniques described in this pa-
per using template polyhedra for the safety analysis of affine hybrid systems.
TimePass primarily uses a flowpipe construction technique for template poly-
hedra described in an earlier work [4]. The policy iteration algorithm is used to
restrict the invariant region for the flowpipe construction. The resulting flow-
pipe construction is more precise. Surprisingly, the policy iteration technique
also leads to fewer flowpipe segment and therefore a non-trivial speedup.

A Policy Iteration Technique for Time Elapse over Template Polyhedra 657

Table 1. Performance of our tool on hybrid systems benchmarks. All timings are in
seconds and memory in MBs. Note, H: Template size, T:Time, Mem: memory, Prf?:
Property proved.

Name Description Bench Size Policy Iter. FPipe Comb.
#Var #Loc #Trs |H | T Mem Prf? T Prf? T Prf?

nav01 Benchmark [3] 4 8 18 64 10 30 Y 260 Y 22 Y
nav02 - 4 8 18 64 12 25 Y 362 Y 23 Y
nav03 - 4 8 18 64 8 24 Y 390 Y 20 Y
nav04 - 4 8 18 64 2 12 N 1147 Y 18 Y
nav05 - 4 8 18 64 2 10 N 7 N 513 Y
nav06 - 4 8 18 64 5 15 N 45 N 1420 N
nav07 - 4 15 39 64 14 31 Y 1300 N 572 Y
nav08 - 4 15 39 64 12 27 N 139 N 572 Y

Experiments. Table 1 shows the performance of our tool on some hybrid sys-
tems benchmarks consisting of small but complex systems, designed to test the
accuracy of the flowpipe construction and its propagation. A detailed descrip-
tion is available elsewhere [3]. We compare the performance of three ways for
computing the time elapse: (A) policy iteration, (B) flowpipe construction and
(C) their combination. Note that policy iteration alone is unable to prove many
of the properties. Furthermore, the strengths of the two approaches seem com-
plementary. Together, they can prove properties beyond the reach of either. Our
timings are competitive with those reported by tools such as PHaVer, HSolver
and a previous version of our tool using full convex polyhedra. Furthermore, we
are able to prove more systems using our techniques than previously reported
elsewhere.

References

1. Blanchini, F.: Set invariance in control. Automatica 35 11, 1747–1889 (1999)
2. Gaubert, S., Goubault, E., Taly, A., Zennou, S.: Static analysis by policy iteration

on relational domains. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
237–252. Springer, Heidelberg (2007)

3. Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R.,
Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg
(2004)

4. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid
systems using template polyhedra. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 188–202. Springer, Heidelberg (2008)

Generating Box Invariants�

Ashish Tiwari

SRI International, 333 Ravenswood Ave, Menlo Park, CA, U.S.A
Tel/Fax:+1.650.859.4774/2844

tiwari@csl.sri.coma

Abstract. Box invariant sets are box-shaped positively invariant sets.
We show that box invariants are computable for a large class of nonlin-
ear and hybrid systems. The technique for computing these invariants
is based on nonlinear constraint solving. This paper also shows that the
class of multiaffine systems, which has been used successfully for mod-
eling and analyzing regulatory and biochemical reaction networks, can
be generalized to the class of monotone and quasi-monotone systems
without losing any of its nice properties.

A positively invariant set is a subset of the state space of a dynamical system
with the property that, if the system state is in this set at some time, then it
will stay in this set in the future [1].1 A rectangular box, Box (l, u), specified
using two diagonally opposite points l and u in �n, where l < u (interpreted
componentwise), and its vertices and faces, are defined as follows.

Box (l, u) = {x ∈ �n | li ≤ xi ≤ ui, for all i}
Vert(l, u) = {x ∈ �n | xi = li or xi = ui, for all i}

Faces(l, u) =
n⋃

j=1

(Lj(l, u) ∪ U j(l, u))

Lj(l, u) = {x ∈ Box (l, u) | xj = lj}
U j(l, u) = {x ∈ Box (l, u) | xj = uj}

We are interested in the case when Box (l, u) is a positively invariant set [2,3]. We
say a hybrid system is box invariant if there exists a box that is also a positively
invariant set. This is formally defined below.

Definition 1. A hybrid system is said to be box invariant if there exists a finite
rectangular box, Box (l, u), such that

(a) for each mode q with continuous dynamics ẋ = pq(x) and invariant Inv(q),
for any point y ∈ Faces(l, u), it is the case that, for all j, pq

j(y) ≥ 0 whenever
y ∈ Lj(l, u) ∩ Inv(q) and pq

j(y) ≤ 0 whenever y ∈ U j(l, u) ∩ Inv(q), and

� Research supported in part by the National Science Foundation under grant CNS-
0720721 and by NASA under grant NNX08AB95A.

1 A positively invariant set, as defined above, is called an inductive property in com-
puter science terminology. An invariant, in computer science, is a subset of the state
space that is a superset of the set of all reachable states.

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 658–661, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Generating Box Invariants 659

(b) for each discrete transition from mode q to q′ — with guard G(q, q′) ⊆ �n

and a reset map R that resets state y to some state in R(q, q′, y) ⊆ �n — and
for each point y in Box (l, y) that satisfies the invariant, y ∈ Inv(q), and the
guard, y ∈ G(q, q′), if y′ ∈ R(q, q′, y) then y′ ∈ Box (l, u).

Note that we are interested in a single global box such that each of the con-
stituent continuous dynamical system in the hybrid system is box invariant with
respect to it. The above definition can be extended to systems with inputs u by
treating u as state variables whose derivative is 0. It is easy to see that a box
invariant set, as defined above, is indeed a positively invariant set for the hy-
brid system. This paper only considers hybrid systems with identity reset maps,
whence Condition (b) of Definition 1 becomes trivial.

Related Work. Box invariance of linear systems [3] and nonlinear and hybrid
systems [2] was introduced recently. This paper identifies the classes of monotone,
quasi-monotone, and uniformly quasi-monotone systems on which box invariants
computation can be reduced to constraint solving. Sankaranarayanan et. al. [4]
used constraint solving to search for invariants of a given form. Inductive invari-
ants for linear systems [5,6], nonlinear systems [7], and hybrid systems [8,9], have
been previously considered. In contrast, the work here is focused on a very sim-
ple form of invariant and computing it for special classes of polynomial systems.
Specialized forms of the notion of box invariance have been studied previously
in the form of componentwise asymptotic stability [10] and Lyapunov stabil-
ity under the infinity vector norms [11], but this paper differs by considering
computational aspects of box invariance for nonlinear systems.

Polynomial Hybrid Systems. In polynomial hybrid systems, the dynamics are
specified using polynomials over the state variables and the guards, invariants, and
resets are specified using semi-algebraic sets. For such systems, Condition (a) of
Definition 1 can be written as a formula in the first-order theory of reals

∃l, u.
∧

q∈Q

(∀x.
∧

1≤j≤n ((x ∈ Lj ∧ x ∈ Inv(q) ⇒ pq
j(x) ≥ 0) ∧

(x ∈ U j ∧ x ∈ Inv(q) ⇒ pq
j(x) ≤ 0))), (1)

where pq specifies the dynamics in mode q ∈ Q. If resets are not identity maps,
we need additional formulas to express Condition (b). This is also expressible in
the first-order theory of reals for polynomial hybrid systems. Since the first-order
theory of reals is decidable [12], the following result follows.

Theorem 1. Box invariance of polynomial hybrid systems is decidable. �
This theoretical result is not very attractive due to the high complexity of the
decision procedure for real-closed fields. We specialize the above result to some
subclasses of polynomial systems.

Monotone Systems. A function f : � �→ � is monotonically increasing
if f(x) ≤ f(x′) whenever x < x′, and f(x) is monotonically decreasing if

660 A. Tiwari

f(x) ≥ f(x′) whenever x < x′. A function f(x1, . . . , xn) is said to be mono-
tonic with respect to xi if for every choice c1, . . . , cn of values for the variables,
the function f(c1, . . . , ci−1, xi, ci+1, . . . , cn) is either monotonically increasing or
monotonically decreasing. For example, the function x1x3 − x2x3 is monotonic
with respect to x3 since if we fix the values c1, c2 (for x1, x2 respectively), the
function c1x3−c2x3 will always be either monotonically increasing (if c1−c2 ≥ 0)
or monotonically decreasing (if c1 − c2 ≤ 0).

A system ẋ = p(x) is monotone if each function pi is monotonic with respect
to each variable xj . Every multiaffine system [13] is monotone. The converse is
not true; for example, the system ẋ1 = x3

1 + x1 is monotone but not multiaffine.
Monotone systems not only generalize multiaffine systems, but also inherit some
of their nice properties, such as the following variant of Corollary 1 from [14].

Proposition 1. If f : �n �→ � is a function that is monotonic (with respect to
all of its argument variables), then for any point c ∈ Box (l, u), we have

min({f(x) | x ∈ Vert(l, u)}) ≤ f(c) ≤ max({f(x) | x ∈ Vert(l, u)}).
Consequently, f(x) ∼ 0 everywhere in Box (l, u) if and only if f(x) ∼ 0 for all
vertices x ∈ Vert(l, u), where ∼∈ {=,≤,≥}. �

Quasi-Monotone Systems. We generalize the class of monotone systems and
call a system ẋ = p(x) quasi monotone if each function pi is monotonic with
respect to variable xj for all j �= i. A quasi-monotone hybrid system is a hybrid
system in which each constituent mode is quasi monotone. Every monotone
system is naturally also quasi monotone. The system over variable x1 defined by
ẋ1 = 1 − x2

1 is quasi monotone but it is not monotone (and not multiaffine).

Proposition 2. A quasi-monotone hybrid system with identity resets is box in-
variant iff the following formula is valid

∃l, u ∈ �n.
∧

q∈Q,c∈Vert(l,u),1≤j≤n

(c ∈ Inv(q) ⇒ αj(c)pq
j(c) ≥ 0), (2)

where αj(c) = 1 if cj = lj and αj(c) = −1 if cj = uj. �
Formula 1 had both existential and universal quantifiers. Quasi monotonicity has
allowed us to eliminate the universal quantifier and obtain simply a conjunction
of n2n|Q| (existentially quantified) constraints shown in Formula 2. Any con-
straint solving engine that can handle nonlinear constraints can now be used
(and we do not necessarily need a quantifier elimination procedure).

Uniformly Quasi-Monotone Systems. Proposition 2 still requires checking
satisfiability of an exponential number of (nonlinear) constraints. However, for
a very useful subclass of uniformly quasi-monotone systems, we can reduce the
number of constraints in each mode (from n2n) to 2n. A function f : R

n �→ R is
uniformly monotonic with respect to a variable xj in domain Inv if for all points
x ∈ Inv and x′ ∈ Inv that differ only in the j-th component, f(x) ≤ f(x′) (or
f(x) ≥ f(x′)) whenever xj < x′

j ; that is,

Generating Box Invariants 661

∀x, x′ ∈ Inv .(
∧

i�=j

xi = x′
i ∧ xj ≤ x′

j ⇒ f(x) ≤ f(x′)), or,

∀x, x′ ∈ Inv .(
∧

i�=j

xi = x′
i ∧ xj ≤ x′

j ⇒ f(x) ≥ f(x′)).

For example, x1x3−x2x3 is not uniformly monotonic with respect to x3, whereas it
is monotonicwith respect to x3. However,x1x3−x2x3 is uniformly monotonicwith
respect to x1 in the domain Inv := {x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}. A system ẋ = p(x)
is said to be a uniformly quasi-monotone system in the domain Inv if, for each i, pi

is uniformly monotonic with respect to xj in the domain Inv for each j �= i.

Proposition 3. Let ẋ = p(x) be a uniformly quasi-monotonic system in the
domain Inv such that Box (l, u) ⊆ Inv. Then, the n2n constraints for each mode
in Formula 2 of Proposition 2 are equivalent to a subset of 2n constraints. �

References

1. Blanchini, F.: Set invariance in control. Automatica 35, 1747–1767 (1999)
2. Abate, A., Tiwari, A.: Box invariance of hybrid and switched systems. In: 2nd IFAC

Conf. on Analysis and Design of Hybrid Systems, ADHS, pp. 359–364 (2006)
3. Abate, A., Tiwari, A., Sastry, S.: Box invariance for biologically-inspired dynamical

systems. In: CDC (2007)
4. Sankaranarayanan, S., Sipma, H., Manna, Z.: Constructing invariants for hybrid

systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539–
554. Springer, Heidelberg (2004)

5. Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)

6. Yazarel, H., Pappas, G.J.: Geometric programming relaxations for linear system
reachability. In: Proc. 2004 American Control Conference (2004)

7. Tiwari, A., Khanna, G.: Nonlinear Systems: Approximating reach sets. In: Alur,
R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 600–614. Springer, Hei-
delberg (2004)

8. Rodriguez-Carbonell, E., Tiwari, A.: Generating polynomial invariants for hybrid
systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 590–
605. Springer, Heidelberg (2005)

9. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004)

10. Pastravanu, O., Voicu, M.: Necessary and sufficient conditions for componentwise
stability of interval matrix systems. IEEE Tran. Aut. Con. 49(6) (June 2004)

11. Kiendl, H., Adamy, J., Stelzner, P.: Vector norms as Lyapunov functions for linear
systems. IEEE Transactions on Automatic Control 37(6) (June 1992)

12. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn.
University of California Press (1948)

13. Belta, C., Habets, L., Kumar, V.: Control of multi-affine systems on rectangles
with applications to hybrid biomolecular networks. In: CDC, pp. 534–539 (2002)

14. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems
from ltl specifications. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS,
vol. 3927, pp. 333–347. Springer, Heidelberg (2006)

Qualitative Stability Patterns for

Lotka-Volterra Systems on Rectangles

Laurent Tournier and Jean-Luc Gouzé

INRIA Sophia-Antipolis, COMORE team, France
{laurent.tournier,jean-luc.gouze}@sophia.inria.fr

Abstract. We present an analysis of the Lotka-Volterra differential
equation within rectangles that are transverse with respect to the flow. In
a similar way to existing works on affine systems (and positively invari-
ant rectangles), we consider nonlinear LV equations, in rectangles with
any kind of tranverse patterns. Notably, we give conditions for the exis-
tence of such rectangles. We also analyze the dynamical behavior inside
a rectangle. This work is a first step towards a qualitative abstraction
and simulation of Lotka-Volterra systems.

1 Introduction

The work presented here may be viewed within the context of hybrid analysis
of nonlinear smooth dynamical systems. In classical hybrid approaches, piece-
wise linear or affine systems are used in simplexes, rectangles or more general
polytopes (see for instance [4] or [6]). More recently, [8] proposed a more general
multi-affine framework. We focus here on the Lotka-Volterra (LV) differential
system, which is a slightly different class of dynamical systems that arises in
many biological applications [7]. Our results constitute a first step towards a
qualitative abstraction of LV systems. This concept consists in describing sets of
continuous trajectories by giving a sequence of transitions between rectangular
regions. Besides the algorithmic power of such an abstraction approach (see [4] in
a different framework), qualitative abstraction has two major advantages. First,
it is particularly robust with respect to the parameters (in many applications,
the values of certain parameters are indeed only loosely known, as for instance
in [4]). Secondly, it gives a discrete approximation (see [9]) that can be used
in different tasks, for instance in the design of a discrete controller of a con-
tinuous system. Here we propose theoretical results (mainly Proposition 1 and
Theorem 2) describing the dynamics of the nonlinear LV system on rectangles,
that are transverse with respect to the flow. Details and proofs of the following
results can be found in [10].

2 LV Systems and Transverse Rectangles

We consider the non-degenerate LV n-dimensional differential system (see [7]):

ẋ = x ⊗ A(x − x∗) =: f lv(x) , x ∈ (R∗
+)n (1)

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 662–665, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Qualitative Stability Patterns for Lotka-Volterra Systems on Rectangles 663

where A is a n × n invertible real matrix, x∗ is a n-dimensional real vector and
⊗ designates the componentwise product of real vectors. It is well known that
the hyperplanes xi = 0 are invariant, and so is each orthant, delimited by these
hyperplanes. For clarity, we will suppose that the equilibrium x∗ � 0 (ie all its
coordinates are positive), and we will study this system in the positive orthant.
We will also refer to the associate affine system:

ẋ = A(x − x∗) =: f lin(x) , x ∈ (R∗
+)n (2)

Throughout this paper, we are interested in the dynamical behavior of (1) in
full-dimensional rectangles, comprised in the positive orthant, defined by: R =
[m, M] = {x ∈ R

n | m ≤ x ≤ M}, where 0 � m � M . The (n−1)-dimensional
faces of such a rectangle are denoted Fi+ and F−

i (i ∈ {1, . . . , n}), where:

F+
i =

∏i−1
j=1[mj , Mj] × {Mi} ×

∏n
j=i+1[mj , Mj]

F−
i =

∏i−1
j=1[mj , Mj] × {mi} ×

∏n
j=i+1[mj , Mj]

If, for all x ∈ Fε
i , the vector field coordinate f lv

i (x) does not vanish (it then
keeps a constant sign s ∈ {+,−}), the face Fε

i is said transverse (the flow of (1)
crosses the face in a fixed direction: it is incoming if s �= ε and outgoing if s = ε).
It is easy to see that this property is equivalent for the LV system (1) and the
affine system (2). It is also straightforward that this property can be checked by
looking only at the sign of the f lin

i at the vertices of the face (see [10] for more de-
tails). A rectangle R with all its faces transverse is also said transverse. If for all
i ∈ {1, . . . , n}, F+

i and F−
i are both incoming or both outgoing, the transverse

pattern of R is said to be symmetrical. We first give the following result:

Proposition 1. Let 0 � m � M and R = [m, M], f designates the affine or
LV vector field. Then,

(i) Suppose that R is transverse. Then, x∗ ∈ R if and only if the pattern of R
is symmetrical (and then x∗ belongs necessarily to the interior of R).

(ii) Suppose x∗ /∈ R. Then, given any initial condition x0 ∈ R, the solution
t �→ x(t, x0) of ẋ = f(x) leaves R in finite time.

A proof of this proposition can be found in [10]. We deduce from it that any
rectangle R that does not contain the equilibrium is transient (in the sense that
any trajectory starting in R eventually leaves R), regardless of the fact that
it is transverse. However, transversality is important in order to describe the
dynamics inside the rectangle containing the equilibrium. We therefore start by
giving some conditions to ensure that this particular rectangle is transverse.

3 Necessary and Sufficient Conditions for the Existence
of a Transverse Rectangle, with Symmetrical Pattern

The question addressed here is to link the existence of a transverse rectangle,
with a symmetrical pattern, with the particular structure of matrix A, for the n-
dimensional nonlinear LV system (1). This problem has already been investigated

664 L. Tournier and J.-L. Gouzé

in the linear framework, notably in [1] (see also [3,5] results in the case of general
polytopes). Theorem 1 given below generalizes the result of [1] in two directions:
on the one hand, it considers the nonlinear LV system (1) instead of the affine
system (2), and on the other hand, it gives conditions for the existence of a
transverse rectangle with any symmetrical pattern and not only a positively
invariant rectangle.

The proof of this theorem can be found in [10], and essentially relies on the
theory of nonnegative matrices, in particular of the special class of M-matrices
(defined for instance in the book of Berman and Plemmons [2]).

Theorem 1. Consider the dynamical system (1) with A invertible. Let m, M ∈(
R

∗
+

)n, 0 � m � M , and let R designate the n-dimensional rectangle [m, M].
Suppose there exists p ∈ {0, . . . , n} such that the p pairs of faces F±

i of R (i ∈
{1, . . . , p}) are outgoing and the n − p pairs of faces F±

i , for i ∈ {p + 1, . . . , n}
are incoming. Then the two following properties hold:

– (P1) The comparison matrix C(A) of A is a non-singular M-matrix.
– (P2) Diagonal entries of A satisfy:

∀i ∈ {1, . . . , p} , aii > 0
∀i ∈ {p + 1, . . . , n} , aii < 0

We recall here the classical definition of a comparison matrix : if A is an n × n
real matrix, the comparison matrix C(A) of A is the matrix (cij)i,j=1...n, where,
for i ∈ {1, . . . , n}, cii = |aii| and for j �= i, cij = − |aij |. A theorem (see [2, p
134]) provides several characterizations of M-matrices (e.g, one can easily show
that C(A) is an M-matrix by checking that all its principal minors are positive).

Theorem 1 gives explicit necessary conditions on matrix A to ensure the ex-
istence of a transverse rectangle around the equilibrium. In addition to this, we
also developed the converse of Theorem 1: provided that A satisfies properties
(P1) and (P2), we give a constructive way to build transverse rectangles around
the equilibrium. The interested reader can refer to [10] for a statement and a
proof of this converse theorem.

4 Dynamical Behavior within Transverse Rectangles

If the matrix A satisfies Theorem 1 (ie properties (P1) and (P2)), then we can
deduce the signs of the real parts of the eigenvalues of A (see [10]). We can then
deduce the stability of equilibrium x∗ for the affine system (2) and for the LV
system (1). In the affine case, this is sufficient to determine the behavior of (2)
within rectangle R. It is however not sufficient in the LV case, as the LV equation
is nonlinear. The following theorem allows us to generalize the results to the LV
framework:

Theorem 2. Consider dynamical system (1) and m, M ∈ (
R

∗
+

)n such that m �
M and such that the rectangle R = [m, M] has p ∈ {0, . . . , n} pairs of outgoing
faces F±

i , i = 1, . . . , p and n − p pairs of incoming faces F±
i , i = p + 1, . . . , n.

Then,

Qualitative Stability Patterns for Lotka-Volterra Systems on Rectangles 665

– if p = 0, any trajectory starting in R converges towards the equilibrium x∗.
– if p = n, any trajectory starting in R (except the equilibrium itself) leaves R

in finite time.
– If 1 ≤ p ≤ n− 1, then for almost every initial condition x0 ∈ R, the solution

x(t; x0), t ≥ 0 of (1) leaves R in finite time.

The proof of this theorem, based on Lyapunov stability and instability theorems,
can be found in [10].

5 Conclusion

Theoretical results presented here set up a first step towards a qualitative ab-
straction of Lotka-Volterra dynamical systems. Proposition 1 and Theorem 2
classify the different dynamical behaviors of a LV system within rectangles that
either contain the equilibrium or not. If A does not satisfy property (P1), we
have proved that it is impossible to build a transverse rectangle around the
equilibrium. A next step is to study the qualitative behavior of a LV system
on a rectangular mesh, using discrete abstraction. We should then focus on the
design of a discrete controller (see [9]) of the system on rectangles (in order for
instance to steer the trajectories to a designated face). As an example, the lin-
ear feedback approach presented in [6] can be extended in the LV framework.
Another extension is the study of a general Lotka-Volterra hybrid system, with
different LV systems in each rectangle; as in [4], the vector field then becomes
discontinuous, and we have to face complex issues such as sliding motions and
Filippov solutions on the boundaries.

References

1. Abate, A., Tiwari, A.: Box invariance of hybrid and switched systems. In: 2nd
IFAC Conf. on Analysis and Design of Hybrid Systems, pp. 359–364 (2006)

2. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences.
In: Classics in Applied Mathematics, SIAM Press, Philadelphia (1994)

3. Castelan, E.B., Hennet, J.C.: IEEE Trans. Auto. Cont. 38(11), 1680–1685 (1993)
4. de Jong, H., Gouzé, J.-L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Bull.

Math. Biol., 66, 301–340 (2005)
5. Farina, L., Benvenuti, L.: IMA J. Math. Cont. Info. 15, 233–240 (1998)
6. Habets, L.C.G.J.M., van Schuppen, J.H.: Automatica. 40, 21–35 (2004)
7. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cam-

bridge University Press, Cambridge (1998)
8. Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha,

J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, Springer, Heidelberg (2006)
9. Lunze, J., Raisch, J.: Discrete models for hybrid system. In: Modelling, Analysis,

and Design of Hybrid Systems. LNCIS, pp. 67–82. Springer, Heidelberg (2002)
10. Tournier, L., Gouzé, J.-L.: Research Report 6346, INRIA (2007),

http://hal.inria.fr/inria-00186247

http://hal.inria.fr/inria-00186247

Sampled-Data Event Control of Hybrid Systems

for Control Specifications Given by Predicates

Yoshiyuki Tsuchie and Toshimitsu Ushio

Graduate school of Engineering Science,
Osaka University, Toyonaka,

Osaka 560-8531, Japan
yoshiyuki@hopf.sys.es.osaka-u.ac.jp, ushio@sys.es.osaka-u.ac.jp

Abstract. We consider a hybrid system controlled by a sampled-data
controller whose action is periodically time-driven, that is, the control
inputs can change only at the particular time instants. We introduce a
transition system as semantics of the controlled hybrid system and con-
sider a control specification given by a predicate. First, we derive a neces-
sary and sufficient condition for the predicate to be control-invariant and
show that there always exists the supremal control-invariant subpredi-
cate for any predicate. Finally, we propose a procedure to compute it.

1 Introduction

In a direct method for a design of a sampled-data controller, a sampled-data con-
trolled system is described as a model with continuous-time variables (a plant)
and discrete-time variables (a digital controller). So a hybrid system is a suitable
continuous-time model for the direct method [1].

Silva and Krogh proposed an extension of a hybrid automaton with time-
driven events to model explicitly discrete transitions that are based on time-
driven sampling of the continuous state and define a transition system as seman-
tics to verify its dynamics[2, 3]. Tsuchie and Ushio discussed the state feedback
control of a hybrid automaton with time-driven events. However, the controller
is designed in continuous-time setting. In this paper, we discuss a sampled-data
event controller and consider a control specification given by a predicate on the
state set of the controlled hybrid system, where the sampled-data event con-
troller assigns a set of control-enabled events, called a control pattern, based on
the state of the hybrid system and updates it at each sampling time so that all
reachable states of the closed-loop system satisfy the predicate.

We use a labeled transition system T = (Q, Act, T , Q0) in order to define
semantics of controlled hybrid systems, where Q is a states set, Act is a label
set, T ⊆ Q×Act×Q is a state transition relation, and Q0 ⊆ Q is the initial state
set. Let P(Q) be the set of all predicates on Q. A partial order “�” for P(Q)
is defined as follows: for P1, P2 ∈ P(Q), P1 � P2 ⇔ P1(q) ≤ P2(q)∀q ∈ Q. For
each a ∈ Act, we define two predicates as follows[4]:

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 666–669, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Sampled-Data Event Control of Hybrid Systems 667

Da(T)(q) =

{
1 if a ∈ {ã ∈ Act|∃q′ ∈ Q s.t. (q, ã, q′) ∈ T },
0 otherwise,

(1)

wlpa(P, T)(q) =

{
1 if P (q′) = 1∀q′ ∈ {q̃′ ∈ Q|(q, a, q̃′) ∈ T },
0 otherwise.

(2)

For a subset A ⊆ Act, we define wpA(P, T) =
∨

a∈A wpa(P, T).

2 Controlled Hybrid Automaton

We consider a plant modeled by a hybrid automaton H=(V , E, Σ, inv, init,
f low, jump), where V and Σ are the set of nodes and events, E ⊆ V × Σ × V
is the set of edges, that is, e(v, σ, v′) ∈ E is an edge e from v to v′ labeled by σ
and corresponds to a discrete transition by the occurrence of σ, inv(v) ⊆ �n is
the set of values which the continuous state can take in v, flow(v) ⊆ �n ×�n is
a set of values which (x, ẋ) can take in v, init(v) is the set of all possible initial
continuous states in v, for each e(v, σ, v′) ∈ E, jump(e) ⊆ 2�

n×�n

is the jump
relation, that is, (x, x′) ∈ jump(e) means that the continuous state x ∈ inv(v)
jumps to x′ ∈ inv(v′) when σ ∈ Σ occurs[1].

We assume that H has forcible events which can be forced to occur by external
control actions and are controllable. Let Σf be the set of forcible events. Then,
note that Σc ∩ Σu = ∅, Σ = Σc ∪ Σu, and Σf ⊆ Σc. The state set QH of H
is given by QH = {(v, x)|v ∈ V, x ∈ inv(v)}. Let guard(e) be an occurrence
condition of the discrete transition by e(v, σ, v′) ∈ E, that is, guard(e) = {x ∈
inv(v)|∃x′ ∈ inv(v′) s.t. (x, x′) ∈ jump(e)}. We assume that guard(e) is a closed
set for any e(v, σ, v′) ∈ E and σ ∈ Σf .

Let F (P, δ, v, x, x′) be a set of functions F : [0, δ] → �n with F (0) = x,
F (δ) = x′, F (ε) ∈ inv(v) and (F (ε), Ḟ (ε)) ∈ flow(v) for any ε ∈ (0, δ), and
P (v, F (εi)) = P (v, F (εj)) for any εi, εj ∈ (0, δ). Moreover, F (P, δ, v, x, ∗) =⋃

x′∈inv(v) F (P, δ, v, x, x′).
Let f : QH → 2Σ × 2Σf be an event controller denoted by f = (f1, f2), where

f1 and f2 give a set of control-enabled events and forced events by the controller,
respectively. Note that, for any q ∈ QH , f2(q) ⊆ f1(q)∩Σf and Σu ⊆ f1(q). Let
T be a sampling period. Then, the control input signal is denoted by, for each
time t, f((v(nT), x(nT))), where (v(t), x(t)) is a state trajectory at the time
t and n = �t/T �. Denoted by Hf is H controlled by the sampled-data event
controller f .

We define transition systems to be used as semantics for the hybrid
automaton H .

(I) A sampled-data time-abstract transition system is defined by Sa(P) =
(Qs, Actsa, Tsa(P), Qs0), where Qs = QH × Γ1 × Γ2 × [0, T] is the set of states,
Qs0 = {(q0, γ1, γ2, 0) ∈ Qs|q0 ∈ QH0} is the initial state set, Actsa = Σ∪{τu, τc}
is the set of events, and Tsa(P) is the set of transition relations. Intuitive meaning
of each element of a state (q, γ1, γ2, ω) ∈ Qs is as follows: q indicates a state of
H , ω is an elapsed time from the latest sampling time, γ1 ∈ Γ1 and γ2 ∈ Γ2

668 Y. Tsuchie and T. Ushio

are control patterns assigned at the latest sampling time, and Tsa(P) is defined
as follows: Consider qs = ((v, x), γ1, γ2, ω) and q′s = ((v′, x′), γ′

1, γ
′
2, ω

′) ∈ Qs.
Then, (A)for σ ∈ Σ, (qs, σ, q′s) ∈ Tst(P) iff σ ∈ γ1, γ1 = γ′

1, γ2 = γ′
2, ω = ω′,

and ∃e(v, σ, v′) ∈ E s.t. (x, x′) ∈ jump(e), (B) (qs, τc, q
′
s) ∈ Tsa(P) iff q = q′,

ω = T , and ω′ = 0, and (C) (qs, τu, q′s) ∈ Tsa(P) iff v = v′, ω < ω′, and
∃F ∈ F (P, ω′ − ω, v, x, ∗) such that F (ω′ − ω) = x′, γ1 = γ′

1, γ2 = γ′
2, and

σ̂ /∈ γ2∀t ∈ [0, ω′ − ω) and e(v, σ̂, v̂) ∈ E with F (t) ∈ guard(e).
The transition relation labeled by τu means the uncontrollable time elapse

which cannot be interrupted by any controller.
Next, we define a transition system as semantics of the controlled hybrid

automaton Hf .

(II) A sampled-data time-abstract transition system controlled by f is defined
by Sa(Hf , P) = (Qs, Actsa, T f

sa(P), Qf
s0), where the state set Qs is the same

state set as that of Sa(P) and Qf
s0 = {(q0, γ1, γ2, 0) ∈ Qs|q0 ∈ QH0, f(q0) =

(γ1, γ2)}. Actsa = Σ ∪ {τu, τc}. T f
sa(P) ⊆ Qs × Actsa × Qs is defined as follows:

(A) for each a ∈ Actsa\{τc}, (qs, a, q′s) ∈ T f
sa(P) iff (qs, a, q′s) ∈ Tsa(P) and (B)

(qs, τc, q
′
s) ∈ T f

sa(P) iff (qs, τc, q
′
s) ∈ Tsa(P), f(q) = (γ′

1, γ
′
2), ω = T , and ω′ = 0.

We extend a predicate PH : QH → {0, 1} on QH to a predicate Ps ∈ P(Qs)
on Qs as follows: Ps(q, γ1, γ2, ω) = PH(q) for any (q, γ1, γ2, ω) ∈ Qs.

3 Control-Invariance

We extend a concept of the control-invariance to a hybrid system with sampled-
data state feedback control.

Definition 1. Let H and P ∈ P(Qs) be a hybrid automaton and a predicate.
A predicate P is said to be control-invariant if there exists a controller f such
that satisfies P � wlpa(P, T f

sa(P))∀a ∈ Σ ∪ {τu, τc}. We call the controller f a
permissive controller.

We introduce a necessary and sufficient condition for the control-invariance.

Theorem 1. P ∈ P(Qs) is control-invariant iff the following conditions hold:

P � wlpa(P, Tsa(P)) for any a ∈ Σ ∪ {τu}, and (3)∨
(γ1,γ2)∈Γ1×Γ2

P (q, γ1, γ2, T) ≤
∨

(γ̃1,γ̃2)∈Γ1×Γ2

P (q, γ̃1, γ̃2, 0) for any q ∈ QH . (4)

Theorem 1 shows that we can restrict our interest in behavior on the time interval
[0, T] in order to verify the control-invariance of the hybrid automaton with an
event controller. Then, if P ∈ P(Qs) is control-invariant, one of permissive con-
trollers f is defined as follows: f(q) = (γ1, γ2) with P (q, γ1, γ2, T) ≤ P (q, f(q), 0).

In general, a given predicate P ∈ P(Qs) is not necessarily control-invariant.
We propose a procedure for the computation of the supremal control-invariant
subpredicates of P . Let C I(P) ∈ 2P(Qs) and 0 ∈ P(Qs) be the set of all
control-invariant subpredicates of P ∈ P(Qs) and the predicate with 0(qs) = 0

Sampled-Data Event Control of Hybrid Systems 669

for each qs ∈ Qs. Note that C I(P) �= ∅ since 0 ∈ C I(P). We call P ↑ ∈ C I(P) a
supremal control-invariant subpredicate of P if P ′ � P ↑ for each P ′ ∈ C I(Qs).
The following theorem shows that there exists P ↑ for any predicate P ∈ P(Qs).

Theorem 2. Let I be any index set. If Pi ∈ P(Qs) is control-invariant for each
i ∈ I, then PI =

∨
i∈I Pi is control-invariant.

We consider the following iterative scheme: P0 = P and, for k = 0, 1, 2, . . .,

Pk+1 = Pk ∧
⎛
⎝ ∧

a∈Σ∪{τu}
wlpa(Pk, Tsa(Pk))

⎞
⎠ ∧ mlpτc(P, Tsa(Pk)), where (5)

mlpτc(P, Tsa(P))(qs) =

⎧⎪⎨
⎪⎩

1 if ¬Dτc(T f
sa(P)) or,

∃q′s ∈ Post(qs, τc, Tsa(P)) s.t. P (q′s) = 1,

0 otherwise.
(6)

Theorem 3. If Pk = Pk+1 for some k ≥ 0, then P ↑ = Pk.

Practically, the iterative computation in Theorem 3 is implemented by using a
bisimulation relation, and its termination is closely related to the existence of a
finite bisimulation.

4 Conclusion

This paper considered the sampled-data event control of a hybrid automaton
with forcible events as a model of computer-controlled systems where control
specifications are given by predicates. We introduced transition systems as se-
mantics and showed a necessary and sufficient condition for the control speci-
fication to be control-invariant. Finally, we proved that there always exists the
supremal control-invariant subpredicate for any predicate and proposed an iter-
ative scheme to compute it.

The procedure for computation of the supremal control-invariant subpredicate
is not decidable in general. So it is future work to investigate a condition under
which the procedure is decidable.

References

[1] Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Sym-
posium on Logic in Computer Science, pp. 278–292 (1996)

[2] Silva, B.I., Krogh, B.H.: Modeling and verification of sampled-data hybrid systems.
In: ADPM 2000, pp. 237–242 (2000)

[3] Silva, B.I., Krogh, B.H.: Modeling and verification of hybrid systems with clocked
and unclocked events. In: Proc. 40th IEEE CDC, pp. 762–767 (2001)

[4] Ramadge, P.J., Wonham, W.M.: Modular feedback logic for discrete event systems.
SIAM Journal on Control and Optimization 25(5), 1202–1218 (1987)

On the Timing of Discrete Events in

Event-Driven Control Systems

Manel Velasco, Pau Mart́ı, and Camilo Lozoya

Automatic Control Department, Technical University of Catalonia,
Pau Gargallo 5, 08028 Barcelona, Spain

manel.velasco@upc.edu

Abstract. This paper presents an analysis method to determine offline
at what intervals have to be taken the samples for various types of event-
driven control systems.

1 Introduction

For certain type of event-driven controllers and for time-driven controllers this
paper shows that the distance covered by the system trajectory is proportional
to the norm of the state. This property permits to determine the variations in the
sampling times generated by discrete-events as a function of the state direction.
For second order systems a geometric approach is proposed.

2 Event-Driven Control Systems Model

We consider the control system

ẋ = Ax + Bu
y = Cx

(1)

with x ∈ R
n×1, A ∈ R

n×n, B ∈ R
n×m, u ∈ R

1×m, and C ∈ R
1×n. Let

uk = Lxk (2)

be the control updates given by a linear feedback controller designed in the
continuous-time domain but using only samples of the state at discrete instants
t0, t1, . . . , tk, Between control updates, u(t) = uk in t ∈ [tk, tk+1[.

3 Analysis of Various Event Conditions

In event-driven control systems, event conditions are the controller execution
rules. We analyze event conditions where samples are taken when some function
of the system state exceeds a threshold, as in e.g. [1] or [2]. Let

e(t) = x(t) − xk (3)

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 670–673, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Timing of Discrete Events in Event-Driven Control Systems 671

be the error evolution between consecutive samples with t ∈ [tk, tk+1[. In the
approach presented in [1] the event condition is defined as

γk : |e(t)| = η|x(t)| (4)

where 0 < η ≤ 1. And in the scheme of [2], the event condition can be stated as

γk : eT
k Mek = ηxT

k Mxk (5)

where 0 < η ≤ 1 and M ∈ R
n×n.

In general, for some event-driven schemes, event conditions can be defined as

γk : g(e(t), xk, η) = 0 (6)

where g(·) ∈ R, and η is a set of given parameters. We study whether time-driven
control systems can be similarly specified. Let

xk+1 = Φ(t)xk + Γ (t)uk

yk = Cxk
(7)

be the discrete-time system obtained by sampling (1) with period t = h, where

Φ(t) = eAt and Γ (t) =
∫ t

0

eAsdsB.

From (3), (7), and (2) we observe that the event condition

γk : ek = (Φ(h) + Γ (h)L − I) xk (8)

triggers control updates at equidistant points in time, given by h.
For notation convenience, a vector vk will be denoted as

vk = rv
k

[
cos θv

k

sin θv
k

]
(9)

where rv
k and θv

k are the modulus and angle of vk.

Proposition 1. For two-dimensional systems described by (1)-(2), if control
updates are triggered by event conditions (4), (5) or (8), it holds that

‖ek‖ = α‖xk‖f(θx
k , t) (10)

with α ∈ R, f : [0, 2π[→ R, and ek given by (3).

Proof. Event condition (4) can be rewritten as

eT
k ek = η2xT

k P (t)xk (11)

where P (t) = (Φ(t) + Γ (t)L)T (Φ(t) + Γ (t)L). Eq. (11) in terms of (9) is

(re
k)2

[
cos θe

k sin θe
k

] [
cos θe

k

sin θe
k

]
= η2(rx

k)2
[
cos θx

k sin θx
k

]
P (t)

[
cos θx

k

sin θx
k

]
(12)

672 M. Velasco, P. Mart́ı, and C. Lozoya

which simplifies to

re
k = ηrx

k

√[
cos θx

k sin θx
k

]
P (t)

[
cos θx

k

sin θx
k

]
. (13)

From (8) with t = h, it follows that

eT
k ek = xT

k Q(t)xk (14)

where Q(t) = (Φ(t)+Γ (t)L− I)T (Φ(t)+Γ (t)L− I). Then Eq. (14) simplifies to

re
k = rx

k

√[
cos θx

k sin θx
k

]
Q(t)

[
cos θx

k

sin θx
k

]
. (15)

Similarly, condition (5) can be written as

(re
k)2

[
cos θe

k sin θe
k

]
M

[
cos θe

k

sin θe
k

]
= η(rx

k)2
[
cos θx

k sin θx
k

]
M

[
cos θx

k

sin θx
k

]
(16)

which reduces to

re
k =

√
ηrx

k

[
cos θx

k sin θx
k

]
M

[
cos θx

k

sin θx
k

]

[
cos θe

k sin θe
k

]
M

[
cos θe

k

sin θe
k

] =
√

ηrx
kg(θx

k , t) (17)

The last equality, considering R(t) = (Φ(t) + Γ (t)L), holds because

θe
k = arctan

(
ye

xe

)
= arctan

⎛
⎜⎜⎝

rx
k

[
0 1

]
R(t)

[
cos θx

k

sin θx
k

]

rx
k

[
1 0

]
R(t)

[
cos θx

k

sin θx
k

]
⎞
⎟⎟⎠ (18)

��
Remark 1. Equations (13), (15), and (17) specify invariant boundaries for |ek|
when for example a spheric parametrization of the unitary vector of the system
state is used. These boundaries provide information about all possible covered
distances by the system trajectory after the occurrence of an event.

4 Geometric Approach

Since the derived boundaries scale on the norm of the system state, we can
compare systems by geometrically mapping boundaries. Note that boundary (15)
has constant period h. Therefore, solving (13) and (15) for t, or (17) and (15), we
can determine the variations in sampling times generated by event conditions (4),
(5), or any event-driven scheme whose event condition fulfills proposition 1. The
mapping consists in plotting a time grid composed by boundaries generated by

On the Timing of Discrete Events in Event-Driven Control Systems 673

−0.2 −0.1 0 0.1 0.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.1

0.15

0.20.250.30.350.4

0.1

0.15

0.20.250.30.350.4

−0.2 −0.1 0 0.1 0.2 0.3
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Fig. 1. Mapping of (17) (left) and (13) (right) on top of a time grid generated by (15)

(15) with different periods. And on top of them, we plot the boundary generated
by (13) or (17). Then by inspecting the superposition, we can directly assert the
character of time between sampling instants that (4) or (5) generates.

As an example, consider that the double integrator system is controlled by
(2) with L = [1.0001 1.7322], which can be obtained from eq. (1)-(6) of [2]. It is
easy to verify that L stabilizes the system when applied with event conditions
(4), (5), or (8) (η = 0.5). In Figure 1 we plot the mapping for (17) (left) and
(13) (right). The time grid has been generated using (15) for periods h = 0.1 to
0.4. For example, by looking to the left sub-figure, we deduce that the maximum
and minimum sampling interval are approximately 0.38s and 0.15s, respectively.

5 Conclusions and Future Work

This paper has presented an analysis method that permits to study timing prop-
erties for various types of event-driven schemes. Future work will focus on find-
ing the analytical solutions for the graphical method and it extension to an
n-dimensional space. In additional, for schedulability of event-driven controllers
and regulation of CPU load, it will be of interest to apply non-lineal techniques
to study the nature of periods’ dynamics.

References

1. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Transactions on Automatic Control 52(9), 1680–1685 (2007)

2. Wang, X., Lemmon, M.: Self-triggered Feedback Control Systems with Finite-Gain
L2 Stability. IEEE Transactions on Automatic Control (Submitted, 2007)

Decentralized Event-Triggered Broadcasts over

Networked Control Systems

Xiaofeng Wang and Michael D. Lemmon�

University of Notre Dame, Department of Electrical Engineering,
Notre Dame, IN, 46556, USA
{xwang13,lemmon}@nd.edu

Abstract. This paper examines event-triggered broadcasting of state
information in distributed networked systems. Event-triggering has the
agent broadcast its state information when its local “error” signal exceeds
a given threshold. We present a decentralized approach for determining
event-triggering thresholds for nonlinear subsystems with the assumption
that each agent only has access to its local state. The main results of this
paper show that our decentralized event triggering scheme guarantees the
asymptotic stability of the entire networked control system.

1 Introduction

A networked control system (NCS) is a collection of control systems where in-
dividual subsystems exchange information over some communication network.
The networking of control effort can be advantageous in terms of lower system
costs due to streamlined installation and maintenance costs. Meanwhile, such
distributed systems may be more reliable since the failure of a single subcompo-
nent will not bring down the entire system.

Communication capacity is important in NCSs. Early work focused on one
packet transmission problem [1], where a supervisor summarizes all subsystem
data into this single packet. As a result such schemes may be impractical for
large-scale systems. Asynchronous broadcasts were considered in [2], [3]. These
works derived bounds on the maximum admissible transfer interval that a mes-
sage can be delayed while still maintaining closed loop system stability. However,
all of the previous work confined its attention to control area network (CAN)
buses where centralized computers are used to schedule communication.

In recent years there has been considerable interest in developing distributed
controllers over ad hoc wireless networks [4]. The problem faced in using wireless
networks is that their throughput capacity is limited [5]. As network density
increases, the throughput seen by an individual agent asymptotically approach
zero. There is, therefore, great interest in being able to develop networked control
systems which are extremely frugal in their use of network bandwidth.

This paper addresses this problem through a decentralized event-triggering
scheme, which reduces the communication frequency so that the bandwidth
� The authors gratefully acknowledge the partial financial support of the National

Science Foundation (NSF CNS-0720457).

M. Egerstedt and B. Mishra (Eds.): HSCC 2008, LNCS 4981, pp. 674–677, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Decentralized Event-Triggered Broadcasts 675

requirements can be reduced. Event-triggering has the agent broadcast its state
information when its local “error” signal exceeds a given threshold . We present
an approach for selecting event-triggering thresholds that assures the asymp-
totic stability of the group. Our analysis applies to nonlinear subsystems. The
novelty of our paper is its consideration of completely “decentralized” design
over distributed systems other than single processor real-time systems [6], [7].
By “decentralized”, it means a controller’s broadcast decisions are made using
its local state and the last received state information from its neighbors and
the designer’s selection of the threshold also only requires information about an
individual subsystem and its immediate neighbors.

The paper is organized as the following: section 2 formulates the problem; the
event-triggering scheme is presented in section 3; final conclusions are found in
section 4.

2 Problem Formulation

Notation: For a nonlinear system containing N agents, {Pi}N
i=1, let N =

{1, 2, · · · , N}. Zi ⊂ N denotes the set of agents whose state Pi can access.
Di ⊂ N denotes the set of agents that directly drive Pi’s dynamics. Ui ⊂ N
denotes the set of agents that can receive Pi’s broadcasts. Si ⊂ N denotes
the set of agents who are directly driven by Pi. Let xi : R → R

ni , ui ∈ R
mi ,

xi0 ∈ R
ni be the ith agent’s state trajectory, control variable, initial state, re-

spectively. x = (xT
1 , · · · , xT

N)T is the overall system state. Let n̄ = Σj∈Nnj and
Ti = Di ∪ Zi. For a set S ⊆ N and a vector x ∈ R

n̄, let nS =
∑

j∈S nj and
xS = {xj}j∈S ∈ R

nS .
Consider a sampled-data distributed system, where each agent broadcasts

its state information to its neighbors in an aperiodic manner. Pi’s broadcasts
are characterized by a monotone increasing sequence of time instants, {bik}∞k=1,
where bik denotes the time instant when Pi broadcasts for the kth time. bik is
also Pi’s sampling time since we assume there is no delay between sampling and
broadcasts. Let x̂(t) ∈ R

n̄ be the latest broadcasted states at time t. The system
dynamics of Pi are defined as the following:

ẋi(t) = fi(xDi , ui)
ui = γi(x̂Zi(tk)), xi(0) = xi0 (1)

for t ∈ [tk, tk+1), k = 1, . . . ,∞, where tk represents the kth broadcast time
instant among all broadcasts, γi : R

nZi → R
mi is the given feedback strategy of

Pi satisfying γi(0) = 0, and fi : R
nDi ×R

mi → R
ni is a given function satisfying

fi(0, 0) = 0. Notice that the sequence of {tk}∞k=1 is the increasing sorted sequence
of the elements in {bjk | ∀k ∈ N, ∀j ∈ N}. In particular we assume there exists a
smooth, proper, positive-definite function V : R

n̄ → R, such that for any x ∈ R
n̄

∑

i∈N

∂V

∂xi
fi(xDi , γi(xZi)) ≤ 0 (2)

and the equality holds if and only if x = 0.

676 X. Wang and M.D. Lemmon

The main objective of this paper is to find a locally constructed “decentral-
ized” event for Pi to trigger its broadcasts, such that {bik}∞i=1 is well-characterized
to ensure the asymptotic stability of the entire NCS. By “decentralized”, we
mean each agent can only detect its own state.

3 Decentralized Broadcast-Triggering Events Design

This section derives a threshold condition for event-triggering having the agent
broadcast its state information to its neighbors. We’re interested in determining
condition under which such event-triggering preserves the system’s asymptotic
stability. We use |S| ∈ N to denote the number of the elements in a given set S,
‖ · ‖2 to denote 2-norm of a vector, and ‖ · ‖ to denote the matrix norm.

Theorem 1. For system 1, assume that there exist a smooth, proper, positive-
definite function V : R

n̄ → R, continuous functions ηi : R
ni → R

li , and contin-
uous, positive definite functions φi ∈ R

ni → R, ψi ∈ R
li → R, i = 1, · · · , N ,

such that the following inequality
∑

i∈N

∂V

∂xi
fi(xDi , γi(yZi)) ≤

∑

i∈N
−φi(xi) +

∑

i∈N
ψi(ηi(xi) − ηi(yi)) (3)

holds for all x, y ∈ R
n̄. If for every i ∈ N , there exists a constant ρi ∈ (0, 1)

such that the broadcast sequence {bik}∞k=1 satisfies

− ρiφi(xi(t)) + ψi(ηi(xi(t)) − ηi(xi(bik))) ≤ 0 (4)

for all t ∈ [bik, b
i
k+1), then system 1 is asymptotically stable.

Proof. By equation 3, V̇ ≤ ∑
i∈N

[−φi(xi(t)) + ψi(ηi(xi(t)) − ηi(xi(bik)))
]

holds
for all t ∈ [tk, tk+1). Combining this inequality and equation 4, V̇ ≤ −∑

i∈N (1−
ρi)φi(xi(t)) holds for all t ∈ [tk, tk+1), k = 1, · · · ,∞, which means V̇ (t) < 0
when x �= 0 and V̇ (t) = 0 if and only if x = 0 since φi(xi) is positive definite
and ρi < 1. This is sufficient to show that system 1 is asymptotically stable. �
Theorem 1 says that under the structural conditions in equations 3, the thresh-
old condition implicit in equation 4 can be used to assure the overall system’s
asymptotic stability. Here the “error” signal is ηi(xi(t)) − ηi(xi(bik)). The fol-
lowing theorem presents a decentralized design scheme by which each agent
constructs its threshold condition.

Theorem 2. For system 1, assume that there exist continuous functions ηi :
R

ni → R
li , Li : R

nTi → R
+, i = 1, · · · , N , such that for all x, y ∈ R

n̄, i ∈ N ,

‖fi(xDi , γi(xZi)) − fi(xDi , γi(yZi))‖2 ≤ Li(xTi)‖ηZi(xZi) − ηZi(yZi)‖2, (5)

where ηZi(xZi) = {ηj(xj)}j∈Zi . Given a constant δ ∈ R
+ and continuous func-

tions βi(xi), i = 1, · · · , N , if there exist smooth, proper, positive definite func-
tions Vi : R

ni → R and continuous functions αi : R
ni → R, i = 1, · · · , N , such

that for all x ∈ R
n̄ and i ∈ N ,

Decentralized Event-Triggered Broadcasts 677

−αi(xi) + (|Si ∪ Ui| − 1)βi(xi) is negative definite, and (6)

∂Vi

∂xi
fi(xDi , γi(xZi)) +

1
2δ
L2

i (xTi)
∥
∥
∥
∥
∂Vi

∂xi

∥
∥
∥
∥

2

2

≤ −αi(xi) +Σj �=i,j∈Tiβj(xj), (7)

then φi : R
ni → R and ψi : R

li → R, i = 1, · · · , N , defined by
φi(xi) = αi(xi) − (|Si ∪ Ui| − 1)βi(xi) and ψi(zi) = |Ui|δ

2 ‖zi‖2
2,

satisfy equation 3 in theorem 1 with V (x) =
∑

i∈N Vi(xi).

Proof. By completing square and applying equation 5, 7, we have
∑

i∈N
∂Vi

∂xi
fi(xDi , γi(yZi)) ≤

∑
i∈N

[
−φi(xi) + |Ui|δ

2 ‖ηi(yi) − ηi(xi)‖2
2

]
.

Since −φi(xi) is negative definite according to equation 6, this inequality
implies the satisfaction of equation 3 in theorem 1. �
In the design, δ, {βj}j∈N , and {ηj}j∈N are determined ahead of time. Pi’s
local problem is to construct Vi and αi such that equation 6 and 7 hold. By
equation 4 with any ρi ∈ (0, 1), bik+1 is triggered by the violation of the inequality
−ρiαi(xi)+ρi(|Si∪Ui|−1)βi(xi)+

|Ui|δ
2 ‖ηi(xi(bik))−ηi(xi)‖2

2 < 0. The asymptotic
stability of the overall system is guaranteed by theorem 1.

The existence of the solutions to equation 7 cannot be guaranteed in general.
However, for linear systems, the solutions always exist and the decentralized
event-design scheme for each agent can be posed as a local LMI problem. Due
to space limitations, we will not present these results in this paper.

4 Conclusion

This paper examines event-triggered broadcasting of state information in nonlin-
ear distributed networked control systems. We provided a decentralized design
scheme for agents to construct event-triggering thresholds that preserve asymp-
totic stability while only requiring “local” information to make their decisions.

References

1. Krtolica, R., Ozguner, U.: Stability of linear feedback systems with random com-
munication delays. In: Proceedings of American Control Conference (1991)

2. Walsh, G., Ye, H., Bushnell, L.: Stability analysis of networked control systems.
IEEE Transactions on Control Systems Technology 10(3), 438–446 (2002)

3. Nesic, D., Teel, A.: Input-output stability properties of networked control systems.
IEEE Transactions on Automatic Control 49, 1650–1667 (2004)

4. Sinopoli, B., Sharp, C., Schenato, L., Schaffert, S., Sastry, S.: Distributed control ap-
plications within sensor networks. Proceedings of the IEEE 91(8), 1235–1246 (2003)

5. Gupta, P., Kumar, P.: The capacity of wireless networks. IEEE Transactions on
Information Theory 46(2), 388–404 (2000)

6. Tabuada, P., Wang, X.: Preliminary results on state-triggered scheduling of stabi-
lizing control tasks. IEEE Conference on Decision and Control (2006)

7. Hristu-Varsakelis, D., Kumar, P.: Interrupt-based feedback control over a shared
communication medium. In: IEEE Conference on Decision and Control (2002)

Author Index

Abate, Alessandro 1, 598
Agha, Gul 316
Al-Hammouri, Ahmad T. 16
Ames, Aaron D. 622
Amin, Saurabh 602
Åström, Karl 358
Attia, Sid Ahmed 30
Azhmyakov, Vadim 30

Bako, Laurent 43
Bartocci, E. 229
Bayen, Alexandre M. 101, 602
Belta, Calin 287, 542
Bemporad, A. 130, 144
Benini, Luca 634
Benvenuti, L. 58
Bhatia, Amit 606
Bicchi, Antonio 158, 642
Biswas, Gautam 614
Bloch, Gérard 330
Branicky, Michael S. 16
Brogliato, B. 259
Brunelli, Davide 634
Bujorianu, Manuela L. 610

Camlibel, M.K. 259
Candau, Yves 415
Caveney, Derek 301
Chatterjee, Krishnendu 72, 87
Chen, Badong 650
Clarke, Edmund M. 344
Claudel, Christian G. 101
Collins, Pieter 486
Corradini, F. 229
Cuijpers, P.J.L. 116

D’Innocenzo, Alessandro 1
Daigle, Matthew 614
Dang, Thao 654
Di Benedetto, Maria D. 1
Di Cairano, S. 130, 144
Dullerud, Geir E. 401

Entcheva, E. 229

Feron, Eric 443
Ferrari, A. 58
Fontanelli, Daniele 158
Fränzle, Martin 172
Frazzoli, Emilio 443, 457, 606
Frehse, Goran 187

Girard, Antoine 201, 215
Gouzé, Jean-Luc 662
Greco, Luca 158
Grosu, R. 229

Han, Tingting 244
Hante, Falk M. 602
Heemels, W.P.M.H. 130, 259
Henzinger, Thomas A. 72, 87
Hermanns, Holger 172
Hespanha, João P. 358
Hu, Jianghai 584
Hu, Jinchun 650

Imura, Jun-ichi 514
Ivančić, Franjo 654

Jha, Sumit Kumar 187, 618
Johansson, K.H. 144
Jokic, A. 273

Kapinski, James 344
Katoen, Joost-Pieter 244
Kloetzer, Marius 287
Koutsoukos, Xenofon 429, 614
Kowshik, Hemant 301
Krogh, Bruce H. 187, 344
Kumar, P.R. 301
Kwon, YoungMin 316

Lamperski, Andrew 622
Langerak, Rom 610
Lauer, Fabien 330
Lazar, M. 130, 273
Le Guernic, Colas 215
Lee, Ji-Woong 626
Lemmon, Michael D. 674
Lerda, Flavio 344

680 Author Index

Liberatore, Vincenzo 16
Liberzon, Daniel 500
Lozoya, Camilo 670
Lunze, Jan 471
Lygeros, John 598, 610

Majumdar, Rupak 72
Mart́ı, Pau 670
Martini, Simone 642
Mazzi, E. 58
Megretski, Alexandre 443
Mereacre, Alexandru 244
Meslem, Nacim 415
Mesquita, Alexandre R. 358
Mitchell, Ian M. 630
Moser, Clemens 634
Murray, R.M. 144

Nakura, Gou 372
Niqui, Milad 638

Pasqualetti, Fabio 642
Petreczky, Mihály 386
Platzer, André 646
Pola, Giordano 201
Prabhakar, Pavithra 401
Prabhu, Vinayak S. 87
Prandini, Maria 598
Pu, Li 650

Quesel, Jan-David 646

Raisch, Jörg 30
Ramı́rez, Antonio 528
Ramdani, Nacim 415
Recalde, Laura 528
Reniers, M.A. 116
Riley, Derek 429
Riley, Kasandra 429
Roozbehani, Mardavij 443

Sanfelice, Ricardo G. 457
Sankaranarayanan, Sriram 654
Sastry, Shankar S. 1, 598
Schild, Axel 471
Schumacher, J.M. 259
Sella, Lorenzo 486
Sharon, Yoav 500
Silva, Manuel 528
Smolka, S.A. 229
Susuki, Yoshihiko 630

Tabuada, Paulo 201
Tanner, Herbert G. 570
Tazaki, Yuichi 514
Teige, Tino 172
Thiele, Lothar 634
Tiwari, Ashish 658
Tournier, Laurent 662
Tsuchie, Yoshiyuki 666
Tveretina, Olga 638

Ushio, Toshimitsu 666

van den Bosch, P.P.J. 273
Vázquez, C. Renato 528
Velasco, Manel 670
Vidal, René 43, 386
Vincentelli, A.L. Sangiovanni 58
Viswanathan, Mahesh 401
Vladimerou, Vladimeros 401

Wang, Xiaofeng 674
Wasilewska, A. 229

Yordanov, Boyan 542
Yunt, Kerim 556

Zhang, Wei 584
Zhang, Wenqi 570

	Title Page
	Preface
	Organization
	Table of Contents
	Markov Set-Chains as Abstractions of Stochastic Hybrid Systems
	Introduction and Objectives
	The dt-SHS Model
	Markov Set-Chains
	Probabilistic Dynamics
	Abstraction Procedure
	Steady State Computation Using the MSC Abstraction
	Numerical Study

	Co-simulation Tools for Networked Control Systems
	Introduction
	Background and Related Work
	Our Approach
	The Agent/Plant Extension
	Agent/Plant Usage
	Example
	Case Studies

	The {\tt NSCSPlant} and {\tt NSCSController} Extensions
	Case Study

	Modelica/{\tt ns-2} Integration
	Case Study

	Conclusions

	On the Maximum Principle for Impulsive Hybrid Systems
	Introduction
	Modeling Framework and Problem Formulation
	Optimization of Impulsive Hybrid Systems
	The Impulsive Hybrid Maximum Principle
	Numerical Aspects
	Concluding Remarks

	Algebraic Identification of MIMO SARX Models
	Introduction
	Problem Statement
	Algebraic Identification of MIMO Switched ARX Systems
	Known Number of Submodels of Known and Equal Orders
	Unknown Number of Submodels of Unknown and Possibly Different Orders
	Implementation of Algorithm 2 with Noisy Data

	Complexity Reduction Using a Projection Approach
	Classification of the Data
	Estimation of the Submodel Parameters

	Numerical Results
	Conclusions

	Contract-Based Design for Computation and Verification of a Closed-Loop Hybrid System
	Introduction
	Heterogeneous Rich Component Formalism
	Contracts Composition and Verification of Contracts Satisfaction
	Contract Specifications
	Closed Loop Composition
	Verification of Contracts Satisfaction Relation by Reachability Analysis

	Conclusion

	Controller Synthesis with Budget Constraints
	Introduction
	Definitions
	Imperfect-Information to Perfect-Information Games
	Games with Variables
	Discrete Time Control of Rectangular Automata

	Trading Infinite Memory for Uniform Randomness in Timed Games
	Introduction
	Timed Games
	Safety: Pure Finite-Memory Strategies
	Reachability: Randomized Finite-Memory Strategies
	Parity: Randomized Finite-Memory Strategies

	Solutions to Switched Hamilton-Jacobi Equations and Conservation Laws Using Hybrid Components
	Introduction
	Problem Definition
	Properties of the Viability Episolution
	The Mixed Initial-Boundary Conditions Problem
	Hybrid Components in the Moskowitz Function
	Applications
	Switching Solutions of the LWR PDE
	Hybrid Solutions Associated to a Speed Control Policy
	Data Assimilation Using Hybrid Components

	Conclusion

	Lost in Translation: Hybrid-Time Flows vs. Real-Time Transitions
	Introduction
	Time, Transitions and Flows
	Translations
	Bisimulation Equivalence
	Impuls Differential Inclusions
	Conclusions

	A Control Lyapunov Approach to Predictive Control of Hybrid Systems
	Introduction
	Preliminaries and Notation
	Stability Notions
	Graph Notions

	Reference Model and Problem Formulation
	Synthesis and Properties of the Hybrid CLF
	Control Lyapunov Function on the Continuous State
	Control Lyapunov-Like Function on the Discrete State

	Stabilizing Predictive Control of HSDD
	Simulation Example

	Conclusions

	Discrete and Hybrid Stochastic State Estimation Algorithms for Networked Control Systems
	Introduction
	Modelling and Problem Formulation
	Estimation of Sensing Network State
	Estimation of Sensing Network and Process States
	Estimation of Sensing and Actuation Network States
	Simulations and Experiments
	Conclusions

	Anytime Control Algorithms for Embedded Real-Time Systems
	Introduction
	Anytime Control Algorithms
	Prior Work
	Scheduling Problem Formulation and Solution
	Stochastic Schedule Conditioning

	Design of a Control Algorithm Hierarchy
	Tracking Control and Bumpless Transfer
	Examples
	Conclusions

	Stochastic Satisfiability Modulo Theory: A Novel Technique for the Analysis of Probabilistic Hybrid Systems
	Introduction
	Stochastic Satisfiability Modulo Theories
	Probabilistic Hybrid Automata
	Reducing PBMC to SSMT
	Algorithm for SSMT
	Conclusion and Future Work

	A Counterexample-Guided Approach to Parameter Synthesis for Linear Hybrid Automata
	Introduction
	Linear Hybrid Automata with Parameters
	Parameter Synthesis Using Counterexamples
	Monotonic Parameters
	Counterexample-Guided Parameter Synthesis
	Experimental Results
	Conclusions

	Approximately Bisimilar Symbolic Models for Incrementally Stable Switched Systems
	Introduction
	Switched Systems and Incremental Stability
	Switched Systems
	Incremental Stability

	Approximate Bisimulation
	Approximately Bisimilar Symbolic Models
	Common Lyapunov Function
	Multiple Lyapunov Functions

	Symbolic Models for the Boost DC-DC Converter
	Conclusion

	Zonotope/Hyperplane Intersection for Hybrid Systems Reachability Analysis
	Introduction
	Reachability of Hybrid Systems
	Zonotopes
	Continuous Reachability
	Hybrid Reachability

	Intersection of a Zonotope and a Hyperplane
	From Dimension d to Dimension 2
	Intersection of a Zonogon and a Line
	Intersection of the Reachable Set and a Guard
	From Polytopes to Zonotopes

	Examples
	5-Dimensional Benchmark
	Thermostat

	Conclusion

	Learning and Detecting Emergent Behavior in Networks of Cardiac Myocytes
	Introduction
	Biological Background
	Superposition and Quadtrees
	Linear Spatial-Superposition Logic
	Model Checking and Learning
	Implementation and Experimental Results
	Related Work
	Conclusions

	Compositional Modeling and Minimization of Time-Inhomogeneous Markov Chains
	Introduction
	Inhomogeneous Continuous Time Markov Chains
	Inhomogeneous Interactive Markov Chains
	Strong and Weak Bisimulation
	Concluding Remarks and Future Work

	Observer-Based Control of Linear Complementarity Systems
	Introduction
	Preliminaries
	Linear Complementarity Problem
	Passivity of a Linear System

	Linear Complementarity Systems and Initial Solution
	Initial and Local Well-Posedness
	Global Well-Posedness
	Stability and State Feedback Design for LCS
	Observer Design
	Separation Principle: Observer-Based Controller
	Conclusion

	Complementarity Systems in Constrained Steady-State Optimal Control
	Introduction
	Nomenclature

	Problem Formulation
	Dynamic KKT Controllers
	Complementarity Integrators

	Well-Posedness and Stability of the Closed-Loop System
	Well-Posedness
	Stability Analysis

	Illustrative Example
	Conclusions

	Dealing with Nondeterminism in Symbolic Control
	Introduction
	Case Study
	Preliminaries
	Problem Formulation and Approach
	Solution to Problem 1
	Constructing the Product Automaton
	Solving a Büchi Game
	Constructing the Control Strategy for T

	Case Study Revisited
	Conclusion

	Safety and Liveness in Intelligent Intersections
	Introduction
	Related Work
	Perpetual Collision Avoidance
	Perpetually Maintainable Relations
	Perpetually Avoiding Collisions

	Cars on a Lane
	Sampling with Intermediate Safety
	Maximally Aggressive but Safe Strategies

	Collision Avoidance at Intersections
	Description of System
	Hybrid Architecture
	Time slot assignment policy.
	Three Maneuvers.
	Downstream cars: Real and Virtual.
	Outline of Algorithm for Perpetual Safety.
	The Intersection Crossing Algorithm.
	Safety of the Intersection Crossing Algorithm.
	Perpetual Systemwide safety.
	Liveness of the Intersection Crossing algorithm.

	Performance Evaluation
	Concluding Remarks

	LTLC: Linear Temporal Logic for Control
	Introduction
	Discrete Linear Time Invariant System Model
	Linear Temporal Logic for Control (LTLC)
	Syntax
	Semantics

	Model Checking
	Converting Timed Variables to a Normal Form
	Model Checking as a Feasibility Checking

	Experiment
	Discussions

	Switched and PieceWise Nonlinear Hybrid System Identification
	Introduction
	Nonlinear Hybrid System Identification
	Kernels and Support Vector Regression
	Hybrid System Identification with Kernels
	Nonlinear Boundaries between Modes

	Interpretation and Links with other Approaches
	Numerical Examples
	Switching Function with Unknown Nonlinearity
	Nonlinearly Piecewise Affine Map Estimation
	Simulated Hybrid System Identification

	Conclusion

	Verification of Supervisory Control Software Using State Proximity and Merging
	Introduction
	System Model
	Conservative Verification Using Merging
	Bounded-Time Safety Verification Algorithm
	Ellipsoidal Sets for Affine Dynamics

	Experimental Results
	Conclusions

	Optimotaxis: A Stochastic Multi-agent Optimization Procedure with Point Measurements
	Introduction
	Problem Description and Controllers
	Run and Tumble Controller
	Diffusion Controller

	Control Law
	Run and Tumble Controller
	Diffusion Controller

	Convergence to the Steady-State
	Numerical Results and Discussion
	Chemotaxis and Optimotaxis

	Conclusion

	Noncausal Optimal Tracking of Linear Switched Systems
	Introduction
	Problem Formulation
	Approach Based on the Parametrization of the Switching Instants
	Construction of an Algorithm for Numerical Computation
	Conclusion

	Realization Theory for Discrete-Time Semi-algebraic Hybrid Systems
	Introduction
	Algebraic Preliminaries
	Problem Formulation and Statement of the Main Results
	Semi-algebraic Systems
	Semi-algebraic Hybrid Systems
	Implicit Polynomial Systems
	Main Results

	Realization Construction
	Proof of Theorem 1
	Proof of Theorems 2-4
	Realization Algorithms

	Discussion and Future Work

	A Decidable Class of Planar Linear Hybrid Systems
	Introduction
	An Example
	Preliminaries
	Linear Hybrid Systems
	Elements of the Two Dimensional Plane
	Restricted Hybrid Systems
	Notations for Planar Hybrid Systems

	Decidability of the Reachability Problem
	Edge-to-Edge Reachability
	Finite Bisimulation
	Point-to-Point and Region-to-Region Reachability

	Conclusions

	Reachability of Uncertain Nonlinear Systems Using a Nonlinear Hybridization
	Introduction
	Guaranteed Set Integration with Interval Taylor Models
	Interval Analysis
	Interval Taylor Models

	Guaranteed Set Integration Using Müller's Existence Theorem
	Computing Reachable Sets with Set Integration
	Computing a Reachable Set by Using Hybrid Automata as Bounding Systems
	Example
	Conclusion

	Modeling and Simulation of Biochemical Processes Using Stochastic Hybrid Systems: The Sugar Cataract Development Process
	Introduction
	Modeling Biochemical Reactions Using SHS
	Dynamics of Biochemical Reactions
	Medication Modeling
	Stochastic Hybrid Systems
	Sugar Cataract Modeling

	SHS Simulation
	Background
	Simulation of SDEs
	Switching Boundaries

	Simulation Results
	Conclusions and Future Work

	Distributed Lyapunov Functions in Analysis of Graph Models of Software
	Introduction
	Automated Software Analysis: Preliminaries
	Lyapunov Invariants as Behavior Certificates

	Graph Models in Analysis of Computer Programs
	Lyapunov Analysis of Graph Models
	Towards Optimal Graph Models

	Conclusions and Future Work

	On the Optimality of Dubins Paths across Heterogeneous Terrain
	Introduction
	Background
	Notation

	Problem Statement
	Hybrid Model
	Hybrid Optimal Control Problem

	Necessary Conditions for Optimality
	Optimality of Paths
	Refraction Law at Boundary

	Conclusions

	Switching Surface Design for Periodically Operated Discretely Controlled Continuous Systems
	Introduction
	Modeling of Periodically Operated Discretely Controlled Continuous Systems
	Hybrid Model
	Sampled Data Model

	Problem Formulation
	Switching Surface Design
	Equivalent Discrete-Time Periodic Linear System
	Local Stabilizability along a Limit Cycle
	Local Effectivity of Operation Modes
	Design Algorithm

	Experimental Validation
	Conclusion

	Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata
	Introduction
	Theoretical Preliminaries
	Hybrid Automata
	Shift Spaces and Finite Automata
	Symbolic Dynamics of Piecewise-Continuous Maps
	Interval Arithmetic

	Algorithms for Computing the Discrete Dynamics
	Numerical Computation of the Return Map
	Computing the Discrete Dynamics
	Convergence to the Discrete Dynamics
	Representing the Symbolic Dynamics by Discrete Automata

	Case Studies
	A Hysteresis Switching System
	The van der Pol Equation

	Conclusion

	Input-to-State Stabilization with Quantized Output Feedback
	Introduction
	System Definition
	Overview of the Controller Design
	Controller Design
	Desired Observer Properties
	Switching Logic

	Observer Examples
	Pseudo-Inverse Observer
	Luenberger-Type Observer

	Conclusion

	Bisimilar Finite Abstractions of Interconnected Systems
	Introduction
	Approximate Simulations and Bisimulations of Discrete-Time Dynamical Systems
	Approximate Bisimulation of Interconnected Systems
	Expression of Interconnected Systems
	Composition-Compatible Bisimulation

	Finite Abstractions of Linear Subsystems
	Expression of Finite Abstractions Via State Quantization
	Approximate Bisimulation Condition of Finite Abstraction
	Example

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2

	On Controllability of Timed Continuous Petri Nets
	Introduction
	Basic Concepts
	Controllability Definition
	The Case Where All Transitions Are Controllable
	Controllability with Uncontrollable Transitions
	Conclusions

	Parameter Synthesis for Piecewise Affine Systems from Temporal Logic Specifications
	Introduction
	Preliminaries
	Transition Systems, Simulations, and Bisimulations
	Linear Temporal Logic and Model Checking

	Problem Formulation
	Construction of Finite Quotients
	Counterexample Guided Parameter Synthesis
	Construction of Satisfying Quotients
	Parameter Synthesis

	Construction of Bisimulation Quotients
	Analysis of a Genetic Toggle Switch
	Conclusion

	Necessary Conditions for the Impulsive Time-Optimal Control of Finite-Dimensional Lagrangian Systems
	Introduction
	Preliminaries
	Internal Boundary Variations and Discontinuous Transversality Conditions
	The Generalized Problem of Bolza

	Projected Newton-Euler Equations (PNE) in Impulsive Control Form
	Lagrangian Dynamics in Different Phases of Motion

	Statement of the Optimal Control Problem
	Necessary Conditions
	Discussion and Conclusion

	Composition of Motion Description Languages
	Introduction
	Mdle Preliminaries
	From Mdles to Basic Process Algebras
	The Link between bpas and Push-Down Automata
	Recursive and Guarded Processes
	Composition of bpas

	Main Results
	Mdles Are a Special Class of bpas
	Composition of Mdles
	Mdles Are Closed Under Composition
	Mdle Equivalence Is Decidable
	Mdle Composition Preserves Bisimilarity

	A Case Study: The Sliding Block Puzzle
	Conclusion

	On Optimal Quadratic Regulation for Discrete-Time Switched Linear Systems
	Introduction
	Problem Formulation
	The Value Function of the DLQRS Problem
	Equivalent Subset of p.s.d. Matrices
	Computation of the Value Function
	Examples
	Example 1
	Example 2
	Random Examples

	Conclusion

	Approximation of General Stochastic Hybrid Systems by Switching Diffusions with Random Hybrid Jumps
	On Stability of Switched Linear Hyperbolic Conservation Laws with Reflecting Boundaries
	Sampling-Based Resolution-Complete Algorithms for Safety Falsification of Linear Systems
	Introduction
	Sampling-Based Safety Falsification
	Preliminaries
	Main Ideas
	Conclusions

	Reachability Analysis of Stochastic Hybrid Systems by Optimal Control
	Introduction
	Stochastic Hybrid Systems
	Stochastic Reachability as an Optimal Stopping Problem
	From Optimal Stopping to Stochastic Reachability
	Conclusions

	An Integrated Approach to Parametric and Discrete Fault Diagnosis in Hybrid Systems
	Fault Diagnosis of Electrical Power Systems

	d-IRA: A Distributed Reachability Algorithm for Analysis of Linear Hybrid Automata
	Introduction
	The Distributed Algorithm (d-IRA)
	A Partial Order for Counterexamples and Relaxations
	Failure Tolerance of d-IRA
	Experimental Results and Conclusion

	Sufficient Conditions for Zeno Behavior in Lagrangian Hybrid Systems
	Introduction
	Simple Hybrid Mechanical Systems
	Sufficient Conditions for Zeno Behavior in Lagrangian Hybrid Systems

	Separation in Stability Analysis of Piecewise Linear Systems in Discrete Time
	Introduction
	Problem Formulation
	Two Separate Problems
	Proposed Algorithm for Stability Analysis
	Conclusion

	Level Set Methods for ComputingReachable Sets of Hybrid Systems with Differential Algebraic Equation Dynamics
	Introduction
	Mapping the Reachable Tube across Mode Jumps
	Single Machine-Load Bus Example

	Approximate Control Design for Solar Driven Sensor Nodes
	Introduction
	System Model
	Approximate Multiparametric Linear Programming
	Simulation Results

	Modular Development of Hybrid Systems for Verification in Coq
	Preliminaries
	Formalization of Hybrid Automaton in Coq

	Steering a Leader-Follower Team Via Linear Consensus
	Introduction
	Leader - Follower Consensus Networks
	The Containment Problem
	A Simulation Study
	Conclusions and Future Work

	Logical Verification and Systematic Parametric Analysis in Train Control
	Introduction
	Differential Dynamic Logic
	Fully Parametric European Train Control System
	Parametric Verification of the ETCS System

	Information Theoretical Approach to Identification of Hybrid Systems
	Introduction
	Noisy SARX System Identification
	Stochastic Information Divergence Gradient Algorithm
	Experiments

	A Policy Iteration Technique for Time Elapse over Template Polyhedra
	Introduction
	Policy Iteration
	Implementation and Experiments

	Generating Box Invariants
	Qualitative Stability Patterns for Lotka-Volterra Systems on Rectangles
	Introduction
	LV Systems and Transverse Rectangles
	Necessary and Sufficient Conditions for the Existence of a Transverse Rectangle, with Symmetrical Pattern
	Dynamical Behavior within Transverse Rectangles
	Conclusion

	Sampled-Data Event Control of Hybrid Systems for Control Specifications Given by Predicates
	Introduction
	Controlled Hybrid Automaton
	Control-Invariance
	Conclusion

	On the Timing of Discrete Events in Event-Driven Control Systems
	Introduction
	Event-Driven Control Systems Model
	Analysis of Various Event Conditions
	Geometric Approach
	Conclusions and Future Work

	Decentralized Event-Triggered Broadcasts over Networked Control Systems
	Introduction
	Problem Formulation
	Decentralized Broadcast-Triggering Events Design
	Conclusion

	Author Index

